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Abstract

MICROVASCULAR alterations have recently been reported in patients
affected by chronic kidney disease treated by hemodialysis ther-
apy. How these microvascular alterations are related to the pathol-

ogy is still an open and complex question. Such alterations are likely to be
related to the non-physiological flow rates of fluids and solutes removed
from blood in the artificial filter. The artificial treatment increases the in-
stantaneous mass- and fluid-flow rates which have to be washed out from
the interstitium into the blood compartment, thus over-stressing the mi-
crovascular wall membrane. This membrane alteration affects the fluid bal-
ance, the distribution of solutes, and the delivery of nutrients to the tissues
and may contribute to an abnormal vascular development and morphology.
In addition, the presence of uremic toxins (currently more than one hundred
have been identified) induces further alteration on the microvascular mem-
brane wall. However, very few studies have addressed how these toxins
affect the microvasculature.

To address this complex scenario, a wide modeling approach was de-
signed. It is composed of three different models, which can share informa-
tion and results to better describe the complex phenomena involved:

• lumped parameter model of the arterial circulation;

• multiscale 3D-1D model of the microvasculature;

• in vitro model of the microvasculature.
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The lumped parameter model was based on previous works describing
the arterial circulation including peripheral vascular districts and vascular
regulations (chapter 2). A single peripheral district was analyzed to detail
its description with particular reference to the fluid balance. Tests have
been conducted by considering some uremic parameters alterations, and
highlighting the need for a comprehensive modeling approach.

The second computational approach consists in a multiscale model of
the microvasculature, accounting for its geometry and solved by finite el-
ement method. It exploits a framework of partial differential equations on
domains with different dimensions (3D for the interstitium and 1D for the
vasculature). Based on previous works on advanced mathematical methods
and their development, the proposed model accounts for a non-linear con-
tribution of the lymphatic system, the rheological effect of red blood cells
and their heterogeneous distribution along the vascular network (chapter
3). The model was tested on a number of different cases before being
applied to address uremic microvasculature, leveraging on available data
from literature (chapter 4). Tests have assessed the contributions of the dif-
ferent relevant factors and how test-driven results actually match with in
vivo literature-driven data. Moreover, a sensitivity analysis was conducted
to appreciate the parameter alterations induced by the pathology.

The in vitro model was proposed to analyze alterations of the capillary
membrane induced by the presence of uremic toxins (chapter 5). Namely,
the effects of urea have been assessed by using different techniques. The
experimental setup was computationally analyzed to investigate the actual
rise of the trans-mural pressure between the vasculature and the gel sur-
rounding it.

Finally the models’ improvements and their interactions have been dis-
cussed, along with their limitations (chapter 6). This work has paved the
way for a modeling support to the current research activities on microvas-
cular alterations in uremic patients.
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CHAPTER1
Introduction

The present chapter provides a description of renal diseases and
microvasculature based on the state of the art, the anatomy, and the
physiology. In addition, the aim of the work is presented highlighting the
connection between microvascular alterations and renal diseases.
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1.1. Renal diseases

1.1 Renal diseases

The treatment of renal diseases by means of artificial devices started during the second
world war, when Willem J. Kolff, a pioneer in bioengineering, designed the first dialysis
tratment [1] and the first successful hemodialysis was performed in a human being [2, 3].
Since then, both better comprehension of the pathologies and technological development
have constantly improved the treatment of renal diseases [2]. On the other hand, the mor-
tality rate associated with the loss of kidney functions is still too large and comparable
to some malignancies [4]. Certainly, the kidneys play a key role in many homeostatic
functions and their failure heavily affects them. First, they remove waste products, such
as the end products of metabolism. Additionally, they participate in different regulatory
processes, contributing to the balancing of (i) body fluids, (ii) electrolytes, (iii) acid-base
equilibrium, (iv) arterial pressure, and participating in (v) red blood cells (RBC) produc-
tion, (vi) gluconeogenesis, and (vii) hormones secretion and excretion [5, 6]. Therefore,
renal failure induces imbalances within the body, in terms of fluids, solutes, and hormonal
functions.

Despite many causes may lead to renal diseases outbreak, renal failure is commonly
classified into two different categories: acute kidney injury (AKI) and chronic kidney
disease (CKD) [6]. The first is characterized by a quick loss of renal functions, which
can be partial or total. This injury can often be treated to achieve the recovery of re-
nal functions. AKI has been defined on the basis of the serum creatinine concentra-
tion and urine output [7–9]. CKD is instead a long-term progressive loss of renal func-
tions [5, 6]. The relation between AKI and CKD has been also studied, suggesting a
causal relation [10]. CKD is classified in different stages on the basis of the residual
renal function by the estimated glomerular filtration rate (eGFR) [11]. A total of five
stages have been defined depicting this progressive loss from the normal value of the
eGFR which is over 90ml/min/1.73m2 BSA. In the first stage, a kidney damage is
present without affecting the eGFR. Starting from the second stage, eGFR decrease to:
60 − 89ml/min/1.73m2 BSA (stage 2); 30 − 59ml/min/1.73m2 BSA (stage 3);
15 − 29ml/min/1.73m2 BSA (stage 4); lower than 15ml/min/1.73m2 BSA or un-
dergoing dialysis (stage 5). In the last stage, also called end-stage renal disease (ESRD),
renal functions need to be replaced by a renal replacement therapy (RRT) (section 1.1.1).
Typical symptoms of renal failure are: (i) peripheral edema, (ii) absent urination, (iii)
sleep disorders, (iv) fatigue or weakness, (v) restless legs, (vi) anemia, (vii) nausea, (viii)
coma [6, 12]. Even if uremia and CKD are often used as synonyms, they are technically
different. Uremia is defined as the accumulation of some solutes, therefore referred as
uremic toxins [12, 13]. This retention of toxins (section 1.1.2) is consequent to CKD and
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Chapter 1. Introduction

in particular to ESRD, due to the inability of the kidneys to clear them. Renal diseases
may have different causes: diabete mellitus (23 %), glomerulonephritis (15 %), hyper-
tension (13 %), polycystic kidneys (6 %), pyelonephritis (6 %), renal vascular disease (2
%) [13, 14]. In addition, they are associated with other pathologies such as cardiovascular
diseases, mineral and bone disorders, and neurological disorders [12,15–20]. In particular
cardiovascular diseases are known as common comorbidities and they are responsible for a
big portion of the mortality in ESRD patients [12,21,22]. Even though all the processes in-
volved in cardiovascular abnormalities in those patients are not fully understood [16], they
are reported as (i) platelet-related abnormalities, (ii) dialysis-related injury, (iii) ventricular
hypertrophy and dilation, (iv) vascular calcification, (v) heart failure [15, 16, 22].

The incident population, namely the number of new ESRD patients, has been estimated
at 117 pmp (per million population) by ERA-EDTA in the 2016 annual report with refer-
ence to Europe [14], and 357 pmp by USRDS for 2015 with reference to US [21]. The
same documents report a total number of patients undergoing RRT equal to 831 pmp and
2024 pmp respectively. Considering also stages prior to ESRD, the USRDS data report
gives an estimate of 14.8 % of the adult US population affected in the period 2011-2014.
The survival rate of patients on dialysis is about 50 % in 5 years [14]. Moreover, renal dis-
eases have a strong social and economic impact. First, the need for RRT affects patient’s
quality of life, frequently causing psychological issues that turn into strong implications
for their family too [12]. In terms of economic impact, only in the US in 2015, the cost
related to ESRD has been reported to be 34 billions of dollars, rising up to almost 100

billions if all CKD stages are considered [21].

1.1.1 Renal replacement therapy [6]

Even when the treatment of choice for CKD is kidney transplantation, due to the dis-
crepancies between the number of patients and the available donors [14, 21] most patients
with ESRD are treated with dialysis. In addition, dialysis can also be used as "bridge-to-
transplantation", in order to keep the patients alive while waiting for a donor. The aims
of dialysis are: (i) to remove the excess of uremic toxins and water and (ii) to restore
the physiological electrolyte balance in the blood. This therapy does not substitute the
hormonal function of the kidney which has to be fulfilled by pharmacological treatment.
The term dialysis was first introduced by Thomas Graham in the late 1800s to describe
his experiments with hydrous metal oxide colloids [23]. The first application to animal
models was developed by Abel in 1913 [24]. At this point, some key points were already
clear, such as the need of anticoagulant to avoid blood clotting outside the body and the
relation between the efficiency of the treatment and the area of the membrane, used to
separate blood and dialysate (i.e. the fluid used to clean blood). This method was applied
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1.1. Renal diseases

to humans for the first time in 1915 by Haas [25], who first added a pump to flow blood
in the extracorporeal circuit. A revolutionary step was made in the 1940’s by Kollf, who
understood that these methods could be used to treat patients with renal failure [1]. His
work led to the first successful treatment on a human, making a patient survive an acute
renal failure [6]. The dialysis machine used was composed of 40 meters of sausage skin
around a cylindrical drum and ultra-filtration, namely the removal of fluids, was obtained
by osmotic pressure difference. A few years later Alwall used pumps to achieve ultra-
filtration by hydraulic pressure differences [26]. Another important improvement was the
introduction of hollow fiber membrane to separate blood and dialysate [27] which allows
a great filtering surface area while keeping the priming volume small. Then another step
to manage chronic renal failure was taken by providing a feasible routine access to the
vascular system. Nowadays, the treatment is classified on the basis of the predominant
used phenomenon: hemodialysis (HD), when solutes are removed mainly by diffusion,
and hemofiltration, when convection is prevailing. In the first case, the efficiency of tox-
ins removal is related to their dimensions, whereas in the second one small and middle
toxins are removed at a similar rate [13]. When both the phenomena happen significantly,
the treatment is named hemodiafiltration (HDF). Some observational studies and clinical
trials have confirmed the efficacy of HDF in reducing patient’s mortality (e.g. [28]). All
these progress regard hemodialysis, but also peritoneal dialysis (PD) is possible. In this
treatment, the blood is purified inside the body, employing the peritoneum as the interface
between blood and dialysate solution. This method is less commonly used compared to
hemodialysis which accounts for 85 % of the treatment in Europe in 2016 [14].

1.1.2 Fluid and solutes homeostasis [5]

Fluid volume is regulated in the body by eliminating the proper amount of water and
ensuring appropriate fluid exchanges across different body compartments. Usually, the
intake of fluids is about 2300 ml/day, because of ingestion but also due to the metabolic
production; i.e. water is a waste product of carbohydrates oxidation. This amount of fluid
is then eliminated by the so-called insensible loss (evaporation by respiration and from
the skin), by sweat, excrement and urine production by kidneys. To fulfill their regulatory
function, these organs can vary urine production over a wide range: from 0.5 to 20l/day.

All these fluids are distributed through the body in different ’compartments’. With
reference to an average 70 kg man, the intracellular fluid is about 28 l on the overall
42 l. The remaining 14 l are divided between the interstitial fluid (about 11 l) and plasma
(3 l). Therefore three different compartments are defined: (i) intracellular space, (ii) in-
terstitial space, and (iii) intra-vascular space (figure 1.1). These spaces are separated by
cell membrane and capillary membrane respectively. Since these membranes are perme-
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Figure 1.1: Schematic of body compartments with reference to a 70 kg man. Used with

permission from [5].

able, fluids exchanges can happen between these compartments. In addition, the interstitial
space is connected to the intra-vascular space by the lymphatic system, which drains fluids
from tissues. When considering the fluid transport throughout the semi-permeable mem-
brane, both hydraulic and osmotic pressure should be considered [29]. For example, both
the aforementioned pressures are different in the intravascular and in the interstitial com-
partment, namely between the two side of the capillary membrane. This phenomenon is
typically described by means of the so-called Starling’s equation:

jv = Lp

(
(pv − pt)−

∑
k

σk (πk,v − πk,i)
)

(1.1)

where jv is the flow rate per unit area, Lp is the hydraulic conductivity of the capillary
membrane, p and π indicate the hydraulic and the osmotic pressure respectively, and σk is
the reflection coefficient for the solute k. When referred to plasma proteins, the osmotic
pressure is often called colloid osmotic pressure (COP) or oncotic pressure. A change
in one of these physical quantities will results in a change of jv eventually leading to a
different condition or volume distribution. Under typical pathological conditions of CKD,
accumulation of fluid in the interstitial space may occur [30]. This fluid accumulation
is combined with an increase of interstitial pressure, which also depends on the inter-
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1.1. Renal diseases

stitial swelling [5, 30]. When performing hemodialysis, fluids are withdrawn from the
dialyzer, which is connected to the patient’s vascular system. Therefore, the plasma vol-
ume decreases, leading to an increase of hematocrit and solutes (i.e. proteins concentra-
tion). Intra-dialytic hypotensions may happen if this volume is not properly restored by a
movement of fluids from the interstitial space to the vascular system, namely the plasma
refilling [31–33]. This phenomenon is very important, and it happens within the microvas-
culature and through the capillary wall membrane. As a consequence, microvasculature
and capillary wall properties, i.e. hydraulic conductivity, play a key role. It will be deeper
analyzed in the section 1.3.

Analyzing the composition of fluids in these compartments, a similarity between intra-
vascular and interstitial fluids has been observed. The main difference between them is
the presence of plasma proteins. Since they can difficulty pass through the capillary mem-
brane, only a small amount of them is found in the interstitial space [34]. On the contrary,
the capillary lymphatic membrane is very permeable to proteins so that they can be cleared
from the interstitial space, keeping their concentration low [35, 36]. Due to this difference
in plasma protein and due to their net charge, also the Donnan-Gibbs effect should be
considered when describing solute kinetics [37]. Indeed the concentration of cations in
plasma is slightly higher than in interstitial fluid. The typical ionic composition of both
the extra-cellular fluid and the intracellular fluid are summarized in figure 1.2. Alterations

Figure 1.2: Body fluids composition. Used with permission from [5].
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Chapter 1. Introduction

in plasma electrolytes balance have been reported as a consequence of uremic pathology.
Such variations are reported to be different between patients [38]. In addition, these unbal-
ances have different consequences [39]: (i) effects on blood volume, and therefore hyper-
or hypo-tension [40]; (ii) cardiovascular disease and heart rhythm alterations [41,42]; (iii)
atherosclerosis or renal bone diseases [43]. Also, accumulation of other solutes character-
izes the uremic pathology. With an important work, Vanholder et al. [44] have analyzed a
great number of works in the literature by identifying a list of 90 uremic toxins (table 1.1).

Both normal and uremic concentrations have been addressed in the study and also the
ratio between them has been computed. They have also classified the uremic toxins in three
different classes: small water-soluble molecules (smaller than 500Da), protein-bound
molecules and middle molecules (bigger than 500Da). Such a classification is useful
because their dimension can affect the removal efficiency [18]. Another classification,
based on chemical structure, has also been proposed [45]. An update of those data has
been published by the same group in 2012 [46], adjusting the proposed reference values
and adding newly identified uremic toxins considering also studies published between
2003 and 2012. The specific effects of these uremic toxins are still not fully understood
[6], but that study has at least paved the way for a systematic analysis aimed at a better
understanding of solutes toxicity. For example, the persistent inflammation reported by
those patients [47, 48] is in agreement with the presence of TNFα [49, 50].

1.1.3 Modeling approaches

With reference to renal diseases, fluid homeostasis has been modeled mainly by compart-
mental models. In this modeling approach, the body is divided in different compartments,
and variations of volumes and solute concentrations are described by ordinary differen-
tial equations. Different configurations are available in literature from single-pool models,
two-pool models, and more complex models. Single pool models have been historically
used to estimate the right dose of dialysis in terms or urea removal (i.e. K t /V , where K
is the dialyzer clearance rate for the specific solute, t is the time of treatment, and V is the
solute distribution volume). They work quite well for small solutes not involved in solutes
compartmentalization [6,33]. In addition, single or pseudo-one compartment models have
been used to address variations of single solutes during dialysis treatment (e.g. [51, 52]).
To better describe the kinetics of larger solutes (e.g. β2-microglobulin) or solutes involved
in compartmentalization, two or more compartments are usually used [53]. Among them,
Casagrande et al [54] have considered a multi-compartment model composed of four dif-
ferent compartments, along with the three membranes between them: dialyzer membrane,
capillary membrane and cellular membrane (figure 1.3).
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1.1. Renal diseases

Table 1.1: Uremic toxins reported by [18, 44].

Small,
water-soluble

molecules

1-Methyladenosine, 1-Methylguanosine, 1-Methylinosine,
Asymmetrical dimethylarginine, α-Keto-δ-guanidinovaleric

acid, α-N-acetylarginine, Arab(in)itol, Arginic acid,
Benzylalcohol, β-Guanidinopropionic acid, β-Lipotropin

Creatine, Creatinine, Cytidine, Dimethylglycine, Erythritol,
γ-Guanidinobutyric acid, Guanidine, Guanidinoacetic acid,
Guanidinosuccinic acid, Hypoxanthine, Malondialdehyde,

Mannitol, Methylguanidine, Myoinositol, N2,
N2-dimethylguanosine, N4-acetylcytidine,

N6-methyladenosine, N6-threonylcarbamoyladenosine, Orotic
acid, Orotidine, Oxalate, Phenylacetylglutamine,

Pseudouridine, Symmetrical dimethylarginine, Sorbitol,
Taurocyamine, Threitol, Thymine, Uracil, Urea, Uric acid,

Uridine, Xanthine, Xanthosine, 2-Methoxyresorcinol

Protein-bound
molecules

2-Methoxyresorcinol, 3-Deoxyglucosone,
CMPF,Fructoselysine, Glyoxal, Hippuric acid, Homocysteine,

Hydroquinone, Indole-3-acetic acid, Indoxyl sufate,
Kinurenine, Kynurenic acid, Leptin, Melatonin, Methylglyoxal,

N-carboxymethyllysine, p-Cresol, Pentosidine, Phenol,
P-OH-hippuric acid, Putrescine, Quinolinic acid,
Retinol-binding protein, Spermidine, Spermine

Middle
molecules

Adrenomedullin, Atrial natriuretic peptide, β2-Microglobulin,
β-Endorphin, Cholecystokinin, Clara cell protein, Complement

factor D, Cystatin C, Degranulation-inhibiting protein I,
Delta-sleep-inducing peptide, Endothelin, Hyaluronic acid,

Interleukin-1β, Interleukin-6, k-Ig light chain, λ-Ig light chain,
Leptin, Methionine-enkephalin, Neuropeptide Y, Parathyroid
hormone, Retinol-binding protein, Tumor necrosis factor-α
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Chapter 1. Introduction

Figure 1.3: Schematic of the compartmental model used in [53] and [54], to study fluid

balance and to identify patient specific parameters. Used with permission from [53].

Moreover, in a subsequent work, the authors have applied a Bayesian approach to
estimate patient-specific parameters with the final aim of treatment tailoring [53]. In a
few works, fluid balance and plasma refilling have been directly addressed considering
also proteins, and thus accounting for oncotic pressures [33, 55–57]. Such models are
typically two-compartment models (intra-vascular and interstitial compartment) used to
describe the fluid exchange across the capillary membrane. Some of them have included
a modeling of the lymphatic system [55, 56], also addressing patient-specific parameters
identification [55].

12



1.2. Microvasculature

1.2 Microvasculature [5]

The main function of the vascular system is to transport nutrients to tissues within the body
and to carry out waste products from them. To this aim, in an adult and healthy subject
about 5 l of blood flow into the body every minute. The importance of this transport is evi-
dent considering oxygen transport. The characteristic diffusion time t can be computed as
t = x2/2D, where x is the distance to be covered and D is the diffusion coefficient [58].
Considering a typical value for DO2

, such as 10−5 cm2/s, the characteristic time is 1.25 s

for 50µm but it reaches 500 s for 1mm. Such time is not compatible with life, therefore
the convective transport is necessary.
The vascular system is usually divided into systemic and pulmonary circulation. The for-
mer supplies blood to the body whereas the latter carries the blood to the lungs where the
oxygen and carbon dioxide are exchanged with the air. A schematic of both is shown in
figure 1.4. Starting from the heart, arteries are split into smaller vessels up to the cap-

Figure 1.4: Structure of the cardiovascular and the lympahtic system. Used with permis-

sion from [36].
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illaries, and then they start to merge again in the venous side of the vascular system to
collect blood and bring it back to the heart. Along this path, the diameter of the vessels
gets smaller as they approach the peripheral circulation and start to rise again within the
venous side. However, the total cross section of vessels (i.e. the cross section that all the
vessels of the same typology would have if merged side by side) is larger in the peripheral
circulation, with about three orders of magnitude between aortic and capillaries cross sec-
tions [59,60]. For this reason, the mean velocity is higher in big vessels (e.g. tens of cm/s

Table 1.2: Vessel typical dimension and velocity. Adapted from [60].

Vessel Diameter (cm) Total cross-section (cm2) Avg. velocity (cm/s)

Aorta 2.5 4.5 48

Large arteries 0.4 20 45

Arterioles 5 × 10−3 5.7 × 107 5

Capillaries 8 × 10−4 1.6 × 1010 0.1

Venules 2 × 10−3 1.3 × 109 0.2

Veins 0.5 200 10

in the aorta) than in the microvasculature (e.g. order of magnitude mm/s). The hydraulic
pressure falls along the vasculature and is different between systemic and pulmonary cir-
culation (figure 1.5). Both fluid velocity and pressure are characterized by oscillations due
to heart pumping. These variations are damped along the vasculature leading to almost
steady flow within the capillaries.

The flow within capillaries can be analyzed by a fluid dynamic approach computing
dimensionless number in order to figure out the nature of the flow. First, the Reynolds
number Re is used to address the presence of laminar of flow:

Re =
v D ρ

µ

where v is the average velocity, D is the characteristic dimension of the channel, ρ is the
fluid density, and µ is the fluid viscosity. Considering typical values of microvasculature,
the order of magnitude for Re is 10−3 − 10−2 [61]. Thus the flow can be considered
laminar. Another meaningful dimensionless number is the Womersley number Wo:

Wo =
D

2

√
ρ 2πf

µ
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1.2. Microvasculature

Figure 1.5: Hydraulic pressure within vessels with reference to a person in horizontal

position. Both systemic and pulmonary circulation are shown. Used with permission

from [5].

It describes the time variation of the flow, justifying the steady state assumption if Wo < 1

as in the microvasculature [60]. Therefore the flow within the microvasculature is consid-
ered to be laminar and steady, given that both the Reynolds and the Womersley number
are small.

1.2.1 Microvascular environment

Even if morphology and functionality of microvascular environment are highly tissue-
dependent, it is typically described listing three main component: microvessels, interstitial
space and lymphatic system (figure 1.6).

Microvascular vessels are typically classified as arterioles, capillaries, and venules. Ar-
terioles and venules are characterized by a branching structure, and they are connected to
the bigger vasculature [63]. They have a diameter in the range of tens of µm [60, 61], and
their role is mainly convective transport of blood within tissues. Arterioles are also directly
involved in flow regulation, being subject to vascular tone alterations due to metabolic sig-
nals, myogenic response and shear stress [64, 65]. The capillaries instead tend to form
a more ’network-like’ structure. Their diameter approaches the dimension of red blood
cells (RBC) - that is 8µm. In addition, the leakiness of their wall (both in terms of fluids
and solutes) allows the delivery of nutrients and the withdrawal of waste products from
tissues [63]. The thin capillary wall (' 0.5µm) and the small distance between capillary
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Figure 1.6: Components of the microvascular environment. Adapted with permission

from [62].

and cells (' 50 − 100µm) allow an efficient exchange. Capillaries are classified by the
characteristics of their wall [66]. Continuous capillaries are the most common within the
body. They are made of a single sheet of endothelial cells (EC), linked by tight-junctions

(e.g. VE-cadherin and other cell membrane adhesion proteins). In such junctions, ECs
are not directly in contact with each other, and the small gaps (' 10 − 15nm), which
are formed between them, are named inter-cellular clefts. These clefts are present in most
tissues. However, more tight capillaries junctions are reported in the brain [67]. On the
contrary, much larger inter-cellular cleft are present in the liver and in the spleen, because
ECs are not so tightly connected. Indeed these capillaries are referred to as discontinu-

ous capillaries. The last type of capillaries characterizes kidneys, and in particular, the
glomerulus. In these specific regions fenestrated capillaries allow a great filtration of so-
lutes and fluids by an extra-cellular pathway, through windows named fenestrae [68].
Debated components of microvasculature are capillary sphincters. In most physiology
textbooks, they are described as a smooth muscle fiber surrounding the capillary where
they originate from the metarteriole. The contraction of this fibers leads to non-continuous
flow in a phenomenon named vasomotion [5, 66]. This structure was first described with
reference to mesenteric circulation in the first decades of the 1900s (e.g. [69]). In a com-
prehensive and ’historical’ review, Sakai and Hosoyamada [70] have analyzed multiple
studies describing microvasculature anatomy in different tissues. They have concluded
that metarteriole and capillary sphincters cannot be considered as a universal component
of microvasculature, but more unique features of mesenteric circulation.
Another important component of capillary wall is the glycocalyx (often referred to as en-
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dothelial surface layer). It is a complex network of glycosaminoglycans (GAGs) and sialo-
glycans proteins, that coats the inner surface of capillaries with a layer of 60 − 570nm

[34]. This structure has been looked into over the last decades, and some studies have
described how it is involved in blood rheology within capillaries and filtration of fluid and
solutes [34, 61].

The second main component of microvascular environment, the interstitium, has been
described in physiology textbooks as the space between cells, accounting for one-sixth
of the total body volume [5]. It is composed of both fluid, therefore named interstitial
fluid (ISF), and solid structure, the extra-cellular matrix (ECM) [71]. The composition of
such a structure is greatly tissue-dependent, and it affects mechanical properties, cell-cell
signaling, and movement of fluid flow through the interstitium. However, as a general de-
scription, collagen (which composes more than two-thirds of ECM proteins in many soft
tissues) and proteoglycans are the most common component of ECM (figure 1.7). The

Figure 1.7: ECM structure, adapted with permission from [71].

latter are highly hydrated big molecules (several hundreds on Da) composed by carbohy-
drates (e.g. heparan sulfate, chondroitin sulfate, dermatan sulfate) denominated GAGs and
a protein core, often hyaluronic acid (HA).
In a very recent paper, Benias and colleagues [72] have described fluid-filled spaces in
different tissues, namely extra-hepatic bile duct, peri-bronchial and peri-arterial tissues,
submucosae of the entire gastrointestinal tract and urinary bladder, and dermis. These
space may be important in our understanding of pathologies such as edema, fibrosis and
cancer metastasis. Their finding expands the classical view of interstitium characterized
by a very low portion of free fluid [5].
Characteristic values of interstitial fluid velocity are still not well determined and affected
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by pathological states such as inflammation or edema [71]. However, on the basis of some
measurements the order of magnitude expected is 0.1 − 2µm/s [73–75]. Interstitial pres-
sure is reported to be tissue-dependent, with values close to the atmospheric pressures
along with also slightly sub-atmospheric [36, 76–78]. In addition, interstitial fluid pres-
sure has been related to the ISF volume. Accumulation of fluid leads to higher pressure.
This rising has been quantified by the interstitial compliance, which is computed by the
volume variation over the pressure variation starting for a given pressure/volume. Inter-
estingly, the compliance of interstitium is dependent on the tissue swelling, producing a
strong non-linearity in the pressure-volume relation (figure 1.8) [79].

Figure 1.8: Relation between interstitial pressure and interstitial volume showing a non-

linear relation between them. From [79].

Lastly, the lymphatic capillaries complete the microvascular environment [36]. They
are the first vessels of the lymphatic system, which is responsible for returning fluids from
the interstitium to blood, significantly contributing to fluid balance. In addition, it is in-
volved in immune system response. Our comprehension of the lymphatic system is still
not complete, but it has significantly improved in the last decades. For example, lymphatic
vessels have recently been found also in brain tissues [80]. With regards to anatomy,
primary and secondary valves have been identified and described along with fibrillin fil-
aments [36, 81–84]. Primary valves are located in the lymphatic capillaries. The wall of
these microvessels is composed of a monolayer of lymphatic endothelial cells without a
continuous basement membrane. These cells are organized in a ’oak leaf configuration’

forming button-like junctions. For these reasons, lymphatic capillaries are very permeable
to proteins, clearing them from ISF. This, in conjunction with the high reflection to plasma
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proteins of the capillary membrane, leads to low plasma protein concentration within the
interstitium. Moreover, lymphatic capillaries are linked to the ECM through fibrillin fil-
aments [36, 78, 85, 86]. Thanks to these structures, collapsing of lymphatic capillaries is
prevented, and the swelling of the tissue is directly linked to lymphatic membrane hy-
draulic conductivity. Indeed, an interstitial volume increase stretches the ECM eventually
dilating capillary and increasing wall conductivity [81]. Secondary valves, instead, char-
acterize vessels downstream lymphatics capillaries. They are arranged in lymphangions,
namely the functional units defined by an upstream and a downstream valve. These two
types of valves contribute to the unidirectional net flow within the lymphatic system under
physiological conditions [36, 81, 82, 87–90]. The lymphatic flow rate has been described
in literature with reference to interstitial fluid pressure (figure 1.9) [5, 56]. This relation is
described as non-linear, with a first increase of lymphatic flow rate up to a plateau, which
defines a relative maximum increase.

Figure 1.9: Relation between interstitial pressure and lymphatic flow rate. Used with

permission from [5].

1.2.2 Peculiarity of microvasculature

When describing blood flow in microvasculature, namely when the dimension of RBC
(8µm) is not negligible with respect to the vessel diameter, three different phenomena
must be considered, since they characterize the microvasculature and lead to significant
differences with respect to macrovasculature:
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• Fåhraeus effect [91];

• Fåhraeus - Lindqvist effect [92];

• Zweifach - Fung effect [93, 94].

The Fåhraeus effect was named after Robin Fåhraeus who first observed the phenomenon
[91]. It describes the tendency of RBC to migrate towards the center of the microvessel
leaving a plasma layer near the wall (figure 1.10). Due to this fact, RBCs are in the region

Figure 1.10: Drawing showing the Fåhraeus effect, with the formation of a cell-free layer

and the Zweifach - Fung effect producing hematocrit heterogeneity. Used with permis-

sion from [61].

of the vessel with greater velocity. Therefore the averaged velocity of RBC is greater than
the averaged bulk flow velocity. A further consequence of the RBC concentration within
the center of the vessel regards the hematocrit. Considering the traditional bench com-
posed of two reservoirs linked by a small tube, differences have been reported between
the hematocrit in the feeding reservoir, the tube, and the discharge reservoir. Given this
experimental evidence, two different definitions of hematocrit are commonly used when
describing microvasculature: tube hematocrit and discharge hematocrit. The first is de-
fined as volume over volume ratio, as done referring to big vessels, the latter instead as
a flow rates ratio: RBC flow rate /blood flow rate [61]. In addition, the velocity ratio
has been correlated to the hematocrit ratio: Ht/Hd = Vbulk/VRBC [95].

The formation of a plasma-free layer close to the wall is also the basis of the Fåhraeus -

20



1.2. Microvasculature

Lindqvist effect [92]. Fåhraeus and Lindqvist observed a marked decrease in fluid apparent
viscosity as the diameter of the glass pipe falls below 300µm (figure 1.11).

Figure 1.11: Data showing the Fåhraeus - Lindqvist effect in glass tubes in terms of

viscosity ratio (apparent viscosity over viscosity within a big vessel) function of the

tube diameter. Used with permission from [96].

The apparent viscosity is defined as the viscosity of the fluid assuming it as a New-
tonian fluid. Then, relative viscosity is given by the ratio µapparent/µplasma. Due to the
interaction between RBC and the wall of the pipe, the apparent viscosity increases as the
diameter approaches RBC characteristic dimension. Analyzing multiple studies, Pries and
colleagues [97] have developed an empirical relation to figure out the relative viscosity
depending on the vessel diameter and the discharge hematocrit:

µvitro = 1 + (µ0.45 − 1) · (1−HD)C − 1

(1− 0.45)C − 1
(1.2)

where

C = (0.8 + e−0.075D) ·
(
− 1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12

µ0.45 = 220e−1.3D + 3.2− 2.44e−0.06D0.645

.

