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0.0.1 Estratto - italiano

La tesi è focalizzata sullo studio computazionale Gaussian DFT/TDDFT di
catene di carbonio ibridizzate sp, e delle loro proprietà strutturali, elettron-
iche e spettroscopiche in relazione alla lunghezza della catena e al tipo di
terminale. In particolare sarà presentato lo spettro Raman di catene cumu-
leniche terminate S o O, e lo spettro vibronico di catene poliiniche terminate
H o fenile.

0.0.2 Abstract - english

The thesis is focused on Gaussian DFT/TDDFT analysis of sp hybridized
carbon wires, the structural and optoelectronic properties will be analyzed
in relation of different chain length and endgroups. In particular it will be
presented the Raman spectra of cumulenic structures with S, O endgroups,
and the vibronic spectra of polyynic chains with H or phenyl endgroups.
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0.0.3 Sommario - italiano

Il carbonio è un importante elemento che può generare una vasta varietà
di strutture ibridizzate, dalla struttura sp3 del diamante a quella sp2 del
grafene, per arrivare alla ideale catena ibridizzata sp chiamata carbina.
Nel secolo scorso gli studi sono stati focalizzati soprattutto sulla ricerca della
carbina infinita, e sulla caratterizzazione di catene di carbonio che hanno
ricevuto interesse nel campo dell’astrofisica e astrochimica.
Invece, negli ultimi anni, l’interesse si è spostato nella produzione e carat-
terizzazione di carbon atom wires (CAWs) per le loro eccezionali proprietà
meccaniche e elettroniche.
Le catene in carbonio non sono solo interessanti per queste proprietà, ma an-
che per la possibilità di variare queste ultime tramite la modificazione della
loro lunghezza o del loro terminale. Tramite applicazione di uno stress assiale
è inoltre possibile promuovere il passaggio della catena da isolante a semi-
conduttiva, modificando inoltre le proprietà strutturali, molto promettente
per future applicazioni nel campo dell’elettronica molecolare.
Questa tesi in particolare è focalizzata sullo studio, tramite tecniche com-
putazionali basate sulla DFT (density functional theory) di differenti catene
di carbonio e nella analisi delle loro proprietà strutturali, elettroniche e ot-
tiche.
Le catene ibridizzate sp son sistemi policoniugati , caratterizzate da un ele-
vato accoppiamento elettrone-fonone, quindi sarà possibile investigare queste
proprietà sulla base di tecniche spettroscopiche quali Raman e UV-vis.
Lo spettro Raman è stato determinato attraverso l’uso del programma Gaus-
sian e dell’utilizzo della teoria DFT (density functional theory), in particolare
per strutture come le S-cumu[n] (o S−Cn−S) e le O-cumu[n] ( o O−Cn−O),
interessanti per la loro struttura quasi equalizzata (cumulenica).
Lo spettro UV-vis è stato costruito a partire dal programma Gaussian utiliz-
zando la teoria DFT time dependent (TDDFT) per determinare un semplice
spettro iniziale costituito puramente dal fitting lorenziano dei dati ricavati.
Il conseguente uso del programma UVFC sviluppato nel nostro laboratorio
ci ha permesso di determinare lo spettro vibronico rendendo conto anche dei
fattori di Franck-Condon, per strutture quali H-Py[n] ( o H − Cn − H) e
Ph-Py[n] (con terminazione fenile). Queste catene sono state scelte perchè
erano presenti dati sperimentali rilevati nel nostro laboratorio e esterni, utili
alla validazione del lavoro e a eventuali confronti.
L’analisi da noi riportata sottolinea la profonda importanza dei metodi com-
putazionali, sia per un’affidabile interpretazione degli spettri sperimentali,
che per l’analisi delle proprietà di sistemi policoniugati. Abbiamo effettuato
un’importante passo avanti in questo campo, con l’introduzione dell’analisi
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dei fattori di Franck-Condon per lo sviluppo di uno spettro vibronico con-
frontabile con dati sperimentali.
L’importanza del lavoro non è solo correlata a questo importante sviluppo
computazionale e nel campo della ricerca, ma nel contempo vuole essere la
base per potenziali applicazioni di questi sistemi sia nel campo tecnologico
che industriale.



CONTENTS 15

0.0.4 Summary - english

Carbon is an important element that can generate a wide variety of different
structures based on its hybridization states, moving from the sp3 hybridized
structure of diamond to the sp2 graphene and the ideal sp-carbon allotrope
named carbyne
In the last century the studies on sp-carbon structures were mainly focused
on the search for the infinite sp carbyne, and on the characterization of short
linear carbon chains interesting in the astrophysics and astrochemistry field.
In the recent years the topic has shifted to the production and characteriza-
tion of carbon atom wires (CAWs) due to their interesting properties and on
the potential applications (especially for the molecular electronics field).
CAWs are studied not only for the exceptional mechanical and electronic
properties but also for the ability to tune significantly these properties by
modifying chain length and end-chain groups [6].
Moreover, It was demonstrated that generating an axial stress on this sp
carbon structures can promote an insulator to semiconductor transition and
modify also the structural properties [7] (BLA) , which is promising for po-
tential applications.
In the context of this thesis work we will focus on DFT computation of
structural, electronic and spectroscopic properties for different finite length
sp hybridized CAWs.
Sp hybridized carbon chains are polyconjugated systems, characterized by an
high electron-phonon coupling, therefore both the electronic and the struc-
tural properties of these systems can be investigated through Raman and
UV-vis spectroscopy. Their analysis allow to give a detailed interpretation
on the molecular phenomena taking place in the material.
It should be noted that some previous works [1, 2, 8, 9] have already un-
derlined the important relation between this properties in detail for similar
systems.
Raman spectra will be determined through the use of the Gaussian pro-
gram and DFT (density functional theory), in detail for sulfur cumulenes
(S − Cn − S- defined as S-cumu[n]) and oxygen cumulenes (O − Cn − O -
defined as O-cumu[n]), these wires are particularly interesting for their quasi
equalized (cumulenic) structure.
UV-vis spectra will be computed starting with the Gaussian program and
time dependant DFT calculations to determine a simple spectrum based on
a lorentian fitting of the ground to excited state parameters found in prelim-
inary TDDFT calculations. The consequent use of the UVFC program will
allow us to build the vibronic spectra considering also the Franck-Condon
factors. This will be carried out in particular for H-Py[n] and Ph-Py[n]
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structures which have been experimentally characterized in our laboratory
[6].
These systems represent an ideal test case since UV-visible spectra have been
experimentally measured by Tabata et al. [5] (for H-Py[8] to H-Py[16]), in
our laboratory [6] for (Ph-Py[2] to Ph-Py[10]) and for (H-Py[6] to H-Py[16])
and these experimental reference are necessary to have a validation of our
results and a detailed discussion.
We underlined the importance of computational methods, not only for a
correct interpretation of experimental spectroscopic results, but also on the
analysis of the properties of polyconjugated systems. In this work an im-
portant step was done in this field, with the introduction of Franck-Condon
factors analysis to compute a proper vibronic spectra comparable with ex-
perimental results.
The importance of this work is not only correlated on the computational
results and on the research field, but at the same time is a basis for potential
applications of these systems both on the technological and the industrial
field.



Chapter 1

Introduction on carbon atomic
wires(CAWs)

1.0.1 Carbon nanostructures

The last few decades has seen carbon based nanostructures as a rising matter
of interest in both science and technology.
Many people have been honored with the nobel price in relation of important
discoveries in these field, the first one awarded to H. Kroto and R. Smalley
for the discovery of fullerenes in 1996 [10] and most recently to A. Geim and
K. Novoselov for research on graphene in 2010 [11].
Among these carbon nanostructures, the search for the “lacking allotrope”,
named carbyne (fig. (1.1)), the ideal infinite chain of sp-hybridized carbon
atoms, was a matter of interest at the end of the last century.

Figure 1.1: Graphical representation of the sp3, sp2 and ideal sp allotropes

To this day the longest sp carbon chain discovered was composed by about
6000 carbon atoms and was found inside a double-wall carbon nanotube [12].
In isolated form only a structure consisting of 44 carbon atoms has been

17
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Figure 1.2: Progress on carbon nanostructures development and further stud-
ies [1]

synthesized by Tykwinski and Chalifoux [13], still very far from the idealized
infinite carbyne.
In the recent years the focus of research has generally shifted from this topic
to the possibility of synthesis and characterization of short length carbon
atom wires (CAWs).
Also the potential applications have receive attention, especially on molec-
ular electronics, this was pushed by recent achievements on the research of
graphene structures and on the development of hybrid sp - sp2 systems.
CAWs [1] are studied not only for the exceptional mechanical (Young modu-
lus of 32TPa [14]) and electrical properties (electron mobility > 105 cm2

V s
[15])

but also for the ability to tune the electronic properties [8] [1] with chain
length and end-chain group, they have an high surface area ( > 10.000m

2

g

[16]).
Another property not so prominent for potential applications is that CAWs
are in general highly reactive and tend to undergo chain-chain crosslinking
reaction tending to sp2 hybridization.
Their high electron-phonon coupling allow us to determine the length and
endgroups of a specific wire based on spectroscopic techniques such as Ra-
man and UV-vis.
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1.0.2 Properties of polyynic and cumulenic CAWs

The carbon atom wires can be divided into two types, polyynes and cumu-
lenes (or poly-cumulenes) .
The classification depends in particular on the nature of their intrachain
bonding for the infinite carbyne and we can classify them accordingly; if we
have an important alternation of ’quasi single’ - ’quasi triple’ bond on the
chain (that corresponds to high bond length alternation - called BLA) we
will have a polyynic structure, otherwise if we have an equalized with no
alternation we will have a cumulenic structure.
For the infinite carbyne there is also an effect called Peierls distortion (which
was at first studied for polyacetilene polymers) that affects the electric char-
acter (metallic/semiconducting) of polyconjugated wires.
This is not relevant for short chains and become important only with more
than 52 carbon atoms in the chain, this was demonstrated by Yang et al.
[17], thus it will not generally be taken into account in this thesis work and
we will introduce just the principles.

Figure 1.3: Theoretical E(k) dispersion relation for the infinite ’polyyne’ (or
carbyne- α), in the left, and infinite ’cumulene’ (or carbyne - β) in the right
[2]

As we can see in figure (1.3) in a perfect 1D equalized structures we will have
the crystalline cell consisting only on a single atom, this will have a metallic
character for the infinite crystal.
For the structure consisting on the single-triple bond alternation we will have
a 2 atom crystalline cell and the opening of a band gap which will put the
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Figure 1.4: Phonon dispersion relation representing the opening of a gap for
the theoretical infinite carbyne

system on a semiconducting character, this effect can be seen clearly in figure
(1.4).
The polyyne or cumulene structures can be favored one to another depending
on the type of terminal group that we have on the chain, that can induce
a triple bond on the terminal C atom thus favoring a single - triple bond
alternation (thus a polyyne) or a double bond on the terminal C that lead
to an equalized double bond structures (or a cumulene).
In particular, for the molecules that we studied on this thesis, CAWs with H,
phenyl and diphenyl endgroups will be classified as polyynes and with O , S
, C , CH2 will be regarded as cumulenes. This will be devised by the studies
on both the bond length alternation and Raman analysis.
In fact the difference on these type of structure are not only related to the
difference bond length inside the chain , but also on their electrical proper-
ties and Raman activity , cumulenes structures were initially thought to be
undetectable by Raman spectroscopy because in the model cumulenic struc-
ture they don’t present optical phonon branches, but in the recent years
through density functional analysis it has been demonstrated the presence of
Raman peaks also in this type of structures correlated to intrachain symmet-
ric/ asymmetric stretching [9]. The CAWs are polyconjugated systems and
the molecular orbital of the ground state is characterized by a conjugated π
orbital delocalized over all the molecule, this is consisting of an alternation of
πu (ungerade delocalized π orbitals ) and πg (gerade delocalized π orbitals)
both on the x and y direction (note that in general πux and πuy are degener-
ate forms) [18].
They form an elliptical like isosurface which surround the 1D molecule [19].
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Lafferty et al. [20], through detailed analysis of a combination band deter-
mined finally that O-cumu[n] do possess the expected D∞h linear structure
after the suppositions that this type of structure would assume a typical bent
configuration as we have in CO2 [21].

1.0.3 Production techniques

The processing techniques can be classified into two main categories: the
physical and the chemical techniques.

Figure 1.5: Some of the most important physical fabrication techniques [2]

Some of the physical techniques (partially showed in figure (1.5) include elec-
tric arc discharge on graphite rods submerged in organic solvents or water
(this graphite rods can be coupled with other materials yielding the terminal
atom, such as in the case of sulfur end-capped chains), fast cooling of carbon
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vapour systems and in general on laser ablation procedures such as PLD of
graphite or fullerene structures suspended in organic solvents [22].
The chemical techniques instead involve chemical reactions and are usually
divided in two categories [2], the first one involves a polymerization strategy,
reviewed by Kudryavtsev [23] and the second one involves molecules with
a defined length and specific terminals, and is often carried out with the
dimerization reaction of ethynyl groups, or Glaser reaction [24].
On the specific analysis of S-cumu[n] structures , they have been generated
in laboratory by laser ablation of mixed sulfur– graphite pellets and also by
pulsed discharge of acetylene/carbon disulfide /argon compounds [25].
One of the important problem of these structures is their instability even
at room T (they tend to undergo interchain crosslinking reaction forming
mixed sp - sp2 structures) and have to be connected at the end with bulky
groups [26] or to be deposited over an Ag substrate [27] in order to limit the
crosslinking effect and improve stability.
CAWs are stable also on carbon nanostructures such as carbon nanotubes
(which can have stable carbyne structures on the internal part with up to
6000 carbon atoms in chain [12]) , between planar carbon structures such
as graphene [2] and in liquid solutions (for structures of up to 16 carbon
atoms).
In particular the even-numbered S-cumu[n] clusters were found to be ex-
tremely unstable [28].

1.0.4 Characterization techniques

The fabrication techniques reported in the previous section in general aren’t
able to produce all molecules with a specific chain length but typically we
have a variety of structures that must be characterized in order to define, in
the case of CAWs, which is its length and termination.
Spectroscopic and visualization techniques are an important probe to assess
the electronic and structural character for these polyconjugated systems.
To identify the carbon chains structure we can use imaging microscopes such
as AFM [3] (atomic force microscopy), STM (scanning tunneling microscopy)
and TEM (transmission electron microscopy).
Also spectroscopy techniques such as Raman([29]), UV-vis and 13C NMR
(nuclear magnetic resonance [30]) can give precious information of the sys-
tems due to the high electron-phonon coupling.
A lot of different carbon structures can nowadays be identified through Ra-
man spectroscopy as we can see from fig.(1.7), and the difference between
each pattern is known and clear.
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Figure 1.6: AFM images of Ph-Py[6],(c) is constant-height CO-tip AFM
images of the precursor and (f) is the corresponding Laplace-filtered AFM
images with structural ball-and-stick models overlaid as a visual aid done by
Pavlicek et al [3]

The Raman spectra of H-Py[n] show a similar pattern as polyenes, with an
intense line that corresponds to the ECC mode (corresponding to the anti-
symmetric stretching of adjacent CC bonds) and a second minor band (the
β peak) is usually observed, this modes usually are found in the 1800–2300
cm−1 spectral region.
Cumulene wires displays only acoustic phonon branches and it was theorized
that the system would not present any optical activity [31, 32] and therefore
it wouldn’t be possible a characterization through Raman spectroscopy.
However this is only true for infinite cumulene, for CAWs this selection rule
will be relaxed, making it possible for the identification of some cumulenes
through Raman spectroscopy.
The S-cumu are important also in astrochemistry since they initially have

been observed on DIB (diffuse interstellar bands) and in the atmosphere of
Titan, which is a moon of saturn, through spectroscopic detection.
In particular in some cases we will find them mixed with heteroatoms such as
O and S [33] providing them with the structure that will be very important
for our specific study.
Small Cn − S species (n=1-3-5) have been observed in particular on inter-
stellar medium [4]. But the S − Cn − S, which is part of the thesis, remain
undetected , because of their negligible dipole moments.
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Figure 1.7: Several different structures identified by Raman spectroscopy

Clusters C2 − S and C3 − S were initially detected only by millimeter and
submillimeter spectroscopy [25] and then seen by a different spectroscopy
technique which is radio frequency spectroscopy on DIBs.
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1.0.5 Potential applications

The most recent developments regarding the potential applications for these
CAWs are mainly focused on the molecular electronic field, where other car-
bon structures such as graphene and carbon nanotubes have already been
used for the fabrication of transistors for microelectronics, due to the ex-
traordinary electron mobility yielded by these carbon structures at room T.
Considering the problem of stability of these wires it is clear that the in-
tegration with the current silicon technology can be difficult, and usually
transistor based on finite length carbynes are generally considered integrated
between graphene planes.
In this structure in fact they are naturally relatively stable, acting as graphene
interconnectors [34] in sp - sp2 systems.
Other applications aside from microelectronics include the possibility to use
CAWs in hydrogen storage systems [16] and recently also on supermulti-
plexed optical imaging and barcoding [35].
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Chapter 2

Fundamentals of density
functional theory

In this chapter we will be briefly explain all the fundamentals about density
functional theory (DFT).
The theoretical background will take a cue from M.Tommasini’s ”physical
properties of molecular materials” lecture notes, A. Milani slides about the
basis of DFT calculations, the handbook of conducting polymers [36], Inno-
centi’s thesis and article [9] and Ziegler work. [37]
Starting from the concept of the wave function and the Schrödinger equation,
with a brief introduction of the Hartree-Fock method we will elaborate also
the basis of the Kohn-Sham equations, the basis of the density functional
theory.
This will be extended to time dependent DFT through the concept of Runge-
Gross theorem and the time dependent Kohn-Sham equations.
We will introduce all the important parameters used for the calculus, espe-
cially the basis set (cc-pVTZ) and the exchange-correlation functional used:
B3LYP [38], CAM-B3LYP [39] , PBE1PBE (PBE0) and HSE1PBE (HSE06)
both for DFT and time dependent DFT [40].

27
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2.1 Wave function and Schrödinger equation

The Schrödinger equation is an important relation used to define the wave-
function Ψ = Ψ(r, t) describing a certain system of particles.
Its time dependent form is:

i~
∂Ψ

∂t
(r, t) = ĤΨ(r, t) (2.1)

Where Ĥ = (− ~2
2m
∇2 + V̂ ) is the Hamiltonian operator, ~ the reduced Plank

constant (= 10−34 Js) and r,R are the position vectors.
The time independent form (2.2) for Ψ = Ψ(r) is:

EΨ(r) = ĤΨ(r) (2.2)

Where E is the total energy of the system , sum of both the kinetic and
potential contribution.
This is the classical quantum mechanical eigen-value problem , where Ψ are
a complete set of orthonormal eigen-vectors and E is completely known and
determined.
We know that one of the important properties of the |Ψ(r, t)|2 is that is equal
to the probability density as devised by Max Born and therefore:∫ ∞

−∞
|Ψ(r, t)|2drdt = 1 (2.3)

The time dependent Schrödinger equation will give us the full information on
a quantum mechanical system and its evolution through time but it is very
difficult to solve analytically even for simple diatomic system , that is why
to elaborate the practical molecular orbital models we will need at first to
introduce several approximation to simplify step by step the quantum me-
chanical problem.
In fact if we consider even the simplest molecule that we are going to analyze
, H − C4 −H, we will have 6 nuclei and 26 electrons to take into account ,
which will give a partial differential eigen value equation with 96 variables.

Let’s first consider a generic Hamiltonian of a polyatomic molecule with
N nuclei and M electrons in which we divide the Hamiltonian operator into
other entities corresponding to the kinetic (T̂ ) and potential (V̂ ) operators.

Ĥ = T̂e(r) + T̂n(R) + V̂ee(r) + V̂en(r,R) + V̂nn(R) (2.4)
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T̂e is the operator corresponding to the sum of all kinetic contributions com-
ing from electrons , we note from 2.5 that T̂e =

∑
i t̂ei so it’s a summation

over the independent values of the kinetic energy for each particle (i), so it
can be regarded as a one body operator:

T̂e = − ~2

2me

M∑
i=1

∇2
i =

M∑
i=1

t̂ei (2.5)

T̂n instead is the operator corresponding to the sum of all kinetic contribu-
tions coming from nuclei and is also a one body operator

T̂n = − ~2

2Mn

N∑
i=1

∇2
i =

N∑
i=1

t̂ni (2.6)

For the potential energy we take into account all the different Coulomb inter-
action among charged particles , in particular V̂ee is the operator correspond-
ing to the sum of all potential energy contributions coming from electron -
electron interactions and is a 2 body operator, it involves two particle posi-
tion in the same sum.

V̂ee =
e2

4πε0

M∑
i 6=j

1

|ri − rj|
=
∑
i 6=j

v̂eij (2.7)

i 6= j is in general accounted to exclude the non-physical self coulombic
attraction-repulsion, ri− rj describe the distance between the electron i and
j, under the same description we have

V̂nn =
e2

4πε0

N∑
i 6=j

ZiZj
|Ri −Rj|

=
∑
i 6=j

v̂nij (2.8)

where Ri −Rj describe the distance between the nuclei i and j, and finally

V̂en = − e2

4πε0

N,M∑
i,I

ZI
|ri −RI |

=

N,M∑
i,I

v̂i,I (2.9)

This term is a two body operator that can be turned into a one body op-
erator if we consider the electron positioned in a field generated by all the
nuclei that we have in our molecule, in practice
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V̂en = − e2

4πε0

N,M∑
i,I

ZI
|ri −RI |

= − e2

4πε0

M∑
i

(
N∑
I

ZI
|ri −RI |

)
=

M∑
i

v̂n(ri)

(2.10)

2.2 Born Oppenheimer approximation

The Born-Oppenheimer approximation let us separate the degrees of freedom
related to electrons from the ones related to the nuclei, this is an important
simplification for the eigen-value problem of molecules.
In practice we will say that we are in a position where ”independent” elec-
trons orbit in a quasi static field generated by quasi-immobile nuclei.
This can justified by the fact that if we have the same momentum for elec-
tron and nuclei , pe = pn = p we will have that the velocity of nuclei will
be negligible with respect of those of electrons , as stated in equation 2.11 ,
with me (mass of electrons) being negligible with respect of the nuclei mass
Mn.

pe
me

=
p

me

= ve >> vn =
p

Mn

=
pn
Mn

(2.11)

This justification lead to an important quantum mechanical approximation ,
called Born - Oppenheimer approximation , in which the overall wave func-
tion for the system (Ψ) is divided in a electronic contribution ψe(r|R) in
which the position of the electron r is parametrically depending on the posi-
tion of the nuclei R and in a nuclei contribution ψn(R) independent on the
position of electrons r.

Ψ(r,R) = ψe(r|R)ψn(R) (2.12)

We will consider an eigen-value equation (2.13), in which only the oper-
ators relative to the energetic contributions coming from electrons is ac-
counted, specifically we will consider the hamiltonian relative to electrons,
Ĥe = T̂e + V̂ee + V̂en which get rid of the purely nuclear terms ˆVnn and T̂n.

Ĥe(R)ψe(r|R) = εe(R)ψe(r|R) (2.13)

ψe(r,R) will be the eigen-function of electrons related to this eigen-value
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problem.
ψn(R) will be an eigen-function of an effective nuclear Hamiltonian called
Hn which is equal to Tn(R) + Vnn(R) + εe(R). In this context we can see
that the nuclei fell an overall potential coming both from the quasi-static
field generated by the other nuclei (Vnn(R)) and the field generated by the
electrons (εe(R)) so the total potential field will be

V (R) = Vnn(R) + εe(R) (2.14)

This take into account the effect of the electron distribution with the multiple
effect of shielding the nuclear coulombic repulsion and generating attraction
forces between nuclei when ψe(r|R) is localized in the bonding region. V(R)
will be called interatomic potential. This simplify our overall eigen-value
problem , if the electronic eigen value problem is solved , thus we know
the value of εe(R) and the eigen-vector ψe we can evaluate the interatomic
potential V(R) and then we can solve the nuclei eigen value problem , finding
the value for the ψn eigen vectors, then combining the two ψ we will find the
overall wavefunction for our system.

