
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Evaluation of Qt as GUI Framework

for Accelerator Controls

Relatore: Elisabetta DI NITTO

Tesi di Laurea di: Sara ZANZOTTERA matr. 880407

Anno Accademico 2017-2018

Acknowledgments

I would like to express my deepest gratitude to Vito Baggiolini, my main

supervisor, for his patience, encouragement and constant support, especially

when the difficulty of some tasks overwhelmed me. Most of what I achieved

would not be possible without his help. I owe him all that I learned at CERN

and much more.

I would also like to mention Eric Roux, Felix Ehm, Mathieu Gabriel, Ma-

ciej Peryt, Andres Rodriguez Perez, Nuno Mendes and all my colleagues that

sooner or later joined the one-man’s team I were, and helped me along the

way. Working with you was enlightening, under every perspective.

Special thanks to Bálint Hegyi for his invaluable help on all the side tasks,

and for his interest in my work.

Many thanks also to Elisabetta Di Nitto, my university supervisor, for her

careful reviews of my work and her helpful remarks.

Nothing of this, however, would have been possible without the help of

my friends and relatives. A special mention to Gianpaolo Branca for his gen-

erous and selfless support, to my sister Alice, to Simone Mosciatti, to Ivan

Vigorito, to all my colleagues of the section and of the group, who made a

very supporting, informal and friendly environment on the workplace.

And, on purpose last, I should mention my delegate supervisor, főnök Zsolt,

whose exceptional ability to change any little thing into a challenge will not

be forgotten.

Geneva, November 29, 2018

Sara Zanzottera

Sommario

Il complesso degli acceleratori del CERN è una successione di macchine in

grado di accelerare diversi tipi di particelle a livelli di energia crescenti. Ognuna

di esse aumenta drasticamente l’energia del fascio di particelle proveniente dalla

precendente e lo invia alla successiva, che a sua volta accelera ulteriormente il

fascio. Nel Large Hadron Collider, l’ultimo elemento della catena, il fascio di

particelle viene accelerato all’energia record di 6.5 TeV per fascio.

Uno strumento simile non potrebbe mai operare senza un efficiente sistema

di controllo, ma il monitoraggio della macchina non è un problema di minore

rilevanza e non deve essere sottovalutato. La strumentazione di controllo del

CERN invia costantemente dati aggregati e dati grezzi ai livelli superiori del sis-

tema di controllo, in genere un’interfaccia grafica, che è incaricata di mostrare

i suddetti dati agli operatori della Sala di Controllo in maniera efficace e con

dei requisiti piuttosto stretti sulla performance. Questi sistemi sono critici per

il CERN, in quanto permettono agli operatori di monitorare gli acceleratori

e regolarli in maniera efficace, tale da generare la maggior quantità di dati

scientifici possibile senza danneggiare le macchine e la strumentazione.

Anche per questa ragione, i requisiti posti sulle interfacce grafiche e sul

sistema di controllo vengono costantemente aggiornati per restare in linea con

i cambiamenti che avvengono nella strumentazione, mentre le tecnologie per lo

sviluppo delle interfacce grafiche evolvono in direzioni diverse e spesso diver-

genti. Di conseguenza, si è reso necessario investire tempo e risorse nella ricerca

di un valido compromesso tra le caratteristiche dei moderni GUI framework e

le necessità degli operatori.

La tesi è incentrata sul mio contributo agli sforzi del dipartimento di man-

tenere le interfacce grafiche del sistema di controllo aggiornate, efficaci e veloci,

utilizzando tecnologie moderne. A questo scopo ho lavorato nel Beams Depart-

ment, Controls group, Applications section in un team di quattro ingegneri con

una lunga esperienza nello sviluppo di interfacce grafiche, e sono stata messa

in contatto con la comunità degli sviluppatori del CERN e con gli operatori

della Sala di Controllo.

Il Contesto

I livelli superiori del sistema di controllo degli acceleratori del CERN sono

scritti principalmente in Java, con circa 400 applicazioni server e 600 diverse

interfacce grafiche. In totale si tratta di circa 10 milioni di linee di codice e

più di 1000 file .jar, creati da una comunità di circa 120 sviluppatori Java.

Circa metà di questi produce interfacce grafiche e hanno diversi background:

non si tratta solo di ingegneri del software o programmatori, ma anche fisici

delle particelle, esperti di fisica degli acceleratori, operatori, esperti hardware

e persino periti tecnici.

Java è da molto tempo uno standard affermato nello sviluppo di software

di livello industriale, ed è ancora una scelta molto solida per quanto riguarda

lo sviluppo di un sistema informatico vasto come il sistema di controllo degli

acceleratori del CERN. Nonostante ciò, Java offre una scelta piuttosto limi-

tata per quanto riguarda le tecnologie di sviluppo delle interfacce grafiche: le

opzioni si limitano all’ormai obsoleto AWT, il suo successore Swing, e al più

moderno JavaFX, che è stato sviluppato con l’obiettivo di sostituire Swing

come principale GUI framework per le applicazioni Java.

Al di là di queste tre opzioni, alcuni vendors hanno sviluppato framework

minori per lo sviluppo delle interfacce grafiche, come ad esempio SWT (Stan-

dard Widget Toolkit, sviluppato dalla Eclipse Foundation), o GWT (Google

Web Toolkit), i binding su Java per OpenGL (JOGL) o altri bindings per

librerie grafiche 3D come Java3D [1].

Il Problema

La maggior parte delle interfacce grafiche del sistema di controllo sono scritte

in Swing, mentre molte delle più recenti sono sviluppate in JavaFX. Nonos-

tante gli sforzi compiuti dalla mia sezione per fornire supporto nello sviluppo

di applicazioni in JavaFX e promuoverne l’utilizzo nella comunità degli svilup-

vi

patori, si è notato che al di fuori del CERN l’interesse verso questo framework

è andato decrescendo, in quanto la maggior parte dell’interesse si muove ogni

giorno di più verso le tecnologie Web.

In aggiunta a tutto ciò Oracle, che finora ha mantenuto e sviluppato

JavaFX, ha recentemente annunciato che terminerà il supporto per JavaFX nel

2022 [3] e che rilascerà il progetto come open source, in modo che la comunità

possa continuare a utilizzarlo e svilupparlo liberamente [6].

Una simile dichiarazione, assieme al generale calo di interesse verso le tec-

nologie desktop in generale, ha suscitato parecchie preoccupazioni riguardo al

futuro di JavaFX. Si è quindi reso interessante esplorare le alternative esistenti,

per capire quale tecnologia potrebbe diventare mainstream per lo sviluppo di

GUI desktop nel prossimo futuro. In questo modo il dipartimento potrebbe

orientare fin da subito i propri sforzi verso un framework più promettente.

Un aspetto positivo, se cos̀ı si può definire, è il fatto che il generale calo di

interesse nel campo delle GUI desktop ha accelerato l’obsolescenza dei frame-

work più deboli, mettendo in evidenza i pochi framework più solidi. Da questo

punto di vista, Qt è sicuramente una delle tecnologie che si è distinta immedi-

atamente.

Qt [7] è probabilmente il più utilizzato framework per GUI, fatta eccezione

per le tecnologie Web. Ha un buon numero di success stories, per esempio

KDE [8;9] ed è mantenuto da un’azienda il cui business model ruota interamente

attorno ad esso [36]. In generale, Qt pare una tecnologia promettente da qui al

prossimo futuro.

D’altra parte Qt è un framework estremamente complesso e vasto, che può

essere utilizzato in molti modi diversi. Ha anche un buon numero di problemi

rispetto a JavaFX, ognuno dei quali va analizzato nel dettaglio prima di poter

promuovere il framework come valida alternativa.

L’Obiettivo

L’obiettivo di questa tesi consiste nell’effettuare un’analisi esplorativa di Qt,

per verificare se e come è in grado di interoperare efficacemente con il backend

Java che genera e pubblica i dati.

Gli obiettivi principali includono:

vii

1. Identificare tutti i possibili approcci e binding su altri linguaggi offerti da

Qt che sono adatti a un’ispezione più approfondita, basandosi sulla loro

popolarità nella comunità di Qt, le caratteristiche offerte e la probabilità

che si tratti di una soluzione adatta ai nostri requisiti.

2. Familiarizzare con ciascuno degli approcci individuati, la loro struttura

e le loro capacità. In molti casi ciò implica imparare il linguaggio o i

linguaggi coinvolti (C++, JNI, JavaScript, TypeScript, QML, Python,

etc...) e a utilizzare i tool necessari per lo sviluppo.

3. Valutare ciascuno degli approcci dal punto di vista della disponibilità

degli widgets necessari per i sistemi di controllo (menu, grafici, inputs,

popups, tooltips, worker threads, etc...) rispetto ai requisiti posti dal

CERN.

4. Scrivere dei report dettagliati riguardo ai risultato della valutazione e

offrire al section leader tutte le informazioni necessarie per prendere de-

cisioni informate in merito alla strategia per lo sviluppo delle GUI nei

prossimi anni.

Struttura della Tesi

Prima di dare il via alla valutazione è stata eseguita un’analisi preliminare

delle tecnologie disponibili come alternative a JavaFX e, come già illustrato

sopra, il primo candidato per l’analisi è risultato essere Qt.

Qt è stato selezionato soprattutto per la vastità di opzioni che offre agli

utenti, la solidità del framework, e per la presenza di diversi binding con al-

tri linguaggi [7]. Ciò significa che Qt offre diversi approcci allo sviluppo delle

interfacce, ognuno dei quali è stato valutato separatamente.

Contemporaneamente a questa analisi, è stata eseguita anche una rapida

valutazione di JavaFX, in modo da offrire un riferimento per la valutazione di

Qt.

Date queste premesse, la tesi è organizzata come segue:

• Il Capitolo 1 descrive il contesto della ricerca, il problema posto, le mo-

tivazioni, il metodo e i risultati attesi.

viii

• Il Capitolo 2 presenta una descrizione più dettagliata del metodo di valu-

tazione. Dopo una breve introduzione allo stato dell’arte, l’applicazione

benchmark è descritta nel dettaglio sia da un punto di vista grafico che

da un punto di vista funzionale. Infine viene presentata la lista degli

approcci selezionati, assieme a una breve spiegazione delle ragioni della

selezione.

• Il Capitolo 3 illustra i risultato dell’analisi di JavaFX, in modo da offrire

un solido punto di riferimento per la successiva valutazione di Qt.

• Il Capitolo 4 è un’introduzione a Qt in generale e contiene

un’introduzione alle sue caratteristiche principali. Lo scopo del

capitolo è di aiutare il lettore a capire meglio le scelte compiute in

seguito durante la valutazione dei vari approcci.

• Il Capitolo 5 presenta i risultati della valutazione di QtJambi, un binding

su Java per Qt 4, e il nostro tentativo di farlo funzionare con l’ultima

versione di Qt, la versione 5.

• Il Capitolo 6 descrive la valutazione del metodo più standard per lo

sviluppo di GUI in Qt: le applicazioni Qt Widgets, sviluppate in C++.

• Il Capitolo 7 illustra i vari approcci considerati durante lo sviluppo

dell’applicazione benchmark in QtQuick, una tecnica di sviluppo di GUI

in Qt che non utilizza C++, ma QML e JavaScript.

• Il Capitolo 8 presenta i risultati della valutazione di PyQt5, il binding

di Qt su Python più stabile e supportato. Con PyQt5 sono state testate

due applicazioni, una utilizzando lo stile Qt Widgets e una in QtQuick.

• Il Capitolo 9 riassume i risultati di tutte le diverse analisi e trae alcune

conclusioni sull’intero processo di valutazione.

ix

Table of Contents

1 Introduction 1

1.1 The Context . 2

1.2 The Problem . 3

1.3 The Task . 5

1.4 Outline of the Thesis . 5

2 Evaluation Outline 9

2.1 State of the Art . 9

2.2 Evaluation Strategy . 11

2.3 The Benchmark Application . 13

2.3.1 The Interface . 14

2.3.2 The Data Source . 16

2.3.3 Charting performance assessment strategy 16

2.4 Selected Technologies . 18

2.4.1 Web Technologies . 19

3 Current State: JavaFX 23

3.1 Installation and setup . 23

3.2 Development process . 24

3.3 The application . 25

3.3.1 Charting . 27

3.4 Tooling . 28

3.5 Documentation . 29

3.6 Outcomes . 29

4 Qt: An Overview 31

4.1 Framework architecture . 32

TABLE OF CONTENTS

4.1.1 QtQuick versus QtWidgets 32

4.1.2 Signals and slots . 34

4.1.3 The Meta Object System 34

4.2 Qt as CERN’s GUI Framework 35

4.2.1 A C++ Framework . 35

4.2.2 Qt Bindings . 35

5 Qt over Java: QtJambi 37

5.1 Installation and setup . 37

5.1.1 The QtJambi Generator 38

5.1.2 Actual installation process 39

5.2 Development process . 40

5.3 The application . 40

5.4 Tooling . 42

5.5 Documentation . 42

5.6 Outcomes . 42

6 Qt Widgets 45

6.1 Installation and setup . 45

6.2 Development process . 47

6.2.1 Qt’s Meta Object System 48

6.2.2 GUI Design . 49

6.2.3 Build Process . 50

6.3 The application . 51

6.4 Tooling . 51

6.5 Documentation . 52

6.6 Outcomes . 52

7 Qt Quick: QML & JavaScript 55

7.1 Installation and setup . 56

7.2 Development process . 56

7.2.1 Layout System . 57

7.2.2 QML Components . 58

7.2.3 JavaScript Code . 58

7.2.4 JavaScript Host Environment 59

7.2.5 Charting . 60

xii

TABLE OF CONTENTS

7.3 The application . 61

7.4 Tooling . 64

7.5 Documentation . 64

7.6 A Side Attempt: TypeScript . 65

7.6.1 Node.js Modules . 66

7.6.2 Tooling . 66

7.6.3 Evaluation Outcomes . 67

7.7 Outcomes . 68

8 Qt over Python: PyQt5 69

8.1 Installation and setup . 70

8.2 Development process . 70

8.2.1 Code Comparison . 70

8.2.2 QtQuick . 72

8.2.3 QtWidgets . 73

8.3 The application . 73

8.3.1 QtQuick . 73

8.3.2 QtWidgets . 77

8.4 Tooling . 79

8.4.1 QtQuick . 79

8.4.2 QtWidgets . 80

8.5 Documentation . 80

8.6 Outcomes . 81

9 Conclusions 83

Appendices 85

A Acronyms Definition 87

A.1 Definitions . 87

B A JavaX Hello World Application 89

B.1 First Approach: Pure Java . 89

B.2 Hello World, MVC enforced . 91

C QtJambi Deployment Layout 93

xiii

TABLE OF CONTENTS

D Final Comparison Table Justifications 97

D.1 JavaFX . 98

D.2 QtJambi (for Qt5) . 99

D.3 QtQuick (in pure JS) . 99

D.4 QtWidgets . 100

D.5 PyQt5 QtQuick . 100

D.6 PyQt5 QtWidgets . 101

Bibliography 103

xiv

Chapter 1

Introduction

The accelerator complex at CERN is a succession of machines that accelerate

particles to increasingly higher energies. Each machine boosts the energy of

a beam of particles, before injecting the beam into the next machine in the

sequence. In the Large Hadron Collider (LHC) – the last element in this chain

– particle beams are accelerated up to the record energy of 6.5 TeV per beam.

Such a machine could not operate without an effective and performant

control system, but the need for an effective visualization system must not

be underestimated. CERN’s accelerator controls technologies constantly feed

aggregated and status data to the uppermost layer of the control system, the

user interface, that is in charge of displaying them to the the operators of the

Control Room, with strict requirements on performance. These systems are

mission critical for CERN, as they give the operators the possibility to mon-

itor the accelerators and run them effectively to produce the largest possible

amount of scientific data, while operating the machine safely.

In addition, the requirements of the Control Room operators are constantly

changing, as the underlying systems improve, while user interface technologies

evolve in directions that not always match CERN’s requirements on the matter.

Therefore constant research must be poured into finding the best compromise

between modern visualization framework’s features and the accelerator con-

trol’s needs.

In this report I am going to describe my personal contribution to the orga-

nization’s effort to keep their user interface stack up to date, performant and

effective, using modern frameworks and technologies. As such, I am employed

by the Beams department, Controls groups, Applications section. I am part

Introduction

Figure 1.1: CERN’s Acceletators Complex [2]

of a team of four software engineers with strong background in user inter-

faces development, and I have been put in direct contact with the developer

community of CERN and the operators in the Control Room.

1.1 The Context

The higher levels of CERN’s accelerator control system are written mostly in

Java, with around 400 server applications and 600 different GUIs. So far, they

amount to roughly 10 million lines of source code and more than 1000 .jar

files, created by a community of around 120 Java developers. Around half

of those developers write graphic user interfaces (GUIs) and they have differ-

ent backgrounds: not only software engineers, but also accelerator physicists,

operators, hardware experts and service technicians.

2

1.2 The Problem

Java has long been an industry standards for production-level software,

and it is still a very solid choice as base programming language for such a

large software base as CERN’s accelerator’s control systems is. Nonetheless,

it offers a limited choice regarding GUI development frameworks: the now

obsolete AWT framework, its successor Swing, and the latest JavaFX, that

was meant to replace Swing as main GUI development framework for Java

applications.

Other than these libraries, some vendors have also provided graphics APIs

that work with Java, such as Eclipse’s Standard Widget Toolkit (SWT), Google

Web Toolkit (GWT), 3D Graphics API such as Java bindings for OpenGL

(JOGL) and Java3D [1].

1.2 The Problem

Most of the GUIs of the accelerator’s controls are written in Java Swing, and

some of the most recent ones in JavaFX. However, such technologies has been

decreasingly popular among the community, that is now focusing more and

more on web-based GUI technologies leaving desktop-based GUIs behind.

In addition to these concerns, Oracle, the maintainer of JavaFX, recently

stated that it will drop support to the project by 2022 [3] and leave the main-

tenance effort to the open source community [6].

Such a statement, combined with the adverse environment surrounding

desktop GUI frameworks, raised serious concerns about the future of JavaFX.

Therefore it became interesting to explore possible alternatives to JavaFX

and to investigate on new technologies that may become the next mainstream

framework for desktop GUI development, in order to orient the development

efforts in the right direction as soon as possible.

