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“ Never say never.

Because limits, like fears are often just an illusion.”

Michael Jordan



Abstract

The thesis aims to create an annotated musical dataset and to propose an

Automatic Music Transcription system specific to jazz music only. Although

many available annotated datasets are built from the audio recordings, the

proposed one is built from MIDI file format data, providing robust annota-

tion. The automatic polyphonic transcription method uses a Convolutional

Neural Network for the prediction of the outcome.

Automatic Music Transcription is an interesting and active research field of

Music Information Retrieval. Automatic Music Transcription refers to the

analysis of the musical signal to extract a parametric representation of it, e.g.

a musical score or MIDI format file. Even for man, the transcription of music

is difficult and still remains a hard task requiring a deep knowledge of music

and high level of musical training. Providing a parametric representation

of audio signals would be important for application to annotated music for

automatic research in large and interactive musical systems. Massive sup-

port would be given to the musicology fields producing annotation for audio

performance without any written representation, and to the education field.

The work hereby presented is focused on the jazz genre, due to its variety of

styles and improvisation parts, of which usually there is no available tran-

scription, and to which the field of Automatic Music Transcription can be

of help. Its variability makes the problem of Automatic Music Transcription

even more challenging and also for that reason there is not much work avail-

able.

Results of the transcription system highlighted the difficulties of transcribing

jazz music, compared to classical music, but still comparable to state-of-art

methodologies, producing an f-measure of 0.837 testing the Neural Network

on 30 tracks of MAPS dataset and 0.50 from the jazz dataset experiment.
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Chapter 1

Introduction

1.1 The challenge of Automatic Music Tran-

scription

Automatic Music Transcription is the process that allows the extraction of a

parametric representation of a musical signal through its analysis. Researches

has been undertaken in this field of study for 35 years starting with Moorer

[1], and cover specific areas of monophonic and polyphonic music. Auto-

matic transcription for monophonic streams is widely considered a problem

already solved [2]; as a matter of fact, transcriptions with the highest rates

of accuracy are actually obtainable for any musical instrument. Polyphony,

on the contrary, has manifold intrinsic complexities to be considered that

constrain the research to specific cases of study and analysis for a possible

automatic transcription. The difficulties to achieve reasonable results thus

indicate that improvements and streamlined approaches are necessary to the

Automatic Music Transcription of polyphonic music signals, underlining in

it the true challenge of this subject.

Automatic Music Transcription is a complex system divided into subtasks:

pitch estimation, related to the detection of a given time frame, onset and

offset detection of the relative pitch, loudness estimation, and finally instru-

ment recognition and extraction of rhythmic pattern. The core task of AMT

applied to polyphonic music, is the estimation of concurrent pitches, also

known as multiple-F0 or multi-pitch estimation. Depending on the number

of subtasks, the output of an AMT system can be a simple representation,

such as MIDI or piano-roll, or a complex one, such as an orchestral score.



An AMT system has to solve a set of MIR problems to produce a complete

music notation, central to which is the multi-pitch estimation.

Other features should be included in the representation in order to improve

the transcription performance, such as descriptors of rhythm, melody, har-

mony and instrumentation. The estimation of most of these features has

been studied as isolated tasks, as instrument recognition, detection of onset

and offset, extraction of rhythmic information (tempo, beat, musical timing),

pitch estimation and harmony (key, chords). Usually, separated algorithms

are required for each individual result. Considering the complexity of each

task this is necessary, but the main drawback is the combination of outputs

from different systems or the creation of an algorithm to perform the joint

estimation of all required parameters.

Another challenge is represented by the non-availability of data for evaluation

and training. This is not due to a shortage of transcriptions and scores, but

to the human effort required to digitize and time-align the music notation to

the recording. The only exception is represented by the piano solos thanks

to the available data from the MAPS database [3] and the Disklavier piano

dataset.

1.2 Scope of the thesis

The thesis has a double aim: to create an annotated musical dataset com-

pletely dedicated to jazz music and to propose a specific AMT system specific

to polyphonic jazz recordings. The AMT method is based on the estimation

of multiple-pitch and onset detection using a Neural Network algorithm.

Annotated music plays a central role in Multi-Pitch estimation and Auto-

matic Music Transcription. A great amount of data is required for the de-

velopment and evaluation of such algorithms which rely on statistical ap-

proaches. However, such data is usually embedded in annotated sound

databases, some of which are public, while others, as those used in the

MIREX context, are private. Few databases are currently available and usu-

ally consist of musical instruments and recordings from which the annotated

file is derived with the ensuing problem of inaccurate and erroneous values

for pitch, onset and offset time.

The choice of working with jazz genre for the AMT system was mainly justi-

fied by the lack of specific works, and hence the need of gathering a dedicated

dataset. On the other hand, the choice is also motivated by the genre itself,
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as jazz comprises a wide variety of different styles and ways of performing

the same musical pieces. Jazz is a genre that is renowed for its syncopated

rhythms and chord progression, the improvisational phrasing, the intimate

expressiveness and the articulated melodies. It is best defined in the words

of one of the greatest trumpeters Wynton Marsalis: ”Jazz is not just, ”Well,

man, this is what I feel like playing .” It is a very structured thing that comes

down from a tradition and requires a lot of thought and study.”.

Usually, opening and closing parts of jazz compositions are characterized by

a melody or theme and the specified progression of chords, while the central

part is often covered by the solos in a cyclical rhythmic form [4]. Impro-

visation is a process of elaboration of a melodic line, specified in the lead

sheet or score [4]. During this action, the music sheet is a constant refer-

ence for the rhythm and the harmony, but the melody is subject to a live

reinterpretation. Furthermore, the improvisation is the moment in which the

performer may show its virtuosism and its personal style, that is expressed

by the use of special musical effects, such as vibrato or slide, or dynamic

emphasis. This very peculiar characteristic influenced Jazz music itself; so

for the same composition it is possible to find recordings of the same artist

quite different among them (like two performances of Blue Train by John

Coltrane [5] [6]).

For this reason, one of the advantages of employing AMT to Jazz could be

the relevant consequence for musicological studies of specific artists, for deep-

ening their styles and performances.

Furthermore, due to its spontaneous and creative origin, improvisation ap-

pears not to follow any harmonic rule or pattern and for this reason could

be a good benchmark for transcription [4].

Finally, the choice of focusing the research on the piano only has technical and

conceptual reasons. In part, due to the diffused knowledge of the instrument

and the large available datasets of synthesized and annotated recordings; in

part, because of its double role in jazz music: the lead voice (performing the

melodic part and the improvisations), and the accompaniment.
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1.3 Aims and applications

Automatic Music Transcription converts audio recording into its paramet-

ric representation using a specific musical notation. Despite progress in the

field AMT research, no end-user applications with accurate and reliable re-

sults are available and even the most recent AMT products are clearly infe-

rior compared with human performance [7]. Although the Automatic Music

Transcription of polyphonic music cannot be considered a solved problem,

it is of great interest due to its numerous applications in the field of music

technology.

Music notation is an abstraction of parameters. It is a precise organization

of symbols just like words or letters are for languages and the Western mu-

sic notation is still considered the most important and efficient medium of

transmission of the music. Human music transcription is a complicated rou-

tine that requires high competence in the musical field and musical training,

and it is also a time-consuming process [2]. A its most basic, AMT allows

musicians to convert live performances into music sheets and thus easily tran-

script their performances [8] [9]. For this reason AMT is of special interest

for musical styles when no score is available, e.g. folk music, jazz and pop

[10] or for musicians that are untrained towards the western notation.

Another field in which AMT would be extremely useful is the analysis of

non-written musical pieces, musicological one and musical education [9] [11]

[12]. It would allow the investigation of improvised and folk music, simply

by retrieving information on the melody. This last application is of particu-

lar interest for jazz case study, due to the wide use of improvisation during

live performances. A clear example is represented by the two performances

of Blue Train by John Coltrane, very different from each other despite the

same lead sheet: the first is the live concert in Stockholm in 1961 [5], the

second is the mastered piece [6]. It would allow us to focus on the detection

of personal fingerprint of an artist.

Musical notation does not only allow the reproduction of a musical piece,

but it also allows modification, arrangement and processing of music at a

high level of abstraction. Another interesting application of music transcrip-

tion, that has emerged in the last few years, is structured audio coding [10].

Structured audio representation is a semantic and symbolic description of

ultralow-bit-rate transmission and flexible synthesis that uses high-level or

algorithmic models, such as MIDI [13].
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More recently it has been applied to the automatic search and annotation

of new musical information, or to interactive musical systems, such as com-

puters actively participating in live performances, score following or rhythm

tracking. In fact, this kind of support of live performances would be very

helpful for the musicians, who could freely express themselves without both-

ering about the musical annotations from where their musical inspiration

flow. On the other hand, musicians usually see automatically created com-

positions and accompaniment as not achieving the same level of the quality.

The query by humming MIR task is one of the most recent applications of

the AMT to the slofége of a melody, where the output of an AMT can be

used as a query for an interactive musical database.

1.4 Structure of the thesis

Chapter 2 presents an overview of the main Music Information Retrieval tasks

and methodologies applied to the jazz genre. It begins with the description

of what MIR and Automatic Music Transcription are. Then it goes on to

explain in depth how transcription can be broken down into MIR tasks. The

third chapter is dedicated to the general concepts and terminology useful for

the understanding of the following chapters. It gives a brief overview of the

main application considered in the thesis, as well as musical sound formal

description, deep learning, MIDI and Music Information Retrieval. Finally,

it describes different approaches in which to deal with the problem of Auto-

matic Music Transcription.

The subsequent sections represent the core of the thesis and explain the

method applied, the proposed dataset and finally present results and consid-

erations.

Chapter 4 is focused on the description of the approach used in the thesis,

based on machine learning, and presents the complex workflow required for

obtaining results, through the various system blocks. And finally it provides

an in-depth explanation of the pre-processing and Neural Network stages.

Section 5 is dedicated to the presentation of the dataset creation process,

starting from the collection of raw MIDI files, passing through the analyti-

cal phase, ending with the synthesis. The chapter also deals with the main

design choices made during the building of the dataset and with the main

software used.
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The final two sections are dedicated to the explanation of the metrics

to obtain the results, the evaluation to the presented system and ends with

a summary of the main contributions to the thesis, offering a perspective

on improving this system and the potential application of the transcription

system.
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Chapter 2

Related works

The following chapter gives an overview of Automatic Music Transcription

problem. The first section is focused on the description of the transcription

problem with historical references, to give an idea of the evolutive trend.

The remaining sections are dedicated to the subtasks of state-of-the-art Au-

tomatic Music Transcription presentation. A brief description of the single

pitch estimation problem was inserted for the sake of completeness. De-

spite not being the focus of the thesis, it should give a good explanation of

the differences in the multi-pitch estimation. Finally multi-pitch estimation

state-of-the-art is presented in depth to evaluate different algorithms and

methodologies.

2.1 Overview on Automatic Music Transcrip-

tion

Automatic Music Transcription is thought to be the process to translate an

audio signal into one of its possible parametric representations. As explained

in section 1.3, there are many applications in this research area, in particular

applied to musical technology and to musicology.

Automatic Music Transcription is deeply linked to Music Information Re-

trieval. The latter is defined as a research field focusing on the extraction of

features from a musical signal. These features need to be meaningful to the

task of understanding musical content as the auditory human system does.

The features extracted can be of different levels depending on the type of

information contained.



Actually, Automatic Music Transcription can be decomposed into sub-tasks

related to the mid-level features of MIR. Onset and offset detection, beats,

downbeats and tempo estimation are some of them.

The main tasks for an AMT system are the pitch estimation and the onset de-

tection. This chapter focuses on these problems and the different approaches

used in the state-of-the-art methodologies.

2.2 Automatic Music Transcription history

First attempts of AMT systems being applied to polyphonic music date back

to the seventies. They showed many limitations concerning polyphony level

and a number of voices. Moorer [1] method was based on the autocorrela-

tion of output from a comb-filter, delaying the same input signal to find a

pattern in the signal. Blackboard systems came into the AMT scene at the

end of the century. Martin [14] [15] proposed a method based on five levels

of knowledge ranging from the lowest to highest ones: raw track, partials,

notes, melodic intervals, and chords. Blackboard systems are hierarchically

structured, and the integrated scheduler determines the order of the action

to perform. Nowadays most of the technique can be related to Probability-

based techniques, Spectrogram Factorization, Machine Learning, and Signal

Processing ones.

A straightforward procedure is offered by the Signal Processing approaches

like the Klapuri one [16]. Klapuri proposed in the starting year of 2000 a

method where fundamental frequencies, once estimated from the spectrum

of the musical signal, are removed from the signal iteratively.

During the same period, more complicated techniques were employed in order

to tackle the probabilistic character of the signal. The Goto [17] approach

introduced a method for detecting predominant fundamental frequencies tak-

ing into consideration all possibilities for F0.

More recent works exploit spectrogram factorization techniques like Non-

Negative Matrix Factorization.

As the maths could suggest, the magnitude spectrum of a short-term signal

can be decomposed into a sum of basis spectra, representing the pitches.

