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ABSTRACT 

Outrigger systems are increasingly becoming a more common choice for tall buildings 

worldwide. The use of this kind of structural system to provide lateral stiffness and lateral 

load resistance to tall buildings has become more and more popular in the past decades 

because of its effectiveness and wide-ranging adaptability to evolving architectural needs. 

The use of outrigger systems is generally confined to the increase of lateral stiffness under 

bending actions for roughly height-wise regular structures; nevertheless, in modern 

architecture, they are also used in very complex new shapes, particularly buildings 

possessing a variation of the plan distribution of the vertical elements along the height of the 

building. These particular structural shapes, which generally include inclined peripheral 

columns, give way to torsional effects also under vertical loads. Another interesting fact 

regards the torsional properties of the central cores: in some cases, they can be idealized as 

thin-walled elements with open cross-sections. This fact introduces an additional 

deformation component, that is warping, in the compatibility equations between the core, 

the outriggers and the peripheral columns. In the present work, these problems will be 

discussed in detail and the analysis of outrigger systems in defining the structural response 

of tall buildings subjected to torsional effects will be addressed. 

The Vlasov Theory will be recalled and generalized to account for the presence of a rigid 

arm connected to the core cross section, simulating the effect of outriggers on the structure.  

Both a theoretical and numerical approach will be applied to study different structural 

configurations characterized by the presence of one or two levels of outriggers and their 

interaction with transverse stiffeners, e.g. diaphragms and lintels.  

In these conditions, the effects of the delayed deformation of concrete are of paramount 

importance for the design of the outriggers, thus the long-term behaviour of the structure 

will be analysed in special limit cases.  

Finally, the interaction between flexural and torsional effects induced by an additional 

external eccentric volume will be investigated, as it represents an interesting case frequently 

present in modern tall buildings.  

 

 

 

 

Keywords: 

Outrigger systems, Tall Buildings, Torsional Effects, Deformation Component, Warping, 

Long-Term Behaviour, Creep, Bending-Torsion Interaction. 
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SOMMARIO 

L’impiego dei sistemi outriggers sta diventando sempre più frequente nella realizzazione di 

edifici alti in tutto il mondo. Questo tipo di sistema strutturale fornisce infatti un’elevata 

rigidezza e resistenza ai carichi laterali oltre che adattabilità a necessità architettoniche in 

continua evoluzione. Sebbene gli outriggers siano generalmente impiegati in strutture 

pressoché regolari in altezza, nell’ambito dell’architettura moderna sono di comune utilizzo 

anche in forme più complesse, caratterizzate da una variazione lungo l’altezza della 

distribuzione in pianta degli elementi verticali. Queste particolari forme strutturali danno 

origine ad effetti torsionali anche sotto la sola azione di carichi verticali. Un aspetto di grande 

importanza connesso a tali effetti riguarda le proprietà dei nuclei centrali: in alcuni casi essi 

possono infatti essere idealizzati come elementi in parete sottile a sezione aperta. A seguito 

di ciò, nelle equazioni di congruenza tra nucleo, outriggers e colonne perimetrali viene ad 

aggiungersi una componente addizionale di deformazione: l’ingobbamento. 

Nel presente lavoro si analizza questo problema nel dettaglio focalizzando l’attenzione sulla 

risposta strutturale di sistemi nucleo-outriggers in edifici alti soggetti ad azioni torcenti. 

A tal proposito la teoria di Vlasov verrà richiamata e generalizzata per considerare la 

presenza di appendici rigide connesse alla sezione trasversale del nucleo, atte a simulare gli 

effetti degli outriggers. 

Mediante analisi teorica e numerica, si procederà ad analizzare una serie di configurazioni 

strutturali caratterizzate dalla presenza di uno o due livelli di outriggers e la loro interazione 

con altri elementi di irrigidimento, quali diaframmi e/o architravi. 

Data l’importanza degli effetti differiti del calcestruzzo, sarà analizzato il comportamento a 

lungo termine della struttura in casi limite significativi.   

Infine, si valuteranno gli effetti interattivi di flesso-torsionale indotti dalla presenza di 

volumi eccentrici, caso frequente nell’architettura moderna.  

 

 

 

 

 

 

Parole chiave: 

Outriggers, Edifici Alti, Effetti Torsionali, Deformabilità, Ingobbamento, Comportamento a 

lungo termine, Viscosità, Effetti Interattivi Flesso-Torsionali.  
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SOMMARIO ESTESO 

La necessità di contenere gli spostamenti laterali agli stati limite d’esercizio congiunta con 

quella di garantire un adeguato livello di sicurezza agli stati limite ultimi, ha da sempre 

rappresentato il problema fondamentale del progetto di edifici alti. Di conseguenza, si è resa 

necessaria la definizione di sistemi strutturali con una morfologia ben delineata e tesa ad 

incrementare l’efficienza globale degli edifici. Ad oggi, la letteratura tecnica elenca un vasto 

numero di possibili soluzioni, tra cui i cosiddetti sistemi con outriggers, essenzialmente 

caratterizzati da uno o più nuclei disposti entro i limiti delle solette di piano, la stabilità dei 

quali, sotto l’applicazione di carichi laterali, è aumentata dalla presenza di elementi a 

mensola di notevole rigidezza, vincolati verticalmente dalle colonne perimetrali. 

 

Sistemi di questo tipo sono largamente utilizzati nella loro configurazione piana come 

riduttori degli spostamenti laterali indotti da carichi flessionali. Poiché l’efficienza degli 

outriggers è influenzata sia dalla rigidezza assiale delle colonne che dalla loro rigidezza 

flessionale e quella del nucleo, sono stati condotti studi estesi ed esaustivi che permettono di 

avere a disposizione mezzi sufficienti per poter stabilire quale sia la posizione ottimale degli 

outriggers al fine di potenziare al massimo i loro effetti e, quindi, la risposta globale della 

struttura.  

 

Nella pratica moderna, tuttavia, forme architettoniche di crescente complessità, spesso 

caratterizzate da variazioni marcate delle proprietà geometriche lungo l’altezza, stanno 

diventando sempre più frequenti, dando luogo a una risposta strutturale di non immediata 

analisi. Un caso particolare è quello di strutture che presentano irregolarità in elevazione, 

situazione che porta, generalmente, ad includere nel progetto la presenza di colonne 

perimetrali inclinate rispetto alla verticale. Ne consegue che la struttura può trovarsi soggetta 

ad effetti torsionali anche in presenza dei soli carichi verticali.  

 

È bene osservare che l’effetto degli outriggers è tanto più pronunciato quanto più i loro 

spostamenti verticali, generati dalla deformazione flessionale del nucleo a cui sono connessi, 

sono elevati. In presenza di torsione, gli spostamenti verticali negli outriggers sono una 

conseguenza diretta dell’ingobbamento della sezione trasversale del nucleo. Dunque, è 

immediato constatare come la presenza di outriggers sia di maggiore rilevanza allorché il 

nucleo abbia una sezione trasversale aperta e di piccolo spessore, mentre, per contro, gli 

effetti benefici ad essi associati possono ritenersi trascurabili quando il nucleo presenta una 

sezione trasversale chiusa o, comunque, essenzialmente tale.  
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Un altro aspetto significativo concerne le deformazioni differite che sono indotte negli 

elementi in calcestruzzo da azioni con caratteristica di permanenza nel tempo. Per tenerne 

conto in maniera approssimata ma comunque soddisfacente, si può fare riferimento ad una 

formulazione algebrica in grado di descrivere la disomogeneità reologica tramite modelli 

viscoelastici in situazioni limite per le parti della struttura aventi età maggiore rispetto alle 

altre. In questo modo è possibile valutare l’evoluzione temporale degli stati di sforzo e 

deformazione negli elementi resistenti della struttura.  

 

L’obbiettivo della tesi consiste nello studio dettagliato del comportamento di strutture con 

uno o più livelli di outriggers, allorché siano soggetti, oltre che a sollecitazioni flessionali, 

anche ad effetti torsionali.  

 

La tesi si sviluppa su 6 capitoli i cui argomenti sono sommariamente illustrati nel prosieguo.  

 

Nel Capitolo 1 vengono fissati gli obbiettivi del presente lavoro.  

 

Nel Capitolo 2, è mostrata, in breve, la storia degli edifici alti, che si estende dalle prime 

iconiche realizzazioni quali l’Empire State Building di New York fino alle più recenti quali 

l’attuale grattacielo più alto del mondo, il Burj Khalifa di Dubai. Specifico riguardo è 

dedicato allo sviluppo degli edifici alti in Italia, in particolare nelle città di Milano e Torino.  

 

 

Figura S.1: Empire State Building, NY (1931); Burj Khalifa, Dubai (2010) 

L’attenzione è stata anche focalizzata sull’evoluzione delle tipologie strutturali e dei 

materiali da costruzione, in particolare del calcestruzzo armato, divenuto elemento 

fondamentale nella realizzazione degli edifici alti, dato l’elevato rapporto prestazioni/prezzo 

dei moderni calcestruzzi, in grado di raggiungere resistenze caratteristiche superiori ai 90 

MPa (si veda figura S.2). 
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Figura S.2: Efficienza del calcestruzzo 

Infine, si sono analizzati i sistemi outriggers. La loro presenza comporta notevoli vantaggi, 

ad esempio la riduzione degli spostamenti laterali del nucleo, la riduzione del momento 

ribaltante, la riduzione delle forze agenti sulla fondazione del nucleo, l’incremento della 

rigidezza torsionale, la riduzione degli accorciamenti differenziali tra colonne, o tra colonne 

e nucleo, e la presenza di percorsi di carico alternativi in caso di collassi parziali. 

Il principio di funzionamento a flessione dei sistemi outriggers è illustrato in Figura. S.3 e 

da essa si evince che una porzione del momento ribaltante agente sul nucleo viene trasferita 

agli outriggers, generando forze di trazione nelle colonne sopravento e compressione in 

quelle sottovento. 

 

 

Figura S.3: Interazione nucleo-outriggers a flessione 

Allo stesso modo, in strutture soggette a torsione, aventi nuclei in parete sottile e sezione 

aperta, i sistemi outriggers riducono la rotazione torsionale del nucleo inducendo forze di 

compressione e trazione nelle colonne conseguenti all’ingobbamento del nucleo.  
 

 
 

 

Figura S.4: Forze di interazione outriggers-colonne nel caso di flessione e di torsione 
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Nel Capitolo 3 è richiamata la trattazione teorica del comportamento torsionale di elementi 

a parete sottile e sezione aperta secondo la teoria di Vlasov, generalizzata per tener conto 

degli spostamenti verticali presenti in appendici connesse alla sezione trasversale. Come 

noto, la teoria di Vlasov richiede che siano soddisfatte le seguenti diseguaglianze: 

  
𝛿

𝑑
≤ 0.1;    

𝑑

𝐿
≤ 0.1 

 

le quali sono riscontrabili negli impianti strutturali degli edifici alti. 

Le equazioni di equilibrio di un elemento in parete sottile a sezione aperta soggetto a carichi 

trasversali flettenti (𝑞𝑥, 𝑞𝑦) e torcenti (𝑞𝜔) con riferimento al sistema di coordinate principali 

della sezione, si scrivono: 

𝐸𝐴𝑤′′ = 0 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 = 𝑞𝑥 

𝐸𝐼𝑥𝑥𝑣
𝐼𝑉 = 𝑞𝑦 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

′′ = 𝑞𝜔 
 

La soluzione della quarta equazione, governante il problema torsionale, dipende dal 

parametro 𝑘, avente formula:  

𝑘 = 𝐿√
𝐺𝐼𝑑
𝐸𝐼𝜔𝜔

 

 

dove 𝐼𝑑 è la rigidità torsionale per pura torsione, 𝐼𝜔𝜔 è la rigidità torsionale di ingobbamento 

e 𝐿 è la lunghezza della trave. 

Bassi valori di 𝑘 si hanno allorché la rigidità torsionale di ingobbamento prevalga su quella 

per torsione pura. Al contrario, per elevati valori di 𝑘 la torsione primaria prevale su quella 

di ingobbamento, circostanza che può verificarsi sia quando la rigidità torsionale per pura 

torsione è maggiore di quella per ingobbamento sia quando si ha a che fare con lunghezze 𝐿 

elevate.  Si osservi come 𝐿 sia determinante nella definizione di 𝑘, la cui influenza sugli 

effetti torsionali è illustrata in Figura S.5 per elemento soggetto a carico torcente 

uniformemente distribuito sull’altezza.  
 

  

     

Figura S.5: Effetti torsionali al variare del parametro k per una mensola sottoposta a carico torcente 

uniforme 
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Sulla base delle precedenti considerazioni, l’effetto statico di più outriggers applicati alla 

medesima quota, può così esprimersi: 

 

𝑁 =∑ 𝑃𝑖
𝑚

;       𝑀𝑥 =∑ 𝑃𝑖
𝑚

∙ 𝑥𝑂𝑖;        𝑀𝑦 = −∑ 𝑃𝑖
𝑚

∙ 𝑦𝑂𝑖;       𝑀𝜔 =∑ 𝑃𝑖
𝑚

∙ 𝜔𝑂𝑖 

 

Si evince pertanto che le forze di interazione outriggers-colonne portano all’insorgenza nel 

nucleo, oltre che di uno sforzo assiale e due momenti flettenti, anche di un bimomento.  

Poiché la modellazione del nucleo quale profilo in parete sottile a sezione aperta rappresenta 

una semplificazione, si è proceduto a studiare gli effetti dati da irrigidimenti trasversali quali 

diaframmi ed architravi. Per tenere conto di questi effetti, è sufficiente introdurre 

nell’equazione governante un valore variato di 𝑘, esprimibile come: 

 

𝑘𝑣𝑎𝑟 = 𝐿√
𝐺(𝐼𝑑 + 𝐼�̅�)

𝐸𝐼𝜔𝜔
 

 

dove 𝐼�̅� rappresenta il contributo aggiuntivo di rigidità per torsione pura dato dallo specifico 

irrigidimento trasversale.  

Nel caso di diaframmi, chiamando Ω il doppio dell’area racchiusa dalla linea media della 

sezione trasversale del nucleo, ℎ lo spessore del diaframma e 𝑏 il passo dei diaframmi, la 

componente aggiuntiva di rigidità torsionale per pura torsione risulta: 

 

𝐼�̅� =
ℎ3Ω

6𝑏
 

 

Nel caso di architravi, invece, definendo 𝑎, 𝐼𝑏𝑟 ed 𝐴𝑏𝑟 rispettivamente la lunghezza, il 

momento d’inerzia e l’area della sezione trasversale dell’architrave, la componente 

aggiuntiva di rigidità torsionale per pura torsione risulta essere: 

 

𝐼�̅� =
Ω2

𝑎𝑏
∙

1

(
𝑎2𝐺
12𝐸𝐼𝑏𝑟

+
1.2
𝐴𝑏𝑟

)
 

 

Si evince dunque che all’aumentare degli irrigidimenti trasversali, il parametro 𝑘 aumenta, 

la torsione pura finisce per prevalere su quella non uniforme, riducendo le potenzialità 

torsionali degli outriggers. 

 

Nel Capitolo 4 il problema dell’interazione nucleo-outrigger è stato affrontato nella sua veste 

generale. Considerando un nucleo in parete sottile e sezione aperta di forma generica, 

soggetto ad una distribuzione qualunque di outriggers, il problema conduce alla risoluzione 

di un sistema di (𝑛 x 𝑚) equazioni di congruenza, dove 𝑛 rappresenta il numero di livelli di 

outriggers mentre 𝑚 è il numero di outriggers presenti a ciascun livello. 
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Figura S.6: Schema base per l’analisi strutturale 

Le equazioni di congruenza si scrivono come segue:  

 

∑∑𝑃𝑖
(𝑗)
[𝑤ℎ(휁𝑝, 휁𝑗) + 𝑥𝑖

(𝑗)
𝑥𝑘
(𝑝)
𝑢ℎ
′ (휁𝑝, 휁𝑗)]

𝑛

𝑗=1

𝑚

𝑖=1

+ 

−∑∑𝑃𝑖
(𝑗)
[𝑦𝑖
(𝑗)
𝑦𝑘
(𝑝)
𝑣ℎ
′ (휁𝑝, 휁𝑗) + 𝜔𝑖

(𝑗)
𝜔𝑘
(𝑝)
𝜃ℎ
′ (휁𝑝, 휁𝑗)]

𝑛

𝑗=1

𝑚

𝑖=1

+ 

+
𝑃𝑘
(𝑝)
(𝑒𝑘

(𝑝)
)
3

3𝐸𝐼𝑘
(𝑝)

+ 

 

−𝑢0
′ (휁𝑝)𝑥𝑘

(𝑝)
− 𝑣0

′(휁𝑝)𝑦𝑘
(𝑝)
− 𝜃0

′(휁𝑝)𝜔𝑘
(𝑝)

 
 
 

= 
 

−[∑𝑃𝑘
(𝑟)

𝑝

𝑟=1

𝐿휁(𝑟)

(𝐸𝐴)𝑘
+ ∑ 𝑃𝑘

(𝑟) 𝐿휁
(𝑝)

(𝐸𝐴)𝑘

𝑛

𝑟=𝑝+1

] 

 

con ℎ = 1  for  𝑗 ≤ 𝑝, ℎ = 2  for  𝑗 ≥ 𝑝 + 1, (𝑘 = 1,2,… ,𝑚), (𝑝 = 1,2, … , 𝑛), 휁 =
𝑧

𝐿
 

 

Nell’equazione riportata, 𝑃𝑖
(𝑗)

 rappresenta l’azione longitudinale applicata dalla 𝑖-esima 

colonna esterna all’𝑖-esimo outrigger all’ascissa 휁𝑗  e  𝑃𝑘
(𝑝)

 l’azione applicata dalla 𝑘-esima 

colonna esterna al 𝑘-esimo outrigger all’ascissa 휁𝑝. I termini 𝐼𝐾
(𝑝)

 ed (𝐸𝐴)𝑘 rappresentano 

rispettivamente il momento d’inerzia dell’outrigger a cui è applicata la forza 𝑃𝑘
(𝑝)

 e la 

rigidezza assiale della colonna associata. I termini 𝑢0(휁𝑝), 𝑣0(𝑣) e 𝜃0(휁𝑝) rappresentano gli 
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spostamenti prodotti dai carichi esterni,  mentre i termini 𝑢′ℎ(휁𝑝, 휁𝑗), 𝑣
′
ℎ(휁𝑝, 휁𝑗) e 𝜃′ℎ(휁𝑝, 휁𝑗) 

rappresentano rispettivamente le Funzioni di Green di rotazione ed ingobbamento per un 

carico concentrato applicato a quota 휁𝑗 . 

Per i casi di carico flettente uniforme e triangolare, gli spostamenti dati dai carichi esterni 

sono stati ricavati risolvendo le rispettive linee elastiche con le opportune condizioni al 

contorno. Per i carichi torcenti, uniforme e triangolare, si è invece adottato il metodo dei 

parametri iniziali. Per quanto concerne gli effetti concentrati associati alla presenza di 

outriggers, si è fatto riferimento alle Funzioni di Green. 

Risolvendo le (𝑛 x 𝑚) equazioni di compatibilità, è dunque possibile ricavare le (𝑛 x 𝑚) 

azioni assiali nelle colonne 𝑃𝐾
(𝑝)

 e, applicando il principio di sovrapposizione degli effetti, è 

stato possibile ottenere le azioni interne e gli spostamenti del nucleo.  

 

Nel Capitolo 5 si è applicata la trattazione sviluppata nei capitoli precedenti per studiare il 

comportamento di una struttura di 170 𝑚 di altezza, avente 40 piani con un’altezza di 

interpiano pari a 4.25 𝑚. La particolarità della struttura è costituita da due volumi prismatici 

triangolari aventi base in sommità e disposti in maniera antisimmetrica rispetto agli assi 𝑥 e 

𝑦. A seguito dei carichi verticali ad essi applicati e dell’inclinazione delle colonne 

perimetrali che li sorreggono, la struttura si trova ad essere sollecitata da un carico torcente 

distribuito triangolarmente con valore massimo 𝑞𝜔 in sommità. Oltre ad esso, si è 

considerata un’azione laterale, anch’essa distribuita triangolarmente ed agente nella 

direzione positiva di 𝑦, atta a simulare gli effetti del vento sulla struttura. 
 

  
 

Figura S.7: Effetti torsionali indotti dai volumi sporgenti; Carico flessionale e torcente 

Il nucleo presenta una sezione ad 𝐼 di spessore 𝑡 = 0.45 𝑚. La struttura viene studiata 

considerando due livelli di 4 outriggers per livello, uno in sommità ed uno a mezza altezza, 

sorretti da megacolonne in calcestruzzo di forma circolare. 
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Figura S.8: Sezione trasversale sistema 

nucleo-outriggers. 

Nucleo Centrale 

Ali: 2𝑏 10 [𝑚] 

Anima: 𝑑 15 [𝑚] 

Flange: 𝑎 6 [𝑚] 

Spessore: 𝑡 45 [𝑐𝑚] 

 

Outriggers (Sezione Rettangolare) 

Base: 𝑡0 = 𝑡 45 [𝑐𝑚] 

Altezza: ℎ0 = 𝑙 425 [𝑐𝑚] 

Campata: 𝐿0 = 2𝑏 10 [𝑚] 

Numero per piano: 𝑚 4 [−] 

Diametro delle megacolonne: 𝐷 160 [𝑐𝑚] 

Posizione in elevazione: 
Piani 19 − 20 

Piani 39 − 40 

[−] 

[−] 
 

 

Dopo l’individuazione delle caratteristiche geometriche flessionali e torsionali del problema, 

vale a dire i momenti d’inerzia del nucleo, il diagramma delle aree settoriali nucleo-

outriggers, la rigidità torsionale per pura torsione e quella per ingobbamento, si è proceduto 

a studiare, oltre alla struttura con solo nucleo, i due seguenti casi fondamentali: 

 

− Struttura con un solo livello di outriggers, in sommità; 

− Struttura con due livelli di outriggers, uno in sommità ed uno a mezza altezza. 

 

Data la doppia simmetria del sistema nucleo-outriggers è stato possibile studiare il 

comportamento flessionale separatamente da quello torsionale, applicando al caso in esame 

la formula generale riportata nel Capitolo 4.  

 

 

Figura S.9: Andamento sull’altezza dello 

spostamento laterale indotto dal carico flettente 

triangolare 

 

Figura S.10: Andamento sull’altezza della 

rotazione torsionale indotta dal carico torcente 

triangolare 
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Figura S.11: Andamento sull’altezza del momento 

flettente indotto dal carico flettente triangolare. 

 

Figura S.12: Andamento sull’altezza del 

bimomento indotto dal carico torcente triangolare. 

 

Come si evince da Figura S.9, gli outriggers sono di notevole efficacia nella riduzione degli 

effetti indotti dal carico flessionale, permettendo una riduzione dello spostamento laterale in 

sommità rispetto al caso di solo nucleo del 47% e del 64% a seconda che siano disposti 

outriggers solo in sommità od in sommità ed a mezza altezza. Analogamente, per quanto 

concerne le rotazioni torsionali, facendo riferimento a Figura. S. 10, la presenza di outriggers 

ne riduce l’importanza rispettivamente del 32% e del 51% a seconda che siano inseriti uno 

o due livelli di outriggers. Considerazioni analoghe possono essere fatte per momento 

flettente e bimomento, rotazione e ingobbamento. 

Gli effetti riduttivi dell’efficienza degli outriggers indotti dalla presenza di diaframmi e/o 

architravi sono invece mostrati in Figura S.13, Figura S.14, Figura S.15 e Figura S.16. 

 

 

Figura S.13: Andamento sull’altezza 

dell’ingobbamento nel caso di nucleo con 

diaframmi, nucleo con diaframmi ed uno livello di 

outriggers, nucleo con diaframmi e due livelli di 

outriggers.  

 

Figura S.14: Andamento sull’altezza 

dell’ingobbamento nel caso di nucleo con 

architravi di 50 cm, nucleo con architravi di 50 cm 

ed uno livello di outriggers, nucleo con architravi 

di 50 cm e due livelli di outriggers. 
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Figura S.15: Andamento sull’altezza 

dell’ingobbamento nel caso di nucleo con 

architravi di 100 cm, nucleo con architravi di 100 

cm ed uno livello di outriggers, nucleo con 

architravi di 100 cm e due livelli di outriggers 

 

Figura S.16: Andamento sull’altezza 

dell’ingobbamento nel caso di nucleo con 

architravi di 150 cm, nucleo con architravi di 150 

cm ed uno livello di outriggers, nucleo con 

architravi di 150 cm e due livelli di outriggers 

Gli effetti a lungo termine, espressi mediante formulazione algebrica approssimata, 

conducono alle seguenti espressioni: 

 

− Struttura Omogenea: 
 

𝑆(𝑡) = 𝑆𝑒 
 

𝑠(𝑡) = 𝑠𝑒 ∙ [1 + 𝜑(𝑡, 𝑡0)] 
 

dove 𝑆(𝑡) rappresenta un’azione interna al tempo 𝑡 mentre 𝑆𝑒 il corrispondente 

valore elastico. Allo stesso modo 𝑠(𝑡) ed 𝑠𝑒 sono gli spostamenti al tempo 𝑡 ed il 

corrispettivo elastico.  
 

− Struttura Non Omogenea: 
 

𝑆(𝑡) = 𝑆𝑒
(1)(𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑆𝑒 

 

𝑠(𝑡) = 𝑠𝑒
(1)(𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑠𝑒 

 

dove 𝑆𝑒
(1)

 ed 𝑠𝑒
(1)

 sono le quantità elastiche valutate assumendo, per le parti 

viscoelastiche, un modulo elastico variato definito dalla seguente relazione: 

 

𝐸′ =
𝐸

1 + 𝜒𝜑
 

 

essendo 𝜒 il coefficiente d’invecchiamento. Assumendo 𝜒 = 0.8, il coefficiente di 

miscelazione 𝜇 è immediatamente definito come: 

 

𝜇 = −
1 − 𝜒

𝜒
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Considerando gli outriggers come elementi reologicamente disomogenei rispetto al resto 

della struttura, si sono considerati i due seguenti casi limite di analisi: 
 

− Caso a): Nucleo-colonne viscoelastiche ed outriggers elastici 

− Caso b): Nucleo-colonne elastiche ed outriggers viscoelastici.  
 

In Figura S.17 e Figura S.18 si riportano, a titolo di esempio, i risultati in termini di rotazione 

torsionale in entrambi i casi a) e b). 
 

 

Figura S.17: Andamento sull’altezza della 

rotazione torsionale per nucleo con un solo livello 

di outriggers, in sommità, nei casi di struttura 

elastica, caso a), caso b) e struttura viscoelastica. 

 

Figura S.18: Andamento sull’altezza della 

rotazione torsionale per nucleo con due livelli di 

outriggers, in sommità ed a mezza altezza, nei casi 

di struttura elastica, caso a), caso b) e struttura 

viscoelastica. 

Per valutare gli effetti interattivi di flesso-torsione, si sono indagate diverse situazioni 

variando lungo un lato dell’edificio la posizione di un volume prismatico triangolare con 

base in sommità, come mostrato in Figura S.19. 
 

 

Figura S.19: Schema per lo studio dell’interazione flessione-torsione 

Definendo 𝑞𝑦(𝑧) il carico flessionale indotto dal volume sulla struttura e 𝑞𝜔(𝑧) = 𝑒 ∙ 𝑞𝑦(𝑧) 

l’effetto torcente correlato, la trattazione viene a dipendere linearmente dall’eccentricità 𝑒 
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tra il baricentro del volume e il baricentro del nucleo. Risolvendo le equazioni di congruenza, 

è possibile ricavare le forze di interazione outriggers-colonne e, tramite le Funzioni di Green 

per forza assiale, gli spostamenti verticali nelle colonne: 
 

Spostamento per flessione  Spostamento per torsione  

𝑤1(휁, 휁)̅ = 𝑃1𝑦
𝐿

𝐸𝐴
∙ 휁  𝑤1(휁, 휁)̅ = 𝑃1𝜔

𝐿

𝐸𝐴
∙ 휁 0 ≤ 휁 ≤ 휁 ̅

𝑤2(휁, 휁)̅ = 𝑃1𝑦
𝐿

𝐸𝐴
∙ 휁 ̅  𝑤2(휁, 휁)̅ = 𝑃1𝜔

𝐿

𝐸𝐴
∙ 휁  ̅ 휁̅ ≤ 휁 ≤ 1 

 

La trattazione è stata svolta per un solo livello di outriggers, in sommità. 

In figura S.20 sono riportati, in forma adimensionale, gli andamenti degli spostamenti in 

sommità delle megacolonne al variare di 𝑒. 

  

  

Figura S.20: Variazione dello spostamento in sommità delle megacolonne al variare di e; Spostamenti ad 

e=8.75 m 

L’analisi strutturale è stata svolta attraverso modellazione numerica mediante il software 

MidasGen onde verificare la concordanza fra i risultati numerici e quelli teorici. Usando 

piastre sottili per il nucleo, gli outriggers e le solette di piano, ed elementi tipo trave di 

Eulero-Bernoulli per le colonne, si è analizzata la risposta strutturale implementando tutti i 

casi teorici sopra riportati. Per verificare il comportamento del solo nucleo con uno o due 

livelli di outriggers, si è imposta l’indeformabilità nel proprio piano della sua sezione 

trasversale, alla base della teoria di Vlasov, tramite l’imposizione di rigid diaphragms ogni 

4.25 𝑚 di altezza. Confrontando i risultati di Figura S.21 e Figura S.22 si riscontra una 

pressoché totale sovrapponibilità, mentre confrontando Figura S.23 e Figura S.24, relative 

rispettivamente al caso di risposta teorica con diaframmi di irrigidimento e risposta numerica 

con solette di piano deformabili, in quest’ultima si osserva una rotazione torsionale 

marcatamente minore rispetto a quanto predetto. Ne consegue una ridotta efficienza degli 

outriggers, i quali, nel caso di uno e due livelli, permettono di ridurre solamente del 6% e 

del 13% la rotazione rispetto al caso di solo nucleo (Figura S.24). 
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Figura S.21: Andamento sull’altezza della 

rotazione torsionale per nucleo alla Vlasov - 

Soluzione teorica 

 

Figura S.22: Andamento sull’altezza della 

rotazione torsionale per nucleo alla Vlasov - 

Soluzione numerica 

 

Figura S.23: Andamento sull’altezza della 

rotazione torsionale per nucleo con diaframmi - 

Soluzione teorica 

 

Figura S.24: Andamento sull’altezza della 

rotazione torsionale per nucleo con diaframmi - 

Soluzione numerica 

. 

Nel capitolo 6 sono riportate le considerazioni finali relative ai risultati ottenuti ed illustrate 

in breve possibili ricerche future. 
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1 AIMS AND RESEARCH SIGNIFICANCE 

Outrigger systems are a convenient solution to ensure an adequate transverse stiffness of 

shear-resistant elements in tall buildings. The use of such systems, in spatial configurations, 

has been extensively studied in literature, by analysing the static interaction between 

outriggers, peripheral columns and cores subjected to displacement states deriving from 

biaxial bending. In complex architectural configurations, the rotational effects deriving from 

the warping generated by the application of torsional moments to the core, increases the 

vertical displacements of the outriggers which, in addition to their primary function of 

limiting flexural displacements, also act as torsional rotation reducers. This prerequisite is 

even more pronounced when the core warping deformations are higher, as occurs in case of 

cores having a thin-walled open section.  

 

The aim of the present work is to analyse the outrigger systems in defining the structural 

response of tall buildings subjected to torsional effects. 

 

After a brief discussion on tall buildings development, in which special care will be given to 

the evolution of structural systems and the importance of concrete as a suitable construction 

material to build high, the analysis will be focused on outrigger structural systems. Their 

behaviour in reducing flexural and torsional deformations and the benefits they provide to 

the whole building will be addressed.  

 

Because of the relevance of the torsional problem in thin-walled open sections, the Vlasov 

Theory will be applied for both the cases of simple thin-walled elastic beams and thin-walled 

elastic beams transversally reinforced. After that, the solution for the structural problem of 

outrigger-core interaction will be treated in the form of a system of compatibility equations 

matching the vertical displacements of the outriggers with those of the supporting 

megacolumns. 

 

Given the background to the problem, we will have all the tools to analyse how outrigger 

systems work in a real structure, by applying both a theoretical and numerical approach. In 

doing so, we will set the goal in understanding whether outriggers systems work effectively 

in reducing torsional rotations and how they are going to behave in different structural 

configurations, accounting for the presence of floor slabs and reinforcing systems like lintels. 

In addition, the long-term behaviour of the structure will also be analysed in special limit 

cases, in order to detect the role of outriggers in counteracting delayed deformations.  
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Finally, the interaction between flexural and torsional effects induced by an additional 

external eccentric volume will be investigate, as it represents an interesting case frequently 

present in modern tall buildings.  
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2 TALL BUILDINGS AND OUTRIGGER 

STRUCTURAL SYSTEMS 

 HISTORICAL NOTES 

Starting from the beginning of the XX century high-rise buildings became part of the 

construction’s history and their presence, initially confined into the urban fabric of United 

States, increased gradually into cities around the word. There are different reasons behind 

the development of tall buildings, started from a height of almost 50 m until the today 800 

m, with an average annual increase of 6.8 m/year. However, building’s height didn’t develop 

gradually in time but there are significant accelerations during history, due to different 

factors, particularly the progress in structural and material engineering, and also construction 

technologies. 

 

From the urbanistic and architectural point of view, tall buildings developed in time because 

of the need for more available volumes with limited buildable surfaces as well as the 

necessity to have a characterising element in the city landscape. Referring to this, the Eiffel 

Tour case is significant: built as interim structure for the 1889 Paris Expo, was hardly wanted 

by citizens as permanent building, becoming the first city landmark. In the same way, the 

Chrysler Building and the Empire State Building, both built between the end of ‘20s and the 

beginning of ‘30s, became unmistakable landmark in New York urban fabric. 

 

 

Figure 2.1: Tour Eiffel, Paris (1889); Chrysler Building, NY (1930); Empire State Building, NY (1931) 
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The first reinforced concrete tall building is the Ingalls Building, built in Cincinnati, Ohio, 

between 1902 and 1903 by Elzner and Anderson. At that time the reinforced concrete 

technology takes the first steps, therefore the construction of 16 floors structure, with 67m 

height, was seen as a hazard by the public opinion. However, the building was a success and 

it is still successfully working. Despite the Elzner and Anderson success, the rapid increase 

in tall buildings height was possible thanks to the structural steel only, because that time 

concrete strength and technology was not enough to reach those heights. This happened 

during the so called First New York Era, from which the Wooolworth Building is the major 

representation, with its 241.4 m height. 

 

 

Similarly, until the end of ‘30s, during the so called Second New York Era, the concrete 

technology wasn’t still developed sufficiently, so structural steel was fundamental to realize 

construction as the Chrysler Building, the Empire State Building and the Ge Building in 

Rockefeller Centre. During this period the maximum height was fixed at 381 m, record for 

tall buildings fixed for almost 43 years, until 1973. 

 

The usage of concrete as structural material in high-rise buildings began almost at the end 

of ‘50s, when the technology and transport technique of this material allowed to realize 

sufficiently strength cross sections, with reduced dimensions. In the following 50 years, 

reinforced concrete was widely used, also for really high construction, for example the 

Petronas Twin Towers, which was the highest building at the realization time, with a 451,9 

m height. Finally, also the current highest tall building, the Burj Khalifa, with its 829,8 m 

height, has a main concrete bearing structure. 

 

Figure 2.2: Ingalls Building, Cincinnati (1903); Wooolworth Building, NY (1913) 
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Figure 2.3: Petronas Twin Towers, Kuala Lumpur (1996); Burj Khalifa, Dubai (2010) 

These brief historical notes have allowed to highlight the long path of concrete, which had 

led this material from the high mistruth of the Ingalls Building to the today high quality and 

reliability, becoming the main construction material of high-rise buildings structure. 