On the other hand, this general decline of interest in the entire area of

desktop GUI development quickly let the most robust widget frameworks to

stand out, as soon as their competitors died out. In this perspective, Qt showed

clearly as one of the most interesting alternatives.

Qt [7] is likely the most popular desktop GUI framework available, let alone

web-based technologies. It has a number of success stories, namely the Linux

KDE GUI [8;9], and is maintained by a company whose business focuses entirely

on it [36]. In general, it looks popular and promising for the foreseeable future.

3

Introduction

Figure 1.2: StackOverflow Trends [4] over a 10 years period. While most

desktop GUI technologies seems to be fading out, Qt is the one whose descend-

ing trend seems to be the slowest. Note also PyQt stability, even if clearly less

popular. The evident growth of JavaFX is also on hold and is not likely to

restart.

Figure 1.3: Google Trends [5] over a 5 years period. With respect to the

StackOverflow plot above, Swing seems to be much more popular than any other

widget toolkit, Qt being second with a very stable profile. JavaFX, instead, is

quite less relevant. Is interesting to notice that this is a plot of Interest over

Time, defined as ”search interest relative to the highest point on the chart for

the given region and time.”

4

1.3 The Task

Nonetheless, Qt is an extremely wide and complex framework which can

be used in different ways, and it may have a number of drawbacks compared

to JavaFX, each of whose has to be explored in detail before committing to it.

1.3 The Task

My tasks are focused on an exploratory approach of Qt to find out if and how

it can inter-operate smoothly with the Java backend providing the data. The

main goals include:

1. Identify all the suitable modules and bindings of Qt to be further evalu-

ated, basing on their popularity, their stated capabilities, their apparent

suitability to our needs.

2. Become familiar with the different modules that are found relevant, their

architecture and their capabilities. In most cases, this step included

learning the relevant programming language of the framework itself and

how to use the related tools.

3. Evaluate, for each of the modules, all relevant components of a typi-

cal accelerator controls GUI (menus, charts, input elements, pop-ups,

tooltips, background tasks, actions, an event bus, ...), with special care

to CERN’s specific needs.

4. Write a report that compares the different possibilities according to the

criteria described below, and present the findings to the Beams Depart-

ment’s developer community.

1.4 Outline of the Thesis

Qt has been chosed for the evaluation especially for its comprehensiveness,

solidity, and for the presence of bindings to many programming languages [7].

As I am going to detail in following sections, Qt provides several different

approaches for GUI development, most of which has been evaluated separately.

In parallel, a quick re-evaluation of the Java GUI frameworks already in

use (which is JavaFX) has been carried on, in order to provide a reference to

evaluate the other frameworks with.

5

Introduction

Basing on these premises, the thesis has been organized as follows:

• Chapter 1 describes the overall context along with the problem being

faced by the organization, the rationale behind the research, its main

criteria and the expected outcomes.

• Chapter 2 presents a more in-depth description of the evaluation strat-

egy. After a brief introduction to the state of the art in software toolk-

its evaluation, the benchmark application is described both from an UI

perspective and from a functional point of view. Finally a list of the

candidate modules and bindings is presented, along with the selection

rationale.

• Chapter 3 details the outcomes of the re-evaluation of JavaFX as GUI

toolkit, in order to provide a good reference for the subsequent evaluation

of Qt.

• Chapter 4 is meant to be an introduction to Qt in general and an overview

of some of its most prominent features, to help the reader understanding

the main reasoning behind some of the choices we made along the entire

evaluation.

• Chapter 5 presents the outcomes of the evaluation of QtJambi, a Java

binding for Qt 4, and our attempts to adapt the software to work with

the latest version of Qt, version 5.

• Chapter 6 describes the work done on the most standard and basic way

of developing Qt GUIs in C++: Qt Widgets-style applications.

• Chapter 7 details the various efforts and approaches we took during the

evaluation of QtQuick-style development of Qt application: pure QML

and JavaScript approach, the TypeScript approach, etc...

• Chapter 8 presents the results of the evaluation of PyQt5, the most

stable, healthy and solid binding of Qt to another programming language

now available. We tested it both for Qt Widgets and for QtQuick style

applications.

6

1.4 Outline of the Thesis

• Chapter 9 sums up the outcomes of all the evaluations performed and

draws a conclusive picture of the possibility to adopt Qt as main GUI

framework for CERN’s control systems.

7

Chapter 2

Evaluation Outline

GUI toolkits are some of the most complex and varied software families in

existence today, and also some of the oldest. Depending on their age, their

maturity level, their aim and their history, their complexity level and approach

toward interface development varies wildly. Even having the analysis limited

to the sole Qt framework, carrying on a coherent evaluation of all the different

approaches available for GUI design is a very challenging task, that must be

performed with special care and discipline.

In this chapter I am going to detail the strategy we followed for the eval-

uation of Qt, while the results will be outlined, separately for each approach

tested, in the following chapters.

2.1 State of the Art

Careful evaluation of a company’s software tools is a very common task, but

is often overlooked.

Even if it is a problem as old as software development itself, the ratio

between the investment in an evaluation and the benefits that come from it is

perceived to be very low and therefore ignored, often leading to costly mistakes

in terms of money and time.

As A. Powell effectively describes in one of his articles [12], the reasons be-

hind this lack of interest in the matter are very diverse and sometimes even

legit, but the consequences they lead to can be unpredictably expensive for

developers and managers alike. Even if the paper dates back to the more than

Evaluation Outline

twenty years ago, his description of the situation is very actual and still reflects

the working environment of many companies.

The article also highlights the lack of a common and solid methodology for

software evaluation tools and the unavoidable consequences of this situation

on companies. Indeed, according to the authors, a solid evaluation framework

should be able to capture at the same time the ”hard” features of a soft-

ware tool and its ”soft” features, like usability with the rest of the company’s

toolchain, the emplacement of the new tool (that is, the process of replacing

the old tool with the new one), and so on. If some of these soft features are

missing, most of the tool’s alleged benefits may fail to materialize and, in some

cases, even become a burden.

This is especially true nowadays in some context where software tool adop-

tion seems to be driven ”by fashion” instead of by actual need, as it seems to

happen for example in the context of JavaScript web frameworks [13]

Nowadays the situation is clearly improving. In an investigation from BI

Survey [16] more than 63% of the companies queried perform some kind of

competitive, formal software tool evaluation before adopting it, while 17%

carries on simgle product evaluation and 20% no evaluation at all.

Another interesting outcome is that, when comparing the market perfor-

mance of these companies, is quite evident how a careful software evaluation

correlates with better market performance. In addition, they claim that in

their sample, business intelligence users are rarely able to calculate the hard

return of their evaluations, but they notice qualitative improvements in the

speed and accuracy of the decisions taken.

Structured approaches for generic software evaluation can be easily found

online, and some companies even provide the evaluation as a service. One

example is the Software Sustainability Institute, which provides both a con-

sultancy service on the topic [14], and a few free guides on how to perform the

evaluation effectively [15].

Their guide covers the evaluation process from beginning to end, and in

particular underlines the following points:

• The evaluation should be two-fold: on one side, it must capture the

quantitative features of the software under evaluation, its performance,

its ability to fulfill the requirements in terms of sustainability, main-

10

2.2 Evaluation Strategy

tainability, and usability. On the other hand, it should also assess the

qualitative features, defined as ”a pragmatic evaluation of usability of

the software in the form of a reproducible record of experiences”. This

gives a developer a practical insight into how the software is approached

and any potential technical barriers that prevent adoption.

• The targets of our evaluation. The evaluation is done for someone, and

the targets may be multiple and different. For example we may be doing

an evaluation for software users, for user-developers (like in case of a

library or a framework), for developers (that may want to modify the

library itself), for the management (which may be more interested in the

soft characteristics than in the hard features) and so on.

• How to properly write a report with the outcomes of the evaluation

depending on the target audience.

Plenty of other software evaluation methods, matrices, tables and criteria

can be found online with a quick search [17]. However, it is pretty evident how

the procedure is not normalized or, at least, a common and clear evaluation

framework is not yet well established.

2.2 Evaluation Strategy

To carry on our evaluation of Qt with respect to JavaFX, we did our best to

keep into consideration the main guidelines and advises found. The results

are explained in the following section, with the hope of clarifying the rationale

behind our choices during the actual evaluation phase.

In order to achieve meaningful results, the evaluation strategy has been

focusing on two main dimensions of the framework under evaluation:

1. The performance of the toolkit itself under specific kinds of load.

Our section is in charge of providing solutions for two main use cases:

advanced controls widgets (like knobs, value-bounded text areas, ect...)

and plotting widgets. While most GUI frameworks provide basic controls

that can be customized into more complex fashions, thus covering the

first use case, charts are not always supported, or lacks functionalities.

11

Evaluation Outline

Therefore, the evaluation has been carried on with special regard for this

aspect.

CERN also have specific requirements for charting widgets. In some

cases the amount of data to handle is very large, in some other cases

the incoming rate of information is very fast. For this reason, their

performance for refreshing speed and amount of point that could be

handled at a sufficient frame rate (25 fps) was also assessed.

2. The ease of development of the interface (and the availability of RAD [11]

tools)

In our specific use case, the ease of development is a crucial aspect.

Our section is in charge of providing support, directives, best practices

definition and operations expertise for a handful of supported frame-

works, while the actual development effort is carried on by the Con-

trol Room’s operators, that have the field expertise to make use of the

data that comes from the backend. In the most common case they are,

however, physicists and field experts, neither expert nor experienced in

software development.

That said, the importance of providing them with easy to use tools should

be much clearer. For example, we were especially careful in identifying

possibilities for the developer to design the GUI entirely in a WYSI-

WYG [116] fashion, by drag-and-dropping the controls on a canvas and

binding them to the backend with ease. Such workflow would help them

develop application in a quick and painless way, and at the same time

to produce higher quality code which can be maintained, modified and

extended by other people with ease.

The evaluation has to take into consideration all these aspects at the same

time: the development process and the resulting application are both evalu-

ated. This is aimed at capturing both the hard features of the framework, as

well as the soft characteristics.

In order to be coherent, we defined some reference parameters to consider

for each approach, the most important being (in relevance order):

1. The architecture of the produced apps : assess if the visual parts can be

easily separated from the application logic, how accurately the MVC pat-

12

2.3 The Benchmark Application

tern [24] can be implemented, how intuitive and maintainable the resulting

code is in the general case.

2. The availability of all necessary widgets that are required to visualize

large and fast amounts of data, but also to control efficiently the ma-

chines.

3. The performance of widgets, especially of charting components. They

are expected to display measurements at multi-Hz frequency and very

large datasets (to several tens of thousands of points per update).

4. The availability of GUI builder tools, with special attention to whether

they provide round-trip engineering features to support incremental de-

velopment, and possibly drag-and-drop prototyping features.

5. The availability of good online documentation and community support.

2.3 The Benchmark Application

The selected strategy for the evaluation has been based on the development

of a benchmark application. Such application has been developed to be as

similar as possible on all the evaluated frameworks, in order to give a uniform

perspective of the capabilities of each.

The benchmarks features a connection to the backend providing accelera-

tor’s data, in order to test it in a real life scenario, and the controls we want to

evaluate, properly connected to the backend source in a way that loads them

properly, especially in the case of plotting widgets.

The benchmark application is meant to have two good properties:

1. It should be straightforward to implement, for practical reasons

2. It should stress all the important sides of a real application develop-

ment, in order not to overlook any important weakness of the evaluated

approach or, even worse, to not spot potential show-stoppers in the eval-

uation stage.

Those two parameters defined the final design of the app.

13

Evaluation Outline

2.3.1 The Interface

The interface of the test application, shown in the figures, was meant to test

some of the most common used component in our control system’s GUI.

First of all, basic widgets like labels were introduced, along with some

basic customization such as color, font, font size, etc. Then, the interface was

divided into two section by means of a tab pane: a crucial element in many

applications, as the screen surface available for each app is often limited, and

space usage must be maximized.

Figure 2.1: Tab ”Plot” of the benchmark application

The tab pane has two tabs that focuses on different widgets. In the first

one, the main component under inspection is the plotting widget, which is

14

2.3 The Benchmark Application

crucial with respect to the purpose of our evaluation. Alongside the plot, a

slider was added to test basic plot interaction capabilities.

The slider is also crucial to benchmark visually the plot capabilities under

stress. In fact, the data source plugged to the plot is one of the most demanding

found in our backend, publishing batches of more than half a million points

every second. Given that in some cases the plotting widgets were unable to

deal with such a huge batch of data, the slider is introduced to throttle the

incoming amount of points to a level that the widget can withstand.

In addition, the first tab features two combo boxes interacting with each

other basing on the reciprocal selection, and some simple button to control the

slider position and to toggle the data retrieval.

Figure 2.2: Tab ”Controls” of the benchmark application

15

Evaluation Outline

In the second tab, basic interaction between widgets were tested in the

upper part of the tab. To follow, a list widget is added, taking data from the

same source as the first tab’s combo boxes in order to test model decoupling

from the widgets.

In addition, every list entry features a nested context menu, that triggers

a small popup.

2.3.2 The Data Source

The data being rendered in the plot comes from actual equipment of the ac-

celerator’s infrastructure. This makes the benchmarks more meaningful with

respect to our clients’ use cases.

In addition, fetching data from real sources allows us to check whether the

connection with the backend can be performed smoothly and, eventually, how

to improve the integration with it. In some cases such integration was far

from seamless, and it could be a reason for not adopting a specific framework,

regardless of its scoring in the benchmarks.

The selected data source is an LHC device providing data and meta-

data about the beam. The device publishes huge amount of data struc-

tured into properties and fields. Without diving into the details of the na-

ture of the data itself, the specific array plotted in our benchmark is la-

beled LHC.BSRTS.5R4.B1/Image#imageSet and, despite the name, is a one-

dimensional array of integer values. It contains a number of points that varies

between 40 000 and 600 000 points, depending on the machine configuration,

and gets updated at approximately 0.9 Hz.

Other devices publish smallest batches of data at much higher frequencies:

for example, real-time data about the magnetic cycle of the injectors (SPS, PS,

etc...) gets published at approximately 25 Hz. However, such sources publish

one single point per update (the newly read value) and therefore were deemed

less demanding in terms of performance.

2.3.3 Charting performance assessment strategy

Given the design of our application and the nature of the selected data source,

we designed also a small performance assessment strategy for the plotting

widgets.

16

2.3 The Benchmark Application

The test aims at assessing the maximum frame rate (frames per second,

or FPS for short) that the application can possibly render while keeping the

chart updated. The frame rate is deemed sufficient from a minimum of 25 FPS

up, as it means that the interface is responsive and smooth, without showing

any lagging behavior. Between 25 and 15 FPS the application lags, but is still

responsive, while below 15 FPS it becomes unusable and, as we observed, in

general crashes under the rendering load after a few minutes.

In order to assess the frame rate we made use of the slider component in

the first tab. As said, the slider is used to throttle down the number of points

to render and to allow us to manually find the maximum load the application

can withstand. However, it also provides the possibility to test the widget

more rigorously.

The test was carried on as follows. The application was started with one

single series shown in the chart and the slider set to an initial, small value, and

its maximum frame rate was recorded over an interval of 2 seconds. After that,

the slider was moved forth of a fixed value and reassessed for the frame rate over

two seconds. Once the slider reached its maximum value, or the application

crashed, all the values were stored and another run was performed.

In practice, for each technology we performed this test 30 times and aver-

aged the results. The initial value was set at 100 points and the increment was

100 points for less powerful charting widgets, and 500 for more powerful ones.

During the week when the tests were performed, the data source was emitting

an unusual small amount of points (approximately 50 000), which was still

considered sufficient for an initial performance test.

The resulting data was plotted in a FPS/points chart showing average

values and min-max boundaries, in order to assess also the variability of the

results.

In addition, it is worth noticing that the tests were carried on on a vir-

tual machine over a VNC connection. This was done for practical purposes:

physical consoles connected to the accelerator’s networks have a customized

environment which made unpractical to run most of the benchmark applica-

tions, and not many of them were available for extensive testing at this point of

the evaluation. VPCs instead could be managed easily, without involving too

many external personnel, and could receive data just as the consoles would.

Some simpler applications were run on the physical consoles for different

17

Evaluation Outline

tests and the performance difference was indeed not negligible. The results got

from this evaluation are therefore to be considered slight underestimations of

the actual performance of the software, but can still give very interesting and

valuable insights of the scalability of their performance.

2.4 Selected Technologies

Each of the listed technologies has been evaluated separately and compared

according to the same criteria.

They are:

• JavaFX. As said, JavaFX is the current framework my section provides

support for. It is evaluated along with the others to provide a reference

point for the final comparison.

• Qt Jambi The previous major version of Qt, Qt4, had a full fledged

binding with Java called QtJambi. For this evaluation, we tried a few

community ports of such binding on the latest major version of Qt.

• Qt Qt is a very mature and wide framework that support a large variety

of GUI design styles. We evaluated the two main styles:

– QtWidgets Qt allows developers to define GUIs through an XML

file, that is parsed and converted into a source file that can be

imported into the app normally. Application developed in this way

are called Qt Widgets applications. It is the most common, stable

and well-tested approach to Qt development.

– QtQuick (QML) Qt also supports a declarative language, QML,

for GUI design, and embeds a JavaScript engine that can be used

to make the GUI reactive. Therefore, one can design a full fledged

app without having more than a few lines of Qt to bootstrap the

rendering engine, and developing the rest of the app in QML.

We tested QML GUI development in quite a peculiar way: instead

of developing a proper C++ backend, we tried to embed also the

logic in JavaScript, without relying on any ”true” backend.

18

2.4 Selected Technologies

• PyQt5 One of the most popular binding of Qt for Python is PyQt5.

Given that our backend services partially exposes their APIs to Python,

PyQt5 was considered worth an evaluation. Another point in favor of

PyQt5 is the increasing interest in Python arising from our clients, as

well as a general raise in the interest in this language in the scientific

community, and the presence of a big community worldwide.

PyQt5 wraps Qt entirely. Therefore we could test it in two ways:

– A QtQuick PyQt5 app, trying to reuse the same QML file used

for the original QtQuick benchmark app.

– A QtWidgets PyQt5 app, trying to reuse the same .ui file used

for the original QtWidgets benchmark app.

2.4.1 Web Technologies

At this point the reader might have noticed one option that was left out:

Web GUI technologies. ”Going Web” is apparently the main trend for GUI

in general, and the evaluation is also meant to provide more information for

us to stand in favor or against the adoption of Web GUI technologies for the

CERN control system’s frontend.

