
politecnico di milano

Facoltà di Ingegneria

Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in

Ingegneria Informatica

Mood prediction of movies using multi-label
text classification

Relatore:

prof . pier luca lanzi

Correlatore:

dr . nicola padovano

Tesi di Laurea di:

andrea di giosaffatte

Matr. 852589

matteo imberti

Matr. 863662

Anno Accademico 2017-2018





C O N T E N T S

Abstract v
Sommario vii
1 introduction 1

1.1 Movie Classification From Text . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mood Prediction Of Movies Using Multi-label Text Classification . . . . 2

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 state of the art 5

2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Text Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Bag Of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Term Frequency - Inverse Document Frequency . . . . . . . . . . 7

2.3.4 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.5 Doc2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.6 Topic2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Multi-label Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Binary Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Classifier Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Multi-label Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Imbalanced Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 the scenario 17

3.1 Mediaset Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Moods Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.2 Moods Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Analysis of the others Features . . . . . . . . . . . . . . . . . . . . 24

4 our architecture 27

4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Summaries Gathering . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Input vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Standard Vectorization Methods . . . . . . . . . . . . . . . . . . . 28

4.2.2 Tf-Idf-Weighted Word2Vec . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Cast2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



4.2.4 Text Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 single-label Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Ensemble Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Resampling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Binary Relevance Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Input and Balancing Selection . . . . . . . . . . . . . . . . . . . . 34

4.5.2 Binary Relevance with Combined Input . . . . . . . . . . . . . . . 35

4.5.3 Combined Input Selection . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Ensemble of Classifier Chain . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Stacking Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 experimental analysis 39

5.1 Dataset partition: train-validation . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Vectorizers’ Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . 40

5.5 Models’ Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6.1 Statistical Tests for Model Comparison . . . . . . . . . . . . . . . 43

5.6.2 Evaluation of Vectorized Inputs . . . . . . . . . . . . . . . . . . . 44

5.6.3 Evaluation of Resampling Strategies . . . . . . . . . . . . . . . . . 46

5.6.4 Binary Relevance with Combined Input . . . . . . . . . . . . . . . 49

5.6.5 Binary Relevance with Stacking . . . . . . . . . . . . . . . . . . . 57

5.6.6 Ensemble of Classifier Chain . . . . . . . . . . . . . . . . . . . . . 58

5.6.7 Stacking Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 results and future developments 65

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

bibliography 67

a appendix : mood description 71

iv



L I S T O F F I G U R E S

Figure 2.1 How stacking works . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.2 How classifier chains works . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.1 Moods distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.2 Moods imbalance ratio . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3 Moods co-occurrences . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.4 Moods co-occurrences greater than 50 . . . . . . . . . . . . . . . 22

Figure 3.5 Pearson correlation for moods . . . . . . . . . . . . . . . . . . . . 23

Figure 3.6 Jack Black characterization . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.7 Al Pacino characterization . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.8 Hugh Grant characterization . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 SVM illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.2 ENN graphical explanation . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.3 SMOTE synthetic sample generation . . . . . . . . . . . . . . . . 34

Figure 4.4 Scheme of the presented architecture . . . . . . . . . . . . . . . . 38

Figure 5.1 Coherence analysis of LDA model . . . . . . . . . . . . . . . . . 41

L I S T O F TA B L E S

Table 4.1 Some of the topics found by LDA. . . . . . . . . . . . . . . . . . 29

Table 5.1 Vectorized input evaluation: Naive Bayes. . . . . . . . . . . . . . 44

Table 5.2 Vectorized input evaluation: Logistic Regression. . . . . . . . . . 45

Table 5.3 Vectorized input evaluation: Support Vector Machine. . . . . . . 45

Table 5.4 Vectorized input comparison: Naive Bayes. . . . . . . . . . . . . 46

Table 5.5 Vectorized input comparison: Logistic Regression. . . . . . . . . 46

Table 5.6 Vectorized input comparison: Support Vector Machine. . . . . . 46

Table 5.7 Resampling strategies evaluation: Naive Bayes. . . . . . . . . . . 47

Table 5.8 Resampling strategies evaluation: Logistic Regression. . . . . . 48

Table 5.9 Resampling strategies: Support Vector Machine. . . . . . . . . . 48

Table 5.10 Binary Relevance: Naive Bayes + Fake Balancer. . . . . . . . . . 50

Table 5.11 Binary Relevance: Naive Bayes + ENN. . . . . . . . . . . . . . . 50

Table 5.12 Binary Relevance: Logistic Regression + Fake Balancer. . . . . . 51

Table 5.13 Binary Relevance: Logistic Regression + ENN. . . . . . . . . . . 51

Table 5.14 Binary Relevance: Support Vector Machine + Fake Balancer. . . 52

Table 5.15 Binary Relevance: Support Vector Machine + ENN. . . . . . . . 52

Table 5.16 Binary Relevance: Random Forest + Fake Balancer. . . . . . . . 53

Table 5.17 Binary Relevance: Random Forest + ENN. . . . . . . . . . . . . . 53

Table 5.18 Binary Relevance: XGBoost + Fake Balancer. . . . . . . . . . . . 54

Table 5.19 Binary Relevance: XGBoost + ENN. . . . . . . . . . . . . . . . . 54

v



Table 5.20 Combined input comparison: Naive Bayes. . . . . . . . . . . . . 55

Table 5.21 Combined input comparison: Logistic Regression. . . . . . . . . 56

Table 5.22 Combined input comparison: Support Vector Machine. . . . . . 56

Table 5.23 Combined input comparison: Random Forest. . . . . . . . . . . 56

Table 5.24 Combined input comparison: XGBoost. . . . . . . . . . . . . . . 56

Table 5.25 Binary Relevance: Stacking [RF + SVM + LR]. . . . . . . . . . . . 57

Table 5.26 Binary Relevance: Stacking [RF + SVM + XGB]. . . . . . . . . . . 58

Table 5.27 Binary Relevance: Stacking [RF + NB + SVM + XGB]. . . . . . . 58

Table 5.28 Ensemble of Classifier Chain: Naive Bayes. . . . . . . . . . . . . 59

Table 5.29 Ensemble of Classifier Chain: Logistic Regression. . . . . . . . . 59

Table 5.30 Ensemble of Classifier Chain: Support Vector Machine. . . . . . 59

Table 5.31 Ensemble of Classifier Chain: Random Forest. . . . . . . . . . . 59

Table 5.32 Ensemble of Classifier Chain: XGBoost. . . . . . . . . . . . . . . 60

Table 5.33 ECC vs BR comparison: Naive Bayes. . . . . . . . . . . . . . . . 60

Table 5.34 ECC vs BR comparison: Logistic Regression. . . . . . . . . . . . 61

Table 5.35 ECC vs BR comparison: Support Vector Machine. . . . . . . . . 61

Table 5.36 ECC vs BR comparison: XGBoost. . . . . . . . . . . . . . . . . . 61

Table 5.37 Stacking Aggregation: RF + SVM + LR. . . . . . . . . . . . . . . 62

Table 5.38 Stacking Aggregation: RF + SVM + XGB. . . . . . . . . . . . . . 63

Table 5.39 Stacking Aggregation: RF + NB + SVM + XGB. . . . . . . . . . . 63

vi



A B S T R A C T

The goal of this work is the study and design of a framework for the prediction of
multimedia contents metadata. Metadata are information which describe a product
specifying its distinctive properties: for example, the movie genre, the setting or the
story’s pace are all attributes which define the characteristics of a movie. The process
of compilation of that information is often performed manually by domain experts,
who rely exclusively on their experience in the field. With this thesis we aim to show
that, using movie plots, it is possible to develop a machine learning architecture able
to make complex predictions (multi-label) of the values of metadata like the mood (i.e.
the effect induced by a content in the viewer). This thesis starts with the study of the
state of the art, focusing on the multi-label classification of textual contents. We then
present the designed architecture, describing the mathematical modeling of input text,
the identified classification algorithms and the rebalancing methods used to harmonise
the distribution of target classes. Subsequently, we describe the experimental analysis
performed on the available data, discussing the results and highlighting strengths and
weaknesses of each approach. Finally, we present some possible future developments
of this work by proposing algorithmic and architectural improvements.
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S O M M A R I O

L’obiettivo di questo lavoro è lo studio e la progettazione di un framework per la
predizione dei metadati di contenuti multimediali. I metadati sono informazioni che
descrivono un prodotto specificandone le proprietà distintive: ad esempio, il genere
cinematografico, l’ambientazione o il ritmo del racconto sono tutti attributi che tratteg-
giano le caratteristiche di un film. Il processo di compilazione di queste informazioni
è spesso svolto in maniera manuale da un gruppo di esperti che si basano esclusiva-
mente sulla loro esperienza nel settore. Con questo lavoro di tesi si vuole mostrare che,
utilizzando la trama di un film, si riesce a sviluppare un efficiente sistema di machine
learning in grado di compiere predizioni complesse (multi-label) dei valori di metadati
come il mood (l’insieme degli effetti indotti dall’opera nello spettatore). L’elaborato di
tesi parte dallo studio dello stato dell’arte e in particolare della classificazione multi-
label di contenuti testuali. Si presenta, in seguito, l’architettura ideata, descrivendo
le tecniche di modellizzazione matematica dei testi, gli algoritmi di classificazione
identificati e i metodi di ribilanciamento della distribuzione delle classi da predire.
Successivamente vengono mostrati gli esperimenti sui dati a disposizione discutendo
i risultati ed evidenziando i punti di forza e di miglioramento di ciascun approccio.
Infine vengono esposti i possibili sviluppi futuri proponendo innovazioni algoritmiche
e architetturali al lavoro presente.
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1
I N T R O D U C T I O N

The fiercely competitive world of the industry of media service providers is leading the
major players of the field to invest more and more in the development of recommenda-
tion systems to target the final user of their on-demand platforms. Recommendation
systems can rely on information which describes the content to make suggestions to
users and thus the quality of such information plays a major role in the effectiveness of
recommendations. The data which provides such information is called metadata.
One of the major Italian players in the field of communication and multimedia distribu-
tion is the Mediaset Group. Multimedia production and distribution play a significant
role inside the company, and the interests of the company are both on traditional
mediums (e. g. television, radio) and on the front of online multimedia streaming. In
Mediaset Group, in particular within the Strategic Marketing, the role of metadata
has relevance in different areas in addition to recommendation systems. Metadata is
used as support for the editorial sector of the company, providing strategic insights
to the production of multimedia contents, and is applied to the marketing sector,
allowing for more precise advertising. Given the importance of metadata, Mediaset
Strategic Marketing has designed a complex structure for the description of multimedia
contents. The retrieval of metadata relies on human experts which manually fill a form
following some guidelines, in a process called tagging. The submitted forms are then
revisioned by supervisors who approve or debate possible adjustments. We worked
within the Mediaset DataLab with the purpose of speeding up the tagging process,
designing a machine learning architecture with the purpose of providing suggestion to
domain experts in the correct filling of the metadata collection form. We were asked to
study this possibility focusing on the prediction of the mood, one of the wide range of
metadata defined by Mediaset Strategic Marketing, which describes the underlying
state of mind arising by watching a content. This metadata constituted an interesting
case of study since the number of moods associated with each multimedia content can
vary from one to two and so, was this task was interesting in order to study simpler
problems in the future.

1.1 movie classification from text

The mood metadata is used in different categories of multimedia contents, we were
asked to concentrate our work on those of the movie category. Despite the fact that,
typically, movie classification tasks are based on audio and video features, a minority
has shown how text data can be used to provide meaningful results. Text sources used
for the text-based classification of movie genres are usually a dialogues transcript,
obtained directly from the video source or extracted using OCR and speech recognition
software. The text transcripts obtained were not suited to capture the situation of a
scene since they are composed by dialogues. We overviewed those methods and tried
to overcome the limitations of the input selected for text classification of movies. To

1



2 introduction

perform mood prediction of movies using multi-label text classification, we started
from a dataset where having a movie plot and a set of prediction targets coming
from a predefined set of twenty possibilities. We analyzed the dataset starting from its
structure. We detected the presence of some imbalancement for the mood distribution
in the dataset, and we highlighted the correlation between moods. Finally, we selected
the information that could constitute a domain-specific feature to improve the text
classification.

1.2 mood prediction of movies using multi-label text classification

To overcome the limitation of movie textual transcripts, we chose movie summaries
as the main source of input for the mood prediction of movies using multi-label
text classification. In the dataset, we were already provided with the plot, which we
considered inadequate to describe sufficiently a movie. For that reason, we scraped the
web for summaries using the links to Wikipedia1 and IMDb2 movie pages in the dataset.
We applied various techniques to build features vectors from the gathered summaries,
after a preprocessing phase, using the Bag-of-Words, TF-IDF, Doc2Vec, a vectorization
based on LDA Topic Modelling, named Topic2Vec, and a custom vectorization we called
Tf-Idf-Weighted Word2Vec, based on Tf-Idf scores and the pre-trained Google Word2Vec
model. We then formulated a feature vector representation of the cast of a movie,
namely Cast2Vec, with the purpose of improving the quality of text-based classification
using a domain-specific feature. For the purpose of multi-label classification, we used
problem transformation techniques which allowed us to trace back binary classification
problems for each mood, to a multi-label setting. The binary classifier methods we
used were Multinomial Naive Bayes [23], Support Vector Machines [12], Logistic Regression
[17], Random Forest [5] and XGBoost [11]. The first technique we adopted was Binary
Relelevance [60], which we used as a benchmark to discard some of the poor performing
vectorization techniques. We then applied rebalancing algorithms, namely Random
Undersampling [19], Random Oversampling, Edited Nearest Neighbours [55] and Synthetic
Minority Oversampling Technique [10] to Binary Relevance and assessed the value those
methods brought to the classification performance. To verify the importance of moods
correlation we highlighted in our dataset, we then moved toward a model able to exploit
such information: Classifier Chains [39]. Using the same base classification methods
as for Binary Relevance and the input vectorization which resulted being the most
effective, we built an Ensemble of Classifier Chains for each classification method and
assessed the utility of exploiting correlation information. Finaly we used the Stacking
[56] ensemble technique to combine the classifiers using a meta-learner. We then used
the Stacking Aggregation [14] technique to exploit the label correlation, comparing
the prediction performance to the classical Stacking with and without the use of the
rebalancing techniques which resulted successfully.

1 Wikipedia: https://en.wikipedia.org/
2 IMDb: https://www.imdb.com/

https://en.wikipedia.org/
https://www.imdb.com/


1.3 results 3

1.3 results

Our work laid the foundations for metadata automatic classification, showing how
movie summaries can be useful to the prediction of the mood of movies. Using Binary
Relevance approach as a benchmark, we highlighted the superiority of Doc2Vec,
Topic2Vec and TF-IDF-Weighted-Word2Vec over classical TF-IDF and Bag-of-Words
in our classification task. Similarly we tested the selected balancing techniques which
proved to be unsuccessful with the exception of ENN. Combining different vectorization
we also underlined how domain specific features like Cast2Vec could improve the
quality of predictions based on text vectorizations. Testing approaches which were able
to capture label correlation, like ECC and Stacking Aggregation, we showed how those
methods generally improve with respect to their Binary Relevance counterparts. In
particular the most effective classification method was the ECC with XGBoost as base
classifier.

1.4 structure

The thesis is structured as follows:
In chapter 2 we overview the analysis of the literature, with a focus on the problem of
multi-label classification and some of the approaches used to solve it.
In chapter 3 we discuss our scenario, our task and its difference with respect to previ-
ous problems, and the analysis of the dataset.
In chapter 4 we present our classification architecture, showing the steps and ap-
proaches we adopted.
In chapter 5 we show the results of the different approaches and techniques and their
comparison.
In chapter 6 we discuss the results of the work and lay down some possibilities for
future developments.





2
S TAT E O F T H E A RT

In this chapter, we introduce text classification reviewing all the major methods used to
achieve good classification performances. We define the concept of classification, focus-
ing on the multi-label case. Then, we describe the two main steps of text classification:
the first one is text vectorization, needed to have an input representation valid for the
classification task, while the second one is classification. We present the classification
methods employed for text classification in general, putting particular emphasis on
those related with multi-label data, also by showing common evaluation metrics used
by them. Finally, we describe some strategies used when inputs are not well-balanced,
that is a frequent problem when working with multi-labeled data.