 ITALIAN SCENARIO 

In Italy there are not buildings with height as the others mentioned in the previous sub-

chapter, however there are a lot of structures higher than 100 m. From a chronological point 

of view, the first of them is Piacentini Tower, built in Genova during 1940, designed by the 

architect Marcello Piacentini and the engineer Angelo Invernizzi. This tower, realized in 

reinforced concrete, was also the tallest of Europe at that time, until 1958, when Velasca 

Tower was realized. With its 106 m height, it is characterized by the distinctive increase of 

plane surface at the 18th floor, thanks to inclined columns realized outside the building. 

 

 

Figure 2.4: Piacentini Tower, Genova (1940); Velasca Tower, Milan (1958) 
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In 1960 Pirelli Tower became the highest reinforced concrete building, with its 127.1 m. The 

structure is composed by 4 pillars having 2 m width section (reduced to 50 cm at the top) 

connected by horizontal beams, which are the bearing elements for the slabs of each floor. 

The plant is 75.5 long and 20.5 large, for a total surface of 1900 m2. For the construction 

30000 m3 of concrete were used and the total weight of the building is almost 70000 tons, 

with a total volume of 125324 m3. This means a specific weight higher than 0.5 t/m3, which 

is a quite high value nowadays. Probably, it is due to the lower quality of that time concrete 

and to the different safety measurement used. Pirelli Tower is for sure one of the main 

landmarks of Milan and it has been the highest tall building of the city for almost 50 years, 

until the construction of Palazzo Lombardia in 2010. 

 

 

Figure 2.5: Pirelli Tower, Milan (1960) 

Palazzo Lombardia is a building complex part of the Garibaldi-Repubblica redevelopment 

plan. The main building is a tower with a core structure, having a 161.3 m height which was 

the tallest to the roof in Italy until 2015, excedeed by Isozaki Tower.  

 

 

Figure 2.6: Palazzo Lombardia, Milan (2010); Unicredit Tower, Milan (2012) 
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Going up with the height there is a progressive reduction of beam and column cross section 

as well as localized reductions of the building plant. The structure is completely realized in 

reinforced concrete except for the last floors at the top of the building, the so called 

“Velario”. In the same area there is also the current highest tall building of Italy (taking into 

account the antenna), the Unicredit Tower, with its 231 m. 

 

In Milan there are also other two redevelopment project: City Life and Porta Nuova. With 

the ending of these two big programmes, Milan landscape will be the first of Italy for variety 

and total amount of towers. 

 

City Life is a residential, commercial and business district under construction situated a short 

distance from the old city centre of Milan; it has an area of 36.6 ha. The development is 

being carried out by a company controlled by Generali Group that won the international 

tender for the redevelopment of the historic neighbourhood of Fiera Milano. The project 

involves the construction of three skyscrapers:  

 

− Il Dritto (The Straight One): designed by the Japanese architect Arata Isozaki, 

completed in 2015, it is the tallest to the roof building in Italy, with its 209.2 m (249 

m with broadcast antenna). The stiffening system of the structure is composed by 

two r.c. core connected by two belt-trusses, forming a great portal. In addition, there 

are also four external diagonals connected to viscous dumper which contribute to 

control the comfort in the building. 

 

− Lo Storto (The Twisted One): completed in 2017, it reaches a height of 185 m 

(including Generali logo at the top). Designed by the Anglo-Iraqi architect Zaha 

Hadid, its geometry is that of a warping shape, where both the floors dimension and 

their orientation vary along the tower axis. The structure is concrete and composite, 

and it has a central core acting as main horizontal stiffening and resisting element. In 

order to resist the main torsional effects due to the warped column arrangement, the 

core lintels above main doors feature composite solutions with a mixed use of steel 

elements, rebar and concrete. 

 

− Il Curvo (The Curved One): designed by the American architect Daniel Libeskind, it 

will be completed in 2019. It will reach a height of 175 m, with 28 floors and a total 

floor area of about 76 000 square meters.  
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Figure 2.7: City Life neighbourhood, Milan 

 

Figure 2.8: Il Dritto, Milan (2015); Lo Storto, Milan (2017); Il Curvo, Milan (2019) 

Porta Nuova project is a wide redevelopment plan of the business neighbourhood of Milan, 

which includes the area from the railway station Milano Porta Garibaldi to Piazza Della 

Repubblica, from Porta Nuova to Palazzo Lombardia, through Via Melchiorre Gioia. In this 

area it is planned the construction of almost ten skyscrapers, with height ranged from 94 to 

161 m. Between them, the most relevant are: Solaria Tower (143 m), Diamond Tower (140 

m), Bosco Verticale (111.15 m). 

 

There also tall buildings in Turin: Regione Piemonte Skyscraper, designed by the Italian 

architect Massimiliano Fuksas, it will be completed in 2019 reaching 209 m height; Intesa 

Sanpaolo Skyscraper, completed in 2015, it reaches 167.25 m.  
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Figure 2.9: Intesa Sanpaolo Skyscraper, Turin (2015); Regione Piemonte Skyscraper, Turin (2019) 

 TALL BUILDINGS STRUCTURAL SYSTEMS 

In tall buildings, the structure must sustain not only usual gravitational loads like self-weight, 

permanent and variable loads, but also horizontal actions, like wind and earthquakes, which 

are much more relevant with respect to normal buildings. For this reason, bracing systems 

must be realized to contain inter-story drifts, total displacements and reduce acceleration, in 

order to guarantee welfare of costumers and maximize usable areas. 
 

Tall buildings can have different designated use: defensive (towers), communicative (bell 

tower), engineering usage (chimneys or antennas), residential, for service sector, or as 

landmark (e.g. the Eiffel Tower). Nowadays, the most relevant usage is certainly for 

residencies and offices, therefore we will focus our attention on these. 
 

Because of the importance played by the cooperation between structural and architectural 

parts, in tall buildings it is possible to recognize two main kinds of mutually interacting 

systems: 
 

− Structural systems realized to bear gravitational loads (i.e. slabs, columns and walls); 
 

− Structural systems realized to sustain horizontal actions (bracing systems) which are 

the more relevant the higher the structure, influencing sometimes also the 

architectural shape. 
 

From the point of view of the construction material used to realize the structural system, it 

is possible to divide tall buildings in: 
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− Steel Structures: supertall buildings are generally made of steel because of its high 

mechanical properties, lightness and ease of assembly. 
 

− Reinforced Concrete Structures: the majority of tall buildings is made of reinforced 

concrete because cheaper than other materials but with really good properties 

(especially high-performance concrete). 
 

− Hybrid Concrete-Steel Structures: the advantage in this case is the possibility to 

realize very stiff elements (columns or walls) with reduced dimensions, fundamental 

property to maximize available surfaces. 
 

Furthermore, depending on the involved bracing system, another classification is also 

possible: 
 

− Semi-rigid frames: columns, beams and, partially, connections are all involved to 

bear horizontal actions. In this way, however, the height is limited and a maximum 

of 10 stories can be reached. 
 

− Rigid frames: columns and beams are rigidly connected; therefore, horizontal actions 

are sustained through the flexural deformation of the frame. Thus, higher heights are 

possible, allowing to reach until 30 stories. 
 

− Rigid frames with bracing systems: in this case horizontal actions are sustained both 

by frame and shear walls (in case of R.C. structures) or diagonal bracing systems (in 

case of steel structures). 50 stories can be suitably reached in this way, even using 

slender widely spaced (6-9 m) columns. 
 

− Frames with belt-trusses and/or outriggers: the bearing system is given by a frame, a 

core and horizontal cantilevers placed at suitable locations throughout the height of 

the building, connecting the core with the external columns. In this way, under the 

action of horizontal forces, the structure benefits from the stiffening contribution 

given by the columns’ reaction, allowing to reach heights of the order of even 80 

stories. 
 

− Exterior framed tubes: constituted by a bracing external box structure connected with 

an internal frame bearing only gravitational loads. Buildings from 40 to 100 stories 

can be obtained, with the possibility of an interspacing until 20 m for internal 

columns. 
 

− Exterior diagonalized tubes: constituted by a bracing external box structure 

composed of beams, columns and mega-diagonals, bearing both horizontal and 

gravitational actions. Thanks to this, no inner columns are needed, allowing for wide 

free internal spaces.  
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− Space truss structures: constituted by a main truss structure system, usually realized 

with steel, bearing both horizontal and vertical forces. They allow to realize really 

high buildings (70-150 stories). 

 

− Diagrid systems: with their efficiency as a varied version of tubular systems, diagrid 

structures are emerging as a new aesthetic trend for tall buildings in this era of 

pluralistic styles. While the structural importance of diagonals was well recognized 

since early designs, the aesthetic potential of them has been appreciated only in 

recent era since they were considered obstructive for viewing the outdoors. They 

efficiently resist lateral shear by axial forces in the diagonal members but the joints 

need to be carefully designed. 

 

− Super frame structures: they assume the form of a portal which is provided on the 

exterior of the building. The frame resists all wind forces as an exterior tubular 

structure. The portal frame is composed of vertical legs in each corner of the building 

which are linked by horizontal elements at about 12 to 14 floors. Since the vertical 

elements are concentrated in the corner areas of the building, maximum efficiency is 

obtained for resisting wind forces. This kind of systems can be used for ultrahigh-

rise buildings, up to 160 stories. 
 

− Structures with Y-shaped footprint and central core: used in modern buildings, they 

give the possibility to achieve reduced slenderness and inner space for usage. 

 

In the following, a chart and a list of images are reported to briefly summarize the various 

typologies of structural systems discussed so far: 
 

 

Figure 2.10: High-rise buildings and their evolution 
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Figure 2.11: Lever House (Rigid Frame); North Riverside (Shear Walls); World Trade Centre (Outriggers) 

 

Figure 2.12: Aon Centre (Framed Tube); Hancock Centre (Trussed Tube); Bank of China (Space Truss) 

  

 

 

 

 

 

Figure 2.13: Hearst Tower (Diagrid systems); Burj Khalifa plant (Y footprint structure) 
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 CONCRETE FOR TALL BUILDINGS 

The use of concrete in high-rise buildings is widely increased for many reasons. First, it is 

far cheaper than other structural materials, like steel, so it allows to reduce a lot the 

construction cost. Then, thanks to modern building technologies, based on industrialized 

formworks quickly movable after pouring concrete, it is possible to drive down construction 

time, reducing also costs directly connected to it. 

 

From a historical point of view, the need of high performance was initially focused on 

compression strength, because the main aim was to use concrete for big structures, like tall 

buildings and long span bridges. Indeed, for both applications, a high strength/weight ratio 

is fundamental. For skyscrapers, high-strength concrete is needed to reduce cross section’s 

dimensions of vertical elements, in order to have more available surface. For this kind of 

structures, the demand for high strength is often associated with other requirements related 

to mechanical and physical characteristic. For example, in the case of Burj Khalifa Tower it 

was necessary to use a self-compacting and self-levelling concrete with 60 MPa strength 

pumped up to 600 m height. In this case it is necessary to satisfy not only strength demand, 

but also special requirements like workability at high altitude. 

 

High strength concrete can be obtained only by an accurate combination of components. It 

is necessary to use high quality cement, super-fluidizers to reduce water/cement ratio, fine 

materials with pozzolanic characteristic and to select accurately the granulometric curve. 

This allow to reduce the total porosity, increasing the quality of the hydration process 

products, obtaining also a higher durability. Finally, implementation of concrete is 

guaranteed thanks to self-compacting materials which do not need vibration and flow easily 

also through very congested rebar configurations, without segregation phenomena.  
 

 

Figure 2.14: Concrete static efficiency 
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Nowadays, concrete compressive strength has reached a really high level, such that its static 

efficiency is comparable with structural steel, filling completely that gap which in the past 

led to prefer steel as structural material for tall buildings.  

 

For what concerns vertical element, an interesting measurement of the bearing capacity is 

the static efficiency ℎ𝑠, given by the ratio 𝑓𝑐𝑘/𝜌𝑐   , where 𝑓𝑐𝑘  is the cylindrical compressive 

strength of concrete and 𝜌𝑐  its density. 

It is expressed in km and basically it represents the height of one column to have acting stress 

due to sole self-weight equal to the strength in the base cross section.  As we can see from 

Figure 2.14, for ordinary concrete (𝑓𝑐𝑘 = 55 MPa) the static efficiency is almost 2.2 km, 

much lower than the steel one (red mark). Therefore, comparing these two materials, steel is 

the only one suitable for high-rise buildings. On the contrary, if we consider high strength 

concrete (𝑓𝑐𝑘 = 90 MPa), the static efficiency grows up to 3.6 km, almost like the 4.5 of 

structural steel. Taking into account that steel sections are subjected also to instability 

phenomena and in real cases static efficiency is never completely reached, concrete materials 

with compressive strengths of the order of 75-80 MPa are sufficient for supertall buildings, 

e.g. the Burj Khalifa in Dubai. 

 OUTRIGGER STRUCTURAL SYSTEMS 

The ability to guarantee an efficient behaviour under lateral actions, both in the ultimate and 

serviceability limit states, is the basic characteristic of the structural systems in tall buildings. 

For what concerns ultimate limit states, the required performance is related to the resistance, 

in particular the ability to counteract lateral actions in extreme situations. On the other hand, 

the essential requirement for a structural system in the serviceability limit state consists in 

its ability to adequately develop reduced lateral displacements when subjected to lateral 

actions, applied in their most unfavourable combinations. This requirement is inherently 

connected to further effects, which are related to specific performance aspects of the 

structural system during its service life. The most common among these is the stiffness, 

which not only reduces lateral displacements, both total and relative between consecutive 

floors, but also by making vibrational effects acceptable, such as not to limit the comfort of 

the users. A second aspect of great importance regards the ability to ensure acceptable 

relative displacements between the load-bearing structure and non-structural elements, 

without undergoing significant damages. This aspect is particularly important for buildings 

whose façades are made from glass due to their restrictive displacement tolerances, where 

their damage can result in substantial economic consequences. 

The need to ensure reduced lateral displacements, associated with that of guaranteeing an 

adequate safety level in the ultimate limit state, has always represented the fundamental 

problem of the structural design of tall buildings. The solution of the problem has led to the 
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definition of systems with well-known morphology, whose performance have been 

continuously improved, aimed at increasing the efficiency of the structural system, as the 

height of the buildings increases. Various systems have been illustrated and discussed in 

detail for this purpose in technical literature, among these are the so-called “Outrigger 

Systems”. 

Outriggers are rigid horizontal structures designed to improve building overturning stiffness 

and strength by connecting the building core or spine to distant columns. Outriggers have 

been used in tall, narrow buildings for nearly half a century, but the design principle has 

been used for millennia. The oldest “outriggers” are horizontal beams connecting the main 

canoe-shaped hulls of Polynesian oceangoing boats to outer stabilizing floats or “amas” (see 

Figure 2.15). 

 

Figure 2.15: Samoan outrigger canoe 

A rustic contemporary version of this vessel type illustrates key points about building 

outrigger systems: 
 

− A narrow boat hull can capsize or overturn when tossed by unexpected waves, but a 

small amount of ama flotation (upward resistance) or weight (downward resistance) 

acting through outrigger leverage is sufficient to avoid overturning. In the same 

manner, building outriggers connected to perimeter columns capable of resisting 

upward and downward forces can greatly improve the building’s overturning 

resistance. 

- Even though a boat may be ballasted to resist overturning, it can still experience 

uncomfortable long-period roll. Outrigger-connected amas greatly reduce that 

behaviour and shorten the period of the movement. Similarly, building outriggers can 

greatly reduce overall lateral drift, story drifts, and building periods. 

- Boats can have outriggers and amas on both sides or on one side. Buildings can have 

a centrally located core with outriggers extending to both sides, or a core located on 

one side of the building with outriggers extending to building columns on the 

opposite side. 
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The explanation of building outrigger behaviour is simple: because outriggers act as stiff 

arms engaging outer columns, when a central core tries to tilt, its rotation at the outrigger 

level induces a tension-compression couple in the outer columns, acting in opposition to that 

movement. The result is a type of restoring moment acting on the core at that level.  

Similarly, in case of thin-walled cores, due to torsion the section core warps creating tension-

compression on the corner opposite columns, acting against the warping of the section. The 

result is, once again, a restoring bi-moment acting on the core at the outrigger level.  

 

 

Figure 2.16: Bending and torsional effects of outriggers 

Analysis and design of a complete core-and-outrigger system is not that simple: distribution 

of forces between the core and the outrigger system depends on the relative stiffness of each 

element. One cannot arbitrarily assign overturning and torsional forces to the core and the 

outrigger columns. However, it is certain that bringing perimeter structural elements together 

with the core as one resisting system will reduce core overturning moment and bi-moment 

(see Figure 2.17), but not core horizontal story shear forces. In fact, shear in the core can 

actually increase (and change direction) at outrigger stories, due to the outrigger horizontal 

force couples acting on it. 
 

 

Figure 2.17: Interaction of core and outrigger 
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Belts, such as trusses or walls encircling the building, add further complexity. Belts can 

improve lateral system efficiency. For towers with outriggers engaging individual 

megacolumns, belts can direct more gravity load to the megacolumns. This minimizes net 

uplift, the amount of reinforcement or column splices required to resist tension and reduce 

stiffness associated with concrete in net tension. For towers with external tube systems, belts 

reduce the shear-lag effect of the external tube, more effectively engage axial stiffness 

contributions of multiple columns, and more evenly distribute across multiple columns the 

large vertical forces applied by outriggers. For both megacolumn and tube buildings, belts 

can further enhance overall building stiffness, through virtual or indirect outrigger behaviour 

provided by high in-plane shear stiffness, as well as increasing tower torsional stiffness. 

Belts working with megacolumns can also create a secondary lateral load-resisting system, 

in seismic engineering terminology.  

 

Figure 2.18: Resisting system with belts 

It is worth noticing that the effect of the outrigger is more pronounced the more its vertical 

displacements increase. A core-and-outrigger system is frequently selected for the lateral 

load-resisting system of tall or slender buildings, where overturning moment is large 

compared to shear, and where overall building flexural deformations are major contributors 

to lateral deflections such as story drift. In such situations, outriggers reduce building drift 

and core wind moments. In addition, we shell consider that in modern structures the 

geometric configurations of buildings are increasing in complexity and are often 

characterized by marked variations along the height, giving torsion on the structure just with 

self-weight. In the presence of torsion, the generation of vertical displacements is a direct 

consequence of the warping in the cross section of the core, therefore vertical displacements 

are of greater importance as the warping of the core becomes more pronounced. It follows 

from these considerations that the presence of an outrigger becomes of significant 
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importance in the presence of cores whose cross section is open and of small thickness, while 

this effect tends to vanish in the case of virtually closed cross sections. Situations of this type 

occur in buildings of moderate height, for which the outrigger system is very efficient, both 

to reduce the torsional effects and the bending one. In addition, because of the increased 

stiffness they provide, outrigger systems are very efficient and cost-effective solutions to 

reduce building accelerations, which improves occupant comfort during high winds. In the 

following, some other benefits related to outriggers systems are briefly illustrated. 

2.5.1 Deformation Reduction 

In a building with a central core braced frame or shear walls, an outrigger system engages 

perimeter columns to efficiently reduce building deformations from overturning moments 

and the resulting lateral displacements at upper floors. A tall building structure that 

incorporates an outrigger system can experience a reduction in core overturning moment up 

to 40% compared to a free cantilever, as well as a significant reduction in drift, depending 

on the relative rigidities of the core and the outrigger system. For supertall towers with 

perimeter megacolumns sized for drift control, reduction in core overturning can be up to 

60%. In case of open thin-walled cores, an outrigger system also reduces the torsional 

rotation and the warping of the cross section, particularly when the value of the parameter 𝑘 

as given by equation (3.47) is low. The system works by applying forces on the core that 

partially counteract rotation from overturning and vertical displacements from warping. 

These forces are provided by perimeter columns and delivered to the core through direct 

outrigger trusses or walls, or indirect or “virtual” outrigger action from belt trusses and 

diaphragms. 

2.5.2 Efficiency 

For systems with belt trusses that engage all perimeter columns, those columns already sized 

for gravity loads may be capable of resisting outrigger forces with minimal change in size 

or reinforcement, as different load factors apply to design combinations with and without 

lateral loads. In the event that additional overall flexural or torsional stiffness is required, the 

grater lever arm at outrigger columns makes additional material more effective than in the 

core. Outriggers may also permit optimization of the overall building system, using 

techniques to identify the best location for additional material. By significantly decreasing 

the fraction of building overturning that must be resisted by the core, wall, or column, 

material quantities in the core can be reduced, while outrigger, perimeter belt and column 

quantities are slightly increased. Lower limits on core required strength and stiffness may be 

defined by amount of story shear resisted by the core alone between outrigger levels, special 

loading condition that exist at outrigger stories, or short short-term capacity and stability if 

outrigger connections are delayed during construction. 
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2.5.3 Foundation Forces 

A separate but related advantage is force reduction at core foundations. Outrigger systems 

help to effectively distribute overturning loads on foundations. Even where a foundation mat 

is extended over the full tower footprint, a core-only lateral system applying large local 

forces from overturning can generate such large mat shear and flexural demands, as well as 

net tension in piles or loss of bearing, that the design becomes uneconomical or impractical. 

Reducing core overturning and involving perimeter-column axial forces to help resist 

overturning from lateral loads reduces mat shear demand, flexural demand and net uplift 

conditions by spreading overturning loads across the tower footprint. Reducing lateral-load 

variations in sub-grade stresses or pile loads under the core will reduce foundation rotations 

that can contribute to overall and inter-story drifts. Having an outrigger system may or may 

not change other aspects of foundation design, such as governing pile loads and footing or 

mat bearing pressures. 
 

2.5.4 Gravity Force Transfers 

Outriggers and belt trusses can help reduce differential vertical shortening between columns 

or between a column and the core. This can reduce floor slopes between those elements that 

may occur from creep, shrinkage, or thermal changes. The reduction is achieved by force 

transfers between adjacent columns through belt trusses, or between the columns and core 

through outriggers. This is a secondary benefit at best and is a two-edged sword: force 

transfers can become quite large and costly to achieve. Balancing potential benefits and costs 

requires a solid understanding of the phenomenon as well as proper application of details 

and construction strategies to manage its effects. 

2.5.5 Torsional Stiffness 

Belt trusses can provide a different secondary benefit: improved torsional stiffness. A core-

only tower can have low torsional stiffness compared to a perimeter-framed tower, due to 

the much smaller distance between resisting elements. A core-and-outrigger building can 

have similarly low torsional stiffness. Belt trusses can force perimeter columns to act as 

fibers of a perimeter tube that, while not as stiff as a continuous framed tube, still provides 

significant additional torsional stiffness. 
 

2.5.6 Disproportionate Collapse Resistance 

Another potential benefit related to force transfer capability is progressive disproportionate 

collapse resistance. On projects which require considering sudden loss of local member or 

connection capacity, outriggers can provide alternate load paths. For example, where 

perimeter columns are engaged by belt trusses, loads from floors above a failed perimeter 

column could “hang” from the upper column, acting in tension, and then be transferred 
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through upper belt trusses to adjacent undamaged columns. Where outriggers are present 

without belt trusses, it may be possible to hang upper floor loads from outriggers that load 

the core, but massive outrigger columns may be too heavily loaded for this load path to be 

practical. In a braced-frame-core building, loads from floors above a failed column could be 

shared by perimeter members through outriggers. Of course, the design must be checked to 

confirm that alternate load paths can accept the resulting forces rather than leading to further 

failures. For disproportionate collapse checks, load factors are often smaller and capacities 

considered are often large than those used for the basic design, so the effect of these 

conditions on the building design may be minimal, depending on the considered scenario. 
 

2.5.7 Architectural Flexibility 

Core-and-outrigger systems permit design variations in exterior column spacing to satisfy 

aesthetic goals and, in some cases, specific functional requirements. Internal or direct 

outriggers need not affect the buildings perimeter framing or appearance compared with 

other floors. Supertall buildings with outriggers may have a few exterior mega-columns on 

each face, which opens up the façade system for flexible aesthetic and architectural 

expression. This overcomes a primary disadvantage of closed-form tubular systems used in 

tall buildings. The quantity and location of mega-columns have impacts on typical floor 

framing. Plans featuring widely-separated columns and column-free corners may require 

deep and heavy spandrels for the strength, deflection control, and vibration control 

requirements of long spans and cantilevers. The core-and-outrigger approach is scalable, 

with potential applicability to buildings 150 stories tall or higher. 
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3 THIN-WALLED ELASTIC BEAMS  

In the general field of modern structural engineering, basic elements can be divided 

according to their spatial character into four classes:  

 

− massive bodies; 

− plates and shells; 

− solid beams; 

− thin-walled beams. 

 

The first class comprises bodies whose three dimensions are comparable, such as a sphere, 

a cube, a parallelepiped, an elastic continuum filling all space or a half-space, as well as 

various structural or machine parts, that are subject to local loads or thermal stresses. 

Problems concerning the determination of stresses and deformations in solid bodies, and 

methods for their exact solution are dealt with in the mathematical theory of elasticity.  

 

The second class comprises bodies having one dimension (width) small compared with the 

other two (height and length) which are of the same order of magnitude. Examples of such 

bodies are plates, thin slabs, shells and, in general, most of the thin-walled structural 

members so widely used in structural engineering aviation, ship building, instrumental 

building, and other fields of engineering.  

The general theory of plates and shells is based on geometrical hypotheses, valid for thin 

deformable bodies within a certain degree of approximation. The exact and approximated 

methods of calculation for plates and shells form the subject of an extensive separate filed 

of modern structural engineering, which can be called the structural engineering of thin-

walled three-dimensional systems.  

 

The third class comprises bodies characterized in that two of their dimensions are of the 

same order of magnitude and very small compared with the third dimension. We call such 

bodies solid beams. In investigations of the phenomena of flexure and of tension in solid 

beams, their particular form allows to introduce a number of geometrical hypotheses which 

simplify calculations. On the basis of such hypotheses, in the case of a beam deformed by 

transverse bending and longitudinal extension, of the six components of the strain tensor 

only one is preserved, corresponding to the elongation in the direction parallel to beam axis.  

The other five components of the strain tensor are taken to vanish. The law of plane sections, 

which forms the basis of the elementary theory of the bending of beams, is a consequence 
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of these geometrical hypotheses. This law states that any cross section of a beam which is 

initially plane stays plane even after deformation.  

When investigating the phenomenon of torsion, we assume the so-called theory of pure 

torsion to be valid. This theory is based on the hypotheses that there is no extension or 

shearing strain in the plane of the cross section, and furthermore that there is no longitudinal 

extension. Thus, this theory allows to determine only the tangential stresses arising in the 

cross sections of the beam.  

The elementary theory of extension (compression), flexure and pure torsion is included in 

the general engineering theory of solid beams, which is essentially based on the application 

of the Saint-Venant’s principle. According to this principle and the adopted hypotheses, the 

internal forces acting on the cross section of the beam (within the elastic limits) lead to one 

resultant, which is given as a vector in a 6-dimensional space of the three force components 

and the three components of the moment. This resultant may be replaced by an equivalent 

system of statically equipollent forces without changing the state of stress and strain on the 

mathematical model adopted for the solid beam.  

Elements of the third class comprise all beam systems (plane, three dimensional, statically 

determinate or indeterminate) whose elements are beams that in bending obey the law of 

plane sections and undergo the torsion according to the law of pure torsion, i.e., mainly solid 

beams.  

 

The fourth class of structural elements comprises bodies which have the form of long 

prismatic shells. These bodies are characterized by the fact that their three dimensions are 

all of different order of magnitude. The thickness of the shell is small compared with any 

characteristic dimension of the cross section, and the cross sectional dimensions are small 

compared with the length of the shell. These bodies are called thin-walled beams. 

The distinctive feature of thin-walled beams is that they can undergo longitudinal extension 

as a result of torsion. Consequently, longitudinal normal stresses proportional to these strains 

are created, which lead to an internal equilibrium of the longitudinal forces in each cross 

section. These complementary longitudinal normal stresses, which arise as a result of the 

relative warping of the section and which are not examined in the theory of pure torsion, can 

attain very large values in thin-walled beams with open (rigid or flexible) cross-sections and 

also in beams with closed flexible cross sections.  

 CALCULATION MODEL AND FUNDAMENTAL HYPOTHESES 

To introduce the general theory of elastic thin-walled beams with open cross-section we shall 

examine a thin-walled structure of a cylindrical or prismatic shell type, having an arbitrary 

cross section and consisting of a finite number of thin (flat or curved) narrow plates. We 

shall assume that the component plates of such a shell are rigidly connected along their lines 
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of contact so that no plate is free to move with respect to its neighbour at any point of the 

joint. Let 𝛿 be the thickness of the shell, 𝑑 any characteristic dimension of the cross section 

(its width or height), and 𝐿 its length. When the proportions satisfy the relations: 
 

𝛿

𝑑
≤ 0.1;    

𝑑

𝐿
≤ 0.1 (3.1) 

 

we can classify the given structures as long prismatic shells or, in other words, as thin-walled 

beams. 

 

Figure 3.1: Example of thin-walled beams 

In the theory of thin-walled beams (as in general shell theory) an important role is played by 

the so-called middle surface of the beam, i.e. the surface lying midway through the plates 

composing the beam. Straight lines lying on the middle surface and parallel to the beam axis 

are the generators of this surface. The intersection of the middle surface with a plane 𝑃 

normal to the generators is called the profile line or contour line.  

Adopting a generator and a profile line as coordinate lines, we have an orthogonal coordinate 

system in which the position of any point on the middle surface is uniquely specified. 

Henceforward we shall denote the coordinates of any point 𝑀 along the generator and profile 

line by 𝑧 and 𝑠 respectively. Any plane perpendicular to the beam axis (or to a generator) 

can be taken as the origin of the coordinate 𝑧. We shall usually use the terminal plane of the 

beam. The direction from this plane to the observer is taken as the positive direction of the 

coordinate 𝑧. Any generator can be taken as the origin of the coordinate 𝑠. We shall usually 

use as origin a generator which lies in a symmetry plane (in the case of symmetrical cross 

sections), or the generator coinciding with the lengthwise edge of any element of the beam 

profile.  

Given this, according to Vlasov, the theory of beams of open section can be based on the 

following two geometrical hypotheses: 
 

− a thin walled beam of open section can be considered as a shell of rigid 

(undeformable) cross section; 

− the shearing deformation of the middle surface (characterizing the change in the 

angle between the coordinate lines 𝑧 = 𝑐𝑜𝑛𝑠𝑡 and 𝑠 = 𝑐𝑜𝑛𝑠𝑡) can be assumed to 

vanish.  
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In the theory of strength of materials, the line of centroids of the cross-sections is usually 

called axis of the beam. In the following, each line in space parallel to this axis shall be 

called arbitrary axis of the beam. 

Let an arbitrary axis of the beam intersect the plane of the cross-section 𝑧 = 𝑐𝑜𝑛𝑠𝑡 at the 

point 𝑂. The cross section of the beam forms part of a rectangular coordinate system 𝑂𝑥𝑦 

with the origin at 𝑂 (Figure 3.2). The 𝑂𝑥 and 𝑂𝑦 axes are oriented to form, together with the 

positive direction of the third axis 𝑂𝑧, a left-handed system of coordinates1. The coordinates 

𝑥 and 𝑦 of an arbitrary point 𝑀 on the profile line of a thin-walled beam are well defined 

functions of the argument 𝑠, i.e. 𝑥 = 𝑥(𝑠) and 𝑦 = 𝑦(𝑠).  
 

 

Figure 3.2: Geometrical characterization of the problem 

3.1.1 The Displacement Field 

Let the thin beam undergo some deformation. As a result of this deformation, any point 𝑀 

of the middle surface of the beam comes to occupy a new position in space. Our problem is 

now to determine the displacement of points of the middle surface, since the strained state 

of the beam is characterized by these displacements. 

According to the geometrical hypothesis of rigid cross sections, the transverse displacement 

of the points of the section 𝑧 = 𝑐𝑜𝑛𝑠𝑡 shall be given by the displacement of some chosen 

point 𝐴 which lies in the cross section, and by the angle of rotation of the whole section 

about this point. If the point 𝐴 does not belong to the profile line, we assume it to be rigidly 

connected to it.  
 

                                                 
1 A coordinate system is called left-handed if, for an observer facing the 𝑂𝑥𝑦 plane form the 𝑧-positive side, 

clockwise rotation through 90° is necessary to make 𝑂𝑥 coincide with 𝑂𝑦. 
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Figure 3.3: In-plane displacements 

Let 𝑎𝑥 and 𝑎𝑦 be the coordinates of the point 𝐴, 𝑢(𝑧) and 𝑣(𝑧) the corresponding projections 

on the 𝑂𝑥 and 𝑂𝑦 axes of the displacement of the point 𝐴. Let 𝜃(𝑧) be the angle of rotation 

of the section 𝑧 = 𝑐𝑜𝑛𝑠𝑡 in the 𝑂𝑥𝑦 plane about the same point 𝐴. As a function of 𝑧, this 

angle determines the torsional angle along the beam. We shall consider the torsional angle 

positive for clockwise rotation of the section 𝑧 = 𝑐𝑜𝑛𝑠𝑡 as observed from the positive part 

of the 𝑂𝑧 axis. 

Thus, the displacements of any point 𝐵 of the cross section of the beam can be computed 

according to the following expressions: 

 

{
𝑢𝐵 = 𝑢 − (𝑏𝑦 − 𝑎𝑦)𝜃

𝑣𝐵 = 𝑣 + (𝑏𝑥 − 𝑎𝑥)𝜃
 (3.2) 

 

where 𝑏𝑥 and 𝑏𝑦 are the coordinates of the point 𝐵.  

 

For small values of 𝑢(𝑧), 𝑣(𝑧) and 𝜃(𝑧), the displacement of the cross section of the beam 

in its own plane can be regarded as rotation about a certain point, called the instantaneous 

centre of rotation. The position of this centre in the 𝑂𝑥𝑦 plane is determined by the condition 

that it is the one point that is fixed. Identifying the arbitrary point 𝐵 with the instantaneous 

centre of rotation thus amounts to putting the displacements 𝑢𝐵 and 𝑣𝐵 of this point equal to 

zero.  

 

From (3.2) we obtain the coordinates of the instantaneous centre of rotation as: 

 

𝑏𝑥 = 𝑎𝑥 −
𝑣

𝜃
;     𝑏𝑦 = 𝑎𝑦 +

𝑢

𝜃
 (3.3) 
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In the following we shall call the instantaneous centre of rotation the torsion centre. 

 

The full displacement of an arbitrary point 𝑀 of the middle surface of a thin-walled beam is, 

naturally, a vector determined by three space components. For these components we take: 
 

− The longitudinal displacement 𝑆𝑧; this displacement shall be considered positive if it 

is in the direction of increasing 𝑧. 

− The transverse tangential displacement 𝑆𝑡, directed along the tangent to the profile 

line. It is positive when the displacement is in the direction of increasing 𝑠. 

− The transverse normal displacement 𝑆𝑛. The positive direction of this displacement 

is determined by the condition that the positive directions of the displacements 𝑆𝑧, 𝑆𝑡 

and 𝑆𝑛 form a left-handed coordinate system (see Figure 3.2). 
 

In the general case, all these displacements will be functions of the two independent variables 

𝑧 and 𝑠. 
 

We shall now see how to determine the transverse displacements 𝑆𝑡 and 𝑆𝑛. They are easily 

obtained from equation (3.2), which assumes the form: 

 

{
𝑢𝑠 = 𝑢 − (𝑦 − 𝑎𝑦)𝜃

𝑣𝑠 = 𝑣 + (𝑥 − 𝑎𝑥)𝜃
 (3.4) 

 

for an arbitrary point 𝑀 of the profile line with the coordinates 𝑥 and 𝑦. Here 𝑢𝑠 and 𝑣𝑠 are 

the displacements of the point 𝑀 in the direction of the 𝑂𝑥 and 𝑂𝑦 axes.  

