
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

ANALYSING MARKETING TRENDS FROM PRODUCT
REVIEWS

Relatore: Prof. Pier Luca Lanzi

Correlatore: Dott. Andrea Lui

Tesi di Laurea di:
Paolo Polimeno Camastra

Matricola 874845

Anno Accademico 2017/2018

Acknowledgments

I would like to thank my Advisor, Professor Pier Luca Lanzi, for his support
and guidance. I would like to thank Professor Barbara Di Eugenio from UIC, my
colleagues Mohammed Elshendy and Andrea Lui for their help and feedback on this
work. I would like to thank my family, especially my sister for her help in revision,
my friends and course mates, especially Gabriele who inspired the first page design,
and my colleagues, especially Fedez.

P.P.C.

iii

Contents

1 Introduction 1

1.1 Purpose . 1

1.1.1 Economic Impact of Reviews 1

1.1.2 Other tasks . 3

1.2 Proposed Approach . 3

1.2.1 Text Clustering . 4

1.2.2 Opinion Polarity Analysis 4

1.2.3 Economic Impact of Reviews 5

2 Text processing technologies 8

2.1 Vectorial representation of text . 8

2.1.1 Bag of Words model . 8

2.1.2 Tf-idf representation . 9

2.1.3 Word Embeddings . 9

2.2 Neural Network . 13

2.2.1 Artificial Neuron . 14

2.2.2 Training phase: optimization 15

2.2.3 Dropout . 16

2.3 Deep Learning Architectures for NLP 17

2.3.1 Recurrent Neural Networks 17

2.3.2 GRUs and LSTMs . 19

2.3.3 Convolutional Neural Networks in NLP 20

2.4 Summary . 22

3 Literature Review 25

3.1 Text clustering . 25

3.1.1 Clustering . 25

3.1.2 Singular Value Decomposition (SVD) 25

v

vi CONTENTS

3.1.3 Latent Dirichlet Allocation (LDA) 25

3.1.4 Text Clusterings Examples 26

3.2 Opinion Mining . 26

3.2.1 Opinion base components 26

3.2.2 Main tasks . 27

3.2.3 Opinion Polarity Analysis 27

3.2.4 Lexicon-based Approach . 27

3.3 Machine learning-based approach 28

3.3.1 Supervised Learning . 28

3.4 Transfer Learning . 29

4 Data structure 32

4.1 Amazon.com . 32

4.2 Amazon Review Structure . 32

4.3 Dataset structure . 33

4.3.1 Some descriptive statistics 33

4.4 Summary . 34

5 Text Clustering 38

5.1 Proposed approach . 38

5.2 Product names clustering . 39

5.2.1 Product Names Preprocessing 39

5.2.2 Vectorization of Product Titles 39

5.2.3 K-means . 40

5.2.4 Cluster number selection . 41

5.2.5 Adjusted mutual information between hard clustering 42

5.2.6 Clusterings AMI agreements results 42

5.3 Product reviews clusterings . 43

5.3.1 Data . 43

5.3.2 Clustering . 43

5.3.3 Agreement between clusterings of product reviews 43

6 Opinion Polarity Analysis 49

6.1 Workflow description . 49

6.2 Classic ML algorithms . 50

6.3 Deep Learning . 50

6.3.1 Architectures . 50

CONTENTS vii

6.3.2 Word Embeddings . 50
6.4 Classification Techniques Parameters 50
6.5 Evaluation . 52

6.5.1 Cross Validation . 53
6.5.2 K-fold . 53
6.5.3 Evaluation Metrics . 53
6.5.4 F1 for multiclass . 55

6.6 Dataset imbalance, undersampling+crossvalidation 55
6.7 Transfer Learning . 56
6.8 Summary . 57

7 Time Series Prediction: Economic Impact of Reviews 59

7.0.1 Time Series . 59
7.0.2 Stochastic Process . 59
7.0.3 White Noise Process . 60
7.0.4 Moving Average Process . 60
7.0.5 Autoregressive Process . 60
7.0.6 ARMA Process . 60
7.0.7 Time Series Components . 61

7.1 Evaluation Metrics for Time Series 62
7.2 Our approach . 62

7.2.1 Naive/Persistence Forecast 63
7.2.2 Product extraction . 63
7.2.3 Product Features extraction 63
7.2.4 Target Feature extraction 65

7.3 Train and Test set . 65
7.4 Evaluation . 66

8 Conclusions and Future Works 68

Acronimi 71

Bibliography 73

List of Figures

1.1 Sample Google Trends Time Series 2

1.2 Sample of correlated Time Series from Google Correlate 3

2.1 Semantic representation of words 10

2.2 Predict word from context . 10

2.3 Semantic relationships between word2Vec vectors 11

2.4 Artificial Neuron . 13

2.5 Sigmoid function, Hyperbolic Tangent and ReLU 15

2.6 Sample graph of error on Training and Validation set showing optimal
point . 17

2.7 Sample neural network with and without dropout 18

2.8 A sample multioutput RNN . 19

2.9 A sample RNN cell . 21

2.10 Simple GRU . 21

2.11 Example of CNN filter . 23

2.12 Example of CNN applied to NLP 23

4.1 Sample Amazon.com review . 33

4.2 Reviews by date . 34

4.3 "Electronics"+"Cell Phones" reviews by date, 2012/01 - 2014/07 . . 35

4.4 Distribution of reviews lengths . 35

4.5 Evolution of ratings distribution from 2012/01/01 to 2014/07/23 . . 36

5.1 Example of Product Name . 39

5.2 The three different Vectorization Processing Flows 44

5.3 Some topics extracted with LDA and most important words 45

5.4 Knee elbow graph for SVD+tf-idf 46

5.5 Knee elbow graph for LDA . 46

5.6 Knee elbow plot for word2Vec . 46

ix

x LIST OF FIGURES

5.7 Points and K-means clustering . 47

6.1 Architecture of implemented models 51

7.1 TS components . 61
7.2 LSTM model for economic value prediction 66

List of Tables

3.1 Labels and Classes Distribution . 30
3.2 Results of 1st and 2nd Experiment 30

5.1 WSS Metrics for SVD+tf-idf . 41
5.2 WSS and BSS metrics for LDA . 41
5.3 WSS and BSS metrics for word2vec 42
5.4 AMI between couples of clusterings 43
5.5 AMI scores for product reviews . 43

6.1 Performances in normal crossvalidation 56
6.2 Performances in undersampling+crossvalidation 56
6.3 Undersampling+crossvalidation, NO Transfer Learning 57
6.4 Undersampling+crossvalidation, Transfer Learning 57

7.1 Number of considered products and number of considered reviews . 64
7.2 Average of features for each product 64
7.3 Performances of different models on considered products 65

xi

Sommario

Oggigiorno l’e-commerce è più importante di quanto sia mai stato: Amazon.com
detiene il 5% della quota del mercato retail statunitense e Alibaba Group ha
generato 25 Miliardi di dollari di ricavi nel Single Day in Cina. Le recensioni online
sono sempre più cruciali per i consumatori che cercano consigli su cosa comprare o
cosa fare e sono di innegabile importanza per un gran numero di business: retail,
alberghi, ristoranti, strutture mediche...

Questo lavoro analizza alcune sfide presentate dalla vasta mole di dati costituita
dalle recensioni di Amazon.com, in particolare Document Clustering, Opinion Po-
larity Analysis e Forecasting dell’Impatto Economico delle Recensioni. Proporremo
soluzioni per i casi d’uso identificati, che riteniamo interessanti per le aziende. I
casi d’uso identificati sono: Document Clustering nel campo delle rencesioni online,
Transfer Learning per classification del Sentiment e previsione dell’indice di ricerca
di Google Trends per alcuni prodotti.

Il seguente lavoro è diviso in tre parti principali, ciascuna delle quali si inquadra
in una delle tre macro aree menzionate. Inoltre, in ciascuna parte verrà utiliz-
zato principalmente un particolare sottoinsieme di tecniche di Machine Learning,
rispettivamente: Unsupervised Learning, Supervised Learning e Time Series Fore-
casting. Dopo ciascuna fase valuteremo i risultati secondo metriche matematiche di
performance.

xiii

Abstract

Nowadays e-commerce is more relevant than it has ever been before, with
Amazon having 5% percent of USA retail and Alibaba Group being able to generate
$25 Billion of revenues on China’s Singles’ Day. Online reviews are more and more
crucial for customers trying to choose what to buy or what to do and they are
of undeniable importance for a wide variety of businesses: retail, accomodations,
restaurants, healthcare...

This study looks at some challenges offered by the huge amount of data con-
stituted by Amazon.com reviews, in particular Document Clustering, Opinion
Polarity Analysis and Forecasting of Economic Impact of Reviews. We will propose
solutions to identified use cases, which are deemed interesting for companies. The
use cases selected are: Document Clustering in the field of the online reviews,
Transfer Learning for MultiClass Sentiment classification and Google Trends index
prediction for some products.

The study is divided in three main parts, following the three above mentioned
macro areas. Each of the steps will make use of a particular subset of Machine
Learning techniques, respectively: Unsupervised Learning, Supervised Learning
and Time Series Forecasting. After each phase we will evaluate results according to
mathematical performances metrics.

xiv

Chapter 1

Introduction

Product reviews are ubiquitous nowadays: the dot-com bubble of 1999 saw the
birth of a number of companies which allowed their users to express their opinion
on anything from sports teams to movies. Their importance has been steadily
increasing: according to a survey from BrighLocal.com, Brightlocal, 2018 in 2017
97% of consumers used the internet to find a local business, up from 95% in 2016,
and 85% of consumers trust online reviews as much as personal recommendations.
The significant role played by online reviews nowadays prompted us to choose them
as object of our study. Below we highlight the purpose of our work as well as the
methodology we adopted.

1.1 Purpose

1.1.1 Economic Impact of Reviews

It is clear that, given the undeniable relevance online reviews have assumed in
recent years, it becomes critical for a business to be able to estimate the ”economic
impact” of online reviews on the sales of their products. Specifically, we decided
to focus on Amazon.com, given its importance as online marketplace. What we
mean by ”economic impact” is a series of indicators which relates Amazon reviews
to product sales: of course, we can imagine that very bad reviews reflect a product
which is not appreciated at all and that will likely sell less in the future and,
viceversa, product which have wide and clear consensus will probably undergo an
upward trend. What we hope to extract is quantitative insights such as: do the
volume of published reviews affect product sales? how long after a trend in reviews
reflects on actual sales? how much does good/bad review polarity matter? how

1

2 Chapter 1. Introduction

much do competitors’ product reviews affect our sales? In order to answer these and
more questions we need two kinds of data: Amazon reviews, which we happen to
have, and sales data form various companies, which, on the contrary, are not so easy
to collect, given their proprietary nature. Confronted with this problem, we came
up with an interesting solution: as shown in various publications (e.g.[2]) Google
Trends is strongly correlated with sales volume and can therefore be considered a
reliable proxy for them.

Google Trends

Google Trends is a website which provides query volumes for the majority of
terms searched on Google.com. As we can see in Figure 1 the scale of Google
Trends results ranges from 0 to 100. The y-axis is the relative volume of search
with respect to the highest volume in the specified timeframe (y=100).

