
POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

A Markov chain model for

dependability evaluation and fault

prediction on UPS systems

Supervisor: Prof. Francesco Amigoni

Co-supervisor: Prof. Letizia Tanca

M.Sc. Thesis by:

Antonio Gianola, 877235

Academic Year 2017-2018

Ai miei amici, ai miei genitori e a mia sorella.

Abstract

Nowadays, electricity is one of the key assets in most of the activities. Just

think of the importance of this power to companies, hospitals, or data ware-

houses where a blackout of a few minutes could cause injuries, businesses

disruptions, or data loss. One of the solutions most used by companies to

deal with outages involves the use of Uninterruptible Power Supply (UPS),

electrical systems able to provide energy to a load when the input source

fails. It is redundant to specify how essential these devices are and how

much dependability is crucial to the system. Up to now, this last property

is mainly guaranteed by specific and sophisticated design techniques, and by

log files generated automatically to keep track of how the system behaves.

Usually, the files are manually managed by the maintenance service, that has

the purpose of locating and replacing the damaged components. Since this

approach is mostly manual and has several limitations in terms of prediction

capabilities, the need came to derive automatic techniques for analysing the

generated data and creating estimates on how the system will behave in the

future. Without any knowledge of the domain and of the system, by using

Artificial Intelligence techniques. In this thesis we build a model that tries

to capture the events leading to the failures and to predict the happening

of malfunctions, allowing an operator to repair the system before it fails.

We focus our attention on Markov chain models, and through the thesis, we

discuss the operations performed to build the models in our application. In

the end, we develop an easy-to-use software program able to compute and

display the models.

I

Sommario

L’energia elettrica è una delle risorse chiave per la maggior parte delle at-

tività. Basta pensare alla sua importanza per le aziende, gli ospedali o i data

warehouse dove un blackout di qualche minuto può causare infortuni, danni

economici o perdita di dati. Una delle soluzioni più usate per contrastare

le interruzioni di energia elettrica consiste nell’utilizzo dei gruppi di conti-

nuità (UPS), sistemi elettrici capaci di fornire elettricità al carico quando la

sorgente non funziona. È superfluo specificare come questi dispositivi siano

essenziali e come l’affidabilità sia un aspetto fondamentale di questi sistemi.

Ad oggi quest’ultima proprietà è garantita da specifiche e sofisticate tecniche

di progettazione e da file di registro generati automaticamente per tenere

traccia del comportamento del sistema. I file solitamente vengono controllati

manualmente dal servizio di manutenzione che ha il compito di sostituire

eventuali componenti danneggiati. Dato che queste tecniche manuali hanno

diverse limitazioni in termini di previsione dei malfunzionamenti futuri, è

sorto il bisogno di creare un metodo automatico capace di analizzare i dati

generati e fornire stime di come il sistema si comporterà in futuro. Senza

nessuna conoscenza di dominio ed utilizzando tecniche di Intelligenza Artifi-

ciale, in questa tesi costruiremo un modello del sistema capace di catturare

le dipendenze fra i guasti e prevedere l’arrivo di malfunzionamenti, perme-

ttendo quindi ad un operatore di riparare il sistema prima che si guasti.

Concentreremo la nostra attenzione sulle catene di Markov e, durante la tesi,

descriveremo le operazioni compiute per creare il modello nel caso della nos-

tra applicazione a sistemi UPS. Infine, svilupperemo un programma software

capace di generare e visualizzare i modelli.

III

Contents

Abstract I

Sommario III

1 Introduction 1

2 Preliminary notations and state of the art 5

2.1 System dependability . 5

2.2 Model-based methods . 7

2.3 Markov model . 9

2.3.1 Markov chain model 10

2.3.1.1 Learning . 14

2.3.2 Hidden Markov model 15

2.3.2.1 Learning . 16

2.4 Related work . 18

3 Problem setting 21

3.1 Application domain . 21

3.2 Main definitions . 22

3.3 Data available . 23

3.4 Goals and requirements . 25

3.5 Formalising the problem setting 26

3.5.1 Model selection . 26

3.5.2 message/alarm association 27

3.5.3 Alarm/maintenance actions association 28

3.6 Libraries and software used 31

4 Preprocessing and data analysis 33

4.1 Preprocessing of the data . 33

V

4.2 Data analysis . 35

4.2.1 Number of records in the event log file 35

4.2.2 Distribution events log file vs. UPScale 36

4.2.3 Event log file detailed analysis 38

4.2.4 Time between events analysis 40

4.3 Notation used to refer events and attributes 43

5 Markov chain model 45

5.1 Data selection . 45

5.2 Building the chains . 46

5.2.1 Example considering ∆T 49

5.2.2 Example considering N 49

5.2.3 Dealing with elements coming at the same time 50

5.2.4 Initial state . 52

5.3 State representations . 52

5.3.1 State representation: code 53

5.3.2 State representation: id/code 55

5.4 Introducing levels . 56

5.4.1 State representation: level**id/code 58

5.5 Transitions . 59

5.5.1 Preprocessing of the chains 59

5.5.2 Analysis of the transition matrix 60

5.5.2.1 Branching factor 61

5.5.2.2 Number of states 61

5.5.3 Labelling the transitions 62

5.5.3.1 Probability 62

5.5.3.2 Mean time and standard deviation 63

5.6 Postprocessing . 64

5.6.1 Adding maintenance actions 65

5.6.2 Adding service log file 66

5.6.3 Transition colouring 67

6 Implementation details and examples of use 69

6.1 Architecture . 69

6.1.1 Model . 69

6.1.2 View . 71

6.1.3 Controller . 72

VI

6.1.3.1 Summary of the methods 73

6.1.4 Transition matrix . 74

6.2 Examples of use . 75

6.2.1 code vs. id/code state representation 75

6.2.2 id/code vs. level state representation 77

6.2.3 Comparing different chain length (N) 80

6.2.4 Comparing different ∆T 83

7 Conclusions and future work 87

7.1 Conclusions . 87

7.2 Limitations . 89

7.3 Future work . 89

References 91

A List of the discovered models 97

A.1 Model 1 . 97

A.2 Model 2 . 99

A.3 Model 3 . 101

A.4 Model 4 . 103

A.5 Model 5 . 103

A.6 Model 6 . 105

A.7 Model 7 . 106

A.8 Model 8 . 108

B MakeModel Method 111

VII

VIII

List of Figures

2.1 An example of Markov chain with three states, taken from [1]. 13

2.2 The figure shows the parameters of an HMM. Xi is a state, yi
is a possible observation, aij is the transition probability, and

bij is the observation probability [2]. 16

3.1 The figure shows how the ∆T works in the event log file. . . . 27

3.2 The figure shows how the chain length parameter (N) works

when a sequence is too long. 28

3.3 The figure shows how the associations between alarms a1, a2
and maintenance actions f1, f2, f3 look like. 29

3.4 By using the graph representation, the figure shows an exam-

ple of a chain. 29

3.5 By using the graph representation, the figure shows an exam-

ple of three chains whose have shared states. 30

4.1 This figure shows the number of times in which every alarm

appears in the event log file. 37

4.2 This figure shows the number of times in which every message

appears in the event log file. 37

4.3 The figure shows a simple graph representing the correlations

between the events 8205, 9202, and 9203. 38

4.4 The figure shows the correlation between an alarm (4105) and

the messages immediately before (8405,4102). 39

4.5 The figure shows the relations between a set of messages (8405,4102)

that are associated with the same alarm (4105). 40

5.1 The figure shows the writing sequence done by the event logger

of the system. 50

IX

5.2 The figure shows the event with code 1203 represented by the

code state representation. 53

5.3 The figure shows the graph produced by considering the chains

in Equation 5.13. 54

5.4 This figure shows the event 1203 coming from the devices with

id 1 and 2 appears in the id/code representation. 55

5.5 This figure shows a graph representing the chains of Equation

5.14. 56

5.6 This figure shows the resulting graph obtained by considering

the chains defined in Equation 5.15. 57

5.7 This figure shows two states represented by using the Level**id/code

representation. 1∗∗2/1203 means that the message with code

1203 from Device 2 is in the first position of its chain. 58

5.8 The figure shows the pairs reported in Equation 5.18 organized

in a graph. 60

5.9 The figure shows the model without considering any postpro-

cessing. 65

5.10 The figure shows the associations between alarm 8521 and its

maintenance actions. 66

6.1 The figure shows how the main components of the application

exchange messages. 70

6.2 The figure shows the first window of the application. 72

6.3 The figure shows the class diagram of the view. 72

6.4 The figure shows a portion of a real transition matrix. 74

6.5 The figure shows a portion of the model reported in Figure

A.1 of Appendix A. 76

6.6 The figure shows a portion of the model reported in Figure

A.2 of Appendix A. 77

6.7 The figure shows a portion of the model reported in Figure

A.1 of Appendix A. 78

6.8 The figure shows a portion of the model reported in the Figure

A.2 of the Appendix A. 79

6.9 The figure shows a portion of the model reported in Figure

A.3 of Appendix A. 80

6.10 The figure shows a portion of the model reported in Figure

A.4 of Appendix A. 81

X

6.11 The figure shows a portion of the model reported in Figure

A.5 of Appendix A. 82

6.12 The figure shows a portion of the model reported in Figure

A.6 of Appendix A. 83

6.13 The figure shows a portion of the model reported in Figure

A.7 of Appendix A. 84

6.14 The figure shows a portion of the model reported in Figure

A.8 of Appendix A. 85

A.1 Model 1. 98

A.2 Model 2. 100

A.3 Model 3. 102

A.4 Model 4. 103

A.5 Model 5. 104

A.6 Model 6. 105

A.7 Model 7. 107

A.8 Model 8. 109

XI

XII

List of Tables

2.1 This table shows the typical Markov models used depending

on the situation [3]. 9

3.1 This table shows how the event log file is structured. 23

3.2 This table shows how an UPS reports an event. 24

3.3 This table shows the information contained the UPScale. . . . 24

4.1 This table shows the information extracted from the event log

file of Table 3.2. 34

4.2 This table shows the relation between event code and event

type. 35

4.3 This table shows the relation between event code and mainte-

nance actions. 35

4.4 This table shows the number of events for each device. 36

4.5 This table shows the number of events by type for each device. 36

4.6 This table shows the number of events by type for each day. . 36

4.7 This table shows the mean, the standard deviation, the mini-

mum, and the maximum of the TBE for each day. 41

4.8 This table shows the mean, the standard deviation, the mini-

mum and the maximum of the TBE for each device, for each

day. 42

5.1 This table shows a portion of the dataset used to build the

chains. 47

5.2 This table shows a portion of the dataset including the times-

tamp. 49

5.3 This table shows a portion of the dataset where we have many

messages. 49

XIII

5.4 This table shows a portion of an event log file where three

messages are registered at the same time. 51

5.5 This table shows a portion of an event log file where one mes-

sage and one alarm are coming at the same time. 52

5.6 This table shows a portion of the dataset including the times-

tamp, the device id, and the event code. 53

5.7 This table shows a portion of the dataset with 6 messages and

2 alarms. 57

5.8 This table shows the branching factor of the model with re-

spect to the state representation. 61

5.9 This table shows the number of the states with respect to

different states representation and model parameters. 62

5.10 The table shows a row of the transition matrix. 63

5.11 This table shows the relation between event code and mainte-

nance actions. 65

5.12 This table shows two records of the service log file. 66

6.1 This table contains a summary of the primary methods of the

controller. 73

XIV

Chapter 1

Introduction

Our world is more and more dependent on electricity: anyone who offers us a

service or produces goods needs it. Just think of the importance of this power

to companies, hospitals, or data centers, where a blackout of a few minutes

could cause injuries or fatalities to people, severe businesses disruptions, or

data loss.

For these reasons, companies have implemented several solutions to guar-

antee theirs services in face of electric power shortages. One of the most

used solutions involves Uninterruptible Power Supply (UPS), electrical sys-

tems able to provide energy to a load when the input source fails. These

systems can increase their size easily from units designed to protect a single

computer to large units powering data centers. The largest UPS is a 46-

Megawatt Battery Electric Storage System, in Fairbanks, Alaska, built by

ABB in 2003, and it provides power to the city during outages [4].

It is redundant to specify how these devices are essential and how the

dependability is a crucial aspect for them. Up to now, this property is guar-

anteed by specific and sophisticated design techniques and by log files gen-

erated automatically to keep track of how the system behaves in order to

repair it as soon as possible in case of failure. There are several limitations

of this approach solutions; the design phase can be performed only by skilful

people, without any chance to take into account the actual behaviour of the

system during its operation and therefore without considering the hidden

variables that affect the rising of failures. By using the log files, we must

necessarily wait for a failure of the system before performing any reparation.

Moreover, a manual analysis of these files could require a long time affecting

the repairing time. Therefore, the need to create an automatic method able

to analyse the data and provide insightful information on the working of the

system.

In this thesis, we focus our attention on the log files provided by a com-

pany and produced by a complex system composed of different UPSs, with

the goal of creating a behavioural model able to relate with each other the

events occurring within the devices. Our objective is to generate a series of

models based on Artificial Intelligence techniques, to predict the happening

of malfunctions, and allow operators to preventively act on the system be-

fore it fails. In particular, we will focus on Markov chain models, statistical

models capable of capturing dependencies between events occurring during

time. In the thesis, we will not use any knowledge of the system, therefore

all the dependencies will be extracted automatically from the data.

During the thesis, we encounter the restriction of having a limited amount

of data; an initial analysis is devoted to understand how these data are

generated from the UPS system and written on the log file. This problem

will, in fact, limit the prediction capability of the created models.

We will associate to each other the events of a UPS system by developing

a method able to extract the dependencies between them. Our goal is to

create a model that includes the relations between the events occurred in a

system. For each association between events, we will include some attributes

able to quantify their strength. We will especially pay attention to the post-

processing phase, fundamental in our context to add the maintenance actions

needed to repair a UPS in case of failure and to display the transitions with

graphical techniques. In the end, we will create a software program able to

ask the user for the parameters and to generate a model reported as a graph

in order to improve the immediacy and clarity of fruition by an operator of

the company that provided the data. Through this thesis, we will demon-

strate the utilisation and the effectiveness of our approach in dependability

evaluation and fault prediction for UPS systems.

The literature offers interesting papers related to our work, spanning from

the use of Bayesian network for dependability analysis on circuit breaker [5]

to the use of a Markov chain to model the correlations between faults in a

complex system [6]. Different papers use predictions techniques based on

domain knowledge to elaborate a model of a UPS system [7–9]. However dif-

ferently from these works, we do not have any prior knowledge of the system,

but our analysis is based only on the events produced and the associations

among them.

2

The thesis is structured as follows:

• Chapter 2 (Preliminary notation and state of the art): in this

chapter we present the state of the art and the notation used to define

the Markov chain and Hidden Markov model.

• Chapter 3 (Problem setting): in this chapter we define the context

of the thesis, its main goals, the data provided, and the tools used.

• Chapter 4 (Preprocessing and data analysis): here we show the

process followed to analyse the data provided by the company.

• Chapter 5 (Markov chain model): in this chapter we present the

steps required to build a Markov chain, including we also include the

postprocessing phase.

• Chapter 6 (Implementation details and examples of use): we

describe the architecture developed and we compare how the model

behaves by changing its parameters.

• Chapter 7 (Conclusions and future work): we briefly summarize

the thesis and discuss the future steps to improve our work.

3

4

Chapter 2

Preliminary notations and state

of the art

In this chapter, we review the state of the art of the most important tech-

niques relevant to this thesis. In Section 2.1, we show the different approaches

to analyse the System Dependability by comparing the Measurement-Based

methods and the Model-Based methods. In Section 2.2, we discuss the dif-

ferent types of Model-Based methods by comparing the Combinational ap-

proach and the State-Space approach. In Section 2.3, we present the Markov

models by focusing our attention on Markov Chain and Hidden Markov Mod-

els. In Section 2.4, we review the most important work related to my thesis.

2.1 System dependability

For many physical systems, one of the most important properties is the de-

pendability. The dependability of a system is its ability to deliver a service

that can be trusted. A service is defined as the set of outputs perceived by

the user and a system failure is a deviation from the correct service and it is

usually assumed that failures are caused by random events. The most critical

dependability attributes are reliability, availability, safety and maintainabil-

ity.

A system does not always fail in the same way, according to [10] there

are three main classes of faults: design faults, physical faults and interaction

faults. When a design faults, most of the time, it is generated due to designers

or developers who can forget unforeseen situations of the system. A physical

faults depends on the components used to build the system. The typical way

to remove these faults consists of replacing the component with a new one.

An interaction faults regards the exchange of messages among the system

components. Most of these faults can be avoided by providing a deepened

analysis during the design phase.