2.1 classification

Machine learning is a field of artificial intelligence that uses statistical techniques to
give computer systems the ability to "learn" (i. e. progressively improve performance
on a specific task) from data, without being explicitly programmed. Classification is a
particular kind of machine learning task, named as Supervised Learning, in which an
algorithm is presented with example inputs and their desired outputs, and the goal is
to learn a general rule that maps inputs to outputs.
Given a training dataset D of the form (xi, yi), where xi ∈ Rn is the i-th example and
yi ∈ L = {1, ..., K} is the i-th class label, classification aim at finding a learning model
H such that H(xi) = yi + ε, where ε is a general catch-all error for what is missed with
the identified model [18]. Two types of classification exist: single-label classification
and multi-label classification.
Single-label classification concerns with learning from a set of examples that are
associated with a single-label from a set of disjoint labels L, with |L| > 1. If |L| = 2,
then the learning problem is called a binary classification problem, while if |L| > 2,
then it is called a multiclass classification problem [52].
Multi-label classification, on the other hand, concerns with learning from a set of
examples that are not associated with a single-label, but with a set of labels Y ⊆ L.
Nowadays, multi-label methods are increasingly required by modern applications:
text classification [22] is one of the main challenges related with multi-labeled data,
but many other fields appear as strictly related with these methods, such as music
classification [27] and protein function classification [9].

2.2 text classification

Text classification is the activity of labeling natural language texts with relevant classes
from a predefined set. This is typically a multi-label task, since text documents usually
belong to more than one conceptual class. As formally stated in [48], given a description
d ∈ X of a document, where X is the document space, and given a fixed set of classes

5



6 state of the art

C = {c1, c2, ..., cn}, goal of text classification is to learn a classification function H that
maps documents to classes:

H : X→ P(C)

where P represents the powerset operator.
The first step of every text classification task is text vectorization: each document is
converted from a textual representation to a numerical one. The main idea behind
this step is to obtain numeric vectors able to express differences in the semantic of
documents, or at least to highlight the most important document keywords. The second
step performed in text classification is the classification itself, which can be divided
into two sub-steps: the training phase, in which each vectorized document belonging
to the training dataset, together with its labels, is given to a classification algorithm
(named as classifier), which tries to approximate a classification function able to map
every vector to its labels, typically by minimizing a cost function, i. e. a function that
measures how wrong the model is in terms of its ability to estimate the relationship
between documents and labels; the prediction phase, in which new unseen documents,
after being vectorized, are classified using the previously trained classifier, i. e. are
associated to a predicted set of labels.

2.3 text vectorization

In the field of text classification, one of the first steps needed in order to make the
classification possible is the so-called text vectorization, i. e. the transformation of a
text, seen as a collection of words, into a numeric vector. In this way we obtain a
representation of documents compatible with all the main classifiers used to perform
the classification task.
Prior to vectorization, a data preprocessing phase is needed in order to obtain artifacts
which are improved in quality and thus much more useful for performing the classifi-
cation task.
In the following we present an overview of data preprocessing techniques for text
classification, followed by a presentation of the most known models for performing
text vectorization.

2.3.1 Data Preprocessing

Every textual document is basically composed of words and special characters, such
as numbers and punctuation characters. Among all the words and characters in a
text, some are unuseful for the purpose of classification and can be viewed as noise,
since they do not bring added value in terms of helping the discrimination process
with new information. Thus, a data preprocessing step is usually performed before
the vectorization of any document, in order to obtain noise-free artifacts which have a
higher discriminative power. Moreover, the majority of text vectorization techniques
need the documents represented as a list of tokens, i. e. a list in which every element is
a single word or a single special character: other preprocessing steps are thus needed.
Here is a list of the main data preprocessing steps performed in text classification [54]:
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tokenization The step which splits longer strings of text into smaller pieces, or
tokens. Larger chunks of text can be tokenized into sentences, sentences can be
tokenized into words, etc. It should be clear that tokenization is not a trivial
process, since it requires to make decisions like, for example, which token bound-
aries to consider (e. g. “full stop”, “comma”, “dash”, etc.) and what to do when
those boundaries are reached (e. g. “sugar-free” can be tokenized as “sugarfree”,
but also as two different tokens: “sugar” and “free”).
Further processing is generally performed after a piece of text has been appropri-
ately tokenized.

stemming The process of eliminating affixes (suffixed, prefixes, infixes, circumfixes)
from a word in order to obtain a word stem. For example, using stemming, the
words “fishing”, “fished”, and “fisher” are reduced to the stem “fish”. The stem
need not be a word, however: in the Porter algorithm [35], for example, “argue”,
“argued”, “argues”, “arguing”, and “argus” reduce to the stem “argu”.

lemmatization The process of grouping together the inflected forms of a word
so they can be analyzed as a single item, identified by the word’s lemma. In
particular, in computational linguistics, lemmatization is the algorithmic process
of determining the lemma of a word based on its intended meaning. For example,
the words “good”, “better” and “best” are lemmatized to “good” since all the
words have a similar meaning.

punctuation removal The step in which all the punctuation characters are re-
moved, since they do not bring any useful information. This step is usually
performed during tokenization.

number substitution or removal The step in which all the numbers are con-
verted to their textual representation or removed (when they do not bring any
useful information to the discrimination task).

stop words removal The step in which are removed all the stop words, i. e. the
words that contribute little to overall meaning, given that they are generally the
most common words in a language (e. g. “the”, “and”, “a”, etc.).

2.3.2 Bag Of Words

The simplest model used to vectorize texts is Bag of Words (BoW). This model analyses
all the documents in a collection, finds all the words in it and builds a vocabulary V of
unique words. Then it represent each document of the collection through an integer
vector which dimension is equal to |V|, where each element xi of the vector is equal to
the frequency in the document of the i-th word of V [46].

2.3.3 Term Frequency - Inverse Document Frequency

One of the main limitations of Bag of Words model is that the resulting vectors are
highly pronunced in the direction of the words that are very frequent in a document but
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not useful in the discrimination process (e. g. ‘the’, ‘and’, ‘that’, ...). In order to overcome
this limitation, an extension of the BoW model can be used: the Term Frequency - Inverse
Document Frequency (TF-IDF) model. With TF-IDF, every element xi of the BoW vector
is multiplied by a normalizing factor, that depends on the number of documents in
which the word associated with xi appears. In particular, this normalizing factor, in its
classical form is equal to log(Ndi

), where N is the cardinality of the documents collection,
while di is the number of documents in which the i-th word of V appears. Thanks
to this normalizing factor, terms like “stop words” are highly penalized, while very
discriminative terms, i. e. terms that appears frequently only in few documents, are
highly favoured [46].

2.3.4 Word2Vec

Both TF-IDF and BoW models see documents as an unordered collection of words,
losing information on the documents’ semantic. More specifically, it can happen that
two documents composed of very different words, i. e. having a very different vector
representation, are actually semantically similar. Moreover, both TF-IDF and BoW
models generate high-dimensional and sparse vectors: this can sometimes affect the
performance of a classifier.
A step forward towards a vectorization able to take into account documents’ semantic
is given by the Word2Vec model, presented in [31]. Using an architecture based on
neural networks, this model allows to obtain a dense vector representation of words,
so that semantically similar words have similar vectorizations. The intuition on which
the architecture lays down is that similar words typically appears in similar contexts.
Such intuition can be implemented through two different neural network architectures:
the first one, called Continuous Bag of Words (CBoW), uses as input a specific number
of terms (extracted from each document and named as context) before and after a word
wi, and tries to predict wi; on the contrary the second architecture, called Skip-Gram,
starts from a word wi and tries to predict its context. Of course in both cases, what
we’re interested in are not the predictions of the network but the weights learned by it,
that represents the vectorization of each word.
An improved version of Word2Vec model, both in terms of efficiency and quality, can
be found in [30].

2.3.5 Doc2Vec

The nature of Word2Vec model doesn’t allow to obtain documents vectorization directly,
since it is used basically as a word vectorizer; thus, some strategies are needed in order
to obtain a document vectorization starting from word vectorizations, such as averaging
or concatenating all the vectorized words belonging to the same document.
A model that takes inspiration from Word2Vec architecture and allows to directly obtain
a vector representation of documents is the so-called Doc2Vec model, presented in [25].
Similarly to Word2Vec, Doc2Vec can be implemented through two different neural
network architectures too: the first one, called Paragraph Vectors - Distributed Memory
(PV-DM), uses as input a context of words plus a token representing the document
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from which the context is taken, and tries to predict the next word after the context;
on the other hand the second architecture, called Paragraph Vectors - Distributed Bag
of Words (PV-DBoW), uses as input just the document token, with the objective of
predicting random words belonging to the document itself. As in the case of Word2Vec
architectures, even with Doc2Vec what we’re interested in are the weights learned by
the network, that represents the vectorization of each document.

2.3.6 Topic2Vec

A completely different approach to text vectorization can be derived starting from
the so-called Latent Dirichlet Allocation (LDA) model, presented in [3]. Through this
generative statistical model, sets of observations can be explained by unobserved
groups that explain why some parts of the data are similar. In the case of texts, where
the observations are words collected into documents, this model posits that each
document is a mixture of a small number of topics and that each word’s presence
is attributable to one of the document’s topics. In this way, each document can be
transformed in a vector, whose size is equal to the number of topics, representing its
probability distribution over the topics.

2.4 classification methods

After texts have been preprocessed and vectorized, they become ready to be given to
a classifier that learns from them trying to reduce the misprediction error. The term
“classifier” may refer to a single learning algorithm, as well as to multiple learning
algorithms combined in some smart way.
In the following we present a taxonomy of the main algorithms, trained in a supervised
manner, involved in text classification.

2.4.1 Linear Classifiers

The goal of classification is to use an object’s characteristics to identify which class it
belongs to. An object’s characteristics are also known as feature values and are typically
presented to the machine learning algorithm in a vector called a feature vector. A linear
classifier achieves its goals by making a classification decision based on the value of a
linear combination of the feature values. In particular, if the input feature vector to the
classifier is a numeric vector x, then the output score is:

y = f(w · x) = f

∑
j

wj xj

 (2.1)

where w is a real vector of weights and f is a function that converts the dot product
of the two vectors into the desired output. The weight vector w is learned from a set
of labeled training samples. Often f is a simple function that maps all values above
a certain threshold to a specific class and all other values to another class. A more
complex f might give the probability that an item belongs to a certain class. A linear
classifier is often used in situations where the speed of classification is an issue, since it
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is often the fastest classifier, especially when x is sparse.
In the field of text classification, linear classifiers such as Logistic Regression [17],
Multinomial Naive Bayes [23] and Support Vector Machines [12] are really used, since they
work very well when inputs have a large number of dimensions, which is a typical
characteristic of vectorized documents.

2.4.2 Decision Trees

Another way of performing classification is the usage of a decision tree classifier, also
called classification tree. With this classifier, a predictive model is built through a tree
structure, in which leaves represent class labels and branches represent conjunctions of
features that lead to those class labels. More specifically, each interior node corresponds
to one of the input variables; there are edges to children for each of the possible values
(or intervals) of that input variable. Each leaf represents a class label or class label
distribution given the values of the input variables represented by the path from the
root to the leaf.
In order to build a good performance classification tree, at each node one input variable
is chosen to split training examples into distinct classes as much as possible. The
selection of the best input variable upon which splitting, is performed through a purity
measure such as the one used in ID3 [37], called information gain, which increases
with the average purity of the subsets that a split produces.
Beyond ID3, other algorithms are commonly used to generate decision trees: see C4.5
[36] and CART [6].

2.4.3 Ensemble Methods

Supervised learning algorithms are most commonly described as performing the task
of searching through a hypothesis space to find a suitable hypothesis that will make
good predictions with a particular problem. Even if the hypothesis space contains
hypotheses that are very well-suited for a particular problem, it may be very difficult to
find a good one. Ensemble methods combine multiple hypotheses to form a (hopefully)
better hypothesis, i. e. use multiple learning algorithms to obtain better predictive
performance than could be obtained from any of the constituent learning algorithms
alone.
In the following we present some of the most effective ensemble methods: Bagging,
Boosting, Stacking.

Bagging

Bootstrap aggregating, also called Bagging [4], is an ensemble method designed to
improve the stability and accuracy of machine learning algorithms. Given a training
set D of size n, bagging generates m new training sets of size n ′ (not necessarily equal
to n) by sampling from D with replacement, i. e. reinserting every instance in D after
having been sampled. Then m identical models are trained using the previously created
m datasets and finally combined through a majority voting based on their outputs (for
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classification). Beyond improving the accuracy, using bagging usually reduces variance
and helps avoid overfitting.
An extension of the bagging method can be found looking at one of the most famous
ensemble learning methods: the so-called Random Forests [5], widely used in many
learning tasks. Basically, in the case of classification, this method operates by construct-
ing a multitude of decision trees at training time and outputting the class that is the
mode of the classes (for classification) of the individual trees. Each individual tree is
built using a random subset of the available features when splitting a node; then it is
trained on a random subset of the original training set and finally combined with other
trees, in the prediction phase, through a majority voting mechanism.

Boosting

Boosting [47] incrementally builds an ensemble of models by training each model with a
dataset where the weights of instances are adjusted according to the errors of previous
predictions. The main idea is forcing the models to focus on the instances which are
hard. Finally, the models are combined through a majority voting mechanism (for
classification), which assigns more importance to those learners whose performance
was better. A very famous boosting algorithm is XGBoost, which has recently been
dominating applied machine learning competitions, pushing the limits of computing
power for boosted trees algorithms [11].

Stacking

Stacked Generalization (also called Stacking) [56] combines multiple predictive models
to generate a new model. While Bagging and Boosting are used to combine models
of the same type, Stacking typically combines models of different types. In particular,
as shown in Figure 2.11, each of the models (named as base models) is trained on a
complete training set, then a stacked model (named also as meta-learner) is trained
on the outputs of the base models as features. Most of the time the stacked model
outperforms each of the individual models due to its smoothing nature and ability
to highlight each base model that performs best and discredit each base model that
performs poorly. For this reason, Stacking is most effective when the base models are
significantly different. As regards the choice of a meta-learner, an arbitrary model can
be theoretically used, although, in practice, a Logistic Regression model is often used
as the combiner [51].

2.5 multi-label methods

All the existing methods for multi-label classification can be grouped into two main cat-
egories: Problem Transformation Methods and Algorithm Adaptation Methods [52]. Problem
transformation methods are those methods that transform the multi-label classification
problem either into one or more single-label classification or regression problems (i. e.
adapt your data to the algorithm): known examples, not presented in this work, are

1 Image taken from http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/

http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/
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Figure 2.1: How stacking works. Every classification model is trained on the complete training
set. Its predictions are used as input feature for a meta-classifier, along with the
predictions of other classification models, in order to output a final prediction
based on the “advices” given by the base classifiers.

the Label Powerset method, where each different combination of labels becomes a new
single-class label in a multi-class problem; the Calibrated Label Ranking method [13],
that uses binary classifiers to discriminate between any possible label pair; the RAkEL
method [53], which tries to overcome the main drawbacks of Label Powerset.
Algorithm adaptation methods, on the other hand, are those methods that extend
specific learning algorithms in order to handle multi-label data directly (i. e. adapt your
algorithm to the data): known examples, not presented in this work, are MLKNN [58]
and BPMLL [59], which are multi-label extension respectively of K-Nearest Neighbours
and Neural Networks methods.
In the following we present two of the most known transformation methods for
multi-label classification, named as Binary Relevance and Classifier Chains.

2.5.1 Binary Relevance

The most famous approach used to perform multi-label classification and belonging to
the category of problem transformation methods is by far the Binary Relevance (BR)
method [60]. Given a number of labels k, this techniques consists in training k classifier,
each for one label, taking the training instances in which the labels appear as positive
and all the others as negative. Therefore this method ends with k binary models, each
of which is able to say if a given instance has a specific label or not. So, given an unseen
sample, the combined model predicts all the labels for which the respective classifiers
predict a positive result.
The Binary Relevance method present two main drawbacks: it does not consider label
correlation information and it increases the imbalance between labels. As regards label
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Figure 2.2: How classifier chains works. A first classifier is trained just on the input data and
then each next classifier is trained on the input data plus all the previous classifiers’
predictions in the chain.

correlation information, the Binary Relevance method builds a set of classifiers (one
for each label) which are completely independent, so the prediction made by one of
them does not influence how the others make their work. This means that labels are
assumed to be fully independent, which might not be the case: indeed, there are use
cases where the presence of a certain label could determine whether another one is
also more likely to be present or not. Regarding the increasing of imbalance between
labels, the problem is that Binary Relevance takes as positive only the instances in
which a certain label appears and as negative all other samples, changing the original
label distribution and therefore affecting the representation of the considered label (of
course, the situation is even worse if the label is already a minority label).

