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Sommario

Analizzare dati digitali, per identificare e classificare la morfologia del terre-
no, è un compito importante, che può contribuire a migliorare la disponibilità
e la qualità della cartografia pubblica open source e a sviluppare nuove ap-
plicazioni per il monitoraggio del turismo e dell’ambiente. Nella letteratura,
sono documentati alcuni algoritmi euristici per identificare caratteristiche di
regioni montane, soprattutto le coordinate delle vette, grazie a set di dati in
input, come il Modello Digitale di Elevazione (DEM) della Terra. Scegliere
il metodo, da utilizzare per l’individuazione dei picchi delle montagne, di-
pende dai requisiti della applicazione a portata di mano; ma la decisione è
aiutata anche dalla disponibilità di un rigoroso confronto tra i differenti me-
todi. Tutti questi algoritmi dipendono da parametri che sono da impostare
manualmente. In questa tesi, esploriamo l’uso di metodi di Deep Learning,
in particolare classificazione e segmentazione, per addestrare un modello, in
grado di identificare vette di montagne, e che impari da un set di dati, usato
come gold standard, contenente le coordinate dei picchi in una regione. I
modelli sono stati addestrati e provati con dati DEM e picchi della Svizze-
ra. Inoltre, proponiamo un approccio per un confronto equo, in termini di
Precision-Recall e errore medio sulla distanza, e presentiamo i risultati quan-
titativi e qualitativi ottenuti valutando, in una area della Svizzera, i metodi
più noti dalla letteratura e i nostri modelli di Deep Learning.
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Abstract

Analyzing digital data to identify and classify landforms is an important
task, which can contribute to improve the availability and quality of public
open source cartography and to develop novel applications for tourism and
environment monitoring. In the literature, several heuristic algorithms are
documented for identifying the features of mountain regions, most notably
the coordinates of summits, from input datasets, such as the Digital Eleva-
tion Model (DEM) of the Earth. Choosing the method to use for mountain
peaks detection depends on the requirements of the application at hand, but
the decision is helped also by the availability of a rigorous comparison among
the different methods. All these algorithms depend on parameters, which are
manually set. In this thesis, we explore the use of Deep Learning methods,
specifically classification and segmentation, to train a model capable of iden-
tifying mountain summits, which learns from a gold standard dataset con-
taining the coordinates of peaks in a region. The models have been trained
and tested with Switzerland DEM and peak data. Furthermore, we propose
an approach for a fair comparison, in terms of Precision-Recall and mean
distance error, and present the quantitative and qualitative results obtained
evaluating the best known methods from the literature and our Deep Learn-
ing models, in an area of Switzerland.
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Chapter 1

Introduction

Landforms are natural features of the landscape, such as mountains, hills,
plateaus, canyons, etc, which characterize the Earth surface. Their identi-
fication and classification are essential for geomorphological mapping [1], a
problem of interest for a wide spectrum of Earth sciences such as hydrol-
ogy, morphometry, morphology, glaciology and urban planning. Originally,
terrain analysis and landforms mapping were executed manually by experts,
with special cartography, such as topological maps, and with in-field missions
and direct observation. Recently, the advances in digital imagery technology
and in the derived products, such as Digital Elevation Models (DEMs) of
the terrain, allowed the development of automated approaches to analyze
the Earth surface; in particular, several methods were developed to map
landforms using DEM data as input [2]. DEMs are 3D representations of
the Earth, derived from different sources, such us Laser Imaging Detection
and Ranging (LiDAR) data and Shuttle Radar Topography Mission (SRTM)
campaigns [3]. DEM data form a matrix in which each value represents the
altitude of a point on the Earth. The resolution of DEM files can vary de-
pending on the original source, which affects the extension of the territory
represented by each DEM cell. Thanks to different visualization techniques,
DEMs are useful to analyze the surface of an area at different scales and from
different viewpoints.

The analysis of DEM data can be automated; several computer-based
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methods exist that are able to extract landforms from the DEM represen-
tation of the Earth surface automatically [4, 5, 6]. Each method follows its
own approach to classify the points of the territory. Due to the difference in
their heuristics, their definition of landform and their application purpose,
landform extraction methods do not always agree when applied to the same
region. In [7] the authors show the results of applying different methods for
landforms extraction in various areas and highlight, by means of a qualita-
tive analysis, the inconsistency and differences in the outcome of the methods
applied to the same input and on the same area.

In this work, we concentrate on a particular landform: mountain peaks.
In particular, mountains and mountain peaks identification are a sub-problem
of landforms detection. The problem can be defined as follows: given the
DEM representation of an area of the Earth surface, identify the coordinates
of the points that belong to a mountain landform. A further restriction of the
mountain landform identification problem is summit identification, which
processes DEM data to determine the coordinates of a single point that
represents the summit of the mountain.

Mountain area and summit identification have important applications.
The identification of mountain slopes can be used to analyze hydrogeological
and landslide risk and to monitor climate change or anthropic effects [8], such
as reduction of glacier and snow coverage, which are fundamental for water
supply in many regions of the world [9]. Mountain summit identification can
support the improvement of Voluntary Geographical Information Systems
(VGIS). Such systems, e.g., the popular Open Street Map (OSM), depend on
the contribution of volunteers to provide information of geographical entities,
including mountain peaks, which challenges the quality and quantity of data
available. For example, at the moment, OSM contains ≈ 506, 097 mountain
peaks, of which 36,25% miss the altitude value. Therefore, automatically
extracting candidate mountain summits, with their coordinates and altitude,
and using the volunteer contribution to validate and augment such data set
can be a formidable tool to boost the quality and quantity of geographical
information in a VGIS.

The identification of mountain peaks is well known to be an ambiguous

2



task [10]; the outcome (a list of mountain peaks with their coordinates) de-
pends on the definition of “what is a mountain”, which is a fuzzy concept [11,
12] affected by many factors. Different works have used alternative features
to characterize mountains for different purposes; for example, [13] classifies
mountains as minor, submajor and major, according to three geographic pa-
rameters: local relief, elevation and prominence. Other features, such as
isolation, slope, curvature, have been employed too. A common trait of
mountain characterization methods is that they depend on parameters that
the user has to configure, to decide if a given point can be considered part
of a mountain. The selection of parameters values to obtain the most ac-
curate identification is a complex task, especially when multiple parameters
are involved.

The choice of a peak detection method for a specific research or develop-
ment task requires a comparison of the available methods, to decide which
one better fits the requirements of the application for finding mountain peaks
in a given area. To the best of our knowledge, no systematic and replicable
comparison procedure is available, because most of the works that present
new mountain detection approaches provide a qualitative or quantitative
evaluation limited to their own results.

To cope with the absence of such comparison (and to use it as baseline for
the evaluation of our method), we propose a procedure for the comparison
of different methods and apply it to several mountain peak identification ap-
proaches based on the analysis of DEMs data. We do acknowledge, as most
authors in the mountain peak detection literature, the inherent ambiguity
and application-dependent nature of the task, which makes the definition of
a universal quality criterion impractical. To cope with such a difficulty and
nonetheless provide an evaluation yardstick as objective as possible, we base
the assessment of methods on an “independent baseline”, constituted by a
gold standard data set, which is taken as the Ground Truth. The ground
truth data set is, by definition, a collection of peaks with their coordinates
that is considered as correct, e.g., thanks to its provenance (e.g., from offi-
cial cartography or from the joint effort of a large community of volunteer
contributors), or for its proved suitability for a certain kind of applications.
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When a ground truth data set is established, alternative methods can
be evaluated with respect to their capacity of reproducing the “mountain
definition decision” embodied in such a data set. Then, well-know accuracy
reporting tools, such as the precision-recall curve, can be employed to study
how the methods behave and compare to one another.

In this thesis, we also explore Deep Learning (DL) [14] as an alterna-
tive to the manual selection of parameters in heuristic algorithms. The idea
is to let a deep neural network learn the optimal parameter configuration
for recognizing mountain summits, by training it on a suitable gold stan-
dard. To this purpose, we exploit existing digital cartography, where the
coordinates of (selected) mountain peaks are reported. Traditional maps,
and their digital counterparts, embody significant knowledge and tradition
on the localization of mountain summits and can thus be used to train a DL
classifier, which could apply such knowledge to identify peaks not present
in the traditional cartography or peaks in different areas, for which public
cartography is unavailable or less complete. The input to the DL model is a
DEM data set, appropriately encoded, and the output is a probability map
of locations to represent a mountain summit; such output can be to identify
peaks not represented in the available cartography and to estimate (thanks
to the DEM elevation data) their altitude. The proposed DL method can be
exploited in a crowdsourcing platform whereby volunteers can validate novel
discovered peaks and the altitude of already known peaks, before injecting
the information into a VGIS.

Based on this vision, the contribution of this thesis can be summarized
as follows:

• We study and summarize the state of the art on landform detection and
mountain peaks extraction, as well as DEM data analysis with machine
learning methods.

• We formulate the mountain summit identification task as a learning
problem, in which a DL model is trained by supplying to it the DEM
data of a region and a set of ground truth peak summit coordinates in
the same area.
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• We formulate a quantitative procedure for comparing mountain peak
detection methods, which relies on a ground truth data set of a priori
known peak positions and on a single parameter, i.e., the minimum
distance below which two candidate DEM points are considered the
same peak.

• We apply the above-mentioned procedure to four well-known methods
from the literature and the DL model, using a region in Switzerland
as the target and a ground truth data set obtained by combining peak
lists from Open Street Map and SwissNames3D.

• To cope with the parametric nature of the compared literature methods,
for each of them we sample parameter values from the parameter space
and test multiple configurations.

• We compute the Pareto-dominant configurations of each method and
compare quantitatively the five methods using the precision-recall curve
of their Pareto-dominant configurations and the distribution of the
mean distance error between the extracted peaks and the matching
ground truth peaks. With this quantitative analysis, we observe that,
on the tested areas, the described DL methods outperforms the four
state of the art methods replicated.

• We select one point in the precision-recall curve (where all methods
get close to 70% precision), and perform a qualitative analysis of their
performance. We highlight the importance of false positive analysis,
i.e., the identification of high-probability peak candidates not present
in the ground truth data set. When multiple independent algorithms
agree in identifying a peak at given coordinates, this is a strong signal
of its existence in reality. Such an event may prompt for a revision of
the ground truth data set, e.g., by submitting the candidate peaks to
a community of experts for validation and integration into the original
data source.

This thesis is organized as follows:
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• In chapter 2 we present an in-depth literature review of the state of
the art heuristic methods and Deep Learning approaches to extract
landforms and, in particular, peaks summit from SRTM DEM data
and evaluate the obtained results.

• In chapter 3 we choose a subset of the heuristic algorithms previously
described and two Deep Learning architectures and explain how they
work and the parameters they require.

• In chapter 4 we describe our workflow for data pre-processing, peak
extraction and post-processing with the proposed Deep Learning ap-
proaches and the replicated heuristic methods.

• In chapter 5 we illustrate the choice of parameters for each examined
method and perform a quantitative and qualitative analysis on the
results.

• Finally, in chapter 6 we summarize our work and discuss future im-
provements.
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Chapter 2

Related work

In Section 2.1, we review the methods proposed in the literature to automat-
ically identify mountain peaks using DEM data, as well as the work done for
their (qualitative) comparison in Section 2.2; in Section 2.3 we describe the
basics of artificial neural networks and explore the use of machine learning
techniques on DEM data for GIS tasks.

2.1 Mountain peaks extraction from DEM

Mountains and mountains peaks identification have been studied as a sub-
problem of landforms detection. In the pioneering work [4] the authors dis-
cuss an automated method to classify terrain features from DEM, specifically
mount and non-mount areas. The analysis compares the output with a gold
standard obtained from manually classified landforms in the United States.
The evaluation is computed both qualitatively, considering the extracted
boundaries, and quantitatively, calculating a coefficient of areal correspon-
dence, ranging from 0 to 1. Results prove the difficulty of the process, due to
limitations such as: the algorithm, the terrain features (slope, local relief and
altitude) and the quality of digital elevation data, as previously pointed out
also in [15], where the authors discuss the effect of DEMs errors on comput-
ing derived attributes. The work in [11] introduces the new viewpoint that
a portion of terrain can belong to different landforms, based on the scale
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Figure 2.1: Six morphometric classes as a grid elevation model (Figure taken
from [12])

used to analyze it. Therefore, an area may be assigned to different landforms
at diverse degrees; this idea calls for the application of fuzzy set theory to
terrain analysis. In [12] this hypothesis is embodied into a method that com-
putes the fuzzy membership of each DEM pixel to 6 different morphometric
classes: Pass, Pit, Plane, Ridge, Channel and Peak, obtained through the
evaluation at several scales (Figure 2.1). At each scale, the Boolean mem-
bership of the pixel to each class is computed using the terrain slope and
curvature as features and then a compound multi-scale fuzzy value is cal-
culated. The method is implemented in the Landserf1 application [16]. An
example of output is exemplified in Figure 2.2.A, where intense red denotes
an higher value of “peakness”. The method is evaluated also in a subsequent
work [17]: qualitative results of applying the described method are reported
for two use cases: the Ben Nevis area, containing 19 peaks, and the Ainsdale
coastal sand dunes. Results, related to peaks extraction, show that some lo-
cations with large value of peakness are associated with real peaks, present in
the database of summits used by the authors, while others are not associated

1http://www.landserf.org/

8



with any known peak. Different parameters exhibit a strong influence on the
algorithm outcome. The Landserf tool contains another heuristic method to
find peaks, based on the hypothesis that a summit is a location surrounded
by other points that are lower than it by a given amount. The method uses
two parameters: the minimum height for a point to be a candidate peak and
the minimum elevation difference w.r.t. the neighbors [16]. An example of
its output is shown in Figure 2.2.B: the yellow color denotes that the points
are part of the extent of the peak, while the red color denotes the summit of
the peak. To the best of our knowledge, no evaluation was published for this
method.