When the measurement of the apparent viscosity was conducted in microvessels, even if
the experiments were technically very difficult, a higher apparent viscosity was found.
Therefore, Pries and colleagues [98] reformulated their empirical equations providing an
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in vivo formulation:

µvivo =

[
1 + (µ∗0.45 − 1) · (1−HD)C − 1

(1− 0.45)C − 1
·
(

D

D − 1.1

)2]
·
(

D

D − 1.1

)2

(1.3)

where

µ∗0.45 = 6 · e−0.085D + 3.2− 2.44 · e−0.06D0.645

.

A comparison between the two formulation is shown in figure (figure 1.12). Four different
cases, corresponding to four values of HD, are shown using both the formulations. The
dotted lines describe the in vitro formulation whereas the solid ones the in vivo formu-
lation. These formulations are similar for big vessel diameters (e.g. mm scale vessels)
but they substantially differ for capillary-scale vessels. In particular given a vessel diame-
ter, the in vivo formulation produces a greater apparent viscosity compared to the in vitro

one. The main reason for this difference has been later identified in the presence of the

Figure 1.12: Comparison of the Fåhraeus - Lindqvist effect in glass tubes and in capillary

vessels [99] computed on the basis of [97] and [98]. Solid line: in vivo prediction

(capillary vessels); dotted line: in vitro prediction (glass tubes).

glycocalyx, which reduces the available lumen for plasma and RBC flow [100].

The Zweifach - Fung effect [93,94] concerns the heterogeneous distribution of RBC in
presence of bifurcations. Indeed, fewer RBCs enter a vessel with lower flow rate, because
it receives more flow from the plasma layer (figure 1.10) [61]. It is still unclear whether this
phenomenon is mostly due to differences in fluid velocity of flow rate [94,101–104]. First
experiments by Schimid-Schönbein and colleagues had shown alterations of RBCs distri-
bution in an animal model due to flow rate variations [105]. Some years later, Pries and
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colleagues [104,106] developed an empirical relation based on an animal model, account-
ing for the flow rate distribution and diameter of the vessels composing the bifurcation.
This relation is widely used in computational models (e.g. [107–111]). Another approach
to describe this phenomenon has been proposed by Gould and Linninger [112]. Their
model does not include the possibility of zero hematocrit branches, although it has been
observed in vivo. In their work, the model was compared to the aforementioned failing to
show a better agreement with experimental data. However, their model can be easily ex-
tended to include also trifurcations. Considering that (i) the flow rate within the network
is influenced by apparent viscosity and therefore by hematocrit and that (ii) the hemat-
ocrit distribution is influenced by flow rate at the bifurcations, the computational modeling
approach must be iterative to solve this inter-dependency. In recent studies, other pos-
sible aspects of the phenomena have been analyzed such as the influence of bifurcation
angle [113] or the possible inversion of this effects [114, 115].

1.2.3 Fluid exchange [34]

Fluid exchange across the microvascular wall has traditionally been described following
the fundamental principle formulated by Starling [29]. Performing animal experiments
with an isotonic saline solution, he described the capillary wall as a semipermeable mem-
brane. In addition, he also observed that some plasma proteins leak into the interstitium,
highlighting imperfect semi-permeability. For a general solute, the degree of leakiness
can be quantified by the Staverman’s reflection coefficient σ, where σ = 0 means that
the solute can freely travel across the membrane, whereas σ = 1 stands for perfect im-
permeability [116]. At a later time, following thermo-dynamics principles, Kedem and
Katchalsky [117] formalized what is currently known as the Straling’s classical principle
(1.1). Given than the interstitial fluid and plasma differ mainly by the presence of macro-
molecules and that σmacromolecules ' 1 whereas σsmall solutes < 0.1 the equation 1.1
can be simplified as:

jv = Lp

(
(pv − pt)− σ (πv − πi)

)
(1.4)

where sigma, πv , and πi are referred to the macromolecules. Several studies have sup-
ported this theory (e.g. [118–120]). This model is the most used to describe filtration from
the vasculature in computational models. Several years later, Michel and Phillips [121]
proposed a model based on the continuously renewing of the ISF that led to the following
equation:

jv = Lp

(
(pv − pt)− σ2 πv

1 − e−Pe

1 − σ e−Pe

)
(1.5)

where Pe = jv (1 − σ) / pd with pd is the permeability of the capillary wall to plasma
proteins. In the resulting equation of the model, jv is depending on itself and therefore it
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cannot be computed directly. More recently, Michel [122] and Weinbaum [123] indepen-
dently suggested that glycocalyx have effects on the filtration. According to their models,
the concentration of proteins in subglycocalyx region should be considered instead of the
interstitial. In this region, the protein concentration should be low because of the high
reflection coefficient and the outward flow preventing backward diffusion. For this reason,
they have proposed the following model:

jv = Lp

(
(pv − pt)− σ (πv − πg)

)
(1.6)

where πg is referred to the subglycocalix region. These last two models are still not widely
used in computational modeling, probably because of intrinsic difficulties in the computa-
tion (i.e. self-dependence of jv or the need of subglycocalyx region modeling).

1.2.4 Modeling approaches

Microvasculature has been studied by means of different approaches, including in vivo,
in vitro, and in silico studies. Without aiming for a full literature review of the in vivo

techniques, two of them are here reported: intravital microscopy [124] and CytoCam-
incident dark field (and its precursor side-stream dark field) [125]. Such procedures are
used to study the microvasculature under both healthy and pathological conditions (i.e.
cancer) involving human subjects (e.g. [126]) or animals (e.g. [127]).

Focusing more on modeling approaches, two very different options are available: in

vitro and in silico studies.
For the former, microfluidics has provided feasible tools allowing researchers to better

control their experiments. With reference to the aim of this work, interesting microfluidic
models can be classified in two main categories: models involving cellular capillary ves-
sels (i.e. made by endothelial cells) and models not involving them (figure 1.13). This last
category comprehends devices made by poly(dimethylsiloxane)(PDMS) with microchan-
nels. They have been used to test and analyze blood rheological properties, the Zweifach
- Fung effect, RBC properties, and to provide organ-specific models [114, 131–135]. Ge-
ometrical fine control and geometrical repeatability are the main advantages of this ap-
proach. But the geometry is also one of its disadvantages. Indeed, the channel cross-
section is rectangular due to building procedure limitation.
On the other hand, a microfluidic device can also be used to culture cells. An extensive
review of recent advances in the use of such devices to study microvasculature and vas-
cularization has been published by [129]. These devices can be divided into two different
subcategories: patterned vascular channels and self-assembled networks. The patterned
vascular channels are devices in which the vascular architecture is achieved by scaffold-
ing, creating channels via a temporary scaffold or directly within the PDMS/gel and seed-
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Figure 1.13: Summary of in vitro approaches for microvasculature modeling. (a) PDMS

chip with RBC, used to study the Zweifach - Fung effect, from [114]. (b) Channel in

a PDMS chip covered by endothelial cells to obtain a perfusable network with high

controlled geometry, used with permission from [128]. (c) Self assembled network in

a porous gel (green: endothelial cells; red: mesenchimal stem cells) [129] - used with

permission from [130] - Reproduced by permission of The Royal Society of Chemistry.

ing cells on it. A recent example can be found in the work of Qiu and colleagues [128],
in which they build a perfusable and endothelialized patterned microvasculature to study
endothelial barrier dysfunction. In this example, vessels have still been created based
on a rectangular cross-section pattern. The self-assembled network, instead, is typically
based on PDMS devices in which hydrogels are incorporated. These gels, usually fibrin or
collagen-based [129,136], are enriched with endothelial cells (EC). Different types of ECs
have been used, including human dermal microvascular ECs, bovine pulmonary artery
ECs, human umbilical vein ECs (HUVEC), human blood outgrowth ECs, endothelial pro-
genitor cell [136]. Among them HUVECs are the most used cells, accounting for half of
the published works when Morin and Tranquillo wrote their review in 2013 [136]. These
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ECs typically form a self-assembled perfusable network within 4-7 days, and thereafter
signals produced by support cells, such as mesenchymal stem cells (e.g. [130]) or fibroblast
(e.g [137]), are required to avoid network regression [129]. These self-assembled networks
are typically used to study permeability of the wall membrane to solutes (e.g. [130, 138])
or cancer cell intra- and extra-vasation (e.g. [139–141]).
The in silico approach for describing microvascular networks is characterized by different
methods and different scales [142]. Since relevant phenomena happen at different spatial
scales, modeling all of them remains a major challenge suggesting that a multiscale ap-
proach is required. Numerical methods are now more widely used because of their ability
to handle also complex networks. The applied methods are very different: full 3D ap-
proach with dissipative particle dynamics [143] or immersed boundary methods [144,145];
the lattice Boltzmann method [146]; the Green function [147,148]; the approximation with
porous medium [149–151] or multiple-network poroelastic theory [152, 153]; application
of Poiseuille’s law in a discrete network geometry [101, 109, 111, 150, 154, 155] also con-
sidering filtration [156]; 3D approach focused on elementary repetitive unit [157]; 1D
approximation of vessels [158, 159]; and coupling of 1D capillary flow with 3D inter-
stitial flow [160–163]. Some common features can be found in these works. First, the
Pouiseuille’s law is widely used to describe flow within capillaries, often adopting the
apparent viscosity concept to account for RBC and vessel diameter effects on blood rheol-
ogy. In addition, the hematocrit heterogeneity in the microvasculature is directly addressed
[107, 108, 111, 112, 164, 165]. Secondly, the interstitium is described as a porous medium
by means of Darcy’s law. When considered, the coupling between these two domains
because of filtration is described by the classical Starling’s principle (equation 1.4). The
contribute of the lymphatic system to fluid balance, when considered, is usually described
by a relation similar to Starling’s principle (equation 1.4) neglecting any osmotic pressure
difference due to the high permeability of the lymphatic capillaries. An interesting ap-
proach is related to the coupling of reduced a 1D model for the capillary network with a
3D porous model describing the interstitium. In subsequent works [161, 162, 166, 167],
the mathematical grounds for a multiscale 3D-1D model have been built. This approach
is very promising to model microvasculature, also aspiring to model large microvascular
bed, thanks to the fact that 1D and 3D discretization can be handled separately.
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1.3 Microcirculation and renal disease

As described in the section 1.1.2, the microvasculature plays a key role in the processes
related to fluid and solutes homeostasis. Indeed, such equilibrium is maintained thanks to
a flux of solutes and water through the capillary wall membrane. When patients are treated
with intermittent hemodialysis, the most common treatment for CKD, the key role of mi-
crovasculature is even more stressed. During the time between two subsequent dialysis
sessions, those patients accumulate fluids (and uremic toxins) which are then removed by
the treatment. If the rate of removal of fluid from the vascular compartment by the dialyzer
is not compensated by the plasma refilling, namely fluid recovery from the interstitium,
the blood volume decreases. Therefore hypotension episodes may happen, and frequent
episodes can produce consequences on multiple organs [31–33]. In addition, some solutes
suffer from compartmentalization, namely its distribution within the whole the body, in-
volving vascular, interstitial and intracellular compartments [6]. This phenomenon affects
the removal efficiency of toxins, since the removal rate reached within the dialyzer is lim-
ited by the rate of exchange between these compartments. For example, a uremic toxin
that is accumulated within both the vascular and the interstitial space is initially removed
from blood by the dialyzer. Then, a withdrawn from the interstitium happens because of
the difference in concentration and possible convective phenomena due to fluid absorption
from interstitium. Such a phenomenon is affected by the properties of the microvascular
wall, resulting in a better removal of small solutes, namely toxins that can pass through the
membrane easily. Therefore, the understanding of microvascular wall properties is nec-
essary to accurately model fluid and uremic toxin removal, eventually aiming to a better
design of the therapy. Moreover, uremic toxins affect multiple organs within the body (e.g.
kidneys, heart, liver, intestinal mucosa, brain, and lungs) but also cells and tissues (e.g.
leukocytes, endothelium and ECs, epithelial cells, pancreatic cells) [45, 168, 169]. In par-
ticular, the resulting endothelial dysfunction has been described as increased expression of
atherosclerosis (also related to leukocyte activation), loss of vessel wall compliance, vas-
cular calcification, abnormalities of vascular repair [45]. Recently, also the toxicity of urea
has been reconsidered along with the effect of uric acid [170]. In particular, Vanholder and
colleagues have reviewed different works in literature, addressing urea toxicity in in vitro

or animal experiments [168].

Multiple works have been conducted in the past 3 decades to address microvascular
changes in CKD patients both in terms of structural alterations (e.g. capillary density) and
functional ones (e.g. peripheral blood flow). One of the main reasons leading to this type
of research is the relation between cardiovascular disease and CKD. Therefore, one of the
research questions was whether alterations in microcirculation are related to CKD and, if
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yes, whether those alterations may explain the relation between the two diseases. Since
skin microcirculation can be investigated with fewer problems and with a low invasive
techniques with respect to other districts, it has been studied more frequently. In addi-
tion, based on the hypothesis that alterations in skin microcirculation are representative
of those in other microvascular beds such as the heart or the kidneys, impaired micro-
circulation may contribute to CKD cardiovascular consequences [171–173]. However,
the endothelial dysfunction is still not fully understood [174]. Pipili and colleagues have
reported a correlation between the adequacy of dialysis, addressed by means of a single-
pool Kt /V , and changes in microcirculation. They measure microvascular alterations
by near-infrared spectroscopy addressing muscle oxygen saturation [175]. Intracranial
hemorrhages are associated with CKD along with cerebral microbleeds, which have been
successfully used to predict the first [176]. They are consistent with the inflammatory state
reported in CKD patients. Micro-inflammation in uremic patients has been correlated also
with extracellular overhydration [177]. In two subsequent works, Mistrik and colleagues
have analyzed cutaneous blood flow and its relation with dialysis therapy [178, 179]. A
heterogeneous decrease in blood flow has been reported in the different analyzed areas.
In addition, they succeed in correlating serum albumin level with the decrease of cuta-
neous blood flow and with skin defect development. These findings are in agreement with
those of Seliger and colleagues, who found out that microvascular endothelial dysfunction
correlates to albumin level [180]. If such a phenomenon affects the heart, the microvas-
cular impairment may lead to the cardiac dysfunction described in CKD patients [181].
This functional microvascular impairment has been also reported by El-Nahid et al. [182].
Their work focuses on skin microcirculation comparing healthy subjects with patients un-
dergoing hemodialysis treatment, also considering hypertension. Both capillary density
and peripheral flow have been analyzed, reporting differences only as for the latter. Cap-
illary density alterations have been described in different other studies on both animal
and human subjects. It is usually analyzed computing the total vessel density, namely the
number of vessel per area/volume in a region of interest, and the perfused vessel density,
counting only the vessels reached by RBC. First evidences were reported more than 25
years ago, when Amann and colleagues reported a reduction in capillary density analyz-
ing the myocardium of uremic rats [183]. These results have contributed to the idea that
microvasculature is involved in CKD - cardiovascular disease correlation [184]. Capillary
density has also been analyzed in patients with hypertension, finding a lower density only
in the retina but not in the skin [172]. Recently, macro- and micro-circulation discrepancy
has been reported in CKD patients along with microvascular impairment in sub-lingual
microcirculation using sidestream dark field [185]. These findings suggest that microvas-
cular impairment may not be detected by analyzing only macrovascular variable (e.g. heart
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rate and pressure). In addition, it suggests that the interaction between macro- and micro-
vasculature is complex, and one can be altered without significantly affecting the other.
This may also be linked to vascular regulation processes. The sub-lingual impairment has
been reported also when comparing healthy subjects to patients undergoing dialysis, but
not when testing kidney transplant recipients (figure 1.14) [126]. Few months ago, Prom-

Figure 1.14: Sublingual microcircualtion in (a) healthy volunteer, (b) dialysis patient, and

(c) kidney transplant recipient. Used with permission from [126].

mer and colleagues succeeded in finding a correlation between capillary density and urea
concentration (as a market for uremia progression) in mice [186]. A reduction of capil-
lary density has also been reported in omental tissues from children undergoing peritoneal
dialysis [187].

The only work addressing directly the hydraulic conductivity of the capillary wall was
performed using an animal model [127]. They perfused vessels of a frog mesentery using
healthy and uremic plasma. Interestingly, they reported alterations in the semipermeable
capability of the capillary membrane, reporting an increase of the hydraulic conductivity
and a decrease of the reflection coefficient. From these results, authors have concluded that
one or more uremic toxins affect the capillary wall membrane. This is also in agreement
with the presence of pro-inflammatory substances, such as TNFα, among uremic toxins.
Finally, differences in microvascular impairment have been reported analyzing dialysis
(before, during, and after the therapy) of diabetic and non-diabetic patients [188]. This
phenomenon may originate from alterations in vascular regulation.
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1.4 Aim of the work

Microvascular impairment in CKD is still not completely understood, even though it has
been studied with reference to different tissues and employing different experimental and
in vivo models. Neither its correlation with cardiovascular disease is sufficiently described.
However, an increasing evidence of microvascular impairment is being developed. The
description of these phenomena would be useful to properly understand occurrences in
dialysis at different scales, elucidating the role of microvasculature, and eventually lead-
ing to better dialysis prescription. In this scenario, the modeling of microvasculature for
uremic patients can play a pivotal role, allowing the description of involved phenomena
or partially reproducing microvascular environment to analyze the microvascular response
to uremic toxins. Thus, aims of the work are directly related to the modeling of involved
phenomena and they are described by the following:

• propose and test both computational and experimental modeling approaches for mi-
crovasculature with particular reference to uremic pathology;

• build and organize a structure of computational and experimental tools which can
benefit from the possible interactions between them.
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CHAPTER2
From vascular to microvascular models

In this chapter, the need for a comprehensive modeling approach is discussed. Such

an approach is composed of three different models and their interactions. One of them is

analyzed and used in this chapter to highlight the motivations of the modeling approach.

The performed activities are listed and their role in the process toward the final develop-

ment of the model is highlighted. Finally, the arrangement of the following chapters is

presented, providing a first overview of the work.
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In the first chapter, renal diseases and microvasculature have been described along with
their current modeling approaches. Despite the big amount of information we have, such
as the constantly improving identification of uremic toxins, lots of phenomena are still not
fully understood (e.g. the effects of uremic toxins on the glycocalix, or on the capillary
wall membrane). In this framework, microvasculature modeling in uremic patients has a
central role, enabling a deeper investigation. The better understanding of what is going
on in the microvasculature of these patients may eventually lead to a better capability of
treatment planning and design. But first, some critical points should be considered. The
microvasculature is connected to the macrovasculature and is immersed in the patient’s
tissue interstitium. The interaction of macro- and micro-vasculature is very complex and
mediated by peripheral regulation, which, as all regulatory processes in our body, aims to
maintain body homeostasis (i.e. perfusion of tissues, vascular pressure). Therefore, thanks
to these regulation processes, alterations of macro- or micro-vasculature may not show in
the other one. For example, discrepancies have been found in macro- and micro-vascular
impairment referring to CKD patients [185]. In addition, microvascular impairment has
been reported in literature in terms of reduced blood flow [175,178,179,182] and reduced
capillary density [126, 183–185]. Whether this microvascular impairment is related to
other comorbidities and complications is still unclear. Surely, a lower capillary density
raises the distance between cells and capillaries, therefore rising the distance nutrients
have to travel. A lower peripheral blood flow instead reduces the supply of nutrients
within tissues. Such phenomena may cause tissue damage. As an example, considering
the cutaneous tissue, a correlation has been found between microvascular impairment and
skin defect formation [179]. In addition, alterations in the microvasculature may induce
impairments in fluid and solutes exchange, affecting the solutes compartmentalization and
their removal from the interstitium. Finally, uremic toxins have effects on cells within the
body. A great work has been conducted in order to identify them, and to figure out the
typical concentration in both healthy subject and uremic patients [44, 45, 169]. It is still
unclear which one of these toxins have more effect on microvasculature, but, thanks to
the work of Harper [127], we know that they do have an effect on capillary membrane
properties. Given the complexity of the phenomena, a comprehensive modeling approach
is required to describe and study them. The modeling approach proposed in this work is a
combination of three different models describing both macro- and micro-vasculature and
their interaction:

• a lumped parameters model of the arterial circulation;

• a multiscale 3D-1D model of microvasculature;

• an in vitro model of the microvasculature.
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2.1 The lumped parameter model

The first model is a lumped parameter model of the arterial circulation. This model has
been proposed by Lanzarone and colleagues [189] (figure 2.1). It has been based on dif-

Figure 2.1: Schematic of the lumped parameter model developed by Lanzarone [189].

White blocks represent big vessels, grey blocks stand for peripheral districts. Reprinted

with permission from [189].

ferent studies regarding arterial circulation which derived their description by the initial
work of Westerhof and colleagues [190]. The novelty of Lanzarone’s work was the in-
troduction of the peripheral districts, namely the microvasculature up to the venule, also
including peripheral vascular regulations. As a consequence, they were able to study and
compare vascular resistances in physiological and extra-corporeal circulation due to car-
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2.1. The lumped parameter model

Figure 2.2: Schematic of the peripheral district. From [189].

diopulmonary bypass. The model is composed of 64 blocks describing big vessels and 30
blocks describing peripheral districts. Each block is described by means of block-specific
parameters to describe the heterogeneity of the circulation. These parameters have been
computed according to available literature data, considering cylindrical vessels and blood
properties (i.e. viscosity and density, expressed as a function of the hematocrit). In partic-
ular, when modeling the peripheral districts (figure 2.2), the inertia of blood flow has been
neglected. These districts are composed mainly of resistive components, accounting only
for the compliance of terminal arteries. In addition, they have been described considering
the number of vessels. For example, capillaries have been modeled by the resistance Rc
and Rcc, which have been computed by considering N parallel vessel. This generator is
important in the presented analysis because it describes the filtration from the capillary
vessels. The second generator has been used to set one of the boundary conditions of
the system, by specifying the venular pressure, constant for all the districts and equal to
4mmHg. The other boundary condition has been specified at the inlet of the system, by
setting the inlet flow rate according to the Swanson and Clark expression [191].

2.1.1 Assessment of the fluid dynamics within the vasculature

As first step of this work, the model has been used to analyze the steady and laminar ap-
proximations, which are useful in the description of flow within the microvasculature. To
this aim, the uncontrolled version of the model has been used, namely the model in which
all the vascular regulations are turned off. When simulating physiological conditions, their
action induces small variations of the resistance (i.e. the vessel radii). As a consequence,
under these conditions, their effect on blood velocity within the vessels is negligible. The
flow rate within capillaries has been derived from the model, and then the velocity charac-
terizing each peripheral district has been computed by considering the number of modeled
parallel vessels. The average velocity is lower than 1mm/s in the capillary vessels of
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all the peripheral districts, namely a bit low but not far from the average values reported
in the microvasculature. Then, the Reynolds number has been computed, resulting in
Re ' 10−2. To compute the Womersley number Wo, the signal of the velocity over
time has been analyzed by Matlab R© using the discrete Fourier transform. By plotting the
intensity-frequency graph, a higher limit for the signal has been identified in 10Hz, i.e. in
all the districts, the signal is well included in the range 0 − 10Hz. Consequently, 10Hz

has been used to compute the Womersley number, as a worst case for the majority of the
districts. It results in Wo ' 0.5 and Wo2 ' 0.025. Therefore, by these results, viscous
forces dominate the inertial forces in agreement with [192].

2.1.2 Improving peripheral description

The peripheral description of the lumped parameter model has been improved to better
describe the fluid balance. To this end, a single peripheral district has been studied with-
out coupling it with the overall system. In particular, the splanchnic periphery (p6 in
figure 2.1) has been studied. At this point, the structure of the peripheral districts is equal
for all districts. Therefore, one district is representative of the others. The specific dis-
trict has been chosen between the core body compartments, avoiding districts depicting
kidneys. The new peripheral description has been obtained by changing the resistances
arrangement, the description of the interstitial pressure and the lymphatic flow rate, and
the rheology description. The new schematic proposed for the periphery is shown in figure
2.3. It is based on the previous schematic proposed by Lanzarone and colleagues, and in
particular, it differs for the shunt vessels, which by-pass the capillary bed solely. The pe-
ripheral district is composed by terminal arterioles (which are the last vessels including a
compliance effect), arterioles, small arterioles, capillary vessels, shunt vessels and venules
(figure 2.3).

Figure 2.3: The new schematic proposed to describe the peripheral districts. Reference

pressure are shown in red.

Shunt vessel characterizes only some types of tissue (e.g. some parts of the skin [193]), but
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2.1. The lumped parameter model

since peripheral networks describe vasculature of several different tissues, they have been
included in all the districts. As done by Lanzarone and colleagues, mean values of pres-
sure have been specified along points of the peripheral district to compute the resistances
(figure 2.3). However, capillary inlet pressure (the pressure upstream of the capillary re-
sistances Rc) has been modified according to literature data [194]. On the contrary, the
reference flow rate and the inlet pressure are tissue-specific and they have been computed
on the basis of data reported in [195]. Due to mass conservation, at the equilibrium (i.e.
no net flow rate entering the capacity) the flow rate flowing into the vessel p, i, and m is
the same. The flow rate Qv has been computed as Qin − filtration. The latter has been
defined to emulate the overall filtration rate 2ml/min. As a consequence each peripheral
network should filter 2ml/min

5 l/min Qin. As previously done by Lanzarone et al., the number
of vessels can be determined starting from the resistance of a single vessel, computed by
means of geometrical relations. At this point, two differences have been introduced. The
first one, as anticipated, regards the rheological description of blood. As the flow velocity
falls below 1mm/s, some changes in the apparent viscosity may happen in small vessels,
due to the interaction with the glycocalyx (e.g. [196,197]). To model this dependency, the
Casson model has been adopted defining (i) the viscosity at high shear rates as done by
Lanzarone and colleagues (i.e. following the formulation of Pries and colleagues [98]),
and (ii) the yielding shear stress τy as defined by [198]. A further variation of Lanzarone’s
model regards the dimension of the capillary vessels. They have been computed to satisfy
the following criteria referring to the total number of vessels within the body: (i) the re-
lation ∆p-Q, as done by Lanzarone et al.; (ii) an overall S/V equal to 70 cm−1 [199], to
achieve a good estimate of the total lateral surface area. In figure 2.4, a surface is presented
in the 3D plot of S/V depending on the considered radius and length of the capillaries.
Such surface satisfies the first criteria, namely the overall relation ∆p - Q is guaranteed.
From that result, the radius and the length of the capillary vessel have been selected as
4µm and 1.7mm respectively. Those results are close to the range of the data reported
in vivo. Therefore, the radius and length for each vessel typology are reported in the table
2.1. Regarding the lymphatic drainage, it has been defined following the works of [30,56]
(figure 2.5). For clarity, it means that the lymphatic drainage referred to the physiological
working point pt = −1mmHg has been defined as 2ml/min. Such a formulation and its
derivation will be further described in the chapter 3. This formulation is applicable to the
whole body. In order to describe each peripheral district, the expression has been scaled
by Nc,i/Nc,tot:

Lf(l/min) =
Nc,i
Nc,tot

∗
(

Φmax −
Φmax − Φmin

1 + exp( pT−2
slope factor )

)
if Vi = Vi,basal ,

Lf(l/min) =0 if Vi < Vi,basal ,

37



Chapter 2. From vascular to microvascular models

Figure 2.4: 3D profile of the S/V ratio depending on radius and length modeled for the

capillaries. The plotted surface satisfies the imposed ∆p-Q relation.

Figure 2.5: Graph of the interstitial pressure - lymphatic drainage implemented. Values

of the lymphatic drainage are referred to the overall model. They have been split in the

peripheral districts.
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2.1. The lumped parameter model

Table 2.1: Values of length and radius for each vessel modeled.

Vessel
Terminal
artery (p)

Arteriole
(i)

Terminal
arteriole

(m)

Capillary
(c)

Shunt (s)
Venule

(v)

Radius
(µm)

250 25 15 4 15 30

Length
(cm)

15 1.5 0.5 0.17 0.65 2

where the values of Φ∗ have been derived from [30, 56]. This is based on the assumption
that the more vascular capillaries are present in a tissue, the more lymphatic vessels are
present, and consequently, the more drainage is produced. This assumption will be further
discussed in section 2.1.4. The interstitial pressure-volume relation has been described by
means of a third-grade polynomial. Data for the interpolation have been derived by [5]
and scaled to match the pressure reported by [30]. To refer this relation to each peripheral
district, it has been derived in terms of Vi/Vbasal,i as shown in figure 2.6. To test the im-

Figure 2.6: Graph of the interstitial pressure - volume relation implemented.

proved schematic, different simulations have been run. The aim of the first computational
test is to verify the fluid balance of the model under physiological conditions.
Moreover, the test has been conducted both with and without factoring the lymphatic flow
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rate, in order to show its fundamental contribution. Then, the effect of the oncotic pres-
sures π, the reflection coefficient σ and filtration coefficient Lp have been analyzed. In
addition, the effect of the inlet pressure has been tested by comparing three simulations
varying the inlet pressure of +10mmHg and −10mmHg. All the simulations have been
run simulating 1000 s, data referred to the last 200 s have been exported, and the average
quantities are referred to the last 20 s.

2.1.3 Simulation of fluid balance

Results of the simulations are shown in this paragraph from the simpler to the more com-
plex considered setup. First, the model has been studied referring to physiological con-
ditions. To this end, the inlet pressure for the considered peripheral district has been set
equal to 92.3mmHg, as reported by Lanzarone et al. [189]. Analyzing the results, the
agreement of the pressure values with the expected values has been confirmed as shown in
figure 2.7. Moreover, even if a net filtration rate is reported, the interstitial volume is still

Figure 2.7: Pressure along the peripheral network when simulating physiological refer-

ence conditions without considering vascular regulations.

equal to the basal volume value (figure 2.8). This is due to the action of the lymphatic sys-
tem, which drains fluid from the interstitium. More precisely, when the lymphatic drainage
balances the net filtration rate, no variation of the interstitial volume is reported over time.
The net filtration rate is also consistent with the expected value. Indeed, taking this pe-
ripheral district as representative and scaling up this value to match the entire model, the
overall net filtration rate is ' 2ml/min [5]. Conversely, if the lymphatic drainage is not
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considered, the net filtration rate is not balanced by the lymphatic system and the intersti-
tial volume starts to increase. Such a condition evolves up to a null net filtration rate to
achieve the condition in which dV

dt = 0. In particular, due to the rising in the interstitial
volume, the interstitial pressure will increase, producing a decrease in the net filtration
rate. The small magnitude of the filtrated fluid volume with respect to the interstitial vol-
ume (i.e. with reference to the whole body 2ml/min vs 11 l) implies a long time constant.
At the end of this time, the increase in volume is about 1%. Consequently, the net filtration
rate decrease due to the rise in interstitial pressure.

Figure 2.8: Comparison of net filtration rate and interstitial volume in two simulations

with reference physiological values, which differ for the presence of the lymphatic

drainage.

A subsequent test concerns the effects of ∆π, σ and Lp variations (figure 2.9). These pa-
rameters have been varied with reference to uremic conditions. Therefore, the following
parameter have been set: ∆π = 19mmHg [54, 200, 201], σ = 0.75, and Lp,uremic =

8.8Lp,physiologic [127], where physiological hydraulic conductivityLp,physiologic has been
set from [162]. Such variations will be further discussed in the chapter 4. They resulted
in negligible variations of the inlet flow rate and the capillary pressure. Indeed, because
of different filtration rate, the flow rate at venule level is slightly different, lightly influ-
encing the pressures upstream and consequently the flow rates themselves. Conversely,
the alterations of the filtration rate and the interstitial volume are definitely more marked.
The increased filtration rate induces a variation of the interstitial volume. Therefore, the
net filtration rate is greater than the lymphatic drainage inducing fluid accumulation in
the interstitium, namely edema. The system reaches the equilibrium condition only when
the increase of the interstitial volume, and therefore in the interstitial pressure, induces a
greater lymphatic drainage that counterbalances the greater filtration rate.