Some important tools which designers and developers of a dependable

system must count on, according to [10], are: fault prevention, fault toler-

ance, fault removal and fault forecasting : these aspects must be considered

to improve the dependability of a system. For instance, the fault removal

concerns how to reduce the number or severity of faults and is related to

monitoring and maintenance strategies. In order to minimise the mainte-

nance cost, two policies are possible: proactive maintenance tries to prevent

the component or system failure. While in the reactive maintenance the

failure of the system triggers an action. The fault tolerance is the property

of delivering the correct service in the presence of faults and it is typically

reached by duplicating some components in the system, according to [11],

the redundancy can be performed on different levels: hardware, software,

time or information, depending on the system a specific level may be better

than another. Fault prevention and forecasting are archived by using fault

identification and detections strategies.

According to [12], there are two main methods to evaluate and analyse

the dependability of a system:

• The Measurement-Based method requires to observe and to measure

the behaviour of the components of a system in its operational envi-

ronment; This method gives the most credible results, but it may be

unfeasible or too expensive. In some cases, a copy of the system is

tested to measure these parameters and, it could cause the ending of

the working life of the system with money wasting.

• The Model-Based method is preferable in those cases where is impossi-

ble to replicate a copy of the original system. This method involves the

construction of a model by defining and abstracting the main elements

and properties of the system. The resulting model should be accurate

enough to give a proper evaluation of the dependability.

6

2.2 Model-based methods

Dependability evaluation research comes up with a variety of Model-based

methods. While each method relies on a specific level of abstraction and/or

system characteristics, all the Model-based methods share some prior domain

knowledge. We distinguish two different main paradigms of Model-Based

methods: Combinational models and State-Space models.

Combinational models represent the system by using logical connections.

These methods are also known as qualitative model-based representations

[13]. In these models, the prior domain knowledge is composed of a funda-

mental understanding of the process using experience and evidential informa-

tion. The model is developed thanks to the understanding of the physics of

the process with the aim to capture knowledge in a formal methodology. The

structure of a system is expressed by using logical interconnections of compo-

nents. The notation usually is quite intuitive and easy to manipulate. Many

combinational model techniques have been applied to dependability evalua-

tion and fault detection problems: Fault Trees, formally described by [14],

Reliability Block Diagrams [15], and many other models.

Combinational model techniques have also been applied to UPS systems

using the Fault Tree Analysis to identify all the potential causes leading the

system failure [7]. That work proposes a technique to estimate the failure

rates, the mean time between failures, and the reliability of five UPS topolo-

gies. In that work, to develop the model it is required a previous knowledge of

the system in terms of main sub-components and interconnections. Moreover,

they don’t use any specific data to compute the overall failure probability but

they consider the literature probability of an event causing a failure. Also

the Reliability Block Diagram method to model UPS system availability and

reliability is proposed [8,9], however, this work does not consider the causes

of a failure and it is difficult to perform a fault identification analysis.

Note that It is not always possible to use a combinational technique since

sometimes there is not enough prior domain knowledge to model the sys-

tem behaviour. Moreover, the modelling power if this technique might be

inefficient because the combinational techniques assume the statistical inde-

pendence of the events. In real systems the events are not independent, in

these cases, a State-Space model is more advisable.

State-space models represent the behaviour of the system in terms of

reachable states and probabilistic dependence between states. We assume

7

that there is a hidden state of the system that evolves with time, possibly

as a function of the inputs, and generates the observations. The goal is to

exploit the observation to infer the hidden state up to the current time. This

category of models is also known as History-based methods [16]. State-Space

models provide a general framework for analysing deterministic and stochas-

tic dynamical systems that are measured or observed through a stochastic

process. The prior knowledge needed, in this case, is only composed of a

large set of historical process data. This knowledge is transferred to the

model after a feature extraction process that has the aim to extract all the

useful information from the historical data. The state space analysis may be

computationally expensive because of the number of states of the model and

the number of features used to elaborate it. Models as Markov chains [17],

and Petri nets [18], and Bayesian networks [19] belong to this category. In

all these methods, a state can be considered as a specific configuration of the

system that holds for an interval of time. An event can change the system

configuration and consequently the state of the model. Given a set of ran-

dom variables that represent the system configuration at a specific time, the

modeller has two main choices: either specifying the joint probability distri-

bution or asserting a suitable set of independence assumptions, that can be

learned from data. If we define every variable as independent of the others,

the joint distribution can be easily obtained by multiplying the probabilistic

parameters. However, assuming the complete independence of the variables

is unrealistic for most systems. By considering a complete dependence of

the variables, we create an opposite problem, in which it is computationally

impossible to analyse and create the state space. The best solution consists

of providing a reasonable set of information concerning the dependence and

independence of the variables.

There are many published papers about dependability and fault analysis

by using State-Space models. For instance [20] has studied how to develop

a Bayesian network to support the fault analysis and the reliability estima-

tion of a power system nodes architecture. The result is a versatile tool to

automate the construction of models driven by probabilistic distribution of

variables. A use of State-Space model for failure analysis is presented in [18],

where the authors try to overcome the Combinational models by developing a

Petri network, that can be constructed to represent the cause-effect relation-

ship between events. Fault detection and dependability analysis have also

been applied to intermittent faults of electronic system [21], where the many

8

factors that may cause intermittent faults are modelled by using a Markov

model. The data are taken from US military and electronic industries. The

faults are divided into three categories: drift, intermittent, and burst fault

and the goal of the model is to determine the true alarms and false alarms.

The produced model is a three-state Markov model able to reduce the num-

ber of false alarms and increase the fault detection rate with respect to the

traditional two-state model.

The approaches to dependability evaluation and fault detection described

in the literature cannot be applied to our problem. We must exclude Combi-

national models because we have not enough domain knowledge to elaborate

a model. Moreover, we cannot use directly the State-space modelling tech-

niques because of the structure of the data, in which it is not clear which

are the dependent variables and the independent variables. An interesting

paper [5] proposes a Bayesian network framework for supporting the opera-

tions of circuit breakers. The aim of that paper is to introduce the use of AI

tools easy to be integrated and easy to use and the input data are taken from

the literature and regard the reliability of circuit breakers. We can identify

some analogies between that work and this thesis, especially in the goals of

the models developed. In this thesis, we use Markov chains to create an in-

novative model for operations and support in power-critical applications by

modelling the event correlations.

2.3 Markov model

In probability theory, a Markov model is a stochastic model used to model

randomly changing systems. There are four common Markov models that are

used in different situations, depending on whether every state is observable

or not, and on the presence of autonomous or controlled circumstances [3].

Fully Observable Partially Observable

Autonomous Markov chain Hidden Markov model

Controlled Markov Decision process Partially Observable

Markov Decision process

Table 2.1: This table shows the typical Markov models used depending on the situation

[3].

9

• Markov chain: it is the simplest Markov model. It represents the

state of a system through continuous or discrete time. All the states

of the model are fully observable by the observer. We describe the

Markov chain in Section 2.3.1.

• Hidden Markov model: it is a Markov chain for which the states

are partially observable. An observation is related to the state of the

system, but it is typically insufficient to precisely determine the state

[2]. We describe the Hidden Markov model in Section 2.3.2.

• Markov Decision process: it is a discrete time stochastic control

process. It provides the mathematical framework to model decision

making situations where the outcome is partially random and partially

decided by an agent. At each time step, the decision maker may choose

an action (a) based on the available set of actions (A) and the current

state x. The model responds by randomly changing the state into s′

and giving reward R(s, s′) [22].

• Partially Observable Markov Decision process: it is a generali-

sation of a Markov Decision process in which an agent cannot directly

observe the system. An agent chooses the best action depending on

the maximisation of the expected reward over a possible infinite hori-

zon. [23]

In our problem, it is impossible to identify an agent that takes actions and

affect the evolution of the system. So, we focus our analysis on Markov chain

model and Hidden Markov model.

2.3.1 Markov chain model

A stochastic process is a family of random variables, namely {Xn} where

n = 1, 2, 3.... The value xn of the random variable Xn at the time n is called

the state of the random variable at that time instant. The set of all possible

values that the random variable Xn can assume is called state space, namely

S.

When the dependence of xn+1 is entirely captured by the dependence on

the last sample xn we say that the stochastic process is a Markov chain.

More precisely, we have:

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn) = P (Xn+1 = xn+1|Xn = xn) (2.1)

10

where : xn+1, xn, ..., x1 ∈ S
Which is called Markov Property. We provide a definition of this property.

Definition 1 (Markov Property [24]:) A sequence of random variables

X1, X2, ..., Xn, Xn+1 forms a Markov chain, if the probability that the system

is in state xn+1, given the sequence of past states it has gone through, is

exclusively determined by the state of the system at time n.

We can think of the Markov chain as a generative model, consisting of a

number of states linked by transitions. Each time a state is visited, the

model outputs the symbol associated with that state.

The process is also characterised by a transition probability defined over

every combination of states. Let

P (Xn+1 = j|Xn = i) = pi,j (2.2)

denote the transition probability from the state i to the state j. If the

transition probability between two states is fixed and does not change with

time, the Markov chain is said to be homogeneous.

Definition 2 (Homogeneous Markov chain [17]) An homogeneous Markov

chain on a finite or countable set S is a family of random variables X0, X1, ..., Xn

such that:

P (Xn+1 = j|Xn = i) = pi,j (2.3)

The distribution of the Markov chain is uniquely determined by the initial

distribution and the transition probabilities

φ(i) = P (X0 = i) Initial distribution (2.4a)

Pi,j = P (Xt = j|Xt−1 = i) Transition probability (2.4b)

Definition 3 (Initial distribution [17]) For each i ∈ S let φ(i) be the

probability of the system to be in state i at time n = 0 where we assume that:

φ(i) ∈ [0, 1] (2.5a)∑
i∈S

φ(i) = 1 (2.5b)

11

In order to be valid, all the transition probabilities of a Markov chain must

satisfy the following properties:∑
j∈S

pi,j = 1 ∀i ∈ S (2.6a)

pi,j ≥ 0 ∀i, j ∈ S (2.6b)

In case of a system with a finite number of states, the transition can be

compactly represented by using the transition matrix P . The transition

matrix of a system composed by K states is:

P =


p1,1 p1,2 . . . p1,K
p2,1 p2,2 . . . p2,K

...
...

. . .
...

pK,1 pK,2 . . . pK,K

 (2.7)

A condition on P is that each row must add to unity.

The definition of transition probability given in Equation 2.3 may be

generalised to cases where the transition from i to j take place in a fixed

number of steps. Let m be the number of steps and denote pmi,j the m-step

transition probability.

P (Xm+n = j|Xn = i) = pmi,j (2.8)

pmi,j may be seen as the sum over all intermediate states, k, through which

the system passes in its transition from i to j.

pm+1
i,j =

∑
k

pmi,kpk,j (2.9a)

p1i,k = pi,k (2.9b)

A directed graph gives the dynamics of a Markov chain with a state space

S and transition matrix P with nodes representing the individual states and

the edge labelled by the probability of possible transition. In Figure 2.1, a

simple example of a Markov chain is shown using a directed graph. According

to the figure, a bull week is followed by another bull week the 90% of the

time, a bear week 7.5% of the time and a stagnant week by another 2.5%.

Labelling the state {1 − bull, 2 − bear, 3 − stagnant} the transition matrix

is:

P =

 0.9 0.075 0.025

0.15 0.8 0.05

0.25 0.25 0.5

 (2.10)

12

Figure 2.1: An example of Markov chain with three states, taken from [1].

Now, we consider the problem of determining the probability of a sequence

of states. Given a sequence of states s0, s1, ..., sn ∈ S where n is the length

of the sequence, and pi,j the probability reach the state sj given the state si .

The probability of the entire sequence is computed as:

P (s0, s1, ..., sn ∈ S) =
n∏

i=1

pi-1,i (2.11)

This allows the model to be applied to sequences of arbitrary length. By

considering the example introduced by the Figure 2.1, we can compute

the probability of the sequence (Bull, Bull, Bear, Stagnant), respectively

(s1, s1, s2, s3) by using 2.11.

P (s1, s1, s2, s3) = p1,1 ∗ p1,2 ∗ p2,3 (2.12a)

= 0.9 ∗ 0.9 ∗ 0.075 ∗ 0.05 = 0.003 (2.12b)

The most known examples of Markov chains are:

• Random walk: it is a stochastic random process, that describes a path

that consists of a succession of random steps on some space such as the

integers. An elementary example can start from 0 and move +1 or -1

with equal probability. The move depends only on the current position

because of the Markov property. The transition probability to reach

the next smaller or larger integer are both 0.5.

13

• The weather example: given the weather at the present moment, a

Markov chain can predict the weather in the next days. The evolution

of the weather can be modelled as a stochastic process.

2.3.1.1 Learning

When the transition probabilities are unknown we can learn them automat-

ically from the historical data of the system. The method implemented in

this thesis tries to extract a set of pairs from a set of sequences of states.

A pair represents a transition of the final model and it can be written as

(si , sj). To find pi,j we have to count the number of times where from the

state i we observe a transition to j, and divide it from the total number of

pairs that have i as starting point. Let us give a formal definition of the

concepts explained above:

s0, s1, ..., sn ∈ S (2.13a)

Q = (q0, q1, q2, ..., qT) | qi ∈ S (2.13b)

Where S is the set of states and Q is the sequence of states observed in a

single execution of the system. By observing the system K times, we can

obtain a set of different sequences with different length T0, T1, ..., TK . All

these sequences are collected in D, the set of all the data we have.

Qk = (qk0 , q
k
1 , q

k
2 , ..., q

k
Tk

) (2.14a)

D = {Q0, Q1, Q2, ..., QK} (2.14b)

The next step consists of exploding the sequences we have in a set of pairs.

Every pair (si , sj) represents an association between si and sj coming from

the sequences we have. All the pairs generated are inserted in the set F .

Ck = {(qkt , qkt+1)|∀t ∈ 0 : T k ∧ ∀k ∈ 0 : K} (2.15a)

= {(si , sj)|∀t ∈ 0 : T k ∧ ∀k ∈ 0 : K, qkt = si ∧ qkt+1 = sj} (2.15b)

F = C0 ∪ C1 ∪ ... ∪ Ck (2.15c)

In the end, the probability to reach the state j by being in the state i can

be computed as follows:

psi,sj = pi,j =
‖{(si , sj)|(si , sj) ∈ F}‖

‖{(si , x)|(si , x) ∈ C ∧ x ∈ S}‖
(2.16)

14

Where in the numerator we are counting the number of couples having both

si and sj and in the denominator we are counting the number of couples that

have si as first member.

2.3.2 Hidden Markov model

Hidden Markov model (HMM) is a statistical model in which the system

modelled is assumed to be a Markov process with unobserved states. An

HMM consists of two stochastic processes: a visible process of observable

symbols and an invisible process of hidden states. In simpler Markov chain

the states provide a single output. They are directly visible to the observer

and the transition probabilities are the only parameters. According to [25]

and [26], an HMM is defined by the following parameters:

• n: number of states of the model. Although the states are hidden,

it is practical to determine the number of different states. For many

practical applications there is a physical significance of a state. The

set of all possible states is denoted by

S = {S1, S2, ..., Sn}

The state at time t is denoted by St.

• m: number of different observation symbols. In HMM the different ob-

servations are no more equal to the states of the model. An observation

corresponds to the physical output of the system being modelled. We

denote a symbol as vi and the all set of symbols as

V = {v1, v2, ..., vm}

• Transition probability: the probability of reaching a state by start-

ing from a defined state is computed as in the classical Markov chain,

Equation (2.3). The probability of the hidden variable xt depends only

on the value of the variable xt−1 because of the Markov property. The

transition probability distribution A = {aij} is a stochastic matrix and

defines the connection between the states of the model.

• Observation probability: the probability distribution in each state

B = {bj(k)} where bj(k) is the probability that the symbol vk is the

output of the state Sj.

15

• Initial state distribution: as in typical Markov chain, it is defined

by π = πi1 < i < n, where πi is the probability that the model is in

state Si at t = 0.

The following notation is often used in the literature by several author [26]:

λ = (A,B, π) (2.17)

The observation probability is defined by the following formula and must

satisfy the following attributes:

bj(k) = P (vk = ot|st = j) (2.18a)

bj(k) ≥ 0, 1 ≤ j ≤ n, 1 ≤ k ≤ m (2.18b)
m∑
k=1

bj(k) = 1, 1 ≤ j ≤ n, 1 ≤ k ≤ m (2.18c)

Where vk denotes the kth symbol in V and ot the current observation.