Figure 2.2: Example of output of (A) Landserf fuzzy feature extraction for
peak classification and (B) Landserf peak classification, in a small area of
Lake District using OS Terrain 50 DEM

Other studies focused on analyzing the shape of a peak relative to its
neighbors. The authors of the work in [18] consider mountains peaks as
fuzzy entities and define a multi-scale peaks extraction algorithm, similar to
[12], based on local properties such as relief, mean slope, relative altitude
and number of summits in the neighborhood, plus topographic position and
context. The result is a value, representing the peak class membership of
a point, that can be thresholded to delineate a peak boundary. A qualita-
tive evaluation is presented, to point out the effect of varying the scale and
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the threshold. Visually, it is clear that a coarse scale produces contiguous
high-peakness areas in high-elevation ridge line regions, while, with a lower
peakness threshold, peaks enlarge and grow into fuzzy regions.

The work in [5] proposes a semi-automated GIS-approach to overcome
the problem of subjectivity in the manual mapping of landform units. The
authors develop different algorithms, based on state of the art methods, to
extract attributes and classify landforms. At first, general topographic at-
tributes (slope, curvature, etc.) and regional-level attributes (local relief,
elevation percentile,etc.) are extracted from the DEM. Then, the landform
classification is performed by testing different thresholds for each of the pre-
viously developed methods. Threshold values are suggested by default to the
user but should be modified to take into account the influence of the input
data resolution. After the classification, overlapping landforms are combined
and noise is filtered out. An evaluation was performed in Australia, with
10m resolution DEM, by comparing two semi-automatically derived land-
form maps with one obtained from an expert classification and generating
a similarity map, with the use of fuzzy set techniques. The results show
more disagreement in categories derived from topographic attributes, due to
the difficulty for a human expert to divide large homogeneous regions into
smaller homogeneous areas.

The author of [19] and [20] combines topographic and morphologic cri-
teria: a point, to be considered a peak, must be the highest within its 8
neighbors (3x3 window), must reside in a non-flat area and must have at
least a certain horizontal and vertical distance from other candidate peaks.
The same author, in [21], studies in detail the shape of a peak. The work
is evaluated qualitatively on high resolution DEM data of the Kamnik Alps
area, Slovenia. The results show that shapes are dependent on each other
and not universal; furthermore peak detection is improved by shape analy-
sis. However, peak extraction is still considered as a very complex task to be
generalized and solved by only automated methods and the help of the user
is required on some level of details.

In [22] the authors map landforms, including peaks, with pattern recog-
nition. They introduce the Geomorphons concept (phenotypes) and identify
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498 of them using Local Ternary Patterns (lookup distance and a flatness
threshold are required parameters) and the line-of-sight principle. By per-
forming a generalization of the different patterns to the ten most common
landforms , a classification of the terrain is achieved. This method is applied
in the country of Poland with 1° DEM as input. A qualitative evaluation
shows that the results are consistent with the previous knowledge of the
country landscape (not only mountain peaks but at a larger scale).

In [23] the authors investigate the Spatial Significance Index (SSI) of
mountain objects, at different scales. The SSI of a mountain object is the
minimum number of morphological dilation iterations required to cover all
the other mountain objects in the terrain. The first step of the process is to
create the DEM at multi-scale resolution, then peaks are extracted by means
of ultimate erosion and, from each one, mountains are found using conditional
dilation. Finally, the SSI is computed for every extracted mountain object.
Evaluation was not the main purpose of the paper and thus no performance
analysis was provided.

The work in [24] proposes a workflow for Digital Terrain Analysis (DTA)
and landform recognition and extraction from DEM, using the SAGA GIS
software. The workflow analyzes the most used terrain attributes (aspect,
curvature, elevation, slope, ecc.) and combines different landform recogni-
tion methods: digital topography, hydrology, morphometry, and morphology.
The analyzed territory is the Upper Awash River Basin, Southwest of Ad-
dis Ababa, Ethiopia, chosen for its heterogeneity and availability of DEM
data. The authors make a qualitative evaluation of the various land sur-
face parameters at three DEM resolutions: 90m, 30m and 2m. The study
shows that different landforms are better characterized by different resolu-
tions, especially, when dealing with Fuzzy Landform Classification, an higher
resolution allows to distinguish between more classes.

In [25] the authors present a heuristic approach to determine prominence
and isolation of the mountains. Isolation of a peak A is computed by search-
ing the minimum distance to a peak B with higher elevation; prominence
is determined by finding the minimum vertical distance needed to descend
from the peak to climb up to a higher peak. Both indicators are exploited
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to calculate the prominence and isolation of every peak in the world, and
the most prominent and isolated peaks are compared with the PeakBagger2

dataset. From this, 13 new ultra-prominent peaks are found, while 50 pre-
viously known peaks are not found. The authors suggest that the former
discrepancy may be due to the progress in the DEM void filling, the latter
to the DEM underestimating the summit elevations.

2.2 Evaluation of methods

Different works have compared and evaluated methods for landforms detec-
tion. The work [26] contrasts the result of two methods available in the
GRASS GIS tool3 Fuzzy Feature Classification and Geomorphons, at two
different DEM resolutions. Twelve mountains were selected to compare the
results obtained by the methods. While the DEM resolution had no ma-
jor impact (still, higher resolution DEM is suggested), the most influential
factor proved to be the selection of the values for the input parameters of
each method. This finding is confirmed in [7] where the authors compare
outputs of different methods, varying the scales and the DEM resolutions,
showing that algorithms, designed to extract similar features, produce con-
flicting results for the same area. They suggest a multi-scale, multi-feature
and multi-method approach to cope with the terrain feature uncertainty and
increase the information acquired at any given location. In all the mentioned
works, the comparison is qualitative and the focus of the assessment is on
the conflicts among the results of different methods and on the complexity
of the comparison procedure itself; such complexity is motivated by the fact
that alternative methods rely on different definitions of “mountain peak” and
on different terrain parameters. In this thesis, part of the focus is on the
quantitative analysis of the output of alternative methods against the same
Ground Truth, i.e., with respect to a set of peaks and peak positions, which
are widely used in applications and are assumed as “correct”. Such an ap-

2http://www.peakbagger.com/
3https://grass.osgeo.org/
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proach helps to establish a baseline, useful to compare new approaches and
combinations of existing methods.

2.3 Deep Learning

Neural Networks are architectures modeled after the neurons in the human
brain: in fact, each neuron takes an input, processes it and then passes the
information to the next neurons and so on. The very first artificial neural
network was the Perceptron, a classifier implemented in a machine capable of
distinguishing simple shapes (square, circle, ecc...) [27]. A single Perceptron
proved to be inadequate to classify different, more complex, patterns but
researchers found that stacking multiple layers of perceptrons (multi-layer
perceptron), thus forming a feedforward neural network, could improve the
results.

A typical feedforward neural network is represented in Figure 2.3. The
information flows from the input zi to the output yi and is processed by
several middle computations xi. In the same figure, we can recognize that
Neural Networks are arranged into layers composed by various parallel units,
the so-called neurons. Each neuron receives information from the ones in the
previous layer and computes its own activation value. As we can observe,
there is no backward connection, hence the name feedforward. Figure 2.4
shows the diagram of an artificial neuron: every input (xi), fed into the
neuron, is multiplied by the corresponding weight (wi); finally, a bias (b) is
added before calculating the activation function. Weights are important to
convert the input to the desired output and and determine how much each
neuron affects the other. The bias is an additional parameter that can be
used to adjust the output of the neuron.

The middle layers (1 in the example) are denoted as hidden because the
training set (zi, yi) influences only the output layer, while the hidden layers
must learn how to use the provided data to produce the desired output. Later,
[30] proposed a learning procedure, back-propagation, to adjust the weights
of the hidden units by minimizing a measure of the difference between the

13



Figure 2.3: Feedforward Fully-Connected Neural Network with 1 input layer,
1 hidden layer and 1 output layer. (Figure taken from [28])

expected output and the real output of the network. For such purpose,
backward connection must be introduced to propagate the error back to the
input layer. This method yielded better results and is now part of all Neural
Network architectures.

Deep Learning comes from the fact that an architectures with several
stacked layers, hence deep, performed better and was more efficient than a
shallow one [31, 32, 33].

When designing a deep learning architecture, we must take into account
the choice of hyper-parameters to use during the training, in a similar way
to other machine learning methods and the heuristic algorithms mentioned
above. Some of the parameters to be considered are: the optimizer, the cost
function, the kind of hidden and output layer, the activation functions of
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Figure 2.4: Diagram of an artificial neuron showing the inputs (xi), their
corresponding weight (wi), a bias (b) and the activation function. (Figure
taken from [29])

each hidden layer and the depth and topology of the architecture.
Here some useful definitions follow.
Optimizer. Training neural networks is typically done by means of an

iterative, gradient-based optimization method that tries to drive the cost
function to very low values. The optimizer ties together the cost function
and the model parameters by updating the model weights in response to the
output of the cost function. Various improvements of the classic Stochastic
Gradient Descent (SGD) algorithm emerged during the years: an example
is Adam [34] which uses adaptive learning rates and second-order curvature
informations.

Cost Function. A cost function, also known as loss function, is a method
to evaluate how well an algorithm models a dataset. When the predictions
are totally wrong, the cost function outputs a higher number; while, if the
predictions are better, it outputs a lower one. When tuning different parame-
ters, or features, of the architecture, the loss function is useful to understand
if the change can lead to better results. The choice of which function to
use usually depends on various factors, such as the domain, the complex-
ity, the output; the typical cost function adopted in Deep Learning classifier
architectures is cross-entropy.
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Learning rate. Learning rate is a variable used to scale the gradients
and influence how the weights are updated by the optimizer. We do not want
to add or subtract a value that is too large or too small otherwise we can
face two problems: the algorithm will never converge to a minimum or the
algorithm may converge to local minimum and not an absolute minimum.
Learning rate value is usually 0.001 to ensure that the changes we make to
the weights are pretty small.

Dropout. Dropout is a regularization approach used to prevent over-
fitting. This can be very useful in fully connected layers where neurons
develop a co-dependency amongst each other; thus, leading to over-fitting
the training data. Simply put, during the training phase, a set of neurons
chosen at random is ignored for a particular forward or backward pass. At
each training stage, individual neurons are dropped out of the network with
probability 1−p or kept with probability p, so that a reduced network is left;
incoming and outgoing connections to an ignored unit are also removed. A
probability p = 1 is always used for validation and testing.

Batch Size. Batch size is the total number of training examples we
feed to the network for a training iteration. With this value we change the
samples used to compute an approximation of the gradient and we influence
the ability of the model to generalize [35].

Up-Convolution. Up-convolution, whose correct name is transposed
convolution, is an operation that reconstructs the spatial resolution from be-
fore (the convolution) and performs a convolution. It is wrongly associated
with a deconvolution but this is not the mathematical inverse of a convolu-
tion; although, for some Neural Network architectures it’s still very helpful.
This way we can combine the upscaling of an image with a convolution, in-
stead of doing two separate processes. To achieve this, we need to perform
some fancy padding on the input.

Skip-connection. Skip-connections are connections between two layers
in the neural network; as the name suggests, they are used to feed the output
of one layer to another, by skipping a few layers in between. Usually, some
information is captured in the initial layers and is required for reconstruction
during the up-sampling steps. Without using skip-connections, that infor-
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mation would be lost. Skip-connections also help traverse information faster
in deep neural networks. Gradient information can get lost when passing
through multiple layers as there are problems of vanishing gradient.

2.3.1 Deep Learning on GIS

Artificial Intelligence and Deep Learning algorithms have proved capable to
achieve high quality results in a wide range of Computer Vision tasks, such
as image classification, detection, localization and segmentation [36].

Recently, several works on geoscience and remote sensing have addressed
the analysis of aerial images by using Convolutional Neural Networks [37]. In
particular, Fully Convolutional Neural Networks [38] have been applied for
aerial images segmentation, tackling land cover and objects mapping [39][40],
in which each pixel is assigned to a given class (e.g. vegetation, building,
road, car, etc). Artificial Intelligence has also been exploited for DEM data
analysis. Marmanis et al.[41] proposed the classification of above-ground ob-
jects in urban environments by using a Multilayer Perceptron model. In [42]
the authors proposed a DL method to digital terrain model (DTM) extrac-
tion from Airborne laser scanning (ALS) point cloud data. Their approach
maps the relative height difference of each point with respect to its neighbors,
in a square window, to an image. This way the classification of a point is
treated as the classification of an image, resulting in low error rate in detect-
ing ground and non-ground points. This method conserves well the terrain
features even in mountains, which is our case of interest.

Other related studies comprise diverse techniques to cope with the lack
of high resolution DEM coverage in many areas of the Earth, such as super
resolution of DEM [43] and synthetic generation of terrain images, essen-
tial for supervised learning tasks, which can been addressed through Deep
Generative Adversarial Neural Networks (GANs) [44][45].

Our work aims at applying Deep Learning techniques, so far only em-
ployed to detect local scale above ground objects or urban terrain features,
for local scale peak summit identification. In doing so, we explore supervised
learning to learn classifier parameters and reduce the need of manual param-

17



eter selection, typical of current heuristic methods, with the aim of obtaining
an approach less tied to the characteristics of a specific territory and easier
to generalize.
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Chapter 3

Overview of the relevant machine
learning techniques and
architectures

3.1 Deep Learning

Before describing the relevant architectures used in this thesis, it is useful to
give a recap on Convolutional Neural Networks (CNNs).

CNNs works the same as feedforward neural networks but they include
a peculiarity: the initial part of the network is composed of convolutional
layers. Deep CNNs consecutively model small pieces of information and
combine them deeper in the network, by dividing the input in tiles and trying
to predict the content of each one. Each layer aims at detecting different
features and generating filters to extract them, while the following layers will
try to merge them into simpler shapes and generate filters for other features
such as position, scale, illuminations, etc. Finally, the last layer outputs the
prediction for the input image, thanks to a weighted sum of the results of
the different filters.

