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ABSTRACT 

 

Sudden Infant Death Syndrome (SIDS) is defined as a sudden and unexplained death of an infant 

younger than 1 year of age. Although infrequent, SIDS is still the most common cause of infant death 

between one month and one year of age in developed countries. Thanks to epidemiological, animal 

and pathophysiological studies, possible risk factors and mechanisms leading to this death are more 

understood, nonetheless number of deaths has reached a plateau in the last decade and no reliable 

quantitative tool to assess risk exists.  

The purpose of this Ph.D. thesis is to employ novel signal processing methodologies in order to 

accurately estimate the effect of several risk factors on the autonomic and cardiorespiratory control 

in newborn infants. In particular, the effects of sleep states, sleep position, prematurity and exposure 

to alcohol and smoking during pregnancy are investigated. 

The original contribution of this thesis centers on the utilization of noninvasive methodologies, to 

analyze physiological signals routinely acquired in hospital and home settings. Moreover, the approach 

to signal analysis incorporates complex system generation and interaction, with a systemic view of the 

cardiorespiratory physiology. Different modes of interactions were explored, ranging from amplitude 

to phase modulation. 

Parameters proposed proved to be capable of characterizing multiple autonomic profiles, providing 

information in line with pathophysiological findings. Results highlighted sleep position effects on 

autonomic control, with less parasympathetic activity in prone position, especially at 2 months of age. 

Prematurity greatly influenced the cardiorespiratory coupling, both in terms of strength and 

directionality, with weaker respiratory drive associated with prematurity. Lastly, neonates exposed to 

smoking and alcohol during pregnancy showed a blunted autonomic response when exposed to the 

autonomic challenge of head up tilt. 
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In conclusion, the methods and results of this Ph.D thesis show the utility and power of complex and 

multivariate signal processing techniques in the investigation of an enigmatic syndrome such as SIDS, 

where multiple organs and their control systems are involved. 
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SUMMARY 
 

Introduction 

Sudden Infant Death Syndrome (SIDS) is defined as a sudden and unexplained death of an infant 

younger than 1 year of age. It occurs in an infant considered healthy and it remains unexplained even 

after autopsy, a careful examination of the death scene and a review of the clinical history [1]. Although 

infrequent, SIDS is the most common cause of infant death between one month and one year of age 

in developed countries, with around 2000 death a year only in the United States [2].  

Thanks to the information from epidemiological, animal and pathophysiological studies, we have now 

knowledge of risk factors and have formulated hypotheses regarding the underlying mechanisms. 

Currently, the most supported theory is the triple risk model proposed by Filiano and Kinney in 1994 

[3]. The model views SIDS as the result of the simultaneous occurrence of three factors: an underlying 

vulnerability (i.e. prematurity, genetic abnormalities, etc.), a critical developmental period in 

homeostatic control (i.e. the first year of life), and exposure to exogenous stressor(s) (e.g. newborn 

placed in a prone sleep position, overheating, inadequate oxygen supply etc.).  

One crucial aspect in this and many other models proposed is the involvement of autonomic control 

circuits and their role in cardiorespiratory regulation. Brainstem alterations and altered serotonin 

receptors were found in SIDS cases autopsies [4], [5], and altered heart rate (HR), breathing and 

arousing patterns were identified in vulnerable populations and conditions, such as prematurity and 

prone sleeping [6], [7].  

Nonetheless, currently there is no marker for risk stratification nor measures to quantify the impact of 

the identified risk factors on autonomic development. This is even more relevant given that in the past 
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10 years death rates have reached a plateau, with no major further decline since the successful Back 

to Sleep campaign [8]. 

Thus, the principal purpose of this Ph.D. thesis is to provide quantitative and noninvasive tools to 

evaluate the impact of several risk factors on the functionality of cardiorespiratory and autonomic 

control. The ultimate objective is to provide noninvasive and early markers to assess risk.  

The tools employed are time series methods and analysis of neonatal HR and breathing, obtained from 

noninvasive collection in hospital. Heart rate variability (HRV) was a primary direction given the 

plethora of publications linking risk with HRV measures and sympatho-vagal autonomic activity. Given 

the relevant role of the cardiorespiratory interaction in maintaining homeostasis and responding to 

variable physiological demands, in our analysis we added breathing and its interaction with HRV to 

provide a more complete approach.  

The research was conducted under the guidance of several collaborators from two institutions, the 

Politecnico di Milano and the Columbia University Medical Center. Datasets for the analyses were used 

in collaboration with Drs. Rakesh Sahni and Nina Burtchen, and the PASS Research Network. The design 

and realization of the analytic and statistical part were developed under the supervision of Professors 

William P. Fifer, Michael M. Myers and Maria G. Signorini. 

 

Advanced methods of analysis.  

The autonomic nervous system (ANS) is a part of the peripheral nervous system that acts to control 

physiology of many bodily functions. It is divided in two branches, sympathetic and parasympathetic, 

acting synergistically for the regulation of physiology and behavior crucial for survival. Primary 

autonomic functions include the regulation of HR, blood pressure, rate of respiration, body 

temperature, sweating, gastrointestinal motility and secretion. One of the most interesting function 

relevant to this thesis is the control over the heart muscle: sympathetic fibers increase HR, 

atrioventricular conduction, and contractility of cardiac muscle, while they dilate the coronary arteries. 

In contrast, parasympathetic nerves slow down the HR and reduce heart contractility, favoring 

conservation of energy. These effects are integrated with several other factors, such as the 

spontaneous contractility of the heart itself, the peripheral resistance of the vascular tree, the effects 

of circulating hormones and the metabolic supply to the heart. 
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This complex interplay generates a range of heart rate variability (HRV) patterns, which reflects ANS 

mediated change in the time intervals between adjacent heartbeats. For this reason, HRV has been for 

long time considered a powerful tool, providing a window to observe non-invasively the interaction 

between the sympathetic and parasympathetic nervous systems and their capability to respond 

properly to internal and external challenges [9]. HRV is also influenced by respiration; the neuronal 

control of breathing and HR are closely linked, functionally as well as anatomically. The close 

interaction between cardiac and respiratory control is critical for survival. This synergy is crucial for the 

homeostatic regulation of blood gases, and essential for regulating central nervous functions, such as 

arousal [10], [11].  

Thus, breathing and HR are the output of a complex network of controlling mechanisms, which 

constantly adapt to the ever-changing need of the organism. Since the 1960s, many efforts have been 

spent to describe the systems behind these signals, starting with time domain and following with 

frequency domain approaches [12]. Nonetheless, the complex origin of these signals often makes 

traditional linear signal processing approaches unsuitable or only partially capable of characterizing 

the systems generating the data. More parameters coming from nonlinear chaos theory and the 

information theory can provide alternative approaches to extract meaningful information and describe 

the behavior of the systems generating the data under analysis [13]. Furthermore, advanced bivariate 

techniques have been proposed in order to highlight different types of interactions among systems 

and unveil their relationships.  

Previous studies had addressed the questions of autonomic and cardiorespiratory regulation in the 

context of SIDS, but mostly employing traditional spectral techniques to asses cardiac and respiratory 

functioning and their interaction [14]–[17]. One of the objectives of this thesis is to implement complex 

signal processing methods to characterize newborn HRV and cardiorespiratory activity. For this reason, 

we selected entropies and phase rectified signal averaging (PRSA) techniques, given previous positive 

applications in adults, newborns and fetuses.  

In 1993, Pincus was the first to introduce a practical measure of complexity, namely Approximate 

Entropy (ApEn), showing that infants who had an apparent life threatening event presented greater 

ApEn instability across quiet sleep than any normal infant exhibited, with incidents of extremely low 

values [18]. Following this work, the group of Moorman applied a modified version of ApEn, called 

Sample Entropy, to detect sepsis in newborns [19]. These entropy measures aim to quantify the 
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regularity, defined as the presence of repetitive patterns in a time series within a certain tolerance r 

and at different lags [19], [20]. They provide entropy estimation indices even with relatively short 

segments and without making any assumptions about the underlying structure of the system. A 

challenging problem for entropy estimation is the choice of the tolerance r, to assess if two patterns 

could be defined similar. In 2006, Lake proposed a new parameter called quadratic sample entropy 

(QSE) [21]. It removes the dependency on r, which can be optimally varied for each data record. One 

way to optimally vary r, is that of setting a minimum number of matches (MCM), while minimizing r, 

in order to have a stable and consistent entropy estimate. We also discuss ways to optimally select the 

MCM.  

Another approach for nonlinear characterization of HRV is PRSA, which offers the possibility to analyze 

separately HR accelerations and decelerations and select parameters to specify the frequencies of 

interest. This affords the opportunity to investigate rapid parasympathetic influences as well as slower 

sympathetic ANS mechanisms. This technique requires relatively long recordings since it is based on 

averaging many segments in order to discard irrelevant data. It was applied successfully in the 

identification of intra uterine growth restricted fetuses and detection of cardiovascular risk in adults 

[22], [23].  

Our second objective was to characterize and quantify the mutual influence of cardiovascular and 

respiratory rhythms. Many contributions were found in the literature, ranging from cross-spectral 

analysis to nonlinear methods, e.g., mutual information or time delay stability [24], [25]. These include 

linear and nonlinear relations between HR and respiration signal. Nonetheless, a limitation of all these 

techniques was that they did not measure the directionality of the relationships, and thus, they could 

only partially reveal the underlying interacting mechanisms responsible for the changes in complexity, 

especially when knowledge of the underlying physiology was limited.  

Transfer Entropy (TE) was developed to address precisely this issue. Its focus is on tracking the 

information flow between two systems. Specifically, TE can enhance the quantification of the 

directional coupling between respiration and HR in order to incorporate both sympathetic and 

parasympathetic regulatory influences. The main advantages of this method are that it captures both 

linear and nonlinear contributions to information flow, and it can differentiate the directionality of 

transfer. Applying TE on shifted signals we can also evaluate how long the effect of a system on the 

other lasts and thus inquire their relationships at different time scales. This is relevant since we know 
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that different time scales might reflect the effect of different autonomic branches on the cardiac 

regulation. 

Another approach is that of describing the cardiorespiratory coupling as a dynamic synchronization 

process, meaning an interaction between two subsystems which can be modeled as two weakly self-

sustained chaotic oscillators [26]–[28]. The basic idea is that given two weakly coupled systems, the 

amplitude of their oscillations may remain uncorrelated whereas their phases do mutually perturb 

each other. With this assumption, it becomes possible to investigate cardiorespiratory synchronization 

by means of a phase analysis of RR series and respiratory signal with a method called Phase Locking, 

rather than applying a classical amplitude analysis. The behavior of the cardiorespiratory system can 

be seen as synergetic, i.e. a multi-stable system switching between several phase configurations, with 

a preference for a specific set of phase relations, which can be seen as attracting frequency ratios [29]. 

In this context, Rosenblum et al. also proposed a method which exploits the notion of phase 

synchronization of irregular oscillators in order to reveal whether the interaction is bi- or unidirectional 

and to quantify the degree of asymmetry in the systems’ coupling [30].  

Interestingly, different modes of interaction are not exclusive, rather they may simultaneously coexist, 

representing different aspects of neural regulation and acting on different time scales [31], [32]. 

The performance of these novel techniques were compared with that of traditional approaches, 

proposed by the Task Force of 1995 [33]. Specific guidelines for newborns are lacking, and their 

different degree of maturation has a big impact on many variables. As a matter of fact, newborns’ HR 

is double adults’ HR. For this reason, we utilized three minute segments, which contain roughly the 

same number of beats as the five minutes, usually used for adults. Additionally, we tested the 

performance of fetal parameters, given the developmental overlap in timing of nervous system 

development, especially for premature populations. Parameters estimated for the time domain 

include mean RR, Standard Deviation of Normal to Normal RR intervals (SDNN) and Root Mean Square 

of the Successive Differences (RMSSD), Long-Term Irregularity (LTI) and Short-Term Variability (STV). 

Spectral and cross-spectral analyses were also performed, extracting areas under the curve (signal 

variance) for Low and High frequency bands. 

These techniques were employed to quantify how SIDS risk factors may alter cardiorespiratory 

interaction and autonomic activity. In particular, we investigated the influence of sleep state, sleep 
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position, prematurity and the combined effect of prenatal smoking and alcohol exposure on baseline 

physiology and a physiological challenge, i.e. the head up tilt. These conditions were chosen to cover 

both intrinsic and extrinsic risk factors, as proposed by the triple risk model, as well as their interaction.  

 

HRV and Cardiorespiratory Analysis Results 

As a preliminary step, we decided to address the question of how sleep states affect cardiorespiratory 

measures, in particular the novel measures introduced in this study, in order to be able to account for 

this influence in larger databases and following studies. From the literature we know that HR and its 

long term variability, measured by parameters such SDNN, are generally higher in active sleep (AS), 

while short term variability, for instance measured by RMSSD, is higher in quiet sleep (QS). These 

findings have been attributed to the increased vagal activity in QS and increased body movement and 

sympathetic activity in AS. With respect to the quantification of cardiorespiratory interaction as a 

function of sleep state, QS generally presents higher values of coherence at high frequencies (HF), 

indicating well established linear coupling in that frequency range.  

We tested the effect of sleep state on complex measures of cardiorespiratory coupling in 151 full term 

newborns studied at birth and at one month of age [34], [35]. Entropy values (SampEn and QSE) were 

higher in QS. TE values showed that in QS coupling is stronger both with HR driving breathing and 

vice versa. Moreover, only in QS information flow from in the direction of respiration to HR was 

dominant. TE implemented on shifted signals showed how different directionalities of interaction 

act on different time scales, probably driven by the different branches of the ANS.  

Our results indicate that, while QS generally presents lower global HRV, higher complexity values 

were observed probably due to increased interactions among physiological systems, as higher TE 

values seem to indicate. Moreover, a difference in directionality balance based on sleep state was 

observed, which could be driven by differences in the average breathing frequency. That is when 

breathing frequency is higher there is less opportunity for the respiration to dynamically modulate 

HR. Higher breathing rates occur more often in AS, and this could account for an absence of a 

dominant directionality. With respect to the cardiorespiratory synchronization, our findings showed 

a significantly higher value both in percentage of time spent in phase-coupling and in length of the 

coupled epochs in QS, both at the newborn and one-month stage.  
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When looking at the parameters behavior as a function of age, time domain parameters showed an 

increase in HR and a decrease in variability. In TE the major differences occurred in QS, with an increase 

in information flow in both directions with age. Moreover, the ratio of the dominant synchronization 

shifted from a majority of 3:1 (3 beats in 1 breath) in newborns, to 4:1 (4 beats in 1 breath) in one-

month infants. This is of particular interest, since the peak of SIDS incidence is between 2-4 month of 

age.  

Following the characterization of autonomic and cardiorespiratory activity by state, we addressed the 

effects of risk factors in three populations.  

First, we investigated the effect of position during sleep in a group of 35 premature infants, with data 

acquired prior to discharge from the hospital (gestational age (GA) at birth 28.7 ±2 weeks and post 

menstrual age at time of study 37.7 ±2.4 weeks). Twenty four of these infants were studied again two 

months after discharge (GA at birth 27.9 ±1.6 weeks and post menstrual age at time of study 49.2±3.2 

weeks) [36]. All infants underwent the same study protocol, which included baseline sleep recordings 

in both prone and a baseline in supine positions. ECG was acquired at 500 Hz and RR series were 

extracted. 

Analysis by sleep position in the first study showed clear differences both in the long-term variability 

parameters (LTI and PRSA) and in the short-term variability parameters (SampEn and QSE), with supine 

position being characterized by higher variability but lower complexity. At 2 months of age, sleep 

position influenced mostly short-term variability parameters, specifically RMSSD and STV, and 

entropies, all parameters generally associated with parasympathetic regulation. With increasing post-

natal age, infant parasympathetic control should dominate HR autonomic regulation: the fact that at 

2 months of age measures of vagal activity were found to be diminished in prone position might 

suggest a suppressive effect of this position, changing the sympatho-vagal balance.  

Next, we addressed the effect of prematurity in a dataset of 329 subjects, from 35 to 40 weeks GA [37], 

[38]. Infants were tested 12 to-84 hours after delivery, with a 10-minute baseline recording of ECG and 

respiration, at 500 Hz and 200 Hz respectively. Following the guidelines of the American College of 

Obstetricians and Gynecologists, infants were divided into three groups: newborns whose GA was (1) 

35-36 weeks, labelled Late Preterm (LPT); (2) GA 37-38 weeks, Early Term (ET) and (3) GA 39-40 weeks, 

Full Term (FT). Results showed increasing mean RR intervals, short-term HRV (RMSSD), HR complexity 
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(QSE) and linear cardiorespiratory coupling (spectral HF content) as a function of GA, indicating a 

significant increasing cardiorespiratory coupling and autonomic control as a function of GA at birth. 

Measures of cardiorespiratory coupling and directionality indicated no relationship between time 

spent in phase-synchronized state and GA group, but GA at birth influenced significantly directionality 

of interaction. In QS all the three GA groups showed the dominant influence of breathing on HR, and 

this relationship grew with GA. In AS a balanced relationship was present in LPT and it moved toward 

a dominant relationship from breathing to HR in FT.  

Mrowka et al. had hypothesized that directionality could depend on respiratory frequency. In 

particular, respiration rate would act as a low pass filter, i.e. below a set respiratory frequency 

(proposed to 0.6 Hz) directionality would mainly be from respiration to HR, whereas above it the 

interaction would become bidirectional. We tested this hypothesis in our dataset and found the 

occurrence of this bimodal influence: concurrently with breathing frequency <0.6 Hz, an increased 

polarization toward values of directionality from breathing to HR occurred, especially in ET and FT. 

Nonetheless, the mean breathing frequency did not change significantly in the GA window analyzed 

(35-40 weeks); thus, the significant change in directionality with GA at birth could not be explained 

solely by breathing frequency. Our explanation for this phenomenon is that the threshold for the low 

pass filter effect is still adapting between 35-40 weeks GA. At a younger GA, for instance LPT, the value 

for the cutoff frequency might be lower when compared to more mature conditions, such as FT. Given 

that this cutoff frequency is potentially related to vagal nerve regulation, these findings would be 

consistent with previous studies showing immature vagal function in premature infants. Further 

confirmation of this hypothesis comes from the fact that we found directionality to be negatively 

correlated with measures of parasympathetic activity.  

Lastly, the effects of prenatal alcohol and smoking exposure on tilt response in newborn infants were 

investigated in a population of 28 subjects (GA 39 ±1 weeks) , enrolled in the Safe Passage study [39]. 

Data was acquired within 48-96 hours of birth, with ECG and breathing for 10-minutes baseline period 

and a 45° head-up tilt, while the infant was sleeping prone. The tilt session was divided in: 30-sec just 

prior tilt (B); 15-seconds block right after the infant reached head-up position (I); three per 30-seconds 

blocks (T1, T2, T3) before returning to flat position. A modification of the Timeline Follow-Back Interview 

was employed to guide mothers’ self-reported estimation of their tobacco and alcohol consumption 

during pregnancy [39]. Based on the assessment, subjects were divided in a control group (no prenatal 
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exposure to alcohol or tobacco smoke), an exposed group (heavy prenatal exposure to both substances 

during the first, second or third trimester of pregnancy).  

Graded head-up tilt has been widely used as a test to observe and quantify autonomic control. The tilt 

should elicit a shift of the sympatho-vagal balance toward a sympathetic activation and 

parasympathetic withdrawal. In this protocol, breathing signals were of very low quality due to 

movement during tilt, so the analysis focused on HR parameters. It was decided to estimate vagal 

withdrawal with RMSSD, HF power, QSE and RSA amplitude, all parameters which had been linked with 

vagal activity by previous literature [40], [41]. This expected behavior was displayed by the control 

group, with decreases of all the parameters selected after tilt, in particular at T2. The exposed group 

instead showed a blunted response, with no significant differences across the blocks. 