Figure 2.2 shows the generic architecture of an HMM. Each oval shape

represents a state of the system we are considering. The random variable

y(t) represents an observation at time t and the arrows denote conditional

dependencies.

X1 X2 X3

y1 y2 y3 y4

b11b21

b12
b22

b31

b13
b14

b32

b33
b34

b24

a12 a23

a21

Figure 2.2: The figure shows the parameters of an HMM. Xi is a state, yi is a possible

observation, aij is the transition probability, and bij is the observation probability [2].

2.3.2.1 Learning

The learning is the operation of adjusting the HMM parameters to repre-

sent a sequence of observations in the best way. Depending on the appli-

cation there are several optimisation criteria for learning. We introduce the

16

Forward-Backward variables and the Baum-Welch algorithm by following the

steps provided by [26]. There is no way to solve analytically the problem of

maximising the parameters of the model given a specific sequence of obser-

vations. The algorithm finds a local maximum for P (O/λ) where O is an

observation sequence and λ is the HMM model.

Definition 4 (Forward variable) αt(i), called forward variable, is the prob-

ability of the partial observation sequence o1, o2, .., ot (until time t) and state

si at time t.

α1(i) = φibi(o1) (2.19a)

αt+1 =
N∑
i=1

αt(j)aijbj(ot+1) (2.19b)

P (O|λ) =
N∑
i=1

αT (i) (2.19c)

Definition 5 (Backward variable) The backward variable βt(i) is the prob-

ability of the partial observation sequence given the current state i.

βt(i) =
N∑
j=1

βt+1(j)aijbj(ot+1) (2.20a)

We define the a posteriori probability γt(i) as the probability of being in state

i given the observed sequence O.

γt(i) = P (st = i|O, λ) (2.21a)

γt(i) =
αt(i)βt(i)

P (O|λ)
(2.21b)

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(2.21c)

Secondly, we define ξt(i, j), the probability to be in state i at time t and

state j at time t+ 1, given the model and the observation sequence.

ξt(i, j) = p{st = i, st+1 = j|O, λ} (2.22)

By using the forward-backward variables we can rewrite ξt(i, j)

ξt(i, j) =
αt(i)aijβt+1(j)bj(ot+1)

P (O|λ)
(2.23a)

ξt(i, j) =
αt(i)aijβt+1(j)bj(ot+1)∑N

i=1

∑N
j=1 αt(i)aijβt+1(j)bj(ot+1)

(2.23b)

17

In fact the previously defined γt(i) can be related to ξt(i, j)

γt(i) =
N∑
j=1

ξt(i, j) (2.24)

We can now introduce the re-estimation formulas, that update the HMM

parameters of the model:

φ̄i = γt(i) (2.25a)

āij =

∑T
t=1−1ξt(i, j)∑T
t=1−1γt(i)

(2.25b)

b̄j(k) =

∑T
t=1,ot=vk

γt(j)∑T
t=1 γt(i)

(2.25c)

Based on the above procedure, we use iteratively λ̄ to repeat the reestima-

tion until some limiting point is reached. At each iteration, in the model

obtained, the probability of observing a specific sequence O is bigger than

the probability of the previous iteration.

2.4 Related work

Despite being a quite simple model with respect to other models, Markov

chains are used in several interesting applications as a statistical model for

real-world systems like speech recognition [27] and hand gesture recognition

[28]. The algorithm proposed by Google and known as PageRank is based

on a Markov process [1]. Furthermore, Markov chains are used in fault

detection, diagnosis and analysis, like in [29] that studies a diagnostic system

to detect incipient faults of a three-tank system. The Markov chain model

is also used to estimate the failure state probability of permanent magnet

AC machines [30], focusing on the prognosis of faults in the presence of

limited data. The results describe a new method to compute Markov model

parameters using different distributions and an algorithm to determine the

next most probable fault.

By using the consensus of a group of agents, [31] develops a fault diag-

nosis procedure based on Markov chain. In this work a set of agents share

information about observations and the most likely parameters of the general

system: when the convergence to the consensus is archived, the implemen-

tation of the fundamentals of fault analysis can start. A Markov model is

18

also used to model the correlation between faults in a complex electrical in-

frastructure [6]: the input data are composed of the events of the system.

Instead of using every record contained on the input files, the authors found

some relevant situations of important devices. Differently from most of the

approaches used in the fault analysis, they don’t build a nominal model of

the system but the model defines the behaviour and the relations of the

anomalous events.

19

20

Chapter 3

Problem setting

In this chapter, we describe and analyse the central aspects of the problem we

have worked on. In Section 3.1, we illustrate the application domain of the

system. In Section 3.2, we provide the main definitions used in this thesis.

In Section 3.3, we describe the main aspects of the initial data. In Section

3.4, we define the requirements and the goal of the project. In Section 3.5,

we formalise the problem setting. In Section 3.6, we define the libraries used

to develop the application.

3.1 Application domain

This work is focused on systems composed by different Uninterruptible Power

Supply (UPS). The main goal of those systems is to provide uninterrupted,

reliable and high-quality electric power for vital loads. In facts, they protect

sensitive loads against power outages, overvoltage, or undervoltage condi-

tions. Applications of UPS systems include medical facilities, server farms

and computer systems, industrial processing, and telecommunications [32].

A UPS is a complex system that contains many sub-components inter-

connected. A single UPS can be connected, in parallel or in series, to other

UPS, with the purpose of creating a redundancy of the system. In case of

a fault on a single UPS, the other part of the system can continue to work.

During operation, a UPS can issue messages or alarms that are stored in the

log file of the system.

Up to now, given an alarm, a set of possible inspection and maintenance

actions is defined in the service manual of the system, but there is no infor-

mation on which one to prioritise first. However, it is likely that a failure

mode is more common than others. By considering the log file and the ser-

vice manual provided by the company that collaborated to this thesis, we

characterise the probability of a failure mode with respect to another. A

user will be able to prioritise different inspection and maintenance actions,

so the result could be an overall improvement of the system time to repair.

3.2 Main definitions

These are the main definitions of the elements used in this document.

• System: It is composed of a set of UPS that are connected together.

• Event log file: The file that contains all the data generated by the

system. The company that follow this thesis provided this file to us.

• Device: It is a single UPS. A device can generate events that are

stored in the event log file.

• Sub-component: It is composed by the set of the internal components

of a UPS. Each sub-component is connected to others and each sub-

component has an ID code in order to identify it in case of fails.

• Event: It is a record in the event log file generated by the device. It

can be a message or an alarm.

• Message: It is a non-critical fault and it is not associated with a

maintenance strategy.

• Alarm: It is a hard fault. If an alarm occurs the device is blocked.

The customer service is needed to repair it.

• Customer service: It is a separate operating unit of the company

with the task of repairing the UPS systems of the customers.

• Maintenance strategy: It is a set of maintenance actions performed

by the customer service in order to repair a device after an alarm.

Usually after an alarm there are a lot of sub-components that can be

broken. For each alarm, the maintenance strategy is a list of sub-

components to change or check.

22

• Maintenance action: It is a single action that the customer service

can take in order to repair a UPS in case of fails.

• Service log file: The file that contains all the maintenance actions

performed on the system by the service. Every maintenance action is

associated with an alarm. The company did not provide this file to us,

so we hypothesise its existence in Section 5.6.2.

3.3 Data available

Now, we show the structure of both the event log file and the UPScale, which

were provided by the company that collaborated to this thesis. The event log

file is a table in which columns represent the device that generate an event

and rows represent the occurrences of those events. An example of the event

log file is reported in Table 3.1, A,B,C,D,E, F are the events that occur

during the execution of the system. For instance, the event A is generated

by the device 1, the events B and C are generated by the devices 1 and 5

and they occur at the same time, namely 2.

Devices

Time 01 02 05 06

1 A

2 B C

3 D

4 E F

Table 3.1: This table shows how the event log file is structured.

When two events occur in the same row but with different columns it

means that they are happening at the same time but from different devices.

The time column represents the succession of the events without giving us

information about the amount of time between these events. By considering

the example introduced before, the events A and B may happen approxi-

mately at the same time, in an hour, or in different days. In the event log

file, every event is written as a plain string that contains a set of attributes.

Table 3.2 shows how the event A of the example could appear.

23

01: 09.05.17 14:18:38 c=1202 s=miL- MAINS RECT. FAULT

Table 3.2: This table shows how an UPS reports an event.

We can already identify a set of information related to each event:

• Device Number: reported at the beginning of each string that is the

same number of the column where the event appears.

• Date: represents the instant of time at which an event is written in

the log file. That different with respect to the instant of time at which

the event is generated, we describe in Section 5.2.3 how resolve this

potential problem.

• Event information: represents a description of the event that has

been generated. In the event log file, an event is described by both

a code and a text description. The code is usually number between

1000 and 9999, in some cases it is composed by a letter followed by 3

numbers, for instance A101. The text description is composed of few

words, for instance MAINS RCT CTRL ERROR.

The second file provided by the company and used in our analysis is the UP-

Scale. When a failure occurs, this file contains all the information regarding

that failure mode. The customer service uses UPScale as the reference guide

to maintain and repair a UPS. The main structure of this file is reported in

Table 3.3 where we show the events with code 1201 and 1203.

Code Display and Newset

Test

Mesg. Alr. UPS Upscale

1201 MAINS RCT CTRL

ERROR

X Yes A software control

alarm, Action: Re-

placement of the con-

trol board XXXXX is

probably required.

1203 MAINS RECTI-

FIER OK

X Yes Rectifier Input mains

is available and

within tolerances.

Table 3.3: This table shows the information contained the UPScale.

24

The first two columns are used to identify an event by including both a

code and a text description. Subsequently, there are Boolean information

about the event type (message or alarm), an event cannot belong to both

the categories. In the end, there is a natural language description on what

to do to repair the UPS in case of fail. As we see from the data, when an

alarm occurs, there is an action or a set of actions to take in order to repair

the device. On the other hand, when a message occurs it is reported the

reason of that message without any maintenance strategy. The event type

is a crucial information for our model because it is the only way we have to

separate the non-crucial fails and critical faults.

3.4 Goals and requirements

As already illustrated, UPS systems are fundamental to many business com-

panies, in order to avoid that if an unexpected power disruption causes in-

juries, fatalities, data loss, or serious business disruption. Usually, in the

contracts between the UPS providers and clients, there may be fines when

the UPS system violates its correct behaviour. In order to know the failure

mode that could be reached by a UPS, a model capable of predicting its fu-

ture evolution is needed. Thanks to this prediction it is possible to improve

the quality and the dependability of the UPS system in terms of time to

repair and costs from both provider and consumer sides.

A model that relates messages, alarms and maintenance strategies could

be used by the provider to understand on which sub-component the fails

occurs. Furthermore, given the probability of every change of state, it is

possible to inform the use of different maintenance strategies, by dynamically

providing the most probable sub-component to change. The model can also

be used to evaluate the maximum utility of a replace versus a repair strategy.

A model capable of predicting the behaviour of the faults could also be

used by the sales support in order to demonstrate how that UPS system

can perform well with respect to competitors. Thus, an application able to

compute and display the models is required.

Obviously, since the application will be used by different sectors inside

a company (technicians, engineers, customer service, maintenance service),

an easy to use user interface is needed to set the parameters. Moreover, the

resulting model should be shown to the user easily. Another fundamental

requirement of this kind of application regards the integration with existing

25

processes and the embedding of domain knowledge and company-specific

information.

3.5 Formalising the problem setting

Before creating a model, we must understand how to pre-process the data

provided, in order to be efficiently read by a computer. Moreover, we must

analyse their distribution over different factors. We conduct this analysis

by considering the day, the device, and the order of the events in the event

log file. A complete description of the work done on the data is reported

in Chapter 4. After this analysis, the model we decided to build relates the

information provided in the event log file and in the UPScale file. Starting

from the event log file, we create a series of chains that associate a message

with the following until an alarm occurs. Based on the UPScale file we also

make an association between an alarm and a set of maintenance strategies.

3.5.1 Model selection

We choose to develop a model of the system by considering Markov chains and

hidden Markov models. We have already highlighted their points of strength

in Section 2.3 but, in our problem, the data provided by the company are not

enough to compute a real probability of the events. Furthermore, the service

log file is missing and we cannot give a real probability on the association of

a maintenance action with an alarm. We will assume in Section 5.6.2 how

the service log file could be used.

In general, while it is obvious that a complex model describes better a

system, a simple model is easier to understand, build, and maintain. In

these cases the best solution consists of picking up the easiest model that is

“good enough” to describe the system. We decide to study and implement a

Markov chain model and consider that the states are fully observable. The

main reason is the possibility to understand better the behaviour of the

Markov chain model with respect to the hidden Markov model. We describe

at the end of the Chapter 5 the hidden Markov models may be used to create

a model with better prediction capability.

26

3.5.2 message/alarm association

To be as general as possible, the model can be built by taking into account

four parameters. The first is the device number: we can choose to create the

model by considering only a subset of devices. This allows us to consider the

specific set of states coming from that specific set of devices, this parameter

is useful in case we want to model only a portion of the entire system. The

second parameter that can be considered for building the model is the interval

of time of interest. This parameter selects a subset of events, from the entire

set, from which we will build the model. This parameter allows us to extract

and analyse the behaviour of the system during a particular time interval.

In fact, the first two parameters are used to obtain a subset of events from

the event log file to train the model.

The following two parameters of the model are used to define how the

events are associated with each other. The third parameter that is used to

build the chains of the model is the delta time (∆T) between the first event

of the chain and the last. In our analysis we build the chains composed of

a series of ordered messages ending with an alarm, in Section 5.2 we discuss

this choice. By considering Figure 3.1, the messages m1 and m2 are not inside

the time window ∆T . The sequence generated from this event log file with

the given ∆T contains three messages and one alarm: Q = m3,m4,m5, a1.

m1 m2 m3 m4 m5 a

∆T

Figure 3.1: The figure shows how the ∆T works in the event log file.

To define the sequences, the fourth parameter that we consider is the

chain length (N), defined as the number of messages inside the time window.

This parameter is needed because it may happen that inside a ∆T we can

have too many messages and it is reasonable to assume that not all these

messages are associated with that alarm. So, we define N that is the maxi-

mum number of the messages to be considered in a sequence before an alarm.

As shown in Figure 3.2 with N = 3 it is possible to say that m1 and m2 are

27

not associated with a because there already are at least N messages between

them and a. The result of these operations creates a sequence of events that

m1 m3 m5 a

∆T

m4m2

Figure 3.2: The figure shows how the chain length parameter (N) works when a

sequence is too long.

ends with an alarm. The formal definition of a sequence is reported in the

formulas below:

Q = (q1, q2, ..., qN , a) (3.1a)

where a ∈ A ∧ q1...N ∈M (3.1b)

T (a)− T (q1) ≤ ∆T (3.1c)

A is the set of alarms, M is the set of messages, and T (k) represent the instant

of time of the event k. A detailed description of how these parameters are

used is shown in Chapter 5.

3.5.3 Alarm/maintenance actions association

Based on the UPScale file we can add more information to each sequence. An

alarm a can be associated with a set of different maintenance actions f1, f2.

It means that for each alarm we have a set of possible actions to do on the

UPS in order to restore it. These associations are extracted from the UPScale

and appended at the end of the chains defined in the previous Section. Let

us introduce the example in Figure 3.3 where we have a1 associated with f1
and f2 and a2 associated with f2 and f3.

28

a1 a2

f 1 f 2 f 3

Figure 3.3: The figure shows how the associations between alarms a1, a2 and mainte-

nance actions f1, f2, f3 look like.

In order to be as accurate as possible, there are two ways to verify these

associations. In the first case, every association should be checked by tech-

nical experts, the result will be composed of a static result of which are the

real associations. In the second case, the associations could be extracted

automatically from historical data, the result will be dynamic and capable of

capturing the hidden dependencies between alarms and maintenance actions

unknown by the technical experts.

The last element we introduce in the chains is an initial state (init) rep-

resenting a condition in which we have not received messages or alarms yet.

After this analysis, the series of complete chains are composed by four dif-

ferent elements. The first is the init state, after that it continues with the

sequence discovered in the previous process Q = (m1,m2,m3, a1). At the

end of the chain, we find the maintenance strategy (f1, f2, f3) to repair the

UPS that generates that alarm. In general, the probability to reach an alarm

state can be higher or lower than that of reaching another alarm state. This

probability depends on the data contained in the event log file. The example

below shows how a chain is represented in an informal graph and with formal

equations:

init q1 q2 qN a f

Figure 3.4: By using the graph representation, the figure shows an example of a chain.