Denoting by 𝛼 the angle that the tangent to the profile line at the point 𝑀 makes with the 𝑂𝑥 

axis and projecting 𝑢𝑠 and 𝑣𝑠 on this tangent as shown in Figure 3.4, we obtain for the 

transverse tangential displacement 𝑣(𝑧, 𝑠) the expression: 

 

𝑆𝑡(𝑧, 𝑠) = 𝑢𝑠𝑐𝑜𝑠𝛼 + 𝑣𝑠𝑠𝑖𝑛𝛼 (3.5) 

 

Analogously we obtain the expression for the normal component 𝑆𝑛(𝑧, 𝑠) of the total 

displacement: 

𝑆𝑛(𝑧, 𝑠) = 𝑣𝑠𝑐𝑜𝑠𝛼 − 𝑢𝑠𝑠𝑖𝑛𝛼 (3.6) 

 

Substituting in equations (3.5) and (3.6) the values of 𝑢𝑠 and 𝑣𝑠 from equations (3.4), we 

have: 

𝑆𝑡(𝑧, 𝑠) = 𝑢𝑐𝑜𝑠𝛼 + 𝑣𝑠𝑖𝑛𝛼 + [(𝑥 − 𝑎𝑥)𝑠𝑖𝑛𝛼 − (𝑦 − 𝑎𝑦)𝑐𝑜𝑠𝛼]𝜃 

𝑆𝑛(𝑧, 𝑠) = −𝑢𝑠𝑖𝑛𝛼 + 𝑣𝑐𝑜𝑠𝛼 + [(𝑥 − 𝑎𝑥)𝑐𝑜𝑠𝛼 + (𝑦 − 𝑎𝑦)𝑠𝑖𝑛𝛼]𝜃 
(3.7) 
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Figure 3.4: Geometrical characterization for the transverse tangent displacement 

From Figure 3.5 it is seen that: 

 

ℎ(𝑠) = (𝑥 − 𝑎𝑥)𝑠𝑖𝑛𝛼 − (𝑦 − 𝑎𝑦)𝑐𝑜𝑠𝛼 

𝑡(𝑠) = (𝑥 − 𝑎𝑥)𝑐𝑜𝑠𝛼 + (𝑦 − 𝑎𝑦)𝑠𝑖𝑛𝛼 
(3.8) 

 

where ℎ(𝑠) and 𝑡(𝑠) are, respectively, the lengths of the perpendiculars from the point 𝐴 to 

the tangent and normal of the profile line at 𝑀. 

 
 

 

 

Figure 3.5: Geometrical characterization for the perpendiculars h(s) and t(s) 
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Equations (3.8) can be used to give to the expressions for 𝑣(𝑧, 𝑠) and 𝑤(𝑧, 𝑠) a more compact 

form: 

𝑆𝑡(𝑧, 𝑠) = 𝑢(𝑧)𝑐𝑜𝑠𝛼(𝑠) + 𝑣(𝑧)𝑠𝑖𝑛𝛼(𝑠) + 𝜃(𝑧)ℎ(𝑠) (3.9) 

𝑆𝑛(𝑧, 𝑠) = −𝑢(𝑧)𝑠𝑖𝑛𝛼(𝑠) + 𝑣(𝑧)𝑐𝑜𝑠𝛼(𝑠) + 𝜃(𝑧)𝑡(𝑠) (3.10) 

 

We now determine the longitudinal displacement 𝑆𝑧(𝑧, 𝑠) of the point 𝑀. This is due to the 

deformation of the middle surface and is directed across the plane of the cross section. We 

can find this displacement by means of the second hypothesis concerning the absence of 

shearing strain between the coordinate lines 𝑠 = 𝑐𝑜𝑛𝑠𝑡 and 𝑧 = 𝑐𝑜𝑛𝑠𝑡.  
 

 

Figure 3.6: Tangential displacements of an elementary rectangle 

Figure 3.6 shows the tangential displacements (occurring in appropriate tangent planes) of 

the four vertices 𝑀, 𝑎, 𝑏 and 𝑐 of an elementary rectangle. A knowledge of the displacements 

of all four vertices allows us to determine the desired shearing strain. This strain at the point 

𝑀 is, by definition, equal to the sum of the angles 𝛼 and 𝛽, through which the sides 𝑀𝑎 and 

𝑀𝑏 of the elementary rectangle rotate during deformation. Denoting the shearing strain by 

𝛾, we have: 

𝛾𝑧𝑠 =
𝜕𝑆𝑧
𝜕𝑠

+
𝜕𝑆𝑡
𝜕𝑧

 (3.11) 

 

Assuming that the shearing strain vanishes for a thin-walled beam of open cross section, we 

may set equation (3.11) equal to zero. Therefore, solving for the desired function 𝑆𝑧(𝑧, 𝑠), 

we have: 

𝑆𝑧(𝑧, 𝑠) = 𝑤(𝑧) − ∫
𝜕𝑆𝑡
𝜕𝑧

𝑑𝑠

𝑀

𝑀1

 (3.12) 

 

Here 𝑤(𝑧) is an arbitrary function, depending on 𝑧 only, which describes the longitudinal 

displacement of the point 𝑀1, which serves as the origin of the coordinate 𝑠. 
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Differentiating (3.9) with respect to the variable 𝑧 and multiplying both sides by 𝑑𝑠, we 

obtain: 

𝜕𝑆𝑡
𝜕𝑧

𝑑𝑠 = 𝑢′(𝑧)𝑐𝑜𝑠𝛼(𝑠)𝑑𝑠 + 𝑣′(𝑧)𝑠𝑖𝑛𝛼(𝑠)𝑑𝑠 + 𝜃′(𝑧)ℎ(𝑠)𝑑𝑠 (3.13) 

 

From Figure 3.7 we have: 
 

𝑐𝑜𝑠𝛼(𝑠)𝑑𝑠 = 𝑑𝑥;    𝑠𝑖𝑛𝛼(𝑠)𝑑𝑠 = 𝑑𝑦;    ℎ(𝑠)𝑑𝑠 = 𝑑𝜔 (3.14) 
 

 

Figure 3.7: Geometrical characterization for the longitudinal displacement  

Substituting (3.13) and (3.14) in the right-hand side of (3.12) and performing the integration, 

we obtain: 

𝑆𝑧(𝑧, 𝑠) = 𝑤(𝑧) − 𝑢
′(𝑧)𝑥(𝑠) − 𝑣′(𝑧)𝑦(𝑠) − 𝜃′(𝑧)𝜔(𝑠) (3.15) 

 

where 𝑥(𝑠) and 𝑦(𝑠) are the Cartesian coordinates of the point 𝑀 and 𝜔(𝑠) is twice the area 

of the sector enclosed between the arc 𝑀1𝑀 of the profile line and the two lines 𝐴𝑀1 and 

𝐴𝑀, joining the ends of this segment with 𝐴 (Figure 3.8). According to Vlasov, this area is 

called sectorial area.  

 

Figure 3.8: Definition of sectorial area 
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We call the point 𝐴 the pole of the sectorial areas and the point 𝑀1 the sectorial origin. The 

line 𝐴𝑀1, which serves as initial ray for the sectorial areas and which connects the pole 𝐴 

with a chosen point 𝑀1 on the profile line, may be called fixed radius vector. The line 𝐴𝑀, 

which connects the pole 𝐴 with the variable point 𝑀, i.e. with the point for which we 

calculated the area 𝜔(𝑠), shall be called mobile radius vector. We shall consider the sectorial 

area positive if the mobile radius vector 𝐴𝑀 moves clockwise when observed from the 

negative 𝑧 direction. On straight flange-parts of the profile line the sectorial areas have 

always rectilinear (in the general case trapezoidal) diagrams, since the area 𝜔(𝑠) in this case 

is always a linear function of the coordinate 𝑠. 

3.1.2 The Strain Field 

Knowing the displacements of the points of the middle surface of the beam, we can now also 

find the deformation of this surface at any point 𝑀. In the following we shall be interested 

in the longitudinal deformation 휀 = 휀(𝑧, 𝑠), which is given as the relative extension of the 

linear element 𝑑𝑧 which passes through the point 𝑀 of the surface and lies parallel to its 

generators. This extension is defined as the ratio of the difference between the longitudinal 

displacements 𝑆𝑧 +
𝜕𝑆𝑧

𝜕𝑧⁄ 𝑑𝑧 and 𝑆𝑧 of two neighbouring points 𝑎 and 𝑀, to the length of 

the element 𝑑𝑧 of the original (undeformed) surface (see Figure 3.6): 

 

휀 =
𝑆𝑧 +

𝜕𝑆𝑧
𝜕𝑧

𝑑𝑧 − 𝑆𝑧

𝑑𝑧
=
𝜕𝑆𝑧
𝜕𝑧

 
(3.16) 

 

Differentiating with respect to 𝑧 the longitudinal displacement  𝑢(𝑧, 𝑠) expressed by 

equation (3.15) and using (3.16), we obtain a general equation (which also has four terms) 

for the relative longitudinal extension: 

 

휀(𝑧, 𝑠) = 𝑤′(𝑧) − 𝑢′′(𝑧)𝑥(𝑠) − 𝑣′′(𝑧)𝑦(𝑠) − 𝜃′′(𝑧)𝜔(𝑠) (3.17) 

 

Equation (3.17) shows that the relative longitudinal extensions 휀(𝑧, 𝑠) at the profile line 𝑧 =

𝑐𝑜𝑛𝑠𝑡 are made up of extensions linear in the coordinates 𝑥(𝑠) and 𝑦(𝑠) of the point on this 

line and obeying the law of plane sections, and extensions distributed along the profile line 

according to the law of sectorial areas which arise as a result of the warping of the section. 

3.1.3 Stress-Strain Relations 

Equation (3.17) does not fully determine the strain 휀, since the functions 𝑤(𝑧), 𝑢(𝑧), 𝑣(𝑧) 

and 𝜃(𝑧) are unknown. This kinematical indeterminacy is due to our not having used all the 

static conditions, namely, the conditions of equilibrium for an elastic body which undergoes 

a definite deformation.  
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When the beam is deformed, internal elastic forces arise in it. These forces represent normal 

and tangential stresses in the cross section 𝑧 = 𝑐𝑜𝑛𝑠𝑡. The tangential and normal stresses 

𝜏(𝑧, 𝑠) and 𝜎(𝑧, 𝑠) are considered as functions of the two variables 𝑧 and 𝑠. The torsional 

moments per unit section (which depend on the difference of the tangential stresses at the 

extreme points of the wall) are replaced by a distribution of torsional moments 𝑇𝐷𝑆(𝑧) over 

the cross-section. These moments will be functions of the variable 𝑧 only.  

 

  
(a) (b) 

  

(c) (d) 

Figure 3.9: (a) normal stresses, (b) tangential stresses, (c) shear force, (d) pure torsional moments 

We now agree on the signs of these quantities. An elementary area of the cross section shall 

be positive if its normal points in the direction of positive 𝑧 (Figure 3.10). We shall consider 

the stresses acting on any point of this area as positive if they are in the direction of increasing 

coordinates for the point of the middle surface of the shell. We shall consider the torsional 

moment as positive if it causes the cross section to rotate clockwise when viewed from the 

positive side of the area.  
 

 

Figure 3.10: Sign convention for the stress components 

By using the physical relation between the stresses and strains in the beam we can now find 

the stresses 𝜎, 𝜏 and the moments 𝑇𝐷𝑆  from the strains. Hooke’s law gives for the relative 

extensions of an element of the middle surface of the beam in two perpendicular directions: 

 

휀 =
1

𝐸
(𝜎 − 𝑣𝜎1);     휀1 =

1

𝐸
(𝜎1 − 𝑣𝜎) (3.18) 
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where 휀 and 휀1 are the relative extensions of the beam in the longitudinal and transverse 

directions, 𝜎 and 𝜎1 the normal stresses in the longitudinal and transverse directions 

respectively, 𝐸 the Young’s modulus and 𝑣 the Poisson’s ratio.  

According to the supposed inflexibility of the contour, the extension 휀1 of the contour arc is 

equal to zero and thus 𝜎1 = 𝑣𝜎. Introducing this result into the first of equations (3.18) and 

solving for 𝜎,we obtain: 

𝜎 = 𝐸1휀 (3.19) 
 

where 𝐸1 is the reduced Young’s modulus of longitudinal elongation: 

 

𝐸1 =
𝐸

1 − 𝑣2
 (3.20) 

 

In the following we shall consider the quantity 𝑣2 negligible compared with unity and take 

𝐸 = 𝐸1. Substituting the expression for 휀 from equation (3.17) in equation (3.19), we obtain 

the general law for the distribution of normal stresses 𝜎 = 𝜎(𝑧, 𝑠): 

 

𝜎 = 𝐸(𝑤′ − 𝑢′′𝑥 − 𝑣′′𝑦 − 𝜃′′𝜔) (3.21) 

 

We now determine the torsional moment 𝑇𝐷𝑆, arising as a result of the nonuniform 

distribution of the tangential stresses over the thickness of the wall of the beam. In the theory 

of pure torsion, we have for this term, the following expression: 

 

𝑇𝐷𝑆 = 𝐺𝐼𝑑𝜃′ (3.22) 

 

where 𝐺 is the shear modulus and 𝐼𝑑 is the moment of inertia for pure torsion as calculated 

for a thin-walled folded cross section according the to equation: 

 

𝐼𝑑 =
𝛼

3
∑𝑑𝛿3 (3.23) 

 

where 𝑑 and 𝛿 are, respectively, the width and thickness of the plates which make up the 

beam and 𝛼 is an empirical coefficient close to unity.  

 

It now remains to determine the tangential stresses. These stresses are determined statically 

in the same way as in the elementary theory of bending. 

By equilibrium in the direction of a generator of all the forces, we have (see Figure 3.11): 

 

𝑑(𝜎𝛿)𝑑𝑠 + 𝑑(𝜏𝛿)𝑑𝑧 + 𝑝𝑧𝑑𝑧𝑑𝑠 = 0 (3.24) 

 

where 𝑝𝑧 = 𝑝𝑧(𝑧, 𝑠) is the projection of the external surface load on the axis 𝑧. In 

general, this projection depends on the variables 𝑧 and 𝑠. 
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Figure 3.11: Equilibrium in the longitudinal direction 

Dividing equation (3.24) by 𝑑𝑧𝑑𝑠, and solving it with respect to the tangential stresses 𝜏 

(realizing that the thickness of the wall  𝛿 does not depend on 𝑧) we find: 

 

𝜏(𝑧, 𝑠) =
1

𝛿
[𝑆0(𝑧) − ∫𝑝𝑧𝑑𝑠

𝑠

0

−∫
𝜕𝜎

𝜕𝑧
𝛿𝑑𝑠

𝑠

0

] (3.25) 

 

Here 𝑆0(𝑧) is an arbitrary function which depends on the variable 𝑧,  giving the shear stresses 

𝜏𝛿 which act on the longitudinal section 𝑠 = 0. 

 

Substituting (3.21) for 𝜎 in the right-hand side of (3.25) and denoting the differential of the 

section area 𝛿𝑑𝑠 by 𝑑𝐴, we find: 

 

𝜏 =
1

𝛿
𝑆0 −

1

𝛿
∫𝑝𝑧𝑑𝑠

𝑠

0

− 𝐸𝑤′′
𝐴(𝑠)

𝛿
+ 𝐸𝑢′′′

𝑆𝑦(𝑠)

𝛿
+ 𝐸𝑣′′′

𝑆𝑥(𝑠)

𝛿
+ 𝐸𝜃′′′

𝑆𝜔(𝑠)

𝛿
 (3.26) 

 

where 𝐴(𝑠), 𝑆𝑥(𝑠) and 𝑆𝑦(𝑠) are respectively the area and the static moments with respect 

to the 𝑥 and 𝑦 axes, given by equations: 

 

𝐴(𝑠) = ∫1𝑑𝐴

𝑠

0

;         𝑆𝑥(𝑠) = ∫𝑦𝑑𝐴

𝑠

0

;         𝑆𝑦(𝑠) = ∫𝑥𝑑𝐴;

𝑠

0

       𝑆𝜔(𝑠) = ∫𝜔𝑑𝐴

𝑠

0

 (3.27) 

 

𝑆𝜔(𝑠) is reminiscent of the equation for a static moment, the only difference is that the 

moment arm in the latter equation is replaced here by a sectorial area 𝜔. According to this, 

we shall henceforth call 𝑆𝜔(𝑠) the sectorial static moment. 

 

If there is no longitudinal load distribution on the lateral edges or sides, equation (3.26) 

assumes the following simpler form: 

 

𝜏(𝑧, 𝑠) =
𝐸

𝛿(𝑠)
[−𝑤′′(𝑧)𝐴(𝑠) + 𝑢′′′(𝑧)𝑆𝑦(𝑠) + 𝑣

′′′(𝑧)𝑆𝑥(𝑠) + 𝜃
′′′(𝑧)𝑆𝜔(𝑠)] (3.28) 
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3.1.4 Equilibrium Equations in Principal Coordinates 

It is seen from equations (3.21), (3.22) and (3.26) that the stresses 𝜎, 𝜏 and the moment 𝑇𝐷𝑆, 

which determine the state of the internal stresses of the shell in the cross section 𝑧 = 𝑐𝑜𝑛𝑠𝑡, 

depend on the functions 𝑤(𝑧), 𝑢(𝑧), 𝑣(𝑧) and 𝜃(𝑧). These functions are unknown as yet. 

We have to apply the equilibrium conditions (which still have not been used) in order to 

determine them. 
 

 

Figure 3.12: Forces on an elementary transverse strip 

For an elementary transverse strip under the application of a transverse load, eccentric with 

respect to the shear centre 𝐴, and shear forces applied along the lateral edges, the equilibrium 

equations in principal coordinates (neglecting higher order infinitesimals) can be given in 

the following form: 

𝐸𝐴𝑤′′ = −𝑞𝑧 + 𝑉𝐾 − 𝑉𝐿 

𝐸𝐼𝑦𝑦𝑢
𝐼𝑉 = 𝑞𝑥 + 𝑉𝐿

′𝑥𝐿 − 𝑉𝐾
′𝑥𝑘 

𝐸𝐼𝑥𝑥𝑣
𝐼𝑉 = 𝑞𝑦 + 𝑉𝐿

′𝑦𝐿 − 𝑉𝐾
′𝑦𝑘 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

𝐼𝐼 = 𝑞𝜔 + 𝑉𝐿
′𝜔𝐿 − 𝑉𝐾

′𝜔𝐾 

(3.29) 

 

In this way, four separate equations can be obtained and if the lateral edges of the beam are 

free from shear forces and the external load is composed only of transverse specific forces 

𝑞𝑥 = 𝑞𝑥(𝑧), 𝑞𝑦 = 𝑞𝑦(𝑧) and a moment 𝑞𝜔 = 𝑞𝜔(𝑧) (the case common in practice), the 

equations assume even a simpler form: 

 

𝐸𝐴𝑤′′ = 0 

𝐸𝐼𝑦𝑦𝑢
𝐼𝑉 = 𝑞𝑥 

 

𝐸𝐼𝑥𝑥𝑣
𝐼𝑉 = 𝑞𝑦 

 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

′′ = 𝑞𝜔 

(3.30) 

 

The first of equations (3.30) determines the longitudinal displacement, 𝑤(𝑧), due to a 

longitudinal tension or compression which is applied to the ends of the beam and uniformly 
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distributed over the section. The second and third equations refer to the transverse bending 

of the beam and determine the displacements 𝑢(𝑧) and 𝑣(z) for the shear centre 𝐴, that is 

that point of the cross section with respect to which the sectorial area function 𝜔(𝑠) is 

orthogonal to the functions 𝑥(𝑠) and 𝑦(𝑠). The fourth equation refers to the torsion of the 

beam under the action of a transverse load which creates a torsional moment, 𝑞𝜔(𝑧), with 

respect to the shear centre 𝐴. 

We shall choose the basic functions 1, 𝑥(𝑠), 𝑦(𝑠) and 𝜔(𝑠) so that they will be orthogonal. 

Orthogonality means the vanishing of all integrals of pair-products of these functions (but 

not their squares) taken over the entire section 𝐴, that is: 

 

𝑆𝑥 = ∫1𝑦𝑑𝐴

𝐴

= 0          𝑆𝜔 = ∫1𝜔𝑑𝐴

𝐴

= 0 

𝑆𝑦 = ∫1𝑥𝑑𝐴

𝐴

= 0          𝐼𝜔𝑥 = ∫𝑥𝜔𝑑𝐴

𝐴

= 0 

𝐼𝑥𝑦 = ∫𝑥𝑦𝑑𝐴

𝐴

= 0          𝐼𝜔𝑦 = ∫𝑦𝜔𝑑𝐴

𝐴

= 0 

(3.31) 

 

We call the functions 1, 𝑥(𝑠), 𝑦(𝑠) and 𝜔(𝑠), which satisfy the conditions of orthogonality 

(3.31) the principal generalized coordinates of the cross section of a thin-walled beam.  

3.1.5 Generalized Cross-Sectional Forces 

Solving the differential equations (3.29) for the case when 𝑞𝑧 = 𝑉𝐿 = 𝑉𝐾 = 0, we determine 

the functions 𝑤(𝑧), 𝑢(𝑧), 𝑣(𝑧) and 𝜃(𝑧) for given boundary conditions. Knowing these 

functions, we are able to find the normal and tangential stresses, and also the torsional 

moments which appear in the cross section of the beam. For the case of a beam under 

transverse load (𝑞𝑧 = 𝑉𝐿 = 𝑉𝐾 = 0)2, we had: 

 

𝜎 = 𝐸(𝑤′ − 𝑢′′𝑥 − 𝑣′′𝑦 − 𝜃′′𝜔) 
 

𝜏 = 𝐸 [𝑢′′′
𝑆𝑦(𝑠)

𝛿
+ 𝑣′′′

𝑆𝑥(𝑠)

𝛿
+ 𝜃′′′

𝑆𝜔(𝑠)

𝛿
] 

 

𝑇𝐷𝑆 = 𝐺𝐼𝑑𝜃′ 

 

(3.32) 

Starting from the notion of virtual work, we can determine the generalized longitudinal 

forces as the work of all the elementary longitudinal forces 𝜎𝑑𝐴 in each of the admissible 

longitudinal generalized displacements 𝑤(𝑧), 𝑢(𝑧), 𝑢′(𝑧), 𝑣(𝑧), 𝑣′(𝑧), 𝜃(𝑧) and 𝜃′(𝑧) and 

put the work equal to unity.  

 

                                                 
2 In this case, in virtue of the first equation (3.29), 𝑤′′ = 0. 
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If we assume consecutively that in equation (3.15) 𝑤 = 1, 𝑢′ = −1, 𝑣′ = −1 and 𝜃′ = −1 

(and the remaining three variables vanish), we obtain the four elementary states of 

longitudinal displacement 𝑢(𝑧, 𝑠) in the section 𝑧 = 𝑐𝑜𝑛𝑠𝑡: 1, 𝑥, 𝑦 and 𝜔. If we then 

multiply the elementary longitudinal force, 𝜎𝑑𝐴, successively by each of the functions 1, 𝑥, 

𝑦 and 𝜔 and we integrate over the whole area of the section, we obtain for the generalized 

longitudinal forces which correspond to these states the following equations: 

 

𝑁 = ∫𝜎1𝑑𝐴

𝐴

;        𝑀𝑥 = ∫𝜎𝑦𝑑𝐴

𝐴

;        𝑀𝑦 = −∫𝜎𝑥𝑑𝐴

𝐴

;        𝑀𝜔 = ∫𝜔𝑑𝐴

𝐴

 (3.33) 

 

According to our sign convention, if a positive normal force 𝜎𝑑𝐴 acts on an element of the 

section area in the first quadrant of the 𝑂𝑥𝑦 plane, a positive moment with respect to the 𝑂𝑥-

axis and a negative moment with respect to the 𝑂𝑦-axis are produced (Figure 3.13). The 

fourth equation determines the so-called it bimoment. In contrast to the moment, the 

bimoment is a generalized balanced force system, i.e. a force system statically equivalent to 

zero. 

 

Figure 3.13: Bending moments induced by a positive elementary force (left-hand side rule) 

Substituting in (3.33) the first of equations (3.32) and remembering that we are dealing with 

the principal generalized coordinates (1, 𝑥, 𝑦 and 𝜔) which satisfy the conditions of 

orthogonality, we obtain: 

 

𝑁 = 𝐸𝐴𝑤′;        𝑀𝑦 = 𝐸𝐼𝑦𝑦𝑢
′′;        𝑀𝑥 = −𝐸𝐼𝑥𝑥𝑣

′′;        𝑀𝜔 = −𝐸𝐼𝜔𝜔𝜃′′ (3.34) 

or: 

𝑤′ =
𝑁

𝐸𝐴
;       𝑢′′ =

𝑀𝑦

𝐸𝐼𝑦𝑦
;        𝑣′′ = −

𝑀𝑥
𝐸𝐼𝑥𝑥

,        𝜃′′ = −
𝑀𝜔
𝐸𝐼𝜔𝜔

 (3.35) 

 

Substituting expressions (3.35) in the first of equations (3.33), we obtain: 

 

𝜎 =
𝑁

𝐴
−
𝑀𝑦

𝐼𝑦𝑦
𝑥 +

𝑀𝑥
𝐼𝑥𝑥

𝑦 −
𝑀𝜔
𝐼𝜔𝜔

𝜔 (3.36) 
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We shall call the quantity 𝐸𝐼𝜔𝜔, which characterizes the stiffness of the beam for those cases 

of torsion when normal stresses 𝜎𝜔 =
𝑀𝜔

𝐼𝜔𝜔
𝜔 distributed according to the law of sectorial areas 

arise in the cross section, the sectorial warping rigidity of the beam (in analogy with the 

theory of bending).  

Similarly, we can express the functions, which characterize the variation of the tangential 

stresses 𝜏 through the variable 𝑧, by statical factors, to wit, forces. We determine these forces 

as the work of the elementary contour tractions (𝜏𝛿)𝑑𝑠 in each of the possible unit 

displacements 𝑢 = 1, 𝑣 = 1, 𝜃 = 1 of the section contour in the plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡. From 

equations (3.7) and (3.14) we can determine them in the following way: 

 

𝑉𝑥 = ∫(𝜏𝛿)𝑑𝑥

𝐴

;        𝑉𝑦 = ∫(𝜏𝛿)𝑑𝑦

𝐴

;        𝑇𝜔 = ∫(𝜏𝛿)𝑑𝜔

𝐴

= ∫(𝜏𝛿)ℎ𝑑𝑠

𝐴

 (3.37) 

 

Substituting the stresses 𝜏, determined by the second of equations (3.32) in (3.37), and taking 

into consideration the orthogonality of the principal coordinates 1, 𝑥, 𝑦 and 𝜔, the following 

relations are valid: 

𝑉𝑥 = −𝐸𝐼𝑦𝑦𝑢′′′;       𝑉𝑦 = −𝐸𝐼𝑥𝑥𝑣′′′;       𝑇𝜔 = −𝐸𝐼𝜔𝜔𝜃
′′′ (3.38) 

 

or: 

𝑢′′′ = −
1

𝐸𝐼𝑦𝑦
𝑉𝑥;        𝑣

′′′ = −
1

𝐸𝐼𝑥𝑥
𝑉𝑦;        𝜃

′′′ = −
1

𝐸𝐼𝜔𝜔
𝑇𝜔 (3.39) 

 

By substituting the values found in (3.39) in equation (3.32) we obtain the following 

expression for the axial tangential stresses: 

 

𝜏 = −
1

𝛿
[
𝑉𝑥
𝐼𝑦𝑦

𝑆𝑦(𝑠) +
𝑉𝑦

𝐼𝑥𝑥
𝑆𝑥(𝑠) +

𝑇𝜔
𝐼𝜔𝜔

𝑆𝜔(𝑠)] (3.40) 

 

By differentiating and eliminating the derivatives of the displacements, we obtain from 

equations (3.35) and (3.39) the relations: 

 

𝑉𝑥 = −𝑀𝑦
′ ;        𝑉𝑦 = 𝑀𝑥

′ ;        𝑇𝜔 = 𝑀𝜔
′  (3.41) 

 

These relations, which are a generalization of the Jourawski’s theorem known from the 

theory of strength of materials, are valid only for the case of action of transverse loads on 

the beam.  

 

The sum of the moments 𝑇𝜔 and 𝑇𝐷𝑆 gives the total torsional moment, which we shall denote 

by 𝑇: 

𝑇 = 𝑇𝜔 + 𝑇𝐷𝑆 = −𝐸𝐼𝜔𝜔𝜃
′′′ + 𝐺𝐼𝑑𝜃

′ (3.42) 
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 THE SOLUTION OF THE TORSION EQUATION  

It was established that thin-walled beams of rigid cross-section undergo not only bending 

but also torsion when subjected to a transverse load which does not pass through the shear 

centre. Here, we shell omit all that refers to the bending of beams based on the hypothesis 

of plane sections and concentrate on the study of torsion in a thin-walled beam, which in the 

general cases is produced by a transverse load. The last of equations (3.30) gives the 

following differential equation for the torsional angle 𝜃(𝑧), in case only a transverse load is 

acting: 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

′′ = 𝑞𝜔 (3.43) 

 

where 𝑞𝜔 denotes the free term, which represents the external torsional couple per unit length 

of the beam in the case of purely transverse loading.  

Dividing equation (3.43) by the coefficient of 𝜃𝐼𝑉 and introducing the notation (𝐿 is the span 

length of the beam-shell along the generator): 

 

𝑘2 = 𝐿2
𝐺𝐼𝑑
𝐸𝐼𝜔𝜔

;             𝑓(𝑧) =
1

𝐸𝐼𝜔𝜔
𝑞𝜔 (3.44) 

 

Equation (3.43) is simplified into: 

 

𝜃𝐼𝑉 −
𝑘2

𝐿2
𝜃′′ = 𝑓(𝑧) (3.45) 

 

In the case when 𝑞𝜔 ≠ 0, (3.45) is a linear and inhomogeneous differential equation with 

constant coefficients. The general integral of such an equation can be written in the form: 

 

𝜃(𝑧) = 𝐶1 + 𝐶2𝑧 + 𝐶3𝑠𝑖𝑛ℎ (
𝑘

𝐿
𝑧) + 𝐶4𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) + �̅�(𝑧) (3.46) 

 

Here, 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are arbitrary constants, obtained from integration of the 

homogeneous differential equation, �̅�(𝑧) is any particular solution of the inhomogeneous 

equation (3.45); 𝑘 is a dimensionless characteristic number, determined by the first of 

equations (3.44): 

𝑘 = 𝐿√
𝐺𝐼𝑑
𝐸𝐼𝜔𝜔

 (3.47) 

 

As we see, 𝑘 depends on the ratio of the pure torsion 𝐺𝐼𝑑, understood in the sense of Saint-

Venant’s theory, and the sectorial rigidity 𝐸𝐼𝜔𝜔 (i.e. the torsional rigidity of the beam which 

is associated with the appearance of normal stresses in the cross sections) and proportional 

to the span-length, 𝐿, of the beam. Performing the first, second and third order derivatives 

of the function 𝜃(𝑧) with respect to the variable 𝑧 and introducing them into equations (3.34) 
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and (3.42), we obtain the general integrals of the four basic design quantities (two 

kinematical: the torsion angle 𝜃 and the warping 𝜃′; two statical: the bimoment 𝑀𝜔 and the 

total torsional moment 𝑇)3: 

 

𝜃(𝑧) = 𝐶1 + 𝐶2𝑧 + 𝐶3𝑠𝑖𝑛ℎ (
𝑘

𝐿
𝑧) + 𝐶4𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) + �̅�(𝑧) 

 

𝜃′(𝑧) = 𝐶2 + 𝐶3
𝑘

𝐿
𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) + 𝐶4

𝑘

𝐿
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) + �̅�′(𝑧) 

 

𝑀𝜔(𝑧) = −𝐺𝐼𝑑 [𝐶3𝑠𝑖𝑛ℎ (
𝑘

𝐿
𝑧) + 𝐶4𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) +

𝐿2

𝑘2
�̅�′′(𝑧)] 

 

𝑇(𝑧) = 𝐺𝐼𝑑 [𝐶2 + �̅�
′(𝑧) −

𝐿2

𝑘2
�̅�′′′(𝑧)] 

(3.48) 

 

General methods for finding particular integrals of an inhomogeneous equation are discussed 

in the theory of differential equations. Thus, for example, knowing the general integral of a 

homogenous equation, it is possible to find the particular integral of the inhomogeneous by 

the method of variation of constants, which is generally applicable to linear equations with 

constant and variable coefficients.  

 

For the most common cases of loading, we have: 

 

− Concentrated torsional moment (due to the action of a concentrated transverse load 

which does not pass through the shear centre): 

 

𝜃𝐼𝑉 −
𝑘2

𝐿2
𝜃′′ = 0     →      �̅�(𝑧) = 0 (3.49) 

 

− Evenly distributed torsional moment (due to the action of a transverse load of 

constant magnitude 𝑞 and moment arm about the shear centre 𝑒): 

 

𝜃𝐼𝑉 −
𝑘2

𝐿2
𝜃′′ =

𝑞𝑒

𝐸𝐼𝜔𝜔
     →      �̅�(𝑧) = −

𝑞𝑒

2𝐸𝐼𝜔𝜔
∙
𝐿2

𝑘2
𝑧2  (3.50) 

 

− Torsional moment for a trapezoidal distribution (due to the action of a trapezoidal 

load given by the function 𝑞0 +
𝑞1

𝐿
𝑧, applied along a line parallel to the generator and 

having an arm 𝑒 about the shear centre): 

 

                                                 
3 It is worth observing that in (3.48) 𝑀𝜔 and 𝑇𝜔 are given in function of 𝐺𝐼𝑑, while in(3.42) and (3.34) they 

are multiplied by 𝐸𝐼𝜔𝜔. In virtue of the relation 𝐸𝐼𝜔𝜔 = 𝐺𝐼𝑑
𝐿2

𝑘2
, the two expressions are equivalent.  
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𝜃𝐼𝑉 −
𝑘2

𝐿2
𝜃′′ =

𝑒 (𝑞0 +
𝑞1
𝐿
𝑧)

𝐸𝐼𝜔𝜔
     →      �̅�(𝑧) = −

𝑒 (𝑞0 +
𝑞1
𝐿
𝑧)

2𝐸𝐼𝜔𝜔
∙
𝐿2

𝑘2
𝑧2  (3.51) 

 

Substituting for the case of interest, the particular solution in equations (3.48), it is possible 

to obtain the general integrals of the four basic design quantities as functions of four arbitrary 

integration constants. To determine these constants, the boundary conditions at the ends of 

the beam need to be imposed. Since there are four arbitrary constants, we must set two 

conditions at each end of the beam. The principal forms of the boundary conditions which 

we are likely to encounter can be divided into the following types: 

 

− Clamped end (the section is fixed so as to prevent displacements in the plane of the 

section (no torsional angle) and away from this plane (no warping)). These are purely 

kinematical boundary conditions and can be written as: 

 

𝜃 = 0;  𝜃′ = 0 (3.52) 

 

− Hinged end (the section is fixed so as to prevent rotation about the 𝑧 axis (no torsional 

angle) but can freely deform out of its plane (no sectorial longitudinal forces in the 

section)). Here, one condition is kinematical, the other statical: 

 

𝜃 = 0;  𝑀𝜔 = 0 (3.53) 

− Free end (there are no statical factors at the considered end (absence of longitudinal 

sectorial forces and total torsional moment)). Consequently, at the free end of a beam 

we have purely statical boundary conditions: 

 

𝑀𝜔 = 0;   𝑇 = 0 (3.54) 

 

Given this general overview, there are simpler and faster methods for obtaining the particular 

integral for various particular forms of loads. In the applications of §5, we will intend to 

solve the differential equation of torsion by using the method of initial parameters. 
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 TORSION INDUCED BY A LONGITUINDAL FORCE 

TRANSMITTED THROUGH A RIGID ARM 

Because of the importance played in what will be discussed in the case study, we examine 

now the case of a longitudinal force applied outside the section of the beam and transmitted 

to it through a rigid arm fixed at some point 𝐷 of the contour (Figure 3.14 (a)). 

