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Abstract

Topological model reduction can decrease the high computational costs of simula-
tions in many multiscale systems, especially applied to biology and geology, where
small inclusions embedded in a 3D continuum can be described as one-dimensional
(1D) concentrated sources. However, concentrated sources lead to singular solu-
tions that still require computationally expensive graded meshes, due to the ill-
posedness of restriction operators applied on manifolds with co-dimension larger
than one. We apply topological model reduction to coupled transport problems
applied to the microcirculation. In this framework, the a posteriori analysis of the
error due to this model reduction is still unexplored. We propose a Dual-Weighted
Residual estimator for the modeling error. The use of this technique is a first step
for an adaptive method, able to optimally refine the grid where the error is larger.
We build a suitable solver based on the C++ finite element library GetFEM++,
able to simulate the transport of particles in a capillary network embedded in a
permeable biological tissue, and afterwards compute the suitable estimators for
the modeling error. The solver may be a valid support in the computational anal-
ysis of physical phenomena related to microcirculation, with possible applications
to drug delivery for cancer treatment or to lymphatic clearance of the brain in
neurodegenerative diseases.



Sommario

L’applicazione di tecniche di riduzione di modello permette di ridurre gli alti costi
computazionali delle simulazioni in problemi multi-scala, specialmente applicati
alla biologia e alla geologia, dove piccole inclusioni all’interno di un mezzo conti-
nuo 3D possono essere descritte come sorgenti concentrate unidimensionali (1D).
Purtroppo, usando sorgenti concentrate si ottengono soluzioni singolari che richie-
dono l’utilizzo di mesh computazionalmente molto costose, poichè gli operatori di
restrizione applicati a varietà con co-dimensione maggiore di uno non sono ben
definiti. Applichiamo tecniche di riduzione di modello a problemi accoppiati di
trasporto nella microcircolazione. In questo contesto, l’analisi a posteriori del-
l’errore commesso nella riduzione di modello è ancora inesplorata. Proponiamo
quindi uno stimatore di tipo Dual-Weighted Residual per l’errore di modello. L’u-
so di questa tecnica è un primo passo per costruire un metodo adattivo, capace di
raffinare in maniera ottima la griglia laddove l’errore è maggiore. Costruiamo un
risolutore numerico basato sulla libreria per elementi finiti GetFEM++, scritta in
C++, capace di simulare il trasporto di particelle in una rete di capillari all’interno
di un tessuto biologico permeabile, e successivamente di calcolare degli stimatori
dell’errore di modello. Questo risolutore potrà essere un valido supporto per l’a-
nalisi computazionale dei fenomeni fisici legati alla microcircolazione, con possibili
applicazioni al trasporto di farmaci per il trattamento di tumori o al drenaggio
linfatico del cervello in malattie neurodegenerative.
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Introduction

The final goal of the thesis is to simulate the transport of particles in the capil-
lary network and the drug delivery in the interstitial tissue. In the last decades,
the study of complex diseases such as cancer [25] and neurological diseases [36]
indicates the need for combining the efforts of quantitative sciences and medicine,
as in the Computer Aided Clinical Trials (CACT) [53]. We aim to develop new
techniques to overcome some of the limitations in the simulations of multiscale,
multiphysics, multimodel systems, which are among the grand challenges in Com-
putational Science and Engineering. In this context, the application of topological
or geometrical model reduction techniques plays an essential role, exploiting the
multiscale nature that characterizes all the biological systems and using the inter-
actions among results obtained at different time- and space-scales. For example,
small inclusions of a continuum can be described as zero-dimensional (0D) or one-
dimensional (1D) concentrated sources in order to reduce the computational cost
of simulations. Many problems in this area are not well investigated yet, such as
the coupling of three-dimensional (3D) continua with embedded (1D) networks, al-
though it arises in applications of paramount importance such as microcirculation,
flow through perforated media, and many others, both in biological and geological
systems.
In particular, models involving the cardiovascular system are usually very expen-
sive, due to the complexity of the equations governing the hemodynamics and to
the large number of vessels composing the circulatory system. Therefore, many ad-
hoc reduction techniques have been proposed [45, 19, 20, 21], exploiting the large
aspect ratio of the vessel in order to approximate the fluid dynamics in the vessel
and the fluid exchange from one capillary to the surrounding tissue. Subsequently,
other non-specific approaches have been developed, casting the microcirculation
problem into a new unified framework to formulate and approximate coupled par-
tial differential equations (PDEs) on manifolds with heterogeneous dimensionality.
This approach was originally proposed in [12, 14, 13], but also employed in [34, 52],
extending the reduction of fluid dynamics equations to other PDEs. This field has
recently attracted the attention of several researchers from the perspective of the-
ory and applications. The main computational barrier consists in the ill-posedness
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of restriction operators (such as the trace operator) applied on manifolds with
co-dimension larger than one. Therefore it requires particular attention to prove
existence of a solution in the weak sense. From the point of view of numerical ap-
proximation and analysis of such problems, we mention [5, 6, 26, 27, 28, 30, 31, 40].
More precisely, in [5, 26, 27] optimal a-priori error estimates for the finite element
approximation of elliptic equations in with Dirac sources are addressed. The so-
lution of 1D differential equations embedded in 2D is studied in [30], recently
extended to 3D-1D in [31]. The consistent derivation of numerical approximations
schemes for PDEs in mixed dimension is addressed in [6], while [40] focuses on the
approximation of 3D-1D coupled problems with mixed finite elements. This ap-
proach has already been applied in many fields, such as drug delivery [11, 29, 54],
cancer treatment [10, 37, 38], nephrology [43], neurology [35, 51] but also geology
[18].
Within this general framework, the specific objective of this work is to contribute
to the theory of these model reduction techniques with an a posteriori analysis
of the error. The use of topological reduction is validated thanks to the a priori
results, but the state of art lacks of any quantitative consideration of the modeling
error. In fact, the direct connection between the modeling error and the dimen-
sion of the inclusion has been previously addressed in [28]; however, the results
concern non fully-computable L2-norm estimates of the error. We move from this
approach, and we introduce the Dual-Weighted Residual (DWR) a posteriori esti-
mates: this technique allows to compute some user-defined functional of the error
through the solution of an ad-hoc dual problem. It generally consists in three
steps: (i) compute a proper residual of the weak primal formulation; (ii) compute
some weights deriving from the dual solution; (iii) multiply the residuals by the
weights. The DWR method has been extensively studied in the last decades for
what concerns the discretization error [15, 3, 46, 1], but it has been also applied to
the modeling error [7]. The estimator computed in this way is particularly useful
since it allows to see the localization of the error. In the framework of problems
dependent on the topological shape, such as the ones related to small inclusions in
a continuum, it is important to know how the error is distributed in the domain.
This information allow us to investigate the suitability of the model reduction and
perform mesh adaptation: therefore, we can refine the mesh grid where the mod-
eling error is larger.
The outline of the thesis is as follows. Chapter 1 contains a multiscale PDE model
of transport of particles and fluid exchange between microcirculation and tissue
interstitium, with special attention to the 3D-1D reduction of the vessels. The
model describes all the principal component of the motion from a physiological
point of view: diffusion through the vessel and the tissue, advection in the blood
stream, mass exchange through the capillary walls, consumption and production
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due to metabolic response, absorption of mass due to the lymphatic system. We
develop a new C++ solver able to simulate the mass exchange between an arbitrar-
ily complex microvascular network and a generic biological tissue. This Chapter
provides some simulations that validate the code and explore the effect of some
terms of the equations. Unfortunately, the complete physiological equations are
not the right framework to develop a rigorous theory for the well-posedness of the
coupled PDEs and for the modeling error estimators. In fact, there is not enough
research to rigorously study the advection and reaction terms yet. Therefore in
Chapter 2 we consider a specific case, precisely a generic elliptic coupled problem
on a network completely embedded in a 3D domain, and we provide an accurate
derivation of the reduced 3D-1D problem from the reference 3D-3D one. We per-
form this reduction through three specific assumptions, namely: (i) the unknown
of the network problem depends only on the axial coordinate; (ii) the 3D domain
include both the region around the inclusion and the inclusion itself; (iii) we ne-
glect the fluctuations of the 3D unknown on the interface between the domains.
We then analyse the well-posedness of the reduced problem and the convergence of
the numerical error of its discrete formulation. In Chapter 3 we review the theory
of the DWR methods applied to the modeling error [7] and then we apply it to
the error arising from each of the three assumptions. We also prove some stabil-
ity results in order to guarantee the quality of the computed estimators. Finally,
Chapter 4 contains the definitions of the fully-computable localized estimators of
the modeling error, and the results obtained numerically with our solver.

3



Chapter 1

A mathematical model for
coupled 3D-1D mass transport
system

We present a mathematical model for mass transport for a capillary network im-
mersed in a permeable biological tissue. The domain of our model is a subspace of
R3 composed by two parts, namely Ωt and Ωv, the interstitial tissue and the vessel
bed respectively. We assume that the capillaries can be described as cylindrical
vessels, with Γ defined as the outer surface of Ωv and Λ as the one-dimensional
manifold representing the centerline of the capillary network. The vessel radius R
may change in the network.

The physical quantity of interest is the concentration of transported solutes
c (x, t). In particular, we denote cv (x, t) the concentration in the domain Λ, and
ct (x, t) the concentration in the domain Ωt.
To model drug transport we assume that the molecules are advected by the fluid
and diffuse in all the domain. Furthermore, chemical species can be metabolized

Figure 1.1: On the left, microvasculature within a tissue interstitium; in the center,
the interstitial tissue slab with one embedded capillary; on the right, the reduction
from 3D to 1D description of the capillary vessel.
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CHAPTER 1. A MATHEMATICAL MODEL FOR COUPLED 3D-1D MASS
TRANSPORT SYSTEM

by the cells in the interstitial tissue. We assume that the capillary walls behave as
semipermeable membranes: there is both a leakage of fluid and a selective filtration
of molecules in the vessel walls. We also consider the lymphatic system, which
absorbs the fluid in excess due to capillary leakage. We assume the volumetric
flow rate to be proportional to the pressure difference between the interstitium
and the lymphatic system.

Therefore, we model transport by means of advection-diffusion equations in the
network, and by means of advection-diffusion-reaction equations in the volume.

∂ct
∂t

+∇ · (ctut −Dt∇ct) +mct + LLFP
S

V
(pt − pL) ct = fcδΛ on Ω× (0, T ) ,

∂cv
∂t

+
∂

∂s

(
(uv · λ) cv −Dv

∂cv
∂s

)
= − 1

πR2
fc on Λ× (0, T ) ,

(1.1)
where Dt and Dv are the molecular diffusivities, in the tissue and in the vessels,
respectively, assumed to be constant in each region. The metabolization rate m
can be modeled as a function of concentration values, but we consider it constant
at this stage.
In the lymphatic drainage term, LLFP is the idraulic permeability of the lymphatic
wall, the ratio S

V
is the surface area of lymphatic vessels per unit volume of tissue

and pL is the hydrostatic pressure within the lymphatic channels.
The function fc = fc (pt, pv, ct, cv) represents the mass flux per unit length of cap-
illary vessels, between the capillary bed and the interstitial tissue. This function
is written according to the Kedem-Katchalsky equations, which describes the be-
haviour of a selective semipermeable membrane. This reads as:

fc = 2πR [Lp (1− σ) [(pv − pt)− σ (πv − πt)] [wct + (1− w)cv] + P (cv − ct)]
(1.2)

on Λ × (0, T ), where LP is the hydraulic permeability of the vessel wall, σ is the
osmotic reflection coefficient, σ is the sieving coefficient, pv − pt is the pressure
drop between vessels and tissue, πv − πt is the oncotic pressure jump; finally,
0 < w < 1 is a weight depending on the Péclet number of the solute transport
through the wall, usually set w = 1

2
, and P is the permeability of the vessel

wall with respect to solutes. We recall that we defined Λ as the one-dimensional
manifold representing the centerline of the capillary network, as in Figure 1.1; it
would then be inappropriate to use the pointwise ct on Λ in order to compute
the coupling term. In fact, we employ the average value of concentration over the
cylindrical surface of the real domain of the capillary vessel, Γ. We introduce the
average value of a field g:

g (s) :=
1

2πR

∫ 2π

0

g (s, θ)Rdθ. (1.3)
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CHAPTER 1. A MATHEMATICAL MODEL FOR COUPLED 3D-1D MASS
TRANSPORT SYSTEM

We apply the average operator to every quantity of interest in the mass flux
fc (pt, pv, ct, cv) which is defined on the volume Ωt, namely ct, pt and πt.

We finally model the advection and pressure fields to be the solutions of the
equations for the fluid dynamics of the blood. We consider the tissue an isotropic
porous medium and the blood flow in the vessels to be steady and incompressible:
then, the advection field is described by Darcy’s law in the interstitial volume and
by Poiseuille’s flow in the microcirculation. Then, the velocity fields ut and uv,
and the hydrostatic pressures pt and pv satisfy the following equations:

−∇ ·
(
k

µ
∇pt

)
+ LLFP

S

V
(pt − pL)− fb (pt, pv) δΛ =0 in Ω× (0, T ) ,

ut =− k

µ
∇pt in Ω× (0, T ) ,

−πR
4

8µ

∂2pv
∂s2

+ fb (pt, pv) =0 on Λ× (0, T ) ,

uv =− R2

8µ

∂pv
∂s
λ on Λ× (0, T ) ,

(1.4)
where k is the hydraulic permeability of the interstitial volume, µ is the blood

viscosity and the function fb (pt, pv) δΛ denotes the fluid flux leaking from the
capillaries to the interstitial volume, defined as:

fb (pt, pv) : = 2πRLp ((pv − pt)− σ (πv − πt)) Λ× (0, T ) . (1.5)

1.1 Dimension analysis

In this section we want to perform a dimension analysis in order to study the
relative impact of the different mechanics, namely the molecular diffusion, advec-
tion, consumption and leakage. The physical variables on which our analysis will
depend are length, velocity, pressure and concentration; the characteristic length
is the average spacing between capillary vessels d, the characteristic velocity is the
average velocity in the capillary bed U, the characteristic pressure is the average
pressure in the interstitial space ∆P , and the characteristic concentration is the
maximum value Cmax of concentration of that chemical species we can find in an
healthy organism. The adimensional parameters follow:
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CHAPTER 1. A MATHEMATICAL MODEL FOR COUPLED 3D-1D MASS
TRANSPORT SYSTEM

R′ =
R

d
non-dimensional radius,

At =
Dt

dU
inverse of Péclett number in the interstitium,

Av =
Dv

dU
inverse of Péclet number in the blood stream,

Dα = m
d

U
Damkohler number,

Q = LP
∆P

U
hydraulic conductivity of the capillary walls,

QPL = LLFP
S

V

d∆P

U
hydraulic conductivity of the lymphatic walls,

Υ =
P

U
magnitude of leakage from the capillary bed,

κt =
k

µ

∆P

Ud
hydraulic conductivity of the tissue,

κv =
πR′4

8µ

d∆P

U
hydraulic conductivity of the capillary bed.

-
Using these parameters, the equations (1.1), (1.2) and (1.4) read as follows:

∂ct
∂t

+∇ · (ctut − At∇ct) +Dαct +QPL (pt − pL) ct = fcδΛ in Ω× (0, T ) ,

∂cv
∂t

+
∂

∂s

(
uvcv − Av

∂cv
∂s

)
= − 1

πR2
fc on Λ× (0, T ) ,

(1.6)

fc = 2πR′ [Q (1− σ) [(pv − pt)− σ (πv − πt)] [wct + (1− w)cv] + Υ(cv − ct)]
(1.7)

∇ · ut +QPL (pt − pL)−Q (pv − pt) δΛ =0 in Ω× (0, T ) ,

1

κt
ut +∇pt =0 in Ω× (0, T ) ,

∂uv
∂s

+
1

πR′2
Q (pt − pt) =0 on Λ× (0, T ) ,

πR′2

κv
uv +

∂pv
∂s

=0 on Λ× (0, T ) .

(1.8)
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For semplicity, the variables for concentration, velocity and pressure have main-
tained the same symbol after the re-scaling for Cmax, U and ∆P respectively.
However, note that the transport equations are linear in the variables ct and cv,
so the adimensionalization of this quantities does not affect the equations.

Besides, we used the notation uv = (uv · λ) for the velocity in the one dimen-
sional vessels.

1.2 Boundary and initial conditions

In order to guarantee the uniqueness of the solution of the dimensionless problem,
we need to specify some boundary conditions on ∂Ω and ∂Λ, and an initial condi-
tion for t = 0. The choice of the following boundary conditions depends on both
the variational formulation and the available data. In fact, we must impose essen-
tial and natural conditions over the boundary integrals derived from integrations
by parts.
The boundary of the vessel network is the set of the capillary extrema; we dis-
tinguish these points between inflow and outflow extrema, respectively the points
with velocity inward-pointing and outward-pointing; we define these sets ∂Λ ≡
ΛIN ∪ ΛOUT . We claim to be a constant concentration of the chemical species on
the inflow boundary; this condition is linked to a constant injection of the solute in
the network. On the outflow boundary, the particles are free to leave the system:
a homogeneous Neumann boundary condition correctly models this phenomenon.
The conditions are:

cv = cin on ∂ΛIN × (0, T ) ,

∂cv
∂s

= 0 on ∂ΛOUT × (0, T ) .

At the boundary of the volume Ω, we have flow of fluid with particles; the
quantity of solution exchanged with the exterior depends on the concentration of
the solution itself. We model this condition with a Robin condition:

− At∇ct · n = βt (ct − cout) on ∂Ω× (0, T ) .

Remark 1.2.1. We described the physical boundary condition that we need to close
the problem; nevertheless, we develop a more general framework for boundary con-
ditions, considering all the different cases. Therefore, from now on we will use this
boundary conditions:

8
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cv = cin on ∂ΛIN × (0, T ) ,

−Av
∂cv
∂s

= βv (cv − c0,v) on ∂ΛOUT × (0, T ) ,

ct = cext on ∂ΩDIR × (0, T ) ,

−At∇ct · n = βt (ct − c0,t) on ∂ΩMIX × (0, T ) .

The choice of the parameters defines all the standard boundary conditions, namely
Dirichlet, Neumann and Robin conditions.

Finally, we recall that our problem is time-dependent, so we must impose an
initial condition over all domain:

ct (t = 0) = cin,t on Ω,

cv (t = 0) = cin,v on Λ.

1.3 Weak formulation

The coupled problem we want to solve has no explicit analytical solution, so we
must solve it numerically, through finite element methods; therefore we must write
the variational form. In particular, in this section we will propose a dual mixed
weak formulation of both the tissue and vessel problems.

1.3.1 Weak formulation for the tissue problem

To obtain a variational formulation of the particle transport problem in the inter-
stitial tissue, the test space for the concentration is

Qt := H1
0,∂ΩDIR (Ω) .

Let us proceed multiplying (1.6)(a) with a sufficiently smooth function qt and
integrating over Ω:∫

Ω

∂ct
∂t
qt dΩ +

∫
Ω

∇ · (ctut − At∇ct) qt dΩ +

∫
Ω

Dαctqt dΩ +

∫
Ω

QPL (pt − pL) ctqt dΩ

−
∫

Ω

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} δΛc̄tqt dΩ

= +

∫
Ω

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} δΛcvqt dΩ.

9
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We apply the Green’s theorem and the boundary condition to the diffusion
term:∫

Ω

∇ · (−At∇ct) qt dΩ =

∫
Ω

At∇ct · ∇qt dΩ−
∫
∂Ω

Atqt∇ct · n dσ

=

∫
Ω

At∇ct · ∇qt dΩ−
∫
∂ΩDIR

Atqt∇ct · n dσ +

∫
∂ΩMIX

βtctqt dσ −
∫
∂ΩMIX

βtc0,tqt dσ

We re-write the advection term in non-conservative form:∫
Ω

∇ (utct) qt dΩ =

∫
Ω

ut · ∇ctqt dΩ +

∫
Ω

∇ · utctqt dΩ (1.9)

Finally, we substitute these two results into this equation:

∫
Ω

∂ct
∂t
qt dΩ +

∫
Ω

At∇ct · ∇qt dΩ +

∫
∂ΩMIX

βtctqt dσ −
∫
∂ΩMIX

βtc0,tqt dσ

+

∫
Ω

ut · ∇ctqt dΩ +

∫
Ω

∇ · utctqt dΩ +

∫
Ω

Dαctqt dΩ +

∫
Ω

QPL (pt − pL) ctqt dΩ

−
∫

Ω

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} δΛc̄tqt dΩ

= +

∫
Ω

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} δΛcvqt dΩ.

(1.10)
∀qt ∈ H1

0,∂ΩDIR(Ω).
Notice that the boundary term on the Dirichlet boundary vanishes, thanks to

the choice of the space of the test functions: the Dirichlet boundary condition will
be enforced in an essential way, directly on the matrix.

1.3.2 Weak formulation for the vessel problem

Accounting the vessel problem, the test space for the concentration is:

Qv := H1
0,∂ΛIN (Λ) .

We approach the weak formulation in a standard way, by means of multiplying
equation (1.6)(b) by a test function qv and integrating over Λ:∫

Λ

∂cv
∂t
qv ds+

∫
Λ

∂

∂s

(
uvcv − Av

∂cv
∂s

)
qv ds

+

∫
Λ

2

R′
{(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} cvqv ds =

=−
∫

Λ

2

R′
{(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} ctqv ds.
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At this point, it is not possible to simply integrate by parts, because of the presence
of multiple junctions. To tackle this issue, must divide the integral over the whole
network between each branch; in order to handle the terms at the junctions, we
write the mass balance at each junctions, that is:∑
i∈P outj

πR′2i

(
−Av

∂cv
∂s

+ uvcv

)∣∣∣∣
Λ+
i

=
∑
i∈P inj

πR′2i

(
−Av

∂cv
∂s

+ uvcv

)∣∣∣∣
Λ−i

∀j ∈ J ,

(1.11)
where J is the set of all the junctions, Poutj and P inj is the set of the indexes of the
branches exiting and entering the junction j, Λ+

i and Λ−i denote the inflow and
outflow extrema of branch Λi. Notice that, for the choice of the functional space,
cv must be continuous in every point; in addition, the conservation of local flow
rate in every vessel junctions must hold. For this reasons, the mass balance of the
advective fluxes holds separately from the mass balance of the diffusive fluxes:∑

i∈P outj

πR′2i uvcv
∣∣
Λ+
i

=
∑
i∈P inj

πR′2i uvcv
∣∣
Λ−i

∀j ∈ J , (1.12)

∑
i∈P outj

πR′2i Av
∂cv
∂s

∣∣∣∣
Λ+
i

=
∑
i∈P inj

πR′2i Av
∂cv
∂s

∣∣∣∣
Λ−i

∀j ∈ J . (1.13)

For this reason, before we integrate by parts, we multiply the equation by a factor
πR′2; in this way, the diffusive and advective term are correctly scaled by the cross
section area. We can now apply the Green’s theorem to the diffusive term:

∫
Λ

∂

∂s

(
−πR′2Av

∂cv
∂s

)
qvdΛ =

N∑
i

∫
Λi

∂

∂s

(
−πR′2i Av

∂cv
∂s

)
qvdΛ

=
N∑
i

{∫
Λi

πR′2i Av
∂cv
∂s

∂qv
∂s

dΛ +

[
−πR′2i Av

∂cv
∂s

qv

]Λ+
i

Λ−i

}

=

∫
Λ

πR′2Av
∂cv
∂s

∂qv
∂s

dΛ +
N∑
i

[
−πR′2i Av

∂cv
∂s

qv

]Λ+
i

Λ−i

.

The extrema terms can be distinguished in boundary terms and junction terms;
thanks to the compatibility condition of the diffusive mass balance, the junction
terms vanish. Finally the diffusive term reads as:

∫
Λ

∂

∂s

(
−πR′2Av

∂cv
∂s

)
qvdΛ =

∫
Λ

πR′2Av
∂

∂s
cv
∂

∂s
qv dΛ− [πR′2Av

∂

∂s
cvqv]∂ΛIN

+ [πR′2βvcvqv]∂ΛOUT − [πR′2βvc0,vqv]∂ΛOUT .
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As done in the tissue terms, we write in a non conservative form the advection
term:

∫
Λ

πR′2
∂

∂s
(uvcv) qv ds =

∫
Λ

πR′2uv
∂cv
∂s

qv ds+

∫
Λ

πR′2
∂uv
∂s

cvqv ds (1.14)

Globally, combining the previous results, the weak formulation for the vessel prob-
lem is∫

Λ

πR′2
∂cv
∂t
qv ds+

∫
Λ

πR′2Av
∂

∂s
cv
∂

∂s
qv dΛ + [πR′2βv(cv − c0,v)qv]∂ΛOUT

+

∫
Λ

πR′2uv
∂cv
∂s

qv ds+

∫
Λ

πR′2
∂uv
∂s

cvqv ds

+

∫
Λ

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} cvqv ds

=−
∫

Λ

2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} ctqv ds.

(1.15)

Therefore, the whole problem is: find ct ∈ Qt × (0, T ) and cv ∈ Qv × (0, T )
such that

(
∂ct
∂t
, qt
)

Ω
+ (At∇ct,∇qt)Ω + (ut · ∇ct, qt)Ω + (∇ · utct, qt)Ω

+
(
QLF (pt − pL) ct, bt

)
Ω

+ (Dαct, qt)Ω + (βcct, qt)∂Ω

− (2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} c̄t, qt)Λ +

− (2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} cv, qt)Λ

= − (βc0,tqt)∂ΩMIX ∀qt ∈ Qt,(
πR′2 ∂cv

∂t
, qv
)

Λ
+
(
πR′2uv

∂cv
∂s
, qv
)

Λ
+
(
πR′2 ∂uv

∂s
cv, qv

)
Λ

+

+
(
πR′2Av

∂cv
∂s
, ∂qv
∂s

)
Λ

+ [πR′2βvcvqv]∂ΛOUT

+ (2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)] (1− w) + Υ} cv, qv)Λ +

+ (2πR′ {(1− σ)Q [(pv − p̄t)− σ (πv − π̄t)]w −Υ} c̄t, qv)Λ

= −[πR′2βvc0,vqv]∂ΛOUT ∀qv ∈ Qv,

(1.16)

with ct(t = 0) = 0 and cv(t = 0) = 0.

1.4 Numerical Approximation

We proceed with the description of finite element implementation of our problem.
First of all, we will discretize the domains Ω and Λ; next, we will define the discrete
functional spaces for our solutions; finally, we will derive the Galerkin formulation
for problem (1.16).

