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ABSTRACT

In my thesis work I have carried out a computational investigation, by
means of Density Functional Theory (DFT), of 2D sp-sp2 carbon nanos-
tructures. Using a bottom up approach I have analyzed the electronic
properties of molecular fragments having finite dimension and consti-
tuted by phenyl groups linked by diacetylenic units. This study aimed
at investigating how intramolecular effects can affect the π-conjugation
of the single fragments, modulating HOMO-LUMO band gap. First,
size effects have been analyzed by computing the band gap of single one
dimensional chains, made by phenyls and diacetylenic units, for increas-
ing chain lengths. Then an analysis on electronic properties of finite
molecular fragments was done, evaluating the band gap, depending on
their connectivity (meta, ortho and para conjugation), extension and
topology. The results obtained shows also how molcular simulations
can be useful for the molecular design of novel innovative systems.

Based on this investigation, I have considered infinite periodic struc-
tures. At first, as a reference structure, I have studied electronic and
vibrational properties of the infinite 2D graphdiyne (GDY). The anal-
ysis concerned the computation of the band structure, the evaluation
of the band gap, and the prediction of the Raman spectra, with a
detailed characterization of the normal modes associated to the main
bands showed in the spectra. I drove then my attention towards GDY
nanoribbons (GDYNRs), originated by ”cutting” the infinite 2D struc-
ture along specific directions. By this way, depending on the edge
type, armchair and zigzag nanoribbons can be built. The study aimed
at analyzing how the different edges can affect electronic and vibra-
tional properties of these structures. Therefore the band structure of
armchair and zigzag GDYNRs was studied, depending on their width,
and Raman spectra were computed and interpreted by analyzing the
normal modes of vibrations. Marker bands of GDYNRs with different
edges have been identified, providing important informations for the
characterization of these new intriguing nanostructures.
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SOMMARIO

Nel mio lavoro di tesi ho condotto un’analisi computazionale, mediante
calcoli di Density Functional Theory, di nanostrutture 2D sp-sp2 di car-
bonio. Utilizzando un approccio bottom up, ho analizzato le proprietà
elettroniche di frammenti molecolari di dimensione finita, costituiti da
gruppi fenili collegati da unità diacetileniche. Tale studio vuole investi-
gare come gli effetti intramolecolari possano influenzare la coniugazione
π dei frammenti, modulando il gap HOMO-LUMO. Inizialmente, tali
frammenti sono stati analizzati calcolando il band gap di singole catene
monodimensionali, costituite da fenili e unità diacetileniche, al crescere
della loro lunghezza. Quindi ho condotto un’analisi sulle proprietà elet-
troniche di frammenti molecolari, valutando il gap, in funzione della
connettività (orto, meta, para), dell’estensione e della topologia. I
risultati ottenuti mostrano come le simulazioni molecolari siano utili
per il molecular design di nuovi sistemi innovativi.

Basandomi su tale studio, ho analizzato strutture periodiche in-
finite. Inizialmente, come riferimento, ho studiato le proprietà elet-
troniche e vibrazionali della grafdiina infinita 2D (GDY). L’analisi si
è concentrata sul calcolo della struttura a bande, sulla valutazione del
band gap e sulla previsione dello spettro Raman, accompagnata da
una caratterizzazione dettagliata dei modi normali associati alle bande
principali mostrate nello spettro. Ho quindi spostato l’attenzione verso
nanoribbon di GDY (GDYNRs), originati ”tagliando” la struttura 2D
infinita lungo direzioni specifiche. Cos̀ı, in funzione del tipo di bordo,
possono essere costruiti dei nanoribbon armchair o zigzag. Lo scopo
dello studio è quello di analizzare come i diversi bordi influenzano le
proprietà elettroniche e vibrazionali di tali strutture. Perciò ho studi-
ato la struttura a bande dei GDYNRs armchair e zigzag, in funzione
del loro spessore, e ho calcolato ed interpretato i loro spettri Raman
analizzando i modi normali di vibrazione. Inoltre sono state identificate
le bande marker dei GDYNRs aventi bordi differenti, dando importanti
informazioni per la caratterizzazione di queste interessanti nanostrut-
ture.

3



ESTRATTO

Questo lavoro di tesi si focalizza, attraverso un’indagine computazionale
svolta mediante calcoli Density Functional Theory (DFT), sullo studio
delle proprietà strutturali, elettroniche e vibrazionali di particolari sis-
temi molecolari ibridi 2D di carbonio in ibridizzazione sp-sp2. Tale
analisi è motivata dal fatto che negli ultimi 30 anni i materiali nanos-
trutturati a base di carbonio hanno raggiunto una grossa importanza
nel campo della ricerca sulle nanotecnologie. In più le interessanti pro-
prietà previste per l’allotropo ideale di carbonio sp, studiato solo a
livello teorico e chiamato carbina, ha spinto molti gruppi di ricerca a
concentrarsi sullo studio di strutture a base di carbonio caratterizzate
da tale ibridizzazione. Negli ultimi 20 anni, l’attenzione si è riversata
soprattutto sullo studio delle catene lineari finite di carbonio (CAWs),
e nello studio delle loro proprietà elettroniche, ottiche e vibrazionali
in funzione della loro struttura chimica e delle possibilità di sintetiz-
zarle mediante opportuni metodi chimici e fisici. In tale contesto e in
riferimento all’ancor più vasta tematica di ricerca che ha come focus il
grafene, alcuni gruppi di ricerca hanno mosso la loro attenzione verso
sistemi ibridi di carbonio sp-sp2, sia dal punto di vista sperimentale
che teorico. Il mio lavoro di tesi si colloca precisamente in quest’ultimo
contesto.

Utilizzando un approccio bottom up ho innanzitutto analizzato, a
livello teorico, le proprietà elettroniche di nanostrutture di dimensione
finita costituite da gruppi fenili collegati tra di loro attraverso catene
diacetileniche. I calcoli computazionali sono stati svolti utilizzando
il funzionale PBE0 ed il set di base 6-31G(d,p), con il programma
GAUSSIAN09. Lo studio è volto a comprendere come la connettività
tra le unità diacetileniche (se in posizione meta, orto o para) ai gruppi
fenili possa influire sulla coniugazione degli elettroni π dei singoli fram-
menti, modulandone il gap elettronico HOMO-LUMO. Per prima cosa
ho analizzato il band gap di singole catene costituite da fenili e unità
diacetileniche connesse ai fenili stessi nelle diverse posizioni meta, para
ed orto, e come esso evolvesse all’aumentare delle unità diacetileniche
lungo la catena. Quindi ho proceduto con l’analisi di singoli fram-
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menti finiti formati dagli stessi gruppi chimici e ho valutato come
l’estensione, la connettività tra le unità diacetileniche e la topologia
stessa del frammento potesse influire sul band gap stesso proponendone
un’interpretazione sulla base delle interazioni intramolecolari. Tale stu-
dio, oltre a chiarire meglio le proprietà di tali strutture, ha permesso di
mettere a punto un ”design” molecolare che può essere utile a gruppi
di ricerca volti alla sintesi di tali molecole cos̀ı da avere un riferimento
sulle proprietà di strutture verso le quali orientare gli sforzi di sintesi.

Una volta comprese meglio le proprietà dei sistemi finiti, mi sono
mosso verso l’analisi di strutture periodiche ed infinite. Questa anal-
isi computazionale è stata fatta utilizzando i programmi CRYSTAL14
e CRYSTAL17 che operano applicando condizioni periodiche al con-
torno per trattare cristalli 1, 2 o 3D e utilizzando nuovamente il fun-
zionale PBE0 e il 6-31G(d,p) set di base. Tale studio è stato moti-
vato dalla volontà di analizzare una particolare struttura sp-sp2 del
carbonio, molto studiata recentemente in letteratura e denominata γ-
grafdiina (GDY). Dall’analisi della GDY infinita 2D, il fine ultimo era
di muoversi verso l’analisi delle proprietà elettroniche e vibrazionali di
nanoribbon, costruiti ”tagliando” la struttura infinita bidimensionale
della γ-grafdiina lungo particolari direzioni e ottenendo delle strutture
in cui viene imposto un confinamento lungo una delle due direzioni.
Come modello di riferimento, la prima struttura periodica analizzata
da me è stata appunto la grafdiina infinita. L’analisi si è focalizzata
sia sul calcolo della struttura a bande, in modo da analizzare le pro-
prietà elettroniche in termini di band gap, sia sull’interpretazione det-
tagliata dello spettro Raman svolgendo un’analisi dettagliata dei modi
normali di vibrazione. Di seguito mi sono quindi dedicato all’analisi
computazionale dei nanoribbon di grafdiina. In funzione delle direzioni
lungo le quali è possible tagliare la struttura bidimensionale della grafdi-
ina, due tipologie di nanoribbon con due differenti bordi possono essere
ottenute: armchair e zigzag. Lo studio da me compiuto si è soffermato
sull’analisi delle proprietà elettroniche e vibrazionali di tali strutture,
in modo da comprendere come il tipo di bordo influisse su di esse, anal-
izzando i relativi band gap e spettri Raman. Per quanto riguarda le
proprietà elettroniche, è stato valutato il band gap e come il suo valore
fosse influenzato dal tipo di bordo presente nella struttura nonchè come
esso evolvesse con l’aumentare dello spessore dei nanoribbon, facendo
luce sugli effetti di confinamento in questi sistemi. Infine lo spettro
Raman è stato analizzato per diversi nanoribbon armchair e zigzag,
con particolare attenzione ai modi normali associati alle bande marker
che li contraddistinguono dalla GDY infinita. Oltre ad analizzare come
tali picchi e modi normali associati evolvessero con l’aumentare dello
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spessore del nanoribbon, è stato fatto anche un confronto tra gli spet-
tri dei nanoribbon zigzag e armchair per capire se ci fosse un modo
per distinguerli sulla base dei loro spettri Raman. Questa analisi è
volta allo scopo di comprendere meglio le proprietà elettroniche e vi-
brazionali di tali strutture, ma anche di avere un buon strumento di
caratterizzazione a supporto di studi condotti a livello sperimentale.
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Chapter 1

Introduction

In the recent 30 years nanostructured carbon-based materials have
reached a great importance in the field of nanoscience and nanotech-
nology. Fullerene, graphene, nanotubes and other forms of carbon are
some examples of this big interest towards these type of materials. The
continous research towards other exotic forms of carbon makes the re-
cent period ”The era of carbon allotropes” [1]. Moreover the absence of
a real experimental sp allotrope, theoretically investigated and called
carbyne, has stimulated a lot of scientists and reasearch groups in the
investigation of sp-carbon based materials [2]. These materials are
considered as possible novel nanostructures with innovative and pecu-
liar electronic properties. More recently carbon atom wires (CAWs)
started to be studied as possible novel materials in the field of molecu-
lar electronics [3]. These structures are studied both with experimen-
tal and theoretical/computational methods. From the experimental
point of view, different techniques have been implemented to produce
carbon atom wires [4], but different characterization techniques have
been employed to determine their structural, vibrational and electronic
properties. Parallel to experimental works, many computational inves-
tigations focused on the prediction of the properties of sp-carbon chains
further revealed the interesting behaviour and the promising properties
of these systems [3]. In this context, my thesis work is focused on theo-
retical investigations, by means of Density Functional Theory, of pecu-
liar carbon nanostructures characterized by mixed sp-sp2 hybridization.
At first I focused my attention on molecular fragments made by hexag-
onal rings containing sp2 hybridized carbon atoms, linked toghether by
linear diacetylenic units where the hybridization of carbon was sp. The
aim of this study was to give theoretical references of these structures
for what concern their electronic and vibrational properties, expecially
for chemists who synthesized them [5]. Infact we try to understand
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their electronic behaviour, by evaluating the band gap, changing the
type of fragment, the length and connection type of the sp units, the
extension of the fragments themselves and other parameters to play, in
a molecular design way, in the synthesis of these structures to obtain
the desired properties. Moreover, studying the vibrational properties
and in particular the Raman spectra of these structures, it is possible
to provide a further interpretation useful for the characterization of
novel systems properly designed and synthetized. The second part of
my thesis focuses on the theoretical investigation of the 2D graphdiyne
and on its nanoribbons made by cutting the infinite 2D crystal along
specific directions. Also in this case, electronic and vibrational prop-
erties were analyzed. Band gap and Raman spectra of different type
of nanoribbons were investigated as a function of their width and their
edge-type. The aim of this study was to give a detailed character-
ization of grapdiyne nanoribbons and give an interpretation of their
electronic properties in order to apply them in the future as possible
novel materials in nanoelectronics.
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Chapter 2

Carbon Atom Wires (CAWs)
and hybrid sp - sp2

carbon-based materials

2.1 Carbyne

Carbyne is defined as the one-dimensional infinite linear chain formed
only by covalently bonded sp-carbon atoms. It is thus the true one di-
mensional atomic chain characterized by a diameter of only one atom.
The production of single sp-carbon chains long enough to be reliably
considered as an infinite one is nowadays challenging. The longest
chains (up to 6000 atoms) identified up to now have been recently
detected inside double-wall carbon nanotubes. The longest wire in iso-
lated form has been synthesized by Tykwinski and Chalifoux [6] with
lengths of more than 40 carbon atoms. For small chains it can be shown
that their behaviour is ruled by end-effects while for long chains, with
more than 50 carbon atoms, Peierls distortion takes place and rules
the chain behaviour [7]. There are two possible forms of carbyne that
possess different electronic and vibrational properties. The first one is
called ”polyyne” and it is characterized by an alternation, along the
chain, of triple and single CC bonds. Due to this, the structure will
be characterized by a certain bond length alternation (BLA = r1− r2,
with r1 and r2 bond distances of the single and triple bonds respectively,
Fig. 2.1). The second one is called ”cumulene” and can be described
as a periodic repetition of only double bonds along the chain and will
be characterized by BLA = 0. These two configurations would corre-
spond to an insulating/semiconducting system for BLA 6= 0 (polyyne)
or truly metallic systems when BLA = 0 (cumulene), revealing the
usual connection between molecular structure (BLA) and electronic
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2.2 CAWs: examples of carbyne-like systems

(a)

(b)

Figure 2.1: (a) The structure of ideal carbyne with the two possible con-
figurations: cumulene (top) and polyyne (bottom) and (b) the bond length
alternation (BLA) as the parameter to describe the structure of a finite
wire [3]

properties (band gap) which is peculiar of polyconjugated molecules.
Due to the previous cited Peierls distortion, occurring for an infinite
chain, the only stable form is the polyynic one. A lot of computational
works revealed that carbyne should have very unique properties such
as a very high Young modulus (up to 32 TPa) and a specific stifness
of about 109 Nm/kg, much higher than all the other materials, includ-
ing carbon nanotubes, graphene and diamond. Thermal conductivity
has been predicted to reach extremely high values (80-200 kW/mK
for cumulenes and polyynes at room temperature) and it is attributed
to high phonon frequencies and long phonon mean free path allow-
ing ballistic thermal transport up to the microscale. Moreover, for
what concern electronic properties, cumulene is expected to be a metal
while polyyne a semiconductor with large electron mobilities and pe-
culiar conductance behaviour, including ballistic transport even with
spin polarization. [3]

2.2 CAWs: examples of carbyne-like systems

In the last 20 years more and more attention has been focused on sp-
carbon chains. This interest was stimulated by the fact that different
kinds of finite-length carbon atom chains have been syntesized. Raman
spectroscopy has emerged as a strong characterization tool to unam-
biguosly identify and investigate these type of structures. Differently
from Raman of sp2-carbon systems that have Raman fingerprint signals
in 1300−1600 cm−1 region, Raman signals that characterizes sp-carbon
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2.3 Novel sp− sp2 carbon-based materials

chains are located at 1800 − 2300 cm−1. Through this technique, due
to the fact that peak position downshifts for increasing wire length, it
is possible to identify polyynes depending on their size [8]. Hydrogen-
capped polyynes are a particularly simple and interesting system for
which both synthesis, made by Cataldo [9], but also theoretical inves-
tigations were done [10]. In the second case, the trend of the BLA as
a function of the increasing length of the sp-chain were analyzed in
details. What it is found is that BLA decreases for increasing length of
the chains due to the increase of π-electron conjugation. This sctruc-
tural variation is followed by a lowering of the gap between the highest
occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO
gap). Obviously it is impossible to reach the 0 gap case of cumulene
structure because at some length Peierls distortion occurs but chemical
strategies have been developed to this aim for short systems. Indeed
for small molecules made by relatively short carbon chains, the pre-
dominant effect in inducing a cumulene or polyynic structure along the
chain is given by the end groups [11]. Infact, for example, for hydrogen-
capped polyynes the terminal −CH bond forces the next CC bond to
have a triple character, the next one to have a single character and
so on, thus inducing a polyynic structure. Instead, a = CH2 terminal
group will force, in the same way, the next CC bond to be double and
so on, inducing in this way a cumulenic structure. Cumulenic struc-
tures have been synthetized by Tykwinski and co-workers using the
approach of the end groups. Infact quite short sp-carbon chains have
been terminated by an sp2-carbon atom connected to two substituted
phenyl groups, creating a chemical connection similar to that presented
by ideal vinylidene-capped molecules. So, thanks to these end-groups,
the sp-carbon chains are forced to display a cumulenic equalized geom-
etry [12].

2.3 Novel sp− sp2 carbon-based materials

Carbon atom wires can be fundamental units also for more complex
nanostructured and novel materials, characterized by peculiar and tun-
able properties. In particular we will focus on novel sp− sp2 systems,
such as graphyne, graphdiyne and related fragments reported in Fig.
2.2.
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2.4 The infinite graphdiyne

Figure 2.2: Structures of sp → sp2 molecular fragments of graphyne (a)
and graphdiyne of increasing size (b→d). In model (d), the red spheres
represent bis-terbutyl substituted phenyl groups. The structure of extended
2D graphyne and graphdiyne is reported in (e) and (f), respectively. [3]

Graphyne (GY) and graphdiyne (GDY) are indeed hybrid sp/sp2

carbon systems presenting a well-organized and regular arrangement of
the atoms. The 2D crystal of these systems is constituted by sp2-carbon
hexagons interconnected by means of sp-carbon chains having differ-
ent lengths ( GY and GDY sp-carbon chains are formed respectively
by 2 and 4 carbon atoms). These structures stimulated the attention
in the last decade mainly for their very peculiar electronic properties.
Following a bottom-up approach it was possible, for example by Ha-
ley, to synthesize 2D molecules as subfragments of GDY of different
topology and dimension (Fig. 2) [13]. Regarding 2D sp− sp2 crystals
some efforts were spent towards the on-surface synthesis of GDY struc-
tures. In this context, Xu and co-workers have demonstrated that it
is possible to fabricate 2D graphdiyne-like systems by depositing halo-
genated precursors and by promoting an homocoupling reaction on a
gold surface and then analyzed with STM microscopy [14].