In literature, prenatal exposure to smoke has been reported to effectively impair receptors in the 

medullary 5-HT system, as well as alter in cardiorespiratory control mechanisms and induce 

abnormalities in the pathogenesis of the parasympathetic systems [42]. It is possible to speculate that 

the illustrated difference in vagal activity comparing the control and the exposed groups may 

effectively arise as a consequence of prenatal exposure and may contribute to the decreased infant’s 

ANS capability to maintain homeostatic control when exposed to a direct physiological challenge. 

From a methodological perspective, an important finding was that we showed that the introduction of 

QSE calculated with the Minimum Count of Matches (MCM) approach led to a significant improvement 

in entropy estimation because QSE was less dependent on the length of the segment analyzed and this 

technique allowed to adjust the tolerance r in order to obtain more stable and consistent results. 

Moreover, QSE was less influenced by artifacts than other traditional measures, and thus could be 

applied with minimal preprocessing, with great advantage in real time applications. Secondly, we 

showed the usefulness of estimating PRSA curves by incorporating adjustments to the parameter T 

and, thus, vary the upper frequency limit of the detectable periodicities. TE implemented on shifted 

signals was useful to assess systems memory when interacting with each other. 

Lastly, we compared measures of vagal activity on short segments and showed that even when 

parameters are highly correlated they are not interchangeable due to different statistical 

characteristics.  
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Conclusions 

The main purpose of this Ph.D. thesis was to characterize autonomic and cardiorespiratory regulation 

in newborn populations at risk for SIDS, who are particularly vulnerable to failure of the autonomic 

and cardiorespiratory control systems. We showed how complex parameters and techniques for 

bivariate analysis of breathing and HR provide additional information with respect to traditional 

techniques in the description of how physiological systems dynamically interact to maintain an optimal 

health status. Sleeping position, prematurity and exposure to smoke and alcohol during pregnancy all 

impaired physiological control, generally leading to an altered sympatho-vagal balance and diminished 

cardiorespiratory interaction. 

Results show how traditional indices routinely employed in clinical studies often only scratch the 

surface of a more complex picture. The proposed novel techniques are advantageous for addressing 

specific time scales and different modes of interaction for data collected under standard clinical 

conditions with artifacts and noise. Moreover, these techniques were capable of characterizing 

systems interactions. This supports our aim to utilize nonlinear advanced parameters to obtain reliable 

physiological and clinical indices. This approach could lead to a quantitative autonomic profile to assess 

vulnerability in populations at risk for SIDS. This could grant the possibility of the definition of an 

“elastic” triple risk model, where the contributions of the various risk factors could be weighted and 

updated based on infants physical and environmental conditions, hopefully improving predictability 

and generating novel monitoring solutions.  
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1. SUDDEN INFANT DEATH SYNDROME:  

RISK FACTORS AND POSSIBLE MODELS OF 

PHYSIOLOGICAL DETERMINANTS 

1.1. Introduction to Sudden Infant Death Syndrome 

Sudden Infant Death Syndrome (SIDS) is defined as a sudden and unexplained death of an infant 

younger than 1 year of age. It occurs in an infant considered healthy and it remains unexplained even 

after an autopsy, a careful examination of the death scene and a review of the clinical history [1]. 

Although infrequent, SIDS is still the most common cause of infant death between one month and one 

year of age in developed countries, with around 2000 death a year in the United States [2].  

Despite years of research, SIDS remains an enigma. Over the past few decades, numerous, world-wide, 

epidemiological studies have identified factors that appear to contribute to SIDS deaths, a summary of 

which will be presented in first part of this chapter. A review of the main risk factors interaction and 

proposed models will be then described, with particular attention to the most well know triple risk 

model. The last section is focused on the development of sleep, autonomic control and 

cardiorespiratory interaction in newborns. These elements are all believed to play a crucial role in the 

cascade of events leading to SIDS. 
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1.2. SIDS Risk Factors 

Multiple epidemiological studies have determined that several factors, both modifiable and not, have 

significant associations with SIDS, both using case-control and cohort designs. A summary of these 

factors is presented in Table 1-1, and a detailed description follows. 

 Socio-Demographic 

o SIDS affects infants from all social backgrounds, nevertheless lower socioeconomic status, younger 

maternal age, lower maternal education level and single marital status are consistently associated 

with a higher risk of SIDS. For instance, in the United States, SIDS rates are highest for non-Hispanic 

black and American Indian mothers—2.1 and 1.9 times those for non-Hispanic white mothers, 

respectively [43]. Following educational campaigns in the last few decades we have witnessed a 

decline in SIDS across all social and racial groups, but recent trends indicate that there are now even 

greater social and racial disparities [44], [45].  

o SIDS can occur at any time during the first year of age, but approximately 90% of cases happen in 

the first six months of life, with increased incidence between 2 and 4 months of age, as portrayed 

in Figure 1-1 [46]. 

o Boys are 30%–50% more likely than girls to be affected, and this ratio was not influenced by the 

reduction of SIDS incidence in the last decades, as shown in Figure 1-2 [1], [47]. 

 Pregnancy Related 

o Low birth weight, preterm birth, intrauterine growth retardation and shorter intervals between 

pregnancies affect SIDS incidence [48]–[50].  

Table 1-1: Summary of risk factors for SIDS, categorized in two groups. On the left are listed maternal and 

antenatal risk factors, with infant risk factors listed on the right 

Maternal and antenatal risk factors Infant risk factors 

 Smoking, alcohol, illegal drug use 

 Inadequate antenatal care 

 Low socioeconomic status 

 Low maternal age 

 Single marital status 

 Low education level 

 Fetal growth retardation 

 Male sex 

 Age (peak 2-4 months) 

 Race/ ethnic background (e.g. black, 

Native Indians, etc.) 

 Prematurity/low birth weight 

 Prone/side sleeping 

 Overheating 

 Soft bedding 

 Bed sharing 
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o Studies have shown that mothers of SIDS infants generally receive less prenatal care and initiate 

care later in pregnancy than do mothers of living control infants [47].  

 Maternal Substance Abuse 

o There is a major association between intrauterine and postnatal exposure to cigarette smoking 

and risk of SIDS. The main limitations are related to the accuracy of self-reported cigarette smoking 

data and the difficulty in disentangling the independent effects of pre vs postnatal exposure to 

 

Figure 1-1: Age distribution by month of age from 15 global data sets comprising 19,949 SIDS cases [223] 

 

 

Figure 1-2: US SIDS death count during transition period following the introduction of supine vs prone sleep 

recommendations, showing that the male fraction remains constant at about 0.61 [222] 
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environmental tobacco smoke because parental smoking behaviors during and after pregnancy 

are highly correlated [51], [52].  

o The evidence linking prenatal illegal drug use and SIDS is conflicting. Overall, studies do link 

maternal prenatal drug use, especially opiates, with an increased risk of SIDS ranging from 2- to 

15-fold [53], [54]. 

o Studies regarding the association between SIDS and maternal alcohol use prenatally or postnatally 

are still inconclusive. In one study of Northern Plains American Indians, periconceptual maternal 

alcohol consumption was associated with a 6-fold increased risk of SIDS, and binge drinking during 

the first trimester of pregnancy was associated with an 8-fold increase [55], [56]. It remains to be 

established whether these effects are primarily attributed to true biological effects, or to 

sociodemographic and lifestyle factors that co-occur with pregnancy drinking, or a combination 

and possibly synergistic effect. 

 Infant Sleep Practices and Environment 

o The prone sleep position was noted in multiple case-control studies to be associated with SIDS, as 

early as 1965 in the United Kingdom. Following numerous public health campaigns in Europe, 

Australia and New Zealand in the 1980s a decline in SIDS rate occurred. In 1992 the American 

Academy of Pediatrics (AAP) recommended that healthy term infants be placed to sleep in the 

non-prone position until 6 months of age. Since the 1992 AAP recommendation and the following 

1994 Back to Sleep campaign, the US percentage of SIDS has diminished more than 40% [57]. 

o Soft bedding such as comforters, has been associated with a 2–3-fold increased risk of SIDS. 

Combinations of sleep related risk factors result in even higher risk; for example, prone sleeping in 

soft bedding has been associated with a 20-fold increased risk of SIDS [58], [59].  

o  Overheating has been associated with increased risk of SIDS based on indicators such as increased 

room temperature, high body temperature, sweating, and excessive clothing or bedding [60]. 

o Several studies have suggested bed sharing as a risk factor for SIDS. Earlier case–control studies in 

England and New Zealand showed a 5–9-fold increased risk associated with bed sharing only 

among infants of mothers who smoked. More recent studies showed that bed sharing was 

associated with increased risk of SIDS even when mothers did not smoke or if they breastfed, 

particularly among younger infants [61], [62].   
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 Genetic 

o In postmortem analysis of brainstems of infants who died of SIDS, serotonin receptor 

abnormalities were found throughout the ventral medulla [5]. Several studies have identified 

polymorphisms in the promoter region of serotonin transporter (5-HTT) protein gene in infants 

who have died of SIDS [63].  

Brainstem findings include persistent increases in dendritic spines (indicating neuronal 

maturational delay) and delayed maturation of synapses in medullary respiratory centers, 

decreased tyrosine hydroxylase immunoreactivity in catecholaminergic neurons [64]. 

o Long QT syndrome is associated with sodium- and potassium-channel polymorphisms. Overall, it 

is estimated that 5%–10% of SIDS cases are associated with a defective cardiac ion channel and 

hence an increased potential for a lethal arrhythmia [65], [66].   

o Genetic studies have identified mutations in SIDS infants pertinent to early embryologic 

development of the autonomic nervous system [67]. 

1.3. Hypothesized Mechanisms Underlying SIDS  

Given that the definition of SIDS is reliant on the elimination of other causes of death, it is not surprising 

that there are no conclusive findings on etiology. This has led to a vast number of theories on the 

mechanisms responsible for SIDS. The population of infants who die of SIDS is likely to represent a 

mixed population with various etiologies and disease entities contributing to one common endpoint 

(i.e. death) rather than all deaths being attributed to one single cause [68]. In the following paragraph, 

the main putative pathways will be described. 

 Respiratory Function  

Respiratory failure has been proposed to contribute to SIDS, given that sleep increases the possibility 

of airway obstruction and apparent life-threatening events such as prolonged apneas. Furthermore, 

some studies have shown that SIDS infants present defects in respiratory control resulting in altered 

respiratory function, prolonged periods of “breath holding”, a failure of autoresuscitation, and 

defective arousal mechanisms, for example, in response to altered oxygen or carbon dioxide levels 

[69]. Figure 1-3 illustrates a hypothesized series of events involving respiratory failure leading to SIDS. 

Nonetheless, studies investigating alterations in breathing patterns or respiratory rates are 

inconclusive [70]–[73]. Other hypotheses involve peripheral sensory chemoreceptors, including the 
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carotid body, or dysfunction or immaturity in centrally located brainstem networks controlling upper 

airway functions. 

 Cardiovascular Function  

Extended evidence in SIDS infants including altered heart rate (HR) and heart rate variability (HRV), 

defects in centrally mediated cardiac control (primarily brainstem centers), autonomic imbalances, 

prolongation of the QT interval and severe bradycardia has led to the conclusion that arrhythmia and 

cardiovascular changes are involved in the death in SIDS infants [70], [74], [75]. Nonetheless, 

inconsistencies in findings make it difficult to confirm a cardiac cause for SIDS. 

 Nervous System Abnormalities  

Nervous system dysfunction has been proposed as a major factor leading to SIDS, potentially due to 

abnormal development or to maturational delay in particular brainstem regions, given their direct 

influence over homeostatic processes including cardiorespiratory control, sleep regulation, and 

arousal. Moreover, the peak period for SIDS, i.e. 2 to 4 months of age, is a crucial time for changes in 

neural control. Nonetheless, until now the literature has been contradictory as the ability to apply 

 

Figure 1-3: During prone sleeping, re-breathing exhaled air can increase CO2 and decrease O2 levels. The 

described mechanism should initiate the arousal response, beginning with sigh generation during continued 

eupneic breathing. If the arousal is successful, the infant will lift the head and reposition, relieving the build-

up of CO2. If arousal fails, a more severe hypoxic state is reached and eupneic breathing will transition to 

gasping, thanks to the network reconfiguration of the pre-Bötzinger complex (preBötC). Brainstem 

abnormalities, however, may alter preBötC network and impair sigh and gasp generation which may increase 

SIDS vulnerability [69]. 
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histological and molecular techniques to examine post-mortem specimens are limited due to rapid 

deterioration of tissues after death.  

Studies over the last 30 years show that the brainstems of infants who died from SIDS exhibit 

abnormalities in many major neurotransmitters and receptor systems including: catecholamines, 

neuropeptides, acetylcholinergic, indoleamines (predominantly involving serotonin and its 

receptors), aminoacids, brain derived neurotrophic growth factors, and some cytokines. A pattern is 

emerging for particular brainstem and hypothalamus nuclei being consistently affected, including the 

dorsal motor nucleus of the vagus, nucleus of the solitary tract, arcuate nucleus and raphe [76]. These 

changes have been attributed to ischemic damage, but many pathological findings overlap with 

observations from controls [77], [78]. Furthermore, while all these abnormalities have the potential 

to alter brain function, it should be noted that most of these studies report findings only in a subset 

of SIDS infants [79]–[81]. Moreover, the reported differences in neurotransmitter or receptor 

expression between SIDS cases and control cases can further be influenced by factors such as 

maternal cigarette smoking during pregnancy, highlighting the importance of accounting for these 

factors when trying to interpret neurochemical changes [4], [82].  

Changes in the peripheral nervous system may impact on SIDS as well. Studies have reported 

histological changes in the carotid bodies in SIDS cases, which may suggest exposure to sustained 

hypoxemia and have the potential to impact the ability of chemoreceptors to respond adequately to 

changes in oxygen levels [83]. However, conflicting outcomes regarding carotid body size, histological 

changes, and the number of neurosecretory granules and transmitter levels have been reported make 

interpretation of the results challenging.  

Lastly, since peripheral and central networks are highly integrated, it is likely that a change in one 

system may subsequently affect the other, and thus that both processes could contribute to nervous 

system dysfunction in SIDS.  

 Immune responses and infectious agents  

Presence of a mild cold or upper respiratory infection [84] close to the time of death and findings of 

markers of infection and inflammation in many SIDS infants have led to the hypothesis that they might 

be immunologically underdeveloped and that stressors on the immune system may contribute to 

death [85]. Increased levels of immunoglobulins have been reported in SIDS victims [86], and reports 

of the presence of viruses (e.g. rhinovirus, cytomegalovirus) and of bacteria in the pathology of SIDS 
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have strengthened the argument for immune-mediated responses in the pathology of SIDS. However, 

many of these are also present in control cases, suggesting that their presence may be more co-

incidental than causative. Thus, the presence of one, or a combination of, infectious agents is likely 

to increase the vulnerability rather than being responsible for death in SIDS infants. 

1.4. Risk Factors Interactions and Triple Risk Model 

It has become evident that the mechanisms of death in infants classified as SIDS involve a complex 

interplay of individual vulnerabilities with developmental stages and environmental factors, rather 

than a convenient and simplistic “single cause”. In 1970, Bergman was the first to hypothesize that 

SIDS did not depend on any single characteristic but on an interaction of risk factors with variable 

probabilities [87]. Not long after, Wedgwood expanded this concept and grouped these risk factors 

into the first “triple risk hypothesis” consisting of general, developmental and physiological factors 

[88]. These factors needed to overlap and their synergy to exceed the threshold for survival for an 

infant to succumb to death. This concept has evolved in time, with many contributions suggesting 

different definitions and varied emphasis on the various risk factors [89], [90]. These theories 

culminated in the currently most accepted model in the field, the triple risk model presented by Filiano 

and Kinney in 1994 [3]. They posit that SIDS results from the simultaneous occurrence of: (1) an 

underlying vulnerability (i.e. prematurity, genetic abnormalities, etc.) (2) a critical developmental 

period in homeostatic control (i.e. the first year of life), and (3) exposure to exogenous stressor(s) (i.e. 

 

Figure 1-4: The triple risk model for SIDS, presenting the three elements that must be present: 1) baby’s 

vulnerability, 2) critical developmental period, 3) exposure to one or more outside stressor 
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being placed in a prone position for sleep, overheating etc.). Figure 1-4 provides a schematic 

representation of this model.  

Even if the factors involved may be multiple, the triple risk model does not exclude the possibility that 

most SIDS deaths might occur with a single common pathway upon which multiple stressors impinge 

to produce sudden death during the critical period. 

1.5. Sleep, Autonomic Nervous System and Cardiorespiratory Control 

Even if consensus on the mechanisms leading to SIDS has yet to be reached, a failure of autonomic 

control of the cardiorespiratory system and an impaired arousal from sleep have been identified as 

crucial players in the cascade leading to SIDS, and both these factors are heavily influenced by sleep 

patterns. For this reason, the next section will present an overview on the development of sleep 

patterns and arousals in newborns, and a summary of the autonomic nervous system structure and 

functions, with a focus on the regulation and interaction of HRV and breathing  

1.5.1. Sleep Development 

The maturation of sleep is one of the most important physiological processes occurring during the first 

year of life and is particularly rapid during the first six months after birth. A human infant shows 

prolonged and characteristic epochs of stable behavior, that have been called 'behavioral states'. Many 

physiological variables are inter-related and mutually influencing during the state cycles and change 

their properties at the transitions [91].  

Sleep states architecture in infants is quite different from those in adults: in infants, sleep states are 

classified as active sleep (AS) and quiet sleep (QS), which can be seen as precursors of adult rapid eye 

movement sleep (REM sleep) and non-rapid eye movement sleep (NREM sleep), respectively. During 

QS, high voltage low amplitude electroencephalograph activity is observable, with absence of eye 

movements and regular HR and respiration. On the other hand, AS is characterized by low amplitude 

high frequency electroencephalograph activity, eye movements, and irregular HR and respiration. 

Additionally, a third state, indeterminate sleep (I), can be defined when criteria for AS and QS are not 

met fully [92]. 

Interestingly, cyclical sleep patterns can be observed already in the human fetus from 28 weeks of 

gestation. By this time, AS can be easily identified, while QS becomes clearly identifiable only around 

the last month of gestation. The percentage of time spent in QS increases with gestational age and by 

two months of age infants spends equal amounts of time in both states. From term to six months of 
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age, the proportion of AS decreases. While the specific functions of the different sleep stages are not 

yet well understood, many believe that deep sleep is essential for physical rest, while REM sleep is 

important for memory consolidation [93]–[95]. The major change in sleep-wake pattern occurs 

between six weeks and three months post-term age. During the first six months after term, 

consolidation and entrainment of sleep at night develops and sleep periods lengthen.  

1.5.2. Autonomic Nervous System  

The autonomic nervous system (ANS) is a component of the peripheral nervous system and comprises 

a set of nerves and nerve cells that innervates blood vessels and the airways, heart, intestines and 

urogenital organs. These nerves regulate and coordinate bodily functions based on secretory activity 

of glands, on contraction and relaxation of smooth muscle and cardiac muscle, and on sensations 

arising from deep viscera. 

The ANS consists of a central and a peripheral component: it is controlled by centers located in the 

spinal cord, brain stem and hypothalamus. Nerves sprout from this central part, reaching autonomic 

ganglia from which other nerves connect with the peripheral tissues that are the target of this system, 

such as smooth muscles, cardiac muscle and secretory cells.   