They can be fixed by training on annotated files, or estimated from observed

spectra. NMF estimates the parameters of the model. The Vincent [18]

method (2010) used harmonicity and spectral smoothness constraint for an

NMF-based adaptive spectral decomposition.

8



The probabilistic variant of NMF is PLCA studied by Smaragdis [19] (2006)

and Poliner [20] (2010).

Finally, machine learning techniques seem to be the most promising and

generalizable methods, capable of achieving better performances in terms of

reliability. The Support Vector Machine, a supervised machine learning al-

gorithm, was used by Poliner and Ellis [21] (2006). They trained the SVM

on spectral features to have a frame-based classification of note instances.

HMM was used to introduce temporal constraint during the elaboration of

detected note events. Sigtia et al. [22] (2014) exploited the RNN capabil-

ity of capturing temporal structure in data and MLM to generate a prior

probability for the occurrence in the sequence to improve the transcription.

2.3 Single-pitch estimation

Single pitch estimation refers to the detection of the pitch in monophonic

tracks, where monophonic means that no more than one voice and pitch at

a time can be present in each time frame. This massive initial hypothesis

simplifies the task and the problem of single pitch estimation both for the

speech and for the musical signals is taken as solved.

Chevigné’s dissertation [23] takes an overview on various single-pitch meth-

ods dividing them into framework using spectral components, temporal ones,

and spectro-temporal ones.

Spectral methods use spectral components relying on the analysis of the

frequency element within each note. Since musical sounds are considered

quasi-harmonic signals, it can be stated that partials will be at integer mul-

tiples of the fundamental frequency. The energy spectrum should have a

maximum indicating the fundamental frequency. Different spectral meth-

ods exploits different algorithm for the detection of pitch. Autocorrelation,

cross-correlation and maximum likelihood functions are the most used de-

pending on the representation employed. Spectral techniques are affected by

harmonic errors placed at integer multiples of the fundamental one.

Temporal methods make use of autocorrelation function for the estimation

of the fundamental frequency from raw audio signals. Due to the periodicity

of audio signals, peaks in the function indicate the targets. Among them,

fundamental frequency of the waveform would be the first peak, the other

represents sub-harmonic errors due to higher harmonic components.

Spectro-temporal methods merge the two techniques to avoid errors derived

9



from their approaches. The signal is segmented in short frequency range as in

Hewitt’s work [24]. The proposed model exploits the human auditory system

making use of a log-spaced filter-bank in the first stage of the framework. An

autocorrelation function will detect the pitch for each channel of the filter-

bank. A summary autocorrelation to merge all the information from all the

frequency bands is required for overall results.

2.4 Multi-pitch estimation

Polyphonic music is usually characterized by multiple voices or instruments

and multiple concurrent notes in the same time-frame. This led to the im-

possibility of making any assumption about the spectral content of a time

frame. A couple of papers highlight a good division of multi-pitch estimation

methods, as for single-pitch estimation, in temporal, spectral and spectro-

temporal methods. The paper [23] suggests that most of the methods are

based on the spectral features analysis. However, within the same set of

representations, it also focuses on many differences concerning the used tech-

nique. Furthermore, the paper from Benetos [25] explains in depth all the

state-of-the-art methods separated by the employed techniques.

The pitch extraction method can be a way of classifying different multi-pitch

estimation approaches. As a matter of fact, joint algorithms are computa-

tionally heavier than iterative algorithms. Unlike the iterative ones, joint

methods do not introduce errors at each iteration. In fact, iterative methods

extract pitch at each iteration usually subtracting the estimated pitch till no

more fundamental frequencies can be detected. These kinds of methods tend

to accumulate errors but are really light computationally speaking. On the

other hand, joint algorithms try to extract a set of pitches from the single

time-frame. In table 2.1, some multi-pitch estimation methods are divided

according to which kind of time-frequency representation is used.
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Time-Frequency Representation Citation

Short-Time Fourier Transform Klapuri [16] Yeh [26] Davy [27] Duan [28]

Smaragdis [19] Poliner [21]

Constant-Q Transform Chien [29]

Constant-Q Bispectral Analysis Argenti [27]

Multirate Filterbank Goto [12]

Resonator Time-Frequency Image Zhou [27]

Specmurt Saito [30]

Wavelet Transform Kameoka [31]

Adaptive Oscillator Networks Marlot [10]

Table 2.1: Multiple-F0 estimation approaches organized according to time-frequency

representation employed

One of the most used representations is the Short-Time Fourier Transform,

because of the easy fruition of a fast and robust algorithm and because of

the deep technical knowledge of that method. However, the Short-Time

Fourier Transform has the main problem of using a linear frequency scale.

To overcome this issue other representations can be used like Q-transform,

which employs a logarithmic frequency scale using constant ratio between

harmonic components of a sound, or other kind of filter-banks. Finally, the

specmurt is a representation of the signal based on the inverse Fourier Trans-

form of a spectrum calculated on log-frequency.

Technique Citation

Signal Processing Argenti [32], Klapuri [9], Yeh [26], Saito [33], Zhou [31]

Maximum Likelihood Goto [12], Kameoka [3], Duan [28]

Bayesian Davy [27]

Support Vector Machine Poliner [21], Chien [29]

Neural Network Böck [34], Marlot [10]

Spectrogram Factorization Smaragdis [19]

Table 2.2: Multiple-F0 techniques organized according to the employed technique
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Table 2.2 was built following the division concerning the used technique for

the multi-pitch extraction. In particular, it shows the majority of meth-

ods exploits signal processing techniques. In this case, extracted audio fea-

tures are used in the multi-pitch estimation without the help of any learning

algorithm. Methods based on the spectrogram factorization, such as Non-

Negative Factorization Matrix, are more recent. Those kind of algorithms try

to analyze the input space in order to decompose the signal representation

in time-frequency. Other methods rely on probability concerning signal field,

exploiting Bayes formulation of a problem and using Monte Carlo Markov

Chain in order to reduce computational costs and Hidden Markov Model as

a post-processing system for note tracking.

Finally, learning algorithms are now increasingly used and seem to be the

more promising methods. Supervised learning procedures such as Support

Vector Machine for the multiple-pitch classification can also be found. For

what concerns the unsupervised learning algorithm Gaussian Mixture Model

and any Artificial Neural Network can easily be found in the literature.

The following sections will go through each multi-pitch estimation technique

highlighting the merits and defects of each one.

2.4.1 Signal processing techniques

Signal processing techniques are probably the most widespread for the de-

tection of pitches within a single time-frame. The input signal is processed

for the extraction of the representation which can be in the temporal or in

the frequency domain. The detection of pitches is computed using a pitch

salience function, also called pitch strength function, or a set of possible

pitches.

Klapuri [16] exploited the smoothness of a waveform computing Magnitude

Power Spectrum and filtering it with a moving average filter for the noise

suppression. The Klapuri method is based on spectral subtraction with the

inference of polyphony. A pitch salience function applied within a specific

band, estimating the pitch from the spectrum. It also calculates the spec-

trum to subtract it from the input signal in order to exclude the detected

pitch from the input signal. Yeh [26] developed a joint multi-pitch estima-

tion algorithm basing the detection of the fundamental frequencies on a set

of candidate pitches. The used spectro-temporal representation is the Short-

Time Fourier Transform. A pre-processing stage is employed to estimate the
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noise level present in the signal in an adaptive fashion. The pitch candidate

score function takes into account different parameters like harmonicity fea-

tures, mean bandwidth of the signal, spectral centroid, and synchrony. With

reference to iterative methods, some were developed like the Zhou [27]. Zhou

used a filter-bank composed of complex resonators that should approximate

pitch representation. The energy spectrum is used as a representation of the

audio signal. Rules for the iterative elimination of candidates pitches are

based on the number of harmonic components detected in each pitch and a

measure of spectral irregularity. Another mid-level representation used is the

specmurt. It consists of the inverse Fourier Transform of the power spectrum

computed in a logarithmic fashion. Saito [35] proposed a method based on it

where the input spectrum can be seen as the convolution of harmonic struc-

tures and pitch indicator functions. On the other hand, the deconvolution

of the spectrum by the harmonic pattern, results in the estimation of the

pitch indicator function. This last stage is achieved through the specmurt

analysis, detecting iteratively notes. Representation exploiting log-frequency

scale are also used in order to improve the methods, such as the Q-transform

representation. Argenti [29] proposed a method using both Q-Transform and

b-spectral analysis of the input signal.

Signal processing techniques are computationally lighter than other tech-

niques and were the first to be applied due to their simplicity. However,

to reach performances of more complicated techniques, ah-hoc hypothesis

needed to be done to improve the raw systems. For this reason they still

remain less prone to a generalization to but different type of data.

2.4.2 Statistical techniques

Statistical methods rely on basic principles of statistics to analyze dependen-

cies of the signal from itself. Usually, it is a frame analysis where given a

frame v and the possible fundamental frequencies combination, C the prob-

lem of estimating multiple pitches can be formulated as a Maximum a Pos-

teriori problem. The MP formula: Ĉ = argmaxC∈CP (C|v) indicates with

Ĉ the estimated set of pitches and with P is the probability to estimate the

pitch set C.
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If, instead, we do not have any prior information about the mixture of

the pitches, the problem can be seen as a Maximum likelihood estimation

problem exploiting the Bayes rule:

Ĉ = argmaxC∈C
P (v|C)P (C)

P (v)
= argmaxC∈CP (v|C).

The model proposed by Davy and Godsill [32] makes use of Bayesian har-

monic models. This technique models the spectrum of the signal as a sum of

Gabor atoms. The parameters for the unknown model of Gabor atoms are

detected using a Markov Chain Monte Carlo.

The method proposed by Kameoka [31] takes as input a wavelet spectrogram

and the partials are represented by Gaussian placed in a frequency bin along

the logarithmic distributed axis. A Gaussian-mixture model tries to identify

partials taking into account the synchrony of partials. Pitches are extrapo-

lated using the Expectation-Maximization algorithm.

Statistical multiple-pitch estimation methods for the modeling region with

and without peaks use the Maximization likelihood approach. The one pro-

posed by Duan [33] is based on a likelihood function, composed of two com-

plementary regions. One where there is the probability of detecting a certain

peak in the spectrum given a pitch, and the other where there is the proba-

bility of no detection of peaks. The stage dedicated to the pitches estimation

makes use of a greedy algorithm.

2.4.3 Spectrogram factorization techniques

The main spectrogram factorization models are the Non-Negative Matrix

Factorization and the Probabilistic Component Analysis. They aim to clus-

ter automatically columns of the input data.

NMF tries to find a low dimensional structure for patterns present in a higher

dimensional space. The input matrix V is decomposed in W atoms basis ma-

trix and H atom activity matrix. The distance between the input matrix and

the decomposed one is usually measured with the Kullback-Leibler distance

or the Euclidean distance. A post-processing phase is used to link atoms

to pitch classes and to sharpen the onset and offset detection for the note

events.

PLCA introduced by Smaragdis [19] is the probabilistic extension of NMF

using a Kullback-Leibler cost function. The input representation, the spec-
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trogram, is modeled as the histogram of independent random variables dis-

tributed accordingly to the probability function. The latter can be expressed

by the product of the spectral basis matrix and the matrix of the active com-

ponents.

It represents a more convenient way of incorporating prior knowledge on dif-

ferent levels inducing a major control on the decomposition. P (ω|z) is the

spectral template at z component, and Pt(z) represent the activation of zth

component. PLCA is expressed as Pt(ω) =
∑

z P (ω|z)Pt(z). Pt(ω) is the

estimation of parameters performed through the Expectation-Maximization

algorithms. Due to the temporal constraint on both NMF and PLCA algo-

rithm, they can not be applied to non-stationary signals. For that reason,

alternatives to these methods were developed, such as the Non-Negative Hid-

den Markov Model. In the Non-Negative Markov Model, each hidden state

is linked to a set of spectral components in order to be used by them. The

input spectrogram is decomposed as a series of spectral templates per com-

ponent and state. Thus, the temporal constraint can be introduced in the

framework of an NMF, modelling a non-stationary event.

2.4.4 Machine learning techniques

Despite the previous year’s machine learning algorithms not being given too

many chances, the number of methods applying them is increasing. Good

results and the potential they are showing in the latest research seem to be

continually growing.

Chien Jeng [3] proposed a frame-based method applying a supervised ma-

chine learning algorithm to signal processing data. The method exploits the

Q-Transform time-frequency representation, trying to solve octave errors,

and it makes use of the classification procedure called Support Vector Ma-

chines. Each pitch is characterized by a single dedicated class.

A really interesting paper was the one about the comparison between dif-

ferent Neural Networks written by Marlot [10]. He uses Neural Networks of

different natures working on the same kind of input data to understand which

one could be the best performer. The outcome of his study founded that the

Time-Delay Neural Network got the best performance parameters. Musical

strong time correlation is exploited by the neurons of the Time-Delay Neural

Network, outperforming the other types of Neural Network.

An algorithm using Short-Time Fourier Transform for time-frequency anal-
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ysis was the one proposed by Poliner and Ellis [21]. It exploits a frame-

based method focused just on the piano note classification. The classification

method was used jointly to a Support Vector Machine, and the multi-pitch

task is also supported by a Hidden Markov Model. The latter helps the im-

provement of the classification system during a post-processing stage.