 

 

 
(a)    (b) 

Figure 3.14: Section under a longitudinal force transmitted to it through a rigid arm 

We shall, first of all, prove the following theorem: 

 

If a rigid arm 𝐶𝐷 is fixed at some point 𝐷, at a right angle to the generator of a thin-

walled beam whose cross section has a nondeformable contour and does not undergo shear 

deformation, the longitudinal displacements at the free end of the arm (the point 𝐶), in the 

most general deformation of the beam, consist of deformations determined by the law of 

plane sections and of a displacement which is proportional to the sectorial area 𝜔𝑐. The line 

𝑀1𝐷𝐶, 𝑀1 being the origin of the principal sectorial areas, serves as the basis for this 

sectorial area and its pole is situated in the shear centre 𝐴 (Figure 3.14 (b)). 

 

The longitudinal displacement of the end of the arm (the point 𝐶, Figure 3.15) is composed 

of the longitudinal displacement 𝑢𝐷 of the base of the arm (the point 𝐷) and the relative 

longitudinal displacement 𝑆𝑧,𝐶𝐷 of the point 𝐶 with respect to the point 𝐷, which appears as 

a result of the rotation of the arm 𝐶𝐷, with respect to the line 𝑛 − 𝑛, in the plane 𝑃 of the 

cross section 𝑧̅ = 𝑐𝑜𝑛𝑠𝑡 and which passes through the point 𝐷 at right angles to the arm 𝐶𝐷: 

 

𝑆𝑧,𝐶 = 𝑆𝑧,𝐷 + 𝑆𝑧,𝐶𝐷 (3.55) 

 

Since the point 𝐷 lies on the middle surface of the beam, 𝑢𝐷 is determined by equation 

(3.15): 

𝑆𝑧,𝐷 = 𝑤 − 𝑢
′𝑥𝐷 − 𝑣

′𝑦𝐷 − 𝜃
′𝜔𝐷 (3.56) 
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where 𝑥𝐷, 𝑦𝐷 and 𝜔𝐷 are the principal linear and sectorial coordinates of the point 𝐷.  
 

  

Figure 3.15: Involved longitudinal displacements 

By denoting the angle formed by the direction of the arm 𝐶𝐷 with the axis 𝑥 by 𝛼 and the 

length of the perpendicular from the shear centre to the direction of the arm by ℎ, we can 

determine from (3.9) the projection of the displacement of the point 𝐷 on the direction of 

the arm: 

𝑆𝑧,𝐷 = 𝑢𝑐𝑜𝑠𝛼 + 𝑣𝑠𝑖𝑛𝛼 + 𝜃ℎ (3.57) 

 

We draw a plane 𝑃 through the generator of the beam, passing through the point 𝐷 and the 

arm 𝐶𝐷 (Figure 3.16). 

 

Figure 3.16: Rotation of the rigid arm  

Since according to the given condition the arm 𝐶𝐷 is rigidly fixed to the contour at a right 

angle to the generator, it will rotate in the longitudinal plane after the deformation through a 

certain angle, whose tangent is given, up to second order terms, by the derivative of the 

displacement 𝑆𝑧,𝐷 with respect to 𝑧: 
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𝑆𝑧,𝐷(𝑧 + 𝑑𝑧) − 𝑆𝑧,𝐷(𝑧)

𝑑𝑧
=
𝑑𝑆𝑧,𝐷
𝑑𝑧

= 𝑆𝑧,𝐷
′  

 

Multiplying 𝑆𝑧,𝐷
′  by the length of the arm 𝐶𝐷 (denoted by 𝑆𝐶𝐷) we obtain the value of the 

longitudinal displacement 𝑆𝑧,𝐶𝐷 of the point 𝐶 as a result of the indicated rotation of the arm 

𝐶𝐷 after deformation: 

𝑆𝑧,𝐶𝐷 = −𝑆𝑧,𝐷
′ 𝑆𝐶𝐷 (3.58) 

 

The minus sign is easily explained from Figure 3.16. 

Introducing expression (3.57) in (3.58), differentiating once with respect to 𝑧, and noting 

that: 

𝑆𝐶𝐷𝑐𝑜𝑠𝛼 = 𝑥𝐶 − 𝑥𝐷;      𝑆𝐶𝐷𝑠𝑖𝑛𝛼 = 𝑦𝐶 − 𝑦𝐷;      𝑆𝐶𝐷ℎ = 𝜔𝐶𝐷  

 

we obtain: 

𝑆𝑧,𝐶𝐷 = −𝑢
′(𝑥𝐶 − 𝑥𝐷) − 𝑣

′(𝑦𝐶 − 𝑦𝐷) − 𝜃
′𝜔𝐶𝐷 (3.59) 

 

where 𝑥𝐶 and 𝑦𝐶 are the principal coordinates of the point 𝐶 and 𝜔𝐶𝐷 is twice the area of the 

triangle whose base is the length of the arm 𝐶𝐷 and whose height passes through the shear 

centre. 

Introducing expressions (3.56) and (3.59) in equation (3.55) and noting that: 

 

𝜔𝐶 = 𝜔𝐷 +𝜔𝐶𝐷 (3.60) 

we obtain: 

𝑆𝑧,𝐶 = 𝑤 − 𝑢
′𝑥𝐶 − 𝑣

′𝑦𝐶 − 𝜃
′𝜔𝐶 (3.61) 

 

which proves the theorem.  

It is now possible to extend the concept of generalized external forces �̅�, �̅�𝑥, �̅�𝑦 and �̅�𝜔, 

which are the equivalent of the given force 𝑃 in the sense of virtual work done in the 

displacements from the plane of the section 𝑧̅ = 𝑐𝑜𝑛𝑠𝑡, to embrace the case where the force 

is applied outside the contour of the cross section and transmitted to the section through a 

rigid arm. For these generalized forces, the equations will be: 

 

�̅� = 𝑃 ∙ 1;   �̅�𝑥 = 𝑃 ∙ 𝑦𝐶 ;    �̅�𝑦 = −𝑃 ∙ 𝑥𝐶 ;    �̅�𝜔 = 𝑃 ∙ 𝜔𝐶  (3.62) 

 

We can directly obtain the last of equations (3.67) from the following theorem: 

 

If a longitudinal force applied outside the beam section is transmitted to the section 

through a rigid arm fixed at the contour point 𝐷 (Figure 3.17) and if this force lies in a cross-

sectional plane, the force will cause a bimoment equal to the product of the force 𝑃 and 

twice the sectorial area 𝐴𝑀1𝐷𝐶, bounded by the two radius-vectors drawn from the shear 
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centre 𝐴 to the origin of the contour 𝑀1 and to the point 𝐶 where the force 𝑃 is applied, and 

by the section contour and the axis of the arm. 

 

Let 𝑒 stand for the length of the arm. We transfer the force 𝑃 to the point 𝐷. In addition to 

the force 𝑃, we should apply a moment 𝑃𝑒 at the point 𝐷. It is possible, in this case, to 

replace the longitudinal force 𝑃 by statically equivalent quantities, since we are at the limits 

of the rigid arm (the longitudinal displacements of the arm obey the law of plane sections).  

 

 

Figure 3.17: Bimoment induced by a longitudinal force applied outside the section 

The force 𝑃, applied at a point 𝐷 of the profile line, causes a bimoment  𝑃𝜔𝐷, where 𝜔𝐷 is 

twice the area 𝐴𝑀1𝐷. We resolve the moment at the fixed point 𝐷, equal to 𝑃𝑒 and acting in 

the place of the arm, into two components; one actin in the plane of the radius-vector 𝐴𝐷, 

and the other in the plane perpendicular to 𝐴𝐷. Since its plane of action passes through the 

shear centre, the first moment does not cause torsion. The second moment, 𝑃𝑒 𝑠𝑖𝑛𝜑, causes 

a bimoment equal to 𝐴𝐷̅̅ ̅̅ ∙ 𝑃𝑒 𝑠𝑖𝑛𝜑, where 𝐴𝐷̅̅ ̅̅  𝑒𝑠𝑖𝑛𝜑 is twice the area of ∆ 𝐴𝐷𝐶. Adding the 

two bimoments, we obtain:  

 

�̅�𝜔 = 𝑃𝜔𝐷 + 𝑃𝜔∆ 𝐴𝐷𝐶 = 𝑃𝜔𝐶   

 

where 𝜔𝐶 is twice the area of 𝐴𝑀1𝐷𝐶. The theorem is proved.  
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 BEAMS REINFORCED BY CLOSELY-SPACED STRIPS 

We shall now examine the problem of thin-walled beams reinforced in any longitudinal 

plane by transverse connections (strips, diaphragms etc). We assume that these transverse 

connections are closely spaced along the beam, which in this case has a channel cross-section 

(Figure 3.18 (a)). We shall consider such a structure as a composite spatial system consisting 

of a thin-walled beam and of an elastic reduced orthotropic plate equivalent in its mechanical 

properties to transverse connections (Figure 3.18 (b)).  
 

  
(a) (b) 

Figure 3.18: Elastic reduced orthotropic plate equivalent to the transverse connections 

In our case, the orthotropy manifests itself by the plate being only able to sustain shear 

stresses and not tensile stresses. Making an imaginary cut along the line connecting the 

reduced plate to the beam, we must simulate by shear forces the action of this plate on the 

beam (Figure 3.19 (a)). We denote the shear forces per unit length by 𝑉(𝑧). 

 

 

 

(a) (b) 

Figure 3.19: Analysis model for the transverse connections 
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To illustrate the problem, we write the equilibrium equations in principal coordinates for the 

case of only a transverse load distribution and shear forces, applied along the lateral edges: 

 

𝐸𝐴𝑤′′ = 𝑉𝐾 − 𝑉𝐿 

𝐸𝐼𝑦𝑦𝑢
𝐼𝑉 = 𝑞𝑥 + 𝑉𝐿

′𝑥𝐿 − 𝑉𝐾
′𝑥𝑘 

𝐸𝐼𝑥𝑥𝑣
𝐼𝑉 = 𝑞𝑦 + 𝑉𝐿

′𝑦𝐿 − 𝑉𝐾
′𝑦𝑘 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

𝐼𝐼 = 𝑞𝜔 + 𝑉𝐿
′𝜔𝐿 − 𝑉𝐾

′𝜔𝐾 

(3.63) 

 

We cut from the beam along the section 𝑧 = 𝑐𝑜𝑛𝑠𝑡, an elementary transverse strip of unit 

width (Figure 3.19 (b)). On the cut we obviously have: 

 

𝑉(𝑧) = 𝑉𝐾(𝑧) = 𝑉𝐿(𝑧) (3.64) 

 

Let Ω represents twice the area of the closed contour formed in the cross section of the 

contour line of the beam and the conditioning plate. Using (3.64), we write the differential 

equations of equilibrium (3.63), corresponding to our case, in the following form: 

 

𝐸𝐴𝑤′′ = 0 

𝐸𝐼𝑦𝑦𝑢
𝐼𝑉 = 𝑞𝑥 

𝐸𝐼𝑥𝑥𝑣
𝐼𝑉 = 𝑞𝑦 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

𝐼𝐼 = 𝑞𝜔 + 𝑉
′Ω 

 

(3.65) 

As we can see, the presence of the conditioning elastic plate affects only the fourth equation 

of the system, which refers to the torsional behaviour of the beam, by means of the additional 

term 𝑉′Ω. For a beam of closed section, this term represents the complementary torsional 

moment 𝑞𝜔𝑉 due to the shear forces 𝑉 = 𝑉(𝑧), uniformly distributed in the cross section 

𝑧 = 𝑐𝑜𝑛𝑠𝑡 on the contour line. We now have to express the torsional deformation of a thin-

walled closed section induced by the uniform shear force 𝑉. To solve this problem, we shall 

start from the elasticity equation: 

𝜕𝑆𝑧
𝜕𝑠

+
𝜕𝑆𝑡
𝜕𝑧

=
𝑉

𝐺𝛿
 (3.66) 

 

Equation (3.66) for a beam-shell with a rigid cross section, takes the form: 

 

𝜕𝑆𝑧
𝜕𝑠

=
𝑉

𝐺𝛿
− ℎ𝜃′ (3.67) 

 

From this equation we find: 

 

𝑆𝑧 = ∫
𝑉

𝐺𝛿
𝑑𝑠

𝑠

0

− 𝜃′𝜔(𝑠) + 𝑈𝑂(𝑧) (3.68) 
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where 𝑈𝑂(𝑧) is an arbitrary integration function which represents the longitudinal 

displacement of the origin of the coordinate 𝑠 and of the sectorial area 𝜔(𝑠). Since the 

longitudinal displacement 𝑢 should satisfy the condition of continuity, in all points of a 

closed cross section, we obtain the equation: 

 

∮
𝑉

𝐺𝛿
 𝑑𝑠 − 𝜃′Ω = 0 (3.69) 

 

where the integral is taken over the entire closed contour. Considering, in this equation, 𝑉 =

𝑉(𝑧) not to depend on 𝑠, we obtain: 

 

𝛿𝑉𝑉 = 𝜃
′Ω (3.70) 

 

The coefficient 𝛿𝑉 represents here the relative longitudinal displacement of the ends of an 

elementary transverse strip, cut out of the shell, under the action of a unit shear force in this 

cut.  

In the case of a closed shell, we obtain for this coefficient the equation: 

 

𝛿𝑉 =
1

𝐺
∮
𝑑𝑠

𝛿
 (3.71) 

 

In the case of the composite system we examine here, having a closed cross section 

consisting of a shell and a reduced orthotropic plate, the coefficient 𝛿𝑉 can be computed by 

the equation: 

𝛿𝑉 =
1

𝐺
∮
𝑑𝑠

𝛿
+ 𝛿𝑝𝑙 (3.72) 

 

Here, the integral in the first term is a definite integral taken over that part of the section 

which belongs to the thin-walled beam itself; 𝛿𝑝𝑙 is the longitudinal relative displacement 

due to a force 𝑉 = 1, which occurs as a result of the elastic flexibility of the reduced 

orthotropic plate only. Considering the thin-walled beam to be free of shear, i.e. assuming 

𝐺 = ∞ in equation (3.72), we obtain: 

 

𝛿𝑉 = 𝛿𝑝𝑙 

 

(3.73) 

Thus, the relative longitudinal displacement of the ends of the transverse strip occurs as a 

result of the fact that only one elastic orthotropic plate is subjected to shear. 

From equation (3.70), we can get the following expression for the shear force: 

 

𝑉(𝑧) =
Ω

𝛿𝑉
𝜃′(𝑧) (3.74) 
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In this equation Ω and 𝛿𝑉 do not depend on the coordinate 𝑧. Therefore, the derivative of the 

shear force 𝑉 with respect to z, appearing in the fourth equation of the system (3.65) can be 

given in the form: 

𝑉′(𝑧) =
Ω

𝛿𝑉
𝜃′′(𝑧) (3.75) 

 

and, consequently: 

Ω𝑉′(𝑧) =
Ω2

𝛿𝑉
𝜃′′(𝑧) (3.76) 

 

We introduce the notation: 

𝐼�̅� =
Ω2

𝛿𝑉𝐺
 (3.77) 

 

so that, equation (3.76) will take the form: 

 

Ω𝑉′ = 𝐺𝐼�̅�𝜃
′′(𝑧) (3.78) 

 

Using the last expression, we rewrite the differential equation of equilibrium for the torsion 

of the system (3.65) in the following form: 

 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺(𝐼𝑑 + 𝐼�̅�)𝜃

′′ = 𝑞𝜔 

 

(3.79) 

We can see that equation (3.79) is identical with the usual differential equilibrium equation 

and, therefore, everything referring to the solution of such equation for an open section can 

be used for the solution of analogous problems, which refer to a thin-walled beam reinforced 

by transverse connections. For this purpose, it is necessary to replace the moment of inertia 

for a thin-walled beam in pure torsion, 𝐼𝑑, in all equations by the sum 𝐼𝑑 + 𝐼�̅�, where 𝐼�̅�, as 

calculated by (3.77), can be called in analogy with 𝐼𝑑 the torsional moment of inertia of a 

thin-walled beam with transverse connections. In particular. For the characteristic parameter 

𝑘 it is necessary to apply now the equation: 

 

𝑘𝑣𝑎𝑟 = 𝐿√
𝐺(𝐼𝑑 + 𝐼�̅�)

𝐸𝐼𝜔𝜔
 (3.80) 

 

Moreover, instead of the equation for the torsional moment 𝑇𝐷𝑆 which appears in pure 

torsion, it is necessary to use the equation: 

 

𝑇𝐷𝑆 = 𝐺(𝐼𝑑 + 𝐼�̅�)𝜃
′ (3.81) 

 

Now it is necessary to compute the coefficient 𝛿𝑉 to define 𝐼�̅�.  
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In the following, we consider the cases in which the transverse connection is represented by 

lintels and by diaphragms, since they will have a direct application when dealing with the 

torsional behaviour of thin-walled open cores. 
 

3.4.1 Diaphragms 

We now derive the equations which account for the influence of stiffening plates, like 

diaphragms, on the behaviour of a thin-walled beam. In deriving the equations, we are 

interested only in the torsion of the beam associated with the warping of the section. 

 

  

(a) (b) 

 

Figure 3.20: Structural scheme for diaphragms  

Let’s consider an elastic transverse plate of thickness ℎ, connected to the beam in the section 

situated at 𝑧 = 𝑧1 from the initial section (Figure 3.20 (a)). 

We shall solve the given contact problem by the variational method according to the 

principle of virtual displacements. Taking two cross sections 𝑧 = 𝑧1 − 휀 and 𝑧 = 𝑧1 + 휀, we 

isolate from the thin-walled beam an elementary strip which includes the plate, which we 

relate to the cross section 𝑧 = 𝑧1 (Figure 3.20 (b)), and we write for this strip the equation 

of virtual work. As the virtual displacement we take the longitudinal displacements 𝑆𝑧(𝑧, 𝑠). 

However, since we are interested only in the part of the displacements connected with the 

warping of the section, we can assume: 

 

𝑆𝑧(𝑧, 𝑠) = −𝜃
′(𝑧)𝜔(𝑠) (3.82) 

 

The displacements 𝑤(𝑥, 𝑦) away from the plane of the plate, directed along the axis 𝑂𝑧 and 

appearing in the pure torsion of this plate, will be considered admissible. 

From the condition of compatibility of deformation, it is obvious that the following 

conditions should be satisfied at the connection of the plate to the beam: 

 

𝑆𝑧(𝑧1, 𝑠) = 𝑤(𝑥, 𝑦) 
(3.83) 
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By equating to zero the work of external and internal forces in the corresponding virtual 

displacements, we obtain: 

 

−∫(𝜎1𝛿)𝑆𝑧(𝑧1, 𝑠)𝑑𝑠 + ∫(𝜎2𝛿)𝑆𝑧(𝑧1, 𝑠)𝑑𝑠 +∬2𝐷(1 − 𝜈) (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

𝑑𝑥𝑑𝑦 = 0 (3.84) 

 

The last term, a double integral evaluated over the whole surface of the plate, expresses the 

work of the external forces, i.e. of the torsional moments, in the corresponding torsional 

deformations. This term is obtained as follows. 

It is known from the theory of plates that the torsional moments are determined by the 

equation: 

𝑇𝑥 = 𝑇𝑦 = −𝐷(1 − 𝜈) (
𝜕2𝑤

𝜕𝑥𝜕𝑦
) (3.85) 

 

where 𝐷 =
𝐸ℎ3

12(1−𝜈2)
 is the cylindrical rigidity of the plate, ℎ is the thickness, 𝜈 is the 

Poisson’s ratio. Each torsional moment 𝑇𝑥 and 𝑇𝑦 does work to produce the torsional 

curvature 
𝜕2𝑤

𝜕𝑥𝜕𝑦
. Since the torsional moments and the torsional deformation have different 

signs and the work of the internal forces is taken as negative, we obtain the last term of 

equation (3.84) by integrating the work done by the torsional moments over the whole area 

of the plate.  

The first two terms, expressed by integrals taken over the cross section of the thin-walled 

beam, refer to the work of the external forces with respect to our strip in the virtual 

longitudinal displacements 𝑆𝑧(𝑧1, 𝑠). Such forces will be the longitudinal normal forces of 

the cross section (𝜎𝛿) for the isolated element of the beam. Here 𝛿 is the thickness of the 

thin-walled beam and 𝜎 the longitudinal normal stress which we denote by (𝜎1𝛿) for the 

section 𝑧 = 𝑧1 − 휀 and by (𝜎2𝛿) for the section 𝑧 = 𝑧1 + 휀.  

 

We present these integrals in another form. Assuming 𝛿𝑑𝑠 = 𝑑𝐴 and using equation (3.82), 

we obtain: 

∫(𝜎𝛿)𝑆𝑧(𝑧1, 𝑠)𝑑𝑠 = −𝜃
′(𝑧1)∫𝜎𝑤(𝑠)𝑑𝐴 (3.86) 

 

Since, by definition, ∫𝜎𝜔𝑑𝐴 = 𝑀𝜔 represents the bimoment, we have: 

 

∫(𝜎𝛿)𝑆𝑧(𝑧1, 𝑠)𝑑𝑠 = −𝜃
′(𝑧1)𝑀𝜔 (3.87) 

 

Consequently, the first two terms can be replaced by: 

 (3.88) 
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𝜃′(𝑧1 − 휀)𝑀𝜔1 − 𝜃
′(𝑧1 + 휀)𝑀𝜔2 

 

where: 

𝑀𝜔1 = ∫𝜎1𝜔𝑑𝐴 𝑀𝜔2 = ∫𝜎2𝜔𝑑𝐴 

 

and the integrals are evaluated over the whole area of the cross section of the beam. 

 

It is possible to state the following regarding the bimoment 𝑀𝜔1 and 𝑀𝜔2: for 휀 → 0, i.e. for 

these two sections being infinitely close and in the absence of a plate, we have in the limit 

𝑀𝜔2 −𝑀𝜔1 = 0. With a plate 𝑀𝜔2 will differ from 𝑀𝜔1 by a certain value 𝑀𝜔, equal to the 

bimoment which describes the influence of the plate on the beam. 

Thus, to the two terms in the expression (3.84), written in the form of (3.88), can be given 

the following form in the limit for 휀 → 0 and with a diaphragm in the section 𝑧 = 𝑧1: 

 

[𝜃′(𝑧1 − 휀)𝑀𝜔1 − 𝜃
′(𝑧1 + 휀)𝑀𝜔2] →0 = −𝜃

′(𝑧1)𝑀𝜔 (3.89) 

 

where 𝑀𝜔 stands for the bimoment simulating the influence of the diaphragm on the beam. 

Considering (3.89), we can now write (for 휀 → 0) equation (3.84) in the following form: 

 

−𝜃′(𝑧1)𝑀𝜔 +∬2𝐷(1 − 𝜈)(
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

𝑑𝑥𝑑𝑦 = 0 (3.90) 

We shall turn now to the calculation of the double integral in equation (3.90). It is known 

from the theory of plates that in the case of pure torsion of a plate the deflection 𝑤 is 

determined by the equation:  

 

𝑤 = 𝐶𝑥𝑦 

 

(3.91) 

where 𝐶 is a constant determined by the relevant boundary conditions.  

On the other hand, the bimoment due to an arbitrary balanced longitudinal load, whether 

distributed continuously or over the section consisting of concentrated forces, does not 

depend on the shear centre and on the origin of the sectorial area. Since the effect of the plate 

on the beam is expressed by such a balanced system of forces, we may place the pole of the 

sectorial areas to suit the calculation of the sectorial area 𝜔(𝑠) in equation (3.82). 

If, in particular, we place the pole of the sectorial areas at the centre of the plate and let the 

axes of the coordinates pass through this centre (Figure 3.20 (b)), we obtain for 𝜔(𝑠) the 

equation: 

𝜔(𝑠) = 𝑥𝑦 (3.92) 

 

where 𝑥 and 𝑦 are the coordinates of the corresponding point on the contour line of the beam.  
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We can now write equation (3.82) for the virtual longitudinal displacement in the following 

form:  

𝑆𝑧(𝑧, 𝑠) = −𝜃′(𝑧1)𝑥𝑦 (3.93) 

 

Since the compatibility conditions should be satisfied on the intersection of the contour line 

with the plane of the plate, we find by comparing (3.93) with (3.91) that: 

 

𝐶 = −𝜃′(𝑧1) 

 

and, therefore, we have for the displacement 𝑤 of the plate: 

 

𝑤(𝑧, 𝑠) = −𝜃′(𝑧1)𝑥𝑦 (3.94) 

 

Introducing (3.94) in expression (3.90) and noting that 
𝜕2𝑤

𝜕𝑥𝜕𝑦
= −𝜃′(𝑧1), and ∬𝑑𝑥𝑑𝑦 = 𝐴, 

we obtain after reduction by 𝜃′(𝑧1): 
 

𝑀𝜔 = 𝐷(1 − 𝜈)Ω𝜃′(𝑧1) (3.95) 

 

where as usual Ω is twice the area of the plate. 

Introducing the cylindrical rigidity 𝐷 we can rewrite equation (3.95) in another form: 

 

𝑀𝜔 =
𝐸ℎ3Ω

12(1 + 𝜈)
𝜃′(𝑧1) (3.96) 

 

This is the equation of the bimoment which replaces the effect of the plate on the beam. As 

seen from this formula, the bimoment is proportional to the relative warping of the beam in 

the cross section of the diaphragm. The proportionality coefficient depends on the physical 

characteristics and the dimensions of the diaphragm.  

Comparing equation (3.96) with the usual expression of the torsional moment 𝐺𝐼𝑑𝜃′ and 

assuming the diaphragms as uniformly distributed at distance 𝑏, it is possible to define the 

torsional stiffness 𝐼�̅� as follows: 
 

𝐼�̅� =
ℎ3Ω

6𝑏
 (3.97) 

 

3.4.2 Lintels  

Lintels can be considered as transverse connections having the form of transverse braces of 

rectangular section, uniformly spaced along the span (Figure 3.21 (a)) and being subjected 

not only to shear but also to bending away from the plane of the cross section. 

As a matter of fact, when dealing with thin-walled beams with an open section reinforced by 

braces, as they represent an intermediate situation between thin-walled beams of open cross 
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section and closed thin-walled beams, we shall procced from the following two initial 

assumptions: 

 

− The beam has, as before, a rigid section contour and shear deformations are 

neglected; 

− The braces are deformable in their plane and their shear deformations are taken into 

consideration. 
 

 

 

(a) (b) 

Figure 3.21: Lintels geometry 

To compute 𝛿𝑉 in the case of lintels as transverse braces, we should refer to the general case 

of a thin-walled beam of open section, reinforced by 𝑛 braces, assumed to be rigidly 

connected to the beam itself. Such a beam can be regarded as a composite three-dimensional 

structure, consisting of a cylindrical shell and a plane beam system of the Vierendeel type. 

If we take into consideration that the contour of the beam is considered to be nondeformable 

(and, therefore, the axial (longitudinal) deformations of the braces equal zero), and that, since 

the braces are rigidly connected with the beam, the diagram of the moments, when the braces 

are subjected to bending, will have the form of a skew symmetrical trapezium (Figure 3.22 

(a)) with a zero point at the middle of the brace, we obtain, upon cutting the braces in the 

middle, a system of 𝑛 equations as the fundamental system: 

 

{
 
 

 
 
(𝛿11 + 𝛿1̅1)𝑍1 + 𝛿12𝑍2+. . . +𝛿1𝑛𝑍𝑛 + 𝛿1𝑞 = 0

𝛿21𝑍1 + (𝛿22 + 𝛿2̅2)𝑍2+. . . +𝛿2𝑛𝑍𝑛 + 𝛿2𝑞 = 0

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

𝛿𝑛1𝑍1 + 𝛿𝑛2𝑍2+. . . +(𝛿𝑛𝑛 + 𝛿�̅�𝑛)𝑍𝑛 + 𝛿𝑛𝑞 = 0

 (3.98) 

 

The transverse forces 𝑍1, 𝑍2,…, 𝑍𝑖,…, 𝑍𝑛 which appear in the braces (Figure 3.22 (b)), are 

taken as the unknowns. The coefficients of these equations have the following physical 

meaning: 
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− 𝛿𝑖𝑘 is the relative displacement of the ends of the i-th brace due to a unit force 𝑍𝑖 = 1 

applied to the k-th brace. Such a displacement is in the direction of the acting forces 

and is determined without taking the deformations of the braces into account, since 

it results only from the warping of the beam. 

− 𝛿�̅�𝑖 is the relative displacement of the ends of the i-th brace in the direction of the 

acting force, due to a unit force resulting from the deformation of the brace in its 

plane. It is determined by taking into account the shear deformation of the brace.  

− 𝛿𝑖𝑞 is the relative displacement, in the same direction, of the ends of the i-th brace, 

due to the given external load. 

 

  

(a) (b) 

Figure 3.22: Structural scheme for lintels; Internal actions in lintels 

For a single lintel, the coefficient which must be computed to define 𝐼�̅� is 𝛿�̅�𝑖. This coefficient 

can be computed through the principle of virtual work by the following equation: 

 

𝛿�̅�𝑖 = 2

(

 ∫
𝑀2

𝐸𝐼

𝑎
2

0

𝑑𝑠 + 𝜒𝑉∫
𝑉2

𝐺𝐴

𝑎
2

0

𝑑𝑠

)

  

 

(3.99) 

where 𝑎 is the length of the brace; 𝐼 =
𝛿𝑑3

12
 is the moment of inertia of the brace; 𝐴 = 𝛿𝑑 is 

the area of the cross section of the brace; 𝜒𝑉 is the shear coefficient, depending on the form 

of the brace (for a rectangular brace 𝜒𝑉 = 1.2). By using the diagrams of 𝑀 and 𝑉 shown in 

Figure 3.22 (b), we get: 

𝛿�̅�𝑖 =
𝑎3

12𝐸𝐼
+
1.2𝑎

𝐺𝐴
 (3.100) 

 

Introducing the factor 𝑏, representing the step of the braces, we can transform discrete 

transverse connections into a conventional continuous elastic plate for which the 
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displacement 𝛿𝑉 will obviously be 𝑏 times larger than for a continuous elastic plate whose 

cross section is equal to the longitudinal section of the brace.  

 

Therefore, 𝛿𝑉 turns to have the following expression: 

 

𝛿𝑇 =
𝑎𝑏

𝐺
(
𝑎2𝐺

12𝐸𝐼𝑏𝑟
+
1.2

𝐴𝑏𝑟
) (3.101) 

 

The resulting moment of inertia 𝐼�̅� will be: 

 

𝐼�̅� =
Ω2

𝛿𝑇𝐺
=
Ω2

𝑎𝑏
∙

1

(
𝑎2𝐺
12𝐸𝐼𝑏𝑟

+
1.2
𝐴𝑏𝑟
)

 (3.102) 
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4 STRUCTURAL ANALYSIS OF OUTRIGGER 

SYSTEMS 

 OUTRIGGER-THIN-WALLED CORE INTERACTION 

Let us consider a thin-walled core with an open cross-section as shown in Figure 4.1, where 

the abscissa 𝑧̅ is rigidly connected to the outrigger 𝐶𝑂, supporting the vertical force 𝑃 at the 

point 𝑂. The two reference systems of orthogonal axes are indicated with 𝐺𝑥𝑦 and 𝐷𝑥′𝑦′, 

the first coinciding with the principal axes with origin in the centroid 𝐺 of the section and 

the second with the 𝑥′, 𝑦′ axes parallel to 𝑥 and 𝑦, and with origin in the shear centre 𝐷. 
 

 

 

(a) (b) 

Figure 4.1: Outrigger-thin-walled core and reference axes 

According to the theory of torsion discussed in §3, the structural effects induced by the load 

𝑃 are as given be equations (3.62): 

 

𝑁 = 𝑃;        𝑀𝑥 = 𝑃 ∙ 𝑥𝑂;         𝑀𝑦 = −𝑃 ∙ 𝑦𝑂;         𝑀𝜔 = 𝑃 ∙ 𝜔𝑂 (4.1) 
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According to Vlasov’s theory, with reference to Figure 4.1 (b), the sectorial area 𝜔𝑜 referred 

to 𝑂 can be defined as the sum of two contributions: 

 

𝜔𝑂 = 𝜔𝐶 + 𝜔𝐶𝑂 (4.2) 

 

Assuming the origin of the curvilinear abscissa 𝑠 coinciding with 𝐴, 𝜔𝐶 and 𝜔𝐶𝑂 are defined 

by the following expressions: 

 

𝜔𝑐 = ℎ1 ∙ 𝐴𝐶;        𝜔𝐶𝑂 = ℎ2 ∙ 𝐶𝑂 (4.3) 

 

Assuming 𝐴𝐶̅̅ ̅̅ = 𝑏 and 𝐶𝑂̅̅ ̅̅ = 𝑒, we can rewrite (4.2) and get: 
 

𝜔𝑂 = ℎ1 ∙ 𝑏 + ℎ2 ∙ 𝑒 = ℎ1 ∙ 𝑏 ∙ (1 +
ℎ2
ℎ1
∙
𝑒

𝑏
) (4.4) 

 

When 𝑚 outriggers are present, equations (4.1) can be generalized as follows: 

 

𝑁 =∑ 𝑃𝑖
𝑚

;       𝑀𝑥 =∑ 𝑃𝑖
𝑚

∙ 𝑥𝑂𝑖;        𝑀𝑦 = −∑ 𝑃𝑖
𝑚

∙ 𝑦𝑂𝑖;       𝑀𝜔 =∑ 𝑃𝑖
𝑚

∙ 𝜔𝑂𝑖 (4.5) 

 

Equations (4.5) represent the most general expression of the static effects induced in the core 

by a set of outriggers acting at abscissa 𝑧̅. 

 

The displacements 𝑢, 𝑣, 𝑤 along the axes 𝑥, 𝑦, 𝑧 respectively and the rotation 𝜃 around the 

shear centre 𝐷 can be computed by means of the Green Functions, expressing the 

displacements for a unitary external force factor, applied at level 𝑧̅. These functions allow to 

derive, by applying the principle of superimposition, the displacements induced by a general 

distribution of outriggers. When applying a unit longitudinal load, the equilibrium equations 

of the core, expressed in differential form, are given by equations (3.30) where the right-

hand side terms 𝑞𝑥, 𝑞𝑦 and 𝑞𝜔 are set equal to zero: 

 

𝐸𝐴𝑤′′ = 0        (4.6) 
 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 = 0        (4.7) 

 

𝐸𝐼𝑦𝑦𝑣
𝐼𝑉 = 0     (4.8) 

 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

′′ = 0    (4.9) 

 

where 𝐴, 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝜔𝜔 and 𝐼𝑑 respectively represent the area, the inertia moments around the 

axis 𝑦, 𝑥, the warping moment of inertia and the pure torsion moment of inertia.  