R = (init, Q, fj) (3.2a)

R = (init, q1, q2, q3, ..., qN , a, fj) (3.2b)

29

a ∈ A ∧ (3.2c)

q1, q2, ..., qN ∈M ∧ (3.2d)

T (a)− T (q1) ≤ ∆T∧ (3.2e)

f ∈ F (3.2f)

In Equations 3.2 we formally define a chain. F is the set of maintenance

actions. Obviously starting from the initial state, the chains can share some

messages, alarms, or maintenance actions. We can identify a set of messages

that can occur in the first place, others that occur in the second and so

on. Instead of representing the model by using separate chains we can use a

graph. For instance, we can express the chains below by using the chart in

Figure 3.5:

R1 = (init,m1,m3,m4, a1, f1) (3.3a)

R2 = (init,m2,m3,m5, a1, f2) (3.3b)

R3 = (init,m1,m2,m4, a2, f1) (3.3c)

init

m1 m2

m3 m4

m5

a1 a2

f1 f2

Figure 3.5: By using the graph representation, the figure shows an example of three

chains whose have shared states.

30

3.6 Libraries and software used

We have started the work by using Microsoft Excel to extract the attributes

and to extract, from the file provided, all the useful information. We devel-

oped our application using Python because of the presence of a large number

of standard libraries. Furthermore, Python meets our integration and porta-

bility requirements. The application relies on different libraries, the first is

called “Pandas” [33] and it offers data structures and operations for manip-

ulating numerical tables and time series efficiently. In our case, Pandas is

used to import the files and to handle all the data we have. To show the

results we used “Networkx” [34] and “Graphviz” [35], two libraries for study-

ing and creating graphs and networks. The application is easy to use thanks

to “Tkinter” [36], the standard Graphical User Interface of Python.

31

32

Chapter 4

Preprocessing and data analysis

This chapter illustrates the preliminary steps performed on the provided

files in order to evaluate and understand the data we have. In Section 4.1 we

extract all the information provided by the files. In Section 4.2 we analyse the

information extracted in order to find patterns and distributions of the data.

In Section 4.3 we introduce the dot notation to address events and attributes.

In this work, the preprocessing and data analysis part is essential because

we have a small dataset so we must understand thoroughly the information

contained in the input files.

4.1 Preprocessing of the data

The first file provided by the company, as mentioned in Section 3.3, is com-

posed of plain strings and it cannot be used to build the models. In the

preprocessing phase, we make this file understandable from a computer by

extracting as much information as we can and by inserting the information

in a new .xls file. In this table, we can divide the columns in three logical

groups:

• Id: it describes the number of the device that generates the event.

• Date and hour: they describe the instant of time in which the event

occurred.

• C, S, and error: they describe the type of event by providing a

code and a text description. The S attribute is unusable because, for

each event, it always contains the same value (miL−) so it will not be

considered in this analysis.

Beyond these fields, in the resulting table that is the input data to build the

models, we add the temp attribute that describes the order of the events.

In the event log file there can be two or more events happening at the same

time for two or more different devices. The temp attribute aims at keeping

track of that by providing the same number when two events are on the same

row of the input file. Considering, for instance, Table 3.1, introduced in the

previous chapter, the events B and C have the same number in the temp

attribute.

For some lines of the input file, the strings are bold and coloured in red or

green. To keep track also of this information we add two further attributes:

• Colour: it can be B when the input string is coloured in black, G when

green, and R when red.

• Bold: this attribute can assume the values B when the string is written

in bold or N when it is not.

The next step of the preprocessing consists of converting the dates and hours

to a standard format in order to make the computation of the time inter-

vals easy. We have also to provide some considerations about the C (code)

attribute because different codes may represent the same event in the sys-

tem. In these specific situations we use the same event code. There are also

some codes containing letters instead of only numbers, and we convert them

to a number. By considering the Table 3.2 as input file, the result of the

preprocessing phase is reported in the Table 4.1.

temp id timestamp date hour c error colour bold

1 1 51518 09/05/

2017

14:18:38 1202 MAINS

RECT.

FAULT

B N

Table 4.1: This table shows the information extracted from the event log file of Table

3.2.

From the second file, called UPScale and defined in Section 3.3, we man-

ually extract information about the event type and the maintenance actions

34

needed to repair a device. The result of this extraction consists of two sep-

arate files. The first makes an association between event code and its type.

This association is merged in the event log file in order to have a unique

source of data. Starting from the Table 3.3 of the Section 3.3, the resulting

association between event code and type is shown in the Table 4.2.

code Message Alarm

1201 0 1

1202 0 1

1203 1 0

Table 4.2: This table shows the relation between event code and event type.

The second file relates codes and the maintenance actions by manually

extracting the useful information of the Upscale attribute, defined in Section

3.3. Obviously, for each event code we can have more than one maintenance

action. For example, according to the file, the alarm 1202 can be resolved by

replacing the Main control board XXX (Table 4.3).

code UPScale

1202 ReplaceXXXX

Table 4.3: This table shows the relation between event code and maintenance actions.

4.2 Data analysis

After extracting all the data from the sources, in this section, we analyse

them in terms of number of records and distribution over devices, dates, and

time intervals. In Section 4.2.1 we analyse the number of events over days

and devices. In Section 4.2.2 we compare the events of the event log file and

the events of the UPScale file. In Section 4.2.3 we analyse the pattern of the

event log file. In Section 4.2.4 we analyse the time between events.

4.2.1 Number of records in the event log file

The event log file is composed of 390 events recorded by four different UPSs.

We have 297 messages and 93 alarms that respectively correspond to 77% and

35

23% of the entire dataset. The number of events for each device is reported

in the Table 4.4. As we can see they are well distributed and each device has

between 95 and 99 events.

Device Number of events

1 99

2 95

5 97

6 99

Table 4.4: This table shows the number of events for each device.

The events are also equally distributed in terms of messages and alarms

for each device. As we can see from Table 4.5, we have at least 70 messages

and 18 alarms for each device.

Device 1 2 5 6 sum

Messages 71 70 79 77 297

Alarms 28 25 18 22 93

Table 4.5: This table shows the number of events by type for each device.

Another analysis we can do on the dataset regards the distribution of

events among days. In this case, we have three different days and some

differences in terms of number of events for each day. As shown by the Table

4.6, we have the 89% of the events on the 10/05, the 9% on the 11/05, and

the 2% on the 9/05.

Date 9/05 10/05 11/05

Messages 3 274 20

Alarms 4 76 13

Table 4.6: This table shows the number of events by type for each day.

4.2.2 Distribution events log file vs. UPScale

Now, we analyse the distribution of events in terms of differences between the

event log file and the UPScale file. By inspecting the UPScale file, a device

36

Figure 4.1: This figure shows the

number of times in which every

alarm appears in the event log file.

Figure 4.2: This figure shows the

number of times in which every

message appears in the event log

file.

can arise 218 different events. In this set of different events, we have found

155 alarms and 63 messages. In the other and, the event log file is composed

of 38 different events, 23 of them are messages, and 15 alarms. Figure 4.1

shows the distribution of alarms and Figure 4.2 represents the distribution of

messages. Some events, reported in the UPScale file, are not contained in the

event log file. It is trivial to exclude, in the construction of the final model,

those events because it is impossible to associate them with occurrence of

the event log file. We realize that in real systems may occur transitions that

are not specified in the event log file but we focus our attention only on the

subset of events contained in the event log file.

Moreover, the length of the used dataset is not enough to capture all

the transitions and to correctly define how is likely that a transition occurs.

We model only the transition contained in the data. This means that, the

37

process to generate a model is precise and the results obtained are correct but

they are based on the data of that particular system without the possibility

to extend the generated model on other systems which could be possible if

more data were available.

In fact, we assume the statistical significance of the data provided, we

know that the data are not enough but the model can be easily extended

on other systems by taking into account a huge dataset of events. By using

the big data to build the model, we can capture all the events, define all the

transition and assign a true probability to each transition.

4.2.3 Event log file detailed analysis

We have few information from the company about how the system generates

messages and alarms. So, a detailed analysis of the event log file is required

to understand how the system behaves. Looking at the event log file we can

discover some recurrent patterns of the events. For instance, considering the

messages 8205, 9202, and 9203 that appear respectively 30, 29, and 36 times,

we found the following correlations:

• The message 8205 is followed by the message 9202 in 8 cases.

• The message 8205 is followed by the message 9203 in 16 cases.

• The message 8205 is followed by other messages in 6 cases.

So, we can start to build some straightforward transitions between events and

assign some probabilities to these transitions. Figure 4.3 shows the results.

8205

9202 9203

0.267 0.533

Other Messages

0.2

Figure 4.3: The figure shows a simple graph representing the correlations between the

events 8205, 9202, and 9203.

Some considerations take into account the behaviour of the system when

an alarm occurs. We can assert that an alarm may be related to the set

38

of events occurred before it, but in particular the alarm is associated with

the last message before it. The assumption is reasonable because the mean

of a message is a changing of the state of the system, this alteration of the

initial condition may cause an alarm in the future, and the last message is

the one that causes the alarm. To support this assertion, we can analyse

how the system behaves considering the alarm 4105. From the data we

have, considering an interval of 240 seconds between the event 4105 and the

messages before, we found the following correlations:

• The alarm 4105 is preceded by the message 4102 in 4 cases, by the

message 8405 in 1 case.

• By changing the time interval the occurrences (and the corresponding

frequencies) could be different. In the next section we describe the

distribution of the time between events (TBE) in order to find the best

value.

The above considerations could be represented by the graph in Figure 4.4

where, by giving an alarm a, we calculate the probability to have the message

m immediately before. This probability can be expressed as P (m/a). In the

image we have the alarm 4105 and the messages 8405 and 4102.

4105

8405 4102

0.2 0.8

Figure 4.4: The figure shows the correlation between an alarm (4105) and the messages

immediately before (8405,4102).

By considering the notation introduced before, the probabilities are the

following:

P (8405/4105) = 0.2 (4.1a)

P (4102/4105) = 0.8 (4.1b)

The graph introduced in Figure 4.4 creates associations from an alarm that

happens at time t with a set of messages happening immediately before. A

39

good improvement is to follow the time flow of the event log file and create an

association between a message m and the set of alarms that can be reached

after. In Figure 4.5 we calculate the probability to reach an alarm a by

having the message m. The probability can be expressed as P (a/m). In

fact, giving the message m, we calculate the probability of having an alarm

immediately afterwards.

4105

8405 4102

0.33 0.5

Other alarmsOther alarms

0.50.67

Figure 4.5: The figure shows the relations between a set of messages (8405,4102) that

are associated with the same alarm (4105).

Considering the notation introduced before, the probabilities are the fol-

lowing.

P (4105/8405) = 0.33 (4.2a)

P (4105/412) = 0.5 (4.2b)

In Chapter 5 we exploit this correlation between messages and alarms to

create a model able to express all the transitions of a system before reaching

an alarm.

4.2.4 Time between events analysis

As introduced before, events are associated to each other. We have now to

analyse if two subsequent events are always associated or there exists some

cases in which they are not related. We base our analysis on the Time

Between Events (TBE) that is the difference between the time of an event

and the time of an event immediately before. By considering the ∆T and N

introduced in Section 3.5.2, we find the following correlation:

∆T ≈ E[TBE]×N (4.3)

The ∆T of a chain should be approximately the mean TBE of the system

times the chain length.

40

For instance, considering the message 4102 happening on the 10/05 at

14 : 52 : 38, the following event is the message 9203 happening on the 11/05

at 11 : 16 : 10 that is 21 hours later. It is intuitive to say that in this case the

two events are not associated each other. On the other hand, we can consider

the event 8601 happening the 10/05 at 10 : 24 : 49 and the following event

that is the message 2403 happening 1 second later. It is reasonable to think

that these two events could be associated each other. In this analysis we

discover relationships among time, messages, and alarms.

The preliminary step considers the overall system, namely all the devices

together. This analysis studies the TBE between an event and its successor.

By considering the mean TBE, the standard deviation, the minimum, and

the maximum, we have a general point of view of the distribution of the

events over time. Based on the day attribute, Table 4.7 analyses the TBE.

This separation is needed because the TBE between events happening on

two different days is quite high and can falsify the results. All the following

results are expressed in seconds. As we can see from Table 4.7, the minimum

Day Mean Std Min Max

9/05 262 442 0 1096

10/05 46 325 0 5045

11/05 1 3 0 19

Table 4.7: This table shows the mean, the standard deviation, the minimum, and the

maximum of the TBE for each day.

is always 0, this means that for each day we have at least two events that

occurs at the same time. We can see also that the mean time between events is

quite high the first day (262 seconds) and very low the third day (1 seconds).

The standard deviation is quite high and it is at least two times the mean;

probably, the reason of this value is that a series of events are generated, in

almost the same time, when a fault occurs. After that, the system continues

some time without any event and, when a new fault occurs, a new series of

events are generated and written in the event log file. When an event occurs,

the following one occurs within a delta time of 2 minutes (120 seconds) in

the 95% of the cases.

We can perform a more specialized analysis by considering the behaviour

of a single device instead of all the system. As shown by Table 4.8, the min-

imum and the maximum are the same as before but the mean time between

41

two events on the second day, from 43 seconds, goes to more than 100 sec-

onds. We can say that between two events of the same device there are often

events from different devices. To build the model, based on the data we have,

Device Date Mean Std Min Max

1

9/05 262 442 0 1096

10/05 176 640 0 5047

11/05 - - - -

2

9/05 - - - -

10/05 143 617 0 5048

11/05 3 5 0 20

5

9/05 - - - -

10/05 139 591 0 5045

11/05 3 8 0 32

6

9/05 - - - -

10/05 113 533 0 5046

11/05 - - - -

Table 4.8: This table shows the mean, the standard deviation, the minimum and the

maximum of the TBE for each device, for each day.

a TBE between 150 and 300 seems to be appropriate and we will choose the

∆T by considering this. In the Chapter 6 we will discuss the validity of this

decision.

In the end, we can evaluate the TBE in case we have a lot of data, these

data have statistical value, and, by using the TBE, we can perform data

analysis and data cleaning. First of all, in presence of big data, the standard

deviation should become lower and a better estimation of the TBE could be

archived. Since in the hypothesis of big data we have more than one pair

of the same events, we can compute a TBE for each pair and evaluate its

correctness.

For instance, there can be a pair of events that usually occur with a mean

time of 3 minutes. If the dataset contains one sequence of these two events

with a TBE of a couple of seconds, we can remove this relation because is

wrong. In our case, we are modelling the failures of a system, and we are

trying to analyse the pattern of the messages in order to predict an alarm,

so all the random or wrong currencies should be removed. As analysed in

this chapter, we do not have enough data to compute a TBE of every pair

42

of events because most of the times every pair is reported one time in our

dataset. Thus every TBE has its own significance and it is impossible to

distinguish the fake TBE with respect to the real one. In chapter 7 we

analyse the future work

4.3 Notation used to refer events and attributes

We introduce now the dot notation that will be used in the following part of

the document to refer the events and their attributes. We provide also a set

of definitions of what the variables contain.

• S: It is the final dataset used to create the model, it contains the data

read from the event log file and modified by the preprocessing, defined

in Section 4.1. We identify two attributes of the dataset:

– S.devices: It contains all the ids of the devices we have inside the

dataset.

– S.dates: It contains all the different dates we have inside the

dataset.

• e: It is an event contained in the final dataset (S). An event has the

list of attributes reported below:

– e.timestamp: It contains the timestamp of the event.

– e.date: It contains the specific date of the event by using the

format gg/mm/yyyy.

– e.time: It contains the specific time of the event by using the

format hh:mm:ss.

– e.code: It contains the numerical identifier of the event.

– e.id: It contains the numerical identifier of the device that gener-

ates that event.

– e.message: It contains a Boolean flag, 1 if the event is a message,

0 otherwise.

– e.alarm: It contains a Boolean flag, 1 if the event is an alarm, 0

otherwise.

43

44

Chapter 5

Markov chain model

In this chapter we describe the steps to build the Markov chain model that

represents the system. In Section 5.1 we define how to select the data in

order to have a specific view of the system. In Section 5.2 we define the

methodologies for building the Markov chains. In Section 5.3 we describe the

different representations of the states of the model. In Section 5.4 we resolve

the problem of identifying a chain inside the final model. In Section 5.5 we

define the Transition matrix how to label the transitions. In Section 5.6 we

describe the postprocessing operations performed on the models created.

5.1 Data selection

In this section, we describe the meaning and the behaviour of the parameters

used to select a subset of events from the entire dataset. S contains all

the information and, as explained in Section 4.3, every event has a set of

attributes that are indexed by using the dot notation. For instance, the date

attribute of the event e1 is written as e1.date. Moreover, we have defined a

set of general attributes of the dataset S, for instance, by writing S.dates we

receive the different dates contained in the dataset.