2.4 The infinite graphdiyne

As already mentioned above, graphdiyne is a one-atom-thin carbon
network (like graphene), which can be constructed by replacing some
−C − C− bonds in graphene with uniformly distributed diacetylenic
linkages−C ≡ C−C ≡ C−. As a result, such flat carbon (sp2+sp) net-
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2.4 The infinite graphdiyne

works with a high π-conjugation, uniformly distributed pores, density
much smaller than for graphene and with tunable electronic properties
are considered now as possible promising materials for nanoelectron-
ics, as membranes, for energy storage applications or as candidates
for anode materials in batteries [15]. Among the different types of
graphdiyne, we will focus our attention on the γ-graphdiyne whose
structure is reported in Fig. 2.3. The C − C bonds in the hexagons

Figure 2.3: Structure of γ-graphdiyne [15]

and in diacetylenic linkages are not uniform, reflecting different bond-
ing types for each pair of carbon atoms. This diversity leads to greater
structural flexibility of GDYs as compared with graphene. On the
other hand the presence of diacetylenic units in 2D carbon networks
decreases their stability in comparison with graphene and some other
sp2 like graphene allotropes. From the electronic point of view, GDY is
a semiconductor with direct band gap at Γ point of the Brillouin zone
(wavevector k=0).
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2.4 The infinite graphdiyne

Figure 2.4: Schematic representation of a single GDY sheet. Band structure
and density of states for a single GDY sheet, obtained from DFT calcula-
tions. The Brillouin zone is also shown. [16]

The band structure includes deep σ-type bands, whereas the low-
energy π(π∗) bands form the edges of the gap (Fig. 2.4). The reported
band gaps usually go from 0.46 to 1.22 eV depending on the applied
methods and the exchange-correlation functionals used [15]. In Tables
2.3, 2.2 some values of the band gap are reported.

Table 2.1: Lattice constant and band gap values of GDY taken from the
literature and calculated with different methods and exchange-correlation
functionals [15].

GDY
a(Å) 9.44b;9.464d;9.48h;9.37i

BG(eV) 0.53b-0.52/1.18d-1.22e-044/1.10g-0.46h-0.53i

Table 2.2: Band gap values from the literature [15]

b FP-LCAO d VASP: GGA-PBE/Crystal06: B3LYP
e hybrid exchange-correlation functional g ABINIT-YAMBO: LDA/GW
h VASP-PAW: GGA/PBE i CASTEP: GGA/PBE

Table 2.3: Computational details of the band gap values [15]

GDY has an hexagonal simmetry and belongs to the two-dimensional
space-group P6/mmm (D6h) in the Hermann-Maugin notation [17].
For the first-order Raman scattering, the process is limited to phonons
at the Brillouin zone center Γ point respecting the law of momentum
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2.4 The infinite graphdiyne

conservation. The calculated Raman spectra and atomic motions of
vibrational modes of γ-GDY are shown in Fig. 2.5 [18].

Figure 2.5: Raman spectra and vibrational modes of GDY. (a) Raman spec-
trum (b) Atomic motions of intense Raman-active modes, in which the red
arrows show the motion directions of the main contributors. [18]

The graphdiyne has six intense Raman peaks: the breathing vibra-
tion of the hexagonal benzene rings is B, the vibrations related to sp2

carbon are G,G’ and G” (similar to other carbon-based sp2 materi-
als), and the alkyne-related modes are Y and Y’. The G peak comes
from stretching of aromatic bonds as in graphene, but it is charac-
terized by low intensity and wavenumber. The Y peak comes from
the synchronous stretching/contracting of triple bonds, which is a fully
symmetric mode. The G” peak is connected to the scissoring vibration
of atoms in benzene ring. The G’ peak comes from the vibrations of
C-C bonds between triply coordinated atoms and theirs doubly coordi-
nated neighbors (G’ is even stronger than G). The Y’ peak is another
stretching mode of alkyne triple bonds, but the vibrations of different
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2.5 Graphdiyne nanoribbons

triple bonds are out-of-phase: one-third of triple bonds are stretching
while the remaining two-thirds are shortening.

2.5 Graphdiyne nanoribbons

A finite graphene sheet has edges, in which there are atoms with dif-
ferent coordination numbers and dangling bonds. These structures,
called nanoribbons (NRs), exhibit properties different from the ideal
infinite graphene sheet and are now widely investigated [19]. For these
reasons attention was paid also to similar structures: sp-sp2 nanorib-
bons of GYs (GY-NRs) and GDYs (GDY-NRs). Ribbon width, edge
morphology, edge functionalization and other parameters can be modi-
fied to tailor electronic, chemical, mechanical and magnetic properties.
Generally two main types of the most symmetric variants of edge con-
figurations of ribbons, designed by ”cutting” through infinite GY and
GDY networks, may be analyzed: zigzag and armchair [15] (Fig. 2.6).

Figure 2.6: The structures of armchair (ANR) and zigzag (ZNR) graphdiyne
nanoribbons labeled according to the number of chains of C6 hexagons. On
the left: the configurations of zigzag and armchair edges for graphene rib-
bons are illustrated. The arrow inicates the periodic axis of the nanorib-
bons [15]

Concerning GDY nanoribbons, a simple nomenclature of NRs was
proposed, where the index n indicates the number of repeated units
(−C6 − C ≡ C − C ≡ C − C6 − C ≡ C − C ≡ C − C6-) that can
be counted along the width of the ribbon. For this scheme, armchair
nanoribbons (ANRs) are defined by only integers value of n, whereas
for zigzag nanoribbons (ZNRs) the number of repeated units n can be
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2.5 Graphdiyne nanoribbons

also an half integer. Examples of such structures are shown in Fig.
2.6.

Figure 2.7: Trend in the band gap as a function of the nanoribbons’ width
for zigzag and armchair NRs. [20]

(a) (b)

Figure 2.8: (a),(b) Band structures and density of states (DOS) for zigzag
and armchair nanoribbons with n=3 are reported. LDA functional was used
for the calculations [20]

A lot of computational studies have been carried out to study elec-
tronic properties of these structures. ANRs and ZNRs with variable
width were analyzed and it was found that all these ribbons are still
semiconductors and their band gaps decrease as the ribbon width in-
creases approaching, as expected, the limit of the 2D-GDY as reported
in Figs. 2.7, 2.8 [21] [20]. Analyzing the stability of NRs passivated
by H atoms at the edges, it was found that they are more stable than
the ”parent” 2D networks; besides, stability of graphdiyne nanorib-
bons decreases as their widths increase. Moreover, the extimation of
the Young’s modules of GDY ribbons demonstrate that the elastic stiff-
ness of graphdiyne NRs is much smaller than for graphene ribbons [21].
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2.6 Possible applications of GDYs

For their peculiar structural, mechanical and electronic properties, stud-
ied in detail by several theoretical works, graphdiynes have a lot of pos-
sible applications as superb contenders for nanoscale semiconductors
with adjustable gaps, as new materials with direction-dependent me-
chanical properties for possible nanomechanical applications, for elec-
tronic and opto-electronic devices, for hydrogen storage [15]. Sun et
al have studied graphdiyne sheets decorated with lithium and the cal-
culations show that these sheets can host a large amount of lithium,
suggesting these materials to be designed as anode materials for lithium
batteries [22]. Another possible application of graphdiyne sheets could
be their use as separation membranes for hydrogen purification from
syngas, that usually contain undesired molecules like CH4 and CO. Due
to their thickness of one atom, they seem to be the most promising
candidates because the efficiency of the membrane decreases with the
increase of its thickness [23]. Water desalination through nanoporous
membranes has been suggested as an energy-efficient method that could
substitute commercial technologies, such as reverse osmosis. Buehler et
al. demonstrated that a carbon ”nanoweb” allowing both barrier-free
permeation of water molecules and perfect rejection of salt ions would
be an ideal candidate for water desalination [24]. A carbon nanoweb
can be built from a monolayer of GY or GDY, robust and porous, with
well defined atomic triangular pores. The search for new GDY-based
materials and their applications is today at its initial stage and will
probably expand in future research.
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Chapter 3

Theoretical Background

3.1 Quantum Chemistry Theory for Crystalline
and Molecular Calculations

In this chapter principles of quantum chemistry [25] and, in particular,
of Density Functional Theory will be presented [26], [27], [28], [29],
[30]. First, basic principles of quantum mechanics will be introduced
[31], and then the Hartree-Fock theory will be presented. After the
treatment of correlated methods based on Hartree-Fock, DFT will be
analyzed.

3.1.1 The Schrödinger equation

In quantum mechanics, a certain physical state can be described by
a specific function that takes the name of wavefunction. It usually
depends on three variables that are position in space, time and spin,
and it can be evaluated as the solution of a very famous equation called
Schrödinger equation. This one involves time and space derivatives of
the wavefunction and can be written as :

i~
∂Ψ

∂t
= ĤΨ (3.1)

Writing the wavefunction as the product between two differnt terms
that respectively depend on time and space it’s possible to separate the
two variables and to write a time independent Schrödinger equation.

Ĥ(~r)Ψ(~r) = E(~r)Ψ(~r) (3.2)

The energetic description of a particle is embedded in the Hamiltonian
operator Ĥ, that is usually the sum between the kinetic and potential
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3.1 Quantum Chemistry Theory for Crystalline and Molecular Calculations

term of the overall system:

Ĥ =
∑(

− ~2

2mi

∇2
i

)
+ V̂ (3.3)

Considering this expression for the Hamiltonian we are neglecting all
the possible spin-spin interaction or spin-orbit couplings due to the
absence of external magnetic perturbations. The sum is done over all
the particles that are present in the system we are considering, and the
potential term expresses all the possible interactions between them.
Now we can consider a system of M nuclei and N electrons that can be
described respectively by position vectors ~RA and ~ri. We define ~riA the
distance between the i electron and the nucleus A, ~RAB the distance
between nuclei A and B and ~rij the distance between the i and the j
electron :

~RAB = ~RA − ~RB ~riA = ~ri − ~rA ~rij = ~ri − ~rj (3.4)

Now we can write the Hamiltonian associated to this system :

Ĥ = −
N∑
i=1

1

2
∇2
i−

M∑
A=1

1

2MA

∇2
A−

n∑
i=1

M∑
A=1

ZA
~riA

+
N∑
i=1

N∑
j>1

1

~rij
+

M∑
A=1

M∑
B>A

ZAZB
~RAB

(3.5)
MA rapresents the ratio between the mass of the A nucleus and the
mass of the electron while ZA is the A nucleus’ atomic number. The
first two terms are respectively the kinetic energies of electrons and
nuclei in the system, the third term is the attraction term between
electrons and nuclei while the other two remaining terms are the repul-
sive contributions between two electrons and two nuclei respectively.

3.1.2 Born-Oppenheimer approximation

To deal with the problem we have to do a lot of approximations, due
to its complexity. The first important semplification is called Born-
Oppenheimer or adiabatic approximation. It is based on the fact that
nuclei are thousand of times heavier with respect to electrons, which
means that their velocity will be very lower with respect to that of
electrons. So considering this, we can solve the elctronic problem of
the system considering nuclei as frozen. In this way the kinetic energy
of the nuclei can be neglected (adiabatic term) and the nuclei-nuclei
repulsion can be considered as a constant. So the electronic problem
can be solved separately and will depend only parametrically on nuclei
coordinates; the Hamiltonian of the system of N particles in a field of
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M nuclei can be written in the following way:

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
~riA

+
N∑
i=1

N∑
j>i

1

~rij
(3.6)

So the stationary state Schrödinger equation for the electrons will be-
come :

ĤelecΨelec(~ri; ~RA) = εelec(~RA)Ψelec(~ri; ~RA) (3.7)

In which both wavefunction and eigenvalues depends parametrically on
nuclear coordinates. This means that for each set of nuclear coordi-
nates we have a different expression of the wavefunction with respect to
electronic coordinates. So the electronic problem is solved at first and
then the nuclear problem can be considered. In this way we can take
into account the effect of electrons on nuclei considering their mean
field. So the total energy for the nuclei can be written, adding the
nuclear repulsion term, as:

εtot = εelec +
M∑
A=1

M∑
B>A

ZZZB
~RAB

(3.8)

In this way, writing the Hamiltonian for nuclei in which we insert the
mean field generated by electrons (evaluated from the electronic equa-
tion), it can be found that the total energy of the system is the potential
term nuclei are subjected to. So the Hamiltonian for nuclei will be:

Ĥnucl = −
M∑
A=1

1

2MA

∇2
A + εtot(~RA) (3.9)

This approximation considers nuclei moving on the potential energy
surface obtained from the solution of the electronic problem. The
solution of the Schrödinger equation for nuclei gives informations on
vibrations of the system. The total wavefunction, under the Born-
Oppenheimer approximation, will be the product between the elec-
tronic and the nuclear one:

Ψtot(~ri; ~RA) = Ψelec(~ri; ~RA)Ψnucl(~RA) (3.10)

3.1.3 Hartree approximation

Now we will focus on the electronic problem. Although the adiabitic
approximation is very important to simplify the system, it is not suffi-
cient to solve it completely. Infact the electronic problem remains very
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complicated and it is necessary to make further approximations. The
first one was given by Hartree that considered the system of electrons
as a system of non interacting particles. The interaction between them
was taken into account introducing a mean field felt by each single
electron. In this way the total Hamiltonian can be written as the sum
of single particle Hamiltonians:

Ĥ =
N∑
i=1

h(i) (3.11)

Where h(i) is the sum of kinetic and potential term of a single elec-
tron i. In this approximation, the Hartree proposal was to write the
wavefunction of the overall system of electrons as the product of single
particle wavefunctions:

ΨHP = Ψ(~r1, ~r2, ~r3, ..., ~rN) = ψ1(~r1)ψ2(~r2)ψ3(~r3)...ψN(~rN) (3.12)

Writing the total wavefunction as the so called Hartree product, the
Schrödinger equation for the electrons will be:

ĤΨHP = EΨHP (3.13)

Where:
E = εi + εj + ...+ εk (3.14)

The Hartree product is an uncorrelated function whose square modulus
describe the probability density to find electron 1 in x1, electron 2 in
x2 and so on independently from the position of the other electrons.

3.1.4 Pauli exclusion principle and antisymmetry

The big disadvantage of the wavefunction written as an Harteee prod-
uct, so as the product of single particle wavefunctions, is that it doesn’t
respect the antisymmetry principle and it doesn’t take into account
that electrons are indistinguishable. Infact, due to the fact that elec-
trons are fermions, the total wavefunction of a system made by these
particles must be antisymmmetric. For this reason, the sign of the
wavefunction must change due to a coordinate exchange between two
particles

ψ(x1, xi, ..., xj, ..., xN) = −ψ(x1, xj, ..., xi, ..., xN) (3.15)

To take into account the antisymmetry principle we can write the total
wavefunction of the system as a Slater determinant. For a system of N
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electrons, it can be written in the following way:

Ψ(1, 2, 3, ..., N) =
1√
N !

∣∣∣∣∣∣∣∣
ψ1(1) ψ2(1) ... xN(1)
ψ1(2) ψ2(2) ... xN(2)

...
... ...

...
ψ1(N) ψ2(N) ... xN(N)

∣∣∣∣∣∣∣∣ (3.16)

In which the single wavefunctions inside the determinant are rapre-
sented by molecular orbitals. The coordinates exchange between two
electrons consists in the exchange between two rows that causes an
inversion in the sign of the wavefunction. Furthermore if two columns
are equal the determinant is zero, and this fact takes into account the
Pauli exclusion principle. So the Slater determinant considers the so
called exchange effects that are neglected using the Hartree product.
In this way the movement of electrons with parallel spin is correlated
in some way, but the motion of the anti-parallel spin electrons remains
uncorrelated. For this reason the Slater determinant is considered as a
theory that doesn’t take into account the correlation.

3.1.5 Hartree-Fock approximation

Taking a system constituted by N electrons, we can describe its wave-
function with a Slater determinant made by single particle wavefunc-
tions. For this procedure the variational method is used. Based on this
principle, the wavefunction that fits in the best way the system we are
considering is the one that minimize the energy :

E0 =
〈
Ψ0|Ĥ|Ψ0

〉
(3.17)

By minimizing E0 it is possible to derive the equation for the optimized
orbitals, the Hartree-Fock equation:

f(i)ψ = εψ (3.18)

where f(i) is the Fock operator :

f(i) = −1

2
∇2
i −

M∑
A=1

ZA
~riA

+ νHF (i) (3.19)

in which νHF is the mean potential felt by the i electron generated by all
the other electrons. In this way the many-body problem is reduced to a
one-body due to the fact that the electron-electron repulsion is treated
as a mean effect. However the mean field depends on the wavefunctions
themselves, so to solve this problem it is necessary to use an iterative
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procedure called SCF (Self-Consistent-Field). The procedure starts
with the selection of the trial orbitals, and at first the equation is used
to evaluate the mean field with these ones. Then, with the calculated
mean field, the equation is solved to compute the new orbitals that will
be used to evaluate the new mean field of the system. This procedure is
repeated until it converges to a certain value of mean field, so when the
potential found in the last step is equal to the next one and the orbitals
used to build the Fock operator are equal to its wavefunctions. At this
point it is said that the system reached the selfconsistency. The Slater
determinant written with the computed orbitals is the wavefunction
of the fundamental state. The remaining orbitals are called virtual
orbitals and are empty. So a finite basis set, as explained later, is used
and the more it’s extended, the lower is the energy evaluated. The
Fock operator can be written as the sum of three terms; the first one
is:

h(1) = −1

2
∇2

1 −
∑
A

ZA
~r1A

(3.20)

that is the sum between the kinetic and potential energy related to
elctron-nucleus attraction. The other two terms are the ones that con-
stitute νHF . The first one is present also in the Hartree theory and is
the Coulomb operator that rapresents the coulombic repulsion between
electrons:

F̂b(1) =

∫
dx2ψb(2)2~r−1

12 (3.21)

it rapresents the mean potential in x1 due to an electron in the ψb state.
The second term is the exchange operator, whose expression is defined
for its effect on the orbital ψa:

K̂b(1)ψa(1) =

[∫
dx2ψ

∗
b (2)~r−1

12 ψa(2)

]
ψb(1) (3.22)

Finally the Hartree-Fock equation can be written in the following way:[
h(1) +

∑
b 6=a

F̂b(1)−
∑
b 6=a

K̂b(1)

]
ψa(1) = εaψa(1) (3.23)

and, in a more compact way, we can write also the Hartree-Fock oper-
ator as:

νHF (1) =
∑
b

F̂b(1)− K̂b(1) (3.24)

so that the Fock operator becomes the sum of the core Hamiltonian
and the Hartree-Fock operator previously defined:

f(1) = h(1) + νHF (1) (3.25)
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3.1.6 Quantum theory for crystals: The Bloch Theroem