2.3 LCAO

LCAO (linear combination of atomic orbitals) is another important concept
in which we will have to focus before starting the discussion of the Hartree-
Fock method.
In this method the molecular orbitals (|Ψj〉) are built as a linear combination
of atomic orbitals (|ψi〉).

|Ψj〉 =
∑
i

cij |ψi〉 (2.15)
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2.4 Approximations of the Hartree-Fock method

In this section we will introduce two of the main approximations for the
Hartree-Fock method, the mean field and the Slater determinant approxima-
tion.

2.4.1 Mean field approximation

Mean field approximation is a simplification that we are going to apply to
the Schrödinger equation, it is a particular technique in which we convert
the many body hamiltonian problem to a one body problem.
One of this mean field approximations is the Hartree-Fock approximation, in
which we split the effective potential of each electron in a coulombic and ex-
change part. So to start the discussion we will try to convert all the operators
contained in the electronic hamiltonian Ĥe into sum of one-body operators
relative of each electron that we have in the system.

T̂e = − ~2

2me

M∑
i

∇2
i =

M∑
i=1

t̂ei (2.16)

and V̂en as we have already seen

V̂en = − e2

4πε0

N,M∑
i,I

ZI
|ri −RI |

= − e2

4πε0

M∑
i

(
N∑
I

ZI
|ri −RI |

)
=

M∑
i

v̂n(ri)

(2.17)

The last term in the electronic Hamiltonian will be the potential of electron
-electron interaction V̂ee, this term cannot be turned into a one-body opera-
tor since it involves the sum of interaction terms of two electrons at the same
time.
So if we put together what we discover until now it will be:

Ĥe =
M∑
i=1

(
t̂ei + v̂n(ri)

)
+

M∑
i 6=j

v̂eij (2.18)

In which the sum of
(
t̂ei + v̂n(ri)

)
is also called as core hamiltonian for the

electron or ĥ0(i).
The purpose of the mean field approximations (also of the Hartree fock ap-
proximation) is to reduce the two body-operators into an effective one-body
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operator which is able to reproduce effectively the energy and eigen-functions
of the real (non-approximated) system.
This can be developed by defining the modulated average of v̂eij as an effec-
tive one-body operator potential of the type:

v̂eff (i) =< v̂eij > (2.19)

The electrons are no more explicitly interacting one with the other: they do
interact with the mean field created by all the other electrons in the system
which approximately replace the explicit electron-electron interaction as an
average term of all the contributions.
So we are finally reducing the electronic hamiltonian to a contribution of
approximated effective electronic one-body hamiltonians for each electron on
the system, so:

Ĥe =
M∑
i=1

(ĥ0(i) + v̂eff (i)) =
M∑
i=1

ĥeff (i) (2.20)

This important conclusion give the electronic hamiltonian a peculiar one-
body term, this simplify enormously the Schrödinger equation and is the
second step to determine an effective computational formulae for calculators

2.4.2 Slater determinant approximation

One of the other important approximations, is that the eigen-functions will
be described by a single Slater determinant, this is used to take into account
the effect of the exchange between electrons.
Let at first consider a single body hamiltonian

ĥeff (i)χk(i) = εkχk(i) (2.21)

In which χk(i) will be a one -electron wave function , the total wavefunction
of all the electrons can be constructed as a product of all the wavefunctions
for each of the electrons in the system, this is the so called Hartree approxi-
mation:

ψe(1, 2, ..N) = χa(1)χb(2)..χn(N) (2.22)

1,2 .. N represent the electron coordinates, instead χn represent a single spin
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orbital.
In a 3 electron system for example

Ĥeψe(1, 2, 3) =
3∑
i=1

(
ĥeff (i)χa(1)χb(2)χc(3)

)
= (2.23)

= εaχa(1)χb(2)χc(3) + χa(1)εbχb(2)χc(3) + χa(1)χb(2)εcχc(3) = (2.24)

= (εa + εb + εc)χa(1)χb(2)χc(3) (2.25)

This can be easily extended for system of N electrons.
The important principle given by this calculation is that the Hartree prod-
uct is eigenfunction of the many body Hamiltonian with associated energy
eigenvalue given by the sum of the energies of the (χ) spin orbitals which
compose the Hartree product:

Ee = εa + εb + ...+ εn (2.26)

Under this assessment we note that any permutation between 1,2 .. N doesn’t
change the overall energy of the system.
More precisely the N! possible permutations of the N electron coordinates on
the available N spin orbitals is degenerate (with the same energy level).
Hence we may form any linear combination of the available N! Hartree prod-
ucts to form a legitimate many-body wave function, still eigenfunction of Ĥe

, with energy given by the sum of orbital energies.
The construction of this many body wavefunction will take into account
firstly that for electron under permutation of the electron into the different
spin orbitals we will have a change in sign , in particular with respect to the
Hartree approximation ψe = χa(1)χb(2)...χn(N) we will need to introduce
the anti-simmetry principle for fermions (such as electrons):

ψe(1, 2) = −ψe(2, 1) (2.27)

and so this type of wavefunction can be easily described by

ψe(1, 2) = N (χa(1)χb(2)− χa(2)χb(1)) (2.28)
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upon proper normalization N , this will permit the construction of the so
called Slater determinant that in the general form will be :

ψe(1, 2..N) =
1√
N !

∣∣∣∣∣∣∣∣
χa(1) χb(1) ... χn(1)
χa(2) χb(2) ... χn(2)
... ... ... ...

χa(N) χb(N) ... χn(N)

∣∣∣∣∣∣∣∣ (2.29)

One of the observable effects of this matrix interpretation is the fact that
upon changing the position of two electrons we will change two rows of the
matrix, therefore changing the sign of the many body wave function, this
is what we expected from (2.27). Also if we have two completely identical
column on the matrix we will have that the determinant will be 0 , this
represent the Pauli exclusion principle , which states that we can’t have two
electrons in the same orbital with same multiplicity (corresponding to same
set of quantum numbers).
The Slater determinant is an approximated representation of the many body
wavefunction.
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2.5 The Hartree-Fock method

For the hartree-fock method all the approximations introduced in the previ-
ous section will be necessary, as a briefing we have 5 major approximations

• the Born-Oppenheimer approximation

• the many body wavefunction assumed to be described by the Slater
determinant

• the mean field approximation (in particular HF approximation)

• the assumption that relativistic effects are negligible

• the assumption that the variational solution will be a linear combina-
tion of a basis set that will be complete and finite

For the HF approximation (a particular mean field approximation) the term
ĥeff is represented by the so-called fock operator or f̂ which is the operator
relative to the single electron eigen value problem:

f̂(i)ψe(i) = ε(i)ψe(i) (2.30)

In this approximation the mean field or Veff is separated into a Coulomb

operator (Ĵ) and an exchange operator (K̂).

f̂(i) = ĥ0(i) + v̂eff (i) = ĥ0(i) +
M∑
j 6=i

Ĵ(j)−
M∑
j 6=i

K̂(j) (2.31)

J operator (or Coulomb operator) represent the coulombic repulsion between
the electron relative to the fock equation (2.30) and all the other electrons
(j) of the system.
K operator (or exchange operator) describes the interchange between two
electrons.
The solution of this problem is iterative and undergoes the so called self con-
sistent field (SCF) that we will introduce after a brief introduction on the
Roothann-Hall equations and on the basis sets.
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2.5.1 The Roothann-Hall equations

The Roothann-Hall equations start from the position only problem and
doesn’t take into account the spin multiplicity as in eq. (2.30), in prac-
tice:

f̂r(r1)ψr(r1) = εrψr(r1) (2.32)

The fock operator will be modified in this sense:

f̂r(i) = ĥ0(i) +

M/2∑
j 6=i

2Ĵ(j)−
M/2∑
j 6=i

K̂(j) (2.33)

It is still not possible to solve the equation (2.32) nowadays , but Roothann
developed a method in order to convert the Hartree-Fock equation into a
matrix problem that can be solved by simple matrix algebraic methods.
In particular he thought to produce the molecular orbitals as a linear com-
bination of atomic orbitals, or LCAO.
The atomic orbitals will be also approximated in a linear combination of
Gaussian and contraption of gaussian for the gaussian-type basis set and in
general by a set of independent and orthonormal basis functions.
So introducing a set of known basis functions K we will expand the molecular
orbital (ψr) into a combination of atomic orbitals

ψi =
K∑
µ=1

Cµiφµ i = 1, 2, ..K (2.34)

If the basis set was complete we will have an unapproximated matrix repre-
sentation of the molecular orbitals , but in order to have a finite time for the
calculations we will have to define a finite basis set.
So combining the 2 previous equation (2.32) and (2.34) we will obtain the
final matrix representation:∑

ν

FµνCνi = εi
∑
ν

SµνCνi for i = 1, 2, ..K (2.35)

With S that will be called as the overlap matrix that will be a representation
of how the various atomic orbitals are superimposed one to the other and F ,
or fock matrix that will be the value of the fock operator evaluated between
two basis.
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The complete integral representation of the two matrices will be:

Sµν =

∫
φ∗µ(1)φν(1)dr1 (2.36)

and

Fµν =

∫
φ∗µ(1)f(1)φν(1)dr1 (2.37)

The Fock matrix can also be divided into two contributions, one con-
taining information about the electron - nuclei potential and the electron
momentum, Hcore

µν or core hamiltonian matrix and Gµν will give us informa-
tion of the coulombic and exchange electron - electron interaction.

Fµν = Hcore
µν +Gµν (2.38)

so the final matrix equation or Roothann-Hall equation will be:

FC = SCε (2.39)

2.5.2 The construction of the basis set

Roothann-Hall equations and the basis sets that lead to a matrix represen-
tation from the integro-differential equations of the eigen value problem are
used in general for computation , and in particular both for the Hartree fock
method and in Density functional theory that we will introduce later.
The basis set is usually formed by atomic orbitals (on the quantum chem-
istry approach) and are divided in three main types: Gaussian-type orbitals,
Slater-type orbitals, or numerical atomic orbitals.
The basis set that we used for the thesis is the cc-pVTZ which is the Dun-
ning’s correlation consistent basis set with triple Z, it is built up by adding
shells of functions to a core set of atomic Hartree-Fock functions, in our par-
ticular case we will have three (T = triple) added shells and (V) indicates it
is a valence only basis set.
Each function present in a single shell contributes very similar amounts of
correlation energy in an atomic calculation.
The ’cc-p’ in the first part, stands for ’correlation-consistent polarized’ , in
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fact in this set polarization functions are added as non-contracted Gaussians
and add a significant amount of computational costs. This polarization func-
tions are used to describe polarization of the electron density distribution of
each the atom in molecules, they add flexibility to the basis set, permitting
molecular orbitals to be more asymmetric with respect the nuclei, this is im-
portant for the correct calculations of the interaction with other atoms, since
the bonding distort the simmetry of each single atomic orbital , distorting
the overall distribution and giving it an asimmetrical character.
One downgrade to this sets is that the correlation-consistent (cc) basis sets
described above are sub-optimal regarding the optimization of the calcu-
lation time for density-functional theory, because the correlation-consistent
cc-pVXZ sets have been designed mainly for Post Hartree–Fock methods,
while density-functional theory exhibits much more rapid basis set conver-
gence.
These basis sets have been optimized recently, with some redundant func-
tions removed and they have been rotated in order to increase computational
efficiency [41].
The cc-pVTZ is permitted in particular on light atoms from hydrogen to
argon excluding some elements like Li, Na , Mg so it can be used for the
atoms considered in this thesis.
Analysis of the basis sets is not part of this thesis, in fact we will not analyze
in detail all the Slater type basis sets (STOs) or the Gaussian type basis sets
(GTO) aside from our chosen cc-pVTZ basis set, this was considered valid
for studies regarding similar molecules [9].

2.5.3 SCF method

This method relies firstly on choosing arbitrarily the wave function of the
electron ψe(i), this eigen function will be composed by a spatial (ψr(i)) and
a spin (ψs(i)) part.
In general the spatial wave function ψr can be defined starting from a basis
set, this define the accuracy and time of a specific calculus, the bigger the
basis set, the higher the accuracy corresponding to a decrease on the en-
ergy of the fundamental state ε0 until it reaches a minimum on the so-called
Hartree-fock limit , beyond this limit the accuracy of the calculation will not
increase.
With the electron wave function determined we will build the Fock matrix us-
ing the Roothann-Hall relation (2.37), this will be diagonalized to determine
a new electronic wave function to build another Fock matrix, this iterative
procedure is carried out until ψe(i) have converged.
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2.6 Density functional theory

DFT, or density functional theory is a first principles computational method
that starts from a very different approach from the one that we analyzed
for the HF method and Schrodinger equation, and have the fundamental
concepts based on the density distribution of electrons rather than the wave
function.
It yields a very important simplification from the 3N differential equation in
the system of N electrons because the density distribution only depend on
the 3 spatial coordinates and represent all the system of N electrons.
In this analysis the ’unsolvable’ many-body problem of interacting electrons
in a static external potential is reduced to a problem of non-interacting elec-
trons that are moving on an effective potential.
This effective potential includes both the external potential and the effects
of the exchange and correlation interactions.
The property of the fundamental state will be functionals of the electronic
density.
We will start the elaboration of the DFT theory on the Thomas - Fermi
theorem.

2.6.1 The Hohenberg-Kohn theorems

The first to use the concept of density distribution of electrons for the analy-
sis of the molecular many body problem were Llewellyn Thomas and Enrico
Fermi in 1927, in their Thomas-Fermi model.
It is a very rough model in which neither the exchange nor the correlation
interaction is considered and the electron - electron pair wise interaction is
only the one generated by coulombic repulsion.
This model is only exact for atoms of infinite nuclear models and for real
system it fails to reproduce even the most simple ones.
It is indeed not exact and just a concept precursor to the much more inter-
esting Kohn-Sham model.

Hohenberg and Kohn have elaborated two fundamental theorems that will
evolve this primitive model and will lead to the Kohn-Sham formulation.
In the Hoheneberg and Kohn models electron are subjected to an external
potential V̂ext which is equivalent to the V̂en of the nuclei - electron interaction
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and we recall it is equal to :

V̂en = − e2

4πε0

N,M∑
i,I

ZI
|ri −RI |

= − e2

4πε0

M∑
i

(
N∑
I

ZI
|ri −RI |

)
=

M∑
i

v̂n(ri)

(2.40)

On the point of view of a single particle v̂n(ri) is the external potential felt
by each electron and generated by all the other nuclei.
This external potential will be the most important point for the Kohn-Sham
model.

Theorem 1 The external potential Vext(r), and hence the total energy, is a
unique functional of the electron density ρ(r).

Not only the potential energy Vext(r) is determined by the electronic density,
but the electronic density also determines the external potential.

Theorem 2 The ground-state energy can be derived with variational meth-
ods: the density that minimizes the total energy is the exact ground-state
density.

In particular :

E[ρ(r)] =

∫
ρ(r)Vext(r)dr + FHK [ρ(r)] (2.41)

E will be the energy of the state to be minimized and ρ (r) is the electron
density at a certain position (r), and FHK is an unknown , but universal
functional of the electron density.

This important theorems are valid only under specific conditions :

- the ground state is not degenerate , if we have more than one eigen
function associated to the ground state in fact one can no longer talk
about the uniqueness of the ground state expectation value of operators,
and thus the first theorem cannot be demonstrated

- the ground / excited state density remain V-representable during the
calculation, which means that it can always be associated to an Hamil-
tonian with an external potential Vext
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- the integral of the density must always give a constant number N∫
ρ(r)dr = N (2.42)

This important principles will define the Kohn-Sham equation.

2.6.2 Kohn- Sham equation

Kohn and Sham starting from eq.(2.41) derived a set of differential equation
able to find the ground state electron density ρ0(r).
This technique is based on a fictitious system of non-interacting electrons,
since the expression of the kinetic energy for this particles is known, this
allow to set up simpler and more accurate DFT calculations.
This fictitious system is constructed in such a way that its density is equal
to the one of the real system with interacting electrons.
The Kohn–Sham equation (2.43) precisely is a one electron Schrödinger-like
equation of a fictitious system of non-interacting particles that generate the
same density (2.45) as any given system of interacting particles.[
−∇

2

2
+ Veff (r)

]
ψKSi (r) = εiψ

KS
i (r) with ρKS(r) =

N∑
i

|ψKSi (r)|2 (2.43)

This Kohn-Sham system , represented by Kohn-Sham orbitals ψKSi is put in
a local effective (fictitious) potential Veff (r), also called Kohn-Sham poten-
tial , in which the non-interacting particles move.

Veff (r) = Vext(r) +
1

2

∫
ρ(r′)

|r− r′|
dr′ + Vxc(r) (2.44)

where Vxc is the exchange correlation potential and is defined as Vxc = ∂Exc(ρ)
∂ρ

, we also observe that ∫
ρKS(r)dr =

∫
ρ(r)dr = N (2.45)

as noted before. And the orbital of the fictitious system will correspond both
to the real and KS electronic density

ρKS(r) =
N∑
i=1

|ψi(r)|2 = ρ(r) (2.46)

This is very important property of the fictitious orbitals, they will correspond
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at any moment of the iteration to the real electronic density.
In practice the contribution FHK will be separated into three components:

FHK [ρ(r)] = Ts[ρ(r)] + EH [ρ(r)] + Exc[ρ(r)] (2.47)

with Ts defined as the kinetic energy of the non interacting electron gas :

Ts[ρ] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r) (2.48)

This is not defined and requires several approximations as the exchange-
correlation energy functional Exc.
EH is the so called Hartree energy, representing the classical coulombic re-
pulsion between electrons and precisely:

EH [ρ(r)] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ (2.49)

The total energy of the system, corresponding to the many-body wave func-
tions represented by a Slater determinant and corresponding to the Hamilto-
nian Ĥ0 =

∑N
i (Tei + Veff (ri)) will be expressed as a summation of the eigen

values of the equation (2.43) over all the electron in the system representing
all the energies of the single orbitals, the coulombic contribution of the e-e
interaction in the system, and exchange-correlation terms:

EKS(ρ) =
N∑
i

εi − EH(ρ) + Exc(ρ)−
∫
∂Exc(ρ)

∂ρ
ρ(r)dr (2.50)

This problem is therefore reduced to a problem of N coupled single particle
equations.
The KS fictitious orbitals are generally considered just as a computational
artifact, but can be approximated to the wavefunctions of a single particle.
With all this said the iterative procedure that undergoes the density func-
tional theory is the following:

ρn(r) −→ Veff (r) −→ ĤO −→ ψKSi −→ ρn+1(r) (2.51)

The principles are very simple, we start from the initial guess on the fictitious
wave functions, ψKSn , this will be related to the electronic density ρKSn , that
is equal to the real electronic density ρn and will give us information on the
Veff as stated by the 1st Hohenberg-Kohn theorem.
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Since the kinetic energy of the fictitious system is perfectly known we then
by using Ĥ0 =

∑N
i (Tei+Veff (ri)) we will calculate the eigen-functions of the

many-body eigen-value problem, ψKSn+1 to finally find the new values for the
electronic density ρKSn+1(r).
This process is iteratively repeated until the energy of the system is con-
verged.

2.6.3 Exchange and correlation functional

The exchange-correlation functional Exc is an important functional that is
not known exactly and represent a correction of the KS fictitious system, in
fact for the real state:

FHK(ρ) = T (ρ) + EH(ρ) + Enc(ρ) (2.52)

in which Enc(ρ) represent a non-classical correction over FHK , instead for
the fictitious orbitals we will have

FHK(ρKS) = Ts(ρKS) + EH(ρKS) + Exc(ρKS) (2.53)

and as we have seen in eq.(2.46) we will have (ρ = ρKS).
So we can see the exchange-correlation functional can be written as a sum-
mation of a non classical term plus the difference in kinetic energy between
the real and the fictitious state:

Exc(ρ) = [T (ρ)− Ts(ρ)] + Enc(ρ) (2.54)

This Exc(ρ) is approximated with several different methods , the first one is
the LDA, or local density approximation.
In this model the exchange-correlation functional is described as an interac-
tion between electrons on an homogeneous cloud of particles.
This is particularly used in metallic materials in which the situation can be
approximated by a system of immobile ions in a homogeneous density distri-
bution of electrons, but can be used also in molecular structures with some
degree of success.
The form of the exchange-correlation functional for the LDA approximation
is
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ELDA
xc (ρ) =

∫
ρ(r)

[
−3

4

(
3ρ(r)

π

)1/3

+ εc(ρ)

]
dr (2.55)

On molecular system in general, to describe better the dishomogeneity of
this systems, it is appropriate to use the GGA , or generalized gradient ap-
proximation, in this approximation also the gradient of the electron density
is taken into account and gives the information necessary to assess the spe-
cific variation of electronic density typical of molecular systems, in particular:

EGGA
xc = ELDA

xc −
∑
σ

F

(
|∇ρ|
ρ
4/3
σ

)
ρ4/3σ dr (2.56)

2.6.4 Hybrid functionals

In hybrid functionals the exchange-correlation Exc is divided in two terms,
the purely exchange part, and the purely correlation part. We know that
Hartree-Fock provides already a useful analytic expression for the exchange
energy without the effects of self-interaction errors.
Even if promising is not convenient to use this expression due to the system-
atic error cancellations.
However, mixing a fraction of this non-local Hartree-Fock exchange to the
DFT energy expression we build the class of the so called non-local function-
als.
The first successful hybrid functional was developed by Becke and was based
on the adiabatic connection formula.

Ehybrid
xc = αEHF

x + (1− α)EDFT
x + EDFT

c (2.57)

This is the general expression for the hybrid functionals such as PBE0, HSE06
and B3LYP.
For B3LYP in particular in these functional the exchange DFT part will be
divided into an expression provided by Becke (∆EB88

x ) and a LSDA part to
provide local exchange, the correlation part will be divided into a local LSDA
correlation and a non-local LYP (Lee,Yang and Parr correlation functional).
We will not go in detail on the other hybrid functionals outside their gen-
eral expression (2.57), we just note that both PBE0 and HSE06 are usually
used as an efficient tool for Raman investigation and are generally suitable
in polyconjugated systems.
CAM-B3LYP is a long range correct version of B3LYP using the CAM
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Figure 2.1: B3LYP(left) and CAM-B3LYP (right) α, β parameter depen-
dence on the distance

(Coulomb attenuating method).
In this method the α and the β parameters change accordingly to the distance
between electrons, modifying the relative weight of exchange and correlation
terms.



2.7. GAUSSIAN DFT DETAILS 47

2.7 GAUSSIAN input details for the opti-

mization and Raman analysis

Figure 2.2: Flowchart diagram for the DFT procedure

DFT calculations have been carried out using the Gaussian software [42]
to determine the ground state properties of a specific structure, as we can see
from fig.(2.2) and fig.(2.3) the input of Gaussian need to know the geometrical
un-optimized geometry of the system, which can be built using visualization
softwares such as Avogadro [43] and Molden [44].
An input example for the Gaussian DFT procedure can be seen on fig. (2.3).

The Gaussian software will at first determine the optimized geometry for the
ground state and than the Raman spectra.
Important information such as structural (bond length, BLA), electronic
(HOMO-LUMO gap, energy of the ground state) and spectroscopic (Raman
intensity of the different peaks) will be determined by this procedure.
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Figure 2.3: Typical input structure for the DFT Gaussian program

2.8 Time dependent DFT

Time dependent density functional theory is an important technique used to
evaluate the excited state geometry and vibronic transition properties.
We will start, instead of the time independent Schrodinger equation, on its
time dependent form :

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 (2.58)

The first approximation is the one derived by the Runge-Gross theorem.

2.8.1 Runge-Gross theorem

The Runge-Gross theorem is an important theorem of TDDFT, expecially
in the spectroscopic studies in presence of scalar fields.
It shows that there exist a correspondence between the potential vks and the
density of the system ρ.
It doesn’t hold for all type of potentials and it is correct considering only
with an addiction to a purely time-dependent (and not position dependent)
function (c(t)).
These have the effect only on changing the wavefunction leaving the density
invariant, in fact
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∣∣eiφψ(r, t)
∣∣2 = |ψ(r, t)|2 (2.59)

φ is an arbitrary phase which represent the shift cause by the position inde-
pendent c(t) function.
RG theorem is typically applied where the system changes according to an
external potential given by a time-varying electric field, such as in spec-
troscopy, thus TDDFT analysis will be perfect in our field.
It is a parallel concept to those of Hohenberg Kohn for DFT extrapolated
in the time-dependent studies and it shows the density again as a funda-
mental parameter to describe the many-body problem, in this case the time-
dependent many-body problem.