We identify two parameters that help the generation of the model. The

first considers a subset of the entire set of devices contained in the dataset.

By using this parameter, the model focuses the attention only on a particular

subset of devices. All the events coming from a device that is not contained

in that subset will be excluded from subsequent operations. The formula

below reports the subset of devices:

DEVICE ⊆ S.devices (5.1)

The second parameter is the time interval within the events are considered.

The model considers only the events coming from that specific time interval.

This parameter is practical when we want to model the behaviour of the sys-

tem in a specific instant of time. In the case of very exceptional behaviours,

we can exclude these events from the general model and construct a specific

view considering time interval in which they occur.

DAYS ⊆ S.days (5.2)

Starting from the dataset S, the subset E contains only the selected elements

by considering the two parameters before:

E = {x|x ∈ S ∧ x.date ∈ DAYS ∧ x.device ∈ DEVICES} (5.3)

The set E is further divided into two different sets by considering the event

type. The result of this operation is expressed by the equations below:

M = {e1, e2, ..., ek, } = {e|e ∈ E ∧ e.message = 1} (5.4a)

A = {e1, e2, ..., eh, } = {e|e ∈ E ∧ e.alarm = 1} (5.4b)

From now on only the two sets M and A are considered as sources because

they contain the data we have selected to build the model. M includes all

the messages selected from E and A includes all the alarms selected from E.

5.2 Building the chains

After defining the methodologies for selecting the data, we provide a detailed

description of how the events are associated to each other. We have already

found the presence of correlations between an event and its successors in

Section 4.2.3. Naturally, we cannot build a single chain starting from the first

event in the dataset and finishing with the last event, because it represents

only the succession of the events without eliciting any useful information. So,

we divide the chains based on the alarms. Our choice is reasonable because

we assume that after an alarm the system stops its work until the customer

service repairs the device. Thus, the alarms provide a sort of stop points for

46

the system and we can assume that an alarm depends on the events occurring

before it. When an alarm occurs a maintenance action on the system is

required, so we build the chains by associating a sequence of messages with

an alarm. We consider every alarm independent to other alarms, however

this constraint allows us to predict better the maintenance action required

to repair the system.

Let us use an example by considering Table 5.1, we consider the alarms

C and E independents and, we associate each alarm with the sequence of

messages occurred before. By exploiting this independence when the system

reports in the event log file the chain that ends with C, before reaching

the alarm C we are able to perform the maintenance actions required to

repair the system from the alarm C. This operation cannot be performed

if we build the chains by considering more than one alarm because when

the system reports in the event log file a sequence of messages we cannot

anything about the alarm in the end because they are both related to that

chain of messages.

We can, informally, define a chain in two ways. Looking backwards,

a chain is the sequence of messages that occur before an alarm. Looking

forward, a chain is a sequence of messages ending with an alarm. We provide

now a simple example of how the chains are computed. Given Table 5.1

representing a portion of the dataset, we have two different alarms and three

different messages. The results consist of two different chains associating an

alarm with the messages before it.

Code Message Alarm

A 1 0

B 1 0

C 0 1

D 1 0

E 0 1

Table 5.1: This table shows a portion of the dataset used to build the chains.

We report the events by using a letter instead of all the attributes to

make the example easier to understand:

C1 = (A,B,C) (5.5a)

C2 = (A,B,D,E) (5.5b)

47

By using this method, the chains have an increasing length based on where

the alarm is in the event log file. The formula below expresses the formal

definition of a chain. We use the dot notation defined in the previous chapter:

Ck = (m1,m2, ...,mTk
, ak) (5.6a)

where ak ∈ A ∧ ∀t : [1 : Tk − 1] =⇒ mt ∈M ∧ (5.6b)

mTk
.timestamp ≤ ak.timestamp ∧ (5.6c)

∀t : [1 : Tk − 1] =⇒ mt.timestamp ≤ mt+1.timestamp (5.6d)

In this formula we declare that the last element is an alarm, all the elements

before it are messages, the messages inside the chain have a timestamp that is

smaller or equal to the timestamps of the alarm and of the following messages

in the chain.

We discover two problems of building chains with this method. The first

is the time interval that occurs between the first message of the chain and the

alarm reported at the end. If the dataset reports events spanning different

days, by using this method an alarm may be related to a message occurred

much time before. The second problem regards the number of the elements

of a chain. It may be possible that a chain contains many messages before

the alarm because we do not have any constraint on the chain length.

As described in Section 3.5.2, to deal with these problems we introduce

two parameters: the first, ∆T , is defined as the maximum time between the

first message and the alarm of a chain (by using the Equation 5.7 the first

message is m1 and the alarm is ak).

The second parameter is the chain length (N). It is intuitive that, con-

sidering an alarm, only few messages are strictly associated with that alarm.

When, inside ∆T , we still have many messages, this parameter maintains in

a chain only the last N messages. We provide now a new, formal definition

of a chain:

Ck = (m1,m2, ...,mTk
, ak) (5.7a)

where ak ∈ A ∧ ∀t : [1 : Tk − 1] =⇒ mt ∈M ∧ (5.7b)

mTk
.timestamp ≤ ak.timestamp ∧ (5.7c)

∀t : [1 : Tk − 1] =⇒ mt.timestamp ≤ mt+1.timestamp (5.7d)

Tk < N (5.7e)

ak.timestamp−m1.timestamp ≤ ∆T (5.7f)

48

Now, by using two examples, we show the behaviour of the two parameters.

5.2.1 Example considering ∆T

Starting with the example introduced in Table 5.1, we add to each event a

timestamp in seconds shown in Table 5.2.

Timestamp (s.) Code Message Alarm

105 A 1 0

1000 B 1 0

1002 C 0 1

1004 D 1 0

1006 E 0 1

Table 5.2: This table shows a portion of the dataset including the timestamp.

We also define a ∆T equal to 4 minutes (240 seconds). The resulting

chains automatically exclude the message A because it takes place outside

the ∆T interval. The resulting chains are:

C1 = (B,C) (5.8a)

C2 = (B,D,E) (5.8b)

5.2.2 Example considering N

We now consider a dataset composed of many events occurred almost at the

same time. The dataset is reported in Table 5.3.

Code Message Alarm

A 1 0

B 1 0

C 1 0

D 1 0

E 1 0

F 1 0

G 0 1

Table 5.3: This table shows a portion of the dataset where we have many messages.

49

We also define the chain length equals to 3, namely N = 3. The results

automatically exclude the messages A, B, C from the association with alarm

G. The generated chain is:

C1 = (D,E, F,G) (5.9a)

5.2.3 Dealing with elements coming at the same time

In the event log file it is frequent to have events that appear exactly at the

same time. It is a design decision of the system logger. The event logger has

the goal to write the events in the event log file, and it usually has a writing

granularity of one second. When more than one event arises from the same

device, that device stores the set of events in its internal memory and it waits

for the event logger that saves the set of events on the event log file. The

event logger writes the events without maintaining the order in which they

were generated.

We now provide an example by considering the creation of four events.

B DC tA

Figure 5.1: The figure shows the writing sequence done by the event logger of the

system.

Figure 5.1 shows the creation of events and the writing window of the

event logger.

The events B and C are generated inside the same window, so they have

the same timestamp on the event log file. There is no way to control which

of the two events will be written before on the event log file. The sequences

can appear in the event log file in two different ways:

(A,B,C,D) (5.10a)

(A,C,B,D) (5.10b)

We identify two different cases that affect the creation of chains. The first

case regards the presence of two or more messages at the same time. The

50

second case regards the presence of both alarms and messages generated at

the same time. Depending on the case we use different strategies.

When W messages are coming at the same time we evaluate two strate-

gies: the first, the most complete, creates W ! chains by expliciting every

possible sequence of messages. This solution is practically infeasible because,

among the generated set of chains, only one represents the (unknown) cor-

rect order of the messages. Moreover, by considering the final model, this

solution creates a series of loops that is unpractical. The second solution

creates W chains that consider only one message at a time. This solution

combines efficiency and completeness because, with respect to the first solu-

tion, the loops in the final model are removed. The resulting chains are W

even though we are still considering all the messages contained in the event

log file. Obviously, among the W chains only one represents what happened

to the system correctly but, by using our data, we cannot assert which is

the real chain that represents the system. In the idea of working on real big

data, that have statistical value, the wrong chains are not a problem because

they will result on the tails of the distribution.

Let us introduce an example concerning the presence of three messages

at the same time. We consider a dataset reported in Table 5.4.

Timestamp (s) Code Message Alarm

10000 A 1 0

10005 B 1 0

10005 C 1 0

10005 D 1 0

10008 E 1 0

10010 F 0 1

Table 5.4: This table shows a portion of an event log file where three messages are

registered at the same time.

We cannot assume the order of the events B, C, D because they have the

same timestamp, so we build a chain considering only a single event:

(A,B,E, F) (5.11a)

(A,C,E, F) (5.11b)

(A,D,E, F) (5.11c)

51

When both messages and alarms come at the same time, we consider the

alarm as occurred as last and we consider all the messages as occurred be-

fore that alarm. The difference with respect to the strategy reported before

comes out because an alarm causes a system block and it is reasonable to

assume that after an alarm there cannot be any message because the system

is blocked. We introduce an example concerning this case, by considering

the dataset in Table 5.5.

Timestamp (s) Code Message Alarm

10000 A 1 0

10003 B 1 0

10005 C 0 1

10005 D 1 0

Table 5.5: This table shows a portion of an event log file where one message and one

alarm are coming at the same time.

As shown, the message D comes at the same time of the alarm C. The

chains generated consider all the messages that arrive before or at the same

time of C, the result is:

(A,B,D,C) (5.12a)

5.2.4 Initial state

After creating a chain, we need to find a way to represent the operation of

the system or the devices before the first message occurs. We add the initial

state (init) at the beginning of each chain. The meaning of the initial state

is to represent a condition for the system in which any message or alarm has

been generated yet.

5.3 State representations

After having defined the methodologies for building the chains, we analyse

how to represent the events of the system in terms of states of the Markov

chain model. In the examples introduced the previous section, we used letters

(A, B, C) instead of the real events information, now we discuss what should

be used to replace those letters. Every event represents a particular condition

52

of the system; therefore, we can use each event of the system as a state of the

Markov chains model. For identifying the states, the best solution consists in

using the code attribute, because, for each event type, it is a unique numerical

id easy to manipulate. We have found two ways to represent a state of the

Markov chains model: the first includes only the code of an event, the second

also uses the device number from which the event is coming. Below we report

a detailed description of both the representations.

5.3.1 State representation: code

The first state representation includes, for each state, only the event code. It

is the minimal set of information needed to identify each state of the system.

In Figure 5.2, we show how the final model represents the state 1203.

1203

Figure 5.2: The figure shows the event with code 1203 represented by the code state

representation.

By using this method to represent the states, we leave out the device code

that generates the event. This representation provides a general overview of

the system without entering into the details on how each device behaves

because it considers each message as coming from the system instead from

the single device. Let us provide an example of how the chains are built by

considering a small dataset composed of three messages and two alarms. The

dataset is reported in Table 5.6.

Timestamp (s.) id Code Message Alarm

128713 1 8401 1 0

128714 2 8401 1 0

128715 2 8102 1 0

128716 1 8403 0 1

128717 1 8204 1 0

128718 2 2203 0 1

Table 5.6: This table shows a portion of the dataset including the timestamp, the

device id, and the event code.

53

Without considering the init state, the ∆T , and N , the resulting chains

are:

C1 = (8401, 8401, 8102, 8403) (5.13a)

C2 = (8401, 8401, 8102, 8204, 2203) (5.13b)

As we can see there are two messages with the same code (8401) and coming

from different devices (1 and 2). In the final chains they are represented as

the same state because in this case the model excludes the information about

the device.

8401

8102

8103 8204

2203

Figure 5.3: The figure shows the graph produced by considering the chains in Equation

5.13.

Let us introduce the graph representation used to understand quickly how

the events of the model are related. By considering the chains reported in

Equation 5.13, each node of the graph is a state and it is reported by using

its state representation. An ark between the events A and B of the graph

represents that a chain contains the event A and the successor is the event

B. The graph in Figure 5.3 represents how the chains reported in Equation

5.13 are represented.

By considering the figure, the 8401 is associated with an event with the

same representation, so we have a loop on the first state. By following the

54

chains, we have the message 8401 associated with message 8102. After the

state 8102 the chains follow different paths, thus from this there are two arks

that reaches two different states.

5.3.2 State representation: id/code

The second state representation includes, for each state, both the event code

and the id of the device that generates the event. In Figure 5.4 we show how

the state 1203 coming from the device with id 1 and the state 1203 coming

from the device number 2 are represented in the final model.

1/1203 2/1203

Figure 5.4: This figure shows the event 1203 coming from the devices with id 1 and

2 appears in the id/code representation.

By using this method, for each state, we provide more information with

respect to what introduced in the previous section. The model considers

every event of the event log file as written by a specific device instead of

the system. By using this representation, we model the behaviour of the

single device and the correlations between different devices. So, the system

is no longer considered as a black-box because the model looks at the single

device. Let us give an example of how this method represents the states of

the system. By using Table 5.6 introduced in the previous section, the new

chains are the following:

C1 = (1/8401, 2/8401, 2/8102, 1/8403) (5.14a)

C2 = (1/8401, 2/8401, 2/8102, 1/8204, 2/2203) (5.14b)

The message 8401, coming from the devices number 1 and 2, is now repre-

sented as two different states of the model. By using the graph representation

of the chains, introduced in Section 5.3.2, Figure 5.5 shows how the chains

are represented.

By comparing the graph in Figure 5.3 and the one in Figure 5.5, in the

second figure, the loop on the state 8401 is removed by using two different

states, namely 1/8401 and 2/8401.

55

1/8401

2/8401

2/8102

1/8103 1/8204

2/2203

Figure 5.5: This figure shows a graph representing the chains of Equation 5.14.

5.4 Introducing levels

The state representations introduced before provide both a general view of

the system and a view of the behaviour of a specific device but, by using

these representations, we are not able to have a complete and clear analysis

of the sequences of events that happen inside the system. In fact, until now,

when we are in a specific state of the graph, we are not able to identify the

chain in which this specific state belongs. For instance, by considering the

graph in Figure 5.3, when we have the event 8401, we cannot say from which

chain (reported in the Equation 5.13) the event arrives. In addition to that,

we must model only chains that are reported in the initial dataset without

creating, on the graph representation, some paths that do not exist. This

problem comes out because of the Markov property of the states of the model.

We provide an example to understand better the problem by considering the

dataset of Table 5.7.

Note that the last four events occur reasonably after the first four. The re-

sulting chains, by considering the ∆T , the code representation and including

56

Timestamp (s) Code Message Alarm

128713 A 1 0

128714 B 1 0

128715 C 1 0

128716 D 0 1

134584 E 1 0

134585 C 1 0

134586 A 1 0

134587 F 0 1

Table 5.7: This table shows a portion of the dataset with 6 messages and 2 alarms.

the init state, are reported below.

C1 = (init, A,B,C,D) (5.15a)

C2 = (init, E, C,A, F) (5.15b)

The resulting graph is shown by Figure 5.6.

init

A

B

F

C

D

E

Figure 5.6: This figure shows the resulting graph obtained by considering the chains

defined in Equation 5.15.

We notice the presence of two new chains that comes out from the model.

57

C3 and C4, reported below, should not be reachable paths of the model.

C3 = (init, E, C,D) (5.16a)

C4 = (init, A, F) (5.16b)

We introduce the level state representation that includes, for each state, some

information about the position of the message inside the chain. In the next

section we define what the level is and how the new representation influences

the model.

5.4.1 State representation: level**id/code

We develop now a new state representation that also includes the level of the

message in the chain when we are building the model. The level is described

as the depth of the message inside the chain. In addition to the code and the

id used in the previous representation we add the level to each state. Two

examples are shown in Figure 5.7 where the event 1 ∗ ∗2/1203 means that at

the position 1 of a chain we have an event produced by the device number 2

and with code 1203.

1**2/1203 3**1/1204

Figure 5.7: This figure shows two states represented by using the Level**id/code

representation. 1 ∗ ∗2/1203 means that the message with code 1203 from Device 2 is

in the first position of its chain.

We can consider this representation independent from the representations

introduced before. The level representation can be used independently with

the code representation or with the id/code representation. In this state

representation, the alarms are still reported without introducing the level

attribute. This attribute does not provide any useful information for alarms

because an alarm is a hard failure that requires some maintenance actions

to be resolved independently of its depth in a chain. By considering the

chain length (N) described in Section 5.2, we can relate this parameter to

the maximum level that a message can have. The level is smaller or equal to

N because in a chain we have at most N messages.