Due to the fact that in the thesis work I dealt with crystalline structure,
it is necessary to describe the Hartree-Fock theory applied to crystals.
They can be described by two elements: a lattice and a basis. The
lattice is a volume in 1D, 2D or 3D made by a discrete infinite set of
points. We can define the so called primitive cell as the smallest volume
of space able to reconstruct, by rigid translation, all the crystal. This
peculiar property of crystals is named translational symmetry. The
basis is rapresented by the number of lattice points that are present in
the primitive cell. This one will be characterized by a certain number
of vectors, depending on the considered dimension, called basis vectors.
Each point, for a 3D case, can be described by the following formula:

~Tn = n1~a1 + n2~a2 + n3~a3 (3.26)

where a1, a2 and a3 are the basis vectors of the lattice. The basis of
the crystal consists in the number of elements or atoms that composes
the primitive cell. Usually crystals, over the translational symmetry,
possess also other types of symmetry like the point group ones. Due
to translational invariance each physical property of the crystal must
be invariant under translation and so it is periodic:

f(~r + ~Tn) = f(~r) (3.27)

Moreover, every periodic physical property can be written in the form
of a Fourier series:

f(r) =
∑

n1,n2,n3

fnexp

[
i 2π
VC

~Tn~r
]

(3.28)

where VC is the primitive cell volume:

VC = |~a1 ∗ ~a2 × ~a3| (3.29)

Doing this, we have defined another set of points, called reciprocal
space, described by the following formula:

~K = K1
~b1 +K2

~b2 +K3
~b3 (3.30)

Where ~b1,~b2 and ~b3 are the primitive lattice vectors of the reciprocal
space. So for each direct lattice there is one reciprocal lattice associated
to and they are linked by each other by the Fourier transform:

f(r) =
∑
K

fne
i ~K~r (3.31)
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In crystals we can write the Schrödinger equation in the same way of a
molecule, but the translational symmetry must be taken into account:

Ĥ(~r)ψ(~r) = Eψ(~r) (3.32)

Considering a generic lattice translational vector Tn the solution of the
equation:

Ĥ(~r − ~Tn)ψ(~r − ~Tn) = Eψ(~r − ~Tn) (3.33)

must be the same of the (32). Using group theory it is possible to
demonstrate that each eigenfunction of the Schrödinger equation sat-
isfies the following relationship:

Φ(~r + ~Tn;~k) = ei
~k ~TnΦ(~r;~k) (3.34)

in which k is the wavevector of the reciprocal space and Φ(~r;~k) is the
so called Bloch’s function. This equation rapresents the first form of
the Bloch’s theorem. Moreover it is possible to write the eigenfunction
as the product between a plane wave modulated by a periodic function
with the same periodicity of the crystal lattice:

Φ(~r;~k) = ei
~k~ru~k(~r) (3.35)

This is called second form of the Bloch’s theorem. An important prop-

erty of this theorem is that Ψ(~r;~k) and Ψ(~r;~k+ ~K) are eigenfunctions
corrisponding to the same eigenvalue:

Ψ(~r + ~Tn;~k + ~K) = ei(
~k+ ~K)~TnΨ(~r;~k + ~K) (3.36)

Being ei
~K ~Tn = 1

Ψ(~r + ~Tn;~k + ~K) = ei
~k ~TnΨ(~r;~k + ~K) (3.37)

and so Ψ(r; k) and Ψ(r; k+K) are eigenfunctions of the same eigenvalue
E(k + K) = E(k). The consequence of this theorem is that the set of
energy eigenvalues in the reciprocal space, that are called energy bands,
are periodic with period equal to K. So it is possible to restrict the
study of the electronic bands only in the so called first Brillouin zone,
that is the primitive cell in the reciprocal space (from −K to +K).

3.1.7 Born Von Karman boundary conditions

Until now we have supposed that crystals are infinite, but it is not
true. They are finite, and so it is necessary to introduce some bound-
ary conditions compatible with the property of translational invariance.
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Considering a crystal made by N cells, we can impose that the wave-
function in the first cell coincides with that of the last one:

Ψ(r +mNa; k) = eimNakΨ(r; k) = Ψ(r; k) (3.38)

and so:
eimNak = 1 (3.39)

From this expression we can understand that only some k values within
the first Brillouin zone are possible to exist, in particular:

k = (
πn

Na
) (3.40)

Where n is an integer number. These conditions are called Born Von
Karman boundary conditions and set a discretization of k values in
the k-space. But, due to the fact that usually N is a very big number
for macroscopic crystals, the discretization in reciprocal space is very
small and the discrete values seem to be a continuum.

3.1.8 Roothan-Hall equations

The Hartree-Fock equation cannot be implemented efficiently with nu-
merical algorithms because reliable procedures to obtain numerical so-
lutions have not been yet found to solve the integro-differential equa-
tion. However, thanks to Roothan, it is possible to write it in a matrix
form in order to be solved with numerical calculations. The idea to
bypass the limitation was to write the wavefunctions, so the molecular
orbitals, as a set of known functions. In this way the HF equation
becomes an algebraic equation resolvable by matrix algebra. There-
fore the molecular orbitals were expressed as a linear combination of
atomic orbitals and these atomic orbitals are themselves approximated
with gaussian contractions. So introducing a certain set of K known
functions called basis set, we can write MO (molecular orbitals) as a
linear expansion:

ψi =
K∑
µ=1

Cµiφµ i = 1, 2, ..., K (3.41)

The accuracy of the approximation becomes higher the more you ex-
pand the set of atomic orbitals, so an exact expansion for an infinite
basis set would be obtained. But for computational limitations a finite
basis set must be used. Now considering the closed-shell Hartree-Fock
equation in which we have only the spatial dependence of the wave-
function:

f(r1)ψj(~r1) = εjψj(~r1) (3.42)
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and by left multiplying for φ∗µ(1) and integrating over d~r1 the (42)
after that we have substituted the linear expansion, we obtain a matrix
expression of the equation. Infact defining the overlap matrix:

Sµν =

∫
d~r1φ

∗
µ(1)φν(1) (3.43)

and the Fock matrix:

Fµν =

∫
d~r1φ

∗
µf(1)φν(1) (3.44)

the matrix equation becomes:∑
ν

FµνCνi = εi
∑
ν

SµνCνi i = 1, 2, ..., K (3.45)

from which we can write the final expression of the Roothan-Hall equa-
tions:

FC = SCε (3.46)

C is the square K×K matrix of the expansion coefficients Cµi while ε
is the diagonal matrix of the orbitals’ energies. Fµν is the sum of two
contributions, the first one

Hcore
µν =

∫
d~r1φ

∗
µ(1)h(1)ψν(1) (3.47)

is the core Hamiltonian, while the second,Gµν can be written in terms
of matrix density Pµν :

Pµν = 2

N
2∑
a

CµaC
∗
νa (3.48)

The Fock matrix depends on the density matrix, and so on the ex-
pansion coefficients. This leads to the fact that Roothan equations
are nonlinear and it is necessary to use an iterative procedure to solve
them. Furthermore it is possible to orthonormalize the equation loosing
the dependence on the overlap matrix and make it a simple eigenvalue
problem, obtaining the transformed Roothan equations:

F′C′ = C′ε (3.49)

From which we can evaluate C and then solve the iterative procedure.
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3.1.9 SCF procedure

The SCF is defined as the iterative procedure to solve the electronic
problem using the matrix Roothan equations. It is characterized by
the following passages:

1. Characteristics of the molecule: nuclear coordinates, atomic num-
bers, number of electrons, basis set.

2. Calculation of the integrals: Sµν , H
core
µν , (µν|λσ).

3. Diagonalization of the overlap matrix Sµν and evaluation of the
transformation matrix.

4. Guess of the density matrix P.

5. Computation of the G matrix from density matrix and double
integrals (µν|λσ).

6. Addition of G to Hcore
µν to obtain the Fock matrix.

7. Calculation of the transformed Fock matrix F’.

8. Diagonalization of F’ to obtain C’ and ε

9. Evaluation of C from C’

10. Computation of a new matrix density from C

11. If the new matrix density is the same of the previous one, the
problem is solved. If it is not, the procedure is repeated from the
point 5 with the new density matrix.

12. If the procedure reaches convergence, C, P and F are used to
obtain all the quantities of interest.

3.1.10 Crystalline orbitals

Until now we have considered molecular problems, so single molecule
calculations. Now we want to find a way to deal with crystals. In order
to do that we have to introduce the concept of CO-LCAO (crystalline
orbitals as a linear combination of atomic orbitals). As we have done
for molecules, we can write crystalline orbitals as a linear combination
of atomic orbitals:

Ψi =
∑
µ

CiµΦµ (3.50)
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But in this case the translational invariance must be taken into account,
so the atomic orbitals are written as Bloch’s functions :

Φµ(~r;~k) =
1√
N

∑
~Tn

ei
~k ~Tnψ

~Tn
µ (~r − ~rµ) (3.51)

where ψ
~Tn
µ (~r−~rµ) is the µth atomic orbital referred to cell 0 and having

origin in ~rµ. These ψµ atomic obitals are built using gaussian con-
tractions. In other words they constitute the basis set for the SCF
procedure.

3.1.11 SCF for crystalline orbitals

Using Bloch’s functions as basis set, we can rewrite the Fock matrix in
the following way:

Fµν(~k) =
∑
~Tn

ei
~k ~TnFµν(~Tn) (3.52)

In which Fµν(~Tn) are the matrix elements of the Fock operator between

the µth AO located in the 0 cell and the νth AO located in the ~Tn cell.
So the Roothan-Hall equation becomes:

F(~k)C(~k) = S(~k)C(~k)E(~k) (3.53)

Theoretically the equation can be solved for an infinite set of k values
within the first Brillouin zone. Practically it is done only for a narrow
range of k values. The Fock operator in the reciprocal space can be
reduced in the following form:

Fµν(k) =
∑
m

ei
~km

〈
ψ0
µ|F̂ |ψmν

〉
(3.54)

It is the Fourier transform of the Fock operator from direct to reciprocal

space. Now using this expression of F (~k) and using the Roothan-Hall
equations previously written we can solve the same problem using SCF
procedure also for crystals.

3.1.12 Basis-set

As previously seen, in order to do the iterative procedure and solve the
electronic problem related to molecules or crystals it is necessary to de-
fine a starting basis set made by atomic orbitals. A reliable expression
for them is the Slater-type orbital (STO) function:

φi(ζ, n, l,m;~r, θ, φ) = Nrn−1e−ζ~rYln(θ, φ) (3.55)
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In which n,l,m are quantum numbers, N is a normaliaztion constant
and ζ is the exponent of the STO. Due to the fact that these type
of orbitals are very computationally expensive, specially for the calcu-
lation of double integrals, Gaussian-type orbitals (GTO) are used to
express the basis set in which the Slater functions are substituted with
gaussian ones:

g(α, l,m, n;x, y, z) = Ne−αx
2

xlymzn (3.56)

Now n,l,m are not quantum numbers but simply exponents. Usually
the single atomic orbital is expressed in terms of contraction, so linear
combinations, of gaussian functions:

ψµ =
L∑
p=1

dpµgp(αpµ, ~r) (3.57)

where both coefficients and exponents are determined at the beginning
of the calculation and they remain untouched during the SCF. The
”minimal” basis set is the one in which the single ground-state orbital
is described by a single contraction. A first evolution consists in the
”split-valence” basis set in which a distinction between valence and
core orbitals is introduced. The core ones are described by only one
contraction, while the valence orbitals are described by more than one
contraction. An example of these orbitals is the 6-31G in which we have
6 primitives to describe the core orbitals and two contractions, made
respectively by 3 and 1 primitives, to describe the outer shell orbitals.
Moreover it is possible to introduce polarization functions in which d
orbitals on heavy atoms and p orbitals for hydrogen are introduced and
are indicated with * (6-31G* or 6-31G**) or as 6-31G(d,p). They are
inserted as non- contracted gaussian’s primitives and they unavoidably
increase the computational cost.

3.1.13 Principles of Density Functional Theory

Density Functional Theory (DFT) is very different from the Hartree-
Fock theory because now the attention is shifted from the wavefunction
on the electron density. If the wavefunction, in a generic system of N
electrons, depends on 3N spatial coordinates the electron density will
depend only on three variables (x,y and z); it’s evident the convenience
of a method based only on density. This theory consists in writing all
the quantities of the fundamental state of a system as functionals of
the electronic density ρ(~r). In particular, the energy of the ground
state can be written as a functional of the density and it rapresents the
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minimum possible energy if the density is exact. It is an exact theory
beacause, as will be seen, it contains an exchange-correlation potential
that theoretically, if its exact expression would be known, will bring to
an exact result. But we have no information on how to build it, which
results in the necessity of using some approximations.

3.1.14 Hohenberg-Kohn theorems

The following two theorems are considered as the cornerstone of the
DFT theory, thanks to which it was possible to formulate a physico-
mathematical theory based on electronic density.

Th. 1 The external potential ν(~r) is uniquely determined by the elec-
tronic density, apart from an additive constant.

Th. 2 Be ρ̃(r) a non negative density normalized by N. So E0 < Eν [ρ̃]
where Eν [ρ̃] is the functional of the state which external potential
is determined from an electronic density of the fundamental state
ρ̃. The ground-state density can be evaluated using a variational
method that involves only the density

Writing the electronic hamiltonian in the following way:

Ĥelec = T̂e + V̂ext + Ûee (3.58)

Due to these theorems, if it is true that the electornic density adapts
itself to reach the minimal configuration due to the external potential,
it is also true the contrary. So the nuclear configuration is determined
from the density. This enables us to write the total energy of the system
as a functional of the electronic density:

E[ρ] = Te[ρ] + Vext[ρ] + Uee[ρ] (3.59)

These terms are expectation values of the (58). Now, isolating the
terms that don’t depend on the external potential:

E[ρ] = Vext[ρ] + FHK [ρ] =

∫
ρ(~r)ν(~r)dr + FHK [ρ] (3.60)

where:
FHK =

〈
Ψ[ρ]|T̂e + Ûee|Ψ[ρ]

〉
(3.61)

Ψ is the ground state wavefunction with density ρ, while FHK is a
universal functional that depends only on electronic density and the
equation (60) is an exact rapresentation of the system. Previous theo-
rems give the possibility to compute exactly every stationary quanto-
mechanical parameter. The main issue is that the FHK functional is
an extremely complex physical quantity, for which the exact form has
not been determined yet.
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3.1.15 Kohn-Sham method

It is possible to rewrite the total energy functional in the following way:

E[ρ] = Te[ρ] + Vext[ρ] +
1

2

∫ ∫
ρ(~r)ρ(r̄′)

|~r − r̄′|
d~rd~r′ + Exc[ρ] (3.62)

In which Uee is splitted in two terms. The frist one is the classi-
cal energy repulsion term between electrons while the second is the
exchange-corelation term in which non classical contributions are taken
into account. The solution of the problem was given by the Kohn-Sham
method that is based on substituting the real system with one formed
by independent electrons, characterized by the same density of the real
system. The kinetic energy term of interacting particles was substi-
tuted with a non interactive one. This system is taken with the same
electronic density of the interacting system but the electrons are con-
sidered independent. The part of the kinetic energy that considers the
electron-electron interaction is embedded in the exchange-correlation
term. So total energy functional becomes:

EKS[ρ] = T0[ρ] + Vext[ρ] + Ucl[ρ] + Exc[ρ] (3.63)

In the Exc is contained the only one approximation of the density func-
tional theory, because an exact exchange-correlation functional is un-
known. Various type of approximations have been proposed but they
cannot be used precisely for all the chemical systems. We can introduce
the hamiltonian of the non-interactive system:

Ĥ0 =
N∑
i=1

(
− ∇

2
i

2
+ νeff (~ri)

)
(3.64)

In which the eigenstates can be expressed in the form of Slater deter-
minant where fictitious Kohn-Sham orbitals are present φKSi with elec-

tronic density ρ(r) =
∑N

i=1 |φKSi (~r)|2. Applying a variational method
on EKS, the following equation can be derived:

νeff (r) = ν(~r) +

∫
ρ(r̄′)

|~r − r̄′|
dr̄′ + µxc[ρ(~r)] (3.65)

in which µxc[ρ(~r)] = δExc[ρ(~r)]
δρ(~r)

. So at the end we can write the Kohn-

Sham selfconsistent equations:{
−∇

2

2
+ νeff (~r)

}
φi(~r) = εiφi(~r) (3.66)
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We can use the same iterative procedure that we have used in (18) to
solve this equation. So using the orbitals’ energies the total energy can
be expressed in the following way:

EKS[ρ] =
N∑
i

εi−
1

2

∫ ∫
ρ(~r)ρ(r̄′)

|ρ(~r)− ρ(r̄′)|
d~rdr̄′+

{
Exc[ρ]−

∫
ρ(~r)µxc[ρ]d~r

}
(3.67)

These equations have a form similar to HF equations, so they are useful
to be used in a calculation code. But, differently from the Hartree-Fock
equations, in the KS ones the νeff takes into account both exchange
and correlation. So using a system of N non-interacting electrons but
with the same electronic density of the interacting one allows to solve in
an exact way the many body Schrödinger equations. For what concerns
the KS orbitals we can say that their meaning is only related to the
associated electronic density ρ(~r).

3.1.16 Exc functionals

The exchange-correlation functional can be written as:

Exc[ρ] =
1

2

∫ ∫
ρ(~r)ρ(r̄′)

|~r − r̄′|
[g̃(~r, r̄′)− 1]d~rdr̄′ (3.68)

In which g̃(~r, r̄′) is the two-body direct correlation function, called
also pair correlation function, averaged depending on the force of the
electronic contribution. Now defining the exchange-correlation hole
ρ̃xc(~r, r̄

′) = ρ(r̄′)[g̃(~r, r̄′)− 1], it is obtained that :

Exc[ρ] =
1

2

∫ ∫
ρ(~r)ρ̃xc(~r, r̄

′)

|~r − r̄′|
d~rdr̄′ (3.69)

Written in this way, Exc rapresents the interaction between the elec-
tronic charge distribution and the electronic charge distribution af-
fected by the exchange-correlation effects. The simpler approximation
that can be done on electronic density is the Local Density Approxi-
mation (LDA) in which a locally homogeneous system is considered,
so the electronic density is approximated to the one of an homoge-
neous electron gas. In these terms the exchange-correlation functional
becomes:

ELDA
xc [ρ] =

∫
ρ(~r)εLDAxc [ρ]d~r (3.70)

In which εLDAxc [ρ] =
∫ ρ̃LDAxc (~r,r̄′)

|~r−r̄′| d~r is the exchange-correlation energy.