A variation of the net filtration rate has been induced by variation of the inlet pressure
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Figure 2.9: Alterations of filtration rate (left top), interstitial fluid volume (right top), inlet

flow rate (left bottom), capillary pressure (right bottom) due to variations of ∆π, σ,

and Lp from their physiological reference to their uremic values.

(figure 2.10). The capillary pressure is linearly influenced by these variations. This is
consistent with the pure resistive nature of the district when considering steady flow. In-
deed, this condition can be described as voltage (or pressure) divider. As a consequence,
the variation of pressure in the vessels Rc is only a portion of the variation applied at the
inlet. Even if the variations of the average capillary pressure are small, they are sufficient
to move the peripheral conditions from the equilibrium point, causing variations of the in-
terstitial volume. In particular, an average capillary pressure lower than the physiological
reference results in a lower interstitial volume, due to net movement of fluid from the inter-
stitial space to the vasculature. Conversely, a higher average capillary pressure results in
fluid accumulation, with considerations similar to what was already said for the variations
of ∆π, σ, and Lp.
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Figure 2.10: Variation of the average capillary pressure and the interstitial volume due to

alteration of the inlet pressure.

2.1.4 Discussion

Results have confirmed the improvement of the fluid balance description in the proposed
lumped parameter model. Indeed, if scaled to the overall model, the resulting net filtration
rate agrees with the physiologic value expected under physiological conditions [5]. More-
over, under the same conditions, the lymphatic drainage has been correctly accounted for,
avoiding fluid accumulation, i.e. edema (figure 2.8). However, the assumption used to
split the lymphatic drainage into the peripheral blocks should be further discussed. By
such means, a greater number of capillaries produces a larger filtration, that is balanced
by a greater lymphatic drainage. This is consistent with the fact that the lymphatic vas-
cular system is intimately related to capillary beds. Conversely, some differences in the
lymphatic vascular anatomy have been reported between tissues [202, 203]. Once this
variability is understood and the difference between peripheries is quantified, it can be
included in the model. This would produce a more accurate model accounting also for ex-
isting differences in the peripheral lymphatic vasculature. Moreover, the effect of lymph
absorption at the lymph nodes can be accounted for, by building the model on a greater
reference value for lymphatic drainage. Such a modification will be discussed afterwards
in the work.
A further modeling approach to be discussed is the formulation of the apparent viscos-
ity. Even if the dependence on the shear rate has been included, and it agrees with the
more detailed model presented in [196], this description is not related with the interaction
with the glycocalyx but it is purely phenomenological. Indeed, this description is worth a
deeper experimental analysis. This shear rate dependence will be further discussed along
the work.

In addition, alterations of ∆π, Lp, σ, and inlet pressure have been studied. Even con-
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sidering only one peripheral district, these two computational tests allow the identification
of two different microvascular conditions, in particular in terms of net filtration rate, which
either have or not have been linked to a consistent change in vascular pressure upstream
the peripheral district. Consequently, a deeper description of microvasculature alone is not
sufficient to model the complex phenomena involved in uremic alterations. These results
support the work towards a comprehensive multiscale model of both the macro- and the
micro-circulation, gaining the spatial description by means of the 3D-1D model, without
losing information related to the macrocirculation influence.
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2.2 The multiscale 3D-1D model

The second and main approach considered is a multiscale 3D-1D model of microcircu-
lation (figure 2.11). The mathematical bases for this model have been developed by re-

Figure 2.11: Example of a vascular geometry of the multiscale 3D-1D model.

searchers at the MOX lab, in Politecnico di Milano [161, 162, 166, 167]. It allows the
description of a complex geometrical network, by reducing it to one dimension, therefore,
describing vessels with their centerline. An important feature consists in the ability of
the model to account for the coupling between the vasculature and the surrounding en-
vironment. The use of such models enables a deeper description of the microvascular
environment by including variables spatial dependence. Similar models have been used in
literature to describe microvascular environment with particular reference to the oncolog-
ical application. In this work, this model has been used to describe the fluid balance with
focus on the microvasculature. To this aim, the model has been derived to include the cou-
pling of the microvasculature with the interstitium, also considering not straight vessels.
Complex geometries can be included in the model concerning both three-dimensional ar-
rangement of the vessels and their radius heterogeneity. Fåhraeus - Lindqvist and Zweifach
- Fung effects have been included in the model since they characterize the blood flow in the
microvasculature. In addition, oncotic pressure differences and lymphatic drainage have
been included to guarantee a proper modeling of the fluid balance.
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2.3 The in vitro model

Conversely, the third approach consists in an experimental model of the in vitro vascula-
ture in a microfluidics chip (figure 2.12). A self-assembled vascular network is generated

Figure 2.12: Scheme of the in vitro model used. Microvascular network of EC (green)

perfused with red fluorescent dextran.

within a hydrogel using endothelial cells and then tested using fluorescent labeled dextran.
These models are usually applied to study the microvasculature (i.e. permeability of the
capillary membrane). Moreover, they are also considered to build in vitro models of dif-
ferent pathologies. In this work, such a modeling approach has been adopted to study the
microvascular wall membrane alterations induced by uremic toxins. To this aim, a trans-
mural pressure between the microvasculature and the surrounding environment has been
considered, enabling the analysis of the membrane properties. Such a technology enables
the analysis of microvascular alterations due to the presence of pathological conditions,
such as the presence of uremic toxins, by providing an experimental tool to test them. The
experimental setup has also been analyzed by computational analyses to investigate the
trans-mural pressure formation.
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2.4 Models interactions and outline of the work

The three models together constitute a comprehensive modeling approach, whose purpose
is to describe phenomena at different scales allowing a better understanding of them. A
schematic of the overall modeling approach is presented in figure 2.13. Starting from
previous models of the arterial circulations, a more detailed analysis has been considered
in this work. As shown in the first section of this chapter, the possible interactions be-
tween the lumped parameter model and these detailed models may enable the analysis of
complex phenomena involved in uremic pathology. Namely, the 3D-1D model and the
in vitro models provide a more detailed description of the microvasculature, whereas the
lumped parameter model accounts for the interaction with the macrovasculature. In addi-

Figure 2.13: Schematic of overall modeling approach.

tion, one of the advantages of this modeling approach consists in the possibility of models
interactions. In particular, the two computational models share a description of the mi-
crovasculature. The first one enables the study of peripheral pressure variations due to
pathological conditions. In addition, fluid dynamics within the peripheral district has been
analyzed, supporting the viscous forces dominance assumption. Deriving the description
of pathological variations of microvascular pressures from the lumped parameter model,
the 3D model can be used to address spatial effects and study them. This study may also
result in an improvement of the peripheral description in the lumped parameter, composing
a modeling loop, which will eventually lead to a more accurate model. The in vitro model
allows the analysis of capillary membrane alterations, studying specific effect of uremic
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toxins. Therefore, information about the alterations of the hydraulic conductivity and the
reflection coefficient can be used to improve both computational models. Moreover, it
enables the study of solutes permeability through capillary wall, helping the investiga-
tion of solutes removal. In addition, the 3D computational model can be used to describe
the fluid dynamics within the chip, to confirm experimental assumptions and helping in
experimental design.

The development of such a comprehensive model requires extensive research efforts,
also considering the collection of clinical/experimental data for model validation. This
work represents a methodological step in the definition of the models, paving the way for
subsequent studies aimed at the systematic investigation of uremic vascular alterations.
In particular, research activities have been conducted to:

• include in the 3D-1D model a non-linear description of the lymphatic drainage
(Chapter 3)

• describe the hematocrit heterogeneity within the capillary bed, considering Zweifach
- Fung and Fåhraeus - Lindqvist effect, namely considering the blood rheology de-
pendent on hematocrit and vessel diameter (Chapter 3);

• simulate uremic microvasculature with the known literature data, and comparing
them to in vivo evaluation (Chapter 4);

• perform a sensitivity analysis of the 3D-1D model developed, with reference to fil-
tration and interstitial pressure (Chapter 4);

• develop ad hoc experimental setup to analyze capillary wall properties, and using it
to describe urea effect (Chapter 5).

The work is then completed by a general discussion addressing the limitation and the
potentiality of the presented work (Chapter 6).
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CHAPTER3
A multiscale 3D-1D model of

microcirculation

The multiscale 3D-1D model of microcirculation is described in this chapter, starting

from the strong formulation up to the discrete form. In addition, an artificial generator of

microvascular geometries and some test cases have been described. The content of this

chapter is based on two different manuscripts:

• ’A computational model for microcirculation including Fåhraeus - Lindqvist effect,

plasma skimming and fluid exchange with the tissue interstitium’ by Possenti et

al., International Journal for Numerical Methods in Biomedical Engineering (in

press);

• ’Numerical simulations of the microvascular fluid balance with a non-linear model

of the lymphatic system’ by Possenti et al., Microvascular Research (in press).
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In the first chapter, the state of the art of in silico modeling of microvasculature has
been described. The computational problem has been addressed with several different ap-
proaches. The model presented in this work will describe both the microvasculature and
the interstitium, along with the interaction between them, because of the semi-permeability
of the capillary membrane. To this end, a multiscale approach is adopted, considering a
one-dimensional (1D) vascular network in a three-dimensional (3D) porous media. There-
fore, from a mathematical point of view, the model consists of coupled partial differential
equations (PDEs) on manifolds with heterogeneous dimensionality. This approach was
first proposed by D’Angelo [161, 166] and it has been mathematically and numerically
developed in several works [162, 167, 204]. In such works, the model has been described
as Poiseuille flow for straight vessels (with constant viscosity), Darcy flow within the in-
terstitium, and the coupling between them (first three point of the following list). The
here presented model has been rigorously derived from the governing equation of flow
accounting for:

• coupled vascular and interstitial flow, namely describing leaky channels;

• complex geometries;

• radii heterogeneity along the vascular network;

• curvature of the vessels;

• oncotic pressure differences between vasculature and interstitium;

• lymphatic drainage from the interstitium;

• blood rheology dependence on hematocrit (Fåhraeus - Lindqvist effect);

• heterogeneity of RBC distribution along the network (Zweifach - Fung effect).

The derivation of the model is presented in the following paragraphs starting from the fluid
dynamics model (including coupled flow, radii heterogeneity, curvature of the vessels, and
oncotic pressures) followed by the RBCs model (accounting for RBC heterogeneity along
the network and its effect on blood rheology). Then, the lymphatic drainage modeling is
described. Moreover, a generator of artificial networks is presented. Finally, some test
cases are discussed.
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3.1 A 3D-3D analytical model

The model of fluid transport is built with reference to two different domains: Ωt, the inter-
stitium, and Ωv the vasculature (figure 3.1). The surface Γ is defined as Γ = ∂Ωv ∩ ∂Ωt,
namely the interface between the two domains, therefore depicting the capillary mem-
brane. The interstitium Ωt has been described as a porous medium, characterized by a

Figure 3.1: Scheme of the two domains for a simple straight vessel with one straight

vessel. Ωt is the interstitium, Ωv the vessel characterized by its radius R, and Γ is the

outer surface of the domain Ωv . From [205]

hydraulic conductivity K. Two assumptions are presented here, in order to write the start-
ing equations of the model.

• Steady flow. As described in the first chapter, this assumption is reasonable (Wo <

1) and widely used in computational model of the microvasculature. Thus, any
possible transient phenomena is neglected.

• Body forces. Any body force (i.e. gravity, inertia) is neglected.

Being x ∈ Ω the spatial coordinate, the problem (equation 3.1) has been written in terms
of the fluid velocity u = u(x) and the fluid hydraulic pressure p = p(x), using the
subscripts t and v when referring to Ωt and Ωv respectively:

ut +
K

µt
∇pt = 0 in Ωt

∇ · ut + φlymphatics = 0 in Ωt

ρv(uv · ∇)uv = −∇pv + µv∆uv in Ωv

∇ · uv = 0 in Ωv

(3.1)
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3.1. A 3D-3D analytical model

where φlymphatics is the volumetric term accounting for the lymphatic drainage (further
discussed in the section 3.2.3), and ρv and µv are the density and the viscosity of the fluid
inside the vasculature. To couple the two domains, fluid transport across the capillary
membrane should be considered by setting the proper boundary condition on Γ:

ut · τ k = 0, on Γ uv · n = ut · n = f (3.2)

where τ k are the tangential binormal vectors with k = 1, 2, and n is the normal outward
vector. The first condition is describing a wall boundary condition, namely the no-slip

condition. The second one is describing the fluid flux across the capillary membrane by
means of the function f . In this work, the classical Starling principle is applied (section
1.2.3), leading to the following expression:

f = Lp

(
(pv − pt)− σ(πv − πt)

)
(3.3)

where π stands for oncotic pressure. This (πv − πt) is assumed independent from the
spatial coordinate x.
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Chapter 3. A multiscale 3D-1D model of microcirculation

3.2 The 3D-1D multiscale model

The model presented in the previous paragraph has been reduced to achieve a 3D-1D mul-
tiscale model, following the procedures described in [161, 162, 167, 205, 206]. In these
previous works, Poiseuille flow has been coupled with Darcy flow to describe the mi-
crovascular environment considering straight vessels. To achieve the 3D-1D description,
the domain Ωv is reduced to its centerline Λ (figure 3.1). Based on this reduction, the
local cylindrical coordinate is defined as x = (r, θ, s) at each point of the centerline of
the vessels. Consequently, the radial, circumferential and axial vectors are denoted by
er, eθ, es. Considering these definitions, the one-dimensional model that describes the
bulk flow within the vasculature is obtained based on the following assumptions.

• Circular vessel cross section. Namely, the intersection between the vessel and the
plane orthogonal to its axial vector es is always a circle.

• Dominance of the axial velocity. The other two components (i.e. the radial and
circumferential velocity) are negligible compared to the axial component, allowing
us to describe the velocity as uv = uv(r, θ, s) es.

• Dominance of viscous forces. This assumption is justified by the low Reynolds
number characterizing the microcirculation (as described in the first chapter).

Therefore, the equations relative to the vascular domain Ωv have been written as:

−µv∆uv + ∂sp = 0

∂suv = 0

ur = uθ = 0 ∀(r, θ, s) ∈ Ωv

∂rpv = 0

∂θpv = 0

(3.4)

where ∂∗ indicates the partial derivative in the direction ∗ and ∆ denotes the Laplace
operator with respect to cylindrical coordinates ∆u = 1/r∂r(r∂ru) + 1/r2∂2

θu+ ∂2
su.

To proceed with the one-dimensional reduction, a parametric description of a generic
curvilinear vessel has been introduced. Then, a decomposition of the velocity profile has
been used to obtain the final form of the equation.

At this point, for each curvilinear vessel the parametric arc length has been defined
as Ψ : R → R3 such that Ψ ∈ C3(R) and ‖dzΨ(z)‖ = 1 for any z ∈ [0, L] being
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3.2. The 3D-1D multiscale model

L the length of a generic branch of the capillary network. From this parameterization,
s =

∫ z
0
‖dζΨ(ζ)‖dζ = z. In addition, the curvature of the arc can be computed for a

given z as κ = ‖dzzΨ(z)‖. The center of the osculating circle in that point is 1/κ times
far in the direction specified by the unitary centripetal vector N(z) = dzΨ(z)/κ (figure
3.2).

Figure 3.2: Example of the parameterization of a single capillary vessel. The centerline

is indicated by Λ. It is described in the 3D space (x,y,z) by the function Ψ(z). The

osculating circle, which has a radius equal to 1/κ, is drawn with reference to the red

point. Originating from this point, the unitary centripetal vector N(z) points towards

the center of the circle.

Then, the axial velocity has been decomposed highlighting a shape factor Φ(r, θ) and
the mean or bulk velocity of the blood stream uv (referred to the cross section identified
by the arc length s, therefore denoted by Σ(s) - figure 3.2):

uv(r, θ, s) = uv(s)Φ(r, θ). (3.5)

Accordingly:

uv(s) =
1

πR2

∫
Σ(s)

uv dσ , pv(s) =
1

πR2

∫
Σ(s)

pv dσ . (3.6)

The shape factor Φ(r, θ) is composed of two different elements, defined in a way that
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Chapter 3. A multiscale 3D-1D model of microcirculation

allows us to separate r and θ contribution:

Φ(r, θ) = φ(r/R)(1+arcos θ+ brsin θ+ cr2cos θsin θ+dr2cos 2θ+er2sin 2θ) , (3.7)

where a, b, c, d, e are parameters to be determined. The first part φ(r/R), namely the
radially symmetric part of Φ(r, θ) is typically modeled as:

φ(r/R) =
γ + 2

γ
(1− (r/R)γ) .

The Poiseuille’s flow, characterized by a parabolic profile, is obtained for γ = 2 which
results in: φ(r/R) = 2

(
1− (r/R)2

)
. To define the second part of the shape factor

Φ(r, θ), the parameters a, b, c, d, e should be determined on the basis of Ψ, i.e. to obtain
Φ(r, θ, ψ). To this end, some additional assumptions are required.

• Symmetry of the profile. First, a reference for θ should be defined. For each cross
section, the reference is defined such as the axis θ = 0 is collinear with the vector
N . In this way, we can reasonable require that in each cross section Φ(r, θ, ψ) =

Φ(r,−θ, ψ) ∀r, θ, ψ. As a consequence, the parameters b and c must be equal to
0.

• Linear dependence. The correction factor (i.e. the second part of Φ(r, θ, ψ)) of the
velocity profile at any point s is assumed to be linearly dependent on the distance
from the center of the osculating circle to this point.

Consequently, the velocity profile must be null in the center of the osculating circle C.
Therefore, Φ(r = 1/κ, θ = 0, ψ) = 0 gives d = −aκ − κ2. A further consequence is
that all the points 1/κ far from the center C must have the same correction factor. If we
express those points with reference to r and θ, a set of points is obtained as:

ϕ = {(r, θ) : r =
2cos θ

κ
, θ ∈ [−π

2
; +

π

2
]}.

As stated above, all these points have the same correction factor Φ(r, θ, ψ). Among them,
the point with r = 0 has Φ(r = 0, θ, ψ) = φ(0), namely showing that for those points
the correction factor is 1. Therefore, ∀(r, θ) ∈ ϕ:

0 = arcos θ + dr2cos 2θ + er2sin 2θ = 2
a

κ
cos 2θ + 4

d

κ2
cos 4θ + 4

e

κ2
cos 2θsin 2θ.

This relation is naturally satisfied for θ = ±π/2. For all the other points, i.e. the in-
terval (−π/2;π/2), the following equation can be obtained dividing the previous one by
2cos 2θ/κ2:

0 = aκ+ 2dcos 2θ + 2esin 2θ.
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3.2. The 3D-1D multiscale model

To define the remaining two parameters a and e, such relation has been tested in two
particular cases (θ = π/4 and θ = π/3), leading to:

0 = aκ+ 2d(
1

2
) + 2e(

1

2
) = aκ+ d+ e = aκ− κ2 − aκ+ e = e− κ2.

0 = aκ+ 2d(
1

4
) + 2e(

3

4
) = aκ+

d

2
+

3e

2

(3.8)

Therefore e = κ2, a = −2κ and d = κ2. Consequently, the velocity profile has been
expressed as:

uv(r, θ, s) = uv(s)φ(rR−1) (1 + r2κ2(ψ)− 2κ(ψ)rcos θ). (3.9)

Using this profile, the reduced model for flow can be derived starting from equations 3.4,
integrating them on a portion of vessel P . This portion is delimited by two cross sections
Σ(s1),Σ(s2), where s2 > s1. Starting from the continuity equation, and noting that
n = es on Σ(s1) and Σ(s2), the model can be obtained as follows:

0 =

∫
P

∇·uvdΩ =

∫
∂P

uv ·n dσ =

∫
Σ(s1)

uv ·ndσ+

∫
Σ(s2)

uv ·n dσ+

∫
Γ

uv ·n dσ .

(3.10)
Now, recalling from equations 3.2 and 3.3 that

uv · n = Lp

(
(pv − pt)− σ(πv − πt)

)
on Γ

and defining

pt(s) =
1

2πR

∫
∂Σ(s)

pt dσ (3.11)

the following expression has been obtained:

0 = −
∫

Σ(s1)

uv dσ +

∫
Σ(s2)

uv dσ +

∫
Γ

Lp

(
(pv − pt)− σ(πv − πt)

)
dσ

' −uv(s1)πR2(s1) + uv(s2)πR2(s2) +

∫ s2

s1

2πRLp

(
(pv − pt)− σ(πv − πt)

)
dz

=

∫ s2

s1

[2πRLp

(
(pv − pt)− σ(πv − πt)

)
+ ∂s(πR

2uv)]dz .

(3.12)

In this process, the vessel radius is assumed to be small in comparison to the domain Ω.
Thus, considering the linearity of the function Lp

(
(pv−pt)−σ(πv−πt)

)
, the subsequent

statement holds true: ∫
Γ

f(pt, pv) dσ =

∫ s2

s1

∫ 2π

0

f(pt, pv)R(s)dθ ds

=

∫ s2

s1

∫ 2π

0

f(pt, pv)R(s)dθ ds =

∫ s2

s1

2πR(s)f(pt, pv) ds .
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Chapter 3. A multiscale 3D-1D model of microcirculation

Moreover, according to equations 3.4 and 3.6, the pressure is constant in a cross-section,
namely pv(s) = pv(r, s, θ).

Applying the same technique to the momentum equation:∫
P

∆uv dΩ =

∫
∂P

∇uv · n dσ

= −
∫

Σ(s1)

∂suv dσ +

∫
Σ(s2)

∂suv dσ +

∫
Γ

∇uv · n dσ =

∫
Γ

∇uv · er dσ

=

∫
Γ

∂ruvdσ =

∫
Γ

uv(s)∂rΦ(r, θ)dσ

=

∫
Γ

uv(s)R
−1φ′(rR−1)(1− 2κrcos θ + κ2r2) + φ(rR−1)(2κ2r − 2κcos θ) dσ

=

∫ s2

s1

∫ 2π

0

uv(s)
(
R−1φ′(1)(1− κcos θ + κ2R2) + φ(1)(2κ2R− 2κcos θ)

)
Rdθds.

Noting that φ(1), namely φ computed for r = R, is 0 due to boundary condition (equation
3.2), and to the periodicity of cosθ, the expression can be simplified as:∫

P

∆uv dΩ =

∫ s2

s1

2πφ′(1)(1 + κ2R2)uv(s) ds,

leading to the 1D form of the momentum equation:

−2πµv(s)φ
′(1)
(

1 + κ2(s)R2
)
uv(s) + πR2∂spv(s) = 0.

This 1D model must be coupled with the domain Ωt, described by means of the porous
media equation. Following the approach proposed in [162], the interaction of the manifold
Λ with the bulk domain Ωt is modeled by means of the distribution of concentrated sources
on Λ. Consequently, the domain Ωt is identified with Ω, and a new term has been inserted
in the left-hand side of the Ω continuity equation. To guarantee mass conservation, this
new term must be opposite to 2πRLp

(
(pv − pt)− σ(πv − πt)

)
and be multiplied by δΛ,

namely a distribution of Dirac masses along the manifold Λ.
Therefore, the 3D-1D problem is summarized as follow:

ut +
K

µt
∇pt = 0 in Ω

∇ · ut + φlymphatics − 2πRLp

(
(pv − pt)− σ(πv − πt)

)
δΛ = 0 in Ω

−2πµv(s)φ
′(1)
(

1 + κ2(s)R2
)
uv(s) + πR2∂spv(s) = 0 in Λ

∂s(πR
2uv) + 2πRLp

(
(pv − pt)− σ(πv − πt)

)
= 0 in Λ

(3.13)
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3.2. The 3D-1D multiscale model

3.2.1 Extension to a capillary network

To model flow in a more complex topology, such as a capillary network, the model should
be generalized. To this end, the network has been decomposed in a number Nb of uncou-
pled branches. Each of them is described by the previously discussed parameterization,
namely by the arc length si. A unitary tangent vector λi(si) has also been defined, ac-
counting for an arbitrary vessel orientation. Therefore, the differentiation is defined by the
projection of ∇ along λi, i.e. ∂si := λi · ∇ on Λi. As stated, the vessels are uncoupled
using this description. Aiming to describe the flow within the network, they must be cou-
pled, enforcing the proper constraints at the junctions yj , i.e. at the connection between
two or more vessels. These have been mathematically defined as:

yj = Ψi(s
∗
i ) = Ψı̂(s

∗
ı̂ ), s

∗
i ∈ {0, Li} ∀i, ı̂ = 1, . . . , N.

A network is consequently characterized by a finite number of branches N and a finite
number of junctions M . All the other vessel endpoints, i.e. points not classified as junc-
tions, can be either dead ends if they end within the domain Ω, or boundary ends, if they
end crossing the boundary ∂Ω. The former are indicated by z and the corresponding ves-
sels i are grouped in the set E , whereas the latter by x and in the set B. For each junction
yj , the set of branches Kj which composes the junction is defined such that Ψi(s

∗
i ) = yj ,

namely including all the indices i of the branches. An example of this classification is
shown in figure 3.3. Now, two different classifications of the sets Kj are presented be-
cause they will be useful in the derivation of the model. The first one is based on the
vessel orientation, namely the geometric orientations of the domain Λi and therefore of
their meshes, whereas the second one is based on the flow direction. Clearly, the last is de-
fined when the simulation is running, and it depends on the applied boundary conditions,
whereas the first does not. Considering es as the outgoing tangential unit vector at the
each of the two endpoints of the branch, the following set of branches are defined:

• K+
j , the outgoing branches of a junction, as the branches which belong to Kj sat-

isfying λi · es(si) > 0, where depending on which end is involved in the junction
si = 0 or si = L ;

• K−j , the ingoing branches of a junction, as done in the previous point with the con-
dition λi · es(si) < 0 ;

• Koutj , the outflow branches of a junction, based on the direction of flow, as the
branches which belong to Kj satisfying uv(si)λi · es(si) > 0, where depending on
which end is involved in the junction si = 0 or si = L ;
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Chapter 3. A multiscale 3D-1D model of microcirculation

Figure 3.3: Example of a junction yj , with j = 2. This junction is composed by the vessels

Λi with i = {5, 6, 7}. Therefore, the set of indices K2 = {5, 6, 7}. In particular, given

the orientation of mesh indicated by the arrows, the set of outgoing pointsK+
2 = {6, 7}

whereas the set of ingoing points K−2 = {5}. In addition, an example of dead and

boundary end is shown using the other end-point of the vessel Λ6 and Λ7 respectively.

• Kinj , the inflow branches of a junction, as done in the previous point with the condi-
tion uv(si)λi · es(si) < 0 .

The same classification can be applied also to the boundary ends, namely the ends grouped
in the set B, separating xin and xout. Such a classification will be useful to prescribe
boundary conditions of the problem.

Once junctions have been defined, the proper constraints to connect all the branches
of the network can be defined. At each junction, the continuity of pressure and mass
conservation have been enforced:∑
i∈Kj

πR2
kuv,i = 0, j = 1, 2, . . . ,M , pv,i = pv,̂ı, i, ı̂ ∈ Kj , j = 1, 2, . . . ,M . (3.14)

To complete the extension of the 1D model of blood flow, the appropriate conditions must
be applied to dead and boundary ends. To ensure mass conservation, i.e. with a condition
similar to 3.14, a no-flow condition must be enforced at dead ends, namely:

piR2uv|zi = 0, i ∈ E ,

where |zi is a shorthand notation for the evaluation of the whole term in the point zi.
At the boundary ends, instead, boundary conditions are applied. In this work, Dirichlet
conditions have been considered, leading to

pv|xi = gv i ∈ B ,
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3.2. The 3D-1D multiscale model

where gv is the function which prescribes pressure values along the boundary of the do-
main. Summarizing, the model can be written as:

∇ · ut − 2πR(s)Lp

(
(pv − pt)− σ(πv − πt)

)
δΛ + φlymphatics = 0 in Ω

ut + K
µt
∇pt = 0 in Ω

∂s

(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)Lp

(
(pv − pt)− σ(πv − πt)

)
on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(

1 + κ2
i (s)R

2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0, j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B .
(3.15)

3.2.2 Modeling Fåhraeus - Lindqvist and Zweifach - Fung effects

As described in the section 1.2.2, the Fåhraeus, Fåhraeus - Lindqvist, and Zweifach - Fung
effects characterize the microvasculature. To account for them in the model, the trans-
port of RBCs should be modeled. In this way, the viscosity of the fluid can be expressed
as µv = µv(Hd, D), and the heterogeneity of hematocrit in the network can be consid-
ered. To this aim, a 1D model of RBCs transport is coupled with the fluid dynamic model
(equation 3.15). Such a model has been built on the following assumptions.

• Steady flow. As done for the flow model, also the RBC distribution has been mod-
eled under steady conditions.

• Advection dominated regime. This assumption allows neglecting the diffusion or
RBCs in the blood. The validity of this assumption has been addressed by computing
the Péclét number Pe = (LU)/DRBC , adopting L ' 10µm as characteristic scale,
U ' 1mm/s as the average velocity within capillaries and DRBC ' 10−12m2/s

as the diffusivity of RBC in water [207, 208]. The resulting Pe ' 104 justifies the
assumption of advection dominated RBCs transport.

• Absence of reaction. Reaction terms in the equation have been neglected, namely no
production or consumption of RBCs has been considered.

• No RBCs leak off. The RBCs are considered unable to cross the capillary mem-
brane.
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• Absence of trifurcations. The networks considered for the RBCs transport are char-
acterized by junctions with a maximum number of vessel M equal to 3. Thus,
they can be classified as trivial junctions (i.e. M = 2), bifurcations (i.e. M = 3,
card(Kinj ) = 1) and anastomosis (i.e. M = 3, card(Kinj ) = 2). A scheme of these
three types of junctions is provided in figure 3.4.

Figure 3.4: Example of a trivial junction, a bifurcation, and an anastomosis. The arrows

indicate the direction of flow.

Under these assumptions, the flow rate of RBCs QH is conserved along a vessel, namely
∂sQH = 0 on Λi. Recalling the definition of discharge hematocrit, QH can be substituted
by πR2uvHd, obtaining:

∂s

(
πR2

i uv,iHd,i

)
= 0 on Λi, i = 1, 2, . . . , N . (3.16)

For clarity, from now on Hd is indicated with H . The previous equation can be rearranged
to obtain:

πR2
i uv,i∂sHi + ∂s

(
πR2

i uv,i

)
Hi(s) = 0 on Λi, i = 1, 2, . . . , N .

Combining this last equation with equation 3.15:

πR2
i uv,i∂sHi − 2πRiLp

(
(pv − pt)− σ(πv − πt)

)
Hi(s) = 0 on Λi, i = 1, 2, . . . , N .

(3.17)
At this point, it is evident that a variation of H may occur along the vessel. In particular,
considering a vessel (i.e. Ri 6= 0) with flowing blood (i.e. uv,i 6= 0 and Hd,i 6= 0)
characterized by filtration/absorption of fluid (i.e. 2πRiLp

(
(pv−pt)−σ(πv−πt)

)
6= 0),

the variation of H results as:

∂sHd,i =
2πRiLp

(
(pv − pt)− σ(πv − πt)

)
Hd,i(s)

πR2
i uv,i

on Λi, i = 1, 2, . . . , N .
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The required boundary conditions for this pure advection equation should be specified
in the inflow point of the vessels solely. These can be either boundary inflow points or
junction points. For the former, Dirichlet boundary condition has been applied, specifying
the value of H . Certainly, as done for the 3.15, junctions should be considered to describe
the network. The mass conservation at a junction j reads as:∑

i∈Koutj

πR2
i uv,iHd,i =

∑
i∈Kinj

πR2
i uv,iHd,i . (3.18)

Such equation is sufficient to close the problem in presence of trivial junctions and anasto-

mosis in which card(Koutj ) = 1 (figure 3.4). To handle the case card(Koutj ) = 2, namely
to describe the Zweifach - Fung effect at bifurcations, the model proposed by [104,106] has
been adopted. Considering a bifurcation composed by a parent vessel f and two daughter
vessels α and β, their model allows us to write:

Hα = FQEαHfQf/Qα , Hβ = (1− FQEα)HfQf/Qβ . (3.19)

where the coefficient FQEα is determined on the basis of the blood flow rate and geomet-
rical parameters of the bifurcation, and Q∗ stands for blood flow rate, i.e. Q∗ = πR2

∗uv,∗.
Being FQBα = Qα/Qf and FQEα = (QαHα)/(QfHf ), the coefficient FQEα is com-
puted as:

FQEα = 0 if FQBα ≤ X0

logit(FQEα) = A+Blogit(
FQBα−X0

1−2X0
) if X0 < FQBα < 1−X0

FQEα = 1 if FQBα ≥ 1−X0

where A,B are fixed parameters determined in [98], logit(x) = ln[x/(1 − x)] and X0 is
the fractional blood flow rate under which any RBCs will flow into the daughter branch α.