The autonomic nerves arrange in an intricate network with many branching and merging points. Along 

these nerves there are prominent swellings, the autonomic ganglia, which consist of large aggregates 

of ganglion neurons and efferent nerve fibers. Within a ganglion, the incoming fibers end many of 

terminal boutons forming synapses on ganglion neurons. New fibers emerge from these neurons, 

directed to a target in the peripheral organs, whereas other incoming fibers pass through one ganglion 

to terminate in another ganglion. In addition, there are autonomic afferent (sensory) fibers sprouting 

from neurons in the cranial and spinal sensory ganglia and are distributed to the peripheral organs. A 

schematic of the ANS structure is shown in Figure 1-5 [96].  

The peripheral ANS is made of two branches, the sympathetic and parasympathetic. The sympathetic 

system typically releases norepinephrine in response to intrinsic and/or extrinsic stressors via afferent 

autonomic pathways, which transmit responses to visceral organs via efferent autonomy pathways. 

Conversely, the parasympathetic system typically releases acetylcholine to restore the body to restful 

conditions after stressful events [97]. 
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 Autonomic activity increases with gestational age in the fetus during pregnancy and postnatally in the 

infant. Sympathetic development occurs early on, while the parasympathetic activity matures mostly 

during the last trimester and the first months of life [98]. 

1.5.3. Heart Rate Variability and Cardiorespiratory Interaction 

Core functions of ANS are the regulation of HR, blood pressure, breathing rate, thermoregulation, 

sweating, gastrointestinal motility and secretion, as well as other visceral activities that maintain 

homeostasis. One of the most interesting functions and a primary focus of this thesis is ANS control 

over the heart muscle: sympathetic fibers increase HR, atrioventricular conduction, and contractility 

of cardiac muscle, while they dilate the coronary arteries. In contrast, parasympathetic nerves slow 

down the HR and reduce heart contractility, favoring conservation of energy. These effects are 

integrated with several other factors, such as the spontaneous contractility of the heart itself, the 

peripheral resistance of the vascular tree, the effects of circulating hormones and the metabolic supply 

to the heart. 

 

Figure 1-5: General plan of the distribution of autonomic nerves and ganglia, as they are spread between the 

spinal cord (left) and the peripheral organs. The central component is represented by some nuclei in the 

brainstem (top left) and a long column of neurons in the spinal cord . 
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This complex interplay generates the so-called heart rate variability (HRV), the change in the time 

intervals between adjacent heartbeats. For this reason, HRV has been for long time considered a 

powerful tool, providing a window to observe non-invasively the interaction between the sympathetic 

and parasympathetic nervous systems and their capability to respond properly to internal and external 

challenges [9].  

HR is also influenced by respiration; the neuronal control of breathing and HR are closely linked, 

functionally as well as anatomically. Several modes of interaction exist between these two subsystems: 

perhaps the most well-known example is respiratory sinus arrhythmia (RSA) that was firstly observed 

as early as 1733 [99]. It consists of a HR increase during inspiration and decrease during expiration 

[100], [101]. This phenomenon involves both central and reflex interactions, with the regulation of 

cardiac vagal outflow involving the same neuronal processes that generate the respiratory rhythm and 

reside within the brainstem, and a mechanical interaction of the two systems in the thoracic cavity 

[100], [102]. RSA amplitude is generally categorized as a linear interaction, but the cardiovascular and 

respiratory systems also show complex interplay with both linear and nonlinear interactions. 

Other modes of interactions are related to the signal phase rather than the amplitude, such as the 

phase locking of HR and respiratory rate [27], [29], [103], [104]. Two interacting oscillators are n:m 

phase locked if marked events of one oscillator occur at fixed phases of the other oscillator. This phase 

synchronization condition implies also the frequency synchronization between the two rhythms, i.e. n 

periods of the first rhythm have exactly the same duration as m periods of the second one. Thus, period 

of cardiovascular phase locking can be described as short intermittent periods during which the phases 

of the R peaks and respiration maintain a stable relation with different integer ratios, known as phase 

locking ratios. The physiological mechanisms behind the phase synchronization are still not fully 

understood. Recent results have led to an hypothesized link to central nervous coupling factors; these 

physiological circuits  might coordinate cardiovascular and respiratory rhythms in the brainstem 

through the control of phase synchronization between nerve discharges in order to improve energy 

efficiency [105], [106]. 

These different modes of interactions are not exclusive, rather they may simultaneously coexist, 

representing different aspects of neural regulation and acting on different time scales [31], [32]. Figure 

1-6 shows three examples, one where RSA is present, another where phase locking occurs and one 

where they both occur simultaneously. 
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RSA has been observed in full-term infants indicating the presence of cardiorespiratory coupling even 

at this early life stage [107]. This coupling increases in strength and consistency with GA at birth, 

reflecting the transition from sympathetic to parasympathetic dominance during the postnatal period 

with an increasing influence of breathing modulating HR [108]. Overall, immaturity in linear 

cardiorespiratory coupling is observed in preterm infants, mostly in the form of lower short-term HRV, 

an indirect measure of RSA [109].  

The close interaction between cardiac and respiratory control is critical for survival. This synergy is 

crucial for the homeostatic regulation of blood gases, and essential for regulating central nervous 

functions, such as arousal [10], [11]. Arousal from sleep involves both physiological and behavioral 

responses and has long been considered a vital survival response for restoring homeostasis in reaction 

to various life-threatening situations, such as prolonged hypoxia or hypotension. There are two distinct 

 
Figure 1-6: Example of presence of RSA and phase locking. On the left there are three 10 seconds segments of 

ECG and breathing, and on the right the corresponding values of RSA and distribution of R peaks occurrence 

with respect to respiratory phase. In the first row there is an example of RSA without phase locking. In the 

second row an example of phase locking (4:1) without RSA. In the third row an example of phase locking (3:1) 

concurrent with RSA. 
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arousal types defined in infants, subcortical activation and full cortical arousal, which reflect the 

hierarchical activation from the brainstem (including heart rate, blood pressure, and ventilation 

changes) to the cortex.  

1.5.4. Effects of sleep states on autonomic cardiorespiratory control and arousal  

There are marked differences in cardiorespiratory control between AS and QS. Assessment of 

cardiovascular control is commonly made by studies of HR and HRV and blood pressure and its 

variability. In infants, HR and overall HRV are higher in AS compared to QS, as a result of the 

predominance of sympathetic activity in AS. Sleep state also affects blood pressure, with higher values 

in AS and increased variability. Respiratory control is also affected by sleep state [94]. In infants, 

respiratory rate decreases from wake to sleep, and breathing is more variable in AS, with short apneas 

occurring more frequently in this state than in QS [93].  Voluntary control of ventilation is abolished at 

sleep onset and upper airway resistance is increased due to muscle hypotonia. It is nowadays 

recognized that the two sleep states have different effects on the control of the respiratory rhythm 

generator, respiratory muscles and lung volumes. During QS, when lying supine, due to tonic activity 

in the diaphragm and intercostal muscles, abdominal and thoracic respiratory movements are largely 

synchronous with each other. In contrast, during AS, there is a reduction in the tonic activity of the 

diaphragm and intercostal muscles that produces a paradoxical inward rib cage motion during 

inspiration while the abdominal wall moves outwards. In addition, the horizontal configuration of the 

diaphragm in neonates causes the lower ribcage to move inward during inspiration, thereby reducing 

diaphragmatic efficacy. Oxygen saturation levels are consistently lower and more variable in AS than 

QS due to the paradoxical inward rib cage motion and increased oxygen consumption in AS. Although 

end-tidal carbon dioxide levels do not change from one to six months of age in the term infant, they 

are consistently lower in AS than QS. The rate and depth of breathing during sleep oscillate in cycles 

of 7–13s in both AS and QS; minute ventilation is higher in AS than QS due to increases in rate while 

depth remains relatively constant [94]. 

Infant arousal responses are affected by postnatal age and these maturational effects are also sleep-

state-dependent. Previous studies have demonstrated that in response to respiratory, tactile and 

auditory stimulation, total arousability is reduced with increasing age during QS, whilst remaining 

unchanged in AS [110], [111]. Nonetheless, there are conflicting findings, depending on what type of 

stimulus is used and what measure is employed to identify arousal.   
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2. HEART RATE VARIABILITY AND 

CARDIORESPIRATORY ANALYSIS 

2.1. Introduction 

In the previous chapter the definition of SIDS and the hypothesized mechanisms leading to it have 

been highlighted. Furthermore, the crucial role of autonomic activity and cardiorespiratory control was 

discussed.  

The first part of this chapter will present methods proposed for heart rate variability analysis, as a 

marker of autonomic nervous system activity. No clinical standards are in place for the newborn 

population, thus adaptation of guidelines for adults and fetuses was necessary. We also evaluated 

nonlinear parameters which are not yet used in clinical work but can increase our understanding of 

the complex behavior of autonomic regulation. 

In the second part of the chapter, methods that address cardiorespiratory interaction will be 

presented. Few studies in the past have been performed in populations at risk for SIDS (near-miss SIDS, 

SIDS siblings, premature infants etc.) regarding their respiratory behavior, for example investigating 

periodic breathing, apneic events etc. Even fewer studies have addressed the coupling between 

breathing and HRV dynamics. Given the hypothesized SIDS mechanisms presented in the previous 

chapter, the contribution of our work is extremely novel and relevant.  

Furthermore, this comprehensive view of the cardiac and respiratory systems follows a more 

physiological perspective, since systems are not analyzed separately but are looked as a complex 

network, encompassing control cycles using either positive or negative feedback mechanisms and 

showing complex behavior. Our approach finds its root in a new field of study, called Network 
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Physiology, which views the human organism as an integrated network of interconnected and 

interacting organ systems, each representing a separate regulatory network. The behavior of one 

physiological system may affect the dynamics of all other systems in the network of physiologic 

networks. Due to this intertwining, failure of one system can trigger a cascade of failures throughout 

the entire network. Network Physiology offers a framework to address the question of how different 

physiological systems interact and behave together. It stresses the advantages of this holistic approach 

over the reductionist methods, which analyze every system separately. Recent publications have 

highlighted the new insights afforded by this novel approach [112]. Looking at different physiological 

systems as dynamically interacting could shine light on the process of horizontal integration at the 

level of organ to organ interaction required to maintain an optimal health status.  

2.2. Monovariate analysis  

Newborn HRV analysis encompasses techniques from various domains. There are still no standard 

norms developed for this particular population, thus parameters from adult and fetal HR analysis are 

usually adapted. The Task Force of 1996 suggests the evaluation of parameters on five-minute 

windows for adults’ HR [33]. However, since neonatal HR is higher, a similar number of beats occurs in 

about three minutes allowing a shorter reference length. 

2.1.1. Traditional HRV Analytic Approaches 

Time domain 

For the time domain analysis, measures adapted from adult studies’ have a long history: SDNN, which 

is the standard deviation of normal to normal intervals (NN), defined as the RR distances excluding 

anomalous beats (e.g. ectopic beats), and root mean of successive differences, RMSSD. SDNN 

estimates overall HRV, RMSSD estimates short-term components of HRV [33]. In addition to these 

traditional parameters, standard measures from fetal HR analyses were computed: short term 

variability (STV), interval index (II), differential index (DI) and long term irregularity (LTI) [113], [114]. 

All these measures are calculated in seconds. Generally long-term variability parameters evaluate a 

combination of sympathetic and parasympathetic nervous systems. In contrast, measures related to 

the beat to beat variability are influenced largely by the parasympathetic nervous system, tied to rapid 

ANS reactivity.  
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Regarding breathing rate analysis, the inter breath interval series (IBI) can be analyzed calculating 

mean, standard deviation and the coefficient of variation (CV) defined as the standard deviation of the 

respiration rate divided by the mean respiration rate. 

Frequency domain 

Estimation of the power spectral density (PSD) can be performed with parametric (autoregressive) and 

nonparametric (FFT) approaches on RR series and respiration, usually resampled at 2 to 5 Hz [115]. The 

literature does not provide precise values for frequency bands ranges, thus they are commonly chosen 

based on prior experience and observation of the spectra, with consideration of the general breathing 

characteristics of infants [116]–[118]. Commonly used frequency bands are Low Frequency (LF), 0.05-

0.2 Hz, and High Frequency (HF), 0.2-1.5 Hz. LF contributions can be associated with a combination of 

sympathetic and parasympathetic activity, while HF are mostly mediated by breathing and vagal 

activity. Frequency domain analysis is suited for a short time scale (3–5 min) as the HRV signal needs 

to maintain its stationarity [119]. 

These approaches have been used since the 1950s to characterize newborns development [118], 

reactivity to stressful events [116], [120], [121], to evaluate interventions efficacy [122]–[124] and to 

predict poor outcome [125], [126]. 

2.1.2. Nonlinear HRV Analytic Approaches 

The introduction of nonlinear approaches to signal processing led to the consideration of a set of 

methods investigating geometric and dynamic properties of time series. Their statistical use can be of 

great importance, even in diagnostic field and in clinical knowledge related to different cardiovascular 

pathologies [127]. Various existing techniques aim at quantifying the degree of similarity and/or 

complexity in time series, which can be computed directly on the sequence of inter-beat intervals. 

Entropy Measures  

Approximate Entropy (ApEn) was proposed by Pincus to quantify regularity and complexity of a time 

series, defined as the presence of repetitive patterns within a certain tolerance r and at different lags 

[128]. ApEn is seen as a significant analytic advancement over previous entropy estimation 

approaches, which required very long and completely noise-free datasets to determine a precise value 

of entropy, since neither of these demands are typically met in biological datasets. Pincus advanced 

the field by positing that an ‘approximate’ estimate of entropy could be used to hierarchically rank sets 
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of time series. Improvements and corrections were introduced with the Sample Entropy (SampEn) 

[129].  

The rationale is to quantify the degree of regularity or loss of regularity in a time series without a priori 

information on its structure. Given a discrete time series x(n) of length N, a threshold r, and an 

embedded dimension m (usually m = 1, 2, 3, r=0.1−0.25 std of the input data), x(n) is split into a series 

of subsequences Xm(i) of length m. A distance based on proper definitions, such as Euclidean or 

Chebyshev, is calculated between two subsequences. The total count of subsequences of length m 

whose distance is less than r is denominated Bi(r), whereas Ai(r) accounts for subsequences of length 

m+1. ApEn (m,r,N) then averages the natural logarithms of Ai(r) and Bi(r) and calculates their 

difference. SampEn (m, r, N) instead is obtained as the natural logarithm of the ratio between the 

averages of Ai(r) and Bi(r). Figure 2-1 shows a graphical representation of the technique. 

ApEn major limitation is a strong dependence on the length of the time series analyzed and the count 

of the self-matches of each pattern, which introduces a bias that is incompatible with the aim of 

measuring new information generated in the signal. SampEn does not count self-matches thus 

improving the estimation.  

A challenging problem for entropy estimation is the choice of the tolerance r, to assess if two patterns 

could be defined similar. To address this issue, an improvement to SampEn was presented by Lake in 

2006 [21]. He approached the problem considering the HRV signal sufficiently stochastic to be able to 

model it as a random process. This new entropy estimator can be seen as a measure of Gaussianity of 

the signal and the central limit theorem suggests that this reflects the physiological complexity of the 

underlying signal transduction processes. This is because this theorem establishes that 

when independent random variables are added, their properly normalized sum tends toward a normal 

 

Figure 2-1: A graphic representation of the process of match finding used to calculate SampEn and ApEn 
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distribution even if the original variables themselves are not normally distributed.  The old 

deterministic approach involved calculating probabilities while the new stochastic approach calculates 

probability densities. To convert the probabilities to densities it is necessary to divide by the volume 

of the matching region, which is (2r)m , which is equivalent to add a factor of log(2r) to SampEn. The 

result was called Quadratic Sample Entropy (QSE) and it allows to compare estimates obtained with 

different r values. 

Inaccuracy in the probability estimate may still arise because all these parameters are obtained from 

the ratio of B and A, which are the total number of subsequences of length m and m+1 respectively, 

whose distance is less than r. Thus, the reliability and stability of the estimate is dependent on the 

magnitude of the numerator A and denominator B. For this reason, it is important to maximize this 

value: min(A, B-A). Owing to the flexibility to vary r introduced by QSE, inaccurate probability estimates 

can often be avoided, for instance with the method of the Minimum Numerator Count [21], [130]. This 

approach calculates ratios with specified minimum values of the numerator and denominator, in the 

attempt to also minimize r. 

Phase Rectified Signal Average (PRSA)  

PRSA is a technique presented by Bauer, which aims at compressing a signal into a shorter sequence 

without losing any relevant quasi-periodicities, and eliminating at the same time non-stationarities, 

artifacts, and noise [131]. This technique consists of 3 simple steps: at first, anchor points (AP) are 

chosen based on a certain property of the signal, such as increases or decreases in the signal. Increases 

can be defined by comparing averages of T values of the time series. This averaging acts as a low pass 

filter and the parameter T sets an upper frequency limit for the periodicities that can be detected by 

PRSA. Typically, half of all points of the signal will be APs according to the chosen definition. Thanks to 

this process we can extract the phase information of the oscillations from the signal itself. Afterwards, 

windows of length 2L, are defined around each AP. It is important to underline the appropriate choice 

for the parameter L; it should be larger than the period of the slowest oscillation to be detected. Lastly, 

the windows are aligned at the AP and the PRSA curve is obtained by averaging the aligned windows. 

Thanks to this averaging procedure, components that are not phase synchronized with the AP, will 
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have zero mean and thus they will cancel out; instead, the events that have a fixed phase relationship 

with the AP in all the 2L windows will have the same pattern and thus will be kept in the average. 

Figure 2-2 summarizes the steps of this procedure. 

PRSA offers the ability to analyze separately HR accelerations and decelerations, by properly choosing 

the AP definition criterion. This affords the opportunity to investigate rapid parasympathetic 

influences as well later acting sympathetic/parasympathetic ANS mechanisms. Proposed parameters 

for these curves are the Δx, Δy, Acceleration Phase Rectified Slope (APRS) and the Deceleration Phase 

Rectified Slope (DPRS) [23]. 

 

These novel analytical techniques have been employed to characterize development of HR 

development with gestational age [132], [133], to compose risk scores for unfavorable outcome to 

predict death and morbidities [134], to detect atrial fibrillations in very short time series [135], and to 

predict mortality after myocardial infarction [136], [137]. 

 
Figure 2-2: Illustration of the PRSA technique: (a) Anchor points (AP) are selected from the original time series 

x(n); in this example increase events are selected, with T=1. (b) Windows of length 2L are defined around each 

AP (c) all the windows are centered in the AP and overlapped and average. (d) The final PRSA curve is obtained 

[131] 
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2.3.  Bivariate Analysis  

In the last century, knowledge about relationships between respiratory and cardiovascular systems 

has gradually grown and several modes of interaction have been described, encompassing amplitude 

and phase modulation and both linear and nonlinear relationships. 

In this section we will present several methods that have been proposed to quantify the interaction 

between subsystems, ranging from traditional to more complex signal-processing techniques. Some of 

the methods presented will also address the issue of directionality of the relationship, which is a crucial 

step to be able to infer causal relationships.  

2.3.1. Traditional Cardiorespiratory Analytic Approaches 

Cross-spectral Analysis 

Cross-spectral analysis consists of estimating amplitude and phase cross-spectrum and coherence, 

towards the identification of significant relationship between two time series as a function of 

frequency and to determine their phase lag.  

In the ‘90s, surrogate series were proposed as a method to test for nonlinearity in a time series [138]. 