It is a very strong approximation, and should be limited to systems
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with slowly varying electronic distribution. Perdew demonstrated that
since LDA is based on a real physical system, it works not so bad also
with molecules. Moreover it is a real first principles approximation
because it doesn’t depend on any empirical parameter. We can refor-
mulate the same approximation considering also the spin, obtaining
the LSDA (Local Spin Density Approximation). An evolution of the
LSDA approximation is the GEA(Gradient Expansion Approximation)
that consists on a Taylor expansion of the Exc functional. The GGA
(Generalized Gradient Approximation) is a particular type of GEA in
which the expansion is truncated at the first order:

Exc[ρ] =

∫
f [ρ,∇ρ]d~r (3.71)

The main strategy of this approach is to separate the term of exchange
with that of correlation: Exc[ρ] = Ex[ρ] + Ec[ρ]. The most important
exchange functionals are B88, PW86 and PW91 while among the most
important correlation functionals there are the LYP, PW86 and the
PW91. It can be noticed that all these functionals, apart from the
PW91, contain empirical parameters fitted on experimental data. So
DFT cannot be defined a real ab-initio method, because the functional
depends strongly on these empirical parameters.

3.1.17 PBE functional and hybrid methods

The PW91 functional was elaborated by Perdew and Wang in order
to cancel the empirical dependence of the functional and make DFT a
true ab-initio method. The procedure adopted by the two scientists was
inspired by GEA, but the Taylor expansion in this case was expressed
in the real space in order to delete all the terms responsible for the
failure of the GEA itself. With this method, called Real-Space Cutoff,
Perdew was able to create a functional that respected all the properties
of an Exc functional and moreover to make it unaffected by empirical
parameters. This approximation, for a slowly variable electron density,
tends to the LDA that is understandable. But the other functionals,
also the LYP one, don’t take into account this fact going away from
the physical meaning of the functionals. With this functional the DFT
can be considered a true ab-initio method, at least for the correlation
part. The exchange part still contains empirical parameters beacuse it
is derived from the B88. So Starting from this formulation, Perdew,
Burke and Ehrenzorf built the PBE functional that nowadays is one
of the most developed and used functional. The GGA functionals are
not satisfying for what concern the exchange part. This fact brought
to the formulation of hybrid functionals in which the exchange part
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is substituted by the exact exchange. The method is based on the
Adiabatic Connection formula :

Exc =

∫ 1

0

Exc,λdλ (3.72)

In this way the exchange-correlation functional is rapresented with only
one expression that is a function of the coupling constant λ. If λ =
1 the system is considered completely correlated while for λ = 0 th
correlation is 0. The functionals that are built in this way are called
”hybrid”. Several hybrid schemes have been proposed and the most
widely used include three empirical parameter to rule the mixing of
HF exchange and DF exchange and correlation:

EACM3
xc = ELSD

xc + a1

(
EHF
x − ELSD

x

)
+ a2∆EGGA

x + a3∆EGGA
c (3.73)

In this context, one of the most important three-parameters hybrid
functional is the B3LYP one. But in vibrational calculation it tends to
overestimate the frequency values, so it’s necessary a scaling procedure
of the obtained results. More recently, Becke has suggested that just
one coefficient is sufficient to rule the HF/DF exchange ratio according
to:

EACM1
xc = EGGA

xc + a1

(
EHF
x − EGGA

x

)
(3.74)

These methods (usually referred to as ACM1) are quite successful.
Perdew and co-workers have next shown that the optimum value of a1

coefficient can be adjusted a priori taking into account that fourth-
order perturbation theory is sufficient to get accurate numerical results
for molecular systems. This leads to a family of adiabatic connection
functionals thereafter referred to as ACM0 with the same number of
adjustable parameters as their GGA’s constituents:

EACM0
xc = EGGA

xc +
1

4

(
EHF
x − EGGA

x

)
(3.75)

So using the PBE functional and HF exchange with predefined co-
efficients it is possible to exploit a parameter free density functional
approach that is rapresented by the famous PBE0 hybrid functional.
It is probably the best functional currently available which couples a
good accuracy for molecular structures and properties along the whole
periodic table to a direct connection to physical principles. It will be
also the functional adopted for our computational calculations.
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3.2 Theory of vibrations and Raman scattering for
molecules and crystals

The following chapter will treat the basic theory of vibrations, passing
through the concept of normal coordinates both for crystals [32] and
molecules [33]. Then principles of Raman scattering, from the classical
and quantum point of view, will be presented and discussed [34].

3.2.1 The harmonic approximation and classical vibrations
for diatomic molecule

To deal with vibrations, as in the electronic case, we have to do some
approximations. The first one is the Harmonic approximation. It is
used to simplify the expression of the interatomic potential. It is based
on the fact that for small amplitude vibrations it is possible to make
a Taylor expansion, truncated at the second order, of the potential
around the equilibrium positions of nuclei:

V (R) ≈ V (R0)+

(
dV

dR

)
R=R0

(R−R0)+
1

2

(
d2V

dR2

)
R=R0

(R−R0)2 (3.76)

At equilibrium position the linear term is 0, so it becomes:

V (R) ≈ V (R0) +
1

2
k(R−R0)2 (3.77)

where we can define the so called force constant k as:

k =

(
d2V

dR2

)
R=R0

(3.78)

The force along the coordinate R is proportional to k and to the dis-
placement, as for a simple spring:

f(r) = −dV
dR

= −k(R−R0) = −k∆R (3.79)

Solving the classical vibrational model for the diatomic molecule, in
which the two nuclei are considered as simple masses connected by
springs, we obtain an expression for the variation in time of the bond
length:

R(t) = R0 + A sin(ωt+ φ) (3.80)

In which the angular frequency is:

ω =

√
k

µ
(3.81)
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and µ = m1m2
m1+m2

is the so called reduced mass. Usually the angular

frequency is expressed in terms of cm−1 using the linear dispersion
relation of light:

ν̄ =
ν

c
=

ω

2π
=

1

2πc

√
k

µ
(3.82)

The oscillatory trend of the solution for the diatomic molecule is around
the equilibrium bond length R0 where the amplitude of the oscillation
is given by the constant A.

3.2.2 Classical theory of vibrations in polyatomic molecules

To deal with this problem we consider a system with many degrees of
freedom within the harmonic approximation. The approach consists in
introducing a certain coordinate system using which it is possible to
reduce the many body quantum vibrational problems in terms of a set
of independent one dimensional quantum oscillators. We can write the
classical Hamiltonian associated to this problem:

H = T + V =
1

2

∑
i

miu̇
2
i +

1

2

∑
ij

uikijuj (3.83)

The kinetic energy term is a diagonal quadratic form, so it is expressed
as a sum of independent terms. While the potential energy term in gen-

eral couples all pairs of displacement through the kij =

(
∂2V
∂xi∂xj

)
xi=x0i

coefficients. The aim is to find an equivalent formulation but in which
the Hamiltonian becomes fully diagonal. The Hamiltonian can be writ-
ten also in terms of matrices in the following way:

H =
1

2
˙̄ξt ˙̄ξ +

1

2
˙̄ξtW ˙̄ξ (3.84)

where W is defined as :

W = M−1/2KM−1/2 (3.85)

and expresses the potential V as a quadratic form with respect to the
set of mass-weighted coordinates ξ. K and M rapresent respectively
the matrix made by the spring constants and the matrix associated to
the masses of nuclei. Now considering the diagonal rapresentation of
W:

WL = LΛ (3.86)
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it is possible to rewrite the Hamiltonian as:

H =
1

2
˙̄ξtLLt ˙̄ξ +

1

2
˙̄ξtLΛLt ˙̄ξ (3.87)

Introducing a new set of coordinates called normal coordinates q̄ = Ltξ̄,
it is possible to write the Hamiltonian as a diagonal form both for the
kinetic and the potential energy:

H =
1

2
˙̄qt ˙̄q +

1

2
˙̄qtΛ ˙̄q (3.88)

where eigenvalues Λ rapresent squares of angular frequencies ω2
i . Writ-

ing the equations of motion for normal coordinates:

qi(t) = q0
i sin(ωit+ ψi (3.89)

it is possible to write the displacements in terms of normal coordinates
q:

ū = (M−1/2L)q̄ (3.90)

Normal coordinates are fundamental for what concerns the relationship
between chemical structure and specific vibration transitions. We will
see in the following subsection that it is possible to correlate single
normal modes with associated vibrational wavefunctions in a one-to-
one manner. To visualize the normal modes the idea is to rapresent an
animation of the atoms’ motion for a selected i-th normal mode.

3.2.3 Quantum theory for vibrations in a polyatomic molecule

It is possible to write the quantum Hamiltonian for a polyatomic molec-
ular system as :

Ĥ = T̂ + V̂ =
∑
i

[
− ~2

2

∂2

∂q2
i

+
1

2
ω2
i q

2
i

]
(3.91)

It is convenient to use a dimensionless form of the Hamiltonian. Then
defining the so called dimensionless position operator ti = qi

√
ωi~ we

obtain:

Ĥ =
∑
i

~ωi
2

[
∂2

∂t2i
+ t2i

]
=
∑
i

~ωiĥ(ti) (3.92)

The eigenvalues and eigenvectors of the one-dimensional quantum os-
cillator described by the Hamiltonian Ĥvib(ti) = ~ωiĥ(ti) are:

Ĥvib(ti)|ni > = ~ωi
(
ni +

1

2

)
|ni > (3.93)
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In which ni are the eigenvectors of the vibrational problem that are
related to normal coordinates and so to displacements. It is possible
to show that for a many body Hamiltonian given by the sum of inde-
pendent one-body Hamiltonians, the total wavefunction of the system
is given by the product of the eigenfunctions of each one-body Hamil-
tonian and the total energy eigenvalue is the sum of the one-body
eigenvalues:

Ĥφ(t1, t2, t3, ..., tM) = Eφ(t1, t2, t3, ..., tM) (3.94)

φ(t1, t2, t3, ..., tM) =
M∏
i=1

φni(ti) (3.95)

E =
M∑
i=1

~ω
(
ni +

1

2

)
(3.96)

M is the number of vibrational normal modes obtained as eigensolutions
of the secular equation. Usually adopting Cartesian displacements to
describe molecular motions, three translations of the molecule as a rigid
body and three rotations can be identified. Therefore true vibrations
are M = 3N − 6. Rototranslations are associated to solutions with
ω = 0.

3.2.4 Vibrations in solids, Born-Von Karman model

Thanks to the adiabatic approximation we assume the existence of a
vibrational potential energy Ue which is a function of displacements of
nuclei with respect to their official positions in the crystal. From now
on we will use the Born and Huang notation:

r

(
p

n

)
= Rn + rp = n1a1 + n2a2 + n3a3 + rp (3.97)

r
(
p
n

)
is the position with respect to the origin of the nucleus p with

mass mp located in the primitive cell (made by s atoms, that is the
basis). The displaments of atomic nuclei will be :

u

(
p

n

)
= r′

(
p

n

)
− r
(
p

n

)
(3.98)

where r’ rapresents the instantaneous position of the nucleus (p n)
that fluctuates due to vibrational motions. If we suppose that ther-
mal motions only slightly perturb the periodic structure, the potential
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energy can be expanded in a series arrested at the second order:

Uν =
1

2

∑
nn′

1,s∑
pp′

1,3∑
jj′

Φjj′

(
p p′

n n′

)
uj

(
p

n

)
uj′

(
p′

n′

)
(3.99)

In which Φ is the interatomic force constants tensor defined as:

Φjj′

(
p p′

n n′

)
=

∂2Uν

∂uj
(
p
n

)
∂uj′

(
p′

n′

) (3.100)

The sum nn′ must be extended to all N crystal cells. Physically

E
(e)
α (u)+Vnn = Uα

ν (u) where E
(e)
α (u) is the electronic energy (eigenstate

of the electronic problem) for example of the ground state. So this is
still the harmonic approximation, but expressed for crystalline solids.
We will begin with a classical treatment for vibrations in solids and
then we will move to quantum theory. Using the Lagrange equations
we can derive the Newtonian dynamic equations,that is a system of
3sN equations in 3sN variables uj

(
p
n

)
mpü

(
p

n

)
= −

∑
n′

1,s∑
p′

Φ

(
p p′

n n′

)
: u

(
p′

n′

)
(3.101)

where : is a rows by column product. Now, thanks to translational
symmetry of the crystal it is possible to write n’=n+h, in which h = Th
is a lattice translation. So :

Φ

(
p p′

n n′

)
=

(
p p′

n n+ h

)
= Φ

(
pp′

h

)
(3.102)

and the dynamic equations become:

mpü

(
p

n

)
= −

∑
h

1,s∑
p′

Φ

(
pp′

h

)
: u

(
p′

n+ h

)
(3.103)

Where the sum over h involves all the N lattice translations which join
the cell n with the other ones. Applying periodic boundary conditions,
as in the case of electrons:

u

(
p

n+ (Nj − 1)aj

)
=

(
p

n

)
(3.104)

and remembering that the fundamental soultions should satisfy Bloch
theorem: (

p

n

)
=

(
p

0

)
eiqn (3.105)
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It is obtained that to every lattice wave at least one wavevector q
is associated such that previous equation is satisfied. As in the case
of electrons (k vectors), the set of q vectors is that composed by the
N vectors contained in the first Brillouin zone. In this way we have
reduced the set of 3sN dynamic equations to a set of 3s equations
which describes the vibrations of the s nuclei contained in the cell 0.
At this point we can introduce the dynamic matrix:

D

(
pp′

q

)
=
∑
h

Φ
(
pp′

h

)
√
mpmp′

eiqh (3.106)

as the discrete Fourier Transform of interatomic force constant ten-
sor. Now substituting the expression of the dynamic matrix inside the
equation of motion and searching for elementary harmonic solutions
as:

u(p, q) =
1√
Nmp

Q(q)e(p, q)e−iω(q)t (3.107)

where e(p,q) is the polarization vector, we obtain the homogeneous
system of linear algebraic equations (eigenvalue problem):

1,3∑
j′

1,s∑
p′

{
Djj′

(
pp′

q

)
− ω2(q)δjj′δjj′

}
ej′
(
p′, q

)
= 0 (3.108)

For any q, the squares of the natural frequencies are the eigenvalues of
the dynamic matrix while the polarization unit vectors are its eigen-
vectors. Solving the following equation:

det

{
Djj′

(
pp′

q

)
− ω2(q)δjj′δjj′

}
= 0 (3.109)

it is possible to compute the eigenvalues. For any value of the vector
q, that are N in the first Brillouin zone, the equation has 3s countable
solutions ω2(q) = ω2

α(q) characterized by a branch index α. Solution
functions ω2

α = ω2
α(q) are called dispersion relations. Considering a

primitive cell made by s nuclei, there are 3s degrees of freedom. Among
them 3 refer to the center of mass of the basis, called acoustic branches,
while the other 3s-3 refer to internal motion of the basis, the so called
optical branches. The term acoustic comes from the fact that, when
q → 0, acoustic motions coincide with the macroscopic elastic waves
that propagate at the speed of sound. Instead the term optical derives
from the fact that the corresponding modes can have a flactuating elec-
tric dipole determining the optical infrared absorption in the crystal or
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can have associated a fluctuation of electrical polarizability determin-
ing, in the crystal, the vibrational Raman scattering of photons. We
can now express the most general solution of the dynamic equations as
the following linear combination of all lattice waves:

u

(
p

n

)
=

1√
Nmp

∑
q∈BZ

1,3s∑
α

Q(q, α)e(p, q, α)eiqne−iωα(q)t (3.110)

Introducing the 3sN normal coordinates ξ(q, α)e(p, q, α)eiqn and substi-
tuting these solutions inside the vibrational Hamiltonian it is possible
to obtain:

Hν =
1

2

∑
q∈BZ

1,3s∑
α

{
|P (q, α)|2 + ω2

α(q)|ξ(q, α)|2
}

(3.111)

in which P (q, α) are the kinetic momenta conjugated to normal coor-
dinates. So the vibrational behaviour of the crystal is equivalent to
that of a set of 3sN independent harmonic oscillators with frequencies
ω2
α(q). Collective motions ξ(q, α) are harmonic motions, while motion

of a single nucleus is not. For this reason they are called collective
coordinates and their energy quanta ~ωα(q) behave as Bose particles,
or quasi-particles called phonons. Infact, writing :

P̂q,α = −i~ ∂

ξq,α
(3.112)

it’s possible, substituting this operator in the expression of the Hamil-
tonian, to switch immediately to a quantum description of lattice vi-
brations. In the 3D general case each oscillator with normal coordinate
ξ(q, α) owns a frequency ω(q, α) and a polarization unit vector e(q, α)
and can assume only discrete energy levels:

En(q, α) =

(
n(q, α) +

1

2

)
~ω(q, α) (3.113)

n(q, α) rapresents the phonon occupation number associated to the
mode (q, α).

3.2.5 Infrared (IR) absorption spectroscopy

Perturbation theory and dipole operator Infrared spectroscopy is a
particular optical spectroscopy in which quantum transitions between
different vibrational states are observed. The transition probability
between two stationary states ,|i > and |f >, promoted by a time
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3.2 Theory of vibrations and Raman scattering for molecules and crystals

dependent perturbation written in the form of Ĥ ′(t) = V̂ cos(ω0t+ϕ),

with the V̂ operator being time independent, is given by:

Pi→f =
2π

~
∣∣〈i|V̂ |f〉∣∣2δ(Ef − Ei − ~ω0) (3.114)

The previous equation rapresents the so called Fermi golden rule, |i >
and |f > are known eigenstates of a given Hamiltonian Ĥ for which

Ĥ ′ can be taken as a weak enough perturbation. The intensity of the
absoprtion will be obviously proportional to the transition probability.
Energy conservation, expressed inside the delta, is a necessary but
not sufficient condition for the transition to occur. Selection rules are
determined by the possible value of the transition moment operator
of the perturbation between the two states involved in the transition,〈
i|V̂ |f

〉
. For a collection of charges forming the molecule and neglecting

magnetic effects, the perturbative Hamiltonian operator Ĥ ′(t) which
describes the interaction of the molecule with the external electric field
E(t) is given by:

Ĥ ′(t) =
∑
I

−E0(eZIRI) cos(ω0t+ϕ)+
∑
i

E0(eri) cos(ω0t+ϕ) (3.115)

In the previous equation the sum over I rapresents the sum over all
the nuclei while the sum over i rapresents the sum over the electrons.
Since E0cos(ω0t+ ϕ) = E(t), we can write:

Ĥ ′(t) = −
[∑

I

eZIRI −
∑
i

eri

]
E(t) = −µ̂E(t) (3.116)

where µ is the dipole operator. So the time-independent part of the
operator Ĥ ′(t) is:

V̂ = −µ̂E0 (3.117)

Therefore the evaluation of the matrix element showing in Fermi golden
rule is reduced to: 〈

i|V̂ |f
〉

= −
〈
i|µ̂|f

〉
E0 (3.118)

The projection of the transition dipole moment
〈
i|µ̂|f

〉
on the polar-

ization vector of the incoming optical field governs photon absorption,
which drives the quantum transition of the molecule from state |i > to
state |f >.