The typical building block of a CNN consists in a sequence of three oper-
ations: a convolution, performed by a convolutional layer; a nonlinear trans-
formation, represented by an activation function; and a subsampling, carried
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out by a pooling layer. Usually, the first operation extract feature maps to
which a nonlinear activation function is applied and, lastly, a pooling layer
may be inserted to retain only the important information.

Figure 3.1: Convolution of a 5x5x3 filter over a 32x32x3 input, the result
is a 32x32x1 feature map. When using 10 different filters, the result is a
32x32x10 volume composed by 10 32x32x1 feature maps stacked along the
depth dimension. (Figure taken from [46])

Convolutional Layer. Its purpose is to extract features from the input
data. The convolution operation preserves the spatial relationship between
pixels by analyzing, each time, small parts of the image and creating a map
of where each feature appears, also known as feature map. An important
property is translation-invariance, i.e. if a feature is moved by a certain
amount in the input, it will appear moved by the same amount in the fea-
ture map. This is very useful in image classification where, by analyzing
different images, the same feature will be positioned in different places. The
main component of a convolution is the filter, which is a simple matrix with
the desired dimensions, representing the feature to extrapolate. The convo-
lution works by sliding the filter (stride) by 1 or more pixels over the input
image and, for every position, performing a sum of the element-wise multi-
plication between the pixels of the image in current position and the filter
itself. Clearly, a different filter, convolved on the same image, will produce a
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different feature map. In Figure 3.1 we can observe the 32x32x3 blue input,
the 5x5x3 orange filter, the 1x1x1 orange circle representing the output of a
single convolution step and the final 32x32x1 orange feature map.

Figure 3.2: The three most popular activation functions (Figure taken from
[47])

Activation Function. The activation function is very important in
neural networks because it decides whether a neuron should be activated or
not and if the information, coming into it, is relevant or should be discarded.
An activation function is a non-linear transformation applied on the input
signal before sending it to the next layer. Without an activation function,
a network acts as a linear regressor, i.e., it is not able to learn and perform
complex tasks. Furthermore, back-propagation would not be possible because
it needs the gradients, provided by the differentiable non-linear function, to
update weights and biases. The most popular non-linear activation functions
are:

• Sigmoid. It is widely used and its formula is

f(x) =
1

1 + e−x
(3.1)

By looking at Figure 3.2 we can observe that it is continuously differ-
entiable and its gradient is very high when the input ranges between -3
and 3. So, a small change to x brings a large change to y, trying to push
y to the extremes. This function has two main problems: the first is
that the function output is almost flat outside the region (-3/+3) and,
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when the gradient approaches 0, the network stops learning (vanishing
gradient); the second one is that the output ranges from 0 to 1 so the
next layer receives always positive values.

• Tanh. This function can be seen as a scaled sigmoid; it is symmetric
over the origin and ranges between -1 and 1, therefore solving the issue
of only positive output present in the previous one.

f(x) = tanh(x) =
2

1 + e−2x
− 1 (3.2)

The problem with vanishing gradients is still present.

• ReLU (Rectified Linear Unit). It is the most widely used today
because it proved to be very successful and fast to compute [48].

f(x) = max(0, x) (3.3)

From its formula and from Figure 3.2, we can observe that, if the
input is negative then the output will be 0; thus not all neurons are
activated at the same time, making the network sparse. This is the
main advantage of this activation function. Different versions of this
function, such as Leaky ReLU and Parameterized ReLU, were designed
to solve the problem of vanishing gradient; still present in standard
ReLU.

Pooling Layer. This layer is used to perform a dimensionality reduction,
or downsampling/subsampling, of each feature map and to keep only the im-
portant information. The main pooling types are: Max, Average and Sum.
The most widely used and the one that proved to perform better is Max Pool-
ing: it works by defining a spatial neighborhood, or window, to slide across
all the feature map, with a certain stride, and then, for each step, only the
element with the maximum value is kept. The other types of pooling work
similarly: Average computes the average in the window and Sum computes
the sum. Including pooling layers in the network architecture reduces the
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number of parameters, therefore decreasing the chance of over-fitting, makes
the computation faster and adds invariance to small transformations, distor-
tions and translations. Figure 3.3 shows an example of feeding a feature map
to a Max Pooling layer with filter 2x2 and stride 2: only the max value of
each window is passed to the next layer and the reduction of dimensionality
acts on width and height (224x224 to 112x112 in the example), not depth.
Thus, keeping the number of features unaltered (64 in the example).

Figure 3.3: Left: Pooling layer with filter size 2x2 and stride 2, downsam-
pling the feature map from 224x224x64 to 112x112x64. Right: Max Pooling
taking only the maximum value in each 2x2 window with stride 2. (Figure
taken from [49])

Fully-Connected Neural Network is an architecture that performs well in
very different tasks, but is difficult to apply to image recognition due to its
full connectivity, which makes the number of parameters grow exponentially
with the depth of the network. When inserting a fully-connected layer, the
network will treat all the input data the same way, thus learning by using
global information. A simple Fully-Connected Neural Network is represented
in Figure 2.3.

Fully Convolutional Neural Network is another kind of neural network,
composed only of convolutions, i.e. without any fully-connected layer. The
main difference, with respect to Fully-connected Neural Network, is that this
architecture exploits the spatial structure of the input data. This is exactly
why the network is usually applied to data with a grid-like topology: time-
series (1D) or images (2D). The U-Net architecture (Figure 3.6), described
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in Section 3.1.2, is an example of a Fully Convolutional Neural Network
architecture.

3.1.1 LeNet

Figure 3.4: LeNet-1 original architecture (Figure taken from [50])

This classifier architecture is described in [51, 52, 50, 53] and was de-
veloped to recognize two-dimensional shapes, such as digits. Throughout
the years, thanks to the evolution of the hardware and the availability of
training data, the model changed from LeNet-1 (Figure 3.4) until LeNet-5
(Figure 3.5). LeNet-1 is one of the first Convolutional Neural Networks: it
is composed of a 5x5x4 and a 5x5x12 convolutional layers, useful to extract
local features, each one followed by a scaled hyperbolic tangent (scaled tanh)
activation function and by a 2x2 average pooling operation, reducing the
resolution of the feature maps and introducing invariance to distortions and
translations; the last component is a fully-connected layer. Its input are
16x16 down-sampled images padded to 28x28, to avoid edge effects during
the convolution operations, and the output are 10 units, one for each class
the input can belong to.

The authors found out that the best way to take advantage of the large
training size was to use a larger convolution. This leads to LeNet-5, which
has little modifications from the previous architectures: the input are 20x20
images padded to 32x32 and two more fully connected layer are inserted with
respect to LeNet-1. Thus, increasing the number of parameters from 3, 000
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Figure 3.5: LeNet-5 original architecture (Figure taken from [53])

to 60, 000. Another important change is the addition of data augmentation
(shift, scaling, rotation and skewing) to the inputs.

In all versions of the LeNet architecture, only the last layers are fully
connected. This allows a smaller network and, most importantly, it exploits
the advantage of convolutional layers in which different feature maps extract
different features.

Modern implementations of LeNet replace the average pooling operations
with the max pooling ones, taking only the maximum value from each 2x2
feature map, because this turns out to speed up the training. As the strongest
feature is chosen, larger gradient can be obtained during back-propagation.
Furthermore, a softmax function is used to classify the output, instead of the
original Euclidean Radial Basis Function (RBF).

3.1.2 U-Net

This architecture is described in [54] and was designed to overcome the cur-
rent limit on the number of annotated training samples needed, thanks to the
use of high data augmentation to fully exploit the few available annotated
image. The network was built for biomedical image processing, a visual task
which requires the output to contain localization: a class label must be as-
signed to each pixel. This aspect is not present in the typical convolutional
neural networks (CNNs) with the task of classification of an image, i.e. a
single class label is assigned to the whole image.

The architecture (Figure 3.6) takes its name from the u-shape yielded
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Figure 3.6: U-Net original architecture (Figure taken from [54])

by the connection of its two main paths: a contracting path to capture the
context of the input and a symmetric expanding path to have a precise local-
ization. The downward path is composed by layers applying two consecutive
3x3 unpadded convolutions, both followed by a rectifier linear unit (ReLU)
activation and a 2x2 max-pooling downsampling operation with stride 2.
Each layer doubles the number of features with respect to the previous one.
The upward path has a similar structure but the max pooling is replaced by
a 2x2 up-convolution that halves the number of features from the previous
layer and concatenates its result with the features coming from the corre-
sponding contracting layers, thanks to the so-called skip-connection between
the two. Finally, a 1x1 convolution is applied to map the features of the
last layer to the number of class labels; then, to obtain the probability of a
pixel belonging to a certain class, a pixel-wise softmax operation follows. It
is important to choose the input image size such that all 2x2 max-pooling
operations are applied on a layer with even width and height.

The network does not have any dense layer so the input image can be of
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any size, in fact the only parameters to learn on the convolutional layers are
the kernels which are independent from the input images sizes.

Figure 3.7: Overlap-tile strategy. Prediction of the segmentation in the yel-
low area requires data from the whole blue input area. Missing input data is
extrapolated by mirroring (Figure taken from [54])

By observing Figure 3.6, one can notice that the output segmented map
size (388x388) is smaller than the input image size (572x572) and this is due
to the unpadded convolutions using only the pixels for which the full context
is available. This peculiarity allows a seamless segmentation thanks to an
overlap-tile strategy (Figure 3.7), very useful to apply the network to large
images where otherwise the resolution would be limited by the GPU memory.
The authors of [54] suggests that this architecture works better with large
input tiles and a small batch size, in order to maximize the usage of GPU
memory. The same can be found in [55], too.

3.2 Heuristic Methods

In this Section, we explain in more detail the heuristic methods used in this
thesis to extract peaks from DEM data, describe their parameters and their
input and output format.
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3.2.1 Landserf Fuzzy Feature Classification

A point on the Earth’s surface can be assigned to one of six simple mor-
phometric classes, which have an obvious correspondence with the expected
form people recognize in a landscape: pit, peak, pass, channel, ridge and
plane (Figure 2.1). In classic set theory, this assignment is Boolean: if an
object belongs to a set, it is assigned a value of 1 and, accordingly, a value
of 0 if it does not belong. Instead, in fuzzy set theory, an object is assigned
a value decreasing from 1, if it matches exactly the concept of the set, to 0,
if it is the most dissimilar to the concept of the set.

Figure 3.8: Different morphometric classes extracted when measuring the
same point at different scales (Figure taken from [12])

The Fuzzy Feature Classification method is related to the work presented
in [12], which proposes the concept of multi-scale landscape morphometry to
solve the ambiguity and vagueness in landscape classification. The authors
noticed that this issue is due to the scale of measurement: a combination of
both spatial extent and resolution. For example, as we observe in Figure 3.8,
a point may be seen as a channel at one scale but as a ridge at another scale.
They propose to assign a point (x) to a specific morphometric class (A) at
any particular scale (si), using the Boolean set theory (mAx|si = 1). Thus, it
follows that, at different scales, the same location can be assigned to different
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classes and the final fuzzy membership of a point to a morphometric class
(µAx) can be calculated by means of an average over the different scales of
measurement:

µAx =

∑n
i=1mAx|si

n
(3.4)

The Fuzzy Feature Classification algorithm exploits this concept to analyze
a DEM file and extract, for each point, the fuzzy membership to the six
morphometric classes previously mentioned.

This method exploits features of the terrain, such as slope and curvature,
which account for the curvature of the Earth. This requires a rescaling of
the DEM files, so that each rescaled pixel represents a square area with the
same extension in both directions. Figure 3.9 compares the output of Fuzzy
Feature Classification when adopting an original DEM cell and a rescaled cell:
we can clearly see that the rescaled cell (3.9.C and 3.9.F) classifies correctly
the mountainous area and the non-mountainous area, while the original cell
(4.1.B and 4.1.E) extracts peaks where lakes and rivers are present and does
not extract any peak in areas where we would expect them. Note that the
distance from 46◦ to 47◦ is ≈ 111.19 km, whereas from 7◦ to 8◦ is ≈ 77.24

km; therefore the original tile is rectangular and not squared, as noticeable
in Figure 4.3. Thus, the normalization.

The user must set the desired values for the four parameters used to
influence the algorithm outcome:

Window Size. The maximum size of the square window, i.e. the maxi-
mum scale, analyzed for each point. This allows one to choose which features
to analyze: a 3x3 filter (≈ 90x90m on DEM1) focuses on local features while
a 75x75 filter (≈ 2500x2500m on DEM1) puts the focus on regional features.
This parameter must have an odd value in order to have, at all the scales,
a single center pixel to classify, starting from 3x3 until the maximum scale
value.

Distance Decay. The exponent determining how important points near
the center of the filter are with respect to the ones near the edges. For
example, a value of 0 gives equal importance to all the points, a value of 1
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Figure 3.9: A: DEM sample of a mountainous area. B: Original DEM
cell output failing to extract peaks C: Rescaled DEM cell output correctly
identifying peaks. D: DEM sample of a non-mountainous area. E: Original
DEM cell output in which lakes are extracted as peaks. F: Rescaled DEM
cell output with no peaks. All output are obtained by applying Fuzzy Feature
Classification method on a Switzerland DEM cell; intense red denotes a point
with higher probability to be a peak

defines an inverse linear decay, a value of 2 an inverse squared decay, and
so on. While the previous examples are all positive, therefore giving less or
equal importance to the cells away from the center, the value can also be
negative and have the opposite effect.

Slope Tolerance. Threshold value (in degrees) used to compensate
slope, especially in small windows where derivation of pits, peaks and passes
is not simple. It determines how steep the surface can be while still being
classified as part of one of the three mentioned morphometric classes. The
larger the value, the more likely the location is to be identified as one of these
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classes.
Curvature Tolerance. This value determines how convex/concave

(“sharp”) a feature must be before it can be considered part of any feature.
Curvature is represented as a dimensionless ratio. Larger values tend to
increase the portion of the surface classified as planar, leaving only the
sharpest features to be identified.

The output of the algorithm is one raster matrix for each morphometric
class, showing the probability (from 0 to 1) of each point to belong to that
class.