Recently, they have been applied to identify an adaptive significance threshold for the coupling 

between two time series expressed in the coherence function [139], [140]. With this approach, N pairs 

of surrogate time series, with features of the original series but completely uncoupled, are generated 

as realizations of independent stochastic processes, such as the Iterative Amplitude Adjusted Fourier 

Transform (IAAFT) [141]. The coherence is then estimated between each pair of surrogate series and 

its empirical sampling distribution (frequency histogram) computed accordingly at each frequency of 

the signal bandwidth. The threshold for zero coherence is then defined at the 95th percentile of the 

obtained coherence sampling distribution. Figure 2-3 shows the steps of this procedure and Figure 2-

4 represents an example where this technique is applied to identify the peak of coherence between 

HR and breathing of a newborn. In red is portrayed the adaptive threshold obtained with the surrogate 

method.  

Crosspectral analysis has been widely used to quantify sympatho-vagal balance, with measures such 

as LF/HF. In particular, it was employed to quantify autonomic activity during tilt test and to 

characterze baroreflex sensitivity [142]–[144]. Results obtained provided useful insight into the 

physiology of autonomic control, nonetheless limitations have arised in the use and interpretation of 

this approach [145].  
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Figure 2-3: Steps involved in coherence analysis with surrogate data adaptive threshold. In the first panel surrogates 

for the RR series and the breathing are shown. In the middle panel the coherence values are shown in blue while the 

adaptive threshold in red. In the bottom panel two examples of empirical sample distributions are shown, at 0.303 

Hz and at 0.586 with relative threshold shown in red. 

 

Figure 2-4: Example of coherence analysis with surrogate data adapting threshold. In the panel on top the coherence 

values are shown in blue 
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2.3.2. Novel Approaches 

Cross-spectral analysis has proved to be a very powerful tool to unveil information about the 

cardiorespiratory interaction. Nonetheless, its application lies on the assumption of stationarity and 

linearity of the systems under consideration. As already explained, these assumptions are often too 

strict to capture the behavior of the cardiorespiratory system. Moreover, cross-spectral analysis 

cannot measure directionality of the relationships, and thus, it can only partially reveal the underlying 

interacting mechanisms responsible for the changes in complexity, especially when knowledge of the 

underlying physiology is limited. The methods exposed in this section address all these limitations. 

BPRSA 

The Bivariate PRSA (BPRSA) is an evolution of the PRSA, which highlights interrelationships between 

two signals supposed synchronous, defined as a trigger and a target signal [146]. The BPRSA algorithm 

consists in 3 major steps similar to the ones for PRSA, except for the fact that the anchor points 

detection is based on the trigger signal and then transferred on the target signal, where the rest of the 

analysis is carried on.  

BPRSA transforms the target signal in a compressed version, maintaining only (quasi) periodicities that 

are coupled to the trigger signal, eliminating uncoupled periodicities, artifacts, or noise. Comparing the 

BPRSA transformation of the target signal with the PRSA transformation of the trigger signal is possible 

to infer potential trigger and target signal interaction. BPRSA was employed for early neonatal epileptic 

seizure detection and for the assessment of spontaneous baroreflex sensitivity [147], [148]. 

Transfer Entropy  

Transfer Entropy is an evolution of monovariate estimates of entropy. It is an index which evaluates 

the information flow from a source system X to a destination system Y, considered as two interacting 

dynamical subsystems. Yn, Xn are the stochastic variables obtained by sampling the stochastic 

processes, describing the state visited by the systems X and Y over time. Yn
−, Xn

− are the vector variables 

representing the entire history of the processes.  

The Transfer Entropy from X to Y is defined as: 

TEX→ Y=∑ p(Yn, Yn
− , Xn

−)log 
p(Yn|Yn

− ,Xn
−)

p(Yn|Yn
−)

                               (1) 

From definition (1), it emerges that TE can be also expressed as a difference of two conditional 

entropies (CE): 

TEX→ Y =H(Yn|Yn
− )-H(Yn|Yn

−, Xn
− )                                (2) 
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In other words, TE quantifies the information provided by the past of the process X about the present 

of the process Y, that is not already provided by the past of Y. 

TE framework is a powerful tool to detect information transfer given that it does not require any model 

assumption describing the interactions regulating the system dynamics. Moreover, it can uncover 

purely nonlinear interactions and deal with a range of interaction delays. 

Nevertheless, the TE method requires the approximation of the infinite-dimension variables 

representing the past of the processes. In the following paragraph, we will briefly clarify this issue. A 

reconstruction of the past of the system dynamics is represented by the processes X and Y with 

reference to the present state of the destination process Y. This provides a vector V=[Vn
Y, Vn

X], which 

is a subset of the past states chose among Yn
−, Xn

−  and containing the most significant past variables to 

explain the present of the destination system. 

Two approaches can be applied: uniform and non-uniform embedding schemes.  

 Uniform: components to be included in the embedding vectors are selected a priori and 

separately for each time series.  For example, the vector Yn
− is approximated using the 

embedding vector Vn
Y=[Yn-m,Yn-2m . . .Yn-dm], where d and m are the embedding dimension and 

embedding delay respectively. Following this approach, TE estimation consists of two steps: 

collection of past states of the process and estimation of entropy, with a chosen estimator. 

The main limitation in this case stems from arbitrariness and potential redundancy of the 

estimate, which may cause problems such as overfitting and detection of false influences. For 

the tests of significance employed with this approach, please refer to [149]. 

 Non-uniform: this technique consists of a progressive selection among the available variables 

describing the past of the observed processes X, Y, considered up to a maximum lag, and to 

identify the most informative variable for the destination variable Yn. Thus, a criterion for 

maximum relevance and minimum redundancy is applied for candidate selection, and the 

resulting embedding vector V includes only the components of Xn
− and Yn

−, which contribute 

most to the description of Yn. Moreover, the variables included into the embedding vector are 

associated by definition with a statistically significant contribution to the description of Y. 

Thus, the statistical significance of the TE estimated with non-uniform embedding emerges 

from the selection of at least one past component of the source process. Otherwise, the 

estimated TE will be zero and nonsignificant. 
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Another crucial aspect of TE method is the choice of the appropriate method to estimate the joint 

probability distribution capable of fully-describing the interrelationship between X and Y, to estimate 

the two conditional entropies needed to obtain the TE value.  

 LIN: The first approach adopts the linear estimator assuming that the overall process has a 

joint Gaussian distribution. Under this assumption, the two CE terms defining the TE can be 

quantified by means of linear regressions involving variables taken from the embedding 

vector, depending on which embedding method is used. 

 BIN: The second estimator is based on a fixed state space partitioning, which consists of a 

uniform quantization of the time series. Then entropies are computed by approximating 

probability distributions with the frequencies of occurrence of the quantized states. 

 KNN: The third estimator is based on K-Nearest Neighbor technique (KNN), a powerful non-

parametric technique for classification, density and regression estimation. It estimates entropy 

terms through a neighbor search in the space defined by all the variables selected as most 

informative ones 

 

Figure 2-5: TE calculation steps: 1) selection of the 2 signals of interest equally spaced. TE will be calculated 

evaluating the directionality signal 1-> signal 2 and viceversa. 2) Choice of the method to approximate the 

infinite-dimension past states of the systems (UE vs. NUE). 3) Choice of Conditional Entropy estimator (LIN vs. 

BIN vs KNN) and TE estimation. 4) Verification of TE results significance  
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A potential problem with uniform and non-uniform embedding procedures relates to the issue of 

dimensionality. Adopting the non-uniform embedding could overcome this risk. As a matter of fact, 

this method reduces the candidates of significant past states, preventing the risk of probability density 

function to assume a constant value and computing the search in an extreme sparse hyperspace.  

Surrogate series obtained with time shifts, were employed to test results significance. In this thesis, 

N=100 surrogate series were employed and the threshold was set as higher than the 95th percentile.  

Moreover, we introduced a novel application to quantify the “memory” of the effect of a system on 

another. For instance, in the case of the influence of the RR series on the breathing we evaluated the 

Transfer Entropy parameter keeping the RR series fixed and shifting the breathing series, in order to 

 

Figure 2-6: TE calculation at different lags. On the top panel, the vectors [𝐕𝐧
𝐘, 𝐕𝐧

𝐗], which are a subset of the past 

states chosen among 𝐘𝐧
− , 𝐗𝐧

− , are selected without any shift, hence Lag=0, and this corresponds to the 

traditional Transfer Entropy. On the bottom panel, 𝐕𝐧
𝐗 is calculated without shift, but 𝐕𝐧

𝐘 is selected on the 

shifted Y series by a sample 1, hence Lag=1, and thus quantifies the information provided by the selected part 

of the process X on the shifted portion of the process Y, that is not already provided by the past of Y. This allows 

to quantify how long does the effect of X on Y lasts.  

 

X 

X 

Y 

Y 
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quantify the effect of the same RR series data points on the following breathing samples. Figure 2-6 

shows an example of TE calculation at different lags.  

The MuTE toolbox was employed to estimate Transfer Entropy values. A detailed description of the 

methods can be found in Montalto et al. [149]. The main steps for TE estimation procedure are 

summarized in Figure 2-5. 

Transfer entropy has been utilized to test the effect of age and gender on cardiorespiratory interaction 

complexity [150], characterize tilt response [151], [152], and highlight the importance of information 

storage, transfer and modification in interacting systems [153].   

Phase Locking 

Synchronization can be defined as the adjustment of the rhythms of self-sustained oscillators due to 

their interaction. Given the phases of the two oscillators 𝜙1(𝑡) and 𝜙2(𝑡), a generalized n:m phase 

locking ratio fulfills the condition expressed in (3):  

|𝑛𝜙1(𝑡) − 𝑚𝜙2(𝑡) − δ| < 𝑐𝑜𝑠𝑡               (3) 

where n and m are integers and δ is an average phase shift. Thus, in the synchronized case, phase 

differences should present small fluctuations around a constant, while in the unsynchronized one, 

differences should randomly vary for every instant of time. 𝜙RR and 𝜙RESP were defined as the first 

and second oscillators respectively, n indicates the number of heartbeats with respect to m respiratory 

cycles. Different n:m synchronization ratios periods can be highlighted with a graphic tool called 

cardiorespiratory synchrogram, shown in Figure 7 panel c [27], [154].  

Instantaneous phase of the ECG (𝜙RR) is defined as linearly increasing between an R peak and the 

successive one and it is computed as in (4): 

𝜙𝑅𝑅(𝑡) = 2𝜋𝑘 + 2𝜋
𝑡− 𝑡𝑘

𝑡𝑘+1− 𝑡𝑘
               (4) 

where 𝑡𝑘 are the times of appearance of the 𝑘th R peak. The respiratory signal was detrended and 

filtered with a Savitzky-Golay (S-G) filter. S-G smoothing is achieved with a process of convolution, by 

fitting successive windows of data with a polynomial with the method of linear least squares. We chose 

the order of the polynomial to be equal to 4, and the length of the moving window equal to 95 samples. 

The band pass was 0.05-3.5 Hz. Then, the instantaneous phase (𝜙RESP) was computed by means of 

functions provided by the Data Analysis with Model of Coupled Oscillators (DAMOCO) Toolbox [30], 

[155], [156]. Respiration signal protophase was computed via the Hilbert transform and the phase was 
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derived with appropriate transformation of protophase [157]. All the instantaneous phases were 

resampled at 200 Hz in order to obtain two synchronous phase series. 

Of the several approaches proposed to quantify the level of synchronization, the method of the 

synchronization index λ was chosen, given its proven reliability [158]. In order to estimate the degree 

of synchronization by means of the λ index, 𝜙1 and 𝜙2 will be considered as cyclic (mod 2π). The 

process starts fixing a value for the phase of the first oscillator, Ɵ, to observe the phase of the second 

oscillator 𝜙2|𝜙1=𝜃  at each time ti when 𝜙1= Ɵ. In the case of 1:1 phase locking, the values of 𝜙2 in the 

time points when 𝜙1= Ɵ are going to be scattered around a constant, due to weak noise. This 

distribution can be characterized computing the intensity of its first Fourier mode. In order to 

strengthen the statistic, this process can be repeated with a binning-like procedure for different values 

of Ɵ. The average of the obtained results provides a measure related to circular variance, that is the λ 

index. The resulting λ is bounded between 0 and 1, where 0 corresponds to absence of synchronization 

and 1 to synchronization in the free-noise case. This method can be then generalized in the case of 

n:m locking, simply rescaling the phases as 𝜙1 → 𝜙1/𝑛 and  𝜙2 → 𝜙2/𝑚.  

The λ index is calculated on moving windows. The choice of the length of this window is crucial for the 

estimation of the index and it represents a tradeoff between the time resolution and the physiological  

accuracy of the estimate. In our case, we experimented with different values and then selected 

windows of 1000 samples (5 s) overlapping by 50 samples (250 ms), which seemed the best fit when 

compared to the visually perceived coupling. 

Significance of the λ Index needs to be tested, since spurious period of phase locking can occur in any 

two time series. The index can be compared with an arbitrary selected threshold, or for more accuracy 

statistical testing can be performed using surrogate dataset.  

From the λ Index, the percentage of time spent in each particular n:m ratio (2:1,3:1,4:1,5:1, 3:2,5:2 

etc.) and average length of all the periods were calculated. Giving the assumption that in each instant 

of time the ratios of synchronization are mutually exclusive, we also estimated the percentage of time 

spent in a synchronized state adding together all the ratios with respect to a single breathing cycle, 

resulting in the so-called n:1 synchronization and the average duration of period in synchronized state. 

An example of this analysis is portrayed in Figure 2-7: in panels a) and b) 1-minute segments 

respectively of HR and respiration are shown, in panel c) the corresponding synchrogram and in panel 

d) the relative λ index, with a horizontal line showing the threshold at 0.7. 
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 Figure 2-8 shows a block diagram summarizing the multiple steps involved in phase locking (PL) 

estimation. 

The phase of breathing can also be used to calculate the RSA amplitude parameter. It is computed 

based on the method reported by Bartsch [32]. Firstly, the phase of the respiratory signal 𝜙𝑅𝐸𝑆𝑃  is 

obtained, then for each 2 breath cycles, the mean RR value is calculated and is subtracted from all the 

RR distances, basically obtaining a normalized RR series. Such extracted series in then plotted over the 

period of 2 breathing cycles, 𝜙𝑅𝐸𝑆𝑃 ∈ [0, 4𝜋]. Then RR values are fitted with a least-square sinusoidal 

approach. The RSA amplitude is defined as the amplitude of the derived sinusoid. 

Techniques quantifying periods of cardiorespiratory synchronization and phase locking have been 

employed to characterize the cardiorespiratory behavior during obstructive sleep apnea [104], [159], 

the effect of mental task and meditation [160]–[162], the effect of anesthesia [163], and the 

development of cardiorespiratory control in infants during first 6 months of life [158].  

 
Figure 2-7: a): The RR series (extracted from the ECG signal) in a 60 seconds window. b): Respiratory signal for 

the same window described in (a). The signal shown in (a) and (b) are obtained from a full term subject in quiet 

sleep. c): The synchrogram extracted by the joined analysis of RR series and respiratory signal. d): The horizontal 

line represents the threshold for the computed synchronization index (λ). Synchronization index values above 

the threshold indicates epoch of synchronization between cardiac and respiratory systems. 

a) c) 

b) d) 
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 Directionality 

To trace the changes in coupling degree and/or directionality imposed by slow drift of the coupling 

parameters in the system, the index of directionality 𝑑𝑅𝑅,𝑅𝐸𝑆𝑃 was computed from the time series of 

phase data: 𝜙RR and 𝜙RESP. In the following paragraphs  we  briefly summarize the model presented 

by Rosenblum et al. [164]. A simple model of two coupled phase oscillators is proposed, where each 

system can be represented by its own phase variable 𝜙 so that its time variation can be expressed as 

�̇� =  𝜔, with 𝜔 = 2𝜋/𝑇 being the natural frequency of the considered oscillator and 𝑇 the period of 

oscillation.  

The phase space of the model can be expressed as: 

𝜙1̇ = 𝜔1 + 𝜀1 ∙ 𝑓1(𝜙2, 𝜙1) + 𝜁1(𝑡)    (5) 

                                                          𝜙2
̇ = 𝜔2 + 𝜀2 ∙ 𝑓2(𝜙1, 𝜙2) + 𝜁2(𝑡)       

 

Figure 2-8: Presentation of phase locking (PL) procedure in a block scheme: breathing signals are band passed 

and then Hilbert transform is applied on both breathing and ECG signals to obtain phase functions. Then, PL is 

calculated using phase functions. In parallel, surrogates are generated and PL is calculated for each pair of 

surrogates in order to calculate an optimal threshold. This threshold is utilized to detect period of significant 

phase locking and to calculate relative parameters.  
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The continuous phase variables (𝜙1̇ , 𝜙2
̇ ) consider the natural angular frequency of the system (𝜔1, 𝜔2) 

and the random terms (𝜁1 , 𝜁2), accounting for amplitude fluctuations and perturbations which are 

intrinsic characteristic of biological systems. The coupling terms consist of a 2π-periodic functions 

(𝑓1 , 𝑓2) and strength of interaction parameters (𝜀1 , 𝜀2). 

Given the assumption that phase variables can be estimated directly from the measured time series, 

it is possible to obtain an approximated reconstruction of both cardiac and respiratory oscillators to 

understand the causal relationship between the subsystems. The Evolution Map Approach [164] 

algorithm was used to reveal asymmetric directionality strength from short noisy records and quantify 

which of the systems under analysis influenced its counterparts more strongly.  

Both 𝜙1 and 𝜙2 are unwrapped phase variables, defined as continuous quantities represented on the 

whole real line, not limited from 0 to 2π. Eq. 6 shows that to reconstruct the real weakly coupled 

oscillators from a single recorded realization of the process. It is necessary to fit the dependencies of 

Δ1  and Δ2 over 𝜙1 and 𝜙2 upon considering phase variable increments generated by and unknown 

two dimensional noisy map.  

Δ1(𝑘) =  𝜔1𝜏 +  ℱ1[𝜙2(𝑡𝑘), 𝜙1(𝑡𝑘) ] + 𝜉1(𝑡𝑘)                (6) 

                                            Δ2(𝑘) =  𝜔2𝜏 + ℱ2[𝜙1(𝑡𝑘), 𝜙2(𝑡𝑘) ] + 𝜉2(𝑡𝑘) 

Δ1  and Δ2 represent the phase variable increments over time computed as differences over a specific 

temporal window of length 𝜏. They can be computed from phase variables 𝜙1 and 𝜙2. 

The deterministic part ℱ1 and ℱ2 of the map can be estimated as shown in (7), fitting the dependences 

of Δ1  and Δ2 over 𝜙1 and 𝜙2 with a least mean square approach. Giving the assumption that phase 

variables are cyclic, the most appropriate choice of a family function is the finite Fourier series:  

ℱ1  ≈ 𝐹1 = ∑ 𝐴𝑚𝑒𝑖𝑎𝜙1+𝑖𝑏𝜙2
𝑚    (7) 

ℱ2  ≈ 𝐹2 = ∑ 𝐴𝑛𝑒𝑖𝑎𝜙1+𝑖𝑏𝜙2
𝑛    

In this analysis the maximum order of Fourier expansions is set to 3, in the following computation 

 |𝑎| ≤ 3 and |𝑏| ≤ 3. 𝐹1 and 𝐹2 can describe the deterministic (𝜔 and ℱ) and stochastic (𝜉) link 

between phase variables and their increments. They can serve as smoothing functions by filtering out 

noise by means of the least square fitting approach.  