2.5.2 Classifier Chains

In order to overcome the main drawbacks related with the Binary Relevance method
(see section 2.5.1), a problem transformation method called Classifier Chains (CC)
has been proposed in [39]. Through this algorithm, it is possible to combine the
computational efficiency of the Binary Relevance method while still being able to take
the label dependencies into account for classification. What this model does, is to learn
k classifiers (where k is the number of labels of the problem) as in Binary Relevance
method, with the difference that all the classifiers are arranged in a chain. In particular,
as shown in Figure 2.2 [42], each binary classifier is trained using as input features
the whole training set and all the predictions of those classifiers that were before it
in the chain. Hence, the inter-label dependency is preserved but the result can vary
for a different order of chains. This is due to the fact that each classifier receives only
the predictions from previous classifiers in the chain: therefore, it can exploit label
correlation only for those labels whose binary classifier is in a previous position in
the chain. In order to solve this problem and increase accuracy, it is possible to use an
ensemble of classifier chains (ECC), in which several CC classifiers are trained with
random order of chains (i. e. . random order of labels) on a random subset of data set.
Labels of a new instance are predicted by each classifier separately. After that, the total
number of predictions or “votes” is counted for each label: the label is accepted if it
was predicted by a percentage of classifiers that is bigger than some threshold value.



14 state of the art

2.6 multi-label metrics

In order to measure the classification performances of a trained classifier, is typically
necessary to feed it with an evaluation data set, composed of new unseen instances,
and extract some performance metrics based on the goodness of its predictions.
Multi-label classification requires different metrics than those used in traditional
single-label classification. Let D be a multi-label evaluation data set, consisting of
|D| multi-label examples (xi, Yi), i = 1, ..., |D|. Let H be a multi-label classifier and
Zi = H(xi) be the set of labels predicted by H for example xi. We define Exact Match
Accuracy (EMA) the metric given by:

EMA =
1

|D|

|D|∑
i=1

JZi = YiK

where J·K function is equal to 1 if its argument is true, 0 otherwise. Intuitively, EMA
can be regarded as a multi-label counterpart of the traditional accuracy metric, since
it evaluates the fraction of correctly classified examples, and tends to be overly strict
especially when the size of label space is large. While EMA works by evaluating the
learning system’s performance on each test example separately, returning the mean
value across the test set, other evaluation metrics work by evaluating the learning
system’s performance on each class label separately, and then returning the averaged
value across all class labels. In particular, given the j-th class label yj, four basic
quantities characterizing the binary classification performance on this label can be
defined based on H(·):

TPj = |{xi | yj ∈ Yi ∧ yj ∈ H(xi), 1 6 i 6 |D|}|

FPj = |{xi | yj /∈ Yi ∧ yj ∈ H(xi), 1 6 i 6 |D|}|

TNj = |{xi | yj /∈ Yi ∧ yj /∈ H(xi), 1 6 i 6 |D|}|

FNj = |{xi | yj ∈ Yi ∧ yj /∈ H(xi), 1 6 i 6 |D|}|

In other words, TPj, FPj, TNj and FNj represent the number of true positive, false
positive, true negative, and false negative test examples with respect to yj. Based on
the above four quantities, most of the conventional multi-label metrics can be derived
accordingly:

PRECISIONmicro =

|L|∑
j=1

TPj

|L|∑
j=1

TPj + FPj

PRECISIONmacro =
1

|L|

|L|∑
j=1

TPj

TPj + FPj

RECALLmicro =

|L|∑
j=1

TPj

|L|∑
j=1

TPj + FNj

RECALLmacro =
1

|L|

|L|∑
j=1

TPj

TPj + FNj
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F1micro =

|L|∑
j=1

2TPj

|L|∑
j=1

2TPj + FPj + FNj

F1macro =
1

|L|

|L|∑
j=1

2TPj

2TPj + FPj + FNj

In these metrics, micro stands for micro-averaged and macro for macro-average: con-
ceptually speaking, micro-averaging assumes “equal weights” for example while
macro-averaging assumes “equal weights” for labels.

2.7 imbalanced inputs

A problem that can arise in various classification tasks is the so-called imbalanced class
distribution problem. This is a scenario where the number of observations belonging to
one class is significantly lower than those belonging to the other classes. In this situation,
the predictive model developed using conventional machine learning algorithms could
be biased and inaccurate. This happens because machine learning algorithms are
usually designed to improve accuracy by reducing the error. Thus, they do not usually
take into account the class distribution or balance of classes.
The two most common techniques used to deal with class imbalance are:

under-sampling Strategy that tries to rebalance data by removing samples from
the majority class. Besides the obvious strategy of removing samples at random
(Random Under-Sampling), different undersampling techniques have been pro-
posed [19], typically using advanced methods to choose which samples remove,
as in the case of Edited Nearest Neighbour [55], which removes samples whose class
label differs from the label of at least half of its k nearest neighbors.

over-sampling Strategy that tries to rebalance data by generating new samples in
the classes which are under-represented. Generated samples can be just random
duplicates from the minority class (Random Over-Sampling), or new synthetic
instances as is the case using SMOTE [10], which creates entries that are interpo-
lations of the minority class.





3
T H E S C E N A R I O

In this chapter we illustrate the scenario of our work, presenting the task we were
assigned. We then overview previous studies in solving similar problems and describe
our approach and how it differs from those. Finally, we present the structure of the
data and the process of its analysis.

3.1 mediaset metadata

The Mediaset Group1 is one of the major Italian players in the field of communication
and multimedia distribution. Multimedia production and distribution play a significant
role inside the company, and the interests of the company are both on traditional
mediums (e. g. television, radio) and on the front of online multimedia streaming. The
field of online multimedia streaming is highly competitive and, to improve the quality
of their service, Mediaset uses recommender systems that rely on metadata to provide
relevant recommendations to the user. Within the company, the role of metadata has
relevance in different sectors in addition to recommendation systems. Metadata is used
as support for the editorial sector of the company, providing strategic insights to the
production of multimedia contents, and to the marketing division, allowing for more
effective advertising. Given the importance of metadata, Mediaset Strategic Marketing
has designed an articulate structure for the description of multimedia contents. The
metadata range is quite large and covers information like the pathemic genre, the
city or area in which the multimedia content takes place, or descriptions designed to
support the marketing division.

3.2 the scenario

In our scenario, the current process of assigning some of the metadata to multimedia
contents is performed by human experts who watch the entire content and compile a
form designed for the retrieval of metadata information. This process slows down the
process of extraction of metadata for new contents. Our task was to verify whether it
was possible to speed up the process of tagging by providing automatic suggestions
during the process of tagging of metadata for movies. We were asked to focus our
attention on a metadata called mood which is an information that describes the un-
derlying state of mind which arises from watching a content, chosen between twenty
possible values (see appendix A).

1 Company’s website: https://www.mediaset.it/
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3.3 previous studies

The problem of automatic classification of multimedia contents is popular in the
machine learning field. Among the studies which covered this topic, various were
interested in movies. A typical objective for movies was their classification into classical
movie genres. Genre and mood present some correlation since movies belonging to
the same genre may be linked to some specifics sensation in the viewer which can be
traced to one or more mood. For this reason, we overviewed previous works in these
research segments. The task of multimedia classification can be divided, depending
on the nature of the features extracted for the content, into visual-based, audio-based
or text-based approaches [7]. The most used approach is the video-based due to
the fact that human receive much of their information of the world through vision.
Video features are typically formed by a frame or a collection of frames. Features can
be extracted from videos with different techniques like color and motion analysis,
techniques for detecting shots (i. e. scenes which can be segmented to represent an
action that is going on in the video like “two people talking”) and object detection
inside a video. Audio-based approaches use audio features to approximate the human
perception of sound. Audio features can lead to three layers of audio understanding:
low-level acoustics, such as the average frequency for a frame, mid-level sound objects,
such as the audio signature of the sound a ball makes while bouncing, and high-level
scene classes, such as background music playing in certain types of video scenes. That
information in a movie can provide an understanding of a scene: for example, a specific
kind of background music may play during an action scene, and a different kind, in a
romantic setting. Audio features can also come from speech sequences obtained from
automatic speech recognition algorithms [43]. In the paper Movie Genre Classification
By Exploiting Audio-visual Features Of Previews [38], audio and video features extracted
from movie previews were combined to classify movies into a small set of genres,
initially discriminating between action and non-action movies by estimating the visual
disturbance and average shot length, and using audio and color information to further
classify movies. Finally in the text-based approach, the least popular approach, text
features are extracted from the movie in the form of subtitles [8] or OCR software [16]
which retrieve text directly from the video source. The text is then transformed in a
feature vector using various vectorization techniques like the Bag-of-Words model, on
top of which a classification architecture is built.

3.4 our approach

For our task, following the requirements of our stakeholder, we used the text-based
approach and thus we fall in the last category of section 3.3. The described studies
which relied on text-based features presented some issues. In fact the use of OCR are
prone to error in the text extraction and, moreover, the text features of subtitles are in
the end only composed by dialogues, which are not suited to capture much of what is
happening in a scene and so, in the entire movie. For this reasons we differentiate in
the selection of text inputs, by using movie summaries, which are more appropriate to
describe the sequence of events throughout the whole movie, which is a requirement
for capturing the essence of the mood metadata. Some of the possible moods are in fact



3.5 data exploration 19

relative to situations which may happen in various instants of the movie (e. g. the mood
“Surprising” is associated to the presence of a shocking event which typically happens
in the last bits of a movie). Since in each movie, more than one mood may emerge, our
task belongs to the family of multi-label classification.

3.5 data exploration

To investigate the possibility of implementing an automatic mood classification system,
we were provided with a dataset. The dataset contains 6480 entries, each of which
provides the following information regarding a specific multimedia content:

. ID→ Unique identifier of the content.

. TITLE→ Content title in the italian language.

. CONTENT_TYPE→ Category of the content. Can assume three different cate-
gorical values: “Movie”, “TV Series” and “TV Show”.

. PLOT → Short description of the content, written in the italian language. For
movies and TV series it coincides with content plot, while for TV shows it just
coincides with show description.

. PRODUCTION_YEAR→ Year in which the content has been produced.

. WIKI_LINK→ URL to the italian Wikipedia page of the content.

. IMDB_LINK→ URL to the IMDb page of the content.

. MOOD → Set of moods characterizing the content. Coincides with one or two
categorical values belonging to a superset of 20 moods. Examples of moods are
Evasive, Disturbing, Poignant (see appendix A for a complete description of moods).

. CASTING→ Information about the cast partecipating in the movie, TV serie or
TV show, expressed in a XML representation.

3.5.1 Moods Distribution

Our goal was to predict was the mood using the other inputs. We were also asked
to face the problem only for movie instances, i. e. those entries for which the field
CONTENT_TYPE is equal to “Movie”. The number of useful entries was therefore
reduced to 3940.
We analyzed the moods distribution among all the examples and noticed a considerable
imbalance in moods occurrences. As can be seen in Figure 3.1, an high discrepancy is
present between the most frequent moods (e. g. “Breathtaking”, appearing 855 times)
and the less frequent ones (e. g. “Comfortable”, appearing only 62 times). The mood
named “Angry” is not present at all, since it appears only in entries whose field
CONTENT_TYPE is equal to “TV Show”.
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Figure 3.1: Moods occurrence distribution

To further analyze the moods and to try to have a better insight into the imbalance
problem, we computed for each mood the so called imbalance ratio, presented in
[57]. Given the number of positive and negative examples for a specific mood, i. e. the
number of examples for which the mood is or is not present, the imbalance ratio can be
computed as the ratio between the maximum and the minimum of such values. As can
be seen in Figure 3.2, for less frequent moods the imbalance ratio goes up to 65, while
for most frequent moods is below 5. The mean imbalance ratio has been computed too,
and it is approximately equal to 21.
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Figure 3.2: Moods imbalance ratio.

3.5.2 Moods Correlation

Given that most of the examples in the dataset are often associated with two moods,
we decided to analyze the co-occurrence of each pair of moods, in order to possibly
discover a correlation between some moods. As illustrated by Figures 3.3 and 3.4, we
discovered some mood pairs that are more frequent than others, and how some pairs
are instead totally absent.
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Figure 3.3: Chord diagram showing moods co-occurrences.

Figure 3.4: Chord diagram showing moods co-occurrences greater than 50.
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This correlation may be due to the inherent nature of moods which, albeit having dif-
ferent meanings, both describes the latent state of mind of a movie (e. g. “Breathtaking”
and “Rousing” for action movies), or may be due to the bias of human taggers, who
can interpret two different moods as moods with similar/overlapping meaning, therefore
selecting both of them as the correct ones (e. g. “Evasive” and “Feel-good”).
Based on this analysis, we decided to have a better insight into mood correlation by
computing the Pearson correlation coefficient for each pair of moods. Pearson correla-
tion measures the linear correlation between two random variables, that in our case
coincide with moods. Given a pair of random variables, the correlation coefficient can
be computed as the ratio between the covariance of the variables and the product of
their standard deviations. Such coefficient has a value between +1 and −1, where +1

means total positive linear correlation and −1 means total negative linear correlation (0
means no linear correlation).
As can be seen from Figure 3.5, the analysis highlights moderate correlation between
some moods. Most representative examples are probably: (i) “Terrifying” coupled with
“Disturbing”, which expresses a marked positive correlation; (ii) “Evasive” coupled
with “Inspiring”, which expresses a marked negative correlation.
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Figure 3.5: Pearson correlation for moods.
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3.5.3 Analysis of the others Features

We analyzed the feature PLOT related with movie plots. We discovered that all the
movie plots are very short, with an average of around 65 words, and thus very poor in
terms of discriminative power they can bring to the mood prediction task.
Analyzing the other features, we noticed that the only one really useful for the mood
prediction is CASTING. This finding is coherent to the study in [45], which shows
in fact how domain specific information, used in association with text, can help in
improving the performance of text classification methods in a multi-label setting, as is
the case with our problem. Therefore, we calculated the contribution that each actor
has given to each movie, i. e. the number of times each actor has played a role in
movies with a specific mood. At the end, we observed that some actors have a strong
characterization toward some specific moods. Figures 3.6, 3.7 and 3.8 highlight this
relation for three actors. Figure 3.6 refers to Jack Black (comedy actor), Figure 3.7 refers
to Al Pacino (action and drama actor) and Figure 3.8 refers to Hugh Grant (romantic
comedy actor), who show a strong contribution respectively toward moods “Feel-good”,
“Breathtaking” and “Romantic”.
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Figure 3.6: Characterization of comedy actor Jack Black.
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Figure 3.7: Characterization of action and drama actor Al Pacino.
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Figure 3.8: Characterization of romantic comedy actor Hugh Grant.
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O U R A R C H I T E C T U R E

In this chapter we describe the steps performed for the multi-label classification of
movies. We start by describing the data preprocessing step, characterized mainly by
the extension of textual information present in our dataset. We move on presenting
an overview of the tested input vectorization and classification methods, followed by
a description of the adopted resampling techniques. We then describe the selection
step, in which all the vectorized inputs and resampling techniques were subjected
to some statistical tests, in order to select only the relevant ones for subsequent
experiments. Finally, we describe the multi-label classification step, presenting all the
tested approaches, both those classical and those representing the state-of-the-art.

4.1 data preprocessing

The first step characterizing our architecture was the preprocessing of the information
present in the dataset. As described in section 3.5, we were interested only in classifying
moods for movies, disregarding TV series and TV shows: this allowed us to delete from
the dataset all the entries for which the feature CONTENT_TYPE was equal to “TV
Serie” or “TV show”. From the remaining entries, we decided to remove features ID,
TITLE and PRODUCTION_YEAR, since they didn’t provide any useful information
to the classification problem. Finally, we removed mood “Angry” from the set of possible
classification outcomes, since it never appeared in movie entries.

4.1.1 Summaries Gathering

As already stated in section 3.5.3, the movie plots present in the dataset, associated with
feature PLOT, were too short and information-poor for being useful to the classification
task. We therefore decided to retrieve more suitable and complete textual descriptions
for each movie, replacing plots with summaries. In particular, using the URLs relative to
feature IMDB_LINK and WIKI_LINK, we were able to scrape related sites looking for
summaries. Whereas most of the available tools used in text processing are optimized
for the english language, we decided to replace the already present (italian) plots with
english summaries. Using the IMDb source allowed us to directly access the english
page of the movie, while the Wikipedia source allowed us to only reach the italian page
of the movie. To cope with that, we looked for the relative link to the english version
of the page and, if not present, we resorted to the expedient of translating the italian
summary with Google Translate. Once we gathered the english summaries from both
resources, we were able to associate for each movie in the dataset the freshly obtained
summaries, keeping only the longest one when both sources supplied a summary. All
the entries in the dataset with no textual description related to feature PLOT were
fixed using the scraping strategies above-mentioned (see section 4.1.1). All the entries
for which no URL related to feature IMDB_LINK was available were fixed using the

27



28 our architecture

URL related to feature WIKI_LINK, and vice versa. Therefore, all the entries with no
available URL both for feature IMDB_LINK and WIKI_LINK were removed from the
dataset.