Figure 1.1: Sample Google Trends Time Series

Google Correlate

Google Correlates is another tool by Google which enables you to search for
search volume trends which are strongly correlated to a time series of your choice.
We will use it to look for other features which can help us in economic value
prediction.

1.2. Proposed Approach 3

Figure 1.2: Sample of correlated Time Series from Google Correlate

1.1.2 Other tasks

While working on Time Series prediction for Amazon.com reviews, we noticed
how two important tasks related to online reviews and which can also be of help
when dealing with less structure environments such as Social Networks, online news
or blogs.

1.2 Proposed Approach

In this section we will detail the approach we will be following for each of
the three tasks we intend to address. In particular in each of the three tasks
we will make use of tools from a specific area of Machine Learning, respectively:
Unsupervised Learning for the Text Clustering part, Supervised Learning for the
Opinion Polarity part and Time Series prediction for the Economic Impact Review
part.

4 Chapter 1. Introduction

1.2.1 Text Clustering

Before looking at text clustering, we had envisioned a system which would have
performed detection of "noise" in reviews, where with noise we meant reviews which
are written in order to deceive customers into thinking a certain product is much
better than it actually is (hyper spam) or much worse than it actually is (defaming
spam).
However, we soon noticed that it is really difficult to identify "spam" reviews,
because, if they are well-crafted they can appear exactly like a legitimate one and
even a human would not be able to detect them. In order to divide products
into groups and limit the application of "spam" detection procedures, we had
already started working on text clustering. We were getting interesting results and,
therefore, we decided to go on working in this field.
We divide the process into two steps: first we focus on clusterization of product
titles, subsequently we consider product reviews.

Product Name Clustering

Before performing clustering of the products name, we need to transform them
into their vector-representation. We will follow various vectorization flows, in
particular: tfidf+SVD, LDA and Word2vec. After we have obtained the desired
vectorization we will perform K-means clusterings and we will try to select the
optimal number of clusters.
Furthermore we are interested in looking at how different vectorization flows can give
rise to different clusterizations of product titles and whether these clusterizations
are similar or not. A good similarity between them will make us confident that
clustering is robust.

Product Reviews Clustering

In the second steps, we inquire further whether different vectorization flows
give rise to similar clusterings. We perform hierarchical clusterings at different
granularities and we evaluate Adjusted Mutual Information Score.

1.2.2 Opinion Polarity Analysis

This part of the work is focused on Supervised Learning. We have a double
intent: we want to explore models for Sentiment classification which perform well

1.2. Proposed Approach 5

on a vast and imbalanced dataset such as ours. Then we want to be able to transfer
what we learnt in the starting domain to another given domain. This is known
in the literature as Transfer Learning. For the second domain we choose a small
dataset in order to simulate the situation where we have handlabelled a dataset
and where pre-existing knowledge would be very much needed, given that training
set is small.
Our expectation is that a model pretrained on a vast dataset should yield better
results than the one trained only on the small training set.

1.2.3 Economic Impact of Reviews

This part of the work is in the field of Time Series Prediction and it is an
attempt at modeling Google Trends time series for a certain number of products.
In order to do so we will consider different approaches. At first we will try to model
time series with traditional approaches like ARIMA, after testing for stationarity
and differencing if necessary. Then we will implement other models which take
input, in particular the features we will try are extracted from Amazon reviews
of the product taken into consideration. This last step will allow us to evaluate
whether reviews can give us an edge in predicting Google Trends.

6 Chapter 1. Introduction

Outline

Thesis text is thus structured:

In the first chapter we introduce our work, we discuss its purpose and the various
tasks we are going to work on.

In the second chapter we will present NLP and ML tools we will be using.

In the third chapter we will present the previous work in the fields which we are
going to work in.

In the fourth chapter we will describe the dataset.

In the fifth chapter we will deal with Text Clustering.

In the sixth chapter we will deal with Opinion Polarity Analysis.

In the seventh chapter we will deal with Economic Value Prediction.

In the eighth chapter we will discuss conclusions and future works.

Chapter 2

Text processing technologies

In the previous chapter we discussed the problems we are going to address in our
work. In both problems we will be dealing with plain English text and we will be
using the tools which have been developed in the field of NLP since its beginnings
in the 50s to these days with the advent of Deep Learning.

2.1 Vectorial representation of text

In order for algorithms to be able to process text, various representations
have been developed. The ones we take into consideration map either the whole
document or single words or n-grams to a Vectorial Space. Below we illustrate the
representations which will be used in our work.

2.1.1 Bag of Words model

This model can be found as early as 1954 in Harris, 1954. If we are working on
a set of documents D, we will be able, after a preprocessing phase, to extract N
unique tokens. Each document is represented as a vector, whose length is the same
as the number of words of the vocabulary extracted from the corpus, that is to say:
N . The entries of the vector represent the frequency of each vocabulary term in
the document.
For example, if we assume the following ordered vocabulary:

{′I ′,′ you′,′ like′,′ hate′,′ pizza′,′ pasta′,′ and′}

8

2.1. Vectorial representation of text 9

and we consider the following document:

I like pizza and I like pasta

we can represent the document as the vector:

[1, 0, 2, 0, 1, 1, 1]

This representation does not capture word order in the document, but it keeps all the
information about words and their frequencies. However, for certain applications,
e.g. documents classification, it would be useful to have a measure of how relevant
a term is.

2.1.2 Tf-idf representation

The tf-idf representation was introduced by Karen Jones in Sparck Jones, 1972.
A document is defined as a vector of length equals to vocabulary length, just like in
BOW model. What changes is that the values in the vector are not the frequency
of each term in the document, but they are given by the following function which
takes as input the document d, the term t and the set of all documents D:

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D)

The first product term represents the term frequency used in BOW model. In tf-idf
representation it is weighted by the Inverse Document Frequency term, which tells
us whether a term is present in a lot of other documents of the corpus and thus is
not very relevant or if it is in just a few/in only the one considered and thus is very
relevant. Idf is defined as follows:

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

2.1.3 Word Embeddings

In the BOW representation each word (feature) has its own dimension and
therefore what we have learned for a specific word, e.g. "orange", is not transferred
to semantically close words, e.g. "lemon".
It would be better if we managed to build word representations which captured

10 Chapter 2. Text processing technologies

semantic similarity, so that our models could generalize more easily and would need
a smaller training set. What we would like to get is something similar to 5.7, that

Figure 2.1: Semantic representation of words

is to say a vector representation where the dimensions do not correspond to single
words in the vocabulary, but rather to "concepts". Even if we cannot decide which
concepts our model learns, we would like to have vectors whose cosine distance is
smaller the more they represent semantically similar words.
It turns out that performing tasks such as the one depicted in 2.2, that is to say
predicting a word given a context, is really useful for obtaining vectors with the
above mentioned characteristics.

I really like to go to the __

Figure 2.2: Predict word from context

In particular in 2013 Mikolov et al., 2013 Mikolov and his team at Google proposed
two algorithms that are able to create word embeddings efficiently and drawing
from very large text dataset. Their approach is known as Word2vec. Word2vec
embeddings have been one of the most popular in research, but other embeddings
have emerged such as FastText Joulin et al., 2016 or GloVe Pennington et al., 2014.

In 2.3 we can see examples of word2vec-like representations of different relationships

2.1. Vectorial representation of text 11

king

queen

woman

man

Male-Female

swim

walked

swam

walk

Verb tense

Italy

Madrid

Rome

Spain

Country-Capital

Figure 2.3: Semantic relationships between word2Vec vectors

which cannot be captured by classic vectorial representations, such as BOW, but
are indeed very well captured by word2vec and similar word embeddings.

Main Algorithms

Below we give a brief description of three algorithms which are extensively used
in statistical NLP and that we will use as baselines in our experiments.
Naive Bayes: Naive Bayes, as the name suggests is based on Bayes’ Theorem
(Bayes) and on the assumption of independence of features (Naive).

x = (x1, ..., xn) feature vector

p(Ck|x) for each possible class Ck

The above probabilities are difficult to calculate from a corpus, therefore we use
Bayes’ Theorem to obtain a better formulation:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)

We notice that the numerator is equal to the joint probability

p(x1, ..., xn, Ck)

12 Chapter 2. Text processing technologies

which, with chain rule and independence assumption, can be rewritten as

p(Ck)
n∏

i=1

p(xi|Ck)

We can estimate both factors from the corpus and we can classify the sample by
finding the class that maximizes the above expression.

SVM: Given a training dataset:

(x1, y1), ..., (xn, yn)

SVM is a linear classifier which tries to find the "maximum-margin hyperplane"
and then classify the new points based on which sides of the hyperplane they fall.
A hyperplane is the set of points which satisfies:

x ∗w − b = 0

where w and b are weights which must be trained. If the classes are linearly
separable, it is possible to draw two parallel hyperplanes that separate the points of
the two classes and are as far as possible. The parallel hyperplane which is halfway
in between them is the "maximum-margin". If the points are not linearly separable
we can still classify them with SVM, but before we need to project them onto a
higher dimension hyperplane, a procedure known as "kernel trick".

Random Forest

Random Forest is an ensemble method which is based on decision trees, in
particular on averaging a number of unpruned regression trees. Given that it is an
ensemble method, in order to be able to exploit its potential we need to generate
a series of different weak learners. We start from the same dataset so we need a
strategy to generate the above mentioned different learners. Random Forest makes
use of bootstrap aggragation, that is to say it generates a variety of new training
sets by uniformly sampling the starting dataset with replacement. Furthermore it
adds another source of randomness by splitting each trees on only a part of the
available featyres. Random Forest improves the variance reduction of bootstrap
aggregation by creating little correlated trees.

2.2. Neural Network 13

XGBoost

XGboost is the short for Extreme Gradient Boosting and it is an implementation
of Gradient Boosting Machines. GBM is a family of model which have yielded good
results in various practical applications. XGBoost has a parellel implementation
which makes it faster compared to similar algorithms. Just like Random Forest
XGBoost is an ensemble method. In general GBMs method works by trying to
iteratively improve the weak learners.
Starting from a model F we can calculate the loss function L which for ecample
could be MSE. At each iteration the learner F is updated in such a way Fm+1(x) =

Fm(x) + d(x) where our objective is to make F equal to the target function. The
way we select d(x) is by going in the direction opposite of the gradient of the loss
function L.

2.2 Neural Network

Neural Network is family of models which has been developed taking inspiration
from the human neural system. The perceptron, presented in 1957, is the first
example of NN which is able to perform supervised learning, in particular linear
classification.
Perceptron seemed promising at first, but the fact that a single perceptron was not
able to produce XOR function, underlined also by the famous book Perceptron by
Minsky and Papert, caused a decline of its popularity and of NN research in general.
However, it was soon discovered that more perceptrons stacked one after another
were able to generate the XOR function and perform non-linear classification.

Figure 2.4: Artificial Neuron

14 Chapter 2. Text processing technologies

Artificial Neural Network was born and it is exactly that: a series of layers
formed by artificial neurons, which are like a perceptron which outputs continous
values between 0 and 1 instead of only 0 or 1. Before showing the structure of a
typical ANN let’s see exactly how an Artificial Neuron works.