58

The representation introduced before provides different advantages but

also some disadvantage. First, as already explained, thanks to this method

we remove some of the wrong associations that are not reported in the event

log file. Second, the model created by using this method allows us to visualise

better the sequences of the messages that end with an alarm. On the other

hand, the model will contain more states that report the same code and the

same device. This representation is translated into a bigger Transition matrix

that can be difficult to analyse. By using the level state representation, it is

problematic to understand, given a specific message, which are the messages

that follow it, because they are spread out in the model at different levels.

5.5 Transitions

After defining how to represents the states of a model, we provide a clear

explanation of how to define and to compute the transitions between states.

A transition from the state m1 to the state m2 asserts that from the state

m1 the system may reach the state m2 in the immediate future. As already

explained in the previous chapter, from a generic message, we have a set of

possible messages that can be reached in one step, thus we have to associate

a label to each transition in order define how is likely that the transition can

take place. Before calculating the transitions, we have to convert every chain

in a set of pairs.

5.5.1 Preprocessing of the chains

Our dataset is now composed of a series of k chains defined by Equation 5.7.

In order to efficiently calculate the probabilities of the Transition matrix,

we divide the chains in pairs. Every pair is composed of two elements: the

first is a message and the second one is the message or the alarm that occur

immediately after it in a specific chain. For instance, let us consider the three

chains described below:

C1 = (init, A,B,C) (5.17a)

C2 = (init, B,D,E) (5.17b)

C2 = (init, B,D,C) (5.17c)

59

The pairs generated are the following:

{(init, A); (A,B); (B,C); (init, B); (B,D); (D,E); (init, B); (B,D); (D,C)}
(5.18)

By considering the example, we can draw the graph of Figure 5.8 that con-

tains all the information provided by the pairs. Every state is reported once

and every pairs represents a transition between the first element and the

second.

init

A

D

E

C

B

Figure 5.8: The figure shows the pairs reported in Equation 5.18 organized in a graph.

This operation is independent of the representation used to distinguish

the states. Every pair is a physical edge of the final graph. Looking at the

example introduced before, we can see that the pair (B,D) is reported two

times. It means that starting from the message B, it is more likely to get the

message D instead of the alarm C. Starting from the pairs we can analyse

the size of the transition matrix.

5.5.2 Analysis of the transition matrix

In this section we analyse the size of the transition matrix in order to un-

derstand if the data we have allows us to compute a correct probability of

the transitions. This analysis can also show the size of the problem we are

solving.

60

The transition matrix of a Markov chain model is a square matrix that

has a dimension depending on the number of the states of the model. That

number also depends on the representation we choose; therefore, we divide

the analysis based on the representation of the states. In addition, for each

representation, the branching factor is important because, according to the

states and the branching factor, we can estimate the number of edges.

5.5.2.1 Branching factor

We analyse first the branching factor of the graph. The scope of this analy-

sis consists in determining the number of states to which an event is related.

Considering the Table 5.8, we found out some interesting results. The max-

imum is always related to the init state because the graph is widely spread

out at the first level. The minimum is always 1, this means that, in the final

graph, there is always a transition with probability equal to one. The mean

decreases with respect to the increasing level of detail of the representation.

By considering the code representation, we have a branching factor greater

than 7, by considering the level**code/id representation we have a bracing

factor below 3.

Since we have more states, in the last representation, it is evident that

the branching factor decreases. We also decided to analyse the number of

states for each model representation to have a look at the size of the matrix.

Representation Mean Std.dev Minimum Maximum

Code 7.5 5.6 1 19

id/Code 5.3 5 1 26

Level**Code 3.1 2.6 1 15

Level**id/Code 2.9 2.6 1 26

Table 5.8: This table shows the branching factor of the model with respect to the

state representation.

5.5.2.2 Number of states

To calculate the number of states of the final models, we decided to consider

different state representations and different model parameters. As shown by

Table 5.9 the chain length (N) influences significantly the number of states of

61

the model. The most compact uses 35 states and the most detailed model uses

270 states. In both cases, a computer has no difficulties to process a transition

matrix with this size so that we can continue our analysis. Up to now, we

discovered that the transition matrix could be computed by a computer in a

reasonable time, in Chapter 6 we discuss which model is detailed enough for

adequately represent the system.

Repr. N=5 ∆T=1000 N=10 ∆T=1000 N=5 ∆T=2000

Code 35 36 36

id/Code 88 101 88

Level**id/Code 167 270 170

Table 5.9: This table shows the number of the states with respect to different states

representation and model parameters.

5.5.3 Labelling the transitions

As explained by the previous section, every pair represents a transition from

the first element of the pair to the second element. Some pairs can be re-

peated because the first and the second element are adjacent in different

chains. On the other hand, some different pairs have the same first element

and different second element. We need now to associate a label to each

transition in order to represent its importance.

We use two attributes for each transition: the first is the probability that

this transition happens, the second is the mean time and standard deviation

between the occurrence of the first and of the second element of the pair. We

describe now in detail both the attributes.

5.5.3.1 Probability

The probability of each transition is calculated as follows: we already know

that we are in the state A, the probability of reaching the state B is the

typical conditional probability P (B/A) = pB,A. This probability is calculated

by dividing the number of pairs that contains A as the first element and B

as the second element, by the number of pairs that have A as first element.

That probability is written in column A at row B of the transition matrix.

Let us consider, for instance, the chains and transition reported in Equation

62

5.18. The graph generated by the pairs is reported in Figure 5.8. We can

compute the probability of every transition:

pD,B =
‖(B,D)‖
‖(B, x)‖

=
2

3
= 0.67 (5.19a)

pC,B =
‖(C,B)‖
‖(B, x)‖

=
1

3
= 0.33 (5.19b)

... (5.19c)

Finally, the B-row of the transition matrix is:

- init A B C D E

B 0 0 0 0.33 0.67 0

Table 5.10: The table shows a row of the transition matrix.

To be corrected, the sum of the elements on each row of the transition

matrix should be equal to 1.

Some transition could appear with a very low probability. Some consid-

erations about how to use the probability to evaluate the correctness of a

transition is reported in Section 5.6.3.

5.5.3.2 Mean time and standard deviation

Since the Markov chain model provides a way to observe the sequence inside

the chains, we include information about the mean time and the correspond-

ing standard deviation between two consecutive states. The mean time pro-

vides information about the number of seconds before the event B occurs

given the event A. The standard deviation provides information about how

much the information returned by the mean time is reliable.

When the model is used to understand the behaviour of a system, this

information can be used to predict the occurrence of events dynamically. For

instance, we suppose two transition: the first from A to B, with a probability

of 90%, a mean time of 5 seconds and standard deviation almost zero, and

the second from A to C with a probability of 10%, a mean time of 1 minute

and a standard deviation quite high. When we are in the state A and after

5 seconds the event B does not appear in the event log, we can be more

confident to reach C and less confident to reach B.

63

We provide another example regarding the process of removing, from a

model, the corrupted or inaccurated transitions. The goal of this operation

is to remove the random associations and maintain in a model only the reals

one. In the hypothesis to work with big data, the standard deviation for

every transition should be low. We can introduce the coefficient of variation

(CV) [37], expressed by the formula:

CV =
σ

µ
(5.20)

Where σ is the standard deviation and µ is the mean of the interval of time

between two subsequent events.

By calculating CV on each transition, it is possible to clear the model from

those that does not have a CV highly enough. In fact, by using big data, the

transitions that do not respect the CV must be considered as random events

or as events that appear without a relationship with the events before.

5.6 Postprocessing

We provide and analyse now a complete example of a simple model generated

from the data. The parameters used to build this model are:

• Considered Date: 9/05/2017, Considered Device: 1.

• ∆T : 1500 seconds, N: 5.

• State Representation: id/Code.

As is shown in Figure 5.9, there are three chains, the first two share the

messages but end with different alarms, the third one is entirely separated

from the previous. From the init state we have two possibilities, the first is

to reach 1/1023 with a probability of 0.67. The second is to reach 1/4102

with a probability of 0.33. The mean time variates from 26 seconds (between

1/9103 and 1/1201) to 1096 seconds (between 1/4102 and 1/9103). Between

init and the first level of messages the time is always zero. It is impossible

to know the time between the starting of the system and the occurrence of

the message because in the event log file this information is not reported.

As shown by Figure 5.9, the std is always zero because we have either one

occurrence of each couple or more than one occurrence of the same couple

with the same TBE.

64

Figure 5.9: The figure shows the model without considering any postprocessing.

5.6.1 Adding maintenance actions

The dataset containing the maintenance actions that can be performed to

address each alarm looks like Table 5.11.

code UPScale

1202 checkVin

8528 ReplaceNW20140

8528 ReplaceNW20171

8521 checkParalConn

... ...

Table 5.11: This table shows the relation between event code and maintenance actions.

It can be seen as an association between alarm code and the correspond-

ing maintenance actions. An alarm has one or more maintenance actions

and the maintenance actions can be shared among alarms. For instance,

ReplaceNW20010 is reported 9 times for 9 different alarms and the alarm

8521 can be resolved with 5 different maintenance actions. We can represent

these associations by using a simple chain relating every alarm with the set

of maintenance actions. Figure 5.10 represents the generated graph of alarm

8521.

65

Figure 5.10: The figure shows the associations between alarm 8521 and its maintenance

actions.

In this case a transition represents the selection of maintenance actions

needed for repairing a device. A transition can be stronger or weaker de-

pending on the number of times an action is needed for successfully resolve

that specific alarm; thus we add a probability that represents such strength.

As shown in the example, the probability is equal on each transition for the

same alarm, because the dataset we have contains the following informa-

tion: given the alarm K, the possible maintenance actions are A, B, C. The

dataset we need should contain the following information: given the alarm K

we repaired the system using A in n cases, B in m cases, and so on. Section

5.6.2 hypothesises the presence of that file and extends the model.

5.6.2 Adding service log file

A good improvement of the model regards the inclusion of what we call

service log file. This file should be compiled by the customer service every

time it is called for a system reparation. It should include, at least, the alarm

code found and the maintenance actions performed to repair the system.

Moreover, this file could include the order of the actions, the time spent to

repair the UPS and the cost of each action. Table 5.12 represents two entry

of how the service log file could be.

Id- in-

terven-

tion

Id Code Order Id-

repara-

tion

Action Time (s) Cost(e)

1 2 1023 1 2 checkVin 150 0

1 2 1023 2 2 replaceXXX 500 350

Table 5.12: This table shows two records of the service log file.

66

• Id-intervention is an incremental number that represents intervention

identification.

• Id and Code are used to univocally identify the device and the alarm

code that triggered the intervention.

• Order is used to store the numerical order of the actions taken on the

system.

• Id-reparation and action contain the maintenance action taken and the

number of the device where the customer service performs the action.

• Time and Cost are used to save how expensive is an action with respect

to the client or the provider.

For each intervention, these attributes are quite easy to collect and save on a

single file and they could improve a lot the expressiveness of the model. We

now provide some examples of the usage of this model.

First, instead of using the static manual that provides only a list of the

possible faults on the subcomponents, the model can be considered as a

dynamic service manual which relates alarms to maintenance actions with

some probability. The customer service can check the most probable action

to take in order to repair a device. The actions can be reported by considering

the repairing order and the customer service can blindly follow it. In case

more actions have the same probability, one could be chosen by looking at

the time or cost attribute and minimize the intervention cost.

Second, the model created can be used to evaluate the real points of

weakness of the system by querying which replacing action is associated to

the most extensive set of alarms, this allows an evaluation of the general

behaviour of the system.

5.6.3 Transition colouring

By adding more than one device to the model it is easy to have too many

transitions drawn on the final model and the visualization is no more clear.

We have already explained in the previous sections how the transitions be-

tween states could be filtered by using the probability and the mean time

between events. By removing, for instance, the transitions with a probability

below 0.15 we may remove strong dependencies of the real system that are

67

not fully captured by our data. By considering the results of this chapter, we

are able to remove transitions only in the hypothesis of the statistical value

of the data. Since we work on a dataset without this hypothesis we can

only cluster the transitions by their importance by using different colours.

A transition is marked in green if its probability is considerably high, when

the probability is not so high but the transition has a good coefficient of

variation (CV), it is in red.

On the models introduced in the following chapter we draw the transitions

by using the following rules:

• When the probability of that transition is more than 0.3, the transition

is in green.

• When the probability is below 0.3 but the ratio between the standard

deviation and the mean of the time between the two states is below

0.3, the transition is drawn in red.

• The transition is in black on the other cases.

68

Chapter 6

Implementation details and

examples of use

In this chapter, we summarise the architecture of the application developed

and we show some relevant results from which we can derive insightful conclu-

sions. First, in Section 6.1 we describe the main elements of the architecture

of the final application. In Section 6.2 we provide some interesting examples.

6.1 Architecture

Now, we provide a detailed explanation of the architecture of the application

we have developed. The application has to satisfy two requirements: to be

used by people who do not know programming languages and to be extended

easily in case something more specific is needed. To meet these requirements,

we implement the model view controller pattern (MVC), because it allows

fast deployment and easy extensibility of the parameters [38] and a Graphical

User Interface (GUI) because it allows the application to be easy to use. We

now provide more details on each part of the application by describing the

Model, the View, and The Controller. At the end of this section we present

some considerations about the transition matrix and its implementation.

6.1.1 Model

The model contains all the parameters used by the application. These pa-

rameters are both initialised by reading the input files and by the input of

the user. The model also contains all the methods needed to access those

Model

View Controller

User

Figure 6.1: The figure shows how the main components of the application exchange

messages.

parameters. A list of the attributes with a brief explanation is reported

below:

• devices[](:Integer) This attribute contains the list of all the devices

read from the event log file. In our case, the file has four different

devices: 1, 2, 5, 6.

• dates[](:String) This attribute contains the list of all the dates from

which the events come. In our case, the events are written on the event

log file in three different days: 9/05/2017, 10/05/2017, 11/05/2017.

• n(:Integer) This attribute contains the maximum chain length of the

model. The user sets this parameter during the execution of the appli-

cation.

• deltatime[](:Integer) This attribute contains the ∆T described in

Section 5.2.1. The user sets this parameter before building the Markov

chains model.

• resetDeviceNumber[](:Boolean) This flag is used to select the state

representation. When it is True, the application does not consider the

70

id during the construction of the chains. When it is False, during the

construction of the chain, the application also includes the id of the

device that generates that event. A detailed description is provided in

Section 5.3.

• makeChain[](:Boolean) This flag is used to enable the Level state

representation. When is True, to represent the states, the application

includes the Level**. A detailed description is provided in Section 5.4.

• selectedDevices[](:Integer) This array contains the list of devices

to consider during the construction of the model. The events coming

from different devices will be not considered. A detailed description is

provided in Section 5.1.

• selectedDays[](:String) This array contains the list of days to con-

sider during the construction of the model. The events coming from

different days will be not considered. A detailed description is provided

in Section 5.1.

6.1.2 View

The view is the part of the application that has the goal of receiving the

parameters by the user and displaying the results. By using the Tkinter

library, the view creates a simple graphical user interface. In our application,

we need to develop two different windows, the first allows the user to set all

the parameters of the model and the second shows the final model.

Once the application starts, the first window displayed is reported in

Figure 6.2. By setting the values for all the attributes and pressing the submit

button, the application pops out a new window with the Markov chains model

displayed. The application allows the user to change the parameters and to

create a new model without restarting.

We use two classes:

• Checkbar: implements a generic checkbox input widely used for ask-

ing parameters to the user.

• Gui : implements all the logic of the graphical user interface.

71

Figure 6.2: The figure shows the first window of the application.

Checkbar

+ vars: String

+ state: String

Gui

+ data: Datastructure

+ engine: Engine

+ deviceCheckbox: Checkbar

+ dayCheckbox: Checkbar

+ resetDeviceCheckBox: Checkbar

+ makeChainCheckBox: Checkbar

+ runApplication: Void

+ state(String): String

+ MakeInput: Void

+ getValues: Void

Figure 6.3: The figure shows the class diagram of the view.

6.1.3 Controller

The controller is the most important class of the application because it imple-

ments the real logic to compute the chains. This class contains the datasets

and all the needed methods to work on it. The controller receives as input

the parameters of the model and, by using the datasets, it computes the

Markov chains model of the system. As output, it saves on the hard disk an

image containing the graph composed of all the states, the transitions and

the probabilities. The application also writes on the hard disk a text file

containing the parameters used to build the model and a .csv file containing

the final transition matrix of the model.

72

6.1.3.1 Summary of the methods

We provide now the list of the methods of the controller. Table 6.1 shows

the name of every method and the section where it is described in this thesis.