4.2 input vectorization

The input for our classification task was mainly coming from the summaries we
retrieved as explained in section 4.1.1. Those summaries were vectorized using all
the methods presented in section 2.3 and a custom vectorization method exploiting
Google’s pre-trained Word2Vec vectors. In addition to the input representation made
with summaries, we also exploited the information of the cast provided for each movie
to propose a different input representation called Cast2Vec.

4.2.1 Standard Vectorization Methods

In the following we give a quick overview of the standard vectorization methods we
used to convert summaries into numerical vectors.

bow Represents every text through an integer vector. Each element of the vector is
associated with a word belonging to a known vocabulary and indicates the num-
ber of occurrences of the associated word in a text. This vectorization generates
high-dimensional and sparse vectors, which tends to lose information on the text
semantic.

tf-idf Extension of the BoW model, in which every element of the resulting vector is
multiplied by a normalizing factor, that depends on the number of texts in which
the word associated with the element appears. This vectorization, as is the case
with BoW, generates high-dimensional and sparse vectors, which tends to lose
information on the text semantic.

doc2vec Represents every text through a dense vector of arbitrary dimension, built by
means of an architecture based on neural networks. This vectorization overcomes
the main limitations related to BoW and TF-IDF, generating vectors capable of
capturing information about the semantic of texts.

topic2vec Vectorizing model in which every text is transformed in a vector repre-
senting its probability distribution over the topics discovered by means of Latent
Dirichlet Allocation (LDA). Some of the topics discovered from our summaries by
LDA, together with the five words most characterizing each topic, are presented
in Table 4.1.
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Topic Characterizing words

CRIME Police Murder Case Druge Prison

WAR Fight Battle Soldier King Army

GAME Team Win Play Final Match

YOUTH School Girl Boy Student Year

SCI-FI Destroy Alien Machine World Space

Table 4.1: Some of the topics found by LDA.

4.2.2 Tf-Idf-Weighted Word2Vec

In addition to the standard text vectorization methods, we experimented a custom
vectorization method named as Tf-Idf-Weighted Word2Vec. This method combines the
pre-trained Word2Vec model of Google (see section 2.3.4) with the TF-IDF score of each
word in a text. In particular, it computes a weighted average of the Google’s pre-trained
Word2Vec related with each word in a text, using as weights the TF-IDF score of each
word.
The following equation shows how this vectorization method works for a single text:

Tf − Idf − W2Vdoc =

∑
word∈doc

W2Vword ∗ TFIDFword∑
word∈doc

TFIDFword

4.2.3 Cast2Vec

To exploit the information related with actors contained in the CAST field of our
dataset (see section 3.5.3), we designed a new custom input representation of movies,
different from those based on summaries, called Cast2Vec. Cast2Vec represents each
movie through a 19-dimensional vector (i. e. one dimension for each mood), that is
build taking into account the moods associated to all the known movies in which each
member of the cast appeared.
The following pseudo-code shows how this vectorization method works for a single
movie.
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Cast2Vec Algorithm: how Cast2Vec works

Data: ds := Dataset with moods and cast information

Data: movie

Result: Cast2Vec vector

contributes_list = [];

for actor in movie.cast do
actor_contrib = 0;

for other_movie in ds\movie do
if actor in other_movie.cast then

actor_contrib += other_movie.moods_vector;

end
contributes_list.append(actor_contrib);

end
end

return cast2vec = sum(contributes_list) / max(contributes_list);

4.2.4 Text Preprocessing

Just prior to input vectorization, we needed to apply some preprocessing operations
on summaries, in order to obtain noise-free artifacts with a better discriminative power.
All the preprocessing operations described in section 2.3.1 were applied. In addition to
them, we also performed the following steps:

high-frequency terms removal High-frequency terms were removed since they
could deviate the quality of those vectorization methods which give higher values
to terms appearing often in texts (e. g. BoW).

low-frequency terms removal Low-frequency terms were removed because of
the low discriminative power, which makes them similar to noise.

proper names removal Proper names were removed since they could deviate the
quality of those vectorization methods which give higher values to terms with
a relevant intra-document frequency and a low inter-document frequency (e. g.
TF-IDF).

4.3 single-label classifiers

Among all the existing methods for multi-label classification described in section 2.5,
we decided to use those falling under the category of problem transformation methods.
These methods work by transforming the multi-label classification problem into more
single-label classification problems: therefore, we selected six single-label classifiers to
be used in subsequent experiments, choosing among the most widely-used ones in text
classification problems (see section 2.4).
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4.3.1 Linear Classifiers

Among the chosen classifiers, three were linear models. In the following we provide a
description of each of them:

naive bayes Probabilistic classifier based on the application of the Bayes’ theorem.
It works making a strong independence assumption between the features (i. e.
between the elements of the input vector). In simple terms, a Naive Bayes classifier
assumes that the presence of a particular feature in a class is unrelated to the
presence of any other feature. Each feature contributes independently to the
membership probability of a sample to a class. Naive Bayes is still a popular
baseline classification methods for text classification.

support vector machine Non-probabilistic classifier presented for the first time
in [12]. The main principle of this model is to determine the hyperplane in the
feature space which can best separate the different classes. More precisely, as
shown in Figure 4.1, the best hyperplane is the separator plane which has the
maximum margin, i. e. the maximum distance between the plane and the nearest
data points which belong to different classes.
The SVM implementation we used was based on the Sequential Minimal Optimiza-
tion algorithm for training, presented in [34].

logistic regression Model-based classification method used for binary classifi-
cation. In this method, the log-odds of a given class is computed as a linear
combination of one or more independent variables (called predictors). The predic-
tors are used to compute the probability by means of a sigmoid function. Training
of the model consists in the optimization of the predictors’ coefficients.

Figure 4.1: The hyperplane A represent the plane with maximum
margin of separation, thus it’s the best separating hy-
perplane.
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4.3.2 Ensemble Classifiers

In addition to the 3 above-mentioned linear models, we decided to use also three
ensemble models. In the following we provide a description of each of them:

random forest Ensemble learning method for classification based on the con-
struction of decision trees (see section 2.4.2). Random Forest can be seen as an
improvement over trees bagging, which is simply an application of bootstrap
aggregation over decision trees models, in the sense that at each candidate split
in the training process, a different subset of features is selected.

extreme gradient boosting eXtreme Gradient Boosting (XGBoost) is a scalable
and accurate implementation of gradient boosting machines developed to push
the limits of computing power for boosted trees algorithm. Built with this purpose,
it is engineered to exploit every bit of memory and hardware resources for tree
boosting algorithms. Gradient boosting also comprises an ensemble method
that sequentially adds predictors and corrects previous models, but instead of
assigning different weights to the classifiers after every iteration, this method fits
the new model to new residuals of the previous prediction and then minimizes
the loss when adding the latest prediction.

stacking Ensemble learning method that allows to combine models of different
types, differently from Random Forest and XGBoost. In particular, it exploits a
two-level architecture: a first level made up of base learners (i. e. different kinds of
models) and a second level made up of a single meta-learner, whose objective is
to combine base learners’ predictions. Many implementation of Stacking exist,
slightly different from each other. The implementation we decided to use can be
summarised through the following steps:

Stacking Algorithm: how Stacking works

Data: train_set

Data: test_set

Data: base_classifiers

Data: meta_classifier

split train_set into ten disjoint folds;

for clf in base_classifiers do
for fld in folds do

train clf on train_set\fld;

test clf on fld;

test clf on test_set;

end
create a clf_train_set combining folds predictions;

create a clf_test_set averaging test_set predictions;

end

create a stacking_train_set concatenating all clf_train_sets;

create a stacking_test_set concatenating all clf_test_sets;

train meta_classifier on stacking_train_set;

test meta_classifier on stacking_test_set;

return stacking_test_set predictions;
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4.4 resampling strategies

As highlighted in section 3.5.1, we were provided with a dataset that suffers from
imbalance problem. To overcome this issue, we decided to submit our inputs, when
possible, to some resampling strategies before the classification process, looking for
improvements in the quality of predictions. Those strategies are only applicable to
single-label classification problems, and can be traced to two main groups: Under-
sampling strategies, which try to rebalance data by removing samples from the majority
class, and Over-sampling strategies, that try to rebalance data by generating new sam-
ples in the classes which are under-represented (see section 2.7).

In the following we present a description of the balancing strategies we chose to
use in our experiments:

random under-sampling Samples belonging to the majority class are selected
randomly and removed from the dataset. This strategy can be harmful if the
number of examples in the dataset is already low.

random over-sampling Produces synthetic copies of examples belonging to the
minority class. This equates to give more importance to examples of the minority
class, reducing the generalization capacity of the models.

enn The Edited Nearest Neighbours algorithm edits the dataset by removing the ex-
amples belonging to the majority class which are considered "outliers" with the
nearest-neighbor rule. For each candidate of the majority class, the algorithm
selects the group of its nearest neighbors (the data points which are closer in the
feature space to it) and compare their class with that of the selected candidate:
if the class of the majority of those neighbors coincides with that of the candi-
date, the candidate is kept, otherwise, the candidate is considered an outlier and
removed from the dataset (as shown in Figure 4.2).

Figure 4.2: The example of the majority class in the figure
would be removed since most of its neighbours
belongs to class B while its class is A.
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smote The Synthetic Minority Over-Sampling Technique bases its functioning on the
production of new synthetic examples different from the one already present in
the dataset for the minority class. To create a new example, SMOTE algorithm
selects a data point for which it computes its nearest neighbors of the same class.
The algorithm then selects the neighbors and computes the interpolation between
those and the original data point, producing new synthetic examples lying on the
line which joins the neighbors to the selected data point (as shown in Figure 4.3).

Figure 4.3: Illustration of how the syntethic examples Y1 and
Y2 are produced starting from X and its neigh-
bours Xi.

4.5 binary relevance approach

The first approach we adopted to solve our multi-label task was Binary Relevance. As
explained in section 2.5.1, this technique deals with the problem by decomposing it into
single different independent binary classification tasks, each of which is responsible
for the prediction of a single-label against all the others. In our case, the trained binary
classifiers were 19, one for each mood.

4.5.1 Input and Balancing Selection

Since the number of chosen vectorization models was high, we decided to start using
the Binary Relevance approach in order to perform a selection process, with the goal
of identifying and discarding the worst vectorization models. Therefore, relying on
the assumption that the better the input, the better the classification performance,
we decided to evaluate each vectorization model using its vectorizations as input
for a variety of classification tasks. In particular, we trained and evaluated, for each
vectorization model and without using any resampling strategy, three different multi-
label classifiers, each of which used a different linear classifier (see section 4.3.1) as
base classifier for the Binary Relevance approach. The idea behind this step was to
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try to find some vectorization models that were worse than the others, irrespective
of the binary classifier chosen for the Binary Relevance approach. Therefore, based
on the classification performance, we were able to identify the worst vectorization
models and thus to submit them to some statistical tests, trying to highlight some
significant difference with respect to other vectorization models and drop them out
from subsequent analysis.
The statistical tests we performed are named as Student’s t-test and Mann–Whitney U
test. Student’s t-test provides an exact parametric test for the equality of the means of
two normal populations [1]. Mann–Whitney U test instead, provides a non-parametric
test for examing differences between two independent populations on a continuous
scale. It represents a non-parametric alternative to the Student’s t-test, with the main
difference that Student’s t-test compares mean values between two normally distributed
populations, while Mann–Whitney U test compares their median and can be used even
when populations are not normally distributed [32].
Similarly to the vectorization model selection, we also performed some steps to have
an insight on the chosen resampling strategies. The way of assessing the quality of
each strategy was identical to the one used with vectorization models, with the only
difference that a multi-label classifier (based always on linear binary classifiers) was
built for each resampling strategy and for each vectorization model selected in the
previous selection. Therefore, based on classification performance, also for resampling
strategies we were able, with the help of statistical tests, to select and keep only the
best strategies.

4.5.2 Binary Relevance with Combined Input

To benefit from the different aspects each vectorization was able to capture, we decided
to generate new vectorized inputs combining all the previously selected inputs. In par-
ticular, new inputs were obtained by concatenation, using all the possible combinations
given by two or three vectorized inputs.
Starting from new combined input, we extended the Binary Relevance analysis to
most of the single-label classifiers (see section 4.3), trying all the selected resampling
strategies and all the selected vectorized inputs, either alone or in combination. The
only exception was represented by the Stacking classifier: given that our client had
some constraints on the use of computational resources, Stacking turned out to be
computationally expensive. Therefore, it was left out from the analysis and used for
subsequent experiments performed with a small number of vectorized inputs.
Working independently on different labels, the Binary Relevance approach wasn’t able
to exploit the information of the correlation between moods, but still constituted a first
baseline in the analysis.

4.5.3 Combined Input Selection

The performance obtained using the Binary Relevance approach were exploited to have
an insight on the discriminative power of the combined vectorized inputs too. Similarly
to the steps performed in section 4.5.1, we in fact used the classification performance
related to each combined input to perform statistical tests and select some of the best
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combinations. Most of those combinations represented the new vectorized inputs for
all subsequent experiments.
Using only some of the best combined inputs instead of all the possible ones, testing the
Stacking model, presented in section 4.3.2, became computationally feasible. Therefore,
we decided to test its performance through the Binary Relevance approach, using as
base classifiers some of the best previously tested ones, both linear and non-linear.
Thanks to the independence of each Stacking model, all the selected resampling strate-
gies could be tested, trying thus to improve the performance of previous approaches
and handle the imbalanced problem at the same time.

4.6 ensemble of classifier chain

Given the fact that Binary Relevance was not capable to deal with label correlation, we
looked towards Classifier Chains. As explained in section 2.5.2, Classifier Chain models
can take into account the label dependencies when performing multi-label classification.
Since the quality of the prediction of a Classifier Chain is sensitive to the ordering of
the nodes and an optimal ordering may exist, but since testing all the possible ordering
comes at a high computation cost, we used an Ensemble of Classifier Chains method
to cope with that. We realized different Classifier Chains (i.e. 20), each built with a
random ordering of the nodes (i.e. ordering of the labels), all trained with the same
dataset. Labels of a new instance were predicted by each chain separately. After that,
the total number of predictions or “votes” were counted for each label: the label was
considered as relevant if it was predicted as relevant by the majority of the classifiers.
Almost all the chosen classifiers were tested with this approach, using as input all the
selected combined vectorizations (see section 4.5.3). Again, the only exception was
represented by the Stacking classifier which, being computationally expensive, was left
out from this analysis.
Because of their peculiar training mechanism, Classifier Chains didn’t allow to be tested
in combination with selected resampling strategy: therefore, this approach lacked the
capacity of counter-acting the imbalance problem, although a very recent extension
resilient to class imbalance has been proposed [28].

4.7 stacking aggregation

Both Binary Relevance and Classifier Chains approaches weren’t able to take into
account the label correlation and handle the imbalance problem at the same time. In
order to overcome these limitations, we performed a last step in our architecture exper-
imenting the so-called Stacking Aggregation approach. As presented in [14], Stacking
Aggregation is a smart way to use a Binary Relevance approach in order to overcome
the label independence problem, basically by applying the Stacking paradigm in the
context of multi-label classification. During the learning phase, this method builds a
stack of two groups of classifiers. The first one is formed by the same binary classifiers
yielded by Binary Relevance method. In a second level, also called meta-level, another
group of binary models (one for each label again) is learned, but these classifiers con-
sider an augmented feature space that includes the binary outputs of all models of the
first level. The idea is to learn the relationships between labels in the meta-level step. In
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the testing phase, the final predictions are the outputs of the meta-level classifiers, using
the outputs of first-level classifiers exclusively to obtain the values of the augmented
feature space.
Thanks to this powerful model, based on Binary Relevance, we were able to train each
first-level binary classifier independently: this allowed us to apply all the selected
resampling strategies and thus counter-act the imbalance problem, while still taking
into account the label correlation.

4.8 implementation

All the steps performed in our architecture (see a general scheme in Figure 4.4) were
carried out by means of different kinds of tools, specific for natural language processing
and multi-label classification. Since our client required us to use Python as programming
language, all the used tools consist in Python modules and packages.
As regards input vectorization, a description of the implementations we adopted in
our architecture is presented in the following:

. Bow and Tf-Idf:→ Scikit-learn implementation. Scikit-learn [33] is a free software
for machine learning, that allows to use in a simple way tools for data mining
and data analysis.

. Doc2Vec→ Gensim implementation. Gensim [41] is a free software that allows to
realize unsupervised semantic modelling from plain text.

. Topic2Vec → Mallet implementation. Mallet [29] is a Java-based package for
statistical natural language processing, document classification, topic modeling
and other machine learning applications to text. We used a Python wrapper of
Mallet provided by Gensim.