2.8.2 Time-dependent Kohn Sham equations

In the time dependent Schrodinger equation, the iterative procedure is fo-
cused on finding the stationary point of a quantity analogous to the energy,
called quantum mechanical action (A):

A[Ψ(t)] =

∫ tf

ti

〈
Ψ(t)

∣∣∣∣i~ ∂∂t − Ĥ(t)

∣∣∣∣Ψ(t)

〉
dt (2.60)

Ψ(t) is the many body wave function.
Given the strict correspondence between density functional and wave function
we will have the mechanical action will be directly related to the electronic
density (A = A(ρ)).
The fictitious Kohn-Sham orbitals are, in this case solutions of the time de-
pendent Schrodinger equation :(

−1

2
∇2 + vks(r, t)

)
ψi(r, t) = i

∂

∂t
ψi(r, t) (2.61)

The system of KS orbitals is found as the stationary point of the action func-
tional previously reported in eq.(2.60).
The density of the real system can be obtained by the summation over the
occupied fictitious orbitals.

ρks(r, t) =
∑
i

|ψi(r, t)|2 = ρ(r, t) (2.62)
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The Kohn Sham potential vks is demonstrated to be equivalent to the com-
bination of three components, an external potential term, a coulombic term
and an exchange-correlation term as we have seen in the previous section.

2.8.3 Exchange-correlation functions for TDDFT

The concept of exchange-correlation potential is different from the one that
we used for DFT and it is related to a so-called action functional Ã , this
relation was derived by Leeuwen in 1998 [45]:

vxc =
∂Ã

∂ρ(r, τ)

∣∣∣∣
ρ(r,t)

(2.63)

where τ is the Keldish pseudo-time.
This is not known exactly and an approximation is required to relate exchange-
correlation functional used for DFT and extrapolate them into TDDFT, this
is the so called adiabatic approximation, which states that the many-body
effects are those of the ground-state even if the system is in a excited state.
This can be a good approximation if the geometry of the excited state with
respect of the one of the ground state remains more or less invariant, but in
general it is not successful in systems that in the initial state are not in their
ground state level.
The adiabatic approximation is generally appropriate if used for the predic-
tion of the absorption spectrum, since initially the state is in its non-excited
form.
Non adiabatic exchange-correlation functionals have been developed but are
in general not used.
They are studied theoretically but cannot be implemented in calculators.
Recent development on the theory [40] have studied the decomposition of
the exact exchange-correlation potential into an interaction component and
a kinetic component.
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2.9 GAUSSIAN input details for excited state

and vibronic spectra determination

An example of the typical input for The TDDFT is showed in fig.(2.5).
The process undergoes a procedure briefly reported in fig.(2.4).
From the optimized geometry obtained by the DFT optimization of the ini-
tial structure, we will start using Gaussian to determine the excited states
and vibronic transitions parameters.
Each relevant excited state (which yield a dipole-allowed transition f >> 0)
will than be optimized using the Gaussian program using the same geometry
of the ground state, this will find optimized values for oscillator strength,
peak position and also the electronic transition dipole moment (EDTM).
This calculus will also give the optimized geometry of the excited state (i)
that will be used as an input to the UVFC program for all values of gamma,
this gamma give an indication of the vibronic coupling between modes and
it is strictly related of how the UV- vis spectra will be modulated (we will
see this later in detail).
For each optimized transition we will make the individual calculation on the
Franck-Condon factors for a maximum amount of gamma’s of (7) to limit
the computational weight, we will explain this in detail later
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Figure 2.4: Flowchart diagram for the TDDFT procedure

Figure 2.5: Typical input structure for TDDFT Gaussian program



Chapter 3

Fundamentals of Raman and
UV-vis spectroscopy

In this chapter we will explain all the fundamentals about vibrational spec-
troscopy and Raman.
The theoretical detail will be based on Atkins ”molecular quantum mechan-
ics” book [46], on Tommasini ’physical properties of molecular materials’
lecture notes, on Gierschner [47] and Siebrand [48] work, on Fabrizia Negri
lecture notes and on several other works [49–52].

3.1 Vibrational dynamics

In this section we will introduce the fundamental description of the vibra-
tional dynamics of molecules, by adopting a classical approach and the har-
monic approximation.
Using cartesian coordinates (xi) we find that the kinetic energy (T) of a sys-
tem of N particles with mass mi can be represented by:

T =
1

2

N∑
i=1

miẋ
2
i (3.1)

xi represent the cartesian displacements on the (x,y,z) directions and are 3N
in a system on N atoms.
The eq. (3.1) can be represented alternatively in the matrix form:

T =
1

2
Ẋ
T
MẊ (3.2)

53



54 CHAPTER 3. FUNDAMENTALS OF SPECTROSCOPY

Ẋ =


ẋ1
ẋ1
· · ·
ẋ3N

 (3.3)

and M is the diagonal matrix with the values equal to
(m1,m1,m1,m2,m2,m2, · · ·mNmNmN).
The classical representation of the potential instead can be elaborated as a
Taylor expansion:

V (x1, x2, · · · xN) = V0 +
N∑
i=1

∂V

∂xi

∣∣∣∣
0

+
1

2

N∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
0

xixj +HOT (3.4)

In this equation V0 is arbitrary and we can put it equal to 0, when we are
on the minima of the potential energy also the second term ( ∂V

∂xi

∣∣
0
) for each

coordinate.
For small displacements the higher order terms (HOT) can be neglected, this
is called as the harmonic approximation.

V (x1, x2, · · ·xN) ≈ 1

2

N∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
0

xixj (3.5)

In matrix form this can be represented by:

V =
1

2
Ẋ
T
FxẊ (3.6)

F x is the matrix composed by the second order derivatives over the different
coordinates and its elements are fxij = ∂2V

∂xi∂xj

∣∣
0
xixj, these elements will be

called force constants.
In order to solve the dynamical problem, we will have to solve the 3N variable
Lagrange equations

d

dt

∂T

∂ẋj
+
∂V

∂xj
= 0 for j = 1, 2, ..., 3N (3.7)

The previous classical concepts introduced in eq. (3.1) and (3.5) will be put
into the Lagrangian formulae to develop the following 3N equation problem

mjẍj +
3N∑
i=1

fxijxi = 0 (3.8)
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A general solution of this equation will be a linear combination

xj =
3N∑
i=1

Lijcos(ωit+ φi) (3.9)

The index (i) is relative to all the 3N normal modes, each with frequency ωi
,phase φi and oscillation amplitude Lij.
Substituting this solution into (3.8) we obtain :

3N∑
i=1

(
fxij − ω2mjδij

)
Lxi = 0 (3.10)

where δij is the Dirac delta function, this can be rewritten in matrix form to :(
M−1Fx − ω2I

)
L̄x = 0 (3.11)

This 3N linear equation eigen value problem can yield non trivial solutions
when the determinant of

[
M−1Fx − ω2I

]
is equal to 0.

The matrix form of eq. (3.11) can easily be found, L will be the matrix
composed by all eigen vectors L̄x.

M−1FxLx = LxΛ (3.12)

Λ is the diagonal matrix of the ωi for each normal mode (i).
The relation between the generic displacement (X), the eigenvector matrix
(Lx) and the normal modes (Q) will be the following:

X = LxQ (3.13)

From the point of view of the internal coordinates R, which describe the
relative movement of atom inside the chain, we will see that the problem
pass from the 3N equations ( of all the cartesian coordinates of the N atoms)
to the 3N-6 internal coordinates.
In fact the internal coordinates will be referred to a system (molecule) inde-
pendent on the 3 rotation and 3 translation that this can have with respect
to another coordinate reference system.
To shift the problem we will introduce the transformation matrix (B).

R = BX (3.14)
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And the kinetic energy representation over the internal coordinates will be :

T =
1

2
Ṙ
T
BM−1BT Ṙ (3.15)

and the potential energy will be:

V =
1

2
RTFrR (3.16)

Fr is the force constants matrix and its elements are the force constants,
f rij = ∂2V

∂ri∂rj

∣∣
R=0

With G−1 = BM−1BT (called as kinetic matrix) we will

have the transformation of eq. (3.12) to:

GFrLr = LrΛ (3.17)

And the correspondence between internal coordinates and normal modes will
be :

R = LrQ (3.18)

Through eq. (3.17) one can find the frequency of each normal mode in the
molecule, than find the individual displacements using eq.(3.9).
This will lead us to the final relation; the vibrational frequencies of this modes
will be determined on the basis of the solution of a eigenvalue problem:

GFLk = ω2
kLk (3.19)

Where G is the so called kinetic matrix, ωk = 2πfk where fk is the value
of the vibrational frequency of mode k, Lk is the eigenvector depicting the
same mode and F is the force constant matrix, this equation will be derived
and analyzed in the following section.
In the specific case of linear molecules we will analyze a specific subspace of
simmetry Σ that represent the stretching coordinates.
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3.2 Raman spectroscopy

Density functional theory will be used (with the Gaussian software) to de-
termine the Raman spectrum of the chains studied, we will use the PBE0
exchange correlation functional and the cc-pVTZ basis set, that has been
successfully used in our laboratory for the determination of similar struc-
tures. [6]
Raman spectroscopy is a vibrational spectroscopy technique based on the
interaction of matter and light, in particular on the excitation of a certain
molecule from the ground state to an excited virtual state with the configu-
ration of a distorted electron cloud.
From this state the system can go back to the original energy level (Rayleigh
scattering or elastic scattering ) or absorb / emit a phonon ( respectively
Antistokes/Stokes inelastic scattering).
The fraction of photons that undergo inelastic scattering is a very limited
part (<< 1%) with respect of the elastic scattering (Rayleigh).
In particular only outgoing photon less energetic than the original photon are
taken into account, so in practice only the Stokes shift with respect to the
Rayleigh scattering frequency is analyzed in the general Raman spectrum.
The Stokes shift, or Raman spectrum is strictly dependent on the type of
normal modes that we have in our system, each normal mode will have a spe-
cific Stokes band , in particular for the molecules under our study the most
important bands will be relative to symmetric / antisymmetric stretching of
the chain.
Not only the Raman spectroscopy will be useful to determine the vibration
characteristic of the normal modes on the molecule but also to determine the
electrical character.
Each normal mode is Raman active if the displacement along the normal
coordinate cause a variation of the molecular polarizability ( ∂α

∂Q
6= 0) and

therefore on Raman transition the polarizability is represented by:

α = α0 +
∑
i

(
∂α

∂Q

)
0

Qi + HOT (highest order terms) (3.20)

To determine all the different vibrational characteristic over this type of
molecules, alongside with the use of eq. (3.19) we introduce the ECC (effec-
tive conjugation coordinate theory) which is important in this field .
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3.2.1 Effective conjugation coordinate theory

ECC theory main property is based on defining an important collective vi-
bration for each chain, called R coordinate which gives us information on the
fundamental molecular characteristic of polyconjugated systems.
This ECC mode is the most intense mode for polyynes and can be described
as an antisymmetric stretching of adjacent CC bonds, corresponding to a
stretching / shrinking of adjacent triple / single bonds.
This mode can be also present on cumulenes but with lower intensity.
The variation of the geometry seen on mode R can be demonstrated corre-
spondent to the variation between the ground state geometry and the one of
the first excited state.
This important mode can be found both for infinite and finite carbon chain
structures.
It is also related to electronic properties (eg. HOMO-LUMO gap) for a sys-
tem and the electron-phonon coupling is maximized on the coordinate R that
define this mode.
π electron conjugation determine the frequency of the R mode because it
modifies the force constants between molecules.
We know that in fact with higher conjugation correspond a ’softening’ of the
force constants and thus a modification of the force constant matrix:

FR =
k1 + k2

2
+
∑
n>1

[fn1 + fn2 − 2fn12] (3.21)

Than using eq. (3.17) and eq. (3.18) we will have a relation to the internal
coordinates and therefore the ECC line.
In which kN are the singular force constants between atoms, fN describe the
stretching force constants at different distance (N) and FR, Fπ describes the
force constant matrix as seen in equation (3.19),this equations are valid only
if we have non negligible fN (as in the case of polyynes).
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3.2.2 Classification of different modes

The dissertation for the modes will not go in detail with the oligomer ap-
proach, since it has already been considered extensively by Innocenti, and
we won’t focus on the phonon dispersion relation.
The importance of this theory for our considerations will be related only to
the classification of the peaks.

Modes definition We can divide the mode in our molecule in several dif-
ferent types, my focus was to develop a uniform analysis and a more clear
graphical representation of the trends, thus we will not classify the modes
only by their static nodes inside the chain but we will use a more general
representation:

• the α mode (or R mode) correspond to a LO mode with an alternation
of stretching /extension of the single bonds, and the number of nodes
in this mode depend on the carbon atoms (n) on the chain (they will
be = (n− 1), it is the most intense mode for both polyyne chains and
even-cumulenic chains.

• the β∗ mode correspond to a LO mode with a singular node on the
chain(or a singular stretching / extension) , note that this mode is
different from the β mode used for the polyyne analysis which is the
second peak in intensity for polyyne-type chains.

• the γ mode is defined as a LO mode with 3 nodes on the chain (or 3
stretching /extensions)

• the δ mode is defined as a LO mode with 5 nodes on the chain (or 5
stretching /extensions)

• the ε mode is defined as a LO mode with 7 nodes on the chain (or 7
stretching /extensions)

• the ζ mode is defined as a LO mode with 9 nodes on the chain (or 9
stretching /extensions)

• the η mode is defined as a LO mode with 11 nodes on the chain (or 11
stretching /extensions)
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Figure 3.1: All modes present in short chain cumulenes (< 12 carbon atoms
in chain) and their node representation

The number of different type of significant modes (M) in our system will be
of course related with the n◦ of carbon atoms per chain and will be Meven = n

2

for even chains and Modd = n+1
2

for odd chains.
The graphical representation of each type of longitudinal mode is pictured

on figure (3.1), where we give a more clear representation of the differences
between each type of normal mode.
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3.3 Basis of quantum transitions and UV-vis

spectroscopy

3.3.1 Fermi golden rule

A quantum transition is the variation of the quantum wave function of a
system that is represented by the transition from an initial stationary state
|ψi〉 = |i〉 onto a final stationary state |ψf〉 = |f〉.
The two states are eigen-states of the two different eigen value problems

Ĥ |i〉 = Ei |i〉 and Ĥ |f〉 = Ef |f〉 (3.22)

This will be promoted in general by a time - dependent perturbation

Ĥ ′(t) = V̂ (t)cos(ωt+ φ) (3.23)

Ĥ ′ will be taken as a weak enough perturbation with respect Ĥ, that means
that this perturbation doesn’t modify the nature of the eigen states of the
original hamiltonian for the system.
The Fermi golden rule states that the transition probability (Pif ) between
the initial |i〉 and final |f〉 state is:

Pif =
2π

~

〈
i
∣∣∣V̂ ∣∣∣ f〉 δ(Ef − Ei − ~ω) (3.24)

The meaning of the Dirac delta function represent the fact that the conser-
vation of the energy of the system must be conserved, thus if Ef − Ei 6= ~ω
the transition probability will be 0 as expected.
Also to have a non-zero transition probability we will have to respect the
specific selection rules for the transitions, these in reality determine 0 tran-
sition probability only if in the system we have only these two specific eigen
states |i〉 and |f〉, if we have another level |γ〉 from which the selection rules
permit both the transitions |i〉 −→ |γ〉 and |γ〉 −→ |f〉 also Pif will be non
negligible even if the selection rules doesn’t allow |i〉 −→ |f〉, this is called
intensity borrowing.
Also the effect of the normal modes in the system, changing the symmetry
of the system can have an effect on relaxing the selection rules.
This will be important in the future chapter for the analysis of the UV spec-
tra.
Quantum transitions in a system are divided into three types, from the least
energetic one we will have rotational transition, vibrational transition and
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electronic transition.

3.3.2 The dipole operator

We will start from the discussion of the perturbation operator (Ĥ ′) in order
to clarify quantum transitions as a basis to clarify UV - visible spectroscopy.
In optical spectroscopies in general we use a photon in between the UV and
the infrared range as a probe for the quantum transition.
Neglecting the magnetic component of the plane wave of wave vector k the
electric field will be oscillating, both along the direction r and in time t:

E(r, t) = E0cos(k · r− ωt+ φ) (3.25)

or alternatively

E(r, t) = E0cos(
2π

λ
r− 2πνt+ φ) (3.26)

but knowing that the molecules under our specific study have size of a few
Armstrongs and that the wavelength λ has a value in UV - vis spectroscopy
typically between 200 nm - 1000 nm we will neglect the position dependence
of the electric field, in fact kr has to be taken in consideration only for big
molecules (not our specific case). Thus we reduce (3.25) into a smaller for-
mulation taking into account only the time - dependent effects:

E(t) = E0cos(ωt+ φ) (3.27)

and the electrical potential Φ can be built up by the scalar product of this
oscillating electrical field and the three dimensional vector of position r.

Φ(r, t) = −r · E0cos(ωt+ φ) (3.28)

The energy of all the charged particles (N) on the system (nuclei and elec-
trons) will be of course composed in this form (each charged particle is la-
belled as (i)) :

W =
N∑
i

qiΦi (3.29)
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if we divide the contribution into the one of all the (P) electrons and (Q)
nuclei in the system we will have:

W = We +Wn =
P∑
i

−eΦ(ri, t) +

Q∑
j

eZjΦ(Rj, t) (3.30)

and thus using the relation (3.28) we will find the value for the interaction
hamiltonian Ĥ ′:

Ĥ ′ = −

(
−

P∑
i

eri +

Q∑
j

eZjRj

)
E(t) = −µ̂ · E(t) (3.31)

Where µ̂ is the dipole operator, introduced as a representation of the electro-
static interaction represented above and represent the magnitude of dipolar
migration of charge, it is a summation of two components the electron dipole
operator µ̂e and the nuclei dipole operator µ̂n.
We observe that as we have seen in equation (3.23) and (3.38) we can write

V̂ = −µ̂ · E0 (3.32)

Thus through the Fermi Golden rule the probability of transition from |i〉 to
|f〉 (Pif ) will be related to the electric dipole operator and in particular to
the electric dipole transition moment (µif )

Pif ∝
〈
i
∣∣∣V̂ ∣∣∣ f〉 = −〈i |µ̂| f〉 · E0 = −µif · E0 (3.33)

This is an important result, the probability of transition is directly related
through the projection of the transition dipole moment on the polarization
vector of the incoming optical field.
The intensity of the absorption peaks (rates of transitions) will also be di-
rectly related to the electric dipole transition moment, in fact :

for spontaneous transitions R =
8π2

3λε0~
|µif |2 (3.34)

for stimulated transitions R =
ρrad(E)

6ε0~2
|µif |2 (3.35)
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3.3.3 UV - visible spectroscopy

UV – visible spectroscopy refers to absorption spectroscopy caused by pho-
ton in the UV - vis spectral region (200-1000 nm).
It is used as an analytical tool to study the optoelectronic properties of con-
jugated organic compounds.
Photons generate both the electronic and vibrational quantum transitions.
The stationary eigen state will change from an initial one |i〉 = |ivib〉 |iel〉
(under Born-Oppenheimer approximation), with ivib, iel corresponding re-
spectively to a vibration and electronic only wave function.
The final state will be also divided accordingly; |f〉 = |fvib〉 |fel〉.
The initial state will be usually the ground state |iel〉 = |g〉, also other initial
states can be possible but since they yield less magnitude on the absorption
intensity will be in generally not considered.
Also in the initial state we will have |ivib〉 =

∏
j |0j)g the pedix g means that

the vibrational states will be of course the one corresponding to the ground
state.
We will introduce two approximations important for further discussion, one
is that the vibrational frequency on ground state will be equal to those on
the excited state and the other will be called harmonic approximation on the
vibrational coordinate:

V (Q) = V (Q0) +

(
∂V

∂Q

)
0

(Q−Q0) +HOT (3.36)

So the transition dipole moment under those approximation will be :

µif = 〈i |µ̂| f〉 = 〈ivib |〈iel |µ̂| fel〉| fvib〉 = 〈ivib |µge| fvib〉 (3.37)

In which µge represent the only electronic transition dipole moment be-
tween the initial electronic state (iel)(ground , g) and the final excited state
(fel)(excited, e).
This electronic transition dipole moment will be in general dependent on the
normal modes (Q), µge = µge(Q).

3.3.4 Frank-Condon principle

As we have seen previously the electronic transition dipole moment can be
seen as dependent on the normal coordinates, if we elaborate it in the means
of the Taylor expansion:
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µge = µge(Q) = µ0
ge(Q) +

∑
j

(
∂µge
∂QJ

)
0

QJ +HOT (3.38)

In the Frank Condon approximation only the static value µ0
ge, which is the

first term on the Taylor expansion is considered, this means that, as in the
Born-Oppenheimer approximation, we will consider the electronic transitions
occurring in a field of ’quasi-static’ nuclei, the transition moment will be
therefore evaluated at equilibrium position of the ground state.
This is justified by the fact that quantum transitions corresponding to ab-
sorption phenomenons are very fast and can be carried out in less than 1 fs.
In the transitions which yields a µ0

ge equal to 0 we have to consider also the
Herzberg-Teller expansion term that is the second term on Taylor expan-
sion in eq. (3.38), this will consider also the HT vibronic expansion terms(
∂µge
∂QJ

)
0
.

Let us consider the rate of transition under the Franck-Condon approxima-
tion :

〈i |µ̂| f〉 = 〈ivib |〈iel |µ̂| fel〉| fvib〉 = 〈ivib |µge| fvib〉 = µ0
ge 〈ivib|fvib〉 (3.39)

The last point of the previous equation is possible in the Franck-Condon ap-
proximation that we analyzed before.
The 〈ivib|fvib〉 are called as Franck-Condon factors and their evaluation is
complicated since the initial vibrational state is localized in the ground state
(g) and final vibrational state is on the excited final state (e).
The normal coordinates of ground and excited state , labeled as Qi and Qf

are related through the Duschinsky rotation:

Qf = JQi + ∆ (3.40)

with

J = LTe Lg and ∆ = LTeM
1/2(x0e − x0g) (3.41)

Where (J) is the Duschinsky rotation matrix and represent how the normal
modes of the excited state are rotated with respect to those of the ground
state, ∆ is the displacement vector and represent the displacement of these
modes.
For simplification the Duschinsky rotation matrix is assumed to be diagonal
with all the values equal to 1, thus the final normal modes will not be rotated
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with respect to the initial ones , this permit to simplify the multidimensional
FC overlap 〈ivib|fvib〉 into a simpler multiplication of individual FC factors.

〈ivib|fvib〉 =
∏
k

(0k|nk) (3.42)

Where |0k) will be located on ground state and |nk) on the excited state.
So through eq. (3.40) it will be possible to evaluate the FC overlap over all
the modes and therefore the intensity (Iif ) of the transition.

Iif ∝
3N−6∑
k

∣∣µif(k)∣∣2 =
3N−6∑
k

∣∣〈ivib(k) |〈g |µ̂| e〉| fvib(k)〉∣∣2 = (3.43)

(using FC approximation of the electronic transition dipole moment)

=
3N−6∑
k

(µ0
ge)

2 |(0k|nk)|2 =
3N−6∑
k

(µ0
ge)

2e−B
2
k/2

B2nk
k

2nknk!
=

3N−6∑
k

(µ0
ge)

2e−γ
γnk

nk!