12
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Our formulation let us discretize independently the partitions Ω and Λ.
In order to discretize the domain for the tissue interstitium problem, we intro-

duce an admissible triangulation T ht of Ω̄, i.e.

Ω̄ =
⋃

K∈T ht

K,

which satisfies the usual conditions of a conforming triangulation of Ω, while we
are implicitly assuming that Ω is a polygonal domain. With a standard notation,
h = maxK∈T ht hK , where hK is the diameter of the element K. The solutions of
(1.16)(a) are approximated using continuous piecewise-polynomial finite elements
for the concentration. More precisely, we have

Xh
k :=

{
vh ∈ C0

(
Ω̄
)

s.t. vh|K ∈ Pk (K) ∀K ∈ T ht
}

for every integer k ≥ 0, where Pk indicates the standard space of polynomials of
degree ≤ k in the variables x = (x1, . . . , xd).

Concerning the capillary network problem, we adopt the same splitting of the
domain described at the continuous level, denoted by

Λh =
N⋃
i=1

Λh
i ,

where Λh
i is a partition of the one-dimensional manifold Λi made by segments S.

For the concentration, we define the finite element space over the whole network
Λh as

Y h
k (Λ) :=

{
wh ∈ C0

(
Λ̄
)

s.t. wh|S ∈ Pk (S) ∀S ∈ Λh

}
,

for every integer k ≥ 0.
The discrete formulation arising from (1.16) is easily obtained by projecting

the equations on the discrete spaces

Qh
t = Xh

k (Ω) and Qh
v = Y h

k (Λ)

for k ≥ 0 and adding the subscript h to each variable (cht and chv).
The space discretization must be complemented with the time advancing scheme.

Let us subdivide the time interval [0, T ] in N time steps of size ∆t > 0, so that
tn = n∆t, with n = 0, . . . , N − 1. The equations have been solved with the back-
ward Euler finite difference scheme:

∂y

∂t
= f (y) ⇒ yn+1 − yn

∆t
= f

(
yn+1

)
.
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Let us denote with ch,nt and ch,nv , the numerical approximation of cht (tn) and
chv (tn), respectively, therefore the fully discrete formulation of problem (1.16) reads
as follows:
∀n = 0, . . . , N − 1, to find ch,n+1

t ∈ Qh
t and ch,n+1

v ∈ Qh
v such that

1
∆t

(
ch,n+1
t , qht

)
Ω

+
(
At∇ch,n+1

t ,∇qht
)

Ω
+
([
Dα +QPL (pt − pL)

]
ch,n+1
t , qht

)
Ω

+
(
uht · ∇c

h,n+1
t , qht

)
Ω

+
(
∇ · uht c

h,n+1
t , qht

)
Ω

+
(
βtc

h,n+1
t , qht

)
∂ΩMIX

−
(

2πR′
{

(1− σ)Q
[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
w −Υ

}
c̄h,n+1
t , q̄ht

)
Λ

−
(
2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
(1− w) + Υ

}
ch,n+1
v , q̄ht

)
Λ

= 1
∆t

(
ch,nt , qht

)
Ω
−
(
βc0,tq

h
t

)
∂ΩMIX ∀qht ∈ Qh

t ,

1
∆t

(
πR′2ch,n+1

v , qhv
)

Λ
+
(
πR′2Av

∂ch,n+1
v

∂s
, ∂q

h
v

∂s

)
Λ

+
(
πR′2uhv

∂ch,n+1
v

∂s
, qhv

)
Λ

+
(
πR′2 ∂u

h
v

∂s
ch,n+1
v , qhv

)
Λ

+ [πR′2βvc
h,n+1
v qhv ]∂ΛOUT

+
(
2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
(1− w) + Υ

}
ch,n+1
v , qhv

)
Λ

+
(

2πR′
{

(1− σ)Q
[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
(−w)−Υ

}
c̄h,n+1
t , qhv

)
Λ

= 1
∆t

(
πR′2ch,nv , qhv

)
Λ
− [πR′2βvc0,vq

h
v ]∂ΛOUT ∀qhv ∈ Qh

v .

(1.17)

with ch,0t = 0 and ch,0v = 0.

1.5 Algebraic formulation

We aim at studying the algebraic counterpart of the discrete problem (1.17). The
number of degrees of freedom of the discrete spaces are defined as

Nh
t := dim

(
Qh
t

)
and Nh

v := dim
(
Qh
v

)
,

Let us introduce the finite element basis for Qh
t and Qh

v : {ϕit}
Nh
t

i=1 and {ϕiv}
Nh
v

i=1,
respectively. These two sets are completely independent, since the 3D and 1D

meshes do not conform. Let Cn
t =

{
Cj,n
t

}Nh
t

j=1
, Cn

v = {Cj,n
v }

Nh
v

j=1 be the degrees of

freedom of the finite element approximation, using the finite element basis it is
possible to set:

ch,nt (x) =

Nh
t∑

j=1

Cj,n
t ϕjt (x) , ∀x ∈ Ω and ch,nv (s) =

Nh
v∑

j=1

Cj,n
v ϕjv (s) , ∀s ∈ Λ.
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Exploiting the linear combinations in the discrete weak form and the linearity
of the inner products, the fully discrete form (1.17) of the model leads to the linear
system[

1
∆t
Mt + At + Btt Btv

Bvt 1
∆t
Mv + Av + Bvv

] [
Cn+1
t

Cn+1
v

]
=

[
1

∆t
MtC

n
t + Ft

1
∆t
MvC

n
v + Fv

]
. (1.18)

Submatrices and subvectors in (1.18) are defined as follows:

[Mt]i,j :=
(
ϕjt , ϕ

i
t

)
Ω
,

[At]i,j :=
(
At∇ϕjt ,∇ϕit

)
Ω

+
(
uht · ∇ϕ

j
t , ϕ

i
t

)
Ω

+
(
∇ · uht ϕ

j
t , ϕ

i
t

)
Ω

+
([
Dα +QPL (pt − pL)

]
ϕjt , ϕ

i
t

)
Ω

+
(
βtϕ

j
t , ϕ

i
t

)
∂ΩMIX ,

[Mv]i,j :=
(
πR′2ϕjv, ϕ

i
v

)
Λ
,

[Av]i,j :=

(
πR′2Av

∂ϕjv
∂s

,
∂ϕiv
∂s

)
Λ

+

(
πR′2uhv

∂ϕjv
∂s

, ϕiv

)
Λ

+

(
πR′2

∂uhv
∂s

ϕjv, ϕ
i
v

)
Λ

+ [πR′2βvϕ
j
vϕ

i
v]∂ΛOUT ,

[Btt]i,j :=
(
−2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
w −Υ

}
ϕ̄jt , ϕ̄

i
t

)
Λ
,

[Btv]i,j :=
(
−2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
(1− w) + Υ

}
ϕjv, ϕ̄

i
t

)
Λ
,

[Bvt]i,j :=
(
2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
w −Υ

}
ϕ̄jt , ϕ

i
v

)
Λ
,

[Bvv]i,j :=
(
2πR′

{
(1− σ)Q

[(
phv − p̄ht

)
− σ

(
πhv − π̄ht

)]
(1− w) + Υ

}
ϕjv, ϕ

i
v

)
Λ
,

[Ft]i, := −
(
βtc0,tϕ

i
t

)
∂ΩMIX ,

[Fv]i, := −
(
πR′2βvc0,vϕ

i
v

)
∂ΛOUT

,

where the bar operator corresponds to the average operator as in (1.3). In partic-
ular, it holds

Mt ∈ RNh
t ×Nh

t , At ∈ RNh
t ×Nh

t , Btt ∈ RNh
t ×Nh

t , Btv ∈ RNh
t ×Nh

v , Ft ∈ RNh
t ,

Mv ∈ RNh
v×Nh

v , Av ∈ RNh
v×Nh

v , Bvv ∈ RNh
v×Nh

v , Bvt ∈ RNh
v×Nh

t . Fv ∈ RNh
v

1.5.1 Coupling terms

Concerning the implementation of the exchange matrices Btt, Btv and Bvt, it is
necessary to introduce a discrete average operator π̄vt : Qh

t → Qh
v that extracts the

mean value of a generic basis function of Qh
t and a discrete interpolation operator

πtv : Qh
v → Qh

t that returns the value of a basis function of Qh
t in correspondence

of nodes of Qh
v .

For every node sk ∈ Λh, we let Tγ (sk) be the discretization of the perimeter
of the vessel γ (sk), assuming that γ (sk) is a circle of radius R defined on the
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Figure 1.2: Illustration of the vessel with its centerline Λh, a cross section, its
perimeter γ (sk) and its discretization Tγ (sk) used for the definition of the opera-
tors π̄vt and πtv.

orthogonal plane to Λh at point sk (see Figure 1.2). The set of points of Tγ (sk) is
used to interpolate the basis function ϕit. The average operator π̄vt is defined in
such a way that q̄t = π̄vtqt and each row of the corresponding matrix Π̄vt ∈ RNh

v×Nh
t

is defined as
Π̄vt

∣∣
k

= wT (sk) Πγ (sk) k = 1, . . . , Nh
v ,

where w is the vector of weights of the quadrature formula for the approximation
of q̄t (s) = 1

2πR′

∫ 2π

0
qt (s, θ)R′dθ in the nodes belonging to Tγ (sk) and Πγ (sk) is the

local interpolation matrix that returns the values of each test function ϕit on the set
of points belonging to Tγ (sk). Omitting the parameters, it is possible to analyze
the structure of the exchange matrices. Therefore, thanks to these operators, the
exchange matrices are implemented as

Bvv ∝Mvv

Btt ∝ Π̄T
vtMvvΠ̄vt

Btv ∝ Π̄T
vtMvv

Bvt ∝MvvΠ̄vt.
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1.6 Numerical Results

We develop a C++ code which provides a solution for the model described in
Chapter 1. The code will be discussed in Appendix A; in this section we show the
numerical results which validate the code and show some of the applications.

Firstly we will present benchmarks on very simple networks, where we have the
exact solution or, at least, we can predict the trend of the solution; in addition,
we will not use physiological parameters.

Subsequently, we will test a more complex network with physiological param-
eters.

1.6.1 Uncoupled 1D and 3D test

Let us first consider an uncoupled problem, to validate separately the equations
in the tissue and in the network. To achieve this framework, we set Q = 0 and
Υ = 0, that means the capillary walls are impermeable to both fluid and particles.

Stand-alone vessel network problem

Given the uncoupled framework, in a network made of a single unitary branch,
Λ = [0 , 1] the equation on vessels become a standard one-dimensional advection-
diffusion problem. Assigning Dirichlet conditions on the boundary, we have:

{
∂
∂t
cv(s, t)− Av ∂2

∂s2
cv(s, t) + uv

∂
∂s
cv(s, t) = 0 s ∈ (0, 1) , t > 0,

cv(0, t) = 1, cv(1, t) = 0, cv (s, 0) = 0, s ∈ (0, 1) , t > 0,
(1.19)

Under the hypothesis of a constant advection field, the stationary problem has an
easy exact solution, that is:

cexv (s) =
exp

(
uv
Av

)
− exp

(
uv
Av
s
)

exp
(
uv
Av

)
− 1

. (1.20)

We then proceed to test some numerical simulation on the exact solution: as
shown in Figure 1.3, the results fit the theoretical expectations.

Remark 1.6.1. The advection field is computed by imposing Dirichlet conditions
on the pressure at the extrema of the vessel. In the uncoupled case, the pressure is
linear and the velocity, proportional to the first derivative of pressure, is constant.
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A C

C D

Figure 1.3: Uncoupled problem 1.19 on a single branch network. In all the sim-
ulations At = 1, R′ = 1. In panels A and B, Λ is discretized with 21 equally
distribuited nodes. Panel A shows concentration profiles on the branch for dif-
ferent velocities. Panel B shows concentration profiles on the branch for different
velocities, compared to the exact solution. In this simulations Péclet number
ranges between 0 and 0.8. Panel C shows how the mesh size affect the simulation
in case of large Péclet. We compare the numerical approximations with uv = 0
and uv = 16 for different discretizations; notice that in the second case, with
hv ∈ {0.2, 0.1, 0.05, 0.025}, Péclet take values Pev = {3.2, 1.6, 0.8, 0.4}. For
Péclet larger than 1, artificial diffusivity is added to stabilize the solution, there-
fore the numerical data fit the exact solution only for small enough hv. Panel D
shows a time-dependent solution converging to the stationary solution after a few
time-steps. In this simulation: uv = 16 and hv = 0.025.
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Setting pin and pout the Dirichlet conditions of pressure of inlet and outlet, exact
pressure and velocity is:

pexv (s) = pin + (pout − pin) s s ∈ (0, 1) , (1.21)

uexv (s) = − κv
πR′2

∂pv
∂s

= κv
πR′2

(pin − pout) s ∈ (0, 1) . (1.22)

The numerical tests in this section are made with unitary parameters, κv = 1
and R′ = 1; therefore the velocity in the branch is easily computed as uexv (s) =
π−1 (pin − pout) .
Remark 1.6.2. The well-known theory of advection-diffusion warns us of the risks
of an advection dominated setting. For this reason, the code computes Péclet
number in both tissue and vessels before solve the linear system; in case of Péclet
number larger than 1, in order to avoid instability, we add artificial diffusion,
namely A∗v = (1 + Pev)Av for vessels and A∗t = (1 + Pet)At, where the Péclet
numbers are defined as Pev = A−1

v hv max(uv) and Pet = A−1
t ht max(|ut|).

This stabilization method has many drawbacks, such as an excessive diffusion
in the solution, but, on the other hand, it has a very simple implementation.
In the future, one could try to implement a stronger stabilization method, like
streamline diffusion or SUPG. Nevertheless, this seems not to be a priority, since
in physiological simulations (see Section 1.8) the diffusion is usually dominating
advection.

Stand-alone tissue problem

We study the uncoupled tissue problem on Ω = (0, 1)3, which becomes an advection-
diffusion-reaction problem:

∂

∂t
ct +∇ · (ctut − At∇ct) +Dαct = 0 on Ω, t > 0. (1.23)

In this case, we just want to confront qualitatively some numerical simulations with
different advection fields. Therefore, we test a tissue slab with fixed concentration
on two parallel faces, in order to see how particles diffuse in the domain; the
particles can filtrate through the other four faces. We give appropriate boundary
conditions, namely Dirichlet and Robin conditions, and an initial condition:


ct(x, y, z, t) = 1 on x = 0, y ∈ [0, 1] , z ∈ [0, 1] , t > 0,

ct(x, y, z, t) = 0 on x = 1, y ∈ [0, 1] , z ∈ [0, 1] , t > 0,

−At∇ct(x, y, z, t) · n = βcct on x ∈ [0, 1] , y ∈ {0, 1} , z ∈ {0, 1} t > 0,

ct(x, y, z, t) = 0 on x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1], t = 0.

(1.24)
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A

B

C

D

Figure 1.4: Uncoupled problem 1.23 on Ω = (0, 1)3, discretized with 21 points on
each direction. In every panel, the figure on the left shows the concentration in
all the domain; the figure on the right shows the concentration on the y-z plane
x = 0.5. Panel A has u = 0 (only diffusion). Panel B has u = 8i. Panel C has
u = −8j. Panel D has u = −8k.
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In this test, we want to focus on the effect of the advection with respect to the
diffusion; therefore, we set Dα = 0 and look at stationary solutions with Pe < 1.
We performed four tests: ut = 0, ut = 8i, ut = −8j, and ut = −8k. We see
that in the first case, which has no advection, the concentration decrease linearly
on the x axis, between the two Dirichlet conditions ct = 1 and ct = 0; besides,
we can see that in an arbitrary y-z plane, more particles are in the center of the
domain, as they exit at the borders because of the Robin conditions. On the other
hand, when there is a velocity field directed along the x axis, particles diffuse
faster in this direction, and the Dirichlet condition ct = 1 spread in a larger part
of the domain. Finally, the advection fields directed along the y and z axis, give
a concentration which diffuse linearly in the x-axis, but in the y-z slices particles
are no longer in the center, but move according the advection field.

Remark 1.6.3. The advection field is computed numerically using opportune con-
ditions. In fact, in this case the fluid equations are:{

1
κt
ut +∇pt = 0 in Ω,

∇ · ut = 0 in Ω.
(1.25)

If we give Dirichlet conditions on pressure on two parallel faces, and homogeneous
Neumann contidions on velocity on the remaining four faces of the domain, the
fluid behaves as in a pipe: We find a linear pressure profile and constant velocity
(depending on the gradient of pressure). For example, let us suppose we give
Dirichlet conditions on the faces with normal directed as the x-axis, exact pressure
and velocity are:

pext (x, y, z) = pin + (pout − pin)x in Ω, (1.26)

uext (x, y, z) = −κt∇pt = κt (pin − pout) i in Ω. (1.27)

In our tests, κt = 1, therefore the module of the advection field is equal to the
pressure jump.

1.6.2 Coupled 3D-1D problem on a single branch

We want to test the coupling terms between one-dimensional network and the
three-dimensional tissue. We consider the case of the single unitary vessel im-
mersed in a unitary cube of interstitial tissue. Unfortunately, we don’t have any
analytical solution for this case, so we simplify the model in order to see the effect
of the exchange of mass: we set At = 1, Av = 1,ut = 0, uv = 0 and Dα = 0.
As described in 1.7, the exchange term is made of two parts: one depending on
oncotic pressure and the other caused by the vessel permeability to the particles.
For this test case, we decided to model an equilibrium case, where pressure jump
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A B

C D

Figure 1.5: Coupled problem 1.6 on single unitary branch Λ discretized with 41
points; tissue domain Ω = (0, 1)3 has 21 points in each directions. The radius
of the vessel is R′ = 0.1. Panel A shows the mesh we used for the simulations.
Besides the 3D and the 1D mesh, the real vessel is plotted in red. Panel B shows
the concentration ct in the domain. Panel C shows concentration ct on the plane
z = 0.5, cv in the vessel, and the real vessel. Panel D plots the concentration cv
along the branch, for different value of Υ, ranging from Υ = 0 to Υ = 32.
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of blood between vessel and tissue is equal to the oncotic pressure jump; this is
achieved by setting Q = 0, Υ = 4, and therefore we only show the effects of the
permeability.

We used a discretization of 21 points for the single branch Λ and a regular
mesh with h = 0.05 (21 points for each side of the cube Ω), as shown in Fig. 1.5.
The boundary conditions are Dirichlet in the vessel (cv = 1 in inlet and cv = 0
in outlet), while there are Neumann conditions in all the tissue faces, that is:
−∇ct · n = βtct with βt = 0.1. A stationary solution is computed. The figure
shows how the concentration diffuses from the vessel to the surrounding tissue.
As told before, we don’t have any exact solution for this problem, but the plot
represents the expected solution.

To investigate further the effect of permability we show the plot of cv in the
single branch for different values of permeability, namely Υ = {0, 1, 2, 4, 8, 16, 32}.
We see that the Dirichlet condition still holds for all the case. For Υ = 0 we
find the linear solution of the uncoupled benchmark; increasing the leakage of
particles, the mass in the center of the vessel decreases. It is interesting to note
the for high values of permeability, there is a point in which the exchange of mass
is balanced by the diffusivity in the tissue: since the leakage of particles depends
on the concentration jump on the vessel wall, if permeability and diffusivity are
sufficiently high, concentration in tissue surrounding the outlet exchanges back
particles in the vessel; this phenomenon results in the inflection point and in the
super-linear plot for Υ ≥ 16.

1.6.3 Test on a single bifurcation

We now verify the code with a slightly more complex one-dimensional domain, that
is a single bifurcation. This network is made by the junction of three capillaries
with same length; we will call the bifurcation Λ and the branches Λ0, Λ1 andΛ2.
We set the first branch, Λ0, from xA = (0, 0.5, 0.5) to xM = (0.58, 0.5, 0.5), to be
an inlet capillary; Λ1 and Λ2, from xM to xB = (1, 0.9, 0.5) and xC = (1, 0.1, 0.5)
respectively, will be the outlet vessels. We discretize each branch with 21 equidis-
tant points; the interstitial tissue Ω is modeled again as a unitary cube, discretized
in a uniform mesh of tetrahedra with 15 points on each side.

For this geometrical setting, neither the uncoupled nor the coupled problem
have an exact solution. We provide some tests for this two cases in order to see if
the code behaves according to our predictions. Precisely, we will pay attention to
the junction point xM and to the behaviour in asymmetrical conditions.

The junction point is crucial in order to see if the mass balance is respected:
for the sake of clarity, we write again the equation of the mass fluxes(1.11):
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∑
i∈P outj

πR′2i

(
−Av

∂cv
∂s

+ uvcv

)∣∣∣∣
Λ+
i

=
∑
i∈P inj

πR′2i

(
−Av

∂cv
∂s

+ uvcv

)∣∣∣∣
Λ−i

∀j ∈ J .

(1.28)
In our simple case, the sum of the fluxes in branches Λ1 and Λ2 at the junction
point must be equal to the flux in branch Λ0 in xM . Notice that we also proved,
with (1.12) and (1.13), that the diffusive and advective fluxes must hold separately.

Remark 1.6.4. The following simulations will have radius constant in each branch
but variable on different branches. This is physiologically correct: it is unlikely
that the two daughter vessels and the parent vessel have the same radius. The
radii of the daughter branches are calculated on the basis of the Murray’s Law,
that is R3

0 = R3
1+R3

2. This relation derives from the minimization of the cost of the
transport, that is the sum of the power required for transport itself and the power
required to maintain the transport medium. This law is observed in respiratory
and vascular systems of animals, and has many applications in bio-engineering.
This model is not sensitive to the angle of the daughter branches.

In the following sections, we will study the uncoupled case and successively
the coupled case. We will initially study symmetric problems, with R′1 = R′2 =
R′0

3
√

1/2 and the same boundary conditions on both outlets. Next, we will see the
behaviour of the simulation with R′1 6= R′2 and with different boundary conditions
in the outlets.

Uncoupled problem on the single bifurcation network

Using the geometrical setting above described, we study the transport of particles
in the bifurcation when there is no exchange of mass through the wall. Therefore,
we set Q = 0, Υ = 0 and Av = 1, and solve only the equation in the network.
We set Dirichlet conditions on the network: cv = 1 at the inlet and cv = 0 at the
outlet. We then run three simulation with different advection fields and different
value for the radii, as shown in Fig. (1.6) and in Tab. (1.1). The following test
will be diffusion-dominated, so there will no need to stabilize; the Péclet number
in the network, under the advection field of the first test, is Pe = 0.3331.

In the panel A of Fig. (1.6) we see the discrete solution of a symmetric bi-
furcation. The advection field is computed by imposing the Dirichlet conditions
pv = 0.1π on the inlet and pv = 0 on the two outlets; the radii of the outlet branches
are the same and follow the Murray’s Law: R′0 = 0.1 and R′1 = R′2 = 0.793. There-
fore the velocities in branches Λ1 and Λ2 are equal. The plots show that effectively
the particles are equally distribuited in the two outlet branches.

In panel B, we change the boundary conditions on pressure, in order to change
the advection field: pv|xA = 0.1π, pv|xB = 0.2 and pv|xC = 0. Under these
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Figure 1.6: Uncoupled(Q = 0,Υ = 0) problem on a simple bifurcation. For every
panel, we show the concentration in the bifurcation Λ(left), the plot of cv for
every branch (center) and the plot of uv for every branch (right). The boundary
condition on the transport problem is cv = 1 in the inlet and cv = 0 in both outlets,
in each panel. In panel A, the radii in the branches are R′0 = 0.1, R′1 = R′2 = 0.793;
the boundary condition on the pressure-velocity problem are Dirichlet condition
pv = 0.1π in the inlet and pv = 0 in both outlets. In panel B, the radii in the
branches are R′0 = 0.1, R′1 = R′2 = 0.793; the boundary condition on the pressure-
velocity problem are Dirichlet condition pv = 0.1π in the inlet, pv = 0.2 in the
upper branch and pv = 0 in the lower branch. In panel C, the radii in the branches
are R′0 = 0.1, R′1 = 0.872, R′2 = 0.713; the boundary condition on the pressure-
velocity problem are Dirichlet condition pv = 0.1π in the inlet and pv = 0 in both
outlets.
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A

BC on pv BC on cv Radius Diffusive flux Advective flux

Λ0 (Inlet) pv = 0.1π cv = 1 0.1 -1.499700e-03 3.591721e-01
Λ1 (Outlet) pv = 0 cv = 0 0.0793 -1.008313e-03 1.795861e-01
Λ2 (Outlet) pv = 0 cv = 0 0.0793 -1.008309e-03 1.795860e-01∑

Λi
-5.169232e-04 1.880776e-11

B

BC on pv BC on cv Radius Diffusive flux Advective flux

Λ0 (Inlet) pv = 0.1π cv = 1 0.1 -4.603712e-02 1.952491e-01
Λ1 (Outlet) pv = 0.2 cv = 0 0.0793 -4.943547e-02 -3.923221e-02
Λ2 (Outlet) pv = 0 cv = 0 0.0793 -4.457923e-05 2.344813e-01∑

Λi
-3.442929e-03 2.456449e-11

C

BC on pv BC on cv Radius Diffusive flux Advective flux

Λ0 (Inlet) pv = 0.1π cv = 1 0.1 -2.117772e-03 3.584519e-01
Λ1 (Outlet) pv = 0 cv = 0 0.0872 -2.503887e-03 1.792260e-01
Λ2 (Outlet) pv = 0 cv = 0 0.0713 -2.881484e-04 1.792259e-01∑

Λi
-6.742632e-04 1.876815e-11

Table 1.1: Boundary conditions of the test cases on the uncoupled bifurcation, and
mass balance at the junction. In each table, we have: the list of the branches (first
column), the value of the Dirichlet conditions on the pressure (second column), the
value of the Dirichlet conditions on the concentration (third column), the radius
in the branch (fourth column), the diffusive flux πR′2i Av

∂cv
∂s

at the junction (fifth
column) and the advective flux πR′2i uvcv at the junction (sixth column). The last
row of each table give the mass balance in the junction due to diffusive and advec-
tive fluxes, respectively. Table A refers to the simulation with the same Dirichlet
condition on pressure on the two outlets, and same radius in the outlet branches.
Table B refers to the simulation where the Dirichlet condition on pressure is dif-
ferent on the two outlets. Table C refers to the simulation where the radii in the
outlet branches are different.

26



CHAPTER 1. A MATHEMATICAL MODEL FOR COUPLED 3D-1D MASS
TRANSPORT SYSTEM

conditions, the velocity in the upper branch Λ1 is negative, that means that the
fluid is actually entering from this branch and not exiting; we see that this affects
the concentration of particles, that is larger in the lower branch Λ2.