This RBCs transport model is then coupled with 3.15 because of the Fåhraeus - Lindqvist
effect, namely because µv = µv(H,D). Among the several models that have been de-
veloped in literature to describe this effect, the formulation of Pries and colleagues has
been implemented in the model [98]. Therefore, the viscosity of blood is described as
µv = µplasma(T ) ∗ µapparent(H,D). Then µplasma(T ) has been computed as follow:

µplasma = 1.8µH2O = 1.8
µ0

1 + 0.0337T + 0.00022T 2
. (3.20)

The apparent viscosity µapparent(H,D) has been described following the relations re-
ported in their study (further described in the section 1.2.2). Only the main relationship is
here reported:

µapparent =

[
1 + (µ∗0.45−1) · (1−H)C − 1

(1− 0.45)C − 1
·
(

D

D − 1.1

)2]
·
(

D

D − 1.1

)2

. (3.21)
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Summarizing, the 3D-1D model is:

∇ · ut − 2πR(s)Lp

(
(pv − pt)− σ(πv − πt)

)
δΛ + φlymphatics = 0 in Ω

ut + K
µt
∇pt = 0 in Ω

∂s

(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)Lp

(
(pv − pt)− σ(πv − πt)

)
on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(

1 + κ2
i (s)R

2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0, j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B ,

πR2
i uv,i∂sHd,i − 2πRiLp

(
(pv − pt)− σ(πv − πt)

)
Hd,i(s) = 0 on Λi, i = 1, . . . , N ,∑

i∈Koutj
πR2

i uv,iHd,i =
∑
i∈Kinj

πR2
i uv,iHd,i, j = 1, 2, . . . ,M ,

H = Hin i ∈ ∂Λin .

(3.22)

3.2.3 Lymphatic drainage description

As described in the introduction, the lymphatic system withdraws fluids from the inter-
stitial space. When its contribution is included in this kind of models, the geometry of
lymphatic capillaries is usually not considered, but the drainage is modeled as a distributed
sink in the domain Ω. Therefore, a coefficient S/V |LF is required to specify the exchange
surface area per unit volume of Ω. In the majority of literature works, the lymphatic
drainage is described by a linear function of the interstitial pressure pt and the lymphatic
pressure pl solely [78,157,162,209]. The oncotic pressure difference across the lymphatic
capillary membrane is neglected because of its higher permeability to proteins. Conse-
quently, the lymphatic drainage (ϕlymphatics) is usually described as:

ϕlymphatics = LpLF

(
S

V

)
LF

(pt − pl) . (3.23)

In this work, a new description of the lymphatic drainage based on a non-linear relation to
the interstitial hydraulic pressure has been proposed. Thus, following the physiologic de-
scription, the net lymphatic flow rate is modeled as a distributed sink defined by a sigmoid
function (3.24), considering a saturation flow rate, leading to the following expression of
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3.2. The 3D-1D multiscale model

the lymphatic drainage:

ϕlymphatics = ϕmax −
ϕmax − ϕmin

1 + exp(
pt − p50

slope factor
)

(3.24)

where ϕmax and ϕmin are the maximum and the minimum lymphatic drainage respec-
tively, p50 is referred to the interstitial pressure corresponding to ϕlymphatics =

mean(ϕmin, ϕmax), and slope factor determines the slope of the function. To iden-
tify parameter values, information reported by Chamney and colleagues [56] and Ebah
and colleagues [30] have been considered. Thus, parameters have been computed by the
following procedure:

• the intestitial pressure at the physiological working point is defined as slightly neg-
ative (−1mmHg);

• the lymphatic drainage at the physiological working point, namely
ϕlymphatics(−1mmHg) = 6.85 × 10−7 s−1, is defined performing a scaling by
the total interstitial volume [5] to obtain a volumetric term, that is the lymphatic
drainage per unit volume;

• the interval (pmin, pmax) (figure 3.5) is equal to 6mmHg and it is defined as the
range of interstitial pressure in which the lymphatic drainage increases, i.e. the
difference between the physiological working point and the point with the maximum
lymphatic drainage;

• the maximum lymphatic drainage, namely ϕlymphatics,max = 1.717 × 10−5 s−1

is defined following the scaling procedure used for the physiological drainage;

• the maximum slope of the curve is obtained at the center of the interval (pmin, pmax),
so that p50 = 2mmHg.

The resulting slope factor is 0.66mmHg. Because of this derivation, the model pro-
posed is not considering differences among different tissues [84, 90]. However, the model
is general as for lymphatic drainage description, namely if a tissue-specific relation be-
tween lymphatic drainage and the interstitial pressure were available, it could be easily
implemented in the model. The proposed model is shown in figure 3.5.
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Chapter 3. A multiscale 3D-1D model of microcirculation

Figure 3.5: Sigmoid function describing the lymphatic drainage along with data from

[30, 56] used to compute parameters. For drawing the graph, lymphatic drainage has

been scaled up to the overall extra-vascular volume.
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3.3 Weak 3D-1D problem

The mathematical ground of the weak problem has been addressed in several works, which
proved the existence of a solution in the weak (or variational) sense [161, 166, 204, 210].
Following the process described in [204], Darcy’s equation has been multiplied by a test
function vt ∈ V t = Hdiv(Ω):

µt
K

(
ut , vt

)
Ω

+
(
∇pt , vt

)
Ω

= 0 ∀vt ∈ V t , (3.25)

where, with a standard notation,
(
· , ·
)
∗

indicates the inner product over the domain ∗.
Using the Green’s formula:

(
∇pt , vt

)
Ω

= −
(
pt , ∇·vt

)
Ω

+
(
pt , vt·nt

)
∂Ω

= −
(
pt , ∇·vt

)
Ω

+
(
gt , vt·nt

)
∂Ω

where gt is a prescribed value of the interstitial pressure at the artificial boundaries of the
tissue slab, namely ∂Ω.
The test function for the continuity equation on Ω is qt ∈ Qt = L2(Ω):

(
∇ · ut , qt

)
Ω
−
(

2πRf(pt, pv)δΛ , qt

)
Ω

+
(
φlymphatics , qt

)
Ω

= 0 ∀qt ∈ Qt,
(3.26)

where f(pt, pv) has been used for notation convenience to indicate Lp
(

(pv−pt)−σ(πv−

πt)
)

.
The equation describing the blood flow in the 1D network has been multiplied by πR2

i and
by a test function vv,i ∈ Vv,i ∈ H1(Λi). In addition a sum of each vessel contribution has
been performed, obtaining:

∑
i

(
−2

µv,i
R2
i

φ′(1)
(

1+κ2
iR

2
i

)
πR2

i uv,i , vv,i

)
Λi

+
∑
i

(
∂spv,i , πR

2
i vv,i

)
Λi

= 0 ∀vv ∈ Vv.

(3.27)
Using again the Green’s formula:

∑
i

(
∂spv,i , πR

2
i vv,i

)
Λi

= −
∑
i

(
pv,i , ∂s(πR

2
i vv,i)

)
Λi

+
∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]
.
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Since the pressure is continuous at junction points, the last two terms can be rearranged
considering the junctions:

∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]

=
∑
j

pv|yj

∑
i∈K+

j

πR2
i vv,i|yj −

∑
i∈K−

j

πR2
i vv,i|yj


+
∑
i∈E

pv πR
2
i vv|zi +

∑
i∈B

[
pv πR

2
i vv|x+

i
− pv πR

2
i vv|x−

i

]
,

where x−i and x+
i indicates the outflow and inflow boundary respectively.

In other words, the expression has been rearranged as:

∑
i

(
Contributes of starting and end point of each vessel

)
=
∑
i

(
Contributes of juction points

)
+
∑
i

(
Contributes of dead ends

)
+
∑
i

(
Contributes of boundary ends

)
. (3.28)

Boundary conditions have been enforced using the last term, namely the term with
∑
i∈B,

substituting pv|x+
i

= g+
v and pv|x−

i
= g−v for any i ∈ B.

For the 1D continuity equation, the test function qv ∈ Qv has been considered. Gen-
erally, Qv ⊂ L2(Λ) is sufficient, but, according to the sixth equation in 3.22, the conti-
nuity of pressures at the junctions has been required. The flow rate conservation has been
weakly imposed by multiplying the fifth equation in 3.22 and adding it to the third of the
same system, resulting in:

∑
i

(
∂s(πR

2
i uv,i , qv

)
Λi

+
∑
i

(
2πRf(pt, pv) , qv

)
Λi
−
∑
i∈E

qvπR
2
i uv,i|zi

−
∑
j

qv|yj

∑
i∈K+

j

πR2
i uv,i|yj −

∑
i∈K−

j

πR2
i uv,i|yj

 = 0 ∀qv ∈ Qv,
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Summarizing, the weak formulation of the 3D-1D flow problem 3.15 reads as follow:

(
∇ · ut , qt

)
Ω
−
(

2πRf(pt, pv)δΛ , qt

)
Ω

+
(
φlymphatics , qt

)
Ω

= 0 ∀qt ∈ Qt,

µt
K

(
ut , vt

)
Ω
−
(
pt , ∇ · vt

)
Ω

= −
(
gt , vt · nt

)
∂Ω

∀vt ∈ V t,

∑
i

(
∂s(πR

2
i uv,i , qv

)
Λi

+
∑
i

(
2πRf(pt, pv) , qv

)
Λi

−
∑
i∈E qvπR

2
i uv,i|zi

−
∑
j qv|yj

[∑
i∈K+

j
πR2

i uv,i|yj −
∑
i∈K−

j
πR2

i uv,i|yj
]

= 0 ∀qv ∈ Qv,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i uv,i , vv,i

)
Λi

−
∑
i

(
pv , ∂s(πR

2
i vv,i)

)
Λi

+
∑
j pv|yj

[∑
i∈K+

j
πR2

i vv,i|yj −
∑
i∈K−

j
πR2

i vv,i|yj
]

+
∑
i∈E pv πR

2
i vv|zi

= −
∑
i∈B

[
g+
v πR

2
i vv|x+

i
− g−v πR

2
i vv|x−

i

]
∀vv ∈ Vv.

(3.29)

For the RBCs transport, the weak formulation has been obtained with a similar ap-
proach, multiplying the equation 3.16 by the test function wi ∈ H1(Λi) and performing a
sum over the branches i. Thus, applying again the Green’s formula:

∑
i

(
∂s(πR

2
i uv,iHi) , wi

)
Λi

= −
∑
i

(
πR2

i uv,iHi , ∂swi

)
Λi

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
.

As done previously for the 1D blood flow equation, and as explained in the equation 3.28,
the last term has been rearranged to isolate terms relative to junctions, dead ends and
boundary ends:

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
=
∑
j

 ∑
i∈Koutj

πR2
i uv,iHiwi|yj −

∑
i∈Kinj

πR2
i uv,iHiwi|yj


+
∑
i∈B

[
πR2

i uv,iHiwi|xouti
− πR2

i uv,iHiwi|xini
]

+
∑
i∈E

πR2
i uv,iHiwi|zi . (3.30)
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To include the Zweifach - Fung effect, a general definition of blood flow split FQB,j,i and
hematocrit split FQE,j,i is required. Consequently, FQB,j,i, namely the fraction of total
flow rate entering the vessel i, has been defined as:

FQB,j,i =
πR2

i uv,i|yj∑
k∈Koutj

πR2
kuv,k|yj

, ∀ i ∈ Kinj .

Similarly, FQE,j,i, that is the fraction of RBCs rate entering the vessel i, is:

FQE,j,i =
πR2

i uv,iHd,i|yj∑
k∈Koutj

πR2
kuv,kHd,k|yj

, ∀ i ∈ Kinj . (3.31)

Starting from the relations of [98] and including also trivial junctions and anastomosis,
namely including the case card(Kinj ) = 1, FQE,j,i can be computed as:

FQE,j,i = 1 if card(Kinj ) = 1;

FQE,j,i = 0 if card(Kinj ) = 2 ∧ FQB,j,i ≤ X0;

logit(FQE,j,i) = A+Blogit(
FQB,j,i−X0

1−2X0
) if card(Kinj ) = 2 ∧ X0 < FQB,j,i < 1−X0;

FQE,j,i = 1 if card(Kinj ) = 2 ∧ FQB,j,i ≥ 1−X0.

(3.32)

Therefore, computing FQE,j,i from the previous relations and using the equation 3.31:

πR2
i uv,iHi|yj = FQE,j,i

∑
k∈Koutj

πR2
kuv,kHk|yj .

Thus, in the weak formulation:

∑
i∈Kinj

πR2
i uv,iHiwi|yj =

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
k∈Koutj

πR2
kuv,kHk|yj

 .

Considering also that for the boundary condition in the inflow vessels πR2
i uv,iHiwi|xini =

πR2
i uv,iH0wi|xini , the right hand side of the equation 3.30 has been rewritten as:

∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj +

∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
k∈Koutj

πR2
kuv,kHk|yj

−∑
j

∑
i∈B

πR2
i uv,iH0wi|xini .
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Therefore, the weak formulation for the hematocrit problem 3.16 reads as follows:

−
∑
i

(
πR2

i uv,iHi , ∂swi

)
Λi

+
∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj

+
∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
k∈Koutj

πR2
kuv,kHk|yj


=
∑
j

∑
i∈B

πR2
i uv,iH0wi|xini ∀wi ∈ H1(Λi) . (3.33)
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3.4 Discrete 3D-1D problem

The variational problem has been discretized to be solved numerically. The discretization
has been achieved by means of the finite element method. Therefore partitions of the two
domains Ω and Λ are required. To this end, assuming that Ω is a polygonal domain, let T ht
be an admissible family of partitions of Ω̄ into tetrahedrons K:

Ω̄ =
⋃

K∈T ht

K,

that satisfies the usual conditions of a conforming triangulation of Ω. For the vessels Λ, a
similar approach is used, approximating each curved vessel Λi by a piecewise linear 1D
line, denoted with Λhi . One of the main advantages of this 3D-1D approach consists of
this discretization. Indeed, T ht and Λh are entirely independent. Thus, the discretization
process can be addressed separately for the two domain. Moreover, this approach signifi-
cantly reduces the mesh-related computational requirements, if compared to a full 3D ap-
proach. Starting from Ω̄, the solutions of (3.29), namely interstitial pressure and velocity,
are approximated using discontinuous piecewise-polynomial finite elements for pressure
andHdiv-conforming Raviart-Thomas finite elements [211] for velocity. Consequently,

Y hk := {vh ∈ L2(Ω), vh|K ∈ Pk(K) ∀K ∈ T ht },

RT hk := {wh ∈Hdiv(Ω), wh|K ∈ Pk(K; Rd)⊕ xPk(K) ∀K ∈ T ht },

for every integer k ≥ 0, where Pk indicates the standard space of polynomials of degree
≤ k in the variables x = (x1, . . . , xd). In all the simulations presented in this work, the
lowest order Raviart-Thomas approximation has been adopted, corresponding to k = 0.
Conversely, on Λh, the solutions, i.e. vessels pressure and velocity, are approximated
with continuous piecewise-polynomial finite element spaces. For pressure, the standard
approximation has been used (for every integer k ≥ 0):

Xh
k+1 (Λ) := {wh ∈ C0(Λ̄), wh|S ∈ Pk+1 (S) ∀S ∈ Λh} .

On the contrary, since the velocity is discontinuous at the junctions, the finite element
space has been defined as the collection of local spaces of single branches, namely for
every integer k ≥ 0:

Wh
k+2 (Λ) :=

N⋃
i=1

Xh
k+2

(
Λhi
)
.

As a result, we use generalized Taylor-Hood elements on each network branch, satisfying
in this way the local stability of the mixed finite element pair for the network. At the same
time, we guarantee that the pressure approximation is continuous over the entire network
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Λh. Also for this case, k = 0 has been adopted in all the simulations presented in this
work.
Similarly, the approximation of the hematocrit has been conducted with the same approach
used for the velocity.

Therefore, defining the discrete subspaces for k ≥ 0

V h
t = RT hk(Ω) and Qht = Y hk (Ω) ,

V hv = Wh
k+2(Λh) and Qhv = Xh

k+1(Λh) and Wh
v = Wh

k+2(Λh)

the discrete problem is:
find uht ∈ Vh

t , p
h
t ∈ Qht , uhv ∈ V hv , phv ∈ Qhv , Hh ∈Wh

v such that

(
∇ · uht , qht

)
Ω
−
(

2πRf(p
h
t , p

h
v )δΛ , q

h
t

)
Ω

= 0 ∀qht ∈ Qht ,

µt
K

(
uht , v

h
t

)
Ω
−
(
pt , ∇ · vht

)
Ω

= −
(
gt , v

h
t · nt

)
∂Ω

∀vht ∈ V
h
t ,

∑
i

(
∂s(πR

2
i u
h
v,i , q

h
v

)
Λhi

+
∑
i

(
2πRf(p

h
t , p

h
v ) , qhv

)
Λhi

−
∑
i∈E q

h
vπR

2
i u
h
v,i|zi

−
∑
j q

h
v |yj

[∑
i∈K+

j
πR2

i u
h
v,i|yj −

∑
i∈K−

j
πR2

i u
h
v,i|yj

]
= 0 ∀qhv ∈ Qhv ,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i u
h
v,i , v

h
v,i

)
Λi

−
∑
i

(
phv , ∂s(πR

2
i v
h
v,i)
)

Λhi

+
∑
j p

h
v |yj

[∑
i∈K+

j
πR2

i v
h
v,i|yj −

∑
i∈K−

j
πR2

i v
h
v,i|yj

]
+
∑
i∈E p

h
v πR

2
i v
h
v |zi

= −
∑
i∈B

[
g+
v πR

2
i v
h
v |x+

i
− g−v πR

2
i v
h
v |x−

i

]
∀vhv ∈ V hv ,

−
∑
i

(
πR2

i u
h
v,iH

h
i , ∂sw

h
i

)
Λhi

+
∑
j

∑
i∈Kout πR

2
i u
h
v,iH

h
i w

h
i |yj

+
∑
i∈B πR

2
i u
h
v,iH

h
i w

h
i |xouti
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(3.34)

The global error related to this numerical problem is affected by multiple factors. First,
since the numerical scheme has been derived from the variational formulation computing
all the integral exactly when applying the discrete functions, it is strongly consistent with
the exact equations. Secondly, regarding the interpolation properties of the finite element
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spaces, the chosen formulations ensure, with respect to the mesh characteristic size, linear
convergence for both velocity and pressure in Ω and quadratic convergence in Λ. Thirdly,
the error due to the difference between the network Λ with Λh scales quadratically on Λh.
Fourthly, it should be considered also the error related to the approximation of the exact
curved geometry by piecewise linear segments, ensuring a sufficient number of nodes per
segment. The discrete scheme (equation 3.34) has been written in algebraic form:

Mtt −DTtt O O

Dtt Btt O −Btv
O O Mvv(µ

k−1
v ) −DTvv − JTvv
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where the matrices have been defined as:
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[Bh]i,j :=
(
πR2

i uv,pϕ
pφj , ∂sφi

)
Λ

Bh ∈ RS
h
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However, it is important to note that the problem cannot be solved directly. Indeed, two
different sources of non-linearity are present:

• the coupling between RBCs transport and the fluid flow, namely Mvv = Mvv(µv),
µv = µv(H, D), and H is influenced by the flow distribution in the network;

• the lymphatic drainage description, i.e. φL = φL(Pt).

To solve this non-linearity, an iterative strategy has been adopted using the fix-point method.
Thus, the two non-linear terms have been computed based on previous iteration results,
considering under relaxation, if necessary. For clarity in the iterative process description,
concerning the algebraic form, from now on the two sub-problems will be identified by:

[uht , u
h
v , p

h
t , p

h
v ] = Fh(µv, p

h
t ) ,

Hh = Hh(uhv ) .

Based on this definition, the iterative process has been described as follow:

1. initialize the problem Fh with the initial guess of viscosity µstart and with φL = 0,
namely solving [uh,0t , uh,0v , ph,0t , ph,0v ] = Fh(µv,start, 0);

2. initialize the problemHh with uh,0v , obtaining Hh,0 = H(uh,0v );

3. compute the viscosity µ0
v = µv(H

h,0);

4. build the matrices Mvv(µ
k−1
v ) and φL(Pk−1

t );

5. solve [uh,∗t , uh,∗v , ph,∗t , ph,∗v ] = Fh(µk−1,P
k−1
t );

6. apply under-relaxation to velocity and pressure fields (if necessary) to enhance con-
vergence, i.e. for a given α ∈ (0, 1]

uh,kt = αuh,∗t + (1− α)uh,k−1
t , uh,kv = αuh,∗v + (1− α)uh,k−1

v ;

ph,kt = αph,∗t + (1− α)ph,k−1
t , ph,kv = αph,∗v + (1− α)ph,k−1

v ;

75



Chapter 3. A multiscale 3D-1D model of microcirculation

7. solve Hh,∗ = H(uh,kv );

8. apply under-relaxation to hematocrit field (if necessary), namely:

Hh,k = βHh,∗ + (1− β)Hh,k−1 with β ∈ (0, 1] ; (3.35)

9. compute the viscosity µk−1
v = µv(H

h,k−1);

10. test the convergence by comparing the given tolerances εF , εH with∥∥Uk+1
v −Uk

v

∥∥
‖Uk

v‖
+

∥∥Pk+1
v −Pk

v

∥∥
‖Pk

v‖
+

∥∥Uk+1
t −Uk

t

∥∥∥∥Uk
t

∥∥ +

∥∥Pk+1
t −Pk

t

∥∥∥∥Pk
t

∥∥ < εF ,

∥∥Hk+1 −Hk
∥∥

‖Hk‖
< εH

where ‖ ‖ indicates the L2 norm on the proper domain. If the condition is not satis-
fied, go back to the point 4.

Being the equation of RBCs transport a pure advection equation, artificial diffusion is
required to stabilize the problem. Thus, the local Péclét number Pe = hmuv

2Dart
must be

lower than 1, where hm is the mesh dimension [212]. Consequently, the requiredDart has
been set to:

Dart = 2max(uv)max(hm) .

This term should be added in the left hand side variational formulation of the hematocrit
problem by:

Dart(∂sH
h, ∂sw

h)Λh

with the boundary condition ∂sHh = 0|xouti
. Finally in the algebraic problem, the artificial

diffusion has been described by the matrix Dh.
As a final remark, it should be noted that the problem has been implemented in its di-

mensionless form, following the process shown in [162], leading to a better computational
implementation. The block-structured linear system has been solved by means of the LU
factorization (SuperLU library) or by the GMRES iterative solver, accelerated by a block
preconditioner based on the Schur complements of pressure problems.
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3.5 A generator of artificial geometry

3.5.1 Voronoi tesselation based geometries

Several approaches have been adopted in literature to model vascular morphology. Start-
ing for the well-known Krogh cylinder model, in which a single straight capillary is con-
sidered, the complexity of the microvascular network can be increased, considering the
schematic unit proposed in [66] or in [157], up to real network geometry [112, 162] or
artificial network geometry. [107, 108, 213]. Considering this small spatial scale, a sig-
nificant variability among different tissues has been observed. However, as described in
the first chapter, given some exceptions, the tree-like structure is usually lost and replaced
by a network-like structure approaching the microvasculature. In this context, an artificial
network generator has been developed to obtain network-like structures to be used in the
simulations. It is based on the Voronoi tessellation. Therefore, the space is partitioned in
sub-regions starting for seed points in the domain. The sub-region related to a seed point
is defined as the set of all the points in the domain for which that seed point is the closest
among all the other seed points. In a Euclidean space, the Voronoi tessellation is the dual
of Delaunay triangulation. This tessellation has been used to describe the microvascula-
ture by different authors [107, 214–216]. The 2D version of the tessellation (figure 3.6)
results in a network composed only by bifurcations and anastomosis, namely 3 vessels are
involved in each junction. Conversely, the 3D version does not. Indeed, when considering

Figure 3.6: Example of 2D Voronoi tessellation. From [99].

this version, the junction should be adjusted by removing some vessels [216]. For this
reason, the 2D version has been adopted in this work, and the resulting networks have
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Figure 3.7: Steps of the artificial network generator. (a) 2D Voronoi tessellation. (b)

Radii computation. (c) 3D perturbation. (d) Final assembly, stacking geometries in a

500µm cube.

been randomly perturbed along the third direction to avoid perfect planar geometries (fig-
ure 3.7). Therefore, using Matlab R© (The MathWorks Inc., Natick, MA, USA) an artificial
network generator has been developed. The number of seed points is the main parameter
influencing the morphology of the network. Consequently, several network configurations
spanning from 5 to 15 seeds have been screened, leading to the choice of random distri-
butions of 8 points on a 500 µm side square. Doing so, a sufficiently high aspect ratio
is guaranteed for an average radius of 4 µm (about Li/Ri = 4). 100 different network
configurations have been created by random variation of these 8 points.

3.5.2 Radius assignment

Murray’s law has been applied to define vessels radii:

bifurcation R3
in,0 = R3

out,1 +R3
out,2; for a given split ratio a =

Rin,0
Rout,1

anastomosis R3
in,1 +R3

in,2 = R3
out,0;

where the split ratio a is randomly selected in the interval (0.67, 0.89) (i.e. a3 ∈ (0.3, 0.7)

where a3 = 0.5 stands for symmetric bifurcation). Since the direction of flow can vary
due to the applied boundary conditions, an iterative process has been implemented to as-
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Figure 3.8: Example of 3D perturbation of a 2D Voronoi tessellation: (a) z − x plane

view (b) 3D view. From [99].

sign radius values. Such an iterative process requires to solve the fluid dynamic problem.
Therefore, one iteration is made by solving the problem and applying the Murray’s law. In
particular, the fluid dynamic problem has been solved applying 32mmHg and 15mmHg

at networks ends, to achieve flow distribution, and thus classifying junctions as bifurcation
or anastomosis. Then, Murray’s law has been applied, computing the radius for each ves-
sel starting from an initial value of the radius (specified at the inflow ends). This process
has been iterated until the flow direction is conserved in two subsequent iterations. This
iterative process has been applied to the 100 previously-generated 2D networks. More
precisely, 100 radius variation have been generated starting from 3 different initial radii
(4µm, 4.25µm, 4.5µm chosen with reference to the literature, e.g. [5, 61, 181, 194, 217])
for a total of 300 radius configuration for each 2D network.

3.5.3 3D perturbation and network selection

The obtained networks have been perturbed to obtain 3D geometry (figure 3.8) that fits
in a thin tissue slab with height ∆. The 3D perturbation changes the morphology of the
network in terms of both length and spatial distribution within the interstitium (therefore
related to the coupling with the environment). In particular, such a perturbation results
in longer vessels further spreading within the interstitium. If the height ∆ is small, e.g.
50µm, as is in the presented cases, these effect are negligible: difference in length' 2 %.
As a consequence, difference in mean interstitial pressure would be low. On the other
hand, even if these conditions are not represented in this work, we point out that if ∆

is big, significant differences in both intra- and extra-vascular fluid dynamics may occur
since the network morphology is definitely different. The 3D perturbation has been per-
formed 100 times on each network radius configuration. Among these 3 × 104 networks,
only those satisfying the following criteria have been selected: (i) radii inside the interval
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2− 6 µm, and (ii) mean value of radius (i.e.
∑
iRiLi/

∑
i Li) equal to 4 µm ±5%. Con-

sequently, 104 valid configurations have been obtained and used in the final step. Finally,
the resulting 3D networks have been stacked to obtain the desired capillary density (e.g.
for physiological conditions' 7000m−1 [199]). One of the resulting geometries is shown
in figure 3.9.

Figure 3.9: Example of an artificial generated network: (a) network with constant radius,

(b) network with radius computed by the Murray’s law.

3.5.4 Geometries used in this work

Generally speaking, several different geometries have been used in this work (figure 3.10).
The simplest one is composed only by a straight capillary that crosses the interstitial do-
main Ω. This geometry has been considered also in its curved version, with different
values of kR, i.e. considering a fixed radius R, a different curvature radius 1/k is ob-
tained. A further step towards a complex network consists in a network with one junction.
This can be either bifurcation or anastomosis. Also for the bifurcation, a curved version

has been modeled. Then, to increase geometrical complexity, a hexagonal structure has
been considered, namely a network with two junctions: one bifurcation and one anasto-
mosis. Even more complex networks result from the artificial generator described in this
paragraph, including a large number of junctions. All these geometries can be repeated
within the domain Ω to achieve a desired capillary density, expressed as S/V ratio, i.e. the
vessel lateral surface per unit volume of Ω. As a final remark of the paragraph, also the
geometry of an in vitro vascular networks have been considered as explained in the chapter
5.
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Figure 3.10: Examples of geometries used in this work. (a) Single straight capillary. (b)

Bifurcation composed by straight vessels. (c) Bifurcation with a curved vessel. (d)

Anastomosis of straight vessels. (e) Hexagonal structure comprehending a bifurcation

and an anastomosis. (f) Single Voronoi network used for the composition of a complex

network with S/V = 7000m−1.
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3.6 Computational test benches

Several and increasingly complex test cases have been analyzed to prove to what extent
this model can describe the involved phenomena. Consequently, peculiar effects of the
microvasculature have been tested (considering impermeable vessels, namely with Lp =

0). Then filtration, curvature of the vessel and lymphatic drainage have been addressed.
Model results have been compared to analytical solutions, real data (when available) of
with other computational simulations (i.e. 3D full approach by finite volume method).

3.6.1 Poiseuille’s flow and Fåhraeus - Lindqvist effect

First, the Poiseuille’s flow has been tested on a single straight capillary. To this end,
the values of parameters are specified as in the table 3.1. Given these parameters, the

Table 3.1: Parameter used for Poiseuille’s flow simulation.

SYMBOL PARAMETER UNITS VALUE REF.

d Characteristic capillary length m 5× 10−4 [218]

R Mean radius m 4× 10−6 [181]

µv Viscosity of blood cP 9.33 [98]

Pa Arteriolar side pressure mmHg 32 [194]

Pv Venular side pressure mmHg 15 [194]

P Characteristic pressure for adimensionalization Pa 133.32

U Characteristic velocity for adimensionalization m s−1 1× 10−3 [104]

Poiseuille’s equation allows us to compute:

Qb =
πR4

8µvL
∆p ' 4.9× 10−14m3/s = 4.9× 10−5mm3/s. (3.36)

Then, the velocity uv can be computed as:

uv =
Qb
πR2

' 0.97mm/s,

in agreement with the characteristic velocity reported in [104]. Results of the simulation
are shown in figure 3.11. The velocity is constant along the vessel due to mass conser-
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Figure 3.11: Results of the Poiseuille test case. On the left, contour of pressure within

the vessel in the 3D domain. On the right top: pressure distribution along the vessel

(results shown with reference to the fraction of vessel length x/L). On right bottom:

distribution of velocity in the vessel.

vation, and it is equal to 0.97mm/s, in agreement with the expected value. Conversely,
the pressure is not constant, but it linearly decreases along the vessel, as predicted by the
theory. This test has been conducted with a discharge hematocrit H = 0.45 which results
in 9.33 cP applying the Pries formula. Spanning in a larger interval of H , i.e. [0.30, 0.60],
the Fåhraeus - Lindqvist effect can be appreciated, namely the change in apparent viscos-
ity that results in different blood velocity when setting the same difference of pressure. A
comparison of theoretical prediction, i.e. derived from equation 3.36, and numerical re-
sults is presented in the figure 3.12. Given the agreement shown in that figure, the Fåhraeus
- Lindqvist effect is correctly reproduced by the model.