(3.44)

Where Bk =
(
ωk

~

)1/2
∆k and is called as dimensionless displacement, and k

goes from 1 to the number of linearly independent variables for the internal
coordinates
Each individual FC overlap will be dependent on the dimensionless displace-
ment, which is also physically represented by Q0

f − Q0
i , which evaluate the

difference between geometrical configuration between excited / initial state.
In non totally symmetric modes (NTS) Bk will be 0 so only totally simmetric
modes will be important for the calculation of FC factors.
The calculation in eq. (3.43) and (3.44) can be simplified by including only
totally simmetric modes, therefore:

Iif ∝ (µ0
ge)

2

TS modes∑
k=1

e−γ
γnk

nk!
(3.45)

The γ parameter is related to the dimensionless displacement, B, that phisi-
cally represent the displacement of the normal modes of the ground state with
respect to the normal modes of the excited states, in particular γ = 1

2
B2.

With low γ the origin will be more relevant with respect to the 0g → Ne

peaks because the normal modes won’t be significatively displaced.
The intensity of each individual i → f excitation (and therefore the modu-
lation of each peak) is in fact strictly dependent on the vibrational coupling
and therefore the gamma parameters.



Chapter 4

Investigation of structural and
electronic properties for carbon
atom wires

4.1 Sulfur cumulenes

In this chapter we will investigate the structural, electronic and vibrational
properties of S-cumu[n] (or S−Cn−S) wires with n=4,5,..,12 atom in chain
by means of density functional theory calculations.
We will mainly focus on short length carbon atom wires, in literature in fact
the recent processing techniques allowed the production only of small length
sulfur cumulenes [25].
Tommasini et al.[53] and Yang et al.[54] using DFT calculations have already
carried out a similar analysis on the relationship between bond length alter-
nation and Raman response for H-Py[n].
We will use the consideration of the effective conjugation theory ([36]) to
underline the importance of the α peak as was done in Innocenti thesis work
and article [9].

67
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4.1.1 Electronic configuration of ground state for sul-
fur cumulenes

Multiplicity refers to the spin state of a specific system,.
For a triplet state the total spin S=1 leading to two unpaired electrons on
the HOMO level, instead for a singlet state S=0 generating a paired electron
configuration.
For our work the multiplicity is an important parameter to determine for
DFT calculations, in previous papers it was analyzed to be triplet for even
numbered chains and singlet for the odd number ones for this specific type
of molecules by Wang et al. [4, 21].
I report the result for the minima of the energy for both the chains with
different length and relative triplet / singlet, also I predict the most stable
ground configuration, this ground configuration will be the one used later to
develop the GAP / BLA and geometry study.
The values of the singlet and triplet energy levels will be given by the fol-
lowing table (4.1).

Sulfur cumulenes
N◦C in chain Singlet energy Triplet energy ∆st (Hartree) ∆st (kcal/mol) Most stable
N=3 -910,2918 -910,2030 -0,0888 -55,7140 SINGLET
N=4 -948,2853 -948,3071 0,0217 13,6197 TRIPLET
N=5 -986,3758 -986,3105 -0,0653 -40,9915 SINGLET
N=6 -1.024,3824 -1.024,3990 0,0166 10,4387 TRIPLET
N=7 -1.062,4615 -1.062,4142 -0,0473 -29,6808 SINGLET
N=8 -1.100,4754 -1.100,4898 0,0144 9,0112 TRIPLET
N=9 -1.138,5482 -1.138,5072 -0,0410 -25,7537 SINGLET
N=10 -1.176,5672 -1.176,5800 0,0128 8,0166 TRIPLET
N=11 -1.214,6354 -1.214,6015 -0,0339 -21,2608 SINGLET
N=12 -1.252,6582 -1.252,6698 0,0116 7,2897 TRIPLET

Table 4.1: Reported values of the energy minima (in Hartree) for both the sin-
glet and triplet state for all chain lengths, also the difference (∆) is reported
both in Hartree and in kcal/mol, the corresponding most stable ground state
multiplicity condition is written in the last column.
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Figure 4.1: Single triplet minima difference over all the different chain lengths

We note several important properties on the S-cumu[n] wire trends present
on figure (4.1).

1) There is an alternation between a favored singlet / triplet state

As we can see from figure (4.2) the configuration for the delocalized π or-
bitals in our system will be · · · [πux][πuy][πgx][πgy] · · · , this is the classical
configuration of alternated ungerade and gerade π orbitals along the x and
y directions, this is valid for both sulfur and oxygen terminated chains and

Figure 4.2: Molecular orbital configuration for both O-cumu and S-cumu [4]
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was reported in detail in [4].
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The above observation can easily be analized, generally the π delocalized
electrons in our chain will be equal to 2n+6 where n is the number of carbon
atom in chain.
Knowing that the configuration of the HOMO and LUMO will be for even
chains of (2n) carbon atoms: · · · [π2

ux][π
2
uy][π

0
gx][π

0
gy] · · · thus yielding typi-

cally a singlet state and the HOMO / LUMO configuration for odd chains
of (2n+1) carbon atoms is · · · [π2

ux][π
2
uy][π

1
gx][π

1
gy] · · · (triplet configuration),

thus the behaviour is fully justified.

2) The singlet state is in generally favored and also for even-numbered
chains it is close to the ground state energy

As we have seen before when n is even we will have 14-18-22-26... π elec-
trons for n=4-6-8-10... carbon atoms per chain, thus we will have two SOMO
(singly occupied molecular orbitals), where the overall MO configuration will
be · · · [π2

ux][π
2
uy][π

1
gx][π

1
gy] · · · , thus the triplet configuration will be favored

since πx and πy are degenerate, to have the singlet state in fact we will to
overcome repulsion between these two electrons, this is not a significant con-
tribution to the energy with respect to the HOMO-LUMO gap, this is the
reason for which the triplet state is favored but the singlet state is also close
to the ground energy for the system, as it is clearly represented in figure
(4.1).
When n is odd we will have 12-16-20-24... π electrons for n=3-5-7... car-
bon atoms in chain, this numbers are clearly all divisible by 4, thus we will
have a fully occupied HOMO configuration :· · · [π2

x][π
2
y][π

0
x][π

0
y] · · · ,the gerade

/ungerade HOMO-LUMO combination depend of course on the n◦of car-
bon atoms, for 3-7-11 atoms we will have 12-20-28 delocalized electrons and
· · · [π2

ux][π
2
uy][π

0
gx][π

0
gy] · · · configuration , for 5-9-13 we will have the opposite

ungerade /gerade configuration .
This is a clear situation where the singlet state is highly favored, to have
the triplet configuration in fact we will have to excite the electrons from the
HOMO to the LUMO level to a final state · · · [π1

x][π
1
y][π

1
x][π

1
y ] · · · thus the

triplet state will be highly unfavored.
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3) The ∆st decrease with chain length

This is an important parameter adding to the fact that this is just and
end-chain electronic related to the endgroups.
In fact the effect of the electronegativity [21] of S,O will be in principle lo-
calized towards the end of the chain [55], thus for higher chain length the
electronic state will not be as highly influenced as for shorter chains.
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4.1.2 Modulation of HOMO-LUMO gap and BLA with
chain length for S-cumu chains

The values of the HOMO-LUMO gap, BLA and geometry of the ground state
for the S-cumu[n] chains calculated by unrestricted PBE0/cc-pVTZ density
functional calculations are reported in table (4.2).

Bond lengths The bond length, evaluated for all the specific C-C along
the chain and on terminal C-S can give us a general effect on the alternation
induced by the terminal atoms and on the conjugation effects.
In the case of S-cumu the terminal bond lengths C-S on both ends shift ac-
cording to the length of the molecule, in particular for even chains we have
values of > 1.56Å which is more shifted towards the S-C single bond with
respect of the bond values for odd wires, which is < 1.56Å, thus we will
expect an higher bond length alternation for even chains.
The C-C inside the wires are all symmetrical with respect to the center of
the chain, for odd chains the center of the chain will be a carbon atom, thus
to respect the simmetry the two bonds of these carbon atom should be equal,
in fact a double bond, this is another indication of the presence of a very low
BLA for shorter chains.
The structure is symmetric and linear, the point group is D∞h similar to
other cumulenes with one-atom terminals, that therefore can yield high lin-
earity.
Even if the structure is cumulenic there is a slightly oscillation on the value
of bond lengths along the chain, this alternation becomes more important
when we approach the Sulfur endgroups as expected.

Bond length alternation The bond length alternation will be defined in
the same description used by Innocenti in its thesis work and article [9]:

BLA =

[∑N−2
i=1 BLAi

]
N − 2

(4.1)

where N is the number of carbon atoms in the chain, where BLAi is the
difference between the Ci+2 − Ci+1 bond length and Ci+1 − Ci bond length.
This eq. (4.1) was used to take into account also odd chains for which the
definition of BLA as the difference of the average of’quasi triple bonds’ and
the ’quasi single bonds’ cannot be applied.
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Figure 4.3: BLA behaviour as a function of chain length for S-cumu[n]

We observe in figure (4.3) that the value of the BLA for all the sulfur
chains is very low, confirming the cumulenic ’quasi-double bond’ structure.
The BLA is oscillating depending on the number of sp-carbon atoms, yield-
ing the lowest values for odd-numbered chains.
Another very important observation is that the even numbered chains follow
a slight monotic decrease of the BLA, but interestingly the trend is inverted
for odd numbered chains where we have a (quasi negligible) monotic increase,
leading to a less cumulenic character for higher chain lengths.
This trend and the low BLA yielded for odd wires is non-physical and re-
lated on the given definition of BLA and the simmetry of our system, it is
an artifact due to the definition of BLA and, as we stated before, the bond
lengths of the central atom for odd wiresare equal by simmetry, so the BLA
between only these two bonds will be always 0 even for longer chains as we
can clearly see from table (4.6).
The effect of the BLAi = 0 on the center of the wire will cause smaller odd
wires to have a value of the BLA significantly lower to the expected physical
values.
In detail, the equality between consequent bonds, present in the center of the
chain of odd wires generates a BLAi = |RCi+1−Ci

−RCi−Ci−1
| = 0 ( with Ci

regarded as the central atom).
Aside from the simmetry related effects that exploit the definition of BLA
using the requirement for the simmetry of the structure of the chain, the
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BLA is almost constant, this is valid also for O-cumu and C-cumu, where
this simmetry effect is less evident.

HOMO-LUMO gap The trend for the HOMO-LUMO Gap for the system
follow a decreasing function as expected, for higher chain lengths in fact we
will increase the π − conjugation , thus the energy gap will decrease, the
interesting behaviour is that this trends are decreasing functions only if we
consider chains with the same parity.
The sawtooth trend showed in figure (4.4) is often observed for cumulenes,
and it is due to the different behaviour of odd and even chains, both for what
concerns the Raman spectra (both for the ∂α/∂R and the peak intensity)
and electronic (ground state multiplicity) and structural (bond length pattern
configuration).

Figure 4.4: HOMO-LUMO gap as a function of chain length for S-cumu[n]
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O-cumu[n]
Bond length values

N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12
Bond Triplet Singlet Triplet Singlet Triplet Singlet Triplet Singlet Triplet
C1-C2 1,2786 1,2758 1,2780 1,2767 1,2777 1,2770 1,2776 1,2772 1,2776
C2-C3 1,2808 1,2692 1,2774 1,2703 1,2755 1,2709 1,2746 1,2712 1,2740
C3-C4 1,2786 1,2693 1,2736 1,2722 1,2731 1,2727 1,2730 1,2729 1,2730
C4-C5 1,2758 1,2775 1,2722 1,2775 1,2727 1,2767 1,2731 1,2761
C5-C6 1,2780 1,2703 1,2731 1,2727 1,2728 1,2730 1,2727
C6-C7 1,2767 1,2755 1,2727 1,2767 1,2730 1,2762
C7-C8 1,2777 1,2709 1,2730 1,2731 1,2727
C8-C9 1,2770 1,2746 1,2729 1,2761
C9-C10 1,2776 1,2712 1,2730
C10-C11 1,2772 1,2740
C11-C12 1,2776

Energy (Hartree)
HOMO -0,2506 -0,2768 -0,2410 -0,2602 -0,2351 -0,2497 -0,2310 -0,2424 -0,2280
LUMO -0,0124 -0,1044 -0,0604 -0,1254 -0,0886 -0,1382 -0,1069 -0,1469 -0,1196
GAP 0,2382 0,1723 0,1806 0,1348 0,1466 0,1115 0,1241 0,0955 0,1083

Energy (eV)
HOMO -6,8178 -7,5313 -6,5590 -7,0799 -6,3982 -6,7944 -6,2861 -6,5958 -6,2034
LUMO -0,3363 -2,8420 -1,6438 -3,4120 -2,4101 -3,7612 -2,9078 -3,9976 -3,2556
GAP 6,4815 4,6893 4,9152 3,6678 3,9881 3,0332 3,3783 2,5981 2,9478

Bond length alternation
BLA(i) 0,0022 0,0066 0,0005 0,0064 0,0022 0,0061 0,0031 0,0060 0,0036

0,0022 0,0001 0,0038 0,0019 0,0024 0,0018 0,0015 0,0017 0,0010
0,0065 0,0039 0,0000 0,0044 0,0000 0,0037 0,0002 0,0031

0,0005 0,0019 0,0044 0,0000 0,0039 0,0001 0,0033
0,0064 0,0024 0,0000 0,00388 0,0000 0,0035

0,0022 0,0018 0,0037 0,0001 0,0035
0,0061 0,0015 0,0002 0,0033

0,0030 0,0017 0,0031
0,0060 0,0010

0,0036

BLA 0,0022 0,0044 0,0022 0,0033 0,0030 0,0023 0,0030 0,0018 0,0029

Table 4.2: Computed bond length, BLA and HOMO-LUMO gap values for
each of the O-cumu[n] chains with n=4,...,12
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4.1.3 Analysis of Raman intensity parameters for S-
cumu[n] chains

We will analize the trends of Raman activity for each mode according to the
ECC theory [36] that has already been used successfully in this specific field
[9].
The partial derivatives of the polarizability ( ∂α

∂Qi
) with respect of a specific

normal mode for the molecule is directly related to the intensity of the Ra-
man peak for that mode.
We know that:

Ik ∝

(∑
i

∂α

∂Qik

)2

(4.2)

Where Ik is the Raman activity of a specific mode k and i is the bond order,
the sum of the polarizability derivatives over each CC bond with respect to
the normal mode k will give us information of the total ∂α/∂Qk of the overall
molecule.
This factors are composed by the product:

∂α

∂Qk

=
∑
i

∂α

∂Ri

Lik =
∑
i

∂α

∂Qik

(4.3)

for a specific mode (k), where Lik is the (i)-value of the eigenvector Lk, who
represents the amplitude of vibration of the normal mode (k) on internal
coordinates Ri.
Thus the ∂α

∂Ri
give us important information of the structural properties of a

specific CAWs.
Since in the case of cumulenes the molecular structure consists of a sequence
of quasi equalized double CC bonds, the local parameter ∂α

∂Ri
of the singular

CC stretching of the collective oscillation mode will yield similar values.
Instead for polyynic wires the ∂α

∂Ri
will have an alternation between a positive

and a negative value.
We can see that increasing the length of the chain we will have two effects:
a red shift to lower frequencies ([29]) as we commented before, and a mono-
tonic increase on the intensity of the peaks.
In a previous Raman analysis Wang et al [4] suggested an increase of the
vibrational frequency of the main peak of S-cumu[n] for n < 6 , this is only
caused because the main peak will be associated to different modes for short
chains instead of the ECC line.
If the sum over all the CC bonds is shifted towards negative or positive val-
ues we will have an high | ∂α

∂Qk
| for the chain and so an higher intensity of the
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specific normal mode k.
The normal modes considered, labelled for identification as β∗, γ, δ · · · , will
give also information on the Raman spectra, in fact also the peaks will be
identified by the correspondent type of normal mode.

Figure 4.5: Variation of the polarizability with respect of the BLA oscillation,
from top left ( S-cumu[12]) to bottom right (S-cumu[4])

As we can see in figure (4.5) the ∂α
∂Ri

trend generally show a cumulenic char-
acter.
The even chains shows less equalized ∂α

∂Ri
(typical of Vyn-cumu[n] chains [9]),

which will explain the overall higher Raman activity of the modes (this will
be explained in detail later considering the eigen-vectors), the bond also will
be less equalized yielding an higher value for the BLA.
The odd chains shows a more equalized ∂α

∂Ri
pattern (typical also of Cn-

cumu[n] chains) and a lower bond length alternation.
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Figure 4.6: Normalized Raman spectrum for all type of chains, the number
on the top right refer to the number of carbon atom per chain

From the calculated Raman spectrum on figure (4.6) we note several
important observations:

1) The red shift of all modes is evident: increasing the length of the chain
the overall frequency of the stretching vibration will decrease

This is probably related to the force constants associated to CC stretch-
ing coordinates, which for higher chain lengths are known to be ’softer’, as
a result of the softer CC bonds promoted by conjugation, this generates a
decrease on the frequency of each normal mode with chain length.
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A more detailed investigation on the force constant in internal coordinates
should be required to prove this point.
This is only present on longitudinal normal modes and not normal modes re-
garding the end-groups such in the case of phenyl (phenyl modes) and vinyli-
dene termination (CH wagging,stretching), in this cases there isn’t generally
a variation on the wavenumber.
We will see the normal modes related to the presence of these terminations
later.

2) The odd chains show a Raman spectra with several lines of comparable
intensity, whereas the even chains present a relatively intense ECC mode (or
α peak)

3) All the Raman intensities for even chains are significantly higher with
respect to the odd chain ones, and they also all follow a monotonic increase
with the length of the chain

This is valid for all the peaks except for the case of the δ for S-cumu[6]
and ε for S-cumu[10] peaks, this is related to the lower alternation of the
∂α/∂Q and their high values compared to the other peaks.
Regarding the relative calculated Raman activity between even-odd wires we
observe that β∗even(2n) ≈ 2β∗odd(2n − 1) both the value refer to the intensity
of the peaks for the chain with (n) carbon atoms, this trend is similar for γ
modes but the intensities for γ(3) and γ(5) are extremely low with respect
to γ(4) and γ(6) (respectively 5, 15 times less).
The δ, ε and η peak intensities for odd peaks is 1 order of magnitude or less
and can be considered negligible.
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Even chains

In table (4.3) are reported all the important data for the wavenumber and
Raman activity for each significant normal mode for even chains and their
assignation.

Even chains

n◦ C atoms Wavenumber [cm−1] Raman activity [Å4/amu] Type
12 244 895 β∗

725 657 γ
1224 658 δ
1692 1302 ε
1904 28407 α
2070 204 ζ
2221 1872 η

10 276 620 β∗

822 472 γ
1396 523 δ
1915 3782 ε
1987 12750 α
2202 717 ζ

8 316 414 β∗

953 327 γ
1621 460 δ
2049 8007 α

6 371 264 β∗

1143 228 γ
1943 738 δ
2131 2835 α

4 448 157 β∗

1445 176 γ
2160 1168 α

Table 4.3: Calculated data for the wavenumber and Raman activity of sig-
nificant peaks for even-carbon chains S-cumu[2n]



82 CHAPTER 4. PROPERTIES OF CAWS

Figure 4.7: Raman spectra over a selected frequency range (on the left) and
over all the spectrum (on the right)

In the figure (4.7) all the relevant peaks for even S-cumu[n] wires are
depicted, with an indication on the behaviour of the Raman peaks over a
selected range (1800 cm−1 to 2400 cm−1), a range in which generally the
ECC mode line is found for similar systems.
We can see that for even chains that the α peak for even chain is relevant
and is inside our selected range.
In the following pages we will analize in detail each mode and its trends
and activity behaviours with a detailed analysis also on the polarizability
derivatives.
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β∗ mode The β∗ trends are depicted below:

Figure 4.8: β∗ mode (even chains)

As we can see in figure (4.8) the β∗ mode is characterized by relatively low
values of Raman activity ( < 1000[Å4/amu]) and can become only important
for characterization of odd chains since for even chains it is negligible with
respect of the main ECC line (= 28407[Å4/amu]).
The values of ∂α/∂Q are all positive, but each CC gives very little contribu-
tion to Raman activity, reaching the maximum of ≈ 2[bohr2 · amu1/2].
We note that for the ∂α/∂Q follows the same alternating pattern of relatively
low and high values of the ∂α/∂R, this is a consequence of the eigen-vectors
yielding almost constant values. The β∗ mode wavenumber is red shifting as
expected with increasing chain length and yield values of 448-371-316-276-
244 cm−1 for 4,6,8,10,12 carbon atom in chain.
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γ mode The γ trends are depicted below:

Figure 4.9: γ mode (even chains)

As we can see in figure (4.9) the values of ∂α/∂Q are alternated, also each
CC gives little contribution to Raman activity, reaching the maximum of
≈ 5[bohr2 · amu1/2], this explain the very low values for Raman activity of
these modes < 700[Å4/amu].
The γ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 1445-1143-953-822-725 cm−1 for 4,6,8,10,12 carbon
atom in chain.
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δ mode The δ trends are depicted below:

Figure 4.10: δ mode (even chains)

As we can see in figure (4.10) the values of ∂α/∂Qi are alternated and each
CC gives little contribution to Raman activity, reaching the maximum of
≈ 8[bohr2 · amu1/2].
This explain the very low values for Raman activity of these modes that is
less than 800[Å4/amu].
In the case of the δ mode for S −C6−S chains however the value of ∂α/∂Q
are less alternated and shifted towards positive amounts and this explains
its higher intensity with respect to the other δ modes, indeed it is the most
relevant even compared to the S−C12−S value of δ (738[Å4/amu]) compared
to (658[Å4/amu]). The δ mode wavenumber is red shifting as expected with
increasing chain length and yield values of 1943-1621-1396-1224 cm−1 for
6,8,10,12 carbon atom in chain.
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α mode The α trends are depicted below:

Figure 4.11: α mode (even chains)

As we can see in figure (4.11) the values of ∂α/∂Q are shifted towards neg-
ative values and this is explained by the fact that the ∂α/∂R are positive
but with a significant difference in values: the ∂α/∂R related to positive
eigen-vectors have values ≈ 4 times lower with respect to the ones related to
negative eigen-vectors. Thus the positive ∂α/∂Q will give a contribution ≈ 4
times lower than their negative counterpart. Considering also that the value
of ∂α/∂Q can reach ≈ 90[bohr2 · amu1/2] we will expect an high intensity of
these α peaks as expected that reach 28407[Å4/amu]. The α peak wavenum-
ber is red shifting as expected with increasing chain length and yield values
of 2160-2131-2049-1987-1904 cm−1 for 4,6,8,10,12 carbon atom in chain. We
note that the red shifting is anyway limited compared to the trends for the
other peaks and the wavenumber is maintained in the 2200-1900 cm−1 range.
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ε mode The ε trends are depicted below:

Figure 4.12: ε mode (even chains)

As we can see in figure (4.12) the values of ∂α/∂Q are alternated, each CC
gives a contribution to Raman activity with a maximum of ≈ 10[bohr2 ·
amu1/2].
This explains the medium values of Raman activity of these mode for S −
C12 − S which is 1302[Å4/amu].
In the case of the ε mode for S−C10−S chains however the value of ∂α/∂Q
are less alternated and shifted towards negative values and this will explain
its higher intensity (3782[Å4/amu]) with respect to the other ε mode.
This peak is significant with respect also to the ECC line for this specific
wire.
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ζ mode The ζ trends are depicted below:

Figure 4.13: ζ mode (even chains)

As we can see in figure (4.13) the values of ∂α/∂Q are alternated and each
CC gives little contribution to Raman activity, reaching the maximum of
≈ 10[bohr2 · amu1/2].
This explains the low values for Raman activity of these modes and especially
the value for the ζ peak for S−C12−S is very low (204[Å4/amu]) as a result
of the high alternation of the ∂α/∂Q.
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η mode The η trends are depicted below:

Figure 4.14: η mode (S − C11 − S and S − C12 − S chains)

As we can see in figure (4.14) the values of ∂α/∂Q are relatively high with
respect of the other peaks, reaching the maximum of ≈ 20[bohr2 · amu1/2],
but the values are alternated in the case of S − C11 − S and do not give
significant Raman activity values.
In the case of S−C12−S they are shifted towards negative values presenting
higher values 1872[Å4/amu].
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Odd chains

In table (4.4) are reported all the important results for the wavenumber and
Raman activity for each significant normal mode for odd chains and their
assignation.