In panel C, we change the value of the radii: we increase R′1by 10% and reduce
R′2 according the Murray’s Law: R′0 = 0.1, R′1 = 0.872 and R′2 = 0.713. The
velocity uv is therefore slightly larger in the smaller branches, and this advection
field brings slightly more mass in Λ2.

We now check the mass balance at the junction: the values are reported in
Tab.(1.1). We see that in all the cases the advective flux is correctly balanced
with a high precision; this means that the conservation in the local flow rate is
well imposed, and that the continuity of cv is respected at the junction, as we
could see in the previous plots. On the other hand, the diffusive flux is correctly
balanced but with small precision: in the tests we presented, and in all the other
simulations we computed, the sum of the fluxes is usually a order 10−1 smaller
than the higher of the diffusive fluxes, instead of being close to zero. This small
precision may be due to different factors: this mass balance is weakly enforced
on the junction points, from the integration by parts, in (1.15); maybe changing
the formulation more accurate results can be achieved. Besides, the diffusive flux
depend on the first derivative of cv: we recall that we use piecewise linear finite
element, and therefore the first derivative of cv is piecewise constant. Higher order
of finite elements may result in higher accuracy in mass balance.

Coupled 3D-1D problem with a single bifurcation

We now test the bifurcation with the coupled model, and see the effect of perme-
ability with multiple branches. We use the same geometrical framework described
above, but we now start using the physiological parameters from Tab. (1.2), taken
from [9, 44]; under these settings, we still have a diffusion-dominated problem, as
the Péclet numbers are Pev = 8.586e−02 and Pet = 4.417e−05. We set Dirichlet
conditions on the network: cv = 1 at the inlet and cv = 0 at the outlet; we set
mixed conditions on the faces of the 3D domain, −At∇ct = 0.1ct. As done before,
we test a symmetric and an asymmetric framework, as shown in Fig. (1.7).

In the panel A of Fig. (1.7) we see the discrete solution of a symmetric bifurca-
tion. The advection field is computed by imposing the Dirichlet conditions pv = 32
on the inlet and pv = 28.5 on the two outlets; the radii of the outlet branches are
the same and follow the Murray’s Law: R′0 = 10−5 and R′1 = R′2 = 7.93 · 10−6.
Therefore the velocities in branches Λ1 and Λ2 are equal. The plots show that
effectively the particles are equally distribuited in the two outlet branches. The
particles in the tissue are distribuited along the whole bifurcation; we notice that
the highest concentration in tissue is around the junction. This can be explained
by the fact that only source of ct is the permeability of the network, which is de-
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SYMBOL PARAMETER UNIT VALUE

d characteristic length m 1× 10−4

D characteristic length of the domain m 1× 10−4

R average radius m 4× 10−6

K tissue hydraulic conductivity m2 1× 10−18

µt interstitial fluid viscosity cP 1.2
µv blood viscosity cP 9.33 (Pries Formula)
Lp wall hydraulic conductivity m2s kg−1 1× 10−12

∆P characteristic pressure Pa 133.32
U characteristic velocity ms−1 1× 10−3

δπ oncotic pressure gradient mmHg 25
σ reflection coefficient [−] 0.95

LLFp
S
V

lymphatic wall hydraulic conductivity m2s kg−1 0
Dt diffusivity in the tissue cm2/s 1.35× 10−5

Dv diffusivity in the vessels cm2/s 5× 10−3

P permeability of the vessel wall cm/s 3.5× 10−3

m metabolic rate 1/s 8.0645

SYMBOL PARAMETER UNIT VALUE

δp hydrostatic pressure drop mmHg 3.5
p0 far field pressure mmHg −1
βt boundary conductivity m/s 10−2

βv boundary permeability m/s 10−2

cin concentration at inlet #/m3 1
cout concentration at outlets #/m3 0

Table 1.2: Physiological parameters from [9, 44] . First table contains parameters
for the equations and the dimension analysis. Second table contains parameters
for boundary conditions.
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Figure 1.7: Coupled problem on a bifurcation Λ with physiological parameters from
table 1.2. The plot show the bifurcation Λ and the tissue Ω cut in half by a x-y
plane. On the left, a symmetric junction; the radii are R′0 = 0.1, R′1 = R′2 = 0.793;
the Dirichlet conditions on pressure are pv = 32 in inlet and pv = 28.5 in both
outlets. On the right, an asymmetric junction; the radii are R′0 = 0.1, R′1 = R′2 =
0.793; the Dirichlet conditions on pressure are pv = 32 in inlet, pv = 28.5 in the
upper outlet and pv = 23 in the lower outlet.

termined by the quantity of surface of the vessel which can exchange mass; around
the junction we have three surfaces that can exchange mass, and therefore higher
values of ct are found here.

In panel B, we change the boundary conditions on pressure, in order to change
the advection field: pv|xA = 32, pv|xB = 28.5 and pv|xC = 23. Under these condi-
tions, the velocity field advects higher values of cv in the lower branch; therefore
we notice that higher values of ct are found near Λ2.

In Tab.(1.3) we report the diffusive and advective fluxes in the junction. The
same considerations of the uncoupled case can be done.

1.6.4 Coupled 3D-1D problem on a complex network

As a final step, we test the code on a complex network. We consider the coupled
domain (Ω,Λ) consisting of a non trivial one-dimensional manifold immersed in
a three-dimensional unitary cube. The discretization of Ω is a regular mesh of
tetrahedra with size h = 0.1 (11 points for each side of the cube Ω). The network
is made of 47 branches of variable length; the total length of the network is 15.0.
Each branch is discretized with 31 equidistant points; the radius is constant in the
network, R = 4 · 10−6.
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A

BC on pv BC on cv Radius Diffusive flux Advective flux

Λ0 (Inlet) pv = 32 cv = 1 0.1 -2.422754e-02 3.565106e-01
Λ1 (Outlet) pv = 28.5 cv = 0 0.0793 -1.302717e-02 1.782553e-01
Λ2 (Outlet) pv = 28.5 cv = 0 0.0793 -1.302749e-02 1.782552e-01∑

Λi
-1.827132e-03 -9.167003e-08

B

BC on pv BC on cv Radius Diffusive flux Advective flux

Λ0 (Inlet) pv = 32 cv = 1 0.1 -2.279719e-02 7.065469e-01
Λ1 (Outlet) pv = 28.5 cv = 0 0.0793 -2.285698e-02 7.489529e-02
Λ2 (Outlet) pv = 23 cv = 0 0.0793 -2.098504e-03 6.316516e-01∑

Λi
-2.158300e-03 -9.765010e-08

Table 1.3: Boundary conditions of the test cases on the coupled bifurcation, and
mass balance at the junction. In each table, we have: the list of the branches
(first column), the value of the Dirichlet conditions on the pressure (second col-
umn), the value of the Dirichlet conditions on the concentration (third column),
the radius in the branch (fourth column), the diffusive flux πR′2i Av

∂cv
∂s

at the junc-
tion (fifth column) and the advective flux πR′2i uvcv at the junction (sixth column).
The last row of each table give the mass balance in the junction due to diffusive
and advective fluxes, respectively. Table A refers to the simulation with the same
Dirichlet condition on pressure on the two outlets, and same radius in the out-
let branches. Table B refers to the simulation where the Dirichlet condition on
pressure is different on the two outlets.
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Figure 1.8: Complex network with physiological parameters from table 1.2. The
figure shows different points of view of the same simulation on a network of 47
branches, each discretized with 31 points; each side ofΩ is subdivided with 11
points. The boundary conditions on the inlet points are pv = 32 and cv = 1;
the boundary condition on the outlet points are pv = 28.5 and −Av ∂cv∂s = 0.1cv.
The boundary conditions on the faces of Ω are Robin-like for both pressure and
concentration, namely −κt∇pt · n = 0.1pt and −At∇ct · n = 0.1ct. The radius
is constant in the network, and it is used the physiological value R = 4 × 10−6.
On the left we have the concentrations ct and cv, while on the right we have the
advection field ut and uv, described by both the color plot and the vectors. Panel
A shows only cv and uv in the whole network. Panel B shows also tissue values
ct and ut, with the domain Ω cut in half by an x-y plane. Panel C shows all the
variables with the domain Ω cut in half by an y-z plane.
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The boundary conditions on concentration are:

cv = 1 on ∂ΛIN × (0, T ) ,

−Av
∂cv
∂s

= βvcv on ∂ΛOUT × (0, T ) ,

−At∇ct · n = βtct on ∂Ω× (0, T ) .

We choose the parameters from Tab. (1.2); under these assumption, we have a
diffusion-dominated problem, where Pev = 2.728e− 01 and Pet = 3.848e− 05.

Since the validation on the simple geometries, and the absence of evident
anomalies in Fig. (1.8), we can deduce the correctness of the solution. We can
observe, as in the bifurcation, that the higher values of ct are near groups of
many branches. Nevertheless, one can observe also that the regions where the
branches are more tangled contains less particles; in fact, the mass is advected
more efficiently in sequence of vessels with few bifurcations. Although these com-
plex regions with many bifurcation have large surface for exchanging mass, they
have so low values of cv that cannot relevantly affect the values of ct. This is an
important result, since it reproduces an experimental phenomenon of one of the
many applications of this model: the cardiovascular system around tumoral cells
is more tangled with respect to an healthy one; for this reason, these cells receive
less oxygen but, on the other hand, it is harder to deliver them drugs such as
chemotherapy [42, 23, 10, 49].
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Chapter 2

Numerical approximation and
a-priori error analysis

In the previous chapter, we presented a physiological model for transport of par-
ticles in a one-dimensional manifold embedded in a three-dimensional domain. As
we already mentioned, the theoretical analysis of that model reduction has not
been discussed thoroughly in literature. We now employ the approach from [33]
in order to discuss the topological model reduction for elliptic problems.
In Section 2.1 we address the geometrical configuration and we derive the equations
before and after the model reduction. In Section 2.2 we discuss the well-posedness
of the reduced model. In Section 2.2.2 we provide the numerical approximation of
the equations and discuss the convergence error.

2.1 Setting

This section describes the geometrical framework and the definition of the coupling
terms between the 3D domain Ω and the 1D manifold Λ.

2.1.1 Geometry

The three-dimensional domain Ω contains a generalized cylinder Σ, which represent
the vessel completely embedded in the tissue; the remaining domain is defined as
Ω� := Ω \ Σ. Let λ(s) = [ξ(s), ν(s), ζ(s)], s ∈ (0, S) be a C2-regular curve in
the three-dimensional space, and Λ (s) = {λ (s) , s ∈ (0, S)} the centerline of the
cylinder and Γ the boundary of the cylinder.

We define D(s) = [x (r, t; s) , y (r, t; s)] : (0, R)× (0, T )→ R2 the parametriza-
tion of the cross section of the cylinder Σ, and ∂D(s) = [∂x (r, t; s) , ∂y (r, t; s)] :
(0, R) × (0, T ) → R2 the parametrization of the boundary of the cross section;
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let ∂D(s) be a piecewise C2-regular curve. Besides, let us suppose that the shape
and the size of the cross section is constant along the centerline λ(s): therefore,
D(s) = D, ∂D(s) = ∂D and, in particular, |D(s)| = |D|, |∂D(s)| = |∂D|. Through
the Frenet frame T , N , B related to λ(s), we can parametrize the cylinder:

Σ = {λ (s) + x (r, t; s)N (s) + y (r, t; s)B (s) , r ∈ (0, R) , s ∈ (0, S) , t ∈ (0, T )} ,
Γ = {λ (s) + ∂x (r, t; s)N (s) + ∂y (r, t; s)B (s) , r ∈ (0, R) , s ∈ (0, S) , t ∈ (0, T )} .

Notice that Γ parametrize only the lateral boundary of Σ: we call the two bases
of the cylinder Γ0 := λ (0) +D and ΓS := λ (S) +D.
For a sufficiently regular function w, we define the surface average w on a cross
section and the line average w on his boundary:

w (s) = |D|−1

∫
D
wdσ, (2.1a)

w (s) = |∂D|−1

∫
∂D
wdγ. (2.1b)

Therefore we can decompose integrals as follows:∫
Σ

wdω =

∫
Λ

∫
D(s)

wdσds =

∫
Λ

|D|w(s)ds ,∫
∂Σ

wdσ =

∫
Λ

∫
∂D(s)

wdγds =

∫
Λ

|∂D|w(s)ds ,

being dω, dσ, dγ represent generic volume, surface and curvilinear Lebesgue mea-
sures. With little abuse of notation for a straight cylinder, we identify the function
w(s) : Λ → R with the function on Σ obtained by extending the mean value to
each cross section D(s). The same extension can be also applied to Γ, namely w(s)
can be either regarded as a function on Λ or on Γ, defined by uniform extension
on every section boundary ∂D(s).

Finally, let us formulate a fundamental assumption on the proportions of Σ.

A0) We assume that the transversal diameter of Σ is small compared to the diam-
eter of Ω. The small parameter (defined below) is denoted with the symbol
ε.

We now want to rescale the domains Ω and Σ in order to highlight the small
parameter. Let D = diam(D) be the diameter of the cross sections of Σ, that
is the transversal diameter of Σ. The central assumption of this work is that
D � diam(Ω).Let χΩ(x) = x/diam(Ω) be a scaling function and let be Ωχ =
χΩ(Ω), Σχ = χΩ(Σ) be the scaled domains. The previous assumption implies that
for the scaled domains ε = Dχ = /diam(Ω) is such that 0 < ε� 1. For simplicity
of notation, and without loss of generality, from now on we will implicitly refer to
the scaled domains dropping the subindex χ.
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2.1.2 Reference problem

In this section, we present the reference elliptic problem. We use a different nota-
tion for our PDEs, with respect to Chapter 1: we want to take distance from the
notation of biological quantities in (1.1), namely c∗ for concentration, with sub-
scripts (·)t for tissue and (·)v for vessels. In fact, the following elliptic equations
can be addressed for many different physical problems; therefore, we now consider
the general functions u∗ with subscript (·)� for quantities in the three-dimensional
domain Ω⊕, and the subscript (·)� for quantities in the cylinder Σ. We provide
the problem Robin-Neumann boundary conditions, so that our reference problem
is:

−∆u⊕ = f in Ω⊕, (2.2a)

−∆u	 = g in Σ, (2.2b)

−∇u⊕ · n⊕ = κ (u⊕ − u	) on Γ, (2.2c)

−∇u	 · n	 = κ (u	 − u⊕) on Γ, (2.2d)

−∇u⊕ · n⊕ = 0 on Γ0 ∪ ΓS, (2.2e)

−∇u	 · n	 = 0 on Γ0 ∪ ΓS, (2.2f)

u⊕ = 0 on ∂Ω . (2.2g)

The elliptic problems on Ω⊕ and Σ are coupled by an exchange term: the wall
Γ is assumed to be permeable, therefore it is crossed by a normal flux proportional
to κ (u⊕ − u	). The coefficient κ plays the role of permeability or transfer coeffi-
cient and it assumes a uniform value on each cross section ∂D(s). As a result of
that κ is only a (regular) function of the arc-length s. For the boundary condi-
tions on the top and bottom faces of the cylinder, we make the assumption that
|D(0)|, |D(S)| > 0. The numerical approximation of this PDEs may be expensive,
especially in real applications: normally the domain Σ is extended to a collection
Ω	, made of many cylinders, representing channels carrying flow, fibers or inclu-
sions. This results in a very complex shape to discretize, requiring the resolution
of the full geometry of a large number of inclusions. In addition, the degrees of
freedom of a uniform discretization of both the scales, arising from assumption A0,
may be demanding. For this reason, we aim to apply topological model reduction
techniques, based on averaging, in order to transform the problem on Ω	 into a
simpler one.

The objective of Sections 2.1.3 and 2.1.4 is to derived a simplified version of
problem (2.2), where the domain Σ shrinks to its centerline Λ and the correspond-
ing partial differential equation is averaged on the cylinder cross section, namely
D. This new problem setting will be also called the reduced problem. We will
carefully describe this topological reduction: while the computational cost will
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decrease, from the mathematical standpoint the reduced formulation is more chal-
lenging than (2.2), because it involves the coupling of 3D-1D elliptic problems.

2.1.3 Topological model reduction of the problem on Σ

We apply the averaging technique to equation (2.2b). In particular, we consider
an arbitrary portion P of the cylinder, bounded by two perpendicular sections to
Λ, namely D(s1), D(s2) with s1 < s2. We have,∫
P

∆u	dΩ =

∫
∂P
∇u	 · n	 = −

∫
D(s1)

∂su	dσ +

∫
D(s2)

∂su	dσ +

∫
Γ

∇u	 · n	dσ.

By the fundamental theorem of integral calculus we have,

−
∫
D(s1)

∂su	dσ +

∫
D(s2)

∂su	dσ =

∫ s2

s1

∫
D(s)

∂2
ssu	dσ =

∫ s2

s1

|D|d2
ssu	ds

By means of (2.2d) we obtain,∫
Γ

∇u	 · n	dσ =−
∫

Γ

κ(u	 − u⊕)dσ

=−
∫ s2

s1

∫
∂D(s)

κ(u	 − u⊕)Rdθds

=−
∫ s2

s1

κ|∂D|(u	 − u⊕)ds .

From the combination of all the above terms with the right hand side, we obtain
that the solution u	 of (2.2) satisfies,∫ s2

s1

[
−|D|d2

ssu	 + |∂D|κ(u	 − u⊕)
]
ds =

∫ s2

s1

|D|gds .

Since the choice of the points s1, s2 is completely arbitrary, we conclude that the
following equation holds true,

− |D|d2
ssu	 + |∂D|κ(u	 − u⊕) = |D|g on Λ . (2.3)

Let us now formulate the modelling assumption that allows us to reduce equa-
tion (2.3) to a solvable one-dimensional (1D) model. More precisely, we assume
that:

A1) the function u	 has a uniform profile on each cross section D(s), namely in
cylindrical coordinates u	(r, s, t) = U(s).
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We call U the unknown of the one dimensional problem defined on Λ, that is the
solution of the following problem,

−|D|d2
ssU + |∂D|κU = |∂D|κu⊕ + |D|g on Λ , (2.4a)

|D|dsU = 0 on s = 0, L . (2.4b)

For given functions u⊕ and g, regular enough, the weak form of the previous
problem consists to find U ∈ H1(Λ) such that

(dsU, dsV )Λ,|D| + (κU, V )Λ,|∂D| = (κu⊕, V )Λ,|∂D| + (g, V )Λ,|D| ∀V ∈ H1(Λ) . (2.5)

where we have introduced the following weighted inner product notation,

(U, V )Λ,w =

∫ S

0

w(s)U(s)V (s)ds .

2.1.4 Topological model reduction of the problem on Ω⊕

We focus here on the subproblem of (2.2) related to Ω⊕, that is

−∆u⊕ = f in Ω⊕, (2.6a)

−∇u⊕ · n⊕ = κ (u⊕ − u	) on Γ, (2.6b)

u⊕ = 0 on ∂Ω . (2.6c)

First, we multiply both sides of (2.6a) for a test function v ∈ H1
0 (Ω) and we enforce

boundary and interface conditions,

−
∫

Ω⊕

∆u⊕v dΩ =

∫
Ω⊕

fv dΩ.

Integrating by parts and using boundary and interface conditions, we obtain:∫
Ω⊕

fv dΩ = −
∫

Ω⊕

∆u⊕v dΩ =

∫
Ω⊕

∇u⊕ · ∇v dΩ−
∫
∂Ω⊕

∇u⊕ · n⊕v dσ

=

∫
Ω⊕

∇u⊕ · ∇v dΩ +

∫
Γ

κ(u⊕ − u	)v dσ .

Now, we apply a topological model reduction of the interface conditions, namely
we go from a 3D-3D to a 3D-1D formulation. To this purpose, let us write the
solution and the test functions on every cross section ∂D(s) as their average plus
some fluctuation,

u⊕ = u⊕ + ũ⊕, u	 = u	 + ũ	, v = v + ṽ, on ∂D(s) ,
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where ũ⊕ = ũ	 = ṽ = 0. Therefore, using the coordinates system (r, s, t) on Γ, for
∗ = ⊕,	 we have,∫

Γ

κu∗v dσ =

∫
Λ

κ

∫
∂D(s)

(u∗+ũ∗)(v+ṽ)dγds =

∫
Λ

κ|∂D(s)|u∗v∗ ds+
∫

Λ

κ

∫
∂D(s)

ũ∗ṽdγds .

Then, we make the following modelling assumptions:

A2) we identify the domain Ω⊕ with the entire Ω, namely∫
Ω⊕

dω '
∫

Ω

dω ,

and we call u the unknown of the partial differential equation defined on Ω.

A3) we assume that the product of fluctuations is small, namely∫
∂D(s)

ũ∗ṽdγ ' 0 .

By means of the previous deductions, reminding that for assumption A1 we
have that u	 = U and putting together the terms of the weak form of (2.6), we
obtain that u solves the following problem,

(∇u,∇v)Ω + (κu, v)Λ,|∂D| = (κU, v)Λ,|∂D| + (f, v)Ω , ∀v ∈ H1
0 (Ω) . (2.7)

2.1.5 Extension of the 1D problem to a metric graph

The embedded domain Σ was defined starting from its centerline, namely the curve
Λ. We now discuss the generalization to the case where Λ is a network. In our case,
the edges of the network are curves λi(si) = [ξi(si), νi(si), ζi(si)], si ∈ (0, Si), i =
1, . . . , N that are connected at a number M of vertices,

yj = λi(0) = λı̂(Sı̂), i, ı̂ ∈ {1, . . . , N}, j = 1, . . . ,M.

The set of vertices is denoted with Y = {yj ∈ Rd, j = 1, . . . ,M}, while Kj,
represent all the indices i that are connected with the vertex j. Furthermore, Kj
can be decomposed into K−j = {i ∈ {1, . . . , N} : yj = λi(0)} that are the branches
originating in the j−th vertex, according to their orientation. The complementary
is K+

j denoting the branches that end into the same vertex. We denote with
i ∈ B the indices of segments with a dead-end, which can be similarly split into
B+, B−. Obviously, each edge has an arc-coordinate si and a length Si, under
the assumption ‖λ′i‖ = 1. With these two properties, the network is also a metric
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graph. In this more general setting the embedded domain Σ is defined as the union
of all the generalized cylinders generated by swiping suitable sections ∂Di(si) along
the centerlines Λi = {λi(si), si ∈ (0, Si)}, namely Σ =

⋃N
i=1 Σi.

We observe that the topological model reduction approach can still be applied
branch by branch individually, but it can not be adapted to the entire Σ at once,
because in proximity of the junctions Σ is no longer a generalized cylinder. For this
reason we define the reduced problem directly from the differential formulation of a
single branch. Equation (2.4) applies to each edge Λi and it must be complemented
with suitable matching conditions at the vertices. Such conditions are the Kirchhoff
conditions that for the j-th vertex can be written as,∑

i∈K+
j

|D|dsiUi(Si)−
∑
i∈K−j

|D|dsiUi(0) = 0 , ∀j = 1, . . . ,M ,

Ui(0) = Uı̂(Sı̂), ∀i ∈ K−j , ı̂ ∈ K+
j ∀j = 1, . . . ,M .

The first conditions corresponds to balance of current or fluxes, while the second
states that the solution on each edge must be continuous at the vertices.

The reduced problem on the network consists to find a collection of functions
Ui, i = 1, . . . , N such that

−|D|d2
ssUi + |∂D|κiUi = |∂D|κiu⊕ + |D|g on Λi, ∀i = 1, . . . , N , (2.8a)∑

i∈K+
j

|∂D|dsiUi(Si)−
∑
i∈K−j

|∂D|dsiUi(0) = 0 , ∀j = 1, . . . ,M , (2.8b)

Ui(0) = Uı̂(Sı̂), ∀i ∈ K−j , ∀ı̂ ∈ K+
j ∀j = 1, . . . ,M ,

(2.8c)

|D|dsUi(0) = 0, ∀ i ∈ B− , (2.8d)

|D|dsUi(Si) = 0, ∀ i ∈ B+ . (2.8e)

For the definition of the variational formulation of problem (2.8) we intro-
duce Sobolev spaces defined on metric graphs, see for example [50] and references
therein. In particular H1(Λ) is defined as the space of continuous functions V on
Λ, such that their restriction to each edge Λi, i = 1, . . . , N belongs to H1(Λi).
The norm of H1(Λ) is naturally defined as, ‖V ‖2

H1(Λ) =
∑N

i=1 ‖Vi‖2
H1(Λi)

.

Let us now take U, V ∈ H1(Λ) and derive the variational formulation of (2.8).
From (2.8a) we obtain,

N∑
i=1

[
(dsUi, dsVi)Λi,|D| + (κiUi, Vi)Λi,|∂D| + |D|dsiUi(Si)Vi(Si)− |D|dsiUi(0)Vi(0)

]
=

N∑
i=1

(κiu⊕, V )Λ,|∂D| + (g, V )Λ,|D| .
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By reordering the terms at the endpoints of each edge we have,

N∑
i=1

[
|D|dsiUi(Si)Vi(Si)− |D|dsiUi(0)Vi(0)

]
=

M∑
j=1

[ ∑
i∈K+

j

|D|dsiUi(Si)Vi(Si)−
∑
i∈K−j

|D|dsiUi(0)Vi(0)

]

+
∑
i∈B+

|D|dsiUi(Si)Vi(Si)−
∑
i∈B−
|D|dsiUi(0)Vi(0)

Conditions (2.8b) can be weakly enforced in the variational formulation. The
terms on Kj are not equivalent to (2.8d)-(2.8e), because each one is multiplied
by a different the test function. However, since V are continuous on Λ, the test
functions can be factorized and these terms disappear owing to (2.8b)-(2.8d)-(2.8e).
Finally, conditions (2.8c) are stongly enforced through the definition of H1(Λ). As
a result of that, the variational formulation of the reduced problem on the network
consists of finding U ∈ H1(Λ) such that

aΛ(U, V ) + bεΛ(U, V ) = bεΛ(u, V ) + (g, V )Λ,|D| ∀V ∈ H1(Λ) . (2.9)

Endowed with problem (2.9) the metric graph Λ becomes a quantum graph,
namely a metric graph equipped with a differential operator on the edges comple-
mented with vertex conditions, see for example [4]. The differential operator is in
our case L(U) = |D|d2

ssU + |∂D|κU (also called as a Schrodinger-type or Hamil-
tonian operator) and the vertex conditions are the Kirchhoff equations reported
above.