As regards input resampling, all the presented strategies come from package imbalanced-
learn [26], which provides many off-the-shelf implementations of known balancing
techniques.
Regarding the statistical tests, both t-test and U-test were performed using the SciPy
library [21], in particular the module stats, that contains a large number of statistical
functions.
All the tested classification algorithms, except XGBoost, come from Meka toolkit [40],
which provides an open source implementation of methods for single-label and multi-
label learning and evaluation. It is a Java-based software, but package scikit-multilearn
[50] provides a Python wrapper of it. As regards XGBoost, its implementation comes
instead from the standard xgboost package [11].
Finally, all the adopted performance metrics come from Scikit-learn module metrics,
which provides many off-the-shelf implementations of known classification metrics.
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Figure 4.4: Scheme of the presented architecture.



5
E X P E R I M E N TA L A N A LY S I S

In this chapter, we show the results of the experimental analysis done with selected
models, highlighting strengths and weaknesses of each one. We describe the chosen
model evaluation strategy and the chosen performance metrics. Then, we describe how
the hyperparameter selection has been done for selected inputs and models. Finally,
we show and comment the achieved performance results of each model.
Whenever necessary, we present the result of some statistical tests performed in order
to compare and select different combinations of vectorized inputs and models.

5.1 dataset partition : train-validation

The first step of experimental analysis was the partition of the dataset in two disjoint
subsets: the training set, used for training selected models, and the validation set, used
for hyperparameter selection of selected models. Validation set was obtained using
the holdout method, through which a part of the original dataset is set aside and not
used in the training phase: for our experiments, we decided to have a validation set
equal to 10% of the original dataset. As regards the generation of the partition, we used
a stratified approach specific for multi-labeled data, presented in [50], which allows
obtaining a well-balanced distribution of label relationship among the partitions.

5.2 model evaluation

In order to evaluate selected models, we chose to use a 10-fold cross-validation method,
that has been proved to be one of the best choices to get an accurate estimate of
performances. In 10-fold cross-validation, the whole training set is partitioned into ten
equal size subsets, named as folds. Of the ten subsets, a single subset is retained as the
evaluation data for testing the model, while the remaining nine are used as training
data for the model. The cross-validation process is then repeated ten times, with each
of the ten subsets used exactly once as the evaluation data. The ten results from the
folds are then averaged to produce a single estimation of performances.
As regards the generation of the folds, we used the same stratified approach presented
in section 5.1.

structure of predictions

Given an evaluation set composed of m instances, what a classifier returns as predic-
tions is a matrix with shape (m× k), where k is the number of labels. Each row of the
matrix represents the predictions associated with an evaluation instance, while each
column represents all the predictions, for the given evaluation set, related to a particular
label. Each cell of the matrix can take two different values: 1, which indicates that the
label in the corresponding column is relevant for the instance in the corresponding
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row; 0, which indicates that the label in the corresponding column is not relevant for
the instance in the corresponding row.

5.3 performance metrics

In order to measure the performances of selected methods, we chose to use most of
the metrics presented in section 2.6, which are commonly used in many multi-label
classification tasks. Selected metrics can be summarised as follows:

exact match accuracy (ema) Evaluates the fraction of perfectly classified exam-
ples; can be regarded as a multi-label counterpart of the traditional accuracy
metric.

precision (pr) Evaluates the fraction of relevant labels among all the labels pre-
dicted as relevant; can be regarded as the ability of the classifier not to label as
positive a sample that is negative. There are two kinds of precision: micro-averaged
precision, that calculates metric globally by counting the total true positives, false
negatives and false positives; macro-averaged precision, that calculates metric for
each label and returns the unweighted mean.

recall (rc) Evaluates the fraction of relevant labels, correctly predicted, over the
total amount of relevant labels; can be regarded as the ability of the classifier to
find all the positive samples. As is the case for precision, even for recall two kinds
of measure exist: micro-averaged recall and macro-averaged recall.

f1 Armonic mean of precision and recall. As is the case for precision and recall, even
for F1 two kinds of measure exist: micro-averaged F1 and macro-averaged F1.

In addition to the above-mentioned metrics, we defined another metric called At Least
One (ALO), summarised as follows:

at least one (alo) Evaluates the fraction of examples for which the prediction was
correct for at least one label.

This metric is particularly suited for our problem, where each example can be associated
with at most two labels and where the main objective is to give a hint to human taggers,
who thus, in presence of at least one correct label, are more easily guided in the tagging
process.

5.4 vectorizers’ hyperparameter selection

All the experiments were carried out using the vectorized inputs presented in section
4.2, either alone or in combination. The execution of each vectorizer method was
often related to the choice of some hyperparameters, that had to be selected properly
in order to improve the quality of vectorized documents. Therefore, we decided to
select vectorizers’ hyperparameters through a grid search approach, which is simply
an exhaustive searching through a manually specified subset of the hyperparameter
space. Of course, a grid search algorithm must be guided by some performance metric,
typically measured by cross-validation. We decided thus to use F1 as the performance
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metric and to measure it by stratified 3-fold cross-validation on the validation dataset;
as benchmark classifier for the optimization, we adopted a Binary Relevance approach
based on Naive Bayes, since it is a relatively simple algorithm which performs generally
well in text classification tasks.
Among all the different vectorizers, there is one in particular which required a hyper-
parameter selection procedure different from that mentioned above: the LDA vectorizer,
which finds latent topics in a collection of documents and transforms each document
in a vector representing its probability distribution over the topics. The only relevant
hyperparameter needed by LDA vectorizer is the number of topics we want to extract
from documents: this number is typically chosen by evaluating a coherence measure,
which looks at sets of words in generated topics and rates the human interpretability
of the topics. Various measures that calculate coherence exist, but the one known as
Cv proved to be the most aligned with human interpretability [44]. Therefore, we
decided to choose the number of topics for LDA by running the algorithm several
times, changing the hyperparameter related to the number of topics and plotting the
Cv measure of each run. Figure 5.1 show the result of this analysis.

Figure 5.1: Coherence analysis of LDA model.

As is highlighted in the chart, the coherence measure increases with increasing number
of topics and then tends to become more stable for a number of topics greater than
30 Whereas having a high number of topics often means to have more topics with
overlapping relevant words, we decided to take as LDA hyperparameter the previously
highlighted value of 30.

5.5 models’ hyperparameter selection

Similarly to the approach described in section 5.4 for vectorizers, even for classification
models we optimized the relevant hyperparameters in order to improve the quality of
selected classifiers. Again, we decided to use a grid search approach combined with
a stratified 3-fold cross-validation on the validation dataset, using F1 as the perfor-
mance metric. The only exception was the XGBoost model, for which we adopted a
random search approach, which is a way of performing hyperparameter optimization
by selecting them randomly in a manually specified subset of the hyperparameter
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space. We preferred this approach over grid search, since XGBoost has many relevant
hyperparameters which can be optimized and thus, performing an exhaustive search
would have been very demanding in terms of computation time.

5.6 analysis results

In this section, we show the evaluation results of all performed analysis. In order to
make them more readable, we define the following naming conventions for single-label
classifiers, vectorized inputs, resampling techniques and metrics:

. Single-label Classifiers:

Classifier Abbreviation

Logistic Regression LR

Naive Bayes NB

Support Vector Machine SVM

Random Forest RF

XGBoost XGB

Stacking S

. Vectorized Inputs:

Vectorizer Abbreviation

Bag of Words BoW

Term Freq. - Inverse Document Freq. TF-IDF

Doc2Vec D2V

Topic2Vec T2V

Weighted Word2Vec WW2V

Cast2Vec C2V

Each combination of the just mentioned vectorized inputs can be expressed join-
ing names with an underscore character (_). For example, Cast2Vec combined
with Doc2Vec can be written as C2V_D2V.
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. Balancers:

Balancer Abbreviation

Fake Balancer (no resampling) FB

Random Under Sampler RUS

Edited Nearest Neighbour ENN

Random Over Sampler ROS

Synthetic Minority Over-sampling SMOTE

. Metrics:

Metric Abbreviation

Micro-averaged Precision PR-mic

Micro-averaged Recall RC-mic

Macro-averaged F1 F1-mac

Micro-averaged F1 F1-mic

Exact Match Accuracy EMA

At Least One ALO

5.6.1 Statistical Tests for Model Comparison

Most of the models evaluated in our analysis needed to be compared against other
models, in order to possibly highlight significant differences and thus guide subsequent
analysis, filtering out irrelevant models. Such comparisons were always carried out
by means of two statistical tests, named as Student’s t-test and Mann–Whitney U test,
as described in section 4.5.1. Every individual test is performed at a significance level
of α, typically equals to 0.05. However, whenever multiple tests are performed, the
likelihood of asserting an incorrect conclusion about the outcome of a test increases:
therefore, what is typically done is to introduce a correction factor m (named as
Bonferroni correction) which decrease the significance level by a factor equal to m [2].
In our comparisons, we decided to use as populations the micro-averaged F1 scores
obtained from 10-fold cross-validation results, since they are the measures that best
summarise the performance of a model. Moreover, whereas no particular assumption
on the scores’ distribution was made, we decided to perform all the comparisons using
both mentioned tests. As regards the Student’s t-test, we used the unpaired version,
since the folds on which we trained our models were not the same for every model.
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5.6.2 Evaluation of Vectorized Inputs

The first objective of our analysis was to evaluate the goodness of the vectorized inputs,
in terms of the contribution made to the classification problem. To accomplish this task,
as explained in section 4.5.1, we used as benchmark the Binary Relevance approach,
training and evaluating three different models, one for each linear classifier, in order to
have a realistic insight on the discriminative power of each kind of vectorization. No
resampling techniques were used in this evaluation.

. BoW TF-IDF C2V TD WW2V D2V (Vectorized Inputs)

. NB LR SVM (Classifiers)

. FB (Fake Balancer: no resampling)

The evaluation was performed throguh stratified 10-fold cross-validation, as described
in section 5.2. Results are shown in Tables 5.1, 5.2 and 5.3. The only metrics shown
are micro-averaged precision, micro-averaged recall and micro-averaged F1, which
are sufficient to highlight the most relevant aspects related to the performances of a
multi-label classification problem.

Vectorized Input PR-mic RC-mic F1-mic

BoW 0.285± 0.020 0.354± 0.011 0.315± 0.012

TF-IDF 0.301± 0.017 0.366± 0.014 0.330± 0.010

T2V 0.351± 0.018 0.341± 0.017 0.346± 0.018

D2V 0.357± 0.012 0.347± 0.011 0.352± 0.011

WW2V 0.349± 0.016 0.345± 0.014 0.347± 0.015

C2V 0.342± 0.010 0.332± 0.009 0.337± 0.009

Table 5.1: Vectorized input evaluation: Naive Bayes.
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Vectorized Input PR-mic RC-mic F1-mic

BoW 0.306± 0.014 0.369± 0.016 0.334± 0.009

TF-IDF 0.331± 0.013 0.382± 0.023 0.354± 0.011

T2V 0.404± 0.017 0.392± 0.015 0.398± 0.015

D2V 0.432± 0.013 0.419± 0.012 0.425± 0.012

WW2V 0.366± 0.015 0.376± 0.009 0.371± 0.012

C2V 0.350± 0.014 0.340± 0.013 0.345± 0.013

Table 5.2: Vectorized input evaluation: Logistic Regression.

Vectorized Input PR-mic RC-mic F1-mic

BoW 0.266± 0.018 0.272± 0.009 0.269± 0.009

TF-IDF 0.283± 0.014 0.287± 0.016 0.284± 0.009

T2V 0.320± 0.015 0.311± 0.013 0.315± 0.014

D2V 0.391± 0.006 0.380± 0.006 0.385± 0.006

WW2V 0.397± 0.011 0.385± 0.009 0.391± 0.01

C2V 0.285± 0.013 0.280± 0.016 0.283± 0.014

Table 5.3: Vectorized input evaluation: Support Vector Machine.

As can be seen from the results, BoW, TF-TDF and C2V were apparently the inputs
that gave the worst classification performances. Given that C2V input was the only
one that encoded information not related with movie plots, we decided not to drop
it, but instead to use it for subsequent analysis performed with combined inputs, in
order to exploit better its discriminative power. As regards BoW and TF-IDF instead,
we decided to submit them to statistical tests, in order to compare them with other
vectorizers to possibly highlight a significant difference and thus drop them out from
subsequent analysis. The statistical tests we performed were those mentioned in section
5.6.1: Student’s t-test and Mann–Whitney U test. Since a direct comparison between
vectorized inputs was not possible, we used as benchmark all the previously evaluated
classifiers. For each classifier, we compared the performances obtained using BoW
and TF-IDF against the performances obtained using the other 3 vectorized inputs:
a Bonferroni correction factor of 3 was thus applied to the test (i. e. the models are
significantly different if p-value < 0, 0167). Tables 5.4, 5.5, and 5.6 show results of
performed tests.
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p-value p-value p-value p-value

Vectorized Input t-test U-test t-test U-test

BoW BoW TF-IDF TF-IDF

T2V 0.0004 0.0009 0.0305 0.0156

D2V 0.0000 0.0001 0.0004 0.0011

WW2V 0.0001 0.0005 0.0111 0.0057

Table 5.4: Vectorized input comparison: Naive Bayes.

p-value p-value p-value p-value

Vectorized Input t-test U-test t-test U-test

BoW BoW TF-IDF TF-IDF

T2V 0.0000 0.0001 0.0000 0.0003

D2V 0.0000 0.0001 0.0000 0.0001

WW2V 0.0000 0.0001 0.0055 0.0070

Table 5.5: Vectorized input comparison: Logistic Regression.

p-value p-value p-value p-value

Vectorized Input t-test U-test t-test U-test

BoW BoW TF-IDF TF-IDF

T2V 0.0000 0.0001 0.0000 0.0002

D2V 0.0000 0.0001 0.0000 0.0001

WW2V 0.0000 0.0001 0.0000 0.0001

Table 5.6: Vectorized input comparison: Support Vector Machine.

All the performed statistical tests highlighted a significant difference between the
two candidate vectorizations (TF-IDF and BoW) and all the other ones, irrespective of
the selected linear classifiers: therefore, we decided to filter out BoW and TF-IDF from
subsequent analysis.

5.6.3 Evaluation of Resampling Strategies

Similarly to the evaluation of the vectorized inputs, we also performed some steps to
have an insight on the goodness of resampling strategies. The way of assessing the
quality of each strategy was identical to the one used with vectorization models, with
the only difference that a multi-label classifier (based always on linear binary classifiers)
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was built for each resampling strategy and for each vectorization model previously
selected.

. C2V TD WW2V D2V (Vectorized Inputs)

. NB LR SVM (Classifiers)

. RUS ENN ROS SMOTE (Balancers)

The evaluation was performed throguh stratified 10-fold cross-validation, as described
in section 5.2. Results are shown in Tables 5.7, 5.8 and 5.9. The only metrics shown
are micro-averaged precision, micro-averaged recall and micro-averaged F1, which
are sufficient to highlight the most relevant aspects related to the performances of a
multi-label classification problem.

Vectorized Input PR-mic RC-mic F1-mic

T2V + RUS 0.146± 0.004 0.814± 0.017 0.247± 0.006

T2V + ENN 0.335± 0.013 0.42± 0.016 0.373± 0.014

T2V + ROS 0.154± 0.002 0.774± 0.014 0.257± 0.003

T2V + SMOTE 0.143± 0.003 0.768± 0.011 0.241± 0.005

D2V + RUS 0.137± 0.005 0.764± 0.023 0.232± 0.008

D2V + ENN 0.313± 0.012 0.401± 0.018 0.352± 0.014

D2V + ROS 0.15± 0.003 0.705± 0.014 0.247± 0.005

D2V + SMOTE 0.131± 0.005 0.605± 0.021 0.215± 0.008

WW2V + RUS 0.146± 0.004 0.801± 0.017 0.247± 0.006

WW2V + ENN 0.319± 0.007 0.404± 0.01 0.356± 0.007

WW2V + ROS 0.199± 0.004 0.702± 0.013 0.31± 0.005

WW2V + SMOTE 0.16± 0.006 0.61± 0.031 0.254± 0.009

C2V + RUS 0.14± 0.002 0.783± 0.01 0.238± 0.004

C2V + ENN 0.329± 0.011 0.415± 0.014 0.367± 0.012

C2V + ROS 0.136± 0.003 0.76± 0.017 0.231± 0.005

C2V + SMOTE 0.137± 0.002 0.767± 0.014 0.233± 0.004

Table 5.7: Resampling strategies evaluation: Naive Bayes.
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Vectorized Input PR-mic RC-mic F1-mic

T2V + RUS 0.152± 0.003 0.846± 0.012 0.257± 0.005

T2V + ENN 0.376± 0.013 0.472± 0.015 0.418± 0.014

T2V + ROS 0.154± 0.002 0.861± 0.009 0.262± 0.003

T2V + SMOTE 0.154± 0.002 0.857± 0.012 0.261± 0.004

D2V + RUS 0.151± 0.003 0.819± 0.019 0.255± 0.006

D2V + ENN 0.388± 0.009 0.497± 0.01 0.435± 0.009

D2V + ROS 0.154± 0.003 0.857± 0.015 0.261± 0.005

D2V + SMOTE 0.151± 0.002 0.841± 0.015 0.256± 0.004

WW2V + RUS 0.139± 0.003 0.749± 0.012 0.234± 0.005

WW2V + ENN 0.346± 0.018 0.461± 0.016 0.395± 0.017

WW2V + ROS 0.182± 0.005 0.804± 0.017 0.297± 0.007

WW2V + SMOTE 0.183± 0.004 0.802± 0.014 0.297± 0.005

C2V + RUS 0.143± 0.003 0.796± 0.014 0.242± 0.005

C2V + ENN 0.331± 0.011 0.419± 0.012 0.37± 0.011

C2V + ROS 0.143± 0.002 0.799± 0.012 0.243± 0.004

C2V + SMOTE 0.144± 0.003 0.804± 0.014 0.244± 0.005

Table 5.8: Resampling strategies evaluation: Logistic Regression.