The cross-dependency coefficients of phase dynamics of the two systems can be extracted from 𝐹1 and 

𝐹2 as: 

𝑐1
2 =  ∬ (

𝜕𝐹1

𝜕𝜙2
)

2
𝑑𝜙1𝑑𝜙2

2𝜋

0
                (8) 
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         𝑐2
2 =  ∬ (

𝜕𝐹2

𝜕𝜙1
)

2
𝑑𝜙1𝑑𝜙2                               

2𝜋

0
 

 

The directionality index can be expressed as: 

𝑑(1,2) =
(𝑐2−𝑐1 )

(𝑐2+𝑐1 )
               (9) 

The EMA algorithm computes a normalized directionality index d. Index d varies from 1 to -1. In the 

case of unidirectional coupling from S1 to S2, d is 1, in the opposite case when the unidirectional 

coupling is from S2 to S1, d is -1. Positive intermediate values of 𝑑 express a stronger or weaker S1 to 

S2 coupling strength, the negative intermediate values a coupling strength in the opposite direction 

(S2 to S1). In the case of absence of interaction when 𝑐2 =  𝑐1, 𝑑 is zero. 
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3. HEART RATE ANALYSIS RESULTS 

3.1. Introduction 

The first chapters have presented the clinical question and the methods chosen to address it.  

This third chapter presents the results of our investigation and it is organized in four main points: firstly, 

we will review the effect of sleep states on the various methodologies proposed to quantify autonomic 

control and cardiorespiratory coupling. In addition, we will present the investigation of the effect of 

sleep states on the novel methodologies proposed, namely transfer entropy and phase locking. 

Second, a study evaluating the effect of one of the major extrinsic factor for SIDS, the prone position 

during sleep, will be presented. Next, results regarding the effect of an intrinsic factor, prematurity, 

will be discussed. Lastly, the investigation of the autonomic parameters in a population exposed to a 

combination of intrinsic (alcohol and smoking exposure during pregnancy) and an extrinsic autonomic 

challenge (head up tilt) will be outlined.  

Each part will have a subsection highlighting relevant methodological aspects investigated, such as the 

optimal tuning of hyper parameters or relationship between different metrics.  
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3.2. Sleep States Effects on Cardiorespiratory Regulation 

Sleep is a central activity in humans: it is characterized by the activation of numerous cortical, 

subcortical and medullar neural circuits, and is regulated by hormonal changes, cardiovascular 

challenges, circadian variations and other factors. Autonomic activity is a key factor in sleep physiology, 

modulating HRV and breathing. Previous newborn studies employing traditional time and frequency 

domain analysis have shown HRV characteristics to be dependent on the behavioral state of the infant. 

HR was faster in active sleep (AS) than quiet sleep (QS), global HRV (SDNN or LTV), VLF and LF power 

were reported to be higher in AS, while HF power was found to be increased in QS. In some studies, 

STV or RMSSD have shown no state difference, while in another studies, were predominant in QS. 

Thus, long term HRV is generally increased during AS while short-term HRV is increased during QS. 

These findings have been attributed to a major vagal activity and fall of sympathetic activity during QS, 

and the inverse behavior combined with more variable respiratory patterns and increased body 

movement in AS [117], [165], [166].  

In addition to these traditional linear parameters, entropy measures have provided further 

information about the complexity of HRV behavior. Interestingly, QS in infants is characterized by an 

increase in Sample Entropy [167]–[169]. Thus, almost unexpectedly, a more complex dynamic of the 

human sympatho-vagal balance can emerge in a resting or relatively inactive state. This can be 

understood in light of the fact that decrease in SampEn has been shown in situation of reduction of 

vagal influence on the heart paired with sympathetic activation, such as following a positional change 

from supine to standing in human adults [170], [171]. This relationship between entropy values and 

the sympatho-vagal balance is also supported by animal studies [172], [173]. 

Shifting from a single signal to a multi-signal perspective, evaluating the mechanisms underlying 

cardiorespiratory interactions in different sleep states is huge challenge given the transient and 

nonlinear characteristics of the two signals. Both systems are under neuroautonomic control that 

regulates their complex dynamics and further influences their coupling through intrinsic feedback 

mechanisms at different time scales.  

Analytic techniques to address this topic have ranged from cross-spectral analysis to nonlinear 

methods, considering linear and nonlinear relations between HR and respiration signal [174], [175]. 

Cross-spectral and coherence analyses have shown significant coupling in the newborn population in 
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the HF, mostly in QS. As an example, Figure 3-1 shows coherence values for 10 minutes of active and 

quiet sleep in two newborns, with clear significant HF peaks in QS (left) and weak and inconsistent 

coupling for AS(right). This coupling is also influenced by gestational age at birth. Furthermore, the 

linear phase relationship between the two signals was not found to be stable [140], [176].  

From the information presented above, the extent to which sleep states influence HRV and 

cardiorespiratory measures is evident. For this reason, we decided to investigate sleep states effect 

also on the more novel approaches proposed in this thesis, Transfer Entropy (TE) and Phase locking 

(PL), and compare the results with traditional techniques [34], [35]. 

3.2.1. Experimental Protocol and Dataset 

The analyses presented were performed on data from 151 newborns (gestational age (GA) at birth 38-

40 weeks), selected based on their GA from a larger cohort of 326 infants (GA at birth 35-41 weeks). 

Out of the selected infants, 33 returned for a one-month follow-up. None of the infants enrolled had 

been admitted to the Neonatal Intensive Care Unit (NICU) nor had any major illness, congenital 

abnormalities or known genetic disorders. Mothers were at least 18 years of age and displayed no 

evidence of major illness or psychiatric disorders during the pregnancy. These signals were acquired at 

Columbia University Medical Center (CUMC), upon mothers’ consent and Institutional Review Board 

(IRB) approval. 

ECG and respiratory activity were recorded non-invasively at a sampling rate of 500 Hz and 200 Hz, 

respectively, by means of three leads on the chest in standard positions (RA, RL, LL, DATAQ 

 

Figure 3-1: Heatmaps of 2 coherence values for 10 minutes recordings of 2 subjects: on the left the subject was 

in quiet sleep on the right the subject was in active sleep. 
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Instruments) and by a respiratory inductance belt around the infant abdomen (Ambulatory Monitoring 

Inc., Ardsley, NY, USA). During the acquisition, infants were sleeping and lying supine. Sleep states were 

classified into AS and QS [177]. 

For time and frequency domain analysis and entropy analysis segments of 300 consecutive beats in 

the same sleep state were identified and then analyzed: the total number of segments was 525 (304 

AS, 221 QS) for newborns and 247 (108 AS, 139 QS) for one-month infants. The average length of the 

300 beats segments was 148.30 ± 14.01 s for newborns in AS, 151.63 ± 12.29 s for newborns in QS, 

124.02 ± 8.55 s for one-month infants in AS and 129.87 ± 10.04 s one-month infants in QS. The length 

Table 3-1: Parameter values (mean ± SD) for 300-beat segments, for newborn and one-month-old infants in AS and 

QS. p-values indicate statistical comparison between AS and QS for newborn and one-month-old infants, and 

between newborn and 1-month-old infants in AS and QS. 

Parameter 

Parameter Values p-Values 

NB OM AS vs. QS NB vs. OM 

AS QS AS QS NB OM AS QS 

Time domain 

RR mean [s] 0.496 ± 0.047 0.509 ± 0.039 0.415 ± 0.029 0.425 ± 0.022 n.s. n.s. <0.01 <0.01 

SDNN [ms] 34.028 ±13.940 25.982 ± 10.140 23.168 ± 6.567 15.334 ± 6.008 <0.01 <0.01 <0.01 <0.01 

RMSSD [ms] 17.382 ± 8.869 18.165 ± 7.815 11.730 ± 3.896 10.050 ± 4.924 n.s. n.s. <0.01 <0.01 

IBI mean [s] 1.240 ± 0.260 1.483 ± 0.264 1.315 ± 0.240 1.630 ± 0.340 <0.01 <0.01 n.s. <0.05 

IBI IQR [s] 0.440 ± 0.146 0.258 ± 0.088 0.404 ± 0.144 0.278 ± 0.102 <0.01 <0.01 n.s. n.s. 

Frequency domain [%] 

LF/(LF+HF)  0.891 ± 0.065 0.770 ± 0.125 0.873 ± 0.102 0.7745± 0.177 <0.01 <0.05 n.s n.s. 

HF/(LF+HF) 0.101 ± 0.056 0.230 ± 0.125 0.116 ± 0.091 0.195 ± 0.143 <0.01 n.s. n.s n.s. 

Conventional entropies [bits] 

SampEn1  1.76 ± 0.26 1.98 ± 0.14 1.69 ± 0.28 1.94 ± 0.15 <0.01 <0.01 n.s. n.s. 

SampEn2  1.63 ± 0.31 1.84 ± 0.19 1.58 ± 0.30 1.86 ± 0.16 <0.01 <0.01 n.s. n.s. 

SampEn3  1.52 ± 0.37 1.69 ± 0.25 1.49 ± 0.35 1.74 ± 0.24 <0.01 <0.01 n.s. n.s. 

QSE1  7.89 ± 0.21 8.05 ± 0.16 7.82 ± 0.25 8.04 ± 0.18 <0.01 <0.05 n.s. n.s. 

QSE2  7.92 ± 0.21 8.07 ± 0.15 7.87 ± 0.25 8.09 ± 0.14 <0.01 <0.01 n.s. n.s. 

QSE3  7.97 ± 0.21 8.11 ± 0.14 7.91 ± 0.26 8.12 ± 0.15 <0.01 <0.01 n.s. n.s. 

Transfer entropy [bits] 

RR→RESP  0.03 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.06 ± 0.02 < 0.05 < 0.01 n.s. < 0.01 

RESP→RR  0.04 ± 0.02 0.09 ± 0.06 0.03 ± 0.02 0.10 ± 0.06 < 0.01 < 0.01 n.s. < 0.05 

Phase locking  [%]        

Synch 3:1  0.02±0.02 0.10±0.10 0.01±0.012 0.04±0.05 <0.01 <0.01 n.s. < 0.01 

Synch 4:1  0.01±0.01 0.01±0.03 0.01±0.02 0.07±0.06 n.s <0.01 n.s. < 0.01 

Synch n:1 0.06±0.05 0.23±0.14 0.07±0.05 0.30±0.17 <0.01 <0.01 n.s. < 0.01 
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of the segments was chosen based on previous studies, which showed that 300 beats was an 

appropriate number for TE estimation [149]. For PL analysis, segments of three minutes length in a 

continuous sleep state were analyzed: 514 three-minute epochs were considered for newborns (275 

AS, 239 QS), while 247 epochs were considered for one-month infants (103 AS, 144 QS). 

3.2.2. Results and Discussion  

In the comparison between sleep states, time and frequency domain parameters showed that overall 

RR variability (SDNN) and mean RR were lower in AS, combined with lower mean IBI and higher IBI 

variability. No difference was found in beat-to-beat variability (RMSSD) both at birth and at 1 month 

of age. SampEn, QSE and HF power % were significantly higher in QS. At lag=0, TE values were higher 

in QS and comparing the two directionalities, there was no clear difference in AS, while in QS RESP 

→ RR directionality was clearly dominant with respect to RR → RESP, both for newborn and one-

month infants. TE values at lag=0 are shown in Figure 3-2. When looking at the values obtained with 

NEWBORN 

  
  

1-MONTH-OLD 

  
  

Figure 3-2: Boxplot of TE values at lag=0. In the first row are shown values for newborn infants in active and 

quiet sleep with directionality RR →RESP on the left and RESP →RR on the right. In the second row, the same 

information is presented for one-month infants. 
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lags, different regulatory dynamics behind the two directionalities were unveiled. As portrayed in 

Figure 3-3, TE from RR → RESP reports a significant between-subjects effect for both sleep state and 

lag (p<0.001 and p<0.001), but no interaction effect between the two. The information flow from RR 

to RESP is slow but steady, acting within 2 beats and lasting around 10 beats.  The amount of 

significant TE estimates, based on surrogate testing, progressively decreases as a function of increasing 

 

 
 
Figure 3-3: In the upper panel, TE RR-> RESP is portrayed at different lags, while on the lower panel, TE RESP-> 

RR is shown. In both panels, quiet sleep values are shown in green and active sleep values in red.  
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lag. The non-significant estimates are on average 15 over 174 in the lag interval 0-12 and they further 

increase up to an average of 62 from lag 12 to 15. Post hoc tests showed that values at lag=0 were 

significantly different from the successive 8 lags. On the other hand, TE RESP→RR shows a fast but 

not lasting effect of breathing on RR, with significant between-subjects effects for both sleep state 

and lag (p<0.001 and p<0.001) as well as an interaction effect (p<0.001). Surrogate testing procedure 

excluded an average of 66 TE values from lag 4 to lag 15 but only around 30 from 0 to 3. No differences 

in TE distributions were found comparing each pairs of lags from lag 3 to lag 15. 

These two dynamics might reflect that different information transfer directionalities are in fact driven 

by different autonomic branches of the ANS [178]. As a matter of fact, the sympathetic branch 

intervenes on a slower time scale, but its effect last longer in the target system, whereas the 

parasympathetic has a punctual yet rapidly vanishing action. Given these considerations, it is possible 

to speculate that that the vagal system is possibly more implicated in the directionality from RESP to 

RR while the sympathetic in the opposite directionality.  

Regarding the cardiorespiratory synchronization, our findings showed a significant higher value both 

in percentage of time spent in coupling and in duration of the coupled epochs in QS, both at the 

newborn and one-month stage, as in Figure 3-4.  

We applied BPRSA technique to a subset of the infants (N=4), using the respiratory phase as the trigger 

signal and the RR series as the target. Moreover, anchor points (APs) were identified both with the 

increment and decrement definition in the respiratory phase. Univariate PRSA was also estimated for 

the respiratory phase. Comparing the BPRSA transformation of the target signal with the monovariate 

PRSA transformation of the trigger signal is possible to observe potential trigger and target signal 

interaction. Figure 3-6 illustrates two examples: in the left panels a clear entrainment is visible whereas 

the panels on the right show a weak coupling. In the first case, the median frequency of 

cardiorespiratory coupling had been estimated with coherence method at 0.62 Hz, in the second case 

was 0.89 Hz. This example shows how BPRSA is sensitive to CRC, extracting periodic interrelated 

behaviors, often masked by resetting due to internal and external perturbations. 

When looking at the behavior of parameters as a function of age (at birth vs one month), time domain 

parameters showed an increase in HR and a decrease in variability. No entropy differences were found 

across ages. In TE lag=0 the major differences occurred in QS, with an increase in information flow in 
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both directions with age, while in AS values remained unchanged. An increasing trend with age in terms 

of synchronization was observed, even though significance was not achieved. Moreover, the ratio of 

the dominant synchronization shifted from a majority of 3:1 with newborns, to 4:1 with one-month 

infants, as visible in Figure 3-5. All parameters values are reported in Table 3-1. 

 

Figure 3-4: Total percentage of time spent in coupling and length of the coupled epochs in active and quiet sleep. 

Boxplot represent newborns on the left and one month infants on the right, N is the number of subjects 

 
Figure 3-5: Bargraph of the percentage of synchronization on different n:m ratios for newborns (blue) and one 

month infants (yellow) 
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These findings are convergent with previous studies, which suggested increased parasympathetic 

activation in QS and in AS a simplification of HR dynamics, and thus a lowering in entropy values, 

potentially following parasympathetic withdrawal and sympathetic activation [170], [172]. Our 

results also converge with previous results by Pincus et al., who found higher values of 

approximated entropy (ApEn) in QS with respect to AS [18], and with another measure of 

complexity based on Mutual Information, AIF [175].  

Our focus comparing newborns and one-month infants is related to the fact that epidemiological 

studies have shown that the incidence of SIDS peaks between 2-4 month of age. Thus, it is of particular 

importance to note a shift in the typical cardiorespiratory synchronization ratio between a low risk 

period and a high risk one. 

Additionally, TE results illustrate that QS is a state in which information flow between HR and 

respiration is higher than in AS. Given that SampEn and QSE should provide a measure of complexity 

of a signal, higher HR entropy values in QS could be associated with an increased interaction with 

other physiological systems. These findings suggest that cardiorespiratory interactions in QS 

transfer more information than in AS in healthy infants, as also suggested by Frasch et al [175] . 

In QS, coupling is stronger for both information flow directions. Moreover, the main direction of 

the information flow is RESP → RR in QS, while in AS this not evident in both newborn and 1-month-

old infants. 

A)                                                                                 B)  

 

Figure 3-6: PRSA curves of respiratory phase signal are shown in blue, BPRSA curve in green. The upper panel 

refers to increment APs, the lower panel to decrement APs. (A) Subject with a clear and synchronous coupling 

in QS (B) Subject with a weak coupling in AS. 
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As highlighted in previous infant report [179], the directionality of cardiorespiratory interaction is 

not as consistent as in adults, with phenomena like respiratory sinus arrhythmia. Nonetheless, our 

results seem to indicate a difference in directionality balance based on sleep state. This could be 

driven by differences in the average breathing frequency. That is, when breathing frequency is 

higher there is less opportunity for respiration to dynamically modulate HR. Higher breathing 

frequency occurs more often in AS, and this could account for an absence of a dominant 

directionality. 

In addition to this, we found a correlation between phase synchronization and mean IBI, as shown in 

figure 3-7, which had not been previously identified in adults [31], [32]. Even in this case, given the 

very different breathing frequency ranges between infants and adults, we might infer that very short 

IBI could have an impact on synchronization. Nonetheless, this hypothesis needs further investigation.  

Lastly, an age-dependent change in information flow happens only in QS. AS is per se a state of 

lower coupling between HR and respiration and this does not dramatically change with age.  

METHODOLOGICAL REMARKS: 

Entropy measures tend to be influenced by the choice of the parameters r, m, N, as previously 

reported [180]. In our study, the consistency of entropy measures can be observed independently 

of the parameter choice. In fact, our results were not affected by parameter m. In preliminary 

studies, we also tested the same measures on segments with N equal to 100 and 200 beats and 

 

Figure 3-7: Scatterplot of percentage of synchronization and mean IBI in quiet (blue) and active (red) sleep, 

showing a positive correlation between the two variables 
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used 3 minutes epochs, and obtained comparable results. This strongly suggests that the difference 

between groups remains stable. 

For the PRSA technique, the choice of T can be optimized depending on the frequency of interest, 

since PRSA is most sensitive for the detection of oscillations with frequency f=1/(2.5T) [146]. In this 

particular case, given our interest in the cardiorespiratory interaction, we tuned the parameter T 

using the mean breathing frequency of each segment, obtained as the coherence value above 

threshold in the HF band.  

Lastly, the investigation of different modes of cardiorespiratory interaction in the same population 

shows how complementary forms of coupling occur with an intermittent behavior, with different 

strength and directionality patterns across physiological states.  

3.3. Effect of External Stressor: Supine vs Prone Position 

In this next study, we employed a multi-parametric approach for the analysis of HR in the at-risk 

population of prematurely born infants. Premature birth precludes full in-utero development of the 

ANS and may thereby increase the probability of SIDS occurrence. As sleep position has emerged as 

the primary SIDS postnatal risk factor we investigated the effects of prone versus supine position on a 

range of HRV parameters. Specifically, we incorporated a wide array of mathematical techniques to 

analyze HR signals collected prior to hospital discharge and then again two months later. This novel 

and comprehensive approach combined multiple indices utilizing time domain, frequency domain and 

nonlinear methods. Furthermore, as premature infants share physiological characteristics of the fetus 

and the infant, we employed a set of parameters typically employed in fetal HR analysis, as well as in 

standard adult HR studies. 