Other interesting types of unsupervised learning were used in the work of

Böck and Schedl [34]. This work makes use of Recurrent Neural Networks

focusing on the polyphonic piano transcription. The proposed Neural Net-

works is made of bidirectional Long-Short Time memory atoms that are of

consistent help in the note classification and onset detection task. The input

of the Neural Network is represented by the output of a semitone spaced

filter-bank analyzed with a long and short window.

2.5 Trend and future directions

Automatic Music Transcription is considered by many to be the Holy Grail

in the field of music signal analysis. Its core problem is the detection of

multiple concurrent pitches, a time-line of which was given in section 2.2.

As can be observed, before 2006 common approaches were signal processing,

statistical and spectrogram factorization. Furthermore, within the MIREX

context [36], best performing algorithm was the one proposed by Yeh in 2010

[37], reaching an accuracy measure of 0.69. Despite significant progress in

AMT research, those types of systems are affected by a lack of flexibility to

deal with different target data.

The work proposed by Benetos et al. [7] takes an overview of multi-pitch

estimation techniques which are state-of-the-art. Benetos et al. analyzed the

results and the trend of proposed systems, pointing out how performances

seemed to converge towards an unsatisfactory level. Furthermore, they tried

to propose techniques to ’break the glass ceiling’ of reached performances,

such as the insertion of specific information into the transcription system.

With the development of Machine Learning techniques, new perspectives

seem to open up. Last years MIREX results highlighted how approaches

employing Neural Networks are achieving better performances. Indeed, the

Böck [34] ranking in MIREX can be a clear signal of how promising are Neu-

ral Networks methods. The Böck approach clearly outperforms the system of

Poliner and Ellis [21], highlighting its good generalization capability. Further-

more, the system also performs better than the one of Boogaart and Lienhart
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[38], which was trained with a single MIDI instrument. This is remarkable,

since Böck system is not trained specifically for a single instrument. These

observations demonstrate better perspective for Machine Learning methods

compared to others.

Furthermore, Neural Network framework is widely applied in many research

areas from video to audio analysis. Within the audio field, it is applied also

to transcription of different instruments, such as the piano, as in the Böck

work, or drums, as in the Vogl et al. work [39]. The latter certify the flexi-

bility of the framework.

Furthermore, Marlot [40] guided an interesting study on different types of

networks. He highlighted how networks accounting for time correlation, such

as Recurrent Neural Networks, due to high correlation of audio signals, can

retrieve better performances.
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Chapter 3

Background and terminology

Musical Information Retrieval is the general field under which Automatic

Music Transcription can be categorized. Musical Information Retrieval is

the science that tries to extrapolate meaningful musical information from a

music signal. Thinking of Automatic Music Transcription, its aim is to re-

trieve a parametric representation of the audio signal.

Although AMT is a Music Information Retrieval task, it also goes through

a different field of the music technology and it requires different knowledge

taken from different disciplines: Acoustic, Music theory, Digital Signal Pro-

cessing, as well as Computer Engineering.

The current chapter is dedicated to principal important technologies and

background notions employed during the development of the method. Musi-

cal characterization, MIR sub-tasks, MIDI, Neural Networks and Madmom

library are explained in depth.

3.1 Musical sounds

AMT sub-tasks need a unique representation to describe precisely a musi-

cal sound. It can be characterized by four base attributes: pitch, loudness,

duration, timbre [25]. If duration can easily be described as the duration of

a signal in time till the imperceptibility of it, the same cannot be said for

the other three attributes. In this section, we will focus on these attributes

giving a rough description of the signal basis theory.



3.1.1 Pitch

Musical sounds are a sub-set of the acoustical signals and can be approxi-

mated as harmonic, or better nearly-harmonic signals.

In the frequency domain, harmonic sounds are signals described by a set of

frequency components. The lowest harmonic component is called fundamen-

tal frequency F0, the other sound components, called harmonics, play the

role of enhancing the signal. Harmonics, in harmonical signals, are placed at

integer multiple of the fundamental frequency, following the equation kF0,

where k is greater than one and belongs to an integer number set. Regarding

near-harmonic signals, the harmonics are not at precise multiple integers,

but they differ from a value depending on the nature of the instrument.

fn = nF0

√
(1 + n2B)/(1 +B)

The formula represents the distribution of fundamental frequencies, where

B = 0.0004 is the inharmonicity coefficient for a pinned stiff string in a

piano.

In the case of piano, extensively employed in this work, the sound can be

characterized as quasi-harmonic and pitched. For this reason, it can be

analyzed over the physical viewpoint thanks to the pitch attribute. The

pitch represents the perceived component of a sound wave, expressed in a

frequency scale. I.e. the fundamental frequency that refers to the physical

term, measured in Hertz and defined for periodic signals. As reported by

Hartmann: ”a sound has a certain pitch if it can be reliably matched by

adjusting the frequency of a sine wave of arbitrary amplitude.” [41].

To be more specific the pitch of a sound can be thought of as a subjective

impression of the fundamental frequency of a sound, allowing us to identify

a specific note on a musical scale.

3.1.2 Loudness

Loudness is the subjective perception of the sound intensity and is related

to Sound Pressure Level, frequency content, and duration of the signal. The

sensitivity of human auditory system changes as a function of the frequency

and not only as a function of the SPL as shown in the plot 3.1. The figure

3.1 shows the diagram of Fletcher and Munson and two main thresholds

can be detected. The hearing threshold indicates the minimum sound level
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perceivable to the human ear. The pain threshold represents the maximum

sound level that a human ear can perceive without feeling pain. The other

lines, called isophonic curve, show the SPL required for each frequency to be

perceived at the same loudness. We can also observe from the diagram that

the ear was thought to perform at its best in the speech range between 1 kHz

and 4 kHz. However, it has a minimum perceivable pitch of 20 30 Hz while

a maximum of 15-20 kHz.

In the Fletcher and Munson diagram the Loudness Level is also indicated,

expressed in Phon, for each isophonic curve at 1 kHz.

Figure 3.1: Fletcher Munson diagram
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3.1.3 Timbre

In a situation where two sounds have identical pitch, loudness, and duration,

they could not be distinguished but thanks to the timbre character they can

be. Timbre is a general character of a sound, usually attributed to the sound

of an instrument. It denotes a digital fingerprint of all the sounds of an

instrument.

From the Acoustical Society of America, the Acoustical Terminology defines

the timbre as ”that attribute of auditory sensation which enables a listener

to judge that two nonidentical sounds, similarly represented and having the

same loudness and pitch, are dissimilar. The timbre depends primarily upon

the frequency spectrum, although it also depends upon the sound pressure

and the temporal characteristics of sound” (Acoustical Society of America

Standards Secretariat 1994).

The timbre is used to define the color or the quality of the sound. It is closely

influenced both by the time evolution (attack, decay, sustain, release time)

and by the spectral components in a sound.

3.1.4 Rhythm

The temporal relation between events is described by the rhythm. The per-

ception of it is linked to two different factors: the grouping, which is more

formal measure, whereas the meter, is a more perceptive one. Indeed, group-

ing refers to hierarchical division of a musical signal in the rhythmic struc-

tures of variable length.

A group can be extended from a set of notes to a musical phrase to a musical

part. On the other hand, meter refers to regular alteration between a strong

beat and a weak beat heard by the listener. Pulses or beats do not have

an explicit assignment in the music but are induced by the observation of a

rhythmic pattern underlying the musical structure.

The main measure to define the rhythm of a song is the tempo. Tempo de-

fines the rate of the most prominent among the pulses and it is expressed in

Beat Per Minute. Indicating with Tactus the beat, i.e. the measured tempo

reference for each individual event, the Tempo can be expressed as the time

rate of the Tactus. The shortest time interval between events in the track

is called Tatum and constitutes the base structure of it. Finally, bars refer

to harmonic changes and rhythm pattern changes. The number of beats in

every measure is called time signature.
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3.2 Music information retrieval

Music Information Retrieval (MIR) is ”a multidisciplinary research endeavor

that strives to develop innovative content-based searching schemes, novel in-

terfaces, and evolving networked delivery mechanisms in an effort to make

the world’s vast store of music accessible to all”, as defined by Downie [42].

The quote of Downie is explicative of the wideness and of the potential that

the Music Information Retrieval has in today’s world. Due to the increasing

number of streaming services and the consequent availability of mobile music,

the interest concerning the Music Information Retrieval is quickly increasing.

It is mainly focused on the extraction and the inference of meaningful features

from music, on the indexing of music, and on the development of the scheme

for the retrieval and the research of data. Of particular interest during this

work are those MIR applications referred to feature extraction. Indeed, in

the case of Automatic Music Transcription methods, descriptors of audio

signals play a central role in understanding musical contents. In fact, AMT

systems can be decomposed as MIR tasks linked to mid-level features. Note

onset and offset detection, beat tracking or tempo estimation represent the

actual research field needed for a complete transcription.

Onset detection has the aim to identify the start point of an event, called on-

set. More specifically the onset detection needs to identify the starting point

of all the events within a musical signal. Depending on the instrument being

played, onsets can be divided into three categories: pitched, percussive or

pitched-percussive. The first is typical of string instruments or wind instru-

ments; percussive ones are produced by drums; finally, pitched-percussive

onsets characterize instruments such as the piano or guitar.

Facing polyphonic music with multiple voices complicates the onset task,

since every voice has its own onset characteristic. Furthermore, onsets can

be modified for aesthetical purposes using musical effects like the tremolo and

the vibrato or other audio effects. Usually, modifications constitute interfer-

ences in the onset detection task. For this reason, there are some methods

focused on the onset detection suppressing vibrato like the one proposed by

Böck [34].

Metrical organization of musical tracks follows hierarchical structure from

the lower level, the beat, to the higher one, the time signature. The beat

is the reference for each musical event and constitutes the most important

rhythmic element. A pre-stated number of beats form a bar, the number of
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the beats that need to be present in a bar is indicated by the time signature

or meter. On the other hand, downbeats are meant to be the first beat inside

a bar and it can be linked to rhythmic patterns or harmonic changes within

a musical piece.

Linked to the beat tracking, the tempo estimation task has the aim to recog-

nize accurately the frequency at which beats occurs. Although theory could

suggest deriving the tempo of a musical piece from the beat estimation, which

is not as easy as it might appear. Tempo hypothesis is needed for a robust

and good beat estimation algorithm.

3.3 MIDI

MIDI, which stands for Music Instrument Digital Interface, represents a com-

munication digital language. It works with specifics that make possible the

communication between different devices inside a cabled network. Finally,

the MIDI is a medium to translate events linked to a performance or a con-

trol parameter, such as pressing a key on the keyboard. Those messages can

be, then, transmitted to other MIDI devices or can be used later on after the

recording.

Figure 3.2: MIDI network scheme

A basic device within the MIDI environment is the sequencer. A MIDI

sequencer can be software or hardware, which is used to record, modify and
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send to the output MIDI messages in a sequential way. The MIDI messages

are usually divided per track, each one dedicated to a different instrument as

required by the producing concept. MIDI Tracks contain events and messages

working on a specific channel. Once the performance has been recorded, it

is stored and can be arranged or modified also with the help of graphical in-

terfaces depending on the sequencer. Data is then stored in a file or a digital

audio workstation to be played back or reused in different ways.

Most used sequencers are the software ones due to their portability through

different Operating Systems. They exploit the versatility, the calculus speed

and the memory of a personal computer.

From an artistic viewpoint, thanks to its flexibility, the MIDI language is

a really important medium for artists. Once the MIDI has been recorded

and mastered it can overtake the analogic difficulties and the recorded per-

formance can be edited and controlled. In this dissertation, exploiting the

power of the standard, we will use the MIDI annotation to use different pi-

ano or instrument sounds on the same performance in order to have more

variability inside the dataset.

It is important to remember that the MIDI does not have inside itself any

sound information and does not communicate any audio waves or create any

sound. It is a language to transmit instructions to devices or programs to

create and modify the sound. This is the great strength of the MIDI standard

since it permits the files to be very lightweight.

A Standard MIDI file can be of three formats:

1. Format 0: all the tracks of a song are merged in a unique one containing

all the events of all the tracks of the original file;

2. Format 1: tracks are stored separately and synchronously, meaning

that each track shares the same tempo value. All the information

about tempo and velocity of the song are stored in the first track, also

called Tempo Track. It is the reference point for all the other tracks;

3. Format 2: tracks are handled independently also for the tempo man-

aging.

Within a MIDI track, every event is divided from other events by temporal

data called Delta-time. Delta-time translates into byte, the time between

two occurring events, so it represents the duration in Pulse Per Quarter

Note between an event and the following one. PPQN is the duration in a
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microsecond of an impulse or also called tick per a quarter of note. It is given

by the following equation: 60000000/bpm
PPQN

. The Beat Per Minutes represents the

metronome time of the song, while the PPQN is the resolution in impulses

for a quarter of a note.