Vibrational transitions The case where the initial and final quan-
tum states of the molecule are two different vibrational states of the
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3.2 Theory of vibrations and Raman scattering for molecules and crystals

same electronic states is the situation occurring in IR absorption spec-
troscopy. The matrix elements of the transition operator for the i→ f
quantum transition can be written in the following way:〈〈
i|µ̂|f

〉〉
=
〈
g|
∏
j

(0j|[µ̂n+µ̂e]
∏
k

|nk)|g
〉

=
∏
j

(0j|
〈
g|µ̂n+µ̂e|g

〉∏
k

|nk)

(3.119)

in which
〈
g|µ̂n + µ̂e|g

〉
= µ(~R) rapresents the expectation value of the

molecular dipole due to charge distribution of both electrons and nuclei
in the ground electronic state, that is a function of the set of atomic
positions (~R). (0j| is the generic initial vibrational state while |nk) is
the generic vibrational final state. As we explained above, the set of
atomic positions can be expressed in terms of normal coordinates ~q;
therefore also µ(~q) can be expressed as a function of normal coordi-
nates. As a first approximation, we can express the dependenece of the
expectation value of the dipole as a function of the molecular geometry
as a Taylor expansion arrested at the first order:

µ(q) ≈ µ0 +
∑
j

(
∂µ

∂qj

)
0

qj (3.120)

Substituting this relation inside the (119) and doing the calculations
we can write the final result:〈〈

i|µ̂|f
〉〉

=
∑
s

(
∂µ

∂qs

)
0

(0s|qs|ns)
∏
j 6=s

(0j|nj) (3.121)

Observing the equation above, we can see that the value of the static
molecular dipole at equilibrium does not influence IR absorption for a
purely vibrational transition. The specific normal mode, characterized
by a certain normal coordinate, will be IR active if there is a variation
of the dipole moment with resepct to that normal coordinate. Finally
the IR absorbance (Ak) of a given one-quantum transition associated
to mode k is given by:

Ak ∝
1

2

(
~
ωk

)(
∂µ

∂qk

)2

0

(3.122)

With ωk equal to the freqeuncy associated to the quanta of the specific
normal mode.

3.2.6 Raman scattering

Classical Theory of Raman scattering: Basic Model

The classical theory of Raman scattering is based on the idea that the
electromagnetic field of the incident light induces in the system a time
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3.2 Theory of vibrations and Raman scattering for molecules and crystals

dependent dipole moment M(t) =
∑

i eiri(t) where e is the electron’s
charge and r is the position vector. Let E = E0 cosωLt be the electric
vector of the incident light. For the dipole moment M induced by E
we write:

M = αE +
1

2
βE2 + ... (3.123)

in which α is the electronic polarizability and β is a third rank tensor,
called hyperpolarizability that we will neglect in this treatment. In gen-
eral α is a second-rank tensor, but we will consider only the isotropic
system’s case where M is parallel to E. α depends on the electric charge
distribution ρ of the system (α = α(ρ)). If the atomic configuration
changes during the vibration, ρ and hence α will also change. Con-
sidering a diatomic molecule and assuming an electric field parallel to
its axis, ρ and α will change during the vibration. For sufficiently
small displacements of the nuclei from their equilibrium positions, α
will change linearly with the normal coordinate Q =

√
µ(u2− u1). µ is

the reduced mass and u2 and u1 are the atoms’ 1 and 2 displacements.
Expanding α in a Taylor series we obtain:

α0 +

(
∂α

∂Q

)
0

Q+
1

2

(
∂2α

∂Q2

)
0

Q2 (3.124)

The first-order Raman effect is determined by the term linear in Q, the
second-order Raman effect by the term quadratic in Q and so on. We
will only refer to first-order Raman scattering. If the molecule vibrates
with frequency ωs we have Q = Q0cosωst and obtain

α(t) = α0 +

(
∂α

∂Q

)
0

Q0cosωst (3.125)

Substituting (112) in (110) and using known trigonometric formulae
the following expression can be obtained:

M(t) = αcosωLt+ b[cos(ωL − ωs)t+ cos(ωL + ωs)t] (3.126)

where:

α = α0E0, b =
1

2

(
∂α

∂Q

)
0

Q0E0 (3.127)

The equation shows that the induced dipole moment M vibrates not
only with the frequency ωL of the incident light, but also with the fre-
quencies ωL ± ωs. These latter frequencies arise from the modulation
of the electronic polarizability α by the vibration of the atoms. The
classical radiation theory of an oscillating dipole is based on the de-
scription of the electromagnetic field produced by an accelerated charge
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employing Maxwell’s equation. The intensity of radiation emitted by
the dipole moment M(t) into the solid angle dΩ = sin θdθdφ is given
by:

dI(t) =
dΩ

4πc3
sin2 θ|M̈(t)|2 (3.128)

Integrating over θ and φ and inserting the expression of M(t) in the
(114) we obtain:

I(t) = AE2
0

[
k2

0 cos2 ωLt+k
2
1 cos2

(
ωL−ωs

)
t+k2

2 cos2
(
ωL+ωs

)
t
]
+crossterms

(3.129)
where:

k2
0 = α2

0ω
4
L (3.130)

k2
1 =

1

4

(
∂α

∂Q

)2

0

Q2
0(ωL − ωs)4) (3.131)

k2
2 =

1

4

(
∂α

∂Q

)2

0

Q2
0(ωL + ωs)

4) (3.132)

Neglecting the cross terms, we expect that scattered light will have
peaks at the frequencies ωL and ωL ± ωs. This can be demonstrated
calculating the frequency dependence of the scattered light, the power
spectrum, obtained as a fourier transform of M(t). Making the calcu-
lation we obtain:

P (ω) = πAE2
0

{
k0δ
(
ω−ωL

)
+k2

1δ
[
ω−

(
ωL−ωs

)
]+k2

2δ
[
ω−

(
ωL+ωs

)]}
(3.133)

The first term is the power scattered per unit solid angle at the fre-
quency ωL of the incident radiation and is known as elastic scattering
or Rayleigh scattering. The second and the third terms rapresent the
inelastic or Raman scattering that consists in a radiation scattered at
the Stokes frequency ωL−ωs and at the anti-Stokes frequency ωL +ωs
respectively. Each term is proportional to k2

i which, at the same time,
is proportional to the square of the polarizability derivative with re-
spect to the normal coordinate. It means that if this derivative is 0, the
Stokes and anti-Stokes peaks disappear for that specific normal mode;
this fact rapresents the so called selection rules for Raman scattering.
The classical theory correctly predicts the existence of the Stokes and
anti-Stokes lines, as can be seen Fig. 3.1, but it leads to an incorrect
ratio of their intensities. Infact, from the equations above, the ratio
between the Stokes and anti-Stokes peaks should be:

IStokes
Ianti−Stokes

=

(
ωL − ωs

)4(
ωL + ωs

)4 (3.134)
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Figure 3.1: Stokes and anti-Stokes lines; dotted lines come from the classical
theory. [34]

which is certainly less than unity, whereas experimentally it is found
that the Stokes lines are more intense than the anti-Stokes ones. This
error is corrected by using a quantum theory for the interpretation of
the Raman effect. We have already said that in general the direction
of the induced dipole moment M does not coincide with the direction
of the electric field E. So M = αE will be a vectorial relation and
the polarizability is thus a second-order tensor. We can define, for a
given normal coordinate of vibration Qs, changes in the polarizability
components as:

∆αρσ,s = αρσ,sQs =

(
∂αρσ
∂Qs

)
0

Qs (3.135)

The normal mode Qs will appear in the Raman spectrum only if at
least one of the six components αρσ,s of the variation in polarizability
matrix, build from the polarizability matrix itself, is different from zero.
In this case the normal mode Qs is called Raman active. Whether or
not a normal mode is Raman active depends on the simmetry of the
equilibrium configuration and of the symmettry of the normal modes
Qs. If the structure and symmetry of the vibrating system is known,
it is possible to predict the number of Raman active modes for each
symmetry species of the symmetry group under consideration.
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Quantum theory of Raman scattering applied for crystalline solids

In terms of particle theory of light, Rayleigh scattering corresponds to
an elastic collision process between the photon and the crystal whereas
Raman scattering corresponds to an inelastic collision in which the
photon either loses one or more quanta of vibrational energy (Stokes
lines) or acquires one or more such quanta (anti-Stokes lines). In first-
order scattering only one phonon is involved while in the second-order
scattering two phonons are involved. We will describe in detail the
first phenomenon. Fig. 3.2 shows the transitions for Rayleigh scatter-
ing and for first-order Stokes and anti-Stokes scattering. Let (ωL, kL)
be the incident photon of the laser with frequency ωL an wavevec-
tor kL, (ωsc, ksc) the scattered photon, and (ωj, q) the optical phonon
s = (q, j) involved in the scattering process. Energy and momen-
tum are conserved between initial and final states of the system. For
Rayleigh scattering we have:

ωL = ωsc (3.136)

kL = ksc (3.137)

while for Raman scattering the conservation of energy and momentum
are:

ωL = ωsc ± ωj(q) (3.138)

kL = ksc ± q (3.139)

In the Stokes process a phonon ωj(q) is created (+ sign), while in the
anti-Stokes process the phonon (ωj, q) is annihilated (-sign). The two

Figure 3.2: Transitions for (a) Rayleigh scattering, (b) first-order Stokes
scattering and (c) first-order anti-Stokes scattering [34]

processes are shown schematically in Fig. 3.2. Since ωL >> ωs = ωj
it follows that ωL ∼= ωsc and, as a consequence, kL ∼= kksc . Due to this,
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assuming that the experiments are generally carried out at frequencies
where there is no dispersion of the refractive index n, can be demon-
strated that in first-order Raman scattering only q ∼= 0 optical modes
can be excited. If a photon with ~ωL approaches a crystal, it perturbs
the electronic wavefunctions because only electrons are light enough to
follow the fast-changing electric field of the photon. We can consider
this situation as a non stationary state with higher energy assumed by
the crystal. This high energy level has nothing to do with the concept
of energy levels of the crystal, and infact it is called virtual level in
order to indicate that it is introduced into the discussion only for the
description of the perturbation process. If this virtual level is effec-
tively a real electronic energy level of the crystal, we will talk about
resonant Raman, and its signal will be much more intense with respect
to a normal Raman signal. Due to the fact that the state with ~ωL is
a non-stationary state, the photon leaves it. If it returns to its initial
state this gives rise to Rayleigh scattering in which the frequency of the
photon remains the same; this is also called elastic scattering. With a
much lower probability, the photon can lose part of its energy in the
interaction process and thus leaves the system with a lower energy ~ωsc
(Stokes process). Since the crystal must return to a stationary state
the difference ~ωL − ~ωsc must correspond to a phonon energy; this
process is associated with a creation of a phonon of energy ~ωs. In an
analogue way, the photon can leave the crystal with higher energy if
by chance it finds the system in an excited vibrational state, and the
system jumps after the interaction process to the ground state level.
This corresponds to the anti-Stokes process which is associated with an
annihilation of a phonon. The Stokes and anti-Stokes processes are also
referred to as inelastic scattering. The picture developped in this sub-
section demonstrates the experimental behaviour of the ratio between
the Raman intensity signals of the Stokes and anti-Stokes processes
respectively, because the population of the ground vibrational level is
much higher than the population of the excited vibrational levels. Thus
the chance for the incident photon to find the system in an excited vi-
brational level is much smaller than for the ground state. Since the
ratio of the two populations, according to Bose-Einstein statistics is
proportional to exp(~ωs/kBT ), the ratio of the intensities of a Stokes
line to a corresponding anti-Stokes line is expected to be proportional
to:

Is
Ias
∝
(
ωL − ωs
ωL + ωs

)4

exp

(
~ωs
kBT

)
(3.140)

This ratio is considerably larger than unity, that is in contrast with the
classical description previously reported.
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Chapter 4

Modulation of the electronic
gap of graphdiynic fragments
by molecular structure and
topology

In this study I carry out a computational investigation based on DFT
calculations on different types of fragments obtained as finite-dimension
subunits of infinite 2D γ-graphdiyne, whose structure is reported in Fig.
4.1. The aim is analysing how the topology, the molecular structure
and the geometry of the connection between hexagonal rings formed by
sp2 carbon atoms diacetylenic units in sp hybridization can affect the
HOMO-LUMO gap of the system, shedding light on the π-electron con-
jugation effect occuring in GDY. This work has been inspired by a pre-
vious paper published by Tahara et al. [35], where a similar investiga-
tion has been carried out for graphyne subfragments. γ-Graphyne (Fig.
4.1) is a planar crystalline structure made by only sp/sp2 hybridized
carbon atoms. Its structure is very similar to that of graphdiyne, in
which each hexagon is connected to the others by acetylenic units in-
stead of di-acetylenic ones.

DFT calculations have been carried out for the molecular models
sketched in Figs. 13-16 by using the GAUSSIAN 09 package [36] with
PBE0 hybrid exchange-correlation functional and 6-31G(d,p) basis set
and the numerical values of gaps so computed are reported in Table
4.1. We noticed that all the structures that we have analyzed are fixed
in a planar geometry, so no effects of distortion from planarity on delo-
calization were considered. Even if finite GDY fragments could be not
exactly planar, anyway our aim is to investigate the intramolecular ef-
fects which rules the electronic properties of 2D-GDY, which is indeed
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4.1 Effect of the meta, ortho and para conjugation in graphdiynic
polymeric chains with the increase of monomeric units

(a) γ-Graphdiyne (b) γ-Graphyne

Figure 4.1: γ-Graphyne’s and γ-Graphdiyne’s structures

described as infinite planar slab. Morever, with my results, it is possi-
ble to have a clearer vision on the electronic properties of these type of
fragments that could be helpful to scientists who synthetized them [5].
It can be used as a reference to obtain molecules with peculiar elec-
tronic properties and with a certain degree of π-conjugation, depending
on the topology of the synthetized molecules. A usual, distortion from
planarity are expected to reduce π-electron delocalization and increases
the band gap, as shown in [35] for finite dimension GY fragments. We
have to remember that a great part of the fragments that we analyzed
in our work have been already synthetized. For example the fragments
that we called F13, F16, F15 and also others have been already ob-
tained experimentally by Haley [37]. In order to compare our results
with extended systems, we also carried out DFT calculations adopt-
ing Periodic Boundary Conditions (PBC) by using the CRYSTAL17
code [38] for both infinite 1D polymers where monomeric units are
connected in different conjugation pathways(para, ortho, meta) and
infinite 2D γ-GDY. Also in this case PBE0/6-31G(d,p) level of theory
has been employed.

4.1 Effect of the meta, ortho and para conjuga-
tion in graphdiynic polymeric chains with the
increase of monomeric units

Tahara et al. have done computational studies on aromaticity, bond
length alternation (BLA) and band gap in dehydrobenzoannulene (DBA)
based molecules, whose structure is reported in Fig. 4.2, to understand
the electronic effects of diacetylenic units on phenyl rings’ delocaliza-
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polymeric chains with the increase of monomeric units

FRAGMENT GAP(eV) FRAGMENT GAP(eV)

F1 3.6858 F2 3.3745
F3 3.3119 F4 3.1935
F5 3.5685 F6 3.5976
F7 3.1133 F8 3.1141
F9 3.1211 F10 3.1620
F11 2.8964 F12 4.1560
F13 3.8436 F14 2.9837
F15 2.9307 F16 3.0088
F17 3.3138 F18 3.2572
F19 3.4229 F20 3.3029
F21 3.4118 F22 3.0052
F23 3.0583 U 4.3489
P2 3.6281 P3 3.3364
T2 4.151 T3 4.07
T4 4.03 C3 4.07
C4 4.03 O2 3.814
O3 3.604 O4 3.505

Table 4.1: Fragments’ band gaps

tion.

Figure 4.2: Dehydrobenzoannulene

In their analysis they focused also on the effect of the conjugation-
pathway type on the electronic gap. Indeed, the connection between
phenyl rings and diacetylenic units can be done in three different ways
(Fig. 4.3) :
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polymeric chains with the increase of monomeric units

Figure 4.3: Orto, meta and para positions

• In ortho-substitution, two substituents occupy positions next to
each other. In Fig. 4.3, these positions are marked R and ortho.

• In meta-substitution the substituents occupy positions marked by
R and meta in the figure

• In para-substitution, the substituents occupy the opposite ends
corresponding to R and para.

The authors found that the length and the number of para-conjugation
pathways between aromatic rings and diacetylenic units in fused DBA
rings play an important role in determining the electronic properties. In
particular the band gap is found to decrease when increasing the num-
ber and length of these types of pathways in the different fragments.
Inspired by the work by Tahara, I extended and widened this analysis to
describe GDY and related fragments, starting by its smallest building
units. Tahara indeed considered as the fundamental unit of GY the
simple triangular model of three phenyl groups linked by acetylenic
units while in my case I considered also much simpler building blocks.
As a first step I carried out indeed DFT calculations on oligomeric
chains made by increasing number of diacetylenic units and different
conjugation pathways, compared to the associated infinite polymers
computed in PBC. The results are reported in Fig. 4.4.

As a first effect I found that π-conjugation for chains in which the
substitution of the diacetylenic units is in meta with respect to phenil
groups is very low. By connecting the chemical groups in meta-, two
different types of chains can be generated by changing the configura-
tion: trans (T series) and cis (C series). For both configurations, the
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Figure 4.4: Different types of conjugation with increasing number of di-
acetylenic units
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4.1 Effect of the meta, ortho and para conjugation in graphdiynic
polymeric chains with the increase of monomeric units

gap decreases very slowly with the increase of the diacetylenic units
and reaches, very quickly, an asymptotic value that corresponds to the
infinite polymer in cis and trans configuration. Due to low increase of
π-electron delocalization induced by meta conjugation, not significant
differences are found for different type of isomerism of the chain (cis
and trans) as shown in Fig. 4.4. Infact both C3 and T3 (4.07 eV)
and both C4 and T4 (4.03) have the same value of the gap. All of
these results agree on what has been widely reported in the literature
about meta-conjugation pathway. For the subsitution in para, as al-
ready found by Tahara et al. [35], we obtain a very fast decrease in
the gap with the increase of diacetylenic units until reaching a plateu.
This can be seen in the P series (U,P2,P3). The band gap value found
for the infinite para-polymer is 2.836 eV which is significantly larger
than the value found in 2D-GDY that according to our calculation is
1.639 eV, as reported in chapter 5. Therefore, the modulation of the
gap in GDY systems cannot be described only based on chain-models
fragments. Concerning ortho-conjugation, I also have found that this
configuration (O series) gives a non negligible contribution in the de-
crease of the gap with the increase of the number of units, saturating
faster than para-units but slowlier with respect to meta ones. As a last
case, I considered also the S series formed by oligomers where triangular
rings are fused together. It should be noted that the associated infinite
polymer would coorespond to the case of the thinnest armchair nanorib-
bon that can be defined for γ-GDY, as described in detail in chapter
6. The oligomers so obtained can be described a models where both
ortho and para-conjugation pathways are co-existing. In Fig. 4.5 we
can observe the peculiar trend of their band gap for increasing number
of units: for 2 and 3 diacetylenic units in the chain ortho-conjugation
seems to rule the band gap behaviour while increasing more and more
the length of the oligomers the gap progressively decreases becoming
lower than para-conjugated molecules and displaying a much slower
decay. Indeed the asymptotic value is reached approximatively for 20
diacetylenic units giving the lowest value of the band gap when the
plateau is reached. This value is reported as the band gap value com-
puted for the related one dimensional infinite chain, as a reference. The
corresponding infinite polymer shows a gap of 2.28 eV which is any-
way higher than 2D-GDY. This is in disagreement to what has been
reported by Tahara, who suggests that by maximizing the number of
units in para-conjugation (at least in one dimension) the graphyne-like
character would be recovered. On the other hand the results obtained
for the infinite S models is in perfect agreement with what has been
reported about GDY nanoribbons [20]:GDYNR have indeed band gaps

58



4.2 Influence of the number and length of para-pathways in graphdiynic
fragments

that are higher than 2D-GDY and which decreases with the transversal
width of the ribbons, so the more we approach te 2D systems. This
is why the infinite S polymer, the thinnest GDYNR, correctly displays
a gap much larger than 2D-GDY. Further comparison and discussion
about GDYNR will be reported in one of the following chapter.