2.1.6 Coupled problems with hybrid dimensionality

Let us now introduce the following bilinear forms:

aΩ(w, v) = (∇w,∇v)Ω,

aΛ(w, v) = (dsw, dsv)Λ,|D|,

bεΛ(w, v) = (κw, v)Λ,|∂D|.

After averaging the equation on Ω	 and the interface conditions, for any f ∈ L2(Ω),
g ∈ L2(Λ), the weak formulation of problem (2.2) consists to find u ∈ H1

0 (Ω), U ∈
H1(Λ) such that

aΩ(u, v) + bεΛ(u, v) = bεΛ(U, v) + (f, v)Ω ∀v ∈ H1
0 (Ω) , (2.10a)

aΛ(U, V ) + bεΛ(U, V ) = bεΛ(u, V ) + (g, V )Λ,|D| ∀V ∈ H1(Λ) . (2.10b)
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This problem is an extension to 3D of the one considered in [28] for two space
dimensions.

For what follows, it is convenient to introduce a compact formulation for prob-
lem (2.10). In particular, we define V = [v, V ] a generic function of the space V =
H1

0 (Ω)×H1(Λ) and we name U = [u, U ] the couple of unknowns of problem (2.10).
Any function V ∈ V is endowed with the norm |||V|||2 = ‖v‖2

H1(Ω) + ‖V ‖2
H1(Λ),|D|.

Then, we introduce the following bilinear form in V× V,

A(U ,V) = aΩ(u, v) + aΛ(U, V ) + bεΛ(u− U, v − V ) ,

and the linear functional in V, F(V) = (f, v)Ω + (g, V )Λ,|D|. Then, the compact
form of problem (2.10) consists of finding U ∈ V such that

A(U ,V) = F(V), ∀V ∈ V . (2.11)

2.2 Well-posedness analysis

The solutions of problem (2.11) are studied below.

Theorem 2.2.1. Problem (2.11) has a unique solution U ∈ V satisfying the fol-
lowing stability estimate,

|||U||| ≤ 2
√

1 + β2

min
(

β
1+CP (Ω)

, 2(1 + β), Cκmin

) (‖f‖L2(Ω) + ‖g‖L2(Λ),|D|
)

(2.12)

with β = (1 + CP (Ω))CT (Γ,Ω⊕)‖κ‖L∞ (where the meaning of constants will be
clarified in what follows).

Before addressing the central result, we present some auxiliary tools that will
be useful in the analysis.

Lemma 1. If v ∈ H1(Ω) or alternatively v ∈ L2(Γ), then v ∈ L2(Λ) and the
following inequality holds

‖v‖2
L2(Λ),|∂D| ≤ ‖v‖2

L2(Γ) ≤ CT (Γ,Ω⊕) ‖v‖2
H1(Ω), (2.13)

being CT (Γ,Ω⊕) the (positive) constant of the trace inequality from L2(Γ) to H1(Ω⊕).

Proof. If the inequality (2.13) holds, it follows immediately that v ∈ L2(Λ), since
v ∈ H1(Ω), or alternatively v ∈ L2(Γ). Therefore, we consider

‖v‖2
L2(Λ),|∂D| =

∫
Λ

|∂D(s)|v2 ds =

∫
Λ

1

|∂D|

(∫
∂D(s)

v dγ

)2

ds. (2.14)
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Using Jensen’s inequality, we obtain∫
Λ

1

|∂D|

(∫
∂D(s)

v dγ

)2

ds ≤
∫

Λ

∫
∂D(s)

v2 dγ ds (2.15)

and consequently

‖v‖2
L2(Λ),|∂D| ≤

∫
Λ

∫
∂D(s)

v2 dγ ds = ‖v‖2
L2(Γ) ≤ CT (Γ,Ω⊕) ‖v‖2

H1(Ω). (2.16)

Lemma 2 (Poincaré inequality). For any v ∈ H1
0 (Ω), there exists a positive con-

stant, CP (Ω), s.t.
‖v‖2

L2(Ω) ≤ CP (Ω)‖∇v‖2
L2(Ω).

We now address the well-posedness of problem (2.11) on the basis of the theory
for linear variational problems in Banach spaces. More precisely we use Theorem
2.6 of [16] (also named the Banach-Necas-Babuska Theorem), which for the sake
of clarity is adapted here to the notation used for (2.11).

Theorem 2.2.2. Let V be a reflexive Banach space and let F ∈ V′. Then, problem
(2.11) is well-posed if and only if:

∃α > 0 : inf
W∈V

sup
V∈V

A(W ,V)

|||W||| |||V|||
≥ α , (BNB1)

∀V ∈ V :
(
A(W ,V) = 0 ∀W ∈ V

)
⇒ V = 0 . (BNB2)

Lemma 3. Under the assumption that κ ∈ L∞(Λ) is strictly positive and lower
bounded by κmin, the operator A satisfies the conditions of Theorem 2.2.2.

Proof. In order to prove that the bilinear form A satisfies (BNB1) it is sufficient
to prove that there exists a positive constant α such that ∀W ∈ V we can find
V ∈ V satisfying

A(W ,V)

|||W||| |||V|||
≥ α.

We subdivide the proof in the following steps. We prove that:

(i) ∃m1, m2, m3 > 0 :

A(V ,V) ≥ m1‖v‖2
H1(Ω) +m2|V |2H1(Λ),|D| +m3‖v − V ‖2

L2(Λ),|∂D| , ∀V ∈ V.
(2.17)
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(ii) ∀W ∈ V ∃V ∈ V and α1 > 0 :

A(W ,V) ≥ α1|||W|||2 (2.18)

(iii) and ∃α2 > 0 :
|||W||| ≥ α2|||V|||.

From the last two inequalities we obtain that (BNB1) holds for α = α1α2. In
details:

(i) By definition of A,

A(V ,V) = aΩ(v, v) + aΛ(V, V ) + bεΛ(v − V, v − V )

and for the first term we have

aΩ(v, v) = (∇v,∇v)Ω ≥ (1 + CP (Ω))−1‖v‖2
H1(Ω),

where CP (Ω) is the Poincaré constant. For the second term, it follows immediately
that

aΛ(V, V ) = (dsV, dsV )Λ,|D| = |V |
2
H1(Λ),|D|,

whereas for the last one we have

bεΛ(v − V, v − V ) = (κ(v − V ), v − V )Λ,|∂D| ≥ κmin‖v − V ‖2
L2(Λ),∂D.

Therefore (2.17) holds and m1 = (1 + CP (Ω))−1, m2 = 1, m3 = κmin.
(ii) For any W = [w,W ], we choose V =W + δ[0,W ] and from (i) we have

A(W ,W + δ[0,W ]) =A(W ,W) + δA(W , [0,W ])

≥m1‖w‖2
H1(Ω) +m2|W |2H1(Λ),|D| +m3‖w −W‖2

L2(Λ),|∂D|

+ δ (aΩ(w, 0) + aΛ(W,W ) + bεΛ(w −W,−W ))

≥m1‖w‖2
H1(Ω) +m2|W |2H1(Λ),|D|

+ δ
(
|W |2H1(Λ),|D| + (κ(w −W ),−W )Λ,|∂D|

)
≥m1‖w‖2

H1(Ω) + (m2 + δ)|W |2H1(Λ),|D|

− δ
(
(κw,W )Λ,|∂D| − (κW,W )Λ,|∂D|

)
.

(2.19)

We notice that using Young inequality and Lemma 1 we obtain

(κw,W )Λ,|∂D| =

∫
Λ

|∂D|κwW ds ≤ 1

2

(∫
Λ

|∂D|κw2 ds+

∫
Λ

|∂D|κW 2 ds

)
≤1

2

(
‖κ‖L∞‖w‖2

L2(Λ),|∂D| + (κW,W )Λ,|∂D|

)
≤1

2

(
CT (Γ,Ω⊕)‖κ‖L∞‖w‖2

H1(Ω) + (κW,W )Λ,|∂D|

)
.
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Substituting in (2.19) we have,

A(W ,W + δ[0,W ]) ≥
(
m1 −

δ

2
CT (Γ,Ω⊕)‖κ‖L∞

)
‖w‖2

H1(Ω)

+ (m2 + δ)|W |2H1(Λ),|D| +
δ

2
(κW,W )Λ,|∂D|

and we choose δ sufficiently small such that m1 − δ
2
‖κ‖L∞CT (Γ,Ω⊕) is positive.

Moreover, we assume that there exist positive constants CD and C∂D dependent
on the shape of the cross section solely, such that

|D(s)| = CD (diam(D(s)))2, |∂D(s)| = C∂D diam(D(s)), (2.20)

thus
|∂D(s)|
|D(s)|

=
C

diam(D(s))
∀s, (2.21)

with C = C∂D/CD. The assumption that CD and C∂D are independent of s means
that the section of the generalized cylinder Σ can not change its shape, but it can
be subject to a homothetic map and rotations. Then, we have,

δ

2
(κW,W )Λ,|∂D| ≥

δ

2
κmin

∫
Λ

|∂D(s)|W 2 ds =
δ

2
κmin

∫
Λ

C

diam(D(s))
|D(s)|W 2 ds

≥ δ

2
Cκmin‖W‖2

L2(Λ),|D|.

Therefore

A(W ,W + δ[0,W ]) ≥
(
m1 −

δ

2
CT (Γ,Ω⊕)‖κ‖L∞

)
‖w‖2

H1(Ω)

+ (m2 + δ)|W |2H1(Λ),|D| +
δ

2
Cκmin‖W‖2

L2(Λ),|D|

≥
(
m1 −

δ

2
CT (Γ,Ω⊕)‖κ‖L∞

)
‖w‖2

H1(Ω)

+ min

(
m2 + δ,

δ

2
Cκmin

)
‖W‖2

H1(Λ),|D|

≥α1|||W|||2

with α1 = min
(
m1 − δ

2
CT (Γ,Ω⊕)‖κ‖L∞ , m2 + δ, δ

2
Cκmin

)
.

(iii) We show that there exists a constant α2 such that

|||W||| ≥ α2|||W + δ[0,W ]|||. (2.22)
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The inequality above can be proved as follows:

|||W + δ[0,W ]|||2 ≤ |||W|||2+|||δ[0,W ]|||2 = ‖w‖2
H1(Ω)+(1+δ2)‖W‖2

H1(Λ),|D| ≤ (1+δ2)|||W|||2.

Therefore (2.22) holds with α2 = (
√

1 + δ2)−1. For the proof of (BNB2) we choose
W = V and being A(V ,V) = 0, from (i) we have

m1‖v‖2
H1(Ω) +m2|V |2H1(Λ),|D| +m3‖v − V ‖2

L2(Λ),|∂D| = 0,

and consequently

‖v‖H1(Ω) = 0, |V |H1(Λ),|D| = 0, ‖v − V ‖L2(Λ),|∂D| = 0. (2.23)

Then, v = 0 and |V |H1(Λ),|D| = 0 with ‖V ‖2
L2(Λ),|∂D| = 0 imply V = 0.

Combining Lemma 3 and Theorem 2.2.2, we obtain the well-posedness of (2.11).
In order complete the proof Theorem 2.2.1, it remains to show that the stability
estimate (2.12) holds. Hence,

|||U||| ≤ 1

α
sup
V∈V

A(U ,V)

|||V|||
=

1

α
sup
V∈V

F(V)

|||V|||
≤ 1

α

(
‖f‖L2(Ω) + ‖g‖L2(Λ),|D|

)
where the last inequality follows from

F(V) = (f, v)Ω + (g, V )Λ,|D| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(Λ),|D|‖V ‖L2(Λ),|D|

≤
(
‖f‖L2(Ω) + ‖g‖L2(Λ),|D|

)
|||V|||.

For the particular choice

δ =
m1

CT (Γ,Ω⊕)‖κ‖L∞
we obtain (2.12).

2.2.1 Additional regularity of the solution of the problem
in Ω

We observe that the weak formulation (2.10a) could have been formally written in
strong form as

−∆u = f − κEΓ (u− U) δΓ in Ω, u = 0 on ∂Ω, (2.24)

where EΓ denotes an extension operator from Λ to Γ. More precisely, given a
continuous function ζ ∈ C0(Λ), for any s ∈ (0, S) the extension operator is such
that

EΓζ(r, t; s) = ζ(s) ∀r ∈ (0, R), t ∈ (0, T ),
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namely, the extension operator spans the point-wise value ζ(s) on {λ(s)+∂D(s)},
preserving the regularity of the function. It is straightforward to show that
(κEΓ (u− U) δΓ, v)Ω becomes bεΛ(u − U, v) in the variational formulation, as fol-
lows ∫

Ω

κEΓ (u− U) vδΓ dΩ =

∫
Γ

κEΓ(u− U)v dσ

=

∫
Λ

κ(u− U)

∫
∂D(s)

v dγ ds

=

∫
Λ

|∂D|κ(u− U)v ds.

Due to the presence of the Dirac source δΓ, global H2-regularity can not be re-
covered and the issue arises to which interspace X with H2(Ω) ⊂ X ⊂ H1

0 (Ω) the
solution u belongs to.

Theorem 2.2.3. The sub-problem on Ω enjoys additional regularity u ∈ H 3
2
−η(Ω)

for any η > 0.

The proof of Theorem 2.2.3 is based on the following result.

Lemma 4. Let Ω be a bounded, convex, polygonal or polyhedral domain in R3 with
its boundary ∂Ω. Let γ ⊂ Ω be a C2−surface s.t. the distance between γ and ∂Ω is
positive and γ ⊂ ∂D for some three-dimensional C2−domain D ⊂⊂ Ω. Consider
the following problem {

−∆y = zδγ in Ω

y = 0 on ∂Ω,
(2.25)

with δγ being the Dirac measure of γ and z(x) ∈ L2(γ). Problem (2.25) has a

unique solution y and y ∈ H 3
2
−η(Ω) ∩H1

0 (Ω) for each η > 0.

Proof. For the proof see [24, Theorem 2.1, case (iii)].

Since y ∈ H 3
2
−η(Ω), ∆y and the right hand side of (2.25) belong to H−

1
2
−η(Ω).

Then, the theory of pseudo-differential operators and in particular the general-
ization of Garding inequality to fractional Sobolev spaces (see [2] for details),
guarantees that there exists a constant CR such that

‖y‖
H

3
2−η(Ω)

≤ CR‖zδγ‖H− 1
2−η(Ω)

. (2.26)

We notice that we cannot apply directly Lemma 4 to problem (2.24) because
of the term κEΓ (u− U) on the right hand side. We can get around this issue by
introducing a suitable sequence that converges to the solution u, as shown in the
following.
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Lemma 5. The constant CT (Γ,Ω⊕) in the Sobolev trace inequality from L2(Γ) to
H1(Ω⊕), namely

‖v‖L2(Γ) ≤ CT (Γ,Ω⊕)‖v‖H1(Ω⊕) ∀v ∈ H1(Ω⊕), (2.27)

tends to 0 for ε→ 0.

Proof. Let v ∈ H1
0 (Ω⊕), the trace of v on Γ is in H

1
2 (Γ) and by Sobolev embedding

theorem we have that H
1
2 (Γ) ⊂ L4(Γ). Using Hölder inequality,

‖v‖L2(Γ) ≤
(∫

Γ

1 dσ

) 1
4
(∫

Γ

v4

) 1
4

≤ |Γ|
1
4‖v‖L4(Γ) ≤ |Γ|

1
4CT (∂Ω⊕,Ω⊕)‖v‖H1(Ω⊕)

and CT (∂Ω⊕,Ω⊕) is bounded as ε → 0. Indeed, the problem of studying the
asymptotic behaviour of the constant in the trace inequality from L4(∂Ω⊕) to
H1(Ω⊕) as ε → 0 can be reformulated as the problem of studying the behaviour
of the trace constant from L4(∂Ω⊕) to H1(Ω⊕) as the external boundary ∂Ω ex-
pands (we recall that ∂Ω = ∂Ω⊕ \ Γ) and from [17, Theorem 1.3] we have that

CT (∂Ω⊕,Ω⊕) is bounded. Therefore CT (Γ,Ω⊕) = |Γ| 14CT (∂Ω⊕,Ω⊕) → 0 when
ε→ 0.

Theorem 2.2.4. For ε small enough, there exists a sequence {un}n≥0 such that

un ∈ H
3
2
−η(Ω) for any η > 0, which converges to the solution u of (2.24) in the

H
3
2
−η-norm.

Proof. Let us consider the sequence {un}n≥0, where un+1 is the solution of

−∆un+1 = f − κEΓ (un − U) δΓ in Ω, un+1 = 0 on ∂Ω, (2.28)

for n ≥ 0 and u0 is arbitrarily chosen in H1
0 (Ω).

Using induction on n we show that for any n > 0, un ∈ H
3
2
−η(Ω) ∩H1

0 (Ω) for
each η > 0. For n = 0, the term κEΓ(u0 − U) on the right side belongs to L2(Γ)
because, for Lemma 2.13, u0 ∈ L2(Λ) and the extension operator EΓ does not
change the regularity of the functions. Thus, setting γ = Γ, we can use Lemma
4 and we obtain that u1 ∈ H

3
2
−η(Ω) ∩ H1

0 (Ω) for each η > 0. Supposing that
the property is valid for un, the same considerations apply to κEΓ(un − U) and
consequently the property is satisfied also by un+1.

We prove now that the sequence {un}n≥0 converges to the solution u of (2.24)

in H
3
2
−η(Ω). Let us set en = u− un, hence en+1 is solution of the problem

−∆en+1 = −κEΓenδΓ in Ω, en+1 = 0 on ∂Ω
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and it can be shown, using Lemma 4, that en+1 still belongs to H
3
2
−η(Ω) . From

(2.26) we have
‖en+1‖H 3

2−η(Ω)
≤ CR‖κEΓenδΓ‖H− 1

2−η(Ω)
(2.29)

where,

‖κEΓenδΓ‖H− 1
2−η(Ω)

= sup
w∈H

1
2 +η(Ω)
w 6=0

(κEΓenδΓ, w)Ω

‖w‖
H

1
2 +η(Ω)

.

Then we have,

(κEΓenδΓ, w)Ω = (κEΓen, w)Γ ≤‖κ‖L∞‖EΓen‖L2(Γ)‖w‖L2(Γ)

≤
√
C ′T (Γ,Ω⊕)‖κ‖L∞‖EΓen‖L2(Γ)‖w‖H 1

2 +η(Ω)
,

where C ′T (Γ,Ω⊕) is the constant in the trace inequality from L2(Γ) to H
1
2

+η(Ω⊕).
Substituting the previous inequality in the definition of ‖κEΓenδΓ‖H− 1

2−η(Ω)
we

obtain

‖κEΓenδΓ‖H− 1
2−η(Ω)

≤
√
C ′T (Γ,Ω⊕)‖κ‖L∞‖EΓen‖L2(Γ).

and from (2.29) we infer that

‖en+1‖H 3
2−η
≤ CR

√
C ′T (Γ,Ω⊕)‖κ‖L∞‖EΓen‖L2(Γ). (2.30)

Using Lemma 1, we can write ‖EΓen‖2
L2(Γ) as follows

‖EΓen‖2
L2(Γ) =

∫
Γ

(EΓen)2 dσ =

∫
Λ

|∂D(s)|e2
n ds ≤CT (Γ,Ω⊕)‖en‖2

H1(Ω)

≤CT (Γ,Ω⊕)‖en‖2

H
3
2−η(Ω)

Therefore,

‖en+1‖H 3
2−η(Ω)

≤ CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞‖en‖H 3

2−η(Ω)

≤ (CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞)2‖en−1‖H 3

2−η(Ω)
≤ . . .

≤ (CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞)n‖e0‖H1(Ω),

(2.31)

and we conclude that for (CR
√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞) < 1 the iteration

error en converges to 0 and equivalently un converges to u in H
3
2
−η(Ω). The

condition on the iteration constant that is guaranteed by ε sufficiently small owing
to Lemma 5.
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2.2.2 Finite element approximation

Let us consider a quasi-uniform partition T hΩ of Ω and an admissible partition T hΛ of
Λ with comparable characteristic size, denoted by h, and let Vh = V Ω

h × V Λ
h ⊂ V

be continuous k1, k2-order Lagrangian finite element spaces defined on T hΩ , T hΛ
respectively. The numerical approximation of the variational formulation (2.11)
consists of finding Uh ∈ Vh solution of

A(Uh,Vh) = F(Vh) ∀Vh ∈ Vh. (2.32)

We notice that in problem (2.32) it is implicitly assumed that numerical integration
is performed exactly. In practice, the average operator (·) is approximated by
means of numerical quadrature. The effect of the latter approximation shall be
analyzed in a future development of this work.

We exploit the conformity of the finite element space combined with (BNB1)
and Lemma 3, in order to prove that Uh satisfies a Ceá-type inequality ([16] [Lemma
2.28]),

|||U − Uh||| ≤
(

1 +
|||A|||
α

)
inf

vh∈V Ω
h ,Vh∈V

Λ
h

(
‖u− vh‖H1(Ω) + ‖U − Vh‖H1(Λ),|D|

)
.

(2.33)
The convergence of the finite element method follows from (2.33) combined with

approximation properties of the finite element spaces. For the latter property, we
exploit the additional regularity of the solution in Ω proved in Theorem 2.2.4 and
the fact that the solution U on Λ is in H2(Λ). The regularity of U descends from
the standard theory of elliptic operators in convex domains, [22, Theorem 8.12],
being in (2.10b) g and u both in L2(Λ). From now on, let a . b be equivalent
to the inequality a ≤ Cb where C is a generic constant, possibly dependent on
Ω, Λ but independent of the parameters of the problem. Concerning the solution
u in Ω, let πh be the Scott-Zhang interpolation operator from W l,q(Ω)∩H1

0 (Ω) to
V Ω
h with 1 ≤ q ≤ ∞ and 0 ≤ l ≤ k1 + 1, with the additional constraint l ≥ 1/q

when q > 1. Then, the following interpolation estimate holds true in the norm of
W t,q(Ω) with t ≤ l (see for example [16, Lemma 1.130])

‖v − πhv‖W t,q(Ω) . hl−t|v|W l,q(Ω).

The estimate above applies to the problem at hand, knowing that u ∈ H 3
2
−η(Ω)∩

H1
0 (Ω), with t = 1, l = 3

2
− ε, q = 2, k1 = 1, obtaining

inf
vh∈V Ω

h

‖u− vh‖H1(Ω) . h
1
2
−η‖u‖

H
3
2−η(Ω)

.

For the solution U on Λ and k2 = 1, the standard finite element approximation
estimate ensures that

inf
Vh∈V Λ

h

‖U − Vh‖H1(Λ) . h‖U‖H2(Λ).
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Therefore, combining (2.33) and the previous inequalities for piecewise affine ap-
proximation, we obtain

|||U − Uh||| . h
1
2
−η‖u‖

H
3
2−η(Ω)

+ h‖U‖H2(Λ).

Moreover, on the basis of the previous estimate, it can be proved by means of an
Aubin-Nitsche argument (see [16, Lemma 2.31]), that the following error estimate
holds

‖u− uh‖L2(Ω) + ‖U − Uh‖L2(Λ),|D| . h
3
2
−η‖u‖

H
3
2−η(Ω)

+ h2‖U‖H2(Λ). (2.34)

We have tested the previous convergence results by means of numerical exper-
iments based on a problem for which the analytical solution is known. Precisely,
we consider Ω = (−1, 1)3 ⊂ R3 and Σ is the cylinder with constant circular cross
section of radius R = 0.25 and centerline Λ = {(x, 0, 0), x ∈ (−1, 1)}. We assume
U = 1, therefore the problem reduces to find only the solution u in Ω. Concerning
the other parameters, we choose f = 0 and κ = 0.1. With appropriate bound-
ary conditions, the exact solution ue of the problem can be obtained by uniform
extension along the x-coordinate the 2D solution given in [28], which is

u2D
e (y, z) =

{
U κ

1+κ

(
1−R ln r

R
(y, z),

)
r(y, z) > R,

U κ
1+κ

, r(y, z) ≤ R,

where r(y, z) is the Euclidean distance from the origin. In particular in our case
ue(x, y, z) = u2D

e (y, z). For the triangulation of Ω we consider a quasi-uniform
mesh(see Figure 2.1) and we report in Table 2.1 the discretization error eh = ue−uh
and the rates of convergence computed with respect to the L2- and H1- norms for
different numbers of subdivisions along the y and z axes. The numerical results
confirm the theoretical estimates.
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Figure 2.1: Visualization of the quasi-uniform mesh used for the convergence test,
the exact solution ue and the numerical solution uh.

y,z sub. ‖eh‖L2(Ω) Rate ‖eh‖H1(Ω) Rate

8 1.37341e− 03 0.67705 1.77839e− 02 0.02115
16 4.24798e− 04 1.69291 1.21790e− 02 0.54618
32 1.74336e− 04 1.28491 8.63759e− 03 0.49569
64 6.42597e− 05 1.43988 6.10750e− 03 0.50005

expected: 1.50 expected: 0.50

Table 2.1: The discretization error eh and the rate of convergence computed with
respect to the L2- and H1- norms for different numbers of subdivision of the y and
z axes.
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Chapter 3

Model error analysis

In Chapter 2 we discussed the formulation of a topological model reduction for
equation (2.2). The analysis of Sections 2.2 and 2.2.2 guarantees the well-posedness
of the reduced equation (2.10). We now want to study the error introduced by
replacing the equation (2.2) with (2.10). In particular, the idea of the topological
reduction was justified by the assumption A0 in Section 2.1: our goal is to charac-
terize the dependence of the modeling error with respect to the small parameter
of the model, which is the radius of the inclusion, namely ε.
The a posteriori analysis of modeling error developed in [7] is the starting point
of our analysis: therefore, in Section 3.1 we recall the main steps for general ab-
stract problems. Then, in Section 3.2 we apply the general theory to the particular
case of topological model reductions for small cylindrical inclusions. In particular,
we will discuss separately the contributes of the modeling error arising from the
assumptions described in 2.1.3,2.1.4 namely A1, A2, A3.