2.2.1 Artificial Neuron

Artificial neurons are inspired by biological one, in the sense that they receive
inputs from other Artificial neurons and their output is a function of the inputs
received.
Let’s see the mathematical expression which defines an Artificial Neuron:

y = ϕ(
m∑
j=0

wjxj)

Specifically:

• m is the number of inputs

• xjs are the different inputs

• wjs are the coefficients (weights) of the linear combination of the inputs which
is fed to ϕ

• x0 is a special input because it is always equal to 1 and its corresponding
weight w0 is also indicated as b0 and is named bias

• ϕ is a nonlinear function of the above mentioned linear combination of inputs,
ϕ : R −→ R

• y is the output of the neuron

Some examples of the most common nonlinear functions ϕ used for the AN are
given below:

• Sigmoid: f(x) = 1
1+e−x

• Hyperbolic Tangent: 2
1+e−2x − 1

• Rectified Linear Unit: f(x) = max(0, x)

2.2. Neural Network 15

Figure 2.5: Sigmoid function, Hyperbolic Tangent and ReLU

Multi-label classification When we find ourselves with a multi-label classification
problem, the Neural Network is usually structured so that the last layer has as many
neurons as the number of class we are taking into consideration. The idea is that
the output of the i-th neuron should represent the probability of the input being in
the i-th class and therefore it should take a value in [0, 1], with the summation of
the outputs being equal to 1. In order to do this another kind of nonlinear function
is introduced, the softmax function: oj = ex

T wj+bj∑K
k=1 e

xT wk+bk

2.2.2 Training phase: optimization

The objective of the training phase is to find parameters which minimize the
selected error function (Loss) calculated over all the samples of the training set.

w* =

N_training_samples∑
i=0

(y − (ŷ))

where (̂y) is the prediction output by NN.

16 Chapter 2. Text processing technologies

Algorithm 1: Random Forest Training Algorithm
1 Random initialization of network weight;
2 for all s : TrainFeatures and t : TrainTargets do
3 ŷ= computeoutput(network, s);w = w α(wTy)y;

Stochastic gradient descent

The function L which has to be minimized is a nonlinear and very complex one,
therefore we cannot use exact methods. The standard method for NN optimization
is Stochastic Gradient Descent which is a variation of standard Gradient Descent.
Gradient Descent is a very simple iterative : we start from a random vector of
weights w0, we calculate the gradient of the loss function L with respect to the
vector of weights and we substract it to the current vector of weights.

As we have seen, SGD is an iterative method and it updates the weight vectors
each time it is presented with a sample from training set. Multiple passes, called
epochs, are made on the training set. Until convergence is reached the error on the
training set continues to decrease, since we still have not reached a minimum. Up
to a certain point the increase in performances will be reflected on the data outside
the training set, while if we train for too long the model will probably overfit the
train data and we will see performances on outside training data decrease.
In order to avoid that, we can use Early Stopping. Early Stopping is a method of
regularization, that is to say a modification of the algorithm which try to prevent
overfitting. The standard way Early Stopping is implemented is this: we train
model on the Training Set and at the end of each epoch we evaluate its performances
on the Validation Set. If performances on the Validation Set have decreased at least
by a given selected amount, we keep on training, otherwise it means that the model
has probably started to overfit and therefore we stop the training phase. The final
weights will be the ones obtained during the last training epoch. In [] we can see
a plot of RMSE loss on both Training and Validation set. The point where they
start to diverge is where the model starts to overfit and where Early Stopping halts
training phase.

2.2.3 Dropout

Deep Neural Networks present a very large number of parameters and it would
take a lot of time to train a large number of different networks and combine their
prediction in order to prevent overfitting. One way to do so is by using the Dropout

2.3. Deep Learning Architectures for NLP 17

Figure 2.6: Sample graph of error on Training and Validation set showing optimal point

technique. Dropout takes its name from the way training phase is performed: at
each iteration p neurons and their connections are dropped. The result is that at
each iteration we are training one of the 2n, where n is the number of neurons,
possible networks. During test phase we use the full, not "thinned", network with
the weights divided by the factor p, so as to account for the "thinned" factor of
training phase. By applying dropout neurons becomes more independent, since they
cannot rely on each other and makes the NN more robust, preventing overfitting.
In [] we can see a depiction of a full NN vs its Dropout version.

2.3 Deep Learning Architectures for NLP

We start by describing the main DL architectures which are currently used in
the NLP field.

2.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a particular kind of Neural Network
(NN) which was introduced in the 80s and they are particularly suited for modeling

18 Chapter 2. Text processing technologies

Figure 2.7: Sample neural network with and without dropout

temporal dependencies. RNNs are not so different from feed-forward NN. In both
cases we have a Tx input vectors and Ty output vectors and we assume Tx = Ty.
While the standard NN takes in input all the word vectors, which we can assume
to be word in a document, at the same time, the RNN is basically a succession of
NNs which takes in input only two vectors: the hidden state vector of the previous
time step a < t− 1 > and the word vector of current time step x < t >.

We list the two main advantages of using RNN over NN:

• RNN uses the same set of weights at every time step, therefore we can use
very few weights with respect to a NN, which must have weights for each
word of the longest input sequence.

• With RNN we can have sequences as long as we desire, without having to fix
length in advance.

• With an NN the first word and e.g. the fourth word in a sequence are two
completely different feature and NN cannot transfer something it learnt for
the first word to the fourth word in a sequence. On the contrary RNN, by
sharing weights, is able to capture pattern also if they appear in different

2.3. Deep Learning Architectures for NLP 19

x<1> x<2> x<Tx>

y<1> y<2>

...

a<1> a<2>

y<Ty>

a<0>

Figure 2.8: A sample multioutput RNN

positions.

As we have seen RNN is nothing more than a series of NNs and therefore we can
train it with standard backpropagation, after having unrolled it for the number of
time-steps of the input sequence. Unfortunately, an unfolded RNN can be a rather
deep NN and as in all deep NN we encounter the exploding and vanishing gradients
problem, that is to say a numerical impossibility of propagating the weight update
needed to the first layers of the network during backpropagation.
This weak point in the implementation has been addressed with architectural
changes. In particular, we will look at two of the variations which have been
developed by researchers: Gated Recurrent Unit (GRU) and Long Short-Term
Memory (LSTM) unit.

2.3.2 GRUs and LSTMs

In this section we give an overview of a slightly simplified version of a GRU.
Both GRUs and LSTMs are based on the same principle of adding so-called "gates".
Gates are functions which are in charge of changing the way the hidden status is
updated. In this way we allow some information which is in the hidden state, i.e.

20 Chapter 2. Text processing technologies

some of the values of the vector, to be partially or even completely unmodified with
respect to what would have happened without it.
By doing so we are able to mitigate the problem of vanishing gradients and we are
able to obtain a network which captures long-term dependencies.
As we said, in 2.10 we can see a simplified GRU, which has a single gate. LSTM was
the first of this kind of architecture to be proposed Hochreiter and Schmidhuber,
1997 and we may be interested in discussing its structure or also the structure of
the more recent GRU. Actually, there is no need to go into such details, since all
these architectures are variations which have been developed by researchers in order
to avoid vanishing gradients problem and have emerged as the best one. Still, the
principle of filtering the hidden state with gate function is the main idea and it
underlies all of them. An interesting point is made in Khandelwal et al., 2018 as to
how much context LSTMs are really able to capture.
From the analysis it emerges that increases in window size after 200 time steps affect
very little LSTMs performance and, furthermore, words order is only captured in
the most 50 recent tokens.

2.3.3 Convolutional Neural Networks in NLP

Convolutional Neural Networks (CNNs) are well known in Machine Learn-
ing community. In particular, the Imagenet challenge results accomplished by
Krizhevsky, Sutskever and Hinton Krizhevsky et al., 2012 are considered to be the
start of Deep Learning revolution. CNNs are widely used in Image Recognition and
they are based on the concept of Convolution: a filter, 2.11, slides over the image
matrix and takes the dot product between the network’s ordered weights and the
ordered pixels of the image portion it is on at time t. Filter weights are shared, i.e.
they do not change when the filter slides over the image, so that each filter is able
to learn a specific feature and it can recognize it in every section of the image.
Each layer of the CNN comprises several filters and each of those is able to learn a
specific feature. In CNNs we speak of "compositionality": going from one layer to
the next one, features become more complex since they are obtained as a combina-
tion of the previous layer’s features. As an example, given an image, the first layer
of the network takes as input raw pixels. Pixels get combined by the filters: during
the training phase, each filter learns parameters which enable it to detect simple
patterns, e.g. vertical lines, horizontal lines, objects’ edges. The second layer of the
network takes as input the patterns learned by the first layer and combines them,

2.3. Deep Learning Architectures for NLP 21

tanh
a<t-1>

x<t>

a<t>
a<t> = g(Wa [a<t-1> ,x<t>] + ba)

Figure 2.9: A sample RNN cell

c<t-1>

x<t>

tanh σ

cnew<t> Γu
cnew = tanh (Wc[c<t-1>,x<t-1>]+bc)

Γu = (Wu[c<t-1>,x<t>]+bu)

c<t>= Γu*cnew
<t>+(1-Γu)*c<t-1>

c<t>

Figure 2.10: Simple GRU

yielding more complex patterns such as lines meeting at specific angles, specific
shapes, etc. The third layer aggregates second layer’s features and detects details
in images: if, as an example, the image depicts a car, each filter of the third layer
will detect either wheels or windows or fenders, etc.
CNNs also presents another kind of layer, the Pooling Layer, which makes the
network robust with respect to translation and rotation. It achieves this by down-
sampling the image, that is to say by extracting a single value (usually average or
maximum) from every group of adjacent pixels.

22 Chapter 2. Text processing technologies

In NLP, 2.12, instead of considering images, we consider the matrix obtained by
juxtaposing the word vectors. Filters are a way to capture combinations of words,
syntax and semantics.

2.4 Summary

In this section we looked at the various techniques which we are going to employ
in the rest of the work. We gave both theoretical foundations and practical use
cases. We started from the most important tool, which are the various kinds of
documents vectorization, both the classical ones and the more recent ones based on
word embeddings.
Subsequently we went to machine learning algorithms which are commonly used in
the field of NLP. Even in this case we analyzed both the more traditional approaches
such as Naive Bayes, SVM, etc. and the Neural Network-based ones. We presented
main concepts of NN training and we described the main architectures which have
been proven useful in the field of NLP.

2.4. Summary 23

wTx+b

Figure 2.11: Example of CNN filter

I
like
this

food
so

much
!

Sentence matrix

7x5

3 region sizes(2,3,4)

2 filters for each region

size

2 feature maps

for each region

size

for each map

max value is

selected

Convolution step Max pooling step Flattening and classification

Figure 2.12: Example of CNN applied to NLP

Chapter 3

Literature Review

3.1 Text clustering

In this section we introduce techniques which we will apply in the Text Clustering
section of our work, as well as some use cases which can be found in the literature.

3.1.1 Clustering

Clustering is an unsupervised technique which aims to discover patterns in
data, in particular to assign each data point to a group, i.e. a "cluster". It is
unsupervised because data has no label to learn from and to be used for evaluation
purposes. Clusters should represent a group of points which are more similar to
each other than to the points which are not in their cluster, based on some similarity
measure of choice.

3.1.2 Singular Value Decomposition (SVD)

SVD gives us a specific k-dimensional subspace which is contained in the original
vectorial space. Specifically, SVD gives us the k-dimensional subspace which
minimizes the mean projection square error and explains the most variance with
respect to all the other k-dimensional subspaces.