Vectorized Input PR-mic RC-mic F1-mic

T2V + RUS 0.153± 0.004 0.852± 0.011 0.259± 0.006

T2V + ENN 0.362± 0.011 0.454± 0.012 0.403± 0.011

T2V + ROS 0.154± 0.003 0.86± 0.018 0.261± 0.006

T2V + SMOTE 0.154± 0.003 0.856± 0.013 0.26± 0.005

D2V + RUS 0.153± 0.002 0.856± 0.01 0.26± 0.004

D2V + ENN 0.381± 0.01 0.488± 0.015 0.428± 0.012

D2V + ROS 0.154± 0.003 0.858± 0.01 0.261± 0.004

D2V + SMOTE 0.151± 0.003 0.842± 0.014 0.256± 0.005

WW2V + RUS 0.155± 0.003 0.847± 0.016 0.263± 0.005

WW2V + ENN 0.381± 0.011 0.476± 0.012 0.423± 0.011

WW2V + ROS 0.155± 0.004 0.84± 0.016 0.262± 0.006

WW2V + SMOTE 0.156± 0.002 0.842± 0.009 0.263± 0.004

C2V + RUS 0.143± 0.003 0.798± 0.016 0.243± 0.005

C2V + ENN 0.321± 0.013 0.409± 0.02 0.36± 0.015

C2V + ROS 0.144± 0.002 0.801± 0.012 0.244± 0.004

C2V + SMOTE 0.144± 0.003 0.803± 0.017 0.244± 0.005

Table 5.9: Resampling strategies: Support Vector Machine.
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As can be seen from the results, almost all the chosen resampling strategies performed
very badly compared to not resampling at all, irrespective of the selected linear classifier
used in the Binary Relevance approach. The only exception was represented by the
ENN strategy, which allowed to obtain an F1 score comparable to the one obtained with
no resampling strategy. Therefore, we decided to filter out from subsequent analysis
all the resampling strategies, except ENN. No statistical tests were performed, since
the poor quality of the strategies was absolutely clear.

5.6.4 Binary Relevance with Combined Input

After the selection process, we decided to test the Binary Relevance approach with
all the chosen single-label classifier (except Stacking), using all the selected vectorized
input, either alone or in combination, and all the selected resampling strategies, as
described in section 4.5.2.

. C2V TD WW2V D2V Combined (Vectorized Inputs)

. NB LR SVM RF XGB (Classifiers)

. FB ENN (Balancers)

The evaluation was performed throguh stratified 10-fold cross-validation, as de-
scribed in section 5.2. Results are shown in the following Tables:

. Table 5.10 is related to Naive Bayes + Fake Balancer.

. Table 5.11 is related to Naive Bayes + ENN.

. Table 5.12 is related to Logistic Regression + Fake Balancer.

. Table 5.13 is related to Logistic Regression + ENN.

. Table 5.14 is related to Support Vector Machine + Fake Balancer.

. Table 5.15 is related to Support Vector Machine + ENN.

. Table 5.16 is related to Random Forest + Fake Balancer.

. Table 5.17 is related to Random Forest + ENN.

. Table 5.18 is related to XGBoost + Fake Balancer.

. Table 5.19 is related to XGBoost + ENN.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.451± 0.009 0.066± 0.008 0.342± 0.01 0.332± 0.009 0.337± 0.009 0.24± 0.156

T2V 0.481± 0.027 0.065± 0.016 0.351± 0.018 0.341± 0.017 0.346± 0.018 0.26± 0.16

D2V 0.488± 0.016 0.068± 0.014 0.357± 0.012 0.347± 0.011 0.352± 0.011 0.257± 0.163

WW2V 0.477± 0.018 0.082± 0.012 0.349± 0.016 0.345± 0.014 0.347± 0.015 0.256± 0.17

D2V_C2V 0.512± 0.018 0.078± 0.008 0.39± 0.014 0.379± 0.013 0.384± 0.013 0.288± 0.167

D2V_WW2V 0.494± 0.012 0.076± 0.013 0.367± 0.011 0.357± 0.01 0.362± 0.01 0.273± 0.167

T2V_C2V 0.537± 0.02 0.08± 0.013 0.41± 0.013 0.399± 0.011 0.405± 0.012 0.306± 0.177

T2V_D2V 0.507± 0.019 0.072± 0.009 0.372± 0.017 0.362± 0.016 0.367± 0.016 0.274± 0.164

T2V_WW2V 0.483± 0.02 0.081± 0.015 0.358± 0.016 0.352± 0.016 0.355± 0.016 0.268± 0.167

WW2V_C2V 0.508± 0.014 0.085± 0.009 0.382± 0.015 0.374± 0.01 0.378± 0.012 0.285± 0.174

T2V_C2V_D2V 0.53± 0.03 0.076± 0.009 0.404± 0.023 0.392± 0.02 0.398± 0.022 0.302± 0.165

T2V_WW2V_D2V 0.497± 0.025 0.078± 0.013 0.368± 0.015 0.359± 0.012 0.363± 0.013 0.274± 0.169

WW2V_C2V_D2V 0.523± 0.016 0.083± 0.01 0.391± 0.01 0.381± 0.011 0.386± 0.01 0.289± 0.178

WW2V_C2V_T2V 0.519± 0.011 0.085± 0.014 0.387± 0.013 0.378± 0.01 0.383± 0.011 0.288± 0.175

Table 5.10: Binary Relevance: Naive Bayes + Fake Balancer.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.547± 0.016 0.065± 0.009 0.329± 0.011 0.415± 0.014 0.367± 0.012 0.26± 0.161

T2V 0.58± 0.017 0.062± 0.013 0.335± 0.013 0.42± 0.016 0.373± 0.014 0.276± 0.168

D2V 0.558± 0.02 0.056± 0.011 0.313± 0.012 0.401± 0.018 0.352± 0.014 0.259± 0.159

WW2V 0.55± 0.013 0.062± 0.009 0.319± 0.007 0.404± 0.01 0.356± 0.007 0.264± 0.165

D2V_C2V 0.589± 0.012 0.058± 0.011 0.35± 0.009 0.447± 0.011 0.392± 0.01 0.291± 0.168

D2V_WW2V 0.58± 0.025 0.067± 0.013 0.33± 0.015 0.427± 0.015 0.372± 0.015 0.283± 0.165

T2V_C2V 0.618± 0.013 0.078± 0.006 0.386± 0.008 0.473± 0.011 0.426± 0.009 0.318± 0.183

T2V_D2V 0.583± 0.021 0.06± 0.014 0.333± 0.012 0.426± 0.017 0.374± 0.014 0.282± 0.164

T2V_WW2V 0.563± 0.02 0.073± 0.013 0.328± 0.011 0.413± 0.012 0.366± 0.011 0.273± 0.171

WW2V_C2V 0.59± 0.017 0.075± 0.012 0.36± 0.013 0.444± 0.014 0.398± 0.013 0.299± 0.173

T2V_C2V_D2V 0.6± 0.022 0.062± 0.011 0.355± 0.012 0.454± 0.017 0.399± 0.014 0.303± 0.166

T2V_WW2V_D2V 0.581± 0.014 0.064± 0.014 0.327± 0.008 0.427± 0.011 0.37± 0.008 0.279± 0.168

WW2V_C2V_D2V 0.6± 0.012 0.065± 0.011 0.348± 0.009 0.45± 0.012 0.392± 0.01 0.295± 0.174

WW2V_C2V_T2V 0.592± 0.015 0.08± 0.01 0.363± 0.008 0.446± 0.008 0.4± 0.008 0.299± 0.179

Table 5.11: Binary Relevance: Naive Bayes + ENN.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.461± 0.015 0.075± 0.009 0.35± 0.014 0.34± 0.013 0.345± 0.013 0.238± 0.169

T2V 0.531± 0.022 0.084± 0.011 0.404± 0.017 0.392± 0.015 0.398± 0.015 0.307± 0.173

D2V 0.576± 0.018 0.104± 0.012 0.432± 0.013 0.419± 0.012 0.425± 0.012 0.327± 0.18

WW2V 0.545± 0.014 0.097± 0.01 0.366± 0.015 0.376± 0.009 0.371± 0.012 0.272± 0.168

D2V_C2V 0.616± 0.017 0.131± 0.014 0.459± 0.012 0.446± 0.012 0.452± 0.012 0.346± 0.188

D2V_WW2V 0.56± 0.018 0.107± 0.011 0.39± 0.014 0.385± 0.011 0.388± 0.012 0.28± 0.172

T2V_C2V 0.594± 0.018 0.124± 0.016 0.452± 0.015 0.439± 0.014 0.445± 0.014 0.338± 0.193

T2V_D2V 0.583± 0.028 0.116± 0.011 0.435± 0.02 0.422± 0.019 0.428± 0.019 0.329± 0.177

T2V_WW2V 0.567± 0.015 0.098± 0.014 0.375± 0.009 0.389± 0.012 0.382± 0.01 0.282± 0.17

WW2V_C2V 0.578± 0.021 0.111± 0.011 0.395± 0.019 0.405± 0.013 0.4± 0.016 0.294± 0.178

T2V_C2V_D2V 0.622± 0.019 0.131± 0.012 0.462± 0.016 0.449± 0.015 0.455± 0.015 0.346± 0.19

T2V_WW2V_D2V 0.557± 0.022 0.105± 0.014 0.387± 0.01 0.381± 0.01 0.384± 0.01 0.278± 0.165

WW2V_C2V_D2V 0.577± 0.016 0.117± 0.016 0.407± 0.011 0.398± 0.011 0.403± 0.011 0.287± 0.177

WW2V_C2V_T2V 0.588± 0.02 0.117± 0.016 0.404± 0.014 0.409± 0.017 0.407± 0.015 0.297± 0.179

Table 5.12: Binary Relevance: Logistic Regression + Fake Balancer.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.56± 0.014 0.079± 0.008 0.331± 0.011 0.419± 0.012 0.37± 0.011 0.253± 0.172

T2V 0.63± 0.022 0.087± 0.01 0.376± 0.013 0.472± 0.015 0.418± 0.014 0.316± 0.18

D2V 0.669± 0.018 0.088± 0.009 0.388± 0.009 0.497± 0.01 0.435± 0.009 0.333± 0.173

WW2V 0.643± 0.016 0.084± 0.015 0.346± 0.018 0.461± 0.016 0.395± 0.017 0.289± 0.173

D2V_C2V 0.707± 0.017 0.103± 0.014 0.412± 0.013 0.527± 0.014 0.462± 0.013 0.347± 0.194

D2V_WW2V 0.655± 0.016 0.082± 0.014 0.353± 0.013 0.466± 0.016 0.402± 0.013 0.288± 0.166

T2V_C2V 0.686± 0.02 0.111± 0.016 0.422± 0.013 0.518± 0.015 0.465± 0.014 0.355± 0.194

T2V_D2V 0.683± 0.017 0.096± 0.012 0.394± 0.01 0.505± 0.015 0.442± 0.011 0.333± 0.185

T2V_WW2V 0.66± 0.023 0.094± 0.01 0.365± 0.014 0.471± 0.01 0.411± 0.012 0.306± 0.17

WW2V_C2V 0.671± 0.016 0.099± 0.018 0.374± 0.013 0.484± 0.018 0.422± 0.015 0.306± 0.187

T2V_C2V_D2V 0.711± 0.023 0.111± 0.012 0.417± 0.016 0.534± 0.018 0.468± 0.017 0.354± 0.191

T2V_WW2V_D2V 0.649± 0.026 0.078± 0.015 0.343± 0.009 0.462± 0.018 0.393± 0.012 0.286± 0.171

WW2V_C2V_D2V 0.669± 0.019 0.091± 0.01 0.363± 0.013 0.485± 0.014 0.415± 0.013 0.297± 0.183

WW2V_C2V_T2V 0.684± 0.019 0.109± 0.015 0.385± 0.013 0.494± 0.013 0.433± 0.013 0.312± 0.19

Table 5.13: Binary Relevance: Logistic Regression + ENN.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.4± 0.019 0.055± 0.017 0.285± 0.013 0.28± 0.016 0.283± 0.014 0.179± 0.18

T2V 0.448± 0.015 0.057± 0.012 0.32± 0.015 0.311± 0.013 0.315± 0.014 0.215± 0.207

D2V 0.541± 0.012 0.086± 0.012 0.391± 0.006 0.38± 0.006 0.385± 0.006 0.287± 0.187

WW2V 0.553± 0.016 0.116± 0.016 0.397± 0.011 0.385± 0.009 0.391± 0.01 0.289± 0.19

D2V_C2V 0.593± 0.029 0.127± 0.012 0.434± 0.022 0.422± 0.021 0.428± 0.021 0.308± 0.223

D2V_WW2V 0.592± 0.015 0.12± 0.011 0.422± 0.011 0.409± 0.011 0.415± 0.011 0.318± 0.18

T2V_C2V 0.551± 0.025 0.102± 0.015 0.401± 0.017 0.39± 0.016 0.395± 0.016 0.273± 0.231

T2V_D2V 0.564± 0.024 0.1± 0.009 0.41± 0.016 0.398± 0.012 0.404± 0.014 0.301± 0.2

T2V_WW2V 0.583± 0.024 0.121± 0.015 0.416± 0.018 0.404± 0.016 0.41± 0.017 0.302± 0.196

WW2V_C2V 0.602± 0.017 0.13± 0.015 0.436± 0.012 0.423± 0.014 0.429± 0.013 0.316± 0.204

T2V_C2V_D2V 0.606± 0.017 0.128± 0.014 0.446± 0.013 0.433± 0.014 0.44± 0.013 0.327± 0.215

T2V_WW2V_D2V 0.596± 0.02 0.129± 0.015 0.429± 0.015 0.417± 0.012 0.423± 0.013 0.323± 0.184

WW2V_C2V_D2V 0.625± 0.024 0.14± 0.014 0.455± 0.017 0.442± 0.014 0.448± 0.016 0.345± 0.19

WW2V_C2V_T2V 0.611± 0.013 0.135± 0.014 0.444± 0.009 0.431± 0.009 0.437± 0.009 0.326± 0.203

Table 5.14: Binary Relevance: Support Vector Machine + Fake Balancer.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.562± 0.018 0.079± 0.018 0.321± 0.013 0.409± 0.02 0.36± 0.015 0.23± 0.194

T2V 0.628± 0.015 0.081± 0.011 0.362± 0.011 0.454± 0.012 0.403± 0.011 0.284± 0.204

D2V 0.661± 0.016 0.083± 0.01 0.381± 0.01 0.488± 0.015 0.428± 0.012 0.315± 0.191

WW2V 0.664± 0.018 0.1± 0.011 0.381± 0.011 0.476± 0.012 0.423± 0.011 0.31± 0.188

D2V_C2V 0.71± 0.02 0.113± 0.016 0.414± 0.01 0.53± 0.014 0.465± 0.012 0.341± 0.211

D2V_WW2V 0.7± 0.018 0.109± 0.015 0.398± 0.008 0.511± 0.01 0.448± 0.008 0.343± 0.182

T2V_C2V 0.681± 0.017 0.11± 0.013 0.413± 0.009 0.506± 0.01 0.455± 0.009 0.326± 0.221

T2V_D2V 0.682± 0.02 0.091± 0.015 0.395± 0.014 0.506± 0.021 0.444± 0.016 0.336± 0.194

T2V_WW2V 0.68± 0.029 0.111± 0.012 0.399± 0.017 0.496± 0.022 0.442± 0.019 0.336± 0.189

WW2V_C2V 0.706± 0.02 0.121± 0.015 0.425± 0.014 0.519± 0.013 0.467± 0.013 0.345± 0.211

T2V_C2V_D2V 0.716± 0.015 0.111± 0.01 0.419± 0.008 0.536± 0.01 0.47± 0.008 0.352± 0.202

T2V_WW2V_D2V 0.706± 0.013 0.109± 0.013 0.402± 0.011 0.516± 0.012 0.452± 0.011 0.354± 0.178

WW2V_C2V_D2V 0.729± 0.014 0.119± 0.024 0.422± 0.009 0.54± 0.012 0.474± 0.01 0.363± 0.189

WW2V_C2V_T2V 0.712± 0.013 0.131± 0.019 0.431± 0.014 0.525± 0.015 0.473± 0.014 0.357± 0.203

Table 5.15: Binary Relevance: Support Vector Machine + ENN.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.496± 0.016 0.108± 0.015 0.364± 0.016 0.361± 0.015 0.362± 0.015 0.264± 0.16