Odd chains

n◦ C atoms Wavenumber [cm−1] Raman activity[Ȧ4/amu] Type
11 260 397 β∗

775 302 γ
1313 129 δ
1810 81 ε
2162 143 ζ
2248 133 η

9 296 285 β∗

890 184 γ
1517 72 δ
2048 62 ε
2265 96 ζ

7 343 192 β∗

1052 98 γ
1792 37 δ
2252 50 ε

5 410 117 β∗

1302 42 γ
2153 21 δ

3 510 61 β∗

1749 12 γ

Table 4.4: Calculated data for the wavenumber and Raman activity of sig-
nificant peaks for odd-carbon chains S-cumu[2n+1]
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In figure (4.15) we show the Raman spectra of odd chains:

Figure 4.15: Raman spectra for odd chains

This pattern is significantly different from the one found for even chains, in
fact the quasi equalized ∂α

∂R
over the structure will give a better alternation

of the ∂α
∂Q

.
This increase on the regularity, along with the fact that the average values for
the singular ∂α/∂Q for each CC is much lower that in even chains explain the
fact that the corresponding intensity of the peaks will be much lower. The
value for the Raman intensity of each mode is increasing for longer chains
and there aren’t any specific modes that don’t follow this trend (as found in
the case of even chains).
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β∗ mode The β∗ trends are depicted below:

Figure 4.16: β∗ mode (odd chains)

In figure (4.16) we can see that this is the only mode not affected by the
equalized ∂α/∂R pattern, in fact there is not a negative contribution of the
∂α/∂Q and for this fact it becomes the most significant peak for these types
of molecules.
The ∂α/∂Q reach up to ≈ 0.7[bohr2 ·amu1/2], which is a very low value. The
β∗ mode wavenumber is red shifting as expected with increasing chain length
and yield values of 510-410-343-296-260 cm−1 for 3,5,7,9,11 carbon atom in
chain.
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γ mode The γ trends are depicted below:

Figure 4.17: γ mode (odd chains)

As we can see from (4.17) the ∂α/∂Q reach up to ≈ 2[bohr2 · amu1/2], thus
we have low intensity for these modes.
For S − C5 − S this mode show a significant higher intensity with respect
to the δ since it has only negative contribution of the ∂α/∂Q with respect
to the alternating pattern of the other mode, even if the singular ∂α/∂Q for
the γ peak reach a value of ≈ 5[bohr2 · amu1/2]. The γ mode wavenumber
is red shifting as expected with increasing chain length and yield values of
1749-1302-1052-890-775 cm−1 for 3,5,7,9,11 carbon atom in chain.
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δ mode The δ trends are depicted below:

Figure 4.18: δ mode (odd chains)

As we can see from figure (4.18) the ∂α/∂Q reach up to ≈ 3[bohr2 · amu1/2]
for small chains, but with higher alternation with respect to γ modes as we
stated before.
Instead for higher chain length it presents very low values for the ∂α/∂Q of
≈ 4[bohr2 · amu1/2] but also with high alternation. The δ mode wavenumber
is red shifting as expected with increasing chain length and yield values of
2153-1792-1517-1313 cm−1 for 5,7,9,11 carbon atom in chain.



4.1. SULFUR CUMULENES 95

ε mode The ε trends are depicted below:

Figure 4.19: ε mode (odd chains)

As we can see from figure (4.19) the ∂α/∂Q has low values and reach up
to ≈ 6[bohr2 · amu1/2] and also with high alternation yielding low intensity
peaks. The ε mode wavenumber is red shifting as expected with increasing
chain length and yield values of 2048-1810 cm−1 for 9,11 carbon atom in
chain.



96 CHAPTER 4. PROPERTIES OF CAWS

ζ mode The ζ trends are depicted below:

Figure 4.20: ζ mode (odd chains)

As we can see in figure (4.20) the ∂α/∂Q has low values and reach up to
≈ 7[bohr2 · amu1/2] and also with high alternation yielding low intensity
peaks
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4.2 Oxygen cumulenes

In this chapter we will investigate the electronic, structural and vibrational
properties for oxygen terminated cumulenes (O-cumu[n] or O−Cn−O with
n=3,4...,12) by the means of PBE0/cc-pVTZ calculations as we did for S-
cumu[n] wires.
We will study in detail the calculated electronic and structural properties
of these chains and we will carry a complete study on the Raman spectra,
focusing on each relevant mode.

4.2.1 Electronic configuration of ground state for O-
cumu chains

Multiplicity considerations also for oxygen-terminated chains was not com-
pletely clear in papers [4, 21] and it was necessary to undergo a ground state
analysis as for sulfur terminated carbynes.
I report the results for the ground state energy of O-cumu[n], each analyzed
in its triplet and singlet state, on the basis of the calculated energies i predict
the most stable spin configuration for each wire.
The values of the singlet and triplet energy will be given by the following
table (4.5).
We observe a similar behaviour as in the case of sulfur cumulenes, in par-

Oxygen cumulenes
N◦C in chain Singlet E Triplet E ∆st(Hartree) ∆st (kcal/mol) Most stable
N=3 -264,5247 -264,3731 -0,1517 -95,1691 SINGLET
N=4 -302,4898 -302,5141 0,0243 15,2196 TRIPLET
N=5 -340,6018 -340,5100 -0,0918 -57,6296 SINGLET
N=6 -378,5924 -378,6113 0,0188 11,8194 TRIPLET
N=7 -416,6846 -416,6133 -0,0713 -44,7493 SINGLET
N=8 -454,6887 -454,7044 0,0156 9,8129 TRIPLET
N=9 -492,7698 -492,7149 -0,0549 -34,4543 SINGLET
N=10 -530,7822 -530,7957 0,0135 8,4998 TRIPLET
N=11 -568,8561 -568,8140 -0,0421 -26,4429 SINGLET
N=12 -606,8741 -606,8862 0,0121 7,5806 TRIPLET

Table 4.5: Values of the energy minima (in Hartree) for both the singlet and
triplet state for all chain lengths, the difference (∆st) is reported both in
Hartree and in kcal/mol, the corresponding most stable ground state multi-
plicity condition is written in the last column.
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Figure 4.21: Single triplet minima difference over all the different chain
lengths, also the previous values for the S-cumu[n] are reported as a compar-
ison

ticular we have the same sawtooth alternation between singlet state for odd
chains and triplet state for even ones.
The molecular orbital configuration of degenerate πx and πy is the same for
oxygen cumulenes as it was for sulfur cumulenes, thus most of the observa-
tions regarding the trends of the singlet and triplet energies are still valid for
these wires.
The only difference between the two trends is that the difference in energy
between the singlet and the triplet state ∆st is higher for oxygen terminated
cumulenes than it was for sulfur terminated.
This can be related to the electronic effect of the different types of termina-
tion (sulfur and oxygen).
We know that the electronegativity for oxygen is much higher than sulfur,
this can lead on modification of the shape and size of molecular orbitals,
changing the electronic properties of the system and therefore also the ten-
dency to be in a triplet or singlet state.
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4.2.2 Modulation of HOMO-LUMO gap and BLA with
chain length for O-cumu chains

The values of the GAP, BLA and geometry of the ground state for the
O − Cn −O chains calculated by unrestricted PBE0/cc-pVTZ density func-
tional calculations are reported in table (4.6).

Bond lengths The oxygen-capped chains show a lower degree of alterna-
tion on the length of the bonds as we had for S-cumu[n] wires, the oxygen
doesn’t give a significant alternation of ’quasi single’ and ’quasi triple’ bonds,
showing a more equalized cumulenic structure.
Also in even chains, that for S-cumu[n] showed a significant alternation, is
not relevant for O-cumu[n] wires.
The maximum difference between the longest CC and the shortest on a sin-
gular molecule in these systems is ≈ 0, 006, instead for S-cumu the value was
≈ 0, 011.

Bond length alternation In figure (4.22) we show the BLA trend for
O-cumu wires.

Figure 4.22: BLA dependence on the chain length for O-cumu[n] wires
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The trend in the BLA is different from the one of sulfur terminated chains,
for O-cumu we have low values for the bond length alternation also for even
chains.
This BLA show a quasi-constant behaviour, the variation of this trend are
of the order of the numerical errors for the DFT calculations and this values
are all between 0.002 and 0.0045.

HOMO-LUMO gap In figure (4.23) we can see the HOMO-LUMO gap
trend for O-cumu[n] wires of increasing chain length.

Figure 4.23: HOMO-LUMO gap as a function of chain length for O-cumu[n]

The trend for the gap for the system show a sawtooth trend as expected,
with wires of the same parity following a monotonic decreasing function.
We observe values for this gap higher than other cumulenic structures, espe-
cially for shorter chains where it reaches the value of 6,64 eV for O-cumu[4]
which is high compared to the other values of < 5 eV yielded by the other
cumulenic wires and also to the BPh-Py[4] (≈ 4 eV) and Ph-Py[4] (≈ 4.5
eV).
This effect, related to the electronic contribution of the oxygen termination,
is significantly reduced with chain length, in longer wires the HOMO-LUMO
gap will be similar to the trend devised for the other cumulenic structures.
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This is a relatively strange behaviour, we know that the bond length alter-
nation is in general directly related to the value of the HOMO-LUMO gap,
but for short wires also the termination can have a significant effect.
For longer chains in fact as expected also the O-cumu[n] will have values of
the HOMO-LUMO gap lower than the polyynic wires.
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O-cumu[n]
Bond length values

N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12
Bond Triplet Singlet Triplet Singlet Triplet Singlet Triplet Singlet Triplet
C1-C2 1,2786 1,2758 1,2780 1,2767 1,2777 1,2770 1,2776 1,2772 1,2776
C2-C3 1,2808 1,2692 1,2774 1,2703 1,2755 1,2709 1,2746 1,2712 1,2740
C3-C4 1,2786 1,2693 1,2736 1,2722 1,2731 1,2727 1,2730 1,2729 1,2730
C4-C5 1,2758 1,2775 1,2722 1,2775 1,2727 1,2767 1,2731 1,2761
C5-C6 1,2780 1,2703 1,2731 1,2727 1,2728 1,2730 1,2727
C6-C7 1,2767 1,2755 1,2727 1,2767 1,2730 1,2762
C7-C8 1,2777 1,2709 1,2730 1,2731 1,2727
C8-C9 1,2770 1,2746 1,2729 1,2761
C9-C10 1,2776 1,2712 1,2730
C10-C11 1,2772 1,2740
C11-C12 1,2776

Energy (Hartree)
HOMO -0,2506 -0,2768 -0,2410 -0,2602 -0,2351 -0,2497 -0,2310 -0,2424 -0,2280
LUMO -0,0124 -0,1044 -0,0604 -0,1254 -0,0886 -0,1382 -0,1069 -0,1469 -0,1196
GAP 0,2382 0,1723 0,1806 0,1348 0,1466 0,1115 0,1241 0,0955 0,1083

Energy (eV)
HOMO -6,8178 -7,5313 -6,5590 -7,0799 -6,3982 -6,7944 -6,2861 -6,5958 -6,2034
LUMO -0,3363 -2,8420 -1,6438 -3,4120 -2,4101 -3,7612 -2,9078 -3,9976 -3,2556
GAP 6,4815 4,6893 4,9152 3,6678 3,9881 3,0332 3,3783 2,5981 2,9478

Bond length alternation
BLA(i) 0,0022 0,0066 0,0005 0,0064 0,0022 0,0061 0,0031 0,0060 0,0036

0,0022 0,0001 0,0038 0,0019 0,0024 0,0018 0,0015 0,0017 0,0010
0,0065 0,0039 0,0000 0,0044 0,0000 0,0037 0,0002 0,0031

0,0005 0,0019 0,0044 0,0000 0,0039 0,0001 0,0033
0,0064 0,0024 0,0000 0,00388 0,0000 0,0035

0,0022 0,0018 0,0037 0,0001 0,0035
0,0061 0,0015 0,0002 0,0033

0,0030 0,0017 0,0031
0,0060 0,0010

0,0036

BLA 0,0022 0,0044 0,0022 0,0033 0,0030 0,0023 0,0030 0,0018 0,0029

Table 4.6: Computed bond length, BLA and HOMO-LUMO gap values for
each of the O-cumu[n] chains with n=4,...,12
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4.2.3 Analysis of Raman intensity parameters for O-
cumu[n] chains

As we have seen in the S-cumu section the first derivative of the polarization
with respect to each CC stretching give us information of whether the chain
is cumulenic, with all ∂α

∂R
positive, or polyynic , with an alternation between

a positive and a negative value).

Figure 4.24: Variation of the polarizability with respect of the BLA oscilla-
tion, from top left ( O-cumu[12]) to bottom right (O-cumu[4])

As we can see in figure (4.24) the ∂α
∂R

of both even and odd chains show a
prevalent cumulenic character, with only a slight oscillation due to relatively
low polyynic character on even chains, this effect with respect to the ∂α/∂R
of S-cumu is less evident, thus as we expect we will have the presence of a
low intensity ECC mode.
From the calculated Raman spectrum observed in figure (4.25) we can draw
the following observations:

1) The red shift of all modes is evident, increasing the length of the chain
also the overall frequency of the bands will decrease, the same effect was seen
in S-cumu wires
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Figure 4.25: Normalized Raman spectrum for all type of O-cumu chains, the
number on the top right refer to the number of carbon atom per chain

2) Both the odd and even chains show lines of comparable intensities
As we have seen, since the polyynic character for even chains is not relevant,
we have the presence of low intensity α modes that reach a maximum of 3304
[Å4/amu] for the O-cumu[12], whereas for S-cumu[12] was higher than 28000
[Å4/amu].
For shorter chain the ECC mode becomes even less relevant showing less
intensity with respect to other normal modes in the system (eg. the ε mode).

3) All the Raman intensities for even chains are significantly higher than
for the odd chain, and they also all follow a monotonic increase with the
length of the chain
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Even chains

In table (4.7) are reported all the important data for the wavenumber and
Raman activity for each significant normal mode for even chains and their
assignation.

Even chains

n◦ C atoms Wavenumber [cm−1] Raman activity [Å4/amu] Type
12 290 541 β∗

869 450 γ
1495 395 δ
1890 289 ε
2011 3304 α
2188 80 ζ
2348 1132 η

10 336 360 β∗

1008 306 γ
1643 256 δ
2086 679 α
2098 817 ε
2351 779 ζ

8 400 227 β∗

1203 192 γ
1899 132 δ
2159 364 α
2343 626 ε

6 494 132 β∗

1496 110 γ
2347 439 α

4 648 67 β∗

1899 41 γ
2403 161 α

Table 4.7: Calculated data for the wavenumber and Raman activity of sig-
nificant peaks for even-carbon chains O-cumu[2n]
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Figure 4.26: Calculated Raman spectra for O-cumu[2n]

As we can see from figure (4.26) the Raman spectrum for even chains
show significant difference from the one depicted for S-cumu[n] wires in fig-
ure (4.7).
Several observation can be made: The δ peak is not present for O−C6−O,
is negligible with respect to the other peaks and is maintained in the 2100
cm−1 - 2500 cm−1 range.
The ECC line is weak, especially for short chains, and becomes comparable
to the other peak in the spectrum.
For O-cumu[10] the ε and the α peak have similar values for the Raman activ-
ity (817 and 679 [Å4/amu] respectively), and almost the same wavenumber
(2098 and 2086 cm−1).
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β∗ mode The β∗ trends are depicted below:

Figure 4.27: β∗ mode (even chains)

As we can see in figure (4.27) the β∗ mode is characterized by relatively low
values of Raman activity ( < 600[Å4/amu]), it is a longitudinal mode with
1 node, as we have seen in detail for S-cumu[n] wires.
The values of ∂α/∂Q are all of the same sign, but each CC gives very lit-
tle contribution to Raman activity, reaching the maximum of ≈ 1.2[bohr2 ·
amu1/2], lower to the value of ≈ 2[bohr2 · amu1/2] for S-cumu, thus this peak
is expected to be less intense with respect to the β∗ for S-terminated wires.
We note that the ∂α/∂Q follows show a slight alternation determined by
the ∂α/∂R pattern, this is a consequence of the eigenvectors yielding almost
constant values.
The β∗ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 648-494-400-336-290 cm−1 for 4,6,8,10,12 carbon
atom in chain.
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γ mode The γ trends are depicted below:

Figure 4.28: γ mode (even chains)

γ is a longitudinal mode with 3 nodes.
As we can see in figure (4.28) the values of ∂α/∂Q are alternated, also each
CC gives little contribution to Raman activity, reaching the maximum of
≈ 3[bohr2 · amu1/2], this explain the very low values for Raman activity of
these modes < 500[Å4/amu].
The γ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 1899-1496-1203-1008-869 cm−1 for 4,6,8,10,12 car-
bon atom in chain.
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δ mode The δ trends are depicted below:

Figure 4.29: δ mode (even chains)

δ is a longitudinal mode with 5 nodes.
As we can see from figure (4.29) the values of ∂α/∂Q are alternated and
each CC gives little contribution to Raman activity, reaching the maximum
of ≈ 6[bohr2 · amu1/2], this explain the very low values for Raman activity of
these modes < 400[Å4/amu].
The δ mode for O−C6−O chains is not relevant and negligible with respect
of the activity of the other peaks.
The δ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 1899-1643-1425 cm−1 for 8,10,12 carbon atom in
chain.
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α mode The α trends are depicted below:

Figure 4.30: α mode (even chains)

The values of ∂α/∂Q seen in figure (4.30) show an high degree of alternation.
For O-cumu[12] we have that the ∂α/∂Q for this mode can reach up to
≈ 12[bohr2 ·amu1/2], thus we expect a relatively high Raman activity for this
mode.
The value of ∂α/∂Q for the other even chains instead can reach only ≈
6[bohr2 · amu1/2], this low value and the high alternation can explain why
this mode is not relevant and is even lower in intensity than the ε mode.
The α peak wavenumber is red shifting as expected with increasing chain
length and yield values of 2403-2347-2159-2086-2011 cm−1 for 4,6,8,10,12
carbon atom in chain, we note that, similarly that in the case of S-cumu, the
red shifting is limited compared to the trends for the other peaks and the
wavenumber is maintained in the 2400-2000 cm−1 range.
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ε mode The ε trends are depicted below:

Figure 4.31: ε mode (even and odd chains)

ε is a longitudinal mode with 7 nodes.
As we can see in figure (4.31) the values of ∂α/∂Q are alternated and each
CC gives a contribution to Raman activity with a maximum of ≈ 10[bohr2 ·
amu1/2].
This value is big enough to be compared to the one yielded by the ECC line,
but the degree of alternation for the O − C12 − O is very high, determining
a very low value for the Raman activity (289[Å4/amu])
In the shorter chain instead, the relatively high value of the ∂α/∂Q of the
singular CC stretching, combined to the fact that they show a lower degree
of alternation, the ε will have value of 817 and 626 [Å4/amu], comparable to
the ECC line.
The ε mode wavenumber is red shifting as expected with increasing chain
length and yield values of 2409-2343-2230-2098-2014-1890 cm−1 for 7 · · · 12
carbon atoms in chain.
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Odd chains

In table (4.8) are reported all the important data for the wavenumber and
Raman activity for each significant normal mode for odd chains and their
assignation.

Odd chains

n◦ C atoms Wavenumber [cm−1] Raman activity[Å4/amu] Type
11 312 286 β∗

939 348 γ
1536 296 δ
2014 283 ε
2275 90 ζ
2364 310 η

9 367 198 β∗

1106 233 γ
1793 209 δ
2230 159 ε
2386 165 ζ

7 445 127 β∗

1350 144 γ
2091 141 δ
2409 111 ε

5 567 73 β∗

1743 88 γ
2403 83 δ

3 791 35 β∗

2302 54 γ

Table 4.8: Calculated data for the wavenumber and Raman activity of sig-
nificant peaks for odd-carbon chains O-cumu[2n+1]
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In figure (4.32) we show the Raman spectra of odd chains:

Figure 4.32: Raman spectra for odd chains

This pattern is significantly different from the one devised for even chains,
in fact the quasi equalized ∂α

∂R
over the structure will give a more regular

alternation of the ∂α
∂Q

.
This increase on the regularity, along with the fact that the average values for
the singular ∂α/∂Q for each CC is much lower that in even chains explain the
fact that the corresponding intensity of the peaks will be much lower. The
value for the Raman intensity of each mode for a single wire yields similar
values compared to each other mode, there is not a prevalant ECC line as in
the case of odd S-cumu structures.
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β∗ mode The β∗ trends are depicted below:

Figure 4.33: β∗ mode (odd chains)

β∗ is a longitudinal mode with 1 node.
The ∂α/∂Q as seen in figure (4.33) are oriented towards negative values and
reach up to ≈ 0.7[bohr2 · amu1/2], which is a very low value, similar to what
we found for S-cumu.
The β∗ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 791-567-445-367-312 cm−1 for 3,5,7,9,11 carbon
atom in chain.
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γ mode The γ trends are depicted below:

Figure 4.34: γ mode (odd chains)

γ is a longitudinal mode with 3 nodes.
As reported in figure (4.34) the ∂α/∂Q reach up to ≈ 2[bohr2 · amu1/2], thus
we have low intensity for these modes.
The γ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 2302-1743-1350-1106-939 cm−1 for 3,5,7,9,11 car-
bon atom in chain.
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δ mode The δ trends are depicted below:

Figure 4.35: δ mode (odd chains)

δ is a longitudinal mode with 5 nodes.
From figure (4.35) we see that the ∂α/∂Q reach up to ≈ 3[bohr2 ·amu1/2] for
small chains, but with higher alternation with respect to γ, thus they show
slightly less intensity in general with respect to these modes.
The δ mode wavenumber is red shifting as expected with increasing chain
length and yield values of 2403-2091-1793-1536 cm−1 for 5,7,9,11 carbon atom
in chain.
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4.3 Discussion on structural and electronic

properties of different CAWs

In this section we will carry out a comparison between all structural and elec-
tronic properties of different CAWs (eg. the one depicted in figure (4.36))
focusing on their polyynic or cumulenic behaviour both for the bond length
alternation and energy gap and giving an interpretation of the Raman spec-
tra.
The numerical values (bond length, BLA and gap) for each molecule ( using
PBE0/cc-pVTZ calculations) can be found on the appendix.
The comparison will be made for carbon wires with 4 to 12 sp carbon atoms.
The data found in our calculation will be compared to the work done by
Milani et al [8] and we will give an interpretation on the trends obtained .
The Raman comparison will be focused on the variation in wavelength of
the ECC line, on the intensity of the relative peaks between cumulenes and
polyynes to determine if this type of structure can be determined by means
of Raman spectroscopy, and also give an indication on the terminal modes.

Figure 4.36: Some of the structures compared
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4.3.1 Correlation between structural, electronic and
vibrational properties

As we said in the introduction the interesting properties of polyconjugated
systems such as carbon atom wires is the high degree of electron phonon
coupling, the ECC line wavenumber is in fact directly related to the bond
length alternation and also to the energy gap.
As we can see from the following figures we have two different behaviours for
the cumulenes and polyynic CAWs and the electronic (gap), structural (bla)
and spectroscopic (ECC line) will be directly dependent one to another.