3.3.1 MIDI messages

The medium for the communication between devices within the MIDI net-

work is called MIDI messages, transmitted along serial MIDI lines at 31,250

bit/sec, where MIDI cable is unidirectional. Data in a serial line follow a

unique direction in a conductor cable, while in a parallel line data can be

transmitted simultaneously to all the devices connected.

In MIDI messages the Most Significant Bit, left one, is dedicated to identi-

fying the kind of byte. Bytes of MIDI messages could be Status Byte if the

MSB is set to 1, or Data Byte if MSB is set to 0.

To permit different kinds of connections between devices and different in-

struments, guidelines were specified, following those specifications a device

can transmit or respond to messages depending on its own internal settings

as specified in the figure 3.3. As a matter of fact, there is a different mode

in which an instrument can work. The Base Channel is an assigned channel

and determines which channel the device would respond to.

Now we will take a deep view of the mode in which a MIDI device can work:

• Mode 1: Omni mode On, Poly mode On, the instrument will listen to

all channel and retransmits the messages to the device set at the Base

Channel. In this mode, the device acts as a relay of input messages in

a poly mode. It is rarely used.

• Mode 2: Omni mode On, Mono mode On, the instrument will listen to

all the channel and retransmits the messages to the device or instrument

set at the Base Channel, the latter can act just as monophonic device.

In this mode, the device acts as a relay of input messages in a poly

mode. It is even rarer than the Mode 1 since the device cannot detect

the channel nor play multiple notes at the same time.

• Mode 3: Omni mode Off, Poly mode On, the instrument would respond

just to the assigned Base Channel in a polyphonic fashion. Data from

a different channel from the Base Channel would be ignored. It is the

most common mode due to the fact that voices within the multitimbral
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device are controlled individually through messages on the channel,

reserved for that voice.

• Mode 4: Omni mode Off, Mono mode On, the instrument would lis-

ten to the assigned Base Channel, but every voice is able to play a

unique note per time. A really common example is the recording sys-

tem for a guitar, where each data is transmitted in a monophonic way

on one channel, one for each string, as a matter of fact, one cannot play

multiple notes on a single guitar string.

Figure 3.3: Voice channel assignment of the four modes that are supported by the

MIDI: top left Omni on/poly; top right Omni on/mono; bottom left Omni off/poly;

bottom right Omni off/mono
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Channel voice messages

Channel voice messages are used to transmit real-time performance data

through a MIDI cabled system. Every time a parameter or a controller of

a MIDI instrument is used, selected or changed by the performer, a channel

voice message is emitted. Below are specified some of the most used channel

voice messages:

• Note-On: used to denote the start of a MIDI note, it is generated

every time a key is triggered on a keyboard, a controller or on other

instruments. Status Byte contains the Note-On status and the midi

channel number; Data Byte to specify which of the 128 MIDI pitch

note needs to be played, one Data Byte to denote attack velocity of the

pressed key or the pressure, the volume of the note is affected by the

latter. MIDI note is contained in the interval from 0 to 127 knowing

that in position 60 is placed the C4, to give an example the keyboard

has 88 keys and its MIDI note interval comprehends numbers from 21

to 88. In the specific case in which a note has an attack velocity 0, the

Note-On events is equal to a Note-Off. This peculiar use of the Note-

On message was exploited in the project to modify easily the MIDI files

without deleting any of the events.

• Note-Off: is the message to stop a specified MIDI note. The sequence

of MIDI events is characterized by a sequence of Note-On Note-Off

messages. The note-off command would not cut the sound, but it

would stop the MIDI note depending on the release velocity parameter

that represents how fast the key was released.

• Program-change: it is a message for specifying a change in the number

of the program or pre-set which is playing. The program number usu-

ally define the MIDI instrument to play, pre-sets are usually defined

by manufacturers or by the user to trigger a specific sound patch or a

specific setup.

• All Notes-Off: since a MIDI note could remain played, All Note-Off

message can be used to silence all the modules that are playing.

• Pressure/Aftertouch: it renders the double pressure on a key.
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• Control-change: it is used to transmit information related to changes

in real-time control or performance parameters of an instrument like

foot pedals, pitch-bend wheels.

3.3.2 System messages

System Messages are forwarded to every device within the MIDI network, so

there is no need to specify any MIDI channel number. Every device would

respond to a System Message. Three are the types of System Messages in

the MIDI Standard:

1. System Common Messages: they transmit general information about

the file being played like the MIDI time code, the song position, the

song selection, the tune request. Typical System Common messages

are: MIDI Time Code Quarter-Frame,Song Select, End of Exclusive

messages;

2. System Exclusive messages: are special messages left to the manufac-

turers, programmers, and design to make other devices of the same

brand communicate without restriction of the length of data and MIDI

messages customized;

3. Running Status messages: running status messages are a special type

of messages used in a situation of redundancy of the same type of

message. It permits a sequence of the same message type to omit the

Status Byte, that would be the same for each one. If for example, we

have a long series of Note-On messages on a specific channel with a

Running Status message, we can omit the Status Byte.
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3.4 Introduction to machine learning and Neu-

ral Networks

Nowadays, artificial Intelligence, AI, is widely used in many research areas

not only automating routines but also in the field of discerning high-level of

information. The true challenge for artificial intelligence was solving those

tasks hardly describable for people due to their spontaneous and intuitive

nature.

The Deep Learning term is linked to that way to approach an AI problem

in which tasks requiring high-level concepts need to be decomposed in many

lower-level terms [24].

One of the main reasons for the increasing use of deep learning in the last

20 years was the growing quantity of digitalized data. Training data is really

important in deep learning. The process of digitalization of the society and

the consequent start of the era of Big Data makes easier the resolution of

Machine Learning problems. Indeed, Machine Learning algorithms end with

good results when trained on a big amount of data.

Neural Networks are a framework to approach Machine Learning problems.

They take inspiration from the human brain system: how it is composed,

how it is connected and how its elements interact with each other.

Artificial Neural Networks are composed of interconnected processing units.

The goal of the network is to find an approximated function f ∗ that can map

the input x as the target y. ANN try to minimize the result of the function

f ∗ so to have y = f ∗(x). The processing units are also called artificial neu-

rons of the network and they usually perform a sum on the weighted inputs

they receive. The weight of each input depends on how much the input influ-

ences the neuron. The output of the weighted sum, called activation value,

is usually modified by a bias value which is then passed as input to a transfer

function.

The transfer function σ(a) applied to the activation value calculated by the

neurons is a non-linear function like a hyperbolic tangent, arc-tangent, and

sigmoid.

σ(a) =


1

1+e−a , sigmoid

tanh a, hyperbolic tangent

max(0, a), ReLu
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Additional non-linearities can be added depending on the purpose of the

Neural Networks, for example, the softmax algorithm can be applied to clas-

sification problems.

The topology of a network refers to the way in which neurons are connected

among each other to accomplish for example a pattern recognition problem.

Usually, Neural Networks are organized following a layered structure. In

each layer, the set of all the activation values from each neuron is called the

activation state of the network, while the output state is the set of all the

neurons’ output related to a layer.

The training of the Network consists of adjusting the parameters of each

neuron, weight and bias, in order to get an approximation of the output as

close as possible to the desired output target, provided by the input data

at the Network. Thanks to the layered structure, an iterative algorithm can

be used during the training, such as the backward propagation of the error

based on the gradient descent method. The gradient is the loss function and

measures the difference between the real output of a neuron and its desired

target output. Depending on the results of the gradient loss, the parameters

of the neurons are updated to get the minimal error between the target and

the actual output. Different loss functions are available for calculation such

as cross-entropy function, the one chosen during the development of the NN

used within the AMT system.

The minimization of the loss during the training phase can be performed in

three different approaches. Batch Gradient Descent approach tries to min-

imize all the sets of data. Stochastic Gradient Descent applies single data

to the Neural Network. Finally, Mini-Batch Gradient Descent use just a

little subset for the training. In addition, to avoid problems such as local

minima and to accelerate the training process, optimized Gradient Descend

algorithms were developed like Nesterov, Adam, Adadelta or RMSprop [24].

The activation state of a network represents the activation values in a layer

and determines the short-term memory of a network. On the other hand,

long-term memory is represented by the learning process of adjusting weights

[24].
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A variant of Forward Neural Networks is the Convolutional Neural Net-

work, figure 3.4. Its main characteristic is the fully connected convolutional

layer. CNN was chosen in the dissertation as framework for the pitch detec-

tion task.

Figure 3.4: Convolutional Neural Network scheme

The extension of basic Neural Networks exploits the long and short corre-

lation of the input signal with different types of Networks. Recurrent Neural

Networks, figure 3.5, for examples, extend Forward Neural Networks with

feedback connections, allowing the connection of previous layers. Feedback

connection accounts for different time instant of the input relating the actual

input to the past one, representing short time memory.

Figure 3.5: Deep Neural Network scheme. Left: Forward Neural Network; Right:

Recurrent Neural Network
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Long-term memory is exploited with the use of Long-Short Term Memory

cells, figure 3.6, allowing the Neural Network to learn long-term dependen-

cies. LSTM cells have an internal memory that can be accessed and updated

from gates depending on the input they are fed with.

Figure 3.6: Long Short-term cell

3.5 Madmom library

Due to the emerging of the Music Information Retrieval research field in

recent years, audio-based systems for the retrieval of valuable information

have become more important. Furthermore, their role is still gaining rele-

vance thanks to the increasing trend of available data.

Audio-based MIR systems in the state-of-the-art are designated as systems

which make use of low-level feature analysis for retrieving meaningful mu-

sical information from an audio data. The latest audio-based MIR systems

exploit Machine Learning algorithms to extract this information. Further-

more, they usually integrate a different level feature extraction sub-system

to derive them directly from the audio signal.

Madmom library, as an open-source library, was thought to facilitate research

in MIR field both in terms of low-level feature extraction, like Marsyas and

YAAFE, and in terms of high-level extraction like MIRtoolbox, Essentia or

LibROSA. What makes Madmom different from all the other libraries is the

use of Machine Learning algorithms [34].

Madmom library would like to give a complete processing workflow allowing
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the construction of both full processing systems and stand-alone programs

using Madmom functionalities. Thanks to Processors objects, Madmom con-

verts running programs into a simple call interface.

The use of Processors allows an easy use of complicated and long proce-

dures included in the library as low-level feature extraction ones. High-level

features are then used by Machine Learning techniques to retrieve musical

information. Madmom includes both Hidden Markov Model and Neural Net-

work methods applied to state-of-the-art algorithms of MIR tasks as onset

detection, beat, and downbeat detection, and also meter tracking, tempo

estimation and chord recognition. Availability of state-of-the-art techniques

permits users to build a complete processing method or just integrate them

in stand-alone programs as we have done.

Madmom is an open-source audio processing and Music Information Re-

trieval library based on Python language. Following the Object Oriented

Programming approach, it encapsulates all the information within objects

that instantiate subclasses of the NumPy class.

Madmom depends just on three external modules: one for array handling

routines, NumPy, one for the optimization of linear algebra operation for

FFT, SciPy, and finally one for the speed-up of critical parts, Cython. ML

algorithms can be applied without any other third-party modules since they

are algorithms pre-trained on external data, which are just tested with input

data, allowing reproducible research experiments.

The source code for each file is available on the net and the complete docu-

mentation for the API can be found at http://madmom.readthedocs.io.

The Madmom library was extensively employed during the development of

the Automatic Music Transcription system. In particular during feature

extraction and peak detection phases (the latter applied during the pitch

detection). It was exploited for its robust algorithms, and is easy to include

within external code.
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Chapter 4

Methodology

The proposed transcription system consists of three main phases as suggested

from the figure 4.1: an initial signal-processing stage, followed by an activa-

tion function calculation and finally a peak picking one. In the first phase

features are extracted from the audio signal and target values are also de-

rived from the MIDI files. Feature extraction works on raw audio data, while

target creation works on that of MIDI. During the activation function calcu-

lation phase, the Neural Network is trained on the same input features. The

final stage is represented by the detection of onset employing a simple peak

picking method. After the training of the Neural Network, the evaluation

phase consists of the prediction extraction from the interpretation of the fea-

tures. Target and evaluation prediction are compared to estimate the system.

Figure 4.1: System workflow



The following sections describe the entire system workflow, narrowing

down the analysis to the signal processing and the Neural Network training

phases that can be referred to as the core of the method itself.

4.1 Design choices and considerations

Automatic Music Transcription systems aim at retrieving a new represen-

tation of the input signal starting from a different one, exploiting analysis

methods. The Dixon method, for example, uses a time representation of the

signal. But, usually, as seen throughout the relevant section 2.4, probabilistic

and factorization algorithms rely on a time-frequency one. One of the main

reasons which support the choice of undergoing through time-frequency anal-

ysis, the method employed to perform our study, is the simultaneous study

of a signal under both time and frequency parameters. In fact, their tight

coupling helps and supports the signal analysis. From a practical point of

view the signal can be transformed from a one-dimensional signal to a two-

dimensional one through the Fourier Transform, assuming the signals to be

either infinite in time or periodic. A more realistic interpretation of the

Fourier Analysis is the Short-Time Fourier Transform used to compute the

Fourier Transform on short time-frames. STFT determines frequency con-

tent and phase in each local time-frame and was the one chosen in the dis-

sertation. Other time-frequency representations are available for analyzing

the signal like Q-transform, Wavelet transforms and Bilinear time-frequency

distribution. In practice, Short-Time Fourier Transform and Q-Transform

are the most frequently employed ones due to the availability of convenient

computational algorithms and deep theoretical knowledge. STFT’s main

drawback is constant frequency resolution, which may generate problems an-

alyzing lower frequencies. To overcome this issue, usually, a bank of filters

of a number of pitches is used (12 per octave in the case of musical signals)

with all the filters logarithmically spaced. Indeed the Q-Transform can be

seen as a logarithmic-spaced filter to which Fourier Transform is applied.