The approach we utilized in this study also allowed investigation of several aspects of premature 

autonomic control that occur at different time scales, and involve different control mechanisms, 

known to be influenced by position and sleep state in the newborn. Moreover, the availability of a 

follow-up study at two months of age allowed the evaluation of the development of ANS control during 

the postnatal period [36], [181]. 

3.3.1. Experimental protocol and data set 

The dataset was acquired in the Infant Physiology Laboratory at CUMC, New York. It was approved by 

the IRB of the CUMC and mothers provided informed consent at enrolment. This study included data 

collected at two time points: the first performed on 35 healthy premature infants immediately prior 
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to discharge from hospital (GA at birth 28.7 ±2 weeks and post menstrual age at time of study 37.7 

±2.4 weeks) and repeated on 24 of these infants at a follow-up study two months after discharge (GA 

at birth 27.9 ±1.6 weeks and post menstrual age at time of study 49.2±3.2 weeks).  

The duration of the first study protocol was 6 hours. During the first 3 hours, infants slept in supine 

position and were then moved to prone for the rest of the study. Infants were fed right before the 

start of the study and again after 3 hours. The follow up study at 2 months was designed to last one 

hour, due to difficulties in obtaining periods of uninterrupted sleep with older infants. Thus, infants 

spent only 30 minutes in each position. Only AS presented enough data for each baby, thus all results 

are summarized for AS only.  

ECG was acquired at 500 Hz and the RR series in seconds were obtained using a customized peak 

detection algorithm followed by visual inspection. In this dataset breathing was not available so the 

analysis focused only on the HRV parameters. In the first study, only patients with at least three 3 

minutes’ segments of good quality RR series with continuous sleep state were accepted. In the follow 

up, due to the reduced length of the study, patients with at least one 3 minutes’ segment of good 

quality RR series with continuous sleep state were included. This requirement reduced the number of 

infants available for the analysis: for the first study 20 infants met the criteria, while for the follow up 

10 infants met these criteria.  

3.3.2. Results 

Analysis by sleep position in the first study showed clear differences both in the long-term variability 

parameters (LTI and PRSA) and in the short-term variability parameters (SampEn and QSE). Supine 

position was characterized by higher variability but lower complexity. In the follow-up study, the most 

robust state differences were observed only for the parameters quantifying short-term variability, 

specifically, RMSSD and STV, and entropies. Results are shown in Table 3-2. 

From a physiological standpoint, these results support the hypothesis that prone position is a strong 

autonomic challenge for the infants and thus can be a major risk factor for SIDS, if combined with an 

intrinsic vulnerability. Interestingly, the response to this autonomic challenge is different at discharge 

and at 2 months of age, which corresponds to the peak of SIDS events. The very premature condition 

of the infants analyzed is an intrinsic vulnerability since the early birth is a strong stressor for the 

infant’s physiological development since their systems were ill prepared for the relatively early 

transition to extra-uterine life.  
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In the follow-up study, at two months of postnatal age, the parameters most strongly associated with 

the effects of sleeping position, were measures of short-term variability, generally associated with 

parasympathetic regulation. With increasing postnatal age, infant parasympathetic system should take 

the lead in HR autonomic regulation. The fact that at 2 months of age measures of vagal activity are 

altered in prone position might suggest suppressive effect of this position altering the correct sympato-

vagal balance. Lastly, the behavior of more variability and less complexity in supine sleep vs prone, 

mirrors the results obtained in quiet sleep and once more contributes to the understanding that 

variability and complexity characterize different aspects of a signal.  

METHODOLOGICAL REMARKS: 

Different values of T were tested to calculate PRSA curves, and only values above 30 samples could 

discern the two positions, as portrayed in Figure 3-8. These values correspond to about 10 seconds 

and thus are related to long term variability. Moreover, the introduction of QSE calculated with the 

Minimum Count of Matches (MCM) approach, proved to be a significant improvement. As shown in 

Figure 3-9, QSE is less dependent from the length of the segment analyzed: SampEn values collapse 

when N approaches 0 because not enough matches are found. With the adjustment of r introduced by 

the MCM procedure and the log(2r) correction, QSE is more stable and consistent. This is relevant since 

in real applications often only short segments are available for the analysis and QSE can provide a 

reliable entropy estimate even in these circumstances.  

Table 3-2: Parameters’ results for the first and follow up study. P-values were obtained with Student’s t-test 

for the first study and with the Wilcoxon Signed Rank test for the follow up.  

 Prone  Supine P-val 

First study - newborn 

LTI 0.040 ± 0.018 0.049±0.23 <0.001 

SDNN 0.0212 ± 0.008 0.0237 ± 0.009 <0.05 

PRSA ∆Y 15.66 ± 10.18 18.71 ± 10.68 <0.01 

SampEn 0.554 ± 0.183 0.443 ± 0.133 <0.001 

QSE m=1 -4.201 ± 0.415 -4.042 ± 0.304 <0.001 

Second study- 2 months 

Mean RR 0.414± 0.048 0.447 ± 0.0727 <0.05 

RMSSD 0.014 ± 0.009 0.015 ± 0.011 <0.05 

STV 0.01 ± 0.006 0.011 ± 0.008 <0.05 

QSE m=2 -3.27 ± 0.848 -3.15± 0.783 <0.05 
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In this application, the choice of the MNC value was optimized with three steps: the MCM for each 

segment was computed as Mmax = (Nx -m)(Nx -m+1)/2 where Nx is the number of samples of each time 

series and m the embedded dimension. Among these, the smallest Mmax was chosen and set as Mmax 

for all the series. Since 3 minutes segments have around N = 300, this translated in Mmax≈ 300^2 = 

90’000. The QSE was then computed with MNC varying from 1 to Mmax with a step of 2’000 (M = 

1:2’000:Mmax). For each M, r was initialized to zero and increased of successive steps of: rt+1 = rt + 0:015 

  

Figure 3-8: On the left a representation of p-values for dx and dy in AS as a function of the parameter T, showing 

dy reaching significance only after T>33. On the right a comparision of 2 PRSA curves obtained with T=51 and 

L=150 with one subject in prone position (blue) and in supine position (red). 

  

Figure 3-9: On the left a graph showing the area under the Roc curve for the QSE parameter as a function of the 

minimum count of matches. The red dot indicates the number of matches selected to perform the analysis. On 

the right SampEn and QSE for a subject in supine position (red) and prone (blue) position as a function of N, the 

length of the segment analyzed. 
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*std(sig) until M matches were found. Lastly, the optimal M is chosen as the one obtaining QSE values 

more capable of discriminating the supine and prone condition, thus maximizing the area under the 

ROC curve. 

3.4. Effect of Intrinsic Vulnerability: Prematurity 

Infants born at 35-37 weeks of GA are at higher risk for a range of pathological conditions and poorer 

neurodevelopmental outcomes, however, mechanisms responsible are not fully understood [182]. The 

purpose of the analyses presented in this section was to assess newborn autonomic development as a 

function of GA at birth, with traditional and novel signal processing technique, focusing on 

cardiorespiratory regulation. Several studies indicating irregular cardiorespiratory coupling as a leading 

cause of several pathologies underscore the need to investigate this phenomenon in this at-risk 

population [69]. In particular, novel techniques will allow to investigate linear and nonlinear coupling 

and infer on possible directionality of the interaction between the cardiac and the respiratory system.  

3.4.1. Experimental Protocol and Dataset 

This study included 329 newborns from 350/7- 406/7 weeks GA, including both singleton and multiple 

births, born at the Morgan Stanley Children’s Hospital of New York. None of the infants enrolled had 

been admitted to the NICU or had any major illness, congenital abnormalities or known genetic 

disorders. Mothers were at least eighteen years of age and displayed no evidence of major illness, or 

psychiatric disorders during the pregnancy. The IRB of the New York State Psychiatric Institute and of 

CUMC approved the study and mothers signed informed consent forms prior to enrollment in the 

study. 

Newborn infants were tested 12-84 hours after delivery (avg. 39±15 h). Infant recordings were 

collected in a quiet room near the nursery approximately 30 minutes after a day time feeding. The 

study protocol designed to include assessment of sleep dependent behavior and learning, required a 

10-minute baseline recording of ECG and respiration. Respiration and ECG were acquired as outlined 

in paragraph 3.2.1. The respiration signal was filtered with a bandpass filter (0.05 - 3.5 Hz). Breath 

inspiration intervals and ECG R waves were marked with a customized peak detection algorithm, 

followed by visual inspection of the signals to remove marks due to erroneous automated 

identification. Thresholds of acceptance for RR interval were set as 0.3-0.667 seconds, with an absolute 

variation between consecutive RR intervals of 10%, while for respiration thresholds were 0.5-2.5 

seconds and an absolute change of 40%. 
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Sleep states were classified into AS, QS, Indeterminate (I) and Awake (W). The minimum length for a 

segment to be classified either as AS or QS was 120 seconds, I and W segments were discarded from 

the analysis. The sleep state coding assessment was based on respiratory variability [183] and 

confirmed by behavioral codes entered throughout the study to determine when infants were awake, 

crying, or fussy. Of 329 infants enrolled, for 281 it was possible to perform sleep state coding. Following 

the guidelines of the American College of Obstetricians and Gynecologists, infants were divided into 

three groups: newborns whose GA was (1) 35-36 weeks, called Late Preterm (LPT); (2) GA 37-38 weeks, 

categorized as Early Term (ET) and (3) GA 39-40 weeks, Full Term (FT).  

Segments of three minutes length in a continuous sleep state were analyzed providing with a total of 

114 infants of 281 in QS (19 LPT, 40 ET, 55 FT) and a total of 171 infants of 281 in AS included in the 

final analysis (51 LPT, 60 ET, 60 FT). Parameters computed for this analysis were time and frequency 

domain, QSE and transfer entropy, and lastly phase locking and directionality.  

3.4.2. Results and Discussions.  

Time domain and frequency domain results presented in Table 3-3, show increasing RR mean interval, 

short-term HRV (RMSSD), HR complexity (QSE) and linear cardiorespiratory coupling (HF RR, HF biv) 

with GA, indicating an increasing autonomic and cardiorespiratory control as a function of GA at birth 

(respectively, p=0.001, p<0.001, p=0.007 p<0.001, p=0.008).  

TE presented significant changes by GA only in the directionality RESP-> RR, with increasing values as 

a function of GA (p<0.05). Post-hoc analysis shows that LPT were significantly different from FT and ET. 

TE in both directions was significantly influenced by sleep states (RR->RESP p<0.001 and RESP->RR 

p<0.001), but no interaction occurred between GA and sleep states (RR->RESP p=0.0257 and RESP->RR 

p=0.0258).  

Measures of cardiorespiratory phase locking indicate no relationship between time spent in phase-

synchronized state and GA group. Differences were instead detected with sleep state in all GA groups, 

with more frequent and longer synchronization in QS. No interaction effect was found between the 

two independent variables, GA and sleep state (n:1 synchro % p=0.874 and n:1 synchro duration 

p=0.740). Results are shown in Table 3-4 and 3-5. 

Previous work highlighted a change in the quantity of synchronization during the first 6 months of life 

[35], [158]. Thus, it was surprising to discover in our study that the quantity of synchronized time did 

not change significantly within the last weeks of GA. This might be because this aspect of  
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cardiorespiratory regulation mainly develops in the months following birth. Thus, differences between 

previous and current findings might be related to differential influences of intra-uterine versus extra-

uterine life, rather than of GA at birth.  

The multivariate test with d and breathing frequency as dependent variable and GA and sleep state as 

independent, showed significant differences by GA and state (respectively, p = 0.003; p = 0.001). No 

significant interaction was detected between GA and state (p = 0.972). The test of between-subjects’ 

Table 3-3: Descriptive statistics (mean ± std) of time and frequency domain parameters by gestational age (GA) in 

quiet sleep (QS) and active sleep (AS). The groups are: late preterm (LPT), early term (ET), and full term (FT).   

state GA RR mean SDNN RMSSD IBI IQR HF_RR QSE HF_biv 

QS 

LPT 0.48 ± 0.03 21.32 ± 11.88 10.20 ± 6.83 0.27±0.10 0.38 ± 0.19 3.16±0.69  0.556 ± 0.19 

ET 0.49 ± 0.04 22.87 ± 10.85 13.23 ± 7.06 0.28±0.08 0.46 ± 0.18 3.45±0.69  0.597 ± 0.19 

FT 0.51 ± 0.04 24.59 ± 11.47 15.72 ± 7.67 0.26± 0.11 0.50 ± 0.17 3.74±0.64  0.663 ± 0.19 

AS 

LPT 0.48 ± 0.04 28.80 ± 12.19 11.60 ± 5.40 0.40±0.15 0.29 ± 0.12 3.37±0.58  0.379 ± 0.13 

ET 0.49 ± 0.0 30.93 ± 12.90 12.29 ± 6.09 0.42±0.13 0.31 ± 0.14 3.43±0.67  0.395 ± 0.13 

FT 0.50 ± 0.05 31.83 ± 13.87 13.40 ± 6.51 0.39± 0.13 0.32 ± 0.13 3.63±0.67  0.413 ± 0.13 

Table 3-4: Descriptive statistics (mean ± std) of the transfer entropy from RR to breathing (RR->RESP) and from 

breathing to RR (RESP->RR), of the square root of the percentage of time in synchronized state and the average 

synchronization duration and number of subjects by gestational age (GA) in quiet sleep (QS) and active sleep (AS) 

state GA RR→RESP RESP→RR n:1 synchro % n:1 synchro duration N Subjects 

QS 

LPT 0.065±0.033 0.054±0.029 0.436 ± 0.209 2.99 ± 1.02 19 

ET 0.066±0.039 0.083±0.039 0.454 ± 0.184 3.03 ± 1.01 41 

FT 0.064±0.029 0.084±0.042 0.473 ± 0.170 3.00 ± 0.90 58 

AS 

LPT 0.040±0.023 0.032±0.018 0.185 ± 0.124 1.82 ± 1.04 54 

ET 0.042±0.021 0.039±0.023 0.218 ± 0.127 2.07 ± 0.84 62 

FT 0.052±0.028 0.042±0.032 0.221 ± 0.139 1.92 ± 0.97 68 

Table 3-5: 2-way Anova p-values of the square root of the percentage of time in synchronized state and the 

average synchronization duration by gestational age (GA) and sleep state along with their interaction effect 

Parameter  p-val Partial ƞ² 

n:1 synchro % 

state 0.000 0.357 

GA group 0.342 0.007 

state * GA group 0.874 0.001 

n:1 synchro 
duration 

state 0.000 0.214 

GA_group 0.559 0.004 

state * GA group 0.740 0.002 
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effects highlighted how each dependent variable differed based on the independent variables. To 

account for multiple ANOVAs, we used a Bonferroni correction accepting statistical significance at p < 

0.025. Results are reported in Table 3-6 and 3-7 and shown in Figure 3-10. The test shows that sleep 

state significantly influences both d and respiratory frequency, while GA at birth influences significantly 

only d. Directionality index d decreases with GA at birth. In QS all the three GA groups show dominant 

influence of breathing on HR (d<0), but this influence grows with GA (d becomes more negative). On 

the other hand, in AS a balanced relationship is present in LPT (d≈0) and it moves toward a dominant 

relationship from breathing to HR in FT (d<0). Post-hoc tests of the significant ANOVAs showed that 

among the GA groups, LPT were significantly different from ET which were also significantly different 

from FT.  

Previously, another research group reported a similar directionality shift but in full term newborns 

monitored during the first months of life, suggesting that the maturation of this aspect of the 

cardiorespiratory interaction occurring in the immature preterm infant continues in the first months 

of life until a final set point is reached in later childhood [184].  

In the current study, in QS lower values of d were observed in all GA groups signifying a stronger 

influence of breathing on HR, as previously demonstrated with other coupling measures [185].  

Mrowka et al. had hypothesized that directionality depends on respiratory frequency. In particular, 

respiration rate would act as a lowpass filter, i.e. below a set respiratory frequency directionality is 

 
Figure 3-10: a): Boxplots show breathing frequency by gestational age (GA) and sleep state. Breathing frequency 

is not significantly different by GA at birth but is significantly different by sleep state. b): Boxplots show 

directionality index by GA and sleep state. Directionality index is statistically different both by GA at birth and by 

sleep state. Neither breathing frequency nor directionality index show any interaction effect between GA and 

sleep state. 

A B 
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mainly from respiration to HR, whereas above a certain respiratory frequency the interaction becomes 

bidirectional. The underlying mechanisms for this lowpass filter effect could be related to lower 

information transmission to the cardiac oscillator caused by reduced information from the vagal nerve 

to the atrial pace-maker cells when respiration frequency is above a certain threshold, proposed at 0.6 

Hz [184]. Thus, the cardiac influence on respiration would be weak and frequency independent, while 

the coupling from the respiration to HR for low respiratory frequencies would be strong compared 

with the strength of the cardiac influence, and of similar entity for higher frequencies [184]. Figure 3-

11 shows the directionality index histograms of the three GA groups at breathing frequencies ≥0.6 Hz 

(in  each panel on the right) and at breathing frequencies <0.6 Hz (in each panel on the left). This figure 

illustrates the occurrence of this bimodal influence: concurrently with breathing frequencies <0.6 Hz, 

an increased polarization toward negative values of d occurs, especially in ET and FT. Nonetheless, the 

mean breathing frequency does not change significantly in this specific GA window (35-40 weeks) 

(p=0.881); thus, the significant change in directionality with GA at birth (p=0.001) cannot be explained 

solely because of breathing frequency. One explanation for this phenomenon could be that the 

Table 3-6: Descriptive statistics (mean ± std) for directionality index and respiration frequency by gestational 

age (GA) and sleep state and number of subjects  

State GA group Directionality index Respiration frequency N SUBJECT 

QS 
LPT -0.240 ± 0.292 0.699 ± 0.181 19 

ET -0.307 ± 0.266 0.676 ± 0.126 41 

 FT -0.417± 0.259 0.668 ± 0.149 59 

AS 
LPT 0.083 ±0 .262 0.815 ± 0.200 55 

ET 0.044 ± 0.306 0.808 ± 0.180 62 

 FT -0.028 ± 0.284 0.818 ± 0.237 68 

 

Table 3-7: Multivariate model analysis of directionality index and respiration frequency by gestational age 

(GA) and sleep state along with their interaction effect and post hoc analysis 

Parameters  p-val Partial ƞ² Post hoc 

Directionality index 

GA group 0.001 0.049 LPT>ET>FT 

state <0.001 0.273  

GA group * state 0.816 0.001  

Respiration frequency 

GA group 0.881 0.001 LPT>ET>FT 

state <0.001 0.097  

GA group * state 0.857 0.001  
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threshold for the low pass filter effect is still adapting between 35-40 weeks GA. At a younger GA, for 

instance in the LPT group, the value for the cutoff frequency might be lower when compared to more 

mature conditions, such as FT.  

Given that this cutoff frequency is potentially related to vagal nerve regulation, these findings would 

be consistent with previous studies showing immature vagal function in premature infants. 

Morphological studies also demonstrate a rapid developmental increase in number of myelinated 

vagal fibers with postconceptional age (PCA), and by 40 weeks after conception, total fiber counts were 

comparable to those of adolescents. Interestingly, the number of total myelinated vagus fibers in 

 
Figure 3-11: In each panel, histograms of directionality index distribution are plotted, on the left for breathing 

frequencies < 0.6 Hz, and on the right for breathing frequencies ≥ 0.6 Hz in order for LPT, ET and FT 
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preterm infants (≤38 weeks PCA) was found to be significantly smaller than for the term or adolescent 

age groups [186].  