Figure 4.37: ECC mode wavenumber dependence on the bond length alter-
nation, the labels for each point are relative to the number of carbon atoms
in chain

For figure (4.37) and (4.38) we took into account values found in our cal-
culations (for O-cumu[n], S-cumu[n], H-Py[n], BPh-Py[n] and Ph-Py[n]) but
also computed results found in the literature, in particular OPh[n],Naph[n],
OCor[n] and Mes[n] are structures for which the BLA, gap and Raman spec-
tra was calculated in detail using the same set of PBE0/cc-pVTZ functionals
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Figure 4.38: HOMO-LUMO gap dependence on the bond length alternation,
the labels for each point are relative to the number of carbon atoms in chain

by Milani et al. [8].
OCor[n] and Mes[n] are actual cumulenes that have been synthetized. In fig-
ure (4.37) we can see that the ECC frequency is always showed in a selected
range (from 1800 cm−1 to 2400 cm−1) and is decreasing as expected with
chain length for all the structures analized.
The BLA, and HOMO-LUMO gap as seen in figure (4.38) are also decreasing
with chain length due to the higher conjugation yielded by longer wires.
We can see also that most of the cumulenes (S-cumu[n], O-cumu[n],Vyn-
cumu[n]) are localized on low BLA ranges ( < 0.02), whereas polyynes are
located at high BLA ranges (> 0.12).
The other 3 structures analyzed (Mes-cumu[n], OPh-cumu[n], OCor-cumu[n])
are localized on intermediate BLA ranges (0.02− 0.12), with relatively high
alternation of the ’single-triple’ even if they are classified as cumulenes.
Because of these ’intermediate structures’ we cannot completely classify CAWs
into cumulenes or polyynes just considering the values of the BLA or the
HOMO-LUMO gap alone.
Instead the classification should be based on the different relation between
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structural and electronic properties for these systems.
One of the most interesting thing we can see from this graph is that for cu-
mulenes with the same number of carbon atoms in chain, with higher BLA
that the structure present, we will have lower HOMO-LUMO gap.
This trend is inverted for polyynes that with higher BLA will have an in-
crease on the HOMO-LUMO gap.
This trends allow us to distinguish two different regions of cumulenic and
polyynic, and in related to the different shape of the ∂α/∂R of the internal
coordinates for the two systems.
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4.3.2 Bond-length alternation (BLA)

In figure (4.39) we analize the values of the bond length alternation for all
the cumulenic and polyynic species studied.

Figure 4.39: Values for the bond length alternation of bis(diphenyl), diphenyl
and hydrogen polyynes compared to the BLA of sulfur, carbon , vinylidene
and oxygen cumulenes

Two different trends are found for polyyne and cumulenes, we don’t observe
in the wires studied for the thesis any intermediate structure localized at
BLA range (0.02− 0.12).
The polyynes, as we expect, have higher values for the BLA monotonically
decreasing with chain length.
For cumulenes instead, we have low BLA that present an oscillation, espe-
cially showed by Vyn-cumu[n] and S-cumu[n] wires, and, as we can see from
(4.40) we have an almost constant BLA for O-cumu[n] (≈ 0, 003) and Cn-
cumu[n] (≈ 0, 01) cumulenes, indicating that O-cumu[n] is the structure with
less bond length alternation(in general)
Only for S-cumu[2n] and Vyn-cumu[2n] (even wires) we have an appreciable
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decrease on the BLA with chain length.
Even if cumulenic, we have seen in the previous discussion that S-cumu[n]
show similar trends with respect to Vyn-cumu[n] wires, with a slightly in-
duced ’quasi triple-quasi single’ character, for even chains which is showed
both on the trend on the BLA (monotonically decreasing and slightly higher)
and on the oscillating ∂α/∂R, this trend is not present in odd chains, with
almost constant values for the ∂α/∂R and a prevalent cumulenic character.
It should be noted that the calculated BLA for vinylidene and carbon ter-
minated cumulenes show lower values with respect to other works [9], that
is because for the calculation of the BLA I didn’t include the carbon atom
present on the terminals. For example the C12 chain (showed in Innocenti
work) will have 2 terminal carbon atoms, in fact it is a C − C10 − C chain,
that in our discussion will be called C10 cumulene, the vinylidene with (12)
carbon atoms in chain in our discussion will be a CH2−C12−CH2), with the
carbon atom directly linked in the end group not counted as ’carbon atom in
chain’, this was used to provide a better relation between the different type
of CAWs.

Figure 4.40: BLA behaviour for cumulenes
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4.3.3 Energy gap and conjugation

The energy gap of these systems is strictly related to their conjugation, in-
creasing the chain length we will have more π-delocalized electrons (2 for
each additional carbon atom) and thus more frontier orbitals that generates
a lower energy gap. The general trends can be depicted on figure (4.41):

Figure 4.41: Values of the gap for different carbon atom wires

As we can see from figure (4.41) we have an overall decrease of the HOMO-
LUMO gap with chain length for all wires with a significant alternation on
cumulenes, the alternation on polyynes isn’t showed because we didn’t anal-
ize the situation for odd wires. We observe that for longer chains the gap
will be generally lower in cumulenes than in polyynes, for short wires instead
the highly conjugated phenyl groups generated a lower HOMO-LUMO gap
for BPh-Py[n] and Ph-Py[n] with respect to some cumulenes. In fact BPh-
Py[4] and Ph-Py[4] values of the gap is lower than O-cumu[4], S-cumu[4] and
Cn-cumu[4] and BPh-Py[6] gap is lower than Cn-cumu[6], S-cumu[6] and O-
cumu[6].
The hydrogen atom at the end of the chain doesn’t participate to the de-
localized π molecular orbitals since it has only an s atomic orbital and will
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create a localized σ orbital with the adjacent carbon.

4.3.4 Identification of Raman activity between cumu-
lenes and H terminated chains

In figure (4.42) the Raman activity for the cumulenes taken into considera-
tion and the polyyne are compared, including also the analysis on the ∂α/∂Q
of the singular longitudinal CC stretching.

Figure 4.42: Computed values of Raman activity of several different wires:
S, O, C, vynilidene terminated cumulenes and H terminated polyynes with
12 carbon atoms in chain

We know that one of the most important features to take into account by a
Raman spectroscopist is the identifiability of these type of chains.
As we know in the past cumulenes wires weren’t supposed to have any ECC
line or a significant Raman signal, for a theoretical infinite carbyne chain
we will have in fact a singular atom per unit cell, therefore generating the
impossibility to have any longitudinal phonon and any alternation of a quasi
single - quasi triple bond.
Instead, some cumulenic CAWs can be identified through Raman and can
present a relatively relevant alternation of ’quasi single - quasi triple’ CC
bonds showing an ECC line, which can even be compared to the intensity of
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the ECC for some polyynic wires.
In fact as we can see from figure (4.42) we have that the α peak of sulfur and
vinylidene cumulenes yields a non negligible intensity with respect to the α
peak of H-Py and they are also higher than its β peak.
Thus we expect that even S-cumu and Vyn-cumu chains can be identified
through Raman spectroscopy, for odd S-cumu and Vyn-cumu wires that is
not the case as we analyzed in detail for sulfur cumulenes in the previous
section.
Taking into account the pattern of the ∂α/∂Q we can easily explain why.
The eigen-vectors of the α peak show a perfect alternation, the ∂α/∂R are
switching between low and high values, so we have, as we have seen in detail
for the α peak of sulfur, that the ∂α/∂Q of singular CC stretching are shifted
to negative values as we can see in figure (4.42).
This determines that the |∂α/∂Q| for the overall molecule, strictly related
to the intensity, will be relatively high .
For hydrogen polyynes we see that the α peak is more intense since we have
almost all the ∂α/∂Q with positive values that reach also≈ 20[bohr2·amu1/2].
A similar alternation for the eigen-vectors (of the ECC line) is found for Cn-
cumu and O-cumu, this structures also present a quasi constant value for the
∂α/∂Ri.
This reflects on the alternation also on the singular ∂α/∂Qi leading to an
overall ∂α/∂Q only slightly shifted towards positive values for the overall
molecule, this will cause this wires to yield a very low Raman intensity for
the ECC line that can be even compared to the peak intensity of the other
longitudinal modes.
For this reason the Cn-cumu and O-cumu both in odd and even chains will
be very difficult to detect through Raman spectroscopy won’t present any
relevant lines, especially for short wires.
In figure (4.43) we can clearly see the difference for the polyynes, which
present only relevant α and β peaks (and other additional terminal modes)
to the cumulenes, that generally present a lot of similar peaks (intensity
wise).
We see also that for bis(diphenyl) and phenyl polyyne we have the presence
of phenyl modes around 1600 cm1 [8], for vinylidene cumulenes we have the
presence of CH2 scissoring near 3100 cm−1 and also CH2 bending at around
1400 cm−1 [9],these mode is relevant even with respect to the main ECC line.
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Figure 4.43: Calculated Raman spectra (normalized) of most relevant modes
for each cumulene and polyynes

4.3.5 Identification of Raman activity between polyyinic
chains (Ph, BPh and H)

In figure (4.44) we can see a comparison between the calculated Raman
spectra for all the different polyynes studied in detail, in particular BPh-
Py[n] (bis(diphenyl) polyyne), Ph-Py[n] (diphenyl polyyne) and H-Py[n].
As we can clearly see the BPh and Ph polyynes show an ECC line red shifted
with respect with that of H-Py, this indicates an higher conjugation and
therefore a lower energy gap as already found in (4.41).
We can see clearly the Raman activity yielded by the longitudinal modes
is higher for phenyl conjugated structures 1274866[Å4/amu] for BPh-Py[n]
and 700671[Å4/amu] for Ph-Py[n]) with respect of H-Py[n] are much more
intense, this can be explained simply by looking at the value of the singular
∂α/∂Q, for diphenyl and bis(diphenyl) structures they are more shifted to
positive values and yield values up to 60[bohr2 · amu1/2] for BPh-Py[n] and
45[bohr2 · amu1/2] for Ph-Py[n], whereas for hydrogen they are more limited
(< 20[bohr2 · amu1/2]) and especially the end chain CC contribution is close
to 0 as we can see from figure (4.44).
Another consideration is the apparent superposition between BPh-Py and
Ph-Py modes, where all the modes are in similar position, the phenyl mode
as expected is almost in the same wavenumber (1666 cm−1 and 1663 cm−1
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Figure 4.44: Calculated Raman spectra for the three polyyne molecules stud-
ied for 12 internal carbon atom in the wire

respectively), the α ( 2154 cm−1 and 2159 cm−1) and the β (2315 cm−1 and
2318 cm−1) are only slightly shifted, the presence of the phenyl mode is very
clear and can be an indication of the presence of this family of compounds.
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4.4 Final considerations of the overall struc-

tural and electronic values determined

By analyzing the different results we can group CAWs in three different cat-
egories.
This statement can be confusing, CAWs are divided in cumulenes and polyynes
and are classified usually just by considering the BLA of the infinite carbyne.
This definition based on BLA is misleading for small CAWs and we clarified
in this chapter that their behaviour can’t be classified based only on BLA or
HOMO-LUMO ranges alone and this cannot determine a polyyne or cumu-
lenic behaviour.
A better definition for the different types of CAWs can be defined by the
shape of the ∂α/∂R and on the overall relation between structural and elec-
tronic properties for a specific wire as can be seen in figure (4.38), this will
lead us to the classification of 3 different structures (and not 2 as expected).

A The cumulenic chains characterized by an almost constant ∂α/∂R such
as O-cumu, C-cumu and S/Vyn-cumu odd chains.

These chains are also characterized by almost constant values for the
BLA increasing the length of the chain: ≈ 0, 003 for O-cumu, ≈ 0, 01
for C-cumu, ≈ 0, 002 for S-cumu odd chains and ≈ 0, 005 for Vyn-cumu
odd chains.
This more cumulenic character is also reflected in the energy gap, in
fact for S-cumu odd chains the value for the energy gap is lower with
respect to the S-cumu even chain gap, the trend is inverted by Vyn-
cumu for the different position of its π orbitals.
This trend is also reflected in the Raman spectra where this structures
don’t have an effective ECC line and present a series of similar low
intensity peaks, thus the identification of these chains Raman spec-
troscopy can be difficult.

B The cumulenic chains characterized by an oscillating ∂α/∂R such as in
S/Vyn-cumu even chains.

The trend for the BLA of these type of chains follow a monotonically
decreasing behaviour, as for the polyynic (BPh-Py, Ph-Py and H-Py),
with higher chain length the overall effect of the end groups of inducing
an alternation of triple and single bonds will be lower, this effect is not
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significant as in the case of the polyynes but can’t be neglected.
The gap for these type of structures should be higher with respect to
the odd chain counterpart, the quasi double bond of course yields an
higher delocalization of π electrons.
The energy gap is monotonically decreasing with chain length due to
the higher conjugation.
We have also an effect on the Raman spectrum, in fact we don’t have
peaks of similar intensity as for chains with total cumulenic character,
but we have the presence of a non-negligible ECC line that can be com-
pared in intensity of the one for H-Py.
These is an indication of the possibility of identify these structures
through Raman spectroscopy.

C The polyynic chains characterized by an alternating positive and neg-
ative ∂α/∂Q singular CC value.

The trend for both the energy gap and the BLA follow a monoton-
ically decreasing behaviour as in the case of cumulenic chains with
slight polyynic character.
The value of the Raman activity for the peaks show high values for the
α and β lines, the singular ∂α/∂Q yield the same sign since both the
eigen vector and ∂α/∂R are alternating between a positive and nega-
tive sign; this will generate an high value for the overall ∂α/∂Q for the
molecule.
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Chapter 5

Prediction of the vibronic
spectra for H-Py[n] and
Ph-Py[n]

In this chapter the analysis of the computed vibronic spectra will be carried
out both for hydrogen and diphenyl polyynes, these wires have been chosen
for the presence of available experimental data.
Our objective will be to make a comparison of these data with our results.
The experimental data are partially made in our laboratory [6] (Ph-Py[2]
to Ph-Py[10], H-Py[6] to H-Py[16]) and based on the work of Tabata [5]
(H-Py[16] to H-Py[8]).

131
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5.1 Methodology and calculation details

As a first step the ground state geometry determined by DFT calculations
was used to compute the excited states and g → e transitions parameters.
From these data we were able to build up the Lorentian fitting for the UV-
visible spectra.
The Lorentian fitting was constructed just by taking the values of the cal-
culated wavelength, energy and oscillator strength for each dipole-allowed
transition and considering the intensity of each peak as:

Ige ∝ |µge|2 ∝ f/Ege (5.1)

Since this simple Lorentian fitted spectrum was not enough to have a good
comparison with experimental data we proceeded by optimizing each excited
state that yielded a non-negligible oscillator strength for a dipole allowed
transition from the ground state (f > 0.2).
After the determination of the optimized values for wavelength, energy of
excited state, oscillator strength and electronic transition dipole moment,
the Franck-Condon factors based on the UVFC program were calculated in
order to determine the final vibronic spectra.
Calculations were done initially with PBE0 exchange-correlation functional (
with cc-pVTZ basis set) and than also the calculation for B3LYP, HSE06 and
CAM-B3LYP have been carried out to understand the role of the different
exchange-correlation functionals on the computed vibronic spectra.
This discussion will be useful to have a deeper insight on the most reliable
computational setup.
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5.2 TDDFT predicted UV-visible spectrum

and its comparison with the experimental

data

In this section we will analyze in detail the calculated PBE0/cc-pVTZ vi-
bronic spectrum comparing it with available experimental data both for H-
Py[n] and Ph-Py[n] wires.

Hydrogen polyynes (H-Py[n])

Lorentian fitted spectrum The time dependant density functional PBE0/
cc-pVTZ excited states were computed for all chain lengths from the H-Py[4]
to the H-Py[16] wire, this values are reported in table (5.1).
In this table are reported also the π−electron transitions that span the ex-
cited states, it should be noted that these transitions are only dipole-allowed
transitions between parallel π orbitals ( πx → πx or πy → πy).
These data have been used to build a first-guess absorption lorentian fitted
spectrum without vibronic coupling.
From table (5.1) and the Lorentian fitting on figure (5.1) we can determine
some important observation.

1) Vibronic contributions cannot be overlooked and a simple Lorentian fit-
ting is not enough for an accurate interpretation of the absorption spectra

As we can clearly observe from figure (5.1) the lorentian fitting of the com-
puted TDDFT data just give information on the origin of each peak and its
relative intensity since the vibronic coupling is not accounted.
It is therefore necessary for a more accurate analysis to compute the Franck-
Condon factors, this will be explained in detail in the vibronic spectra para-
graph.

2) The calculated UV-visible bands with respect to the experimental results
show a slightly lower wavelength for H-Py[6] and H-Py[8] and higher wave-
lengths for H-Py[14] and H-Py[16]

This is related to the tendency of usual DFT function to overestimate the π
electron conjugation for polyconjugated systems.
This effect is limited for short wires and instead become important for longer
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Hydrogen polyynes
N◦ C atoms Ege [eV] λge [nm] f HOMO→LUMO transitions
16 3,8892 318,79 7,1236 HL

5,05 245,51 0,291 0.4 H(-2)L , 0.2 HL2
5,5864 221,94 0,9072 0.4 H(-1)L1 , 0.3 HL2

14 4,213 294,29 6,3898 HL
5,4928 225,72 0,2313 0.4 H(-2)L , 0.2 HL2
6,1447 201,77 0,7351 0.4 H(-1)L1 , 0.3 HL2

12 4,6191 268,42 5,6107 HL
6,0487 204,98 0,1737 0.4 H(-2)L , 0.2 HL2
6,8632 180,65 0,5852 0.4 H(-1)L1 , 0.3 HL2

10 5,1363 241,39 4,7946 HL
6,7556 183,53 0,1157 0.4 H(-2)L , 0.2 HL2
7,8182 158,58 0,4531 0.4 H(-1)L1 , 0.3 HL2

8 5,8258 212,82 3,9268 HL
7,6817 161,4 0,0646 0.4 H(-2)L , 0.2 HL2
9,143 135,61 0,3433 0.4 H(-1)L1 , 0.3 HL2

6 6,7864 182,69 2,9891 HL
11,0841 111,86 0,2602 0.4 H(-1)L1, 0.2 HL4
11,4453 108,33 0,3856 0.6 HL5, 0.4 H(-1)L3

4 8,2635 150,04 1,9935 HL
11,0728 111,97 0,2614 HL3

Table 5.1: 1st column represent the number of carbon atom present on the
chain of the different H-Py[n], 2nd 3rd and 4th column represent respectively
the ground → excited state (i) transition energy , wavelength and oscillator
strength calculated PBE0/cc-pVTZ time dependent DFT, the last column
represent the single electron HOMO-LUMO transitions that span the excited
state (H(x)L(y) is defined as the transition HOMO(x)→ LUMO (y)), only
the transition with significant oscillator strength are reported in this
table and on the following



5.2. VIBRONIC SPECTRA 135

Figure 5.1: PBE0/cc-pVTZ lorentian fitting for H-Py[n] compared to exper-
imental data obtained in our laboratory. A FWHM of 10 nm was chosen in
order to have the best graphical representation

wires H-Py[16] and H-Py[14] where conjugation is higher, shifting the peaks
to longer wavelengths.

3) There are some low intensity peaks at high wavelengths in the experi-
mental data but not showed in our computed spectra in the near-UV region

These represents excited states directly spanned by the HOMO-LUMO exci-
tation that are not dipole-allowed because they represent (or partially repre-
sent) the transition between perpendicular electronic transitions πx,y → πy,x.
These forbidden transition are usually relevant for the identification of short
H-Py[4], H-Py[6] wires [56] since they represent the only peaks for H-Py
above the 200 nm threshold, while the other peaks that falls in the far ultra-
violet region (FUV) are not usually measured.
Experimental data report only the forbidden transition positions in these
systems.
This peaks will be analyzed later in detail.



136 CHAPTER 5. VIBRONIC SPECTRA

Vibronic spectra After the determination of the lorentian fitting, the time
dependent DFT optimization for each relevant excited state was carried out.
The new optimized values for energy, wavelength, oscillator strength and
electronic transition dipole moment are reported in table (5.2).
Based on the optimized values for each excited state, FC factors were com-
puted using UVFC program to determine the vibronic spectra.

Figure 5.2: Calculated UV-vis spectra of hydrogen polyynes from H-Py[4]
(bottom) to H-Py[16] (top) by PBE0/cc-pVTZ calculations and comparison
with experimental data (made by Tabata [5] and in our laboratory [6])

A few considerations can be made over the vibronic spectra determined and
represented in figure (5.2).

1) The experimental peaks present vibronic bands which are broader with
respect to the PBE0/cc-pVTZ peaks



5.2. VIBRONIC SPECTRA 137

Hydrogen polyynes
N◦ C atoms Ege [eV] λge [nm] f µge
16 3,7367 331,8 7,5682 82,6687

4,764 260,25 0,1623 1,3905
5,3193 233,08 0,7975 6,1194

14 4,0555 305,72 6,7543 67,9806
5,2001 238,43 0,1292 1,0142
5,866 211,36 0,649 4,5158

12 4,4497 278,63 5,9041 54,1581
5,7419 215,93 0,0964 0,6854
6,5633 188,91 0,5235 3,2557

10 4,9492 250,51 5,0107 41,3237
6,4198 193,13 0,0639 0,406
7,4769 165,82 0,425 2,3203

8 5,605 221,2 4,0687 29,6294
7,2796 170,32 0,0411 0,2307
8,7048 142,43 0,3485 1,634

6 6,4986 190,79 3,0669 19,263
10,4029 119,18 0,2849 1,1177
11,2715 110 0,2894 1,0478

4 7,8213 158,52 1,998 10,4271
10,675 116,14 0,2473 0,9457

Table 5.2: 1st column represent the number of carbon atom present on the
chain of the different hydrogen polyynes, 2nd 3rd and 4th and 5th column
represent the optimized values respectively the ground→ excited state (i)
transition energy , wavelength, oscillator strength and electronic transition
dipole moment calculated by PBE0/cc-pVTZ time dependent DFT
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We see that in the calculated vibronic spectra the |g〉 |0)g → |e〉 |0)e (cor-
responding to the origin of each peak) is in general much more intense than
the other |g〉 |0)g → |e〉 |N)e ( N > 0).
This different behaviour in principle can be related to the several approxi-
mations adopted, we know in fact that the normal modes of the excited state
are just projection on the excited state geometry of the Hermite polynomial
of the normal modes calculated by density functional analysis.
This limit affect the effective computation of the Franck-Condon factors.
Another important parameter affecting the FC factors is γ.
The γ parameter is related to the dimensionless displacement, B, that phisi-
cally represent the displacement of the geometry of the ground state with
respect to the excited states for the vibronic transition (g→e), and in par-
ticular γ = 1

2
B2.

With low γ the 0-0 transition will be more relevant with respect to the
0g → Ne peaks because the excited state geometry won’t be significatively
displaced with respect to the ground state.
The intensity of each individual i → f excitation (and therefore the modu-
lation of each peak) is in fact strictly dependant on the vibrational coupling
and therefore the γ parameters1.
As we said before,

Iif ∝ (µ0
ge)

2

TSmodes∏
k

S2
0,nk

= (µ0
ge)

2

TSmodes∏
k

e−γ
γnk

nk!
(5.2)

Where S2
0,nk

are the individual FC factors.

In table (5.3) we can see in detail that the number of important γ for each
electronic transition in our molecules is limited, and it is always less than 6
for the H-Py[n] wires considered.
The important γ are evaluated based on both the value with respect of the
highest value γ [> 10, > 5%], and on its value [> 0.01]. In figure (5.3) the
influence of the most relevant γ parameters are considered, we can see clearly
that considering 4-5-6 most relevant gammas the overall shape of the peak
almost doesn’t change.
On this basis we can state that only few γ are necessary to compute the
final vibronic spectra of H-Py[n] wires, and they didn’t have any significant
impact on the computed spectra.

1This was reported also on the introductive chapter
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Figure 5.3: Analysis of the main peak for H-Py[10] with variation of the n◦

of γ considered

2) Some of the peaks related to highly energetic dipole-allowed transition in
the computed vibronic spectra in fig.(5.2) are not clearly visible since they
yield low oscillator strength, we see them in fig.(5.4).