3.2.2 Landserf Peak Classification

This algorithm can be found in the Landserf application, but is different
with respect to the previous one, as it focuses only on peak extraction and
does not take into account scale during the analysis. Its definition for a
peak is: a point, with at least a certain elevation, surrounded by points
with an elevation lower at most by a given amount. The user must set two
parameters:

Minimum Height of a Peak. This value is the minimum elevation (in
meters) a point must have to be considered as a peak; all points that do not
satisfy this criterion are discarded. This is useful because it allows to filter
out some points that can resemble a peak but are too low to really be a peak.
In the equations below, the parameter is represented as minheight.

Minimum Drop Surrounding Peak. This value helps determine
whether a given point is to be considered as a peak summit, as part of
the extent of a peak or none of the two classes. It represents the maximum
elevation difference a point can have with respect to a candidate peak, to be
considered as part of its extent. In the equations below, it is represented as
mindrop.

The algorithm works by looping through all the DEM cells one by one
searching for peaks candidates; when a point has an elevation such that

Epoint ≥ minheight and Epoint ≥ Emin +mindrop (3.5)
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with Emin being the minimum elevation in the DEM, it is considered a valid
candidate and the algorithm then starts analyzing its neighbors sorted by
decreasing elevation:

• if a neighbor has an higher elevation, it stops the analysis and goes on
with the next point, because the current one cannot be considered a
peak. Maybe this point will be part of the extent of another peak.

• all neighbors, with elevation (Epoint) satisfying Equation 3.6 are added
to the candidate peak extent (later used to calculate the peak summit
location) and their neighbors are checked recursively, too.

• the analysis continues until there are no remaining points or the current
relative drop is greater than the user-defined Minimum Drop parame-
ter.

0 ≤ EcandidatePeak − Epoint ≤ mindrop (3.6)

At the end, a list of cells is formed that are part of peak extent and, only
if the last relative drop is greater than Minimum Drop, the summit position
is calculated: the center of the extent is determined by averaging the position
of all the components; then the point with the highest elevation and nearest
to the center is considered as the peak summit.

3.2.3 Prominence

Together with elevation and isolation, defined in the next section, prominence
is an objective feature of a mountain and is defined as: the prominence of a
peak B is the minimum vertical distance one must descend from a peak B in
order to climb to a higher peak C (Figure 3.10). Another useful definition is
the one about a key saddle: the lowest point on a walk from peak B to peak
C; an important features, exploited for the computation of prominence, is
that peaks and key saddles have a one-to-one correspondence.
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Figure 3.10: Topographic Isolation and Prominence of summit B (Figure
taken from [56])

The prominence method is related to the work in [25]; its implementation
is written in C++ and is hosted on GitHub1. Along with the two methods
described above, Prominence has its own view of what is a peak: a flat area
higher than all of its 8 neighboring pixels. Instead, a saddle is a flat area
with at least two independent, higher areas in its border.

The first step of the algorithm is to find all points that can be considered
as peaks or saddles in the analyzed DEM cells and link them thanks to a tree
structure (divide tree), being careful to avoid cycles. Then, the tree must be
sorted to have the highest peak on the root; this is done by moving each peak
up the tree until a higher peak is found, which becomes the new parent. The
prominence of a peak is the difference between its elevation and the elevation
of the saddle connecting it to its parent; the divide tree root has prominence
equal to its elevation. Finally, users can set a threshold (in feet) to simplify
divide trees, by pruning all peaks that are not prominent enough, or can also
provide a kml file, representing a polygon, to filter out peaks that are out of
the area of interest. The effect of this pruning step can be seen in Figure 2.1.

The output of this method is a list of peaks with their coordinates (lat-
itude and longitude), their elevation in feet, the key saddle coordinates and

1https://github.com/akirmse/mountains
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the prominence value in feet.

Figure 3.11: Before (left) and after (right) pruning a divide tree with a
threshold of 500 feet

3.2.4 Isolation

Isolation is another objective feature of a mountain: it corresponds to the
minimum horizontal distance from a point B to the nearest point A with
higher elevation, called isolation limit point (ILP) (Figure 3.10). The isola-
tion of Mt. Everest is undefined, but its summit is considered as the most
isolated point on the Earth.

The Isolation method was developed by the same authors of the Promi-
nence one [25], so the definition of what is a peak is the same: a point higher
than all its 8 neighbors. The code can be found in the same project.

To begin with, it extracts all peaks: when analyzing a DEM cell, partic-
ular attention must be put into pixels that are on its edge (which have only
5 neighbors) or on its corner (which have only 3 neighbors), because they
could be considered peaks in this tile but, at the same time, have a lower ele-
vation than the neighboring points in an adjacent tile. Thus, spurious peaks
could be generated. Other cells may be necessary to calculate correctly the
isolation of such spurious peaks. After peak extraction, the method ana-
lyzes all the results and searches outward, in concentric rectangles centered
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on the peak location, for a higher point. Finally, the distance between two
points (in kilometers) is calculated using the haversine formula for a spherical
Earth. This formula works by calculating the great-circle distance between
two points (Equation 3.7), i.e. the shortest distance over the Earth’s sur-
face (Equation 3.8). In the equation below, φi are the longitudes of the two
points, ∆φ and ∆λ are respectively the differences between the longitudes
and the latitudes of the two points, R is the Earth’s radius which is equal to
6,371 km and d is the distance in kilometers between the two points.

a = sin2

(
∆φ

2

)
+ cos(φ1) ∗ cos(φ2) ∗ sin2

(
∆λ

2

)
(3.7)

d = R ∗ 2 ∗ atan2( 2
√
a, 2
√

1− a) (3.8)

Users can set a threshold to filter out points with a low value of isolation
and the algorithm outputs a list of peaks with their geographical coordinates,
their elevation in feet, the corresponding ILP coordinates and the isolation
value in kilometers.

Both the implementations of Isolation and Prominence use the elevation
value in feet during all calculations and for the output values, to avoid losing
precision when converting to meters.
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Chapter 4

Learning to find mountains

4.1 Input data

The methods employed in this thesis use only one type of input data (al-
though some of them accept it in different formats): the Digital Elevation
Model (DEM) of the region under analysis. We evaluate all methods using
DEM files from the same source: the Shuttle Radar Topography Mission
(SRTM) DEM provided by NASA [3]. SRTM DEM data are organized into
a regular grid, with resolution variable between 1 and 3 arc-seconds, depend-
ing on the region of the Earth; each grid point is associated with the altitude
of the terrain in that position. An intuitive way of visualizing them in the
2D space is as gray scale aerial images, where the color of every pixel denotes
the height of the terrain in that area, Figure 4.1 shows an example.

We focused on the Switzerland territory, where the SRTM DEM is avail-
able at 1 arc-second resolution (SRTM1), which corresponds to ≈ 30m in
areas relatively far from the poles. SRTM1 DEM data are divided into a
series of tiles of 3601x3601 pixels. Each DEM tile spans 1 degree in latitude
and in longitude; for example, the tile N46E007 stores the elevations of the
Earth between 46◦ and 47◦ latitude and 7◦ and 8◦ longitude, arranged into a
grid. As explained, the Fuzzy Feature Classification algorithm exploits fea-
tures of the terrain which need to account for the curvature of the Earth and
for this reason a rescaling of the DEM files is required. This is also a valid

36



Figure 4.1: 3D and 2D DEM visualization

consideration for the Deep Learning models.
To train the CNNs three features are considered: (1) elevation, read

directly from the DEM, (2) slope, calculated from the DEM, which ranges
from 0◦ to 90◦ and (3) curvature of the terrain, also calculated from the
DEM, whose values can be negative, for a convex surface, or positive, for a
concave surface. To reduce noise in the raw input data, feature values are
normalized between -1 and 1, with -1 denoting the minimum feature value
and +1 the maximum.

4.2 Ground truth

The goal of this work is to build a model capable of learning the location
of mountain summits, to help enriching the content of VGIS with more in-
formation about peaks and their altitude. To assess the selected methods
on a common baseline and to pick a gold standard to train the model, it is
necessary to define a set of “trusted peaks”, with position known with ac-
ceptable certainty, which is considered as the Ground Truth. These peaks
are compared with the ones extracted by the various methods and are used
to generate the input patches for the Deep Learning models. Such an ideal
gold standard is impossible to build in practice: on one side, also profes-
sional cartography makes a selection of which peaks to show, for reasons of
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prominence, tradition, culture, and readability of the map; on the other side,
public data sets are mostly built by volunteers and cannot be assumed to be
100% complete and precise. The noise in the ground truth must be taken
into account when evaluating the model output, because accuracy may be
undermined, e.g, due to the fact that a false positive (i.e., an apparently
wrongly identified peak) may indeed correspond to a peak that exists in re-
ality but is not registered in the available cartography. The implementation
of techniques for coping with label noise [57] is part of our future work.

The work reported in this thesis was performed on the Switzerland ter-
ritory. Our ground truth is obtained from two different public databases
of mountain peaks: OpenStreetMap (OSM)1 and SwissNames3D2; these
datasets were merged together, removing duplicates. The merge was exe-
cuted by considering two peaks near duplicate, i.e., potentially denoting the
same mountain summit, if the distance between elements was lower than 80m.
The identified near-duplicates were manually inspected, to ensure that dif-
ferent peaks were not removed by mistake. The resulting ground truth data
set contains 12,788 peaks. The distribution of such peaks in the Switzerland
territory are shown in Figure 4.2.

Based on the ground truth, a DEM pixel is considered positive if the area
it covers contains the coordinates of one ground truth mountain summit,
negative otherwise.

Figure 4.2: Mountain peaks distribution in (a) SwissNames3D, (b) Open
Street Map and (c) their combination in the Switzerland territory

1https://www.openstreetmap.org
2https://shop.swisstopo.admin.ch/en/products/landscape/names3D
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4.3 Replication of existing heuristic methods

This work presents a novel approach for extracting peaks from DEM data
with Deep Learning. For such a purpose, a baseline must first be established
to fully understand how the Deep Learning model is performing. The relevant
methods described in Section 3.2 were replicated [25, 16, 12], based on the
availability of the code or of a tool supporting analysis replication, and on
their input format, parameters and output.

4.3.1 Methods under evaluation

A subset of the methods presented in Chapter 2 was chosen to prove the
viability of our evaluation method and to compare their performances with
our DL model. The selected methods are Prominence [25], Isolation [25],
Landserf Peak Classification [16] and Landserf Fuzzy Feature Classification
[12], already described in Section 3.2. For all such methods, the code/tools
to execute them are publicly available. For the first two, we used the code
published on GitHub3, while for the latter two, we exploited the implementa-
tion in the Landserf Tool4. All the methods were executed on the same input
data and were compared against the same ground truth. Each method has
different parameters to fine tune the peak search heuristics; for this reason,
when the authors of the method do not provide already the optimal param-
eter values, an exploration of the space of parameters is executed for each
method, to find the values that perform better. The parameter space explo-
ration and the selected parameter values for each algorithm are explained in
Chapter 5.

Pre-processing of the input

When analyzing a DEM cell, all the presented methods require the eight
neighboring cells to know the full context of every point and to correctly
analyze the edge points. Isolation and Prominence do not need any pre-

3https://github.com/akirmse/mountains
4http://www.landserf.org
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processed data: they can take as input and extract peaks from the cell under
evaluation and the eight adjacent cells; then, we filter the output and consider
only the peaks inside the area we are evaluating. Instead, a pre-processing
step is required for Fuzzy Feature Classification (in addition to the rescaling)
and Peak Classification; we pad single cell with the maximum amount of
data necessary for the analysis. For instance, if we set the “window size”
parameter of Fuzzy Feature Classification to a value of 75, the points on the
edge will be centered on a 75x75 square window, so a padding of (at least) 37
pixels must be added to each side of the cell. The same amount of padding
must be removed before the evaluation because points outside the original
cell will be taken into account only during the analysis of the neighboring
tiles.

4.4 Development of Learning-based methods

The goal of this work is to explore the application of Deep Learning tech-
niques for the extraction of landforms from DEM data, with specific focus
on mountain summit identification. For this task, we exploit Convolutional
Neural Networks (CNNs), a deep network architecture extensively used for
the recognition of patterns in images. CNNs operate directly on pixel images
and can recognize a wide spectrum of patterns. CNNs can be fruitfully ap-
plied to the mountain summit recognition from DEM data for the following
reasons:

• They work on input images divided in sub-regions repeatedly processed
by the convolution step. This is analogous to striding across the DEM
of a region with a sliding bi-dimensional window to process the altitude
data.

• They can analyze arbitrary pixel-level information and discover com-
plex spatial relations. In our domain, pixel-level information encodes
the features that can be extracted from the DEM, which may support
the identification of a peak. In this thesis, we use three features for
summit identification: altitude, curvature and slope.
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• They map each input pixel into an index value for each predicted class;
the index ranges between 0 and 1, the sum across classes adds up to
1 and each value can be interpreted as the likelihood that the pixel
belongs to the class. In our case, this is analogous to computing the
likelihood that an area of the Earth surface is a mountain summit or
not.

Specifically, we adapted two models modifying the original architectures
to match the CNN input to the encoding of the DEM data:

1. LeNet-5 model [53] (Figure 4.4): 31x31x3 inputs are used instead of
the usual 32x32 gray-scaled inputs; the center pixel of the input image
is mapped to one of the two classes: mountain summit / non mountain
summit.

2. U-Net model [54] (Figure 4.6): 200x200 input tiles are used; for each
tile, a segmentation mask must be provided. Each point corresponding
to a peak is masked, along with the 7x7 square centered on it.

4.4.1 Dataset

In Figure 4.3, we can observe the partition of the Switzerland territory in
three distinct regions: training, validation and testing. The choice of the
validation and testing cells is not random; it has been made based on the
Ground Truth described in Section 4.2, to have the GT peaks distributed so
that 80% of the peaks belong to the training and validation areas and 20%
to the testing area. The same dataset is used for for both the presented DL
architectures; for each DEM cell, patches are extracted and associated with
the values of altitude, slope and mean curvature in the represented area.