In other words, equations (4.6), (4.7), (4.8) and (4.9) represent the axial, bending (with 

respect to x, y axes) and torsional elastic lines respectively. 
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It must be observed that differently to what was assumed in developing the theory for thin-

walled beams of open cross section, in the following we will denote by 𝑀𝑥 and 𝑀𝑦 the 

bending moments in the 𝐺𝑥𝑧 and 𝐺𝑦𝑧 planes respectively. Moreover, we use the following 

notation for the inertia moments: 
 

𝐼𝑦𝑦 = ∫𝑦2𝑑𝐴

𝐴

;       𝐼𝑥𝑥 = ∫𝑥2𝑑𝐴

𝐴

;      

 

4.1.1 Green Function: Concentrated Axial Load P 

 

 

Differential equilibrium equation 

𝐸𝐴𝑤𝐼𝐼 = 0 

 

By integration 

𝐸𝐴𝑤𝑖
′ = 𝐴𝑖 

𝐸𝐴𝑤𝑖 = 𝐴𝑖𝑧 + 𝐵𝑖             with 𝑖 = 1,2 

 

Boundary conditions 

For 𝑧 = 0       𝑤1 = 0 

 

For 𝑧 = 𝑧̅       𝑤1 = 𝑤2   

                      𝐸𝐴𝑤1
′ + 𝐸𝐴𝑤2

′ = 𝑃 

 

For 𝑧 = 𝐿      𝐸𝐴𝑤2
′ = 0 

 

Table 4.1: Green Functions – Axial load P 

Integrating the differential equations with the boundary conditions reported in Table 4.1, it 

is possible to find the four constants 𝐴1, 𝐵1, 𝐴2, 𝐵2: 

 

𝐴1 = 𝑃;       𝐴2 = 0;       𝐵1 = 0;       𝐵2 = 𝑃 ∙ 𝑧̅ (4.10) 

 

Introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , assuming 𝑃 = 1 and replacing the constants 

(4.10) into the doubly integrated form of the differential equilibrium equation, it is possible 

to define the Green Functions for the axial displacement as follows: 

 

𝑤1(휁, 휁)̅ =
𝐿

𝐸𝐴
∙ 휁 0 ≤ 휁 ≤ 휁 ̅

(4.11) 

𝑤2(휁, 휁)̅ =
𝐿

𝐸𝐴
∙ 휁  ̅ 휁̅ ≤ 휁 ≤ 1 
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4.1.2 Green Function: Concentrated Bending Moment Mx 

 

 

Differential equilibrium equation 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 = 0 

 

By integration 

𝐸𝐼𝑥𝑥𝑢𝑖
′′′ = 𝐴𝑖 

𝐸𝐼𝑥𝑥𝑢𝑖
′′ = 𝐴𝑖𝑧 + 𝐵𝑖              with 𝑖 = 1,2 

𝐸𝐼𝑥𝑥𝑢𝑖
′ = 𝐴𝑖

𝑧2

2
+ 𝐵𝑖𝑧 + 𝐶𝑖 

𝐸𝐼𝑥𝑥𝑢𝑖 = 𝐴𝑖
𝑧3

6
+ 𝐵𝑖

𝑧2

2
+ 𝐶𝑖𝑧 + 𝐷𝑖 

 

Boundary conditions 

For 𝑧 = 0     𝑢1 = 0      𝑢1
′ = 0 

 

For 𝑧 = 𝑧̅     𝑢1 = 𝑢2    𝑢1
′ = 𝑢2

′      

                    𝐸𝐼𝑥𝑥𝑢1
′′ + 𝐸𝐼𝑥𝑥𝑢2

′′ = 𝑀𝑥  

                    𝐸𝐼𝑥𝑥𝑢1
′′′ = −𝐸𝐼𝑥𝑥𝑢2

′′′   

 

For 𝑧 = 𝐿    𝐸𝐼𝑥𝑥𝑢2
′′ = 0 

                    𝐸𝐼𝑥𝑥𝑢2
′′′ = 0 

Table 4.2: Green Functions – Bending Moment Mx 

Integrating the differential equations with the boundary conditions reported in Table 4.2, it 

is possible to find the eight constants 𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐴2, 𝐵2, 𝐶2, 𝐷2: 

 

𝐴1 = 0;    𝐵1 = 𝑀𝑥;     𝐶1 = 0;    𝐷1 = 0 
 

(4.12) 
𝐴2 = 0;    𝐵2 = 0;    𝐶2 = 𝑀𝑥 ∙ 𝑧̅;     𝐷2 = −𝑀𝑥 ∙

𝑧̅2

2
 

 

Introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , assuming 𝑀𝑥 = 1 and replacing the 

constants (4.12) into the differential equilibrium equation integrated four times, it is possible 

to define the Green Functions for the displacement 𝑢 as follows: 
 

𝑢1(휁, 휁)̅ =
𝐿2

2𝐸𝐼𝑥𝑥
∙ 휁2 0 ≤ 휁 ≤ 휁 ̅

(4.13)   

𝑢2(휁, 휁)̅ =
𝐿2 ∙ (2휁 − 휁)̅ ∙ 휁̅

2𝐸𝐼𝑥𝑥
 휁̅ ≤ 휁 ≤ 1 
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4.1.3 Green Function: Concentrated Bending Moment My 

 

 

Differential equilibrium equation 

𝐸𝐼𝑦𝑦𝑣
𝐼𝑉 = 0 

 

By integration 

𝐸𝐼𝑦𝑦𝑣𝑖
′′′ = 𝐴𝑖 

𝐸𝐼𝑦𝑦𝑣𝑖
′′ = 𝐴𝑖𝑧 + 𝐵𝑖           with 𝑖 = 1,2 

𝐸𝐼𝑦𝑦𝑣𝑖
′ = 𝐴𝑖

𝑧2

2
+ 𝐵𝑖𝑧 + 𝐶𝑖 

𝐸𝐼𝑦𝑦𝑣𝑖 = 𝐴𝑖
𝑧3

6
+ 𝐵𝑖

𝑧2

2
+ 𝐶𝑖𝑧 + 𝐷𝑖 

 

Boundary conditions 

For 𝑧 = 0     𝑣1 = 0      𝑣1
′ = 0 

 

For 𝑧 = 𝑧̅     𝑣1 = 𝑣2    𝑣1
′ = 𝑣2

′      

                    𝐸𝐼𝑦𝑦𝑣1
′′ + 𝐸𝐼𝑦𝑦𝑣2

′′ = 𝑀𝑦  

                    𝐸𝐼𝑦𝑦𝑣1
′′′ = −𝐸𝐼𝑦𝑦𝑣2

′′′   

 

For 𝑧 = 𝐿    𝐸𝐼𝑦𝑦𝑣2
′′ = 0 

                    𝐸𝐼𝑦𝑦𝑣2
′′′ = 0 

Table 4.3: Green Functions – Bending Moment My 

Integrating the differential equations with the boundary conditions reported in Table 4.3, it 

is possible to find the eight constants 𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐴2, 𝐵2, 𝐶2, 𝐷2: 

 

𝐴1 = 0;    𝐵1 = −𝑀𝑦;     𝐶1 = 0;    𝐷1 = 0 
 

(4.14) 
𝐴2 = 0;    𝐵2 = 0;    𝐶2 = −𝑀𝑦 ∙ 𝑧̅;     𝐷2 = 𝑀𝑦 ∙

𝑧̅2

2
 

 

Introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , assuming 𝑀𝑦 = 1 and replacing the 

constants (4.14) into the differential equilibrium equation integrated four times, it is possible 

to define the Green Functions for the displacement 𝑣 as follows: 
 

𝑣1(휁, 휁)̅ = −
𝐿2

2𝐸𝐼𝑦𝑦
∙ 휁2 0 ≤ 휁 ≤ 휁 ̅

(4.15)   

𝑣2(휁, 휁)̅ = −
𝐿2 ∙ (2휁 − 휁)̅ ∙ 휁̅

2𝐸𝐼𝑦𝑦
 휁̅ ≤ 휁 ≤ 1 
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4.1.4 Green Function: Concentrated Bimoment Mω 

 

The problem will be solved by means of the Method of Initial Parameters. 

 
  

 

We place the origin of the 𝑧 axis at the end 

of the core where it is fixed to the ground, 

consequently, the following boundary 

conditions at the two extremities of the core 

can be given: 

 

For 𝑧 = 0      𝜃(0) = 0 

                     𝜃′(0) = 0 

 

For 𝑧 = 𝐿    𝑀𝜔(𝐿) = 0 

                    𝑇(𝐿) = 0   

 

  

Table 4.4: Green Functions – Bimoment Mω – Method of initial parameters 

It is possible to write the following equations for the variation with 𝑧 of the basic flexural-

torsional factors: 

 

𝜃(𝑧) = 𝜃0 +
𝐿

𝑘
𝜃′0𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) −

1

𝐺𝐼𝑑
𝑀𝜔0 [𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) − 1]  +

1

𝐺𝐼𝑑
𝑇0 [𝑧 −

𝐿

𝑘
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧)]   

 

 
 

(4.16) 

 

𝜃′(𝑧) = 𝜃′0𝑐𝑜𝑠ℎ (
𝑘

𝐿
𝑧) −

𝑘

𝐿

1

𝐺𝐼𝑑
𝑀𝜔0𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) +

1

𝐺𝐼𝑑
𝑇0 [1 − 𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧)] 

 

𝑇(𝑧) = 𝑇0 
 

𝑀𝜔(𝑧) = −
𝐿

𝑘
𝐺𝐼𝑑𝜃

′
0𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) +𝑀𝜔0𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) +

𝐿

𝑘
𝑇0𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) −𝑀𝜔̅̅ ̅̅̅𝑐𝑜𝑠ℎ (

𝑘

𝐿
(𝑧 − 𝑧̅)) 

 

where 𝜃0, 𝜃0
′ , 𝑇0 and 𝑀𝜔0 are the initial parameters. 

Introducing the boundary conditions in equations (4.16), the initial parameters turn out to 

be: 

𝜃0 = 0;      𝜃
′
0 = 0;      𝑇0 = 0;      𝑀𝜔0 =

𝑀𝜔̅̅ ̅̅̅𝑐𝑜𝑠ℎ (
𝑘
𝐿
(𝐿 − 𝑧̅))

𝑐𝑜𝑠ℎ(𝑘)
 

(4.17) 

 

 

By introducing expressions (4.17) into equations (4.16), one can completely determine the 

four design flexural-torsional factors for the considered case. In particular, recalling that: 
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𝑘2 = 𝐿2
𝐺𝐼𝑑
𝐸𝐼𝜔𝜔

;              𝐺𝐼𝑑 = 𝑘
2
𝐸𝐼𝜔𝜔
𝐿2

 →  
1

𝐺𝐼𝑑
=

𝐿2

𝑘2𝐸𝐼𝜔𝜔
 

 

and introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , assuming 𝑀𝜔̅̅ ̅̅̅ = 1, the following Green 

Functions are obtained for the torsional angle 𝜃: 

 

𝜃1(휁, 휁)̅ =
𝐿2

𝑘2𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(𝑘휁)̅ + 𝑁

𝑐𝑜𝑠ℎ(𝑘)
[1 − 𝑐𝑜𝑠ℎ(𝑘휁)] 0 ≤ 휁 ≤ 휁 ̅

(4.18)   

𝜃2(휁, 휁)̅ =
𝐿2

𝑘2𝐸𝐼𝜔𝜔
{
𝑀 + 𝑁 + 𝑄 + 𝑅

𝑐𝑜𝑠ℎ(𝑘)
} 휁̅ ≤ 휁 ≤ 1 

 

where 𝑀, 𝑁, 𝑄 and 𝑅 are functions defined by the following equations: 

 

𝑀 = 𝑐𝑜𝑠ℎ(𝑘) [𝑐𝑜𝑠ℎ(𝑘휁)̅ − 1];       𝑁 = −𝑠𝑖𝑛ℎ(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁)̅ 
 

𝑄 = 𝑠𝑖𝑛ℎ(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁)̅ ∙ 𝑐𝑜𝑠ℎ(𝑘휁) ;        𝑅 = −𝑐𝑜𝑠ℎ(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁)̅ ∙ 𝑠𝑖𝑛ℎ(𝑘휁) 
(4.19) 

 

For the sake of clearness, Table 4.5 lists all the Green Functions derived so far and that will 

have direct application in the case study. 

 

Using the Green Functions of Table 4.5, the displacements induced by a generic distribution 

of outriggers can be evaluate in order to write the compatibility equations of the problem. 

 

However, to do so it is still necessary to derive the displacement functions to account for the 

effects of given external loads.  

In particular, introducing the generic distribution of loads −𝑞𝑧(𝑧), 𝑞𝑥(𝑧), 𝑞𝑦(𝑧) and 𝑞𝜔(𝑧) 

in the second member of equations (4.6), (4.7), (4.8) and (4.9), we shall now solve the 

following equilibrium differential equations: 

 

𝐸𝐴𝑤′′ = −𝑞𝑧(𝑧)       (4.20) 
 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 = 𝑞𝑥(𝑧)        (4.21) 

 

𝐸𝐼𝑦𝑦𝑣
𝐼𝑉 = 𝑞𝑦(𝑧)     (4.22) 

 

𝐸𝐼𝜔𝜔𝜃
𝐼𝑉 − 𝐺𝐼𝑑𝜃

′′ = 𝑞𝜔(𝑧)    (4.23) 

 

Neglecting the axial load (i.e. 𝑞𝑧(𝑧) = 0), we will consider two loading cases of 𝑞𝑥 and 𝑞𝑦, 

constant or linear with maximum value at the top, obtaining 𝑢 and 𝑣 describing the flexural 

behaviour of the core. For what concerns the torsional problem, we will consider a 

distributed torque 𝑞𝜔, obtaining 𝜃 due to this loading condition. 

 

 

 



INTERACTION PROBLEMS IN OUTRIGGERED STRUCTURAL SYSTEMS SUBJECTED TO TORSION 
 

 

 

86/184 STRUCTURAL ANALYSIS OF OUTRIGGER SYSTEMS 

 

 

B
en

d
in

g
 M

o
m

en
t 
𝑴
𝒚
 a

t 
𝒛
=
𝒛

 

𝑣
1
( 휁
,휁
)̅
=
−

𝐿2

2
𝐸
𝐼 𝑦
𝑦
∙휁
2
 

 

𝑣
2
( 휁
,휁
)̅
=
−
𝐿2
∙(
2
휁
−
휁
)̅
∙휁
̅

2
𝐸
𝐼 𝑦
𝑦

 

B
im

o
m

en
t 
𝑴
𝝎

 a
t 
𝒛
=
𝒛

 –
 𝜽
𝟏
 h

o
ld

s 
fo

r 
𝟎
≤
𝜻
≤
𝜻

 w
h

il
e 
𝜽
𝟐
 f

o
r 
𝜻
≤
𝜻
≤
𝟏

 

 

𝜃
1
( 휁
,휁
)̅
=

𝐿2

𝑘
2
𝐸
𝐼 𝜔
𝜔

𝑐𝑜
𝑠ℎ
( 𝑘
)
𝑐𝑜
𝑠ℎ
(𝑘
𝜉
̅ )
−
𝑠𝑖
𝑛
ℎ
( 𝑘
)
𝑠𝑖
𝑛
ℎ
 (𝑘
𝜉
̅ )

𝑐𝑜
𝑠ℎ
( 𝑘
)

[ 1
−
𝑐𝑜
𝑠ℎ
( 𝑘
𝜉
)]

 

𝜃
2
( 휁
,휁
)̅
=

𝐿2

𝑘
2
𝐸
𝐼 𝜔
𝜔
{𝑐
𝑜
𝑠ℎ
( 𝑘
)
[𝑐
𝑜
𝑠ℎ
(𝑘
𝜉
̅ )
−
1
]
−
𝑠𝑖
𝑛
ℎ
( 𝑘
)
𝑠𝑖
𝑛
ℎ
(𝑘
𝜉
̅ )
+
𝑠𝑖
𝑛
ℎ
( 𝑘
)
𝑠𝑖
𝑛
ℎ
(𝑘
𝜉
̅ )𝑐
𝑜
𝑠ℎ
( 𝑘
𝜉
)
−
𝑐𝑜
𝑠ℎ
( 𝑘
) 𝑠
𝑖𝑛
ℎ
(𝑘
𝜉
̅ )𝑠
𝑖𝑛
ℎ
( 𝑘
𝜉
)

𝑐𝑜
𝑠ℎ
( 𝑘
)

} 

T
a

b
le

 4
.5

: 
G

re
en

 F
u

n
ct

io
n

s 
 

 

B
en

d
in

g
 M

o
m

en
t 
𝑴
𝒙
 a

t 
𝒛
=
𝒛

 

𝑢
1
(휁
,휁
)̅
=

𝐿2

2
𝐸
𝐼 𝑥
𝑥
∙휁
2
 

𝑢
2
(휁
,휁
)̅
=
𝐿2
∙(
2
휁
−
휁
)̅
∙휁
̅

2
𝐸
𝐼 𝑥
𝑥

 

A
x
ia

l 
lo

a
d

 𝑷
 a

t 
𝒛
=
𝒛

 

𝑤
1
( 휁
,휁
)̅
=
𝐿 𝐸
𝐴
∙휁

 

𝑤
2
( 휁
,휁
)̅
=
𝐿 𝐸
𝐴
∙휁

 ̅

 

0
≤
휁
≤
휁

 ̅

휁
̅ ≤
휁
≤
1

 



INTERACTION PROBLEMS IN OUTRIGGERED STRUCTURAL SYSTEMS SUBJECTED TO TORSION 
 

 

STRUCTURAL ANALYSIS OF OUTRIGGER SYSTEMS 87/184 

4.1.5 Load Case 1: Uniform Load qx or qy 
 

 

Differential equilibrium equation 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 = 𝑞𝑥 

 

By integration 

𝐸𝐼𝑥𝑥𝑢
′′′ = 𝐴 + 𝑞𝑥𝑧 

𝐸𝐼𝑥𝑥𝑢
′′ = 𝐴𝑧 + 𝐵 + 𝑞𝑥

𝑧2

2
 

𝐸𝐼𝑥𝑥𝑢
′ = 𝐴

𝑧2

2
+ 𝐵𝑧 + 𝐶 + 𝑞𝑥

𝑧3

6
 

𝐸𝐼𝑥𝑥𝑢 = 𝐴
𝑧3

6
+ 𝐵

𝑧2

2
+ 𝐶𝑧 + 𝐷 + 𝑞𝑥

𝑧4

24
 

           

Boundary conditions 

For 𝑧 = 0     𝑢 = 0;     𝑢′ = 0 
 

For 𝑧 = 𝐿    𝐸𝐼𝑥𝑥𝑢′′ = 0;    𝐸𝐼𝑥𝑥𝑢′′′ = 0 

 

Table 4.6: External load effects – distributed load qx 

Integrating the differential equation with the boundary conditions reported in Table 4.6, it is 

possible to find the four constants 𝐴, 𝐵, 𝐶, 𝐷: 

 

𝐴 = −𝑞𝑥𝐿;     𝐵 =
𝑞𝑥𝐿

2

2
;     𝐶 = 0;     𝐷 = 0 (4.24) 

 

Recalling that −𝐸𝐼𝑥𝑥𝑢
′′(𝑧) = 𝑀𝑥 and −𝐸𝐼𝑥𝑥𝑢

′′′(𝑧) = 𝑉𝑥, by means of  constants (4.24) and 

introducing the nondimensional abscissa 휁 =
𝑧

𝐿
, it is possible to define the displacement 𝑢 

and all the basic design quantities as follows: 

 

𝑢(휁) =
𝑞𝑥𝐿

4

8𝐸𝐼𝑥𝑥
∙ (
1

3
휁4 −

4

3
휁3 + 2휁2) ;    𝑢′(휁) =

𝑞𝑥𝐿
3

6𝐸𝐼𝑥𝑥
∙ (휁3 − 3휁2 + 3휁) 

 

𝑀𝑥(휁) = −
𝑞𝑥𝐿

2

2
∙ (휁2 − 2휁 + 1);    𝑉𝑥(휁) = −𝑞𝑥𝐿 ∙ (휁 − 1) 

(4.25) 

 

Similarly, for a uniformly distributed load 𝑞𝑦, we can obtain the displacement 𝑣 and all the 

design quantities as: 
 

𝑣(휁) =
𝑞𝑦𝐿

4

8𝐸𝐼𝑦𝑦
∙ (
1

3
휁4 −

4

3
휁3 + 2휁2) ;     𝑣′(휁) =

𝑞𝑦𝐿
3

6𝐸𝐼𝑦𝑦
∙ (휁3 − 3휁2 + 3휁) 

 

𝑀𝑦(휁) = −
𝑞𝑦𝐿

2

2
∙ (휁2 − 2휁 + 1);    𝑉𝑦(휁) = −𝑞𝑦𝐿 ∙ (휁 − 1) 

(4.26) 
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The graphical representations of equations (4.25) are reported in the following. Clearly, these 

are valid also for equations (4.26). 

 

 

Figure 4.2: Displacement induced by a uniformly distributed load qx 

 

Figure 4.3: Rotation induced by a uniformly distributed load qx 
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Figure 4.4: Bending moment induced by a uniformly distributed load qx 

 

 

 

Figure 4.5: Shear force induced by a uniformly distributed load qx 
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4.1.6 Load Case 2: Triangular Load with Maximum qx or qy at the Top  
 

 

Differential equilibrium equation 

𝐸𝐼𝑥𝑥𝑢
𝐼𝑉 =

𝑞𝑥𝑧

𝐿
 

 

By integration 

𝐸𝐼𝑥𝑥𝑢
′′′ = 𝐴 + 𝑞𝑥

𝑧2

2𝐿
 

𝐸𝐼𝑥𝑥𝑢
′′ = 𝐴𝑧 + 𝐵 + 𝑞𝑥

𝑧3

6𝐿
 

𝐸𝐼𝑥𝑥𝑢
′ = 𝐴

𝑧2

2
+ 𝐵𝑧 + 𝐶 + 𝑞𝑥

𝑧4

24𝐿
 

𝐸𝐼𝑥𝑥𝑢 = 𝐴
𝑧3

6
+ 𝐵

𝑧2

2
+ 𝐶𝑧 + 𝐷 + 𝑞𝑥

𝑧5

120𝐿
 

          

Boundary conditions 

For 𝑧 = 0     𝑢 = 0;     𝑢′ = 0 

 

For 𝑧 = 𝐿    𝐸𝐼𝑥𝑥𝑢′′ = 0;     𝐸𝐼𝑥𝑥𝑢′′′ = 0 
 

Table 4.7: External load effects – Linearly distributed load with maximum value qx at the top 

Integrating the differential equations with the boundary conditions reported in Table 4.7 it is 

possible to find the four constants 𝐴, 𝐵, 𝐶, 𝐷: 

 

𝐴 = −
𝑞𝑥𝐿

2
;     𝐵 =

𝑞𝑥𝐿
2

3
;     𝐶 = 0;     𝐷 = 0 (4.27) 

 

Recalling that −𝐸𝐼𝑥𝑥𝑢
′′(𝑧) = 𝑀𝑥 and −𝐸𝐼𝑥𝑥𝑢

′′′(𝑧) = 𝑉𝑥, by means of constants (4.27) and 

introducing the nondimensional abscissa 휁 =
𝑧

𝐿
, it is possible to define the displacement 𝑢 

and all the basic design quantities as follows: 

 

𝑢(휁) =
11𝑞𝑥𝐿

4

120𝐸𝐼𝑥𝑥
∙ (
1

11
휁5 −

10

11
휁3 +

20

11
휁2) ;    𝑢′(휁) =

𝑞𝑥𝐿
3

8𝐸𝐼𝑥𝑥
∙ (
1

3
 휁4 − 2휁2 +

8

3
휁) 

𝑀𝑥(휁) = −
𝑞𝑥𝐿

2

3
∙ (
1

2
휁3 −

3

2
휁 + 1) ;    𝑉𝑥(휁) = −

𝑞𝑥𝐿

2
∙ (휁2 − 1) 

(4.28) 

 

Similarly, for a triangularly distributed load 𝑞𝑦, we can obtain the displacement 𝑣 and all 

design quantities as: 
 

𝑣(휁) =
11𝑞𝑦𝐿

4

120𝐸𝐼𝑦𝑦
∙ (
1

11
휁5 −

10

11
휁3 +

20

11
휁2) ;    𝑣′(휁) =

𝑞𝑦𝐿
3

8𝐸𝐼𝑦𝑦
∙ (
1

3
 휁4 − 2휁2 +

8

3
휁) 

𝑀𝑦(휁) = −
𝑞𝑦𝐿

2

3
∙ (
1

2
휁3 −

3

2
휁 + 1) ;    𝑉𝑦(휁) = −

𝑞𝑦𝐿

2
∙ (휁2 − 1) 

(4.29) 
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The graphical representations of equations (4.28) are reported in the following. Clearly, these 

are valid also for equations (4.29). 

 

 

Figure 4.6: Displacement induced by a triangular load with maximum value qx at the top 

 

Figure 4.7: Rotation induced by a triangular load with maximum value qx at the top 
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Figure 4.8: Bending moment induced by a triangular load with maximum value qx at the top 

 

 

 

Figure 4.9: Shear force induced by a triangular load with maximum value qx at the top 
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4.1.7 Load Case 3: Uniform Torque Load qω 

 

The problem will be solved by means of the Method of Initial Parameters. 
 

  

 

We place the origin of the 𝑧 axis at the end 

of the core where it is fixed to the ground, 

consequently, the following boundary 

conditions at the two extremities of the core 

can be given: 

 

For 𝑧 = 0      𝜃(0) = 0 

                     𝜃′(0) = 0 

 

For 𝑧 = 𝐿    𝑀𝜔(𝐿) = 0 

                    𝑇(𝐿) = 0   

 

  

Table 4.8: Green Functions – Bimoment Mω – Method of initial parameters 

Considering 𝑧1̅ = 0 and 𝑧2̅ = 𝐿, the general equations for the basic flexural-torsional factors 

𝜃(𝑧), 𝜃′(𝑧), 𝑇(𝑧) and 𝑀𝜔(𝑧) are given by the following equations: 

 

𝜃(𝑧) = 𝜃0 + 𝜃0
′
𝐿

𝐾
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) +

𝑀𝜔0
𝐺𝐼𝑑

[1 − 𝑐𝑜𝑠ℎ (
𝑘

𝐿
𝑧)] +

𝑇0
𝐺𝐼𝑑

[𝑧 −
𝐿

𝑘
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧)]

−
𝑞𝜔
𝐺𝐼𝑑

{
𝑧2

2
−
𝐿2

𝑘2
[1 − 𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧)]} 

 

(4.30) 

𝜃′(𝑧) = 𝜃0
′𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) −

𝑀𝜔0
𝐺𝐼𝑑

𝑘

𝐿
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) +

𝑇0
𝐺𝐼𝑑

[1 − 𝑐𝑜𝑠ℎ (
𝑘

𝐿
𝑧)]

+
𝑞𝜔
𝐺𝐼𝑑

{−𝑧 +
𝐿

𝐾
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧)} 

 

𝑀𝜔(𝑧) = −𝐺𝐼𝑑𝜃0
′𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧) +𝑀𝜔0𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧) + 𝑇0

𝐿

𝐾
𝑠𝑖𝑛ℎ (

𝑘

𝐿
𝑧)

− 𝑞𝜔
𝐿2

𝑘2
{−1 + 𝑐𝑜𝑠ℎ (

𝑘

𝐿
𝑧)} 

 

𝑇(𝑧) = 𝑇0 − 𝑞𝜔𝑧 

 

where 𝜃0, 𝜃0
′ , 𝑇0 and 𝑀𝜔0 are the initial parameters. 

Introducing the boundary conditions in equations (4.30), the initial parameters become: 
 
 

𝜃0 = 0;    𝜃
′
0 = 0;    𝑇0 = 𝑞𝜔𝐿;    𝑀𝜔0 =

𝑞𝜔
𝑐𝑜𝑠ℎ(𝑘)

[
𝐿2

𝑘2
(𝑐𝑜𝑠 ℎ(𝑘) − 1) −

𝐿2

𝑘
𝑠𝑖𝑛ℎ(𝑘)] (4.31) 
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By introducing expressions (4.31) into equations (4.30), one can completely determine the 

four design flexural-torsional factors for the considered case.  

Introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , they are: 

 

𝜃(휁) =
𝑞𝜔𝐿

4

𝑘4𝐸𝐼𝜔𝜔
[
1 + 𝑘𝑠𝑖𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
(𝑐𝑜𝑠ℎ(𝑘휁) − 1) − 𝑘𝑠𝑖𝑛ℎ(𝑘휁) + 𝑘2휁 −

𝑘2

2
휁2] 

 

(4.32) 

𝜃′(휁) =
𝑞𝜔𝐿

3

𝑘3𝐸𝐼𝜔𝜔
[
1 + 𝑘𝑠𝑖𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑖𝑛ℎ(𝑘휁) − 𝑘𝑐𝑜𝑠ℎ(𝑘휁) + 𝑘 − 𝑘휁] 

 

𝑀𝜔(휁) = −
𝑞𝜔𝐿

2

𝑘2
[
1 + 𝑘𝑠𝑖𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑐𝑜𝑠ℎ(𝑘휁) − 𝑘𝑠𝑖𝑛ℎ(𝑘휁) − 1] 

 

𝑇𝐷𝑆(휁) = 𝐺𝐼𝑑𝜃
′ = 𝑞𝜔

𝐿

𝑘
[
1 + 𝑘𝑠𝑖𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑖𝑛ℎ(𝑘휁) − 𝑘𝑐𝑜𝑠ℎ(𝑘휁) + 𝑘 − 𝑘휁] 

 

𝑇𝜔(휁) = −𝐸𝐼𝜔𝜔𝜃
′′′ = −𝑞𝜔

𝐿

𝑘
[
1 + 𝑘𝑠𝑖𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑖𝑛ℎ(𝑘휁) − 𝑘𝑐𝑜𝑠ℎ(𝑘휁)] 

 

𝑇(휁) = 𝑇𝐷𝑆 + 𝑇𝜔 = 𝑞𝜔𝐿(1 − 휁) 
 

 

The graphical representation of equations (4.32) are reported in the following, for different 

values of the fundamental parameter 𝑘. 

 
 

 

Figure 4.10: Torsional rotation for a uniform torque load qω 
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Figure 4.11: Warping for a uniform torque load qω 

 

 

 

Figure 4.12: Bimoment for a uniform torque load qω 
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Figure 4.13: Torsional moments for a uniform torque load qω  

For 𝑘 → 0, the terms in brackets of equations (4.32) assume the same form as those in 

equations (4.25), while for 𝑘 → ∞, the warping contributions 𝑇𝜔 and 𝑀𝜔 vanish. This fact 

aligns with the initial hypothesis of the outrigger efficiency being significant only for small 

values of 𝑘, i.e. when there are thin-walled open cross-sections. 

4.1.8 Load Case 4: Triangular Torque Load with Maximum qω at the Top 

As before, the problem will be solved by means of the Method of Initial Parameters. The 

only thing changing form the previous case is the term depending on the load, here computed 

according to the following equations: 

𝜃(𝑧) = −
1

𝐺𝐼𝑑
∫ 𝑞𝜔

𝑧̅

𝐿
𝐾𝜃𝑇(𝑧̅)

�̅�=𝑧

�̅�=0

𝑑𝑧̅ 

𝜃′(𝑧) = −
1

𝐺𝐼𝑑
∫ 𝑞𝜔

𝑧̅

𝐿
(𝑧̅)𝐾𝜃′𝑇(𝑧̅)

�̅�=𝑧

�̅�=0

𝑑𝑧̅ 

1

𝐺𝐼𝑑
𝑀𝜔(𝑧) = −

1

𝐺𝐼𝑑
∫ 𝑞𝜔

𝑧̅

𝐿
(𝑧̅)𝐾𝑀𝜔𝑇(𝑧̅)

�̅�=𝑧

�̅�=0

𝑑𝑧̅ 

1

𝐺𝐼𝑑
𝑇(𝑧) = −

1

𝐺𝐼𝑑
∫ 𝑞𝜔

𝑧̅

𝐿
𝐾𝑇𝑇(𝑧̅)𝑑𝑧̅

�̅�=𝑧

�̅�=0

 

(4.33) 
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We place the origin of the 𝑧 axis at the end 

of the core where it is fixed to the ground, 

consequently, the following boundary 

conditions at the two extremities of the core 

can be given: 

 

For 𝑧 = 0      𝜃(0) = 0 

                     𝜃′(0) = 0 

 

For 𝑧 = 𝐿    𝑀𝜔(𝐿) = 0 

                    𝑇(𝐿) = 0   

 

  

Table 4.9: Green Functions – Bimoment Mω – Method of initial parameters 

By following the same passages already shown for the case of a uniformly distributed torque 

load, the following initial parameters are obtained:  

 
 

𝜃0 = 𝜃
′
0 = 0;  𝑇0 = 𝑞𝜔𝐿;   𝑀𝜔0 =

𝑞𝜔
𝑐𝑜𝑠ℎ(𝑘)

[
𝐿2

𝑘2
𝑐𝑜𝑠ℎ(𝑘) −

𝐿2

𝑘3
𝑠𝑖𝑛ℎ(𝑘) −

𝐿2

2𝑘
𝑠𝑖𝑛ℎ (𝑘)] (4.34) 

 

From expressions (4.34) one can completely determine the four design flexural-torsional 

factors for the considered case. Introducing the nondimensional abscissa 휁 =
𝑧

𝐿
 , they are: 

 

𝜃(휁) =
𝑞𝜔𝐿

4

𝑘5𝐸𝐼𝜔𝜔
[𝐹(𝑘) ∙ (𝑐𝑜𝑠ℎ(𝑘휁) − 1) − (

𝑘2

2
− 1) 𝑠𝑖𝑛ℎ(𝑘휁) + (

𝑘3

2
− 𝑘)휁 −

𝑘3

6
휁3] 

 

(4.35) 

𝜃′(휁) =
𝑞𝜔𝐿

3

𝑘4𝐸𝐼𝜔𝜔
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(𝑘휁) + (

𝑘2

2
− 1) −

𝑘2

2
휁2] 

 

𝑀𝜔(휁) = −
𝑞𝜔𝐿

2

𝑘3
[𝐹(𝑘) ∙ 𝑐𝑜𝑠ℎ(𝑘휁) − (

𝑘2

2
− 1) 𝑠𝑖𝑛ℎ(𝑘휁) − 𝑘휁] 

 

𝑇𝐷𝑆(휁) = 𝐺𝐼𝑑𝜃
′ = 𝑞𝜔

𝐿

𝑘2
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(𝑘휁) + (

𝑘2

2
− 1) −

𝑘2

2
휁2] 

 

𝑇𝜔(휁) = −𝐸𝐼𝜔𝜔𝜃
′′′ = −𝑞𝜔

𝐿

𝑘2
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘휁) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(𝑘휁) − 1] 

 

𝑇(휁) = 𝑇𝐷𝑆 + 𝑇𝜔 

where: 
 

𝐹(𝑘) =
𝑘2 𝑠𝑖𝑛ℎ(𝑘) − 2 𝑠𝑖𝑛ℎ(𝑘) + 2𝑘

2𝑐𝑜𝑠ℎ (𝑘)
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The graphical representations of equations (4.35) are reported in the following, for different 

values of the fundamental parameter 𝑘. 

 

Figure 4.14: Torsional rotation for a triangular torque load qω 

 
 

 

Figure 4.15: Warping for a triangular torque load qω 
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Figure 4.16: Bimoment for a triangular torque load qω 

 

 

 

Figure 4.17: Torsional moments for a triangular torque load qω  
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4.1.9 Generalized Solution for Multiple Outrigger Structures 

 

 

Figure 4.18: Scheme for structural analysis 

Making reference to Figure 4.18, indicating by 𝑛 the number of floors where outrigger 

systems are introduced and by 𝑚 the number of outriggers present at each floor, the 

compatibility of longitudinal displacements between the outriggers and the columns, using 

the derived Green Functions, can be written in the subsequent way: 
 

∑∑𝑃𝑖
(𝑗)
[𝑤ℎ(휁𝑝, 휁𝑗) + 𝑥𝑖

(𝑗)
𝑥𝑘
(𝑝)
𝑢ℎ
′ (휁𝑝, 휁𝑗)]

𝑛

𝑗=1

𝑚

𝑖=1

+ 

−∑∑𝑃𝑖
(𝑗)
[𝑦𝑖
(𝑗)
𝑦𝑘
(𝑝)
𝑣ℎ
′ (휁𝑝, 휁𝑗) + 𝜔𝑖

(𝑗)
𝜔𝑘
(𝑝)
𝜃ℎ
′ (휁𝑝, 휁𝑗)]

𝑛

𝑗=1

𝑚

𝑖=1

+ 

+
𝑃𝑘
(𝑝)
(𝑒𝑘

(𝑝)
)
3

3𝐸𝐼𝑘
(𝑝)

+ 

 

−𝑢0
′ (휁𝑝)𝑥𝑘

(𝑝)
− 𝑣0

′(휁𝑝)𝑦𝑘
(𝑝)
− 𝜃0

′(휁𝑝)𝜔𝑘
(𝑝)

 
 

 

= 
 

−[∑𝑃𝑘
(𝑟)

𝑝

𝑟=1

𝐿휁(𝑟)

(𝐸𝐴)𝑘
+ ∑ 𝑃𝑘

(𝑟) 𝐿휁
(𝑝)

(𝐸𝐴)𝑘

𝑛

𝑟=𝑝+1

] 

 
 

(4.36) 

with ℎ = 1  for  𝑗 ≤ 𝑝, ℎ = 2  for  𝑗 ≥ 𝑝 + 1, (𝑘 = 1,2, … ,𝑚), (𝑝 = 1,2, … , 𝑛) 
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We indicate by 𝑃𝑖
(𝑗)

 the longitudinal action applied by the 𝑖𝑡ℎ external column to the 𝑖𝑡ℎ 

outrigger at abscissa 휁𝑗  and by 𝑃𝑘
(𝑝)

 the action exerted by the 𝑘𝑡ℎ column at abscissa 휁𝑝. 𝐼𝐾
(𝑝)

 

and (𝐸𝐴)𝑘 represent respectively the inertia moment of the outrigger to which the force 𝑃𝑘
(𝑝)

 

is applied and the axial rigidity of the related column while 𝑢0, 𝑣0, 𝜃0 are the core 

displacements produced by external loads, computed respectively by means of equations 

(4.25) and (4.26) in case of a uniformly distributed load, equations (4.28) and (4.29) in case 

of triangularly distributed load and equations (4.32) and  (4.35) in case of a uniformly of 

triangularly distributed torque load.  
 