Web GUIs are becoming more and more relevant as the paradigm moves

from desktop-based application to cloud-based and mobile-based apps. Web

GUIs are fast to develop, extremely flexible, run on every device supporting

a browser and even, in some cases, without (for example, for ElectonJS [105]).

Finding experts for them is quite easy and, due to the fast learning curve, even

most of our customer probably have experience with them, or in any case they

would learn the technology quite fast.

In addition, being the current trend for interfaces, it is guaranteed that

they will continue to develop new features and improve constantly in the next

years, as well as their tooling and all the related technologies.

In our specific use case, Qt got priority for an in-depth evaluation for a

number of reasons:

1. Web GUIs do not offer any serious advantage over any other non Java

library: the binding issue still persists.

19

Evaluation Outline

Figure 2.3: StackOverflow Trends [4] over a 10 years period. Recent numbers

for two popular Web GUI toolkit, AngularJS and ReactJS, completely annihi-

late desktop-based toolkits figures. Not only the exponential growth of the share

of questions per month is staggering, but also the absolute amount of them.

Figure 2.4: Google Trends [5] over a 5 years period. While less impressive

than in the StackOverflow Trends, both Web frameworks shows a solid and

steep growth in interest that seems to have just passed even Swing’s leadership.

Is interesting to notice that this is a plot of Interest over Time, defined as

”search interest relative to the highest point on the chart for the given region

and time.”

20

2.4 Selected Technologies

2. Web GUIs need a browser in order to run. This issue could be avoided by

using the ElectronJS [105] framework: a technology that allows creating

desktop interfaces with JavaScript. ElectronJS is also renowed for being

very hungry of memory, but given that no exploration was done on it, it

cannot be told by experience.

3. Their main development language would be JavaScript, which is con-

sidered a sub-optimal solution. JavaScript, as the name implies, is a

scripting language, interpreted and non typed, not meant to be used to

build complex architecture.

4. The frameworks are short lived. Web technologies evolved very fast in

these year, and even if they overall grow and improve, the single libraries

often become obsolete after a few years only, getting quickly abandoned

in favor of the latest ones. Of course such a quick pace is not suitable

at all for control systems development. They must rely on very stable

technologies that will be supported and running for years, potentially

decades, with no need for replacement.

5. The tooling situation is extremely varied and short lived as well, adding

the overhead of messy development environments, complex deployment

chains, and so on.

The reader might argue that such issues are not any bigger than any of the

drawbacks that adopting Qt may bring. Indeed an exploration of Web GUIs is

not excluded a propri, but simply not deemed more urgent than any other. In

addition, Qt looked much more promising at a first glance, giving us a strong

push into further investigations.

21

Chapter 3

Current State: JavaFX

JavaFX was developed by Oracle as the ultimate Java desktop GUI framework.

It has long been considered superior to its predecessors, like Swing and AWT,

for its clear implementation of the MVC pattern [24] and the effective decoupling

of the visual description of the interface from the application logic.

3.1 Installation and setup

The installation process is quite straightforward. It goes in three main steps:

1. Install Eclipse (or any other Java IDE).

2. Install SceneBuilder [28], the builder tool for FXML files (more on SceneB-

uilder in the Tooling section).

3. Install the e(fx)clipse plugin [18] to wire the two together (or an equivalent

plugin for the selected IDE).

With respect to the first point, CERN provides its users with a Secure

Delivery Center that ships a customized Eclipse distribution and customized

installer. One of the distributions also includes already the e(fx)clipse plugin,

making the process even easier. In case of a custom install, the plugin can be

installed easily through the Eclipse Marketplace.

SceneBuilder has still to be installed separately, but the process is almost

trivial, as SceneBuilder is shipped as a standalone executable that does not

even require an installation [19].

Current State: JavaFX

3.2 Development process

JavaFX development does not add a lot of complexity over regular Java coding.

The only relevant difference is the possibility to decouple the GUI design from

its logic by making use of FXML files.

Best practices guidelines by Oracle [27] suggest to implement an JavaFX

application in this way:

• The View is entirely defined within the FXML file. FXML files are

designed to be able to represent fully any JavaFX Scene Graph and all

its possible features.

• The Controller is a specifically designed Java class whose name is set

into the FXML file in a special attribute of the root node. It has access

to the reference of all the graphic elements with the use of a special Java

annotation, the @FXML tag. Its role is to translate GUI events and actions

into the appropriate Java call.

• The Model is made of POJOs and is ideally decoupled by the View and

the Controller, with the exception of property bindings.

An additional element, the Application, hosts the entry point of the JavaFX

application, loads the FXML files, and accomplishes higher level operations

like startup and shutdown management.

An example will clarify the point. Let’s take our benchmark application’s

base layout: a label on top of the window, and a tabpane below it.

Such structure can be defined in two ways:

1. By instantiating explicitly in the Java code the JavaFX objects and defin-

ing their position into the Scene Graph:

1 BorderPane border = new BorderPane ();
2 Label titleLabel = new Label("Reference Interface");
3 /* ... more label attributes set ... */
4 border.setTop(titleLabel);
5 Label centerPane = new TabPane ();
6 /* ... create and add tabs ... */
7 border.setCenter(centerPane);

2. Or by describing them into an FXML file, with an XML-like syntax:

24

3.3 The application

1 <BorderPane fx:controller="benchmark_app.views.
RootLayoutController">

2 <top>
3 <Label text="Reference Interface" [... more

attributes ...] ></Label >
4 </top>
5 <center >
6 <TabPane [... more attributes ...] >
7 <!-- content -->
8 </TabPane >
9 </center >
10 </BorderPane >

By designing the GUI through FXML, the framework pushes strongly the

developer toward a pretty clean implementation of the MVC pattern. MVC

(Model-View-Controller) is one of the most relevant architectural patterns for

developing clear, reausable and maintainable application, and as such highly

desirable, especially in the context of GUI development.

For a more complete example of a complete MVC implementation, please

refer to the Annexes.

3.3 The application

The resulting application is pretty small and includes only 5 source files:

1. MainApp.java: the entry point of the application

2. RootController.java: the Controller of the application

3. DataSource.java and ComplexObject.java: the Model of the application

4. RootController.fxml: the View of the application.

The MVC implementation is here highlighted, but this is the default appli-

cation structure suggested by most of the documentation and tutorials online,

and also the most effective.

In this specific case, in order to keep the application simple, one single

controller was implemented. However, the application could have been struc-

tured in an even less monolithic fashion by defining one root FXML and two

children FXML, one for each tab. In this way, each tab would have had its

own controller and could, in theory, be reused.

25

Current State: JavaFX

Figure 3.1: Benchmark App’s Class Diagram for the JavaFX implementa-

tion.

26

3.3 The application

Figure 3.2: Vanilla JavaFX applications have a pretty good looking interface,

but they are quite poor with respect to charting.

3.3.1 Charting

What is most surprising about the final product is the charting performance.

A naive JavaFX application, developed according to the tutorials and howtos

available online, ends up including a good looking, but low-performance chart.

For four series, the chart could not be pushed into rendering more than 2000

points per series, which is almost 300 times less than the target data source’s

size.

This problem is actually known. A paper [29] from some former members of

my section already deals with the matter of implementing all the features that

are missing from JavaFX charts in order to meet CERN basic requirements.

With respect to the specific issue of the number of points, their solution is

quite interesting: they simply reduce the number of points to be plotted using

a smart algorithm that preserves the signal’s shape. This is done by extending

the basic JavaFX ObservableList class into a DataReducingObservableList

class that reduces the dataset every time it is updated. As for the paper,

the reduction is performed using the Ramer-Douglas-Peucker algorithm, but

27

Current State: JavaFX

custom data reducing algorithms can be plugged in at need.

This is a good showcase of the amount of effort CERN already poured

into JavaFX development. The extension library removes the problem of big

data sources entirely and enables the users to visualize as many points as they

receive.

It is worth noticing, however, that even extended, JavaFX charting still

does not match what was possible with the previous framework, Swing. CERN

has a very long history of GUI building in Swing. A very large number of

custom components have been developed over the years to cope with different

use cases, especially with regard to charting.

A very prominent example is the so-called JDataViewer library [20]. It is

a Swing library specifically designed to implement all CERN’s required cus-

tomization in terms of charting and, indeed, provides a staggering amount of

features for very complex charting use cases [21].

The current direction for GUI development, now under evaluation, was

to proceed in this direction and make JavaFX closer and closer to its Swing

implementation.

3.4 Tooling

In the case of JavaFX, the GUI design is made easier by a tool called SceneB-

uilder [28].

SceneBuilder is a software that allows developers to design their GUI using

a graphic interface, leaving to the software the task of generating an FXML

file that can then be loaded into a JavaFX application. In a real case sce-

nario, developers do not need to write any XML code, and may even not be

really aware on how does it look like, because SceneBuilder takes care of its

generation, validation, and binding with the relative Java backend.

From a user perspective, SceneBuilder qualifies as a RAD application, set-

ting quite a high standard for competing frameworks under the tooling point

of view.

In addition, our team developed a few custom integration to SceneBuilder,

meant to provide an integration with our custom components.

28

3.5 Documentation

Figure 3.3: SceneBuilder’s interface.

3.5 Documentation

The documentation for JavaFX [22] is in general complete and up-to-date. It

is maintained by Oracle and integrated with a good number of tutorials and

how-to-s, making the overall situation very positive. The Javadoc for method

and classes is also quite complete and in general of good quality.

With respect to CERN’s JavaFX custom components, the situation is a

little less positive. Javadoc is present, even if lacking for some components,

and partial documentation and how-to-s are present in CERN’s Wiki pages,

but it is still far from complete and, in some cases, even outdated or left

undone.

3.6 Outcomes

JavaFX is strongly oriented toward a clean implementation of the MVC pat-

tern, even if it does not enforce it. ”Old-style” GUI design, fully embedded in

the application code, is still possible, even if discouraged.

This flexibility is very useful to help developers moving from a Swing-like

approach to a more modern and decoupled architecture for GUI development.

It also allows, at need, integration with Swing components, something that

29

Current State: JavaFX

proved almost necessary during CERN’s migration to JavaFX, especially with

respect to the JDataViewer library.

In general, JavaFX has no evident drawbacks with respect to CERN’s re-

quirements, apart from the foreseeable lack of support that is going to face.

This makes its replacement very complicated in many ways: first of all, because

of the difficulty to find another framework offering exactly the same features,

and second, because it makes more difficult to justify with our clients the

sudden decision to abandon a very good framework as JavaFX is.

30

Chapter 4

Qt: An Overview

Qt is a C++ cross-platform application framework and widget toolkit. It is

used to create graphical user interfaces and applications that run on various

software and hardware platforms, while still being a native application with

native capabilities and speed. Being at the same time an application framework

and a widget toolkit, Qt can be used to develop both native-looking GUI

interfaces and command-line tools and consoles. [30]

Qt supports various compilers, including the GCC C++ compiler and the

Visual Studio suite and has extensive internationalization support. Other

features include SQL database access, XML parsing, JSON parsing, thread

management and network support.

Qt is currently being developed both by The Qt Company [7], a publicly

listed company, and the Qt Project under open-source governance, involving

individual developers and firms working to advance Qt. Qt is available under

both commercial licenses and open source GPL 2.0, GPL 3.0, and LGPL 3.0

licenses [31]. In 2017, the Qt Company estimates a community of approximately

1 million developers worldwide in over 70 industries [32].

Given those figures, it is easy to see how Qt can be considered a valid

candidate as main GUI framework for CERN’s interfaces development. In the

next paragraphs I am going to outline the main characteristics of the framework

and how it has been analyzed with respect to CERN’s basic requirements.

Qt: An Overview

Figure 4.1: Qt5 SDK Overview

4.1 Framework architecture

Being a very large and comprehensive cross-platform framework, Qt comes

with a peculiar architecture and some specific terminology which is necessary

to understand, or even describe, some of its design choices. Here is a selection of

those which were considered the most important for an introductory overview

of Qt’s structure.

4.1.1 QtQuick versus QtWidgets

Qt is a very mature framework but, in order to keep up with the latest trends,

it has sometimes to perform some potentially heavy changes to its APIs, its

design patterns, and its features. The latest major release indeed shows clearly

the signs of a strong architectural shift with respect to its predecessor, while

retaining the old APIs as a secondary, more old-fashioned way to develop Qt

GUIs.

As of release 4, Qt focused on the approach of designing GUIs using XML

files (with a .ui extension) for the layout and the static definition of the GUI,

32

4.1 Framework architecture

Figure 4.2: Qt Gui Module overview. There are two clearly separate stacks

for GUI design: QtWidgets (with the old QtQuick1 implementation), and

QtQuick2 (with the newly introduced QtWebKit), compatible with OpenGL.

just like JavaFX does. Such XML files are later compiled into source code that

can be imported in the final application.

In Qt 5, instead, the XML solution was made secondary in favor of an even

more decoupled solution (firstly introduced in Qt4.8), based on so-called QML

files (extension .qml). QML files describe the interface in a JSON-like style,

making the file very readable for developers and at the same time very easy

to generate with a tool. These QML files also support scripting languages:

therefore part of the view logic can be implemented directly in the QML file

using Javascript code.

The final result is somehow similar to a Web interface: on the frontend side,

a QML static file made reactive with JavaScript, and a C++ backend, almost

completely decoupled, that communicates with the frontend both through ex-

plicit API calls and through a signal-slot mechanism typical of Qt [38].

One can therefore make a clear distinction basing on the chosen GUI de-

scriptor format. Applications that make use of .ui files are said to be Qt

Widget applications. Instead, applications that make use of .qml files are said

to be Qt Quick applications. Such a distinction will be very useful in the

following chapters, as it is a recurrent choice developers have to make when

33

Qt: An Overview

starting a new application.

4.1.2 Signals and slots

Signals and slots are possibly one of the most prominent features of Qt’s ar-

chitecture. They are language constructs introduced in Qt that makes easy to

implement the observer pattern, which is heavily used to decouple effectively

the interface design from the application logic.

The idea is that GUI widgets can send signals containing event information,

which can be received by other controls using special functions known as slots.

At the same time, the underlying model can send signals upon modifications,

and such signals can trigger actions on the GUI, such as refreshes.

More on this pattern can be read in the documentation [38].

4.1.3 The Meta Object System

One peculiar feature of Qt is the possibility of relying on a number of mecha-

nisms that are generally unavailable to C++ developers. One of them is the

so called Meta-Object System [41]: a set of APIs that provide reflection-like

capabilities in a way that reminds its Java implementation.

Reflection is ”the ability of a computer program to examine, introspect,

and modify its own structure and behavior at runtime” [42]. In Java, reflection

allows inspection of classes, interfaces, fields and methods at runtime without

knowing the names of the interfaces, fields, methods at compile time. It also

allows instantiation of new objects and invocation of methods by name (i.e.

passing the name of the method, as a string, as parameter in a function call

that will invoke that method).

In Qt, a similar behavior is obtained with the help of a separate tool, called

the Meta Object Compiler (moc [35]). The moc tool reads a C++ source file and

it produces another C++ source file which contains the meta-object code for

each of the classes found.

The resulting meta-object provides, first of all, the typical Qt’s signal and

slots mechanism decribed above. In addition to this, meta-objects provide

features like introspection, asynchronous function calls, and many others.

The Meta Object System also allows QML interfaces to access C++ meth-

ods and properties directly. In fact C++ classes can be ”registered” in the

34

4.2 Qt as CERN’s GUI Framework

Meta Object System [33;34] and, if they comply some basic requirements (such

as including the Q OBJECT macro), they will be available to QML interfaces

just as native QML components would.

4.2 Qt as CERN’s GUI Framework

Now that the basic features of Qt have been outlines, let’s examine closely the

main issues we would face integrating it to CERN’s software stack.

4.2.1 A C++ Framework

Qt is a C++ framework. This is, in itself, a major challenge to the inte-

gration between Qt and or backend: Java bindings to C++, and vice versa,

are notoriously complex to setup, far from seamless, and prone to translation

issues among the two languages. This leads to not-idiomatic APIs, complex

error handling or lack of it, difficult or impossible memory management, car-

rying the costant risk of stumbling into dangling pointers generated by the

Java garbage collector, and difficulties in passing objects between the two

languages. Combining these issues with the inherent complexity of a software

like Qt draws a concerning picture on the possibility of using a Qt GUI over a

Java backend [37].

4.2.2 Qt Bindings

Qt’s powerful features has always attracted developers from other languages.

Many companies were willing to create bindings regardless of the inherent com-

plexity of the task, rather than developing new graphic libraries from scratch.

In fact, Qt has a wide variety of bindings nowadays, the most popular ones

being with Python and Go.

Regarding Java, a binding called QtJambi was being actively maintained as

an open source project until 2015, when the release of Qt5 proved too labour-

intense for the community, that dropped the project. Nonetheless, the binding

has been examined and evaluated as a viable option for the integration. Details

of this evaluation are outlined in a separate chapter.

Python bindings instead showed good health, a lively community, and a lot

of activity. The healthiest binding now available, PyQt5, is in fact about to

35

Qt: An Overview

be superseded by an new, official binding provided by the Qt Company (while

PyQt5 is a community project), called Qt for Python, or simply PySide2 [49].

Being PySide2 released in technical preview in June 2018, we considered

safer to test first PyQt5 and to keep an eye on the evolution of PySide2 and

its adoption in the Python community.

In the following chapters I am going to detail how these parallel research

direction progressed so far, and to which conclusions did each of them led.

36

Chapter 5

Qt over Java: QtJambi

GUI development in Java originally relied on Swing, but its limitation were ev-

ident. While Qt provided the possibility to model graphic interfaces with XML

files, Swing has been lacking behind by providing only pure Java solutions, and

therefore being less suitable for developing truly decoupled interfaces.

Because of this gap, a Java binding to Qt was considered very interesting

by a number of companies, and so QtJambi was developed.

Originally backed by Trolltech, QtJambi was later adopted by Nokia and

its development continued until 2009, when the project was open sourced. Qt

was then at its 4.5 release. Despite the decline of desktop app’s popularity, the

community carried on the project until 2015, when Qt was already in its 5.6

version and QtJambi was still stuck to 4.8. Indeed, the port to a new major

release proved too difficult with respect to the low interest in the project, that

was abandoned.