4.4.2 Feature study

We conducted a study to find which terrain features are impacting the most
on the chosen DL models and if we should use the original square DEM cells
or prefer the resized ones.
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Figure 4.3: Territory distribution for the datasets

For LeNet we explored:

• Only the elevation

• Only the elevation but rescaled to account for the curvature of the
Earth

• Elevation along with slope and curvature

For U-Net we explored:

• Only the original DEM elevation

• Only the rescaled elevation

• Elevation and slope

• Elevation and curvature
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• Slope and curvature

• Elevation, slope and curvature

• Elevation and average drop

In particular, all the mentioned features (summarized in Table 4.1) are di-
rectly computable from the elevation data contained in the DEM files. Some
features, such as slope and curvature, are the same used in some heuristic
algorithms.

To choose the configuration that performed better we employed the eval-
uation procedure described later in this chapter.

Features Elevation non-resized Elevation resized Elevation - Slope - Curvature Elevation - Drop
Architectures LeNet / U-Net LeNet / U-Net LeNet / U-Net U-Net

Features Slope - Curvature Elevation - Slope Elevation - Curvature
Architectures U-Net U-Net U-Net

Table 4.1: Features tested for each of the two architectures

4.4.3 Patches generation

For both CNNs, the training, validation and testing patches are extracted
from the areas describe in Section 4.4.1.

LeNet

Figure 4.4: LeNet architecture

Each extracted patch is a square of 31x31x3 pixels, which represents a
physical region of ≈ 957x957 meters. A patch is positive, if its center pixel is
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classified as positive, negative otherwise. One positive patch is extracted for
each peak in the ground truth dataset, using the corresponding coordinates
as the center pixel of the patch. We tried different heuristics to generate
positive patches:

• A: One positive patch is created for each peak in the dataset, using the
corresponding location as the center pixel of the patch.

• B: One positive patch is created for each peak in the dataset and also
for the 24 neighboring pixels.

• C: One positive patch is created for each peak in the dataset. An
exclusion zone where no pixels are used to create negative patches is
defined, it contains the 24 immediate neighbors.

• D: One positive patch is created for each peak in the dataset and its
8 immediate neighbors. An exclusion zone where no pixels are used
to create patches is defined, it contains the 16 neighbors at distance 2
from the center pixel.

• E: One positive patch is created for each peak in the dataset while for
its 24 neighbors a new positive patch is created if the elevation is higher
or equal than the center pixel, otherwise they are added to a blocking
zone, which can(1) or not(2) be used for generate negative patches.

• F: One positive patch is created for each peak in the dataset and for
its 8 immediate neighbors if their elevations is higher or equal than
the original one, otherwise they are added to the exclusion zone. An
blocking zone which can(1) or not(2) be used for generate negative
patches, it contains the 16 neighbors at distance 2 from the center
pixel.

To choose the one that performed better we employed the evaluation
procedure later in this section, and the details can be found in Appendix
A. Such patch extraction heuristics are pictorially represented in Figure 4.5:
white pixels are candidates for the creation of positive patches, black pixels
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Figure 4.5: Different possibilities to sample positive and negative patches

for negative patches and gray pixels are the exclusion zone. The one that
proved to perform better is 4.5.F.

Additionally, we tried to apply data augmentation by rotating the patches
and in most of the cases it led to better results.

Details are in Appendix A.1

U-Net

Figure 4.6: U-Net architecture

Each extracted patch is a square of 200x200 pixels; different patch sizes
were tested (100x100, 300x300, 400x400) but led to worse results. Patches
are extracted with an overlap-tile strategy, shown in Figure 4.7, to increase
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the amount of available data, to better classify the border pixels and to allow
a seamless segmentation. The overlapping step is variable, based on the cell
width and height (which are different when using resized cells), to extract
nearly the same quantity of patches for every cell.

We also applied data augmentation to further increase the amount of
information we can feed to our model during the training step: patches
are flipped vertically, horizontally and both vertically and horizontally; 90°
rotations and random rotations did not bring any improvement to the model
and sometimes led to worse performances. Still they should help generating
a more general model, thus suitable for analyzing different Earth areas.

Figure 4.7: Example of three 200x200 extracted overlapping patches. The
dotted lines enclose the overlapping part between two patches.

When feeding a 200x200 patch to the model, with the current architec-
ture design, it outputs a 160x160 one, thus losing 20 pixel at each side. As
suggested in [54], applying padding to the input image can serve a double
purpose: it allow us to have a 200x200 output, preserving the original dimen-
sion; furthermore it acts as some kind of data augmentation, by exploiting
all the original data. We decided to pad the patches with the values in their
neighboring pixels and to apply mirroring only when these values are miss-
ing. The latter can happen when a patch is near the edge of a DEM cell
but we do not have the file for the next cell or the next cell belongs to the
validation or testing dataset. It is very important, during the training step,
to avoid using any kind of data belonging to these two datasets. Padding did
not lead to any performance improvement.
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4.4.4 Segmentation mask generation

When using U-Net, we are realizing an architecture for the task of segmenta-
tion. To evaluate the output of the DL model, each patch must be associated
with its corresponding segmentation mask delineating the area covered by the
Ground Truth peaks. To generate a mask, we map each GT peak to a single
DEM point and then, to avoid the loss of valuable information about the
surrounding, we enlarge its area to a 7x7 square, considered as the extent of
the peak. The resulting masked peak is a 5x5 white square (value of 1) with
a one-pixel gray border (value of 0.5).

We tried different heuristics to find which mask could fit better our use
case: decreasing, to 5x5 (visually equal to Figure 4.5.D.), or increasing further
the square dimension to 9x9 or 11x11 led to worse results.

Figure 4.8: Example of 200x200x3 patch with corresponding mask

Finally, the same overlap-tile strategy, already applied to the patches, is
used to generate the masks for the training and validation datasets. Figure
4.8 shows an example of a patch with its associated mask output by the
CNN.

Peaks are not distributed equally in all the cells; from Figure 4.9, repre-
senting an example of 3 masked patches, we can observe that the dataset is
very unbalanced; thus there is a high probability that many patches, ≈ 45%,
will be completely black (i.e. there are no peaks in that area). For this reason
we tested the network by keeping different amounts of black patches in the
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training dataset: removing all empty patches leads to the best results, while
increasing the amount to 10%, 50% and 100% has a progressively negative
impact on the model.

Figure 4.9: Example of 3 different masked patches

4.4.5 Hyper-parameters

When designing a Neural Network architecture, some hyper-parameters must
be tuned, based on the input data and the network topology, to obtain the
best results.

LeNet

To find the optimal hyper-parameters we performed a search over the hyper-
parameters space which resulted in taking: L1 with a size of 18, L2 with
32, L3 with 120 and L4 with 84, a batch size of 256 patches and a learning
rate value of 0.001. The optimizer employed is Adam optimizer and the
cost function is cross-entropy. Table 4.2 summarizes the design choices for
the LeNet models. More informations about the search and analysis of the
hyper-parameters to adopt are presented in Appendix A.1.

U-Net

We carried out a similar search for U-Net too. It led to a batch size of 30,
a learning rate of 0.001 and the use of no dropout. The optimizer and cost
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Patch heuristic A B C D E F
Patch size 29x29 31x31 33x33

Learning rate 0.01 0.05 0.001 0.005 0.0001 0.0005
Batch size 128 256 512

L1 6 18
L2 16 32
L3 120 240 360
L4 42 84 120

Table 4.2: Design choices for LeNet models

function of choice are the same as for LeNet: Adam optimizer and cross-
entropy. As previously said, we have a very imbalanced dataset; so we also
tried to assign weights to the mountain class. Visually, from the output
raster (Figure 4.10), we immediately observed larger and more connected
mountainous areas and, from the analysis, we obtained worse results.

Figure 4.10: U-Net output matrix when assigning (A) no weight to themoun-
tain and non-mountain classes (B) a bigger weight to the mountain class

We also tried different network topologies, by changing the number of
levels and the number of initial features: 3 levels and 64 features proved to
be the optimal choice. Decreasing the amount of features to 16, or increasing
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the levels to 5 impacted negatively on the model, as demonstrated in [55]
too.

All the different design choices for the U-Net architecture are presented
in Table 4.3.

Patch size 100x100 200x200 300x300 400x400
Mask size 5x5 7x7 9x9 11x11
Batch size 4 8 16 30

Learning rate 0.001 0.005 0.0001 0.0005
Dropout 1 0.9 0.8 0.7
Levels 3 4 5
Features 16 32 64

Table 4.3: Design choices for the U-Net models

More informations about the choice of parameters and network topology
are presented in Appendix A.2.

When tuning different parameters, we have to take into account the limi-
tation imposed by the amount of GPU memory; so we always have to make a
trade-off: for example, if we increase the number of levels, we must decrease
the number of features, or if we use bigger patches, we must set a smaller
batch size.

4.5 Post-processing of the output

Different methods provide different output formats. To perform a fair com-
parison, a list of locations denoting the coordinates of the mountain summits
is required.

The Prominence and Isolation methods give as output a list of detected
peaks with their geographical coordinates, their elevation and their promi-
nence or isolation value, respectively. In this case, no special post-processing
is required, because the coordinates of each peak are already provided.

Landserf Peak Classification gives as output a raster matrix with a value
for each pixel, which tells if a point is a peak, part of the extent of a peak, or
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none of such two cases. To convert the output to geographical coordinates,
we take only the cells classified as a peak summit and map their row and
column position to the latitude and longitude, respectively.

The Fuzzy Feature Classification method gives as output a raster matrix
with each cell containing the fuzzy membership value of the pixel to the peak
class. Extracting peak coordinates with a simple filter on the fuzzy mem-
bership proved inadequate because clusters of neighboring pixels tend to be
assigned to the same class and considering each positive pixel independently
could lead to the inference of multiple close-by peaks. For this reason, a
more sophisticated method was put in place. It consists of creating groups of
adjacent cells with a fuzzy membership value higher than a defined threshold
and then calculating the center of each group.

Different approaches to decide which element should be selected as the
center of a group were considered:

1. the location resulting from the weighted average of the positions of all
the elements in the group. The weight of each position is given by the
fuzzy membership value of each element.

2. the location resulting from the average of the positions of only the
elements of the group with the highest fuzzy membership value.

3. the location given by the weighted average of the positions of the ele-
ments with the highest elevation in the group. The elevation of each
element is obtained from the DEM data.

4. first, a provisional center of the group is calculated by averaging the
coordinates of all its elements; then, the actual center is chosen as the
element with the highest fuzzy membership value and nearest to the
provisional center.

All these heuristics were tested on a subset of the total parameter con-
figurations, described in Section 5.2; option 4 proved the one with the best
performance. An example of the resulting output is shown in Figure 4.11.

The two Deep Learning models are fed with tiles from the rescaled DEMs
of the region of interest and the output is used to compose a matrix in which
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each pixel is associated with a value that denotes its probability of containing
a summit. For this reason, these two methods share the same post-processing
workflow with Fuzzy Feature Classification.

Figure 4.11: Left: Raster matrix output from the Deep Learning model.
Center: Group created after filtering with a peakness value above 0.36.
Right: Same group overlayed on the terrain. The green marker represents
the position of the calculated peak

4.6 Evaluation procedure

The common output of all the methods is the geographic position of the
mountain peak (latitude, longitude), which we also use to filter out all the
extracted peaks that are out of the area under evaluation. To determine
whether a candidate peak corresponds to a ground truth peak, we use a
distance threshold (200m, in the evaluation described in Chapter 5). The
steps for the comparison, whose pseudocode is given in Algorithm 1, are as
follows:

• Calculate the distance between each extracted peak and every ground
truth peak.

• For each pair, save the tuple (extracted peak, ground truth peak, dis-
tance), only if the distance is lower than the established threshold.

• Order all tuples by increasing distance.

• Loop through the ordered list of tuples. Consider the extracted peak
of the current tuple as a True Positive only if both the extracted and
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ground truth peaks have not already been used before to define other
True positive peaks; otherwise, discard the current tuple.

• The extracted peaks that have a distance to all the ground truth peaks
greater than the threshold are considered as False Positives. Also, the
extracted peaks that appear in a saved tuple, but have not been selected
as true positive ones, because they were dominated by the extracted
peaks in some other tuple, are classified as False Positives.

• The ground truth peaks for which no matching extracted peak has been
identified are considered as False Negatives.

In summary:

• True Positives are the extracted peaks that have a correspondence to
a ground truth peak

• False Positives are the extracted peaks that have no correspondence
with a ground truth peak

• False Negatives are ground truth peaks that the method was not able
to match to any extracted peak

True negatives, i.e. locations that do correspond to non-peak sites, are more
challenging to define because the number of potential candidates is over-
whelmingly superior to those of the other types: the input DEM files are
matrices of 3601x3601 pixels, of which only less than 1% are ground truth
peaks. To cope with such an unbalance, we use the Precision-Recall curve
in the assessment, rather than other methods such as the ROC curve, as
suggested in [58] for scenarios with highly unbalanced classes.

To better quantify the accuracy of the tested methods, we considered the
mean distance error of each algorithm. In this way, the assessment consid-
ers not only the presence of a match between a ground truth peak and an
extracted peak, but also their distance (the lower, the better).