Figure 4.5: Band gap variation for different chains with respect to the num-
ber of diacetylenic units

4.2 Influence of the number and length of para-
pathways in graphdiynic fragments

Analyzing various GDY subfragments we can state that the para-
substitution is the most efficient in terms of π-delocalization and gives
the highest decrease in the gap depending on the number of units con-
nected in para with respect to the phenil ring. This statement is in
agreement with the relevant results obtained by Tahara, for which it
is the length and the number of para-conjugated units that have the
most significant effects on the electronic properties as already noticed
in the previous subsection for P models. This effect can be seen for
example in fragments F2 and F8: in F8 (3.1141 eV) we have 3 para-
conjugated pathways made by 2 diacetylenic units while for F2 (3.3745
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4.3 Effect of the ortho- and meta-conjugation in graphdiyne fragments and
of the ring’s closure

eV) we have only one. Also comparing F2 (Fig. 4.6) and F9 (Fig.
4.7) I observed a decrease in the gap because in the first (3.3745 eV)
we have one para pathway made by two units and an ortho pathway
while in the second (3.1211 eV) we have two para-pathways. Moving
then from F9 to F8 (Fig. 4.7) it can be seen that the addition of
another para-pathway made by 2 units reduces further the gap but not
significantly. Another interesting behaviour can be seen in Fig. 4.8.
Indeed, here we have that the band gap of F14 (2.9837 eV) is lower
than that of F23 (3.0583 eV). This is due to the fact that in F14 we
have one long pathway in para with 3 units and 2 pathways in para
with 2 units while for F23 we have again one three-units para pathway
and a long ortho pathway (that conjugates less). Analyzing then F15
(2.9307 eV) with respect to F14 (2.9837 eV) we see that the band gap
decreases but not so effectively. On the basis of these examples, we can
say that indeed the number and length of para-conjugated pathways
affect for sure the band gap but their effect rapidly becomes ineffective
the more we increase them.

4.3 Effect of the ortho- and meta-conjugation in
graphdiyne fragments and of the ring’s closure

In addition to the previous observations, which parallels what found
by Tahara for GY fragments, further effects can be identified based
on the different structure and topology in the GDY models here con-
sidered. Indeed, even if para-conjugation gives initially a large effect
on the gap, other phenomena can be of the same order of magnitude.
If we consider model such as F2 (3.3745 eV), F17 (3.3138 eV) and
F19 (3.4229 eV) fragments, where additional units are added in ortho-
position with respect to P2 (3.6281 eV) molecule, it can be seen that
there is a decrease in he band gap of about 0.3 eV (Fig. 4.6). The
gap is comparable with P3 (3.3364 eV) that is the next oligomer in
the P series where we are increasing the length of the para-conjugated
pathway. This behaviour suggests that the combined presence of both
ortho- and para-conjugation on the phenyl group gives another impor-
tant contribution in band gap decrease.

Another peculiar effect that I have identified is related to the closure
of triangular rings. Indeed as we can see in Fig. 4.6, for F19 (3.4229
eV), F2 (3.3745 eV) and F8 (3.1141 eV) molecules the closure of the
rings progressively lowers the gap, in particular if we consider F4 (3.193
eV) and F11 (2.896 eV) in comparison with F2 and F8, F4 in particular
can be described as a model where the longest para-conjugated path-
way is formed by only two diacetylenic units but anyway it has a band

60



4.3 Effect of the ortho- and meta-conjugation in graphdiyne fragments and
of the ring’s closure

Figure 4.6: Effect of orto-conjugation in addition with the para one and of
ring’s closure
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4.3 Effect of the ortho- and meta-conjugation in graphdiyne fragments and
of the ring’s closure

Figure 4.7: Effect of the increase in the number of para-conjugations and
also of the rings’ closure
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4.3 Effect of the ortho- and meta-conjugation in graphdiyne fragments and
of the ring’s closure

Figure 4.8: Different types of fragments with the same maximum length of
the para-conjugation
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4.4 Conclusions

gap which is comparable with the para-conjugated oligomers P4 (3.189
eV) where the para-conjugated pattern include four diacetylenic units.
Furthermore, we can also consider F4 as one half of F11 model where
thanks to the formation of a larger number of para-conjugated units
the gap is further reduced. All the structures that I have analyzed are
planar, so no effects of distortion on delocalization were considered.
As a final case, I further highlight the lack of effect which is induced
by meta-conjugation. Indeed, if we compare the fundamental units U
(4.349 eV) with T2 (4.151 eV) with model F12 (4.1560 eV) we verify
indeed that conjugation in meta does not affect the band gap. This is
particularly important since infinite 2D materials based on F12 units
have been indeed produced [referenza], and it would be thus very in-
teresting to compare their properties with respect to γ-GDY based on
the structural topological effects here investigated.

4.4 Conclusions

Based on the data and the discussion reported above I summarize here
the main results obtained:

• It is not sufficient to consider only monodimensional infinite chains
to understand the electronic behaviour and π-electron delocaliza-
tion in GDY. It is necessary to move towards a two dimensional
description, rapresented by the model of the nanoribbon.

• I have demonstrated that the results obtained by Tahara about
para-conjugation pathways are compatible also for GDY sub-
fragments: increasing para-conjugation pathways in number and
length, a significant decrease in the gap is obtained

• In addition, I have seen that there is a coupled effect between
para- and ortho-conjugation, both in small fragments and long
chains, having a further effect in lowering the gap

• The formation of triangular rings further lowers the band gap.

• The meta-conjugation gives a negligible π-electron delocalization,
preventing any long range π-conjugation.

These results can be useful to understand better the electronic prop-
erties of these type of molecules and optimize their possible use in
nanoelectronics. Infact, tuning for instance the synthesis it is possible
to obtain different types of fragments or chains with different conju-
gation in order to get the desired properties in terms of conductivity
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4.4 Conclusions

and electron mobility. Moreover, thanks to this investigation, it is pos-
sible to compare electronic properties of different infinite conjugated
chains with nanoribbons made by cutting the infinite GDY with dif-
ferent edges. As we will see in one of the following section the edge
resembles the infinite chain in terms of electronic and also vibrational
properties, giving us a good instrument for comparison.
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Chapter 5

Computational investigation
of GDY crystal

After the evaluation concerning GDY subfragments, I focused on the
computational analysis of infinite periodic structures. Infact my aim
was to shift the attention towards GDY-NRs in order to study their
electronic and vibrational properties. The study was driven by the fact
that the intriguing electronic properties of graphdiyne and, in partic-
ular, of graphdiyne’s nanoribbons make them appealing for nanoelec-
tronic devices. Moreover the vibrational characterization, through IR
and Raman spectroscopies, rapresents an important tool to understand
in a better way their morphology and topology.

Figure 5.1: Schematic representation of a single GDY sheet. Band structure
and density of states for a single GDY sheet, obtained from DFT calcula-
tions. The Brillouin zone is also shown.
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The calculations of the 2D γ-graphdiyne were done using the CRYS-
TAL14 and CRYSTAL17 codes by using DFT and applying periodic
boundary conditions. For these evaluations we use the PBE0 hybrid
functional and the 6-31G(d,p) (6-31G(d) in the case of the infinite
GDY) as basis set. The TOLINTEG parameter was set to 9 9 9 9
80, which means that integrals are either approximated or disregarded
when the overlap between the corresponding basis functions is below
10−9. The treshold on the self consistent field (SCF) energy was set
to 10−8 (TOLDEE parameter set to 8) for the geometry omptimiza-
tion and to 10−10 for the calculation of numerical derivatives in the
Coupled Perturbed Hartree Fock process implemented in Crystal. The
reciprocal space was sampled along the two lattice vectors according
to a sublattice with a SHRINK factor set to 50 50; it corresponds to
234 independent k vectors scanned in the irreducible part of the Bril-
louin zone. For the basis set, because exponents of carbon gaussian
basis functions lower than about 0.17 Bohr cause severe convergence
problems in the SCF-procedure due to near (or even) linear dependen-
cies in the basis set, a gaussian’s exponent was increased from 0.1687
to 0.187 as suggested by Lorenz at al. for the case of graphene [39].
The first analysis was focused on the study of the electronic and vi-
brational properties of the infinite slab of γ-graphdiyne. From the
literature we know that GDY is a semiconductor, whose symmetry
group is P6/mmm (D6h), with a direct band gap located in the re-
ciprocal space at the Γ point (wavevector k = 0). In Fig. 5.1 the
band structure of the graphdiyne is reported from the literature [16].
Usually the GDY band gap depends on the applied methods and the
exchange-correlation functionals used, and it ranges from 0.46 to 1.22
eV as reported in literature (see Table 1 in the second chapter).
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Figure 5.2: Graphdiyne band structure; the red line rapresents the Fermi
energy.

GDY crystal has a primitive cell that contains 18 carbon atoms,
that means 108 electrons per cell. Therefore the number of electronic
bands will be 108 and the band gap will fall between the 54th and the
55th band. In Fig. 5.2 the computed band structure for the γ-GDY
is reported. As we can see from my computation, the band gap is at Γ
as it is known from the literature, and it has a value of 1.629 eV, much
larger than the values found with LDA or with other functionals. This
is caused by the use of the PBE0 hybrid functional instead of GGA
functionals or other functionals based on LDA that are less accurate in
predicting the band gap. Compared to graphene, it can be seen that
the presence of sp-hybridized carbon atoms induces the opening of a
gap in the structure when we pass from a completely sp2 hexagonal
structure (graphene) to a mixed sp− sp2 structure. Band structure of
graphdiyne is composed by deeply located σ-type bands, whereas the
low-energy π (π∗) bands form the edges of the gap.

In my analysis I focused mainly on the interpretation of vibrational
spectra since in literature there are only few theoretical studies on the
prediction of vibrational properties of graphdiyne. As we said, the GDY
primitive cell contains 18 atoms that means 54 normal modes of vibra-
tion. Through the use of Coupled-Perturbed Hartree Fock method,
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implemented in Crystal, it was possible to compute Raman and IR
spectra of the infinite GDY slab, reported in Fig. 5.3.

(a) Raman spectra

(b) Normal modes, taken from
the literature [18], related to the
raman spectra

(c) IR spectra

Figure 5.3: Raman (containing also the one taken from the literature for
comparison, calculated using DFT with LDA as exchange-correlation func-
tion [18]), IR spectra and normal modes of infinite γ-GDY
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The most intense and important Raman peaks are reported in Table
5.1 with wavenumber, Raman activity and symmetry species of the
associated normal modes. The names of the Raman lines reported in
the table have been used based on the nomenclature introduced by
Zhang et al. [18].

Table 5.1: Most intense Raman active normal modes

Line Wavenumber Raman activity Symmetry species
(cm−1) (A4/amu) (irrep)

B 983 231213 A1g

G” 1382 6278 E2g

1382 6278 E2g

G’ 1490 869870 A1g

G 1573 248923 E2g

1573 248923 E2g

Y 2276 3707443 A1g

Y’ 2335 638183 E2g

2335 638183 E2g

As we can see, we obtain a good agreement between our calculated
Raman spectra and the one deriving from the literature, which has
been computed with DFT using LDA as exchange-correlation func-
tion [18]. We observe a shift in the two high wavenumber peaks, the
ones related to alkyne chains normal modes, probably due to the differ-
ent exchange-correlation functional used for the two different computed
spectra. Thanks to the results of vibrational computations it was possi-
ble also to analyze normal modes related to the Raman peaks, in order
to compare them with the ones coming from the literature. Some cal-
culated normal modes are degenerate, therefore in the tables they are
marked with two peaks but in the Raman and IR spectra they are fitted
with a single Lorentian function with an intensity that is the sum of
the two intensities associated to the degenerate modes. At first we can
observe the so called B mode (Fig. 5.4), located at 983 cm−1 in our
Raman spectra, that corresponds to the breathing mode of the hexag-
onal rings present in the structure. This mode can be found also in
graphene, it is called D peak, it is located at 1350 cm−1 and it is active
only for disordered graphene. Due to the effect of the diacetylenic units
linked to the hexagons that tend to withdraw electronic charge due to
the sp hybridization, the bonds in the graphdiyne’s hexagons are less
strong with respect to graphene ones. This is the reason that causes a
decrease in the force constant of the bond implying a decrease in the
wavenumber associated to that normal mode of vibration. However the
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presence of this normal mode in both the structures makes it a sort of
fingerprint of the carbon-based hexagonal structure.

Figure 5.4: Breathing mode of the hexagonal rings (B mode)

The G peak in the graphdiyne Raman spectra is located at almost
the same wavenumber with respect to graphene; infact for the latter is
located at 1582 cm−1 (Fig. 5.5) while for GDY it is located at 1573
cm−1.

Figure 5.5: Raman spectra of graphene
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As we know this peak is related to the stretching of the bonds in the
hexagonal rings, and it involves vibration of the sp2-hybridized carbon
atoms. Here we observe only a very slight shift in the wavenumber
due to acetylenic linkages but it is also possible to observe a decrease
in intensity of this peak as a further consequence of the presence of
diacetylenic units. In Fig. 5.6 the normal mode assocaited to the G
line of the GDY crystal is rapresented.

Figure 5.6: Stretching mode of the bonds in the exagons (G mode)

Differently from graphene, graphdiyne has other 2 peaks that can
be found in the same wavenumber region of the G peak; they have
been called G’ and G”. They are located respectively at 1490 cm−1

and 1382 cm−1 and they are again due to normal modes including the
rings but coupled to motions also of the diacetylenic units that are
present in the structure. The G’ line is connected to the vibrations
of carbon-carbon single bonds between triply coordinated atoms and
theirs doubly coordinated neighbours. It is a sort of breathing mode
coupled with a CC stretching mode involving triple bonds. The G”
line comes from the scissoring vibration of atoms in benzene rings.
The normal modes of vibration for these peaks are depicted in Fig.
5.7 .
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(a) G’

(b) G”

Figure 5.7: Vibrational normal modes for G’ and G” lines

At higher wavenumbers we find the region of the Raman spectra
where we have markers of the sp-chain, in the wavenumber range of
1800-2500 cm−1. Indeed we observe two peaks that are called Y (at
2276 cm−1) and Y’ (at 2335 cm−1). In graphene, due to the absence of
sp hybridized carbon atoms, this region is occupied only by second or-
der raman peaks. The two normal modes associated with the two lines
can be seen as 2 of the 6 linear combinations of the 6 ECC modes [40],
each one localized on the single diacetylenic unit. The normal mode
associated to the Y peak is rapresented by the synchronous stretching
and contracting of triple bonds and it is a fully symmetric mode. It is
the total symmetric combination between the 6 ECC modes in which
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they are all in phase between each other. The normal mode associated
to the Y’ line can be described as another linear combination of the
6 ECC modes associated to the single diacetylenic unit, in which the
ECC modes are out-of-phase between each others. One third of the
chains are vibrating with an ECC mode with a certain phase while the
other two thirds are vibrating with an ECC mode, localized on each
single chain, that has a different phase with respect to the previous
one. Both normal modes are reported in Fig. 5.8.

(a) Y (b) Y’

Figure 5.8: Vibrational normal modes for Y and Y’ lines

About the IR spectra, the most intense normal modes are reported
in Table 5.2. We can distinguish two major peaks, one located at 1429
cm−1 and the second located at 2267 cm−1. The first peak is associated

Table 5.2: Most intense IR active normal modes

Wavenumber (cm−1) IR activity (km/mol) Symmetry species (irrep)

1429 522 E1u

522 E1u

2267 240 E1u

240 E1u

to a vibrational normal mode that involves vibrations of sp2 hybridized
carbon atoms in the hexagonal rings while the second is associated to
a normal mode characterized again by CC stretching of sp hybridized
carbon atoms, as reported in Fig 5.9.
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(a) 1429 cm−1 (b) 2267 cm−1

Figure 5.9: IR acrive normal modes of the two active lines in the IR spectra.
On the left the one at 1429 cm−1, on the right the one at 2267 cm−1.
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Chapter 6

Theoretical study of the
electronic and vibrational
properties of GDY
nanoribbons (GDYNRs)

6.1 Introduction

Moving from GDY fragments to the infinite systems, I focused my
attention on DFT calculations, by using again the CRYSTAL14 and
CRYSTAL17 packages, of graphdiyne nanoribbons. Consistently with
the calculations on fragments and 2D-GDY, I used the PBE0 hybrid
functional and the 6-31G(d,p) as basis set, the SHRINK factor was set
to 50 and the TOLDEE and TOLINTEG parameters were set at the
same values used for the infinite GDY slab. The SHRINK factor so
adopted corresponds to 26 k points scanned in the first Brillouin zone.
The aim of this work was to study in detail the electronic properties,
in terms of the band gap, and the vibrational properties, analyzing
Raman spectra and normal modes of vibration, of GDYNRs focusing
on π-conjugation effects. For these structures, the same terminology
reported in the literature was used. Infact we divided nanoribbons in 2
families: zigzag (Fig. 6.2) and armchair (Fig. 6.1) nanoribbons. This
is due to the fact that both band gap and Raman spectra are strongly
dependent on the nanoribbon’s edge type and different normal modes
are active depending on the edge considered. As reported in literature,
the nomenclature used for our nanoribbons is defined by the index
n that indicates the number of repeated units (C6 − C ≡ C − C ≡
C − C6 − C ≡ C − C ≡ C − C6) along the ribbon. For armchair
nanoribbons these units correspond to the monodimensional chains of
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6.1 Introduction

type P, formed by phenil groups and diacetylenic units, contained in the
thickness of the nanoribbon. For zigzag ones the corresponding units
are the monodimensional T-type chains contained in the nanoribbon.
For this scheme, armchair nanoribbons (ANRs) are defined by only
integers value of n, whereas for zigzag nanoribbons (ZNRs) the number
of repeated units n can be also an half integer (Fig. 6.1 and 6.2). At
the edges, carbon atoms are saturated bonding them with hydrogen
atoms to avoid dangling bonds.