T2V 0.572± 0.018 0.112± 0.018 0.405± 0.017 0.406± 0.014 0.405± 0.015 0.308± 0.184

D2V 0.574± 0.012 0.101± 0.008 0.409± 0.013 0.415± 0.013 0.412± 0.013 0.319± 0.176

WW2V 0.57± 0.019 0.113± 0.01 0.402± 0.014 0.406± 0.014 0.404± 0.014 0.314± 0.178

D2V_C2V 0.616± 0.024 0.123± 0.016 0.453± 0.018 0.456± 0.018 0.455± 0.018 0.355± 0.19

D2V_WW2V 0.606± 0.022 0.108± 0.014 0.43± 0.015 0.437± 0.013 0.433± 0.014 0.342± 0.178

T2V_C2V 0.628± 0.012 0.137± 0.015 0.462± 0.01 0.46± 0.01 0.461± 0.009 0.361± 0.183

T2V_D2V 0.606± 0.022 0.119± 0.019 0.432± 0.016 0.437± 0.017 0.434± 0.016 0.34± 0.18

T2V_WW2V 0.592± 0.019 0.116± 0.014 0.414± 0.013 0.42± 0.013 0.417± 0.013 0.329± 0.176

WW2V_C2V 0.617± 0.016 0.13± 0.013 0.446± 0.016 0.451± 0.016 0.448± 0.015 0.348± 0.192

T2V_C2V_D2V 0.628± 0.017 0.129± 0.016 0.465± 0.012 0.466± 0.01 0.466± 0.01 0.368± 0.185

T2V_WW2V_D2V 0.613± 0.019 0.117± 0.016 0.437± 0.014 0.442± 0.011 0.439± 0.012 0.351± 0.169

WW2V_C2V_D2V 0.63± 0.023 0.129± 0.014 0.456± 0.02 0.46± 0.018 0.458± 0.019 0.358± 0.186

WW2V_C2V_T2V 0.627± 0.018 0.132± 0.014 0.454± 0.014 0.457± 0.012 0.456± 0.013 0.357± 0.187

Table 5.16: Binary Relevance: Random Forest + Fake Balancer.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.587± 0.03 0.1± 0.017 0.34± 0.019 0.437± 0.02 0.382± 0.019 0.271± 0.167

T2V 0.659± 0.017 0.098± 0.011 0.378± 0.012 0.482± 0.015 0.424± 0.013 0.323± 0.179

D2V 0.679± 0.014 0.09± 0.011 0.381± 0.011 0.505± 0.015 0.434± 0.012 0.334± 0.179

WW2V 0.648± 0.023 0.092± 0.011 0.369± 0.014 0.475± 0.018 0.416± 0.016 0.319± 0.174

D2V_C2V 0.705± 0.019 0.096± 0.009 0.409± 0.01 0.536± 0.014 0.464± 0.011 0.362± 0.183

D2V_WW2V 0.684± 0.014 0.096± 0.009 0.387± 0.006 0.51± 0.011 0.44± 0.008 0.344± 0.177

T2V_C2V 0.699± 0.027 0.11± 0.015 0.422± 0.011 0.526± 0.018 0.469± 0.014 0.362± 0.186

T2V_D2V 0.694± 0.016 0.101± 0.019 0.394± 0.011 0.517± 0.013 0.447± 0.011 0.342± 0.185

T2V_WW2V 0.673± 0.016 0.101± 0.013 0.385± 0.014 0.493± 0.02 0.432± 0.016 0.337± 0.182

WW2V_C2V 0.696± 0.014 0.102± 0.013 0.418± 0.009 0.524± 0.012 0.465± 0.01 0.356± 0.193

T2V_C2V_D2V 0.723± 0.015 0.109± 0.011 0.42± 0.012 0.55± 0.016 0.476± 0.013 0.37± 0.185

T2V_WW2V_D2V 0.699± 0.022 0.097± 0.011 0.396± 0.013 0.522± 0.015 0.45± 0.013 0.354± 0.173

WW2V_C2V_D2V 0.714± 0.012 0.102± 0.016 0.41± 0.009 0.539± 0.011 0.466± 0.009 0.359± 0.191

WW2V_C2V_T2V 0.697± 0.018 0.108± 0.012 0.421± 0.009 0.526± 0.012 0.468± 0.01 0.363± 0.19

Table 5.17: Binary Relevance: Random Forest + ENN.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.612± 0.029 0.077± 0.012 0.297± 0.013 0.453± 0.021 0.359± 0.014 0.238± 0.175

T2V 0.647± 0.018 0.103± 0.014 0.387± 0.016 0.46± 0.014 0.42± 0.015 0.286± 0.206

D2V 0.564± 0.017 0.145± 0.013 0.483± 0.009 0.388± 0.019 0.43± 0.015 0.276± 0.214

WW2V 0.517± 0.02 0.138± 0.016 0.507± 0.017 0.351± 0.015 0.415± 0.015 0.275± 0.2

D2V_C2V 0.555± 0.001 0.154± 0.01 0.516± 0.003 0.384± 0.002 0.44± 0.002 0.282± 0.227

D2V_WW2V 0.567± 0.017 0.147± 0.01 0.513± 0.013 0.388± 0.012 0.442± 0.011 0.295± 0.204

T2V_C2V 0.676± 0.023 0.136± 0.013 0.445± 0.016 0.492± 0.016 0.467± 0.014 0.327± 0.219

T2V_D2V 0.584± 0.023 0.144± 0.01 0.488± 0.015 0.401± 0.018 0.44± 0.016 0.284± 0.224

T2V_WW2V 0.561± 0.024 0.154± 0.016 0.505± 0.018 0.388± 0.018 0.439± 0.017 0.297± 0.207

WW2V_C2V 0.593± 0.018 0.163± 0.011 0.539± 0.013 0.419± 0.014 0.471± 0.011 0.324± 0.219

T2V_C2V_D2V 0.638± 0.022 0.165± 0.013 0.516± 0.018 0.449± 0.02 0.48± 0.017 0.324± 0.228

T2V_WW2V_D2V 0.57± 0.02 0.153± 0.013 0.517± 0.019 0.393± 0.017 0.447± 0.016 0.296± 0.219

WW2V_C2V_D2V 0.62± 0.018 0.172± 0.012 0.541± 0.015 0.434± 0.014 0.482± 0.012 0.322± 0.228

WW2V_C2V_T2V 0.609± 0.02 0.167± 0.011 0.533± 0.02 0.428± 0.014 0.475± 0.015 0.322± 0.228

Table 5.18: Binary Relevance: XGBoost + Fake Balancer.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

C2V 0.726± 0.028 0.046± 0.01 0.279± 0.013 0.562± 0.021 0.373± 0.015 0.252± 0.172

T2V 0.78± 0.019 0.066± 0.01 0.339± 0.005 0.586± 0.012 0.429± 0.005 0.306± 0.191

D2V 0.731± 0.019 0.098± 0.011 0.393± 0.01 0.533± 0.009 0.452± 0.008 0.303± 0.209

WW2V 0.713± 0.024 0.099± 0.011 0.402± 0.009 0.519± 0.016 0.453± 0.01 0.318± 0.196

D2V_C2V 0.725± 0.009 0.118± 0.014 0.427± 0.014 0.538± 0.0 0.476± 0.009 0.312± 0.228

D2V_WW2V 0.735± 0.02 0.122± 0.012 0.423± 0.012 0.54± 0.023 0.474± 0.015 0.326± 0.211

T2V_C2V 0.801± 0.024 0.082± 0.011 0.383± 0.015 0.619± 0.017 0.473± 0.016 0.339± 0.213

T2V_D2V 0.746± 0.012 0.102± 0.015 0.4± 0.009 0.552± 0.008 0.464± 0.007 0.318± 0.218

T2V_WW2V 0.745± 0.013 0.106± 0.014 0.404± 0.009 0.553± 0.01 0.467± 0.01 0.323± 0.21

WW2V_C2V 0.753± 0.02 0.11± 0.014 0.429± 0.011 0.572± 0.015 0.49± 0.011 0.345± 0.211

T2V_C2V_D2V 0.784± 0.012 0.114± 0.008 0.428± 0.008 0.592± 0.013 0.497± 0.008 0.35± 0.22

T2V_WW2V_D2V 0.754± 0.016 0.119± 0.02 0.422± 0.01 0.552± 0.012 0.478± 0.009 0.331± 0.215

WW2V_C2V_D2V 0.76± 0.017 0.124± 0.009 0.444± 0.013 0.57± 0.017 0.499± 0.013 0.35± 0.216

WW2V_C2V_T2V 0.785± 0.01 0.123± 0.015 0.435± 0.009 0.596± 0.012 0.503± 0.009 0.358± 0.215

Table 5.19: Binary Relevance: XGBoost + ENN.
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As highlighted by the results, the chosen resampling strategy induced an improve-
ment of F1 scores but also a worsening of EMA scores. This is mainly due to the
fact that every classifier trained on an undersampled dataset loses potentially useful
information relative to the majority class, which thus becomes harder to be correctly
predicted. This results in an improvement of the Recall and in a worsening of the
Precision (and thus of EMA), since more labels are predicted as relevant, especially
for the minority class, but more predictions turn out to be wrong. In our case, the
improvement of the Recall was higher than the worsening of the Precision: this explains
the general improvement of the F1 score.
As regards the tested inputs, it turned out that combined vectorization models outper-
formed the “basic” ones. In particular, combinations generated from the concatenation
of three vectorizations turned out to be the best for the classification task. It is in-
teresting to note that all the combinations including the Cast2Vec vectorization gave
significantly better results than those not including it: this confirmed the high discrimi-
native power of Cast2Vec model.
Based on the considerations just mentioned, we decided to perform a further selection
process on the vectorization models to be used in subsequent analysis, as described
in section 4.5.3. In particular, we decided to discard all the “basic” inputs and all the
inputs generated from the concatenation of two vectorizations. The only exception was
the Topic2Vec_Cast2Vec combination, which was not discarded thanks to its high perfor-
mance in spite of its low dimensions. Among the combinations not already discarded,
we identified the one named Topic2Vec_WeightedWord2Vec_Doc2Vec as the worst one
in terms of classification performance, probably because of the absence of the Cast2Vec
vectorization in its components. Therefore, we decided to submit it to statistical tests,
in order to compare it with other combinations to possibly highlight a significant differ-
ence and thus drop it out from subsequent analysis. As in section 5.6.2, the statistical
tests we performed were Student’s t-test and Mann–Whitney U test. Since a direct
comparison between vectorized inputs was not possible, we used as the benchmark all
the previously evaluated classifiers. For each classifier, we compared the performances
obtained (without resampling) using Topic2Vec_WeightedWord2Vec_Doc2Vec against
the performances obtained (without resampling) using the other 3 combined vectorized
inputs: a Bonferroni correction factor of 3 was thus applied to the test (i. e. the models
are significantly different if p-value < 0, 0167).
Tables 5.20, 5.21, 5.22, 5.23 and 5.24 show results of performed tests.

p-value p-value

Vectorized Input t-test U-test

T2V_WW2V_D2V T2V_WW2V_D2V

T2V_C2V_D2V 0.0007 0.0007

WW2V_C2V_D2V 0.0009 0.0007

WW2V_C2V_T2V 0.0037 0.0057

Table 5.20: Combined input comparison: Naive Bayes.



56 experimental analysis

p-value p-value

Vectorized Input t-test U-test

T2V_WW2V_D2V T2V_WW2V_D2V

T2V_C2V_D2V 0.0000 0.0001

WW2V_C2V_D2V 0.0010 0.0011

WW2V_C2V_T2V 0.0010 0.0011

Table 5.21: Combined input comparison: Logistic Regression.

p-value p-value

Vectorized Input t-test U-test

T2V_WW2V_D2V T2V_WW2V_D2V

T2V_C2V_D2V 0.0124 0.0156

WW2V_C2V_D2V 0.0013 0.0018

WW2V_C2V_T2V 0.0126 0.0046

Table 5.22: Combined input comparison: Support Vector Machine.

p-value p-value

Vectorized Input t-test U-test

T2V_WW2V_D2V T2V_WW2V_D2V

T2V_C2V_D2V 0.0001 0.0005

WW2V_C2V_D2V 0.0193 0.0106

WW2V_C2V_T2V 0.0117 0.0106

Table 5.23: Combined input comparison: Random Forest.

p-value p-value

Vectorized Input t-test U-test

T2V_WW2V_D2V T2V_WW2V_D2V

T2V_C2V_D2V 0.0004 0.0004

WW2V_C2V_D2V 0.0001 0.0003

WW2V_C2V_T2V 0.0010 0.0011

Table 5.24: Combined input comparison: XGBoost.
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All the performed statistical tests highlighted a significant difference between the
candidate vectorization (Topic2Vec_WeightedWord2Vec_Doc2Vec) and all the other
ones, irrespective of the selected classifiers.
Therefore, we decided to filter out Topic2Vec_WeightedWord2Vec_Doc2Vec from subse-
quent analysis.

5.6.5 Binary Relevance with Stacking

As stated in section 4.5.2, testing the Binary Relevance approach with Stacking was
computationally expensive, because of some constraints that our client had on the
usage of computational resources. Therefore, we decided to test it using only some of
the best combined inputs, found in the previous step, and all the selected resampling
strategies. As regards the chosen base classifiers for Stacking, we decided to choose
some combinations with three or four base classifiers, keeping in mind that Stacking is
most effective when base classifiers are significantly different.

. T2V_C2V T2V_C2V_D2V (Vectorized Inputs)

. LR (Stacking Classifier)

.

RF + SVM + LR

RF + SVM + XGB

RF + NB + SVM + XGB

(Base Classifiers)

. FB ENN (Balancers)

The evaluation was performed throguh stratified 10-fold cross-validation, as de-
scribed in section 5.2. Results are shown in Tables 5.25, 5.26 and 5.27.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.618± 0.012 0.133± 0.01 0.466± 0.011 0.455± 0.009 0.46± 0.01 0.356± 0.191

T2V_C2V [ENN] 0.705± 0.01 0.119± 0.007 0.431± 0.003 0.534± 0.008 0.477± 0.005 0.369± 0.193

T2V_C2V_D2V [FB] 0.647± 0.017 0.144± 0.011 0.488± 0.01 0.476± 0.009 0.482± 0.009 0.378± 0.193

T2V_C2V_D2V [ENN] 0.735± 0.022 0.121± 0.014 0.435± 0.008 0.561± 0.013 0.49± 0.009 0.378± 0.195

Table 5.25: Binary Relevance: Stacking [RF + SVM + LR].
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.632± 0.02 0.136± 0.016 0.473± 0.017 0.461± 0.016 0.467± 0.016 0.364± 0.191

T2V_C2V [ENN] 0.71± 0.022 0.121± 0.011 0.434± 0.014 0.536± 0.014 0.48± 0.014 0.372± 0.19

T2V_C2V_D2V [FB] 0.648± 0.023 0.143± 0.02 0.488± 0.013 0.478± 0.016 0.483± 0.015 0.377± 0.196

T2V_C2V_D2V [ENN] 0.742± 0.013 0.124± 0.012 0.44± 0.011 0.565± 0.012 0.495± 0.011 0.383± 0.198

Table 5.26: Binary Relevance: Stacking [RF + SVM + XGB].

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.628± 0.017 0.137± 0.008 0.474± 0.008 0.461± 0.01 0.468± 0.009 0.363± 0.193

T2V_C2V [ENN] 0.703± 0.021 0.12± 0.016 0.435± 0.014 0.534± 0.016 0.479± 0.015 0.37± 0.192

T2V_C2V_D2V [FB] 0.648± 0.018 0.147± 0.014 0.49± 0.011 0.477± 0.014 0.483± 0.012 0.373± 0.202

T2V_C2V_D2V [ENN] 0.74± 0.01 0.122± 0.014 0.439± 0.006 0.563± 0.007 0.494± 0.006 0.384± 0.193

Table 5.27: Binary Relevance: Stacking [RF + NB + SVM + XGB].