For the Fuzzy Feature Classification method, an additional evaluation
procedure was considered (and discarded). Since the output of this method
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Algorithm 1 Post-Processing
1: Distances← ∅
2: NGT← length(GTPeaks)
3: NEPeaks← length(ExtractedPeaks)
4: for i← 0 to NGT− 1 do
5: GTP← GTPeaksi
6: for j ← 0 to NEPeaks− 1 do
7: EP← ExtractedPeaksj
8: Distance← calculateDistance(GTP,EP)

9: if Distance < 200 then
10: Distancesend ← (EP,GTP,Distance)

11: TruePositives← ∅
12: Distances← sorted(Distances)
13: NDistances← length(Distances)
14: for i← 0 to NDistances− 1 do
15: PeakTuple← Distancesi
16: GTP← PeakTupleGTP

17: EP← PeakTupleEP

18: if GTP in GTPeaks and EP in ExtractedPeaks then
19: TruePositivesend ← PeakTuple
20: remove(GTPeaks,GTP)

21: remove(ExtractedPeaks,EP)

22: FalsePositives← ExtractedPeaks
23: FalseNegatives← GTPeaks
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Figure 4.12: Precision-Recall Pareto dominant curve when using the best (a)
Peak to Peak comparison method (b) the Peak to Group approach - Fuzzy
feature classification evaluated with random subsets of parameter combina-
tions

identifies groups of pixels representing a peak, instead of using Peak to Peak
comparison and calculating the group center, an alternative approach consists
in Peak to Group comparison: a True Positive is obtained from a group if
a ground truth peak is contained in the area corresponding to it. We tested
this approach and found that it yields lower precision and recall, as shown
in Figure 4.12.

55



Chapter 5

Evaluation

5.1 Overview of the evaluation

In this chapter, we perform a quantitative and qualitative analysis of our
DL models and the studied heuristic methods. First of all, we present a
comparison of the DL models and discuss their differences when extracting
peaks and why one is performing better than the other. Then, we evaluate
our DL models against the replicated heuristic methods, both in terms of
Precision-Recall and mean distance error. The final qualitative analysis can
help to understand the different definitions of what is a peak of the various
methods; furthermore, it underlines the need to perform a further study on
the False Positives peaks, not present in the Ground Truth data.

5.2 Quantitative analysis

The assessment exercise was conducted on the Switzerland territory, in par-
ticular on an area with coordinates between latitude 46° to 47° and longitude
7° to 8° corresponding to the Validation area for the DL model (Figure 4.3).
We calculated precision and recall for Prominence and Isolation [25], Peak
Classification and Fuzzy Feature Classification of Landserf [16] and the DL
models.

For all the methods, the list of the extracted peaks, with the correspond-
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ing coordinates, was assessed. The evaluation was performed as explained
in Chapter 4, using a distance threshold of 200 meters to determine if the
candidate peaks corresponds to a peak listed in the ground truth data set.
The threshold was selected using as reference the previous works and choos-
ing the less restrictive value; in [4] the authors apply a minimum distance
between two mountains using a 150m window; in [21], the author employs a
horizontal threshold to filter peaks and tests 150m and 200m as values. Fur-
thermore, in the area under study, shown in Figure 4.3, the average distance
between any two peaks in the ground truth data set results to be ≈ 44km,
which is, as expected, much larger than the 200m threshold value used in the
peak comparison metrics.

5.2.1 Parameter selection

Each method executes with different parameters, which must be set heuris-
tically. For each parameter, when the original specification of the method
already provides an optimal or suggested value, we adopt it. Otherwise, val-
ues are sampled from the parameter space and all the resulting parameter
combinations (i.e., tuples of sampled values) are tested. The values selection
for each algorithm is as follows.

Fuzzy Feature Classification. The method takes as input the DEM
files and four parameters and evaluates the membership of each pixel to the
peak class at different scales; the most important parameter is the maximum
scale at which each pixel is classified, called window size (1); it is an integer
value denoting the number of cells along one side of the square window that
defines the scale of the classification step; in the evaluation, we tested window
sizes ranging from 5 to 75, sampled with a step of 2, because in the original
work [12] the maximum value used for the analysis is 75 and no single optimal
value is recommended. The second parameter, distance decay (2), is the
exponent that determines the relative importance of the cells near the center
of the window with respect to those at the edge; we tested values from 0 to
4 with a step of 1; boundary values are taken from the default settings of a
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Grass AddOn1 developed by one of the authors of [12]. The slope tolerance (3)
parameter determines how steep the surface can be while still being classified
as part of a pit, pass or peak feature; we tested the values 0°, 1°, 4°, 8°, 16°,
24°, 32°, 40°, because in [12] the authors use 1°, 4° and [59] uses values from
0° to 40° with a step of 8°. Finally, the curvature tolerance (4) determines
how convex/concave (“sharp”) a feature must be, to be considered part of any
feature class; the tested values are 0, 0.1, 0.5, 2, 4, 6, because in [16] 0.1, 0.5
are suggested as typical values and [59] uses values from 0 to 6, with a step
of 2. The combination of all parameter values yielded 8880 configurations.
Before providing as input the raw DEM file in HGT format, since this method
accounts for the curvature of the Earth, the DEM files were rescaled, so that
each rescaled pixel represents a squared area with the same extension in both
directions (latitude and longitude)2.

Peak Classification. The method takes as input DEM files and 2 pa-
rameters: the minimum height (1), in meters, that a point must have to be
considered as a candidate peak; for this parameter we tested values from
400m to 4500m with a step of 50m, because these two values are the lowest
and the highest elevations of the territory under evaluation; and theminimum
drop (2), in meters, that a point must have from a peak to be considered part
of its extent; we tested values from 500m to 0m with a step of 5m (as 0 is not
a meaningful value, we replaced it with 1). This yielded 8373 configurations.

Prominence. The method takes as input the DEM files and only one
parameter, i.e., the value of prominence to be used as a filter; only the
candidate with a prominence value higher than the threshold are retained.
We tested values ranging from 0m (0 feet) to 1520m (4986,877 feet) with a
step of 10m (32,8084 feet), yielding 154 configurations.

Isolation. The method takes as input the DEM files and only one param-
eter, i.e., the value of isolation to be used as a filter: only the candidates with
an isolation value higher than the threshold are retained. We tested values
ranging from 0km to 10km, with a step of 100m, yielding 101 configurations.

1https://grass.osgeo.org/grass74/manuals/r.param.scale.html
2Note that the distance from 46◦ to 47◦ ≈ 111.19 km, whereas from 7◦ to 8◦ is ≈ 77.24

km; therefore the original tile is rectangular and not squared. Thus, the normalization.
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Deep Learning. The two different architectures take as input the DEM
files, the best U-Net model exploits only the elevation data; while, the best
LeNet model includes also slope and curvature. The output is a raster ma-
trix with the probability of each point to belong to the peak class. The
Precision-Recall curve is calculated by filtering the output matrix with dif-
ferent “peakness” thresholds, with the procedure described in Section 4.5.
Figure 5.1 shows the probability distribution of the output of the two DL
methods. We can observe that LeNet has an almost uniform distribution
over all the probabilities; instead, U-Net has many points with a probability
value below 0.1 and much less points with a value higher than 0.9. Given the
two different distributions, the thresholds tested for LeNet range from 0.9 to
1 with a step of 0.0001, yielding 1000 configurations; for U-Net, the values
range from 0.02 to 1 with a step of 0.005, yielding 197 configurations.

Figure 5.1: Logarithmic probability distribution assigned to each pixel in the
two different DL models

The tested configurations provide a broad spectrum of results and en-
able an in-depth understanding of each algorithm behavior on the analyzed
territory.

5.2.2 Selection of the best Deep Learning model

For the learning task of identifying mountains peaks from the Digital El-
evation Model of the terrain, we started with a well-known typical CNN
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Figure 5.2: Pareto dominant precision-recall curve of the Deep Learning
methods

architecture, LeNet. After an initial analysis and once we reached the under-
standing that this task is suitable for deep learning models, we experimented
with a more modern and complex method that is also suitable for pixel-based
image segmentation. In this case, the size and complexity of the network are
not a bottleneck since there is no specific requirement on the devices it has
to be applied, as it would be if the task was to run on low-end devices, such
as smartphones. Still, this thesis does not go through a serious performance
analysis in these terms.

The different architectures sizes, patches generation heuristics and hyper-
parameters tested are explained in the previous chapter; details can be found
in Appendix A. In this section, we concentrate on the comparison of the best
resultant models after the fine-tuning phase.

For LeNet, we chose the best model among the different features com-
binations: (1) elevations (2) elevations resized (3) elevations in conjunction
with slope and curvature. From Figure A.7, we can observe that even with
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a non very significant difference, the model that performs better is the one
that combines all three features. The resultant architecture is displayed in
Figure 4.4.

For U-Net, we also chose the best model among the different features
combinations described in Section 4.4.2. From Figure A.12, we can observe
that the model that performs better is the one that takes in consideration
only elevation. The resultant architecture is displayed in Figure 4.6.

From Figure 5.2, which shows the Precision-Recall Pareto Dominant curve
of the two models, it is clear that the U-Net model outperforms the LeNet
one. The difference can be explained considering that the two architectures
exploit different contexts during the training and testing phases: LeNet works
on 31x31x3 patches receiving, for each one, the positive or negative label
based only on the classification (mountain/non-mountain) of its center pixel;
this limits the context on the surrounding of the center pixels, in fact if
two peaks are present in the same patch, the model will receive a different
input for each one. On the other hand, U-Net has a more global context
of all the peaks and their surroundings; thanks to the segmentation masks
which delineate “accurately” the position of all peak summits and part of
their extents. Additionally, LeNet architecture is based mostly on down-
sampling of the input, while U-Net has an additional resource that is the
down-sampled input as well as the complete features prior to such step,
thanks to skip-connections. Moreover, there is a difference on how LeNet
and U-Net recognize a peak summit and its extent. We mentioned that we
cannot treat each pixel with high probability of being a peak as individual
peaks, but we have group them and find the center (Section 4.5). This is
because a mountain summit and its extent have similar characteristics for
which the models do not provide different classes directly. In this argument,
we can see a difference between LeNet and U-Net in their output probability
maps. While, for LeNet, all the area of a peak (the mountain summit and its
extent) has a very high probability; in U-Net, the difference between these
two is more pronounced.

This is also well represented in the output probability distribution of the
two models (Figure 5.1); for U-Net, we can observe that, by increasing the
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probability to be a peak, the amount of points decreases exponentially. Since
the whole area of a peak is important to determine the center, and LeNet has
very high probability for the whole peak and extent area, we need to explore
in deep the range of values between 0.9 and 1, while for U-Net we explore a
wider range of probability values.

Based on this discussion, we chose the U-Net model represented in Figure
5.2 as the Deep Learning method of preference.

5.2.3 Comparison of heuristic and Deep Learning meth-

ods

Figure 5.3: Pareto dominant precision-recall curve of the tested methods

Figure 5.3 shows the Precision and Recall Pareto dominant curve obtained
from executing the analysis on all the configurations submitted to the test
(Table 5.1). A point in the curve of a method denotes a combination of the
parameter values of that method. Moving from left to right on the horizontal
axis, the combination of parameters becomes less restrictive: more peaks
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are extracted (recall increases), but to the price of extracting more false
positives (precision declines). Depending on the specific application, the
most appropriate point in the curve can be selected; for example, if the task
at hand is finding mountain peaks not present in some data set, to enrich it,
one may tolerate some precision loss, in order to gain more candidate peaks.
When comparing multiple methods, if the curve of one method extends above
that of another method, then the former delivers better accuracy, with respect
to the ground truth data set used for the evaluation.

Method Parameter Minimum value Maximum value Dominant value

Fuzzy Feature
Classification

Window size 5 75 19
Distance decay 0 4 3
Slope tolerance 0° 40° 24°

Curvature tolerance 0 6 2

Peak classification
Minimum height 400 m 4500 m 1250 m
Minimum drop 1 m 500 m 30 m

Prominence Prominence 0 m 1520 m 42 m
Isolation Isolation 0 km 10 km 2.6 km
LeNet Peakness threshold 0.9 1 0.9961
U-Net Peakness threshold 0 1 0.36

Table 5.1: Tested parameters configurations for the different methods. Dom-
inant configurations are marked with a red cross on Figure 5.3.

From Figure 5.3 we can observe the following:

• All methods are able to reach a very high precision ≈ 100% (even if at
the price of a very low recall). The configurations that ensure this result
are characterized by very restrictive parameter values. For example,
with the Prominence and Isolation methods it is obvious that, by using
a higher threshold of their single parameter, less peaks are found, with
high confidence.

• Isolation is the method with lower performance in the area used for
experimentation; this can be understood observing that the mountain
peaks in Switzerland are not isolated.
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• LeNet performs worse than U-Net but still the results are good when
compared with the heuristic methods. This may be due to the fact the
LeNet is a much simpler and older architecture and segmentation may
suit better the use case of peak extraction.

• Overall, the DL method (U-Net) is the one that delivers better per-
formance in the analyzed region. The next better method is Landserf
Peak Classification; in this case, when both the thresholds minimum
elevation and minimum drop increase, also the precision increases, to
the price of a recall decrease. The minimum drop threshold is the one
having a stronger impact on the recall.

Figure 5.4: Mean distance error with respect to the precision metric for
different methods

Figure 5.4 shows the result of the evaluation of the same configurations
displayed in Figure 5.3, but plots the mean distance error between all ex-
tracted True Positives and their matching peaks in the ground truth data
set. We can observe that Prominence and Isolation are much more accurate
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than the other four methods, when using this metric of comparison. The dif-
ference between Isolation and Prominence is not significant and varies along
the curve, but for both methods the distance error is significantly lower
than in Landserf Peak Classification, Fuzzy Feature Classification, U-Net
and LeNet. Furthermore, the best Deep Learning method has nearly half
the mean distance error with respect to Peak Classification, which is the
dominant heuristic algorithm, in terms of precision-recall, among the tested
ones.

Finally, Table 5.2 shows the different results obtained when applying the
same threshold on the validation and on the testing areas. We can observe
that Fuzzy Feature Classification, Peak Classification and the DL models
do not have a significant change when applied in a different Switzerland
region; this is due to the fact that the mountains shape and elevations are
very similar in the two DEM cells. On the other hand, in the testing area,
the Isolation method has the same recall but a substantial increase of the
precision; while, for Prominence, there is a greater precision at the expenses
of a lower recall. For this last two methods, the difference is due to the
different arrangement of mountainous areas in the two analyzed regions and
the fact that, as previously stated, they analyze a point at a more regional
scale.