3.1.3 Latent Dirichlet Allocation (LDA)

LDA Blei et al., 2003 is a generative model, which is used for topic modeling, that
is to say to "discover" which latent topics are hidden in a collection of documents.
LDA assumes a fixed number of latent topics and describes each document as a

25

26 Chapter 3. Literature Review

distribution over topics and each topic as a distribution over words. Topics are not
predefined but are discovered through inference. By using Bayesian inference we
are able to see which words are most associated to a topic and which topics are
most present in each document.

3.1.4 Text Clusterings Examples

In Xu et al., 2015 the authors compare various text clustering approaches:
K-means, Spectral Clustering and Convolutional Neural Networks. They cluster 2
labeled datasets of around 104 samples and they evaluate obtained clusterings in
terms of Accuracy and Normalized Mutual Information. Both metrics are calculated
with respect to the true labels.
In T. Liu et al., 2003 the authors evaluate clusterings obtained after a process of
feature selection with Precision. Precision labels a cluster with the label of the
class which is found to be more present and gives the ratio between the number of
samples from majority class and cluster’s cardinality.
Again, in Kuang et al., 2015 authors consider Accuracy and NMI with respect to
true labels as measures for Clustering Quality. They also evaluate the consistency
of the clusterings, by running each method 30 times and giving a measure of how
much assignment varies: they consider each couple of runs. For each couple they
perform 1-1 matching of clusters from run 1 to clusters from run 2, by similarity,
and then they calculate how many samples are not in the same clusters.

3.2 Opinion Mining

Opinion Mining does not focus on the topic of the document, instead, it focuses
on the opinion expressed in it.

3.2.1 Opinion base components

According to Esuli and Sebastiani, 2005, main components of an opinion are:

• Opinion holder: the person/organization which holds a specific opinion on a
specific object

• Opinion object: what the opinion is about

• Opinion: a statement regarding an object coming from the opinion holder

3.2. Opinion Mining 27

3.2.2 Main tasks

Again, according to Esuli and Sebastiani, 2005, these are the main tasks which
are performed in Opinion Mining:

• Determining subjectivity: it consists in determining whether an opinion is
objective or it expresses a personal view. It takes the form of a binary
classification task.

• Determining the orientation (polarity): it consists of determining whether a
subjective text expresses a positive or negative opinion.

• Determining the strength of orientation: it consists in determining how much
a positive or negative opinion is strong.

Among the above mentioned three tasks, we decided to focus on task two and task
three, which are known as Opinion Polarity Analysis.

3.2.3 Opinion Polarity Analysis

Opinion Polarity Analysis, also known in the industry as Sentiment Analysis,
is usually framed as a classification problem. In its basic version, it is a binary
classification (Positive and Negative), while in our case it becomes a multiclass
classification problem since we have 5 different possible scores.
We will deal with Document Level Classification: this type of classification considers
a document as a basic unit and tries to classify it. Below we give an overview of
main approaches which have been tried by researchers.

3.2.4 Lexicon-based Approach

This rather simple approach is based on counting how many positive and negative
words are present in a text and classifying the document accordingly.

Dictionary-based Approach

This approach is adopted, for example in Hu and B. Liu, 2004. The idea is
very simple: compile a list of words with positive and negative orientation. Since
positive or negative connotation is not something we can usually find in dictionaries,
we need a strategy to collect the needed list. One idea, which is detailed in Turney,
2002 is to use mutual information: you perform a web search on a term and you

28 Chapter 3. Literature Review

calculate the mutual information with a very positive term such as "excellent" and
a very negative term such as "poor". The disadvantage lies in the number of web
searches and operations to be performed.
A simpler idea, which is the one described in Hu and B. Liu, 2004 is to exploit the
similarity/antonymy information contained in a synonym/antonym dictionary(e.g.
WordNet): you start from a list of seeds for which orientation is given and you
iterate over all adjectives. If they have a synonym in positive/negative seed list
you add them to that list, while if they have an antonym in positive/negative seed
list you add them to the opposite list. Of course, some of the words will not fall
in either one or the other category, but if we run the procedure again they may,
given that the size of the lists has increased. You keep running iteratively until the
lists remain the same. Dictionary approach is not able to catch context-dependent
orientation of words.

Corpus-based Approach

In the corpus-based approach, starting from a seed list we want to extract
other sentiment words from a specific corpus. One idea is explained in "Predicting
the semantic orientation of adjectives": they designed a series of rules to extend
orientation from one word to another based on connectives. One example is with
the ’and’ conjunction: if a word is linked to another by ’and’ their polarities are
assumed to be the same.

3.3 Machine learning-based approach

3.3.1 Supervised Learning

The first paper to use the supervised machine learning approach to classify
reviews was Pang et al., 2002. Researchers did not rely on prior knowledge and they
let models free of selecting the most discriminant features for the task. They worked
with movie reviews, which they selected because of the large availability and the
lack of need to hand-label data. The authors show how the results of a classification
based on words count from positive and negative lists vary considerably depending
on which words are put in the lists. They then resorted to classic supervised learning
algorithm for topic classification and they obtained good results using unigrams as
features.

3.4. Transfer Learning 29

Example features

As we can find in B. Liu, 2012, different kind of features are commonly used in
sentiment classification:

1. Words and Word Frequencies: these are the most important features and
are captured by the BOW model.TF-IDF can also be applied.

2. POS and Syntactic Features: these features, although more generic, can
help in weighing more important words (e.g. adjectives) or in capturing
peculiar sentences structure.

3. Sentiment shifters: whether a word comes after a negation can completely
reverse the meaning of a sentence.

3.4 Transfer Learning

Transfer Learning in Machine Learning context refers to the problem of reusing
knowledge gained while solving a certain problem to solve a different but related
problem. In Daume III and Marcu, 2006 Domain Adaptation for multiclass classi-
fication, a form of Transfer Learning, is detailed: while in standard classification
task we assume both Training and Test data D = (xi, yi) ∈ X × Y to be drawn
from the same distribution p, in Domain Adaptation setting, we are presented with
training data drawn from two different distributions p1 and p2 and we need to
classify data extracted from p2, having N2 << N1, with N1 and N2 being the
number of training examples we have for p1 and p2 respectively.
In our case we deal with a specific kind of Transfer Learning, known as "Cross-
Domain" Sentiment Classification. According to B. Liu, 2012 Sentiment Classifi-
cation has been shown to be highly sensitive to the domain of the training data,
both because in different domains there are different ways to express opinions and
because some words have different meaning and connotation in different domains.
In Aue and Gamon, 2005 Aue and Gamon, from Microsoft Research, focus on
transfer learning for two-class sentiment classification. They make use of SVMs
in all experiments but one, where they use Naive Bayes, and they experiment
with various configurations of training sets. They work with four domains: Books,
Movies and two user feedbacks datasets.
In 3.1 we see the number of samples used in the paper we are discussing and we
can see that dataset sizes are of the order 104.

30 Chapter 3. Literature Review

Positive Negative Total
Books 1000 1000 2000
Movies 1000 1000 2000
Survey_1 2564 2371 4935
Survey_2 6035 6285 12320

Table 3.1: Labels and Classes Distribution

Experiment 2 Experiment 1 Domain Exp.
1

Movies 72.89 72.08 Books
Book 64.58 70.29 Movie
Survey_1 63.92 70.48 Survey_2
Survey_2 74.88 81.42 Survey_1

Table 3.2: Results of 1st and 2nd Experiment

In experiment 1 the authors train 4 classifiers for each of the domains and then
test them on all domains. In experiment 2 the authors also train 4 classifiers: each
classifier is trained on a training set comprising equal number of samples from 3
domains and is tested on the remaining domain.
It is interesting to compare performances obtained in Experiment 2 with best
performances obtained in 1.
3.2 shows us that best training domain (different from original), is better or almost
equal (Movies) than the classifier trained on multiple domain. It seems that the
most similar domain is the one which drives performances.
In Glorot et al., 2011 they work on a 22 domains, binary-label dataset of 340.000
Amazon reviews. First they extract features in an unsupervised manner, using
Stacked Denoising Autoencoders, which is a DL architecture. Then they train
an SVM on a domain and evaluate both on the training domain itself and on all
the others. They present results both on a reduced, 4 domains and balanced (#
positives = # negatives) version of the dataset and on the full dataset. For the
full datasets results for each model are given as the average of the Transfer Loss
considering all possible couples of Source and Target domains. Transfer Loss is
defined as:

t(S, T) = e(S, T)− eb(S, T)

Where e is the error of the considered model and eb is the error of the baseline.

Chapter 4

Data structure

In this section we describe the structure of Amazon’s reviews and the corre-
sponding structure of the chosen dataset. Furthermore, we give dataset statistics
which we computed for the period of interest.
The dataset He and McAuley, 2016 has been collected by Julian McAuley, currently
Assistant Professor at UCSD.

4.1 Amazon.com

Amazon.com, inc. was founded on July 5, 1994. It is the largest Internet retailer
in the world (both for revenue and market capitalization) and second largest after
Alibaba Group in terms of total sales. According to eMarketer.com its US market
share of e-commerce is 49.1% followed by eBay with 6.6%. This makes it by far
the most important e-commerce website for the US market and, on top of that,
Amazon.com shopping makes up 5% of total US retail.

4.2 Amazon Review Structure

As we can see from 4.1, Amazon review has different components:

1. review title

2. review text

3. star rating, which is an integer from 1 to 5

4. reviewer’s username

5. number of people who found the review helpful

32

4.3. Dataset structure 33

Figure 4.1 Sample Amazon.com review

6. review time

Amazon reviews previously featured a count of how many people found the review
unhelpful, but it has been recently removed.

4.3 Dataset structure

Here we give a look at the main features of the dataset:

1. 82.83 million reviews

2. spanning May 1996 - July 2014

3. 24 product categories

We will focus our attention mainly on "Electronics" and "Cell Phones and Acces-
sories", furthermore we will take into consideration only the years from 2012 to
2014.

4.3.1 Some descriptive statistics

4.3 plots reviews against dates and we can see that there has been an upward
trend in the two years under consideration. In 4.5 we can see the plot of reviews

34 Chapter 4. Data structure

['great', 228176],

['one', 197438],

['use', 192429],

['works', 191386],

['good', 179933],

['would', 174754],

['product', 163912],

['well', 148498],

['price', 141582],

['like', 140358],

['work', 129791],

['get', 123671],

['bought', 122939],

['time', 109157],

['easy', 103446],

['buy', 98069],

['nook', 97484],

['used', 97384],

['cable', 96088],

['quality', 87455]

['case', 221836],

['cover', 134032],

['black', 118281],

['samsung', 90951],

['hard', 77407],

['iphone', 74979],

['g', 73711],

['protector', 67790],

['galaxy', 64506],

['screen', 63284],

['amp', 59128],

['battery', 48959],

['skin', 47437],

['x', 46957],

['charger', 46226],

['usb', 45900],

['apple', 45355],

['phone', 43094],

['cable', 41078],

['inch', 38183]

Figure 4.2 Common words and their number of appearence, on the left we see common words in
product names, on the right common words in products’ reviews

against rating and we notice that the distribution is skewed to higher ratings.