Figure 5.4: UV-visible spectra of hydrogen polyynes from H-Py[4] (bottom)
to H-Py[16] (top), the high energetic (low wavelength) transitions are mag-
nified in order to see the shift of each peak with chain length
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Hydrogen polyynes
N◦C atoms Peak pos [nm] N◦ γ N◦[>10%] N◦[>5%] N◦[>0.01] N◦ chosen
16 331,8 5 1 3 4 5

260,25 8 3 3 4 5
233,08 8 4 4 4 5

14 305,72 4 2 4 4 4
174,01 7 3 4 5 7
211,36 6 5 5 5 6

12 278,63 4 3 4 4 4
215,93 6 3 4 4 4
188,91 5 4 4 4 5

10 250,51 3 2 3 3 3
193,13 6 4 4 5 6
165,82 5 4 4 5 5

8 221,2 4 3 3 3 4
170,32 5 4 4 4 5
142,43 5 2 2 5 5

6 190,79 4 3 3 3 4
119,18 4 2 2 4 4
110 4 3 3 3 4

4 158,52 3 2 2 3 3
116,14 3 3 3 3 3

Table 5.3: The table represent the n◦ of γ for each individual peak for which
the FC factors and thus the distribution of the peak was calculated using
the UVFC program. [> 10% ] and [> 5% ] correspond to the γ value corre-
sponding to at least 10 and 5 percent of the highest γ value for that specific
transition. The N◦ of chosen γ represent the number chosen for each indi-
vidual calculation.The peak position is the transition wavelength calculated
by optimized time dependant DFT calculations

.
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Analysis of vibronic spectra In this paragraph we will analize the single
electron transition that define the excited state relevant for our computed
vibronic spectra.
This will be also related to the detailed analysis made by Wakabayashi et
al. [18] [57] and Ding et al. [58], also experimental vibronic spectra for odd
chains was available [59, 60] but we focused only on even wires.
As a general indication in fig. (5.5) we report the three main important
transitions for these systems, generally used for the vibronic characterization
of these wires.
The HOMO and LUMO level will be degenerate and divided into a πx and
πy orbital as we can see from figure (5.6).
We observe the following:

Figure 5.5: The different transitions for H-Py[6]

1) The higher electronic transition dipole moment is carried as expected by
the A Σ+

u ←− X Σ+
g transition for all wires and is red shifting with chain

length as expected [29]

This transition is the one from the singlet ground state (Σ+
g ) to the first ex-

cited state and yields the highest wavelength and the lowest Ee −Eg among
the dipole-allowed transitions.
As expected it is the most favorable one and with the highest intensity peak.
The least energetic excited state for which we have a dipole allowed transi-
tion from the ground state is represented by the simmetry species Σ+

u .
The excited state relative to this simmetry species is spanned by the exci-
tation of same direction π orbitals (either πx → πx or πy → πy) from the
HOMO to the LUMO level.
The HOMO-LUMO transition will be πu → πg for H-Py[4n] or πg → πu in
the case of H-Py[4n+2] wires.
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Figure 5.6: HOMO-LUMO πx and πy molecular orbitals for H-Py[12]

It is an allowed transition and is red shifting, with the values of 159-191-221-
250-279-306-332 nm for H-Py[n] with n= 4,6,8,10,12,14,16 respectively, this
is a totally expected behaviour due to the increase of the conjugation of the
system.

2) We report two other allowed transitions with much lower oscillator strength
and wavelength with respect to the main peak in the case of H-Py[8] to H-
Py[16], these peaks are also red shifting with chain length as we can see from
figure (5.4).

One of this transitions that we will call (A) is related to a combination
of two single electron transition, the HOMO-2→ LUMO and the HOMO→
LUMO+2.
The other (called B) is spanned by the combination of HOMO-1→ LUMO+1
and HOMO → LUMO+2.
These are generally low intensity dipole-allowed transitions.
In the case of H-Py[4] and H-Py[6] their oscillator strength become negligible
with respect to other minor transitions (eg. the one spanned by the HOMO
→ LUMO +3 or HOMO → LUMO+5 orbitals) as we can see from table
(5.2).
These peaks are all red shifting as we can see from the same table, yielding
values of 170-193-216-238-260 nm for one peak, (for A), and 142-166-189-
211-233 nm for the other(B), for H-Py[8] to H-Py[16].
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3) The peaks relative to the most relevant forbidden transitions ∆u ←− Σ+
g

and Σ−u ←− Σ+
g are not showed in figure (5.2) or figure (5.4)

This forbidden transition are very relevant since they are used for the iden-
tification of short length H-Py[n] since they are the only relevant peaks over
the 200nm threshold [45] as we can see in figure (5.7).
We didn’t computed the FC factors for these transitions because both of
them yielded a negligible oscillator strenght.
The non optimized values for H-Py[4] calculated by TDDFT for these tran-
sitions were 4,8451 Ege[eV ], 256 λge[nm] for the Σ−u ←− Σ+

g transition and
5,0544 Ege[eV ], 245 λge[nm] for the ∆u ←− Σ+

g transition.
Instead for H-Py[6] they were 3,8172 Ege[eV ], 325 λge[nm] for the Σ−u ←− Σ+

g

transition and 3,9798 Ege[eV ], 312 λge[nm] for the ∆u ←− Σ+
g transition.

The excited state relative to these simmetry species are both spanned by the
HOMO-LUMO excitation and represent respectively the electronic transition
between perpendicular π orbitals (πx,y → πy,x) for the Σ−u simmetry species,
and of both perpendicular and parallel π orbitals (πx,y → πy,x, πx,y → πx,y)
for ∆u.
The values of the electronic transition dipole moment for these transitions
are related to the Herzberg-Teller expansion derivation since µge will be 0,
for forbidden transitions we have that the µif and thus the vibronic peak will
be proportional to:

µif =
∑
ν

aν 〈ν |µ| f〉 (5.3)

Where ν is the wave function of a ’intermediate’ vibronic state for which both
i −→ ν and ν −→ f are allowed transitions(dipole or vibrationally allowed),
thus the intensity of the unallowed i −→ f transition will be borrowed from
the allowed ’semi-transitions’ to the intermediate level, we know in fact that
a simmetry forbidden transition can become weakly allowed by state mixing
caused by vibronic coupling.
The value of aν is given by:

aν =

∑
i

〈
νel

∣∣∣∣( ∂H
∂Qi

) ∣∣∣∣
0

∣∣∣∣ iel〉 〈νvib |Qi| ivib〉

Eν − Ei
(5.4)

The total wavefunction from this state mixing will be expressed as:
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Φ = φi +
∑
ν

aν 〈ν |µ| f〉 (5.5)

Note that the intermediate state is decomposed into the vibrational and elec-
tronic part |ν〉 = |νvib〉 |νel〉, also the vibrational coupling with the normal
mode is important for the intensity of forbidden transitions, the variation of
the geometry of the molecule can modify slightly the initial and final simme-
try, relaxing the selection rules for the specific transition
In particular the intensity of the forbidden (∆u ←− Σ+

g ) transition from this
completely simmetric ground state will be calculated in the Herzberg-Teller
approximation as (seen by Ding et al. [58]:

I ∝ µ2 µ ≈
∑
k

< Σ+
g |e(x+ y)|Πu >< Πu| ∂µ∂Qk

∣∣|∆u >< χν′′ |Qk|χν′ >
E(Πu)− E(∆u)

(5.6)

This is the result of combining the eq. (5.3) and (5.4), χν′′ and χν′ are re-
spectively the vibrational wave functions for the electronic state Πu and ∆u

and both (Πu ←− Σ+
g ), (∆u ←− Πu) are allowed electronic transitions, this

peaks are in high wavelength range and are not visible from our computa-
tional calculations, but are important since they are present in the experi-
mental spectrum. We cannot observe these excited states on our computed
vibronic spectra since the transition from the ground state to these simmetry
species is forbidden (f=0), and the transition to these levels is only due to
an intermediate transition (allowed or through vibronic coupling) from the
ground state to the A, B Σ+

u or Πu,g orbital [18].

Figure 5.7: Experimentally determined position of the forbidden transition
peaks for H-Py[4] and H-Py[6]
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Diphenyl polyynes (Ph-Py[n])

Lorentian fitted spectrum In the case of phenyl-terminated polyynes
the analysis is not simple, as we can see from table (5.5), since we have a
large amount of transitions from the ground state.
The lorentian fitting was built up with the same consideration made on the
H-Py[n] chains, and using the data calculated by PBE0/cc-pVTZ time de-
pendant DFT reported in table (5.4).
Due to the high degree of vibronic coupling, the non-degeneracy of the
HOMO(πx,y) and LUMO(πx,y) and the high amount of single particle transi-
tions representing each g → e transition we will not give in detail the single
particle representation of each state since it will be a too long and complex
analysis to give a significant interpretation.

Figure 5.8: PBE0/cc-pVTZ determined lorentian fitting for Ph-Py[n] com-
pared with experimental results both of Tabata and made in our laboratory,
the FWHM was chosen arbitrarily for the best graphical representation
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The following observations can be made based on the lorentian fitting of
the time dependant DFT results reported in figure (5.8):

1) As for H-Py[n] wires, the Lorentian fitting is not enough for a complete
interpretation of the experimental spectrum

As we can clearly observe from figure (5.8) the lorentian fitting of the com-
puted TDDFT data just give information on the origin of each peak and
its relative intensity while the vibronic coupling is not accounted and it is
therefore necessary to compute the Franck-Condon factors.
That is what we did using the UVFC program that will be analyzed in the
vibronic spectra paragraph.

2) The peaks are red shifting with chain lenght as for H-Py[n] wires

This effect again is related to an increase in the conjugation of the system
with chain length.
The transition wavelength in fact increases from Ph-Py[2] to Ph-Py[12], with
values of 331-388-463-543-623-699nm.

3) There is an higher wavelength transition with respect to the most intense
peak that is expecially relevant for lower chains (Ph-Py[2] and Ph-Py[4])

Figure 5.9: Ground state configuration (on the left), first excited state con-
figuration, for which a dipole-allowed transition is possible from the ground
state, representing the high wavelength transitions on the spectrum (on the
right)
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Diphenyl polyynes
N◦ C atoms Ege[eV ] λge[nm] f
12 2,4257 511,12 0,2532

3,7282 332,56 6,2418
4,5791 270,76 0,3866
5,0256 246,7 1,1364

10 2,6375 470,09 0,3439
4,0211 308,34 5,3023
5,5084 225,08 1,2745

8 2,9153 425,28 0,4865
4,3978 281,92 4,1979
6,0583 204,65 1,6439

6 3,2781 378,22 0,7006
4,925 251,74 2,8952
6,4342 192,7 1,7742
6,6596 186,17 0,2682

4 3,7309 332,32 0,9353
5,7499 215,63 1,2864
6,3689 194,67 0,4029
6,8242 181,68 1,195
6,9582 178,18 0,3763

2 4,2474 291,91 0,9614
5,5897 221,81 0,1522
6,5424 189,51 0,2879
6,9422 178,59 0,4812
7,3222 169,33 0,4947
7,487 165,6 0,6001
7,7692 159,58 0,2314

Table 5.4: 1st column represent the number of carbon atom present on the
chain of the different diphenyl polyynes, 2nd 3rd and 4th column represent
respectively the ground → excited state (i) transition energy , wavelength
and oscillator strength calculated PBE0/cc-pVTZ time dependant DFT
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These peaks in the near-UV region are not related to dipole-forbidden tran-
sition as in the case of H-Py[n] but they are transition from the planar con-
figuration of the ground state to a distorted configuration.
As shown in the excited state in figure (5.9) indeed the phenyl endgroups are
slightly rotated one with respect to the other.
The calculated position of the peaks also in this case is significantly red
shifted with respect to the experimental data, this is related to the overex-
timation of the conjugation and enhanced by the fact that this endgroups
(phenyls) are highly π-conjugated systems composed by sp2 carbon atoms.

Vibronic spectra After the determination of the spectra in figure (5.8),
the time dependant DFT optimization for each relevant excited state was
carried out and the vibronic spectra has been computed with the UVFC pro-
gram.
The new optimized values for transition energy, wavelength, oscillator strength
and electronic transition dipole moment are reported in table (5.5).

Figure 5.10: PBE0/cc-pVTZ calculated UV-vis spectra for diphenyl polyynes
(Ph-Py[n])
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Diphenyl polyynes
N◦ C atoms Ege[eV ] λge[nm] f µge
12 1,7731 699,26 0,1604 3,6915

3,5118 353,05 6,6497 77,2881
4,2863 289,26 0,2857 2,7202
4,7874 258,98 1,12 9,5489

10 1,9914 622,61 0,2291 4,6952
3,7858 327,5 5,6615 61,0411
5,2477 236,26 0,5559 4,3237

8 2,284 542,85 0,3473 6,2071
4,1337 299,93 4,5356 44,7851
5,9323 209 1,4973 10,3018

6 2,6805 462,53 0,5593 8,5167
4,7129 263,07 3,0084 26,0544
6,2618 198 1,6663 10,8619
6,5126 190,38 0,2682 1,6811

4 3,1929 388,31 0,8731 11,1616
5,3389 232,23 1,7536 13,4069
6,0299 205,62 0,1417 0,9589
6,1933 200,19 1,2963 8,543
6,8183 181,84 0,3792 2,2702

2 3,748 330,8 1,002 10,9117
5,3684 230,95 0,1538 1,1697
6,1796 200,63 0,4702 3,1055
6,7611 183,38 0,6693 4,0405
7,1764 172,77 0,508 2,8895
7,2428 171,18 0,7749 4,4001
7,1249 0,4208 0,4208 2,4107

Table 5.5: 1st column represent the number of carbon atom present on the
chain of the different diphenyl polyynes, 2nd 3rd and 4th and 5th column
represent the optimized values respectively the ground→ excited state (i)
transition energy , wavelength, oscillator strength and electronic transition
dipole moment calculated by PBE0/cc-pVTZ time dependent DFT
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We can make several important observations of the UV-visible spectra
reported in figure (5.10):

1) As for H-Py[n] wires, the experimental peaks present vibronic bands
which are broader with respect to the PBE0/cc-pVTZ peaks

This is partially related to the same effect that we observed for H-Py[n]
wires, due to the influence of the γ parameter.
The behaviour of the γ factors considered for the diphenyl polyynes is in
fact different, since now many individual transitions present an high degree
of vibrational coupling.
This is caused indeed by the presence of the phenyl groups, which are both
electronically and vibronically coupled to the sp carbon chain.
The overall γ parameter are higher both in values and in number, as we can
clearly see in table (5.6).
On this basis, it is evident that we have to consider a larger number of γ.
This is not possible due to the high computational costs, and the maximum
number of relevant γ that we have been able to consider for each transition
was 7 (with ≈1 day of calculation time).
A number of 8 γ would rise the calculation time up to ≈ 1 month using the
same machine.

Figure 5.11: Analysis of a peak for Ph-Py[10] with variation of the n◦ of γ
considered
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As we can see from figure (5.11) the modulation of the individual peak with
respect to the number of γ considered is significant.
Increasing the number of γ taken into account we will increase the vibrational
coupling, therefore broadening the UV-visible spectra peaks and decreasing
the relative intensity of the origin ( the 0-0 transition).

2) The broadening of each peak is significant due to the high vibronic cou-
pling

In figure (5.12) we have the comparison of the computed PBE0 vibronic
spectra after the FC calculations to the lorentian fitting where we see clearly
the broadening effect on each peak.

Figure 5.12: PBE0/cc-pVTZ calculated vibronic spectra for Ph-Py[n],
n=4,6,8,10 compared with the lorentian fitted spectrum
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Diphenyl polyynes
N◦C atoms Peak pos [nm] N◦ γ N◦[>10%] N◦[>5%] N◦[>0.01] N◦ chosen
12 699,26 10 1 2 3 5

353,05 11 2 3 5 5
289,26 12 3 5 6 6
258,98 11 2 4 7 6

10 622,61 10 1 1 4 4
327,5 12 2 4 7 5
236,26 16 9 9 12 7

8 542,85 9 1 1 4 4
299,93 10 2 5 6 6
209 11 3 4 8 5

6 462,53 9 1 1 8 5
263,07 11 10 10 10 7
198 12 8 8 8 7
190,38 10 7 9 8 7

4 388,31 10 2 5 7 6
232,23 10 3 5 8 6
205,62 10 8 9 10 7
200,19 10 6 8 9 7
181,84 10 6 7 7 7

2 330,8 9 6 8 8 7
230,95 9 6 7 7 7
200,63 8 6 6 6 6
183,38 9 5 5 6 6
172,77 9 5 5 5 5
171,18 10 5 7 8 7
0,4208 8 4 4 8 6

Table 5.6: The table represent the n◦ of γ for each individual peak for which
the FC factors and thus the distribution of the peak was calculated using
the homemade UVFC program. [> 10%] and [> 5%] correspond to the γ
value corresponding to at least 10 and 5 % of the highest γ value for that
specific transition. The N◦ of chosen γ represent the number chosen for
each individual calculation.The peak position is the transition wavelength
calculated by optimized time dependent DFT calculations
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Figure 5.13: Shape of the HOMO and LUMO levels for a Ph-Py[10] wire

3) The difference in wavelength between experimental and calculated spectra
for the least energetic dipole-allowed transition seems to be almost constant
and not depending with chain length

The excited state that will be generated by this transition correspond, as
we said before to a relative rotation between the phenyl groups from the
planar configuration.
This excited state is mainly spanned by a single particle HOMO-LUMO
quantum transition which causes also the electronic density to move from
the phenyl endgroups to the central wire as observed in fig. (5.13).
This will generate a lower conjugation between π orbitals in the chain and
on the phenyl groups, thus causing a distortion as seen in fig. (5.9).

Considering this, it is clear that this single particle transition is not rele-
vantly affected by the length of the chain, since the most important effect is
localized near the endgroups.

4) The position of the other calculated peaks with respect to the experimen-
tal ones seems to yield a similar effect to the one reported for H-Py[n] wires

In fact, if we analyze the position of these peaks, we can observe that for
Ph-Py[6] and Ph-Py[4] all the peaks are shifted to lower wavelengths and
for Ph-Py[8] and Ph[10] we have peaks almost in the same position. This is
exactly the same effect that we observed for H-Py[n] wires.
Following this trend we will expect that for Ph-Py[12+] our PBE0 calculated
spectra will present peaks slightly shifted to higher wavelengths, as observed
for H-Py[n].
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5.3 Functional dependence on the spectrum

In this section we analyze how the change of the exchange-correlation func-
tionals (Exc) can influence the calculated UV-vis spectra and the comparison
with experimental data.
We selected mainly 2 other functionals, the CAM-B3LYP (even if present an
hypsochromic shift [56] it is necessary to consider more accurately long range
interactions [39] such as conjugation and vibronic coupling) and the HSE06
(that is known to better estimate the HOMO-LUMO gap [61, 62]).

Hydrogen polyynes (H-Py[n])

For the H-Py wires the analysis was mainly focused (aside from the PBE0
calculations seen before) to other hybrid functionals such as HSE06,B3LYP
and CAM-B3LYP.
All the computation of the ground state, the excited states and the Franck-
Condon parameters have been computed using these functionals together
with cc-pVTZ basis set.
We can see that the values for the transition wavelength, oscillator strength
and electric dipole transition moment do not change significantly for the
B3LYP, HSE06 with respect to the calculation with the PBE0/cc-pVTZ ba-
sis set, with maximum difference of about 6 nm in the worst case.
The optimized values of the wavelength of the main dipole allowed transi-
tion and thus the position of the main A Σ+

u ←− X Σ+
g respectively for the

PBE0, B3LYP and HSE06 is: for H-Py[16] (332-338-338nm), H-Py[14] (306-
311-310nm), H-Py[12] (279-282-282nm), H-PY[10] (251-254-253nm), H-Py[8]
(221-224-222nm),H-Py[6] (191-193-191nm) and for H-Py[4] (159-160-159nm).
Instead the values for the CAM-B3LYP are considerably different, with max-
imum difference of about 40nm.
Indeed it yields values of (300-280-260-237-212-185-155nm) from H-Py[16]
to H-Py[4], with the deviation from the other values increasing with chain
length.
The optimized values for the oscillator strength, that give information on
the intensity of the main transition is also very different for CAM-B3LYP
with respect to the others, for H-Py[16] (7,57-7,31-7,19 and 7,99), H-Py[14]
(6,75-6,55-6,51 and 7,07), H-Py[12] (5,9-5,75-5,76 and 6,13), H-PY[10] (5,01-
4,9-4,93 and 5,16), H-Py[8] (4,07-3,99-4,03nm and 4,17),H-Py[6] (3,07-3,02-
3,06 and 3,13) and for H-Py[4] (2-1,97-2 and 2,04) respectively for the PBE0,
B3LYP and HSE06 and CAM-B3LYP.
As we can see for longer chains the CAM-B3LYP main transition will be
less intense: we know in fact that Iif ∝ µ2

ge, with the values on the electric
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B3LYP
N◦C atoms Ege[eV ] λge[nm] f E∗ge[eV ] λ∗ge[nm] f* µ∗ge
16 3,7892 327,2 6,8773 3,6653 338,26 7,3079 81,3802
14 4,1162 301,21 6,1931 3,9862 311,03 6,5503 67,0715
12 4,524 274,06 5,4651 4,3824 282,91 5,7496 53,5506
10 5,0466 245,68 4,6803 4,8834 253,89 4,8982 40,9408
8 5,739 216,04 3,8479 5,541 223,76 3,9909 29,3986
6 6,7008 185,03 2,9364 6,4336 192,71 3,0165 19,1379
4 8,1854 151,47 1,9673 7,7578 159,83 1,9705 10,3674

HSE06
N◦C atoms Ege[eV ] λge[nm] f E∗ge[eV ] λ∗ge[nm] f* µ∗ge
16 3,78 328 6,7648 3,6644 338,35 7,1886 80,0718
14 4,1188 301,02 6,1502 3,994 310,42 6,5084 66,5131
12 4,5389 273,16 5,4695 4,3991 281,84 5,7582 53,4277
10 5,0741 244,35 4,7122 4,9091 252,56 4,9337 41,0213
8 5,7797 214,52 3,889 5,5746 222,41 4,0363 29,5542
6 6,7553 183,54 2,9753 6,4784 191,38 3,0552 19,2494
4 8,2479 150,32 1,9911 7,8103 158,74 1,9956 10,4293

:
CAM-B3LYP
N◦C atoms Ege[eV ] λge[nm] f E∗ge[eV ] λ∗ge[nm] f* µ∗ge
16 4,4844 276,48 7,6779 4,1365 299,74 7,985 69,8762
14 4,7576 260,6 6,7955 4,4186 280,6 7,0652 65,2651
12 5,1093 242,66 5,8996 4,7756 259,62 6,1258 52,3577
10 5,5705 222,57 4,9854 5,2366 236,76 5,1609 40,2265
8 6,1989 200,01 4,0437 5,8515 211,88 4,1662 29,061
6 7,0881 174,92 3,0576 6,7006 185,03 3,1256 19,0395
4 8,4732 146,33 2,0306 7,9737 155,49 2,0384 10,4344

Table 5.7: 1st column represent the number of carbon atom present on the
chain of the different H-Py[n] , 2nd 3rd and 4th column represent respectively
the ground → excited state (i) transition energy , wavelength and oscillator
strength only of the most significant peak [ A Σ+

u ←− Σ+
g ] for each type of

functional , 5th 6th, 7th, 8th represent respectively the optimized values for
the transition energy , wavelength, oscillator strength and transition dipole
moment of each transition
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transition dipole moment which are generally lower.
Since the main parameter for each transition is very different for CAM-
B3LYP we will expect that also the Franck-Condon factors the situation
will be different from PBE0, as analized in detail in the following paragraph.
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Vibronic spectra computed with CAM-B3LYP As we can see from
figure (5.14) the CAM-B3LYP exchange correlation functional better fit the
trend of the peaks for increasing chain length (that can be correlated to a
better estimation of the vibronic coupling in our system).
Still the position of each peak is not computed correctly, but this blue shift
effect, caused by an high HF exchange contribution of the overall exchange-
correlation functional - > 40%, was expected [56].
We observe on figure (5.15) that by applying a rigid translation of the spec-
trum of about 20nm the trend better fits the experimental data.
This translation has been calculated as a difference between the origin (TDDFT
calculated with CAM-B3LYP functional) of the main peak for wire of inter-
mediate length (H-Py[8]) and the origin determined by experimental results.

Figure 5.14: CAM-B3LYP/cc-pVTZ vibronic spectra after Franck-Condon
compared with experimental data made in our laboratory(top) and Tabata’s
(bottom)
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Figure 5.15: CAM-B3LYP/cc-pVTZ vibronic spectra rigidly shifted by 20
nm compared with experimental data made in our laboratory

.
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Vibronic spectra computed with HSE06 The HSE06 (HSEH1PBE)
has been since it is know from other works to better estimate the HOMO-
LUMO gap [61, 62].
In our case it showed high similarity to PBE0 functional, both for the oscil-
lator strength and wavelength for each transition.
In this functional the difference is mainly related with the overextimation of
the conjugation for long wires (for H-Py[14] and H-Py[16]), that is even worse
than for the PBE0, while we have a better extimation of the conjugation in
shorter wires ( H-Py[6] and H-Py[4]).
We note that the HSE06 yield the same correlation part of the functional
(PBE), also used for PBE0 and only the exchange part is changed. A signif-
icant difference between these two functionals is not expected.