3.1 Theory of dual-based estimator of modeling

error

The following section describes the abstract theory of dual-based estimators for
modeling error, as discussed in [7].
Let us introduce our reference problem: this is the weak formulation of the partial
differential equations describing the complete model,

find uref ∈ X : aref (uref , v) = Fref (v) , ∀v ∈ X, (3.1)

where aref (·, ·) and Fref are, respectively, a bilinear and a linear form on the
Hilbert space X.
Let us suppose that equation (3.1), representing the accurate model for our prob-
lem, can be decomposed in an expensive part of the model, which we don’t want to
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compute, and a simple part of the model, which is our reduced model. In practice,
we introduce the bilinear form d(·, ·) and the linear form l(·), representing the part
of the model we want to neglect, such that:

aref (u, v) = a (u, v) + d (u, v) ,∀u, v ∈ X, (3.2)

Fref (v) = F (v) + l (v) ,∀v ∈ X. (3.3)

Therefore, the reduced model is

find u ∈ X : a (u, v) = F (v) , ∀v ∈ X. (3.4)

Remark 3.1.1. We define the model error e = uref − u; by subtracting (3.1) to
(3.4), we obtain the following perturbated Galerkin orthogonality :

a (e, v) = l (v)− d (uref , v) ,∀v ∈ X. (3.5)

In order to estimate the model error e, we introduce the linear functional
j (·) : X → R; this functional will be the source term for the dual reference
problem

find zref ∈ X : aref (v, zref ) = j (v) , ∀v ∈ X, (3.6)

and for his corresponding reduced problem

find z ∈ X : a (v, z) = j (v) , ∀v ∈ X. (3.7)

Considering v = e in the dual problems (3.6) and (3.7), and applying the (3.5), we
can write the following representation formula for the modeling error :

j (e) =l (zref )− d (u, zref ) (3.8)

=l (z)− d (uref , z) . (3.9)

This formula tells us that, thanks to the dual solution, it is possible to represent
the modeling error by means of the terms d(·, ·) and l(·), that is the complex part
of the model.

Remark 3.1.2. Notice that we are employing the model reduction in order to not
build the expensive or complicated terms d(·, ·) and l(·); therefore, computing the
error through these operators may look a not so good strategy.
For this reason, we assume that the overhead for solving the full variational prob-
lem (3.1) rather than the reduced one (3.4) is much higher than a single evaluation
of d(·, ·) and l(·). This assumption is reasonable if we are using iterative meth-
ods, where we would compute those operators multiple times for every residual
evaluation.

Unfortunately, (3.8) tells us also that the error depends on the solution of a
reference problem (the dual or the primal one, depending on the version used):
this is not feasible, therefore we must find an approximated version of the repre-
sentation formula. In the following section we derive a representation formula for
the modeling error depending only on reduced solutions.
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3.1.1 Approximate error representation formula

Let us suppose that l (·) ≡ 0; the following considerations will apply similarly to
both the operators.
Our goal is to separate the contribution of the representation formula (3.8) de-
pending on the reduced solutions u and z by the contribution depending on the
reference solutions uref and zref . The functional j(·) applied to the error e can be
written as:

j (e) = −d (u, zref ) = −d (u, z)− d (u, zref − z) . (3.10)

Let us suppose that d(·, ·) is continuous; therefore, with ‖ · ‖ denoting the usual
norms on X and X ×X, it holds

|d(u, z)| ≤ ‖d‖‖u‖ ‖z‖. (3.11)

If the mapping A : X → X ′, A(u) = a(u, ·) is bijective, the adjoint A∗ is bijective
too. Using the open mapping theorem, there exist a constant α > 0 such that:

‖z‖ ≤ α sup
v∈X

a (v, z)

‖v‖
. (3.12)

The last result we need is the dual perturbed Galerkin orthogonality : proceeding
as in (3.5), we obtain

a (v, zref − z) = −d (v, zref ) , ∀v ∈ X. (3.13)

Combining the (3.12) with (3.13), we deduce the a priori estimate:

‖zref − z‖ ≤ α sup
v∈X

a (v, zref − z)

‖v‖
≤ α sup

v∈X

d (v, zref )

‖v‖
≤ α ‖d‖ ‖zref‖ . (3.14)

Finally, employing the continuity of d (·, ·) , we find:

|d (u, zref − z)| ≤ ‖d‖ ‖u‖ ‖zref − z‖ ≤ α ‖d‖2 ‖u‖ ‖zref‖ . (3.15)

In conclusion, the representation (3.10) can be bounded estimated as:

|j (e)| ≤ ‖d‖ ‖u‖ ‖z‖+ α ‖d‖2 ‖u‖ ‖zref‖ . (3.16)

We achieved our goal to separate the contributions derived by the reduced and
the reference solutions. Furthermore, if ‖d‖ → 0, the contribution of the reference
solutions vanishes at the first order.
Repeating the same estimate for l (·), at first order in ‖d‖ and ‖l‖, the error can
be approximated as:

j (e) ≈ l (z)− d (u, z) . (3.17)
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The use of the approximated representation formula for the modeling error is justi-
fied if ‖d‖ → 0 and ‖l‖ → 0. From assumption A0, one can look for a dependency
between the norms ‖d‖, ‖l‖, and the small parameter ε.
The aim of the next section is to verify if the norms of the operators d(·, ·) and
l(·) arising from each step, namely A1, A2, and A3, vanish as ε→ 0.

Remark 3.1.3. The well-posedness analysis of sections 2.2 and 3.2 is based on the
linearity of the functional j(·). This request limits the choice of the functional; as
we will discuss further in Chapter 4, standard choices are, for example, the mean
value in a region of the domain or the mean gradient on a boundary. One may
be interested in using this method to compute L2 norm of the error; this can be
done from a theoretical point of view, defining j(v) := (e, v), but obviously not in
practice, where this is possible only defining the non-linear operator j(v) := ‖v‖L2 .
Although the non-linear theory is not available for our specific problem, the dual-
based analysis of the modeling error in a generic problem is extended to the non-
linear case.
We briefly present here the main results for the non-linear case; we refer the
interested reader to [7].
We define the forms a(u)(·) and d(u)(·) to be linear in the second argument;
though, they may be not linear in u. We assume the operator l(·) to be zero. The
reference and reduced primal problems are:

find uref ∈ X : a (uref ) (v) + d (uref ) (v) = (f, v) ∀v ∈ X, (3.18)

find u ∈ X : a (u) (v) = (f, v) ∀v ∈ X. (3.19)

Let us define the first derivative of a(u)(·) and d(u)(·), denoted as a′(u)(·, ·) and
d′(u)(·, ·), with:

a′ (u) (w, v) = lim
ε→0
{a (u+ εw) (v)− a (u) (v)} . (3.20)

The first derivative of the nonlinear output functional j(u) is

j′ (v) (w) = lim
ε→0
{j (v + εw)− j (v)} . (3.21)

The reference and reduced dual problems are:

find zref ∈ X : a′ (uref ) (v, z) + d′ (uref ) (v, z) = j′ (uref ) (v) , ∀v ∈ X, (3.22)

find z ∈ X : a′ (u) (v, z) = j′ (u) (v) , ∀v ∈ X. (3.23)

The representation formula for modeling error corresponding to problems (3.18)
and (3.22) is given by the following result:
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Theorem 3.1.1. If a (u) (·), d (u) (·) and the functional j (u) are sufficiently differ-
entiable with respect to u, then it holds that:

j (uref )− j (u) =− d (u) (z) (3.24)

− 1

2
{d (u) (zref − z) + d′ (u) (uref − u, z)−R} , (3.25)

where R is cubic in the error eu,z := {uref − u, zref − z}.

By neglecting the higher order terms, we deduce the approximated non-linear
representation formula:

j (uref )− j (u) ≈ −d (u) (z) . (3.26)

In conclusion, notice that:

• if a (u) (v) = a (u, v) is bilinear, then a′ (u) (w, v) = a (w, v);

• if j (v) is linear, then j′ (v) (w) = j (w).

This confirms that (3.1.1) gives (3.8) in the linear case.

3.2 Modeling error analysis

In Section 3.1 we described the general theory for deriving the modeling error.
In particular we showed the reprensentation formula for modeling error (3.8) de-
pending on the forms d(·, ·) and l(·).
In this Section we aim to derive those operators for our specific problem. In par-
ticular, in Sections 2.1.3, 2.1.4 we described the three assumptions A1, A2 and
A3 at the basis of our model reduction: we now want to characterize the com-
plex parts of the equations we neglected after each assumption, namely d(1)(·, ·),
d(2)(·, ·), d(3)(·, ·), and l(1)(·), l(2)(·), l(3)(·).
Furthermore, we will analyze the following properties for each case; in the follow-
ing, ‖ · ‖? and ‖ · ‖◦ are suitable norms defined on case by case.

Property 3.2.1. There exist constants ‖d‖?◦, ‖l‖◦ such that

d(u, zref) ≤ ‖d‖?◦‖u‖? ‖zref‖◦, l(zref) ≤ ‖l‖◦‖zref‖◦ . (3.27)

Furthermore, the constants ‖d‖?◦ and ‖l‖◦ asymptotically vanish with ε→ 0.

Property 3.2.2. There exist constants ‖a‖? and ‖aref‖◦, uniformly bounded with
ε, such that

‖u‖? ≤ ‖a‖?‖F‖X′ , ‖zref‖◦ ≤ ‖aref‖◦‖j‖X′ . (3.28)
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Property 3.2.1 generalizes the continuity of the operators d(·, ·) and l(·), re-
quiring their boundedness under suitable norms, which may vary on case by case.
Besides, it requests that the norms ‖d‖?◦, ‖l‖◦ asymptotically vanish as the di-
ameter of Σ decrease to zero; as explained in Section 3.1 this is a fundamental
property in order to use the approximated representation formula (3.17) instead of
the complete but non computable one (3.8).
Property 3.2.2 provides stability estimates for the solutions of the reduced primal
and reference dual problems. This property let us derive an a priori estimate
for the L2 norm of the modeling error: in the case of j(v) = (e, v)L2 , combining
Properties 3.2.1 and 3.2.2, we find:

‖e‖2
L2 = j(e) = l(zref)− d(u, zref) ≤ ‖l‖◦‖zref‖◦ + ‖d‖?◦‖u‖?‖zref‖◦

≤ (‖l‖◦ + ‖d‖?◦‖a‖?‖F‖X′) ‖aref‖◦‖e‖L2 .

3.2.1 Useful results

Before proceeding, we introduce some results that will be useful in what follows.

Lemma 6 (Stekloff inequality [32]). Let ∂D be an ellipse or a rhombus. For any
function v ∈ H1(D) such that ∫

∂D
vdγ = 0 ,

there exists a constant C such that∫
∂D
v2dγ ≤ C

∫
D

(∇v)2dσ . (3.29)

More precisely if ∂D is an ellipse (x1/a1)2 + (x2/a2)2 = 1 then C ≤ max[a1, a2].

If ∂D is a rhombus |x1/a1|+ |x2/a2| = 1, then C ≤ (a2
1 + a2

2)
1
2/min[a1/a2, a2/a1].

From the previous lemma combined with assumption A0, we conclude that
there exists CS, independent of ε and with C ≤ CSε, such that (3.29) holds true
with constant CS.

Lemma 7 (Poincaré-Wirtinger inequality [41]). Let D ∈ R2 be a convex domain
of diameter D(D). For any function v ∈ H1(D) such that∫

D
vdσ = 0 ,

we have, ∫
D
v2dσ ≤ D2

π2

∫
D

(∇v)2dσ . (3.30)
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Lemma 8 (Extension theorem for domains having small geometric details [48]).
There exists an extension operator EΣ from H1(Ω⊕) to H1(Σ) such that

‖EΣu‖H1(Σ) ≤ CE‖u‖H1(Ω⊕) ∀u ∈ H1(Ω⊕)

where the constant CE is independent of Σ = Ω \ Ω⊕.

Lemma 9 (Poincaré-Friedrichs inequality [8, 41]). Let D ⊂ R2 be a bounded
domain of diameter D(D). For any v ∈ H1(D), there exists a positive constant,
CPF (D), s.t.

‖v‖2
L2(D) ≤ CPF (D)

(
‖∇v‖2

L2(D) + ‖v‖2
L2(∂D)

)
and CPF (D) tends to 0 for D→ 0.

Proof. Integrating by parts we have:

‖v‖2
L2(D) =

∫
D
v2 dσ =

1

2

2∑
i=1

∫
D
v2 · 1 = −1

2

2∑
i=1

∫
D

2v
∂v

∂xi
xi dσ +

1

2

2∑
i=1

∫
∂D
v2xiνi dγ,

where νi is the i−th component of the outward unit surface normal to D. Then,
using Schwarz and Young inequalities we obtain

‖v‖2
L2(D) ≤

1

2

2∑
i=1

2D‖v‖L2(D)

∥∥∥∥ ∂v∂xi
∥∥∥∥
L2(D)

+
1

2

2∑
i=1

D‖v‖2
L2(∂D)

≤ 1

2
‖v‖2

L2(D) +
1

2

2∑
i=1

2D2

∥∥∥∥ ∂v∂xi
∥∥∥∥2

L2(D)

+ D‖v‖2
L2(∂D)

≤ 1

2
‖v‖2

L2(D) + D2‖∇v‖2
L2(D) + D‖v‖2

L2(∂D)

from which it follows that

‖v‖2
L2(D) ≤ max

(
2D2, 2D

) (
‖∇v‖2

L2(D) + ‖v‖2
L2(∂D)

)
.

Thus, CPF (D) = max (4D2, 2D) and it tends to 0 when D tends to 0.

Lemma 10. From Lemma 9, it follows that for any v ∈ H1(Σ), there exists a
positive constant, CPF (Σ), s.t.

‖v‖2
L2(Σ) ≤ CPF (Σ)

(
‖∇v‖2

L2(Σ) + ‖v‖2
L2(Γ)

)
(3.31)

and CPF (Σ) tends to 0 for ε→ 0.
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3.2.2 Analysis of modeling error of the one dimensional
problem (Assumption A1)

We want to characterize the modeling error of replacing the equation (2.2b) with
(2.4). Let u⊕ ∈ H1

∂Ω(Ω⊕) and g ∈ H1(Σ) be suitable functions. We consider the
reference problem on the cylinder Σ and the reduced problem on his centerline Λ,
namely:

find u	 ∈ H1(Σ) :

(∇u	,∇v)Σ + (κu	, v)Γ = (κu⊕, v)Γ + (g, v)Σ, ∀v ∈ H1(Σ), (3.32a)

find U ∈ H1(Λ) :

(dsU, dsV )Λ,D + (κU, V )Λ,∂D = (κu⊕, V )Λ,∂D + (g, V )Λ,D, ∀v ∈ H1(Λ) . (3.32b)

We define the modeling error e(1) as the difference between u	 and U .
To this purpose, we exploit the cylindrical configuration of the domain Σ and
its local coordinate system. In particular, we uniformly extend U(s) on every
cross section D(s) of the cylinder and with abuse of notation we still denote the
extended function with U . Thanks to the regularity of U on Λ, we have that the
extension on Σ belongs to H1(Σ). Referring to the general notation introduced
in the previous section we have that the solutions of the reference and reduced
models are u

(1)
ref = u	 and u(1) = U both in the space X = H1(Σ), since we

identify U on Λ and its uniform extension on Σ. As a result, the modeling error
is e(1) = u

(1)
ref − u(1) = u	 − U ∈ H1(Σ). Let us derive the operators d(1)(u, v) =

a
(1)
ref (u, v) − a(1)(u, v) and l(1)(v) = F (1)

ref (v) − F (1)(v). The bilinear forms of the
reference and reduced problems are

a
(1)
ref (u, v) = (∇u,∇v)Σ + (κu, v)Γ ,

a(1)(u, v) = (dsu, dsv)Λ,D + (κu, v)Λ,∂D ,

while the linear forms of the reference and reduced problems are

F (1)
ref (v) = (κu⊕, v)Γ + (g, v)Σ ,

F (1)(v) = (κu⊕, v)Λ,∂D + (g, v)Λ,D .

In order to quantify their difference, we recall the expression of the gradient in
cylindrical coordinates for a generic function ofH1(Σ): ∇(·) = [ds(·), ∂r(·), r−1∂θ(·)]′.
Using these expression:

d(1)(u, v) =((I − (·))dsu, dsv)Σ + (κ(I − (·))u, v)Γ

+ (∂ru, ∂rv)Σ + (r−1∂θu, r
−1∂θv)Σ , (3.33a)

l(1)(v) =((I − (·))g, v)Σ + (κ(I − (·))u⊕, v)Γ . (3.33b)
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We now aim to prove properties 3.2.1 and 3.2.2 for the operators d, l and a, aref

respectively.

Lemma 11 (Property 3.2.1 for d(1)). The operator d(1)(·, ·) satisfies Property 3.2.1
with d(1)(U, v) = 0 for any v ∈ H1(Σ).

Proof. Let U ∈ H1(Σ) be the extension to Σ of the reduced problem on Λ. We
observe that d(U, v) = 0 for any v ∈ H1(Σ), because ∂rU = ∂θu = 0 and (I −
(·))dsU = 0.

Lemma 12 (Property 3.2.1 for l(1)). The operator l(1)(·) satisfies Property 3.2.1
with the norm ‖ · ‖2

◦ = ‖ · ‖2
L2(Σ) + ‖ · ‖2

L2(Γ) and with the constant

‖l(1)‖◦ =
ε

π
‖g‖H1(Σ) + ‖κ‖L∞CE

√
CSε‖u⊕‖H1(Ω⊕) .

Proof. For the upper bound of the right hand side, without loss of generality we

assume that g ∈ H1(Σ), u⊕ ∈ H1(Ω⊕). Then, (I − (·))g satisfies the assumptions
of the Poincaré-Wirtinger inequality, which allows us to conclude that

((I−(·))g, v)Σ ≤
(∫

Σ

((I−(·))g)2
) 1

2
(∫

Σ

v2
) 1

2
=
(∫

Λ

∫
D(s)

((I−(·))g)2dσds
) 1

2‖v‖L2(Σ)

≤
(∫

Λ

D2

π2

∫
D(s)

(∇Dg)2dσds
) 1

2‖v‖L2(Σ) ≤
ε

π
‖g‖H1(Σ)‖v‖◦ ,

where, from now on ∇D(·) = [∂r(·), r−1∂θ(·)]′ denotes the gradient in the local
coordinate system of the disc D. For the second term of l we use the Stekloff
inequality,

(κ(I − (·))u⊕, v)Γ ≤ ‖κ‖L∞
(∫

Γ

(I − (·))u⊕)2
) 1

2
(∫

Γ

v2
) 1

2

≤ ‖κ‖L∞
√
CSε

(∫
Λ

∫
D(s)

(∇DEΣu⊕)2dσds
) 1

2‖v‖L2(Γ)

≤ ‖κ‖L∞
√
CSε‖EΣu⊕‖H1(Σ)‖v‖L2(Γ) ≤ ‖κ‖L∞CE

√
CSε‖u⊕‖H1(Ω⊕)‖v‖◦ ,

where EΣ denotes the extension operator of Lemma 8. The previous inequalities
show that (3.27) is verified for this component of the modeling error with the
constant,

l(1)(v) ≤
( ε
π
‖g‖H1(Σ) + ‖κ‖L∞CE

√
CSε‖u⊕‖H1(Ω⊕)

)
‖v‖◦, ∀v ∈ H1(Σ) .
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The verification of (3.28) in this case consists of showing that problems (3.32a)
and (3.32b) are stable in the norm ‖ · ‖◦ with constants uniformly bounded with
respect to ε. More precisely, since d(U, zref) = 0, only the second of (3.28), namely
the stability of the reference dual problem, is meaningful in this case.
For this reason, we define the reference dual problem

find z
(1)
ref ∈ H

1(Σ) : (∇v,∇z(1)
ref )Σ + (κv, z

(1)
ref )Γ = j(1)(v), ∀v ∈ H1(Σ) . (3.34)

There are different choices for the functional j(1)(·) : H1(Σ)→ R. For example,

j(1)(v) = j
(1)
Σ (v) =

∫
Σ

v dΣ,

or

j(1)(v) = j
(3)
Γ (v) =

∫
Γ

∇v · n dγ,

or

j(1)(v) = j(1)
e (v) = (e(1), v)Σ.

(3.35)

We now proceed to prove the stability of the dual solution in the particular case
of j(1)(v) = j

(1)
e (v).

Lemma 13 (Property 3.2.2 for z
(1)
ref ). The reference dual problem (3.34) with

j(1)(v) = j
(1)
e (v) satisfies the following stability estimate with the norm ‖ · ‖◦ =

‖ · ‖L2(Σ) + ‖ · ‖L2(Γ)

‖z(1)
ref ‖◦ ≤

2

min
(
2C−1

PF (Σ), C−1
PF (Σ)κmin, κmin

)‖e(1)‖L2(Σ) .

As a result, Property 3.2.2 is satisfied with the following constant,

‖a(1)
ref‖◦ =

2

min
(
2C−1

PF (Σ), C−1
PF (Σ)κmin, κmin

) .
Proof. Owing to Poincaré -Friedrichs inequality (3.31) we have,

aref(v, v) = (∇v,∇v)Σ+(κv, v)Γ ≥ min

(
1,

1

2
κmin

)
C−1
PF (Σ)‖v‖2

L2(Σ)+
1

2
κmin‖v‖2

L2(Γ),

≥ 1

2
min

(
2C−1

PF , C
−1
PF (Σ)κmin, κmin

)
‖v‖2

◦, ∀v ∈ H1(Σ) .

As a result of that the second of (3.28) is proved. Indeed:

1

2
min

(
2C−1

PF , C
−1
PF (Σ)κmin, κmin

)
‖z(1)

ref ‖
2
◦ ≤ aref(z

(1)
ref , z

(1)
ref ) = (e(1), z

(1)
ref )Σ

≤ ‖e(1)‖L2(Σ)‖z(1)
ref ‖L2(Σ) ≤ ‖e(1)‖L2(Σ)‖z(1)

ref ‖◦ .
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from which it follows that

‖a(1)
ref‖◦ =

2

min
(
2C−1

PF (Σ), C−1
PF (Σ)κmin, κmin

)
and for Lemma 10 ‖a(1)

ref‖◦ is bounded for ε→ 0.

3.2.3 Analysis of modeling error relative to the domain
(Assumption A2)

We want to characterize the modeling error of identifying the domain Ω⊕ with
the entire domain Ω. Let U ∈ H1(Σ) and f ∈ H1(Ω⊕) be suitable functions; let
us denote by EΣ)f the extension of f to f ∈ H1(Σ). We consider the reference
problem on the domain Ω⊕ and the reduced problem on the entire domain Ω,
namely:

find u⊕ ∈ H1
∂Ω(Ω⊕) :

(∇u⊕,∇v)Ω⊕ + (κu⊕, v)Γ = (f, v)Ω⊕ + (κU, v)Γ, ∀v ∈ H1
∂Ω(Ω⊕), (3.36a)

find u(2) ∈ H1
0 (Ω) :

(∇u(2),∇v)Ω + (κu(2), v)Γ = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Γ, ∀v ∈ H1
0 (Ω) , (3.36b)

where H1
∂Ω(Ω⊕) denotes the space of functions of H1(Ω⊕) with null trace on ∂Ω.

More precisely, we extend the solution of (3.36a) from Ω⊕ to Ω, with the extension
operator EΣ which takes the function u⊕ on Ω⊕ and extends it to the interior of

the domain. Then, the reference solution relative to assumption A2 is u
(2)
ref =

(IΩ⊕ + EΣ)u⊕, belonging to the space X(2) = H1
0 (Ω). The solution of the reduced

problem is instead u(2) ∈ H1
0 (Ω). The functional space where we set the modeling

error is H1
0 (Ω) and error is e(2) = u

(2)
ref −u(2) = (IΩ⊕+EΣ)u⊕−u(2) ∈ H1

0 (Ω). Let us

derive the operators d(2)(u, v) = a
(2)
ref (u, v)−a(2)(u, v) and l(2)(v) = F (2)

ref (v)−F (2)(v).
The bilinear forms of the reference and reduced problems are

a
(2)
ref (u, v) = (∇u,∇v)Ω⊕ + (κu, v)Γ ,

a(2)(u, v) = (∇u,∇v)Ω + (κu, v)Γ ,

while the linear forms of the reference and reduced problems are

F (2)
ref (v) = (f, v)Ω⊕ + (κU, v)Γ ,

F (2)(v) = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Γ .
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Then, subtracting (3.36b) from (3.36a), it is straightforward to determine the
expression of the difference operators d(2)(u, v) and l(2)(v),

d(2)(u, v) = −(∇u,∇v)Σ , (3.37a)

l(2)(v) = −(EΣf, v)Σ . (3.37b)

We now aim to prove properties 3.2.1 and 3.2.2 for the operators d, l and a, aref

respectively.

Lemma 14 (Property 3.2.1 for d(2) l(2)). The operators d(2)(·, ·) and l(2)(·) satisfy
Property 3.2.1 with the norms ‖ · ‖? = ‖ · ‖

H
3
2−η(Ω)

, fora any η > 0, and ‖ · ‖◦ =

‖ · ‖H1(Ω⊕) and inequality (3.27) is satisfied with constants

‖d(2)‖?◦ =CE(SCD)
1−2η

6 ε
1−2η

3 C(1/2− η, 3/(1 + η),Ω) ,

‖l(2)‖◦ =(1 + CE)CE(SCD)
1
2 ε‖f‖H1(Ω⊕) .

Proof. Let us start with the upper bound for d(2)(u, v). We observe that d(2)(u, v) ≤
‖∇u‖L2(Σ)‖∇v‖L2(Σ) . Let us assume that u ∈ Hk(Ω) with 1 < k ≤ 2, then
∇u ∈ Hk−1(Ω) and for Sobolev embedding theorem we have ∇u ∈ Lp

∗
(Ω) with

p∗ = 6/(5− 2k). Then we apply Hölder inequality and (2.20) as follows,

‖∇u‖L2(Σ) =
(∫

Σ

1(∇u)2dΩ
) 1

2 ≤ ‖1‖
1
2

Lq(Σ)‖(∇u)2‖
1
2

Lr(Σ)

≤
(∫

Σ

1
) 1

2q
(∫

Σ

(∇u)2r
) 1

2r ≤ |Σ|
1
2q ‖∇u‖L2r(Σ) ≤ (SCD)

1
2q ε

1
q ‖∇u‖L2r(Σ)

where q, r must satisfy 1/q + 1/r = 1. The maximum exponent for which the
previous inequality holds true is p∗ = 2r = 6/(5 − 2k). Then, r = 3/(5 − 2k)
and 1/q = 2(k − 1)/3. Denoting with C(k − 1, p∗,Ω) the Sobolev constant of the
embedding of Hk−1(Ω) in Lp

∗
(Ω), we have

‖∇u‖L2(Σ) ≤ (SCD)
1
2q ε

1
q ‖∇u‖Lp∗ (Σ) ≤ (SCD)

1
2q ε

1
q ‖∇u‖Lp∗ (Ω)

≤ (SCD)
1
2q ε

1
qC(k − 1, p∗,Ω)‖∇u‖Hk−1(Ω)

≤ (SCD)
1
2q ε

1
qC(k − 1, p∗,Ω)‖u‖Hk(Ω).