Preprocessing

addTimeStamp Section 4.1

joinMessagesAndValues Section 4.1

writeDatastructure Section 4.1

Model Generation: Computing States

selectDataFromDays Section 5.1

removeDev Section 5.1

sequenceMiningByTime Section 5.2

cutMessages Section 5.2

CreateInitState Section 5.2.4

Model Generation: Labeling Transitions

computeProbTargetGivenFeature Section 5.5.3.1

addMeanTimeAndStdDev Section 5.5.3.2

PostProcessing

createMaintenance Section 5.6.1

DefineColor Section 5.6.3

createGraph

drawGraph

Table 6.1: This table contains a summary of the primary methods of the controller.

The preprocessing methods read the data from the file and perform all

the initial manipulations needed. The first phase of the model generation

is in charge of creating the chains by selecting the data, associating them

according to some parameters, and creating the chains and the pairs. The

second part of the model generation is used to label the transitions by com-

puting the probability, the mean time and the standard deviation. In the

postprocessing part there are two methods used to add the maintenance ac-

tions and colouring the transitions. In the end, in the support methods we

have the functions to draw the graph.

The primary method of the controller is called makeModel and it is not

reported in the table above. This method is called by the view and it contains

73

all the steps performed during the construction of the models, in facts this

method calls in the right order most of the methods reported in Table 6.1.

In Appendix B we provide a clear explanation of this method.

6.1.4 Transition matrix

We provide some details regarding the implementation of the transition ma-

trix. As explained in Section 5.5.2, every state is related averagely to 5 other

states. Having a complete matrix reporting the transition will be inefficient

in terms of memory. In fact, considering N states, we save an N ×N matrix,

but the application uses only 5×N cells.

We have decided to implement the transition matrix by using a table with

three columns: the first includes the state of the system at time t namely

current state, the second column contains the state of the system at time t+1,

namely next state. The third column contains the probability of the transition

between the first element and the second. By using this datastructure we

memorise only the needed information. Figure 6.4 represents a portion of

the transition matrix of a model.

Figure 6.4: The figure shows a portion of a real transition matrix.

74

6.2 Examples of use

For each section, in this analysis, we compare two models generated by taking

into account different parameters. In Section 6.2.1 we compare the code state

representation with respect to the id/code. In Section 6.2.1 we show the

differences between id/code state representation with respect to the level. In

Section 6.2.3 we consider two different chain lengths. In Section 6.2.4 we

compare two models generated by considering different ∆T .

6.2.1 code vs. id/code state representation

As we discussed in Section 5.3, the model could be built by using different

state representations. In this example, we highlight the differences between

the code and id/code representations. Figure A.1 in Appendix A shows the

behaviour of the system by using the code representation, and the Figure

A.2 in Appendix A shows how the messages are related among the devices

by using the id/code representation. Both the models are generated by using

the following parameters:

1. Date: 10/05/2017

2. Device: 2,5

3. ∆T : 800

4. Chain Length: 5

As we have already discussed, the code representation is convenient to un-

derstand the behaviour of the system, but it does not show which of how the

devices exchange the messages. The id/code representation includes in each

state also the device number, and it allows to understand how the devices

influence each other.

The first model includes 20 messages and 8 alarms, the second model has

27 messages and 12 alarms. Since we build the models by considering two

devices, there are different messages with the same code but coming from

different devices, in the first model they are merged in the same state, while

in the second model these messages are divided into different states. Figure

6.5 and Figure 6.6 show this behaviour of the models.

We can analyse the behaviour of the code representation by considering

Figure 6.5. The portion of the model shows a cycle on the messages 8109,

75

Figure 6.5: The figure shows a portion of the model reported in Figure A.1 of Appendix

A.

9401, 8108. When the system reaches one of these states, it is likely to stay

inside the loop. In the model, there is also a loop on the message 8204,

therefore, we can conclude that it is probable to see many times in a row the

message 8204.

By using Figure 6.6, we can introduce second model. In this case, the loop

consists of five different states: 2/8108, 5/8109, 2/9401, 5/8108, 2/8109, and

it is possible to understand better the flow of messages. By considering the

green arcs, there are two likely sequences of messages: the first is composed of

2/8108, 5/8109, 2/9401, 5/8108, the second is composed of 2/8108, 2/8109,

2/9401, 5/8108. Both these sequences share devices 2 and 5. Thus we can

conclude that these devices are strongly connected.

We highlight another difference between the code and id/code represen-

tation.

In case of the code representation, reported in Figure 6.7, the chain starts

with 5101, it continues with the message 8405, and it is divided into two

different chains. In the end both the chains are merged at the message 9103.

In the second case, reported in Figure 6.8, we understand that all the se-

quences described before is generated from the same device, in our example

the number 5. As a result, we understand that this sequence of messages and

the final alarm involve only on a specific device. As we have already under-

stood, the difference between code and id/code is that the second provides

76

Figure 6.6: The figure shows a portion of the model reported in Figure A.2 of Appendix

A.

more information.

6.2.2 id/code vs. level state representation

In this example, we highlight the differences between models created by using

the id/code representation and by using the level representation. We also

provide an example of how this model could be used in a real case. In both

cases, we consider the following parameters:

1. Date: 11/05/2017

2. Device: 2

3. ∆T : 1000

4. Chain Length: 4

77

Figure 6.7: The figure shows a portion of the model reported in Figure A.1 of Appendix

A.

Figure 6.9 shows the model built by using the id/code representation. Start-

ing from the init state, the first message is always 8204, which is also the

last message before every alarm. Indeed, every chain of this model starts

and ends with the message 8204, and due to this representation, there are

loops among states. We identify two different loops: the first pass through

the state 8204, it reaches the state 8205, and after it returns to the state

8204. The second loop starts from the state 8204, then it goes to the state

9203, and it reaches the state 8204 in the end.

The alarm 101 is the most probable with a probability of 24% and a mean

time of 4 seconds. However, the transition is reported in black because the

threshold is 30%. Following the probability, the second alarm that can be

raised is the 8521 with a probability of 12% and within 10 seconds, and the

standard deviation of 0.58, therefore the transition is reported in red.

Figure 6.10 shows the model generated by using the same parameters and

78

Figure 6.8: The figure shows a portion of the model reported in the Figure A.2 of the

Appendix A.

the level state representation. The loops are removed by dividing the state

2/8204 into two different levels: the first and the third.

Resuming the considerations of Section 5.2.3, here we can also deal with

the problem of events that occur at the same time. In Figure 6.10, there

are the states 2 ∗ ∗2/8205 and 2 ∗ ∗2/9203 that are both coming precisely

20 seconds after the state 1 ∗ ∗2/8204. There is no way to determine which

among the states of the second level occurred first. For this reason, the

algorithm divides the chains after the state 1 ∗ ∗2/8204, and it associates to

each transition the same probability. As explained, only one between the

two patterns is correct, but the only way to determine it is to consider much

more events.

With respect to the first model, in this graph, the probability of reaching

directly the alarm 101 by being in the state 1 ∗ ∗2/8204 is lower because this

probability is divided between two different transitions, namely (1∗∗2/8204,

79

Figure 6.9: The figure shows a portion of the model reported in Figure A.3 of Appendix

A.

2/101) and (3 ∗ ∗2/8204, 2/101).

By using the parameters defined in Section 5.6.3, the transitions have

different colours. The green means a strong probability and the red a good

distribution over time, when a transition belongs to both the categories, the

application shows the transition in green. The black is used when a transition

is not considered important enough.

Let us assume to have turned on the system and, after some minutes,

the event log file shows the messages 8204, 9203, and 8204. By considering

every possible path, the most probable alarms are 101 or 8521. Those alarms

have check the parallel connection and replace of the component NW20140

as mutual maintenance actions so we can perform these actions to prevent

the system failure.

6.2.3 Comparing different chain length (N)

In this example, we inspect the differences between a model with N = 10

and a model having N = 4. The parameters used to build the models are:

1. Date: 11/05/2017

2. Device: 2,5

80

Figure 6.10: The figure shows a portion of the model reported in Figure A.4 of Ap-

pendix A.

3. ∆T : 1000

4. State Representation: Level ∗ ∗id/code

In Figure 6.11 the chain length is equal to 4. In this figure, we provide a zoom

of the generated model. Figure A.5 in Appendix A contains the complete

view of the model generated by the same parameters. In this model, we have

a first level composed of 3 states, a second level composed of 5 states, a third

level composed of 2 states and a fourth level composed of 3 states.

By considering a chain length equal to 4, we have a bottleneck on the

third level composed by the states 3 ∗ ∗5/9202 and 3 ∗ ∗5/9203, because all

the chains share the same two states at that level. A model built in this way

is quite impractical because we cannot use it easily, from a state before the

third level, to derive which are the states after that level. For instance, when

the system is in the state 2 ∗ ∗5/9202, we can reach both the states of the

81

Figure 6.11: The figure shows a portion of the model reported in Figure A.5 of Ap-

pendix A.

third level with a probability higher than 40%, and, from this level, we can

reach all the states at the fourth level.

To remove the presence of bottlenecks, we need to set our parameters in

order to have almost the same number of states on each level. By extending

the chain length up to 10, we provide a zoom of the resulting model in Figure

6.12. Apparently, by using this chain length, we resolve the problem. The

model starts with a large set of possible states in the first three levels and

then it converges in two different chains.

By using this model, it is easier to infer which chain we are following. For

instance, given the sequence 1∗∗5/9203, 2∗∗2/9203 we are sure to belong on

the chain to the right of Figure 6.12 because there are no transitions between

the two chains.

When we set a small chain length, we may remove some associations

among events, and by setting a high chain length, we may include relations

that are not true. Therefore, we need to choose the chain length parameter

carefully by considering how the system behaving.

82

Figure 6.12: The figure shows a portion of the model reported in Figure A.6 of Ap-

pendix A.

6.2.4 Comparing different ∆T

We now evaluate how the ∆T influences the model. We have defined the

TBE in Section 4.2.4, and we have hypothesised that a value between 150

and 300 seconds could be appropriate. Now, we build two models, the first

by using a TBE equal to 30 seconds and the second by using a TBE equal

to 500 seconds. The models share the following parameters:

1. Date: 10/05/2017

2. Device: 2

3. N: 5

4. State Representation: Level ∗ ∗id/code

83

Figure 6.13: The figure shows a portion of the model reported in Figure A.7 of Ap-

pendix A.

In Figure 6.13, the ∆T is 150 seconds (TBE = 30 and Chains length = 5). We

provide a zoom, the complete model is reported in Figure A.7 in Appendix

A.

In this model we notice the presence of chains that have one or two

messages before the alarms. For instance, given the state 1 ∗ ∗2/9103, we

reach certainly the alarm 2/1202 with a chain composed of only one state.

Two reasons cause that behaviour: The first concerns the fact that ∆T is not

large enough to capture all the dependencies of the events, the second regards

the possibility of a lack of data. Moreover, there is only one transition with a

standard deviation different from zero: it means that we have an occurrence

for each pair that is not enough to generate a real model of the system.

We compare the model before with the model that uses a ∆T equal to

2500 seconds (TBE = 500 and Chains length = 5). Figure 6.14 shows a

portion of the model, the complete results are reported in the Figure A.8 of

Appendix A.

By looking at Figure 6.14, with respect to the previous model, we find a

new alarm, namely 2/8602, and it is associated with two messages, respec-

tively 5 ∗ ∗2/8204 and 2 ∗ ∗2/9103, with a probability of 50% and more than

200 seconds. There are also different transitions with a probability of 100%

84

Figure 6.14: The figure shows a portion of the model reported in Figure A.8 of Ap-

pendix A.

and a TBE greater than 500 seconds. For instance, the transition between

the message 3 ∗ ∗2/8109 and the message 4 ∗ ∗2/9401 occurs in 644 seconds,

also the transition between the event 2∗∗2/9103 and the alarm 2/8601 occurs

in 733 seconds. A good improvement of the model consists of analysing all

the transitions with an high mean time. When the probability is high and

the standard deviation low, a transition captures a real association of the

data.

In the second model, the chains that end with the alarms 2/4103 and

2/1401 have only one message, and the time interval between the init state

and the alarm is quite low (18 seconds) with a probability of 17%. All this

chain looks a bit particular, we may assert that is probably an imprecision

of the data. All the other chains have at least N messages, so we conclude

that ∆T is too high and the only constraint that influences the model is the

chain length.

In the end, by considering the model in Figure 6.14, we can hypnotise how

to use this model to predict how the system behaves. Let us assume that we

turn on the system and, after a while, the event log file contains the message

2/9203. By looking at the model, the 80% of the times, it ends up with

85

the alarms 2/8602 and 2/8601, and they have the same maintenance actions.

Before knowing the real alarm, the customer service is able to perform some

check like checkIA1switch. In this particular case, it is useless to blindly

replace critical components because we have no evidence of saying which

specific sub-component does not work. Let us suppose that, after the first

message, the event log file also contains 2 ∗ ∗9103. By using the model, the

system should reach either the alarm 2/8601 or the alarm 2/8602 respectively

after 13 and 733 seconds. In this case, the customer service should wait

a couple of minutes before repair the system, if any alarm arrives, it can

suppose that the next alarm will be the 2/8602.

86

Chapter 7

Conclusions and future work

In this chapter, we present the main conclusions of our work in Section 7.1.

In Section 7.2 we describe its limitations. Finally in Section 7.3 we describe

how to use this work for future analysis.

7.1 Conclusions

In this work, we have shown how the Markov chain model could be applied

for the dependability evaluation and analysis in the context of UPS systems.

Mainly, we studied the relations among the events derived from a UPS sys-

tem. Unlikely most of the previous models used to analyse the behaviour of

these systems, our model is based only on the log data without any domain

knowledge of how the devices are connected.

Since we did not have enough data, we spent much effort to analyse

the input files in terms of distribution of the data over devices, dates, and

time intervals. In Chapter 3, we have presented the preprocessing techniques

used to read and understand the input files. In this phase, we understood the

limitations of the information provided and highlighted the main assumptions

on which the work is based (Section 4.2.1 and Section 4.2.2). We have then

demonstrated an association with messages and alarms based on the time

between events.

After this analysis, we have started to work with Markov chains in order

to precisely represent the system in terms of states and transitions. First,

we have chosen to build chains composed of a list of messages ending with

an alarm. The chains rely on two parameters: the maximum time interval

∆T between the first message and the alarm and the maximum chains length

(N), as discussed in Section 5.2. We have developed some state representa-

tions able to characterise the behaviour of the system, in particular we have

introduced the code representation (Section 5.3.1) and the id/code represen-

tation. Since the first two methods show some problems (described in Section

5.3.2), we have decided to build also the Level**id/code representation that

can keep track of the history of the events occurred during the execution.

We have decided to add to each transition the probability of occurrence,

the mean and the standard deviation of the time of occurrence in order to

represent the frequency at which the two events occur. For understanding

the feasibility of the computation, we have evaluated the size of the transi-

tion matrix produced (Section 5.5.2). Since, up to now, the models do not

include all the information provided by the company, we have introduced

associations between alarms and maintenance actions. These associations

provide a description of which actions could be performed on the system

to repair a device after a failure is identified (Section 5.6.1). In this phase,

we have discovered a lack of data that could only be resolved by using the

service log file hypothesised in Section 5.6.2. We have also introduced the

transition colouring based on the probability and the coefficient of variation

that provides a way to visually understand the importance of a transition

(Section 5.6.3).

Considering the business requirements of the company that provided the

data, we have developed a software program that uses a simple graphical user

interface to acquire the parameters from the user and that builds the models

and displays them graphically. The application can be extended easily by

adding domain knowledge of the system or company-specific information to

build richer models. As output, the application creates three files: the first

contains an image of the model, the second contains the parameters used

to build the model, and the third contains the computed transition matrix.

In this phase we have handled the problem of efficiently memorising the

transition matrix, the solution is reported in Section 6.1.4.

In the end, we have analysed the results obtained by creating several

different models and understanding their characteristics in terms of strengths

and weaknesses.

88

7.2 Limitations

By limitations we mean those characteristics of design or methodology that

impacted or influenced the interpretation of the findings from research [39].

In this section, we describe the main limitations encountered both during the

work and for the future use of the models on UPS systems.

One of the main limitations of our study is the numerosity and the relia-

bility of the event log file. As described in Chapter 3, the number of events

used to build models is not enough to provide results that can be practically

used by the company. Moreover, we had no way to verify the correctness of

the information contained in the files. We considered them as ground truth

and, with the availability of a large amount of data, the algorithm can com-

pute a real model of the system. This limitation also affects the possibility

to evaluate the results obtained. Up to now, we were only able to perform

visual checks on the created models without the possibility to give any accu-

racy measure. We tried to supply to this lack of information by inserting in

the models some domain knowledge but, since the information required was

some strategic business data, we were unable to get the data required. After

providing the results to the company that followed our thesis we received

positive feedbacks. The company is also interested to continue the work on

these models.