3.6.2 Zweifach - Fung effect

To test and appreciate the Zweifach - Fung effect, at least three vessels are required. Thus,
either a bifurcation of an anastomosis (or both) shall be considered. The effect cannot be
observed by analyzing the anastomosis as only the conservation of RBSs at the junctions is
sufficient to describe the phenomenon (figure 3.13). Therefore, in this case test, the mass
conservation has been checked with reference to an anastomosis composed by vessels with
different radii(table 3.2), modeling flow driven by the same ∆p used for the single branch
simulations. QH has been reported with a positive sign if i ∈ Koutj and negative otherwise.
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Figure 3.12: Graphs showing the effect of H variation in a single capillary test. On the

left, variation of velocity within the vessel, on the right, variation of the resistance ra-

tio. The latter is defined by the ratio of the hydraulic resistance for a given H over the

one obtained withH = 0.45. The hydraulic resistance is computed as (8µvL)/(πR4).

Continuous lines show theoretical prediction, whereas squares report numerical re-

sults.

Consequently, the sum of all the QH is expected to be null for mass conservation, as
obtained from results in table 3.2. Conversely, with reference to a more interesting case,

Figure 3.13: Variations of H for given R in an anastomosis.

such as the bifurcation, the heterogeneity of hematocrit distribution can be observed if the
radii of the daughter vessels are different. To model the problem a smaller domain has been
considered, that is a cube Ω with a 100µm side. For this reason, the pressure boundary
conditions to be applied have been recomputed, so that the characteristic velocity U =

1mm/s would be obtained in a straight single branch leading to ∆p ' 3.5mmHg. Three
different geometries have been used, with different daughter branches radii R1 = R2
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Table 3.2: Adimensional results in terms of H , uv and Qh for an anastomosis.

Branch1 Branch2 Outletbranch

H [-] 0.35 0.45 0.44

uv [-] 0.69 3.83 1.02

R [-] 0.003 0.005 0.01

QH [-] +6.84 · 10−6 +1.35 · 10−4 −1.42 · 10−4

(whereas ∗0 indicates variable referred to the father vessel). In the first one, the daughter
branches have the same radius, i.e. R1 = R2 = 3.17µm, which have been computed by
applying Murray’s law starting fromR0 = 4µm. Starting from it, the other two geometries
have been generated by applying a variation of 5% and 10% to one daughter vessel, and an
equal negative variation to the other branch. Referring to figure 3.14, the upper branches
have undergone a positive variation, resulting in a bigger radius. The influence of these
radius variations has been studied in terms of velocity, hematocrit, and viscosity (figure
3.14).

A quantitative analysis has been also reported in Table 3.3. In terms of velocity, results
are highly sensitive to radii variation, as expected by the theoretical description (equation
3.36). Indeed, since the radius is considered in the relationship with a 4th power, a small
variation of R produces large variations of flow rate and, thus, of velocity. Concerning
hematocrit, variations are also amplified according the magnitude of the perturbation. In
other words, RBCs hardly enter into the daughter branch with a smaller radius. Conse-
quently, in the branch where the radius has been decreased the hematocrit is lower than in
the one where it was increased. The viscosity is determined by both radius and hematocrit.
Therefore, lower hematocrit results in lower viscosity, but this effect has been hidden by
the radius dependence. This highlights the complex interaction of blood velocity, hemat-
ocrit, and viscosity at bifurcations. Their complex and non-linear interaction, which was
obtained by breaking the symmetry of the junction, is hardly predictable with simple mod-
els that do not take into account their combined effects.

Considering a hexagonal structure, both a bifurcation and an anastomosis can be ob-
served at the same time (table 3.4), leading to the previously described conclusion. The
applied geometry is shown in figure 3.15. The side of the interstitial cube is 500µm, and
the vessels downstream the bifurcation are separated by 50µm. Therefore, 32mmHg and
15mmHg have been set as boundary conditions. As found in the previous test, hetero-
geneity of the velocity and the hematocrit is generated downstream the bifurcation. For
mass conservation, the flow rate (πR2uv) and the hematocrit flow rate (πR2uvH) have
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Figure 3.14: Influence of radius variation in a bifurcation, as reported in Possenti et

al. [206]. In the first column, the daughter branches have equal radii R1 = R2 =

3.17µm, whereas in the second column±5% variation has been applied to the daugh-

ter vessel and in the third ±10%. The upper branch has undergone positive variation.

Results have been reported in terms of velocities (panel A), hematocrit (penel B) and

effective viscosity (panel C) ranking from top to bottom.

been restored downstream the anastomosis. The mass imbalance for the hematocrit has
been computed in the order of magnitude of 10−10, namely 5 orders of magnitude lower
than Qh.

A further analysis has been conducted employing the artificial generated vascular net-
work. This network is planar and it has been obtained by the aforementioned Voronoi
tessellation. The side of the surrounding cube is again 500µm. The same boundary con-
ditions have been applied, namely 32mmHg and 15mmHg, at the arteriolar and the
venular ends respectively. Including in the problem a larger number of bifurcations, a
larger range of variability characterizes the solution of H and µv as shown in figure 3.16.
This is in agreement with the reported heterogeneity of RBCs distribution within the mi-
crovasculature. In real vessels, under physiological conditions, this heterogeneity can also
lead to the extreme condition in which H = 0, namely vessels without RBCs. Although
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Table 3.3: Quantitative analysis of the simulations illustrated in Figure 3.14, as reported

in Possenti et al. [206].

reference 5% 10%

Branch 0 1 2 0 1 2 0 1 2
R 4.000 3.170 3.170 4.000 3.330 3.020 4.000 3.490 2.860

uv 0.656 0.522 0.522 0.669 0.568 0.483 0.697 0.617 0.446
%uv 2% 9% -8% 6% 18% -15%

H 0.450 0.450 0.450 0.450 0.480 0.407 0.450 0.498 0.351
%H 0% 7% -10% 0% 11% -22%

µ 0.009 0.012 0.012 0.009 0.012 0.012 0.009 0.012 0.011
%µ 0% 0% -3% 0% -2% -8%

Table 3.4: Results in terms of H , uv and Qh for an hexagonal structure.

Intletbranch Branch1 Branch2 Outletbranch

R (µm) 4.5 3.85 3.25 4.5

uv (mm/s) 1.07 0.96 0.72 1.07

H (-) 0.45 0.49 0.38 0.45

Qh(mm3/s) 3.07× 10−05 2.18× 10−05 8.97× 10−06 3.07× 10−05

this extreme condition has not been found in the figure 3.16, the reported variability has
shown that such condition can be met. However, this is strictly related to the network
morphology.

An experimental comparison has been performed considering data from microfluidic
devices. As discussed in the first chapter, the main limitation of such devices is related
to the cross-section of the device. Therefore, when considering those models for a com-
parison with the 3D-1D model (i.e. a computational model considering circular cross-
sections), the proper diameter of the vessel should be considered as well. To this aim, the
hydraulic diameter has been used for the vessels. It has been computed as Dh = 4A/2P ,
where A is the experimental square cross-section and 2P is the perimeter. As a conse-
quence, considering a rectangular cross section channel and its approximation to a circular
vessel with the diameterDh, the same flow rate is obtained with the same ∆p. The consid-
ered experimental data have been taken by the work of Clavica and colleagues [114]. They
proposed an analysis of the Zweifach - Fung effect in a simple network which consists of
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Figure 3.15: Zweifach - Fung effect in an hexagonal structure.

a bifurcation and a downstream anastomosis (figure 3.17). Three different versions of this
simple geometry have been used in the experimental test by the authors: (i) symmetric
model, in which the daughter vessels are equal; (ii) dilated model, in which one daughter
vessel is larger than the other one; (iii) stretched model, in which one daughter vessel is
longer than the other one. In their work, RBCs velocity and hematocrit density and flux
have been analyzed in the parent vessel and in the daughter vessels. Starting from the tube
hematocrit reported, the H has been computed along with the ratio between RBCs veloc-
ity and the bulk velocity using the relation proposed by Pries and colleagues [97]. Since
the glycocalyx was not present in their in vitro model, the viscosity has been computed by
means of the in vitro law of viscosity described in the first chapter. Boundary conditions
have been adjusted to match the flow rate in the parent vessel for each configuration. Re-
sults of the comparison are shown in the table 3.5. They conducted several experiments
with different ∆p driving the flow, resulting in different flow rate within the network. In
the table, all the experimental results have been included, reporting the median values.
Experimental ranges shown by the authors are wider (e.g. between 0.5 and 3.5 for the
experimental flux ratio in the symmetric model), producing oscillations interpreted by the
author as a consequence of the non-linear rheology. Given all the differences among exper-
imental and computational setup (e.g. the cross-section of the vessel, which may influence
the RBCs distribution at the bifurcation), and the very sharp angle considered in the in

vitro experiment, the model has reproduced the phenomenon quite well and always within
the experimental ranges (in table 3.5 only median values are shown). In addition, also the
possible inversion of the Zweifach - Fung effect has been addressed in their work, namely
a different distribution of RBCs in the same bifurcation while considering the same flow
rates. This phenomenon has not been reproduced by the model so far since for a given ge-
ometry and a determined flow rate distribution (i.e. FQB), the fraction of RBCs entering
the daughter vessels (i.e. FQE) is uniquely determined. However, once this phenomenon
is completely understood, it shall be included in the model, by modifying the function
which determines FQE .
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Figure 3.16: Zweifach - Fung effect in an artificially generated planar Voronoi network.

Black arrows indicate direction of flow.

Table 3.5: Result of the comparison with experimental data of [114]. Both experimental

and computational ratios are referred to B′/B as shown in figure 3.17. Median val-

ues resulting from different experiments (in terms of ∆p applied) have been reported,

but experimental ranges are wider (in the brackets the maximum of the 3rd quartile

and the minimum of the 1st quartile considering all the conditions). In particular,

computational results always fall in the experimental ranges.

Geometry Experimental flux ratio Computational H ratio

Symmetric ' 1 (0.82-1.41) 1
Dilated 1.03-1.14 (0.77-1.63) 1.2

Stretched 0.41-0.58 (0.33-0.71) 0.66
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Figure 3.17: Experimental geometries considered in [114]. (a) Symmetric model. (b)

Computational geometry reconstructed for the symmetric model. (c) Dilated model:

the upper vessel is dilated with respect to the same vessel in the symmetric geometry.

(d) Stretched geometry: the bottom vessel has been stretched resulting longer than the

upper.
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3.6.3 Vessel permeability

In this section, the coupling between the vascular networks is presented. To this end, a sin-
gle straight capillary has been first analyzed. The parameters for this test have been chosen
from literature to model the exchange of fluid between the two domains (table 3.6). Due to
the filtration from the vessel, a slight flow rate has been generated within the interstitium
(figure 3.18a). The interstitial velocity is definitely lower than reported in vivo, but this is
consistent with the fact that only one capillary vessel has been considered in a large portion
of the Ω domain. This movement of fluid within the interstitium has been associated with
an increase in interstitial pressure (figure 3.18b). The value of velocity within the vessel
is in agreement with the case Lp = 0, since the filtration rate is definitely lower than the
flow rate flowing within the vessel. The main difference regards the velocity profile along
the vessel (figure 3.18c). Due to net filtration, a portion of the flow rate flowing in the
vessel goes out from the lateral surface of the vessel. Therefore, the term ∂sπR

2uv is no
longer equal to 0, namely uv is not constant along the vessel. In particular, when filtration
happens (i.e. arteriolar side), uv decreases, whereas when fluid is absorbed by the vessel
(i.e. venular side) uv increase. Again, given a physiologicalLp value, the abovementioned
phenomeno has a low effect, since filtration has a lower order of magnitude with respect to
the vessel flow rate. Although less evidently, also the pressure within the vessel is affected
by filtration in a similar way (figure 3.18d). At this low level of complexity, the solution
can be compared with the analytical one with a couple of assumptions: (i) pt constant
on the domain Ω, and (ii) µv constant over the vessel, namely neglecting the influence of
hematocrit. Computationally, the first assumption is well satisfied if the value of the tis-
sue hydraulic conductivityK is sufficiently high. Therefore, four computational tests have
been run using withK = 10−8m2 and testing Lp = 10−12, 10−10, 10−8, 10−6m2 s kg−1.
These last values are far from the physiological and pathological values, but they allow us
to test the model by producing larger variations in both the velocity and the pressure pro-
file. The analytic solution can be derived from:

∂2pv
∂s2

− 2πRLp
πR4

8µv

(
1 + κ2(s)R2

)
pv(s) = −2πRLp

πR4
8µv

(
1 + κ2(s)R2

)
[ ¯̄pt + σ∆π] ,

pv(s = 0) = 32 , pv(s = L) = 15 ,

where a straight vessel is considered, namely κ = 0, and due to the first assumption
¯̄pt ' p0. Thus, the solution has been obtained as:

pv(s) = Ae−
√

2πRLp

8πR4 µv s +Be

√
2πRLp

8πR4 µv s + C ,

where A, B, C have been computed by setting the boundary conditions for each case.
As shown in the figure 3.19, the numeric solution is in agreement with the numerical
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Table 3.6: Parameter used for simulate 3D-1D interactions.

SYMBOL PARAMETER UNITS VALUE REF.

d
Characteristic capillary

length
m 5× 10−4 [218]

R Mean radius m 4× 10−6 [181]

µv Viscosity of blood cP 9.33 [98]

Pa Arteriolar side pressure mmHg 32 [194]

Pv Venular side pressure mmHg 15 [194]

P
Characteristic pressure

for adimensionalization
Pa 133.32

U
Characteristic velocity

for adimensionalization
m s−1 1× 10−3 [104]

K
Tissue hydraulic

conductivity
m2 1× 10−18 [162]

Lp
Wall hydraulic

conductivity
m2 s kg−1 10−12 [162]

δπ
Oncotic pressure

gradient
mmHg 25 [194]

σ Reflection coefficient [−] 0.95 [219]

βt
Boundary conductivity

of ∂Ω
m2s/kg 8× 10−12

computed
as [162]

p0 Far field pressure mmHg −1 [30]

H0
Hematocrit at inlet of

capillary
− 0.45 [5]
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Figure 3.18: Modeling of filtration from a single straight vessel in a cubic domain Ω. The

side of the cube is 500µm. Distribution of velocity (a) and pressure (b) in both the

vessel and the interstitium. Plot of the velocity (c) and pressure (d) profile along the

vessel.

one. Moreover, the larger Lp is, the larger the variation of the pressure profile is. In
particular, also the extreme behavior produced by a very high Lp is correctly reproduced
by the model. Indeed, the plateau reached in the middle of the vessel corresponds to the
condition pv = pt + σ∆π, where no filtration/absorption occurs. Such variation in the
pressure profile is caused by the hydraulic conductivity of the capillary membrane, which
certainly produces also a variation of the flow rate within the vessel and thus a variation of
velocity. In particular, in the middle of the vessel, where the pressure profile is almost flat,
the velocity is close to 0.

A further interesting test has been conducted by repeating the single vessel 3 and 10
times, namely increasing the available surface area for the filtration/absorption. Vessels
are arranged as shown figure 3.20. As expected, a linear relation is obtained between total
length (i.e. the lateral surface area since the radius is constant for this test) and the filtration
rate. Interestingly, when analyzing planar Voronoi networks this clear trend has not been
reported. This because the morphology of the network influences the pressure distribution,
resulting in different pressure conditions eventually leading to different filtration rate. This
result highlights that accounting for the geometry is important to capture local phenomena.
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Figure 3.19: Test case for vessel filtration using a straight vessel. Lines report theoretical

prediction from the analytical solution, squares show modeling results.

In addition, the filtration has also effect on RBCs because they cannot pass through the
membrane. As confirmed by the core analytic equation 3.17, this has a small impact
if compared to the heterogeneity due to the Zweifach - Fung effect. Anyway, it is still
naturally present in the model (figure 3.21). This test has been conducted on a single
straight capillary with Lp = 10−12 and Hin = 0.45. Results of the model have been
compared to the analytic solution, which is, known the velocity profile along the vessel:

H(s) =
uv(s = 0)

uv(s)
H(s = 0) .

As seen in the previous test, the velocity is no longer constant along the vessel due to
vessel permeability (figure 3.21a). In particular, the velocity within the vessel decreases
because of filtration (i.e. variations happening at the arteriolar side). Indeed the flow rate
decreases, consistently to mass conservation, due to the filtration from the vasculature. As
clearly shown by the analytical solution, the hematocrit profile is affected by this veloc-
ity variation. More precisely, a decrease in the velocity induces an increase in H (figure
3.21c). This variation is reflected also in the viscosity (figure 3.21b). However, as dis-
cussed above, the filtration rate is low if compared to the vessel flow rate. Therefore,
the variations of velocity are low. Indeed, they reflect the variation of flow rate due to
filtration/absorption across the capillary membrane. Such low variations of velocity con-
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Figure 3.20: Test case for network surface area, i.e. vessel length when considering a

fixed radius. On the top: space arrangement of the 3-vessel (a) and the 10-vessel (b)

geometry. On the bottom: graph showing the filtration-network length relation for

repeated single straight vessel (c) and for several different planar Voronoi network (d).

Negative filtration depicts absorption of fluid by the network.

sequently produce low variations of H and µv . Since also µv affects the velocity profile,
the inverse interaction should also be considered. Nevertheless, the velocity profile is not
significantly affected by these little changes of viscosity (i.e. a comparison between fig-
ure 3.21a and figure 3.18 in which RBCs transport has not been modeled). If a greater
Lp is considered, these coupled phenomena may become relevant to the point of produc-
ing significant variations when modeling a single vessel. However, by using parameter
values depicting physiological conditions, these effects have a lower magnitude than the
Zweifach - Fung effect.

The last considered test on vessel permeability is more complex than the abovemen-
tioned cases. Indeeed, it comprehends the Fåhraeus - Lindqvist effect, Zweifach - Fung
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Figure 3.21: Results of the test to consider the effect of the filtration on the hematocrit.

Velocity (a), viscosity (b), and hematocrit (c) profile along the vessel are shown. The

agreement between the analytic and the numerical solution is reported in (d).

effect and the capillary wall permeability. A network with a physiological capillary den-
sity has been created (' 7000m−1) by stacking different Voronoi networks as described
in the section 3.5. Results are shown in figure 3.22. The hydraulic pressure within the net-
work decreases from the arteriolar (i.e. ' 32mmHg) to the venular end (' 15mmHg),
as expected. This variation of pressure through the capillary bed influences the pressure
in the interstitial space, as shown in the middle left panel by the slice of the interstitial
pressure field. Close to the arteriolar end of the network, an increased interstitial pressure
level is visible, while it decreases below average next to the venules. The subsequent num-
ber of junctions intensifies the overall influence of the Zweifach - Fung effect, leading to
a large heterogeneity of hematocrit. The blood velocity (shown in the top right panel) is
not uniformly distributed and several branches are characterized by a flow rate that is sig-
nificantly lower than the average. Apparent viscosity is less heterogeneous, in agreement
with the observations of Figure 3.14.
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Figure 3.22: Visualization of the flow in a complex network interacting with the intersti-

tial volume, as reported in Possenti et al. [206]. In particular, the panels show: the

pressure drop along the network (top left); the velocity magnitude (top right); the pres-

sure variation along a slice of the interstitial volume combined with the pressure in

the network (middle left); the velocity field along a slice of the interstitial volume (the

vectors show the direction and the colors the magnitude, middle right); the hematocrit

distribution in the network (bottom left); and the effective viscosity (bottom right).
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3.6.4 Vessel curvature

Up to this section, only straight vessels have been considered. However, the model has
been derived accounting also for the curvature of the vessel. To analyze the effect of the
curvature, a simple test case has been considered. A small portion of a capillary has been
used (i.e. 100µm) with one straight and two curved configurations (figure 3.23). These

Figure 3.23: Geometry used for the curved vessel test. From the left: straight vessel,

vessel with κR = 0.06 and κR = 0.11.

have been computed to obtain a constant curvature along the vessel, namely a circular
arch, such that κR = 0.06 and κR = 0.11. The length of the vessels is the same in all
the three cases. Since a small portion has been considered, boundary conditions are the
same adopted before for a similar case. Therefore, a difference of pressure of 3.5mmHg

has been applied. Considering impermeable vessel that is Lp = 0, the velocity is constant
along the vessel and the solution of the straight vessel coincides with the Poiseuille case
already computed. For the other cases, by the theoretical prediction, lower velocities are
expected with an increase of the curvature:

uv(s) =
uv(s)|κ=0

1 + κ2R2
.

A comparison between the theoretical prediction and the results of the model is shown in
figure 3.24. The numerical solution well reproduces the theoretical prediction. In partic-
ular, the velocity results constant, and it decreases with higher curvature, as expected. A
comparison for the two curved cases has also been conducted with a standard computa-
tional approach by finite volume method [220] using as solver ANSYS Fluent R© (ANSYS
Inc., Canonsburg, PA). Therefore, 3D domains have replicated for the two curved con-
figurations. At the ends of the domain, the vessels have been extended in order to apply
boundary condition far from the region of interest. Vessels have been discretized by hexa-
hedral elements (' 3 × 105). After a mesh sensitivity analysis, a velocity inlet condition
has been set using the value obtained from the 3D-1D model, allowing the comparison
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Figure 3.24: Comparison of the velocity profile in a straight vessel, a vessel with κR =

0.06 and κR = 0.11, as shown in Possenti et al. [206]. Continuous lines show model

result, whereas dotted line theoretical prediction.

of the pressure difference driving the flow in the curved part of the network. Given this
problem setup, the expected pressure difference at the ends of the curved portion of the
vessel is 3.5mmHg. Data from the 3D model (figure 3.25) resulted in agreement with
those of the 3D-1D model as reported in the table 3.7. In particular differences in the ∆p

are low, about 1-2 %.

Table 3.7: Comparison between the classical 3D CFD approach and the proposed 3D-1D

approach.

κR 0.06 0.11

uv|3D−1D (mm/s) 0.9964 0. 9880

∆pv|3D−1D (mmHg) 3.50 3.50

uv|CFD (mm/s) 0.9964 0. 9880

∆pv|CFD (mmHg) 3.47 3.44

Error∆pv (%) 0.4 1.8

In addition, those simulations support the assumptions made when deriving the model.
Indeed the axial velocity is clearly the dominant velocity, as shown in the figure 3.26 by
comparing the velocity magnitude and the axial velocity. Consequently, as shown in the
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Figure 3.25: Results of the 3D model solved by finite volume method. On the left the

geometry characterized by κR = 0.06, and κR = 0.11 on the right. The top line shows

the distribution of pressure, whereas the bottom line shows the velocity distribution.

same figure, the pressure is almost constant over the cross-section. These two observations
validate the assumption of dominant axial velocity on which the model for curved vessels
has been built.

Figure 3.26: Section of the 3D model. From the left: pressure, axial velocity, and velocity

magnitude. Contours show constant pressure over the cross section and negligible

differences between axial and magnitude velocity.
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3.6.5 Lymphatic modeling

Last tests have been performed to analyze the lymphatic drainage modeling. To this aim,
2 different formulations have been compared: (i) a linear formulation, i.e. based on classi-
cal Straling’s equation neglecting osmotic differences across the lymphatic membrane; (ii)
the proposed non-linear formulation. For the linear formulation, two different values of Lp
have been considered. To guarantee meaningful results, a correct S/V ratio must be used
to define the vasculature. For clarity, a simple hexagonal network has been chosen, and
repeated within a 500µm-side cube, in order to obtain the proper S/V ratio. This unit has
been arranged on parallel horizontal planes along two orthogonal directions to avoid per-
fect alignment of the network. Higher-pressure ends have been kept in two adjacent faces
of the tissue sample, creating high and low pv zones. Considering the coupling with inter-
stitium, such pressure conditions shape areas where filtration from the network is mainly
expected, and others (close to venular ends) in which absorption of fluids happens. For
the boundary ∂Ω, namely the boundary of the interstitial domain, a no-flow condition has
been set by using homogeneous Neumann conditions. Doing so, equilibrium conditions
have been addressed, in which no volume is accumulated within the tissue. Thus, if we
consider n the normal vector to ∂Ω, the condition is:

ut · n = 0 on ∂Ω .

Different working points have been modeled to observe the behavior of the lymphatic
drainage modeling. Consequently, physiological and uremic conditions are reproduced by
the parameters (table 3.8). The choice of these parameters will be further discussed in
the chapter 4. In this test, the viscosity of blood has been considered constant, i.e. the
heterogeneity of the RBCs distribution has not been included. A total of six cases have
been simulated, combining the 3 models with the 2 conditions addressed, as summarized
in the table 3.9. Consequently, the following cases have been defined:

• CASE A: physiological conditions with a linear lymphatic drainage formulation us-
ing the maximum slope of the non-linear function (green line in figure 3.27);

• CASE B: physiological conditions with a linear lymphatic drainage formulation con-
sidering the slope defined by Chamney et al. [56] (red line in figure 3.27);

• CASE C: physiological conditions with the proposed non-linear lymphatic drainage
formulation - (blue line in figure 3.27);

• CASE D: pathological conditions (uremia) with a linear lymphatic drainage formu-
lation considering the maximum slope of the non-linear function;
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Table 3.8: Values of the parameters used in the analysis.

Sym-
bol Parameter

Physiologi-
cal

conditions
Ref.

Pathological
conditions

Ref.

L
Average capillary length

(m)
5 × 10−4 [218] 5 × 10−4 [218]

R
Average capillary radius

(m)
4 × 10−6 [5] 4 × 10−6 [5]

k
Hydraulic conductivity

of the tissue (m2)
10−18

[71,
162]

10−18
[71,
162]

µt
Interstitial fluid
viscosity (Pa s)

1.2 × 10−3 [71] 1.2 × 10−3 [71]

Hd

Discharge hematocrit
(%)

45 [5] 35
[200,
201]

µv Blood viscosity (Pa s) 9.3 × 10−3 [98] 7.2 × 10−3 [98]

σ
Capillary wall reflection

coefficient (-)
0.95 [219] 0.75

[127,
219]

∆π
Oncotic pressure

gradient (mmHg)
25 [194] 19

[54,
200,
201]

S/V Density (m−1) 7000 [199] 4900
[183,
199]

Lp

Capillary wall hydraulic
conductivity
(m2 s kg−1)

10−12 [162] 8.8 × 10−12 [127]
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• CASE E: pathological conditions (uremia) with a linear lymphatic drainage formu-
lation considering the slope defined by Chamney et al. [56];

• CASE F: pathological conditions (uremia) with the proposed non-linear lymphatic
drainage formulation.

Necessary parameters to define the non-linear model have been adopted as described in
the section 3.2.3. Conversely, the parameters S/V |LLp,L and pl have been computed
as follow. First, S/V |LLp,L has been defined as the slope of: (i) the linear portion of the
function reported by [56], for CASE A and CASE D; (ii) the maximum slope of the sigmoid
function, for CASE B and CASE E. Then, pL has been determined in both the cases, so that
the physiological working point (i.e. pl = −1mmHg and φlymphatics = 2ml/min in
the figure 3.27) belongs to the linear function.

Figure 3.27: Lymphatic drainage formulations as a function of interstitial hydraulic pres-

sure, as shown in Possenti et al. [221]. Formulation of Camney et al. [56] adapted to

match interstitial pressure at the working point reported by Ebah et al. [30] - dotted

black line. Linear formulation (by means of Starling’s principle) with lymphatic wall

hydraulic conductivity equal to the maximum slope of non-linear function - green line.

Linear formulation with lymphatic wall hydraulic conductivity as Chamney et al. [56]

- red line. Proposed sigmoid formulation - blue line. Flow rate values are scaled up to

the overall extra vascular reference volume equal to 39 l [5]
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Table 3.9: Summary of the analyzed cases.

Lymphatic drainage
description

Physiological
conditions

Pathological
conditions
(Uremia)

Maximum slope (linear) CASE A CASE D

Mean slope (linear) CASE B CASE E

Non-linear CASE C CASE F

Results of the simulations have been evaluated in terms of three variables:

• interstitial fluid pressure (pt), expressed in mmHg;

• lymphatic drainage (ϕlymphatics), expressed in percentage of the maximum admis-
sible value reported in literature [5, 56];

• vessel to tissue net flow rate (NFR) of fluids, expressed in ml/min; NFR results are
scaled up so that they represent the whole extra-vascular volume in the body [5].

These three variables are presented in terms of both spatial distribution and average val-
ues, which have been computed as an integral mean over the considered domain. When
using the linear modeling approach, the lymphatic system acts by keeping the interstitial
pressure as close as possible to pl, even if a back-flow is required (figure 3.28). Interest-
ingly, the higher Lp,LF is, namely the hydraulic conductivity of the lymphatic capillary
wall, the larger back-flow zones are (i.e. comparing CASE A and B). Specifically, a higher
Lp,LF allows for an emphasized action of the lymphatic system (local maximum drainage
CASE A: 19 %, CASE B: 13 %), resulting in a lower variation of interstitial pressure. By
considering a non-linear function, back-flow is prevented in CASE C. Consequently, this
case yields different results compared to the two above mentioned cases, in terms of both
interstitial pressure and NFR with averaged differences bigger than 10 %.
The second analyzed working point, depicting uremic conditions (i.e. CASE D, E and
F), results in higher interstitial pressures 3.5mmHg and 5.9mmHg (table 3.10). Con-
sequently, the working point is located in the right part of the figure 3.27. In these cases,
no back-flow is reported. On the other hand, in some areas, a net lymphatic flow rate
obtained was too intense. It is greater than the expected 20-fold increase compared to
physiological conditions [5, 56] and it is highlighted by grey color. This phenomenon is
present only when using linear model. Again, a greater Lp,LF produces a lower variation
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Figure 3.28: Lymphatic drainage (top) and interstitial fluid pressure (bottom) for physio-

logical conditions considering the three different formulations, as shown in Possenti et

al. [221]. Contours are shown on half the domain Ω (identified by the black wire box).

Negative lymphatic drainage, that is lymphatic non-physiological behavior, is marked

in black. Direction of flow within the vascular network is the same for all the presented

cases, and it is indicated by the arrows in the top right case.
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Figure 3.29: Lymphatic drainage (top) and interstitial fluid pressure (bottom) under

pathological conditions is considered for the three different formulation, as shown in

Possenti et al. [221]. Contours are shown on half the domain Ω (identified by the

black wire box). Excessive drainage, that is lymphatic non-physiological behavior,

was marked in grey. Direction of flow within the vascular network is the same for all

the presented cases, and it is indicated by the arrows in the top right case.

106



3.6. Computational test benches

Table 3.10: Averaged results for both physiological and pathological conditions, as re-

ported in Possenti et al. [221]. Physiological conditions in the upper part of the table

(CASE A, CASE B and CASE C), and pathological conditions at the bottom (CASE D,

CASE E and CASE F). Net filtration rate (NFR) is scaled to indicate the value for the

whole extra-vascular volume in the body [5]. Percentage variations are taken with

respect to simulation with the proposed non-linear formulation (CASE C and CASE F).

Physiological CASE A CASE B CASE C

pt (mmHg) -1.02 -1.04 -1.17

+13 % +11 % -

NFR (ml/min) 1.64 1.69 1.96

-16 % -14 % -

Pathological CASE D CASE E CASE F

pt (mmHg) 3.53 5.58 5.91

-40 % -6 % -

NFR (ml/min) 68.3 43.7 39.6

+72 % +10 % -

of interstitial pressure from the value of pl (figure 3.29, CASE D vs E). On the other hand,
similarities in the interstitial pressure are found when analyzing CASE E and F (table 3.10)
if considering averaged values. This is due to the proximity of the two curves for pressure
around 5.5mmHg (figure 3.27). As a general observation, linear models can be used as
an approximation of a non-linear phenomenon in precise working conditions. However,
in the proposed model the right conditions for the linearization cannot be identified, due
to the spatial variation of pt. Because of the filtration/absorption, an interstitial pressure
gradient has been induced by the pressure gradient inside the network. For these reasons, a
non-linear modeling approach is necessary to model fluid homeostasis at the microscale.
Indeed, even if mean values may look similar for interstitial pressure in table 3.10, the
spatial distribution is different as shown in figure 3.28 and 3.29. These local differences
and effects are not negligible when trying to accurately describe homeostasis within the
microenvironment.