Being u(2) ∈ H 3
2
−η(Ω) and z

(2)
ref ∈ H1

∂Ω(Ω⊕), we obtain,

d(u(2),(IΩ⊕ + EΣ)zref)

≤ CE(SCD)
1−2η

6 ε
1−2η

3 C (1/2− η, 3/(1 + η),Ω) ‖u(2)‖
H

3
2−η(Ω)

‖zref‖H1(Ω⊕) .
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Proceeding similarly, using the minimal regularity requirement EΣf ∈ H1(Σ)
combined with Hölder inequality and Sobolev embeddings, namelyH1(Σ) ⊂ L6(Σ),
we have

l((IΩ⊕ + EΣ)zref) = −(EΣf, (IΩ⊕ + EΣ)zref)Σ ≤ CE‖EΣf‖L2(Σ)‖zref‖H1(Ω⊕)

≤ CE(SCD)
1
3 ε

2
3‖EΣf‖L6(Σ)‖zref‖H1(Ω⊕) ≤ CE(SCD)

1
3 ε

2
3‖(IΩ⊕+EΣ)f‖L6(Ω)‖zref‖H1(Ω⊕)

≤ CE(1 + CE)(SCD)
1
3 ε

2
3C(1, 6,Ω)‖f‖H1(Ω⊕)‖zref‖H1(Ω⊕) ,

being C(1, 6,Ω) the constant in the Sobolev embedding of H1(Ω) in L6(Ω).

Lemma 15 (Property 3.2.2 for u(2)). The solution of the reduced problem u(2)

satisfies the Property 3.2.2 with the norm ‖ · ‖? = ‖ · ‖
H

3
2−η(Ω)

, for any η > 0 and

the inequality (3.27) is satisfied with the constant

‖a(2)‖? =
CR max

(
1 + CE,

√
C ′T (Γ,Ω⊕)

√
C∂Dε‖κ‖L∞

)
1− CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞

,

which is positive for ε sufficiently small.

Proof. We notice that (3.36a) in the strong form reads as

−∆u(2) =
(
IΩ⊕ + EΣ

)
f − κ

(
u(2) − U

)
δΓ in Ω, u(2) = 0 on ∂Ω.

We can apply the same strategy and results of the previous section to prove that
u(2) ∈ H 3

2
−η(Ω) ∩H1

0 (Ω)∀η > 0. Moreover the following inequality holds

‖u(2)‖? ≤
CR max

(
1 + CE,

√
C ′T (Ω⊕)

√
C∂Dε‖κ‖L∞

)
1− CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞

(
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
,

(3.38)
therefore

‖a(2)‖? =
CR max

(
1 + CE,

√
C ′T (Ω⊕)

√
C∂Dε‖κ‖L∞

)
1− CR

√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞

and for Lemma 5, we can choose ε suffiently small such that

CR
√
C ′T (Γ,Ω⊕)

√
CT (Γ,Ω⊕)‖κ‖L∞ < 1.
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We define the reference dual problem

find z
(2)
ref ∈ H

1
∂Ω(Ω⊕) : (∇v,∇z(2)

ref )Ω⊕ + (κv, z
(2)
ref )Γ = j(2)(v), ∀v ∈ H1

∂Ω(Ω⊕) .
(3.39)

There are different choices for the functional j(2)(·) : H1
0 (Ω)→ R. For example,

j(2)(v) = j
(2)
Ω (v) =

∫
Ω

(IΩ⊕ + EΣ)v dΩ,

or

j(2)(v) = j
(2)
Γ (v) =

∫
Γ

∇v · n dγ,

or

j(2)(v) = j(2)
e (v) = (e(2), (IΩ⊕ + EΣ)v)Ω.

(3.40)

We now proceed to prove the stability of the dual solution in the particular
case of j(2)(v) = j

(2)
e (v).

Lemma 16 (Property 3.2.2 for z
(2)
ref ). The solution of the reference dual problem

(3.39) with j(2)(v) = j
(2)
e (v) satisfies the following inequality,

(1 + CP (Ω⊕))−1‖z(2)
ref ‖

2
Ω⊕ ≤ (∇z(2)

ref ,∇z
(2)
ref )Ω⊕ + (κz

(2)
ref , z

(2)
ref )Γ

= (e(2), (IΩ⊕ + EΣ)z
(2)
ref )Ω ≤ (1 + CE)‖e(2)‖L2(Ω)‖z(2)

ref ‖H1(Ω⊕) .

As a result, Property 3.2.2 is satisfied with the norm ‖ · ‖◦ = ‖ · ‖H1(Ω⊕) and with
the constant,

‖a(2)
ref‖◦ = (1 + CP (Ω⊕))(1 + CE).

3.2.4 Analysis of modeling error relative to the transmis-
sion conditions (Assumption A3)

We want to characterize the modeling error of adapting the interface conditions
between Σ and Ω⊕ to the topological conditions. Let U ∈ H1(Σ) and f ∈ H1(Ω⊕)
be suitable functions; let us denote by EΣf the extension of f to f ∈ H1(Σ). We
consider the reference problem on the domain Ω⊕ and the reduced problem on the
entire domain Ω, namely:

find u(2) ∈ H1
0 (Ω) :

(∇u(2),∇v)Ω + (κu(2), v)Γ = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Γ , ∀v ∈ H1
0 (Ω) , (3.41a)

find u ∈ H1
0 (Ω) :

(∇u,∇v)Ω + (κu, v)Λ,|∂D| = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Λ,|∂D| , ∀v ∈ H1
0 (Ω) .

(3.41b)
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Then, the reference solution relative to assumption A3 is achieved by averaging the
solution u⊕ on cross sections of the interface ∂D(s) before enforcing the interface
condition between u⊕ and U . The error that arises in this process corresponds to
neglect the fluctuations of u⊕ at the interface, as stated in assumption A3. In this

case, the reference problem is (3.41a), with solution u
(3)
ref = u(2), while the reduced

problem is (2.7) so that u(3) = u, being u the solution of the final reduced model

on Ω. The modeling error is easily defined as e(3) = u
(3)
ref − u(3) = u(2)− u ∈ H1

0 (Ω)

for any u, v ∈ H1
0 (Ω). Let us derive the operators d(3)(u, v) = a

(3)
ref (u, v)− a(3)(u, v)

and l(3)(v) = F (3)
ref (v) − F (3)(v). The bilinear forms of the reference and reduced

problems are

a
(3)
ref (u, v) = (∇u,∇v)Ω + (κu, v)Γ ,

a(3)(u, v) = (∇u,∇v)Ω + (κu, v)Λ,|∂D| ,

while the linear forms of the reference and reduced problems are

F (3)
ref (v) = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Γ ,

F (3)(v) = ((IΩ⊕ + EΣ)f, v)Ω + (κU, v)Λ,|∂D| .

Provided that U is uniformly extended from H1(Λ) to H1(Σ) the difference oper-
ators d(3)(u, v) and l(3)(v) between (3.41a) and (2.7) are

d(3)(u, v) = (κu, v)Γ − (κu, v)Λ,|∂D| = (κ(I − (·))u, v)Γ , (3.42a)

l(3)(v) = (κU, v)Γ − (κU, v)Λ,|∂D| = 0 . (3.42b)

We now aim to prove properties 3.2.1 and 3.2.2 for the operators d, l and a, aref

respectively.

Lemma 17 (Property 3.2.1 for d(3 l(3)). The operators d(3)(·, ·) and l(3)(·) satisfy
Property 3.2.1 with the norms ‖ · ‖? = ‖ · ‖◦ = ‖ · ‖H1(Ω) and with constants

‖d(3)‖?◦ = ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
CSε , ‖l(3)‖◦ = 0 .

Proof. Using Cauchy-Schwarz, Stekloff and trace inequalities, we obtain that

d(3)(u, zref) = (κ(I−(·))u, zref)Γ ≤ ‖κ‖L∞
√
CSε

(∫
Λ

∫
D(s)

(∇Du)2 dσ ds

) 1
2

‖zref‖L2(Γ)

≤ ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
CSε‖∇u‖L2(Σ)‖zref‖L2(Ω) ≤ ‖κ‖L∞

√
CT (Γ,Ω⊕)

√
CSε‖u‖?‖zref‖◦
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Lemma 18 (Property 3.2.2 for u). The solution u(3) of problem (3.41b) satisfies
the following inequality

‖u(3)‖H1(Ω) ≤ (1+CP (Ω)) max
(

(1 + CE), ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
C∂Dε

) (
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
.

As result, Property 3.2.2 is satisfied with the norm ‖ · ‖? = ‖ · ‖H1(Ω) and with the
constant

‖a(3)‖? = (1 + CP (Ω)) max
(

(1 + CE), ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
C∂Dε

)
.

Proof.

(1 + CP (Ω))−1 ‖u(3)‖2
H1(Ω) ≤‖(IΩ⊕ + EΣ)f‖L2(Ω)‖u(3)‖L2(Ω) + ‖κ‖L∞‖U‖L2(Λ),|∂D|‖u‖L2(Λ),|∂D|

≤(1 + CE)‖f‖L2(Ω⊕)‖u(3)‖H1(Ω)

+ ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
C∂Dε‖U‖L2(Λ)‖u(3)‖H1(Ω),

from which it follows that

‖u(3)‖H1(Ω) ≤ (1+CP (Ω)) max
(

1 + CE, ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
C∂Dε

) (
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
.

Consequently,

‖a(3)‖? = (1 + CP (Ω)) max
(

1 + CE, ‖κ‖L∞
√
CT (Γ,Ω⊕)

√
C∂Dε

)
.

We define the reference dual problem

find z
(3)
ref ∈ H

1
0 (Ω) : (∇v,∇z(3)

ref )Ω + (κv, z
(3)
ref )Γ = j(3)(v), ∀v ∈ H1(Ω) . (3.43)

There are different choices for the functional j(3)(·) : H1
0 (Ω)→ R. For example,

j(3)(v) = j
(3)
Ω (v) =

∫
Ω

v dΩ,

or

j(3)(v) = j
(3)
Γ (v) =

∫
Γ

∇v · n dγ,

or

j(3)(v) = j(3)
e (v) = (e(3), v)Ω.

(3.44)

We now proceed to prove the stability of the dual solution in the particular case
of j(3)(v) = j

(3)
e (v).
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Lemma 19 (Property 3.2.2 for z
(3)
ref ). The solution of the reference dual problem

(3.43) with j(3)(v) = j
(3)
e (v) satisfies the following inequality

‖z(3)
ref ‖H1(Ω) ≤ (1 + CP (Ω))‖e(3)‖L2(Ω).

As result, Property 3.2.2 is satisfied with the norm ‖ · ‖◦ = ‖ · ‖H1(Ω). and the
constant

‖a(3)
ref‖◦ = 1 + CP (Ω).

Proof. We observe that

(1 + CP (Ω))−1 ‖z(3)
ref ‖

2
◦ ≤ (∇z(3)

ref ,∇z
(3)
ref )Ω+(κz

(3)
ref , z

(3)
ref )Γ = (e(3), z

(3)
ref )Ω ≤ ‖e(3)‖L2(Ω)‖z(3)

ref ‖◦,

from which it follows that the second inequality in (3.28) is satisfied with the
constant

‖a(3)
ref‖◦ = 1 + CP (Ω).

3.2.5 Conclusions

We proved the Property 3.2.1 for operators d(1)(·, ·), d(2)(·, ·), d(3)(·, ·), and l(1)(·),
l(2)(·), l(3)(·). This assures that we can use the theory of 3.1 when ε → 0. In
Chapter 4 we will provide numerical tests which verifies this a posteriori technique.
We proved the Property 3.2.2 for operators a(1)(·, ·), a(2)(·, ·), a(3)(·, ·) and a

(1)
ref (·, ·),

a
(2)
ref (·, ·), a

(3)
ref (·, ·). Therefore, we can write an a priori estimate for the L2 norm of

the modeling error.
We recall that

e(1) = u
(1)
ref − u

(1) = u	 − U ∈ H1(Σ)

e(2) = u
(2)
ref − u

(2) = (IΩ⊕ + EΣ)u⊕ − u(2) ∈ H1
0 (Ω)

e(3) = u
(3)
ref − u

(3) = u(2) − u ∈ H1
0 (Ω)

As a result, the total modeling error, on Σ and Ω respectively can be straightfor-
wardly decomposed as

eΣ + eΩ = (u	 − U) + ((IΩ⊕ + EΣ)u⊕ − u) = e(1) + e(2) + e(3) ,

with eΣ = e(1) ∈ H1(Σ) and eΩ = e(2) + e(3) ∈ H1
0 (Ω).

We remind that if Properties (3.2.1) and (3.2.2) are satisfied,

‖e(∗)‖L2 ≤
(
‖l(∗)‖◦ + ‖d(∗)‖?◦‖a(∗)‖?‖F‖X′

)
‖a(∗)

ref‖◦, ∗ = 1, 2, 3.
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For eΣ, from Lemmas 11, 12, 13 we have

‖eΣ‖L2 ≤ ‖l(1)‖◦‖a(1)‖?‖a(1)
ref‖◦ (3.45)

which entails that ‖eΣ‖L2(Σ) = O(ε
1
2 ) as ε→ 0. For eΩ, from Lemmas 14, 15, 16

‖e(2)‖L2 ≤
(
‖l(2)‖◦ + ‖d(2)‖?◦‖a(2)‖?

(
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

))
‖a(2)

ref‖◦

and from Lemmas 17, 18, 19

‖e(3)‖L2 ≤ ‖d(3)‖?◦‖a(3)‖?
(
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
‖a(3)

ref‖◦.

We notice that ‖F‖X′ has been bounded from above by a term proportional to(
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
. Therefore

‖eΩ‖L2 ≤‖l(2)‖◦‖a(2)
ref‖◦

+
(
‖d(2)‖?◦‖a(2)‖?‖a(2)

ref‖◦ + ‖d(3)‖?◦‖a(3)‖?‖a(3)
ref‖◦

) (
‖f‖H1(Ω⊕) + ‖U‖L2(Λ)

)
(3.46)

which entails that ‖eΩ‖L2(Ω) = O(ε
1
3 ) as ε→ 0.
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Chapter 4

Numerical tests

We address here the experimental results related to the modeling error analysis of
Chapter 3. The aim of this chapter is to provide some numerical tests that show
the magnitude of the modeling error and how is it distributed.
Starting from the definitions of the modeling operators d(i)(·, ·) and l(i)(·), defined
in Sections 3.2.2, 3.2.3 and 3.2.4, we want to compute some functionals of the mod-
eling error, through the error representation formula (3.8) and the approximated
one (3.17).
In particular, we will localize this error in the elements of the triangulation T ht of
the three-dimensional domain Ω̄; in order to achieve this result we must re-write
the (3.8) as the sum of residuals, weighed with the dual solution. We address
Section 4.1 the details of this localization.
Consequently, we show the results of the computational simulations, exploring the
distribution of the modeling error in different test cases (see Table ??). In Sec-
tion 4.2 we show Scenario A, that is the problem (2.10) with R = 0.25, g and f
constants, and the functional of the error defined as the integral on the reference
domain; this will be our starting point for the following simulations. Scenario B
in Section 4.3 employs a non-constant function for g. Similarly, in Scenario C the
function f is variable in the cross section. In Section 4.5, we present Scenario D,
in which the radius is set to R = 0.1. Finally, Scenario E employs the functional
of the error defined as the flux through Γ. Finally, in 4.7 we discuss the numerical
results.

4.1 Estimators

In this Section, we discuss how to compute the estimators based on the dual a
posteriori modeling error presented in Section 3.1; the work in [7] will be the
starting point.
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Scenario R g f j(·) # el. in Ω # el. in Σ Time (s)

A 0.25 1 1 L1-norm 354’753 17’198 1’621
B 0.25 1 + 3y 1 L1-norm 354’753 17’198 1’628
C 0.25 1 1 + y L1-norm 354’753 17’198 1’657
D 0.1 1 1 L1-norm 347’870 47’523 1’730
E 0.25 1 1 flux through Γ 354’753 17’198 1’686

Table 4.1: Main parameters for the different Scenarios for estimators of modeling
error. See Sections 4.2, 4.3, 4.4, 4.5 and 4.6

Afterwards, we will explicitly compute the estimators for our problem (2.10).

4.1.1 Localization of the estimator

Let us consider the generic reduced problem (3.4) and his dual (3.7). Let u, z be
the correspondent solutions in X, and uh, zh their discrete solution in the finite
element space Xh. Let U,Z ∈ RN be the vector of nodal values of uh and zh
respectively, where N is the number of nodes of the triangulation Th for the finite
element space Xh. Considering the Lagrangian nodal basis {φi} ⊂ Xh, we can
build the model residual vector ρ :

[ρ]i =l (φi)− d (uh) (φi) ,

The localized estimator are finally computed with the l2 scalar product in RN ,
between this vector and the vector Z:

η = 〈ρ, Z〉 ,
[η]i =ρiZi,

(4.1)

where η ∈ RN is our estimator for modeling error. Each nodal contribution of η
represents the localization of the error in Th.
Finally, the steps of this technique are:

• computes some residuals ρi depending on the reduced solution u;

• compute some weights wi using the dual solution z;

• compute the estimator η as η =
∑

i ρiwi.
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4.1.2 Derivation of η(i)

Using the approach explained before, we explicitly derive the estimators η1, η2, η3,
regarding the three steps of the topological model reduction; in particular, we must
compute the residuals ρ(i) and discuss the weights w(i) for i = 1, 2, 3.
We introduce X

(1)
h,k, X

(2)
h,k, X

(3)
h,k the finite element spaces of order k over Σ, Ω⊕, Ω,

respectively. We introduce their degrees of freedom N
(1)
h = dim

(
X

(1)
h,k

)
, N

(2)
h =

dim
(
X

(2)
h,k

)
, N

(3)
h = dim

(
X

(3)
h,k

)
, and their finite element basis

{
φ

(1)
i

}N(1)
h

i=1
,
{
φ

(2)
i

}N(2)
h

i=1
,{

φ
(3)
i

}N(3)
h

i=1
.

We recall that z
(1)
ref ∈ H1(Σ), z

(2)
ref ∈ H1

∂Ω(Ω⊕), z
(3)
ref ∈ H1

0 (Ω); accordingly to the

notation described above, the discrete reference dual solutions are z
(1)
h,ref ∈ X

(1)
h,k,

z
(2)
h,ref ∈ X

(2)
h,k, z

(3)
h,ref ∈ X

(3)
h,k. These functions will be our weights: however, in order

to simplify the notation and to clarify the meaning of these weights, we define w(i)

to be in X
(3)
h,k for i = 1, 2, 3. Therefore, all of our weights are defined on Ω, so that

we can compare the different estimators on the same domain. For sake of clarity,
from now on we dismiss the apex (·)(3), and work on the finite element space Xh,k

defined on Ω, with degrees of freedom Nh = dim (Xh,k), and basis {φi}Nhi=1.

Although z
(3)
h,ref already belongs to Xh,k, we must extend the functions z

(1)
h,ref and

z
(2)
h,ref :

w(1) =

{
z

(1)
h,ref in Σ

0 in Ω⊕
w(2) =

{
0 in Σ

z
(2)
h,ref in Ω⊕

w(3) = z
(3)
h,ref in Ω

(4.2)
We now build the residuals ρ(i) for i = 1, 2, 3, depending on the reduced solutions
u and U . Using the definitions of (3.33), (3.37), (3.42), the residuals are:

ρ
(1)
i = l(1)(φi)− d(1)(U, φi) =((I − (·))g, φi)Σ + (κ(I − (·))u, φi)Γ, (4.3a)

ρ
(2)
i = l(2)(φi)− d(2)(u, φi) =(∇u,∇φi)Σ − (EΣf, φi)Σ, (4.3b)

ρ
(3)
i = l(3)(φi)− d(3)(u, φi) =− (κ(I − (·))u, φi)Γ, (4.3c)

for i = 1 : Nh.

Remark 4.1.1. One can notice an important result: although we derive the resid-
uals from both the reduced solutions u and U , as a matter of fact all the terms
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containing the solution in the inclusion Λ vanish, namely:

d(1)(U, φi) =((I − (·))dsU, dsφi)Σ + (κ(I − (·))U, φi)Γ

+ (∂rU, ∂rφi)Σ + (r−1∂θU, r
−1∂θφi)Σ ,

l(3)(φi) =(κU,
(
I − (·)

)
φi)Γ .

The term d(1)(U, φi) vanishes because U(s, r, θ) = U(s) = U(s) = U(s). On the
other hand, l(3)(φi) is equal to zero since every function in Σ dependent only on

the position in the centerline Λ is L2-orthogonal to the operator
(
I − (·)

)
. In fact,

for generic functions F ∈ H1
0 (Σ), F (s, r, θ) = F (s), and g ∈ H1

0 (Ω):

(F, g)Γ =

∫
Λ

∫
∂D(s)

(F g) dγ ds

=

∫
Λ

F

∫
∂D(s)

g dγ ds

=

∫
Λ

F g |∂D| ds

=(F, g)Λ,∂D,

(F, g)Γ =

∫
Λ

∫
∂D(s)

(F g) dγ ds

=

∫
Λ

F g

∫
∂D(s)

dγ ds

=

∫
Λ

F g |∂D| ds

=(F, g)Λ,∂D.

Therefore, our estimators will depends only on the reduced solution in tissue. This
means that all the information about the error due to the topological reduction
lays in the region of Σ; the reduced solution in Λ can’t see the residuals in this
region. We address the Scenario A, in the next Section, for further explanations.

Let us combine the weights and the residuals in order to compute the estima-
tors:

η(1) =

Nh∑
i=1

w
(1)
i ρ

(1)
i =

Nh∑
i=1

w
(1)
i

[
((I − (·))g, φi)Σ + (κ(I − (·))u, φi)Γ

]
, (4.4a)

η(2) =

Nh∑
i=1

w
(2)
i ρ

(2)
i =

Nh∑
i=1

w
(2)
i [(∇u,∇φi)Σ − (EΣf, φi)Σ] , (4.4b)

η(3) =

Nh∑
i=1

w
(3)
i ρ

(3)
i =

Nh∑
i=1

w
(3)
i

[
−(κ(I − (·))u, φi)Γ

]
. (4.4c)

We recall that at this stage, the weights are the reference dual solutions: this
means that, when we compute these estimators, we are using the exact represen-
tation formula (3.8), that is j(i)(e(1)) = l(i)(z

(i)
ref) − d(i)(u(i), z

(i)
ref), for i = 1, 2, 3.

Therefore, apart from the discretization error, the modeling error is completely
described by η(i).
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Luckily, z
(1)
ref , z

(2)
ref and z

(3)
ref present some interesting features: first of all, the dual

reference problems (3.34), (3.39), (3.43) are uncoupled, therefore each dual alge-
braic system is less complex than its primal. Besides, once one has written the
code for computing the modeling operators d(i) and l(i), it is straightforward to
implement the terms for each reference dual problem. Therefore, as a first step,
we will study these exact estimators.
Nevertheless, one may argue that the reference dual problems are too demanding,
even if they are much less expensive than the primal ones; thanks to the consid-
erations of Section 3.1, one may consider the radius ε small enough to replace the
reference dual solutions with the reduced ones, using the approximated represen-
tation formula (3.17), that is j(i)(e(1)) = l(i)(z

(i)
red)− d(i)(u(i), z

(i)
red), for i = 1, 2, 3.

We now define the reduced dual problem of (2.10): it consists to find z ∈ H1
0 (Ω), Z ∈

H1(Λ) such that

aΩ(v, z) + bεΛ(v, z) = jred(v) ∀v ∈ H1
0 (Ω) , (4.5a)

aΛ(V, Z) + bεΛ(V, Z) = Jred(v) ∀V ∈ H1(Λ) , (4.5b)

where

aΩ(w, v) = (∇w,∇v)Ω,

aΛ(w, v) = (dsw, dsv)Λ,|D|,

bεΛ(w, v) = (κw, v)Λ,|∂D|.

The functional jred(·) : H1
0 (Ω)→ R can be:

jred(v) = jredΩ (v) =

∫
Ω

v dΩ,

or

jred(v) = jredΓ (v) =

∫
Γ

∇v · n dγ,

(4.6)

while Jred(·) : H1
0 (Λ)→ R can be:

Jred(v) = JredΛ (v) =

∫
Λ

v dΛ,

or

Jred(v) = JredΓ (v) =

∫
Γ

∇v · n dγ.

(4.7)

We now proceed to define the reduced weights w̃(1), w̃(2), w̃(3), using the reduced
dual solution. As for the reference weights, the reduced ones are defined on the
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whole domain Ω through the finite element space Xh,k:

w̃(1) =

{
Zh in Σ

0 in Ω⊕
w̃(2) = zh in Ω w̃(3) = zh in Ω. (4.8)

Then, it is straightforward to define the approximated estimators based on the
reduced weights:

η̃(1) =

Nh∑
i=1

w̃
(1)
i ρ

(1)
i , (4.9a)

η̃(2) =

Nh∑
i=1

w̃
(2)
i ρ

(2)
i , (4.9b)

η̃(3) =

Nh∑
i=1

w̃
(3)
i ρ

(3)
i . (4.9c)

(4.9d)

4.2 Scenario A

We solve the primal reduced coupled problem (2.10) on a segment Λ from (−0.51, 0, 0)
to (0.51, 0, 0), discretized with 1281 points, completely embedded in the paral-
lelepiped Ω = (−1, 1)2 × (−0.51, 0.51); the tessellation of Ω is a quasi-uniform
regular mesh, with characteristic length h = 1/32 = 0.03125, for a total of 354’753
tetrahedra. The other parameters are: R = 0.25, k = 1, f = 1 and g = 1.
We then solve the three reference dual problems (3.34), (3.39), (3.43), and the
reduced dual problem (4.5), using as linear operators the L1-norms, that are:

j(1)(v) = j
(1)
Σ (v) , j(2)(v) = j

(2)
Ω (v), j(3)(v) = j

(3)
Ω (v), jred(·) = jredΩ (·) and Jred(·) =

JredΛ (·).
Finally, we can compute the residuals ρ(i) and the weights w(i) and w̃(i) for i = 1 : 3
with the definitions (4.3), (4.2) and (4.8).
We now present the results: as a first step, we validate our code by checking that
the terms d(1)(U, ·) and l(3)(·) actually vanish, as theoretically expected; this will
be done only for this Scenario. Then, we will show the estimators, providing the
weights and residuals related to each assumption.