Sporadic tentatives of resurrecting the project were made twice, first by

Omix Visualization [56], and later by Tilialabs [57]. However, none of their code-

bases work out of the box on our local development machines, nor seem ready

for production, so a more in depth analysis of the project and of these last

attempts was necessary.

5.1 Installation and setup

Due to the lack of a working distribution, the installation and setup step was

by far the most time-consuming process. It required us to investigate deeply

Qt over Java: QtJambi

the internals of the binding, in order to fix it and port it to the latest Qt

distribution.

The end user would not be required to go through these stages, once we

manage to fix the binding code and provide a working distribution. In this

case, we would design a specific installation procedure, depending on what is

found necessary to make the binding work.

However, the process required a huge amount of time from our side and, in

case we plan to provide our clients support for this binding, we would need to

invest a sensitive amount of time in maintenance. In order to give a better idea

of the complexity of the task, I will present a quick insight of the technology

that runs the framework.

5.1.1 The QtJambi Generator

Java SDK provides a library called Java Native Interface (JNI) that allows Java

developers to access native code running outside the Java Virtual Machine.

Nonetheless, JNI is pretty complex to use and require a deep understanding

on how both the native library (in this case, Qt) and the Java Virtual Machine

work, in order to make them interoperate. Given the size of the Qt library and

its complexity, a hand-made mapping showed simply impossible to consider,

and also general purpose binders, like SWIG [118], require a huge effort in order

to produce any output.

Therefore the original developers of QtJambi created a tool, called QtJambi

Generator [59], to partially automate the process.

The QtJambi Generator is a tool that parses C++ header files to generate

Java source files and a binding layer based on the Java Native Interface, that

ties Java classes with their Qt/C++ counterparts. In order to generate such

classes, it takes as input a typesystem specification and a header file. The

header is used to generate a tentative Java conversion, following general rules.

The typesystem instead is used as a ”patch file” to correct both the generated

Java source code and the underlying JNI calls.

While the generation is automatic, the typesystem file must be handwritten

and should handle all the corner cases in which the generator may fail to

produce meaningful output. This is indeed the most labor expensive part

of the binding generation, as well as the most complex. An article from Qt

38

5.1 Installation and setup

Quartely [37] details all the underlying complexities of the binding, and how the

typesystem is meant to cope with them.

Additional information and example on how the QtJambi Generator works

can be found in the documentation [62;63] on the matter, which also provide a

few comprehensive examples of its usage [64].

5.1.2 Actual installation process

The effort required to bring QtJambi to the modern era is in fact too big

and requires a set of very specific skills that are missing in our team, namely:

strong C++ coding skills (our team is composed of Java developers), deep

understanding of the JNI and also a good understanding of how the generator

itself works under the hood.

In order to compensate for this lack of know-how, I got in contact with the

latest company who took care of modernizing the binding: Tilialabs [60]. It is

a small Canadian printing company who relies on Qt to provide their printing

software interface while using a Java backend.

Their attempt to use QtJambi was indeed successful and provided a work-

ing binding between Qt5.6.2 and Java, over Windows 10 and Mac OS. Upon

request, they also provided working binaries that could eventually be run by

us as well. However, reproducing the same result on our Linux systems was

not possible, neither it was to use the same procedure to provide a binding for

more recent Qt releases (namely, 5.10).

Even the installation process of the provided Windows binaries was not

straightforward.

The package came without the native libraries needed for it to run. In

order to make it work, we needed to guess the necessary folder structure and

the correct .dll to place nearby the provided jars. Such .dll came from a few

different locations in our local Qt installation (which had to be the same exact

version as the one they compiled QtJambi with) and were placed alongside

the jars and into subfolders like ”platform” and ”plugin”. We still are not

completely sure we added all the required files, and whether some of them are

redundant, as this implies a big number of trial-and-error runs of an application

which is complex enough to trigger the entire library (and that we did not

have).

39

Qt over Java: QtJambi

For a more detailed description of the deploy layout, please refer to the

Annexes.

5.2 Development process

Once the underlying software has been setup, QtJambi coding does not add

too much complexity over regular Java coding. Just like in JavaFX, QtJambi

offers different options to the developer: a monolithic Java-only definition of

the GUI, or its decoupling through an XML file, or even the possibility to use

QML.

This is, at least, what the documentation says. Our binding was not actu-

ally able to load QML files, because the providers of the binaries did not need

the QtQuick module and did not port it. We could not get to have a working

version of the juic compiler to try generating Java code from Qt Designer.

Eventually we could get only a small, Java-only minimal demo of a working

application, as a proof that the Qt core internals were actually ported: but

nothing more.

If the binding was being correctly generated, the overall experience would

have been quite fluid: however, such a result could not be achieved.

5.3 The application

The only application we could produce was nothing more than a minimal

”Hello World” example application. Developing anything close to our target

benchmark was eventually impossible.

The resulting application is limited to the following small snippet.

1 package qtjambi5;
2
3 import org.qtjambi.qt.gui.QFont;
4 import org.qtjambi.qt.widgets.QApplication;
5 import org.qtjambi.qt.widgets.QPushButton;
6 import org.qtjambi.qt.widgets.QVBoxLayout;
7 import org.qtjambi.qt.widgets.QWidget;
8
9 public class QtJambiHelloWorld extends QWidget {
10
11 public QtJambiHelloWorld (){
12

40

5.3 The application

13 // Setup the button "Say Hello"
14 QPushButton hello = new QPushButton("Say Hello!", this);
15 hello.setFont(new QFont("Times", 18, QFont.Weight.Bold.

value ()));
16 hello.clicked.connect(this , "sayHello ()");
17
18 // Setup the button "Quit"
19 QPushButton quit = new QPushButton("Quit", this);
20 quit.setFont(new QFont("Times", 18,
21 QFont.Weight.Bold.value ()));
22 quit.clicked.connect(QApplication.instance (), "quit()");
23
24 // Setup the window
25 QVBoxLayout layout = new QVBoxLayout ();
26 layout.addWidget(hello);
27 layout.addWidget(quit);
28 setLayout(layout);
29 setWindowTitle(tr("Hello World!"));
30 }
31
32 // Callback to react to user inputs.
33 public void sayHello () {
34 System.out.println("Hello!");
35 }
36
37 // Starts the application
38 public static void main(String args []){
39 QApplication.initialize(args);
40 QtJambiHelloWorld widget = new QtJambiHelloWorld ();
41 widget.show();
42 QApplication.execStatic ();
43 }
44 }

Listing 5.1: HelloWorld.java

Figure 5.1: Nothing more than a very small Hello World example was con-

sidered reasonably possible with this library.

41

Qt over Java: QtJambi

5.4 Tooling

In theory, the tooling for QtJambi is the same for standard Qt development

(which will be described in more detail in the following chapters). QML files,

if they could be used, would have been developed with QtCreator; .ui files

could be edited with Qt Designer; while the actual coding could be carried on

in any Java IDE, for example Eclipse.

The integration among the tools however is almost non-existent. A plugin

for Eclipse was available [65] but is now completely unusable.

It is known that the uic compiler was ported into its Java counterpart, the

juic compiler, that however we could not get to work with Qt5.

A deeper inspection of the tooling was not considered worth, due to the

state of the software itself.

5.5 Documentation

What is truly impressive about QtJambi is the accuracy of the documentation.

Being a dead project, one could expect the documentation to be the first thing

to die out: instead, one can still find plenty of tutorials, how-to-s, examples,

and a couple of official websites still available: the old official documentation [55]

and the community one [54].

The amount of available documentation was actually one of the main reason

why the inspection of QtJambi was carried on in the first place.

5.6 Outcomes

The preliminary inspection of the state of the software confirmed the impres-

sion of a well developed, solid binding among Qt4 and Java. The documen-

tation is still present and accurate, and a number of tutorials exists and are

up-to-date with the latest release (with a few discrepancies). The tooling

also was solid: a specific plugin for the XML designer was developed in order

to compile the .ui files with the juic compiler [58] (the Java counterpart of

the uic compiler [40]), building a comfortable development environment which

matched closely the C++ one.

42

5.6 Outcomes

Figure 5.2: The official documentation

Figure 5.3: The community documentation

43

Qt over Java: QtJambi

However, although the binding itself was well developed, it does not work

at all with the latest version of Qt. In addition, there is no community behind

it at the moment, which makes its adoption a risky choice for a company that

intends to rely on this technology for many years to come. Therefore, even

if the inspection of QtJambi and its compatibility with different Qt5 releases

started with good expectation, it failed to produce any result, and has to be

considered negative.

44

Chapter 6

Qt Widgets

The most basic way to design interfaces in Qt is by defining them in the code.

Such an approach is very solid and gives the developer full control over the

application, but it gives also a lot of responsibility into building well-structured

apps and is quite a time consuming process, because in order to have a preview

of the interface, the entire application has to start up.

In order to offer a practical solution to prototype the interface, Qt offers a

way to design GUIs in a graphical way, without writing any code. This tech-

nique did not mean to be very far from the original, code-heavy way to generate

interfaces: it simply generates the necessary code from an XML description of

the interface, which was in turn generated by a tool.

Applications produced with this XML-based approach are called Qt Widget

applications and are developed entirely in C++. Qt Widget applications are

probably the most stable way to develop Qt-based interfaces, and the one that

offer the highest guarantees for the future.

6.1 Installation and setup

The installation process of Qt is in general straightforward. Qt provides many

distributions to suit different needs: online installers, offline installers, source

packages, and a few other distributions for more specific use cases [43;44]. Pre-

built binaries comes for all the supported platforms, Android included, while

the source install is modular and allows users to customize heavily the Qt

installation to their needs.

Qt Widgets

Figure 6.1: Qt’s installer can also be used after the installation to add,

remove or update Qt components, given that a network connection is available.

For this application we used one of the mainstream way of installing Qt,

that is the offline installation. The online installation was not possible in

this specific context, as the machines that can access accelerator’s data are

often not connected to the Internet, but only to the so-called CERN’s Trusted

Network.

Once the offline installer was moved onto the target machine, the instal-

lation process consisted simply in following the wizard’s instructions. It also

allowed some customization of the distribution, even though to a much more

limited degree than a source install, and forced the installation of QtCreator,

which is not strictly needed for Qt Widget applications.

In the future we plan to provide Qt and all the required tooling pre-installed

and pre-configured on every development machine, in order to have a standard-

ized environment to offer support for.

46

6.2 Development process

6.2 Development process

The development process, as expected, was much more painful than with any

of the other approaches under test. Being a team of Java developers, none of

us was especially skilled in C++ development, especially in using the latest

C++11 and C++14 features Qt offers support for.

In addition to this difficulties, Qt is a very complex and large framework

that goes as far as defining custom ”visibilities” for class methods, that can be

defined private, public, but also signals and slots. The number of macros

involved in standard Qt development is also very high and, having no expertise

in the domain, understanding them was far from trivial and sometimes lead

to some kind of ”cargo-cult” behavior from our side, for example for the ”all

mighty” Q OBJECT macro.

The following header, coming from the DataSource class, should give an

idea of which kind of challenges Qt development presents to its users.

1 #ifndef DATASOURCE_H
2 #define DATASOURCE_H
3 #include <time.h>
4 #include <QtCore/QObject >
5
6 class DataSource: public QObject {
7 Q_OBJECT
8 Q_PROPERTY(int* data MEMBER m_data NOTIFY dataChanged)
9 Q_PROPERTY(float updates_frequency READ updatesFrequency)
10 Q_PROPERTY(bool update_series MEMBER m_update_series NOTIFY

updateSeriesChanged)
11
12 private:
13 int* m_data;
14 bool m_update_series;
15 int m_datasource_updates_count;
16 time_t m_start_time;
17 float updatesFrequency () const;
18
19 public:
20 explicit DataSource(QObject *_parent = nullptr);
21 int* data();
22 void dataReceived(int* newData);
23
24 signals:
25 void dataChanged(int* newData);
26 void updateSeriesChanged(bool newUpdateSeries);
27 };
28 #endif // DATASOURCE_H

Listing 6.1: DataSource.h

47

Qt Widgets

6.2.1 Qt’s Meta Object System

One of the first interesting features of the above code is probably the

Q PROPERTY macro. It is used to add custom Qt properties to the QObject:

that is, members that emits signals upon changes. A preliminary description

of Qt properties, signals and slots concepts was given in the Qt introduction

in Chapter 4, and these properties will also be used heavily in the QtQuick

application, but here we can see the very definition of it in the code.

The syntax of the Q PROPERTY macro can vary a lot. In the general case,

a property gets defined by giving it a type and a name. Usually it is also

associated with a member of the class with the MEMBER label, but this is not

always the case: for example, the updates frequency property has no mem-

ber, but it gets recalculated when required. To define this, it gets a READ

label and passes to the macro a pointer to the ”getter” function. Editable

properties can provide also a setter function with the WRITE label. Many other

labels can be passed to the macro: for more information, please refer to Qt’s

documentation on the matter [39]

Interestingly, the last Q PROPERTY macro has a NOTIFY label that points

to the DataSource::updateSeriesChanged() method which, in turn, lays

under the signals keyword in the header’s body. This brings us to the next

interesting point: Qt’s custom keywords.

Signals are specific features of the library that relates to Qt’s most pow-

erful feature, the Meta Object System. It was also already outlined in the

introduction to Qt and indeed is an extremely complex system to understand

for a non C++ developer. To understand it, one has to go beyond simple code

reading, and has to pay attention to the build process itself.

The build process of a Qt application starts earlier than in a normal C++

application. The first process to run is qmake, a tool that comes with the Qt

installation and automatically compiles a Makefile for the app. After qmake

has run, make processes the resulting Makefile which, in turn, does a lot more

than simply compiling and linking the application. It sends all the header files

through the Meta Object Compiler (moc for short), which generate some more

source code files, the so-called meta objects. These meta objects are produced

by processing all Qt’s custom keywords and macros, and their purpose is to

handle all the wiring between signals, slots, and properties. Only when all

48

6.2 Development process

these steps are complete, all the source code is compiled, linked and eventually

executed.

While in QtQuick this machinery is mostly hidden (as we will see in the

dedicated chapter), in Qt Widgets applications it is much more directly ex-

posed. This puts developer in the position of having to understand how the

meta object’s code gets generated and, when it fails to compile, how to modify

their own source code in order for the Meta Object Compiler to produce valid

C++ code.

6.2.2 GUI Design

What we described so far is just the building process of a model class.

As said in the introduction, the actual GUI is not designed by writing code,

but with a graphical tool called Qt Designer, which we will describe better in

the dedicated section. Qt Designer is very straightforward to use to design the

graphical side of the interface: by drag and dropping widgets on a canvas, the

developer can easily generate an XML file that is compiled into C++ code by

a tool called uic (User Interface Compiler) just before qmake is run.

However, Qt Designer cannot fully design the behavior of the interface,

that must be coded by the user. In order to bind the interface to the backend,

the developer has to extend the MainWindow class generated by uic and write

code that, also in this case, to leverage heavily another Qt’s core feature: the

connect method of QObjects.

1 // Name -changing button
2 connect(
3 ui->pushButton_2 , &QPushButton ::clicked ,
4 [&](){
5 ui->pushButton_2 ->setText(ui->lineEdit ->text());
6 }
7);

Listing 6.2: Snippet from mainwindow.cpp

The Qt documentation tends to describe connect statement as a quite

simple feature. Their aim is to connect an ”emitter” object to a ”receiver”

object by connecting a signal to a slot. Therefore, the usual syntax of a

connect statement should be:

49

Qt Widgets

MainQObject::connect(qObjectA, QObjectA::aSignal, qObjectB,

QObjectB::aSlot);

However, often developers want to connect an object to a method that is

not a slot, or that is not compatible (for example, it takes a QString while the

signal emits an int). In this case, as shown above, the syntax becomes:

MainQObject::connect(qObjectA, QObjectA::aSignal, [](){ /*

... code of the lambda ... */ });

However, lambda coding in C++ is far from trivial for inexperienced devel-

oper and, in our case, made the entire wiring process extremely time consuming

and nearly impossible to debug. We had, eventually, to ask support to C++

developers from other departments, to give at least some general advice on

how to properly use lambda expressions and function pointers in a way that

was, at the same time, compiling in our application and in the moc-generated

source files.

6.2.3 Build Process

To sum up all these steps, every time users want to build the application they

have to:

1. Run uic to compile the .ui files generated by Qt Designer into C++

code.

2. Run qmake to parse the project folder and generate a proper Makefile.

3. Run make to launch the build process, that in turn:

(a) Invokes the moc to generate the meta objects for all the header files

found

(b) Compile and link all the generated sources

4. Run the application

None of the above step is trivial and each of them can fail in obscure

ways, making the development experience time consuming and, for a beginner,

especially frustrating. These aspects may sound completely secondary, but the

reader should consider that we are supposed to ask non-developers to produce

their GUIs using this technology, and in the general case, they have pretty

weak coding skills and no C++ experience at all.

50

6.3 The application

6.3 The application

Given the problematic development process and the lack of expertise in C++

development, it should be no surprise for the reader to learn that we failed to

produce a fully working application in the allocated time. A lot was learned

from the process and most of the progress was actually made in the very last

days of development. However, the learning curve was absolutely too low

and, even at that point, the development was too slow and error-prone to be

considered viable for non-programmers to learn.

This also prevented us from properly assessing the performance of Qt’s

charting library with Qt Widgets, which was the one supposed to be the fastest.

However, as we are going to describe in the chapter dedicated to PyQt5, we

managed to obtain a working Qt Widgets application through the Python

binding and assessing that one for its charting performance. Assuming its

C++ version can reach the same performance, if not even higher, charting in

Qt Widget application poses no performance problems at all.

6.4 Tooling

As said in the Installation and Setup section, Qt enforces the installation of

its own IDE, QtCreator. However, the only tools which are really required for

Qt Widgets development are Qt Designer and the UI Compiler

Qt Designer is a software whose sole purpose is to allow developers to

design their interfaces by drag-and-dropping widgets on a canvas. It generates

automatically an XML definition, the .ui file. This file can be then processed

by uic, the User Interface Compiler, to generate a source file that can be

included in the application and extended at will.

From this perspective, Qt Designer offers a much more limited set of fea-

tures comparing to QtCreator: more than an IDE, Qt Designer is more like a

simple editor for .ui files. However, this approach provides more flexibility:

indeed Qt Designer can be easily paired with any modern C++ IDE to act as

an external editor, leaving the developer free to use their own favorite C++

development environment to create Qt application. From this perspective, Qt

Designer resemble closely JavaFX’s SceneBuilder.