(a) P=G1 (b) G2

(c) G3 (d) G4

(e) G5

Figure 6.1: Structure of armchair nanoribbons
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6.2 Band structure and band gap evolution of GDYNRs with increasing
width

(a) T=Z1 (b) Z1.5

(c) Z2 (d) Z2.5

(e) Z3 (f) Z3.5

(g) Z4

Figure 6.2: Structure of zigzag nanoribbons

6.2 Band structure and band gap evolution of GDYNRs
with increasing width

The first analysis is based on the computation of the band structure of
armchair and zigzag nanoribbons with different width. For simplicity,
the armchair series was termed with the name G while the zigzag se-
ries was termed with the name Z, as reported in literature [20]. All the
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6.2 Band structure and band gap evolution of GDYNRs with increasing
width

analyzed nanoribbons are reported in the Table 6.1 with name, lattice
constant and band gap. What we found by the analysis of the band

Table 6.1: Armchair(G) and Zigzag(Z) nanoribbons with reported lattice
constant, band gap and number of electrons per cell

Name lattice constant(Å) BG (eV)
G2 9.439 2.2813
G3 9.439 2.0146
G4 9.439 1.8813
G5 9.439 1.8044

Z1.5 16.35 2.8658
Z2 16.35 2.4100

Z2.5 16.35 2.1727
Z3 16.35 2.0301

Z3.5 16.35 1.9370
Z4 16.35 1.8727

structure is that they are all, both zigzag and armchair ones, semi-
conductors with a direct band gap located at Γ, similar to the infinite
2D-GDY (Fig. 6.3). Moreover, as also previously reported in litera-
ture [20], the band gap decreases with the increase of the nanoribbons’
width approaching to the value, both for zigzag and armchair ones, of
the infinite GDY, that corresponds to an infinite width (1.6289 eV), as
depicted in Fig. 6.4. This is a known effect of π-electron confinement.
The position of the gap in the Brillouin zone is not affected by the
edge-type of the nanoribbons, but, observing band gap values, we can
notice that for the same number n (number of repeating units along
the ribbon) associated to the nanoribbons, armchair nanoribbons have
a lower band gap with respect to the zigzag ones at least for low values
of n. Increasing the width of the nanoribbons both zigzag and armchair
nanoribbbons band gaps approach to very similar values and tend, in
the same way, to the band gap of the infinite GDY.
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6.2 Band structure and band gap evolution of GDYNRs with increasing
width

(a) Z1.5

(b) G2

Figure 6.3: Computed band structure of zigzag (Z1.5) and armchair (G2)
nanoribbons. The Fermi line is reported in red.

This result shows that the band gap is affected by the edge-type of
the nanoribbons. Moreover if we compare the edge of the nanoribbons
with the one dimensional chains made by phenyls and diacetylenic units
linked to these (as analyzed and reported in chapter 4) we can make
interesting observations. Indeed we notice that the edge of the zigzag
nanoribbons can be related to a single monodimensional chain of T type
(meta-conjugation between diacetylenic linkages). From our theoretical
investigation we have seen that T type chains have a very low π-electron
delocalization resulting in a larger gap that decreases very slowly with
the increase in the number of diacetylenic units (see Fig. 4.5 in chapter
4). On the other hand the edge of armchair nanoribbons corresponds to
the single monodimensional chain of P type (para-conjugation between
diacetylenic linkages), where conjugation has been found to extend at
larger distances.
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6.2 Band structure and band gap evolution of GDYNRs with increasing
width

Figure 6.4: Trend in the band gap, for zigzag and armchair nanoribbons,
depending on the increasing width (same nomenclature reported in Figs.
6.1, 6.2 for the width’s definition). For n=10 we have reported the band gap
of the infinite GDY as a reference.

Indeed analyzing our computational results, we have demonstrated
that these chains possess a good π-electron delocalization and the band
gap decreases rapidly with the increase of diacetylenic units. This effect
affects the band gap of armchair nanoribbons, resulting in lower band
gap values for these NRs with respect to the zigzag ones. Based on these
results, I can conclude that the nanoribbons’ edge plays an important
role in determining π-electron delocalization, reflected by this influence
on the band gap. Clearly this influence of the edge, as expected, rapidly
decreases as the nanoribbons’ width increases approaching the infinite
2D case. Already for n values higher than 3 we can observe, in Fig.
6.4, that both trends in the band gap collapses into one practically and
they reach asymptotically the band gap value of the infinite GDY.

81



6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

6.3 Analysis of the Raman spectra of zigzag and
armchair GDY nanoribbons

The second focus on graphdiyne nanoribbons was the computation
of the Raman spectra and their interpretation for both zigzag and
armchair edges. Using the same approach adopted for the infinite
GDY, CRYSTAL package was used exploiting the Coupled Perturbed
Hartree Fock method to compute the Raman spectra of GDYNRs. The
TOLDEE parameter was increased to 10 for this study, as required for
an accurate prediction of this vibrational force fields. For simplicity,
the analyzed spectra were divided depending on the nanoribbon edge
type: armchair nanoribbons, integer number zigzag nanoribbons, half-
integer number zigzag nanoribbons. This was done because each of
the listed group has a different edge that corresponds to a different
behaviour of the Raman spectra. For our analysis we neglect all the
peaks located at wavenumber lower than 1400 cm−1 since they are not
relevant for our discussion.

6.3.1 Armchair nanoribbons

At first we have analyzed Raman spectra of armchair nanoribbons. All
the spectra are reported in Fig. 6.5, both for high and low wavenum-
bers, and they are compared with the Raman spectra of the infinite
GDY and with the Raman spectra of the P monodimensional chain
built by alternating sp2 phenyls with diacetylenic sp units attached in
para position between each other. From the analysis of the normal
modes associated with the Raman peaks (Table 6.2) we obtain impor-
tant results. We can start the analysis observing the low wavenumber
Raman peaks for the P chain, that can be considered also as the G1
nanoribbon, comparing them with the armchair nanoribbons’ ones. 2
peaks can be observed, one located at 1441 cm−1 and the other one lo-
cated at 1681 cm−1. Looking at the normal modes associated to these
peaks, we notice that they are present also in all the armchair nanorib-
bons series but not in the infinite GDY. This is caused by the fact that
they are normal modes localized on the edges of the nanoribbon (Fig.
6.6 ) and they disappear when there are no more edges in the struc-
ture. Therefore both these bands can be taken as marker bands of the
presence of GDYNRs having finite width. Moreover these two peaks
shift when we pass from the P chain to the first armchair nanoribbon
(G2). This is caused by the appearence of other diacetylenic units at-
tached to the phenyl groups, with resepct to the P chain, located at the
edges that tends, thanks to the high electronegativity of sp-carbon, to
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

withdraw charge from the phenyls modifying the force constant of the
associated normal modes and inducing the observed shift. In particu-
lar, increasing the nanoribbon’s width from P to G2, the normal mode
located at 1441 cm−1 shows a slight blue shift towards 1451 cm−1 while
the normal mode at 1681 cm−1 suffers a red shift towards 1632 cm−1.
These normal modes are reported in Fig. 6.6. A more detailed analysis
of the numerical values of the internal force constants associated to the
CC stretching of the phenyls would be required for a better estimation
of these effects.
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

Nanoribbon Wavenumber(cm−1) Raman activity(Å4/amu)
P 1441 49101

1681 323297
2344 989038

G2 1451 146712
1507 78114
1632 641919
2307 1492568
2346 1087603

G3 1444 30748
1452 99468
1453 57669
1499 373616
1566 13178
1571 212735
1630 48792
1630 561066
2293 2763591
2342 1592953
2349 73400

G4 1452 129162
1453 40041
1495 778765
1569 76620
1571 170665
1573 192893
1630 157998
1630 434647
2287 4092539
2312 382667
2341 1874713
2344 224908

G5 1452 51637
1452 101022
1493 1238503
1570 82626
1571 230668
1573 312409
1574 57612
1630 169086
1630 415534
2268 295109
2285 4861513
2305 959491
2341 1873400
2341 726038

GDY 1490 869870
1573 248923
1573 248923
2276 3707443
2335 638183
2335 638183

Table 6.2: Wavenumber and Raman activity of the most important peaks
in different armchair nanoribbons
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

(a) Low wavenumber Raman spectra

(b) High wavenumber Raman spectra

Figure 6.5: Computed Raman spectra for ANRs, infinite GDY and P chain.
Both high and low wavenumber regions are reported
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

(a) Normal mode at 1441 cm−1

(b) Normal mode at 1681 cm−1

Figure 6.6: Normal modes of the P chain, at 1441 cm−1 and at 1681 cm−1,
compared with the ones present in the G2 nanoribbon

Going from the P chain to G2 and then to G3 nanoribbons, we can
distinguish in the Raman spectra the rise of two peaks that correspond
to the G’ and G peaks of the infinite graphdiyne (at 1490 cm−1 and
1573 cm−1 respectively, see Fig. 6.5). Indeed increasing the nanorib-
bons’ width they become more and more intense until we approach the
spectrum of GDY. Moreover the one at 1507 cm−1 of the G2 Raman
spectra suffers a red shift increasing the nanoribbon’s width, so going
from G2 to G5 and then to the infinite GDY. What is also intereset-
ing to see is that in the output of the normal modes’ analysis, for the
G3, G4 and G5 nanoribbons the G peak is described respectively by
two , three and four different normal modes that are not degenerate
as in the case of the infinite graphdiyne. In Table 6.3 frequencies
and intensities of these normal modes are reported; the difference in
wavenumber between them is also reported as ∆ν. This effect is caused
by the confinement introduced in the nanoribbon and the change in the
symmetry of GDYNR with respect to 2D-GDY. Passing from the 2D
structure of the infinite GDY to the 1D structure of nanoribbons we
introduce a distinction between the direction parallel to the principal
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

Table 6.3: Normal modes associated to the G peak in different armchair
nanoribbons

Nanoribbon Wavenumber (cm−1) Raman activity(Å4/amu) ∆ν (cm−1)

G3 1566 13178
1571 212735 5

G4 1569 76620
1571 170665 2
1573 192893 2

G5 1570 82626
1571 230668 1
1573 312409 2
1574 57612 1

GDY 1573 248923
1573 248923 0

axis of the nanoribbon and perpendicular to it. This introduce a split
in the degenerate normal modes associated to the G peak, and this split
is decreasing the more we approach to the 2D GDY structure where
the modes become degenerate. Normal modes associated to the G peak
are reported in Fig. 6.7, 6.8, 6.9 for each armchair nanoribbon.

(a) 1566 cm−1 (b) 1571 cm−1

Figure 6.7: Normal modes associated to the G peak for the G3 nanoribbon

87



6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

(a) 1569 cm−1 (b) 1571 cm−1 (c) 1573 cm−1

Figure 6.8: Normal modes associated to the G peak for the G4 nanoribbon

(a) 1569
cm−1

(b) 1571
cm−1

(c) 1572
cm−1

(d) 1573
cm−1

Figure 6.9: Normal modes associated to the G peak for the G5 nanoribbon

Moving the analysis of the high wavenumber Raman spectra, in the
P chain we can distinguish only one peak. It is located at 2344 cm−1,
and it is related to the stretching of the sp carbon atoms present in the
structure. It is the ECC mode of a C4 sp-carbon chain localized on the
diacetylenic units between the phenyls (Fig. 6.10).
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6.3 Analysis of the Raman spectra of zigzag and armchair GDY
nanoribbons

Figure 6.10: Normal mode associated to the peak at 2344 cm−1 for the P
polymer

Analyzing G2, we can notice the same peak of the P chain at 2346
cm−1 but also the appearence of another peak, located at 2307 cm−1.
The normal modes associated to these two peaks are both connected
to the ECC mode localized on single diacetylenic linkages, but with
different phases one with respect to the other. Infact, observing the
two normal modes reported in Fig. 6.11, it can be seen that they are
very similar. But the vibrations of the diacetylenic units inside the
nanoribbon, differently from the edge ones, are out of phase between
each other. Moreover the peak at 2307 cm−1 is very sensitive to the
nanoribbon’s width. Infact going from G2 to G5 we can notice a red-
shift of this peak while the other one remains practically in the same
position.

(a) 2345 cm−1 (b) 2306 cm−1

Figure 6.11: Normal modes associated to the two peaks of the high wavenum-
ber region for the G2 nanoribbon
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6.3.2 Zigzag nanoribbons

The final analysis is focused on the Raman spectra calculation of in-
teger number and half integer number zigzag nanoribbons. The com-
putational parameters used are the same of the armchair nanoribbons’
analysis. In Fig. 6.12, 6.13 Raman spectra of all zigzag nanorib-
bons, both for the low and high wavenumber regions, are reported.
In the figures are also reported the Raman spectra of T type poly-
mer for comparison, as in the case of armchair nanoribbons and P
polymer. T monodimensional chains are built by alternating carbon
atoms hexagons with diacetylenic units attached to each hexagon in
meta-position and correspond to Z1 GDYNR. I start by analyzing the
Raman spectra of the T chain: for what concern the low wavenumber
region, we can distinguish three major peaks located at 1493 cm−1,
1646 cm−1 and 1675 cm−1. Visualizing the vibrational normal modes
associated to these peaks we can observe that they are also present in
the Z2 nanoribbon spectrum, in which two of them are shifted with
respect to their position in the T polymer spectrum. Indeed the ones
at 1675 cm−1 and at 1493 cm−1 show a red shift towards respectively
1627 cm−1 and 1459 cm−1 moving from the T chain to the Z2 nanorib-
bon. Increasing more the NR width, we can observe that the two
peaks, passing to Z3 nanoribbon, show only a very slight red-shift.
The shifts are due to the fact that these modes are strongly dependent
on the width and on the increase of the diacetylenic units attached
to the phenyl groups in the edge of the nanoribbon. Similar to what
happened for armchair nanoribbons, the sp diacetylenic units tend to
withdraw electronic charge, modifying the force constants associated
to the bonds and causing the shifts. On the contrary, the peak at 1646
cm−1 is unaffected by the width of the nanoribbon and remains in the
same position also for the other integer number zigzag nanoribbons.
All the three peaks are connected to normal modes whose vibration
is localized on the edge of the nanoribbon. Infact their intensity de-
creases the more the NR extension is increased, and they disappear
for the case of the infinite GDY. Normal modes associated to these 3
peaks are illustrated in Fig. 6.18. When we extend the structure from
T to Z2, we can observe the appearence of two intense peaks whose
intensity increses with the increase of the nanoribbon’s width. These
resemble, as in the case of armchair nanoribbons, the G’ and G peaks
of the infinite graphdiyne and are not present in the polymer chain T.
Analyzing the normal modes associated to these peaks, it can be ob-
served that for the Z2 nanoribbon there is one normal mode associated
to the peak at 1568 cm−1. But when the extension of the nanoribbon
is increased, so passing from Z2 to Z3, we can notice that the normal
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modes associated to these peaks become two and they remain the same
also going from Z3 to Z4.

(a) Low wavenumbers Raman spectrum

(b) High wavenumbers Raman spectrum

Figure 6.12: Raman spectra of integer number zigzag nanoribbons
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(a) Low wavenumbers Raman spectrum

(b) High wavenumbers Raman spectrum

Figure 6.13: Raman spectra of half integer number zigzag nanoribbons

The explanation to this phenomenon is that moving from Z2 to
Z3, we increase the number of phenyl groups inside the nanoribbon in
which the vibration can occur. But when the width is increased more,
going from Z3 to Z4, the vibration remains localized on the centre of
the nanoribbon and it involves the same number of phenyls. As we
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can see this peak does not show an appreciable shift in wavenumber
increasing the NR extension and it tends to become the G peak when
we reach the GDY structure. All these normal modes are reported in
Fig. 6.15, 6.16, 6.17. Instead for the peak located at 1508 cm−1 in
the Z2 Raman spectrum we can notice that it is generated from one
normal mode reported in Fig. 6.19. But going from Z2 to Z3 this
normal mode disappears and the peak is mainly originated from the
contribution of two different normal modes, located at 1490 cm−1 and
1498 cm−1. Vibrations associated to these normal modes are depicted
in Fig. 6.20. For Z4 the normal modes that contribute to the rise of
this peak become three, located at 1478 cm−1, 1491 cm−1 and 1498
cm−1. It is due to the fact that, for the normal modes of vibration
localized in that range of wavenumbers, increasing the width of the
nanoribbon the possible combinations of vibrations increase. These
normal modes are reported in Fig. 6.21.