4.4 Summary

In this section we gave main characteristics and statistics about the dataset we
will be working on and we specify the structure both of Amazon reviews and of
how they are represented in our data.
In particular, we gave descriptive statistics on the following: number of reviews by
date, number of reviews by rating and how it evolved, lengths of reviews.

4.4. Summary 35

Figure 4.3 "Electronics"+"Cell Phones" reviews by date, 2012/01 - 2014/07

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Review Length

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

Co
un

t

Figure 4.4 Distribution of reviews lengths

36 Chapter 4. Data structure

1 2 3 4 5
Rating

 (2012/01/01-2012/07/06)

0
50000

100000
150000
200000
250000
300000
350000

Co
un

t

1 2 3 4 5
Rating

 (2012/07/06 - 2013/01/09)

0
100000
200000
300000
400000
500000
600000

Co
un

t

1 2 3 4 5
Rating

 (2013/01/09 - 2013/07/15)

0
200000
400000
600000
800000

1000000
1200000

Co
un

t

1 2 3 4 5
Rating

 (2013/07/15 - 2014/01/18)

0
200000
400000
600000
800000

1000000
1200000

Co
un

t

1 2 3 4 5
Rating

 (2014/01/18 - 2014/07/23)

0
200000
400000
600000
800000

1000000
1200000
1400000

Co
un

t

Figure 4.5 Evolution of ratings distribution from 2012/01/01 to 2014/07/23

Chapter 5

Text Clustering

5.1 Proposed approach

This section of our work is split into two separate parts: in the first part we
work on product titles, while in the second part we work on product reviews. In
the first part we focus more on obtaining the best number of clusters, while in the
second part we make a more extensive evaluation of similarities between clusters
obtained starting from various text representations, which is something we touch
on only briefly in the first part.
In the first part we take the following steps:

• we preprocess and tokenize product titles.

• we vectorize product names according to these three vectorization flows:

– tf-idf+ SVD

– Count-vectorization + LDA

– word2vec + averaging

• for each vector representation we perform K-means clustering and we select
best number of clusters with elbow-knee method.

• we compare clusterizations obtained with different vectorization flows using
Adjusted Mutual Information score (AMI).

In the second part we take the following steps:

• we preprocess and tokenize product reviews.

38

5.2. Product names clustering 39

• we vectorize product reviews according to the same vectorization techniques
used for product titles.

• we perform hierarchical clustering at different granularities and, again, we
use AMI score to compare clusterizations.

5.2 Product names clustering

We work on a subset of the dataset, composed of 50,000 product names.

5.2.1 Product Names Preprocessing

Figure 5.1: Example of Product Name

As we can imagine and can see in 5.1, product names are usually quite short
strings and do not need much preprocessing.
We will perform only the following simple steps:

• tokenization, splitting at every punctuation mark

• lowercasing

• stopwords removal

• delete "quot" and "amp" tokens, since they are obtained from splitting the
encoded version of ampersand and quotes: "&", """

5.2.2 Vectorization of Product Titles

As we can see in 5.2 we follow three different dimensionality reduction workflows
and we are going to compare the clusterings obtained with them.

Tf-idf + SVD

In the first dimensionality reduction flow, we start by transforming each docu-
ment in their tf-idf counterparts. At this point we are left with 58581-dimensional
vectors. In order to make clustering feasible we need to reduce the dimension of
these vectors, therefore we apply SVD. In particular we set k to 300.

40 Chapter 5. Text Clustering

Count-vectorization + LDA

In the second dimensionality reduction flow we transform documents in their
bag of words counterparts and then we apply LDA to reduce dimensionality. Given
the application, we are not interested in what the topics extracted by LDA are,
in fact LDA should enable us to capture various aspect of products, which ideally
should be ’product type’, ’product colour’, ’brand’ etc. on the basis of which we
will perform clustering
As for SVD we would like to obtain 300-dimensional vectors, therefore we select a
number of topics equal to 300 and obtain the representation of documents in terms
of the 300 topics extracted by LDA.

Word2vec training + averaging

We are confronted with a vocabulary which is full of uncommon occurences,
given that we are dealing with product names. For this reason we prefer not to use
pretrained word embeddings and we choose to train new word2vec vectors directly
on our corpus. Again, the desired dimension is 300 and this will be the size of the
embeddings.
Once we have obtained embeddings, we need a representation for each document.
We choose to represent a document as the average of the word vectors corresponding
to the words it contains.

5.2.3 K-means

K-means is a clustering technique which usually considers Euclidean distance as
similarity metric. Starting from data points and a fixed number k of clusters, its
objective is to minimize the Within Cluster Sum of Squares (WSS):

S

k∑
i=1

∑
x∈Si

(||x− µi||)2

Since this is a NP-hard problem and is therefore very expensive computationally,
some heuristics have been developed, which converge to a local optimum.

5.2. Product names clustering 41

Cluster Metrics tf-idf
Metric 2 100 500 1000 1500 2000 2500 3000 3500
WSS 1. 0.716 0.554 0.495 0.461 0.436 0.415 0.397 0.381
WSSdec NA 0.283 0.161 0.059 0.033 0.025 0.020 0.018 0.016
BSS 0.044 0.477 0.726 0.818 0.871 0.912 0.944 0.974 1.
BSSinc NA 0.432 0.249 0.091 0.053 0.040 0.032 0.030 0.025

Table 5.1: WSS Metrics for SVD+tf-idf

Cluster Metrics LDA
Metric 2 100 500 1000 1500 2000 2500 3000 3500
WSS 1 0.321 0.219 0.186 0.168 0.156 0.147 0.139 0.132
WSSdec NA 0.678 0.102 0.032 0.017 0.012 0.009 0.007 0.006
BSS 0.249 0.819 0.914 0.944 0.961 0.974 0.984 0.992 1
BSSinc NA 0.570 0.095 0.029 0.016 0.013 0.009 0.007 0.007

Table 5.2: WSS and BSS metrics for LDA

5.2.4 Cluster number selection

As we said, K means is given in input a number k of clusters. We use the elbow
knee method in order to select the optimal number of clusters. The elbow knee
method selects the number of clusters after which the WSS decreases very slowly
and the Between Clusters Sum of Squares (BSS) increases very slowly: our aim is
to have a low WSS, so that points in a cluster are very near each other and a high
BSS so that clusters are very well separated. By doing so we minimize inter-cluster
variance and maximize intra-cluster variance. After the majority of variance has
been explained, the rest is assumed to be noise. We ran the procedures ten times
for each vectorizations to ensure consistency of clusterings, given that K-means
makes use of random initialization.
In the case of SVD (5.1) we can see there is a strong discontinuity in the rate of
WSS decrease and of BSS increase, therefore we can select 500 as best number of
clusters.

Even in the LDA case (5.2) and the word2vec case (5.3), k=500 presents a
discontinuity both in the rate of WSS decrease and in the rate of BSS increase,
therefore it is a good number of clusters.

42 Chapter 5. Text Clustering

Cluster Metrics w2v
Metric 2 100 500 1000 1500 2000 2500 3000 3500
WSS 1 0.539 0.407 0.359 0.331 0.311 0.295 0.281 0.270
WSSdec NA 0.460 0.131 0.048 0.028 0.019 0.015 0.0134 0.011
BSS 0.236 0.725 0.857 0.906 0.936 0.955 0.973 0.988 1
BSSinc NA 0.489 0.131 0.049 0.029 0.019 0.017 0.015 0.011

Table 5.3: WSS and BSS metrics for word2vec

Now that we have selected the optimal number of clusters for all vectorizations,
we can calculate adjusted mutual information between the partitions obtained by
the clusterizations. Our idea is to see whether clusterizations obtained by means of
SVD, LDA and word2vec have a certain degree of similarity and, for this reason,
can be considered a reliable basis to split products in groups and perform the
identification of spam reviews.

5.2.5 Adjusted mutual information between hard clustering

AMI is a variation of mutual information which takes into account the increase
of baseline mutual information, that is to say mutual information of two random
clusters, when the dimensions of the clusters increase.
Given a set S = s1, s2, ..., sn of n elements and two pairwise-disjoint partitions
(hard clusterings) : U = U1, U2, .., UM , V = V 1, V 2, .., V K, we are interested to
know how much the partitions agree between each other. AMI measures exactly
that and it is perfect for our problem, because we are dealing with hard clusterings.

AMI =
MI(U, V)− E(MI(U, V))

max{H(U), H(V)} − E(MI(U, V))

where MI(x,y) is the Mutual Information and H(x) is the Entropy.

5.2.6 Clusterings AMI agreements results

Now we can presents the AMI agreement between all the couples of clusterings
we took into consideration. In 5.4 we see the results. As we can see in 5.4 there is
very good agreement between word2vec and tf-idf and way above chance agreement
in the other two cases.

5.3. Product reviews clusterings 43

Agreement between clusterings of product titles
Metrics tf-idf w2v tf-idf LDA w2v LDA
AMI 0.46 0.26 0.26

Table 5.4: AMI between couples of clusterings

Agreement between clusterings of product reviews
Metrics tf-idf w2v tf-idf LDA w2v LDA
AMI 0.18 0.054 0.53

Table 5.5: AMI scores for product reviews

5.3 Product reviews clusterings

For product reviews we chose to evaluate the evolution of AMI between different
clusterizations when varying the number of clusters.

5.3.1 Data

In the previous section we obtained 3 clusterizations of product titles. In
this section we consider the clusterization obtained starting from product titles
vectorized with tf-idf+SVD. For each cluster we consider the reviews of all its
product, provided that the number of reviews is greater than 1000. From the above
filtering, we are left with 208 sets of reviews.

5.3.2 Clustering

For each one of the 208 sets of reviews we apply hierarchical clustering. We
chose hierarchical clustering, given that it is deterministic, except for tie-breaking,
so that a single run is needed in order to ensure consistency. Given a set of reviews
and a vectorization we cluster reviews with 10 different granularities: we go from 2
clusters, to |set_of_review|/10 clusters.

5.3.3 Agreement between clusterings of product reviews

Each score in 5.5 is averaged over all sets of reviews. Furthermore, we averaged
over all the granularities, since their scores were very similar.
Results seem to confirm that tf-idf+SVD and w2v+averaging vectorizations give
rise to text clusterizations which have substantial agreement in terms of AMI.

44 Chapter 5. Text Clustering

Tokenized Product Titles

tf­idf transformation

SVDLDA

Adjusted Mutual Information Score

count­vectorization training
W2V model

W2V + avg

K­means K­means K­means

Elbow knee Elbow knee Elbow knee

Figure 5.2: The three different Vectorization Processing Flows

5.3. Product reviews clusterings 45

player

portable
speaker

mp3
music

media

powered

players

mp4

stca3000101
stbv1000100

stcb3000100

stca4000100

stam1000100

18q12fu

1dxap2

stbf500101

1997radio
manufacturer

discontinued
fm

6119wm

am
receiver

two

mycharge
6190us

6128nr

6136nr
6c43cl

PORTABLE MUSIC DEVICES HARD DRIVES

RADIO RELATED HP LAPTOPS

Figure 5.3: Some topics extracted with LDA and most important words

46 Chapter 5. Text Clustering

Figure 5.4: Knee elbow graph for SVD+tf-idf

Figure 5.5: Knee elbow graph for LDA

Figure 5.6: Knee elbow plot for word2Vec

5.3. Product reviews clusterings 47

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
2

points

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
x
2

points

Figure 5.7: Points and K-means clustering

Chapter 6

Opinion Polarity Analysis

For the opinion polarity analysis of our work, we focused on predicting the
star rating of reviews, which is interpreted as the sentiment of the review’s text
and ranges from 1 to 5, where 1 is very negative sentiment and 5 is very positive
sentiment. We will compare different approaches: we will start with baselines such
as Naive Bayes and SVMs and we will get to Deep Learning approaches. We will see
he strengths of both worlds and compare how different Deep Learning architectures
perform.