Figure 5.16: HSE06/cc-pVTZ vibronic spectra compared with experimental
data made in our laboratory(left) and Tabata’s (right)
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Diphenyl polyynes (Ph-Py[n])

In this section we will study the difference on the computed UV-visible spec-
tra using the HSE06 and the CAM-B3LYP as for H-Py[n].
In the previous discussion we found that the CAM-B3LYP was the one with
significant differences to the PBE0 functional and with the best fit on the
modulation of the UV-visible peaks.
In table (5.3) the values of transition energy, wavelength, oscillator strength
and electronic transition dipole moment are reported both for HSE06 and
CAM-B3LYP time dependent DFT simulations.

CAM-B3LYP
Ege[eV ] λge[nm] f E∗ge[eV ] λ∗ge[nm] f ∗ µ∗ge
3,0662 404,36 0,2404 2,094 592,08 0,139 2,7097
4,5036 275,3 5,4357 4,1506 298,72 5,7818 56,8591
5,7221 216,68 1,3741 - - - -
6,6868 185,42 0,5629 6,3803 194,32 0,6316 0,6316

HSE06
Ege[eV ] λge[nm] f E∗ge[eV ] λ∗ge[nm] f ∗ µ∗ge
2,5632 483,7 0,3741 1,9736 628,22 0,2521 5,2148
3,9239 315,97 4,9398 3,7146 333,77 5,3506 58,7943
4,8816 253,98 0,5134 4,589 270,18 0,3839 3,4146
5,4286 228,39 1,0576 5,0693 244,58 0,132 1,0625

Table 5.8: 1st 2nd and 3rd column represent respectively the ground → ex-
cited state (i) transition energy , wavelength and oscillator strength only of
the most significant peaks for Ph-Py[10] , 4th 5th, 6th, 7th represent respec-
tively the optimized values for the transition energy , wavelength, oscillator
strength and transition dipole moment of each transition
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Vibronic spectra computed with CAM-B3LYP As we have seen for
H-Py[n] wires the CAM-B3LYP functional better fits the relative intensity of
each peak with respect to the origin and the trends for increasing length of
the chain. As we can see from figure (5.17) and table (5.3) this is also true for
Ph-Py[n] wires. The hypsochromic shift found also for H-Py[n] CAM-B3LYP
vibronic spectra, related to the HF exact exchange, was expected.
The position highest wavelength peak (the one related to the HOMO-LUMO
transition) correlates better with experimental data, even if its intensity
seems to yield lower values.
The relative peak intensity of the highest intensity transition is better fitted
in this case, with the intensity of the origin signicantly reduced with respect
to the PBE0 calculations.
Due to the high number of excited states and high vibrational coupling the
state localized at ≈ 220[nm] was not computed.

Figure 5.17: CAM-B3LYP/cc-pVTZ vibronic spectrum for Ph-Py[10] com-
pared to the previous PBE0/cc-pVTZ calculations
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Vibronic spectra computed with HSE06 As we have seen for H-Py[n]
wires, the HSE06 functional doesn’t change the overall shape of the curves
and also in this case generate only a slight shift to higher wavelengths of all
the calculated peaks with respect to PBE0, this effect was also observed for
H-Py[n] wires.

Figure 5.18: HSE06/cc-pVTZ vibronic spectrum for Ph-Py[10] compared to
the previous PBE0/cc-pVTZ calculations
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5.4 Discussion on the vibronic transitions and

UV-visible spectra determined

In this chapter I have shown how we have been able to compute the vibronic
spectra both for H-Py[n] and Ph-Py[n] polyynes, comparing the trends and
the overall shape of the spectrum with available experimental data.
Several observation can be made on the results that we achieved in this chap-
ter:

• We were able to compute the vibronic spectra based on DFT and UVFC
calculations both for H-Py[n] and Ph-Py[n] wires

• We demonstrated that a simple analysis based on the Lorentian fitted
spectrum with no vibronic contribution was not enough to give an
interpretation of experimental data, vibronic effects need to be taken
into account and computed properly

• We obtained a very good aggreement with experimental data, especially
for H-Py[n] wires and we have been able to give an interpretation on
the trends observed in the measured spectrum

• We were able to analyze the role of the different exchange-correlation
functionals on the predition of the vibronic spectra. In particular, we
verified that the CAM-B3LYP better fitted the overall distribution on
the relative intensity of each peak, showing a proper assessment of the
vibrational coupling

• The comparison allowed us to assess also several differences from the
vibronic spectrum to the experimental data, which motivate further
works and investigation on this topic.
The first difference is related to the trends observed in the spectra
with increasing conjugation, for all Ph-Py[n] wires and for H-Py[n] with
n > 6. This discrepancy is due to an overextimation of the conjugation
effect of the DFT method adopted, which needs further development
and investigation.
The second difference is related to the relative intensity distribution of
the band with respect to its origin calculated by time dependent DFT,
this was limited in the case of PBE0 and HSE06 exchange-correlation
functionals.
This effect can be due to differences in geometry from the actual and
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the calculated excited state, again related to the accuracy of Exc func-
tionals used for TDDFT simulations.
For Ph-Py[n] in general the problem is further related to the fact that
the vibrational coupling in these systems is more complex than for
H-Py[n] and require high computational costs to carry out more accu-
rately the evaluation of the FC factors, as we underlined on the analysis
on the γ parameter for these structures.
The third difference is that the presence of dipole-forbidden transition
(used in other works for the identification of short H-Py[n] wires) have
not been taken into account in any of the vibronic spectra here com-
puted.
This is related to the fact that our calculation focused only on dipole-
allowed transition with oscillator strength significantly different from
0.
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Conclusions

This thesis work has been focused on the computational analysis of impor-
tant properties of short length CAWs considering the effect of chain length
and endgroups, and comparing them with spectroscopic results.
At first we determined structural and optoelectronic properties for 2 differ-
ent types of cumulenes (S-cumu[n], O-cumu[n]) to find their relation to the
Raman spectra that we were able to compute. This method is known to be
reliable and was used in other works.
The definition of CAWs based on the correlation with the infinite carbyne
was shown to be limited and the polarizability derivatives over the single CC
bonds in the chain instead was found to be a powerful tool to distinguish the
finite length chains into three main categories (instead of 2).
The structural and electronic properties were analyzed in detail for several
CAWs, the HOMO-LUMO gap and BLA in particular showed an overall de-
creasing pattern with chain length as expected from the higher conjugation,
cumulenes instead showed an almost constant BLA with chain length.
The Raman activity and position of each LO mode for both S-cumu[n] and
O-cumu[n] was analyzed in detail, this showed a consistently different be-
haviour between odd and even wires.
Then we focused on the development of an effective method to compute the
vibronic spectra through the analysis of the Franck-Condon factors, built up
to have a comparison with experimental results and also to determine the
effectiveness of a possible analysis of this type.
Our method was composed by several steps, at first the ground state ge-
ometry was determined through DFT calculations, than under TDDFT the
excited state geometry and the information relative to each excited state and
corresponding transition was computed.
With this informations a first preliminary spectra was determined, just with
the built up of lorentian functions based on the position and intensity found
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in this first calculation.
Than, to compute the vibronic spectra the FC factors were calculated using
an homemade UVFC software.
This method in general proved to be effective and in good aggreement with
experimental data.
The peak analysis of the highest wavelength transitions was carried out in
detail, highlighting the dependence between the shift of charge in the wire
and the intensity and position of each peak.
The assessment of the vibronic coupling of each peak was affected mainly by
the selection of the hybrid functional. CAM-B3LYP proved to be the best on
fitting the peaks and on analyzing the situation with increasing chain length
, set aside the hypsochromic shift effect well known from the literature. A
second effect was related to technical details such as the γ parameter, which
proved to limit the capability of computing the Franck-Condon factors of
highly vibronic coupled systems such as Ph-Py[n] wires.
In general the properties determined through DFT analysis were shown to
be deeply correlated to both the Raman and UV-VIS spectra computed.
The computational methods proved to be fundamental, not only for a correct
interpretation of experimental spectroscopic results of sp hybridized carbon
wires, but also for the analysis of their properties.
These important results allows a deeper understanding of the behaviour of
CAWs, both for the effect caused by different chain lengths and endgroups
and the effect of the interaction with external fields (through the spectro-
scopic results determined).
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6.1 Appendix

In this appendix are reported all the DFT calculated PBE0/cc-pVTZ values
for HOMO-LUMO gap, bond length and bond length alternation for all the
wires studied on the comparison section.
In particular the values for Vyn-cumu[n] in table (6.3), for Cn-cumu[n] in
table (6.4), for BPh-Py[n] in table (6.2), for Ph-Py[n] in table (6.1) and for
H-Py[n] in table (6.5).
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Diphenyl polyynes
Bond length values

N=4 N=6 N=8 N=10 N=12
φ-C1 1,41560 1,41420 1,41350 1,41310 1,41280
C1-C2 1,21270 1,21460 1,21540 1,21570 1,21600
C2-C3 1,35530 1,34850 1,34600 1,34470 1,34410
C3-C4 1,21270 1,21870 1,22120 1,22220 1,22280
C4-C5 1,34850 1,34070 1,33780 1,33640
C5-C6 1,21460 1,22120 1,22390 1,22520
C6-C7 1,34600 1,33780 1,33470
C7-C8 1,21540 1,22220 1,22520
C8-C9 1,34480 1,33640
C9-C10 1,21570 1,22280
C10-C11 1,34410
C11-C12 1,21600
Cn-φ 1,41560 1,41420 1,41350 1,41310 1,41280

Energy (Hartree)
HOMO -0,22656 -0,22555 -0,22502 -0,22476 -0,22468
LUMO -0,06629 -0,07822 -0,08839 -0,09695 -0,10410
GAP 0,16027 0,14733 0,13663 0,12781 0,12058

Energy (eV)
HOMO -6,16501 -6,13753 -6,12311 -6,11603 -6,11386
LUMO -1,80384 -2,12848 -2,40522 -2,63815 -2,83271
GAP 4,36117 4,00906 3,71789 3,47789 3,28115

Bond length alternation
BLA(i) 0,14260 0,13390 0,13060 0,12900 0,12810

0,14260 0,12980 0,12480 0,12250 0,12130
0,12980 0,11950 0,11560 0,11360
0,13390 0,11950 0,11390 0,11120

0,12480 0,11390 0,10950
0,13060 0,11560 0,10950

0,12260 0,11120
0,12910 0,11360

0,12130
0,12810

BLA 0,14260 0,13185 0,12497 0,12028 0,11674

Table 6.1: Important values for Ph-Py[n] chains with n=4,6,8,10,12. φ rep-
resent the phenyl end group.
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Bis(diphenyl) polyyne
Bond length values

N=4 N=6 N=8 N=10 N=12
C1-C2 1,21329 1,21512 1,21590 1,21630 1,21651
C2-C3 1,35463 1,34793 1,34544 1,34420 1,34352
C3-C4 1,21329 1,21913 1,22153 1,22260 1,22310
C4-C5 1,34793 1,34032 1,33750 1,33608
C5-C6 1,21512 1,22153 1,22420 1,22540
C6-C7 1,34545 1,33750 1,33444
C7-C8 1,21590 1,22260 1,22540
C8-C9 1,34420 1,33608
C9-C10 1,21630 1,22310
C10-C11 1,34352
C11-C12 1,21651

Energy (Hartree)
HOMO -0,21815 -0,21853 -0,21903 -0,22155 -0,22180
LUMO -0,07050 -0,08199 -0,09019 -0,09587 -0,10270
GAP 0,14765 0,13654 0,12884 0,12568 0,11910

Energy (eV)
HOMO -5,93617 -5,94651 -5,96011 -6,02869 -6,03549
LUMO -1,91840 -2,23106 -2,45420 -2,60876 -2,79461
GAP 4,01776 3,71544 3,50592 3,41993 3,24088

Bond length alternation
BLAi 0,14134 0,13282 0,12954 0,12790 0,12700

0,14134 0,12880 0,12391 0,12160 0,12041
0,12880 0,11879 0,11490 0,11298
0,13281 0,11879 0,11330 0,11068

0,12392 0,11330 0,10904
0,12955 0,11490 0,10904

0,12160 0,11068
0,12790 0,11298

0,12042
0,12700

BLA media 0,14134 0,13081 0,12408 0,11943 0,11602

Table 6.2: Important values for BPh-Py[n] chains with n=4,6,8,10,12. φ
represent a phenyl endgroup
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Vinyl cumulene
Bond length values

N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12
C1-C2 1,2659 1,2699 1,2668 1,2691 1,2672 1,2687 1,2673 1,2684 1,2675
C2-C3 1,2831 1,2759 1,2814 1,2777 1,2809 1,2786 1,2807 1,2791 1,2806
C3-C4 1,2659 1,2760 1,2680 1,2731 1,2690 1,2721 1,2694 1,2715 1,2695
C4-C5 1,2699 1,2814 1,2731 1,2792 1,2748 1,2785 1,2756 1,2783
C5-C6 1,2668 1,2777 1,2690 1,2748 1,2701 1,2736 1,2704
C6-C7 1,2691 1,2810 1,2721 1,2785 1,2737 1,2778
C7-C8 1,2672 1,2786 1,2693 1,2756 1,2704
C8-C9 1,2687 1,2808 1,2715 1,2783
C9-C10 1,2673 1,2791 1,2695
C10-C11 1,2684 1,2806
C11-C12 1,2674

Energy (Hartree)
HOMO -0,2454 -0,2425 -0,2365 -0,2344 -0,2305 -0,2290 -0,2262 -0,2250 -0,2230
LUMO -0,0889 -0,0820 -0,1075 -0,1017 -0,1201 -0,1151 -0,1291 -0,1248 -0,1361
GAP 0,1564 0,1605 0,1290 0,1327 0,1105 0,1139 0,0971 0,1002 0,0869

Energy (eV)
HOMO -6,6771 -6,5564 -6,4358 -6,3545 -6,2733 -6,2149 -6,1566 -6,1124 -6,0681
LUMO -2,4199 -2,6731 -2,9263 -3,0969 -3,2675 -3,3909 -3,5143 -3,6089 -3,7035
GAP 4,2572 3,8833 3,5094 3,2576 3,0058 2,8240 2,6422 2,5034 2,3647

Bond length alternation
BLA(i) 0,0171 0,0060 0,0146 0,0085 0,0137 0,0098 0,0134 0,0106 0,0132

0,0171 0,0000 0,0134 0,0045 0,0119 0,0065 0,0113 0,0075 0,0111
0,0060 0,0134 0,0000 0,0102 0,0027 0,0090 0,0041 0,0088

0,0146 0,0045 0,0102 0,0000 0,0084 0,0020 0,0079
0,0085 0,0120 0,0027 0,0085 0,0000 0,0074

0,0138 0,0065 0,0092 0,0019 0,0074
0,0098 0,0115 0,0041 0,0078

0,0135 0,0075 0,0087
0,0106 0,0111

0,0132

0,0171 0,0040 0,0140 0,0052 0,0120 0,0054 0,0106 0,0054 0,0097

Table 6.3: Important values for Vyn-cumu[n] with n=4,..,12.
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Carbon cumulenes
Bond length

N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12
C1-C2 1,2830 1,2836 1,2848 1,2860 1,2860 1,2876 1,2871 1,2888 1,2879
C2-C3 1,2716 1,2688 1,2702 1,2669 1,2691 1,2660 1,2683 1,2653 1,2677
C3-C4 1,2830 1,2688 1,2761 1,2728 1,2762 1,2752 1,2767 1,2768 1,2773
C4-C5 1,2836 1,2702 1,2728 1,2705 1,2707 1,2705 1,2696 1,2702
C5-C6 1,2848 1,2669 1,2762 1,2707 1,2755 1,2730 1,2755
C6-C7 1,2860 1,2691 1,2752 1,2705 1,2730 1,2711
C7-C8 1,2860 1,2660 1,2767 1,2696 1,2755
C8-C9 1,2876 1,2683 1,2768 1,2702
C9-C10 1,2871 1,2653 1,2773
C10-C11 1,2888 1,2677
C11-C12 1,2879

Energy (Hartree)
HOMO -0,3088 -0,3160 -0,2922 -0,2980 -0,2807 -0,2853 -0,2722 -0,2757 -0,2656
LUMO -0,1299 -0,1855 -0,1454 -0,1893 -0,1553 -0,1916 -0,1623 -0,1932 -0,1673
GAP 0,1788 0,1305 0,1468 0,1088 0,1254 0,0936 0,1099 0,0825 0,0984

Energy (eV)
HOMO -8,4021 -8,1767 -7,9514 -7,7950 -7,6385 -7,5229 -7,4072 -7,3177 -7,2282
LUMO -3,5361 -3,7465 -3,9568 -4,0910 -4,2251 -4,3203 -4,4156 -4,4835 -4,5514
GAP 4,8659 4,4303 3,9946 3,7040 3,4134 3,2025 2,9916 2,8342 2,6768

Bond length alternation
BLA(i) 0,0114 0,0148 0,0145 0,0190 0,0169 0,0216 0,0187 0,0234 0,0202

0,0114 0,0000 0,0059 0,0059 0,0070 0,0092 0,0084 0,0114 0,0096
0,0148 0,0059 0,0000 0,0057 0,0044 0,0062 0,0072 0,0070

0,0145 0,0059 0,0057 0,0000 0,0051 0,0035 0,0053
0,0190 0,0070 0,0044 0,0051 0,00000 0,0045

0,0169 0,0092 0,0062 0,0035 0,0045
0,0216 0,0084 0,0072 0,0053

0,0187 0,0114 0,0070
0,0234 0,0096

0,0202

BLA 0,0114 0,0098 0,0102 0,0100 0,0099 0,0101 0,0096 0,0101 0,0093

Table 6.4: Important values for carbon cumulenes for each of the Cn-cumu[n]
chains with n=4,5,6,7,8,9,10,11,12
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Hydrogen polyyne
Bond length values

N=4 N=6 N=8 N=10 N=12
H-C1 1,06360 1,06360 1,06380 1,06350 1,06350
C1-C2 1,20410 1,20640 1,20730 1,20760 1,20780
C2-C3 1,36400 1,35510 1,35240 1,35100 1,35040
C3-C4 1,20410 1,21400 1,21750 1,21880 1,21930
C4-C5 1,35510 1,34410 1,34090 1,33930
C5-C6 1,20640 1,21760 1,22140 1,22290
C6-C7 1,35240 1,34090 1,33700
C7-C8 1,20730 1,21880 1,22290
C8-C9 1,35100 1,33930
C9-C10 1,20760 1,21930
C10-C11 1,35040
C11-C12 1,20780
Cn-H 1,06360 1,06360 1,06380 1,06360 1,06350

Energy (Hartree)
HOMO -0,28192 -0,26786 -0,25923 -0,25344 -0,24931
LUMO -0,02920 -0,06345 -0,08412 -0,09795 -0,10785
GAP 0,25272 0,20441 0,17511 0,15549 0,14146

Energy (eV)
HOMO -7,67144 -7,28885 -7,05401 -6,89646 -6,78407
LUMO -0,79457 -1,72656 -2,28902 -2,66536 -2,93475
GAP 6,87687 5,56228 4,76499 4,23110 3,84932

Bond length alternation
BLA (i) 0,15990 0,14870 0,14510 0,14340 0,14260

0,15990 0,14110 0,13490 0,13220 0,13110
0,14110 0,12660 0,12210 0,12000
0,14870 0,12650 0,11950 0,11640

0,13480 0,11950 0,11410
0,14510 0,12210 0,11410

0,13220 0,11640
0,14340 0,12000

0,13110
0,14260

BLA 0,15990 0,14490 0,13550 0,12930 0,12484

Table 6.5: Important values for H-Py[n] with n=4,6,8,10,12.
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gang Krätschmer. Flashing carbon on cold surfaces. The Journal of
Physical Chemistry B, 108(12):3686–3690, 2004.

[28] Curt Wentrup, Peter Kambouris, Richard A Evans, David Owen,
Graham Macfarlane, Josselin Chuche, Jean Claude Pommelet, Abdel-
hamid Ben Cheikh, Michel Plisnier, and Robert Flammang. 2, 5-
dithiacyclopentylideneketene and ethenedithione, s: C: C: S, generated
by flash vacuum pyrolysis. Journal of the American Chemical Society,
113(8):3130–3135, 1991.

[29] Raman and sers investigation of isolated sp carbon chains. Chemical
Physics Letters, 417(1):78 – 82, 2006.



176 BIBLIOGRAPHY

[30] Sara Eisler, Aaron D. Slepkov, Erin Elliott, Thanh Luu, Robert McDon-
ald, Frank A. Hegmann, and Rik R. Tykwinski. Polyynes as a model for
carbyne: synthesis, physical properties, and nonlinear optical response.
Journal of the American Chemical Society, 127(8):2666–2676, 2005.

[31] Rudolf Ernst Peierls and Rudolf Sir Peierls. Quantum theory of solids.
Oxford University Press, 1955.

[32] Neil W Ashcroft and N David Mermin. Solid state physics (saunders
college, philadelphia, 1976). Google Scholar, page 461, 2010.

[33] Masatoshi Ohishi. Search for complex organic molecules in space. Jour-
nal of Physics: Conference Series, 728(5):052002, 2016.

[34] Gilberto Casillas, Alvaro Mayoral, Mingjie Liu, Arturo Ponce, Vasilii I
Artyukhov, Boris I Yakobson, and Miguel Jose-Yacaman. New insights
into the properties and interactions of carbon chains as revealed by
hrtem and dft analysis. Carbon, 66:436–441, 2014.

[35] Fanghao Hu, Chen Zeng, Rong Long, Yupeng Miao, Lu Wei, Qizhi Xu,
and Wei Min. Supermultiplexed optical imaging and barcoding with
engineered polyynes. Nature methods, 15(3):194, 2018.

[36] HH Kuhn, AD Child, TA Skotheim, RL Elsenbaumer, and JR Reynolds.
Handbook of conducting polymers. TA Skotheim, RL Elsenbaumer and
JR Raynolds, Eds, page 993, 1998.

[37] Tom Ziegler. Approximate density functional theory as a practical tool
in molecular energetics and dynamics. Chemical Reviews, 91(5):651–667,
1991.

[38] Axel D Becke. Density-functional thermochemistry. iii. the role of exact
exchange. The Journal of chemical physics, 98(7):5648–5652, 1993.

[39] Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid
exchange–correlation functional using the coulomb-attenuating method
(cam-b3lyp). Chemical Physics Letters, 393(1-3):51–57, 2004.

[40] Johanna I Fuks, Lionel Lacombe, Søren EB Nielsen, and Neepa T
Maitra. Exploring non-adiabatic approximations to the exchange–
correlation functional of tddft. Physical Chemistry Chemical Physics,
20(41):26145–26160, 2018.

[41] Ernest R Davidson. Comment on “comment on dunning’s correlation-
consistent basis sets”. Chemical physics letters, 260(3-4):514–518, 1996.



BIBLIOGRAPHY 177

[42] M. J. Frisch and G. et al. Gaussian˜16 Revision B.01, 2016. Gaussian
Inc. Wallingford CT.

[43] Hanwell et al. Avogadro: an advanced semantic chemical editor, visu-
alization, and analysis platform. Journal of Cheminformatics, 4(1):17,
Aug 2012.

[44] G. Schaftenaar and J.H. Noordik. Molden: a pre- and post-processing
program for molecular and electronic structures*. Journal of Computer-
Aided Molecular Design, 14(2):123–134, Feb 2000.

[45] Robert van Leeuwen. Causality and symmetry in time-dependent
density-functional theory. Phys. Rev. Lett., 80:1280–1283, Feb 1998.

[46] Peter W Atkins and Ronald S Friedman. Molecular quantum mechanics.
Oxford university press, 2011.

[47] Johannes Gierschner, Hans-Georg Mack, Larry Lüer, and
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