Figure 6.14: 1568 cm−1

Figure 6.15: Normal mode of vibration of the Z2 nanoribbon, associated to
the band at 1568 cm−1
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(a) 1571 cm−1 (b) 1574 cm−1

Figure 6.16: Two normal modes of vibration of the Z3 nanoribbon, associ-
ated to the bands at 1571 cm−1 and 1574 cm−1

(a) 1572 cm−1 (b) 1573 cm−1

Figure 6.17: Two normal modes of vibration of the Z4 nanoribbon, associ-
ated to the band at 1572 cm−1 and at 1573 cm−1
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(a) 1493 cm−1

(b) 1646 cm−1

(c) 1675 cm−1

Figure 6.18: Normal modes of vibration of the T polymer and the Z2
nanoribbon, associated to the band at 1493 cm−1, 1646 cm−1 and 1675
cm−1 in the T polymer Raman spectrum
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Figure 6.19: Normal mode of vibration of the Z2 nanoribbon, associated to
the band at 1508 cm−1

(a) 1490 cm−1 (b) 1497 cm−1

Figure 6.20: Two normal modes of vibration of the Z3 nanoribbon, associ-
ated to the bands at 1490 cm−1 and 1497 cm−1
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(a) 1478 cm−1 (b) 1491 cm−1 (c) 1498 cm−1

Figure 6.21: Normal modes of vibration of the Z4 nanoribbon, associated to
the bands at 1478 cm−1, 1491 cm−1 and 1498 cm−1

For the half integer zigzag nanoribbons the behaviour is similar. In
this case, going from T to Z1.5 we observe that the peak at 1646 cm−1

does not shift, as in the case of Z2, and the peak at 1493 cm−1 shifts
towards 1465 cm−1. The same shifts are present also between Z1.5 and
Z2.5. It is interesting to notice that the intensity of the second peak
increases from T to Z1.5, while passing from Z1.5 to Z2.5 and from
Z2.5 to Z3.5 it decreases and becomes less intense with respect to the
T polymer. Analyzing the peak at 1675 cm−1, it seems to disappear
going from T to Z1.5 and it reappears in the Z2.5 spectrum shifted to
1619 cm−1. Studying the normal modes associated to this peak it can
be seen that in Z1.5 nanoribbon this normal mode is present at 1652
cm−1 and so its intensity overlaps with the intensity of the line at 1648
cm−1 and they cannot be distinguished as two separate lorentian peaks.
As in the case of integer number zigzag nanoribbons these modes are
edge modes and tend to disappear the more we increase the NR exten-
sion, approaching the structure of the infinite slab of graphdiyne. The
edge normal modes are reported in Fig. 6.22 for the Z1.5 nanoribbon.
The remaining two peaks of the Z1.5 nanoribbon, located at 1520 cm−1

and 1554 cm−1, are generated by two bulk normal modes rapresented
in Fig. 6.23. As we can see, the normal mode associated to the peak
at 1554 cm−1 is the same that we have for Z2 (1568 cm−1) and in the
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others integer number zigzag nanoribbons, but it is slightly shifted to
smaller wavenumbers while the normal mode associated to the peak
at 1520 cm−1 is present also in Z2 and it is the one at 1508 cm−1,
so slightly shifted to higher wavenumbers. Increasing the width and
passing to analyze the Raman spectra of the Z2.5 nanoribbon it can be
noticed that the the normal mode associated to the peak at 1571 cm−1

corresponds to the one of the Z1.5 NR located at 1554 cm−1; it appears
shifted and it reaches also the same wavenumber value that it has in
both armchair and integer number zigzag nanoribbons. Observing the
Raman spectra of Z2.5 we notice also that instead of the peak that was
present in Z1.5 at 1520 cm−1 we can observe two peaks, located at 1482
cm−1 and at 1503 cm−1. Analyzing the normal modes associated to
these peaks, we can state that they are generated by 2 similar normal
modes, whose vibrations are reported in Fig. 6.24, and they coincide
with the normal mode associated to the peak located at 1520 cm−1

of the Z1.5 nanoribbon. It splits in two different modes associated to
two different peaks. Infact in Z2.5 nanoribbon we have an alternated
width along the periodic direction, alternating two phenyls and one di-
acetylenic unit with three phenyls and two diacetylenic units. The first
peak (1482 cm−1) is localized on the thinner part, the one with a single
diacetylenic unit, while the second one (1503 cm−1) is localized on the
thicker part of the nanoribbon, the one with two diacetylenic units;
this is the reason why they can be seen as two distinct peaks located
at different frequencies. Going more in detail, the peak located at 1503
cm−1 takes the contribution to its intensity also from another normal
mode, located at 1505 cm−1, and reported in Fig. 6.25. Increasing the
extension of the structure it can be seen this peak tend to disappear,
as we can see in Z3.5 and in the infinite GDY, in which it is absent.

(a) 1465 cm−1 (b) 1648 cm−1 (c) 1652 cm−1

Figure 6.22: Normal modes of vibration of the Z1.5 nanoribbon, associated
to the bands at 1465 cm−1, 1648 cm−1 and 1652 cm−1
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(a) 1520 cm−1 (b) 1554 cm−1

Figure 6.23: Two bulk normal modes of vibration of the Z1,5 nanoribbon,
associated to the bands at 1520 cm−1 and at 1554 cm−1

(a) 1482 cm−1 (b) 1503 cm−1

Figure 6.24: Two bulk normal modes of vibration of the Z2,5 nanoribbon,
associated to the bands at 1482 cm−1 and at 1503 cm−1
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Figure 6.25: Normal mode of vibration of the Z2,5 nanoribbon, associated
to the band at 1505 cm−1

Moving the discussion towards the high wavenumber region, at first
we can analyze the case of integer number zigzag nanoribbons. Observ-
ing the high wavenumber region of the Raman spectra for the T chain
and the different nanoribbons we can do important observation. The
first is that for the T polymer we have one only peak located at 2371
cm−1 and the normal mode associated to this peak is reported in Fig.
6.26. It is an ECC mode localized on the diacetylenic units in which
the vibrations are all in phase between each other. Going from T to Z2
we observe one well defined peak at 2305 cm−1, originated from a single
normal mode (Fig. 6.27), and a very broad peak that is originated by
the contribution of three different normal modes located at 2350 cm−1,
2355 cm−1 and 2363 cm−1 (Fig. 6.28). The first well defined peak,
increasing the width going from Z2 to Z3 and Z4, shifts resepctevely to
2292 cm−1 and to 2285 cm−1. The broad peak tends to shift at lower
wavenumbers and becomes a single well defined peak in the case of in-
finite GDY. Concerning the half integer number zigzag nanoribbons, in
the Z1.5 nanoribbon two peaks can be distinguished from the Raman
spectra, one located at 2323 cm−1 and the other one located at 2357
cm−1. Normal modes associated to these peaks are illustrated in Fig.
6.29. They are both rapresented by ECC modes localized on single
diacetylenic units, but with different relative phases. Analyzing Z2.5
and Z3.5 we can see that the peak of Z1.5 at 2323 cm−1 shifts towards
lower wavenumber (2296 cm−1 for Z2.5 and 2286 cm−1 for Z3.5) but
the normal mode that gives rise to this peak remains practically the
same (Fig. 6.29). Now considering the peak at 2357 cm−1 of the Z1.5
NR, it can be noticed that in the Raman spectra of the Z2.5 and Z3.5
nanoribbons this peak becomes broader, due to the superposition of
different lorentian lines, and it tends to shift to lower wavenumbers.
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The main normal modes that give rise to this broad band are reported
in Fig. 6.31 and Fig. 6.30 for Z2.5 and Z3.5 respectively.

All the normal modes that we have talken about for zigzag nanorib-
bons are reported in Table 6.4 in terms of wavenumber and intensity
associated to each single mode.

Figure 6.26: Normal mode of vibration of the T polymer in the high
wavenumber region, associated to the band at 2371 cm−1

Figure 6.27: Normal mode of vibration of the Z2 polymer in the high
wavenumber region, associated to the band at at 2305 cm−1
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(a) 2350 cm−1 (b) 2355 cm−1

(c) 2364 cm−1

Figure 6.28: Normal modes of vibration, in the high wavenumber region, of
the Z2 nanoribbon, associated to the bands at 2350 cm−1, 2355 cm−1 and
2363 cm−1

(a) 2323 cm−1 (b) 2357 cm−1

Figure 6.29: Two normal modes of vibration in the high wavenumber region
of the Z1,5 nanoribbon, associated to the bands at 2323 cm−1 and at 2357
cm−1
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(a) 2335 cm−1 (b) 2344 cm−1 (c) 2349 cm−1

(d) 2350 cm−1

Figure 6.30: Normal modes of vibration for the Z3.5 nanoribbon, associated
to the bands at 2335 cm−1, 2344 cm−1, 2349 cm−1 and 2350 cm−1
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(a) 2349 cm−1 (b) 2352 cm−1

Figure 6.31: Two normal modes of vibration of the Z2.5 nanoribbon, asso-
ciated to the bands at 2349 cm−1 and at 2352 cm−1
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Nanoribbon Wavenumber(cm−1) Raman activity(Å4/amu)
T 1493 9087

1647 13145
2371 186541

Z1.5 1465 61987
1520 52518
1554 91582
1648 22909
1652 29921
2323 745668
2357 349443

Z2 1459 102459
1508 255891
1568 173770
1627 19503
2305 2045253
2350 181866
2355 316037
2363 194422

Z2.5 1451 72172
1482 184683
1503 363979
1505 149406
1571 298399
1619 78578
2296 3529357
2349 197958
2352 719752

Z3 1490 367911
1498 631708
1506 73400
1571 391265
1574 147705
2292 4984466

Z3.5 1472 178615
1497 1268944
2286 6450872
2335 550155
2344 1205036
2349 157107
2350 117830

Z4 1478 154008
1491 987170
1498 817532
1572 620648
1573 268823
2285 7608589
2343 1571803

GDY 1490 869870
1573 248923
1573 248923
2276 3707443
2335 638183
2335 638183

Table 6.4: Normal modes associated to the most important peaks in different
zigzag nanoribbons
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6.3.3 Comparison between Raman spectra of different edge-
type nanoribbons

The final analysis carried out on nanoribbons is the comparison be-
tween Raman spectra of zigzag and armchair NRs to understand if
they can be distinguished only by analyzing the Raman spectra. The
study was done in order to find a possible characterization tool to dis-
criminate between zigzag and armchair nanoribbons based on Raman
marker bands. To clearly visualize the peaks associated to each Raman
spectra and see the differences between different edge-type nanorib-
bons, G3, Z3 and Z2.5 are taken into account to focus on a peculiar
NR width which is neither too short nor too large. This choice is due
to the fact that peaks associated to vibration localized on the edges de-
crease their intensity increasing the nanoribbon’s width and thus their
marker bands would decrease in intensity. Furthermore the armchair
series, G3 is the first nanoribbon in which the G peak is visible. In Fig.
6.32 the Raman spectra of these nanoribbons are compared, including
the Raman spectra of the infinite GDY as a reference, both for high
and low wavenumbers. Focusing the attention on the low wavenumber
region of the Raman spectra, we can effectively distinguish between
armchair, integer number and half integer number zigzag nanoribbons.
At first it can be observed that the G3 armchair nanoribbon has a very
high and well defined peak at 1630 cm−1 while Z3 and Z2.5, in the same
region, are characterized by two distinct and small peaks, located at
1627 cm−1 and 1647 cm−1. These peaks can be taken as markers to
distinguish the two different edge-type nanoribbons. Moreover, looking
at the same low wavenumber region, it is also possible to discriminate
between half integer number and integer number zigzag nanoribbons.
Infact, analyzing the peak G’ of the infinite graphdiyne, it can be no-
ticed that in the same region for the integer number zigzag nanoribbon
Z2 we observe only one band, originated by the superposition of two
normal modes located at 1490 cm−1 and at 1498 cm−1. Looking at
the Raman spectra of the half integer number zigzag nanoribbon Z2.5,
in the same range of wavenumber two distinct peaks can be seen, one
located at 1482 cm−1 1503 cm−1. Normal modes associated to these
peaks are depicted in Fig. 6.33, 6.34. This diversity between the two
Raman spectra can be taken as a marker of the two type of zigzag
nanoribbons. Only the case of Z1.5, not reported here but shown in
Fig. 6.13, is an exception: infact this nanoribbon does not present
the two peaks in the wavenumber range of the G’ peak. However it
can be easily detected due the fact that its spectra is quite different
with resepct to all the other zigzag nanoribbons (see Fig. 6.13) due to
its peculiar very confined structure. Concerning the high wavenumber
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Raman spectra, is quite difficult to discriminate between armchair or
zigzag nanoribbon. The general trend for the two bands that can be
distinguished for all the nanoribbons in this region is their shift to-
wards lower wavenumber with the increase of the nanoribbon’s width,
but this doesn’t allow to discriminate safely different edge types. An-
alyzing this region, it could be possible to carry out only a qualitative
evaluation between nanoribbons with different width (Fig. 6.32).

(a) Low wavenumbers Raman spectra

(b) High wavenumbers Raman spectra

Figure 6.32: Comparison between Raman spectra of zigzag and armchair
nanoribbons, both for high and low wavenumber regions.
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(a) 1490 cm−1 (b) 1497 cm−1

Figure 6.33: Two normal modes of vibration of the Z3 nanoribbon, associ-
ated to the bands at 1490 cm−1 and 1497 cm−1

(a) 1482 cm−1 (b) 1503 cm−1

Figure 6.34: Two bulk normal modes of vibration of the Z2,5 nanoribbon,
associated to the bands at 1482 cm−1 and at 1503 cm−1

6.3.4 Conclusions

Based on the data and the discussion reported above I summarize here
the main results obtained:

• From the analysis of the band structure of both armchair and
zigzag nanoribbons, I have understood that, as reported in litera-
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ture, the band gap decreases as the nanoribbon’s width increases.
Moreover armchair nanoribbons, for short width, have a lower
band gap with respect to the zigzag ones, consistent with the
more delocalized character of para-conjugated edges.

• From the analysis of the Raman spectra and the normal modes
associated to the peaks, it has been possible to better understand
the effect of confinement introduced in the nanoribbons with re-
spect to the 2D-GDY. Moreove, it has been possible to detect
certain bands, whose normal modes are associated to the edge of
the nanoribbon and that can be taken as markers of this type of
nanostructure.

• From a comparison between the Raman spectra of armchair, in-
teger number and half integer number zigzag nanoribbons it has
been possible to distinguish marker bands that can be useful to
discriminate between different edge-type nanoribbons.

The obtained results are very interesting and in literature the Raman
spectra has been analyzed and computed only for infinite 2D GDY
and GY. Considering nanoribbons there are no works about the dis-
cussion and the interpretation of Raman spectra. The analysis of the
normal modes associated to the Raman peaks can be very useful to
better understand intramolecular properties of GDYNRs, including π-
conjugation effects, and how the different edges can affect these proper-
ties. Moreover, Raman turned out to be an optimum characterization
tool for these structures, and can be very helpful for researchers that
need to characterize these peculiar sp-sp2 carbon-based nanostructures.
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Chapter 7

Conclusions and future
perspectives

In conclusion, in my thesis work I have done a computational inves-
tigation, by means of density functional theory, of hybrid sp-sp2 car-
bon nanostructures. At first, linear molecules and molecular fragments
made by phenyl groups connected by diacetylenic units have been stud-
ied by means of the GAUSSIAN09 package. The aim of this analysis
was to investigate the electronic properties of these systems, in terms of
π-conjugation effects. With the evaluation of their band gap, and how
it can change depending on the type of conjugation (para, meta and
ortho) of the diacetylenic linkages with respect to the phenyl groups,
a careful analysis has been carried out for many fragments, includ-
ing a few experimentally-available molecules. For the one dimensional
chains characterized by different conjugations and different lengths, I
have discovered that the polymer with para-conjugation (P series) is
the one among the other linear polymeric chains characterized by the
highest π-conjugation, resulting in lower values of band gap the more
number of diacetylenic units is increased. On the other hand, meta-
conjugation breaks the π-electron delocalization, stabilyzing high band
gap even with increasing the number of the diacetylenic units. The
ortho-conjugation has an intermediate effect on the gap that is not
negligible. What I also found is that in the series that rapresents the
smallest example of armchair nanoribbon (S series), the π-conjugation
is very effecttive and I predicted the lowest band gap values for this
series, with a plateau that is reached only for a very high number of
diacetylenic units. By analyzing the different molecular fragments, we
have proved that the para conjugation is the most effective in affecting
the band gap of these structures, as Tahara previously investigated for
the case of graphyne fragments [35]. In addition we verified that ortho-
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conjugation gives a non negligible contribution in lowering the gap of
the fragments. While structures where the combination of the ortho
and the para conjugtion is possible, the band gap decreases signifi-
cantly. Moreover the formation of rings formed by phenyl and chain in
a triangular geometry (the basic units of γ-graphdiyne), further, low-
ers the gap and increases the electron delocalization in the nanostruc-
tures. Based on the analysis for finite dimension molecular fragments,
I moved to the analysis of periodic structures using the CRYSTAL14
and CRYSTAL17 packages. At first I have studied electronic and vi-
brational properties of the infinite γ-graphdiyne (GDY). To study elec-
tronic properties, the band structure of the infinite GDY was computed
(1.629 eV). After that, I computed the Raman and IR spectra for this
ideal reference structure. I have analyzed the most important peaks
occurring in the Raman and IR spectra, giving a detailed description of
the normal modes associated to these peaks. This evaluation was pre-
liminary for the study of grahdiyne-based nanoribbons made by cutting
the 2D-γ-GDY along specific directions. Depending on the edge type
originated by cutting the crystal, armchair or zigzag nanoribbons can
be obtained. My focus on nanoribbons was motivated by the fact that
these systems are very promising concerning the possibility to produce
them by proper preparation techniques but there are few studies on
these type of structures reported in literature, in particular concern-
ing their characterization by Raman spectroscopy. First, I computed
the band structure for armchair an zigzag nanoribbons with different
width. The result is that increasing the nanoribbons’ width (thus ap-
proaching the limit of GDY) the band gap tends to decrease as already
reported in literature [20]. In particular, I noticed that, for small value
of the width, armchair nanoribbons have a lower band gap with re-
spect to the zigzag ones as a consequence of the conjugation effects
highlighted for the one dimensional chains discussed in the first part.
This can be explained analyzing the edge of these strutures: the arm-
chair nanoribbons have the para conjugated monodimensional chain
(P) as the edge, while zigzag nanoribbons have the meta conjugated
one (T). As alredy commented, the P chain gives an higher π-electron
delocalization to the armchair nanoribbon with respect to the T chain
that contributes with a much lower delocalization. I then moved to the
computation of the Raman spectra for armchair, integer number and
half integer number zigzag nanoribbons. The main bands for different
edge nanoribbons were studied in detail, including also the analysis of
the normal modes associated to that peaks. We found various peaks
whose normal modes are associated to vibrations localized at the edge
of the structures and whose intensity tends to decrease increasing the
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NR width and approaching the GDY structure for all the nanoribbons.
These bands can be taken as relevant marker bands for the occurring
of confinement effects. I have also analyzed the evolution of the peaks,
increasing more and more the width of the NR, evolving towards the
main bands of the infinite GDY. Finally I compared zigzag and arm-
chair nanoribbons to understand if there is a way to distinguish them
from the Raman spectra, in order to use these spectra as a useful char-
acterization tool. Also to detect the edge-type of GDYNRs actually
I was able to notice one single peak, located in the low wavenumber
region, that is present only in armchair nanoribbons and can be used to
distinguish between armchair and zigzag ones. Moreover, analyzing the
splitting of one band in the integer number zigzag nanoribbons divid-
ing into two distinct peaks in half integer number zigzag nanoribbons,
it is possible to distinguish these two different edges nanoribbons.

Based on these results, various perspectives of my work can be
opened. The first future investigation is to extend the dimension of
the studied fragments and nanoribbons to understand how the elec-
tronic and vibrational properties evolve and can be tuned. Another
aspect is the extension of this work to nanostructures with other dif-
ferent topologies. Indeed fragments and nanoribbons based on different
graphdiyne type (for example α or β graphdiynes) should be studied
in details. The same analysis can be also extended to structures with
longer sp-carbon based linkages, as graphtriyne, graphfouryne and so
on, to understand how the increase in the length of these units can
affect the properties. Finally, a large variety of other hybrid sp-sp2

structures, different from graphyne, graphdiyne and so on, can be in-
deed designed and it would be interesting to understand if there are
other topologies that are promising and how their electronic and vibra-
tional properties can change.
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