Equations (4.36) consist of an algebraic system involving (𝑚𝑥𝑛) unknowns represented by 

the axial loads 𝑃𝐾
(𝑝)

. By solving equations (4.36), we can compute the total state of stress and 

deformation of the core by summing to the effect of external loads the internal actions due 

to the unknowns 𝑃𝑘
(𝑝)

, which can be expressed by means of equations (4.5). 
 

It is noteworthy to derive from equations (4.36) some interesting cases. We start observing 

that for structures symmetric with respect 𝑦 we can study separately the effects produced by 

the axial load 𝑁 and the bending moment 𝑀𝑦 as they become independent with respect to 

the ones produced by 𝑀𝑥 and 𝑀𝜔. Therefore, equations (4.36) can be subdivided in two sub-

systems everyone containing one half of the total unknowns. Furtherly, when the problem is 

doubly symmetric with respect 𝑥, 𝑦 equations (4.36) become uncoupled, so that the effects 

of external loads can be studied in a separate way. 
 

By analysing Figure 4.19, which shows the variation of the torsional rotation 𝜃 and the 

warping 𝜃′ for different values of the fundamental parameter 𝑘, in the case of a uniform 

torque load applied on a vertical cantilever.  As it can be observed, the lower 𝑘, the higher 

the warping 𝜃′ of the section and thus the higher the outrigger’s efficiency to counteract 

warping deformations. The most convenient situation in outriggers is when 0 < 𝑘 < 1, for 

1 < 𝑘 < 3 the outrigger’s efficiency significantly reduces while for 𝑘 > 3 the outrigger 

contribution in reducing torsional displacements can be neglected. 
 

  

     

Figure 4.19: Torsional rotation and warping due to a constant distributed torque in free core 
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To conclude, another interesting property can be stated considering the Green Functions of 

the torsional problem of cores presenting small values of St-Venant torsional rigidity for 

which we can assume 𝐺𝐼𝑑 = 0, obtaining 𝑘 = 0. Introducing 𝑘 = 0 in equations (4.36), after 

some analytical passages to remove indeterminate forms, we get: 

 

𝜃10(휁, 휁)̅ = −
𝐿2

2𝐸𝐼𝜔𝜔
∙ 휁2 0 ≤ 휁 ≤ 휁 ̅

(4.37) 

𝜃20(휁, 휁)̅ = −
𝐿2 ∙ (2휁 − 휁)̅ ∙ 휁̅

2𝐸𝐼𝜔𝜔
 휁̅ ≤ 휁 ≤ 1 

 

As we can see, the Green Functions of the torsional problem become similar to the ones 

governing the bending behaviour. This property, which is often satisfied in practice, allows 

to highly simplify the problem as in this case only the Green Functions related to axial load 

and bending moments are necessary to obtain the general solution. Moreover, taking into 

account that the axial deformability of the core is generally negligible, we can assume 𝑤ℎ =

0, therefore for 𝑘 = 0 only the bending Green Functions are needed to solve the bending-

torsion interaction. 
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5 CASE STUDY 

 CHARACTERIZATION OF THE STRUCTURE 

The previously discussed general procedure has been applied to study the structural 

behaviour of the high-rise building illustrated in Figure 5.1. The building, consisting of 40 

storeys, is 170 𝑚 tall, with an interstorey height of 4.25 𝑚.  
 

 

 

Figure 5.1: Case Study – General 3D view 

The central core consists of an element with I-shaped section of maximum dimensions 

𝑑 x 2𝑏 = 15 𝑚 x 10 𝑚, 𝑎 = 6 𝑚 and constant thickness 𝑡 = 45 𝑐𝑚. Since the dimensions 

of the core are such that proportions (3.1) are satisfied, then the central core can be 

considered as an element of the thin-walled type. At the top and at mid height of the building, 

four outriggers with rectangular section 45 𝑐𝑚 x 425 𝑐𝑚 are disposed parallel to the 𝑦-axis. 

The span of the outriggers is 𝐿0 = 2𝑏 = 10 𝑚 and at their exterior edge they are connected 

to four circular columns having a 160 𝑐𝑚 diameter. 
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(a) (b) 

  

 

 

(c) (d) 

Figure 5.2: (a) Top floor; (b) Mid-height floor; (c) Mid-height floor; (d) Core-Outriggers system 
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On sides 2 and 6 of the building (see Figure 5.2), two triangular prismatic parts with base at 

the top are present, supported by concrete columns inclined by an angle 𝛽 = 4° with respect 

to the vertical axis. The dimensions of these additional parts are 𝑐 x (2𝑏 + 𝑑 2⁄ ) =

11.90 𝑚 x 15 𝑚 at the top and their weight per floor is indicated by 𝑞𝑧(𝑧). Due to the 

inclination of the columns, this weight can only be transferred to the ground according to an 

inclined pattern, this leading to two additional distributions of lateral forces 𝑞𝑦(𝑧) = 𝑞𝑧(𝑧) ∙

𝑡𝑎𝑛𝛽, necessary to maintain equilibrium (see Figure 5.3 (a)). 

 

 

 
 

(a) (b) 

Figure 5.3: (a) Horizontal actions due to the inclined volumes; (b) Acting loads 

Multiplying 𝑞𝑦(𝑧) = 𝑞𝑧(𝑧) ∙ 𝑡𝑎𝑛𝛽 by their lever arm 2ℎ∗, a negative triangularly distributed 

torque load with maximum value at the top is produced, having expression given by: 

 

𝑞𝜔(𝑧) = 𝑞𝑦(𝑧)2ℎ
∗ =

𝑞𝑧(𝐿) ∙ 𝑡𝑎𝑛𝛽 ∙ 2ℎ
∗

𝐿
∙ 𝑧 (5.1) 

where: 
 

ℎ∗ =
1

2
(2𝑏 +

𝑑

2
) 

 

(5.2) 

Obviously, the overall resultant in the 𝑦-direction of forces 𝑞𝑦(z) is zero.  

On sides 6 and 7, the structure is also assumed to be under the action of a wind load, blowing 

in the positive direction of the 𝑦-axis. Since the aim of the present work is to put in evidence 
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the torsional behaviour of the structure, the wind load is now modelled in a simplified way 

by assuming a triangular distribution, with maximum value at the top. The loads acting on 

the structure are reported in Figure 5.3 (b). 

 

For the sake of clearness, the geometrical features of the structure are now summarized in 

the following tables: 

 

General Data 

Total Height: 𝐿 170 [𝑚] 

Interstorey Height: 𝑙 4.25 [𝑚] 

Number of Floors: 𝑛 40 [−] 

Concrete: C45/55 [−] 

Table 5.1: General data of the building 

Central Core 

Flange: 2𝑏 10 [𝑚] 

Web: 𝑑 15 [𝑚] 

Lips: 𝑎 6 [𝑚] 

Thickness: 𝑡 45 [𝑐𝑚] 

Table 5.2: Central core’s properties 

Outriggers (Rectangular Cross Section) 

Width: 𝑡0 = 𝑡 45 [𝑐𝑚] 

Height: ℎ0 = 𝑙 425 [𝑐𝑚] 

Span: 𝐿0 = 2𝑏 10 [𝑚] 

Number per floor: 𝑚 4 [−] 

Diameter of supporting columns: 𝐷 160 [𝑐𝑚] 

Location in elevation: 
Floors 19 − 20 

Floors  39 − 40 

[−] 

[−] 

Table 5.3: Outriggers’ properties 

Triangular Prismatic Volumes  

(Properties at the top − Top-to-Bottom variation with height: Linear) 

Sides along 𝑥: 
CE-1 

AC-7 
2𝑏 +

𝑑

2
 15 [𝑚] 

Sides along 𝑦: 
E-12 & C-12 

A-67 & C-67 
𝑐 11.90 [𝑚] 

Angle with respect to the vertical axis: − 𝛽 4 [°] 

Table 5.4: Triangular prismatic volumes’ properties 
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Lastly, since they will be used in the following discussion, the values of the basic factors 

influencing the flexural and torsional behaviour, i.e. the inertia moments, the graph of 

sectorial areas, the moment of inertia for pure torsion and the sectorial moment of inertia, 

are now computed.  

 

Figure 5.4: Scheme for the computation of the inertia moments 

Reducing the core’s cross section to its mid-line, the inertia moments can be computed by 

means of a piece-wise subdivision of the core through expressions: 
 

𝐼𝑦𝑦 = ∫𝑦2𝑑𝐴

𝐴

;       𝐼𝑥𝑥 = ∫𝑥2𝑑𝐴

𝐴

;      𝐼𝐺 = 𝐼𝐺′ + 𝐴𝑑
2 (5.3) 

 

where the last of equations (5.3) needs to be used only when the centroid 𝐺′of the considered 

core’s trait of area 𝐴 has a distance 𝑑 with respect to the centroid 𝐺 of the whole core.  

Referring to Figure 5.4, by piece-wise subdivision the inertia moments of each trait are: 

 

𝐼𝑦𝑦
𝐴′𝐸′ = 𝐼𝑦𝑦

𝐶′𝐹′ = 𝐼𝑦𝑦
𝐴𝐸 = 𝐼𝑦𝑦

𝐶𝐹 = 𝑡𝑎(𝑏)2; 
 
 

𝐼𝑦𝑦
𝑂′𝑂 = 0;        𝐼𝑦𝑦

𝐴′𝐶′ = 𝐼𝑦𝑦
𝐴𝐶 =

2𝑡𝑏3

3
 

 

𝐼𝑥𝑥
𝐴′𝐸′ = 𝐼𝑥𝑥

𝐶′𝐹′ = 𝐼𝑥𝑥
𝐴𝐸 = 𝐼𝑥𝑥

𝐶𝐹 = 𝑡
𝑎3

12
+ 𝑡𝑎 (

𝑑 − 𝑎

2
)
2

 

 

𝐼𝑥𝑥
𝑂′𝑂 = 𝑡

𝑑3

12
;       𝐼𝑥𝑥

𝐴′𝐶′ = 𝐼𝑥𝑥
𝐴𝐶 = 2𝑏𝑡 (

𝑑

2
)
2

 

 

(5.4) 

By summing the contributions (5.4), the inertia moments of the core turn out to be: 

 

𝐼𝑦𝑦 = 𝑡 [2
(2𝑏)3

12
+ 4𝑎𝑏2] = 345 𝑚4 (5.5) 

  

𝐼𝑥𝑥 = 𝑡 {
𝑑3

 12
+ 2𝑏

𝑑2

2
+ 4 [

𝑎3

12
+ 𝑎 (

𝑑 − 𝑎

2
)
2

]} = 884 𝑚4 (5.6) 

 

On the other hand, the inertia moment of the outriggers is: 

 

𝐼0 =
𝑡0ℎ0

3

12
= 2.88 𝑚4 (5.7) 



INTERACTION PROBLEMS IN OUTRIGGERED STRUCTURAL SYSTEMS SUBJECTED TO TORSION 
 

 

 

108/184 CASE STUDY 

For what concerns the diagram of sectorial areas, reference can be made to Figure 5.5: 

 

 

Figure 5.5: Diagram of sectorial areas - Blue: positive; Red: negative - Dimensions: m2 

where the sectorial areas of each segment composing the core-outriggers system can be 

computed by integration over the considered segment of the last of equations (3.14): 

 

𝜔(𝑠) = ∫ ℎ(𝑠)

𝑏2

𝑏1

𝑑𝑠 (5.8) 

 

Here, 𝑠 is the curvilinear abscissa moving along the mid-line of the core-outriggers cross 

section, ℎ(𝑠) is the distance from the shear centre, here located in the origin of the reference 

axes 𝑥 and 𝑦, of the mid-line of the considered segment, 𝑏1 and 𝑏2 are the extremities of the 

segment for which the sectorial area is computed. 

According to this, the following sectorial areas are obtained: 

 

𝜔𝑂 = 𝜔𝑂
′
= 0 

 

𝜔𝐴 = 𝜔𝐶 = −𝜔𝐴
′
= −𝜔𝐶 =

𝑑𝑏

2
 

𝜔𝐸 = 𝜔𝐹
′
= −𝜔𝐸

′
= −𝜔𝐹 =

𝑑𝑏

2
+ 𝑎𝑏 

 

𝜔𝐵 = 𝜔𝐷
′
= −𝜔𝐵

′
= −𝜔𝐷 =

𝑑𝑏

2
+
𝑑𝐿0
2

 

(5.9) 

 

As it can be observed, the diagram of sectorial areas of the core-outriggers system is skew-

symmetric with respect to the symmetry axes and described by a linear function of 𝑠. 
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Using the values reported in the diagram of sectorial areas it is possible to derive the sectorial 

moment of inertia of the core: 

 

             𝐼𝜔𝜔 = ∫𝜔2𝑑𝐴

𝐴

= 𝑡 [4∫[(𝜔𝑂𝐴(𝑠)]2
𝑏

0

𝑑𝑠 + 4∫[(𝜔𝐴𝐸(𝑠)]2
𝑏

0

𝑑𝑠] = 

 

                              = 4𝑡 (
𝑑2𝑏3

12
+
𝑑2𝑏2

4
𝑎 +

𝑑𝑏2𝑎2

2
+
𝑏2𝑎3

3
) = 34796.25 𝑚6 

(5.10) 

 

where 𝜔𝑂𝐴(𝑠) and 𝜔𝐴𝐸(𝑠) are linear functions between the values computed in Figure 5.5: 

 

𝜔𝑂𝐴(𝑠) =
𝑑

2
𝑠;         𝜔𝐴𝐸(𝑠) =

𝑑𝑏

2
+ 𝑏𝑠 (5.11) 

 

From equation (3.23), the moment of inertia for pure torsion is: 

 

𝐼𝑑 =
1

3
∑𝑡𝑖

3𝑏𝑖 =

𝑛

𝑖=1

1

3
𝑡3[4𝑎 + 4𝑏 + 𝑑] = 1.79 𝑚4 (5.12) 

 

From the obtained values, it is finally possible to compute the value of the fundamental 

parameter 𝑘. Assuming a Poisson’s ratio 𝜈 = 0.2, we obtain 𝐺 𝐸⁄ = 0.417 and therefore; 

according to equation (3.47): 

𝑘 = 𝐿√
𝐺𝐼𝑑
𝐸𝐼𝜔𝜔

= 0.787 (5.13) 

 

As it is possible to observe, the value of 𝑘 for the present structure is lower than one, meaning 

that the core-outriggers system is expected to effectively reduce warping deformations when 

subjected to torsion, as shown in Figure 4.19. 

 

Completed the geometrical description of the structure, from Figure 5.2 (d) it is possible to 

realize that the analysed core-outriggers system is symmetric with respect to both 𝑥 and 𝑦 

axes. Therefore, the analysis of the bending and torsional behaviours of the system can be 

made separating the effects, since, as specified in §4.1.9, they are decoupled. To study them, 

two main cases will be considered in the following: 
 

− Structure with one level of outriggers at the top; 

− Structure with two levels of outriggers, at the top and at mid-height; 

 

Moreover, when dealing with the torsional behaviour of the structure, in addition to the study 

of the simple core-outriggers system behaviour, the analysis will be extended to include the 

effects of both diaphragms and lintels of different dimensions as transverse bracings. 
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 CORE-OUTRIGGERS INTERACTION: BENDING BEHAVIOUR 

5.2.1 Structure with One Level of Outriggers 

Indicating by 𝑃1𝑦 the interaction forces between the outrigger and the column generated by 

the load 𝑞𝑦, the system of equations (4.36) turns now into a single compatibility equation 

with the only 𝑃1𝑦 as unknown, having the form: 

 

𝑃1𝑦 [−4𝑣1
′(휁)̅𝑦0

2 +
𝐿0
3

3𝐸𝐼0
+ 휁̅

𝐿

𝐸𝐴𝐶
] = 𝑣0

′ (휁)̅𝑦0 (5.14) 

 

where 휁̅ = 1 represents the level of the outriggers, that is, in this case, the top of the structure.  

 

 

Figure 5.6: Core-outriggers interaction flexural forces - Case: One level of outriggers 

In equation (5.14) it is possible to recognize 4 different contributions: 

 

− 4 ∙ 𝑃1𝑦 ∙ 𝑣1
′(휁)̅𝑦0

2 represents the displacement in the column due to the rotation of the 

core given by the unknown bending moment 𝑃1𝑦 ∙ 𝑦0, assuming the outrigger as rigid. 

The factor 4 is due to the presence of 4 outriggers at the outriggers’ level.  

− 𝑃1𝑦 ∙ 𝐿0
3 3𝐸𝐼0⁄  is the displacement contribution given by the flexural deformability 

of the outrigger, assumed as a horizontal cantilever subjected to a vertical force at 

the free end. 

− 𝑃1𝑦 ∙ 휁 ̅ ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to axial deformability of the column. 
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− 𝑣0
′ (휁)̅𝑦0 is the displacement in the column due to the external triangular load.  

 

Computing the rotation 𝑣1
′(휁)̅ by deriving the corresponding Green Function of  Table 4.5 

and 𝑣0
′ (휁)̅ according to the second of equations (4.29), it is possible to explicit all the 

contributions of equation (5.14) as: 
 

−4𝑃1𝑦𝑣1
′ (휁)̅𝑦0

2 = 4𝑃1𝑦
𝐿

𝐸𝐼𝑦𝑦
𝑦0
2  

𝑃1𝑦
𝐿0
3

3𝐸𝐼0
= 𝑃1𝑦

𝐿0
3

3𝐸𝐼0
 

 

𝑃1𝑦휁 ̅
𝐿

𝐸𝐴𝐶
= 𝑃1𝑦

𝐿

𝐸𝐴𝐶
 

 

𝑣0
′ (휁)̅𝑦0 =

𝑞𝑦𝐿
3

8𝐸𝐼𝑦𝑦
𝑦0  

(5.15) 

 

Substituting equations (5.15) in the compatibility equation (5.14), yields the unknown 𝑃1𝑦 

with the following expression: 
 

𝑃1𝑦 = 𝑞𝑦𝐿 ∙
3(𝑦0 𝐿⁄ )

96(𝑦0 𝐿⁄ )2 + 8(𝐿0 𝐿⁄ )3 ∙ 𝐼𝑦𝑦 𝐼0⁄ + 24(𝐼𝑦𝑦 𝐿2𝐴𝐶⁄ )
 (5.16) 

 

From the numerical data, 𝑃1𝑦 and the related bending moment 𝑀1𝑦 acting on the core are: 

 

𝑃1𝑦 = 0.2438 ∙ 𝑞𝑦𝐿 
 

𝑀1𝑦 = 4𝑃1𝑦𝐿 ∙
𝑦0
𝐿
= 0.0860 ∙ 𝑞𝑦𝐿

2 

 

(5.17) 

Once we know these quantities, it is possible to define the displacement 𝑣 of the core by 

applying the principle of superposition between the displacement 𝑣0(휁) due to the external 

load and the displacement 𝑣1
𝑀1𝑦(휁, 1) due to the reaction of the column: 

 

𝑣(휁, 휁)̅ = 𝑣0(휁) + 𝑣1
𝑀1𝑦(휁) 

 

(5.18) 

In particular, 𝑣0(휁) is defined by equation (4.29) while 𝑣1
𝑀1𝑦(휁, 1) is obtained by multiplying 

𝑣1(휁) in Table 4.5 by 𝑀1𝑦 defined by equation (5.17). 

Given this, the rotation 𝑣′(휁, 휁)̅ and the bending moment 𝑀𝑦(휁, 휁)̅ can be defined by 

following the same path of reasoning, reading: 

 

𝑣′(휁, 휁)̅ = 𝑣′0(휁) + 𝑣′1
  𝑀1𝑦  (휁) 

 

(5.19) 
 

𝑀𝑦(휁, 휁)̅ = 𝑀0𝑦(휁) +𝑀1𝑦 (5.20) 
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5.2.2 Structure with Two Levels of Outriggers 

Differently to the previous case, here we have two unknown axial forces, therefore two 

compatibility equations are needed, one for each level of outriggers. It is important to 

highlight that in this case the two equations are coupled because the effects of one level of 

outriggers are present on the other, and vice versa. This means that it is necessary to solve a 

system of two coupled equations in the unknowns 𝑃1𝑦 and 𝑃2𝑦: 

 

𝑃1𝑦 [−4𝑣1
′ (휁1̅ , 휁1̅)𝑦0

2 +
𝐿0
3

3𝐸𝐼0
+ 휁1̅

𝐿

𝐸𝐴𝐶
] + 𝑃2𝑦 [−4𝑣1

′ (휁1̅, 휁2̅)𝑦0
2 + (휁2̅ − 휁1̅)

𝐿

𝐸𝐴𝐶
] = 𝑣0

′ (휁1̅)𝑦0 

 (5.21) 

𝑃1𝑦 [−4𝑣2
′ (휁2̅, 휁1̅)𝑦0

2 + 휁1̅
𝐿

𝐸𝐴𝐶
] + 𝑃2𝑦 [−4𝑣1

′(휁2̅, 휁2̅)𝑦0
2 +

𝐿0
3

3𝐸𝐼0
+ 휁2̅

𝐿

𝐸𝐴𝐶
] = 𝑣0

′ (휁2̅)𝑦0 

 

The first of equations (5.21) is the compatibility equation at the 1st level of outriggers (mid-

height: 휁1̅ = 0.5) while the second is written at the 2nd level of outriggers (top: 휁1̅ = 1).  

 

For the first compatibility equation, it is possible to recognize the following 6 contributions: 

 

− 4 ∙ 𝑃1𝑦 ∙ 𝑣1
′(휁1̅, 휁1̅)𝑦0

2 represents the displacement in the column at the 1st level of 

outriggers due to the rotation of the core given by the unknown bending moment 

𝑃1𝑦 ∙ 𝑦0 deriving from the axial force at the 1st level of outriggers, assuming the 

outrigger as rigid. Note that the factor 4 is due to the presence of 4 outriggers at the 

outriggers level. 

− 𝑃1𝑦 ∙ 𝐿0
3 3𝐸𝐼0⁄  is the displacement contribution given by the flexural deformability 

of the outrigger, assumed as a horizontal cantilever subjected to a vertical force at 

the free end. 

− 𝑃1𝑦 ∙ 휁1̅ ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to the axial deformability of the column at 

1st level of outriggers, given by the axial force at the 1st level of outriggers. 

− 4 ∙ 𝑃2𝑦 ∙ 𝑣1
′(휁1̅, 휁2̅)𝑦0

2 represents the displacement in the column at 1st level of 

outriggers due to the rotation of the core given by the unknown bending moment 

𝑃2𝑦 ∙ 𝑦0 deriving from the axial force at the 2nd level of outriggers, assuming the 

outrigger as rigid. Notice that the factor 4 is due to the presence of 4 outriggers at the 

outriggers level. 

− 𝑃1𝑦 ∙ (휁2̅ − 휁1̅) ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to axial deformability of the column 

at 1st level of outriggers, given by the axial force at the 2nd outriggers level. 

− 𝑣0
′ (휁1̅)𝑦0 is the displacement in the column due to the external triangular load, at 1st 

level of outriggers. 

 

All contributions appearing in the second of equations (5.21) can be defined following the 

same path of reasoning.  
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Figure 5.7: Core-outriggers interaction forces - Case: Two levels of outriggers 

Computing the rotations 𝑣1
′(휁1̅, 휁1̅), 𝑣1

′(휁1̅, 휁2̅), 𝑣1
′(휁2̅, 휁2̅) and 𝑣2

′ (휁2̅, 휁1̅) by deriving the 

corresponding Green Functions of Table 4.5 and 𝑣0
′ (휁)̅ according to the second of equations 

(4.29), it is possible to explicit all the contributions of equations (5.21) as: 
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−4𝑃1𝑦𝑣1
′ (휁1̅, 휁1̅)𝑦0

2 = 4𝑃1𝑦
𝐿

2𝐸𝐼𝑦𝑦
𝑦0
2  

𝑃1𝑦
𝐿0
3

3𝐸𝐼0
= 𝑃1𝑦

𝐿0
3

3𝐸𝐼0
;    𝑃1𝑦휁1̅

𝐿

𝐸𝐴𝐶
= 𝑃1𝑦

𝐿

𝐸𝐴𝐶
 

 

−4𝑃2𝑦𝑣1
′ (휁1̅, 휁2̅)𝑦0

2 = 4𝑃2𝑦
𝐿

2𝐸𝐼𝑦𝑦
𝑦0
2  

𝑃1𝑦(휁2̅ − 휁1̅)
𝐿

𝐸𝐴𝐶
= 𝑃1𝑦

𝐿

2𝐸𝐴𝐶
 

 

𝑣0
′ (휁1̅)𝑦0 =

41𝑞𝑦𝐿
3

384𝐸𝐼𝑦𝑦
𝑦0  

 

(5.22) 

 

−4𝑃1𝑦𝑣2
′ (휁2̅, 휁1̅)𝑦0

2 = 4𝑃1𝑦
𝐿

2𝐸𝐼𝑦𝑦
𝑦0
2  

𝑃1𝑦휁1̅
𝐿

𝐸𝐴𝐶
= 𝑃1𝑦

𝐿

2𝐸𝐴𝐶
 

 

−4𝑃2𝑦𝑣1
′(휁2̅, 휁2̅)𝑦0

2 = 4𝑃1𝑦
𝐿

𝐸𝐼𝑦𝑦
𝑦0
2  

𝑃2𝑦
𝐿0
3

3𝐸𝐼0
= 𝑃2𝑦

𝐿0
3

3𝐸𝐼0
;     𝑃2𝑦휁2̅

𝐿

𝐸𝐴𝐶
= 𝑃2𝑦

𝐿

𝐸𝐴𝐶
 

 

𝑣0
′ (휁2̅)𝑦0 =

𝑞𝑦𝐿
3

8𝐸𝐼𝑦𝑦
𝑦0  

 

(5.23) 

The second block of terms in equations (5.22) and the first one in equations (5.23) are the 

coupling terms of the system (5.21) and, as we can see, they are equal. This is due to the 

symmetrical position of the outriggers at the two levels where they are introduced. 

Substituting equations (5.22) and (5.23) in the system (5.21) yields the unknowns 𝑃1𝑦, 𝑃2𝑦 

and, in turn, the associated bending moments 𝑀1𝑦 and 𝑀2𝑦 acting on the core: 

 

𝑃1𝑦 = 0.2568 ∙ 𝑞𝑦𝐿;    𝑃2𝑦 = 0.1385 ∙ 𝑞𝑦𝐿 
 

𝑀1𝑦 = 4𝑃1𝑦𝐿 ∙
𝑦0
𝐿
= 0.0906 ∙ 𝑞𝑦𝐿

2;     𝑀2𝑦 = 4𝑃2𝑦𝐿 ∙
𝑦0
𝐿
= 0.0489 ∙ 𝑞𝑦𝐿

2 
(5.24) 

 

Once we know these quantities, it is possible to define the displacement 𝑣 of the core by 

applying the principle of superposition between the displacement 𝑣0(휁) due to the external 

load, 𝑣1
𝑀1𝑦(휁, 0.5) and 𝑣2

𝑀1𝑦(휁, 0.5) due to the reaction of the column 𝑃1𝑦 and 𝑣1
𝑀2𝑦(휁, 1) 

due to the reaction of the column 𝑃2𝑦: 
 

𝑣(휁, 휁)̅ = 𝑣0(휁) + 𝑣1
𝑀1𝑦(휁, 휁1̅ = 0.5) + 𝑣1

𝑀2𝑦(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.25) 

𝑣(휁, 휁)̅ = 𝑣0(휁) + 𝑣2
𝑀1𝑦(휁, 휁1̅ = 0.5) + 𝑣1

𝑀2𝑦(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 
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In particular, 𝑣0(휁) is defined by equation (4.29) while 𝑣1
𝑀1𝑦(휁, 0.5), 𝑣2

𝑀1𝑦(휁, 0.5) 

and 𝑣1
𝑀2𝑦(휁, 1) are obtained, depending on the case, by multiplying 𝑣1(휁, , 휁)̅ or 𝑣2(휁, 휁)̅ in 

Table 4.5 by 𝑀1𝑦 or 𝑀2𝑦 defined according to equations (5.24). 

Given this, the rotation 𝑣′(휁, 휁)̅ and the bending moment 𝑀𝑦(휁, 휁)̅ can be defined by 

following the same path of reasoning, reading: 
 

𝑣′(휁, 휁)̅ = 𝑣′0(휁) + 𝑣′1
 𝑀1𝑦(휁, 휁1̅ = 0.5) + 𝑣′1

 𝑀2𝑦(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.26) 

𝑣′(휁, 휁)̅ = 𝑣′0(휁) + 𝑣′2
 𝑀1𝑦(휁, 휁1̅ = 0.5) + 𝑣′1

 𝑀2𝑦(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝑦(휁, 휁)̅ = 𝑀0𝑦(휁) + 𝑀1𝑦 +𝑀2𝑦 
 

0 ≤ 휁 ≤ 휁1̅ 
(5.27) 

𝑀𝑦(휁, 휁)̅ = 𝑀0𝑦(휁) + 𝑀2𝑦 휁1̅ ≤ 휁 ≤ 휁2̅ 
 

5.2.3 Results 

The vertical displacement, flexural rotation and bending moment are now reported for the 

cases of free-standing core, core with one level of outriggers and core with two levels of 

outriggers. Figure 5.8 shows the trend with 휁 of the first of equations (4.29), equation (5.18) 

and equation (5.25), respectively represented by a yellow, red and blue line. Similarly, 

Figure 5.9 gives the variation of the second of equations (4.29), equation (5.19) and equation 

(5.26), while Figure 5.10 the third of equations (4.29), equation (5.20) and equation (5.27).  

 

 

Figure 5.8: Core displacement under a triangular load distribution qy 
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Figure 5.9: Core Rotation under a triangular load distribution qy 

 

Figure 5.10: Bending moment in the core under a triangular load distribution qy 

As we can see from Figure 5.8, when outrigger structural systems are considered the 

displacement of the core significantly reduces; in particular, with one level of outriggers the 
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displacement reduction at the top of the structure reaches a value of 47 %, while with two 

levels of outriggers the reduction is even more pronounced, reaching a value at the top of 64 

%. For what concerns the bending moment diagram, looking at Figure 5.10 it is evident that 

the main benefit induced by outrigger systems is their ability to effectively reduce the core’s 

bending moment at the base, which is a favourable situation for the foundations, as already 

explained in §2.5.3. As a rule, beneficial effects achieved by introducing in the structure 

outrigger systems increase as the levels of outriggers increase but the rate decreases.  

 CORE-OUTRIGGERS INTERACTION: TORSIONAL 

BEHAVIOUR 

5.3.1 Structure with One Level of Outriggers 

Indicating by 𝑃1𝜔 the interaction forces between the outrigger and the column generated by 

the load 𝑞𝜔, the system of equations (4.36) turns now into a single compatibility equation 

with the only 𝑃1𝜔 as unknown, having the form: 

 

𝑃1𝜔 [−4𝜃1
′(휁)̅𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
+ 휁̅

𝐿

𝐸𝐴𝐶
] = 𝜃0

′(휁)̅𝜔𝐵 (5.28) 

 

where 휁̅ = 1 represents the level of the outriggers, that is, in this case, the top of the structure.  
 

 

Figure 5.11: Core-outriggers interaction torsional forces - Case: One level of outriggers 
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In equation (5.28) it is possible to recognize 4 different contributions: 
 

− 4 ∙ 𝑃1𝜔 ∙ 𝜃1
′(휁)̅𝜔𝐵

2  represents the displacement in the column due to the warping of 

the core given by the unknown bimoment 𝑃1𝜔 ∙ 𝜔𝐵, assuming the outrigger as rigid. 

Note that the factor 4 is due to the presence of 4 outriggers at the outriggers level. 

− 𝑃1𝜔 ∙ 𝐿0
3 3𝐸𝐼0⁄  is the displacement contribution given by the flexural deformability 

of the outrigger, assumed as a horizontal cantilever subjected to a vertical force at 

the free end. 

− 𝑃1𝜔 ∙ 휁 ̅ ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to axial deformability of the column. 

− 𝜃0
′(휁)̅𝜔𝐵 is the displacement in the column due to the external triangular torque. 

 

Computing the rotation 𝜃1
′(휁)̅ by deriving the corresponding Green Function of Table 4.5 

and 𝜃0
′(휁)̅ according to the second of equations (4.35), it is possible to explicit all the 

contributions of equation (5.28) as: 

 

−4𝑃1𝜔𝜃1
′(휁,̅ 휁)̅𝜔𝐵

2 = 4𝑃1𝜔
𝐿

𝑘𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(𝑘) − 𝑠𝑒𝑛ℎ(𝑘)𝑠𝑒𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑒𝑛ℎ(𝑘)𝜔𝐵

2  

 

𝑃1𝜔
𝐿0
3

3𝐸𝐼0
= 𝑃1𝜔

𝐿0
3

3𝐸𝐼0
 

 

𝑃1𝜔휁 ̅
𝐿

𝐸𝐴𝐶
= 𝑃1𝜔

𝐿

𝐸𝐴𝐶
 

 

𝜃0
′ (휁)̅𝜔𝐵 =

𝑞𝜔𝐿
3

𝑘4𝐸𝐼𝜔𝜔
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(𝑘) + (

𝑘2

2
− 1) −

𝑘2

2
]𝜔𝐵 

(5.29) 

 

where: 

𝐹(𝑘) =
𝑘2 𝑠𝑖𝑛ℎ(𝑘) − 2 𝑠𝑖𝑛ℎ(𝑘) + 2𝑘

2𝑐𝑜𝑠ℎ (𝑘)
 

 

Substituting equations (5.29) in the compatibility equation (5.28), yields the unknown 𝑃1𝜔 

and the related bending moment 𝑀1𝑦 acting on the core are: 

 

𝑃1𝜔 = 0.0224 ∙ 𝑞𝜔𝐿 

𝑀1𝜔 = 4𝑃1𝜔𝐿 ∙
𝜔𝐵
𝐿
= 0.0593 ∙ 𝑞𝜔𝐿

2 
(5.30) 

 

Once we know these quantities, it is possible to define the torsional rotation 𝜃 of the core by 

applying the principle of superposition between the torsional rotation 𝜃0(휁) due to the 

external torque load and the torsional rotation 𝜃1
𝑀1𝜔(휁, 1) due to the reaction of the column: 

 

𝜃(휁, 휁)̅ = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁̅ = 1) (5.31) 

 

In particular, 𝜃0(휁)is defined by equation (4.35) while 𝜃1
𝑀1𝜔(휁, 1) is obtained by multiplying 

𝜃1(휁) in Table 4.5 by 𝑀1𝜔 defined by equation (5.30). 
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Given this, the warping 𝜃′(휁, 휁)̅ and the bimoment 𝑀𝜔(휁, 휁)̅  can be defined by following 

the same path of reasoning, reading: 
 

𝜃′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′1
  𝑀1𝜔(휁, 휁̅ = 1) (5.32) 

  

𝑀𝜔(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀1𝜔 (5.33) 
 

 

For what concerns the axial displacements induced in the columns by the interaction force 

𝑃1𝜔, they can be computed according to Table 4.5, by multiplying the corresponding Green 

Function by 𝑃1𝜔: 

𝑤1(휁, 휁)̅ = 𝑃1𝜔
𝐿

𝐸𝐴
∙ 휁 0 ≤ 휁 ≤ 휁1̅ 

(5.34) 

𝑤2(휁, 휁)̅ = 𝑃1𝜔
𝐿

𝐸𝐴
∙ 휁  ̅ 휁1̅ ≤ 휁 ≤ 휁2̅ 

5.3.2 Structure with Two Levels of Outriggers 

Differently to the previous case, here we have two unknown axial forces, therefore two 

compatibility equations are needed, one for each level of outriggers. It is important to 

highlight that in this case the two equations are coupled because the effects of one level of 

outriggers are present on the other, and vice versa. This means that it is necessary to solve a 

system of two coupled equations in the unknowns 𝑃1𝜔 and 𝑃2𝜔: 

 

𝑃1𝜔 [−4𝜃1
′(휁1̅, 휁1̅)𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
+ 휁1̅

𝐿

𝐸𝐴𝐶
] + 𝑃2𝜔 [−4𝜃1

′(휁1̅, 휁2̅)𝜔𝐵
2 + (휁2̅ − 휁1̅)

𝐿

𝐸𝐴𝐶
] = 𝜃0

′(휁1̅)𝜔𝐵 

 (5.35) 

𝑃1𝜔 [−4𝜃2
′(휁2̅, 휁1̅)𝜔𝐵

2 + 휁1̅
𝐿

𝐸𝐴𝐶
] + 𝑃2𝜔 [−4𝜃1

′(휁2̅, 휁2̅)𝜔𝐵
2 +

𝐿0
3

3𝐸𝐼0
+ 휁2̅

𝐿

𝐸𝐴𝐶
] = 𝜃0

′(휁2̅)𝜔𝐵 

 

The first of equations (5.35) is the compatibility equation at the 1st level of outriggers (mid-

height: 휁1̅ = 0.5) while the second is written at the 2nd level of outriggers (top: 휁1̅ = 1).  