Threshold
Validation Testing

Precision Recall Precision Recall
Prominence 42 m 70% 44.7% 88.7% 26.8%
Isolation 2.6 km 70% 6.9% 93.2% 6.9%

Fuzzy Feature Classification W19 - D3 - S24 - C2 70% 33.3% 65% 33.7%
Peak Classification E1250 - D30 70% 52.1% 66.9% 55.8%

U-Net 0.36 70% 56.5% 68% 60.8%
LeNet 0.9961 70% 46.3% 67 % 50%

Table 5.2: Evaluation results
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5.3 Qualitative analysis

Although a quantitative analysis, based on a specific ground truth data set,
shows that our DL method performs better than the heuristic methods an-
alyzed, a visual inspection of results was also performed3. To this end, for
each method, we selected a point in the precision-recall curve (marked in
Figure 5.3 with a red cross) with a reasonably good trade-off between preci-
sion and recall (specifically, we considered the point where all the methods
get close to 70% precision). This choice corresponds to selecting a thresh-
old of 42 meters for the Prominence method, a threshold of 2.6km for the
Isolation method, a minimum elevation of 1250m and a drop of 30m for the
Peak Classification method, for the Fuzzy Feature Classification method, to
setting the parameter values as follows: window size=19, distance decay=3,
slope=24 and curvature=2; finally, for the DL method a peakness thresh-
old of 0.36. For the qualitative evaluation we chose to show only the U-Net
model results, since it proved to perform better than LeNet.

In all the following figures, each method will be color-coded with a differ-
ent marker: blue for Isolation, gray for Prominence, red for Peak Classifica-
tion, green for Fuzzy Feature Classification and yellow for U-Net. A ground
truth peak, when present, is denoted by a purple marker.

5.3.1 Analyzing True Positives

Figure 5.5 shows a True Positive peak found by all the analyzed algorithms.
Visual inspection confirms the results about the distance errors presented in
Figure 5.4: Isolation and Prominence produce the point closest to the real
peak, U-Net point is very close to first two, the point identified by the Fuzzy
Feature Classification method is located at an intermediate distance, and the
point extracted by the Peak Classification method is farther away. From the
inspection of the terrain 3D image, one can say that the locations extracted
from Prominence, Isolation and the DL method are the points that identify
“the peak” more naturally.

3All the 3D terrain images in this Section are generated using the CesiumJS tool.4

66



Figure 5.5: Example of True Positive found by all five analyzed methods.
Isolation and Prominence markers are overlapping. The blue marker repre-
sents Isolation, red Peak Classification, green Fuzzy Feature Classification,
yellow U-Net and purple the Ground Truth peak

Figure 5.6 shows a case in which five different peaks are identified by
four of the presented methods, but only four of them (A,B,C,D) are listed
in the Ground Truth. From a visual inspection, the fourth point (E) could
also be classified as a peak. The reason for this peak to be absent from the
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Figure 5.6: Three True Positives (A,B,D) and one False Positive (E) ex-
tracted by all methods except Isolation. One True Positive (C) identified
only by U-Net. Note that not all methods markers are visible. The red
marker represents Peak Classification, gray Prominence, green Fuzzy Fea-
ture Classification and yellow U-Net

gold standard may be due to the incompleteness of the public data sets used
to build the ground truth. We can also observe that our DL method is the
only one correctly extracting peak C with ≈ 5m of distance error from the
Ground Truth peak.

5.3.2 Analyzing False Positives

Figure 5.7 shows an example of two non-mountainous areas where the Iso-
lation and Prominence algorithms both produce false positives. In both
cases, the methods extract peaks from a terrain that is not representative of
a mountain summit. This behavior is justified by the scale at which these
methods perform their analysis. While Fuzzy Feature Classification and Peak
Classification, exploit a “local” search, by comparing the point under evalu-
ation with its close neighbors (from such an analysis, they both infer that
the points of figure 5.7 do not identify a mountain peak), Prominence and
Isolation expand the analysis to a broader territory. Therefore, the identi-
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Figure 5.7: Example of three False Positives classified by both the Isolation
and Prominence methods. The two markers are overlapping

fied position is a prominent/isolated point w.r.t. its extended neighborhood,
but from a visual inspection, the point does not identify a location that one
would consider a locally significant peak.

Votes Peak count (match threshold = 200m)
1 486
2 215
3 135
4 33
5 0

Table 5.3: Amount of unique False Positives found by the different methods

The situation in which multiple methods agree in the extraction of the
same false positive is particularly interesting, because it may lead to the
identification of a real peak not reported in the data sets used to build the
ground truth. An example is shown in Figure 5.8 where two or more different
methods classify five False Positives in a mountainous area. Such peaks could
be validated manually and added, e.g., to a public data set. To quantify
such occurrences, an analysis has been performed on the agreement about
the False Positives of the various methods: Isolation finds 51 false positives,
Prominence 322, Peak Classification 378, Fuzzy Feature Classification 253
and the Deep Learning approach 418. Table 5.3 shows the number of peaks
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that received multiple “votes” by the five methods.

Figure 5.8: Five False Positives identified by two or more different methods.
The red marker represents Peak Classification, gray Prominence, green Fuzzy
Feature Classification and yellow U-Net

Note that, given its rather different purpose, the Isolation method never
agrees with the other algorithms on candidate peaks not present in the ground
truth data set.

The behavior of the various methods in detecting candidate peaks absent
from the ground truth can be further appreciated in Figure 5.9: the false
positives extracted by the Fuzzy Feature classification and the Peak Classi-
fication method and U-Net have a distribution similar to the ground truth
and concentrate in areas where one would expect to find peaks; the Isolation
method focuses on an area with less ground truth peaks, due to the lower
density of mountains in that area, which makes it more likely to discover
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isolated objects. Finally, the false positives extracted by the Prominence
method have a uniform distribution over all the territory of the test.

Figure 5.9: False Positive distribution of different methods with respect to the
Ground Truth peaks (A): Isolation (B), Prominence (C), Peak Classification
(D), Fuzzy Feature Classification (E) and U-Net (F)

5.4 Discussion

After the quantitative and qualitative evaluation, we can discuss the advan-
tages and disadvantages of each method.

Isolation and Prominence are the methods that find peaks very close to
the real ones on our Ground Truth; although, their performances are very
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influenced by the territory under analysis. The two analyzed cells contain
mountains with a similar shape but both methods have very different results
and, in our validation cell, Isolation is the worst in terms of Precision-Recall.
This led us to think that the mountains in these two areas are not charac-
terized by isolation but rather by prominence.

Peak Classification performs very well in terms of Precision-Recall on
both the validation and testing cells, but its extracted peak are far from
the real ones. As previously said, this method focuses mainly on the peak
elevation with respect to its neighbors. If the aim of the analysis was only to
extract peaks, without caring about their position, this could be our heuristic
algorithm of choice.

Fuzzy Feature Classification performances are in the middle both when
evaluating Precision-Recall and mean distance error. The amount of pa-
rameters needed to define a particular landform is both a limitation, due to
the difficulty to choose which value to set, and an advantage, maybe when
generalizing on different territories. With respect to all the other heuristic
methods, this is the only one accounting for the curvature of the Earth to
exploit slope and curvature.

The U-Net architecture, adapted to work with DEM data, proved to
perform very well on the task of peak extraction. Although semantic seg-
mentation may not seem suitable for such an unbalanced dataset, the mask
created around every peak led to unexpected results: peaks are extracted
correctly and very close to the real ones. The False Positive ones agree with
the other methods and must be subjected to further study.
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Chapter 6

Conclusions and Future Work

In this work we studied the state of the art methods for landform extraction
from DEM data and set up a pipeline for their comparison. The proposed
procedure requires only a Ground Truth dataset, which may be chosen based
on availability or suitability to the specific application scenario, and can
be scaled to test areas of any size. We merged two different open source
datasets of peaks and removed the duplicated ones, based on a distance rule
that proved to be efficient; this may vary depending on the quality of the
initial data.

We encountered two main issues during the analysis of the current heuris-
tic methods: the first is the amount of parameters the user must set to be
able to obtain the desired terrain features, the second problem is the lack
of a fair comparison between different methods. The latter may help decide
which method performs better in a certain area for a certain application or,
as in this thesis, establish a baseline for future assessment of novel methods.

Through this comparison, we can agree with the literature on the difficulty
of defining “what is a mountain”. All the analyzed methods provide different
definitions and different outputs but agree on most of the extracted peaks,
so it is not easy to choose which method to use.

We analyzed the problem of peak extraction and developed a process to
transform the available data into training data for the DL model. We exploit
the elevation data already included in DEM files, plus some terrain features
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that are computable from the elevation.
With such data, we managed to train a model that in the selected area

performs better than the state of the art methods. This could be attributed
to the fact that the other methods look for a characteristic in particular,
such us the isolation, curvature, slope, drop, prominence of a given point,
while in the machine learning task we are not looking for a specific value of
an attribute but we are looking at it as a whole.

Still, we trained our model with only peaks from the area of Switzerland,
and it is not guaranteed, that all the peaks in the rest of the world have
the same morphology, and for this reason, there might be particular peaks
in other areas that we might not be able to detect.

We provide an in-depth quantitative analysis of the two Deep Learning
architectures and discuss on why one architecture is better than the other.
In our case the U-Net model, performing segmentation, is better than the
LeNet one, which applies classification. Thus, this does not mean that every
classification architecture is not suited for this task or every segmentation
architecture will perform well.

Finally, the same quantitative and qualitative analysis are proposed to
compare heuristic methods and the DL model of choice. The results are very
promising and show that a Deep Learning approach can be suitable for peak
extraction and can improve the efficiency of this difficult task.

6.1 Future Work

This thesis has been focused mainly on the generation of a baseline from state
of the art method and the adaptation of two already existing Deep Learning
architectures, one for classification and one for segmentation, for a peak
extraction use case. Future work concerns the analysis of different territories
and the generalization capabilities of the current models, maybe applied on
different DEM resolutions, the evaluation of different DL architectures and
the use of different Ground Truth dataset and improvement of the current
ones with the help of crowdsourcing or noise cleansing methods.
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6.1.1 Deep Learning architectures

In this work, we deal with DEM data as images and analyze two DL archi-
tectures aimed at classification and segmentation. Different architectures,
maybe better suited for peak extraction, could be evaluated; for example to
process the data in a different format as could be graphs, applied to the topo-
logical network of landforms extracted from the DEM data [60]. Furthermore,
ensemble learning techniques could improve performance, by taking the best
of image- and graph-based terrain representations and DL models.

6.1.2 Generalization on different territories

The study of generalization of the presented models will be dealt with. We are
already working on the dataset merging and data processing of territories like
Canada, Andes, Everest and others. Due to time limitations, the accuracy
and capacity to generalize to different types of territory of our models is still
unknown, which call for rigorous comparison procedures, such as the one
presented in this thesis.

6.1.3 Improvement of the Ground Truth dataset

As presented in Section 5.3, sometimes more than three methods agree on a
point that is not listed as a peak in our Ground Truth data. Those peaks
could be submitted to a crows of local expert, for validation with the Map-
MyMountains application [61]. In Figure 6.1, we can observe the graphical
user interface of MapMyMountains: the user is presented with a list of peaks
and a 2D and 3D visualization of the terrain, he can say if a False Positive
peak, found by a method, is a real peak or not; if the peak exists, the name
and elevation can be added. The informations could be used to improve an
open source dataset such as OpenStreetMap.

When the datasets for a particular region are not complete and contain
many mislabeled peaks, the merge procedure proposed in this thesis and a
manual review may not be enough to obtain a “precise” Ground Truth. For
such reason, some data cleansing methods [57] could be applied to cope with
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Figure 6.1: Graphical user interface of the MapMyMountains application

label noise.

76



Bibliography

[1] Ian S Evans. «Geomorphometry and landform mapping: What is a
landform?» In: Geomorphology 137.1 (2012), pp. 94–106.

[2] Mike J Smith and Chris D Clark. «Methods for the visualization of
digital elevation models for landform mapping». In: Earth Surface
Processes and Landforms 30.7 (2005), pp. 885–900.

[3] Tom G Farr and Mike Kobrick. «Shuttle Radar Topography Mis-
sion produces a wealth of data». In: Eos, Transactions American
Geophysical Union 81.48 (2000), pp. 583–585.

[4] Linda H Graff and E Lynn Usery. «Automated classification of
generic terrain features in digital elevation models». In: Photogram-
metric Engineering and Remote Sensing 59.9 (1993), pp. 1409–1417.

[5] Bernhard Klingseisen, Graciela Metternicht, and Gernot Paulus.
«Geomorphometric landscape analysis using a semi-automated GIS-
approach». In: Environmental Modelling & Software 23.1 (2008),
pp. 109–121.

[6] Kakoli Saha, Neil A Wells, and Mandy Munro-Stasiuk. «An object-
oriented approach to automated landform mapping: A case study
of drumlins». In: Computers & geosciences 37.9 (2011), pp. 1324–
1336.

[7] Boleslo E Romero and Keith C Clarke. «Exploring uncertainties
in terrain feature extraction across multi-scale, multi-feature, and
multi-method approaches for variable terrain». In: Cartography and
Geographic Information Science (2017), pp. 1–19.

77



[8] Carmen De Jong and Thierry Barth. «Challenges in hydrology of
mountain ski resorts under changing climatic and human pressures».
In: Surface Water Storage and Runoff: Modeling, In-Situ data and
Remote Sensing. Genève, ESA Proceedings (2008).

[9] Roman Fedorov et al. «Estimating Snow Cover From Publicly Avail-
able Images». In: IEEE Trans. Multimedia 18.6 (2016), pp. 1187–
1200. doi: 10.1109/TMM.2016.2535356. url: https://doi.org/
10.1109/TMM.2016.2535356.

[10] Barry Smith and David M Mark. «Do mountains exist? Towards an
ontology of landforms». In: Environment and Planning B: Planning
and Design 30.3 (2003), pp. 411–427.

[11] Peter Fisher and Jo Wood. «What is a Mountain? Or The English-
man who went up a Boolean Geographical Concept but Realised it
was Fuzzy». In: Geography 83.3 (1998), pp. 247–256.