In the case of multi-pitch system, the evolution in time of the spectral con-

tent of a signal is really important to understand. Furthermore, the pitch

being played is extracted from the frequency content, and the onset time of

a note from the time information.
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Among those analysis representation possibilities, a logarithmic-spaced

spectrogram was chosen to overcome issues of STFT deriving from low-

frequency pitch estimation and from the tuning of the instrument.

The next design decision concerns the choice over which method to employ.

As seen from the overview on state-of-the-art techniques, signal-processing

methods seem to be robust and inexpensive from a computational standpoint,

however, being difficult to generalize due to the use of specific models [40].

Spectrogram factorization and sparse decomposition would be more general

than signal-processing techniques, but, on the other side, are more compu-

tationally expensive and less robust [25]. Following the above-mentioned

considerations, Machine Learning systems seem to meet the requirements

needed for a multi-pitch estimation problem thanks to good generalization

and robustness of the methods. The main drawback is represented by the

computational expense of the networks. Neural Networks, among all the

Machine Learning algorithms, are presented as the most promising method.

Indeed, results of such systems, as the one proposed by Böck [34] or the

Madmom library, and the studies done on different types of Neural Networks

proposed by Marlot [40], guided us to this design decision.

The last consideration on the design of the system regards the way in which

pitches are estimated. Despite joint multi-pitch estimators being more pre-

cise and less prone to errors, they are unfrequently employed due to the

complexity of the problem. So, as for most of the Automatic Music Tran-

scription algorithms, a frame-based method was applied to the multiple-F0

estimation phase.

4.2 Workflow

As anticipated in the introduction of this chapter, representation of data is

one of the most important design choices. The representation indicates the

information on which the method should work and what needs to be fed into

the Neural Network. Despite some methods still usnig time representation,

the time-frequency one is still the most popular for these kinds of applica-

tions following the reasons previously mentioned.

The signal-processing phase comes first in a music transcription system and

allows the extrapolation of features from raw input data. The extrapolation

can be seen as a different way of interpreting the data. As previously said,

the choice of the features play a central role within an Automatic Music
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Transcription system. Usually, methods for discarding redundant or non-

useful information for the transcription are studied to avoid memory prob-

lems linked to the large amount of data the system needs to process.

Therefore, the signal-processing stage plays a key role in the economy of the

system, however, the trade-off between performance and precision is still at

stake.

During this phase, in addition to the audio analysis, all the information con-

cerning the dataset are extracted from the MIDI files. All information, both

derived from audio and MIDI files, is saved in compressed files that later in

the this study will be loaded for a quicker re-utilization. Mainly two kinds of

structures are saved for each file: the target and the features. The former are

built reading MIDI files and converting it into a big matrix. Its dimensions

are 88, which represent the number of pitches on a keyboard, and frames

within the audio signal, the latter identifying time evolution. MIDI files are

scanned in order to discover note events. Each note event is analyzed and

then added to the matrix setting to one the value according to the pitch

and time frame. The resulting matrix would be similar to a MIDI piano-roll

using the number of frames for the time dimension. Throughout the process

different targets may be selected depending on the experiment one needs to

set, and these are either frame-by-frame, or onset or offset targets. Regard-

ing the features, audio is analyzed through the support of the audio section

of Madmom library [34] that allows easier calculation of the Logarithmic-

Spectrum. Firstly, the Short-Time Fourier Transform is applied to the audio

signal extrapolating its spectrogram using a window of size 1024, 2048 and

4096. To overcome problems linked to low pitch estimation, a logarithmic

filter is applied to the spectrogram. Finally, the first order differential of the

logarithmic spectrogram is extracted, helping the onset detection phase as it

will be explained later in the section dedicated to signal-processing.

The data is saved in numpy structures to be loaded quickly from memory,

and they contain names of the musical pieces, target, represented by the

conversion of MIDI files into text ones, and features as explained above.

Another important block is represented by the Neural Network training. The

pre-processed data is loaded from the memory and divided into three splits,

one dedicated to the training (80%), the other to the validation of the train-

ing (10%) and the last to the test (10%) before being inserted into the Neural

Network.

The Neural Network tries to approximate the distance of feature representa-
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tion to the target one, mapping the difference between the target obtained

by the results of the function applied to features. The function is modified

thanks to parameters and each time they are updated to find the closest

approximation, as being measured by the error calculated at each step. The

error is calculated every epoch, with a maximum number of 10000, and a

patience of five iterations. The Learning Rate is updated following the op-

timizer chosen within the training, while the output of the network will be

represented by the parameters that best fit the approximation compared with

the targets.

The post-processing phase is applied to the predictions using Madmom li-

brary. During this phase peak-picking function with a moving average and

threshold parameters help the post-processing of the predictions. The detec-

tion derived from this last passage is compared to the annotation files during

the evaluation.

Detections and annotations are compared event by event, where a True Pos-

itive value is detected when pitch is the same for annotation and detection

files and the onset time of the detection is in a range of ±50ms from the

annotated one; those events from annotation non-detected are classified as

False Negatives, while those non-annotated but detected events are False

Positives.

Finally, the test phase of the network consists of applying the trained Neural

Network to the features of the test set. The trained Neural Network is loaded

with the parameters calculated from the training and validation data, and

the output produces the predictions. The predictions are extracted from the

features by the Network depending on the target fed into it. If, for example,

the onset target is taken, the Network will search for a map between the

input features and them.

4.3 Audio signal pre-processing

Audio signals are transformed through a pre-processing phase in a com-

pressed musically meaningful representation. It can be used for the approx-

imation and the analysis of the acoustic model during the training of the

neural network. Three parallel Short-Time Fourier Transform are applied to

the signal frame-wise applying three different lengths of Hamming window to

the signal, respectively 1024, 2048 and 4096 frames. The resulting frame rate

is 100 frames per second and each window is distant 10ms for a time-length
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of 23.22ms, 46.44ms, and 96.88ms as suggested by the Böck’s work [34].

The frequency range analyzed was 30Hz 17000Hz using a sampling frequency

fixed to 44100Hz, as can be derived from the Shannon theorem. Indeed, the

sampling frequency was set to be at least the double of the maximum fre-

quency of the signal so as not to lose any information during the sampling.

Furthermore, the linear magnitude spectrogram of the audio signal of each

of the three STFT is filtered to compress the representation.

A Bark scale aligned frequency filter-bank with 12 and 24 bands per octaves

was used aiming at improving the frequency resolution of the system. The

logarithmic representation of the Bark spectrogram with 24 bands per octave

improves all evaluation measures of about 10% due to its sharper frequency

resolution. Indeed, 2 critical bands are used for the analysis of each semitone

space. On the other hand, the 12 bands setup dedicates just one critical band

per semitone. However, the semitone spacing aims at reducing the dimension

for the feature vector and desensitizes the whole system against minor tuning

variation.

Due to the percussive nature of the triggering of piano sound, during the

attack phase, a steep rise in energy is therefore detected. This represents

an important clue in the estimation of the starting point of the note, the

onset. For this reason, first-order differences, meaning the energy differences

between preceding frames are included in the vector features to better detect

onsets. Delay windows are applied with an overlap of 0.5 and their length

depends on the length of the STFT window and is of 2 frames for the 1024

STFT window, 4 and 8 for the 2048 and 4096 ones. The two feature vectors

for each musical piece have size 482 for the 12 bands per octave, while 836

for the 24 bands per octave, nearly double.

4.4 Neural Network

Deep Neural Networks can be referred to as a powerful machine aiming at

learning from a model that can be used for classification or regression tasks.

A DNN is usually composed of one or more non-linear transformations, de-

pending on the layers present in the network.
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Each layer performs a transformation

ht+1 = f(Wlhl + bl)

where parameters Wl and bl represent respectively the matrix of weights and

the vectors of biases for the level l with 0 ≤ l ≤ L. The function ht+1 is

the result of the non-linear function f applied element-wise to the input ht.

The first layer of a network, called h0, is represented by the input itself x,

while the output of the network, hL, is the result of all the transformation ac-

cording to the layers. The output yields a posterior probability distribution

P (y|x, θ), where θ = WL, bl
L
0 which can be estimated with the backpropaga-

tion algorithm. A DNN for acoustic modelling can be set by introducing a

frame of features as input. For example, feeding to the Neural Network a

magnitude spectrogram of any frequency representation, the Neural Network

will be trained to predict the probability of detecting a pitch in the time-

frame t as p(yt|xt).
The thesis exploits the Convolutional Neural Network type to preserve spa-

tial structure of input, trained using the RMSprop optimization algorithm

in batch mode.

The convolution operation hj,k = f(
∑

r(Wr,jxr+k−1 + bj)) produces a new

feature map of the input applying shared weights across all input lengths

within the convolutional layer. The input vector is selected on a region of

mXn to which a max-pooling layer is applied to select the maximum within

the region and the weights are represented as tensor of multiple dimensions.

At the time t the time window is of 2k + 1 length and the output posterior

distribution is represented by P (yt|xt+k
t−k).

The Convolutional Network is able to perform with better precision by incor-

porating information from different time examples modelling a time context

through the frame window.
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Figure 4.2: Convolutional Neural Network list of layers used in the thesis

The figure 4.2 shows the layered architecture of the Convolutional Neural

Network for the 12 bands per octave, features vector and the dimension of

each layer. It can be observed how the input layer is characterized by the

entire number of features (482 for the 12 bands case), and that Convolutional

layers are followed by Non-linear layers and Max-Pool layers. The Convolu-

tional layers are built using two different building blocks: the first consists

of two layers with 32 3x3 filters and the second consists of two layers with

64 3x3 filters. Both Convolutional layers are combined with batch normal-

ization layers, and each followed by a 3x3 Max-pooling layer and a drop-out

layer with the drop-out value λ = 0.3.

Most popular non-linear functions are the sigmoid one, the hyperbolic tan-

gent and the rectified linear unit:

σ(a) =


1

1+e−a , sigmoid

tanh a, hyperbolic tangent

max(0, a), ReLu

The choice of a function over another one can potentially impact on the
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effectiveness of the Neural Network as an approximator [26]. ReLu seems to

behave better with a fast gradient convergence, but the initialization of train-

ing weights has a substantial impact on the choice of the non-linear function

on the transcription [27] [35].

The Dropout prevents the co-adaptation of units increasing robustness to

noise. As its results also present better generalization and mitigating over-

fitting of the network by setting to zero a fraction of the activation values of

a hidden layer applied usually for each training case.

Batch Normalization produces activation with a zero-mean and unit-variance

distribution for each layer to which it is applied. The normalization at each

training set limits the distance between the activation distribution from the

normalized one (zero-mean and unit-variance) [29]. The Dense layer can be

seen as a dense matrix and vector (W,b) to which non-linear functions are

applied. The Dense layer transforms the input through the nonlinearity map-

ping.

The Convolutional layer defines a number k of kernels Ck to be applied to

the weights and biases matrices (Wc, Bc)
c=Ck

c=0 . Each input is transformed

through the convolution on itself and the kernel in a different feature map-

ping, through applying also a non-linear function.

The MaxPool layer is used in Convolutional Networks to provide a small

amount of translational invariance. It selects the maximum activation value

within a restricted area of the input both in time and frequency, reflecting

small changes in the tuning of the network.

Global Average Pool layers compute the mean value of the features maps.

4.5 Study of coefficients

The following paragraph is dedicated to the description of all the experiments

and the studies performed in order to allow the system to work properly. One

of the most important studies was made on SoundFonts and focused on the

understanding of which SoundFont to employ during the synthesis of the

dataset. A simple C major musical scale was synthesized and evaluated on

a pre-trained network to understand which of the SoundFonts could be cho-

sen for the following experiments. The results highlighted how SoundFonts

rendering the playing of the electric organ and electric piano as unsuitable

for the evaluation of network trained on the acoustic piano. This can be ex-

plained by considering the massive difference present in spectral components
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of sound from different SoundFont classes.

Piano Type F-measure Precision Recall

Hammond B3 0 0 0

Electric Grand U20 0 0 0

Crazy Organ 0 0 0

FM piano 0.75 1 0.6

Hammond Organ 0.7 0.68 0.73

Electric Fender 1 1 1

Table 4.1: Evaluation metrics for SoundFonts tested on a C-major scale

Figure 4.3: Electric Piano Fender Spectrogram
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Figure 4.4: Hammond B3 Spectrogram

Figure 4.5: Electric Grand U20 Spectrogram
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Figure 4.6: Crazy Organ Spectrogram

Measurements Electric Grand Piano Fazioli Grand Bright

Piano

F-measure 50ms 0.96 0.96

F-measure 25ms 0.06 0.62

Precision 50ms 1 1

Precision 25ms 0.07 0.7

Recall 50ms 0.93 0.93

Recall 25ms 0.06 0.6

Table 4.2: Evaluation metrics tested with different window size

The results shown in the table 4.1 can be justified by the spectrogram of

each SoundFont. Indeed, the ones presenting a high number of frequency

components, usually, have the worse results. On the contrary, the ones with

frequency peaks clearly recognizable reach a high value for metrics.