This hypothesis is supported even further by the fact that the directionality index d was found to be 

negatively correlated at every age group with QSE and RMSSD, parameters associated with 

parasympathetic activity, as shown in Figure 3-12. Thus, a decreasing value of d with GA might be 

driven by a complex interplay of parasympathetic and respiratory regulatory effects.   

The question remains as to physiological meaning behind this type of nonlinear coupling. One possible 

explanation could be that this type of synchronization involves an energy consumption benefit, 

namely, the reduction in intrathoracic pressure during inspiration increases cardiac filling and 

consequently cardiac output. However, this hypothesis needs further investigation.  

METHODOLOGICAL REMARKS: 

From a methodological perspective, the detrimental impact of even minor data contamination with 

artefact was evaluated. The widespread practice of visual inspection of data for extra or missing RR 

intervals remains problematic both in terms of reliability and practicality. Furthermore, any fixed 

threshold value may give rise to classification errors, especially when inter-individual physiological 

differences in baseline HR are not accounted for [187]. 

QSE is a novel nonlinear measure mostly correlated with parasympathetic activity as other more 

traditional measures, such as RMSSD [34], [171], [173]. Nonetheless, the application of this novel 

measures has the advantage of not requiring signal stationarity [188].  

 

 

Figure 3-12: On the left, the scatterplot of directionality index and RMSSD and on the right the scatterplot of 

the directionality index and QSE. In blue are reported values for LPT, in red for ET and in green for FT. 
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Figure 3-13: a) RR interval series for a three 3-minute segment. b) ECG tracing corresponding to RR series in a) 

from 466 to 485 s showing transient bradycardia. c) RMSSD values for the three segments in red when no 

preprocessing is applied on the RR interval series, and in black after the RR artifact removal is applied. d) QSE 

m=1 values with the same logic as panel c). In panel c) and d), averages and standard deviations for the FT 

group are shown in blue. Preprocessing was performed excluding all RR intervals out of the range of 266 and 

667 ms. In this case 6.6% of the last segment was excluded during the preprocessing. 

 

Figure 3-14: Values of RMSSD and QSE of the three populations before and after RR intervals series 

preprocessing are plotted against one another. 

 

a) b) 

c) d) 
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In this study, QSE proved to be less affected by noise and sporadic arrhythmias than RMSSD. To portray 

how signal nonstationary episodes can affect the parameter estimation, we report in Figure 3-13 an 

example of how ECG signal, RR series and parameters were extracted. For the infant whose data are 

shown as reference, there were episodes of alterations in the physiological heart rhythm. Panel a) 

shows the RR interval series for the three 3-minute segments, panel b) shows an example of the 

corresponding ECG tracing during transient bradycardia, which gave rise to the long RR intervals shown 

in the third segment of panel a). In panel c), values of RMSSD for the three segments are plotted. They 

are marked in red if no preprocessing was applied on the RR interval series, and in black if the measures 

were computed after the RR artefact removal is applied. Finally, panel d) shows QSE values with the 

same logic as panel c). In panel c) and d), averages and standard deviations for the FT group are 

depicted in grey. 

In Figure 3-14, values of RMSSD and QSE before and after RR intervals series preprocessing are plotted. 

These two figures depict the extent to which preprocessing of data affects values of RMSSD. As 

portrayed in panel c) of Figure 3-13, the RMSSD value is decreased by almost 50% after preprocessing, 

whereas QSE compensated for the presence of artefacts.  

This example illustrates that adding the QSE parameter to the analysis provided significantly more 

consistent results, over and above from RR intervals series preprocessing and thus QSE can be 

considered an important parameter to be added to the repertoire of measures used for ANS 

characterization. 

 

Figure 3-15: Correlation matrices for all the indices calculated in this section, on the left in active sleep and 

on the right in quiet 
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Figure 3-15 portrays the pairwise correlations of all features calculated in this section, for quiet and 

active sleep state. These plots reveal interesting characteristics: first, the correlation structure is similar 

in both stages, second, some features are uncorrelated independently of stage, like % of 

synchronization and synchronization duration. These preliminary considerations are now under 

further investigation, with feature selection and reduction analyses.  

Lastly, especially when parameters are equally informative, issues like preprocessing time and 

robustness to artefacts should be taken into consideration. 

3.5. Combination of Intrinsic Vulnerability and External Stressor: Alcohol and Smoking 

Exposure during Pregnancy and Head-up Tilt 

This study investigates the effects of prenatal alcohol and smoke exposure on tilt response in newborn 

infants, since associations between exposure and increased 2- to 5-fold risk of SIDS have been reported 

[189]. The underlying hypothesis describes abnormalities in the control of homeostatic functions by 

the developing brainstem [190].  

Graded head-up tilt has been widely used as a test to observe and quantify autonomic control. The tilt 

should elicit a shift of the sympathovagal balance toward a sympathetic activation and 

parasympathetic withdrawal [191]. Several indices have been proposed to quantify sympathetic and 

parasympathetic activity. However, there is no current consensus for standardized measures of vagal 

activation/withdrawal in infants.  

This investigation entails a novel application of parameters of autonomic function control to 

characterize the immature neonatal ANS, whose cardiorespiratory interactions are not yet stable. The 

analysis was performed on two groups of infants, newborns unexposed and exposed in utero to both 

alcohol and smoking. Multiple measures of vagal withdrawal were investigated and compared: 

traditional time and frequency domain estimates along with novel complexity measures. The 

combined use of these indexes suggested different regulatory dynamics in the two groups and opens 

to novel perspective in physiological and clinical SIDS risk assessment. 

3.5.1. Experimental protocol and data set 

The subjects analyzed were enrolled in the Safe Passage study [39] and the IRB approved all 

experimental procedures involving human. Subjects were recruited at Tygerberg Hospital and affiliated 

clinics in Bellville, Cape Town, South Africa. Infants were routinely discharged from the hospital less 
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than 24 hours after delivery, they returned within 48-96 hours for assessment. At this visit, nurses 

recorded ECG, respiration, blood pressure (BP), and cortical brain activity (EEG) during sleep.  

Data recordings were approximately half an hour long and occurred approximately 30 minutes after 

eating. The standardized procedure consisted of a 10-minutes baseline period and three rapid (~3–5 

seconds) 45° head-up tilts, while the infant was in the prone position as it may accentuate the response 

evoked by tilting. Each of three tilts session was subdivided into the following blocks of time: 30-sec just 

prior to tilt (B); 15-seconds block right after the infant reached head-up position (I); three 30-seconds 

blocks (T1, T2, T3) before returning to flat position, as shown in Figure 3-16. This study analyzed data 

from the first tilt session out of the three. The first block of 15 seconds right after tilt was not considered 

due to its lack of stationarity. 

ECG was recorded at 500 Hz and respiratory tracings were simultaneously collected at 20 Hz using a 

respiratory inductance belt, which was placed around each infant’s chest. A modification of the 

Timeline Follow-Back Interview was employed by nurses to guide mothers’ self-reported estimation of 

their tobacco and alcohol consumption during pregnancy [39]. Based on the assessment, subjects were 

divided in: i) control group (CG): no prenatal exposure to alcohol or tobacco smoke; ii) exposed group 

(EG): heavy prenatal exposure to both substances during the first, second or third trimester of 

pregnancy. Mothers in the EG had on average more than 7 drinks per trimester and smoked consistently 

during the whole duration of their pregnancy. Inclusion criteria for the cohorts in this study were: full-

term infants (GA at birth ≥37 weeks), birthweight ≥2500 g, South African mixed ancestry, no 

resuscitation at birth or admission to the NICU, no prenatal exposures to drugs of abuse, no evidence 

of diabetes, hypertension, or pre-eclampsia during pregnancy in maternal medical records. 

 

Figure 3-16: Schematic of cardiorespiratory assessments. Baseline epochs are 60 seconds in duration. The 

epochs immediately after head-up or tilts back to flat were 15 seconds in duration. All other epochs were 30 

seconds in duration. 



62 
 

The total number of infants in the CG was 15 (3 males – 12 females), GA 39.7 ± 1.07 weeks while in the 

EG the total number was 13 (6 males – 7 females), GA is 39.2 ± 0.83 weeks. Infants sleep states were 

classified into active (AS) and quiet sleep (QS), awake (A) or indeterminate (I) by a Matlab automated 

algorithm [183]. In this study, the analyses were performed exclusively in periods classified as QS. 

3.5.2. Results 

The mean and standard deviation of parameters for each tilt block, F and p-value of Greenhouse-

Geisser tests are reported in Table 3-8. Each parameter was analyzed having tilt block as within-

subjects factor. Statistical analysis shows a significant within-subjects effect of tilt block on all extracted 

parameters in the CG. Left panel of FigureError! Reference source not found. 3-17 shows the mean t

rend of the extracted parameters for CG. The computed parameters show a consistent decrease in 

markers of vagal activation when comparing B vs T1 and B vs T2. On the other hand, the vagal activation 

pattern after segment T2 appears to exhibit an absent response. 

To investigate the statistical significance of the reported differences between pairs of tilt blocks a series 

of post-hoc tests were performed. The pairwise comparisons showed a significant difference when 

comparing B vs T2 for all parameters (RMSSD p-value=0.01, ln_HF p-value=not significant (n.s.), QSE  

p-value<0.01, ln_RSA p-value<0.05). 

 

Figure 3-17: Left and right panel show the mean values of the four extracted parameters and their trends when 

plotted based upon the tilt blocks. On the left, CG show a consistent behavior across all indexes, characterized 

by a decrease from B to T3. On the right, group means in EG do exhibit a flatter tendency. The mean value for 

a given index (obtain by grouping means in B, T1, T2, T3) has been subtracted from mean values reported in 

Table 3-8 to provide a comparable scale across parameters 
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The right panel of Figure 3-17, depicts a substantially different behavior for the EG group, with vagal 

tone estimators staying stable for every tilt point. The absence of any difference is confirmed by the 

results of repeated measures ANOVA. Results reported in Table 3-8 show lack of significance when 

performing the within-subject’s analysis testing each variable of interest separately.  

The direct comparison between CG and EG did not show any main effect associated with groups when 

performing repeated measures ANOVA with group as a factor, nonetheless with such small sample size 

the between subjects’ variability was extremely high. 

The reported results for RMSSD in CG are consistent with findings by Myers et al [192], which showed 

a significant decrease in beat-to-beat variability as consequence of tilt. The presented results for HF 

power are in accordance with previous studies  showing a vagal withdrawal in a population of adults 

in response to tilt [191]. Complexity analysis performed in this study shows, for unexposed infants, a 

significant within-subjects decrease of QSE. This trend is similar to previous findings reporting 

Approximate Entropy (ApEn) decreasing as a consequence of vagal blockade [193]. The decrease in 

complexity on such short-term scale (m=1) may indicate a shift towards increased regularity of RR 

series due to vagal withdrawal and increased sympathetic activation.  

As highlighted by Karemaker [194], the quantification of vagal tone is an open issue as it is its 

relationship with respiration and in particular to RSA. RSA definitely represents a respiration-related 

modulation in parasympathetic outflow to the sinus node, but the exact mechanisms involved in its 

Table 3-8: Mean ± std of parameter for each tilt block and within-subjects results of repeated measures 

ANOVA for CG and EG.  

Control Group (N=15) Exposed Group (N=13) 

B T1 T2 T3 B T1 T2 T3 

ln_RMSSD 

-4.27 ± 0.69 -4.50 ± 0.62 -4.59 ± 0.68 -4.58 ± 0.67 -4.17 ± 0.53 -4.19 ± 0.60 -4.18 ± 0.49 -4.20 ± 0.57 

p-value=0.001                                 F(1.83, 25.55)=9.29 p-value=n.s.                                      F(2.11, 25.30)=0.05 

ln_HF 

-10.46 
±1.45 

-10.76 
±1.27 

-11.04 ± 
1.48 

-10.92 ± 
1.41 

-10.26 ± 
1.03 

-10.26 ± 
1.16 

-10.20 ± 
0.99 

-10.19 ± 
1.15 

p-value<0.05                                   F(2.40, 33.52)=3.22 p-value=n.s.                               F(2.10, 25.19)=0.07 

QSE 

3.72 ± 0.74 3.57 ± 0.58 3.44 ± 0.66 3.46 ± 0.73 3.89 ± 0.53 3.80 ± 0.58 3.74 ± 0.50 3.78 ± 0.52 

p-value<0.001                           F(2.58, 36.09)=7.66 p-value=n.s.                                      F(1.86, 22.37)=0.71 

ln_RSA 

-3.93 ± 0.77 -4.28 ± 0.74 -4.35 ± 0.84 -4.29 ± 0.77 -3.99 ± 0.61 -4.06 ± 0.72 -3.95 ± 0.61 -3.90 ± 0.67 

p-value<0.05                                   F(1.69, 23.66)=4.24 p-value=n.s.                                      F(1.80, 21.53)=1.02 
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generation are still the subject of discussion. Most likely, RSA is the results of an interaction of 

mechanical, central and baroreflex mechanisms [195]–[197]. For this reason, an exact equivalence 

between RSA and vagal tone cannot be attained. Nonetheless, RSA and other measures of variability 

from the time and frequency domain have proved to still be sensitive to vagal activity, in particular in 

cases of changes from rest to vagally stimulated conditions, such as tilt.   

The results for EG show consistent lower vagal withdrawal in response to tilt challenge for every 

extracted parameter. In the literature, prenatal exposure to smoke has been reported to effectively 

impair receptors in the medullary 5-HT system, as well as alterations in cardiorespiratory control 

mechanisms and abnormalities in the pathogenesis of the parasympathetic systems [189]. It is possible 

to speculate that illustrated differences in vagal tone comparing CG and EG may effectively arise as a 

consequence of prenatal exposure and may contribute to the decreased infant’s ANS capability to 

maintain homeostatic control when exposed to a direct physiological challenge. The reported findings 

seems to confirm the altered HR response to tilt as described for other groups of infants at high risk 

for SIDS [198]. 

 

 

 

Table 3-9: Pearson correlation coefficient for RMSSD, RSA,HF and QSE 

 RMSSD RSA HF QSE 

RMSSD 1 - - - 

RSA 0.909** 1 - - 

HF 0.906** 0.884 1 - 

QSE 0.902** 0.740 0.764 1 

Table 3-10:  Skewness and Kurtosis for the parameters proposed and for their log transformation when the 

original parameters did not pass the requirement for normality distribution. 

 Skewness Kurtosis  

Statistic Std. Error Statistic Kurtosis Std. Error 

RMSSD 1.422 .361 2.173 .709 

RSA 2.186 .361 6.814 .709 

HF 2.453 .361 6.808 .709 

QSE .127 .361 -.489 .709 

ln_RSA -.330 .361 .612 .709 

ln_HF .023 .361 -.618 .709 

ln_RMSSD .102 .361 -.299 .709 
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METHODOLOGICAL REMARKS: 

To compare the performances of the four measures of vagal activity proposed, we decided to address 

three main questions: 1) are these measures correlated? 2) are they reliable when estimated on short 

time periods? 3) do they conform to the assumption of normality required for parametric testing? 

As illustrated in Table 3-9, the four metrics were highly and significantly correlated during baseline 

conditions. Moreover, when we evaluated the relation between estimates in short baseline segments 

(30 seconds) as used in this analysis and longer baseline segments (3 minutes), which were used for all 

our previous analyses, we showed that all measures were highly correlated, with HF having the lowest 

value. Pearson correlation for RMSSD was 0.833, for RSA 0.800, for HF 0.619, and for QSE 0.858.  

Lastly, we verified if the measures complied with the requirement of normality (i.e. skewness and 

kurtosis <±2). In Table 3-10 measures of skewness and kurtosis are reported. RMSSD, RSA and HF did 

not have values within the bounds and were thus transformed with a log transform.  

In conclusion, although the four metrics were highly correlated, they should not be considered 

interchangeable. Addressing these three questions allowed us to highlight that these measures differ 

in terms of statistical features and are differently influenced by segment length. Thus, we suggest that 

when choosing a parameter to assess a pathophysiological condition, we should not only consider its 

ability to discriminate different conditions but the compliance with requirements for statistical analysis 

and the consistency with different segment lengths.  
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4. DISCUSSION AND CONCLUSIONS 

 

The main purpose of this Ph.D. thesis was to characterize autonomic and cardiorespiratory regulation 

in newborn populations at risk for Sudden Infant Death Syndrome (SIDS). The final objective was to 

provide a pool of parameters capable of highlighting the emergence of alterations in these crucial 

pathways for the maintenance of homeostasis. The employed tools were comprised of signal 

processing techniques to analyze heart rate and breathing tracings, acquired from the period right 

after birth to 1-2 months later. Though heart rate variability and breathing had been previously 

investigated in studies with similar populations, no final consensus had emerged on this topic. The 

novel aspect of this Ph.D. Thesis lies in the analytic approach: instead of looking the cardiac and the 

respiratory systems separately with traditional linear techniques, we have incorporated nonlinear 

techniques and introduced state of the art methodologies capable of characterizing the interactions 

between the two systems.  

 

The biggest challenge in SIDS research lies in its almost complete unpredictability. Until now, no one 

has been able to explain the mechanisms that lead to this death nor to propose reliable markers of 

risk. Most of what we know comes from epidemiological studies, which have highlighted several risk 

factors, such as sleep practices related to the type of bedding or the position during sleep, or infant 

vulnerabilities (prematurity, IUGR etc) or maternal exposure (cigarette smoking, less prenatal care, 

etc.) [64].  

More information has come from post mortem examinations, such as brain autopsies or genetic 

testing, and animal models which have pointed to abnormalities related to the brainstem and genetic 
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alteration in promoter regions of the serotonin transporter (5-HTT) in infants who died of SIDS. The 

brainstem and the serotonin pathways play a crucial role in the regulation of many vital functions, 

including cardiorespiratory regulation, sleep cycling and arousal [5].  

These evidences all together have led the research community to propose the triple risk model, which 

is now the most widely accepted model to describe the possible mechanism leading to SIDS. It states 

that SIDS results from the simultaneous occurrence of: an underlying vulnerability, a critical 

developmental period in homeostatic control and exposure to exogenous stressor(s). The 

simultaneous presence of these three factors triggers a cascade of events most likely involving the 

autonomic nervous system, mechanisms of arousal and cardiorespiratory response [3]. Nevertheless, 

none of these factors has been properly characterized, limiting the usefulness of this approach.  

A more detailed description about risk factors, mechanisms and models of SIDS can be found in 

Chapter 1.  

 

The intuition behind the work presented in this Ph.D. thesis, is the fact that novel signal processing 

techniques could be capable of extracting relevant information from physiological signals, such as HR 

and breathing, which have been for long time used as a probe to investigate cardiac autonomic 

modulation. These signals have the peculiarity of being easily and noninvasively obtainable from 

infants. Several attempts had been done in the past to retrospectively look at data from infants 

subsequently died of SIDS and analyze their HR tracings but no univocal conclusion had been reached 

[16], [199], [200]. Our approach instead focuses on populations exposed to at least one of the risk 

factors mentioned in the triple risk model and characterizes them, in order identify and describe 

common tracts in this “abnormal” autonomic profile. Moreover, we introduced novel techniques 

which go beyond the linear interpretation and consider the complex origin of the physiological signals. 

Lastly, instead of the classical reductionist approach where each physiological signal is characterized 

separately, we have explored techniques to view them as a whole and evaluate their interactions. We 

also investigated different modes of cardiorespiratory interaction, ranging from linear amplitude, to 

nonlinear complexity modulation and phase relationships. 

Thus, in this work novel methods to analyze the HR and breathing signals were proposed, including 

entropies, phase rectified signal averaging (PRSA), phase locking and directionality [131], [149], [164]. 