6.1 Workflow description

For this part of our work we will proceed according to standard supervised
learning procedure and we will build a train set and a test set. We will use only a
part of the Electronics and Mobile Accessories data we have available, in order to
speed up training. Our training set consists in 100,000 reviews, while our test set is
of 20,000 reviews.
As we said in the introduction, our final aim is to deploy our sentiment analysis
engine on a variety of media such as Twitter, online blogs, Facebook pages, online
news, Instagram etc., therefore we are interested in building models which are able
to generalize to new domains and be robust to noise which is particularly present in
Social Networks domain. Given our intentions, we will simulate a setting which is
different from training domain. We will proceed according to the following pipeline:

• Standard Training and Test on Electronics and Mobile Phone Accessories.

• Build Train and Test set for this category: Clothing.

49

50 Chapter 6. Opinion Polarity Analysis

• Compare training on a domain + Transfer Learning versus training directly
in the domain of interest.

One aspect of our research is the comparison between classical ML algorithms and
DL models. In the first part of this chapter we will train and evaluate a wide variety
of models, both classic and DL.
Subsequently, we will select a subset of these models to be evaluated in the second
(Transfer Learning) step. In the end we will train all of the models for the third
step.

6.2 Classic ML algorithms

In the Literature Review section we described two algorithms which are very
commonly used in NLP classification problems, that is to say Naive Bayes and
SVM.
However, we will not limit ourselves to those. Instead we will consider a variety of
ML algorithms such as logistic regression, XGboost, random forests etc.

6.3 Deep Learning

6.3.1 Architectures

We will focus on RNN and CNN. For RNN we will employ the LSTM unit while
for CNN we will consider the architecture proposed in Kim, 2014.

6.3.2 Word Embeddings

Our experiments will not make use of pre-trained vectors, but rather both DL
architectures will have an Embedding Layer which will be trained together with
the rest of the Network.

6.4 Classification Techniques Parameters

In this section we give a detailed description of parameters which are present in
some of the applied models.

6.4. Classification Techniques Parameters 51

Input layer

Embedding layer

LSTM

Dense

Input layer

Embedding layer

Conv 2D Conv 2D Conv 2D

MaxPool 2D MaxPool 2D MaxPool 2D

Concatenate

Flatten

Dropout

Dense

Input layer

Embedding layer

GRU

Dense

Figure 6.1: Architecture of implemented models

Random Forest

Random Forest has a good of parameters, part of which can be tuned according
to how the algorithm works and how the dataset is structured.

• Number of estimators:We have seen that Random Forest is an ensamble
method. This parameter defines the num- ber of trees to train. Usually, more
trees are better but with the increase of the number of learners improvement
decreases, increasing trees also impact on the training time, for this reason,
we choose 1000 trees.

• Max depth:the maximum depth of the tree, this parameter is optional and
prevent to trees to grow too much.We decided not to give a max depth.

52 Chapter 6. Opinion Polarity Analysis

• Min sample leaf: this parameter represents the minimum number of samples
required to be at a leaf node. We decide to set 50 as min number of leaf given
that a smaller leaf makes the model more prone to capturing noise in train
data.

• Max Features: this parameter represents the number of features the models
look at when searching for the best split. An increase of this parameter
usually means an increase in performances, since at each node the number of
possible options becomes greater. However the diversity of the trees decreases,
they become more correlated and so we may not obtain an increasing this
parameter. We decide to set it to

√
numberoffeatures given that the number

of features is quite high.

• Split Criterion this function is a measure of the quality. We chose Gini
impurity which is a measure of how often we would incorrectly label a random
chosen element of the set if we were to label it randomly following the
distribution of labels in the subset.

XGboost

Also XGboost has a good number of parameters. Let’s see what they are:

• Learning rate: this parameters make the contribution of each new base
model decrease. We selected XX after cross validation.

• Max Depth: It represents the max Depth of a tree. We selected XX in
order to avoid overfitting

• Min sample leaf: it is the same as in Random Forest

• Gamma: represents the minimum loss reduction required to make a split.

• Objective: It is the loss function.

6.5 Evaluation

In this chapter we discuss details of evaluation process. We present both
algorithms and metrics needed for evaluation.

6.5. Evaluation 53

6.5.1 Cross Validation

The goal of prediction is to be able to generalize results obtained on the the set
of data which the model has seen and has been trained on, to unseen data. If we
tested the model on the same data we used for training we would obtain a very
good score, but this would not be representative of performances on unseen data,
therefore we need a different way to assess performances.
Cross-validation works by splitting the dataset n times and evaluate performances
on each of these splits.

6.5.2 K-fold

K-fold Crossvalidation is on of the most common kind of Crossvalidation. In
this technique the dataset is split in K chunks. Afterwards, each of the K chunks
will be used once as a test set. When we select a chunk as a test set, all the other
K − 1 chunks are used as training set.
A good estimate of performances on test set is obtained if we average performances
on the K splits.

6.5.3 Evaluation Metrics

Here we give a look at the most significant metrics which are used in Classification
problems and we explain our choice.

Binary Classification Confusion Matrix

When dealing with binary classification, given a prediction an the true class
label we fall in one of the four cases described by the Confusion Matrix.

F1 for each class

Predicted Posi-
tive

Predicted Nega-
tive

Real Positive True Positive False Negative

Real Negative False Positive True Negative

54 Chapter 6. Opinion Polarity Analysis

Accuracy

Accuracy is the most immediate measure for binary classification, since it gives
the ratio of correctly classified samples over all the population:

Accuracy =

∑
TruePositive+

∑
TrueNegative

TotalPopulation

Since we deal with a multi-label classification, we are going to redefine accuray as

Accuracy =
|C|
|N |

C = i ∈ N |yi = ŷi

given that N are the observations, C are the observation which have been correctly
predicted, yi is the real label and ŷi is the predicted value.

Precision, Recall and F1 measures in Binary Classification

Precision =
|TP |

|TP |+ |FP |

As the name says, Precision gives us a measure of how precise classifier prediction
arem that is to say how many classified-positive instances are actually positive.

Recall =
|TP |

|TP |+ |FN |

Recall on the other hand measures how many of the positive instances are recognized
by the classifier.

F1measure = 2 ∗ Precision ∗Recall
Precision+Recall

F1 measureis the harmonic mean of Precision and Recall and captures both of
them.

Our choice

The task we are dealing with is a multiclass classification. Therefore, we
could consider both Accuracy measure and F1 measures. However, our dataset is
imbalanced as we can see in figure, therefore we prefer F1 as accuracy would not
be really informative.
In particular, for multiclass problem, it is not sufficient to speak of F1 measure. We

6.6. Dataset imbalance, undersampling+crossvalidation 55

have to specify how we deal with the presence of more than 2 classes in the dataset.

6.5.4 F1 for multiclass

F1 in multiclass problem is calculated in one-versus all manner, that is to say
TP, FP, FN are calculated as if we were in a binary problem with the considered
class versus all the others grouped together.
Main F1 measures for multiclass are:

• micro-F1: which consider consider TP,FP,FN are calculated globally

• macro-F1: which consider each classes separately and then average the F1
scores

However, we would like to obtain a good F1 for each of the classes, since each of
the classes is equally important for us. Therefore we consider the F1 for each class
separetely.

6.6 Dataset imbalance, undersampling+crossvalidation

By performing crossvalidation on the training set with a variety of models, we
see that some classes are really overlooked. This is due to the fact that they are
underrepresented. In order to overcome this fact, we implement a crossvalidation
with undersampling:

• create all train test splits

• undersample only the train sets, with n samples for each class, where n =
number of samples of the minority class in specific train set

We don’t want to undersample the test sets, otherwise we would have a completely
different distribution from the real test set and this would compromise our results.

As we can see , undersampling, although reducing F1 for Class1 and Class 5,
considerably increases F1 for Class 2 and Class 3, so that performances are better
overall.

56 Chapter 6. Opinion Polarity Analysis

F1 for each class
Model Class1 Class 2 Class 3 Class 4 Class 5
MNB 0.626 0.088 0.180 0.332 0.793
BNB 0.570 0.116 0.121 0.270 0.737
RF 0. 0. 0. 0. 0.711
SVM 0.641 0.076 0.175 0.173 0.794

Table 6.1: Performances in normal crossvalidation

F1 for each class
Model Class1 Class 2 Class 3 Class 4 Class 5
MNB 0.557 0.256 0.285 0.361 0.693
BNB 0.582 0.211 0.252 0.285 0.747
RF 0.535 0.173 0.242 0.324 0.727
SVM 0.612 0.200 0.282 0.343 0.775

Table 6.2: Performances in undersampling+crossvalidation

6.7 Transfer Learning

First we obtain a small training and test set for the class that we are interested
in Clothes. Training and test set will be small, in particular 8000 reviews for
training set and 2000 reviews for test set, in order to simulate hand-labelling set.
In Twitter, Instagram and other social-network based studies, in fact, we don’t
have star-rating and the only way to obtain reliable datasets for sentiment analysis
is to use hand-labeling, unless some posts presents emoticons, which could be used
for automatic sentiment extraction.
In order to evaluate the effect of Transfer Learning we will proceed in two different
ways depending on whether the model is or not a DL model. For standard ML
models we will proceed in the following way:

• We use partial-fit to train the model on the Electronics dataset

• We use partial-fit to train the model on the small training dataset of Clothes.

For DL Models we do:

• We train models on electronics

• We save weights and reuse them to train model on the small training dataset
of Clothes.

After this procedure we will confront the results and we will see how much Tranfer
Learning can improve performance on small training datasets and also to what

6.8. Summary 57

F1 for each class
Model Class1 Class 2 Class 3 Class 4 Class 5
MNB 0.507 0.194 0.298 0.360 0.754
BNB 0.432 0.112 0.187 0.241 0.729
SVM 0.514 0.187 0.281 0.356 0.773
Table 6.3: Undersampling+crossvalidation, NO Transfer Learning

F1 for each class
Model Class1 Class 2 Class 3 Class 4 Class 5
MNB 0.412 0.236 0.258 0.324 0.414
BNB 0.478 0.201 0.339 0.283 0.754
SVM 0.331 0.151 0.234 0.292 0.581

Table 6.4: Undersampling+crossvalidation, Transfer Learning

extent the change of domain degrades performances.
In the tables we can see the results of undersampling+crossvalidation both in the
case where we train only on the new domain dataset or where we use transfer
learning. As we can see, in all crossvalidation experiments by doing Transfer
Learning we have an improvement in performance.