 

For the first compatibility equation, it is possible to recognize the following 6 contributions: 

 

− 4 ∙ 𝑃1𝜔 ∙ 𝜃1
′(휁1̅, 휁1̅)𝜔𝐵

2  represents the displacement in the column at 1st outriggers 

level due to the warping of the core given by the unknown bimoment 𝑃1𝜔 ∙ 𝜔𝐵 

deriving from the axial force at the 1st outriggers level, assuming the outrigger as 

rigid. Note that the factor 4 is due to the presence of 4 outriggers at the outriggers 

level. 

− 𝑃1𝜔 ∙ 𝐿0
3 3𝐸𝐼0⁄  is the displacement contribution given by the flexural deformability 

of the outrigger, assumed as a horizontal cantilever subjected to a vertical force at 

the free end. 

− 𝑃1𝜔 ∙ 휁1̅ ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to the axial deformability of the column at 

1st outriggers level, given by the axial force at the 1st outriggers level. 
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Figure 5.12: Core-outriggers interaction forces - Case: Two levels of outriggers 

− 4 ∙ 𝑃2𝜔 ∙ 𝜃1
′(휁1̅, 휁2̅)𝜔𝐵

2  represents the displacement in the column at 1st outriggers 

level due to the warping of the core given by the unknown bimoment 𝑃2𝜔 ∙ 𝜔𝐵 

deriving from the axial force at the 2nd outriggers level, assuming the outrigger as 
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rigid. Notice that the factor 4 is due to the presence of 4 outriggers at the outriggers 

level. 

− 𝑃1𝜔 ∙ (휁2̅ − 휁1̅) ∙ 𝐿 𝐸𝐴𝐶⁄  is the displacement due to axial deformability of the column 

at 1st outriggers level, given by the axial force at the 2nd outriggers level. 

− 𝜃0
′(휁1̅)𝜔𝐵 is the displacement in the column due to the external distributed torque, at 

1st outriggers level. 

 

All contributions appearing in the second of equations (5.35) can be defined following the 

same path of reasoning.  

 

Computing the warping deformations 𝜃1
′(휁1̅, 휁1̅), 𝜃1

′(휁1̅, 휁2̅), 𝜃1
′(휁2̅, 휁2̅) and 𝜃2

′(휁2̅, 휁1̅) by 

deriving the corresponding Green Functions of Table 4.5 and 𝜃0
′(휁)̅ according to the second 

of equations (4.35), it is possible to explicit all the contributions of equations (5.35) as: 

 

−4𝑃1𝜔𝜃1
′(휁1̅, 휁1̅)𝜔𝐵

2 = 4𝑃1𝜔
𝐿

𝑘𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(0.5𝑘) − 𝑠𝑒𝑛ℎ(𝑘)𝑠𝑒𝑛ℎ(0.5𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑒𝑛ℎ(0.5𝑘)𝜔𝐵

2  

 

𝑃1𝑦
𝐿0
3

3𝐸𝐼0
= 𝑃1𝑦

𝐿0
3

3𝐸𝐼0
;     𝑃1𝜔휁1̅

𝐿

𝐸𝐴𝐶
= 𝑃1𝜔

𝐿

𝐸𝐴𝐶
 

 

−4𝑃2𝜔𝜃1
′(휁1̅, 휁2̅)𝜔𝐵

2 = 4𝑃2𝜔
𝐿

𝑘𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(𝑘) − 𝑠𝑒𝑛ℎ(𝑘)𝑠𝑒𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑒𝑛ℎ(0.5𝑘)𝜔𝐵

2  

 

𝑃1𝜔(휁2̅ − 휁1̅)
𝐿

𝐸𝐴𝐶
= 𝑃1𝜔

𝐿

2𝐸𝐴𝐶
 

 

𝜃0
′(휁1̅)𝜔𝐵 =

𝑞𝜔𝐿
3

𝑘4𝐸𝐼𝜔𝜔
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(0.5𝑘) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(0.5𝑘) + (

𝑘2

2
− 1) −

𝑘2

2
0.52] 𝜔𝐵   

(5.36) 

 

 

−4𝑃1𝜔𝜃2
′ (휁2̅, 휁1̅)𝜔𝐵

2 =  4𝑃1𝜔
𝐿

𝑘𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(𝑘) − 𝑠𝑒𝑛ℎ(𝑘)𝑠𝑒𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑒𝑛ℎ(0.5𝑘)𝜔𝐵

2
 

𝑃1𝜔휁1̅
𝐿

𝐸𝐴𝐶
= 𝑃1𝜔

𝐿

2𝐸𝐴𝐶
 

 

−4𝑃2𝜔𝜃1
′(휁2̅, 휁2̅)𝜔𝐵

2 =  4 ∙ 𝑃1𝜔 ∙
𝐿

𝑘𝐸𝐼𝜔𝜔

𝑐𝑜𝑠ℎ(𝑘) 𝑐𝑜𝑠ℎ(𝑘) − 𝑠𝑒𝑛ℎ(𝑘)𝑠𝑒𝑛ℎ(𝑘)

𝑐𝑜𝑠ℎ(𝑘)
𝑠𝑒𝑛ℎ(𝑘)𝜔𝐵

2 

𝑃1𝑦
𝐿0
3

3𝐸𝐼0
= 𝑃1𝑦

𝐿0
3

3𝐸𝐼0
;     𝑃2𝜔휁2̅

𝐿

𝐸𝐴𝐶
= 𝑃2𝜔

𝐿

𝐸𝐴𝐶
 

 

𝜃0
′(휁2̅)𝜔𝐵 = 

𝑞𝜔𝐿
3

𝑘4𝐸𝐼𝜔𝜔
[𝐹(𝑘) ∙ 𝑠𝑖𝑛ℎ(𝑘) − (

𝑘2

2
− 1) 𝑐𝑜𝑠ℎ(𝑘) + (

𝑘2

2
− 1) −

𝑘2

2
]𝜔𝐵 

(5.37) 

 

The second block of terms in equations (5.36) and the first one in equations (5.37) are the 

coupling terms of the system (5.35) and, as we can see, they are equal. This is due to the 

symmetrical position of the outriggers at the two levels where they are introduced. 
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Substituting equations (5.36) and (5.37) in the system (5.35) yields the unknowns 𝑃1𝜔, 𝑃2𝜔 

and, in turn, the associated bimoments 𝑀1𝜔 and 𝑀2𝜔 acting on the core: 
 

𝑃1𝜔 =  0.0234 ∙ 𝑞𝜔𝐿;    𝑃2𝜔 =  0.0144 ∙ 𝑞𝜔𝐿 
 

𝑀1𝜔 = 4𝑃1𝜔𝐿 ∙
𝜔𝐵
𝐿
=  0.0619 ∙ 𝑞𝜔𝐿

2;     𝑀2𝜔 = 4𝑃2𝜔𝐿 ∙
𝜔𝐵
𝐿
=  0.0382 ∙ 𝜔𝐿2 

(5.38) 

 

Once we know these quantities, it is possible to define the torsional rotation 𝜃 of the core by 

applying the principle of superposition between the torsional rotation 𝜃0(휁) due to the 

external load, 𝜃1
𝑀1𝜔(휁, 0.5) and 𝜃2

𝑀1𝜔(휁, 0.5) due to the reaction of the column 𝑃1𝜔 

and 𝜃1
𝑀2𝜔(휁, 1) due to the reaction of the column 𝑃2𝜔: 

 
 

𝜃(휁, 휁)̅ = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.39) 

𝜃(휁, 휁)̅ = 𝜃0(휁) + 𝜃2
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

In particular, 𝜃0(휁) is defined by the first of equations (4.35)  while 𝜃1
𝑀1𝜔(휁, 0.5), 

𝜃2
𝑀1𝜔(휁, 0.5) and 𝜃1

𝑀2𝜔(휁, 1) are obtained, depending on the case, by multiplying 𝜃1(휁, 휁)̅ or 

𝜃2(휁, 휁)̅ in Table 4.5 by 𝑀1𝜔 or 𝑀2𝜔 defined according to equations (5.38). 

 

Given this, the warping 𝜃′(휁, 휁)̅ and the bimoment 𝑀𝜔(휁, 휁)̅ can be defined by following the 

same path of reasoning, reading: 
 

𝜃′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′1
  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1

  𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.40) 

𝜃′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′2
  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1

  𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝜔(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀1𝜔 +𝑀2𝜔 
 

0 ≤ 휁 ≤ 휁1̅ 
(5.41) 

𝑀𝜔(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀2𝜔 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

For what concerns the axial displacements induced in the columns by the interaction forces 

𝑃1𝜔 and 𝑃2𝜔, they can be computed according to Table 4.5, by multiplying the corresponding 

Green Function by 𝑃1𝜔 or 𝑃2𝜔: 
 

𝑤1(휁, 휁)̅ = 𝑃1𝜔
𝐿

𝐸𝐴
∙ 휁 + 𝑃2𝜔

𝐿

𝐸𝐴
∙ 휁 0 ≤ 휁 ≤ 휁1̅ 

(5.42) 

𝑤2(휁, 휁)̅ = 𝑃1𝜔
𝐿

𝐸𝐴
∙ 휁̅ + 𝑃2𝜔

𝐿

𝐸𝐴
∙ 휁 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

5.3.3 Results 

The torsional rotation, the warping, the bimoment are now reported for the cases of free-

standing core, core with one level of outriggers and core with two levels of outriggers. Figure 

5.13 shows the trend with 휁 of the first of equations (4.35), equation (5.31) and equation 
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(5.39), respectively represented by a yellow, red and blue line. Similarly, Figure 5.14 gives 

the variation of the second of equations (4.35), equation (5.32) and equation (5.40), while 

Figure 5.15 the third of equations (4.35), equation (5.33) and equation (5.41).  
 

 

Figure 5.13: Torsional rotation in the core due to a triangular torque 

 

 

Figure 5.14: Warping of the core due to a triangular torque 
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Figure 5.15: Bimoment in the core due to a triangular torque 

As concerns the axial displacements, Figure 5.16 shows the trend with 휁 of equations (5.34) 

for one level of outriggers and (5.42) for two levels of outriggers for Columns 2B (equivalent 

to 6D) and 2D (equivalent to 6B): 
 

 

Figure 5.16: Column 2B and 2D displacements due to a triangular torque 
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As we can see from Figure 5.13 and Figure 5.14, when outrigger structural systems are 

considered torsional rotation and warping of the core significantly reduce; in particular, with 

one level of outriggers the rotation and warping reduction at the top of the structure reaches 

the values of 32% and 51% respectively, while with two levels of outriggers the reduction 

is even more pronounced, reaching the values of 45% and 57% at the top.  

For what concerns the bimoment diagram, looking at Figure 5.15 it is evident that the main 

benefit induced by outrigger systems is their ability to effectively reduce the core’s 

bimoment at the base, which is a favourable situation for the foundations, as already 

explained in §2.5.3.  

Figure 5.16 shows that the displacements of columns 2B and 2D are equal but with opposite 

sign, this highlighting the warping of the structure. When one outrigger level is considered, 

their variation along the height of the building is linear, then becoming bilinear when dealing 

with two levels of outriggers, as a consequence of the concentrated outriggers reaction at 

mid-height.  

As can be seen from figure 6.14, in case of free-standing core the maximum warping is at 

the top, whereas introducing one outriggers level the maximum shifts at almost mid height 

of the structure, being at almost 2/3 of the height when two levels are introduced. 

5.3.4 Structural Behaviour in Presence of Diaphragms  

We shell now analyse the behaviour of the core-outriggers structural system in presence of 

transversal diaphragms. Therefore, with reference to §3.4.1 it is possible to account for the 

presence of diaphragms by replacing the parameter 𝑘 governing the torsional behaviour with 

its varied value: 

𝑘𝑣𝑎𝑟 = √
𝐺(𝐼𝑑 + 𝐼�̅�)

𝐸𝐼𝜔𝜔
 (5.43) 

 

where 𝐼�̅� represents the additional torsional stiffness given by the diaphragms, defined by 

equation (3.97) as: 

𝐼�̅� =
ℎ3Ω

6𝑏
   

 

The solution of the torsional problem is thus the same as before except for 𝑘𝑣𝑎𝑟 in place of 

𝑘. For what concerns the bending behaviour, the presence of diaphragms does not give any 

contribution and the solution reported in §5.2.3 still holds true. 

The effects induced by diaphragms with a thickness ℎ = 0.30 𝑚 and distributed over the 

height of the building every 4.25 𝑚 are now shown in the following graphs. From the 

considered diaphragm dimensions 𝑘𝑣𝑎𝑟 = 0.9831, that is the value of 𝑘 is increased with 

respect to the case of simple core-outriggers structural system. As a consequence, we expect 

a lower efficiency of the outrigger system in reducing torsional rotations and warping 

deformations. 
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Figure 5.17: Core rotation in presence of diaphragm, due to a triangular torque 

 

 

 

Figure 5.18: Core warping in presence of diaphragm, due to a triangular torque 
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Figure 5.19: Core bimoment in presence of diaphragm, due to a triangular torque 

 

 

 

Figure 5.20: Column 2B and 2D displacements in presence of diaphragm due to a triangular torque 
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As can be noticed from the reported results, the torsion behaviour of the core is almost the 

same as in the case of simple core-outriggers system studied before, without diaphragms. 

This is because the parameter 𝑘 is still in the range of the Vlasov’s torsion (lower than 1, see 

Figure 4.19), therefore the warping of the core is still significant and the outrigger’s effect 

is relevant. From Figure 5.17 it is possible to see the torsional rotation reduction given by 

the outrigger structural system, which is 29 % in case of one outriggers level and 43% in  

case of two outriggers levels, so almost similar to the value obtained in the case without 

diaphragms. Similarly, for the warping we have a reduction of 49 % with one outriggers 

level and 56% in case of two outriggers levels (see Figure 5.18). Also in this case, there is a 

reduction of bimoment at the base as we can see from Figure 5.19.  

5.3.5 Structural Behaviour in Presence of Lintels 

We shell now analyse the influence of lintels on the behaviour of the core, since these 

elements are often present in real structures. The approach used to consider lintels influence 

is the same used in the previous paragraph for diaphragms, with the only difference that in 

this case 𝐼�̅� is defined by the equation (3.102) (see §3.4.2): 

 

𝐼�̅� =
Ω2

𝛿𝑇𝐺
=
Ω2

𝑎𝑏
∙

1

(
𝑎2𝐺
12𝐸𝐼𝑏𝑟

+
1.2
𝐴𝑏𝑟
)

 

 

(5.44) 

As for the case of diaphragms, the solution of the torsional problem can be simply obtained 

by chancing the value of 𝑘 in the one reported in paragraph §5.3. For the bending problem 

the solution is still the same as the one shown in §5.2.3. 

 

In the following, we will consider lintels uniformly distributed along the height of the core, 

one each 4.25 𝑚, having three different heights: 
 

− 50 cm lintels 

− 100 cm lintels 

− 150 cm lintels 
 

The geometrical properties of the lintels and the associated value of 𝑘𝑣𝑎𝑟 are summarized in 

the following table: 

 

Lintel 𝜹 [𝒎]  𝒂 [𝒎]  𝒅 [𝒎] 𝑨𝒃𝒓 [𝒎
𝟐] 𝑰𝒃𝒓 [𝒎

𝟒] �̅�𝒅 [𝒎
𝟒] 𝒌𝒗𝒂𝒓 

1 0.45 3.00 0.50 0.225 0.0047 105.2221 6.0855 

2 0.45 3.00 1.00 0.450 0.0375 826.3198 16.9286 

3 0.45 3.00 1.50 0.675 0.1266 2706 30.6116 

Table 5.5: Geometrical properties of lintels and associate kvar 
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(a) (b) 

Figure 5.21: Lintels geometry 

As we can see from Table 5.5 in presence of lintels the value of the parameter 𝑘 highly 

increases with respect to the previous analysed cases. With such high values, the torsional 

behaviour of the core completely changes, since it works more as a thin-walled closed 

element rather than a thin-walled element with open profile  Indeed, looking at Figure 4.19 

we can see that for values of 𝑘 higher than 3, torsion is completely governed by the De Saint 

Venant Theory; therefore, the warping of the section is practically negligible. This means 

that in presence of lintels the outrigger system does not work and becomes much less 

effective from the point of view of the reduction of torsional effects, whereas it is still useful 

to reduce lateral displacements, since the bending behaviour is not influenced by lintels 

presence.  
 

 

Figure 5.22: Core rotation in presence of 50 cm lintels, due to a triangular torque 
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Figure 5.23: Core warping in presence of 50 cm lintels, due to a triangular torque 

 

 

 

Figure 5.24: Core bimoment in presence of 50 cm lintels, due to a triangular torque 
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Figure 5.25: Column 2B and 2D displacements in presence of 50 cm lintels due to a triangular torque 

 

 

 

Figure 5.26: Core rotation in presence of 100 cm lintels, due to a triangular torque 
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Figure 5.27: Core warping in presence of 100 cm lintels, due to a triangular torque 

 

 

 

Figure 5.28: Core bimoment in presence of 100 cm lintels, due to a triangular torque 
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Figure 5.29: Column 2B and 2D displacements in presence of 100 cm lintels due to a triangular torque 

 

 

 

Figure 5.30: Core rotation in presence of 150 cm lintels, due to a triangular torque 
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Figure 5.31: Core warping in presence of 150 cm lintels, due to a triangular torque 

 

 

 

Figure 5.32: Core bimoment in presence of 150 cm lintels, due to a triangular torque 
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Figure 5.33: Column 2B and 2D displacements in presence of 100 cm lintels due to a triangular torque 

As can be seen from the reported results, the effects of the outrigger system is almost 

negligible and it reduces as the dimensions of the lintels increase, leading to a behaviour 

almost identical to the free core case, in this case behaving as a thin-walled element of closed 

cross-section. The absence of warping is confirmed by the columns’ displacement trends, as 

they reduce of two order of magnitude with respect to the case of diaphragms, where warping 

could still be detected.  The bimoment along the height is almost zero but at the base it is 

much higher with respect to the global trend because of the presence of the clamp. 

5.3.6 Long-Term Behaviour  

The application of a lateral load constant in time generates a fairly pronounced delayed 

deformation due to creep depending on the rheological homogeneity of the whole structure. 

When the whole structure is rheologically homogeneous and subjected to loads constant in 

time, the basic theorems of linear viscoelasticity allow to express the stress and deformation 

states in the following way: 

𝑆(𝑡) = 𝑆𝑒 
 

𝑠(𝑡) = 𝑠𝑒 ∙ [1 + 𝜑(𝑡, 𝑡0)] 
(5.45) 

 

where 𝑆(𝑡) represents the internal actions at time 𝑡 while 𝑆𝑒 are the initial ones at time 𝑡0 

evaluated assuming an elastic behaviour of the structure. In the same way, 𝑠(𝑡) and 𝑠𝑒 are 

the displacements at time 𝑡 and the elastic ones at time 𝑡0. 𝜑(𝑡, 𝑡0) is the creep coefficient, 
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expressing the ratio between the viscoelastic deformation and the elastic one, both 

considered for a unitary applied stress. 

 

Equations (5.45) show that the stress state remains unchanged in time and can be computed 

by means of an elastic analysis, while the displacements increase in an affine way to the 

elastic ones. When rheological non-homogeneities are present, the problem becomes quite 

involved and the necessity of reaching a simple but well approximate solution is strongly 

convenient. For this reason, two limiting situations should be analysed by using algebraic 

procedures for creep analysis: 

 

− Case a): Elastic behaviour for the outriggers and linear viscoelastic behaviour for the 

other parts, as it occurs for steel outriggers; 

 

− Case b): Elastic behaviour for core and columns and viscoelastic behaviour for the 

outriggers. In this way we want to introduce, in an albeit approximate way, the non-

homogeneity deriving from a different age of concrete. In other words, we are assuming 

that core and columns have been casted so early that they have already exhausted their 

viscoelastic deformations when outriggers are installed in the structure. 

 

Regarding the procedure to be assumed for structural analysis, we shall introduce the Trost 

algebraic formulation, according to which equations (5.45) assume the following form: 

 

𝑆(𝑡) = 𝑆𝑒
(1)(𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑆𝑒 

 

𝑠(𝑡) = 𝑠𝑒
(1)(𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑠𝑒 

(5.46) 

 

where 𝑆𝑒
(1)

 and 𝑠𝑒
(1)

 are the elastic quantities evaluated assuming the modified modulus for 

the viscoelastic parts: 

𝐸′ =
𝐸

1 + 𝜒𝜑
 (5.47) 

 

Assuming for the aging factor 𝜒 a value of 0.8 and recalling that: 

 

𝜇 = −
1 − 𝜒

𝜒
 (5.48) 

 

we obtain 𝜇 = −0.25 and the use of equations (5.46) become straightforward.  

 

The briefly summarized procedure here presented consists in increasing the deformability of 

the viscoelastic parts, so that when the outriggers are assumed as elastic, the interaction force 

increases in time, while for viscoelastic outriggers the reaction force decreases. Regarding 
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the displacements, they increase in the two cases but at a reduced rate with respect to 

equations (5.45). As done in the previous discussion, Case a) and Case b) are now applied 

to the considered structure by considering the cases of one level of outriggers only and two 

levels of outriggers.  

 

➢ Case a) - One Level of Outriggers 

 

According to the first of equations (5.46), to solve the problem it is necessary to compute 

the interaction forces 𝑃1𝜔,𝑒 and 𝑃1𝜔,𝑒
(1)

. 𝑃1𝜔,𝑒 coincides with the interaction force 𝑃1𝜔 already 

computed in §5.3.1 while 𝑃1𝜔,𝑒
(1)

 needs now to be computed accounting for the long-term 

behaviour of the viscoelastic parts (i.e. core and column) through the varied modulus of 

elasticity expressed by equation (5.47). According to this, the compatibility equation 

becomes: 
 

𝑃1𝜔,𝑒
(1)

[(−4𝜃1
′ (휁̅)𝜔𝐵

2 + 휁̅
𝐿

𝐸𝐴𝐶
) ∙ (1 + 𝜒𝜑) +

𝐿0
3

3𝐸𝐼0
] = 𝜃0

′ (휁̅)𝜔𝐵 ∙ (1 + 𝜒𝜑) (5.49) 

 

where 휁̅ = 1 represents the level of the outriggers, that is, in this case, the top of the structure. 

All terms presented in equation (5.49) have the same meaning as those already defined in 

equation (5.28). 
 

By combining the results of equations (5.28) and (5.49), the value in time of the interaction 

force 𝑃1𝜔(𝑡) and, in turn, the corresponding bimoment 𝑀1𝜔(𝑡) can be computed according 

to equations (5.46): 

𝑃1𝜔(𝑡) = 𝑃1𝜔,𝑒
(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃1𝜔,𝑒 

 

𝑀1𝜔(𝑡) = 4 ∙ 𝑃1𝜔(𝑡) ∙ 𝜔𝑏 

(5.50) 

 

Once we know these quantities, it is possible to define the time variation of the torsional 

rotation 𝜃(휁, 휁,̅ 𝑡) of the core by applying the second of equations (5.46): 

 

𝜃(휁, 휁,̅ 𝑡) = 𝜃𝑒
(1) ∙ (1 − 𝜇) + 𝜃𝑒 ∙ 𝜇 (5.51) 

 

where 𝜃𝑒 is given by equation (5.31) and 𝜃𝑒
(1)

 is given by equation (5.31) in which the elastic 

modulus has been replaced by the varied elastic modulus of equation (5.47). Thus: 
 

𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃0(휁) ∙ (1 + 𝜒𝜑) + 𝜃1

𝑀1𝜔(𝑡)(휁, 휁̅ = 1) ∙ (1 + 𝜒𝜑) 
 

𝜃𝑒(휁, 휁,̅ 𝑡) = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁̅ = 1) 

(5.52) 

 

where, analogously to §5.3.1, 𝜃0(휁) is the torsional rotation induced by the torque load and 

given by the first of equations (4.35), while 𝜃1
𝑀1𝜔(𝑡) and 𝜃1

𝑀1𝜔 are, respectively, the torsional 
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rotations induced by the interaction moments of equation (5.46) and (5.30), obtained by 

multiplying the corresponding Green Function in Table 4.5 by 𝑀1𝜔(𝑡) and 𝑀1𝜔. 

 

Given this, the warping 𝜃′(휁, 휁,̅ 𝑡) and the bimoment 𝑀𝜔(휁, 휁,̅ 𝑡)  can be defined by following 

the same path of reasoning, reading: 

 

𝜃′(휁, 휁,̅ 𝑡) = 𝜃′𝑒
(1)
∙ (1 − 𝜇) + 𝜃′𝑒 ∙ 𝜇 (5.53) 

  

𝑀𝜔(휁, 휁,̅ 𝑡) = 𝑀𝜔,𝑒
(1)
∙ (1 − 𝜇) +𝑀𝜔,𝑒 ∙ 𝜇 (5.54) 

 

where 𝜃′𝑒 and 𝑀𝜔,𝑒 are given by equations (5.32) and (5.33), while 𝜃′𝑒
(1)

 and 𝑀𝜔,𝑒
(1)

 are as 

follows: 

𝜃′𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃′0(휁) ∙ (1 + 𝜒𝜑) + 𝜃′1

𝑀1𝜔(𝑡)(휁, 휁̅ = 1) ∙ (1 + 𝜒𝜑) 
 

𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀1𝜔(𝑡) 

(5.55) 

 

 

➢ Case a) - Two Levels of Outriggers 

 

In this case, the first of equations (5.46) makes necessary to calculate four interaction forces, 

that is 𝑃1𝜔,𝑒, 𝑃2𝜔,𝑒, 𝑃1𝜔,𝑒
(1)

 and 𝑃2𝜔,𝑒
(1)

. Aware of the fact that 𝑃1𝜔,𝑒 and 𝑃2𝜔,𝑒 are the elastic 

solutions according to equations (5.38), it now remains to compute 𝑃1𝜔,𝑒
(1)

 and 𝑃2𝜔,𝑒
(1)

. Thus, 

the system of compatibility equations becomes: 

 

𝑃1𝜔 [(−4𝜃1
′(휁1̅ , 휁1̅)𝜔𝐵

2 + 휁1̅
𝐿

𝐸𝐴𝐶
) (1 + 𝜒𝜑) +

𝐿0
3

3𝐸𝐼0
] + 

+𝑃2𝜔 [−4𝜃1
′(휁1̅, 휁2̅)𝜔𝐵

2 + (휁2̅ − 휁1̅)
𝐿

𝐸𝐴𝐶
] (1 + 𝜒𝜑) 

= 

𝜃0
′(휁1̅)𝜔𝐵(1 + 𝜒𝜑) 

 

𝑃1𝜔 [−4𝜃2
′(휁2̅, 휁1̅)𝜔𝐵

2 + 휁1̅
𝐿

𝐸𝐴𝐶
] (1 + 𝜒𝜑) + 

+𝑃2𝜔 [(−4𝜃1
′(휁2̅, 휁2̅)𝜔𝐵

2 + 휁2̅
𝐿

𝐸𝐴𝐶
) (1 + 𝜒𝜑) +

𝐿0
3

3𝐸𝐼0
] 

= 

𝜃0
′(휁2̅)𝜔𝐵(1 + 𝜒𝜑) 

 

(5.56) 

The first of equations (5.56) is the compatibility equation at the 1st level of outriggers (mid-

height: 휁1̅ = 0.5) while the second is written at the 2nd level of outriggers (top: 휁1̅ = 1). All 

terms presented in equations (5.56) have the same meaning as those already defined in 

equations (5.35). 
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By combining the results of equations (5.35) and (5.56), the value in time of the interaction 

forces 𝑃1𝜔(𝑡), 𝑃2𝜔(𝑡) and, in turn, the corresponding bimoment 𝑀1𝜔(𝑡), 𝑀2𝜔(𝑡) can be 

computed according to equations (5.57): 

 

𝑃1𝜔(𝑡) = 𝑃1𝜔,𝑒
(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃1𝜔,𝑒;      𝑃2𝜔(𝑡) = 𝑃2𝜔,𝑒

(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃2𝜔,𝑒 
 

𝑀1𝜔(𝑡) = 4 ∙ 𝑃1𝜔(𝑡) ∙ 𝜔𝐵;      𝑀2𝜔(𝑡) = 4 ∙ 𝑃2𝜔(𝑡) ∙ 𝜔𝐵| 
(5.57) 

 

Once we know these quantities, it is possible to define the time variation of the torsional 

rotation 𝜃(휁, 휁,̅ 𝑡) of the core by applying the second of equations (5.46): 

 

𝜃(휁, 휁,̅ 𝑡) = 𝜃𝑒
(1)
∙ (1 − 𝜇) + 𝜃𝑒 ∙ 𝜇 (5.58) 

 

where 𝜃𝑒 is given by equations (5.39) and 𝜃𝑒
(1)

 is given by equations (5.39) in which the 

elastic modulus has been replaced by the varied elastic modulus of equation (5.47). Thus: 
 

𝜃𝑒(휁, 휁)̅ = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.59) 

𝜃𝑒(휁, 휁)̅ = 𝜃0(휁) + 𝜃2
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = [𝜃0(휁) + 𝜃1

𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃1
𝑀2𝜔(𝑡)(휁, 휁2̅ = 1)] (1 + 𝜒𝜑) 0 ≤ 휁 ≤ 휁1̅ 

(5.60) 
𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = [𝜃0(휁) + 𝜃2

𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃1
𝑀2𝜔(𝑡)(휁, 휁2̅ = 1)](1 + 𝜒𝜑) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

where, analogously to §5.3.2, 𝜃0(휁) is the torsional rotation induced by the torque load and 

given by the first of equations (4.35), while  𝜃1
𝑀1𝜔(𝑡), 𝜃1

𝑀2𝜔(𝑡), 𝜃2
𝑀1𝜔(𝑡) and 𝜃1

𝑀1𝜔, 𝜃1
𝑀2𝜔, 𝜃2

𝑀1𝜔 

are, respectively, the torsional rotations induced by the interaction moments of equation 

(5.57) and (5.38), obtained by multiplying the corresponding Green Function in Table 4.5 

by 𝑀1𝜔(𝑡), 𝑀2𝜔(𝑡) and 𝑀1𝜔, 𝑀2𝜔. 

 

Given this, the warping 𝜃′(휁, 휁,̅ 𝑡) and the bimoment 𝑀𝜔(휁, 휁,̅ 𝑡)  can be defined by following 

the same path of reasoning, reading: 

 

𝜃′(휁, 휁,̅ 𝑡) = 𝜃′𝑒
(1)
∙ (1 − 𝜇) + 𝜃′𝑒 ∙ 𝜇 (5.61) 

  

𝑀𝜔(휁, 휁,̅ 𝑡) = 𝑀𝜔,𝑒
(1) ∙ (1 − 𝜇) +𝑀𝜔,𝑒 ∙ 𝜇 (5.62) 

 

where 𝜃′𝑒, 𝜃′𝑒
(1)

 and 𝑀𝜔,𝑒, 𝑀𝜔,𝑒
(1)

 are as follows: 

 

𝜃𝑒
′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′1

  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1
  𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 

(5.63) 
𝜃𝑒
′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′2

  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1
  𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 
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𝜃𝑒
′(1)(휁, 휁,̅ 𝑡) = [𝜃′0(휁) + 𝜃

′
1

  𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃
′
1

  𝑀2𝜔(𝑡)(휁, 휁2̅ = 1)] (1 + 𝜒𝜑) 0 ≤ 휁 ≤ 휁1̅ 
(5.64) 

𝜃𝑒
′(1)(휁, 휁,̅ 𝑡) = [𝜃′0(휁) + 𝜃

′
2

  𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃
′
1

  𝑀2𝜔(𝑡)(휁, 휁2̅ = 1)] (1 + 𝜒𝜑)  휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝜔,𝑒(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀1𝜔 +𝑀2𝜔 0 ≤ 휁 ≤ 휁1̅ 
(5.65) 

𝑀𝜔,𝑒(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀2𝜔 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀1𝜔(𝑡) + 𝑀2𝜔(𝑡) 0 ≤ 휁 ≤ 휁1̅ 

(5.66) 
𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀2𝜔(𝑡) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

 

 

➢ Case b) - One Level of Outriggers 

 

According to the first of equations (5.46), to solve the problem it is necessary to compute 

the interaction forces 𝑃1𝜔,𝑒 and 𝑃1𝜔,𝑒
(1)

. 𝑃1𝜔,𝑒 coincides with the interaction force 𝑃1𝜔 already 

computed in §5.3.1 while 𝑃1𝜔,𝑒
(1)

 needs now to be computed accounting for the long-term 

behaviour of the viscoelastic parts (i.e. the outriggers) through the varied modulus of 

elasticity expressed by equation (5.47). According to this, the compatibility equation 

becomes: 

𝑃1𝜔 [−4𝜃1
′(휁)̅𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
(1 + 𝜒𝜑) + 휁̅

𝐿

𝐸𝐴𝐶
] = 𝜃0

′(휁)̅𝜔𝐵 (5.67) 

 

where 휁̅ = 1 represents the level of the outriggers, that is, in this case, the top of the structure. 

All terms presented in equation (5.67) have the same meaning as those already defined in 

equation (5.28). 

 

By combining the results of equations (5.28) and (5.67), the value in time of the interaction 

force 𝑃1𝜔(𝑡) and, in turn, the corresponding bimoment 𝑀1𝜔(𝑡) can be computed according 

to equations (5.46): 

𝑃1𝜔(𝑡) = 𝑃1𝜔,𝑒
(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃1𝜔,𝑒 

 

𝑀1𝜔(𝑡) = 4 ∙ 𝑃1𝜔(𝑡) ∙ 𝜔𝐵 

(5.68) 

 

Once we know these quantities, it is possible to define the time variation of the torsional 

rotation 𝜃(휁, 휁,̅ 𝑡) of the core by applying the second of equations (5.46): 

 

𝜃(휁, 휁,̅ 𝑡) = 𝜃𝑒
(1) ∙ (1 − 𝜇) + 𝜃𝑒 ∙ 𝜇 (5.69) 

 

where 𝜃𝑒 is given by equation (5.31) and 𝜃𝑒
(1)

 is given by equation (5.31) in which the 

interaction bimoment 𝑀1𝜔(𝑡) is taken into account. Thus: 
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𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃0(휁) + 𝜃1

𝑀1𝜔(𝑡)(휁, 휁̅ = 1) 
 

𝜃𝑒(휁, 휁)̅ = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁̅ = 1) 

(5.70) 

 

where, analogously to §5.3.1, 𝜃0(휁) is the torsional rotation induced by the torque load and 

given by the first of equations (4.35), while 𝜃1
𝑀1𝜔(𝑡) and 𝜃1

𝑀1𝜔 are, respectively, the torsional 

rotations induced by the interaction moments of equation (5.68) and (5.30), obtained by 

multiplying the corresponding Green Function in Table 4.5 by 𝑀1𝜔(𝑡) and 𝑀1𝜔. 