As a remark, the contribution of lymphatic nodes in fluid reabsorption can be included
in the model. In particular, since the estimate of 2ml/min for the whole body is based
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on thoracic duct flow, their inclusion would result in a greater lymphatic drainage. Taking
reference values from the literature (e.g. 5.5ml/min from [34]) and assuming that the
20-fold increase still holds true, the lymphatic drainage function can be redrawn. Doing
so, all the three functions considered in the analysis change by a factor k equals to the ratio
of the reference values (5.5/2 = 2.75). The physiological reference condition under these
conditions (pt ' −1mmHg, and φlymphatics ' 5.5ml/min)is reached by prescribing
36mmHg and 15mmHg and the inlet and outlet ends of the vascular network, namely
within the ranges defined in [34]. Additional numerical simulations (not shown in these
work) obtained by modifying these parameters support the conclusion that the different
value for the lymphatic drainage does not affect qualitatively the results. On the other
hand, some quantitative difference are present, but the resulting value of the interstitial
pressure are still within the experimental range defined by [30]. As a consequence, the
conclusion of the present research are not affected by such a modification. A deeper inves-
tigation on parameters value, along with the inclusion of the glycocalyx on filtration, will
represent one of the next points toward the development of a more detailed model. Future
work should deal with the set up of a suitable methodology for parameter estimation, also
considering different types of tissue.
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CHAPTER4
Use of the 3D-1D model under uremic

conditions

In this chapter two applications of the 3D-1D model are presented. First, the applica-

tion to uremic microcirculation is discussed and then a sensitivity analysis is described.

Finally, the chapter ends with a general discussion of the results and the two applications

of the model. A portion of the content of this chapter has been also included in the work:

• ’Computational modeling of the interaction of lymphatic and vascular microcircu-

lation in uremia’, by Possenti et al., presented at the GNB2018 conference.
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4.1 Uremic microvasculature

The 3D-1D model described in the previous chapter has been used to simulate physiologi-
cal and uremic microcirculation. The aim of this simulation is to analyze the fluid balance
in the micro-environment with reference to the uremic pathology. As further described in
the first chapter, microvascular changes due to uremic pathology are still not fully under-
stood, and neither their role in the development of the pathology. In this framework, a
computational tool able to describe phenomena at the microscale is useful to understand
them. In particular, coupled with in vitro models, such computational approach enables a
step-by-step process which may eventually lead to a deeper understanding of the involved
phenomena.

4.1.1 Methods

The method used in this section is presented describing: geometries, parameters and con-
sidered output variables.

Geometries To model the effects produced by pathological microvascular alterations,
the 3D-1D model has been used to describe a representative healthy and uremic microvas-
culature. Therefore, two artificial networks have been generated as described in the pre-
vious chapter, in order to depict two different S/V ratios. Different values of capillary
density, namely the S/V ratio, can be found in literature showing the variability among
tissues, subjects, and species. In an interesting study, Ebah and colleagues [30] have re-
ported data of interstitial pressures for both healthy and uremic patients, showing an in-
crease of pressure related to fluid accumulation, with reference to the subcutaneous tissue.
Therefore, in our model, we consider the subcutaneous tissue as a reference. The cap-
illary density is often addressed by different measure techniques such as the number of
vessels in a region of interest (2D or 3D). The value reported by Baxter and Jain in their
study [199] has been adopted as reference for the healthy tissue: S/V = 70 cm−1. Then,
since microvascular impairment has been observed both in animal studies and in uremic
patients reporting a lower capillary density, S/V under uremic conditions should be lower.
The work of Amann and colleagues has been considered to compute this value [183], since
they directly report the capillary density alteration by the S/V ratio. By comparing the
values they reported, a reduction of about the 30% has been computed. Consequently,
the S/V ratio under uremic conditions has been set to 49 cm−1. The two considered ge-
ometries are shown in the figure 4.1. To complete the vascular description, the pressure
boundary conditions have been set as 32mmHg and 15mmHg for both cases, and the
arteriolar and venular ends have been arranged as in figure 4.1. The computational setup
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Chapter 4. Use of the 3D-1D model under uremic conditions

Figure 4.1: Geometries for the healthy and the uremic conditions. On the left: healthy

condition. S/V ' 70 cm−1. Center: uremic condition. S/V ' 49 cm−1. On the

right: boundary conditions arrangement; faces highlighted by red color correspond to

arterial ends of the network, blue to venular ends.

has been similar to the one used for lymphatic drainage test cases. The two vascular net-
works have been modeled within a cubic domain Ω, with a side of 500µm. The boundary
of the interstitial domain are considered closed, namely, no fluid can exit from the do-
main through the face of the cube. Such a setup allows the description of the equilibrium
condition, in which fluid is not accumulated within the tissue.

Parameters All the parameters used for this simulation are shown in the table 4.1. Five
parameters have been changed between healthy and uremic microvasculature: (i) H , and
consequently µv; (ii) σ; (iii) ∆π; (iv) S/V ; and (v) Lp. The alteration of S/V has already
been discussed. The change in H has been set replicating the change in blood hematocrit
available from clinical data [5, 200, 201]. The apparent reduction in the RBCs content is
mainly caused by an increase of the plasma volume, which induces a dilution of all the
blood content. For the same reason, the protein concentration in the blood is lower, lead-
ing to a lower difference of oncotic pressure π. Since direct measurement of the interstitial
fluid pressure in healthy subject and uremic patients is challenging, the estimated value
given by the computational model of [53] has been used. Their model is based on clinical
data, and by means of a compartmental approach, it provides an estimate of compartmental
volume and fluid concentration. The data they reported have been used to set ∆π, which
in the model is not a function of the spatial coordinate. The other two changed parame-
ters regard capillary membrane properties. Uremic toxins may affect those properties, as
shown by Harper and colleagues [127]. They studied the alteration of Lp and σ by means
of an animal model perfused with plasma from both a normal subject and a uremic pa-
tient. Doing so, they addressed the change of these parameters due to the overall effect of
the uremic toxins accumulated in the blood (hundreds of solute, chapter 1). The relative
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4.1. Uremic microvasculature

Table 4.1: Values of the parameters used in the uremic alteration analysis.

Sym-
bol Parameter

Physiologi-
cal

conditions
Ref.

Pathological
conditions

Ref.

L
Average capillary

length (m)
5 × 10−4 [218] 5 × 10−4 [218]

R
Average capillary

radius (m)
4 × 10−6 [5] 4 × 10−6 [5]

k

Hydraulic
conductivity of the

tissue (m2)
10−18

[71,
162]

10−18
[71,

162]

µt
Interstitial fluid
viscosity (Pa s)

1.2 × 10−3 [71] 1.2 × 10−3 [71]

H
Inlet condition for

hematocrit (%)
45 [5] 35

[200,
201]

µv
Blood viscosity

(Pa s)
9.3 × 10−3 [98] 7.2 × 10−3 [98]

σ

Capillary wall
reflection coefficient

(-)
0.95 [219] 0.75

[127,
219]

∆π
Oncotic pressure

gradient (mmHg)
25 [194] 19

[54,
200,
201]

S/V Density (m−1) 7000 [199] 4900
[183,
199]

Lp

Capillary wall
hydraulic

conductivity
(m2 s kg−1)

10−12 [162] 8.8 × 10−12 [127]
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Chapter 4. Use of the 3D-1D model under uremic conditions

change reported by the author has been considered to model Lp alteration. As a conse-
quence, the healthy reference value for Lp, 10−12 [162], has been corrected by a factor
8.8, resulting in 8.8 × 10−12. They reported also a decrease of the reflection coefficient of
the capillary membrane, i.e. the ability of the membrane to keep plasma protein inside the
vasculature. Thus, the parameter σ has been decreased in the uremic model. However the
value reported in their study was very low (0.53), and in particular lower than the human
ranges defined by Levick [219] for this parameter: 0.75 − 1. Therefore, the lower value of
this interval has been chosen for the analysis. Since no data have been found concerning
changes of the other parameters, those have been kept unchanged under the two condi-
tions. In addition, also the same lymphatic system description has been used under both
the simulated conditions.

Output variables considered Results of the two simulations have been shown in terms
of averaged values and spatial distribution of the variable considered. As previously done
for the lymphatic test case, the averaged interstitial fluid pressure (pt) and the vessel to
tissue net flow rate (NFR) of fluids have been considered. Moreover, spatial heterogeneity
of velocity, hematocrit, and viscosity have been discussed. One of the advantages of a
computational approach is that it allows an easy outline of the effects of different parameter
variations. Therefore, five additional simulations have been run, changing one parameter at
a time, to show their respective effect on the interstitial pressure and the NFR. Concerning
pressure, variations of the output have been computed as:

pt|var,i = pt,i − pf,physiological .

Conversely, the variation of NFR have been normalized as follows:

NFR|var,i =
NFRi −NFRphysiological

NFRphysiological
.

4.1.2 Results

Spatial distribution of interstitial pressure, lymphatic drainage, hematocrit H , and blood
velocity are shown in figure 4.2. Under both the two conditions analyzed, a gradient in
the interstitial pressure has been reported. Such gradient reflects the gradient of existing
pressure within the vasculature, i.e. from the arteriolar to the venular ends. Indeed, the two
domains Ω and Λ are coupled because of the semi-permeability of the capillary membrane.
In particular, the vascular pressure is determined by the boundary conditions applied, the
network morphology and the consequent flow rate. On the other hand, the interstitial
pressure is determined by the interactions with both the vascular network (i.e. filtration and
absorption) and the lymphatic system. Despite the pressure within the network has been
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4.1. Uremic microvasculature

Figure 4.2: Results under both healthy and uremic conditions. First row: interstitial

pressure (mmHg). Second row: lymphatic drainage expressed as percentage of φmax.

Third row: hematocrit within the vasculature. Fourth row: blood velocity (mm/s).

For velocity, black color highlights vessel with velocity greater than 4mm/s. For

hematocrit, out of range vessel are identified by black if H < 25%, or by deep red if

H > 50%.
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Chapter 4. Use of the 3D-1D model under uremic conditions

set at the same values under the two conditions and the lymphatic drainage formulation is
the same, different values of the interstitial pressure have been reported in the uremic case.
Thus, the variation of the parameters affects the interstitial pressure, leading to an increase
with respect to physiological conditions. Also, the spatial gradient of pressure is greater
under pathological conditions. This is also confirmed by the larger velocity magnitude
within the interstitium. Under uremic conditions, the model predicts a 3.7-fold increase
of the ut median value. In addition, the increase in interstitial pressure is in agreement
with the in vivo data reported in [30] (figure 4.3). They have reported a mean interstitial

Figure 4.3: Comparison of the average interstitial pressure between the 3D-1D model and

in vivo data reported by [30]. Grey bars show the mean value reported by the authors,

along with the standard deviation by means of error bar. Computational results are

shown by black squares.

pressure for healthy subject equal to −0.9 ± 1.3mmHg. The averaged value, namely
the integral mean over the domain Ω, for pt in our model is −1.2mmHg. Such value is
close to the mean in vivo value, and it falls in the experimental range. Interestingly, the
increase of pressure reported by the model is in agreement with the increase of pressure
described in the same work. The model has resulted in 6.2mmHg, namely falling within
the range 4.6±4.2mmHg. Consequently, considering all the variability between subjects
and intra-subjects, the increase of interstitial pressure described experimentally has been
well reproduced by the model.

Regarding the NFR, results agree with the physiological data after a scale up to match
the total interstitial volume (the inverse operation performed when computing lymphatic
parameters). The reference data is 2ml/min and the model results in a very close NFR:
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4.1. Uremic microvasculature

2.09ml/min. Moreover, when modeling pathological conditions, a greater NFR has been
reported. Such a greater filtration is balanced by the lymphatic system, since no flow
is allowed to leave the domain Ω by the boundary of the cube. Therefore, the increase
of both the NFR and the lymphatic flow rate in the cube is expected to be lower than a
20-fold increase, as described in the first chapter. Indeed, comparing healthy and uremic
conditions an 18-fold increase has been found, namely within the prescribed boundaries.

Results on the domain Λ, i.e. the vascular network, are characterized by a great spatial
variability, which can be addressed in term of velocity, hematocrit and viscosity (data
not shown). In particular, the magnitude of the velocity (mm/s) is in agreement with
the expected values. However, it is quite variable with values that span over an order of
magnitude. Black vessels in the plot report vessel with velocity greater than 4mm/s.
A similar heterogeneity characterizes the hematocrit distribution. In the figure 4.2, the
limits of the contours have been limited to the interval 25% − 50% to make the reader
appreciate this variability. However, some of the vessels are out of such interval and they
have been highlighted with black if H < 25%, or with deep red if H > 50%. Therefore, a
variability of velocity, hematocrit, and viscosity has been obtained. This variability, related
also to the heterogeneity of the radii within the vascular network, is a consequence of the
interdependence of those parameters, and it would be hardly predicted without considering
the non-linear phenomena in between them.

Effect of parameters alterations in terms of average interstitial pressure and NFR are
shown in figure 4.4 and 4.5. The increase of interstitial pressure and NFR previously
discussed can be observed by looking the last column on the right, . In addition, starting
from the physiological conditions the contribution of each parameter has been highlighted
by setting one parameter at a time as under uremic conditions. One first consideration
compares between the single effects and the overall effect, i.e. uremic conditions. Indeed
the sum of the variations produced by single parameter alterations is not equal to the
overall variation. Secondly, the most influencing parameters are the ∆π, σ, and Lp. These
parameters are related to the capillary membrane and the oncotic pressure difference across
it. The other two variables (H and S/V ) appear to have a minor effect on the two output
variable considered under these conditions.

4.1.3 Discussion

Results have highlighted an increase of both the lymphatic drainage and the interstitial
pressure. This is consistent with the fact that the interstitial pressure determines the lym-
phatic drainage. Indeed, considering the "lymphatic drainage - interstitial pressure" plot,
two different working ranges can be identified (figure 4.6). Under pathological conditions,
the working range of interstitial pressure is shifted towards greater pressure with respect
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Figure 4.4: Variation of the average interstitial pressure due to alterations of the input.

One parameter at a time has been set equal to pathological condition while the others

are kept equal to the physiological values. Last column on the right shows uremic

condition, namely all the parameters have been varied.

Figure 4.5: Variation of the net filtration rate due to alterations of the input. One param-

eter at a time has been set equal to pathological condition while the others are kept

equal to the physiological values. Last column on the right shows uremic condition,

namely all the parameters have been varied.
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4.1. Uremic microvasculature

Figure 4.6: Working conditions under physiological and uremic conditions shown on the

lymphatic drainge - interstitial pressure graph.

to physiological conditions. As discussed, greater interstitial pressure is in agreement with
data reported by [30]. A variation of the lymphatic flow rate has also been reported by [55]
in their model. Based on a compartmental approach, they have estimated several param-
eters to describe fluid balance in uremic patients. Half of the patients they studied have a
greater lymphatic drainage with respect to the basal value they use. However, it should be
considered that they have identified also the value of the capillary pressure pc, namely the
averaged capillary pressure. Instead, the pressure in the vasculature has not been changed
in the presented model. In the same work, an increase of Lp has also been identified by
using the same model on all the patients. Certainly, the variability among patients is very
high, but the increase is consistent in all of them. Authors have concluded that such an
increase of Lp may be related to an inflammatory process, consistently with data reported
in literature regarding uremic toxins.

In addition, comparing this computational test with a simpler one, which has been
conducted with a hexagonal structure network for the vasculature, some differences have
been found. Therefore, even if the described phenomena are qualitatively the same, the
morphology of the network has affected not only the local distribution but also the aver-
aged interstitial pressure and NFR. For example, the increase in the NFR was greater with
a simpler network, ' 20−fold increase. This can be related to spatial heterogeneity of the
Voronoi-based network which affects the filtration (as discussed in the test case, chapter
3). Therefore, these results seems to justify the greater effort toward the understanding of
the morphological changes under pathological conditions. Indeed, spatial heterogeneity
seems to affect both the local fluid dynamics and the overall exchange of fluid.
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Concerning the alterations of the parameters, interactions between them have been
highlighted by the fact that the overall variation is not equal to the sum of output alterations
produced by a single parameter variation. Indeed, considering one vessel, the NFR can be
written as: ∫

Λi

2πRi(s)Lp

(
(pv − pt)− σ(πv − πt)

)
ds . (4.1)

As a consequence, simultaneous alterations of Lp, σ and ∆π will produce a greater effect
on filtration, amplifying the effect of each single variation. Also the parameter S/V is re-
lated to them by the same formula. Indeed the integral has been computed over the domain
Λ, consequently including also the number of vessels and their radius, i.e. including the
lateral surface area. One advantage of the presented model with respect to a compartmen-
tal one is that it accounts for spatial variability. Consequently, pv = pv(s) and pt = pt(x).
Therefore, even two morphologically different networks, characterized by the same S/V
(i.e. comparison of this case with the simper hexagonal structure), may result in different
NFR. However, in vivo one of the main differences due to morphology and density of the
network is the distance between cells and the vasculature. A longer distance to travel for
nutrients, e.g. oxygen, results in a less efficient exchange. Such low efficient delivery of
nutrients can be associated with the development of skin defect, or more important with
organs damage in CKD patients. Therefore, the oxygen transport in both the domain Λ and
Ω will be an interesting future improvement of this model. At this point, the low impact of
hematocrit variation on filtration should be discussed. A variation ofH directly affects the
apparent viscosity and therefore the viscosity µv . However, since boundary conditions of
the problem have been defined in terms of pressure, a change of viscosity does not change
the pressure profile along the network. For example, with reference to a single straight
capillary modeled with this boundary conditions, a change of viscosity produces a change
in the flow rate and negligible effect on the pressure profile. The interaction with the
lumped parameter model (chapter 2) enabled by this work may overcome this limitation,
by considering the variations of pressure boundary conditions due to H variations, with a
more global approach. In particular, without considering filtration, the latter effect would
be null. As a consequence of this setup, the variation of hematocrit eventually produces a
higher flow rate within a single network that in some cases can reach also' 40% of differ-
ence. However, this comparison is affected also by differences between single networks,
resulting in a great heterogeneity when comparing networks one-to-one. This tendency to
have an increased flow rate in a unit of the network (i.e. a single Voronoi network of the
stacked group) is not sufficient to guarantee a greater overall flow rate. Indeed, with a more
consistent comparison, the overall flow rate can be compared, namely considering all the
modeled vasculature and therefore the different S/V ratio. Doing so, the flow rate under
uremic conditions is lower than in physiological conditions, reporting a ' 16% reduction.
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This is consistent with the available literature data depicting possible vascular impairment
in terms of both reduced capillary density and reduced blood flow. Regarding the effects
of parameter alterations, the most important parameters are the oncotic pressure difference
and the properties of the capillary membrane, i.e. Lp and σ. Therefore, the alterations of
the capillary membrane induced by uremic toxins have been confirmed as a key variable
when modeling fluid balance in uremic patients. Such properties directly affect plasma re-
filling and solutes compartmentalization, eventually affecting the cardiovascular stability
and the efficiency of solutes removal during dialysis. In this framework, the experimental
setup can be an important tool (chapter 5).

Despite the complexity of the model in terms of mathematical formulation and of the
amount of described phenomena, the model still carries some limitations. First, the inlet
pressure has not been changed when modeling uremic conditions. Whether this pressure
may change or not under such conditions is not fully understood, even if the role in vas-
cular regulations is known to keep the vascular environment as stable as possible in terms
of vascular pressure and perfusion. This type of information can be obtained by future
interactions between this model and the lumped parameter model presented in the next
chapter. Accounting for vascular alterations, the variability of the capillary pressure can
be addressed.

Concerning the lymphatic system, the proposed non-linear model is not tissue-specific.
Variability in the lymphatic system (e.g. morphology, vessel density) is expected consid-
ering different tissues. However, in order to model them, some tissue-specific data are
required. Such data are not easily retrievable, due to difficulties in measurements. In
addition, considering the filtration, the classical Starling’s principle formulation has been
adopted in this study. Doing so, the possible effects of the glycocalyx have not been con-
sidered. They may have an impact, in particular they may reduce the absorption of fluids
reported close to the venular ends. The inclusion of these phenomena represents an impor-
tant future improvement to the description of the fluid balance within the microvasculature.
However, as a remark, these are not usually included in computational models, as the one
proposed in this work. To model the Zweifach - Fung effect, the gold standard empirical
formulation, defined by the group of Pries and Secomb [61], has been adopted. Such for-
mulation is not sensible to the angle of the bifurcation, despite the fact that it can affect
the RBCs distribution [113]. In addition, the possible inversion of this phenomenon has
not been accounted for [114, 115]. Once these phenomena are described by an equation
similar to the used one, they can be easily included in the model. Moreover, the rheology
of blood has been described with the widely used formulation proposed by [98]. Never-
theless, this formulation is not influenced by the shear rate. This limitation will be further
discussed along with the H value in the section 4.3.
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4.2 Sensitivity analysis [222]

4.2.1 Introduction to sensitivity analysis

The model presented in the previous section has been analyzed by a sensitivity analysis
of the input parameters. The methods of such analysis are presented in this paragraph.
Sensitivity analysis may have different aims:

• research prioritization, namely the understanding of which factor is mostly worth
further analysis or measurement;

• model simplification, i.e. knowing if some factors have negligible influence on the
outputs;

• outline parameters influence on the output, i.e. to build an efficient parameter iden-
tification tool;

• test of the robustness of the model and its assumptions in a wide region of the input
factors space.

In the presented case, the first and the last aims are the most important. Several meth-
ods can be applied to address a sensitivity analysis. One first measure of the sensitivity
of a general output Y to variations of an input Xi has been defined as the partial deriva-
tive ∂Y/∂X . Dealing with non-analytical models, namely models in which Y cannot
be described as a simple and derivable function of X , such derivative is usually approx-
imated by the discrete incremental ratio

(
Y (X + ∆) − Y (X)

)
/∆. When considering

non-linear models, the results of this measure is affected by the point X∗ in which the
derivative has been computed. As a consequence, this measure is often named as lo-

cal. A different approach has been considered to achieve a more global description. It
is based on the variance of the output Y , indicated by V (Y ) from now on. By fixing
a factor Xi = X∗i , namely computing the conditional variance of the output variable Y
as VXvi(Y |Xi = X∗i ), a measure of the importance of the factor Xi has be obtained.
In particular, the lower the conditional variance is, the more important the factor results.
Nevertheless, if expressed in this way, the method is still a local measure, i.e. it is still
affected by the choice of X∗i . By taking the average over all the possible points X∗i , and
based on the relation EXi

(
VXvi(Y |Xi = Xi∗)

)
+ VXi

(
EXv(Y |Xi = Xi∗)

)
= V (Y )

a global measure can be obtained as:

Si =
VXi

(
EXvi(Y |Xi)

)
V (Y )

.
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Si is called the first order sensitivity index, and because of the previous relation it is al-
ways included in the interval [0; 1]. In particular, the more important a parameter is, the
higher Si will be. For an additive model ΣiSi = 1, namely the variation of the output
can be decomposed by separating the single effects of input parameters. Conversely, if
interactions between parameters are present, the sum of the first order indexes is not equal
to 1. To address interactions between parameters, higher order indexes can be computed.
For example, the joined effect of the parameters Xi and Xj can be measured by

Si,j =
VXi,Xj

(
EXvi,j (Y |Xi, Xj)

)
V (Y )

− Si − Sj .

The number of these higher order terms increases with the number of the parameters.
The total effect indexes account for the overall contribution related to one parameter, i.e.
accounting the interactions with other parameters:

STi = Si + ΣjSi,j + Σj,kSi,j,k + ... .

For example, for a model with 3 parameters the total effect is ST1 = S1 + S1,2 + S1,2,3.
Therefore, a STi = 0 is a necessary and sufficient condition to claim that Xi is not affect-
ing the output variable. Similarly, STi ' 0 means that the parameter has a low influence
on the output.

4.2.2 The elementary effect method

Several methods can be used to perform a sensitivity analysis, as described by Cariboni
and colleagues. With reference to the graph shown in [223] the proper methodology to
use in this case is the Morris’ method, known also as elementary effect method (figure
4.7). It provides an estimate of the total sensitivity index STi for each of the analyzed
parameters using a numerically efficient method. As a consequence, it is particularly in-
dicated when analyzing a set of factors in a model which requires several minutes to be
solved. Therefore, the analysis of some factors affecting results of the 3D-1D fits well
these conditions.

To apply such method, the space of the input parameters should be defined. Consider-
ing k parameters among the input of the model, this space is a subspace of Rk. In particular,
the theoretical framework has been developed with reference to the k−dimensional unit
cube Γ. This space has to be divided in a grid, obtained by discretizing each input in p
levels. To compute the elementary effect of a parameter Xi given a value of X within Γ,
two points are required. Defining as Ui the unitary vector in the i-th direction of the space
Γ (i.e. a vector of 0 in all the element but i where it assumes a unitary value) and ∆ the
distance in between the two points, they are defined as X and X + ∆U i. ∆ has to be
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Figure 4.7: Scheme reported by Carboni and colleagues [223] to show the proper method-

ology to use in the sensitivity analysis. reprinted with permission from [223].

chosen such that is a multiple of the width of a level, namely n/(p− 1) and X + ∆U i is
still within Γ. Doing so, the second point is still one of the points of the drawn computa-
tional grid and the two points are different only by the input Xi, separating by a distance
∆. The elementary effect is then defined as:

EEi =
Y (X + ∆U i)− Y (X)

∆
.

The distribution of this EEi within the domain Γ can be obtained by sampling different
points X . The total number of these elementary effects is determined by the number of
levels p and by ∆. Using a typical value of ∆, such as p/(2(p − 1)), the total number of
EE are pk−1(p−∆(p− 1)). As an example, with p = 4, k = 6, and ∆ = 2/3, the total
number is 2048. Different sampling strategies of the EE distribution have been proposed
in literature to obtain an efficient design. In particular Morris [224] suggested to sample
the space Γ with r different trajectories. Each of these trajectories should be composed
by k + 1 points, in order to allow the computation of k elementary effects, precisely one
for each input parameter. These trajectories have to be generated so that two subsequent
points are different only by one of the input factor, and the distance in between them is ∆.
In other words, given a trajectory j the pointX2 = X1 + ∆U i.

Starting from a randomly selectedX within Γ, the points composing the trajectory are
then defined by randomly selecting the index i among the set of the parameters, i.e. 1,...k.
One additional condition is that an index i can be selected only once within a trajectory.
As a consequence, each trajectory is composed by points separated by ∆ for each direction
i in the space Γ. An example of a trajectory generated following this procedure is shown
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in the figure 4.8.
In some studies [225–227], the choice r = 10 and p = 4 have produced valuable results.

Figure 4.8: Example of a trajectory generated by the Morris method in a 3-dimensional

input space. Reprinted with permission from [222]

In addition, the proper value of ∆ should be chosen to ensure that all the points defined by
the level p have the same probability to be sampled. Since all these points must be inside
the domain Γ both a positive and a negative variation by a factor ∆ are allowed. When
considering a negative variation, the definition of the elementary effects must be modified
to account for it. Therefore, considering a trajectory j and naming xk and xk+1 the two
subsequent points differing for the i-th input, a more precise definition of the elementary
effect is:

EEji (Xk) =
Y (Xk+1)− Y (Xk)

∆
ifXk+1 = Xk + ∆U i

EEji (Xk) =
Y (Xk)− Y (Xk+1)

∆
ifXk+1 = Xk −∆U i .

The mean and the standard deviation of their distribution can be estimated accordingly. In
particular, recalling that the total number of trajectory j is indicated by r, and referring to
the input i, the mean of the distribution µi is computed as:

µi =
1

r
Σrj=1EE

j
i .
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Moreover, the variance σ2 of the distribution is estimated by:

σ2
i =

1

r − 1
Σrj=1

(
EEji − µi

)2

.

Doing so, µi depicts the overall influence of the i-th input, whereas the value of σi reveals
non-linearity and interactions between the other inputs. More precisely, a large value of σi
means that the value of EEi strongly depends on the point X in which is computed, i.e.
the values of the other parameters, or the value of the same parameter, highlighting non-
linear effects. Another index has been proposed by Campolongo and colleagues [228],
replacing µi with µi∗. Such an index helps in the identification of the influence of factors
when considering models in which theEEi may assume both positive and negative values.
In such cases, ΣEEi may result low even ifEEi are definitely non-zero, due to cancel-out
effect. The µi∗ is thus defined as:

µi∗ =
1

r
Σrj=1|EEri | .

The same authors have also shown that this index gives a good idea of the total sensitivity
indexes STi. As a final methodological remark, the levels for each input parameter should
be derived from the unitary hypercube by considering the parameter distribution. Since the
aim of the analysis is to figure out which parameter is the most influential on the output, a
uniform distribution has been considered for all of them.

4.2.3 Selection of the simulation setup

The first step to design the sensitivity analysis has consisted in the definition of the sub-
set of the parameters to be tested and the output to be considered. The two chosen
output variables, NFR and average interstitial pressure, have already been described
in the previous section. For clarity, we recall that the NFR is the integral of the term
2π Ri Lp

(
p̄v(s) − ¯̄pt(s) − (πv − πt)

)
over the network Λ. Conversely, the average

interstitial pressure has been computed as an integral mean over the domain Ω. This anal-
ysis is in the framework of the application to uremic microvasculature. Therefore, the
parameters altered by the pathology have been selected for the analysis (table 4.2). The
ranges of variation of these parameters have been defined with reference to the litera-
ture values for both healthy and uremic microvasculature. By assuming a uniform dis-
tribution, these parameters are then associated with a unitary 6-dimensional hypercube.
Therefore, in this specific case the vector X has dimension 6, namely k = 6. As a con-
sequence, the values of the input corresponding to a coordinate Xi has been computed
as X̃i = mini + Xi (maxi −mini), where X̃i is the dimensional i-th input, mini and
maxi are the minimum and the maximum dimensional value respectively, as reported in
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4.2. Sensitivity analysis

Table 4.2: Input parameters considered in the sensitivity analysis along with their range

of variation.

Variable
Reference

healthy
value

Reference
CKD value

Minimum Maximum Ref.

X̃1
S
V

(m−1)
7000 4900 4900 7000

[183,
199]

X̃2

∆π

(mmHg) 25 19 19 25
[194,
200,
201]

X̃3 H (−) 45 35 30 50
[5,

200,
201]

X̃4

Lp

(m2 s kg−1) 10−12 8.8×10−12 10−12 10−11 [127,
162]

X̃5 σ (−) .95 .75 .7 1.0
[127,
219]

X̃6

pv,IN

(mmHg) 32 / 31 34 [194]

the table 4.2, and Xi is the i-th coordinate in the unitary hypercube. The number of levels
to discretize each parameter, the distance ∆, and the number of trajectories r have been
defined as suggested by the literature. In particularly, p = 4, r = 10, and ∆ = 2/3.
Therefore, the parameters values are shown in table 4.3. The Morris’ sequence has been
generated by means of a ad hoc random code developed by Matlab R© (The MathWorks
Inc., Natick, MA, USA). First, a random pointX has been selected in the hypercube, then
by randomly selecting a direction i in the set 1,...,6 and applying a variation±∆ the second
point has been selected. The variation applied has been positive if Xi = 0 or Xi = 1/3

and negative otherwise. In this way, the second point is certainly inside the unitary hy-
percube. The process is then repeated by selecting i in the set of parameters without the
one previously selected. For example, if i = 3 has been considered to retrieve the second
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Table 4.3: Input parameters considered in the sensitivity analysis associated to their level.