A thorough explanation of all these methods can be found in Chapter 2.  
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Chapter 3 is divided in four main parts: firstly, we present the results from investigation of the effect 

of sleep states on the parameters of interest. We highlight that not only sleep states affect mean HR 

and traditional measures of HRV, with quiet sleep (QS) having lower HR and less variability, but also 

entropy measures inform us that in QS there is a higher level of complexity. This finding, which at first 

might have seemed counterintuitive, becomes more interpretable looking at the results from Transfer 

Entropy, which indicate a stronger flow of information in QS, with a main direction from breathing to 

HR, possibly indicating a more complex network of interaction in this state [34]. A newly proposed 

technique evaluating Transfer Entropy at various lags also highlighted different temporal profiles of 

information exchange between the cardiorespiratory systems. The information of timing would 

complete the information previously obtained regarding amplitude and directionality and could assist 

us in discerning the relative role of the sympathetic and parasympathetic branches, which are known 

to work with different activation times. This is relevant because growing literature is suggesting that a 

state of sympathetic hyperactivity could lead to an increase in cardiovascular morbidity and mortality 

[201], [202]. Nonetheless, while some HRV parameters are considered to assess parasympathetic 

activity, there is no widely accepted HRV index used as a marker of sympathetic nervous system activity 

only.  

In addition, QS is also associated with stronger and longer periods of phase locking. Very interestingly, 

the profile of phase locking changes with age, with different predominant ratios when comparing 

newborn and one month old infants. This is particularly significant given that one month is the 

beginning of the critical period for SIDS and a reorganization in the type of coupling hints toward a 

change in the cardiorespiratory profile at this specific time [35].  

Lastly, we noted that profiles of directionality by sleep state and relationships between measures of 

cardiorespiratory coupling and breathing frequency show peculiar characteristics, very different from 

the one described in adults. 

All of these findings encouraged us to consider sleep state in further analysis as a significant factor 

when looking at cardiorespiratory interactions.  

 

In the second part of Chapter 3, a study focused on the effect of sleeping position is presented. The 

prone sleeping position has long been considered the major risk factor for SIDS and early studies had 

observed decreased variation in behavior and respiratory pattern, increased HR, and increased 
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peripheral skin temperature during prone, compared with supine sleep, suggesting that infants are 

less capable to maintain adequate respiratory and metabolic homeostasis when sleeping prone [203]. 

Our results confirmed a different autonomic control depending on position, with lower HRV and higher 

values of entropy in prone position. In particular, at the newborn stage all variability parameters were 

altered by sleep position, while at 2 months of age, the main differences by position were only in the 

short-term variability and complexity, indicating that at this stage differences were mainly relative to 

parasympathetic development.  

The capability to differentiate variability by time scales was granted by the introduction of novel 

nonlinear measures. As a matter of fact, techniques such as PRSA can deepen the information obtained 

from traditional analyses having parameters that can be adjusted, such as the parameter T. This value 

functions as a high pass filter, allowing the procedure to capture only oscillations pertaining to selected 

frequencies. In this case, parameters extracted from the PRSA curves were different as a function of 

position only in the case of curves obtained with T>30 sample, corresponding to 10 seconds and thus 

in the long term range. With respect to traditional time domain parameters for long term variability, 

the PRSA technique can take into account phase resetting, nonetheless it is not suitable for 

applications on short recordings.  

In this study we also tested the performance of an improvement in entropy calculation, using the QSE 

with minimum count of matches, showing better performances and more consistency [36]. This is 

particularly relevant because the consistency of estimates on segments of different length is crucial 

for the application on real clinical data, which are often relatively short. Moreover, we have shown 

methodological ways to optimally choose the values of minimal count of matches.  

Given that this is the only data set with longer recordings (1 to 6 hours depending on age), we intend 

to extend the characterization of signal features on multiple time scales with methods such as 

multiscale entropy [204]. This approach could expand our analysis addressing complexity on various 

scale factors. Other time scale could be more informative, but also the distribution along different time 

scales could contain information on the system. As a matter of fact, physiologic complexity is 

fundamentally related to the adaptive capacity of the organism to work on multiple scales and the 

identification of the loss of this capability might provide interesting information on system integrity 

and multiscale functionality. 
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In the third part of Chapter 3, the effect of prematurity on cardiorespiratory control is investigated. 

Results show how even few weeks of prematurity dramatically impact the capability of the infant to 

control these vital systems. Late preterm (LPT, GA at birth 35-36 weeks) and early term (ET, GA at birth 

37-38 weeks) infants show diminished HRV and but no difference in the amount of cardiorespiratory 

phase locking. Previous works highlighted a change in the quantity of synchronization during the first 

months of life [35], [158]. Thus, it was surprising to discover in our study that the quantity of 

synchronized time did not change significantly within the last weeks of GA. This might be because this 

aspect of the cardiorespiratory modulation mainly develops in the months following birth and thus the 

differences between previous and current findings might be related to differential influences of intra-

uterine versus extra-uterine life, rather than to GA at birth.  

On the other hand, a different profile of cardiorespiratory directionality by GA at birth was found, with 

increasing predominance of respiratory drive on HR with GA at birth. Moreover, we have shown how 

this behavior is not driven by breathing frequency only, as previously proposed, since breathing 

frequency does not change in the GA time window we investigated [38]. In addition, the directionality 

index was found to be negatively correlated with measures of parasympathetic activity, supporting the 

conclusion that a development of parasympathetic control with gestational age can contribute to the 

shift toward respiratory drive over HR.  

From a technical perspective, we showed that novel measures such QSE could offer useful alternative 

to traditional parameters, such as RMSSD, because are less influenced by noise and artifacts. 

On the other hand, other approaches, such as phase locking estimation, do require a lengthy 

preprocessing. In the future, techniques for preprocessing optimization will be explored, for instance 

an optimal selection of SG filter parameter. Another parameter which could be optimized is the length 

of the window for the calculation of lambda parameter. In our case we selected a window of 1000 

samples (5 s) overlapping by 50 samples (250 ms), but no testing was performed to search for an 

optimal choice.  

These findings are relevant because prematurity is a condition that affects a high percentage of born 

live newborns. According to the March of Dimes, in 2016 the preterm birth rate was 9.8%, marking the 

second consecutive year of increase after steady declines over the previous 7 years. LPT infants have 

higher incidence of respiratory distress syndrome, temperature instability, hypoglycemia, 

hyperbilirubinemia, apnea, feeding problems, as well as higher rates of re-hospitalization and a two-

fold increase in SIDS [206]–[208]. Moreover, LPT and ET have been found to be at higher risk for 
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impaired long-term neurodevelopment outcomes [209], [210]. Though the absolute risk is 

comparatively low, the relative risk is clinically relevant, given the high incidence of LPT and ET birth. 

Importantly, infants born after the 35th week of GA are commonly receiving care in standard newborn 

nurseries, just like full term infants, both in Europe and the US, unless they show signs of distress. 

 

The last section of Chapter 3 tests the hypothesis of autonomic vulnerability as a result of smoking and 

alcohol exposure during pregnancy. To test the autonomic reactivity, infants were subjected to a head-

up tilt test. The unexposed group showed a withdrawal in parasympathetic activity following the tilt, 

confirmed by a decrease in short term variability and complexity, but the same behavior was not found 

in the exposed group. These results reflect the effects on physiological tracings of alterations of 

exposure on the cardiorespiratory regulation, as previously suggested by autopsies and animal studies.  

Reports of impairment of cardiorespiratory function and/or arousal in infants exposed to cigarette 

smoke during gestation suggest that such exposure harms the fetal development of cardiorespiratory 

and arousal pathways, the majority of which are in the brainstem [111], [211], [212]. Brainstem 

neurotransmitter abnormalities are found in SIDS infants, particularly in the serotonergic system in the 

medulla oblongata which is involved in the modulation of cardiorespiratory interactions and arousal 

under homeostatic stress [5], [213]–[215]. SIDS infants exposed to cigarette smoke during fetal 

development also demonstrate abnormal binding to nicotinic receptors (nAChRs) in mesopontine 

regions related to arousal in combination with the medullary 5-HT abnormalities [216]. Moreover, 

maternal tobacco smoking significantly impairs both stimulus induced and spontaneous arousal from 

quiet sleep when infants sleep in the supine position, at the age when the incidence of SIDS is highest 

[217]. Less is known about the effect of alcohol, but the few studies available indicate an increased risk 

of SIDS with exposure especially in the first trimester, with similar findings of altered nicotinic receptor 

binding significantly correlated to number of drinks during pregnancy [216], [218].  

Lastly, assessing the effect of smoking and alcohol is extremely challenging, due to the difficulty of 

quantifying them in terms of amount and length of exposure and because they are often associated 

with a life style presenting many confounder factors (drugs, inadequate prenatal care, postnatal 

smoking exposure etc). 

A comparison between different measures of vagal activation showed how parameters which were 

highly correlated were not interchangeable due to different statistical properties and dependency on 

signal length. This is extremely important especially when comparing results from different studies. 
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Some limitations at the current state of this research are that firstly, the physiological interpretations 

of some of the novel parameters is still a topic of debate. For instance, it is not completely clear yet 

the role of synchronization in terms of efficient cardiovascular and respiratory control. A hypothesis is 

that a lack of synchronization might indicate reduced feedback mechanisms or interconnections in 

pathological conditions or in individuals at risk and that synchronization has a role in maintaining 

cardiorespiratory oscillations within physiological ranges. This is supported by the literature which 

shows an increase in synchronization from infancy to adulthood but a decrease with old age [32]. 

Nonetheless, previous studies reported contrasting information about the effects of apnea on 

synchronization [104], [219].  

Moreover, some of the techniques proposed require extensive data pre-processing which is difficult 

to automatize due to the large intra subjects’ variability in the newborn population and due to the high 

level of noise in the data as a consequence of the impossibility to cooperate with the subject. Some 

techniques could be explored in the future to address this limitation. 

Results from each section of Chapter 3 are summarized in Table 1. 

Table 4-1 Summary of the methods and the findings of all the studies performed for the PhD thesis 

Risk factors Methods Results 

Sleep state 

 Time & frequency 
domain 

 Transfer Entropy with 
lags 

 Phase Locking 

 In QS lower HRV, higher QSE and TE, with major 
directionality from RESP to RR 

 In QS longer Phase Locking periods 
 Change of Phase Locking ratios with age  

Sleep positions 

 Time & frequency 
domain 

 SampEn, QSE 
 PRSA 

 In prone position, lower short and long term 
HRV higher entropies at newborn age, at 2 
months of age differences in short term HRV 
and entropies 

 Better performance of QSE with minimum 
count of matches with respect to SampEn 

Prematurity 

 Time & frequency 
domain 

 QSE 
 Phase Locking 
 Directionality index 

 Late preterm and early term have reduced HRV  
 No difference in amount of phase locking with 

GA, but differences in directionality profile.  
 Directionality index changes with GA are only 

partially driven by breathing frequency 

Smoking and 
Alcohol exposure 

 Time & frequency 
domain 

 QSE 
 RSA amplitude 

 The control group showed the expected vagal 
withdrawal pattern as a response to tilt, but the 
exposed group did not show any change.  
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Clinical impact 

Since 1990s, the SIDS rate in the U.S. has declined by more than 50 percent, but in recent years the 

rate of SIDS has plateaued, and SIDS remains the leading cause of death for infants one year and 

younger, with more than 2,000 SIDS victims each year. Public campaigns, such as the Back to Sleep 

campaign, have definitely raised awareness on the importance of minimizing external risk factors, 

however as clearly stated by the triple risk model, SIDS is much more than the results of unsafe sleep 

practices.  

As the focus of public health should remain that of diminishing both intrinsic and extrinsic risk factors 

[220], the role of our community of researchers should be that of clarifying the mechanisms triggered 

by these risks, in order to be able to prevent them or intervene.  

 

The contribution of this Ph.D. thesis in this context has been that of introducing a shift from a 

qualitative assessment of a “different autonomic profile” in population at risk for SIDS, to a quantitative 

one. The definition of a model such as the triple risk model is a great advancement in the understanding 

of this syndrome, nonetheless it still lacks the specificity of addressing the relative importance of each 

factor in relationship to the others.  

The parameters proposed could characterize the differences in autonomic regulation in populations at 

risk for SIDS and highlight how external autonomic challenges such as sleep position or alcohol 

exposure might impose a stress from which an infant cannot recover. Results obtained show how 

traditional indices routinely employed in clinical studies often only open a window on a more complex 

picture. This reinforces our opinion on the value of the introduction of nonlinear advanced parameters 

to obtain additional physiological and clinical meaning, as suggested by Sassi et al. [127]. In their joint 

position statement regarding novel HR analysis techniques, they suggest applying them in conjunction 

with traditional methods. This approach should lead to a greater understanding of the complex 

mechanisms underlying HRV and could bridge the gap between unanswered clinical questions and 

analytical innovations. Our results show how nonlinear methods can replicate and extend findings first 

observed employing linear approaches. At the same time, our data suggest that these novel methods 

might be more advantageous in dealing with data collected under standard clinical conditions.  

 

In addition, our experimental observations of complex regulating systems highlight how SIDS can be 

viewed as a “dynamical disease”, which is a concept introduced by Glass to indicate a disease that 
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occurs in a control system operating in a range of control parameters that leads to abnormal dynamics 

[221]. These abnormal dynamics would correspond to bifurcations in the relevant equations describing 

the physiological system. Physiological regulations have been explained using the concept of 

homeostasis, maintaining constancy of a vital variable by constantly adjusting its deviation from a set 

point. The process of achieving this stability is called allostasis and it accounts for the ability to adapt 

successfully to the external demands. In this allostatic state, the spatiotemporal complexity of the 

brain’s control systems may give rise to multiscale complexity in the state variables. While this 

dynamical adaptation is essential to make physiological regulations, hyper or hypo activation of this 

state may bring a system to the critical transition point (transition state in Figure 4-1) where the 

emergence of deviations could be early signs of disease onset and/or exacerbation (disease state in 

Figure 4-1). In complex diseases identification of this transition point between a normal and a disease 

state is often non trivial since the transition state may show little apparent change and also the path 

to condition deterioration may vary greatly between individuals.  

Having showed that novel methods better capture the cardiorespiratory characteristics of the 

newborn population and how risk factors for SIDS alter them, we believe it would be a natural 

progression to incorporate them in a mathematical model. Structural cardiovascular and/or 

cardiorespiratory modeling has a long history. However, most of the proposed models only consider 

respiratory influences on heartbeat, not the opposite effect where the heartbeat affects respiration.  

We would also like to propose a step further from a single system perspective to a multi system 

perspective. Thus, in this case the bifurcation theory would be applied rather than a single parameter, 

 

Figure 4-1: Schematic of dynamical disease  
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on the network of interaction of the systems, as suggested by the approaches of Network physiology. 

This approach could bring to the definition of a dynamical network marker for early warning of 

imminent bifurcation. 

We feel that a tight collaboration between clinicians and technical experts could help in the proposal 

of alternative approaches to better identify markers of risk, and with this Ph.D. thesis with have made 

a first move toward this direction. 

Ongoing developments 

Application to PASS dataset 

We are currently applying the pool of techniques proposed to a dataset of 10,000 infants, containing 

18 cases of SIDS infants. The Safe Passage Study, started in 2003 and has recruited approximately 

12,000 women from the United States and South Africa. These women were visited throughout their 

pregnancy as well as the child’s first year of life. Physiological signals from baby and mother were 

acquired at multiple time points and information about health, housing, smoking, alcohol use, drug 

use, current medications and stressors collected. This dataset constitutes a unique opportunity to test 

the developed parameters and investigate their capability of risk stratification. 

After calculating the parameters, we foresee to perform a process of feature selection or 

transformation. This will allow us to simplify the following steps of classification, but also will provide 

insight on physiological interpretation. We will start from the simplest methods, such as logistic 

regression with stepwise feature selection, and we will then test other techniques such as classification 

trees, random forest, and sparse support vector machine, to see which one deal better with the curse 

of dimensionality worsened by the large class imbalance. The total dataset will be divided in a training 

and a test set and parameters estimation will be performed with a cross validation. Evaluation of 

models’ performance will be expressed in terms of classification accuracy, sensitivity and specificity.  

Our research team has previous experience in classification due to many studies related to IUGR 

classification. 

A further step will be that of introducing in the model other information regarding clinical history (such 

as IUGR, maternal diabetes, hypertension etc.), socio-economic status and environmental information. 

Methods such as random forests are particularly suited to deal with mixed-data, encompassing both 

continuous and categorical variables. 
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Lastly, an intense effort is ongoing to address the issue on missing data. In particular, we are currently 

experimenting techniques to best tackle missing data in the exposure to alcohol and smoking. These 

variables are particularly challenging because they need to provide information both on amount and 

timing of exposure and they also need an optimal tradeoff between precision and number of classes  

Extension of the Network Physiology framework 

During this Ph.D. thesis, we have addressed the autonomic regulation and interaction of the cardiac 

and the respiratory systems during sleep. Nonetheless, we know that the factors analyzed, such as 

sleep states, exposure, and gestational age at birth, impact greatly other physiological measures, such 

as electroencephalogram (EEG). The chosen analytical approaches, exploiting the emerging fields of 

information dynamics and network physiology, will allow us to encompass EEG in our analysis in order 

to characterize the synchronous variation in fluctuations occurring during sleep in infants.  

We have already collected high density scalp EEG both for LPT study and the Safe Passage study. We 

are currently working on the preprocessing of the EEG tracing for the LPT population and testing of the 

new algorithm. The LPT group was chosen as a start to test this novel approach, which will be then 

implemented in the larger PASS dataset, particularly addressing the question of how maternal 

substance use and psychiatric symptoms can interact and affect infant brain development and 

neurobehavioral outcome. 

Point process application 

All methods we have proposed so far had to deal with the intrinsic unevenly sample nature of heart 

beat events. In some applications raw data was used and in other interpolated and regularly re-

sampled time series were considered. Nonetheless, both choices have limitations such as the necessity 

to convert number of beats into seconds or the possible spurious contributions of interpolation to the 

results. For this reason, we are now collaborating to encompass in our research a point process 

approach: with this method it is possible to characterize the probabilistic generative mechanism of 

each beat, even with short recordings under nonstationary conditions. The RR series is modeled using 

probability density functions (PDF) describing the probability of the time the next heartbeat will occur. 

This allows to obtain instantaneous HR and HRV measures without using any interpolation method 

We are currently working on testing the proper PDF for infant population and afterward we are 

planning on applying the novel formulation of Transfer entropy in the context of point process, called 
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instantaneous point-process TE (ipTE). This new formulation is capable to finely track the non-

stationary information transfer from one system to another, with a high-resolution in time. 

Application to Sleep Quality assessment 

An interesting aspect of the approaches proposed in this thesis is that, although parameters were 

tuned for the infant population, the approaches could be easily applied in other contexts where the 

evaluation of cardiorespiratory dynamics could be beneficial for diagnosis and prognosis.  

For this reason, we are currently working on the acquisition of overnight recording, integrating sleep 

and physiological information in the natural home environment from late pregnancy through early 

childhood (1,3,5 years old). The focus of this project is to asses sleep quality, which is not only a marker 

for positive health, but has a major influence on multiple critical developmental domains. 

 

In conclusion, this Ph.D. thesis proposes a multi-parametric approach encompassing linear and 

nonlinear parameters to characterize the cardiorespiratory system in infants at risk for SIDS. This 

quantitative approach provides useful information which could converge in novel monitoring solutions 

for risk assessment in the neonatal field, in order to predict points of bifurcation in the health status 

of the infant and guarantee timely interventions. 
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