6.8 Summary

In this Chapter we focused on Supervised Learning, in particular Sentiment
Classification. We started by preprocessing reviews of the Electronics domain, then
we went on to try a variety of classic ML models and subsequently we implemented
some Deep Learning architectures. We evaluated performances both with standard
cross-validation and with undersampled crossvalidation, that is to say undersampling
the K − 1 sets used for training. As we expected, undersampled crossvalidation
yielded better performances than normal crossvalidation.
In the second step of this part we experimented with Transfer Learning. We exploited
knowledge acquired on Electronics dataset to classify samples from Clothing domain.
Pretrained models performed better than models trained only on training set, thus
confirming our hypothesis.

Chapter 7

Time Series Prediction: Economic

Impact of Reviews

We are interested in time series prediction for the ”economic value” part of our
Thesis, so below we will give a brief overview of the method we are going to employ
in the process.

7.0.1 Time Series

With the term Time Series we refer to a series of data points indexed in time
order. In the most common case it is sequence of points equally spaced in time, a
series of discrete data.
Univariate: A single variable varying over time Multivariate: Multiple

variable varying over time

7.0.2 Stochastic Process

A stochastic process is a indexed collection of random variables. Stochastic
process are used to model time-series data. Since we will be dealing with discrete
time-series, we will consider stochastic process models which are indexed by discrete
sets.

Weak Stationarity

Weak stationarity is a property of some stochastic processes. It is useful to
have it, since almost all weakly stationary process can be modeled by ARMA. The

59

60 Chapter 7. Time Series Prediction: Economic Impact of Reviews

process X t ;t ∈ Z is weakly- stationary or covariance-stationary if:

E[Xt = mx(t) = mx(t+ τ)]

E[(X(t1)−mx(t1))(X(t2)−mx(t2))] = Cx(t1, t2) = Cx((t1 − t2), 0)

7.0.3 White Noise Process

A white noise process is a weakly stationary stochastic process where: Cx(t1, t1+

τ) = 0∀τ ! = 0

7.0.4 Moving Average Process

The Moving Average Process is a Stochastic Process which is used to model
univariate time series. The value of the output variable depends only on the so
called error terms. Error terms are extracted from a Stochastic Process themselves,
in particular a White Noise Process.
Depending on the order q

Xt = µ+ εt + ϑ1εt−1 + ...+ ϑqεt−q

7.0.5 Autoregressive Process

The Autoregressive Process is a Stochastic Process which is used to model
univariate time series. The value of the output variable depends on a single error
terms and on a number of previous values of the output variable itself.

Xt = µ+ εt + ϑ1Xt−1 + ...+ ϑqXt−p

7.0.6 ARMA Process

ARMA (Autoregressive Moving Average Process) is a model which combines
both the AR component and the MA component. For a ARMA(p,q):

Xt = µ+ εt + ϑ1Xt−1 + ...+ ϑqXt−p + εt + γ1εt−1 + ...+ γqεt−q

61

Figure 7.1: TS components

7.0.7 Time Series Components

Time Series found in the real world are usually not stationary. However, if we
can find the following components, we can remove them and obtain a stationary
one:

• Tt, it is the trend component, a function which can be either linear or nonlinear.

• St, it is the seasonal-component, which is a periodic function.

• Ct it is the cyclical component, which represents repeated but non-periodic
fluctuations.

• It: it is the random component of the TS

Possible ways of combining this component are the additive or multiplicative model.
The additive model can be written as:

Xt = Tt + Ct + St + It

62 Chapter 7. Time Series Prediction: Economic Impact of Reviews

while the multiplicative model is:

Xt = Tt ∗ Ct ∗ St ∗ It

7.1 Evaluation Metrics for Time Series

As in the case of Sentiment Classification we need some quantitative perfor-
mances indicators. The following are the most used in Time Series Forecasting.

• MAE: ∑n
i=1 |yi − ŷi|

n

MAE is the average of absolute errors between predicted and true value.

• MSE:
1

n

n∑
i=1

(yi − ŷi)2

MSE is the average of squared errors beteween predicted and true value.

• MAPE:
100

n

n∑
i=1

|yi − ŷi|
|yi|

MAPE is the average of normalized absolute errors between predicted and
true value.

MAE and MSE are two absolute measures and, therefore, they cannot be used
to compare results on different TS, while MAPE consideres the magnitude of
the target and is suitable for comparisons between different TS. However, MAPE

cannot be calculated if TS has a value equal to 0. In our case MAE and MSE

will be used to compare models on the same TS, while MAPE, if possible, will be
used to compare performances on different TS.

7.2 Our approach

Our objective is to model Google Trends index for a number of queries, in
particular we will focus on some of the products which are more presents in our
dataset.
Rather than a single model variant we will take into consideration a specific product
category and we will aggregate all the products found in the dataset which belong

7.2. Our approach 63

to the considered category. We focus on two of the top mobile phones brands, which
we prefer to address as brand1 and brand2. For each brand we will consider three
categories of products which are designed for phones of those brands, which makes
a total of 6 target variables. These are: (brand1|brand2)cover, charger, battery.
The TS we will consider have daily value for the period comprised 01-01-2012 and
09-27-2012. We chose the following interval, rather than a whole year, because of
Google Trends limits. We will compare various models, in particular:

• Naive approach

• ARIMA

• LSTM with various input features

7.2.1 Naive/Persistence Forecast

Naive (or Persistence) Approach is the simplest way to make forecasts. The
value of the target variable at time t + 1 is assumed unchanged with respect to
the value at time t. Therefore, when using this approach, we output the following
forecast:

ˆyt+1 = yt

Naive forecast is used as the baseline, in order to evaluate the potential of ARIMA,
ARIMAX and LSTM models.

7.2.2 Product extraction

In order to generate the Amazon’s review Time Series which we will use as
input features, we need to select only the product of interest. We start from the
list of products’ names and we use regex in order to extract the ones which contain
the brand’s name and the desired product type. Since a product may be thought
for more than one brand, we exclude products name which are thought for both
brands.

7.2.3 Product Features extraction

For each product we will extract the following time series:

• Rating 1: Number of reviews with 1-star rating

• Rating 2: Number of reviews with 2-star rating

64 Chapter 7. Time Series Prediction: Economic Impact of Reviews

Number of Products
Products Number of Prod-

ucts
Number of re-
views 2

brand1 battery 1729 125894
brand1 charger 3846 192337
brand1 cover 24058 210487
brand2 battery 5062 81920
brand2 charger 7545 81571
brand2 cover 37863 281556

Table 7.1: Number of considered products and number of considered reviews

Average values
Products Rating

1
Rating
2

Rating
3

Rating
4

Rating
5

Rev
Count

Num of
Prod-
ucts

Num of
Users

brand1
battery

4.92 1.778 1.75 4.64 14.43 27.53 14.05 19.70

brand1
charger

10.28 3.22 3.33 6.91 21.36 45.12 26.51 33.24

brand1
cover

9.041 5.08 6.40 9.96 22.61 53.10 46.50 50.02

brand2
battery

3.144 1.59 1.62 3.34 11.18 20.90 18.69 19.51

brand2
charger

3.62 1.58 1.92 3.71 12.03 22.89 20.50 21.47

brand2
cover

8.57 5.65 7.04 12.22 32.20 65.69 59.98 61.45

Table 7.2: Average of features for each product

• Rating 3: Number of reviews with 3-star rating

• Rating 4: Number of reviews with 4-star rating

• Rating 5: Number of reviews with 5-star rating

• Review Count: Number of reviews written

• Number of Products: Number of different products reviewed

• Number of Users: Number of different Users who wrote a review

Each feature has daily frequency.

7.3. Train and Test set 65

Performances: MAE and MSE
Products PM

MAE
ARIMA
MAE

LSTM
MAE

PM
MSE

ARIMA
MSE

LSTM
MSE

brand1
battery

4.4875 4.255 6.99 41.5375 57.157 50.12

brand1
charger

6.617 6.044 7 83.283 97.35 133.3

brand1
cover

8.11 7.216 11.7 100.03 99.22 200.4

brand2
battery

10.1625 7.406 7.31 153.1875 91.898 78.993

brand2
charger

15.96 12.38 11.64 376.76 197.79 227.78

brand2
cover

15.925 11.23 12.29 365.8 205.6 205.39

Table 7.3: Performances of different models on considered products

7.2.4 Target Feature extraction

For the LSTM model, together with the above mentioned features, which we
extract from Amazon’s reviews dataset, we also add two TS features which are
derived from lagged target variable, specifically:

• Target Variable Peaks

• ARIMA Forecast

Target Variable Peaks (TVP) feature is a way of detecting whether there has been
a sharp increase in Target Variable at time t with respect to its average value in
the previous time steps, considering a fixed size time window.
ARIMA Forecast is fed into the LSTM, so that we should be able to harness the
already good predictive power of that model and combine it with the Amazon’s
reviews feature to witness, hopefully, an improve in forecasting accuracy.

7.3 Train and Test set

After having collected all the needed features, we split each Time Series into
Train and Test set. Train/Test split is done in a 70/30 fashion: Train data goes
from 1/1/2012 to 07/06/2012 while Test data goes from 07/07/2012 to 09-27-2012.

66 Chapter 7. Time Series Prediction: Economic Impact of Reviews

LSTM

Lagged Target Variable

Lagged Review Features

ARIMA Predictions

Peaks

Moving Averages

 Target Variable

Figure 7.2: LSTM model for economic value prediction

7.4 Evaluation

In 7.3 we are can see the results of the three models we considered. ARIMA
usually delivers better performances than the Persistence model baseline and is the
best model overall. Our model, despite performing better on some data (brand2
battery MAE and MSE and brand2 charger MAE), does not seem to give us a
substantial edge at predicting Google Trends volume index.
Although it may be that Amazon reviews have no predictive power with respect
to Google Trends volume index, it may also be the case that what has prevented
us from extracting the most value out of them is to be found one of the following
factor:

• We considered groups of products rather than single products and the groups
may contain too many and diverse products

• We did not choose the right granularity (performances on weekly, monthly
must still be evaluated)

• We did n

• We focused on a single domain and we did not explore different kind of
products

• Google Trends do not reflect product sales for the products we considered

For the above reason, it still may be worth to inquire further into the predictive
power of Amazon reviews on sales data.