Variable Minimum p = 2 p = 3 Maximum

X1 S
V (m−1) 4900 5600 6300 7000

X2 ∆π (mmHg) 19 21 23 25

X3 H (−) 35 40 45 50

X4 Lp (m2 s kg−1) 10−12 4× 10−12 7× 10−12 10−11

X5 σ (−) 0.7 0.8 0.9 1.0

X6 pv,IN (mmHg) 31 32 33 34

point, i for computing the third point has to be chosen from {1, 2, 4, 5, 6}. Doing so, all
the indexes i are varied in the k + 1 point of the trajectory, and every variation in the i-th
direction is present in the trajectory only once. This operation has been repeated 10 times
to built 10 different trajectories. The other input has been specified as defined in the ure-
mic microvascular test (table 4.1). The only difference regards the boundary conditions
for the domain Ω. In particular, the analysis has been repeated twice, using two different
boundary conditions. The first is the equilibrium condition already used in the uremic
test, namely the condition in which the fluid is not allowed to exit the interstitial domain
through the faces ∂Ω. Conversely, in the second one, the interstitial fluid can pass through
these faces, exiting the domain. This flow rate is determined by a far-field pressure p0 and
a boundary conductivity β. Following the procedure of [162, 206] the boundary condition
has been specified as:

ut · n = β(pt − p0) =
K

µtD
(pt − p0) .

For one analysis the total number of simulations is r(k + 1) = 70. Considering the
two different boundary conditions on ∂Ω, twice this number have been run. To this end,
a Python script has been considered to run the simulation and to post-process the results
extracting the value of the two output analyzed. Results of this simulation are presented
by means of scatterplot (obtained by Matlab R© ad hoc code) and by the parameters µ, µ∗,
and σ, which have been computed using Excel c© (Microsoft).

4.2.4 Results of the sensitivity analysis

First results related to the equilibrium condition are presented. The scatterplot are shown
in figure 4.9 and 4.10. From them, some idea about the most influencing factors can
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4.2. Sensitivity analysis

Figure 4.9: Scatterplots for the average interstitial pressure in the closed configuration.
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Figure 4.10: Scatterplots for the NFR in the closed configuration.
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Figure 4.11: Scatterplots for the average interstitial pressure in the opened configuration.
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Figure 4.12: Scatterplots for the NFR in the opened configuration.
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be inferred. For example, Lp and σ appear to cause more pronounced variations on the
interstitial pressure than the others (e.g. figure 4.9). However, extracting quantitative in-
formation from them is difficult. Such an information can be obtained by means of the
aforementioned indexes. Indexes for the closed configuration are shown in the table 4.4
and 4.5. By looking at the index µ∗ in the table 4.4, Lp, ∆π and σ have been identified as
the most influencing parameters. This is in agreement with what resulted of the analysis
conducted in the modeling of the uremic microvasculature. The same three input param-
eters have also a quite larger σ with respect to other parameters, highlighting interactions
between parameters. The less influencing factor appears to be H . Although in the table
4.5 the trend is less evident because of the magnitude of the NFR, by looking at the order
of magnitude, a greater µ∗ and σ can be identified for the very same three variables. In-
deed, the values of the output variable have been reported in the dimensionless form, as
results from the code, since here only the relative value is important. When comparing
closed and open configurations, all the indexes related to the interstitial pressure are found
to be lower in the latter. Actually, a rising of pt causes a flow rate through the faces ∂Ω,
helping the system to keep the pt closer to the value p0, namely reducing pt variations
(table 4.6). However, the same consideration done for the previous cases are confirmed
also in this configuration. Also for the filtration similar results have been obtained (table
4.7), but here the values of µ∗ are larger than in the closed configuration.

The same results are reported in the figure 4.13, in a σ-µ∗ plot. The horizontal position
on these graphs highlights the importance of the factors, namely µ∗, whereas the vertical
position reveals the non-linearity or the interactions with other parameters. Consequently,
the right top corner includes influential parameters that presents non-linearity or interac-
tion with other parameters. Conversely, the left-bottom region shows parameters with a
low influence on the output and with low non-linear/interaction effects. Such a graphical
representation helps to visualize the results of the analysis already shown in the tables.

4.2.5 Discussion

These results have confirmed the trend highlighted in the analysis performed in the frame-
work of the uremic microvasculature. Indeed, this analysis has produced more global
results about the influence of the input parameter on the output NFR and average inter-
stitial pressure. In particular, the most influencing parameters have been identified in Lp,
σ, and ∆π. These are linked to the properties of the capillary membrane and the differ-
ence in oncotic pressure across it. Also this difference in oncotic pressure is related to
the semi-permeability of the capillary membrane, namely its capacity to maintain them
inside the vasculature. Indeed, the study of the alterations of the capillary membrane due
to the uremic pathology assumes a key role. The capillary membrane is not related only to
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Table 4.4: Values of the indexes µ, µ∗, and σ for the variable pt in the closed configura-

tion.

Parameter µ µ∗ σ

S/V −0.19 0.55 0.36

∆π −1.39 2.89 1.39

H 0.03 0.21 0.45

Lp 2.86 4.12 2.58

σ 1.86 2.82 1.95

pv,in 0.05 0.54 0.44

Table 4.5: Values of the indexes µ, µ∗, and σ for the variable NFR in the closed configu-

ration.

Parameter µ µ∗ σ

S/V 3.2× 10−7 4.9× 10−7 5.3× 10−7

∆π −2.4× 10−6 2.4× 10−6 1.3× 10−6

H −6.3× 10−8 4.0× 10−7 9.5× 10−7

Lp 5.3× 10−6 5.3× 10−6 2.8× 10−6

σ −2.4× 10−6 2.4× 10−6 1.1× 10−6

pv,in 6.0× 10−7 6.0× 10−7 3.0× 10−7
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Table 4.6: Values of the indexes µ, µ∗, and σ for the variable pt in the open configuration.

Parameter µ µ∗ σ

S/V −0.07 0.49 0.27

∆π −1.01 2.07 0.81

H 0.00 0.00 0.00

Lp 2.25 3.43 1.64

σ 2.07 2.07 1.14

pv,in 0.06 0.39 0.24

Table 4.7: Values of the indexes µ, µ∗, and σ for the variable NFR in the open configura-

tion.

Parameter µ µ∗ σ

S/V 1.12× 10−6 1.12× 10−6 5.98× 10−7

∆π −4.78× 10−6 4.78× 10−6 1.95× 10−6

H 7.37× 10−10 2.38× 10−9 3.37× 10−9

Lp 9.28× 10−6 9.28× 10−6 4.47× 10−6

σ −4.33× 10−6 4.33× 10−6 2.49× 10−6

pv,in 8.40× 10−7 8.40× 10−7 5.40× 10−7
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Figure 4.13: σ-µ∗ plot for the cases considered. Top line: results for interstitial pressure.

Bottom line: results for NFR. Left column: results for closed configuration. Right

column: results for open configuration. Each of the σ-µ∗ plot shows on the right

top corner influential parameters that presents non-linearity or interaction with other

parameters and on the left-bottom region parameters with a low influence on the output

and with low non-linear/interaction effect.
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fluid balance in the microvasculature but also to solute compartmentalization. As a conse-
quence, it is ultimately related to the efficiency of the dialysis, in terms of fluid balance (i.e.
avoiding too severe reduction of the blood volume) and solute removal. The three most
influencing alterations have also some interactions, as shown by the σ index values. These
alterations can be explained by the description of the NFR, as described in the previous
section (equation 4.1). In addition, these results have confirmed that H variations have a
small influence on filtration and the interstitial pressure. As previously discussed, this phe-
nomenon is a direct consequence of the applied boundary conditions. Instead, alterations
of the vascular pressure are worth to be discussed with more attention. The amount of
variation of this pressure is not known, indeed no reference has been included in the table
4.2. In this sensitivity analysis, little variations around the value pv = 32mmHg have
been screened, based on the hypothesis that big variations are prevented by the vascular
controls. Results of the sensitivity analysis have highlighted that this parameter has a low
influence on the output. However, it should be considered that if larger variations of pv
are possible, they will certainly result in larger variations of the output. This is the kind
of information, which eventually will be made available by future interactions of this 3D-
1D model with the lumped parameter model. Such interactions, however, have not been
addressed in this work, and they represent an interesting future development of it.

137



Chapter 4. Use of the 3D-1D model under uremic conditions

4.3 Discussion of the application

Considering the results of both the sensitivity analysis and the application to uremic mi-
crovasculature some key points have been revealed. The model has reproduced the rising
of interstitial pressure, typical of the uremic pathology, by comparing results for healthy
and uremic conditions. This increase of pressure has been related to the retention of fluid
in CKD. Even if this interstitial pressure plays a role in determining the fluid exchange, it
has been measured in uremic patients only by [30]. Such a measure has been conducted
in the subcutaneous tissue, because it is easily accessible and because it is inclined to fluid
accumulation. By comparing our results with the in vivo values they reported, it can be
concluded that the model has correctly reproduced the phenomenon. However, the model
is still affected by some limitations. First, the interstitial space can be modeled as a poroe-
lastic media, considering also the mechanical properties of the matrix. This represents an
interesting development of the present model, since poroelastic phenomena may have an
effect when accumulating fluid within the interstitium, however more data are required
to draw any conclusion. Secondly, the solute transport can be considered in the model.
Such an improvement enables the study of the spatial distribution of proteins and conse-
quently of oncotic pressures, allowing the study of their possible effect. Moreover, the
viscosity of blood has been modeled with the in vivo formulation proposed by Pries and
colleagues [98]. Although this formulation is widely used in this kind of models, it is not
sensitive to shear rate variation. By contrast, rheology of blood is known to depend on
shear rate, classifying it as a non-Newtonian fluid. Several models have been proposed in
literature, and they have been comprehensively reviewed by [229]. However, such mod-
els are referred to blood flowing in big arteries, and they can not be directly applied to
microvasculature. In particular, RBCs interaction with the glycocalyx may influence the
viscosity of the blood at such small-scale vessels. In addition, the relation required in
this model is similar to the one already used to model the dependency from H and the
radius, due to the mesoscale approach. Both computational and experimental models can
be considered to study this phenomenon and to obtain such relation. One main possibil-
ity to achieve this description is represented by in vitro microfluidics setup composed by
channels covered by either endothelial cells (therefore forming the glycocalyx) or poly-
mers (i.e. mimic the glycocalyx), which can be used to flow blood and study the flow rate
- ∆p relation. Once such a relation is available, it can be included in the model improving
the vascular description. This may influence the RBCs distribution along the network,and
it may consequently affect all related phenomena, from flow rate distribution within the
network to oxygen delivery to tissues. In figure 4.14, only velocity lower than 1mm/s

are shown because the apparent viscosity may be affected by the shear rate at this low
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Figure 4.14: Branches of the network characterized by a velocity lower than 1mm/s

under physiological conditions (red).

paces [196–198]. The number of branches below this threshold is small, supporting the
validity of the presented results, but it is still not completely negligible.
In addition, the value of H in the simulations has been set by using the systemic Ht data.

However, the hematocrit in the microcirculation may be lower, i.e. several bifurcations
may be present at the arteriolar level, in which the Zweifach - Fung effect can play a role.
In our model, the Ht is lower than the H applied, as it can be computed by the formula
proposed by Pries and colleagues [61]. Interestingly, the sensitivity analysis has revealed
the low influence of H variations on pt and NFR. As already discussed, this may be re-
lated to the computational setup. However, the small influence on those values suggests
that results are meaningful even considering the previously mentioned limitations of H
modeling.
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CHAPTER5
The in vitro model

In this chapter, the in vitro model is described highlighting its critical components.

Consequently, an improvement of the experimental technique is presented. The computa-

tional 3D-1D model has also been used to analyze the experimental setup. The study of

the urea effect is then presented, and finally, applications, limitation, and possible future

improvements are discussed.
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5.1 Introduction of in vitro vascular networks [129]

Over the last decades, microvasculature generation on microfluidic chip has been used to
understand microvasculature formation and how it responds to different kind of signals
(e.g. mechanical or biochemical). The first section of this chapter presents the methodol-
ogy used to generate self-assembled microvascular networks in a chip. Such methods are
widely used in literature, with some variation among different groups, regarding the type
of cells, the type of gel, the material and the structure of the microfluidics chip, and the
culture media. Therefore, the adopted experimental setup is now presented, by highlight-
ing the possible alternatives reported in literature for each component. The overall setup
can be divided into: microfluidic chip, gel, cells, and media.

Microfluidic chip Concerning the microfluidic chip, several different geometries have
been reported. Chips are usually organized with parallel channels, separated by structures
which contain the hydrogel (figure 5.1). These structure can be either post or postless.

Figure 5.1: Example of microfluidics platform. (a) Multiple channel with posts. From

[230]. (b) Scheme of the postless device used in this work. (c) Lateral view of (b),

showing lips on the top of the device.

Posts are triangular structures, aligned along the side of the gel-filled channel. They allow
the containment of the gel, forming a discontinuous interface between the gel and the side
channel (usually the media channel). Conversely, postless systems are able to contain the
hydrogel thanks to lips on the top of the channel and their hydrophobicity. This structure
allows the generation of networks without concentrating the opening of the vessels in the
specific intra-post region. Moreover, when a monolayer of endothelial cells (ECs) is built
on the side of the gel, the postless system allows a more continuous monolayer. In this
work, a single gel channel postless chip has been used (figure 5.1). The width of the gel
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channel, namely the distance between the two media channel, is 3mm. Such configura-
tion is getting out from the strict definition of a microfluidic device, embracing millimeter
scale. Even if the definition of microfluidic chip is no strictly applied here, in this chap-
ter the device will be identified with this name. Another important feature of the chip is
the material used to build it. The most common material is the Poly(dimethylsiloxane)
(PDMS), because of its properties [231]. Indeed, it is transparent (i.e. allowing the imag-
ing of the sample), permeable to gases, in particular to oxygen, and moreover inert and
cheap. Even if other materials could have been considered, the PDMS has been adopted
for this analysis.

Gel There are several possibilities also regarding the hydrogel. Its main function is to
provide a support in order to obtain a 3D structure necessary to have a self-assembled net-
work. This gel is usually generated by a gelation process of two components: fibrin and
alternatively collagen or thrombin (e.g. [130]). An important remark concerns mechanical
properties of the gel and the velocity of the gelation process. They are both influenced by
the protein concentration, the temperature, and the pH. The velocity of gelation directly
affects the 3D shape of the network. For example, a very slow gelation allows the sedimen-
tation of the cells seeded within it, eventually producing a gradient of cell concentration
along the vertical direction. Such a gradient can affect experimental results, for example
leading to too vascularized regions. Moreover, the mechanical properties of the gel also
influence the network morphology and behavior. For example, a stiffer gel results in a
smaller lumen and lower migration ability [232]. For this work, a thrombin-fibrin gel has
been considered.

Cells Concerning cells, at least two types of cells are required to build a self-assembled
network. ECs are certainly the first, since they compose the capillary vessel structures.
As discussed in the first chapter, several types of EC have been used in literature. How-
ever, human umbilical vein endothelial cells (HUVECs) are the most commonly used for
self-assembled network formation. ECs are usually seeded within the gel with other types
of cells such as mesenchymal stem cells (MSCs) of fibroblasts (FBs). FBs, in particular,
have been found to promote vascular network stability, avoiding network regression. The
resulting vascular network depends on cells concentration, in terms of number of vessels,
branching, and perfusion. In particular, the optimal seeding concentration may be differ-
ent for different batches of cells. It should be optimized for the considered batch of cells,
due to the intrinsic variability of the cells population, in particular with reference to their
proliferation ability. However, the in vitro networks are commonly characterized by larger

144



5.1. Introduction of in vitro vascular networks

Figure 5.2: Example of perfusable network obtained in this work. Green: GFP postive

ECs. Red: Texan red dextran 40 kDa. White bar = 200µm.

diameters (50µm) if compared to the in vivo capillaries (' 8 − 10µm). The vascular
structure and the possible perfusion of the networks have been typically addressed in this
kind of models. The latter is usually addressed by perfusing the network with a fluorescent
dye or micro-beads. By inserting them in one side of the network, and applying a sight dif-
ference of pressure (e.g. only by the gravitational effects of half a millimeter water column
within the reservoir of the device), the perfusion of the network is observed. An example is
shown in figure 5.2, in which a vascular network formed using GFP-positive HUVECs has
been perfused with a green fluorescent dye. Conversely, the vascular structure is usually
addressed by immunostaining. For example, the conservation of the endothelial pheno-
type can be confirmed by the expression of vascular endothelial (VE)-cadherin or CD31.
In addition, ECs within a mature network form tight junction proteins. The presence of
such junctions can be detected for example by the presence of zonula occludens-1 (ZO-1).
In this work, HUVECs and human lung fibroblasts (HLFs) have been used for network
generation.
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Culture media Cells and gel within the device are immersed in the culture media. The
composition of this culture media varies on the basis of the cell type and of the manufac-
turer. Two important points have been considered when choosing the media. The quantity
of grown factors (e.g. vascular endothelial growth factor - VEGF) influences the network
formation and morphology. The second is related to the presence of solutes that can affect
the gelation process. For example, the presence of heparin, usually contained in the media,
may prevent gel formation.

Summarizing, the PDMS chip has been filled with the fibrin-thrombin gel containing
HUVECs and HLFs. This setup have produced a perfusable network as shown in figure
5.2. Details of the methods are presented in the next section.

5.1.1 Perfusable microvasculature

The methodology used for the generation of microvascular perfusable networks is pre-
sented in details. The operations required to build the microfluidic PDMS chip (figure 5.3)
are described first, and then the seeding and culturing process are illustrated. The PDMS
devices have been obtained starting from an acrylic mold (courtesy of Dr. Kristina Haase)
which was made by laser cutting. The process consists of the following steps.

1. The mold, containing several repetitions of the chip negative, has been filled by
PDMS (Sylgard 184, Dow-Chemical).

2. The PDMS has been cured for 4 hours at 60◦C.

3. Devices were then cut out form the overall PDMS sheet and reservoirs of the channel
were punched. In particular, the media channel reservoirs have been characterized
by a diameter of 4mm, whereas the media channel reservoirs are 1mm and 3mm.

4. Devices were then sterilized by autoclave along with glasses and then dried at 70◦C

overnight.

5. Glasses were bounded to the device after an oxygen plasma treatment of 2 minutes
(Harrick Plasma).

6. Bounded devices were then stored at 70◦C for 2 days. This is a key passage since
it allows the PDMS to restore its hydrophobic status after the modification induced
by the plasma treatment. Indeed, hydrophobic surfaces are required to keep the
hydrogel in the center channels.

Once the devices have been prepared, the cells and the gel are inserted in the central
channel following these steps.
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Figure 5.3: Top view of the PDMS device with the scheme at the bottom of the image.

Measures are reported in mm.
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1. A solution was obtained dissolving 40µl of thrombin (100U/ml) in 1ml of ECs
media. In these experiments VascuLife R© ECs culture media (Lifeline cell technol-
ogy) has been used.

2. ECs and HLFs are resuspended to match the desired concentration. Two different
type of ECs has been used, both from Lonza. The GFP positive cells (passage 6)
has been resuspended at 20M/ml along with 10M/ml HLFs. Conversely, the non-
transfected version (passage 4) has been used at 28M/ml, with 4M/ml HLFs. The
ECs and HLFs suspension were then mixed 1:1 to obtain the cell suspension.

3. The fibrinogen was dissolved in PBS at 37◦C to have a 6mg/ml solution.

4. Fibrinogen and thrombin solutions have been divided in 20µl aliquots. Then they
were mixed 1:1 and inserted in the device via the 1mm diameter reservoir. Given
the mixing procedures, the final concentration of cells suspension can be obtained
dividing by 4 the initial concentration.

5. After the filling with the cell-enriched gel, devices were incubated for 20 minutes in
a humid chamber at 37◦C.

6. Then, following the gelation process, ECs medium was added in the side channels
(100µl per channel) and devices were stored in the incubator.

7. Culture medium has been replaced daily (inserting 80µl of new media) up to day 4.

8. At day 4 ECs were seeded in the media channel to build a monolayer on the side of
the channel. The procedure used in this passage will be further discussed later on.

9. From day 4 to day 7, media has been replaced asymmetrically to promote convection
of the new media through the gel. Therefore 120µl and 40µl were inserted.

10. At day 7 a mature network has been obtained.

This protocol has led to perfusable microvascular network with both the ECs considered.
An example of the 3D microvasculature is shown in the figure 5.4.

5.1.2 Permeability analysis

Such in vitro generated microvascular networks have been used in literature with multiple
aims. Two examples of application are: (i) to study the migration of cancer cells, in order
to understand mechanisms involved in cancer cells intra- or extra-vasation (e.g. [140]); (ii)
to analyze capillary membrane permeability to solutes (e.g. [130]). The latter application
is interesting with reference to this work. This type of analysis is usually performed using
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Figure 5.4: 3D view of a perfusable network. Green: GFP positive ECs. Red: Texan red

dextran, 40 kDa.

a fluorescent-labeled solute. One example of this is fluorescent dextran (also available in
different molecular weight), but also other solutes are available such as albumin. After the
insertion of the labeled solutions, permeability is computed by measuring the increase of
fluorescence within the gel over time. The volume has been imaged by means of a confocal
microscope (Olympus IX81) obtaining 3D information in both the vasculature and the gel.
Under the assumption that the intensity is linearly dependent on the concentration, the
fluorescence intensity can be used to estimate the permeability. This assumption is not
valid if the intensity approaches the saturation of the signal. Therefore, permeability has
been computed with reference to a region of interest (ROI) as:

PROI =
(Ig,t2 − Ig,t1)Vg

Av ∆t (Iv,t1 − Ig,t1)
, (5.1)

where I is the fluorescence intensity, V and A stands for volume and area within the ROI
respectively, ∆t is the time between the two measures, and subscripts v and g indicate
vasculature and gel. To derive this formula, some other assumptions have been made.
A first assumption regards diffusion within the gel. Diffusion has been assumed to be
fast and, in particular, faster than the passage of the solute through the membrane. As a
consequence, Ig(x, y, z) ' Ig . This assumption has been verified a posteriori, analyzing
the profile of the intensity along lines within the gel. A second assumption concerns the
intensity within the vasculature. Also in this case, it is assumingly homogeneous, and
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therefore independent from the spatial coordinate, namely Iv(x, y, z) ' Iv . A further
assumption regards the difference between the intensity Iv and Ig . It is assumed to be con-
stant, which experimentally means that the difference can undergo only to few variations.
Thus, Iv,t1 − Ig,t1 ' Iv,t2 − Ig,t2 . Given the usual value of permeability, this condition
is usually satisfied during a test. However, it should be considered when analyzing very
small solutes, which can easily travel through the membrane.

The analysis has been conducted by means of open source software Fiji (https:
//fiji.sc) with the 3D ImageJ Suite [233]. An ImageJ macro has been written to
automatize the intensity computation starting from the fluorescent dye channel. It has
been based on the following steps.

1. User interaction to define the ROI and to avoid mismatch of the sample due to tem-
perature related drift.

2. Thresholding by the method ’Otsu stack’, and an ’Erode’ operation to account for
the thickness of vessel wall membrane.

3. 3D segmentation based on a classifier previously trained (courtesy of Dr. Giovanni
Offeddu).

4. 3D geometrical measure to obtain volume and area data, based on the segmentation
previously done.

5. Average intensity measure within the vasculature and in the gel for both the time
steps.

Such an automatized process allows the computation of required variables to estimate the
permeability, namely the averaged intensity values Ig,t1 , Ig,t2 , Iv,t1 , and Iv,t2 , and the
geometrical measures Vg and Av .
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5.2 Methods: applying a trans-mural difference of pressure

5.2.1 Experimental setup

The aim of the work is analyzing the alterations of membrane properties, and top of them
all alterations of Lp, due to the presence of uremic toxins. Therefore a trans-mural pres-
sure is required. In particular, with the method described in the previous section, only the
filtration can be measured. As a consequence, the vascular pressure should be increased.
To this end, the pressure has been increased in the side channels, and this increase of
pressure has been carried to the vasculature. These two domains are connected since the
vasculature reaches the side of the gel, generating opening within the ECs monolayer. A
scheme of the experimental setup is shown in figure 5.5. 3 of the 6 reservoirs are blocked

Figure 5.5: Scheme of the experimental setup. ’P’ indicates reservoirs used to set pres-

sure. Blocked signals mark the blocked outlets. Grey color indicates the gel region,

whose outlet is kept unblocked.

by polymeric pins, whereas one reservoir per media channel has been connected to the
pressure controller (Fluigent FlowEZ). The remaining 3mm outlet of the gel channel has
been left open. Assuming the generation of this trans-mural pressure, the measure of per-
meability can be performed. Due to the presence of convective phenomena, the measured
value does not depict a real permeability of the membrane, i.e. it does not account only for
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diffusion processes. From now on, this computed value is named effective permeability, to
highlight that it contains information also about convective phenomena. Considering both
diffusive and convective phenomena, the flux of a solute can be computed as:

j = P ∆Cv,g + Lp (1− σ) ∆ pCv . (5.2)

If the gel concentration, and thus the intensity, is low compared to the difference ∆C =

Cv−Cg (as it usually is in this kind of experiments), Cv can reasonable approximate ∆C.
That said, the previous equation can be written as:

j = P Cv + Lp (1− σ) ∆ pCv = PeffCv . (5.3)

As a consequence, Peff has been defined as P + Lp (1 − σ) ∆ p, namely identifying a
portion which does not dependent of trans-mural pressure and a portion that does. There-
fore, the coefficient Lp (1 − σ) can be estimated by the slope of the curve in the Peff -
trans-mural pressure graph.

As a remark, this measurement technique can be applied, provided that a trans-mural
pressure is generated. In the next section, the role of the ECs monolayer on the side of
the gel has been analyzed, here anticipating its fundamental role in the generation of the
desired gradient of pressure.

5.2.2 The role of the endothelial cells monolayer

The endothelial monolayer plays a key role when generating a trans-mural pressure be-
tween vessels and gel. Indeed, it allows the separation of two ’compartments’: the media
channels (along with the vasculature) and the gel. The gel is a highly porous gel, with
porosity higher than 90 %. This is certainly subjected to experimental variability, how-
ever, its contribution to the pressure loss due to flow is really small. Indeed, the value
of the gel hydraulic permeability has been estimated at 4.1 × 10−13m2 (courtesy of Dr.
Giovanni Offeddu). To prove the role of the ECs monolayer, simulations using both the
finite volume method (FVM, by ANSYS Fluent R©) and the 3D-1D model have been run.
First, all the compartments in the geometry of microfluidic chip have been considered by
FVM. More precisely, thanks to the symmetry, half of the chip has been modeled. The
viscosity of the fluid has been set to 8 × 10−4 Pa s [234]. Mimicking experimental tech-
nique, the pressure has been imposed at the inlet. An ad hoc function has been written
to set the value of the static pressure at the inlet, which is a non-standard option for the
software. The geometrical description of the lips have been neglected. However, their
presence has been accounted for when computing the monolayer Lp for the computational
model. Therefore, the real Lp value has been scaled by (hchip − hlip)/hchip, where hchip
is 500µm and the deepness of the lip has been assumed as 200µm. The presence of the
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monolayer has been included by considering the porous jump condition [235], and tuning
it to reproduce the desired Lp. A summary of the numerical set up is shown in figure
5.6. Two numerical tests have been conducted: (i) the chip without considering an ECs
monolayer; (ii) the chip considering a monolayer 4 order of magnitude leakier than the
network. As a remark, the presence of the network has not been considered in this test.
Contours of pressure are shown in figure 5.7. The Lp of the ECs monolayer clearly affects
the pressure within the gel. In particular, when the ECs monolayer is not considered, a
difference of pressure between the gel and the media channel does not occur. In addition,
the fluid travels through the gel mainly close to the outlet reservoir, namely traveling along
the least resistance path. Conversely, even a monolayer being 4 order of magnitude leakier
than the reference value for the vasculature is sufficient to create a difference of pressure
within the gel. Moreover, the pressure within the media channel is fairly constant when
the monolayer is present. This result allows the analysis of the problem by means of the
3D-1D model, by validating the assumption of constant pressure along the media channel.
Doing so, the contribution of the vascular network can be included in the analysis. Start-
ing from a confocal 3D image, a computational vascular network has been reconstructed
(details of the method can be found in the next section). The 3D-1D computational model
of the chip has been built considering only the gel channel and applying the media channel
pressure as a boundary condition. Parameters of the analysis are summarized in table 5.1.
A difference with the in vivo conditions is characterized by the presence of plasma pro-
teins. As a consequence, there is no difference of oncotic pressures across the membrane.

Figure 5.6: Scheme of the computational setup solved by means of the FVM. On the left,

the two considered domains are shown: media channel (blue), gel channel (grey). In

the center, the simulated geometry is reported along with boundary conditions: inlets

(green), outlet (red), symmetry (cyan), and the possible presence of the monolayer

(yellow). On the right, the mirrored sample.
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Figure 5.7: Results of the computational setup for the case without (left) and (with) mono-

layer. The monolayer considered in this simulation is 4 orders of magnitude leakier

than the reference value of the vasculature. Top row: pressure within the device. Bot-

tom row: velocity magnitude in the device.

Six different hydraulic conductivities have been tested for the monolayer. As a remark,
the equivalent Lp has been computed as previously done in the FVM analysis, since the
geometrical description of the lips has not been included. The outlet condition has been set
by considering the piece of devices not considered (i.e. the connection with the reservoir).
The first condition corresponds to such a tight ECs monolayer that the boundary can be
considered closed. This represents a not real condition, but it allows the understanding
of the network contribute to the total flow rate since fluid can enter the gel only through
the capillary membrane. Then, other 5 Lp values have been tested: (i) a monolayer as
leaky as the vasculature; (ii) a monolayer 10-times leakier than the vasculature; (iii) then
100-times leakier; and (iv) 500-times leakier; (v) 1000-times leakier; Results in terms of
pressure distribution and velocity within the gel are shown in figure 5.8 and 5.9. These
results suggest that when building a good monolayer on the side of the gel, a trans-mural
pressure can be generated between the vasculature and the gel. Moreover, the leakier the
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Figure 5.8: Results of the simulations run with the 3D-1D model. Top view: spatial

distribution of the pressure into the gel. Bottom view: profile of the pressure along a

line in the center of the gel, varying the applied inlet pressure.
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Figure 5.9: Results of the simulations run with the 3D-1D model. Top view: spatial

distribution of the velocity into the gel. Bottom view: profile of the velocity along a

line in the center of the gel, varying the applied inlet pressure.
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Table 5.1: Values of parameter used in chip simulation with the 3D-1D model. Pro = from

experimental protocol. Data = from experimental data. Design = chip design data. *

= courtesy of Dr. Giovanni Offeddu.

Parameter Value
Ref./computing

procedure

Channel pressure (Pa) 800 Pro

Outlet pressure (Pa) 0 Pro

Height of the gel channel (µm) 500 Design

Lip depth (µm) 200 Estimated

Hydraulic conductivity of the gel (m2) 4.1 ×10−13 *

Hydraulic conductivity of the capillary
walls m2s/kg

1 ×10−12 [162]

Hydraulic conductivity of the monolayer
m2s/kg

variable

Average radius of the capillary vessels
(µm)

23.7 Data

Media Viscosity (Pa s) 8×10−4 [234]

monolayer is, the higher the gel pressure is, as shown in the graph. The results also high-
light how the hydraulic conductivity of the monolayer mainly determines the fluid velocity
within the gel. In addition, the fluid velocity appears to vary linearly along the length of
the chip, as shown in the graph. The magnitude of the Lp tested for the monolayer (e.g.
500x - 1000x) is in agreement with literature data from monolayer (e.g. [236]). Under
the leakier condition, the maximum pressure within the gel is 32Pa, namely reducing the
transmural pressure by the 4 %. The basic value used as a reference is the Lp considered
for the 3D-1D model, namely for in vivo conditions. In the in vitro experiments, its value
is usually greater.