Other studies about the environment in which the instrument was recorded

or is designed to render, such as reverberation or bright and clear timbre,
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were briefly performed changing the window of evaluation during onset detec-

tion. The table 4.2 shows how doubling the window impacts on some values

of SoundFonts increase. Furthermore spectrograms show a slight variation

in the onset value compared to the previously presented SoundFonts.

Figure 4.7: Electric Grand Piano Spectrogram

Figure 4.8: Fazioli Grand Bright Piano Spectrogram

46



Coefficients for the post-processing function that needs to be applied af-

ter the estimation of the predictions were studied depending on a piano note

time envelope. The latter is usually characterized by an accentuate energy

burst during the attack phase due to the percussive nature of the sounding

mechanism.

Meaningful prediction values from the network have been shown to be in the

range of 0.2 to 0.9. In order to exclude non-meaningful interferences caused

by octave errors the threshold for the peak-picking function was set to 0.25.

The time window employed in the evaluation of MIREX context is 90ms.

Although onset detections in the presented work and the Böck’s one [34]

were evaluated with a shorter window size (50ms), however, results are re-

ally sharp on onset time detection as will be explained in the evaluation

section. Using a window size greater than 50ms, the evaluation system gains

in performances. This is proved by the studies on onset tolerance time inter-

val in Böck dissertation [34], highlighting how his system retrieves satisfying

results even within a shorter time window (25ms).
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Chapter 5

A new dataset for jazz piano

transcription

No more appropriate quote is worth mentioning than Bob Mercer’s one:

”There is no data like more data”. It clearly represents the most recent trend

of implying an analysis technique which relies on a statistical approach, using

a wide variety of files. The trend raises the need to deal with a large amount

of data to have enough information to work on.

Indeed, statistical analysis may help resolve many problems related to Music

Information Retrieval, but is raising another problem linked to musical data

collections which is the licensing of the audio files.

The attempt to create a dataset focused on the jazz music genre is justified

by the almost complete absence of a dedicated dataset and by the previously

mentioned musical interest in jazz music. Indeed, jazz is characterized by

wide a variety of different performing styles and also by a wide employment

of improvisation. The latter usually produces a countless number of varia-

tions and variants linked to a personal fingerprint. The intrinsic variety that

identifies the genre itself is one of the core components that makes its analysis

relevant. Furthermore, it can be referred to as a benchmark for transcription

tasks which ease the musicological analysis of jazz.

The main purpose of the proposed dataset is to provide a collection of relevant

musical data which will provide a contribution to jazz music analysis related

to the reasons mentioned above. The dataset will comprise the complete

set of data needed for evaluation of the system: the set comprehends audio

data and reference data as annotations. The main issues for the creation of

a musical database is the collection of audio signals. Problems concerning



licensing and available quality of digital data may arise as well. Furthermore,

the annotation building stage is one of the most time consuming and impre-

cise processes if performed manually. Those last considerations guided us

to the choice of taking MIDI file as input to create reliable annotations and

high-quality audio data. The discussion, then, will focus on the used tech-

nology and workflow which follows the creation of a jazz dataset: the process

starts with data collection while finishing with the creation of a complete

database. The main macro phases of the creation are the following: firstly,

collection and analysis phase, secondly, a separation of piano and non-piano

instrument stage, thirdly a synthesis and annotation production one, lastly

a mixing stage. Finally, a brief estimation test was done with the help of

Madmom library.

5.1 State-of-the-art Datasets

The increasing interest in Music Information Retrieval tasks raises the need

for a musical data collection to be solved through statistical analysis of data.

Furthermore, music licensing is a contemporary problematic, since it repre-

sents the licensed use of copyright music and it is intended to ensure the

protection of the owner’s work [32].

Musical annotated dataset can be focused on different problems, so it can

have different structures. The main problematic that this dissertation has

confronted refers to fundamental frequency extraction as well as onset detec-

tion. For the sake of completeness, other datasets will be presented.

The Structural Analysis of Large Amount of Musical Information project

presented by Smith et al. [31] SALAMI is a dataset focused on structural

annotations containing 2400 different types from 1400 musical recordings of

a wide variety of music. The mentioned project attempts to balance all the

genres from jazz to classical, with a good number of non-Western music, out-

standingly rare. Structure refers to the partitioning of a musical piece into

sections, grouping similar or repeated segments. This dataset could deliver

great contributions to music theorists and musicologists due to its focus on

the structural organization of music. Algorithms for automatic production of

structural description represent an active area operating in this manner [31]

and the SALAMI project tries to exploit their potential. However, their test

demands the creation of human-annotated ground-truth dataset. Finally,

Smith et al.’s project can be applied to a variety of different studies on music
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perception, formal styles and musical parameters according to the artist or

genre.

The MedleyDB [33], instead, is a dataset developed either for the melody ex-

traction, sound source separation or automatic mixing. In particular, during

automatic instrument recognition, annotation of instrument activations are

exploited. It consists of 122 songs of non-specific musical genre, 108 includ-

ing melody annotation.

Other datasets have focused on MIR task as automatic music tagging or mu-

sic recommendation or artist recognition. One of those is the Million Song

Dataset built by Ellis et al. [21]. It contains a collection of audio features

and metadata for popular music tracks for a total of 280 GB data and a

million song files with more than 44000 unique artists.

Three main reasons have directed most of the datasets and transcription

methods towards the choice of focusing on piano: firstly, wide availability

of digital audio; secondly, availability of score annotation mostly in classical

music, and lastly, wide knowledge linked to piano source production. Within

the wide variety of genres the classic one is extensively used due to the avail-

ability of musical scores that represent a checkpoint for annotations derived

from MIDI.

The only dataset with different classified genres is Real World Computing

one [43], which collects 315 musical pieces from pop, jazz as well as classical.

It was built thanks to the powerful collaboration of the RWC Music Database

Sub-Working Group and the RWC Partnership of Japan. The performances

were recorded to obtain audio files and MIDI files. A dedicated set for in-

dividual instruments is available and contains variations of playing styles,

dynamics and different instrument manufacturers.

Other databases, with higher fruibility than RWC due to their public avail-

ability, are focused on classical music since the wide collection of digital data

and annotations appertaining to that genre. One of the most important is

the MIDI Aligned Piano Sound [3], employed also for the evaluation of this

work. MAPS dataset is divided into four-set each one containing audio files,

annotation, and MIDI. ISOL set is dedicated to isolated monophonic notes,

RAND contains chords created randomly, UCHO focused on usual chords

recurrent in Western music, while the MUS set is made up of piano music

pieces. The MAPS dataset provides a large amount of sound at different

levels of structure, from isolated notes to complete melody, on high-quality

recordings, 16-bit sampled at 44100 Hz. The latter are generated either
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thanks to the help of automatic generating processes from the synthesis of

MIDI files or to the use of MIDIfied piano like the Disklavier [3].

Other used datasets are LabROSA, Mozart By Batik and MIDI from the midi

page. All of them are nearly totally related to classical music also following

the availability of musical scores that permit the check of the produced MIDI

annotations.

Starting from the Laboratory for the Recognition and Organization of Speech

and Audio (LabROSA), it is explicitly built for music transcription, classifi-

cation and similarity estimation.

On the other hand, Mozart dataset collects 13 sonatas from Mozart played

by Batick on a Boësendorfer Midified piano. More than one annotation for-

mat is available, and they are derived either from the MIDI match to score

alignment or from the conversion of score files ’.scr’ to MIDI. Furthermore,

different audio files, in addition to the Boësendorfer played, are available in

the form of synthesized MIDI. Finally, MIDI Maestro dataset is available

for the test. MIDI files from the http://www.piano-midi.de/ page are syn-

thesized with GrandConcertMaestro SoundFonts, which collects high-quality

SoundFonts. The page offers a total of 267 MIDI files from classical music in-

cluding artists like Bach, Beethoven, Chopin, Tchaikovsky, and annotations

are extracted from them.

5.2 Design choices and considerations

The selection of the data has been the first decision to address. As explained

in the scope of the thesis, one of the aims of this work is to build up a

complete jazz music database. The focus of the presented dataset and the

transcription method was moved towards the jazz genre for the motivations

mentioned above. A first phase of research within the literature of piano

transcription method was needed to detect those works already focusing on

the jazz transcription and then understand which data they are working on.

The research has pointed out that most of the piano transcription methods

are focusing on classical music due to the availability of datasets focused on

that kind of music. For this reason it has been important to understand how

to properly build up a reliable and precise dataset.

A standard way to build up a musical database complete with annotation is

to produce the ground truth a-posteriori from the audio signals. This pro-

cess, besides being time-consuming, usually produces a considerable level of
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inaccuracy. The problem can be approached either in a manual way or semi-

automatic way, however it can still be affected by erroneous values for the

annotated parameter. Unlike the large part of dataset creation approaches,

MAPS dataset was created from MIDI files, constituting the core of annota-

tions. Audio files are synthesized through an automatic process from MIDI

files.

Aligning with the MAPS approach, this work wants to offer reliable annota-

tion extracted from MIDI files, and for this reason, they were chosen as the

building block of the database. The source from which the files were taken

was the MIDKAR website (http://midkar.com/) that was created with no

professional or commercial intent. It contains about 8000 MIDI files divided

into musical genres. The Jazz split from the MIDKAR page was analyzed

to detect piano solos and to check the correctness of the MIDI. Due to the

low number of piano solos, we opted for the file with the accompaniment

part. It followed that a proper processing able to separate the piano from

the accompaniment part had to be developed. Since MIDI files can be built

in different ways with regards to the synchronization of the tracks, to sim-

plify the automated synthesizer system, just MIDI files of type 1 were taken

as input of the process.

The final dataset contains the related audio signal for each musical piece

synthesized from its MIDI file, and the text annotation describing the mu-

sical events present in the piece (time of onset of the note and pitch of the

note are marked). A complete set containing this information needs to be

given to the transcription system as input: the audio for the time-frequency

representation extraction, the MIDI one in order to build the ground truth

for the algorithm and finally the annotation one to evaluate the system.

The use of MIDI files as a main building block of the dataset leads to the

forced choice of the employment of SoundFonts for the sythesis of the MIDI.

Besides a robust and reliable extrapolation of annotation, MIDI and Sound-

Fonts technologies are lightweight and allow the researcher to easily mod-

ify the dataset to different study cases, changing the organization and the

SoundFonts.
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5.3 Technologies used

This section is dedicated to the description of the main technologies employed

during the dataset creation process. If MIDI standard was deeply discussed

before and also Madmom library was introduced in preceding sections, it is

therefore necessary to explain the rationales behind the Mido python library,

TiMidity, FFmpeg software and SoundFonts file type. However, this section

will focus on the last three and not on the Mido library because of the

straightforward nature of it. The Mido python library [44] was employed

for the analysis of the MIDI files, while a combination of the two software

and SoundFonts technology was exploited for the synthesis of MIDI files and

mixing.

5.3.1 Timidity++

TiMidity (http://timidity.sourceforge.net/) is a free software synthesizer,

distributed under GNU general public license, that runs under Linux OS.

TiMidity can read different types of data in addition to MIDI (.mid SMF

is Standard Midi Files), recomposer files, MFI (Made for iPod is a licensing

program for developing hardware and software in Apple devices) and module

files (MOD music, tracker music). This type of file stores digitally recorded

samples and pattern of music data such as a spreadsheet containing the num-

ber of the notes, the instrument, and the controller message.

Another important feature that has been exploited in this thesis project is

the support of SoundFonts type files that helped render the synthesized MIDI

sound.

The main feature of TiMidity can be referred to as the ability of MIDI files

to play without a hardware synthesizer and the conversion of them into PCM

waveform data. MIDI instruments are substituted by type of files such as

Gravis Ultrasound compatible patch (Gravis Ultrasound is a soundcard com-

patible with IBM known in the early ’90 for the good reproduction quality

of MIDI files) or SoundFonts.

Supported audio file types are identified by the extensions .wav .au .aiff.

TiMidity can also display much useful information about the playing file,

regarding sound spectrogram of a playing music piece and track information

of a MIDI file.
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5.3.2 SoundFonts

SoundFonts refer to a technology used to play MIDI files using sample-based

synthesis. The first version was developed in the early ’90 by E-mu System

and creative Labs without any specification. It was used by the soundcard

Sound Blaster AWE (Creative Lab), then upgraded to the known 2.0 version.