As can be seen from results, this approach did not improve the classification per-
formance: the obtained scores were in fact perfectly comparable with those obtained
with previously Binary Relevance approaches. This was probably due to the incapacity
of base classifiers to capture and learn different facets of the given data: indeed, as
stated in section 2.4.3, Stacking is most effective when the base models are significantly
different.

5.6.6 Ensemble of Classifier Chain

The main drawback of the Binary Relevance approach was the inability of taking into
account the correlation between labels: therefore, as described in section 4.6, we decided
to deal with the problem testing the Ensemble of Classifier Chain approach. Almost all
the chosen classifiers were used with this approach, using as input all the selected
combined vectorizations (see section 5.6.4) without any resampling strategy (see section
4.6). Again, the only exception was represented by the Stacking classifier which, being
computationally expensive, was left out from this analysis.

.

T2V_C2V

T2V_C2V_D2V

WW2V_C2V_D2V

WW2V_C2V_T2V

(Vectorized Inputs)

. NB LR SVM RF XGB (Classifiers)

. FB (Balancers)
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The evaluation was performed throguh stratified 10-fold cross-validation, as de-
scribed in section 5.2. Results are shown in Tables 5.28, 5.29, 5.30, 5.31 and 5.32.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V 0.571± 0.021 0.09± 0.016 0.424± 0.017 0.431± 0.017 0.427± 0.017 0.281± 0.208

T2V_C2V_D2V 0.57± 0.011 0.076± 0.017 0.403± 0.013 0.423± 0.013 0.413± 0.011 0.288± 0.193

WW2V_C2V_D2V 0.546± 0.024 0.065± 0.011 0.378± 0.016 0.412± 0.023 0.394± 0.015 0.278± 0.172

WW2V_C2V_T2V 0.553± 0.009 0.079± 0.011 0.395± 0.011 0.415± 0.008 0.405± 0.009 0.287± 0.181

Table 5.28: Ensemble of Classifier Chain: Naive Bayes.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V 0.685± 0.028 0.171± 0.017 0.459± 0.018 0.484± 0.023 0.471± 0.015 0.324± 0.214

T2V_C2V_D2V 0.68± 0.018 0.138± 0.012 0.429± 0.02 0.481± 0.018 0.453± 0.013 0.338± 0.194

WW2V_C2V_D2V 0.611± 0.019 0.116± 0.013 0.405± 0.02 0.429± 0.014 0.416± 0.013 0.321± 0.175

WW2V_C2V_T2V 0.613± 0.018 0.121± 0.01 0.403± 0.011 0.427± 0.017 0.415± 0.012 0.324± 0.172

Table 5.29: Ensemble of Classifier Chain: Logistic Regression.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V 0.689± 0.02 0.178± 0.015 0.458± 0.018 0.482± 0.016 0.47± 0.015 0.293± 0.247

T2V_C2V_D2V 0.703± 0.026 0.173± 0.019 0.481± 0.022 0.498± 0.018 0.489± 0.019 0.357± 0.207

WW2V_C2V_D2V 0.685± 0.014 0.166± 0.016 0.468± 0.014 0.487± 0.013 0.477± 0.011 0.374± 0.187

WW2V_C2V_T2V 0.69± 0.022 0.175± 0.019 0.471± 0.019 0.489± 0.02 0.48± 0.018 0.372± 0.196

Table 5.30: Ensemble of Classifier Chain: Support Vector Machine.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V 0.425± 0.016 0.152± 0.009 0.618± 0.021 0.286± 0.011 0.391± 0.014 0.204± 0.235

T2V_C2V_D2V 0.308± 0.028 0.117± 0.012 0.713± 0.037 0.199± 0.017 0.311± 0.023 0.149± 0.205

WW2V_C2V_D2V 0.198± 0.018 0.087± 0.009 0.782± 0.025 0.123± 0.01 0.212± 0.015 0.098± 0.156

WW2V_C2V_T2V 0.227± 0.012 0.095± 0.009 0.769± 0.028 0.143± 0.006 0.24± 0.009 0.114± 0.17

Table 5.31: Ensemble of Classifier Chain: Random Forest.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V 0.678± 0.015 0.169± 0.012 0.474± 0.012 0.482± 0.013 0.478± 0.011 0.321± 0.231

T2V_C2V_D2V 0.677± 0.018 0.196± 0.012 0.527± 0.014 0.476± 0.011 0.5± 0.011 0.327± 0.246

WW2V_C2V_D2V 0.656± 0.015 0.203± 0.017 0.554± 0.02 0.46± 0.01 0.503± 0.012 0.328± 0.239

WW2V_C2V_T2V 0.654± 0.023 0.192± 0.012 0.541± 0.012 0.456± 0.015 0.495± 0.013 0.329± 0.236

Table 5.32: Ensemble of Classifier Chain: XGBoost.

As can be seen from the results, the performance obtained using Random Forest
as “base classifier” were much worse than those obtained using the same classifier
in the Binary Relevance approach. The reasons behind this bad result are difficult to
understand and need further study, but are probably related to the splitting strategy
adopted by the classifier during the generation of trees (see section 2.4.3), which tends
to favor splitting on the predictions made by previous classifiers in the chain, loosing
thus potentially useful information from input data.
As regards other models, some results highlighted an improvement in the Binary
Relevance approach, while others showed little or no change. In order to asses the
difference between every Classifier Chain model and the respective Binary Relevance
model, we decided to perform some statistical tests, comparing only models related to
the same combined input. As in section 5.6.2, the statistical tests we performed were
Student’s t-test and Mann–Whitney U test. Since for each Classifier Chain model we
tested 4 different inputs, a Bonferroni correction factor of 4 was thus applied to the test
(i. e. the models are significantly different if p-value < 0, 0125).
Tables 5.33, 5.34, 5.35 and 5.36 show results of performed tests.

p-value p-value

Vectorized Input t-test U-test

BR vs ECC BR vs ECC

T2V_C2V 0.0038 0.0023

T2V_C2V_D2V 0.0801 0.0378

WW2V_C2V_D2V 0.2100 0.0702

WW2V_C2V_T2V 0.0002 0.0009

Table 5.33: ECC vs BR comparison: Naive Bayes.
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p-value p-value

Vectorized Input t-test U-test

BR vs ECC BR vs ECC

T2V_C2V 0.0016 0.0007

T2V_C2V_D2V 0.7072 0.3957

WW2V_C2V_D2V 0.0305 0.0188

WW2V_C2V_T2V 0.2378 0.1537

Table 5.34: ECC vs BR comparison: Logistic Regression.

p-value p-value

Vectorized Input t-test U-test

BR vs ECC BR vs ECC

T2V_C2V 0.0000 0.0001

T2V_C2V_D2V 0.0000 0.0001

WW2V_C2V_D2V 0.0003 0.0009

WW2V_C2V_T2V 0.0000 0.0007

Table 5.35: ECC vs BR comparison: Support Vector Machine.

p-value p-value

Vectorized Input t-test U-test

BR vs ECC BR vs ECC

T2V_C2V 0.0846 0.0606

T2V_C2V_D2V 0.0095 0.0070

WW2V_C2V_D2V 0.0019 0.0029

WW2V_C2V_T2V 0.0080 0.0070

Table 5.36: ECC vs BR comparison: XGBoost.

As highlighted by the performed statistical tests, the ECC-XGB and the ECC-SVM
approach obtained significantly better performance than those obtained with the BR-
XGB and BR-SVM approach: this can be interpreted as an evidence of the effectiveness
of ECC approach in capturing correlation between labels. Moreover, looking at the
previous results of the models, it easy to observe an improvement of the EMA metrics,
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which clearly confirms the models’ ability to take into account label correlation and
thus of making more accurate predictions.

5.6.7 Stacking Aggregation

The last experiment we performed in our analysis was testing Stacking Aggregation
approach, which allows overcoming the main drawbacks related with Binary Relevance
and Classifier Chains. Indeed, thanks to this approach, it is possible to take into ac-
count the label correlation and counter-act the imbalance problem at the same time
(see section 4.7). As in the case of Binary Relevance with Stacking, also this approach
revealed to be computationally expensive: therefore, we decided to test it using the
same combined inputs, the same resampling strategies and the same combination of
base classifiers selected for testing Binary Relevance with Stacking (see section 5.6.5).

. T2V_C2V T2V_C2V_D2V (Vectorized Inputs)

. LR (Stacking Classifier)

.

RF + SVM + LR

RF + SVM + XGB

RF + NB + SVM + XGB

(Base Classifiers)

. FB ENN (Balancers)

The evaluation was performed throguh stratified 10-fold cross-validation, as de-
scribed in section 5.2. Results are shown in Tables 5.37, 5.38 and 5.39.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.655± 0.017 0.148± 0.015 0.476± 0.017 0.476± 0.019 0.476± 0.018 0.331± 0.219

T2V_C2V [ENN] 0.657± 0.026 0.152± 0.016 0.477± 0.018 0.476± 0.019 0.477± 0.018 0.32± 0.225

T2V_C2V_D2V [FB] 0.669± 0.026 0.155± 0.017 0.487± 0.023 0.486± 0.023 0.487± 0.023 0.336± 0.227

T2V_C2V_D2V [ENN] 0.681± 0.017 0.159± 0.015 0.49± 0.008 0.489± 0.012 0.489± 0.009 0.329± 0.228

Table 5.37: Stacking Aggregation: RF + SVM + LR.
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Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.663± 0.017 0.16± 0.011 0.478± 0.012 0.478± 0.009 0.478± 0.01 0.323± 0.226

T2V_C2V [ENN] 0.668± 0.015 0.161± 0.017 0.482± 0.01 0.481± 0.01 0.482± 0.01 0.318± 0.236

T2V_C2V_D2V [FB] 0.681± 0.021 0.165± 0.02 0.493± 0.017 0.494± 0.017 0.494± 0.016 0.341± 0.228

T2V_C2V_D2V [ENN] 0.69± 0.017 0.162± 0.019 0.498± 0.013 0.497± 0.011 0.497± 0.012 0.335± 0.233

Table 5.38: Stacking Aggregation: RF + SVM + XGB.

Vectorized Input ALO EMA PR-mic RC-mic F1-mic F1-mac

T2V_C2V [FB] 0.657± 0.018 0.159± 0.016 0.472± 0.014 0.473± 0.015 0.472± 0.014 0.319± 0.229

T2V_C2V [ENN] 0.657± 0.018 0.158± 0.011 0.473± 0.015 0.473± 0.016 0.473± 0.015 0.31± 0.232

T2V_C2V_D2V [FB] 0.674± 0.02 0.16± 0.011 0.485± 0.011 0.485± 0.012 0.485± 0.011 0.329± 0.231

T2V_C2V_D2V [ENN] 0.687± 0.02 0.165± 0.018 0.494± 0.013 0.494± 0.014 0.494± 0.013 0.331± 0.233

Table 5.39: Stacking Aggregation: RF + NB + SVM + XGB.

As can be seen from results, this approach did not improve the classification per-
formance: the obtained F1 scores were, in fact, comparable with those obtained with
previous approaches. However, looking at the EMA metrics, it turns out that the Stack-
ing Aggregation approach is significantly better than the Binary Relevance approach
with Stacking used as binary classifier: this can be interpreted as evidence of the effec-
tiveness of the Stacking Aggregation approach, which is able to capture the correlation
between labels and thus to make more accurate predictions.





6
R E S U LT S A N D F U T U R E D E V E L O P M E N T S

In this chapter we discuss the results of our work, making some considerations over the
different approaches we used and the input vectorizations. Then we propose possible
future developments looking at different architectures and target metadata.

6.1 results

The goal of our thesis was to study the possibility of providing automatic suggestion
to human experts in order to speed up the process of tagging. Our work laid the
foundations to further explore a way to automate this process, and obtained interesting
results in this direction, showing how movie summaries can be useful to the prediction
of movie metadata. Using Binary Relevance as a benchmark classification method,
we analyzed the different vectorizations methods and the contributions of balancing
techniques. Among the different vectorization, TF-IDF and Bag-of-Words resulted
inferior to the others text vectorizations in the F1-micro metrics (see section 5.6.2), as
confirmed the statistical tests of Student’s t-test and Mann–Whitney U test, and thus
have been discarded. We then proceeded testing balancing techniques, highlighting
the obtained improvements and drops in performance metrics, depending on the used
technique: in fact ENN showed a significant increase in the recall metric and F1-micro
metric, despite the lowering of the precision, while the other techniques we choose,
instead, were not effective, lowering the score of the of all the classification methods
we tested. Combining different vectorizations, we observed how those combinations
could enhance the classification metrics, especially when a domain-specific feature, as
our proposed Cast2Vec, is used with text vectorizations. The best results were obtained
by using concatenations of three vectorizations, in the specific two text vectorization
and the Cast2Vec vectorization (see section 5.6.4). Furthermore, we addressed the
importance of approaches that account for mood correlation using ECC and Stacking
Aggregation, which were able to produce, on average, a greater number of exactly
matching predictions with respect to approaches like Binary Relevance, which don’t
capture this information. The best models of our thesis come in fact from the ECC
approach with XGBoost as a base classifier (see section 5.6.6), with which we obtained
F1-micro values of 0.503 and EMA of 0.203.

6.2 future developments

Our work was centred on investigating the possibility of the automatic prediction of
mood metadata. By focusing on it, we set the stage for future studies on the different
metadata designed by Mediaset Strategic Marketing. In fact, starting from our multi-
label architecture, we can assume its reuse for predicting other metadata having similar
properties to moods (e. g. demographic target), but it’s also easy to imagine some archi-
tectural adaptations to predict metadata with different properties, like the single-label
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ones.

Possible feature developments could also include improvements to our machine learn-
ing architecture. A first improvement could be to modify the implementation of the
Ensemble of Classifier Chains model we used, in order to cope with the imbalance
problem, as recently described in [28]. Another refinement could be to test the Stacking
based approach using more and new combinations of base classifiers, in order to see if
they could produce better results.
Another possible development could be to address the classification task testing deep-
learning approaches, such as Convolutional Neural Networks and Long Short Term Memory
Networks, which proved their effectiveness in many natural language areas [20, 24, 15].

Given the improvement we obtained by using Cast2Vec vectorization as a domain-
specific feature, we could imagine the possibility of identifying more domain-specific
information able to produce similar improvements, such as the classical movie genre
or the information regarding the technical cast (i. e. movie director, music director,
costume designer), which are easily available on the internet. Besides domain-specific
features, another improvement over the simple usage of textual information could be
the addition of features extracted from audio and video sources. These features could
be used in combination with text vectorizations or could completely replace them,
changing thus the way of addressing the classification problem. Working with audio
data, as presented in [7], it could be possible to analyse different audio frequencies
to extract characteristics typical of certain movies, such as explosions, gunfire and
romantic music. Working with video data instead, it could be possible, for example,
to perform a chromatic analysis of the source as well as applying techniques for shot
detection and motion intensity estimation. For studies on this subject, Convolutional
Neural Networks should be taken into consideration, thanks to their ability to extract
complex features from visual inputs [49].
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A
A P P E N D I X : M O O D D E S C R I P T I O N

Mood Description

Breathtaking The rhythm and the frenzy leave without
breath.

Rousing The inspiration, the grandeur and the
heroism of the story rouse the viewer.

Feel-good The content communicates a sense of
well-being, puts the viewer in a position
of strength.

Evasive The vision is not very demanding, enter-
tains the viewer.

Hilarious The content capitalizes on making the
viewer laugh.

Surprising The content is capable of generating sur-
prise compared to expectations gener-
ated by consolidated narratives (positive
sense).

Comfortable Content that instills tranquility, trust.

Sparkling Content that enhances aesthetic dimen-
sions, immersing the viewer in it.

Dreaming Content that activates the oneiric dimen-
sion.

Sexy The content produces sexual excitement.

Terrifying The content aims to scare, to terrorize.

Disturbing The content arouses anxiety, anguish.
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Mood Description

Unsettling The content is capable of generating sur-
prise compared to expectations gener-
ated by consolidated narratives, manag-
ing to create disturbance in the viewer
(negative sense).

Poignant Makes the viewer cry.

Bittersweet Content not entirely comforting nor dis-
heartening: pleasure veiled with sadness.

Inspiring Content that gives food for thought and
inspiration for one’s own life.

Cerebral Content in need of an intellectual effort
to be fully enjoyed.

Melancholic The content arouses a vague sadness,
even sweet or pleased.

Romantic The content is characterized by the ex-
pression of love.

Angry The content arouses anger and indigna-
tion in the viewer.
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