5.2.3 Building the ECs monolayer

Since these results proved the key role of the monolayer in generating a transmural pres-
sure between the vasculature and the gel, the experimental technique to seed the monolayer
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has been analyzed and developed. One of the main experimental problems is represented
by an incomplete monolayer. This might happen for two reasons. The first is related to
the number of seeded ECs. Indeed, if not enough cells are seeded, the monolayer will
not cover the entire surface with possible pinholes on the surface. Such holes affect the
hydraulic conductivity of the monolayer offering a preferential path for fluid. Moreover,
when using fluorescent dye, such pinholes constitute concentrated leaks that eventually
affect the measurements. The second reason is related to the fact the ECs may not reach
precise locations of the monolayer. For example, if ECs are seeded at the bottom of the
chip, they will grow on the side of the gel, due to the affinity with the proteins, which com-
pose the gel. However, they hardly reach the top of the device, especially if considering a
quite high device, i.e. some hundreds of µm. Moreover, ECs grow on the side of the gel
better than on PDMS, possibly not covering the lip or the corner of the device. To avoid
these problems and to improve the quality of the ECs monolayer, a different experimental
technique has been developed. It is based on two different concepts: (i) minimizing the
seeding suspension volume, to put cells as close as possible to the gel; and (ii) tilting the
device to lay down cells on the gel by gravity. Several ECs seeding concentrations have
been tested, to optimize the technique. Interestingly, a too high concentration leads to cell
death, eventually invalidating the sample due to both vascular regression and accumula-
tion of dead cells within the media. A tilting procedure has been identified, to avoid ECs
accumulation close to the opening of the network, consequently avoiding the obstruction
of the vasculature. The seeding protocol reads as follow:

1. dilute ECs to have 1.5M/ml∗ in ECs media;

2. remove media from one channel of the device;

3. insert 50µl∗ of the cell suspension in the channel;

4. keep devices tilted in the tip box inside the incubator for 10 minutes;

5. fill the channel up to 100µl slowly;

6. repeat the process for the other channel.

The number of cells and the volume of the suspension to use have been marked by a ∗,
because they may slightly change if a different batch of cells or a different chip geometry
are considered. Doing so, ECs are seeded both at the top and at the bottom of the device,
letting them grow on the lateral area of the gel.
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5.2.4 Building a computational vascular network

The 3D-1D model has been used to simulate a vascular network inside a gel region. To
obtain the vascular geometry, an ad hoc process has been set, starting from a 3D confocal
image. Summarizing the process, the steps have been organized as follow (figure 5.10):

• import the 3D image on Fiji, and select the dextran channel;

• obtain a binary image by thresholding;

• apply the algorithm ’Skeletonize 3D’ to obtain the centerlines of the network;

• export from Fiji the coordinate of the skeleton by an ad hoc script and importing
them on Matlab;

• perform an interpolation of the vessel coordinate and a subsequent parametrization;

• divide each branch in N equally spaced nodes;

• write the geometry input file for the 3D-1D model.

Particular attention has been carried when handling the coordinate on Matlab. Indeed, the
3D-1D computational model identifies junction points by comparing the end coordinates
of each branch. Therefore, constraints should be considered when performing the interpo-
lation, namely, the endpoints should be kept unchanged. Considering X = (x1, x2, x3)

the spatial coordinate, and naming X0 and XE the start and the end point of the vessel
respectively, the parametrization has been performed defining each component of X as
function of a parameter t such that:

xi = ai + bi t+ ci t
2 + di t

3 + ei t
4

xi = x0
i for t = 0

xi = xEi for t = 1 .

Then the interpolation has been conducted by minimizing the difference between skele-
tonized data and the functions xi determining the parameters ai, bi, ci, and di, with
i = 1, 2, 3. An exception to this process has been represented by short vessels. Even
if they cannot be removed directly without badly affecting the connectivity of the network,
they can be treated in a different way. Such a method prevents bad interpolation, which
would results if a small number of points is considered. However, since they are small ves-
sels, the overall area is not greatly affected by this assumption. Thus, after selecting them
by a threshold based on the number of points resulting from the skeletonize process, short
vessels have been interpolated by a line, namely by xi = x0

i + t xEi . Once the analytical
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Figure 5.10: Summary of the geometry reconstruction process. Following the path indi-

cated by the arrows: confocal images of the network perfused with fluorescent dye,

binary version of the image, skeleton of the image, interpolation and discretization of

the network, and sample simulation with the 3D-1D model.

description of the vessels was obtained, it has been divided into N equally spaced nodes,
by using the parameter t. An example of the resulting description is shown in the figure
5.10.

At this point two further operations are required: (i) identification of the boundary
conditions; (ii) radius computation. For the first one, two different steps have been im-
plemented. All the junction points have been identified, namely the points which can be
found as endpoint of more than one vessel. Consequently, all the remaining points are
referred to one vessel solely. These points can either be inlet points, i.e. points of the
network which are connected to the media channel, or dead ends. To discriminate among
them, a threshold has been used based on the distance from the lateral boundary, namely
the boundary of the gel on which the ECs monolayer has been built. In particular, such
threshold has been defined as a percentage of the gel channel width. The network recon-
struction may fail to recognize some interconnections with the monolayer, i.e. the opening
to the media channel, because of the loss of a good tube-like shape of the vessel in that re-
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gion. Therefore, the percentage has been selected as 5%, namely comprehending a region
close to the boundary. The inlet pressure has been set equal in the two media channels.
Due to this boundary conditions arrangement, no net flow rate is expected from one side to
the other. Instead, to balance the filtration from the network, an inlet flow rate is foreseen
from both the sides. Concerning the radius, a mean value has been computed, on the basis
of the volume and the surface area of the network. Such operation allows a good estimate
of the overall surface area of the network, but it is not accounting for radius heterogeneity.
As a remark, to compute radius for each vessel, a new interaction between the skeleton
and the 3D data is required. This may become an interesting future improvement of this
algorithm.

5.2.5 Comparison between computational and experimental results

To compare experimental results with the computational, the velocity within the gel has
been measured by means of Fluorescence Recovery After Photo-bleaching (FRAP) tech-
nique. To apply this technique, the gel should be previously filled with a fluorescent dye.
Due to the presence of the ECs restricting the flux of the dye through both the monolayer
and the vascular network, this process may take several hours to obtain a good signal to
noise ratio. Once, the gel is filled with the dye, a spot is bleached by using the laser. Then
two different phenomena happen. First, due to diffusion of the dye, the fluorescence is
recovered, eventually making the spot disappear. Second, if any convective flux is present,
the center of the spot moves accordingly to the flow. As a consequence, by tracking the
spot, the velocity of the fluid can be estimated. To perform such a tracking procedure, a
Matlab plugin has been used 1. The velocity in the gel is consistent with the magnitude
reported by the 3D-1D model, given that the monolayer is leakier than the network (see
section 5.3.4). This is usually true because the vessel structure results to be tighter. More-
over, the Lp of the network in vitro may be greater than the one used in the simulations.
Given these two clarifications, the experimental results fall in the same order of magnitude
identified by the computational analysis.
Another qualitative proof of the trans-mural pressure has been obtained by looking at ves-
sel deformations. In figure 5.11, two different frames of a video recorded at the inverted
fluorescent microscope (Nikon Eclipse Ti-E) are reported, applying 18.7mmHg at the
side channels. By comparing the two images, a slight radial displacement of the vessel
can be seen, consequently suggesting that the pressure has increased more in the vascula-
ture than in the gel, thus producing a trans-mural pressure difference.

1https://it.mathworks.com/matlabcentral/fileexchange/29388-frap_analysis
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Figure 5.11: Effect of inlet pressure on the vessel geometry (green signal depict GFP

positive cells). On the left, geometry at zero inlet pressure. On the right: geometry for

inlet pressure equal to 18.7mmHg. White bar is 100µm.
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5.3 Effects of urea on cells culture

Under uremic conditions, toxins are accumulated within the body both in the vasculature
and in the interstitium, as presented in the first chapter. As recently reviewed by Vanholder
and colleagues [168], urea has been largely used as a marker of solute retention, since it
has been considered biologically inert. Recently, such a role has been discussed [168,
237] for two reasons. First, the kinetics of urea, classified as a small solute [44], is not
representative of the removal kinetics of all the solutes. For this reason, models aimed at
an overall description have been proposed (e.g. [54]). Second, the urea retention has been
associated with several alterations, also linked to insulin resistance [238]. According to
Vanholder and colleagues’ work, the most common urea concentration among the studies
related to uremic conditions is 20mM . Such concentration has been used to study urea
effect with reference to uremia. The urea effect has been tested by means of different types
of cells: (i) vascular smooth muscle cells [239]; (ii) intestinal epithelial cells [240]; (iii)
aortic endothelial cells [241]; and (iv) pancreatic β-cells [242]. D’Apolito and colleagues
[241], in particular, study the urea effects on endothelial cells. They found an activation of
pro-inflammatory markers, (e.g. reactive oxygen species, leukocyte vascular cell adhesion
molecule-1, and monocyte chemotactic protein-1). In addition, it is well known that an
increased inflammatory state may lead to a leakier vascular network. Another interesting
study on vascular smooth muscle cells shows that increased concentration of urea may
lead to apoptosis [239]. Conversely, Vaziri and colleagues analyzed the resistance of an
epithelial cells monolayer (by testing its electrical resistance), to study the urea effect on
the intestinal barrier [240]. Interestingly, the monolayer was found to be leakier when
exposed to urea. In addition, they reported also a decrease in the expression of the tight
junction proteins, such as ZO-1, claudin-1, and occludin.

Given these literature data, the in vitro platform has been used to study the effect of
urea on the capillary membrane properties. Therefore, proper experiments have been run
to analyze:

• the effect of urea on cells cultured in a plate;

• the expression of tight junction proteins (in particular VE-cadherin and ZO-1);

• the effects on the capillary membrane;

• the effects on the velocity distribution within the gel;

• the effects on the flow rate flowing in the chip due to the applied pressure.
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5.3.1 Effect of urea on cells cultured in a plate

For all these tests HUVECs from Lonza R© have been used. For the first experiment, ECs
were plated with Vasculife R© in a 24-multiwell, using 0.5ml at 50 k/ml. Culture media
was replaced every 2 days. Three different media were used: (i) normal media; (ii) media
+ 1.3mg/ml of urea (EMD R©); (iii) media + 2.6mg/ml of urea. Such concentrations
have been computed on the basis of the median of a database of clinical data referred to
uremic patients [200], and they are in agreement with the values reported in Vanholder and
colleagues’ review. The number of cells has been used as a marker of toxicity. ECs were
stained by Hoechst, a fluorescent dye staining the DNA, and they were then imaged at the
inverted fluorescent microscope (Nikon - Eclipse Ti-E). Doing so, the number of cells has
been estimated by counting the number of nuclei. To count them, the Fiji plugin has been
used after the application of the watershed separation to separate touching nuclei (due to
microscope resolution), as it is usually done for this type of data. Among the 24-well,
8 have been used for each media condition. These 8 were divided by 4, analyzing 2 of
them for each time point: 2, 4, 5, and 6 days of culture. The experiment was repeated
twice. The normality of the data has been confirmed by a Kolmogorov-Smirnov test.
Subsequently, the ANOVA test has been considered to test the presence of any difference
among the sample. If found, the difference is further investigated comparing 2 groups per
time. Results are shown in the figure 5.12 and 5.13. Results show no difference after
2 days of culture, whereas after 4 days the presence of urea within the media seems to
have an effect. More precisely, the number of cells in a ROI is lower under the treated
conditions. This effect is more evident considering a higher concentration. Comparing
day 2 and 4, the number of cells in the control case increase, whereas both the treated
condition do not. With the highest concentration, a decrease trend in the number of cells
is clear after day 4. In particular, statistical differences have been found after day 4, as
shown in the graph by the ∗ and ∗∗. The schedule of the subsequent tests have been built
because of these results.

5.3.2 Expression of tight junction proteins

As already discussed, the possible reduction of the tight junction protein expression has
been addressed in the literature [240]. Even if that study has been conducted with reference
to epithelial cells, a staining has been done to understand whether HUVECs are affected
in a similar by way analyzing VE-cadherin and ZO-1 expression (by immunostaining with
antibodies from R&D Scientific). The experimental protocol to obtain the urea-treated
vascular network is now presented. Such a protocol has been used in the presented ex-
periment and in all the experiments described from now on. The vascular network was
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Figure 5.12: Results for the test performed on multiwells. Statistical difference is high-

lighted as described in the graph, when present.

Figure 5.13: Sample images on which the graph of the multiwell test is based. Different

days are shown for a treated condition, in particular with 1.3mg/ml of urea. Hoescht

stain was used to count cells nuclei.
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generated as described in the first section of this chapter, obtaining perfusable network by
day 7. Once mature networks have been obtained, they have been cultured for 5 more days,
using either normal media (control sample) or urea-enriched media (treated sample, with
the same concentration used in the previous test 1.3mg/ml and 2.6mg/ml). This proto-
col, summarized in figure 5.14, has been used for all the experiments described from now
on. For this experiment only two conditions have been considered, namely the control and

Figure 5.14: Summary of the process to obtain vascular networks and test them. (a)

From left to right: seeding (day 0), seeding of the ECs monolayer (day 4), starting the

treatment after vessel maturation (day 7), and test (day 12). (b) ROI for the effective

permeability test. (c) Lines considered for the FRAP analysis. (d) Location of the neck

for the second FRAP experiment.

the 1.3mg/ml. To evaluate the expression of the tight junction proteins, an immunostain-
ing has been performed with primary and secondary antibodies. Images depicting results
of the staining are shown in figure 5.15. DAPI has been reported as blue, VE-cadherin in
green and ZO-1 in red. The vascular structure is clearly recognizable in both the cases,
with cell nuclei and VE-cadherin showing the vessel structure. In addition, the red color is
present on the wall of the vessel although less visible. By looking at the particular image,
ZO-1 seems to be less expressed than under the control conditions (figure 5.16). Yet, this
should be verified by a more quantitative method, e.g. western blot. However, in both the
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Figure 5.15: Stained samples under control condition and treated with 1.3mg/ml of

urea. DAPI shows cell nuclei (blue). Red and green color report junction proteins:

VE-cadherin (green) and ZO-1 (red).

Figure 5.16: Particular of the stained samples under control condition and treated with

1.3mg/ml of urea. DAPI shows cell nuclei (blue). Red and green color report junction

proteins: VE-cadherin (green) and ZO-1 (red).
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cases, the two proteins seem to be co-localized, identifying cells membrane. Moreover, it
should be noted that also the fibroblasts have resulted positive to the ZO-1 staining, high-
lighting possible unspecific binding. Fibroblasts are clearly recognizable by the elongated
and branched structure. In order to extract quantitative information, this unspecific binding
should be prevented.

5.3.3 The effects on capillary membrane

As described in the previous section, vascular networks have been cultured for 7 days and
then treated (or not when considering controls) for other 5 days, reaching day 12. At that
point, all the media were slowly removed from the side channel, and a solution of 40 kDa
dextran (Sigma-Aldrich) at 0.1mg/ml has been inserted in the lateral channels. Then the
device has been prepared for the pressure test and located on the confocal microscope.
Four different ROI are identified at 3mm, 6mm, 9mm, and 12mm taking as a reference
the outlet reservoir. The number of slices (i.e. the dimension of the sample in the vertical
direction) has been defined as such that all signals can be captured and the duration of the
test allows the use of a ∆t = 6min between two subsequent measure on the same ROI.
∆z, namely the distance between two slices, has been set to 5µm. Indeed, two different
time points are required to perform a permeability measure. Five different pressure have
been applied for each test: 0Pa, 200Pa, 400Pa, 600Pa, 800Pa. The condition relative
to 0Pa corresponds to the real permeability measure, in which convective phenomena are
not considered. Conversely, when an inlet pressure is applied, the effective permeabil-
ity can be computed as previously discussed and from those data the factor Lp (1 − σ)

can be outlined. Results of the permeability test are shown in figure 5.17. According to
previous results regarding the effect of urea, the control seems to provide a better barrier
effect. In particular both the permeability and the estimatedLp (1−σ) (table 5.2) are lower
than under treated conditions. Such coefficient seems to highlight a difference also due to

Table 5.2: Results of the effective permeability analysis.

Condition Lp (1− σ) (cms−1 Pa−1)

Control 6× 10−11

1.3mg/ml 1× 10−10

2.6mg/ml 5× 10−10

urea concentrations. However, by noting the large error bar in the graph, it is clear that
a higher number of samples should be considered to draw statistically significant conclu-
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sions. Moreover, an interesting local phenomenon has been observed, as shown in figure
5.18 in agreement with what reported by [139]. Authors have reported similar phenomena
during permeability tests (i.e. without applying pressure), in HUVECs vasculature treated
by TNFα. They explained these local leaks with possible cell death due to the high con-
centration of the substance. Here similar effects may be produced by the urea treatment.
However, it might be caused by the increase of pressure. This phenomenon may contribute
to the high standard deviation of the results. In addition, in some cases they have appeared
to be transient. Indeed, imaging the same ROI 6 minutes later, the local leak has not been
found. The dextran inserted into the gel has been transported through the gel, eventually
reaching a pseudo-flat intensity profile. However, specific experiments should be run to
investigate this phenomena.

5.3.4 Velocity distribution within the gel

The velocity distribution within the gel has been estimated by the aforementioned FRAP
technique. To have an estimate of the velocity distribution within the gel a total of 24 points
have been analyzed for each experiment. These points have been aligned on parallel lines
across the width of the chip, in correspondence of the 4 ROI previously used in the effective
permeability quantification (figure 5.14). As a consequence, 6 points have been defined
for each of these lines. Starting from this data the median, the 1st, and the 3rd quartile
have been computed. First, a test on a control chip has been performed, varying the inlet
pressure. Results are reported in the figure 5.19. The median velocity increases with the
pressure as expected. Indeed, a higher inlet pressure causes a greater filtration rate, leading
to a larger flow rate, and consequently increasing the velocity within the gel. A similar test
has been conducted by applying the inlet pressure of 400Pa considering a control chip and
two treated chip, one for each concentration considered. Results are reported in figure 5.20.
The median of the velocity within the gel increases with the concentration of urea in the
media. However, such an increase may reflect a greater filtration rate as already discussed.
In this case, this higher filtration rate has been caused by the presence of the urea. To
further analyze these data, a velocity map has been built on these 24 points. Even if the
resolution of the data is not high considering the dimension of the chip, some important
information have been revealed (figure 5.21). Indeed, the greater velocity within the gel
has resulted to depend more on local phenomena than on distributed effects of urea. This is
in agreement with the local phenomena described in the previous section. Moreover, these
results suggest that such local leaks are more frequent with a higher urea concentration. By
looking at the figure referred to urea, two different kind leaks can be identified. The first
one, occurred in both the sample with urea, happens close to the angle. It is more plausible
that this condition has been caused by a leak at the corner of the monolayer rather than a
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Figure 5.17: Graph of the effective permeability under control and treated conditions.

Figure 5.18: Local leak in the network. On the right the same ROI, 6 minutes later.
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Figure 5.19: Results of the FRAP analysis varying the inlet pressure under control condi-

tions.

leak from the network. The second one, occurred only in the case with the highest urea
concentration happens in the center of the chip. This is more likely due to a local leak
from the network.

5.3.5 Flow rate estimation

A similar experiment has been conducted by applying an inlet pressure and measuring
velocity by FRAP. Conversely to what was described in the previous section, the velocity
has been estimated with a more dense sampling, accounting for 20 points, located within
the neck of the chip (figure 5.14). Considering these values, an estimate of the average
velocity can be obtained. From this value, an estimate of the flow rate flowing within the
chip can be performed. By comparing the averaged values of the velocity, the relative
increase of the hydraulic conductivity can be estimated as:

Lp
Lp,ctrl

' vavg
vavg,ctrl

.

Such an equation has been obtained on the following assumptions: (i) negligible variations
of the dimensions of the chip; (ii) negligible variations of the network density and mor-
phology, i.e. ' exchange area; (iii) comparable area of the monolayer; (iv) the treatment
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Figure 5.20: Results of the FRAP analysis varying the urea concentration in the media.

Figure 5.21: Velocity magnitude distribution interpolated with a Matlab script, with ref-

erence to the FRAP analysis varying the urea concentration in the media. For left to

right: control, 1.3mg/ml, and 2.6mg/ml.

172



5.3. Effects of urea on cells culture

does not affect the gel. Based on that equation, results are shown in the figure 5.22. Even in

Figure 5.22: Results of the FRAP analysis for the estimation of the flow rate flowing within

the network.

this case, the treatment with urea seems to produce a greater hydraulic conductivity of the
membrane. This effect also seems to increase along with urea concentration. However, as
denoted by the absence of the error bars, as for the greatest considered concentration only
one sample has been successfully tested. The described effect can either derive from local
phenomena as described in the previous sections, or it can be due to a more distributed
effect. However, the two effects cannot be distinguished by this kind of test. Anyway, the
validity of the assumptions should be further discussed. All the geometrical assumption,
i.e. i − iii, can be investigated by comparing several samples measuring all these quan-
tities. From them, an uncertainty propagation analysis can be performed, to understand
how the variation of these quantities can affect the results. Moreover, a test which uses
only with gel can validate the iv-th assumption, by showing differences, if any, due to the
presence of the urea. As a remark, the contribution to this increase cannot be ascribed to
the vascular network only. Actually, the presence of the monolayer should be considered,
resulting in a more general information about the effect on both the vasculature and the
monolayer. In particular, the contribution of the latter is probably the most significant, as
described by means of the 3D-1D simulations varying its Lp.

173



Chapter 5. The in vitro model

5.4 Discussion

The proposed method to generate microvasculature on a chip has been widely used in
literature [129]. By applying pressure at the media channel, the generation of a trans-
mural pressure has been computationally analyzed using two different methodologies.
This trans-mural pressure difference is generated when an ECs monolayer is built on the
side of the gel, namely separating the gel and the media channel. Computational results
highlight that a tighter monolayer provides a better trans-mural pressure generation and it
allows the analysis of the permeability considering filtration from the network. Despite the
fact that the described experimental setup enables the in vitro analysis of uremic toxins on
the capillary membrane, it is still affected by several limitations. First, the intrinsic biolog-
ical variability affects the analysis. Therefore, a higher number of samples is required to
provide significant results validated also by statistical analysis. Second, the effect of shear
stress [243] has not been considered since no flow rate is allowed through the two sides
of the vascular network. Finally, the overall system is quite delicate. Therefore, failures
may result from gel detaching, incomplete monolayer, rupture of the monolayer, or low
perfusion of the network resulting in vascular fluorescence variations over time. An exam-
ple of the failure of the monolayer is shown in figure 5.23. In that image, a defect in the
monolayer generates a local important leak, which allows dextran to enter the gel directly
from the side. However, these problems can be prevented by refining the experimental
technique and minimizing its possible variations.

Some specific features of the presented test should be discussed. First, the velocity
obtained by the FRAP is the fluid velocity, whereas the velocity resulting from the com-
putational model is the Darcy velocity. It is linked to the real velocity of the fluid flowing
through the pores by the porosity of the media, namely vD = vreal ∗ ψ, where ψ is the
porosity which can assume values between 0 and 1. As a consequence, a certain value
of vD corresponds to a slightly greater value of vreal, precisely by a factor 1/ψ, which
is strictly greater than 1. Given that the porosity of the gel is close to 1, the difference
between these two velocities is small. Such difference affects the result comparison, but
it has a small effect if compared to the inter-sample experimental variability. Therefore,
keeping in mind this little discrepancy, the computational and the experimental results have
been directly compared. Second, in the junction protein analysis, a quantitative informa-
tion can be extracted by the western blot procedure. However, such an operation has found
to be affected by the presence of urea in the sample. Therefore, the quantitative informa-
tion have not been extracted in this case. Moreover, HUVECs has been considered in this
analysis, since they are the most used ECs in microvascular network formation. However,
more specific ECs can be used, such as microvascular endothelial cells, or specific ECs to
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Figure 5.23: Example of a local leak from the monolayer which cause the failure of the

sample.

model a determined tissue. Doing so, a protocol to obtain microvascular network should
be set up first, if it is not available in literature. Finally, addressing the Lp (1 − σ) factor,
an analysis with a very small solute can be performed, namely using a solute for which
σ ' 0. However, this condition rapidly evolves into a condition in which one of the as-
sumptions does not hold true, specifically the approximation of the difference of intensity
with the intensity within the vasculature. This reduces the amount of time available for a
test, leading to a more experimentally complex handling of the technique.

Even considering these limitations, the presented setup allows the analysis of urea ef-
fects on the capillary wall membrane. Since the number of successful tests was low, the
statistical definition of alterations produced by the solute was not possible. However, all
the different performed test suggest an effect of urea concentration. This approach, with
a higher numerosity of the sample, can be applied to study the effect of uremic toxins on
cells and on the capillary membrane, to better understand microvasculature under uremic
conditions. Uremic solutes toxicity has also been recently addressed by different works,
and some key points such as the toxicity of urea are being re-discussed. This in vitro

approach represents a good platform to analyze such toxicity. Moreover, it can also be
applied to study different phenomena related to the pathology or to its treatments. For
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example, the decrease of the reflection coefficient of plasma proteins [127] can be investi-
gated. As shown by the sensitivity analysis performed by the 3D-1D model, this variable
directly affects the fluid balance within the microvasculature. Another possible applica-
tion is the study of solutes kinetics in the micro-environment. Indeed, some solutes are
not easily removed by dialysis, and they may suffer from compartmentalization. For ex-
ample, a solute store within the interstitial space has to go through the capillary membrane
first, before reaching the blood and being transported to the dialyzer (if hemodialysis is
considered). The further understanding of such phenomena represents a first step toward a
possible improvement of the dialysis therapy. A further interaction with the 3D-1D model
would be possible thanks to the implementation of the mass transport on the computational
model. This improvement will allow the deeper analysis of the dextran transport, strictly
coupling experimental data with the computational model.
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CHAPTER6
General discussion and conclusions

In this conclusive chapter, a discussion of the overall approach is given. Finally,

research activities enabled by the present work are discussed.
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6.1 The overall modeling approach

In this work, a comprehensive modeling approach to study microvasculature has been pro-
posed in order to analyze the uremic microvasculature. Such a modeling approach consists
of three different models, and their possible interactions (figure 6.1). First, the peripheral
description of the lumped parameter model has been analyzed. A modification of such
description has been proposed to better describe fluid balance. This modification enables
the interaction with the 3D-1D model, given the coherence of the descriptions. Simula-
tions have been run to show the key role of the lymphatic drainage and the requirements
for a comprehensive approach, therefore confirming the role of this model in the over-
all modeling approach. Secondly, the 3D-1D model has been built accounting also for
non-linearities in the description of the lymphatic flow rate and the typical phenomena
related to blood flow within the microvasculature. Starting from the available literature
data, this model has been used to simulate the effect of uremic microvascular alterations
on the filtration and on the interstitial pressure. The effects of these alterations have been
deeper looked into through a sensitivity analysis. Furthermore, an in vitro model has been
proposed to analyze the effect of uremic toxins on the vessel membrane by applying a
trans-mural pressure difference. The experimental setup has been analyzed through com-
putational models in order to highlight the key role of the ECs monolayer to obtain the
trans-mural pressure. Finally, the model has been applied to study the effect of urea on the
capillary membrane.

Together, these models enable the study of uremic alterations accounting for macro-
and micro- vasculature, towards a full multiscale model. Each of these models has its own
limitations and advantages, which have been discussed in the work. Besides these limita-
tions, the models represent an advanced tool to study the uremic microvascular alterations.
Moreover, one of the advantages of such a comprehensive approach is the possible inter-
actions between the three models. For example, alterations of the capillary membrane
studied with the in vitro model can be used to tune the 3D-1D model. In the figure 6.1
the interactions are described highlighting the ones already addressed in this work and
those enabled by these modeling approaches. For instance, the lumped parameter model
has been used to analyze the flow assumptions for microcirculation, computing typical
dimensionless numbers, and confirming viscous forces dominance. In addition, the im-
provement of the peripheral description has paved the way for an interaction between the
two computational models, which may serve several purposes. Among others, it helps
describe and understand possible variations of capillary pressure in pathological subjects.
Direct measurement of such alterations is challenging for multiple reasons. Accounting for
vascular regulation, the lumped parameter model can be used to figure out vascular pres-
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sure variations to be further studied with the 3D-1D model. However, it should be noted
that vascular regulation may be impaired under uremic conditions, due to the presence of
uremic toxins and fluid overload. For example, the presence of urea may induce accu-
mulation of advanced glycation end products [241], which are known to affect vascular
response to shear stress [244,245]. As a consequence, a validation and adjustment process
is required to go further with the vascular regulation modeling. Concerning interactions
of the 3D-1D model and the in vitro, the first has been used to describe the experimental
setup, addressing the trans-mural pressure generation. By means of this analysis, a weak-
ness of the experimental technique has been identified. This has allowed the improvement
of the technique, enabling a better analysis of the capillary membrane properties. More-
over, a qualitative similarity has been observed between the in vitro vascular network and
the generated artificial networks. The latter have been generated by a random algorithm
based on a 2D version of the Voronoi tessellation (which ensure only bifurcations within
the network) and a subsequent 3D perturbation. This result supports the proposed artifi-
cial network-generation process. In addition, this work enabled a key interaction between
these two models. More precisely, by coupling the 3D-1D and the in vitro model, the al-
terations of the capillary wall induced by uremic toxins can be studied and modeled. Their
identification, together with their concentrations, is currently being addressed by differ-
ent groups, and the total number of uremic toxins has exceeded one hundred. Possible
changes in the morphology of the network can be also addressed by the in vitro model and
then included in the 3D-1D model. If necessary, mass transport and diffusion modeling
can be included in the model thanks to the model structure. Indeed, the transport of RBCs
is already present in the model. This feature allows a further analysis of the experimen-
tal setup. For example, by including albumin in the media and analyzing its distribution,
researchers can study the distribution of oncotic pressures. Another possible interaction
enabled by this model is the study of the red blood cells flow in complex network, by
coupling the 3D-1D model and the experimental model. RBCs interaction with the glyco-
calyx and the possible variations of such an interaction due to the uremic pathology can
be studied and further analyzed.

The presented models and their interactions can be applied in future studies aimed at
enhancing our understanding of uremia. The in vitro model can be used to identify the
effect of uremic toxins on microvascular wall properties leading to a better understanding
of pathological variations of vascular-interstitial fluid and mass transport. In addition, the
possible effects of uremic toxins on the glycocalyx can be assessed by specifically ana-
lyzing that structure using the already developed experimental protocol similar to those
presented in this work. The inclusion of glycocalyx-related phenomena in the 3D-1D
computational model will allow an interaction with the in vitro model to describe pro-
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tein transport in both the vasculature and the interstitium. Such experiments can support
the research efforts towards the understanding of glycocalyx-related effects on filtration.
They will allow the study of proteins transport, their interaction with uremic toxins and
how such interaction affects their transport under pathological conditions. Further exper-
iments should also deal with the possible modification of vascular regulations due to the
pathology, also involving patients’ real data if necessary (e.g. variations of the shear-stress-
related regulation). This kind of variations can also be investigated by using the lumped
parameter model.

As a final remark, these models and their iterations may also be applied to other con-
texts. One example is the tumor micro-environment. The 3D-1D and the in vitro model can
be used to analyze possible treatments, or phenomena involving the micro-environment.
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Figure 6.1: Schematic of the models considered in the work. Solid lines indicate current

interactions between the models. Dotted lines stand for possible useful interactions

enabled by the adopted modeling approach. The blue database depicts clinical data

that can be used for model validation as discussed in the text.
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6.2 Conclusion

Over the last few years, the interest in microvascular alterations under uremic conditions
has significantly grown. Many phenomena are involved in these alterations resulting in a
very complex scenario. In this work, a wide and multifaceted modeling approach has been
developed to analyze them, exploiting both computational and experimental tools. Such
an approach allows the study of complex phenomena from manifold different points of
view, including aspects that have not been deeply studied yet, such as the effects of uremic
toxins on the capillary wall membrane, capillary rarefaction, and the role of microvascular
morphology. Based on these results, the role of different quantities or parameters can be
outlined and assessed. Moreover, the results have verified the effectiveness of the applied
models in investigating microvascular wall membrane alterations. It can be concluded that
this work has paved the way for subsequent studies dealing with alterations in microvas-
culature under uremic conditions. Applying extensively these methods to analyze such
alterations in uremic patients will result in a better understanding of their effects. These
researches can eventually lead to a better design of the dialysis treatment.
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