SoundFont 2.0 redefines the representation of audio data using additive unit

of real-world blocks, creating layers of an instrument as well as adding stereo

samples. From the introduction of the 2.1 version which adds some techni-

cal specification, it has enabled the configuration of SoundFonts within the

MIDI controller. Since MIDI do not contain any audio files, they represent

just an annotation of instruction to be reproduced by synthesizer. Synthe-

sizers then make use of the wavetable, that is sampled sound, to reproduce

all the instructions contained in the MIDI file. SoundFont standard wants

to provide a portable and universal interchange format for wavetable synthe-

sizer samples. Thanks to the use of generator and modulators in addition

to the special unit, it can be easily extended and portable using hardware

independent parameters supporting a wide range of technologies.

A SoundFonts file contains samples in PCM waveform (like WAV format).

Those samples are then mapped in sections within the octave interval and

with loops using musical effects like vibratos or velocity change. Since this

format is widely applied to MIDI, it usually contains 127 instruments and a

dedicated track for percussion and sound effects.

5.3.3 FF-mpeg

FF-mpeg (https://www.ffmpeg.org/) is a software suitable for recording, con-

version and reproducing of file audio and video. Based on the library libav-

codec, it permits not only encoding and decoding but can also transcode,

mux and demux, streaming, filtering and playing of any audio or video for-

mat. Originally developed for Linux OS and then extended also to other OS

it contains three main tools: a command line tool for converting multimedia

files between formats called ff-mpeg, a simple media player called ff-play and

finally a multimedia stream analyzer called ff-probe.

The main instrument used within the dissertation is ff-mpeg that reads a

number of input files of different characteristics. Inputs can be either regular

audio files or network streams or grabbing devices and write to an arbitrary

number of outputs. Ff-mpeg calls libavformat library (for demuxers) to read
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input files and get packets containing the encoded data.When multiple in-

puts are used simultaneously, the tools’ attempts to keep them synchronized.

Encoded packets are fed to the decoder to get the uncompressed frames

(raw video or PCM audio) that can be processed by filtering and finally re-

encoding before the muxing of them to get the final output file. All those

passages need the use of the specific library contained in ffmpeg. Libavcodec

library contains encoders and decoders for both audio and video codecs and it

is used in the middle part before applying any filtering to data. Libavformat

is also very used in the first part of the handling of a file for demuxers and

muxers of multimedia container formats. Then the core of filtering is libav-

filter containing the media filters. Finally, libswresample performs highly

optimized audio resampling and a sample format conversion operation.

Figure 5.1: FF-mpeg operational scheme
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5.4 Workflow

The workflow of the creation of the musical database is straightforward and

can be categorized into four main phases: input data collection and refine-

ment, track division in piano and non-piano musical pieces, annotation pro-

duction and synthesis of piano and non-piano MIDI files, mixing of synthe-

sized audio tracks. All stages needed for dataset creation were preceded by

a soundfont collection one.

5.4.1 Soundfont collection and organization

The proposed dataset can be exploited by researchers in many ways and

leaves them free of choosing which kind of data to work on. The employment

of MIDI and SoundFonts technologies has a great potential for the mobil-

ity of the dataset in different study cases. For this reason, the collection of

SoundFonts was an important pre-step to define how to build the dataset

and how to conduct different experiments.

SoundFonts were downloaded from different sources, but the main one was

the Merlin site (http://www.SoundFonts.gonet.biz/). They were split into

the same number for the three different sets, Acoustic, Electric, and Electric

Organ. For the accompaniment case, just a full orchestra file per each set

was available on the site. As a matter of fact, the building of more Sound-

Fonts for an entire set of instruments would have been a time-consuming

procedure. Moreover, the latter is not discussed in this paper. Concerning

the piano sound source files, each set contains 12 of them dedicated to the

piano type indicated above. Most of them were downloaded from the Merlin

web site, also Fazioli and Electric pianos, but the organs were retrieved from

a different source.

The above-mentioned subdivision would lead to a three-cross validation ex-

periment for the dataset, maintaining a good variance within each set.
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5.4.2 MIDI collection and refinement

The Dataset creation process starts with collecting input data. As antici-

pated in the section dedicated to the design choices 5.2, the musical database

was built from MIDI files in order to derive reliable annotation, avoiding

errors derived from the manual annotation process. MIDI files were down-

loaded from the MIDKAR web page (http://midkar.com/), which provides

a classification regarding the genre division. This last feature is of real help

to the intent of selecting music belonging to the jazz genre. Due to the low

number of piano solo tracks available among the downloaded files, more than

650, it was decided to maintain both solos and complete musical pieces. The

latter has raised the necessity of introducing an additional step within track

divisions in order to produce MIDI files with just piano playing.

A refinement phase was added to check the nature of input to simplify the

automatic process of tracks separation and synthesis. The analysis of MIDI

files was performed with the help of MIDO python library [44]. It aims at

checking the main characteristics of MIDI files concerning the presence of the

piano, the format of the files and consistency of message sequence.

First of all, musical pieces need to have at least a piano part, MIDI files were

inspected to understand if a piano is played and, in the meantime, statistics

about which kind of piano was played among the available ones that were ex-

tracted. Exploiting the structure of MIDI files, inspection of the instrument

is connected to the program number indicated by program change messages.

Programs dedicated to the piano are from 1 to 8 (remembering that in the

informatics field the start number is 0 the interval goes from 0 to 7) compre-

hending in increasing order Acoustic Grand Piano, Bright Acoustic Piano,

Electric Grand Piano, Honky-tonk Piano, Electric Piano 1, Electric Piano 2,

Harpsichord, Clavinet.

The format type of MIDI is an additional important parameter to check. It

indicates how tracks are organized inside the file. Indeed, as explained in the

dedicated section 3.3, format can be of three types. To simplify the tempo

analysis and to have a fixed structure, we considered just Format MIDI file

1, that is also the most used of the three types.

Finally, an inspection of the MIDI messages composing the files was made

in order to avoid problems linked to the inconsistent building of the data.

In fact, MIDI from MIDKAR are not official files and are created by am-

ateurs and can have a structure not properly defined with MIDI messages
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erroneous or inconsistent. All files with multiple program change messages

within the same track, meaning that in the same track more than one instru-

ment is playing simultaneously, were discarded to avoid problems concerning

the synthesis and the separation of the tracks.

To summarize the MIDI input must be a file format type 1, and must have at

least one program piano playing, but cannot have multiple program-change

messages within the same track. From the more 650 files collected from MID-

KAR, about 100 were discarded finishing with a set of 550 MIDI files.

5.4.3 MIDI separation

After the refinement, MIDI division phase can be performed. The MIDI pro-

gram analysis shows a massive quantity of piano tracks using the Acoustic

Grand Piano, while a minimal part of them were performed on the Elec-

tric Grand, Electric 2 and Honky-tonk. The set containing Harpsichord and

Clavinet is nearly non-existent, as expected from a jazz genre musical piece,

while for the Bright Acoustic piano and Electric 1 piano the number increases

to almost 50 files.

Piano type Number of tracks

Acoustic Grand Piano 304

Bright Acoustic Piano 31

Electric Grand Piano 2

Honky-tonk Piano 8

Electric Piano 1 64

Electric Piano 2 16

Harpsichord 1

Clavinet 5

Multiple piano 119

Table 5.1: Distribution of piano program
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Since the distribution of piano programs did not help and considering the

most used piano in the jazz genre, it was decided to divide the whole set into

three subsets each one of about 185 dedicated to a different type of piano:

one to the Acoustic, one to the Electric, one to the Electric organ, like the

Hammond organ widely used in jazz music. The idea of dividing into three

subsets comes from the need to know on which kind of piano the system is

working. It opens also an option for a three-set cross-evaluation and it can

be also used to understand how well the system reacts during the evaluation

varying the type of piano that is playing.

To make effective this division and to produce real piano solos, MIDI pro-

grams for piano were aligned depending on the split the files belonged to.

The tracks in case of multiple piano programs were merged inside the same

track. The dataset results have three separate groups; each of them focused

on one of the three types of chosen piano. In the Acoustic piano set, all

the piano tracks play on the program 0 (informatic notation), in the Electric

piano on the program 4 and in the Electric Organ they perform on the piano

program 7. This simplification was made also to accelerate the splitting and

synthesis processes.

The splitting phase, as a matter of fact, consists of discerning which MIDI

tracks have piano programs playing and which have not. Piano solos and

accompaniment MIDI files are created from the original one. Despite the

modification of the piano program in MIDI, controlling the program while

playing takes into account all the eight programs dedicated to the piano, so

as to be more generalizable in the future during the splitting of the dataset.

At the end of this phase, the dataset consists of MIDI files divided into pi-

ano, accompaniment and mixed set, and each of these set is split into groups

dedicated to specific piano type, Acoustic, Electric, Organ.
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5.4.4 Annotation and audio files production

The next step, still derived from the MIDI analysis, is the production of

both text and beat annotations. Text annotations are built as a succession

of midi note events specifying onset time of the note and pitch. While beat

files group tempo information extracted from the tempo track, useful for the

analysis as beat tracking and down-beat tracking. Indeed, in MIDI format

1, the first track is dedicated to temporal related information, and for that

reason is called also Tempo Track. All data extracted from that specific

track are saved in a ’.beats’ file. All the other tracks are dedicated to playing

instruments, with a specific case for drums usually having a special playing

track set to the 9th track. The analysis for the annotation building is fo-

cused on program change and note on messages. The former indicates the

program number of the instrument and the track number on which the in-

strument needs to be played. The latter specifies the note and the reference

track on which it needs to be played, indicating pitch number, onset time

and velocity, linked to its degree of loudness.

The overall information about notes is collected in the annotations files rec-

ognized by ’.piano’ suffix for piano set, ’.acc’ for the accompaniment one and

’.mixed’ for the mixed one.

Thanks to the use of MIDI files, the annotation creation process is more re-

liable than a manual procedure, as it is extrapolated directly from the MIDI

files. Furthermore, the employment of MIDI allows portable and mutable

ways of producing high quality audio signal.

With the help of TiMidity software (http://timidity.sourceforge.net/), a free

software synthesizer, it has been possible to derive audio for the piano and

accompaniment folders. The mixed set that will be derived from the mixing

of the already synthesized accompaniment and piano audio files. For this

reason, during the synthesis procedure all possible initial periods of silence

must be rendered, otherwise, the synchronization of the two tracks would be

lost during the mixing phase.

Software option were set to synthesize monaural audio files and they were

saved in ’.wav’ format rendered with personalized SoundFonts to achieve a

good variance within a single set.

The synthesis phase plays a central role in the setting of the experiment

since one of the aims of the work was seeing how different types of the same

instrument affect the reliability of the transcription method and its perfor-
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mance in cross-validation evaluation. As anticipated in section 4.5, some

of the SoundFonts were discarded due to a really negative influence on the

system caused mostly by the frequency content and their quality. However,

the adopted synthesis approach can be easily modified and leaves open new

settings for future experiments just changing the SoundFonts.

5.4.5 Mixing

The last phase of the workflow is the mixing one, where accompaniment and

piano audio files are mixed together to form the originally merged musical

signals. FF-mpeg (https://www.ffmpeg.org/) is the chosen software for that.

Among the wide variety of functionalities offered by the software, the ffmpeg

one was the only used within the work. The output resulted in a single mix

of the two parts, accompaniment and piano.

At the end of the procedure the Dataset will contain, as explained in the

figure, two main types of file the audio and the annotation one. Within the

annotation are contained the MIDI files, classical text annotations and the

beat ones. Furthermore, as mentioned above, each of these file types is di-

vided into piano, accompaniment and mix sets, which in turn are themselves

split into acoustic, electric, and organ sub-sets respectively indicated as split0

split1 and split2.
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Figure 5.2: Database scheme
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5.5 Transcription madmom

Madmom library was explained before in a dedicated section. It consists of a

library tailored to the features extraction of different levels with the help of

Machine Learning algorithms. The latter features allow the library to inte-

grate state-of-the-art techniques to solve Music Information Retrieval tasks

such as onset detection and music transcription without relying on third-

party modules. Machine Learning part exploits pre-trained algorithms.

The employment of Madmom as a complete processing system is justified by

the latter feature and the use of processor objects. Indeed, what was done

with the dataset was a pre-evaluation of the data, applying transcription

methods proposed by Böck in his work [34] on the audio files. The piano

transcriptor relies on the algorithm based on a Recurrent Neural Network

analyzing a Short-Time Fourier Transform taken with 2048 and 8192 win-

dows. The STFT output is then filtered with a semitone filter-bank in order

to compress the representation of data. As described in the section 3.4, the

Network is built with bidirectional Long Short-Term Memory cells in order

to increase the temporal context modelled by the algorithm. The output of

the transcription results in annotated files contains onset time, pitch of the

note and velocity, as in the dataset text annotation.

The detections computed from the Madmom program are then evaluated

against the annotations extracted from the MIDI files and the table 5.2 sum-

marizes all the results obtained. They show how different splits vary perfor-

mances depending on the piano type chosen for the synthesis process. Indeed,

the best performing split is the first one dedicated to an Acoustic piano; the

Electric piano split has results comparable to the Acoustic one; while results

for the Electric Organ split deteriorate a lot, decreasing by about 30-35%.