Remark 4.2.1. All the following plots should be represented on Ω; unfortunately,
the meaningful data are strictly inside the domain Ω, because of the homogeneous
Dirichlet condition on his boundary. Therefore, in order to successfully represent
the information of the plots, we will show only a 2D surface embedded in the 3D
domain, i.e. the y-z plane in x = 0, crossing perpendicularly the centre of the
inclusion Λ.
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U u

Figure 4.1: Reduced solutions in Scenario A. In the left, the reduced solution U
on Λ, while on the right, the reduced solution u on Ω.

4.2.1 Validation: null terms

We want to check that the terms depending on U , namely d(1)(U, φi) and l(3)(φi),
actually vanish for each base φi, as proved in 4.1.2. We recall their definition
(3.33a),(3.42b), and analyze each term:

d(1)(U, φi) =((I − (·))dsU, dsφi)Σ + (κ(I − (·))U, φi)Γ

+ (∂rU, ∂rφi)Σ + (r−1∂θU, r
−1∂θφi)Σ ,

l(3)(φi) =(κU, φi)Γ − (κU, φi)Λ,|∂D| .

For d(1)(U, φi), we can separate the terms in Σ and those on Γ; in particular, we

expect that
∑

i(∇U,∇φi)Σ =
∑

i(dsU, dsφi)Σ and
∑

i(κU, φi)Γ =
∑

i(κU, φi)Γ.
Similarly, for l(3)(φi) we expect

∑
i(κU, φi)Γ =

∑
i(κU, φi)Λ,|∂D|.

The results are shown in Figures 4.2,4.3, 4.4. One can observe that these terms are
not exactly equal to zero: instead, they decrease of a factor around 10−2. This is
related to numerical errors that arise in the assembling the average discrete oper-

ators, Πvt and Πvt, corresponding to (·) (2.1a), and (·) (2.1b), respectively. These
errors can be reduced using more precise quadrature formulas. Nevertheless, the
assembling of these matrices is already one of the most expensive tasks of the
numerical procedure, therefore we couldn’t afford better quadrature formulas.
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(∇U,∇φi)Σ (dsU, dsφi)Σ (∇(I − (·))U,∇φi)Σ

∑
i(∇U,∇w

(1)
i )Σ = -2.34E-14

∑
i(dsU, dsw

(1)
i )Σ = -2.36E-14

∑
i(∇(I − (·))U,∇w(1)

i )Σ = 1.62E-16

Figure 4.2: Validation in Scenario A: discussion of term (∇(I − (·))U,∇φi)Σ. The
plots refer to the residuals tested on generic functions φi. For every plot, it is
shown the sum of all the weighted residuals.

(κU, φi)Γ (κU, φi)Γ (κ(I − (·))U, φi)Γ

∑
i(κU,w

(1)
i )Γ = 4.28E-01

∑
i(κU,w

(1)
i )Γ = 4.24E-01

∑
i(κ(I − (·))U,w(1)

i )Γ = 3.52E-03

Figure 4.3: Validation in Scenario A: discussion of term (κ(I − (·))U, φi)Γ. The
plots refer to the residuals tested on generic functions φi. For every plot, it is
shown the sum of all the weighted residuals.
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(κU, φi)Γ (κU, φi)Λ,|∂D| (κU, (I − (·))φi)Γ

∑
i(κU,w

(3)
i )Γ = 4.10E-02

∑
i(κU,w

(3)
i )Λ,|∂D| = 4.07E-02

∑
i(κU, (I − (·))w(3)

i )Γ = 3.21E-04

Figure 4.4: Validation in Scenario A: discussion of term (κU, (I − (·))φi)Γ. The
plots refer to the residuals tested on generic functions φi. For every plot, it is
shown the sum of all the weighted residuals.

In addition, when going through the next Sections, one can notice that the mag-
nitude of these residuals is comparable to the magnitude of the other residuals.
Anyway, these residuals bring informations only about the discretization error, not
about the modeling errors: it would be a mistake deciding to consider these terms
in the estimator for the modeling error.
In conclusion, we will consider from now on η(1) ≡ l(1)(w(1)) and η(3) ≡ −d(3)(w(3)).
On the other hand, in future works it will be interesting compute also estimators
for the discretization error: those estimators should consider the effect of the terms
d(1)(U, φi) and l(3)(φi).

4.3 Scenario B

We solve the primal reduced coupled problem (2.10) on a segment Λ from (−0.51, 0, 0)
to (0.51, 0, 0), discretized with 1281 points, completely embedded in the paral-
lelepiped Ω = (−1, 1)2 × (−0.51, 0.51); the tessellation of Ω is a quasi-uniform
regular mesh, with characteristic length h = 1/32 = 0.03125, for a total of 354’753
tetrahedra. The other parameters are: R = 0.25, k = 1, f = 1 and g = 1 + 3y.
We then solve the three reference dual problems (3.34), (3.39), (3.43), and the

reduced dual problem (4.5), using the following linear operators: j(1)(v) = j
(1)
Σ (v),

j(2)(v) = j
(2)
Ω (v), j(3)(v) = j

(3)
Ω (v), jred(·) = jredΩ (·) and Jred(·) = JredΛ (·).

As one can observe, the only difference between Scenario A and Scenario B is the
definition of g: in fact, Scenario B is designed to study the case g(s) 6= g(s).
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ρ(1) ρ(2) ρ(3)

Figure 4.5: Residuals ρ(1), ρ(2), ρ(3) in Scenario A

w(1) w(2) w(3)

w̃(1) w̃(2) w̃(3)

Figure 4.6: Weights in Scenario A. In the first row, the reference weights w(1),
w(2), w(3); in the second row, the reduced weights w̃(1), w̃(2), w̃(3)

79



CHAPTER 4. NUMERICAL TESTS

η(1) = 2.144126e-04 η(2) = -1.156074e-02 η(3) = -1.792162e-05

η̃(1) = 4.203644e-05 η̃(2) = -1.557244e-03 η̃(3) = -1.792042e-05

Figure 4.7: Estimators in Scenario A. In the first row, the reference estimators
η(1), η(2), η(3); in the second row, the reduced estimators η̃(1), η̃(2), η̃(3)
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η η̃

Figure 4.8: Global estimators in Scenario A. On the left, η =
∑

i η
(i); on the right,

η̃ =
∑

i η̃
(i).

Finally, we can compute the residuals ρ(i) and the weights w(i) and w̃(i) for i = 1 : 3
with the definitions (4.3), (4.2) and (4.8).

4.4 Scenario C

We solve the primal reduced coupled problem (2.10) on a segment Λ from (−0.51, 0, 0)
to (0.51, 0, 0), discretized with 1281 points, completely embedded in the paral-
lelepiped Ω = (−1, 1)2 × (−0.51, 0.51); the tessellation of Ω is a quasi-uniform
regular mesh, with characteristic length h = 1/32 = 0.03125, for a total of 354’753
tetrahedra. The other parameters are: R = 0.25, k = 1, f = 1 + y and g = 1.
We then solve the three reference dual problems (3.34), (3.39), (3.43), and the

reduced dual problem (4.5), using the following linear operators: j(1)(v) = j
(1)
Σ (v)

, j(2)(v) = j
(2)
Ω (v), j(3)(v) = j

(3)
Ω (v), jred(·) = jredΩ (·) and Jred(·) = JredΛ (·).

As one can observe, the only difference between Scenario A and Scenario C is the
definition of f : in fact, Scenario C is designed to study the case of f(s, r, t) 6=
f(s, r), that means it is not constant along Γ
Finally, we can compute the residuals ρ(i) and the weights w(i) and w̃(i) for i = 1 : 3
with the definitions (4.3), (4.2) and (4.8).

81



CHAPTER 4. NUMERICAL TESTS

η(1) = 2.139307e-04 η(2) =-1.156074E-02 η(3) = -1.792162e-05

η̃(1) = 4.189962e-05 η̃(2) = -1.557244E-03 η̃(3) = -1.792042e-05

Figure 4.9: Estimators in Scenario B.In the first row, the reference estimators η(1),
η(2), η(3); in the second row, the reduced estimators η̃(1), η̃(2), η̃(3)
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η η̃

Figure 4.10: Global estimators in Scenario B. On the left, η =
∑

i η
(i); on the

right, η̃ =
∑

i η̃
(i).

4.5 Scenario D

We solve the primal reduced coupled problem (2.10) on a segment Λ from (−0.51, 0, 0)
to (0.51, 0, 0), discretized with 1281 points, completely embedded in the paral-
lelepiped Ω = (−1, 1)2 × (−0.51, 0.51); the tessellation of Ω is a quasi-uniform
mesh, with characteristic length varying from h = 1/16 = 0.0625 on the boundary,
to h = 1/64 = 0.015625, for a total of 347’870 tetrahedra. The other parameters
are: R = 0.1, k = 1, f = 1 and g = 1.
We then solve the three reference dual problems (3.34), (3.39), (3.43), and the

reduced dual problem (4.5), using the following linear operators: j(1)(v) = j
(1)
Σ (v)

, j(2)(v) = j
(2)
Ω (v), j(3)(v) = j

(3)
Ω (v), jred(·) = jredΩ (·) and Jred(·) = JredΛ (·).

As one can observe, the only difference between Scenario A and Scenario D is the
dimension of radius, and consequently the mesh used. In this Scenario, we want
to study the value of the estimators in a problem with a smaller radius, in order
to discuss the theory of Section 3.1. The mesh of this Scenario (see Fig. 4.15)
is designed to have a total number of elements close to the previous one, while
simultaneously having a number of elements in Σ close to the previous one.
Finally, we can compute the residuals ρ(i) and the weights w(i) and w̃(i) for i = 1 : 3
with the definitions (4.3), (4.2) and (4.8).
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Scenario A: g = 1

(g, φi)Σ (g, φi)Σ ((I − (·))g, φi)Σ

∑
i(g, w

(1)
i )Σ = 1.26E-01

∑
i(g, w

(1)
i )Σ = 1.26E-01

∑
i((I − (·))g, w(1)

i )Σ = 3.35E-17

Scenario B: g = 1 + 3y

(g, φi)Σ (g, φi)Σ ((I − (·))g, φi)Σ

∑
i(g, w

(1)
i )Σ =1.26E-01

∑
i(g, w

(1)
i )Σ =1.26E-01

∑
i((I − (·))g, w(1)

i )Σ = -4.81E-07

Figure 4.11: Terms depending on g: From left to right: (g, φi)Σ, (g, φi)Σ and

((I − (·))g, φi)Σ. In the first row, the plots are related to Scenario A, while the
second row shows the simulations of Scenario B.
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η(1) =4.201454e-05 η(2) = -1.559818e-03 η(3) = -1.790936e-05

η̃(1) = 2.143094e-04 η̃(2) = -1.156073e-02 η̃(3) = -1.791171e-05

Figure 4.12: Estimators in Scenario C. In the first row, the reference estimators
η(1), η(2), η(3); in the second row, the reduced estimators η̃(1), η̃(2), η̃(3)
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η η̃

Figure 4.13: Global estimators in Scenario C. On the left, η =
∑

i η
(i); on the

right, η̃ =
∑

i η̃
(i).

4.6 Scenario E

We solve the primal reduced coupled problem (2.10) on a segment Λ from (−0.51, 0, 0)
to (0.51, 0, 0), discretized with 1281 points, completely embedded in the paral-
lelepiped Ω = (−1, 1)2 × (−0.51, 0.51); the tessellation of Ω is a quasi-uniform
regular mesh, with characteristic length h = 1/32 = 0.03125, for a total of 354’753
tetrahedra. The other parameters are: R = 0.25, k = 1, f = 1 and g = 1.
We then solve the three reference dual problems (3.34), (3.39), (3.43), and the

reduced dual problem (4.5), using the following linear operators: j(1)(v) = j
(1)
Γ (v)

, j(2)(v) = j
(2)
Γ (v), and j(3)(v) = j

(3)
Γ (v).

As one can observe, the only difference between Scenario A and Scenario E is the
choice of the functionals in the dual problems: the theory holds for any linear op-
erator, and depending on the application, one may want to use different definitions
of the functionals. In this Scenario, we study the effect of operators the focus the
attention to the interface Γ rather than the whole inclusion Σ.
In addition, we point out that, unlike the previous Scenarios, in Scenario D we
don’t provide the reduced weights and estimators: in fact, if we had to define
the functional Jred(·) something like Jred(·) = JredΛ (·), the solution of (4.5b) on Λ

would be Z ≡ 0. As a result, w̃(1) ≡ 0 and therefore ˜eta
(1)
equiv0. For this reason,

in this case the reduced weights are not meaningful, and we do not provide them.
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Scenario A: f = 1

(u, φi)Γ (u, φi)Γ ((I − (·))u, φi)Γ

∑
i(u,w

(1)
i )Γ = 1.74E-01

∑
i(u,w

(1)
i )Γ = 1.74E-01

∑
i((I − (·))u,w(1)

i )Γ = 2.14E-04

Scenario C: f = 1 + y

(u, φi)Γ (u, φi)Γ ((I − (·))u, φi)Γ

∑
i(u,w

(1)
i )Γ =3.42E-02

∑
i(u,w

(1)
i )Γ =3.42E-02

∑
i((I − (·))u,w(1)

i )Γ = 4.20E-05

Figure 4.14: Terms depending on f : From left to right: (u, φi)Γ, (u, φi)Γ and
((I − (·))u, φi)Γ. In the first row, the plots are related to Scenario A, while the
second row shows the simulations of Scenario C.
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Scenario A, R = 0.25 Scenario C, R = 0.1

Figure 4.15: Different grids between Scenario A and Scenario D. On the left, the
grid with R = 0.25 and 354’753 elements, of which 17’198 in Σ; on the right the
grid with R = 0.1 and 347’870 elements, of which 47’523 in Σ

ρ(1) ρ(2) ρ(3)

Figure 4.16: Residuals ρ(1), ρ(2), ρ(3) in Scenario D
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w(1) w(2) w(3)

w̃(1) w̃(2) w̃(3)

Figure 4.17: Weights in Scenario D. In the first row, the reference weights w(1),
w(2), w(3); in the second row, the reduced weights w̃(1), w̃(2), w̃(3)
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η(1) = 1.848594e-07 η(2) = -2.373791e-02 η(3) = -1.263023e-04

η̃(1) = -2.219032e-03 η̃(2) = -1.557244e-03 η̃(3) = 9.253449e-05

Figure 4.18: Estimators in Scenario D. In the first row, the reference estimators
η(1), η(2), η(3); in the second row, the reduced estimators η̃(1), η̃(2), η̃(3)
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η η̃

Figure 4.19: Global estimators in Scenario D. On the left, η =
∑

i η
(i); on the

right, η̃ =
∑

i η̃
(i).

ρ(1) ρ(2) ρ(3)

Figure 4.20: Residuals ρ(1), ρ(2), ρ(3) in Scenario E
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w(1) w(2) w(3)

Figure 4.21: Reference weights w(1), w(2), w(3) in Scenario E.

η(1) = 1.848594e-07 η(2) = -2.373791e-02 η(3) = -1.263023e-04

Figure 4.22: Reference estimators η(1), η(2), η(3) in Scenario E.
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η

Figure 4.23: Global estimator η =
∑

i η
(i) in Scenario E.

Finally, we can compute the residuals ρ(i) and the weights w(i) for i = 1 : 3 with
the definitions (4.3), (4.2).

4.7 Discussion of the results

We now discuss the results of Sections 4.2, 4.3, 4.4, 4.5 and 4.6. We aim to
understand where the modeling error is localized in the discrete mesh, what is its
magnitude, which assumption brings the largest modeling error, how the radius
and the choice of the functionals affect the estimators. We will point out different
considerations on the results in order to answer these questions.
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Scenario η(1) η(2) η(3)

w 2e-04 -1e-02 -1e-05
A

w̃ 4e-05 -1e-03 -1e-05

w 2e-04 -1e-02 -1e-05
B

w̃ 4e-05 -1e-03 -1e-05

w 4e-05 -1e-03 1e-05
C

w̃ 2e-04 -1e-02 1e-05

w 9e-07 -3e-05 -1e-06
D

w 3e-05 -1e-03 -1e-06

E w 1e-07 -2e-02 -1e.04

η(1) η(2) η(3)

mini maxi mini maxi mini maxi

w -8e-21 4e-08 -1e-05 9e-07 -1e-25 3e-08
A

w̃ -4e-20 2e-07 -1e-05 1e-06 -1e-25 3e-08

w -1e-05 1e-05 -1e-06 9e-07 -1e-25 3e-08
B

w̃ -5e-05 4e-05 -1e-05 1e-06 -1e-25 3e-08

w -5e-06 6e-06 -6e-06 6e-06 -3e-06 4e-06
C

w̃ -2e-05 3e-05 -2e-05 7e-06 -3e-06 4e-06

w -1e-11 4e-10 -8e-09 1e-07 -3e-11 8e-10
D

w̃ -6e-10 1e-08 -9e-07 1e-07 -3e-11 8e-10

E w -1e-07 1e-07 -1e-06 2e-05 -2e-27 1e-07

Table 4.2: Estimators in different Scenarios. In the first table, the values of η(1) =∑
i η

(1)
i , η(2) =

∑
i η

(2)
i , and η(3) =

∑
i η

(3)
i in each Scenario. In the second table,

the range of the localized estimator, that is their minimum and maximum value.
For each Scenario, we provide the complete estimator η(·) =

∑
i ρ

(·)
i w

(·)
i and the

approximated estimator η̃(·) =
∑

i ρ
(·)
i w̃

(·)
i
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Before we start the analysis, it’s essential to recall the definitions of our estimators:

η(1) =

Nh∑
i=1

w
(1)
i ρ

(1)
i =

Nh∑
i=1

w
(1)
i

[
((I − (·))g, φi)Σ + (κ(I − (·))u, φi)Γ

]
,

η(2) =

Nh∑
i=1

w
(2)
i ρ

(2)
i =

Nh∑
i=1

w
(2)
i [(∇u,∇φi)Σ − (EΣf, φi)Σ] ,

η(3) =

Nh∑
i=1

w
(3)
i ρ

(3)
i =

Nh∑
i=1

w
(3)
i

[
−(κ(I − (·))u, φi)Γ

]
.

These estimators represents the modeling error, being η(i) = j(e(i)), where e(i) is
the error due to the i-th assumption. Besides that, we define the reduced estima-
tors η̃(i) using the reduced weights w̃(i), connected to the modeling error through
the relationship η̃(i) = j(e(i)) + o(w(i) − w̃(i)) ≈ j(e(i))

The firs step of this discussion is the residual ρ(1), in particular ((I − (·))g, φi)Σ.
This integral on Σ represents the error due to the average (·) on the quantities in
the cross section D. The Figure 4.11 highlights the fact that, when g(s, r, t) = g(s)
is constant in the cross section, the residual is equal to zero in all the inclusion.
On the other hand, when g is variable in D, the residual represents the variation
of g. This is an interesting result, because if the source term in Σ is constant in
our model, then the modeling error inside the inclusion depends only on η(2). All
the remaining terms are integrals localized on the interface Γ.
The terms on the interface are

∑Nh
i=1w

(1)
i (κ(I−(·))u, φi)Γ in η(1) and

∑Nh
i=1 w

(3)
i (κ(I−

(·))u, φi)Γ in η(3). These terms are strictly connected with the function f , as shown
in the Figure 4.14 in Scenario C. If f is constant around Γ, then the solution u
is dependent only on the distance from the centerline Λ ( u(s, r, t) ≡ u(s, r)). In
such a case, u(s) ≈ u(s). Therefore, the integrals on Γ becomes relevant especially
when f is not constant around the inclusion.
In addition, one should notice that l(1) and d(3) actually are the same residual,
(κ(I − (·))u, φi)Γ, and they differ only by the weight that multiplies them. There-
fore, when we sum the three estimators, one obtains:

η =η(1) + η(2) + η(3)

= +

Nh∑
i=1

w
(1)
i

[
((I − (·))g, φi)Σ

]
+

Nh∑
i=1

w
(2)
i [(∇u,∇φi)Σ − (EΣf, φi)Σ]

+

Nh∑
i=1

[
w

(1)
i − w

(3)
i

] [
(κ(I − (·))u, φi)Γ

]
.

(4.10)

Then, the terms on Γ are weighted by the difference between w
(1)
i ∈ Σ and w

(3)
i ∈ Ω

at their interface. One can expect this difference to be smaller than the individual
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weights.
It remains to discuss the estimator η(2): it represents how well the reduced elliptic
problem is solved in the inclusion. Therefore, whereas the other terms depend on
the computation of the averages of certain functions, this estimator depends on
the discretization method in Σ. For this reason, we expect this error to be larger
than the others and to affect the distribution of the global estimator η (see Table
4.2). In addition, one should be careful using the values of η(2) strictly inside Σ.

In fact, z
(2)
ref has no value in the inclusion, and the definition of the estimator holds

for any extension of the reference dual solution. The safest extensions are z
(2)
ref = 0

(reference case) and z
(2)
ref constant (reduced case) in the inclusion. Depending on

the objectives ( whether it’s better to evaluate the functions only on Γ or if it’s
needed to analyze the function also in the inclusion) one can decide for one or the
other extension.
We now compare Scenario A and Scenario D, which have different dimensions of
the radius. According to the results on the L2-norm of the modeling error, (3.45)
and (3.46), the modeling error decreases when the radius is smaller. The results on
Table 4.2 confirm this trend for what regards the L1-norm of the modeling error.
In fact, the estimators η(i) are considerably smaller in scenario D with respect to
the other Scenarios. Anyway, Figures 4.7 and 4.18 show a similar pattern of the
distribution of the modeling error. Therefore we can infer that the dimension of
the radius affects only the magnitude of the error, but not its localization.
The theory employed holds for every definition of the linear operators j. Using,
for example, functionals that evaluate the flux on the interface Γ allow us to focus
on this region, instead of computing the error in the whole Σ. We can see that the
estimators in Scenario E are larger with respect to the other Scenarios, because the
functionals are localized in a smaller region, and the residuals are more weighed
on Γ.
We now discuss the use of the reduced weights instead of the reference ones. The
theory of Section 3.1 tells us that using the approximated representation formula
of the modeling error we neglect higher-order terms, depending on the reference
dual solution. These terms have a sign, since there is no absolute value, therefore
we cannot a priori infer that the reduced estimators are smaller than the reference
ones. Nevertheless, Table 4.2 confirms this trend: we can experimentally see that
η(i) > η̃(i). However, in η(3) it’s not so evident what is the difference between com-
plete and approximated estimators. One can argue that z

(3)
ref is the closest reference

dual solution to the reduced one, so it’s not hard to think that z
(3)
ref ≈ z. The larger

difference between the reference and residual estimators lays in η(2). In fact, this
reference estimator depends on the extension in Σ of the dual solution z(2). The
choice of w(2) = 0 in Σ results in an estimator with value only on Γ, while the
reduced dual solution has non-zero values in the inclusion too, as highlighted just
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above. With these considerations in mind, one can notice that, even though in the
various Scenarios the values of η(i) can be different from the values of η̃(i), their
localization is almost the same (see Figures 4.7, 4.9, 4.12,4.18).

In conclusion, we analyzed the different contributions of the modeling error

in (4.10). The term
∑Nh

i=1w
(1)
i

[
((I − (·))g, φi)Σ

]
represents the variation of the

solution in each cross section of the inclusion. It mainly depends on the function

g. The term
∑Nh

i=1

[
w

(1)
i − w

(3)
i

] [
(κ(I − (·))u, φi)Γ

]
represents the variation of the

solution around the inclusion. It mainly depends on the function f and on the
difference w(1) − w(3). The term

∑Nh
i=1 w

(2)
i [(∇u,∇φi)Σ − (EΣf, φi)Σ] is linked to

the resolution of the elliptic problem inside the inclusion. It mainly depends on
the numerical solver and on the definition of the weight w(2) or w̃(2). We observed
that the dimension of the radius is proportional to the magnitude of the modeling
error. Besides, the reduced weights return a good approximation of the reference
weights. Finally, we remark that our estimate of this error depends on the choice
of the functional j.
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Conclusion and future
perspectives

The objective of this work was to propose an a posteriori estimate of the modeling
error in coupled problems with topological reduction. To this purpose, we started
in Chapter 1 with the derivation of a coupled model applied to microcirculation.
This model was a time-dependent advection-diffusion-reaction PDE with source
term depending on the solution f = f(ct, cv) and concentrated on a manifold with
different dimensionality, fδΓ. We analyzed the weak formulation and the discrete
approximation of the problem in order to use a finite element scheme. We imple-
mented a C++ solver in order to simulate the particles transport in an arbitrarily
complex network perfused in a generic biological tissue with known physical prop-
erties.
The next step is a rigorous analysis of the well-posedness of this problem. The
complete formulation is not the right framework on which perform this analysis,
so we moved to an elliptic formulation in Chapter 2. We explicitly derived the
reduced formulation from the reference one, describing the essential three assump-
tions involved in the topological reduction. We proved the well-posedness of the
reduced model and described the discretization of the differential problem.
The numerical results in Chapter 1 and the analysis in Chapter 2 persuade us
that the model reduction is meaningful and reliable, especially if dimension of the
inclusion is much smaller than the surrounding domain. Nevertheless, we need to
further investigate the modeling error due to the topological reduction. Therefore,
in Chapter 3 we laid the foundations for the a posteriori analysis of the modeling
error, by introducing the Dual-Based Residual estimators. We derive the theory
for a generic PDE and afterwards we applied to our specific problem. We iden-
tified the operators involved in the modeling reduction and we proved that their
contribution depends on the radial dimension of the inclusions.
Finally, in Chapter 4 we explicitly wrote the discrete localized estimators, with the
corresponding residuals and weights. We used our solver to simulate the coupled
elliptic problem in different test cases and compute the DWR estimators.
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Let us draw the conclusion of the present project and discuss the future per-
spective. The DWR estimators represent a simple but effective way to quantify
the modeling error in topological reduction. The work proposed represents a first
step on the a posteriori analysis of coupled 3D/1D problems, but certainly not
the last. The results of Scenario D suggest that our estimator depends on the
size of the inclusion, as expected from theory. Nevertheless, it’s worth studying
accurately the rate of convergence of the modeling error with respect to the ra-
dius. Furthermore, open questions remain on the discretization error. The general
DWR theory provides for suitable a posteriori estimators for the numerical error.
Future works will build a more general a posteriori framework able to distinguish
the contribution related to the model reduction and to the discretization scheme.
In this context it will be possible to deepen the considerations on the vanishing
terms d(1), l(3), and on the estimator η(2). In fact, as shown in Chapter 4, this
last term contains the greatest contribution of the modeling error,due to the dis-
cretization of the elliptic problem inside the inclusion. In addition, we have not
collected enough evidence for choosing, for the simple test case considered here,
between reference and reduced weights yet. The computational time of the dual
reference and reduced problems are comparable, and the spatial distribution of
the error is similar. Once an a posteriori error estimator will be developed for the
numerical error, it will be possible to weigh up the benefits between the accuracy
of the reference dual solution and the lower computational cost of the reduced
dual solution. Finally, the DWR can be used for an adaptive scheme, in order to
optimize the ratio between accuracy and computational cost of the simulation. As
a final step, it can be applied to different contexts with few adjustment.
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Appendix A

C++ Code

We developed a C++ code that exhibits one-to-one correspondence with respect
to the mathematical and numerical models derived in Chapters 1, 2, 3, 4. The
code has been developed in the context of the MANworks project. The purpose
is to develop a C++ library based on Getfem++ [47] for the solution of PDEs on
networks coupled with the surrounding environment. The starting point of this
project was the code by Domenico Notaro [39], that solve the equations of fluid
dynamics 1.4. Our work was to implement a new solver for the transport equa-
tions 1.1, that could read the advection and pressure fields from the previous solver.