51

Qt Widgets

Figure 6.2: QtDesigner’s interface

6.5 Documentation

In general, Qt documentation is very complete, comprehensive and up-to-date.

Even considering the size of the API and the amount of features to be doc-

umented, the documentation is easy to browse and well supported by the

community itself, that adds a huge amount of unofficial tutorials and Stack-

Overflow answers to the already exceptional docs.

Content-wise, nothing crucial was found missing: the doc includes tutorials

for all the tools and integration with many third-party software, best practices,

and features a very large quantity of examples and commented examples.

A Qt Wiki [47] also exists, but is in general a little more outdated and messy.

6.6 Outcomes

Qt Widget’s evaluation produced somehow contradictory results. The technol-

ogy itself is very solid, powerful and stable. Documentation is comprehensive,

complete and accurate. The tooling is complex, but works smoothly and is

open to customization and integration with external tooling, providing a few

different, equally working workflows. The installation process is straightfor-

ward and every step of the development, installation, maintenance, deploy-

52

6.6 Outcomes

ment, are covered both by the documentation and by extensive amount of

forum threads and StackOverflow questions.

However, the problem is on our side: we have no C++ development skills

and it is not reasonable to assume that our users would acquire such skills

either. While the hard features of the framework are exceptional, the Qt

Widgets approach lacks almost all the soft features required for a successful

integration into our software stack: not only from a technical perspective, but

mainly for a ”human” factor.

For this reason, we concluded that a pure C++ Qt development of our

GUIs is not a valid replacement for JavaFX-based GUIs development.

53

Chapter 7

Qt Quick: QML & JavaScript

Apart from the classic Qt Widgets approach, Qt offers more decoupled ways

to implement GUI applications.

The QtQuick technology aim to achieve perfect decoupling between the

interface and its underlying model. In order to reach this goal, they are made

of some C++ classes, building up the model, and QML declarative files that

describe the GUI. At startup, these QML files are processed by a C++ com-

ponent called QML engine [81] that translates them dynamically into a user

interface. In this way the developer obtains an architecture which adheres

pretty well to the MVC pattern:

1. a declarative QML View, with its own internal wiring written in

JavaScript,

2. a C++ Controller exposing slots that can be called from the view,

3. a reactive Model that exposes properties and emits signals upon changes.

This is indeed the suggested way to use the framework and the one which

offers the most options to developers. However, another design can be envi-

sioned on top of these three main elements: one which relies much more heavily

upon the QML engine and its JavaScript execution capabilities.

The original purpose of JavaScript support in QML is to implement internal

reactive behaviors in the interface without cluttering the backend with any pure

frontend logic, like animations and graphic feedback. However, JavaScript can

be leveraged to execute much more complex code, as the engine can execute

any arbitrarily long script. It even supports external libraries imports [82].

Qt Quick: QML & JavaScript

Therefore, we considered worthwhile exploring the possibility of embed-

ding the entire application logic into a well-structured architecture of QML

and JavaScript code, and then to eventually provide an interface between

JavaScript and Java.

Such a design would provide us with a few advantages, especially from

the perspective of the ease of development, because the users are no more

required to code the backend of their applications in C++, but in QML and

JavaScript. Concerns instead focuses on the actual performance that the QML

engine could achieve under a load it was probably not designed for.

7.1 Installation and setup

The installation process is exactly the same seen for Qt Widgets applications:

the same distribution can be used to develop both kind of applications. The

only difference is that QtQuick requires some extra modules and components,

but in a default installation process (that is, using pre-build binaries for the

target system) the degree of configuration of the installation does not allow to

add or skip such low-level components.

For this application we used the same installation used to develop the Qt

Widgets application: in fact, having installed Qt with the offline installer, we

could not prevent it from installing also all the Qt Quick tools and components.

7.2 Development process

The strongest advantage of QtQuick development lies in the development pro-

cess itself. Being a declarative, JSON-like language, QML is very readable,

easy to hand-write and to generate alike, and has a pretty comfortable learning

curve comparing to many other programming languages.

A very small example will showcase the point. The following snippet simply

defines the structure of the main window of the benchmark application, that

is, the window that contains the top label and the tabs. Some property

settings were omitted for brevity.

1 import QtQuick 2.9
2 import QtQuick.Window 2.2

56

7.2 Development process

3 import QtQuick.Controls 2.4
4 import QtQuick.Layouts 1.11
5
6 Window {
7 id: window
8 visible: true
9 width: 480
10 height: 640
11 title: qsTr("Benchmark Application")
12
13 Label {
14 id: labelTitle
15 color: "#0057 c4"
16 text: qsTr("Reference Interface")
17 /* ... other properties ... */
18 anchors.left: parent.left
19 anchors.leftMargin: 13
20 anchors.top: parent.top
21 anchors.topMargin: 13
22 anchors.right: parent.right
23 anchors.rightMargin: 13
24 }
25 TabBar {
26 id: tabBar
27 /* ... anchors ... */
28 TabButton {
29 id: tabBtnPlot
30 text: qsTr("Plot")
31 }
32 TabButton {
33 id: tabBtnControls
34 text: qsTr("Controls")
35 }
36 }
37 StackLayout {
38 /* ... anchors ... */
39 PagePlot {}
40 PageControls {}
41 }
42 }

Listing 7.1: Main Window QML Definition

The snippet shows a few interesting features of QML. The most evident

one is its readability, especially with comparison to an XML file. With the

readability comes clearly also the ease of coding it by hand: editing QML files

requires almost no code completion at all.

7.2.1 Layout System

Other more technical features are showcased here. One is the layout system,

which is based on the concept of anchors. The anchoring system is just one

57

Qt Quick: QML & JavaScript

of the many layout techniques available, but is the one that provides at the

same time more control and flexibility. It assigns to every widget 6 edge-

shaped anchors (top, left, bottom, right, vertical center, horizontal center):

each of them can be paired with any other anchor in the scene by fixing their

distance. The achieved result is that, on window resize, widgets grow or shrink

in a meaningful way, while their relative distance stays fixed.

Such a layout style is very effective: however, we noticed that it is not

as straightforward to digest for developers that come from XML based layout

systems. JavaFX and, as we will see, QtWidgets, are based on the concept

of layouts as containers that automatically rearrange and resize their children

at need. Such containers are nested in order to achieve a grid layout, or even

more complex configurations.

In QML, this overhead would reduce strongly code readability, and so it

was replaced with the anchoring system. This paradigm shift is indeed one of

the only difficulties that former JavaFX developers might face while learning

QML.

7.2.2 QML Components

In the snippet is also clearly visible how QML manages its own components

and custom ones. The import statements for example are heavily modularized

in order to let the users import only what is strictly needed in their script.

However, the most interesting point regards custom components loading.

At line 30-31 QML declares two custom components that represent the tab’s

pages, PagePlot and PageControls. They are not imported anywhere and

do not need so, because the QML Engine automatically imports all QML files

that are in the same folder as the executed ones, and let the user load them

by simply stating their name.

Other import strategies are of course available, but this is a clear example

of how minimal QML code tends to be.

7.2.3 JavaScript Code

In the above snippet there is not any JavaScript. The usual way of embedding

JavaScript looks like the following:

58

7.2 Development process

1 Button {
2 id: buttonRefresh
3 text: qsTr("Stop Refreshing")
4 onClicked: {
5 if(buttonRefresh.text == "Stop Refreshing"){
6 buttonRefresh.text = "Start Refreshing";
7 } else {
8 buttonRefresh.text == "Stop Refreshing";
9 }
10 dataSource.update_series = !dataSource.update_series
11 }
12 }

Listing 7.2: ”Stop Refreshing” QML Button Definition

The onClicked property is actually a Qt slot : whatever is connected to it

gets executed as soon as the clicked signal fires from the button widget.

Users can perform one-line JavaScript method calls (like onClicked:

toggleText()), or define short anonymous functions (like the above).

JavaScript methods can be embedded in the object itself or in external source

files.

7.2.4 JavaScript Host Environment

Although it can run JavaScript code, QML provides a JavaScript host environ-

ment tailored for writing QML applications [83]. This environment is different

from the host environment provided by a browser or a server JavaScript envi-

ronment such as Node.js: for example, QML does not provide a window object

or DOM API as commonly found in a browser environment, but it provides a

global QML object that exposes functions such as qsTr() for internationaliza-

tion, the console object, etc [84]. It also applies a few additional restriction,

such as the impossibility to modify the global object [86].

Due to this fact, some commonly used functions and objects are not avail-

able in the QML engine. A complete list of the available ones can be found

in the documentation [85]. The issue in this case is related to the increased

difficulties of finding JavaScript libraries that make use only of the available

features. In addition, every JavaScript feature that is not in the ECMA-262

specification [87] is not supported by QML.

Another point of concern is due to the fact that the QML engine provides

optimization mostly for the so-called short bindings, simple assignments of

values or single function calls to the backend, which are supposed to be the

59

Qt Quick: QML & JavaScript

most common use case for JavaScript in QML. However, the QML environ-

ment provides also tools for multithreading, like worker threads [88] and similar

features.

7.2.5 Charting

Since Qt5.6 [94], Qt includes by default what used to be an add-on, called

QtCharts. It provides all the typical functionalities of a charting library, so

different types of graphs, plotting, plot interactions, multi-series charts, and

many more [95]. The library, however, is unexpectedly bad developed.

As some experienced developers says on official Qt forums, ”QtCharts is

one of the worst developed modules of the entire Qt” [98], and its porting into

QtQuick just made everything worse. The QML module indeed features a

great amount of negative aspects, namely:

1. Inconsistent API. An example: LineSeries (points are edges of a line) and

ScatterSeries (points are dots on the chart) have a .clear() method to

remove all the points. Instead, AreaSeries (same as a LineSeries, but

filling the underlying area with color) does not. This happens because,

for obscure reasons, an AreaSeries does not inherit from XYSeries as

LineSeries and ScatterSeries do [99;100].

2. Counter-intuitive API. An example: suppose the user wants to have

the Y axis of a plot showing up on the right side, instead than on the

left. Qt’s ValueAxis have a property called alignment, which cannot

be assigned. The chart main object, ChartView, has no reference to the

position of the axis either. The correct way is to set a specific property,

axisYRight, on all the chart’s series. Funny enough, this property is

exposed only if the series are declared in QML, and not if they are gen-

erated dynamically [101]. In this last case, one must provide a dummy left

axis that is automatically thrown away after the right axis has been set.

3. Missing functionalities. An example: on the most basic chart’s axis

type, ValueAxis, the position of ticks cannot be controlled. On the most

advanced one, CategoryAxis, ticks must be added manually, and have

to be added from the smaller to the larger. Any other operation fails

silently without drawing the tick [102]. In either case, the user has no

60

7.3 The application

control whatsoever on the minor ticks of the grid, because CategoryAxis

does not have the possibility to draw minor ticks at all.

The list of all these trivial issues is very long and gets longer and longer

the more the users try to customize their plots in a way that is a little non

standard, especially for moving plots.

Moreover, being QML a fairly new paradigm for Qt and still subject to

heavy development, no other plotting libraries seems to be available to date.

7.3 The application

Figure 7.1: QtQuick application has a very modern look and feel and can be

styled to look native on most platforms, but shows poor charting performance.

The application itself runs smoothly and has a very pleasant, modern look.

All the target controls were implemented without big problems using a mix of

QML and JavaScript.

One interesting aspect of this paradigm is that the GUI definition and its

internal, small logic are decoupled, but not from a language perspective. While

MVC is still being used also to wire up the GUI reactive behavior (up to a

61

Qt Quick: QML & JavaScript

certain degree), all the three layers of the architecture are written in QML and

JavaScript together.

An example is the model. The application’s model is made of two objects:

a small DataSource object, that fetches the data from the backend to populate

the graph, and a ListOfObjects, that simulates a larger model and populates

the ComboBoxes and the ListView. Both of these classes are first declared

in QML, and then they are extended with a few JavaScript methods to

define their behavior. This allows us to make use of Qt’s features and APIs

from inside JavaScript, but also makes the code much clearer. Let’s take

DataSource.qml as an example:

1 Item {
2 signal dataReceived;
3 property var dataset: []
4 /* ... more properties ...*/
5 function connect (){
6 dataReader.subscribe("LHC.BSRTS .5R4.B1/Image#imageSet", "",

"")
7 }
8 function disconnect (){
9 dataReader.unsubscribe("LHC.BSRTS .5R4.B1/Image#imageSet", "

", "")
10 }
11 Rda3QtDPA {
12 id: dataReader
13 onRdaDataAcquiredChanged: {
14 /* ... more code ... */
15 dataReceived () // This call triggers the parent ’s signal
16 }
17 }

Listing 7.3: DataSource.qml

The above class does not have any graphic impact on the application: it

is completely a Model class from an MVC point of view. However, it can

still be defined in QML and this allows us, in the onDataAcquiredChanged

slot, to emit a Qt signal that will be received by the graphical observer’s and

subsequently rendered.

Controller’s methods like .connect() and .disconnect() are added to the

class for convenience, but they can be easily moved into a dedicated controller

class at need.

With respect to charting, we also got non satisfactory outcomes. By making

use of the QtCharts library according to tutorials and its own APIs design,

62

7.3 The application

Figure 7.2: Charting performance of a QtQuick application. Due to the

repainting issue, the frame rate drops quickly to zero once we try to render

more than a few thousand points.

even after careful tuning and code reviews, the performance we obtained was

quite poor: the application was not able to render many more point than a

plain JavaFX application, so a few thousands of points only. However, in the

documentation of QtCharts, we found that the library should be very powerful

and able to render even a few hundred thousands points.

After careful inspection of the situation and some research, we eventually

managed to identify the bottleneck while developing the Python version of the

benchmark. The concept is that a QML application redraws the chart every

time it is notified of a change from the LineSeries’ underlying model. However,

the APIs exposed to QML are not the full C++ APIs: this means that the only

way to modify the LineSeries model is by calling the .append(x, y) method,

that adds one single point. A .clear() method is also available, but direct

access to the model is not possible, nor a .replaceAll() method exists.

In practice, this means that the LineSeries’ model will emit a pointAdded

signal at each append, and that the chart will be redrawn at each append.

This procedure clearly does not scale, but no other way to update the

63

Qt Quick: QML & JavaScript

model was found.

7.4 Tooling

To edit QML files and develop QtQuick application, Qt provides a custom IDE

called QtCreator [45]. In fact, QtCreator allows the developer both to produce

QML files by hand or by drag-and-dropping widgets on a canvas, and to write

C++ code by providing code completion capabilities, a debugger, a compiler,

a QML profiler [46], and similar features.

Figure 7.3: QtCreator’s QML editing mode

While QtCreator may look superior to SceneBuilder with respect to the

number of features offered, it is worth noticing that SceneBuilder could be

easily integrated to Eclipse with a simple plugin, thus obtaining a very similar

development environment than the one QtCreator offers. In addition, being

Eclipse a general purpose IDE that can be further extended with many more

plugins, the JavaFX solution may be even seen as preferable.

7.5 Documentation

Qt QML documentation is very complete, comprehensive and up-to-date. It

spans from API description to tutorials for QtCreator, best-practices, and

64

7.6 A Side Attempt: TypeScript

Figure 7.4: Sample entry from the Qt Documentation’s QML Types Descrip-

tion. One can notice from the Content’s side pane that the documentation tries

to leave no detail uncovered.

features a very large quantity of examples and commented examples.

A Qt Wiki [47] also exists, but is in general more outdated and less readable

than the excellent official one. A huge amount of unofficial online tutorial and

StackOverflow answers also helps a lot the development.

7.6 A Side Attempt: TypeScript

The most relevant issue with this concept are the traits of JavaScript itself.

Being a scripting, dynamically-typed language makes it not very suitable to

develop large-scale applications, but the main drawback is the difficulty of

producing high-quality code with it, especially if the task is assigned to less

experienced developers as our customers are.

A suitable alternative is TypeScript: an open-source programming lan-

guage which is a strict syntactical superset of JavaScript and adds optional

static typing to the language.

TypeScript is designed for development of large applications and transcom-

piles to JavaScript, therefore it can be run into the QML engine. The transcom-

piler, tsc, also allow different compilation options in order to adapt to different

65

Qt Quick: QML & JavaScript

JavaScript environment [89], and therefore it can be easily adapted to generate

QML-supported JavaScript code.

A small drawback of TypeScript, from this perspective, is that it accepts

any Javascript code as valid TypeScript code: therefore its restrictions, the

strong typing and all the additional features can be easily eliminated by an

indiscriminate usage of this backdoor. Possible solutions include some com-

piler settings that would make it stricter with the allowed JavaScript, but

nonetheless, this potentially dangerous flaw remains.

7.6.1 Node.js Modules

The most common use case for TypeScript is server-side development. Indeed,

one of the biggest frameworks supporting TypeScript is Node.js, an asyn-

chronous event driven JavaScript runtime designed to build scalable network

applications [90].

Node’s infrastructure relies on a huge number of small JavaScript and Type-

Script packages, which provide the most diverse functionalities. The Type-

Script compiler itself is usually installed via Node’s own package manager,

npm [91].

An attempt to use such packages to provide additional functionalities to

QML was therefore carried on. However, as said, QML Javascript host envi-

ronment is different from Node’s, so the modules has to be ported first.

The idea was not new and we identified at least two projects that aimed

at automating this complex task: Brig [92] and Quickly [93]. Both of them were

inspected carefully and tested with different version of Node, Qt and npm,

but they were both not working, not even with the suggested versions of the

entire development stack. For Quickly, the banners in the GitHub repository

itself signal the bad status of the codebase. The two projects were most likely

abandoned.

7.6.2 Tooling

The tooling landscape for TypeScript is surprisingly good, even if far from the

comfort of ”standard” QML development. In fact QtCreator can be setup to

compile TypeScript code into JavaScript before compiling C++ code, using

66

7.6 A Side Attempt: TypeScript

any tsc distribution available on the system, but it does not support Type-

Script editing, not even with syntax highlighting. This makes it almost totally

unsuitable as a development environment.

On the other hand, Visual Studio Code [76] offers a very complete support

for TypeScript (being both developed by the same company, Microsoft), and a

partial support for QML as well, at least from the coding perspective. In fact,

VSCode does not provide any WYSIWYG functionality for QML as QtCreator

does.