Total

notes

True Pos-

itives

False Pos-

itives

False

Negatives

F-

measure

Precision Recall

Split 0 259872 120281 85831 139591 0.516 0.584 0.463

Split 1 205251 89907 81875 115344 0.477 0.523 0.313

Split 2 262042 35327 125044 226715 0.167 0.220 0.135

Table 5.2: Madmom results for the three splits
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Chapter 6

Evaluation

The following sections are dedicated to the description of metrics for each

type of evaluation that can be performed. Among those, the frame-based

and note-based evaluation methods will be explained, including metrics used

in MIREX context. Furthermore, the experiments applied to the network is

explained in all details presenting the results and a comparison made with

state-of-the-art approaches.

6.1 Evaluation metrics

Evaluation of Automatic Music Transcription systems can be performed fol-

lowing a frame-based approach or a note-based one.

Despite the conceptual differences, the metrics for the evaluation of the two

methods are the same. What changes is just the way of detecting True Pos-

itives, False Positives, False Negatives. Respectively True Positive indicates

the number of correct detections; False Positive the number of redundant

detections; Flase Negative the number of missing detections. The formal

description of metrics follows the frame-based notation, including the speci-

fication for the nth frame. Note-based notation refers to a note event com-

parison, instead of a frame-by-frame one. However, they maintain the same

formulation also for the note-based approach.

A common metric for the overall accuracy was defined by Dixon [10] as:

Acc1 =
∑

n(Ntp)[n]∑
n(Nfp[n]+Nfn[n]+Ntp[n])

.



In the MIREX competition [36] a variant of Acc1 measure considering just

one octave is employed, and it is called Chroma Accuracy. Other accuracy

metrics were proposed to focus on the number of pitch substitutions

Acc2 =
∑

n(Nref [n]−Nfn[n]−Nfp[n]+Nsubs[n])∑
n(Nref [n])

with Nref representing the number of pitches in the ground-truth at frame

n. The number of substitutions is given by Nsubs[n] = min(Nfn[n], Nfp[n]).

Equally important for the evaluation of transcription system are precision,

recall, and f-measure metrics defined as:

Precision =
∑

n(Ntp[n])∑
n(Ntp[n]+Nfp[n])

Recall =
∑

n Ntp[n]∑
n(Ntp[n]+Nfn[n])

F-measure = 2·Recall·Precision
Recall+Precision

Frame-based evaluation compares the prediction extracted from the tran-

scription method to the ground-truth in a frame by frame fashion. The step

between the frames, specified in the MIREX competition for the this kind of

evaluation, is 10ms.

Note-based evaluation, according to MIREX specifics, takes into account

each note event. The correctness of the prediction depends on the tolerance

interval. Indeed, a predicted note event is evaluated as correct if its onset

falls within a range of ±50ms compared to the ground-truth onset, and the

detected pitch needs to be between a quarter of tone of the ground-truth

one meaning a ±3% of the fundamental frequency. The 6% indicates the

semitone interval, while 12% an entire tone.

In the case of note-based approach, there is the possibility of taking into ac-

count the duration of the note. The offset of the note is the only parameter

that can be employed for duration evaluation. This kind of evaluation refers,

as the note onset evaluation explained above, to a tolerance interval. From

onset detection, the offset one is the only difference in the pitch window.

Indeed, the latter is of ±20% from the ground-truth frequency value, against

the ±3% of the onset. The offset evaluation, on the opposite, respects the

same time boundaries of the onset one.
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In the end note events are counted as True Positive if it falls into the

above-mentioned tolerance interval. False Positive, as for frame-based ap-

proach indicates the number of note events not present in the ground-truth.

Finally, a note event is classified as a Flase Negative if it is not detected.

Figure 6.1: Sensitivity and Specificity metrics
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6.2 Results

The evaluation of the proposed system will be performed following a note-

based onset approach since the majority of the transcription system is note-

based. However, the system was built to be tested with other approaches,

both frame-based and note-based onset and offset.

Among the available musical databases, MAPS, MIDI Maestro, LabROSA

and Batik, 30 pieces of MAPS instrument sub-set for the training of the

Neural Network were chosen to conduct the experiment. With a greater

number of musical pieces, problems concerning the time involved and the

physical resource allocation raised during the training of the network. Those

kinds of problems affected the results of networks trained on a great number

of tracks, decreasing measurements by 30%. The subset was divided into the

training part containing 80% of the whole set, and validation and test parts,

both 10% as in Emiya et al. work [32].

Experiments on both feature representation features settings, 12 bands per

octave and 24, were performed, with sensible improvements increasing the

number of bands and then the frequency accuracy. The doubling of the

number of bands resulted in a nearly doubled features vector, but only a

time increment of the 30%. All the experiments on the 24 bands setting took

about 35 epochs for an overall time of 30 minutes for the training and half a

minute for the validation phase.

The results are not the same as the state-of-the-art approaches, but the

proposed system can be improved with the use of different kinds of Neural

Networks. Marlot [40] in his work outlines how Neural Networks accounting

for the time context having better results than ones without any modelling

like Convolutional Neural Networks.

However, results for that little set are really encouraging ones, summarized

in the table 6.1 with about 10% improvement doubling the number of bands

per octave in the frequency analysis regarding mean F-measure.

Another big improvement can be verified in the number of False Negatives,

reduced by a factor of 1
3

from the original 12 band per octave system thanks

to a refined frequency resolution. Also the Recall measurement is affected

by the increase in the number of used bands, resulting in an improvement of

about 15%.

67



True Pos-

itive

False Pos-

itive

False

Negative

F-

measure

Precision Recall

12 bands Sum 2735 63 1888 0.73710 0.97748 0.59161

12 bands Mean 1367 31 944 0.67654 0.96309 0.53998

24 bands Sum 2174 172 674 0.83712 0.92668 0.76334

24 bands Mean 1087 86 337 0.83701 0.92588 0.76442

Table 6.1: Evaluation metrics for MAPS dataset

The network trained on the MAPS dataset was applied for the transcrip-

tion and evaluation to the acoustic piano jazz set with the outcome of 0.50

for what concerns the f-measure metric, underlining a variation depending on

the complexity of the single music piece. The table 6.2 collects all the sensi-

tivity metrics for the jazz dataset, that are 20-30% lower than the MAPS one.

The number of False-Negatives is considerably higher compared to the one

detected in the MAPS set. A concrete reason can be found in the intrinsic

complexity of the jazz genre due to improvisation. Furthermore, we should

highlight how well the method can be applied to different environments keep-

ing in mind that the MAPS dataset is mostly related to classical music, while

the new jazz dataset includes a wide variety of sounds, musical figures and

styles derived directly from the specific analysis of jazz piano performances.

True Posi-

tive

False Posi-

tive

False Nega-

tive

F-measure Precision Recall

Jazz Sum 1390 851 1789 0.51292 0.62026 0.43724

Jazz Mean 695 425 894 0.50191 0.60723 0.42777

MAPS Sum 2174 172 674 0.83712 0.92668 0.76334

MAPS

Mean

1087 86 337 0.83701 0.92588 0.76442

Table 6.2: Evaluation metrics for Jazz dataset
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Finally, results can be satisfying and the prediction figure, plot against

the target. It shows a really sharp detection of onsets, as retrieved from

the studies done on the different SoundFonts in section 4.5, not forgetting

that the precision in pitch estimation is also quite high. Despite some errors

derived from octave mismatch, there is still a good connection between de-

tected notes and the spectrogram which can be understood from the simplest

diagram of simple scales 6.2 6.3. When analyzing more complex ones, it is

more difficult to understand which are the frequencies since multiple notes

can be played at the same time or closely together one to the other causing

an overlap of frequency. Figure 6.4 shows a really clean prediction diagram

thanks to simplicity of the performance. Although in the other plots 6.5 and

6.6 predictions are still sharp in terms of note onset, MIDI note errors can

occur due to multiple note playing.

Figure 6.2: Diatonic A major scale. Top: Predictions; Middle: Target; Bottom:

Spectrogram
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Figure 6.3: Diatonic C major scale. Top: Spectrogram; Middle: Target; Bottom:

Predictions

Figure 6.4: Simple jazz performance. Top: Spectrogram; Middle: Target; Bottom:

Predictions
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Figure 6.5: Articulated jazz performance. Top: Spectrogram; Middle: Target; Bottom:

Predictions

Figure 6.6: Jazz performance affected by octave errors. Top: Spectrogram; Middle:

Target; Bottom: Predictions
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6.3 State-of-the-art comparison

Results of the proposed work are compared to other approaches, comprising

the Böck one, which seems to be the most promising. Accuracy measure-

ments were taken following the one proposed by Dixon [45]. The table 6.3

collects the accuracy measurements for different state-of-the-art algorithms.

Unfortunately, the proposed method results in a low accuracy measurements

concerning the jazz set due to already explained reasons. The intrinsic diffi-

culties of the genre bring the algorithm up to a high number of False Negative

detection compared to the results retrieved by the MAPS experiment. In-

deed, performances of MAPS set are comparable to the other state-of-the-art

approaches, if not better. It can be also observed from the table 6.3 that our

system also has performances close to the Boogaart and Lienhart one [38],

which was trained with a single MIDI instrument. This is remarkable, since

our system is not trained specifically for a single instrument.

The same trend can be observed in the table 6.4, where the jazz set results

in worse outcomes than MAPS and other approaches.

Experiment ACCURACY

Jazz 0.358

MAPS 0.863

Böck [34] 0.856

Poliner and Ellis [21] 0.623

Boogaart and Lienhart [38] 0.874

Table 6.3: Accuracy measure

Experiment PRECISION RECALL F-MEASURE

Böck [34] 0.640 0.728 0.680

Marlot [40] 0.794 0.722 0.754

MAPS 0.837 0.925 0.764

Jazz 0.501 0.607 0.427

Table 6.4: Sensitivity metrics
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Chapter 7

Conclusion and future works

In this thesis a methodology for automatic music transcription based on ma-

chine learning has been presented. The proposed technique is applied to jazz

music. The peculiarity of jazz music is enclosed in the variety of styles and

in particular how frequently performances are influenced by musicians’ skills

and way of playing. The coexistence of accompaniment and improvisation

parts play an important role within the thesis. The latter is focused on

the transcription of polyphonic piano pieces, which in jazz can play the role

of first voice performing improvisation lines, or accompaniment instrument

following those lines suggested from the lead sheet score. However, improvi-

sation is still the most interesting part in music for AMT systems. In jazz, it

plays the main role within a performance, in which, in turn, each musician

can have a moment dedicated to express their own virtuosity. Indeed, im-

provisation is based just on the score sheet, that provides the main melodic

lines of a musical piece. But it leaves the musician free to interpret and

recompose new melodies upon the lead sheet, sometimes even not following

any harmonic rule.

From the results we can observe how the number of False Negatives have de-

creased by 1/3 with a consequent increase of F-measure and Recall by about

10% varying the number of bands used for the spectral analysis. Despite

the doubling of the number of bands and the near doubling of physical re-

sources, the time taken for the training of the Neural Network increases by

just 30%. Improvements on two of the three sensitivity metrics are justified

in the better frequency resolution, achieved by increase the number of bands

in which it is divided for each octave. For an instrument like the piano, rich

in frequency content, a better frequency resolution is fundamental for the



precision of such systems. Indeed, Böck [34] and Kelz [29] exploited the 36

bands per octave setting in their works.

Results of the proposed transcription system are quite interesting and still

leave a great deal of opportunity to improve the method also with the use of

different kind of Neural Networks.

Despite using techniques to reduce the quantity of data derived from the

feature extraction phase, problems emerging from the massive amount of in-

formation and time consumed limited a complete evaluation of the method.

7.1 Future works

The system was prepared to deal with many dataset organizations, and it

can be evaluated on all these datasets in a separated way or in a merged one.

The problems composing a unique massive dataset are time and resource al-

location. Indeed, the same problem raised during the utilization of the jazz

dataset for the training and the evaluation, since the whole jazz set reached a

number of about 500 musical pieces. The large amount of information avail-

able within the dataset allows the setting of different experiments including

the onset detection of multi-instrument tracks (available in the accompani-

ment audio and annotated files).

The target extraction performed during the dataset preparation allows the

system to be evaluated in different modes. Throughout this research, we

proposed just an onset note-based type of evaluation. However, it can be ex-

tended to frame-based or note-based onset and offset approaches just chang-

ing the target on which the network needs to act. A really approximate

frame-based evaluation was extracted from the study of simple scales, show-

ing slightly lower results (5%) against note-based evaluation. Furthermore,

the original three-cross validation experiment can be evaluated to understand

how different types of the same instrument can affect the transcription. From

the three-cross evaluation, inference on the influence of tonal components and

frequency contents of a piano sound can be derived.

A complete open future task, as anticipated in the evaluation section, would

be the use of more promising types of Neural Networks. As seen also in other

works, Neural Networks modeling temporal contents really helps the audio

analysis field due to the high correlation of signals. The section 2.5 ana-

lyzes the results of different methodologies applied to multi-pitch estimation,

highlighting a promising trend concerning the use of Neural Networks. This
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is also confirmed by Marlot’s studies [40] on different Neural Networks and

Böck [34] method results in comparison with other approaches.
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