The latest stable release of the code is available on request. Please contact us
via mail at stefano14.brambilla@mail.polimi.it or paolo.zunino@polimi.it.

A.1 Design of the code

Before starting to write the new solver, we decided to follow three main rules:
separation, consistency and synthesis.
First, the solver for fluid problem is continuously being improved, in the whole
context of the MANwork project. Therefore, we needed something that could use
the different features of the first solver, but that was able to easily integrate the
new versions of the code: we decided to keep the two solver as separated as pos-
sible.
Second, in order to make the code more readable, we decided to unify the termi-
nology between the two solvers. Also, the whole structure of the library has been
maintained as far as possible.
Third, we recognized that, apart from the structure of the monolithic matrix, the
structure of the code was quite similar. We tried to not duplicate parts of code or
objects used in both the solvers.
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APPENDIX A. C++ CODE

Since the fluid solver was written following the two main design principles of OOP,
namely encapsulation and information hiding, it has been easy to achieve our goals.
The fluid equations solver contains a main class, problem3d1d, containing all the
attributes and methods which are needed to solve the fluid problems. We buildt a
new class, transport3d1d, that inherits from the class problem3d1d. As a good
programming practise, the declaration of the class transport3d1d was exported
to an appropriate header file (transport3d1d.hpp), while its definition was moved
to a source file (transport3d1d.cpp).
In the class transport3d1d we added all the new attributes for the transport prob-
lem, only when needed: for example, the header files descr3d1d.hpp, dof3d1d.hpp
and param3d1d.hpp contained the definitions of the descriptors of the algorithm,
the dimensions of the problem and the physical parameters, respectively, used in
the fluid problem. We added the header files descr3d1d transp.hpp, dof3d1d transp.hpp
and param3d1d transp.hpp that contained the definitions of the descriptors of the
algorithm, the dimensions of the problem and the physical parameters, respec-
tively, that are used only in the transport problem. Furthermore, other attributes
that are shared between the two problems, like the meshes, are not declared again.

//! Main class defining the coupled 3D/1D transport problem.

class transport3d1d: public problem3d1d {

public:

transport3d1d(void) :

mf_Ct(mesht), mf_Cv(meshv){}

///// Main methods for transport problem

//! Initialize the transport problem

void init_transp (int argc , char *argv []);

//! Assemble the transport problem

void assembly_transp (void);

//! Solve the transport problem

bool solve_transp (void);

//! Export the transport solution

void export_vtk_transp (const string & time_suff = "",const string

& suff = "");

///// Aux methods for interface with problem3d1d class

//! Initialize the fluid problem

void init_fluid (int argc , char *argv []);

//! Assemble the fluid problem

void assembly_fluid (void);

//! Solve the fluid problem

bool solve_fluid (void);

//! Export the fluid solution

void export_vtk_fluid (const string & suff = "");
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///// Methods for processing the solution

//! Compute residuals for mass balance at each junction

void mass_balance (void);

//! Compute the test for convergence error

void convergence_error(void);

//! Compute the dual problems and estimators for modeling error

void model_error(void)

protected:

//! Finite Element Method for the tissue concentration @f$c_t@f$

mesh_fem mf_Ct;

//! Finite Element Method for the vessel concentration @f$c_v@f$

mesh_fem mf_Cv;

//! Algorithm description strings (mesh files , FEM types , solver

info , ...)

descr3d1d_transp descr_transp;

//! Physical parameters

param3d1d_transp param_transp;

//! Number of degrees of freedom

dof3d1d_transp dof_transp;

//! List of BC nodes of the network

vector < node > BCv_transp;

//! List of BC nodes of the tissue

vector < node > BCt_transp;

//! List of junction nodes of the network

vector < node_transp > Jv_transp;

//! Monolithic matrix for the coupled problem

sparse_matrix_type AM_transp;

//! Monolithic array of unknowns for the coupled problem

vector_type UM_transp;

//! Monolithic right hand side for the coupled problem

vector_type FM_transp;

// Monolithic temporary matrix for update

sparse_matrix_type AM_temp;

// Monolithic temporary right hand side for update

vector_type FM_temp;

// Aux methods for init

//! Import algorithm specifications

void import_data_transp(void);

//! Import mesh for tissue (3D) and vessel (1D)
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void build_mesh_transp(void);

//! Set finite elements methods and integration methods

void set_im_and_fem_transp(void);

//! Build problem parameters

void build_param_transp(void);

//! Build the list of tissue boundary data

/*! Face numbering:

0 : {x = 0 } "back"

1 : {x = Lx} "front"

2 : {y = 0 } "left"

3 : {y = Ly} "right"

4 : {z = 0 } "bottom"

5 : {z = Lz} "top"

*/

void build_tissue_boundary_transp(void);

//! Build the list of vessel boundary (and junctions) data

void build_vessel_boundary_transp(void);

//Aux method for assembly

//! Build the monolithic matrix AM_transp by blocks

void assembly_mat_transp(void);

//! Build the monolithic rhs FM_transp by blocks

void assembly_rhs_transp(void);

//Aux method for solve

//! Aux function for update of rhs at each time step

void update_transp(void);

}; //end of class trasport3d1d

The structure of the user-interface is preserved: the code is divided in four
main steps: (i) initializing of the problem, (ii) assembling of the linear system,
(iii) solving it and (iv) saving the solution for post-processing. These phases are
the only methods that remain public.

Remark A.1.1. In order to have only this methods in the user-interface, we choosed
to run the time loop inside the function solve transp(); therefore, in order to save
the solution at each time step, we decided to insert the method export vtk transp

directly in the solver. Anyway, one can call the export method at the end of the
main.cpp.

// Declare a new problem

getfem :: transport3d1d p;

// ////// fluid problem: velocity field and pressure

104



APPENDIX A. C++ CODE

// Initialize the problem

p.init_fluid(argc , argv);

// Build the monolithic system

p.assembly_fluid ();

// Solve the problem

if (!p.solve_fluid ()) GMM_ASSERT1(false , "solve procedure has

failed");

// Save results in .vtk format

p.export_vtk_fluid ();

// ////// transport problem: concentration

// initialize

p.init_transp(argc , argv);

// assemble

p.assembly_transp ();

//solve

if (!p.solve_transp ()) GMM_ASSERT1(false , "solve procedure has

failed"); // the export is in the solve at each time step

The package MANworks contains:

fluid/ : A stable version of the code for fluid problem

transport/ : The code for transport problem

Makefile : Instruction to install the whole project

The folder fluid/ can be replaced with any new release of the code. The folder
transport/ has the following structure:

doc/ : Code documentation (to be generated).

include/ : General header files

lib/ : Main library (to be generated)

src/ : Example sources

1 uncoupled branch/ : solve the uncoupled 1d and 3d problems

2 coupled branch/ : solve the coupling with single-vessel network

3 bifurcation/ : solve the problem with Y-shaped network

4 network/ : simulate the transport of particles in a network with
physiological parameters
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config.mk : Instruction to find the GetFEM++ and the problem3d1d li-
braries in the system

Doxyfile : Instruction to build the code documentation

Makefile : Instruction to install the whole project

vtk/ : Output in vtk format

input.param : List of user-defined parameters

main.cpp : Main program

Makefile : Instruction to install the example

mesh1d/ : One-dimensional meshes in pts format

network.pts : File of points of the vessel network, with boundary con-
ditions for fluid problem

network transp.pts : File of points of the vessel network, with bound-
ary conditions for transport problem

A.2 Assembling routines

After the design of the main class, we assemble the different terms arising from
1.18. The buildt-in functions of Getfem++, and the tool generic assembly for
non-standard terms, are the basis for the assembling phase.

In assembling1d transp.hpp we build the matrixesMv and Av. The function
asm network transp builds in particolar the mass matrix for time derivative and
the stiffness matrix for the diffusion term; the function asm advection network

builds the two advection terms 1.14.

template <typename MAT , typename VEC , typename VEC2 >

void

asm_network_transp

(MAT & M, MAT & D,

const mesh_im & mim ,

const mesh_fem & mf_c ,

const mesh_fem & mf_data ,

const VEC & diff ,

const VEC2 & R,

const mesh_region & rg = mesh_region :: all_convexes ()

)

{
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GMM_ASSERT1(mf_c.get_qdim () == 1 ,

"invalid data mesh fem (Qdim=1 required)");

//build mass matrix Mv for time derivative

VEC param(mf_data.nb_dof ()); gmm:: clear(param);

gmm::add(R, param);

gmm:: vscale(R, param);

gmm:: scale(param , pi); // param = pi*R^2

getfem :: asm_mass_matrix_param(M, mim , mf_c , mf_data , param , rg);

// Build the diffusion matrix Dv

gmm:: vscale(diff , param); // param= 2pi*R^2*Av

getfem :: asm_stiffness_matrix_for_laplacian(D,mim ,mf_c ,mf_data ,

param , rg);

} //end of asm_network_transp

template <typename MAT , typename VEC >

void

asm_advection_network

(MAT & B,

const mesh_im & mim ,

const mesh_fem & mf_c ,

const mesh_fem & mf_data ,

const mesh_fem & mf_u ,

const mesh_fem & mf_R ,

const VEC & U,

const VEC & lambdax , const VEC & lambday , const VEC & lambdaz ,

const VEC & R,

const mesh_region & rg = mesh_region :: all_convexes ()

)

{

generic_assembly

assem1("l1=data$1 (#2); l2=data$2 (#2); l3=data$3 (#2); u=data$4 (#3)

; R=data$5 (#4);"

"t=comp(Base (#1).Grad (#1).Base (#2).Base (#3).Base (#4).Base (#4));"

"M$1 (#1 ,#1)+=t(:,:,1,i,p,m,n).l1(i).u(p).R(m).R(n)+t(:,:,2,i,p,m,n

).l2(i).u(p).R(m).R(n)+t(:,:,3,i,p,m,n).l3(i).u(p).R(m).R(n);")

;

assem1.push_mi(mim);

assem1.push_mf(mf_c);

assem1.push_mf(mf_data);

assem1.push_mf(mf_u);

assem1.push_mf(mf_R);

assem1.push_data(lambdax);

assem1.push_data(lambday);

assem1.push_data(lambdaz);

assem1.push_data(U);

assem1.push_data(R);

assem1.push_mat(B);

assem1.assembly(rg);
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generic_assembly

assem2("l1=data$1 (#2); l2=data$2 (#2); l3=data$3 (#2); u=data$4 (#3)

; R=data$5 (#4);"

"t=comp(Base (#1).Base (#1).Base (#2).Grad (#3).Base (#4).Base (#4));"

"M$1 (#1 ,#1)+=t(:,:,i,p,1,m,n).l1(i).u(p).R(m).R(n)+t(:,:,i,p,2,m,n

).l2(i).u(p).R(m).R(n)+t(:,:,i,p,3,m,n).l3(i).u(p).R(m).R(n);")

;

assem2.push_mi(mim);

assem2.push_mf(mf_c);

assem2.push_mf(mf_data);

assem2.push_mf(mf_u);

assem2.push_mf(mf_R);

assem2.push_data(lambdax);

assem2.push_data(lambday);

assem2.push_data(lambdaz);

assem2.push_data(U);

assem2.push_data(R);

assem2.push_mat(B);

assem2.assembly(rg);

} //end of asm_advection_network

In assembling3d transp.hpp we build the matrixes Mt and At. The func-
tion asm tissue transp builds in particolar the mass matrix for time derivative,
the stiffness matrix for the diffusion term and the reaction terms; the function
asm advection tissue builds the two advection terms 1.9.

template <typename MAT , typename VEC >

void

asm_tissue_transp

(MAT & M, MAT & D,MAT & R,

const mesh_im & mim ,

const mesh_fem & mf_c ,

const mesh_fem & mf_coef ,

const VEC & diff_data ,

const VEC & reac_data ,

const mesh_region & rg = mesh_region :: all_convexes ()

)

{

GMM_ASSERT1(mf_c.get_qdim () == 1,

"invalid data mesh fem for pressure (Qdim=1 required)");

// Build the mass matrix Mt (consumption)

getfem :: asm_mass_matrix_param(R, mim , mf_c , mf_coef , reac_data , rg

);

// Build the mass matrix Tt for time derivative

getfem :: asm_mass_matrix(M, mim , mf_c , rg);

// Build the divergence matrix Dtt

getfem :: asm_stiffness_matrix_for_laplacian(D,mim ,mf_c , mf_coef ,
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diff_data , rg);

} /* end of asm_tissue_transp */

template <typename MAT , typename VECT >

void asm_advection_tissue(MAT &B, const getfem :: mesh_im &mim ,

const getfem :: mesh_fem &mf,

const getfem :: mesh_fem &mfvel ,

const VECT &vel ,

const mesh_region & rg = mesh_region :: all_convexes ()

) {

getfem :: generic_assembly

assem1("vel=data (#2);"

"M$1 (#1 ,#1) += comp(Base (#1).Grad (#1).vBase (#2)) (:, :,i, k,i).vel

(k);");

assem1.push_mi(mim);

assem1.push_mf(mf);

assem1.push_mf(mfvel);

assem1.push_data(vel);

assem1.push_mat(B);

assem1.assembly(rg);

getfem :: generic_assembly

assem2("vel=data (#2);"

"M$1 (#1 ,#1) += comp( Base (#1).Base (#1).vGrad (#2) )(:, :,k, p,p).

vel(k);");

assem2.push_mi(mim);

assem2.push_mf(mf);

assem2.push_mf(mfvel);

assem2.push_data(vel);

assem2.push_mat(B);

assem2.assembly(rg);

} /* end of asm_advection_tissue */

The coupling terms Btt, Btv, Bvt and Bvv are easily assembled by the routines
in assembling3d1d transp.hpp, that essentially exploits the corresponding func-
tions in assembling3d1d.hpp paying attention at the parameter for permeability.

The boundary conditions are assembled by the functions asm network bc transp,
asm tissue bc transp and asm coupled bc transp. As for the fluid equations,
the user can choose between Dirichlet and Robin conditions for every face of the
tissue Ω and every inlet or outlet point of the network Λ.

template <typename MAT , typename VEC >

void

asm_network_bc_transp

(VEC & F, MAT & M,
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const mesh_im & mim ,

const mesh_fem & mf_c ,

const mesh_fem & mf_data ,

const std::vector <getfem ::node > & BC,

const scalar_type beta ,

const VEC & R)

{

GMM_ASSERT1(mf_c.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

GMM_ASSERT1(mf_data.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

for (size_type bc=0; bc < BC.size(); bc++) {

GMM_ASSERT1(mf_c.linked_mesh ().has_region(bc), "missed mesh region

" << bc);

if (BC[bc].label =="DIR") { // Dirichlet BC

VEC BC_temp(mf_c.nb_dof (), BC[bc]. value);

getfem :: assembling_Dirichlet_condition(M, F, mf_c , BC[bc].rg ,

BC_temp);

gmm:: clear(BC_temp);

}

else if (BC[bc]. label=="MIX") { // Robin BC

VEC BETA(mf_data.nb_dof (), beta*pi);

gmm:: vscale(R, BETA); gmm:: vscale(R, BETA);

getfem :: asm_mass_matrix_param(M, mim , mf_c , mf_data , BETA ,mf_c.

linked_mesh ().region(BC[bc].rg) ); //int(beta*cv*bv)

VEC BETA_C0(mf_data.nb_dof (), pi*beta*BC[bc]. value);

gmm:: vscale(R, BETA_C0); gmm:: vscale(R, BETA_C0);

asm_source_term(F,mim , mf_c , mf_data ,BETA_C0); //int(beta*c0*bv)

}

else if (BC[bc]. label=="INT") { // Internal Node

GMM_WARNING1("internal node passed as boundary.");

}

else if (BC[bc]. label=="JUN") { // Junction Node

GMM_WARNING1("junction node passed as boundary.");

}

else {

GMM_ASSERT1 (0, "Unknown Boundary Condition"<< BC[bc].label << endl

);

}

}

}

template <typename MAT , typename VEC >

void

asm_tissue_bc_transp
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(VEC & F,

MAT & M,

const mesh_im & mim ,

const mesh_fem & mf_c ,

const mesh_fem & mf_data ,

const std::vector <getfem ::node > & BC,

const scalar_type beta

)

{

GMM_ASSERT1(mf_c.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

GMM_ASSERT1(mf_data.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

for (size_type bc=0; bc < BC.size(); ++bc) {

GMM_ASSERT1(mf_c.linked_mesh ().has_region(bc), "missed mesh region

" << bc);

if (BC[bc].label =="DIR") { // Dirichlet BC

VEC BC_temp(mf_c.nb_dof (), BC[bc]. value);

getfem :: assembling_Dirichlet_condition(M, F, mf_c , BC[bc].rg ,

BC_temp);

gmm:: clear(BC_temp);

}

else if (BC[bc]. label=="MIX") { // Robin BC

VEC BETA(mf_data.nb_dof (), beta);

getfem :: asm_mass_matrix_param(M, mim , mf_c , mf_data , BETA ,mf_c.

linked_mesh ().region(BC[bc].rg) );

VEC BETA_C0(mf_data.nb_dof (), beta*BC[bc]. value);

asm_source_term(F,mim , mf_c , mf_data ,BETA_C0);

}

else if (BC[bc]. label=="INT") { // Internal Node

GMM_WARNING1("internal node passed as boundary.");

}

else if (BC[bc]. label=="JUN") { // Junction Node

GMM_WARNING1("junction node passed as boundary.");

}

else {

GMM_ASSERT1 (0, "Unknown Boundary Condition " << BC[bc].label <<

endl);

}

}

} /* end of asm_tissue_bc */
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template <typename MATRM , typename VECT1 , typename VECT2 >

void assembling_Dirichlet_condition_coupled_tissue

(MATRM &B, VECT1 &F, const mesh_fem &mf1 , const mesh_fem &mf2 ,

size_type boundary ,

const VECT2 &DIR) {

size_type Q1=mf1.get_qdim ();

size_type Q2=mf2.get_qdim ();

size_type nb_dof1=mf1.nb_dof ();

size_type nb_dof2=mf2.nb_dof ();

GMM_ASSERT1 (!( mf1.is_reduced ()), "This function is not adapted to

"

"reduced finite element methods");

GMM_ASSERT1 (!( mf2.is_reduced ()), "This function is not adapted to

"

"reduced finite element methods");

dal:: bit_vector nndof = mf1.basic_dof_on_region(boundary);

pfem pf1;

for (dal:: bv_visitor cv(mf1.convex_index ()); !cv.finished (); ++cv)

{ //per tutti i convessi cv della mesh 1

pf1 = mf1.fem_of_element(cv);

pdof_description ldof = lagrange_dof(pf1 ->dim());

size_type nbd = pf1 ->nb_dof(cv);

for (size_type i = 0; i < nbd; i++) { //per tutti i dof i

del convesso cv

size_type dof1 = mf1.ind_basic_dof_of_element(cv)[i*Q1]; //

trova l’indice delle colonne riferite all

if (nndof.is_in(dof1) && pf1 ->dof_types ()[i] == ldof) { //se

il dof i del convesso cv in "boundary"

for (size_type j = nb_dof1; j < nb_dof1+ nb_dof2; j++) { //

allora per tutti i dof j della mesh 2

for (size_type l = 0; l < Q1; ++l) {

F[j] -= B(j, dof1+l) * DIR[dof1+l];

B(j, dof1+l) = 0;

B(dof1+l, j) = 0;

}

}

}

}

}

} /* end of assembling_Dirichlet_condition_coupled_tissue */
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template <typename MATRM , typename VECT1 , typename VECT2 >

void assembling_Dirichlet_condition_coupled_vessel

(MATRM &B, VECT1 &F, const mesh_fem &mf1 , const mesh_fem &mf2 ,

size_type boundary ,

const VECT2 &DIR) {

size_type Q1=mf1.get_qdim ();

size_type Q2=mf2.get_qdim ();

size_type nb_dof1=mf1.nb_dof ();

size_type nb_dof2=mf2.nb_dof ();

GMM_ASSERT1 (!( mf1.is_reduced ()), "This function is not adapted to

"

"reduced finite element methods");

GMM_ASSERT1 (!( mf2.is_reduced ()), "This function is not adapted to

"

"reduced finite element methods");

dal:: bit_vector nndof = mf2.basic_dof_on_region(boundary);

pfem pf2;

for (dal:: bv_visitor cv(mf2.convex_index ()); !cv.finished (); ++cv)

{ //per tutti i convessi cv della mesh 1

pf2 = mf2.fem_of_element(cv);

pdof_description ldof = lagrange_dof(pf2 ->dim());

size_type nbd = pf2 ->nb_dof(cv);

for (size_type i = 0; i < nbd; i++) { //per tutti i dof i

del convesso cv

size_type dof2 = mf2.ind_basic_dof_of_element(cv)[i*Q2]; //

trova l’indice delle colonne riferite all

if (nndof.is_in(dof2) && pf2 ->dof_types ()[i] == ldof) { //se

il dof i del convesso cv in "boundary"

for (size_type j = 0; j < nb_dof1; j++) { // allora per tutti

i dof j della mesh 2

for (size_type l = 0; l < Q2; ++l) {

F[j] -= B(j, nb_dof1 + dof2+l) * DIR[nb_dof1 + dof2+l];

B(j, nb_dof1 + dof2+l) = 0;

B(nb_dof1 + dof2+l, j) = 0;

}

}

}

}

}
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} /* end of assembling_Dirichlet_condition_coupled_vessel */

template <typename MAT , typename VEC >

void

asm_coupled_bc_transp

(MAT & M,

VEC & F,

const mesh_fem & mf_ct ,

const mesh_fem & mf_cv ,

const std::vector <getfem ::node > & BC_tissue ,

const std::vector <getfem ::node > & BC_vessel

)

{

GMM_ASSERT1(mf_ct.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

GMM_ASSERT1(mf_cv.get_qdim ()==1, "invalid data mesh fem (Qdim=1

required)");

//cycle over the tissue boundary nodes

for (size_type bc=0; bc < BC_tissue.size(); ++bc) {

GMM_ASSERT1(mf_ct.linked_mesh ().has_region(bc), "missed mesh

region" << bc);

if (BC_tissue[bc]. label=="DIR") { // Dirichlet BC

VEC BC_temp(mf_ct.nb_dof (), BC_tissue[bc]. value);

getfem :: assembling_Dirichlet_condition_coupled_tissue(M, F, mf_ct ,

mf_cv , BC_tissue[bc].rg , BC_temp);

gmm:: clear(BC_temp);

}

}

//cycle over the vessels boundary nodes

for (size_type bc=0; bc < BC_vessel.size(); ++bc) {

GMM_ASSERT1(mf_cv.linked_mesh ().has_region(bc), "missed mesh

region" << bc);

if (BC_vessel[bc]. label=="DIR") { // Dirichlet BC

VEC BC_temp(mf_cv.nb_dof (), BC_vessel[bc]. value);

getfem :: assembling_Dirichlet_condition_coupled_vessel(M, F, mf_ct ,

mf_cv , BC_vessel[bc].rg , BC_temp);

gmm:: clear(BC_temp);

}

}

} /* end of asm_coupled_bc_transp */
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A.3 The library transport3d1d

With the code above described, we build a dynamic library collecting all the rou-
tines, external functions and variables defining our coupled 3D-1D transport prob-
lem.
There are many pros and cons to take in considerations when choosing between
a static and a dynamic library. For example, the library of the fluid problem,
libproblem3d1d.a, was buildt statically: the size of the executable with the static
linking is comparable to the total size of the executable with the dynamic link-
ing and the files of the library; therefore, there were no need to build the library
dynamically, preferring a stand-alone executable. On the other hand, for the trans-
port problem we opted for dynamic linking: the MANwork project is fastly getting
wider, with different versions of the code. In this context, we prefer to have more
flexible executable, that can quickly load different libraries when necessary, with-
out the need of recompilation.
Anyway, we finally decided to let the user choose between static and dynamic
linking: the Makefile in MANworks/transport/include contains both the instruc-
tions. The default make will install the library libtransport3d1d.so dynamically,
while a make static will install the library libtransport3d1d.a statically. The
library for transport problem is buildt from the following headers:

assembling1d transp.hpp : Miscellaneous assembly routines for the 1D net-
work problem

assembling3d transp.hpp : Miscellaneous assembly routines for the 3D tis-
sue problem

assembling3d1d transp.hpp : Miscellaneous assembly routines for the 3D-
1D coupling

descr3d1d transp.hpp : Definition of the aux class for algorithm description
strings

dof3d1d transp.hpp : Definition of the aux class for the number of degrees
of freedom

node transp.hpp : Definition of the class node transp

param3d1d transp.hpp : Definition of the aux class for physical parameters

transport3d1d.cpp: Definition of the main class for the 3D-1D coupled
transport problem
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transport3d1d.hpp : Declaration of the main class for the 3D-1D coupled
transport problem

model error.cpp: Definition of the methods for computing the modeling
error

convercenge error.cpp: Definition of the methods for computing the con-
vergence error

utilities transp.hpp : Miscellaneous aux functions for the 3D-1D coupled
transport problem

See the README file for installation instructions.

A.4 Doxygen documentation

The whole code has been extensively commented and documented. The last re-
lease of the code provides the possibility to automatically generate a detailed code
documentation using Doxygen . See the README file for installation instructions.
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sibilità di lavorare con lui a questo progetto. Mi ha costantemente aiutato nello
sviluppo di questa impegnativa ma stimolante tesi, incoraggiandomi a puntare a
obiettivi sempre più alti.
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