7.6.3 Evaluation Outcomes

First of all, it should be noticed that the time invested in the TypeScript eval-

uation was considerably shorter than the one invested over the other options,

mainly due to the increasing difficulties we were facing in the development

itself while carrying it on.

In fact, despite the sufficient quality of the tooling compared with the

standard Qt tools, other types of issues arised along the evaluation. Most

of them were related to the difficulty of any IDE to match TypeScript’s strict

checks at compile time and the QML environment characteristics. An example

will clarify the point.

The QML engine exposes to all scripts a Qt object, that can be used

to communicate in some specific ways with the backend. For example,

Qt.createObject() can be used to add new QML elements to the DOM.

However, there is no way to set the TypeScript compiler to recognize Qt as a

valid object exposed by the JavaScript host environment, neither through any

IDE, neither from the command line. The compiler could be set to compile

even in case of compiler errors, and the generated code was working just fine

in the QML engine: however, such a setting totally vanishes the advantages

of using TypeScript in place of JavaScript, because it would allow any broken

code to run.

This issue, along with the impossibility of using most JavaScript and Type-

Script libraries into the QML engine and the far from perfect quality of tooling,

proved this option to be nonviable.

The door is still open, however, for the use of JavaScript as a commu-

nication tool between Java and Qt. Some other teams have scheduled the

67

Qt Quick: QML & JavaScript

development of interfaces with JavaScript for their services, so a future review

of our evaluation might be scheduled for later, when our backend will offer

something concrete to test on. In addition, there are rumors about a possible,

future native support of TypeScript in QML [48]. If such a scenario becomes

more concrete, a re-evaluation of this approach may be considered.

7.7 Outcomes

QtQuick development is clearly the cutting-edge technology for GUI devel-

opment within the Qt framework. The community is lively, many Qt-based

project are moving from older implementations to QML-based interfaces, and

the Qt Company is investing the biggest part of its effort into its further

development. The community is very lively and active, the documentation is

in pristine conditions, and a great deal of material is available for learning.

What raises concerns toward its adoption is the overall feeling of QtQuick

being still too young, more suitable for early adopters and small-scale project.

Despite the small hype surrounding it, it may be not yet suitable for the very

stable, decades-stable environment of CERN’s controls system’s infrastructure.

Other than the poor charting performances achievable in QML, one clear

indicator is the lack of some basic widgets in the latest widget library for

QML. Basically everything that does not have a flat model, namely TableViews

and TreeViews, are still missing from the standard widget library, QtQuick

Controls 2. Albeit available in the QtQuick Controls 1 version, they provide

such a different look with respect to the following generation that they cannot

be mixed successfully without the interface looking very awkward.

While they will surely be available very soon, it is easy to see how the

technology feels still somehow immature for our use case.

The final decision with regard to QtQuick was driven mainly by this feeling:

we considered QML still too young to be eligible as a recommended GUI

framework, but it will be possible, for early adopters and more experienced

users, to try it out in different ways and start building an ecosystem within

CERN around QtQuick development.

68

Chapter 8

Qt over Python: PyQt5

Nowadays Python is one of the most popular programming languages available,

and arguably the most versatile, easy to learn and to use. While born for

prototyping purposes, its usage expanded way further its original scope, being

now one of the most used languages used by the scientific community for

research, data analysis, and so on.

However, Python is a scripting language, which makes it almost unsuitable

for large production-level software that focuses on performance. The need

for a strong graphic library is not really felt in the Python community and,

apart from very specific charting libraries such as matplotlib or seaborn, no

native, complete Python GUI libraries has ever been developed. Indeed, being

Python so versatile, it was considered easier to develop bindings with already

existing graphic libraries, and therefore to leverage the performance of native

code while retaining the ease of use of Python.

Different attempts in this directions has been made with respect of Qt,

and most of them eventually converged into the same set of extremely similar

APIs. Examples of these bindings are PySide, PyQt, QtPy, PyQt5 and the

newer PySide2. Our focus was put on the one which looked, at a first sight,

the most healthy and stable: PyQt5 [53].

PyQt5 is a very complete binding over Qt APIs. This means that PyQt5

can be used to produce QtQuick and QtWidgets applications alike, just as one

would do with C++. In this case, both approaches were evaluated.

Qt over Python: PyQt5

8.1 Installation and setup

The setup process of PyQt5 is no different than for any other Python package,

and shares the strengths and the weaknesses of Python dependency manage-

ment.

As for most Python packages, there are different ways to install PyQt5:

• With Anaconda [50]. PyQt5 can be installed through the conda package

manager and in general comes with the default installation of Anaconda.

However, the latest version available with Anaconda is not up-to-date,

and also misses some Qt modules, namely the standard charting library.

• With pip [51]. PyPi also hosts a precompiled PyQt5 distribution, which

instead is up-to-date with the latest PyQt5 release and lacks no modules.

• From source [52]. The library has the binding module, sip, as only de-

pendency: therefore, building from source is feasible. The sip package

can be also installed from source.

As for plain Qt, in case of adoption we plan to make PyQt5 and all the

tools already available for the users on all the machines.

8.2 Development process

PyQt5 is a very tiny wrapper on top of the C++ APIs of Qt. Every feature

of the original APIs has been ported to Python in the closest fashion possible,

making PyQt5 usage extremely close to Qt native coding. In most cases, the

same line of code runs in the exactly same way in a C++ class and in a Python

one (at least from a developer’s perspective).

In order to assess in practice how trivial is to port code from C++ to

Python, it is interesting to directly compare a few lines of code.

8.2.1 Code Comparison

The snippet below perform an ordinary QtQuick application startup:

instantiate QGuiApplication objects, loads the QML file that models the

interface, exposes a few classes and instances from the backend and eventually

70

8.2 Development process

launches the application.

1 #include <QGuiApplication >
2 #include <QQmlApplicationEngine >
3 #include <QQmlEngine >
4 #include <QQmlContext >
5 #include "custom_model.h"
6
7 int main(int argc , char *argv [])
8 {
9 // Instantiate the application
10 QGuiApplication app(argc , argv);
11 QQmlApplicationEngine engine;
12
13 // Load the QML file
14 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));
15 if (engine.rootObjects ().isEmpty ())
16 return -1;
17
18 // Instantiate the model
19 ListOfObjects list_of_objects;
20 DataSource data_source;
21
22 // Expose C++ objects to QML
23 engine.rootContext ()->setContextProperty("listOfObjects",

list_of_objects);
24 engine.rootContext ()->setContextProperty("dataSource",

data_source);
25
26 // Start the application
27 return app.exec();
28 }

Listing 8.1: Qt C++ Original Code

1 # -*- coding: utf -8 -*-
2 import sys , os
3 from custom_model import ListOfObjects , DataSource
4
5 from PyQt5.QtGui import QGuiApplication
6 from PyQt5.QtQml import QQmlApplicationEngine
7 from PyQt5.QtCore import QUrl
8
9 def main():
10
11 # Instantiate the application and the engine
12 app = QGuiApplication(sys.argv)
13 engine = QQmlApplicationEngine(parent=app)
14
15 # Load the QML file
16 engine.load(QUrl(’qrc:/main.qml’))
17 if engine.rootObjects ().isEmpty ():
18 return -1;
19
20 # Instantiate the model
21 list_of_objects = ListOfObjects ();

71

Qt over Python: PyQt5

22 data_source = DataSource ();
23
24 # Expose Python objects to QML
25 engine.rootContext ().setContextProperty("listOfObjects",

list_of_objects);
26 engine.rootContext ().setContextProperty("dataSource",

data_source);
27
28 # Start the application
29 app.exec_()
30
31 if __name__ == "__main__": main()

Listing 8.2: PyQt5 Python Code

The similarity between the two should be now evident. Every single line of

the C++ code can be matched with its Python counterpart and, apart from

very language specific features like the imports and the main syntax, the code

itself is basically identical.

This binding style has its pros and cons. On the positive side, it makes the

porting from one language to the other very straightforward, almost trivial;

on the negative side, it produces APIs which sometimes look very unfamiliar

for Python developers, because they reflect C++ coding styles.

Figure 8.1: The Meta Object System’s APIs, as an example of how the

Python code can get to look very unfamiliar to Python developers.

8.2.2 QtQuick

One positive aspect found during the implementation of the PyQt5 QtQuick

benchmark app was that most of the QML could be reused without any mod-

72

8.3 The application

ification. Clearly only the code defining the graphical interface was reused,

while the model has been moved back to Python.

This achievement clearly exemplifies how decoupled QtQuick applications

are and how well the MVC pattern is implemented in this architecture.

8.2.3 QtWidgets

The development of the Qt Widgets version of the benchmark also carried

good news. In this case, the reuse of code was two-sided:

1. The XML could be reused from the C++ version with minor modifica-

tions. The only real difference was to setup the editor to get the .ui file

compiled through pyuic5 instead of uic, in order to generate a Python

class and not a C++ one.

2. The model could be reused from the QtQuick implementation. In this

case a little logic had to be moved back from the interface (due to the

lack of JavaScript support from .ui files), but the modifications were

extremely limited and did not made the model unusable by QML.

Trying to keep the same model for both applications showed how much

responsibility the developers have in the Qt Widgets approach: the model can

be completely decoupled, as in QML, but the decoupling is not enforced in

any way.

8.3 The application

8.3.1 QtQuick

The resulting application shows not defect. It runs easily the exact same

declarative code used for the pure QtQuick application previously developed,

calling Python methods instead of JavaScript ones.

It provides also a lot of additional advantages, due to the possibility of

leveraging Qt classes through their wrapped C++ API. To give an idea of the

difference, we can have a look at the charting performance.

As we described in the QtQuick chapter, a ”naive” PyQt5 QML application

would simply react to a signal from the backend by triggering a repaint of

73

Qt over Python: PyQt5

Figure 8.2: With small workarounds and leveraging the native Qt APIs,

PyQt5 QtQuick applications can reach impressive charting performance.

the entire plot for every append operation performed on the QML LineSeries

object. This behavior throttles down wildly the capabilities of the widget. In

practice, such an application can render a maximum of approx. 1000 points

per update, which is far from ideal.

However, the Python backend provides a workaround. If the reference to

the QML LineSeries is passed back to the Python script, namely at startup,

it will expose some methods that were hidden to QML. Among those lies the

extremely useful .blockSignals() methods, inherited from QObject.

The .blockSignals() method is exactly what is needed to remove the

repainting obstacle. Indeed, one can temporary disconnect the model of the

widget from its graphical part, perform any modification, plug back the two

components, and then fire a generic signal to trigger the repaint. By performing

this operation, the repainting overhead is completely removed and the widget

performances increase dramatically: in fact, it becomes capable of plotting the

entire data source while its size stays near the 200 000 points.

74

8.3 The application

Figure 8.3: Charting performance of a naive PyQt5 QtQuick application.

As we can see, the FPS count drops quickly to zero once we try to render more

than a few thousand points.

Figure 8.4: Charting performance of a non-naive PyQt5 QtQuick applica-

tion. As we can see, the frames-per-second count keeps more or less stable with

the size of the series plotted.

75

Qt over Python: PyQt5

A Side Attempt: Matplotlib integration

One of the most relevant points in favor of the adoption of Python for GUI

development is its common adoption into the scientific community. Most of ac-

tual developers of monitoring interfaces for the accelerators are, indeed, physi-

cists and technicians: people whose specialization is completely unrelated to

software engineering, who need some easy to use solution in order to focus on

the actual business logic of the applications.

In order to take full advantage of this point we should consider how PyQt5,

being a thin wrapper over a C++ library feels somehow different from the

traditional Python coding the operators are used to. To cope with this gap,

we evaluated the possibility to develop PyQt5 QtQuick applications embed-

ding other widespread Python plotting libraries, namely Matplotlib [68] and

Seaborn [69].

Attempts to perform such integration were already present in two different

forms:

1. A small proof of concept about the actual possibility of integrating a

matplotlib chart into QML [70].

2. A working integration module between matplotlib and QtWidgets

through .ui files, already tested by some operators in their applica-

tions [71].

The target included both the possibility of painting a chart using the stan-

dard Matplotlib APIs, but also to interact with it on the frontend in the same

way as a standard Matplotlib plot would: that included support for panning,

zooming, history of moves, the possibility to save the chart as an image, and

a few layout settings.

Given these inputs, the integration was performed successfully. The code

of the proof of concept was refactored into a standalone Python module, pip-

installable [72;73], exposing the same APIs and features of the older XML-based

integration.

On top of this successful result, additional test were performed to check

whether Seaborn plots could be integrated into a PyQt5 frontend in the same

way. The investigation showed that the same source code can easily render

Seaborn plots in the same way it renders matplotlib’s.

76

8.3 The application

Figure 8.5: Matplotlib and Seaborn plots embedded into a PyQt5 QML fron-

tend

This specific integration was not tested on performance. However, mat-

plotlib is not meant to be used for fast updating charts or very massive

datasets, but more likely for static or slow updating figures.

8.3.2 QtWidgets

Also the QtWidgets application can be developed without big effort. The code

is extremely similar to its C++ implementation, as seen before in the Code

Comparison section, and a lot of code from other implementations could be

reused with very minor modifications (probably not necessary and due to my

own inexperience).

In this context, however, manipulating the objects from the Python side is

even more natural than in QML. Indeed in the QtQuick implementation the

user had to pass back the reference to the LineSeries in order to be able to call

the .blockSignals() function; in Qt Widgets instead the reference is readily

available.

77

Qt over Python: PyQt5

Figure 8.6: Also a PyQt5 QtWidgets application can achieve impressive

charting performance.

Figure 8.7: Class Diagram for the PyQt5 QtWidgets application. Darker

box represent source files, lighter boxes are the classes. Solid arrows are import

statements, dashed arrows represent inclusion.

78

8.4 Tooling

Figure 8.8: Charting performance of a PyQt5 QtWidgets application. Like

in the QtQuick case, the frame rate count keeps more or less stable with the

size of the series plotted. This is also the performance expected for a C++ Qt

Widgets application, that we could not assess.

As we can see on the screenshots, the look of the application is very different

from a QtQuick one, more native and desktop-like.

8.4 Tooling

8.4.1 QtQuick

With regard of tooling, and with respect to the average tooling quality of Qt

products, PyQt5 for QML does not shine. Being a community based library,

PyQt5 does not benefit from official support from the Qt Company, which

maintains Qt Creator. Therefore, Qt Creator offers minimal Python support,

which basically consists in syntax-highlighting only. Environments manage-

ment, package management, and even code completion and linting are totally

unsupported and left to the user.

79

Qt over Python: PyQt5

For the scope of this evaluation, other general purpose IDEs were used,

namely PyCharm [75], VSCode [76], and even bare text editors like Gedit [77]. In

most cases, IDEs providing full Python support were not providing any support

for QML, so making necessary for developers to use two IDEs in parallel, which

is far from ideal. An exception in this sense is VSCode, which features a wide

degree of features and in general a comfortable development environment for

both Python and QML, once all the required plugins [78;79] are correctly set up.

However, it cannot provide anything close to Qt Creator’s Design Mode for

QML files.

8.4.2 QtWidgets

For Qt Designer the situation is way less critical than it is for QtQuick. Indeed

Qt Designer has a number of plugins that makes Python development pretty

much straightforward.

What is truly needed in this cases is not full Python support, as Qt De-

signer is not meant to be an IDE, but simply an .ui files editor. The only

configuration required is to make Qt Designer compile the .ui file by means

of the Python User Interface Compiler, pyuic, instead of the standard uic.

Once the tools are setup, Qt Designer can be used just it would for plain

C++ development. In case the user wants to embed some custom PyQt5 wid-

gets exposed by some library, a plugin has been developed to ease the process

of importing them into Qt Designer, making the process almost trivial [66].

In addition, Qt Designer can be linked to a proper Python IDE, like Py-

Charm, as default external editor for .ui files, creating a development envi-

ronment very close to the JavaFX & SceneBuilder pair.

8.5 Documentation

Being so close to native Qt coding, PyQt5 can directly leverage the complete-

ness of original Qt documentation. In most cases, the same line of code runs in

the exactly same way in a C++ class and in a Python one, and very often the

PyQt5 documentation simply links the official, C++ Qt one, without adding

a word to it.

80

8.6 Outcomes

Figure 8.9: Example page from the PyQt5 Reference Guide. Most of the

documentation looks like this.

In addition to API documentation Riverbank [67], the company currently

providing support for PyQt5, provides also documentation for specific Python

structures, as well as tutorials, how-to-s, and code conventions for both

QtQuick and QtWidgets, all of these usually fully up-to-date and very useful

to developers.

8.6 Outcomes

The outcomes of the PyQt5 evaluation are generally positive. It proved to be

very solid and complete, supporting basically all its features seamlessly and

therefore qualifying well as a candidate primary GUI framework for our use

case.

The situation is not optimal, especially under the tooling perspective, but

many other positive aspects of this technology balance for it, like the ease of

use of Python and PyQt5 itself, the possibility to leverage Qt5’s own docu-

mentation, the lively community, and many more.

In addition to all of this, during our evaluation the Qt Company published

an announcement about the release of a new Python binding, called Qt for

81

Qt over Python: PyQt5

Python, or PySide2 [80]. The release of a new Python binding for Qt may bring

a lot of benefits, especially with regard to better tooling (the Qt Company

maintains QtCreator, so Python support is likely to be implemented in the

near future) and more guarantees about the stability of the binding itself.

With regard of the actual usage, though, no substantial differences are foreseen

between the two libraries, so an eventual porting of PyQt5 code to PySide2

would be trivial, if not automatic.

Adopting Python as main GUI development language, however, would re-

quire a substantial effort from the backend developers to offer a suitable in-

terface for communication with Java. Indeed, plans for Python support from

the backend were already started before the beginning of this evaluation and,

even if they are still a long-term goal for the Section, they make the PyQt5

solution viable.

82

Chapter 9

Conclusions

At the end of this preliminary, broad evaluation of Qt, the results are somehow

concerning, but not critically negative.

Many aspects of it were considered, many ways to make use of the toolkit

were evaluated, and the main feeling we obtained from the exploration is of a

very solid library, well developed, well supported, with a long heritage and a

safe guarantee of being supported for many years to come. The real concern,

indeed, lies only in the connection point between this excellent C++ library

and the huge Java backend we need to provide GUI solutions for.