By looking at the results obtained, we could also discover some limitations

of these types of models applied to UPS systems. As we have understood

from Section 6.2, given a message, the model can predict future alarms with a

time window of at most few minutes. For instance, by considering the model

in Figure A.6, the prediction time is almost 30 seconds, or, by considering the

model in Figure A.8, that time is around two minutes. We believe that the

prediction of the future alarms may come too late to allow the maintenance

service to repair the system before it fails.

7.3 Future work

Many ideas arisen during the work can be analysed even further. First of all,

up to now, by analysing the results obtained, we can confirm some assump-

tions made during the thesis. The core of the work consists in finding an

association between messages and alarms, and in our work, it is performed

by considering the ∆T and the chain length (N) statically provided by the

89

user. It is difficult to find a perfect set of parameters able to guarantee the

presence of all the relevant associations among messages without creating an

overhead of associations. In order to improve the effectiveness of a model,

we must choose dynamically the parameters to build it. In more detail, for

capturing all the correlations, the algorithm should extend or reduce auto-

matically N or ∆T based on the events of the event log file at that specific

time.

Another interesting work, based on this thesis, could be performed by

extending the current model and including a real service log file in order

to capture the correlations among alarms and maintenance strategies. In

this case, the Markov chain model might be converted into a hidden Markov

model. By considering the HMM defined in Section 2.3.2, every message

and alarm will be the states of the model, and every maintenance actions

will be the observation. The chains will be composed in the same way as in

this thesis but, for each state, there will also be a transition to the mainte-

nance actions. By using this model, we can potentially extend the prediction

time of the model by associating the messages with the maintenance actions.

Let us suppose to have the HMM and to observe, in the event log file, the

message A. By querying the model, we can receive a list of the most likely

maintenance actions and a list of possible future messages. Already after the

first message, we will be able to check the maintenance actions needed and,

in case the probability of a specific maintenance action is very high compared

to the others, we can already repair the system. In case almost all the main-

tenance actions have the same probability, we can wait for a message B of

the system, join the maintenance actions of both the messages and extract

the most probable set of actions to repair the system and, in fact, improve

the dependability of the system.

90

Bibliography

[1] Wikipedia contributors, “Markov chain — Wikipedia, the free encyclo-

pedia,” 2018. [Online; accessed 28-October-2018].

[2] Wikipedia contributors, “Hidden Markov model — Wikipedia, the free

encyclopedia,” 2018. [Online; accessed 14-November-2018].

[3] Wikipedia contributors, “Markov model — Wikipedia, the free encyclo-

pedia,” 2018. [Online; accessed 14-November-2018].

[4] Wikipedia contributors, “Uninterruptible power supply — Wikipedia,

the free encyclopedia,” 2018. [Online; accessed 23-November-2018].

[5] C. Alberto, E. S. K., P. Gabriele, R. Enrico, and A. Francesco, “A

bayesian network framework for operations of circuit breakers,” Pro-

ceedings of the IEEE International Conference on Industrial Technol-

ogy., 2019.

[6] A. Pozzi and L. Costantini, “Fault analysis of a complex electrical dis-

tribution system with Bayesian networks and Markov chains,” 2018.

Thesis, Politecnico di Milano.

[7] M. K. Rahmat and M. N. Sani, “Fault tree analysis in UPS reliabil-

ity estimation,” in Proceedings of the 4th International Conference on

Engineering Technology and Technopreneuship (ICE2T), pp. 240–245,

IEEE, 2014.

[8] M. A. Biraol, S. Momoh, and I. G. Saidu, “Failure events analysis of

uninterruptible power supply (UPS) in nigeria,” International Journal

of Engineering Science Invention, vol. 1, pp. 26–32, 2012.

91

[9] H. Guo and H. Liao, “Methods of reliability demonstration testing and

their relationships,” IEEE Transactions on Reliability, vol. 61, no. 1,

pp. 231–237, 2012.

[10] A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of

dependability. University of Newcastle upon Tyne, Computing Science,

2001.

[11] B. W. Johnson, “An introduction to the design and analysis of

fault-tolerant systems, fault-tolerant computer system design,” 1996.

Prentice-Hall, Inc.

[12] P. Luigi and C. R. Daniele, Modeling and analysis of dependable systems:

a probabilistic graphical model perspective. World Scientific, 2015.

[13] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and Yin, “A re-

view of process fault detection and diagnosis: Part II: Qualitative mod-

els and search strategies,” Computers & chemical engineering, vol. 27,

no. 3, pp. 313–326, 2003.

[14] W. G. Schneeweiss, “Advanced fault tree modeling,” Journal of Univer-

sal Computer Science, vol. 5, no. 10, pp. 633–643, 1999.

[15] S. Distefano and A. Puliafito, “Dynamic reliability block diagrams:

Overview of a methodology,” in Proceedings of the European Safety and

Reliability Conference (ESREL), vol. 7, pp. 1059–1068, 2007.

[16] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin,

“A review of process fault detection and diagnosis: Part III: Process

history based methods,” Computers & chemical engineering, vol. 27,

no. 3, pp. 327–346, 2003.

[17] A. Tolver, “An introduction to Markov chains,” 2016. Department of

Mathematical Sciences, University of Copenhagen.

[18] T. Liu, S. Chiou, et al., “The application of Petri nets to failure analy-

sis,” Reliability Engineering & System Safety, vol. 57, no. 2, pp. 129–142,

1997.

[19] N. Thomas Dyhre and J. Finn Verner, Bayesian Network and Decision

Graph. Springer, 2001.

92

[20] A. Ciobanu, F. Munteanu, and C. Nemes, “Bayesian networks utiliza-

tion for reliability evaluation of power systems,” in Proceedings of the

International Conference and Exposition on Electrical and Power Engi-

neering (EPE), pp. 837–841, IEEE, 2016.

[21] J. Liu and X. Zhang, “Detection method of intermittent faults in elec-

tronic systems based on Markov model,” in Proceedings of the Fourth

International Symposium on Computational Intelligence and Design (IS-

CID), vol. 1, pp. 216–219, IEEE, 2011.

[22] Wikipedia contributors, “Markov decision process — Wikipedia, the free

encyclopedia,” 2018. [Online; accessed 14-November-2018].

[23] Wikipedia contributors, “Partially observable Markov decision process

— Wikipedia, the free encyclopedia,” 2018. [Online; accessed 14-

November-2018].

[24] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural

networks and learning machines, vol. 3. 2009. Pearson Upper Saddle

River.

[25] L. R. Rabiner, “A tutorial on Hidden markov models and selected appli-

cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,

pp. 257–286, 1989.

[26] G. L. Kouemou, “History and theoretical basics of hidden markov mod-

els,” in Hidden Markov Models (P. Dymarski, ed.), ch. 1, Rijeka: Inte-

chOpen, 2011.

[27] H.-K. Yun, A. Smith, and H. Silverman, “Speech recognition HMM

training on reconfigurable parallel processor,” in Proceedings of The 5th

Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 242–243, IEEE, 1997.

[28] B.-W. Min, H.-S. Yoon, J. Soh, Y.-M. Yang, and T. Ejima, “Hand ges-

ture recognition using hidden markov models,” in Proceedings of the

International Conference on Systems, Man, and Cybernetics, Computa-

tional Cybernetics and Simulation., vol. 5, pp. 4232–4235, IEEE, 1997.

93

[29] G. Garajayewa and M. Hofreiter, “Markov chains for Fault Diagnosis,”

in Proceedings of the Seminar in Instruments and Control, Ostrava.,

Department of Mathematical Sciences, University of Copenhagen., 2001.

[30] H. S. S. Zaidi, W. G. Zanardelli, S. Aviyente, and E. G. Strangas, “Prog-

nosis of electrical faults in permanent magnet AC machines using the

Hidden Markov model,” in Proceedings of the IEEE Industrial Electron-

ics Society (IECON), pp. 2634–2640, IEEE, 2010.

[31] D. P. Jovanović and P. K. Pollett, “Fault diagnosis using consensus

of Markov chains,” in Proceedings of the 3rd International Workshop

on Dependable Control of Discrete Systems (DCDS), pp. 65–71, IEEE,

2011.

[32] A. Nasiri, S. B. Bekiarov, and A. Emadi, Uninterruptible power supplies

and active filters. CRC press, 2004. CRC press.

[33] Wikipedia contributors, “Pandas (software) — Wikipedia, the free en-

cyclopedia,” 2018. [Online; accessed 6-November-2018].

[34] Wikipedia contributors, “Networkx — Wikipedia, the free encyclope-

dia,” 2018. [Online; accessed 6-November-2018].

[35] Wikipedia contributors, “Graphviz — Wikipedia, the free encyclope-

dia,” 2018. [Online; accessed 6-November-2018].

[36] Wikipedia contributors, “Tkinter — Wikipedia, the free encyclopedia,”

2018. [Online; accessed 6-November-2018].

[37] Wikipedia contributors, “Coefficient of variation — Wikipedia, the free

encyclopedia,” 2018. [Online; accessed 10-November-2018].

[38] G. E. Krasner, S. T. Pope, et al., “A description of the model-view-

controller user interface paradigm in the smalltalk-80 system,” Journal

of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.

[39] J. H. Price and J. Murnan, Research limitations and the necessity of

reporting them. 2004. Taylor & Francis Group.

94

[40] F. Jelinek and R. L. Mercer, “Interpolated estimation of Markov source

parameters from sparse data,” in Proceedings of the Workshop on Pat-

tern Recognition in Practice (E. S. Gelsema and L. N. Kanal, eds.),

pp. 381–397, Amsterdam: North Holland, 1980.

[41] M. Servitja Robert, “A first study on Hidden Markov models and one

application in speech recognition,” 2016. Linkoping University, Depart-

ment of Mathematics, Mathematical Statistics.

[42] X. D. Huang, Y. Ariki, and M. A. Jack, Hidden Markov models for

speech recognition. 1990. Edinburgh university press Edinburgh.

[43] L. R. Rabiner, J. G. Wilpon, and B.-H. Juang, “A segmental k-means

training procedure for connected word recognition,” AT&T technical

journal, vol. 65, no. 3, pp. 21–31, 1986. Wiley Online Library.

95

96 Chapter 7. Conclusions and future work

Appendix A

List of the discovered models

We provide here a list of the models generated by our application. Since we

reported the results with a zoom, we provide now the full images. For each

section we include the parameters used and the model generated.

A.1 Model 1

1. Date :10/05/2017

2. Device: 2,5

3. ∆T : 800

4. N : 5

5. Representation: code

98 Appendix A. List of the discovered models

Figure A.1: Model 1.

A.2. Model 2 99

A.2 Model 2

1. Date :10/05/2017

2. Device: 2,5

3. ∆T : 800

4. N : 5

5. Representation: id/code

100 Appendix A. List of the discovered models

Figure A.2: Model 2.

A.3. Model 3 101

A.3 Model 3

1. Date :11/05/2017

2. Device: 2

3. ∆T : 1000

4. N : 4

5. Representation: id/code

102 Appendix A. List of the discovered models

Figure A.3: Model 3.

A.4. Model 4 103

A.4 Model 4

1. Date :11/05/2017

2. Device: 2

3. ∆T : 1000

4. N : 4

5. Representation: level**id/code

Figure A.4: Model 4.

A.5 Model 5

1. Date :11/05/2017

2. Device: 2,5

3. ∆T : 1000

4. N : 4

5. Representation: Level ∗ ∗id/code

104 Appendix A. List of the discovered models

Figure A.5: Model 5.

A.6. Model 6 105

A.6 Model 6

1. Date :11/05/2017

2. Device: 2,5

3. ∆T : 1000

4. N : 10

5. Representation: Level ∗ ∗id/code

Figure A.6: Model 6.

106 Appendix A. List of the discovered models

A.7 Model 7

1. Date :10/05/2017

2. Device: 2

3. ∆T : 150

4. Chains Length: 5

5. Representation: Level ∗ ∗id/code

A.7. Model 7 107

Figure A.7: Model 7.

108 Appendix A. List of the discovered models

A.8 Model 8

1. Date :10/05/2017

2. Device: 2

3. ∆T : 2500

4. Chains Length: 5

5. Representation: Level ∗ ∗id/code

A.8. Model 8 109

Figure A.8: Model 8.

110 Appendix A. List of the discovered models

Appendix B

MakeModel Method

In this Chapter we provide the implementation of the MakeModel method of

the controller. This method is called by the view after the user presses the

submit button.

The functions starts by calling the selectDataFromDays method which

selects from the dataset only the events contained in the selectedDays pa-

rameter. After that, depending on the representation, the function removes

the device number from the dataset.

def makeModel(self):

daysToConsider = self.selectDataFromDays(self.df,

self.data.selectedDays)↪→

if self.data.resetDeviceNumber == 1:

daysToConsider = removeDev(daysToConsider)

The next step performed by the Makemodel method consists of creating

the couples. For doing this operation we use the sequenceMiningByTime

function whose has the purpose of extracting the chains and creating the

couples based on the ∆T and the chain length n contained in the model of the

application. The sequenceMiningByTime function handles all the problems

highlited during the thesis.

sequenceMiningResult =

self.sequenceMiningByTime(daysToConsider,

self.data.deltaTime, self.data.n)

↪→

↪→

The following step consists of calculating the mean time and the standard

deviation of each couple by using the method addMeanTimeAndStdDev.

112 Appendix B. MakeModel Method

meanAndStd = addMeanTimeAndStdDev(sequenceMiningResult)

After calculating the mean and standard deviation of each transition, we add

to the set of couples the init state and we compute the probability.

sequenceWithInitState = createInitState(sequenceMiningResult)

probFGivenT =

computeProbTargetGivenFeature(sequenceWithInitState[['feature',

'target']])

↪→

↪→

The next step performed by the MakeModel consist of extracting a subset

of couples from the total set of all the maintenance action by considering

only the alarms contained in the sequenceMiningResult. On these couples we

calculates the probability by using the same method as before.

sequenceWithMaintenance =

self.createMaintenance(sequenceMiningResult)↪→

probMaintenanceGivenAlarm =

computeProbTargetGivenFeature(sequenceWithMaintenance[['target',

'upscale']])

↪→

↪→

We are now able to compute the graph and save it. The function createGraph

builds the graph and the function drawGraph is used to write the image of

the graph on the hard disk. After that, the function write the parameters

of the model in a ”.txt” file with the same name as the graph. Another file

created by the function is called ”tmatrix.csv” and it contains the transition

matrix computed by the application.

G = self.createGraph(meanAndStd, probFGivenT,

probMaintenanceGivenAlarm)↪→

filename = self.drawGraph(G)

filepointer = open('images/' + filename + '.txt', "w")

filepointer.write(self.data.getString())

filepointer.close()

probFGivenT.to_csv('trmatrix.csv')

The function returns to the view the name of the file created.

return filename + '.png'

	Abstract
	Sommario
	Introduction
	Preliminary notations and state of the art
	System dependability
	Model-based methods
	Markov model
	Markov chain model
	Learning

	Hidden Markov model
	Learning

	Related work

	Problem setting
	Application domain
	Main definitions
	Data available
	Goals and requirements
	Formalising the problem setting
	Model selection
	message/alarm association
	Alarm/maintenance actions association

	Libraries and software used

	Preprocessing and data analysis
	Preprocessing of the data
	Data analysis
	Number of records in the event log file
	Distribution events log file vs. UPScale
	Event log file detailed analysis
	Time between events analysis

	Notation used to refer events and attributes

	Markov chain model
	Data selection
	Building the chains
	Example considering T
	Example considering N
	Dealing with elements coming at the same time
	Initial state

	State representations
	State representation: code
	State representation: id/code

	Introducing levels
	State representation: level**id/code

	Transitions
	Preprocessing of the chains
	Analysis of the transition matrix
	Branching factor
	Number of states

	Labelling the transitions
	Probability
	Mean time and standard deviation

	Postprocessing
	Adding maintenance actions
	Adding service log file
	Transition colouring

	Implementation details and examples of use
	Architecture
	Model
	View
	Controller
	Summary of the methods

	Transition matrix

	Examples of use
	code vs. id/code state representation
	id/code vs. level state representation
	Comparing different chain length (N)
	Comparing different T

	Conclusions and future work
	Conclusions
	Limitations
	Future work

	References
	List of the discovered models
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5
	Model 6
	Model 7
	Model 8

	MakeModel Method