[12] Peter Fisher, Jo Wood, and Tao Cheng. «Where is Helvellyn? Fuzzi-
ness of multi-scale landscape morphometry». In: Transactions of the
Institute of British Geographers 29.1 (2004), pp. 106–128.

[13] Steve Fry. «Defining and sizing-up mountains». In: Summit, Jan.–
Feb (1987).

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning».
In: nature 521.7553 (2015), p. 436.

[15] Jay Lee, PF Fisher, and PK Snyder. «Modeling the effect of data
errors on feature extraction from digital elevation models». In: Pho-
togrammetric Engineering and Remote Sensing 58 (1992), pp. 1461–
1461.

[16] J Wood. «Geomorphometry in LandSerf». In: Developments in soil
science 33 (2009), pp. 333–349.

[17] Peter Fisher, Jo Wood, and Tao Cheng. «Fuzziness and ambiguity
in multi-scale analysis of landscape morphometry». In: Fuzzy model-
ing with spatial information for geographic problems. Springer, 2005,
pp. 209–232.

78

http://dx.doi.org/10.1109/TMM.2016.2535356
https://doi.org/10.1109/TMM.2016.2535356
https://doi.org/10.1109/TMM.2016.2535356


[18] Y Deng and JP Wilson. «Multi-scale and multi-criteria mapping
of mountain peaks as fuzzy entities». In: International Journal of
Geographical Information Science 22.2 (2008), pp. 205–218.

[19] Tomaž Podobnikar. «Method for determination of the mountain
peaks». In: 12th AGILE International Conference on Geographic
Information Science. 2009.

[20] Tomaž Podobnikar. «Mountain peaks determination supported with
shapes analysis». In: Geographia Technica (2010), pp. 111–119.

[21] Tomaž Podobnikar. «Detecting mountain peaks and delineating
their shapes using digital elevation models, remote sensing and
geographic information systems using autometric methodological
procedures». In: Remote Sensing 4.3 (2012), pp. 784–809.

[22] Jarosław Jasiewicz and Tomasz F Stepinski. «Geomorphons - a pat-
tern recognition approach to classification and mapping of land-
forms». In: Geomorphology 182 (2013), pp. 147–156.

[23] Dinesh Sathyamoorthy. «Computation of spatial significance of
mountain objects extracted from multiscale digital elevation mod-
els». In: IOP Conference Series: Earth and Environmental Science.
Vol. 20. 1. IOP Publishing. 2014, p. 012044.

[24] Calogero Schillaci, Andreas Braun, and Jan Kropáček. «2.4. 2. Ter-
rain analysis and landform recognition». In: ().

[25] Andrew Kirmse and Jonathan de Ferranti. «Calculating the promi-
nence and isolation of every mountain in the world». In: Progress in
Physical Geography (2017), p. 0309133317738163.

[26] Peter Bandura. «Multi-scale Landform-based Recognition of Se-
lected Mountain Peaks from DEMs in Slovakia». In: ().

[27] Frank Rosenblatt. The perceptron, a perceiving and recognizing au-
tomaton Project Para. Cornell Aeronautical Laboratory, 1957.

[28] [Online; accessed November 2, 2018]. url: https://www.mdpi.
com/2078-2489/3/4/756.

79

https://www.mdpi.com/2078-2489/3/4/756
https://www.mdpi.com/2078-2489/3/4/756


[29] [Online; accessed November 20, 2018]. url: https://www.learnopencv.
com/understanding-activation-functions-in-deep-learning.

[30] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
«Learning representations by back-propagating errors». In: nature
323.6088 (1986), p. 533.

[31] Yoshua Bengio et al. «Learning deep architectures for AI». In: Foun-
dations and trends® in Machine Learning 2.1 (2009), pp. 1–127.

[32] Nicolas Le Roux and Yoshua Bengio. «Deep belief networks are com-
pact universal approximators». In: Neural computation 22.8 (2010),
pp. 2192–2207.

[33] Olivier Delalleau and Yoshua Bengio. «Shallow vs. deep sum-
product networks». In: Advances in Neural Information Processing
Systems. 2011, pp. 666–674.

[34] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic
optimization». In: arXiv preprint arXiv:1412.6980 (2014).

[35] Nitish Shirish Keskar et al. «On large-batch training for deep learn-
ing: Generalization gap and sharp minima». In: arXiv preprint
arXiv:1609.04836 (2016).

[36] Yanming Guo et al. «Deep learning for visual understanding: A
review». In: Neurocomputing 187 (2016), pp. 27–48.

[37] Liangpei Zhang, Lefei Zhang, and Bo Du. «Deep learning for remote
sensing data: A technical tutorial on the state of the art». In: IEEE
Geoscience and Remote Sensing Magazine 4.2 (2016), pp. 22–40.

[38] Jonathan Long, Evan Shelhamer, and Trevor Darrell. «Fully convo-
lutional networks for semantic segmentation». In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015,
pp. 3431–3440.

80

https://www.learnopencv.com/understanding-activation-functions-in-deep-learning
https://www.learnopencv.com/understanding-activation-functions-in-deep-learning


[39] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre. «Se-
mantic segmentation of earth observation data using multimodal
and multi-scale deep networks». In: Asian Conference on Computer
Vision. Springer. 2016, pp. 180–196.

[40] Dimitrios Marmanis et al. «Semantic segmentation of aerial images
with an ensemble of CNNs». In: ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 3 (2016),
p. 473.

[41] Dimitrios Marmanis et al. «Deep neural networks for above-ground
detection in very high spatial resolution digital elevation models».
In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences 2.3 (2015), p. 103.

[42] Xiangyun Hu and Yi Yuan. «Deep-Learning-Based Classification for
DTM Extraction from ALS Point Cloud». In: Remote Sensing 8.9
(2016), p. 730.

[43] Zixuan Chen, Xuewen Wang, Zekai Xu, et al. «Convolutional Neural
Networks based DEM super resolution». In: International Archives
of the Photogrammetry, Remote Sensing & Spatial Information Sci-
ences 41 (2016).

[44] Eric Guérin et al. «Interactive example-based terrain authoring with
conditional generative adversarial networks». In: ACM Transactions
on Graphics (TOG) 36.6 (2017), p. 228.

[45] Christopher Beckham and Christopher Pal. «A step towards pro-
cedural terrain generation with GANs». In: arXiv preprint arXiv:
1707.03383 (2017).

[46] [Online; accessed November 3, 2018]. url: https://towardsdatascience.
com/applied-deep-learning-part-4-convolutional-neural-

networks-584bc134c1e2.

[47] [Online; accessed November 15, 2018]. url: https://ujjwalkarn.
me/2016/08/09/quick-intro-neural-networks.

81

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks


[48] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. «Improv-
ing deep neural networks for LVCSR using rectified linear units and
dropout». In: Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE. 2013, pp. 8609–
8613.

[49] [Online; accessed October 24, 2018]. url: http://cs231n.github.
io/convolutional-networks.

[50] Yann LeCun et al. «Comparison of learning algorithms for hand-
written digit recognition». In: International conference on artificial
neural networks. Vol. 60. Perth, Australia. 1995, pp. 53–60.

[51] Yann LeCun et al. «Backpropagation applied to handwritten zip
code recognition». In: Neural computation 1.4 (1989), pp. 541–551.

[52] Yann LeCun et al. «Handwritten digit recognition with a back-
propagation network». In: Advances in neural information process-
ing systems. 1990, pp. 396–404.

[53] Yann LeCun et al. «Gradient-based learning applied to document
recognition». In: Proceedings of the IEEE 86.11 (1998), pp. 2278–
2324.

[54] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-Net: Con-
volutional Networks for Biomedical Image Segmentation». In: Med-
ical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015. Ed. by Nassir Navab et al. Cham: Springer International
Publishing, 2015, pp. 234–241.

[55] Joel Akeret et al. «Radio frequency interference mitigation using
deep convolutional neural networks». In: Astronomy and computing
18 (2017), pp. 35–39.

[56] [Online; accessed October 16, 2018]. url: https://en.wikipedia.
org/wiki/Topographic_isolation.

82

http://cs231n.github.io/convolutional-networks
http://cs231n.github.io/convolutional-networks
https://en.wikipedia.org/wiki/Topographic_isolation
https://en.wikipedia.org/wiki/Topographic_isolation


[57] Benoît Frénay and Michel Verleysen. «Classification in the Presence
of Label Noise: A Survey». In: IEEE Trans. Neural Netw. Learning
Syst. 25.5 (2014), pp. 845–869. doi: 10.1109/TNNLS.2013.2292894.
url: https://doi.org/10.1109/TNNLS.2013.2292894.

[58] Takaya Saito and Marc Rehmsmeier. «The precision-recall plot is
more informative than the ROC plot when evaluating binary classi-
fiers on imbalanced datasets». In: PloS one 10.3 (2015), e0118432.

[59] Joseph Wood. «The geomorphological characterisation of digital el-
evation models.» In: (1996).

[60] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst.
«Convolutional Neural Networks on Graphs with Fast Localized
Spectral Filtering». In: Advances in Neural Information Processing
Systems. 2016. url: https://arxiv.org/abs/1606.09375.

[61] R. N. Torres et al. «Crowdsourcing landforms for open GIS enrich-
ment». In: The IEEE International Conference on Data Science and
Advanced Analytics (DSAA). 2018.

83

http://dx.doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1109/TNNLS.2013.2292894
https://arxiv.org/abs/1606.09375


Appendix A

Deep Learning Tests

A.1 LeNet

LeNet was executed using the input DEM in different ways: (1) only elevation
(2) only elevation but doing the necessary resize to take into consideration the
curvature of the Earth (3) using elevation in conjunction with the curvature
and slope of the territory.

Details on how the best combination was obtained for each model are
explained below. The three cases were treated interdependently and, in each
case, the procedure consisted in testing the different datasets A , B, C, D,
E_1, E_2, F_1, F_2 mentioned in 4.4.3. Also the execution of different
layers sizes were tested and the different resulting architectures are presented
in Table A.1.

A.1.1 Only Elevation

We executed first an analysis of how to generate the dataset using only the
altitude and the results are shown in figure A.1.

From the two that executed better: (1) D and (2) E_1, we augmented
the data using rotations, and the results are shown in Figure A.2.

We can observe that the flip bring benefits and that the best model is
dataset D using rotations. The architecture that performed better in this
case was A17: (18, 32, 120, 84) with a learning rate of 0.001 and a batch
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L A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
L1 6 6 6 6 6 6 6 6 6 6 6 6
L2 16 16 16 16 16 16 16 16 32 32 32 32
L3 120 120 240 240 240 360 360 360 120 120 240 240
L4 42 84 42 84 120 42 84 120 42 84 42 84
L A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23
L1 6 6 6 6 18 18 18 18 18 18 18 18
L2 32 32 32 32 32 32 32 32 32 32 32 32
L3 240 360 360 360 120 120 240 240 240 360 360 360
L4 120 42 84 120 42 84 42 84 120 42 84 120

Table A.1: Layers sizes combinations

Figure A.1: LeNet Elevation: test of the different 8 dataset heuristics.

size of 128.
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Figure A.2: LeNet Elevation with rotations.

A.1.2 Only Elevation Resized

The results of the different dataset heuristics using only the altitude with
the resized to account for the curvature of the Earth are presented in Figure
A.3.

From the two that executed better: (1) D and (2) F_1 using the exclu-
sion zone, we augmented the data using rotations, and the results are shown
in Figure A.4.

In this case we can observe that the flip does not bring benefits and that
the selected model is D. With the architecture L15.

A.1.3 Elevation, Slope and Curvature

The results of the different heuristics to generate the dataset using three
attributes: slope, curvature and elevation, are shown in Figure A.5.

From the two that executed better: (1) F_1 using the exclusion zone
and (2) B, we augmented the data using rotations, and the results are shown
in Figure A.6.
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Figure A.3: LeNet Elevation Resized: test of the different 8 dataset heuris-
tics.

Figure A.4: LeNet Elevation Resized with rotations
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Figure A.5: LeNet Elevation, Slope and Curvature: test of the 8 different
dataset heuristics

Figure A.6: LeNet Elevation, Slope and Curvature with rotations
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We can observe that the flip bring benefits and that the best model is
dataset F using exclusion zone and rotations. From the architectures, the
number L8 performed better with a batch size of 256 and a learning rate of
0.0001.

A.1.4 Comparison

In Figure A.7 we compare the best model obtained from each one of the
three possibilities, and although close, it can be seen that the one with better
results is using the three features.

Figure A.7: LeNet with different attributes

A.2 U-Net

The procedure to find the optimal U-Net input data, hyper-parameters con-
figuration and network topology is similar to the one proposed for LeNet.
The first step was to try different segmentation masks and a 4x4 mask, cov-
ering a square area of ≈ 120x120m, proved to be the best one (Figure A.8).
Then, we combined different features to understand how each one is influ-
encing the results and from Figure A.9 we observed that a 1-channel input
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data, with only elevation, led to the best precision-recall curve. Figure A.10
shows how the percentage of imbalance of the dataset can negatively impact
the trained model. The amount of empty patches is influenced by the lack
of a precise ground peak dataset. The different network topologies are rep-
resented in Figure A.11; we observe that using 64 features led to the best
results, although the models with 32 and 16 features are very close. The
model with 4 levels performs very poorly and the model with 5 levels is not
plotted because its training was unfeasible. In the following figures, all the
U-Net results are generated with original elevation as the only feature, unless
otherwise stated.

Figure A.8: U-Net with different segmentation masks

A.2.1 Comparison

In Figure A.12 we compare the best model obtained when trying different
features. We can observe that the model using only elevation, i.e. the orig-
inal DEM1 data, is the one performing better. The results from the three
combined features are very close to be optimal, while the model trained with
resized elevation can be discarded.
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Figure A.9: U-Net with different input data features

Figure A.10: Influence of empty patches on U-Net models
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Figure A.11: Different U-Net architecture topologies

Figure A.12: Best U-Net models when using: only elevation, three features
and only elevation rescaled
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