Most of the identified paths carry some big overhead or threat that must

clearly dealt with. Most of them look like ”workarounds” for the lack of a direct

binding between C++ and Java that was the dead QtJambi. The QtQuick so-

lution might work in case of ”weak” bindings (for example, through web APIs),

but it would probably push the QML engine to the limits of its capabilities and

bring us a brand new set of unknowns, due to performances, optimizations,

customization, and so on. The Python solution, the most viable to date, looks

like a good compromise, but still far from an optimal one: it would unnecessar-

ily add a third language to an already complex stack of technologies, making

maintenance, deployment and monitoring even more complex than how it is

now.

The results of this evaluation clearly are not satisfactory enough to drive

our commitment to Qt as main GUI framework for CERN just yet, but opens

up some possibilities. A further investigation into other technologies, for ex-

ample Web, will definitely be carried on and compared with the results of this

evaluation before taking a final decision.

Conclusions

Figure 9.1: A qualitative comparison table to sum up the results of the eval-

uation. The colors stands for:

- Tick: Satisfactory or Overly Satisfactory

- Dash: Almost Satisfactory

- Cross: Non Satisfactory

- Slash: Not Assessed

For a detailed justification of the cells, please refer to the Annexes.

84

Appendices

Appendix A

Acronyms Definition

In this section all the relevant acronyms and some technical terms are listed

and explained.

A.1 Definitions

GUI : stands for Graphic User Interface. The graphic component of an appli-

cation that allows users to interact with the software through interaction

with its graphic elements (buttons, icons, text fields...)

API : stands for Application Programming Interface. Identifies the set of

methods a library makes available to the end user (a developer) in order

to provide some functionalities.

FPS : stands for Frames Per Second, a measure for applications frame rate.

SDK : stands for Software Development Kit. It is a set of software develop-

ment tools that allows the creation of applications for a certain software

or platform. [121]

JDK : stands for Java Development Kit.

AWT : stands for Abstract Windowing Toolkit. The first and oldest Java

GUI development framework. [106;107]

Swing : A Java GUI development framework. [108;109]

Acronyms Definition

JavaFX : The latest GUI development framework developed by Oracle,

meant to be the official successor of Swing. [110]

SWT : stands for Standard Widget Toolkit, the GUI framework used by

Eclipse. [111]

GWT : stands for Google Widget Toolkit, the GUI framework used in An-

droid. [112]

JOGL : stands for Java OpenGL, a binding to Java of the OpenGL li-

brary. [113]

CI : stands for Continuous Integration. [114;115]

Qt : a cross-platform GUI framework used in automotive systems, with bind-

ings to many programming languages [7].

MVC : Stands for Model-View-Controller. Software architectural pattern

that dictates the separation of the three main conceptual elements of a

graphic application: the model, that represents the data, the view, that

represents the bare graphic elements, and the controller, that models the

logic connecting the graphic representation of the data to its underlying

model [24].

POJO : Stands for Plain Old Java Object. Refers to any Java class, especially

one that does not belong to any specific framework.

WYSIWYG : Stands for ”What you see is what you get”. Typically said

of tools that autogenerate code or markup basing on operations the user

makes on the preview of the result [116].

IDE : Stands for Integrated Development Environment. Said of softwares

that aids the developers by providing tools like source code editor, build

automation tools, debuggers, code completion, compilers, etc. Examples

of such software are Eclipse, NetBeans, PyCharm...

SWIG : SWIG is a software development tool that connects programs writ-

ten in C and C++ with a variety of high-level programming languages,

including Java [118].

88

Appendix B

A JavaX Hello World

Application

JavaFX offers two main patterns to implement GUIs: one that enforces the

MVC pattern, and one that does not. In order to understand better the dif-

ference among these two methods, let’s see how the same, minimal application

is implemented according to the two strategies.

The application is extremely simplified and consist simply in a window with

a button inside it. On click, the button prints ”Hello World!” on the standard

output.

Figure B.1: Minimal JavaFX application

B.1 First Approach: Pure Java

In this case, one single class is needed. It comprises all the elements of an

MVC application, and gains in brevity what loses in decoupling [119].

A JavaX Hello World Application

1 package helloworld;
2
3 import javafx.application.Application;
4 import javafx.event.ActionEvent;
5 import javafx.event.EventHandler;
6 import javafx.scene.Scene;
7 import javafx.scene.control.Button;
8 import javafx.scene.layout.StackPane;
9 import javafx.stage.Stage;
10
11 public class HelloWorld extends Application {
12
13 public static void main(String [] args) {
14 launch(args);
15 }
16
17 @Override
18 public void start(Stage primaryStage) {
19 // Set up the button
20 Button btn = new Button ();
21 btn.setText("Say ’Hello World’");
22 btn.setOnAction(new EventHandler <ActionEvent >() {
23 @Override
24 public void handle(ActionEvent event) {
25 System.out.println("Hello World!");
26 }
27 });
28 // Set up the window
29 primaryStage.setTitle("Hello World!");
30 StackPane root = new StackPane ();
31 primaryStage.setScene(new Scene(root , 250, 100));
32 // Add the button to the scene
33 root.getChildren ().add(btn);
34 // Show the window
35 primaryStage.show();
36 }
37 }

Listing B.1: ’HelloWorld.java’

The most relevant points are:

• The class has to extend javafx.application.Application

• The entry point is launch(args), the only function call hosted in the

main method.

• launch(args) will eventually call start(Stage primaryStage), the

”logic” entry point from the developer’s perspective. It receives in input a

Stage, which basically represents the window created by launch(args).

More information on this can be found in the official documentation [22].

90

B.2 Hello World, MVC enforced

• start(Stage primaryStage) instantiates the interface one element at a

time and set explicitly their parenting relationship into the Scene Graph.

• Custom Java calls to be issued in reaction to an event are described

through the EventHandler<ActionEvent> class, by overriding its

handle() method.

Although easy to understand, we can see how View and Controller are

mixed together not even in a single class, but in a single method.

B.2 Hello World, MVC enforced

In this case we need three elements in order to build the same application:

a View, a Controller, and an entry point [120]. A Model is not needed only

because the example is trivial.

1 package helloworld;
2
3 import javafx.application.Application;
4 import javafx.stage.Stage;
5 import javafx.scene.Scene;
6 import javafx.scene.layout.BorderPane;
7
8 public class MainApp extends Application {
9 @Override
10 public void start(Stage primaryStage) {
11 try {
12 // Load the FXML file
13 FXMLLoader loader = new FXMLLoader ();
14 loader.setLocation(Main.class.getResource("Gui.fxml"));
15 BorderPane root = (BorderPane) loader.load();
16 // Setup the scene and shows the window
17 Scene scene = new Scene(root ,400 ,400);
18 primaryStage.setScene(scene);
19 primaryStage.show();
20 } catch(Exception e) {
21 e.printStackTrace ();
22 }
23 }
24 public static void main(String [] args) {
25 launch(args);
26 }
27 }

Listing B.2: ’MainApp.java’

91

A JavaX Hello World Application

1 <?xml version="1.0" encoding="UTF -8"?>
2
3 <?import javafx.scene.control.Button?>
4 <?import javafx.scene.layout.BorderPane?>
5
6 <BorderPane maxHeight="-Infinity" maxWidth="-Infinity"

minHeight="-Infinity" minWidth="-Infinity" prefHeight="400.0
" prefWidth="400.0" xmlns="http: // javafx.com/javafx /8.0.141"
xmlns:fx="http: // javafx.com/fxml/1" fx:controller="

application.Controller">
7 <center >
8 <Button fx:id="clickMe" mnemonicParsing="false" onAction="#

clickHandler" text="Say: "Hello World!"""
BorderPane.alignment="CENTER" />

9 </center >
10 </BorderPane >

Listing B.3: Gui.fxml

1 package helloworld;
2
3 import javafx.fxml.FXML;
4 import javafx.scene.control.Button;
5
6 public class Controller {
7
8 @FXML
9 private Button clickMe;
10
11 public Controller () {}
12
13 @FXML
14 private void clickHandler () {
15 System.out.println("Hello World!");
16 }
17 }

Listing B.4: Controller.java

Note how we don’t even need the reference to the clickMe button, because

the connection is done in the FXML file.

Even though such an architecture is an overkill for such a small example,

the pattern scales up very well compared with the previous one, because re-

sponsibilities are clearly separated. In addition, the FXML file does not have

to be handwritten, but is generated automatically by the SceneBuider.

92

Appendix C

QtJambi Deployment Layout

In order for the reader to better understand the complexity of deploying Qt-

Jambi correctly, this section outlines the final deployed layout of our working

QtJambi installation.

Most of the .dll and subfolder locations had to be guessed by cross-checking

the documentation, StackOverflow and the folder structure of Qt itself.

What follows is a shortened version of the output of the tree /f/a com-

mand in the root directory (qtjambi). The entire output is several pages long

(456 lines), therefore the content of the innermost folders has been trimmed.

The shortened version however should give an idea of the size and complexity

of the framework.

1 qtjambi
2 |
3 | libEGL.dll
4 | libGLESv2.dll
5 | org_qtjambi_qt_concurrent5.dll
6 | org_qtjambi_qt_core5.dll
7 | org_qtjambi_qt_dbus5.dll
8 | org_qtjambi_qt_gui5.dll
9 | org_qtjambi_qt_help5.dll
10 | org_qtjambi_qt_multimedia5.dll
11 | org_qtjambi_qt_network5.dll
12 | org_qtjambi_qt_opengl5.dll
13 | org_qtjambi_qt_printsupport5.dll
14 | org_qtjambi_qt_qml5.dll
15 | org_qtjambi_qt_quick5.dll
16 | org_qtjambi_qt_quick_widgets5.dll
17 | org_qtjambi_qt_script5.dll
18 | org_qtjambi_qt_scripttools5.dll
19 | org_qtjambi_qt_sql5.dll
20 | org_qtjambi_qt_svg5.dll
21 | org_qtjambi_qt_test5.dll
22 | org_qtjambi_qt_widgets5.dll

QtJambi Deployment Layout

23 | org_qtjambi_qt_xml5.dll
24 | org_qtjambi_tools_designer5.dll
25 | Qt5CLucene.dll
26 | Qt5Concurrent.dll
27 | Qt5Core.dll
28 | Qt5DBus.dll
29 | Qt5Designer.dll
30 | Qt5DesignerComponents.dll
31 | Qt5Gui.dll
32 | Qt5Help.dll
33 | Qt5Multimedia.dll
34 | Qt5MultimediaWidgets.dll
35 | Qt5Network.dll
36 | Qt5OpenGL.dll
37 | Qt5PrintSupport.dll
38 | Qt5Qml.dll
39 | Qt5Quick.dll
40 | Qt5QuickParticles.dll
41 | Qt5QuickTest.dll
42 | Qt5QuickWidgets.dll
43 | Qt5Script.dll
44 | Qt5ScriptTools.dll
45 | Qt5Sql.dll
46 | Qt5Svg.dll
47 | Qt5Test.dll
48 | Qt5Widgets.dll
49 | Qt5Xml.dll
50 | qtjambi5.dll
51 |
52 +---platforms
53 | qminimal.dll
54 | qminimald.dll
55 | qminimald.pdb
56 | qoffscreen.dll
57 | qoffscreend.dll
58 | qoffscreend.pdb
59 | qwindows.dll
60 | qwindowsd.dll
61 | qwindowsd.pdb
62 |
63 +---plugins
64 | +---audio
65 | +---bearer
66 | +---generic
67 | +---iconengines
68 | +---imageformats
69 | +---mediaservice
70 | +---platforms
71 | | qminimal.dll
72 | | qminimald.dll
73 | | qminimald.pdb
74 | | qoffscreen.dll
75 | | qoffscreend.dll
76 | | qoffscreend.pdb
77 | | qwindows.dll
78 | | qwindowsd.dll
79 | | qwindowsd.pdb

94

80 | |
81 | +---playlistformats
82 | +---printsupport
83 | +---sqldrivers
84 | \---video
85 |
86 +---plugins -designer
87 | +---designer
88 | | JambiCustomWidget5.dll
89 | | JambiLanguage5.dll
90 | \---qtjambi
91 | qtjambi_examples.xml
92 | qtjambi_widgets.xml|
93 \---qml
94 +---Qt
95 +---QtGraphicalEffects
96 +---QtMultimedia
97 +---QtQml
98 +---QtQuick
99 | +---Controls
100 | | +---Private
101 | | \---Styles
102 | | | qmldir
103 | | +---Base
104 | | | \---images
105 | | +---Desktop
106 | | \---Flat
107 | +---Dialogs
108 | +---Extras
109 | +---Layouts
110 | +---LocalStorage
111 | +---Particles .2
112 | +---PrivateWidgets
113 | \---Window .2
114 \---QtQuick .2
115 plugins.qmltypes
116 qmldir
117 qtquick2plugin.dll

Listing C.1: Directory structure for a working QtJambi deploy

95

Appendix D

Final Comparison Table

Justifications

Figure D.1: A qualitative comparison table to sum up the results of the

evaluation. The symbols stands for: Tick: Satisfactory or Overly Satisfactory,

Dash: Almost Satisfactory, Cross: Non Satisfactory, Slash: Not Assessed.

The parameters listed in the table are:

1. Patterns Enforced: Whether the framework helps the developer following

some architectural patterns

Final Comparison Table Justifications

2. Widgets Availability: Whether the frameworks offers all the widgets our

clients need

3. Charting Performance: Whether the charting performance is satisfactory

4. Tooling Quality: Whether the tooling quality is satisfactory

5. Documentation Quality: Whether the documentation quality is satisfac-

tory

6. Integrates with existing systems: Whether it integrates with the existing

systems and how well

7. Ease of development for clients: Whether it involves technologies that

our clients know well or are easy to learn

8. Ease of maintenance: Whether it involves technologies that are well

known in our section or are easy to learn and scale

9. Health status: Whether it seems to be growing or at least if it is main-

tained by the community or some company

D.1 JavaFX

1. Patterns Enforced: Yes, mainly MVC

2. Widgets Availability: All necessary widgets are available

3. Charting Performance: Unsatisfactory in the base version, completely

satisfactory with CERN’s custom extensions

4. Tooling Quality: Overly satisfactory

5. Documentation Quality: Satisfactory

6. Integrates with existing systems: Completely and smoothly integrates

with all our systems

7. Ease of development for clients: Clients are supposed to know how to

code in Java, therefore it should be suitable.

8. Ease of maintenance: Our team is made of Java developers, therefore

very suitable.

9. Health status: Oracle plans to drop support in a few years and the com-

munity around it seems weak.

98

D.2 QtJambi (for Qt5)

D.2 QtJambi (for Qt5)

1. Patterns Enforced: None

2. Widgets Availability: Only very basic widgets could be used

3. Charting Performance: Not assessed

4. Tooling Quality: Almost satisfactory

5. Documentation Quality: Satisfactory

6. Integrates with existing systems: It would likely integrate

7. Ease of development for clients: Clients are supposed to know how to

code in Java, therefore it should be suitable.

8. Ease of maintenance: Involves deep knowledge of C++ and JNI, which

we do not have: very difficult

9. Health status: No community, the project is dead

D.3 QtQuick (in pure JS)

1. Patterns Enforced: Yes, MVC

2. Widgets Availability: Some complex widgets are lacking functionalities

(TreeView, TableView), but are being actively developed

3. Charting Performance: Unsatisfactory

4. Tooling Quality: Satisfactory

5. Documentation Quality: Satisfactory

6. Integrates with existing systems: Can weakly integrate through web sock-

ets or C++ custom plugins

7. Ease of development for clients: Easy to start with, complex to scale

properly due to JavaScript

8. Ease of maintenance: Easy to learn, requires us to acquire a lot of new

skills for proper maintenance and code management

9. Health status: Very actively developed, lively and growing community

99

Final Comparison Table Justifications

D.4 QtWidgets

1. Patterns Enforced: None

2. Widgets Availability: All necessary widgets are available

3. Charting Performance: Not Assessed

4. Tooling Quality: Overly satisfactory

5. Documentation Quality: Overly Satisfactory

6. Integrates with existing systems: Can weakly integrate through web sock-

ets, C++ custom plugins, or JNI

7. Ease of development for clients: Very difficult. Clients are not supposed

to know how to code in C++ and the language is complex to learn and

use properly

8. Ease of maintenance: Very difficult. We are not skilled in C++ devel-

opment.

9. Health status: Stable for the foreseeable future.

D.5 PyQt5 QtQuick

1. Patterns Enforced: Yes, MVC

2. Widgets Availability: Some complex widgets are lacking functionalities

(TreeView, TableView), but are being actively developed

3. Charting Performance: Satisfactory

4. Tooling Quality: Almost Satisfactory, requires some effort to be setup

properly

5. Documentation Quality: Satisfactory, relies completely on the C++ one

6. Integrates with existing systems: Can integrate partially through Python

interfaces, support for Python from the backend is steadily increasing

7. Ease of development for clients: Clients are not supposed to know

Python but most of them do. In addition, is easy to learn.

8. Ease of maintenance: We are not supposed to know Python, but we can

work with it and learn fast.

100

D.6 PyQt5 QtWidgets

9. Health status: Quite healthy, gaining momentum along with pure

QtQuick

D.6 PyQt5 QtWidgets

1. Patterns Enforced: None

2. Widgets Availability: All necessary widgets are available

3. Charting Performance: Satisfactory

4. Tooling Quality: Almost Satisfactory, requires some effort to be setup

properly

5. Documentation Quality: Satisfactory, relies completely on the C++ one

6. Integrates with existing systems: Can integrate partially through Python

interfaces, support for Python from the backend is steadily increasing

7. Ease of development for clients: Clients are not supposed to know

Python but most of them do. In addition, is easy to learn.

8. Ease of maintenance: We are not supposed to know Python, but we can

work with it and learn fast.

9. Health status: Quite healthy, stable and supported for the foreseeable

future.