Chapter 8

Conclusions and Future Works

In this work we have dealt with online reviews and we have tried to extract
economic values from them, given that we recognize the importance they have
assumed, both for companies and for customers. Our initial idea was to predict
sales data of specific products and assess the prediction power of Amazon.com
reviews in this setting. We recognized the difficulty of accessing sales data, given
their often proprietary nature, and we chose to use Google Trends query volumes
as a proxy for them.
While working on TS data we identified two other tasks which we considered worth
of attention. These were: Text Clustering and Transfer Learning for Sentiment
Classification. The first step in our work was to review the Literature of the fields
we worked in: Text Clustering, Opinion Mining and Time Series Forecasting. After
studying main approaches in the Literature, we were ready to tackle the different
tasks.
As for Text Clustering we divided the process into two steps: first we focused on
clusterization of product titles, subsequently we considered product reviews. For the
product titles step, we intended to find the best number of clusters, in fact this step
was meant as a way to limit the application of spam reviews detection procedures
only to limited groups of products. With the help of 3 methods, we were able to
identify a good number of clusters, which, for all 3 of them, was 500, Furthermore,
we noticed there was a good level of agreement between the tf-idf+SVD and the
word2vec+Average clusterization (0.46 AMI).
This prompted us to inquire further whether it is common for these two vectorizations
to yield similar clusterizations. In order to do so we considered each set of reviews
obtained after the product clustering phase and we applied Hierarchical clustering
to obtain clusterings at vairous granularities. Again we witnessed a good average

68

69

agreement between the considered vectorizations: 0.18 AMI.
For the Opinion Mining part, we started off by working on the single domain
dataset. We worked in the Supervised Learning Framework, specifically Sentiment
Multiclass Classification. The dataset was unbalanced and, consequently, we decided
to apply undersampling to the training set in order to increase performances. As
we expected, undersampling helped us increase performances, which were evaluated
on a single-class basis: F1 for each class was evaluated, since aggregated measures
would have hidden low scores for under-represented classes. Deep Learning models,
LSTM and CNN, outperformed more traditional Machine Learning approaches, but
traditional ML models are to be preferred if we want a more explainable behaviour.
From here we move on to the Transfer Learning part, where we evaluated how the
different models are able to exploit knowledge acquired in a pre-training phase so
as to classify samples extracted from a domain which has a very limited number
of training samples. The pre-training domain we chose was reviews of Electronics,
while the Target domain was Clothing. DL outperformed standard ML even in this
setting and, more importantly, we witnessed a substantial increase in performances
when pre-training models on the Electronic dataset. Given the difference of domains,
we are led to believe that pre-training models on multidomain dataset should boost
performances on datasets with usually small training datasets such as online news
or blogs.
As for the Time Series part, we tried to assess the predictive power of Amazon.com
product reviews with respect to the Google Trend search volume index. We started
by evaluating the Persistence model baseline in terms of MAE and MSE, then we
proceeded with evaluation of ARIMA model. Last, we defined a DL model, which
combined Amazon.com reviews features, peaks detection and ARIMA forecasts.
Our model did not yield better results than ARIMA but, for a series of reason
which we exposed, further inquiry into the predictive power of Amazon.com reviews
may still be worth.
The evaluation of Amazon.com predictive power on real sales data is one possible
extension of our work, together with: the addition of different DL architectures(e.g.
Generative Adversarial Networks) for the Sentiment Classification task, evaluation
of the different vectorization flows on text clustering of different datasets, Transfer
Learning from Amazon.com reviews to online blogs or Social Networks.
The work done so far has given us the possibility of understanding how much value
can be extracted from online reviews and how versatile NLP tools and especially
ML ones are when tackling the most varied of challenges.

Acronimi

NLP Natural Language Processing

BSS Between Clusters Sum of Squares

WSS Within Clusters Sum of Squares

OM Opinion Mining

ML Machine Learning

WE Word Embeddings

SVD SVDSingular Value Decomposition

OM Opinion Mining

SA Sentiment Analysis

NN Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

BOW Bag of Words

W2V Word2Vec

LDA Latent Dirichlet Allocation

SVD Singular Value Decomposition

AMI Adjusted Mutual Information

71

Bibliography

Aue, Anthony and Michael Gamon

2005 “Customizing sentiment classifiers to new domains: A case study”,
in Proceedings of Recent Advances in Natural Language Processing
(RANLP), 3.1, Citeseer, vol. 1, pp. 2-1. (Cit. on p. 29.)

Blei, David M, Andrew Y Ng, and Michael I Jordan

2003 “Latent dirichlet allocation”, Journal of machine Learning research,
3, Jan, pp. 993-1022. (Cit. on p. 25.)

Brightlocal

2018 Local Consumer Review Survey, Online Reviews Statistics Trends,
https://www.brightlocal.com/learn/local-consumer-review-

survey/#Q1,2018., [Online; accessed 09/01/2018]. (Cit. on p. 1.)

Choi, Hyunyoung and Hal Varian

2012 “Predicting the present with Google Trends”, Economic Record, 88,
pp. 2-9.

Daume III, Hal and Daniel Marcu

2006 “Domain adaptation for statistical classifiers”, Journal of Artificial
Intelligence Research, 26, pp. 101-126. (Cit. on p. 29.)

Esuli, Andrea and Fabrizio Sebastiani

2005 “Determining the semantic orientation of terms through gloss classifi-
cation”, in Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, ACM, pp. 617-624. (Cit. on
pp. 26, 27.)

Facebook users worldwide 2018

2018 https://www.statista.com/statistics/264810/number-of-

monthly-active-facebook-users-worldwide/.

73

https://www.brightlocal.com/learn/local-consumer-review-survey/##Q1, 2018.
https://www.brightlocal.com/learn/local-consumer-review-survey/##Q1, 2018.
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

74 Bibliography

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio

2011 “Domain adaptation for large-scale sentiment classification: A deep
learning approach”, in Proceedings of the 28th International Confer-
ence on Machine Learning (ICML-11), pp. 513-520. (Cit. on p. 30.)

Google’s search knows about over 130 trillion pages

2016 https : / / searchengineland . com / googles - search - indexes -

hits-130-trillion-pages-documents-263378.

Harris, Zellig S

1954 “Distributional structure”, Word, 10, 2-3, pp. 146-162. (Cit. on p. 8.)

He, Ruining and Julian McAuley

2016 “Ups and downs: Modeling the visual evolution of fashion trends with
one-class collaborative filtering”, in Proceedings of the 25th Interna-
tional Conference on World Wide Web, International World Wide
Web Conferences Steering Committee, pp. 507-517. (Cit. on p. 32.)

Hochreiter, Sepp and Jürgen Schmidhuber

1997 “Long short-term memory”, Neural Computation, 9, 8, pp. 1735-1780.
(Cit. on p. 20.)

Hu, Minqing and Bing Liu

2004 “Mining and summarizing customer reviews”, in Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ACM, pp. 168-177. (Cit. on pp. 27, 28.)

Jindal, Nitin and Bing Liu

2008 “Opinion spam and analysis”, in Proceedings of the 2008 International
Conference on Web Search and Data Mining, ACM, pp. 219-230.

Joulin, Armand, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov

2016 “Bag of Tricks for Efficient Text Classification”, arXiv preprint arXiv:1607.01759.
(Cit. on p. 10.)

Khandelwal, Urvashi, He He, Peng Qi, and Dan Jurafsky

2018 “Sharp nearby, fuzzy far away: How neural language models use
context”, in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 284-294. (Cit. on p. 20.)

https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378
https://searchengineland.com/googles-search-indexes-hits-130-trillion-pages-documents-263378

Bibliography 75

Kim, Yoon

2014 “Convolutional neural networks for sentence classification”, in Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1746-1751. (Cit. on p. 50.)

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton

2012 “Imagenet classification with deep convolutional neural networks”, in
Advances in Neural Information Processing Systems, pp. 1097-1105.
(Cit. on p. 20.)

Kuang, Da, Jaegul Choo, and Haesun Park

2015 “Nonnegative matrix factorization for interactive topic modeling and
document clustering”, in Partitional Clustering Algorithms, Springer,
pp. 215-243. (Cit. on p. 26.)

Liu, Bing

2012 “Sentiment analysis and opinion mining”, Synthesis Lectures on Hu-
man Language Technologies, 5, 1, pp. 1-167. (Cit. on p. 29.)

Liu, Tao, Shengping Liu, Zheng Chen, and Wei-Ying Ma

2003 “An evaluation on feature selection for text clustering”, in Proceedings
of the 20th International Conference on Machine Learning (ICML-03),
pp. 488-495. (Cit. on p. 26.)

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean

2013 “Distributed representations of words and phrases and their compo-
sitionality”, in Advances in Neural Information Processing Systems,
pp. 3111-3119. (Cit. on p. 10.)

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan

2002 “Thumbs up?: sentiment classification using machine learning tech-
niques”, in Proceedings of the ACL-02 Conference on Empirical Meth-
ods in Natural Language Processing-Volume 10, Association for Com-
putational Linguistics, pp. 79-86. (Cit. on p. 28.)

Pennington, Jeffrey, Richard Socher, and Christopher Manning

2014 “Glove: Global vectors for word representation”, in Proceedings of the
2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 1532-1543. (Cit. on p. 10.)

76 Bibliography

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts

2013 “Recursive deep models for semantic compositionality over a sentiment
treebank”, in Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1631-1642.

Sparck Jones, Karen

1972 “A statistical interpretation of term specificity and its application in
retrieval”, Journal of Documentation, 28, 1, pp. 11-21. (Cit. on p. 9.)

Tai, Kai Sheng, Richard Socher, and Christopher D Manning

2015 “Improved Semantic Representations From Tree-Structured Long
Short-Term Memory Networks”, in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing,
pp. 1556-1566.

Turney, Peter D

2002 “Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews”, in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, Association
for Computational Linguistics, pp. 417-424. (Cit. on p. 27.)

Xu, Jiaming, Peng Wang, Guanhua Tian, Bo Xu, Jun Zhao, Fangyuan Wang, and
Hongwei Hao

2015 “Short Text Clustering via Convolutional Neural Networks.”, in Pro-
ceedings of the 1st Workshop on Vector Space Modeling for Natural
Language Processing (VS@HLT-NAACL), pp. 62-69. (Cit. on p. 26.)

	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Sommario
	Abstract
	Introduction
	Purpose
	Economic Impact of Reviews
	Other tasks

	Proposed Approach
	Text Clustering
	Opinion Polarity Analysis
	Economic Impact of Reviews

	Text processing technologies
	Vectorial representation of text
	Bag of Words model
	Tf-idf representation
	Word Embeddings

	Neural Network
	Artificial Neuron
	Training phase: optimization
	Early Stopping
	Dropout

	Deep Learning Architectures for NLP
	Recurrent Neural Networks
	GRUs and LSTMs
	Convolutional Neural Networks in NLP

	Summary

	Literature Review
	Text clustering
	Clustering
	Singular Value Decomposition (SVD)
	Latent Dirichlet Allocation (LDA)
	Text Clusterings Examples

	Opinion Mining
	Opinion base components
	Main tasks
	Opinion Polarity Analysis
	Lexicon-based Approach

	Machine learning-based approach
	Supervised Learning

	Transfer Learning

	Data structure
	Amazon.com
	Amazon Review Structure
	Dataset structure
	Some descriptive statistics

	Summary

	Text Clustering
	Proposed approach
	Product names clustering
	Product Names Preprocessing
	Vectorization of Product Titles
	K-means
	Cluster number selection
	Adjusted mutual information between hard clustering
	Clusterings AMI agreements results

	Product reviews clusterings
	Data
	Clustering
	Agreement between clusterings of product reviews

	Opinion Polarity Analysis
	Workflow description
	Classic ML algorithms
	Deep Learning
	Architectures
	Word Embeddings

	Classification Techniques Parameters
	Evaluation
	Cross Validation
	K-fold
	Evaluation Metrics
	F1 for multiclass

	Dataset imbalance, undersampling+crossvalidation
	Transfer Learning
	Summary

	Time Series Prediction: Economic Impact of Reviews
	Time Series
	Stochastic Process
	White Noise Process
	Moving Average Process
	Autoregressive Process
	ARMA Process
	Time Series Components
	Evaluation Metrics for Time Series
	Our approach
	Naive/Persistence Forecast
	Product extraction
	Product Features extraction
	Target Feature extraction

	Train and Test set
	Evaluation

	Conclusions and Future Works
	Acronimi
	Bibliography