101

Bibliography

[1] Chua Hock-Chuan, Java Programming Tutorial: Pro-

gramming Graphical User Interface (GUI), https://

www3.ntu.edu.sg/home/ehchua/programming/java/J4a_GUI.

html at yet another insignificant... programming notes

(https://www3.ntu.edu.sg/home/ehchua/programming/index.html)

[2] Christiane Lefèvre, The CERN accelerator complex, https://cds.cern.

ch/record/1260465 at CERN Document Server (https://cds.cern.ch)

[3] Java Client Roadmap Update (page 6) http:

//www.oracle.com/technetwork/java/javase/

javaclientroadmapupdate2018mar-4414431.pdf at Oracle

(https://www.oracle.com)

[4] StackOverflow Trends, https://insights.stackoverflow.com/trends?

tags=qt%2Cjavafx%2Cswing%2Cpyqt%2Cgtk%2Cangular%2Creactjs at

StackOverflow Insights (https://insights.stackoverflow.com)

[5] Google Trends Search, https://trends.google.com/trends/explore?

date=today%205-y&q=qt,javafx,swing,gtk,pyqt at Google Trends

(https://trends.google.com)

[6] OpenJFX Home Page https://wiki.openjdk.java.net/display/

OpenJFX/Main at OpenJDK (https://wiki.openjdk.java.net)

[7] Qt Home Page https://www.qt.io/

[8] Qt Customer Success Stories https://resources.qt.io/

customer-stories-all

[9] KDE Home Page https://www.kde.org/

BIBLIOGRAPHY

[10] About: The Qt Company https://www.qt.io/company

[11] Rapid Application Development https://en.wikipedia.

org/wiki/Rapid_application_development at Wikipedia

(https://en.wikipedia.org)

[12] A. Powell, A. Vickers, A practical strategy for the evaluation of soft-

ware tools in S. Brinkkemper et al. (eds.), Method Engineering, Springer

Science+Business Media Dordrecht, 1996 (retrieved at https://link.

springer.com/content/pdf/10.1007/978-0-387-35080-6_11.pdf)

[13] I. Allen, The Brutal Lifecycle of JavaScript Frame-

works https://stackoverflow.blog/2018/01/11/

brutal-lifecycle-javascript-frameworks/ at StackOverflow Blog

(https://stackoverflow.blog)

[14] What do we do? https://software.ac.uk/what-do-we-do at Software

Sustainability Institute (https://software.ac.uk/)

[15] Software Evaluation Guide https://www.software.ac.uk/resources/

guides-everything/software-evaluation-guide at Software Sustain-

ability Institute (https://software.ac.uk/)

[16] How To Evaluate Software https://bi-survey.com/

software-evaluation at BI-Survey.com (https://bi-survey.com/)

[17] Software Evaluation Criteria Template - Google Search https://www.

google.com/search?q=software+evaluation+criteria+template

[18] e(fx)clipse: JavaFX Tooling and Runtime for Eclipse and OSGi

http://www.eclipse.org/efxclipse/index.html at Eclipse

(http://www.eclipse.org/)

[19] Download Scene Builder https://gluonhq.com/products/

scene-builder/#download at Gluon (https://gluonhq.com/)

[20] G. Kruk, M. Peryt, JDATAVIEWER – JAVA BASED CHART-

ING LIBRARY http://cds.cern.ch/record/1215878/files/

CERN-ATS-2009-111.pdf?version=1 at CERN Document Server

(http://cds.cern.ch/record/1215878/)

104

BIBLIOGRAPHY

[21] JDVE - Demos https://wikis.cern.ch/display/InCA/JDVE+-+Demos

at CERN Wikis (https://wikis.cern.ch/)

[22] Java Platform, Standard Edition (Java SE) 8: Client Technologies https:

//docs.oracle.com/javase/8/javase-clienttechnologies.htm

at Java Platform, Standard Edition (Java SE) 8 Documentation

(https://docs.oracle.com/javase/8/)

[23] Getting Started with JavaFX https://docs.oracle.com/javase/8/

javafx/JFXST.pdf at Java Platform, Standard Edition (Java SE) 8 Doc-

umentation (https://docs.oracle.com/javase/8/)

[24] Model-view-controller https://en.wikipedia.org/wiki/

Model-view-controller at Wikipedia (https://en.wikipedia.org)

[25] Understanding the JavaFX Architecture https://docs.oracle.com/

javase/8/javafx/get-started-tutorial/jfx-architecture.htm#

A1106498 at Java Platform, Standard Edition (Java SE) 8 Documentation

(https://docs.oracle.com/javase/8/)

[26] Working with the JavaFX Scene Graph https://docs.oracle.com/

javase/8/javafx/scene-graph-tutorial/scenegraph.htm#JFXSG107

at Java Platform, Standard Edition (Java SE) 8 Documentation

(https://docs.oracle.com/javase/8/)

[27] Implementing JavaFX Best Practices https://docs.oracle.

com/javafx/2/best_practices/jfxpub-best_practices.htm at

Java Platform, Standard Edition (Java SE) 8 Documentation

(https://docs.oracle.com/javase/8/)

[28] Scene Builder http://gluonhq.com/products/scene-builder/ at

Gluon (http://gluonhq.com/)

[29] G.Kruk, O.Alves, L.Molinari JavaFX Charts: Implementation of missing

features http://cds.cern.ch/record/2305669/files/tupha186.pdf at

CERN Document Server (http://cds.cern.ch/)

[30] Qt (software) https://en.wikipedia.org/wiki/Qt_(software) at

Wikipedia (https://en.wikipedia.org)

105

BIBLIOGRAPHY

[31] Qt Licensing http://doc.qt.io/qt-5/licensing.html at Qt5 Docu-

mentation (https://doc.qt.io/qt-5/)

[32] QT GROUP OYJ - Managers’ Transactions, 12/4/2017 https:

//investors.qt.io/investor-services/releases/?release=

A84F7B0247145FCF at Qt for Investors (https://investors.qt.io/)

[33] qmlRegisterType (Method Documentation) https://doc.qt.io/

qt-5/qqmlengine.html#qmlRegisterType at Qt5 Documentation

(https://doc.qt.io/qt-5/)

[34] setContextProperty (Method Documentation) https://doc.qt.io/qt-5/

qqmlcontext.html#setContextProperty at Qt5.10 Documentation

(https://doc.qt.io/qt-5/)

[35] Using the Meta-Object Compiler (moc) https://doc.qt.io/qt-5/moc.

html at Qt5 Documentation (https://doc.qt.io/qt-5/)

[36] The Qt Company https://www.qt.io/company

[37] Qt Quarterly 29 https://doc.qt.io/archives/qq/QtQuarterly29.

pdf at Qt Quarterly Archives (https://doc.qt.io/archives/qq/)

[38] Signals & Slots https://doc.qt.io/qt-5/signalsandslots.html at

Qt5.10 Documentation (https://doc.qt.io/qt-5/)

[39] Qt macros: Q PROPERTY https://doc.qt.io/qt-5/qobject.html#

Q_PROPERTY at Qt5.10 Documentation (https://doc.qt.io/qt-5/)

[40] User Interface Compiler (uic) https://doc.qt.io/qt-5/uic.html at

Qt5.10 Documentation (https://doc.qt.io/qt-5/)

[41] The Meta-Object System https://doc.qt.io/qt-5/metaobjects.html

at Qt5.10 Documentation (https://doc.qt.io/qt-5/)

[42] Jacques Malenfant et al. A Tutorial on Behavioral Reflection and

its Implementation http://www2.parc.com/csl/groups/sda/projects/

reflection96/docs/malenfant/malenfant.pdf

[43] Qt Downloads https://www.qt.io/download

106

BIBLIOGRAPHY

[44] Offline Qt Downloads https://www1.qt.io/offline-installers/

[45] Qt Creator Manual http://doc.qt.io/qtcreator/

[46] Profiling QML Applications https://doc.qt.io/qtcreator/

creator-qml-performance-monitor.html at QtCreator Documentation

(https://doc.qt.io/qtcreator/)

[47] Qt Wiki https://wiki.qt.io/Main

[48] Use TypeScript to write GUI logic in Qt Quick (instead of JavaScript

or C++) https://bugreports.qt.io/browse/QTBUG-68810 at Qt Bug

Tracker (https://bugreports.qt.io)

[49] Qt for Python https://www.qt.io/qt-for-python

[50] Anaconda Package List https://docs.anaconda.com/anaconda/

packages/py3.7_linux-64/

[51] PyQt5 https://pypi.org/project/PyQt5/ at PyPI (https://pypi.org)

[52] Installing PyQt5 https://pyqt.readthedocs.io/en/latest/

installation.html#building-and-installing-from-source at PyQt

v5.11.2 Reference Guide (https://pyqt.readthedocs.io)

[53] What is PyQt? https://www.riverbankcomputing.com/software/

pyqt/intro at Riverbank (https://www.riverbankcomputing.com/)

[54] Qt Jambi: Qt for Java http://old.qt-jambi.org/

[55] Qt Jambi Reference Documentation https://doc.qt.io/archives/

qtjambi-4.5.2_01/

[56] QtJambi5 https://github.com/OmixVisualization/qtjambi5 at

GitHub (https://github.com/)

[57] QtJambi5 https://github.com/tilialabs/qtjambi5 at GitHub

(https://github.com/)

[58] Java User Interface Compiler (JUIC) https://doc.qt.io/archives/

qtjambi-4.5.2_01/com/trolltech/qt/qtjambi-juic.html at Qt4.5

Documentation (https://doc.qt.io/archives/qtjambi-4.5.2 01)

107

BIBLIOGRAPHY

[59] The Qt Jambi Generator https://doc.qt.io/archives/qtjambi-4.5.

2_01/com/trolltech/qt/qtjambi-generator.html at Qt Documenta-

tion Archives (https://doc.qt.io/archives/qtjambi-4.5.2 01/)

[60] Tilialabs Home Page http://tilialabs.com/

[61] QtJambi5 (kkofler’s repo) https://github.com/kkofler/qtjambi5/

tree/dagopt at GitHub (https://github.com/)

[62] How to use Qt Jambi generator http://old.qt-jambi.org/doc/

generator at QtJambi Homepage (http://old.qt-jambi.org)

[63] How to use Qt Jambi generator https://doc.qt.io/archives/

qtjambi-4.5.2_01/com/trolltech/qt/qtjambi-generator.html at the

Qt Documentation (https://doc.qt.io/)

[64] Qt Jambi Generator Example https://doc.qt.io/archives/

qtjambi-4.5.2_01/com/trolltech/qt/qtjambi-generatorexample.

html at the Qt Documentation (https://doc.qt.io/)

[65] Qt Jambi Eclipse Integration https://doc.qt.io/archives/

qtjambi-4.5.2_01/com/trolltech/qt/qtjambi-eclipse.html at Qt

Documentation Archives (https://doc.qt.io/archives/qtjambi-4.5.2 01/)

[66] PyDM - Installation https://slaclab.github.io/pydm/

installation.html#troubleshooting-pydm-widgets-in-designer

[67] Riverbank Homepage https://www.riverbankcomputing.com/news

[68] Matplotlib Home Page https://matplotlib.org/

[69] Seaborn Home Page https://seaborn.pydata.org/

[70] Matplotlib QtQuick Playground https://github.com/fcollonval/

matplotlib_qtquick_playground

[71] Kevin Shing Bruce Li, PySPSDamperApp https://gitlab.cern.ch/

kli/PySPSDamperApp

[72] Python PIP https://www.w3schools.com/python/python_pip.asp at

W3Schools.com (https://www.w3schools.com)

108

BIBLIOGRAPHY

[73] pip 18.0 Documentation https://pip.pypa.io/en/stable/ at PyPA

(https://www.pypa.io/en/latest/)

[74] Sara Zanzottera, QML + Matplotlib integration for PyQt

https://gitlab.cern.ch/acc-co/accsoft/gui/qt-evaluation/

qt-pyqt-integration/tree/master/matplotlib-qml-backend

[75] PyCharm Home Page https://www.jetbrains.com/pycharm/

[76] Visual Studio Code Home Page https://code.visualstudio.com/

[77] Gedit https://wiki.gnome.org/Apps/Gedit at the GNOME Wiki

(https://wiki.gnome.org/)

[78] Python Extension for VSCode https://marketplace.visualstudio.

com/items?itemName=ms-python.python at the Visual Studio Market-

place (https://marketplace.visualstudio.com)

[79] QML Extension for VSCode https://marketplace.visualstudio.

com/items?itemName=bbenoist.QML at the Visual Studio Marketplace

(https://marketplace.visualstudio.com)

[80] Qt for Python 5.11 released https://blog.qt.io/blog/2018/06/13/

qt-python-5-11-released/ at Qt Blog (https://blog.qt.io/)

[81] Evolution of the QML engine, part 1 https://blog.qt.io/blog/

2013/04/15/evolution-of-the-qml-engine-part-1/ at Qt Blog

(https://blog.qt.io/)

[82] Importing JavaScript Resources in QML https://doc.qt.io/

qt-5/qtqml-javascript-imports.html at the Qt Documentation

(https://doc.qt.io/)

[83] JavaScript Host Environment https://doc.qt.io/qt-5/

qtqml-javascript-hostenvironment.html at the Qt Documentation

(https://doc.qt.io/)

[84] QML Global Object https://doc.qt.io/qt-5/

qtqml-javascript-qmlglobalobject.html at the Qt Documentation

(https://doc.qt.io/)

109

BIBLIOGRAPHY

[85] List of JavaScript Objects and Functionst https://doc.qt.io/

qt-5/qtqml-javascript-functionlist.html at the Qt Documentation

(https://doc.qt.io/)

[86] JavaScript Environment Restrictions https://doc.

qt.io/qt-5/qtqml-javascript-hostenvironment.html#

javascript-environment-restrictions at the Qt Documentation

(https://doc.qt.io/)

[87] Standard ECMA-262 http://www.ecma-international.org/

publications/standards/Ecma-262.htm at ECMA International

(http://www.ecma-international.org/)

[88] WorkerScript QML Type http://doc.qt.io/qt-5/qml-workerscript.

html at the Qt Documentation (https://doc.qt.io/)

[89] Compiler Options https://www.typescriptlang.org/docs/

handbook/compiler-options.html at TypeScriptLang.org

(https://www.typescriptlang.org)

[90] About Node.js https://nodejs.org/en/about/ at Node.js

(https://nodejs.org/en/)

[91] NPM Homepage https://www.npmjs.com/

[92] Brig’s GitHub Repository https://github.com/BrigJS/brig at GitHub

(https://github.com)

[93] Quickly’s GitHub Repository https://github.com/quickly/quickly at

GitHub (https://github.com)

[94] Qt Charts 2.1.0 Release http://blog.qt.io/blog/2016/01/18/

qt-charts-2-1-0-release/ at Qt Blog (http://blog.qt.io/)

[95] Qt Charts Overview https://doc.qt.io/qt-5.11/

qtcharts-overview.html at the Qt Documentation (https://doc.qt.io/)

[96] Qwt User’s Guide http://qwt.sourceforge.net/

[97] QCustomPlot Homepage https://www.qcustomplot.com/

110

BIBLIOGRAPHY

[98] How to scroll a QChart as realtime data

come in? http://www.qtcentre.org/threads/

69063-How-to-scroll-a-QChart-as-realtime-data-come-in at

Qt Centre (http://www.qtcentre.org)

[99] LineSeries QML Type https://doc.qt.io/qt-5/

qml-qtcharts-lineseries.html at Qt Documentation

(https://doc.qt.io/)

[100] AreaSeries QML Type https://doc.qt.io/qt-5/

qml-qtcharts-areaseries.html at Qt Documentation

(https://doc.qt.io/)

[101] QCharts Second Y Axis on the Right Side

https://stackoverflow.com/questions/50956222/

qcharts-second-y-axis-on-the-right-side at Stack Overflow

(https://stackoverflow.com)

[102] Append negative CategoryAxis Labels https://forum.qt.io/

topic/93688/append-negative-categoryaxis-labels at Qt Forum

(https://forum.qt.io)

[103] QML Integration https://www.qcustomplot.com/index.php/

support/forum/172 at QCustomPlot Discussion and Comments

(https://www.qcustomplot.com/index.php/support/forum)

[104] Emanuel Eichhammer GitLab Profile https://gitlab.com/DerManu at

GitLab (https://gitlab.com/)

[105] ElectronJS Homepage https://electronjs.org/

[106] The Abstract Windowing Toolkit Group, http://openjdk.java.net/

groups/awt/ at OpenJDK (http://openjdk.java.net/)

[107] java.awt Package Documentation, https://docs.oracle.

com/javase/7/docs/api/java/awt/package-summary.html

at JavaTM Platform, Standard Edition 7 API Specification

(https://docs.oracle.com/javase/7/docs/api)

111

BIBLIOGRAPHY

[108] The Swing Tutorial, https://docs.oracle.com/

javase/tutorial/uiswing/ at The JavaTM Tutorials

(https://docs.oracle.com/javase/tutorial/)

[109] javax.swing Package Documentation, https://docs.oracle.

com/javase/7/docs/api/javax/swing/package-summary.html

at JavaTM Platform, Standard Edition 7 API Specification

(https://docs.oracle.com/javase/7/docs/api)

[110] General information on JavaFX, https://www.java.com/en/

download/faq/javafx.xml at Java.com (https://www.java.com)

[111] SWT: The Standard Widget Toolkit, https://www.eclipse.org/swt/

at Eclipse.org (https://www.eclipse.org/)

[112] GWT (Google Widget Toolkit), http://www.gwtproject.org/

[113] JOGL (Java OpenGL Binding), http://jogamp.org/jogl/www/ at

JogAmp.org (http://jogamp.org)

[114] Continuous Integration, https://en.wikipedia.org/wiki/

Continuous_integration at Wikipedia (https://en.wikipedia.org)

[115] What is Continuous Integration?, https://www.visualstudio.com/

fr/learn/what-is-continuous-integration/ at VisualStudio.com

(https://www.visualstudio.com/)

[116] WYSIWYG, https://en.wikipedia.org/wiki/WYSIWYG at Wikipedia

(https://en.wikipedia.org/)

[117] Integrated Development Environment, https://en.wikipedia.

org/wiki/Integrated_development_environment at Wikipedia

(https://en.wikipedia.org/)

[118] SWIG Homepage, http://swig.org/

[119] Hello World, JavaFX Style https://docs.oracle.com/javafx/2/get_

started/hello_world.htm at Java Platform, Standard Edition (Java SE)

8 Documentation (https://docs.oracle.com/javase/8/)

112

BIBLIOGRAPHY

[120] Creating a minimal JavaFX user interface in Java 8 https://gjf2a.

blogspot.fr/2015/01/creating-minimal-javafx-user-interface.

html at Computing Intelligently (https://gjf2a.blogspot.fr/)

[121] Software development kit https://en.wikipedia.org/wiki/

Software_development_kit at Wikipedia (https://en.wikipedia.org)

113