 

Given this, the warping 𝜃′(휁, 휁,̅ 𝑡) and the bimoment 𝑀𝜔(휁, 휁,̅ 𝑡)  can be defined by following 

the same path of reasoning, reading: 

 

𝜃′(휁, 휁,̅ 𝑡) = 𝜃′𝑒
(1)
∙ (1 − 𝜇) + 𝜃′𝑒 ∙ 𝜇 (5.71) 

  

𝑀𝜔(휁, 휁,̅ 𝑡) = 𝑀𝜔,𝑒
(1) ∙ (1 − 𝜇) +𝑀𝜔,𝑒 ∙ 𝜇 (5.72) 

 

where 𝜃′𝑒 and 𝑀𝜔,𝑒 are given by equations (5.32) and (5.33), while 𝜃′𝑒
(1)

 and 𝑀𝜔,𝑒
(1)

 are as 

follows: 

𝜃′𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃′0(휁) + 𝜃′1

𝑀1𝜔(𝑡)(휁, 휁̅ = 1) 
 

𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀1𝜔(𝑡) 

(5.73) 

 
➢ Case b) - Two Levels of Outriggers 

 

In this case, the first of equations (5.46) makes necessary to calculate four interaction forces, 

that is 𝑃1𝜔,𝑒, 𝑃2𝜔,𝑒, 𝑃1𝜔,𝑒
(1)

 and 𝑃2𝜔,𝑒
(1)

. Aware of the fact that 𝑃1𝜔,𝑒 and 𝑃2𝜔,𝑒 are the elastic 

solutions according to equations (5.38), it now remains to compute 𝑃1𝜔,𝑒
(1)

 and 𝑃2𝜔,𝑒
(1)

. Thus, 

the system of compatibility equations becomes: 
 

𝑃1𝜔 [−4𝜃1
′(휁1̅ , 휁1̅)𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
(1 + 𝜒𝜑) + 휁1̅

𝐿

𝐸𝐴𝐶
] + 

𝑃2𝜔 [−4𝜃1
′(휁1̅ , 휁2̅)𝜔𝐵

2 + (휁2̅ − 휁1̅)
𝐿

𝐸𝐴𝐶
] 

= 
 

𝜃0
′ (휁1̅)𝜔𝐵  

 

𝑃1𝜔 [−4𝜃2
′(휁2̅, 휁1̅)𝜔𝐵

2 + 휁1̅
𝐿

𝐸𝐴𝐶
] + 

𝑃2𝜔 [−4𝜃1
′(휁2̅, 휁2̅)𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
(1 + 𝜒𝜑) + 휁2̅

𝐿

𝐸𝐴𝐶
] 

= 
 

𝜃0
′ (휁2̅)𝜔𝐵 

(5.74) 
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The first of equations (5.74) is the compatibility equation at the 1st level of outriggers (mid-

height: 휁1̅ = 0.5) while the second is written at the 2nd level of outriggers (top: 휁1̅ = 1). All 

terms presented in equations (5.74) have the same meaning as those already defined in 

equations (5.35). 
 

By combining the results of equations (5.35) and (5.74), the value in time of the interaction 

forces 𝑃1𝜔(𝑡), 𝑃2𝜔(𝑡) and, in turn, the corresponding bimoment 𝑀1𝜔(𝑡), 𝑀2𝜔(𝑡) can be 

computed according to equations (5.57): 

 

𝑃1𝜔(𝑡) = 𝑃1𝜔,𝑒
(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃1𝜔,𝑒;      𝑃2𝜔(𝑡) = 𝑃2𝜔,𝑒

(1) (𝑡) ∙ (1 − 𝜇) + 𝜇 ∙ 𝑃2𝜔,𝑒 
 

𝑀1𝜔(𝑡) = 4 ∙ 𝑃1𝜔(𝑡) ∙ 𝜔𝐵;      𝑀2𝜔(𝑡) = 4 ∙ 𝑃2𝜔(𝑡) ∙ 𝜔𝐵| 
(5.75) 

 

Once we know these quantities, it is possible to define the time variation of the torsional 

rotation 𝜃(휁, 휁,̅ 𝑡) of the core by applying the second of equations (5.46): 

 

𝜃(휁, 휁,̅ 𝑡) = 𝜃𝑒
(1)
∙ (1 − 𝜇) + 𝜃𝑒 ∙ 𝜇 (5.76) 

 

where 𝜃𝑒 is given by equations (5.39) and 𝜃𝑒
(1)

 is given by equations (5.39) in which the 

elastic modulus has been replaced by the varied elastic modulus of equation (5.47). Thus: 
 

𝜃𝑒(휁, 휁)̅ = 𝜃0(휁) + 𝜃1
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 
(5.77) 

𝜃𝑒(휁, 휁)̅ = 𝜃0(휁) + 𝜃2
𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃1

𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃0(휁) + 𝜃1

𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃1
𝑀2𝜔(𝑡)(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 

(5.78) 
𝜃𝑒
(1)(휁, 휁,̅ 𝑡) = 𝜃0(휁) + 𝜃2

𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃1
𝑀2𝜔(𝑡)(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

where, analogously to §5.3.2, 𝜃0(휁) is the torsional rotation induced by the torque load and 

given by the first of equations (4.35), while  𝜃1
𝑀1𝜔(𝑡), 𝜃1

𝑀2𝜔(𝑡), 𝜃2
𝑀1𝜔(𝑡) and 𝜃1

𝑀1𝜔, 𝜃1
𝑀2𝜔, 𝜃2

𝑀1𝜔 

are, respectively, the torsional rotations induced by the interaction moments of equation 

(5.75) and (5.38), obtained by multiplying the corresponding Green Function in Table 4.5 

by 𝑀1𝜔, 𝑀2𝜔 and 𝑀1𝜔(𝑡), 𝑀2𝜔(𝑡). 
 

Given this, the warping 𝜃′(휁, 휁,̅ 𝑡) and the bimoment 𝑀𝜔(휁, 휁,̅ 𝑡)  can be defined by following 

the same path of reasoning, reading: 

 

𝜃′(휁, 휁,̅ 𝑡) = 𝜃′𝑒
(1)
∙ (1 − 𝜇) + 𝜃′𝑒 ∙ 𝜇 (5.79) 

  

𝑀𝜔(휁, 휁,̅ 𝑡) = 𝑀𝜔,𝑒
(1) ∙ (1 − 𝜇) +𝑀𝜔,𝑒 ∙ 𝜇 (5.80) 

 

where 𝜃′𝑒, 𝜃′𝑒
(1)

 and 𝑀𝜔,𝑒, 𝑀𝜔,𝑒
(1)

 are as follows: 
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𝜃𝑒
′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′1

  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1
  𝑀2𝜔(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 

(5.81) 
𝜃𝑒
′(휁, 휁)̅ = 𝜃′0(휁) + 𝜃′2

  𝑀1𝜔(휁, 휁1̅ = 0.5) + 𝜃′1
  𝑀2𝜔(휁, 휁2̅ = 1) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝜃𝑒
′(1)(휁, 휁,̅ 𝑡) = 𝜃′0(휁) + 𝜃

′
1

  𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃′1
  𝑀2𝜔(𝑡)(휁, 휁2̅ = 1) 0 ≤ 휁 ≤ 휁1̅ 

(5.82) 
𝜃𝑒
′(1)(휁, 휁,̅ 𝑡) = 𝜃′0(휁) + 𝜃

′
2

  𝑀1𝜔(𝑡)(휁, 휁1̅ = 0.5) + 𝜃
′
1

  𝑀2𝜔(𝑡)(휁, 휁2̅ = 1)  휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝜔,𝑒(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀1𝜔 +𝑀2𝜔 0 ≤ 휁 ≤ 휁1̅ 
(5.83) 

𝑀𝜔,𝑒(휁, 휁)̅ = 𝑀0𝜔(휁) + 𝑀2𝜔 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀1𝜔(𝑡) + 𝑀2𝜔(𝑡) 0 ≤ 휁 ≤ 휁1̅ 

(5.84) 
𝑀𝜔,𝑒
(1)(휁, 휁,̅ 𝑡) = 𝑀0𝜔(휁) + 𝑀2𝜔(𝑡) 휁1̅ ≤ 휁 ≤ 휁2̅ 

 

 

➢ Plots 

 

In the following, torsional rotations, warping deformations and bimoments for Case a) and 

b) are plotted for both the situations of one and two outriggers levels. Results are also 

compared to those coming from analysing a pure elastic structure (Elastic Solution) and a 

homogenous viscoelastic structure (First Theorem of Viscoelasticity).  

 

 

Figure 5.34: Viscoelastic behaviour - Rotation in case of one outriggers level 
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Figure 5.35: Viscoelastic behaviour - Rotation in case of two outriggers levels  

 

 

 

Figure 5.36: Viscoelastic behaviour - Warping in case of one outriggers level 
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Figure 5.37: Viscoelastic behaviour - Warping in case of two outriggers levels  

 

 

 

Figure 5.38: Viscoelastic behaviour - Bimoment in case of one outriggers level 
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Figure 5.39: Viscoelastic behaviour - Bimoment in case of two outriggers levels 

As it is possible to observe from Figure 5.34, Figure 5.35, Figure 5.36 and Figure 5.37 the 

solution provided by Case a) is close to the solution provided by the First Theorem of 

Viscoelasticity, since most of the structure (core and columns) is viscoelastic. Nevertheless, 

torsional rotation and warping deformation take on lower values than those suggested by the 

First Theorem because of the presence of elastic restraints (outriggers) applied to a 

viscoelastic structure. Following conceptually the same reasoning, the solution provided by 

Case b) is close to the Elastic Solution but torsional rotation and warping take on higher 

values than those suggested by the Elastic Solution since the outriggers are now viscoelastic 

and they are subjected to a progressive deformation in time due to relaxation, this reducing 

the restraining action on the elastic part (core and columns). 

Furthermore, comparing the rotation for one and two levels of outriggers, it can be observed 

that the distance between the curve associated to Case a) and the First Theorem is higher 

when two levels of outriggers rather than only one are considered because of the presence 

of two elastic restraints (outriggers) which work together to reduce the rotation. In the same 

way, in Case b) the distance with respect to the Elastic Curve is higher when two levels of 

outriggers are considered since there are two viscoelastic restraints that are reducing their 

effects contemporary, this leading to a more pronounced increase of torsional rotation than 

the one achieved when one level of outriggers only is disposed.   

As concerns the bimoment, form Figure 5.38 and Figure 5.39 it can be observed the 

following: when one level of outriggers is considered, the bimoment at the top for Case a) is 

higher than the one suggested by the elastic solution because the viscoelastic structure 
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increases its deformation in time, leading to an increasing reaction of the elastic restraint 

(outrigger). On the contrary, in Case b) the reaction provided by the viscoelastic outrigger at 

the top reduces in time due to relaxation and, therefore, the curve is now lower than the one 

provided by the Elastic Solution. The same path of reasoning can be adopted for the cases 

of two outriggers, at the top and at mid-height.  

 BENDING – TORSION INTERACTION 

Despite the triangular prismatic volumes of the considered structure are disposed in a way 

that their effect on the building is of pure torsion, different structural configurations, as the 

one reported in Figure 5.40, may lead to a combination of flexure and torsion. In such 

circumstances, understanding whether one effect prevails or not on the other is of 

fundamental importance.  

 

 

Figure 5.40: Bending-torsion interaction  

To illustrate the features of the bending-torsion interaction which may characterize specific 

problems, in the following we will study the effects induced by a single sloping outward 

triangular volume when it is progressively moved towards the right from its initial position. 

One level of outriggers is considered only, located at the top of the building.  
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Figure 5.41: General 3D view of the problem for bending-torsion interaction 

                      𝑒 = 0 𝑚 
 

                       𝑒 = 4.375 𝑚                  𝑒 = 8.75 𝑚 

 

Figure 5.42: Sloping volume with varying eccentricity 

In particular, when the triangular volume is centred with respect to the axis of the structure 

where it is introduced (𝑒 = 0 𝑚), its effect is purely flexural and equivalent to a triangularly 

distributed load 𝑞𝑦(𝑧). On the contrary, when the eccentricity between the centroids of the 

structure and the triangular volume increases, that is when the triangular volume is moved 

toward the right, a torsional effect 𝑞𝜔(𝑧), again with triangular distribution, is generated in 

addition to the flexural effect 𝑞𝑦(𝑧), which is always the same. By calling: 
 

𝑞𝜔(𝑧) = 𝑒 ∙ 𝑞𝑦(𝑧) (5.85) 
 

the problem can be studied as a function of the eccentricity 𝑒 of the volume.  

Keeping in mind the column displacements in the two limit situations, that is pure bending 

(Figure 5.43 (a)) and pure torsion (Figure 5.43 (b)), we are now intended to show first the 

column displacement variation with height of columns 6D, 6B, 2D and 2B for three given 

eccentricities, i.e. 𝑒 = 0; 𝑒 = 4.3725 𝑚 and 𝑒 = 8.75 𝑚.  
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(a) - Due to a positive triangular load (b) - Due to a negative triangular torque load 

Figure 5.43: Column displacements in case of pure bending (a) and pure torsion (b) 

To solve the problem, we first compute the interaction forces according to equations (5.14) 

and (5.28), here recalled: 

 

𝑃1𝑦 [−4𝑣1
′(휁)̅𝑦0

2 +
𝐿0
3

3𝐸𝐼0
+ 휁̅

𝐿

𝐸𝐴𝐶
] = 𝑣0

′ (휁)̅𝑦0 (5.86) 

 

𝑃1𝜔 [−4𝜃1
′(휁)̅𝜔𝐵

2 +
𝐿0
3

3𝐸𝐼0
+ 휁̅

𝐿

𝐸𝐴𝐶
] = 𝜃0

′(휁)̅𝜔𝐵 (5.87) 

 

where 𝜃0
′(휁)̅ is now computed according to the second of equations (4.35), in which 𝑞𝜔 is 

replaced by equation (5.85) to explicit the dependency on the eccentricity.  

 

Once the interaction forces are known, the bending and torsion component of the column 

displacements can be obtained through equations (4.11) as: 

 

Bending Component  Torsion Component   

𝑤1(휁, 휁)̅ = 𝑃1𝑦
𝐿

𝐸𝐴
∙ 휁  𝑤1(휁, 휁)̅ = 𝑃1𝜔

𝐿

𝐸𝐴
∙ 휁 0 ≤ 휁 ≤ 휁 ̅

(5.88) 

𝑤2(휁, 휁)̅ = 𝑃1𝑦
𝐿

𝐸𝐴
∙ 휁 ̅  𝑤2(휁, 휁)̅ = 𝑃1𝜔

𝐿

𝐸𝐴
∙ 휁  ̅ 휁̅ ≤ 휁 ≤ 1 

 

The overall displacement can be obtained by performing the sum with sign of equations 

(5.88) according to Figure 5.43. Results are reported in the following graphs. 
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Figure 5.44: Column Displacement for fixed eccentricities - Column 6D 

 

 

 

Figure 5.45: Column Displacement for fixed eccentricities - Column 6B 
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Figure 5.46: Column Displacement for fixed eccentricities - Column 2D 

 

 

 

Figure 5.47: Column Displacement for fixed eccentricities - Column 2B 
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As it can be observed, when 𝑒 = 0 the torsion component is always zero and the total column 

displacements are given by the bending component only. As the eccentricity increases, the 

torsion component increases too and the total column displacement depends on this. From 

the reported figures, it is also possible to observe that while for columns 6D and 2D the 

torsion component is summing up with the bending component, thus leading to a final 

displacement increment, in columns 6B and 2B the two contributions have different signs, 

thus leading to a final column displacement reduction. Nevertheless, for the considered 

structure, the torsion component is never so high to determine a sign inversion of the final 

displacements, which have the following verse when 𝑒 = 8.75: 

 

Figure 5.48: Bending plus torsion column displacements for e = 8.75 

To better appreciate what happens to column displacements at varying eccentricity, 

reference can be made to the following graphs.  
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Figure 5.49: Column displacement variation with e - Column 6D 

 

 

 

Figure 5.50: Column displacement variation with e - Column 6B 
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Figure 5.51: Column displacement variation with e - Column 2D 

 

 

 

Figure 5.52: Column displacement variation with e - Column 2B 
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Figure 5.53: Top column displacement variation with e - Columns 6D, 6B,2D,2B 

 NUMERICAL MODEL 

5.5.1 Midas GEN: Background  

The structure has been analysed by means of Midas GEN, a powerful software for structural 

analysis commonly used in practice and in particular for the analysis of tall buildings like 

Burj Khalifa in Dubai o The Spire in Chicago. The MIDAS/Gen element library consists of 

the following elements: 
 

− Truss Element; 

− Tension-only Element (Hook and Cable function included); 

− Compression-only Element (Gap function included); 

− Beam Element/Tapered Beam Element; 

− Plane Stress Element; 

− Plate Element; 

− Two-dimensional Plane Strain Element; 

− Two-dimensional Axisymmetric Element; 

− Solid Element; 

− Wall Element. 
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In modelling the structure “BEAM” and “PLATE” element have been used and their 

characteristics are reported in the following. 

 

➢ Beam Element  

 

Two nodes define a Prismatic/Non-prismatic, three-dimensional beam element. Its 

formulation is founded on the Timoshenko Beam theory taking into account the stiffness 

effects of tension/compression, shear, bending and torsional deformations. However, it is 

possible to neglect shear deformability, according to Euler-Bernoulli Beam theory. 

MIDAS/Gen assumes linear variations for cross-sectional areas, effective shear areas and 

torsional stiffness along the length of a non-prismatic element. For moments of inertia about 

the major and minor axes, a linear, parabolic or cubic variation may be selected 

 

Each node retains three translational and three rotational d.o.f. irrespective of the ECS 

(Element Coordinate System) or GCS (Global Coordinate System). MIDAS/Gen uses the 

Beta Angle (𝛽) conventions to identify the orientation of each cross-section. The Beta Angle 

relates the ECS to the GCS. The ECS 𝑥-axis starts from node N1 and passes through node 

N2 for all line elements (Figure 5.54). The ECS z-axis is defined to be parallel with the 

direction of the height of cross-sections, that is, the y-axis is in the strong axis direction. The 

use of the right-hand rule prevails in the process. 

 

The sign convention for beam element forces is shown in Figure 5.54. The arrows represent 

the positive (+) directions. Element stresses follow the same sign convention. However, 

stresses due to bending moments are denoted by ‘+’ for tension and ‘−’ for compression. 

The displacement sign is defined with reference to the GCS, following the right-hand rule 

for the rotations. 

 

Figure 5.54: Sign convention for ECS and element forces (or stresses) of a beam element 
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➢ Plate Element 

 

Three or four nodes placed in the same plane define a plate element. The element is capable 

of accounting for in-plane tension/compression, in-plane/out-of-plane shear and out-of-

plane bending behaviours. 

The out-of-plane stiffness used in MIDAS/Gen includes two types, DKT/DKQ (Discrete 

Kirchhoff element) and DKMT/DKMQ (Discrete Kirchhoff-Mindlin element). DKT and 

DKQ are developed on the basis of a thin plate theory, Kirchhoff Plate theory. Whereas, 

DKMT and DKMQ are developed on the basis of a thick plate theory, Mindlin-Reissner 

Plate theory. 

 

Figure 5.55: Arrangement of plate elements and their ECS 

The ECS for plate elements is used when the program calculates the element stiffness 

matrices. The directions of the ECS axes are defined as presented in Figure 5.55. In the case 

of a quadrilateral (4-node) element, the thumb direction signifies the ECS 𝑧-axis. 

 

At a connecting node, multiplying each nodal displacement component by the corresponding 

stiffness component of the element produces the element forces. In order to calculate element 

forces per unit length at a connecting node or an element centre, the stresses are separately 

calculated for in-plane and out-of-plane behaviours and integrated in the direction of the 

thickness. 
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MIDAS/Gen is formulated on the basis of linear analysis, but it is also capable of carrying 

out geometric nonlinear analyses. MIDAS/Gen implements nonlinear elements (tension or 

compression-only), P-Delta and large displacement analyses, etc. The structural analysis 

features of MIDAS/Gen include basic linear analysis and nonlinear analysis in addition to 

various analysis capabilities required in practice. 

 

The following outlines some of the highlights of the analysis features: 

 

− Linear Static Analysis; 

− Linear Dynamic Analysis; 

− Eigenvalue Analysis; 

− Response Spectrum Analysis; 

− Time History Analysis; 

− Linear Buckling Analysis; 

− Nonlinear Static Analysis; 

− P-Delta Analysis; 

 

− Large Displacement Analysis; 

− Nonlinear Analysis with Nonlinear 

Elements; 

− Construction Sequence Analysis; 

− Steel Box Bridge Analysis reflecting 

Pre- and Post-composite Action; 

− Analysis of Unknown Loads Using 

Optimization Technique. 

 

The structure subject of this work has been analysed by means of the Linear Static type of 

analysis. The basic equation adopted in MIDAS/Gen for linear static analysis is as follows: 

 

[𝐾]{𝑈} = {𝑃} 

 

 

Figure 5.56: Flow chart of linear static analysis in MidasGen 

 

where [𝐾] is the stiffness matrix, {U} is the displacement vector; {𝑃} is the load vector. 
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5.5.2 Numerical Model 

 

The structure has been modelled using BEAM elements for columns and PLATE elements 

for the core, the outriggers and floors. In Figure 5.57 and Figure 5.58 some representations 

of the model are reported.  

 

 

Figure 5.57: Numerical Model - Global View 

 

Figure 5.58: Numerical Model – Floor Detail 
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The structure has been analysed first without outriggers, then with outriggers structural 

system at Floor 40 (top of the building) and outriggers both at Floor 40 and Floor 20 (half 

of the building). In Figure 5.59 is represented the modelled outrigger structural system. 

Notice that plate elements has been used to model outriggers instead of beam elements, to 

better reproduce the interaction between core and reinforcing system. In red, it is possible to 

recognize the megacolumns, with diameter 1.60 𝑚, supporting the outriggers. 

 

 

Figure 5.59: Numerical Model – Outriggers Detail 

To better highlight the effect of torsion on the structure, the self-weight has been neglected 

and the action induced by the triangular external volumes has been simulated through 

horizontal forces according to what specified in §5.1, using the influence areas of Figure 

5.60 for columns 7A, 7B, 7C, 1C, 1D and 1E. 
 

 

Figure 5.60: Influence areas for definition of horizontal forces 
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Table 5.6: Applied horizontal forces 

In Table 5.6 are reported the computed forces, where 𝑃 is the vertical force deriving from 

the self-weight of slab and column at each level, and 𝐻 is the horizontal force deriving from 

the inclination of the columns. 

 

Figure 5.61 shows how the computed horzontal forces of Table 5.2 have been applied to the 

structure. 

Level [m] c [m] A [m2] P [kN] H [kN] A [m2] P [kN] H [kN] A [m2] P [kN] H [kN]

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0

4.25 0.15 0.56 34.30 2.40 1.30 39.88 2.79 0.74 35.69 2.50

8.50 0.30 1.12 38.48 2.69 2.60 49.64 3.47 1.49 41.27 2.89

12.75 0.45 1.67 42.67 2.98 3.90 59.40 4.15 2.23 46.85 3.28

17.00 0.60 2.23 46.85 3.28 5.21 69.16 4.84 2.98 52.43 3.67

21.25 0.74 2.79 51.03 3.57 6.51 78.92 5.52 3.72 58.01 4.06

25.50 0.89 3.35 55.22 3.86 7.81 88.69 6.20 4.46 63.58 4.45

29.75 1.04 3.90 59.40 4.15 9.11 98.45 6.88 5.21 69.16 4.84

34.00 1.19 4.46 63.58 4.45 10.41 108.21 7.57 5.95 74.74 5.23

38.25 1.34 5.02 67.77 4.74 11.71 117.97 8.25 6.69 80.32 5.62

42.50 1.49 5.58 71.95 5.03 13.02 127.73 8.93 7.44 85.90 6.01

46.75 1.64 6.14 76.13 5.32 14.32 137.49 9.61 8.18 91.47 6.40

51.00 1.79 6.69 80.32 5.62 15.62 147.26 10.30 8.93 97.05 6.79

55.25 1.93 7.25 84.50 5.91 16.92 157.02 10.98 9.67 102.63 7.18

59.50 2.08 7.81 88.69 6.20 18.22 166.78 11.66 10.41 108.21 7.57

63.75 2.23 8.37 92.87 6.49 19.52 176.54 12.34 11.16 113.79 7.96

68.00 2.38 8.93 97.05 6.79 20.83 186.30 13.03 11.90 119.36 8.35

72.25 2.53 9.48 101.24 7.08 22.13 196.06 13.71 12.64 124.94 8.74

76.50 2.68 10.04 105.42 7.37 23.43 205.83 14.39 13.39 130.52 9.13

80.75 2.83 10.60 109.60 7.66 24.73 215.59 15.08 14.13 136.10 9.52

85.00 2.98 11.16 113.79 7.96 26.03 225.35 15.76 14.88 141.68 9.91

89.25 3.12 11.71 117.97 8.25 27.33 235.11 16.44 15.62 147.26 10.30

93.50 3.27 12.27 122.15 8.54 28.63 244.87 17.12 16.36 152.83 10.69

97.75 3.42 12.83 126.34 8.83 29.94 254.63 17.81 17.11 158.41 11.08

102.00 3.57 13.39 130.52 9.13 31.24 264.40 18.49 17.85 163.99 11.47

106.25 3.72 13.95 134.70 9.42 32.54 274.16 19.17 18.59 169.57 11.86

110.50 3.87 14.50 138.89 9.71 33.84 283.92 19.85 19.34 175.15 12.25

114.75 4.02 15.06 143.07 10.00 35.14 293.68 20.54 20.08 180.72 12.64

119.00 4.17 15.62 147.26 10.30 36.44 303.44 21.22 20.83 186.30 13.03

123.25 4.31 16.18 151.44 10.59 37.75 313.20 21.90 21.57 191.88 13.42

127.50 4.46 16.73 155.62 10.88 39.05 322.97 22.58 22.31 197.46 13.81

131.75 4.61 17.29 159.81 11.17 40.35 332.73 23.27 23.06 203.04 14.20

136.00 4.76 17.85 163.99 11.47 41.65 342.49 23.95 23.80 208.61 14.59

140.25 4.91 18.41 168.17 11.76 42.95 352.25 24.63 24.54 214.19 14.98

144.50 5.06 18.97 172.36 12.05 44.25 362.01 25.31 25.29 219.77 15.37

148.75 5.21 19.52 176.54 12.34 45.55 371.77 26.00 26.03 225.35 15.76

153.00 5.36 20.08 180.72 12.64 46.86 381.54 26.68 26.78 230.93 16.15

157.25 5.50 20.64 184.91 12.93 48.16 391.30 27.36 27.52 236.51 16.54

161.50 5.65 21.20 189.09 13.22 49.46 401.06 28.04 28.26 242.08 16.93

165.75 5.80 21.75 193.27 13.52 50.76 410.82 28.73 29.01 247.66 17.32

170.00 5.95 22.31 182.40 12.75 52.06 405.53 28.36 29.75 238.18 16.66

C1 - C7 D1 - B7 A1 - E7
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Figure 5.61: Numerical Model – Applied horizontal forces 

As specified in §5.1 the wind action is simplified by a triangular distribution with maximum 

value at the top. The wind action is applied in the positive 𝑦 direction and its value at the top 

of the structure, defined according to NTC 2018 assuming that the structure is located in 

Milan, is 55,96 𝑘𝑁/𝑚. 

5.5.3 Model I: Rigid Diaphragm Floors 

First the structure has been analysed assuming floor as diaphragms infinitely rigid in their 

plane and infinitely deformable out of plane.  

In Figure 5.62 the torsional rotation of the core is reported. As we can see, the outrigger 

system has good efficiency in reducing torsional rotation of the core: with one outriggers 

level the rotation is reduced of almost 33% whereas with two outriggers levels, the reduction 

reaches 50%. As we can see, results are really similar to those of the theoretical analysis 

because the hypothesis of section non-deformable in its plane, which is at the basis of the 

Vlasov’s theory, is fairly well simulated by the floor diaphragms used in the numerical 

model. 

 

Figure 5.63 shows the axial displacement of megacolumns 2B and 2D due to the warping of 

the section. The displacement variation through the height of the other two megacolumns 6B 

and 6D is the same as 2D and 2B respectively. 
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Figure 5.62: Model I – Torsional Rotation 

 

 

 

Figure 5.63: Model I – Column Axial Displacement 
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For what concerns the column axial displacement, from Figure 5.63 it is evident that in the 

structure without outriggers the axial displacement due to torsion is zero. On the contrary, 

in presence of outrigger systems the displacement increases along the height and is higher 

in case of two outriggers levels. As we can see, the displacements of columns B2 and D2 

differ only for the sign, because of the warping of the core section: in B2 it is upward whereas 

in D2 it is downward. Moreover, it can be highlighted that in case of one outriggers level the 

development is linear, whereas in case of two it is bilinear, due to the presence of the column 

reaction at mid-height of the building (first outriggers level). 
 

Let’s analyse now the behaviour of the structure under the action of the wind load. In Figure 

5.64 is reported the lateral flexural displacement of the core in the three usual different cases: 

free core, one and two outriggers levels.  
 

 

Figure 5.64: Model I – Lateral Displacement due to wind load 

As we can see from Figure 5.64 the lateral displacement is reduced by outrigger systems, 

respectively of 53% and 72% in case of one and two outriggers levels. It is evident that the 

efficiency of the outrigger structural system is higher for bending with respect to torsion, as 

predicted in the theoretical analysis. 

5.5.4 Model II: Real Slabs 

In this case floors are modelled with PLATE DKT element (Kirchhoff Theory), with 

thickness of 0.30 𝑚. This makes the model different than previous case because now the 

out-of-plane deformability is not negligible.  
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In Figure 5.65 is reported the torsional rotation of the core and in Figure 5.66 the axial 

displacement of megacolumns B2 and D2 due to the warping of the section. The 

displacements of the other two megacolumns B6 and D6 is the same of D2 and B2 

respectively. 

 

Figure 5.65: Model II – Torsional Rotation 

 

Figure 5.66: Model II – Column Axial Displacement 
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As we can see from Figure 5.65, the torsional rotation drastically reduces in presence of 

floors and therefore also the outriggers efficiency, which decreases to 6% and 13% in case 

of one and two outriggers respectively. This is completely different from the theoretical 

analysis, where the presence of diaphragms doesn’t influence a lot the torsion behaviour of 

the core. This can be explained considering that in the numerical model, slabs are connected 

to external columns, giving a sort of additional “outrigger effect” which is not taken into 

account in the theoretical analysis, which reduces the outriggers efficiency. 

As a consequence of the increased stiffness of the structure, the warping of the section is 

reduced and therefore the axial displacement in the columns dramatically reduces, as we can 

see from Figure 5.66. We can highlight that, different than the previous case, the 

displacement in columns in case of core with no outriggers is not zero, because the presence 

of slabs connecting the core to the columns lead columns to move according to the warping 

of the core section. 

For what concerns the bending behaviour of the core under the action of wind load, it is 

represented in Figure 5.67. 

 

 

Figure 5.67: Model II – Lateral Displacement due to wind load 

It is possible to notice that the lateral displacement reduces with respect to the case of floors 

as rigid diaphragms due to the presence of slabs which increase the global stiffness of the 

structure and gives an additional outrigger effects at each level. From the outrigger’s 

efficiency point of view, it decreases compared to rigid diaphragms case to 26% and 47% in 

case of one and two outriggers levels respectively. This is due to increased stiffness of the 
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structure, which lead to a lower displacement in the megacolumns with consequent reduced 

column reaction acting again core deflection. 

5.5.5 Model III: Core with Lintels 

The structure has been analysed introducing lintels at each floor in the core, considering 

different dimensions for the lintel’s height: 50 cm, 100 cm and 150 cm. In Figure 5.68 is 

reported a detail of the numerical model realised. 

 

 

Figure 5.68: Model III – Numerical model of core with lintels 

In the following results of core torsional rotation and column axial displacement are reported 
 

 

Figure 5.69: Model III – Torsional Rotation with 50 cm lintels 
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Figure 5.70: Model III – Column Axial Displacement with 50 cm lintels 

 

 

 

Figure 5.71: Model III – Torsional Rotation with 100 cm lintels 
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Figure 5.72: Model III – Column Axial Displacement with 100 cm lintels 

 

 

 

Figure 5.73: Model III – Torsional Rotation with 150 cm lintels 
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Figure 5.74: Model III – Column Axial Displacement with 150 cm lintels 

As we can see from the reported graphs, increasing the height of lintels the torsional rotation 

progressively reduces and so the column axial displacement, because the warping of the 

section is more and more low due to the increasing increment of core stiffness given by 

lintels. Obviously, this lead to a non effectiveness of the outriggers because basically they 

are not activated, as can be noticed from the column axial displacement which is practically 

null. 

 

5.5.6 Bending – Torsion Interaction 

The bending-torsion interaction has been analysed for the case of structure with one 

outriggers level through a numerical structural analysis, realizing different models with 

different eccentricity of the additional triangular volume, considering the same cases 

analysed theoretically in §5.4. As done in the previous analysis, the self-weight has been 

neglected to better put in evidence the phenomenon studied and the forces deriving from the 

triangular volume have been applied directly to the core. The horizontal forces have been 

computed with the usual procedure, but in this case we have applied the resultant at each 

level, without considering the division between the three columns of the triangular volume. 

Then, a torsional moment has been applied, computed as the product between horizontal 

force and eccentricity considered in each case. The applied forces are summarized in Table 

5.7. 
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Table 5.7: Applied forces  

e = 0 m e = 4.375 m e = 8.75 m

Level [m] c [m] P [kN] H [kN] Mt   [kN*m] Mt   [kN*m] Mt   [kN*m]

0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.25 0.15 109.87 7.68 0.00 33.61 67.22

8.50 0.30 129.39 9.05 0.00 39.58 79.17

12.75 0.45 148.91 10.41 0.00 45.56 91.11

17.00 0.60 168.44 11.78 0.00 51.53 103.06

21.25 0.74 187.96 13.14 0.00 57.50 115.01

25.50 0.89 207.49 14.51 0.00 63.48 126.95

29.75 1.04 227.01 15.87 0.00 69.45 138.90

34.00 1.19 246.53 17.24 0.00 75.42 150.84

38.25 1.34 266.06 18.60 0.00 81.39 162.79

42.50 1.49 285.58 19.97 0.00 87.37 174.73

46.75 1.64 305.10 21.33 0.00 93.34 186.68

51.00 1.79 324.63 22.70 0.00 99.31 198.63

55.25 1.93 344.15 24.07 0.00 105.29 210.57

59.50 2.08 363.67 25.43 0.00 111.26 222.52

63.75 2.23 383.20 26.80 0.00 117.23 234.46

68.00 2.38 402.72 28.16 0.00 123.20 246.41

72.25 2.53 422.24 29.53 0.00 129.18 258.35

76.50 2.68 441.77 30.89 0.00 135.15 270.30

80.75 2.83 461.29 32.26 0.00 141.12 282.24

85.00 2.98 480.81 33.62 0.00 147.10 294.19

89.25 3.12 500.34 34.99 0.00 153.07 306.14

93.50 3.27 519.86 36.35 0.00 159.04 318.08

97.75 3.42 539.38 37.72 0.00 165.01 330.03

102.00 3.57 558.91 39.08 0.00 170.99 341.97

106.25 3.72 578.43 40.45 0.00 176.96 353.92

110.50 3.87 597.95 41.81 0.00 182.93 365.86

114.75 4.02 617.48 43.18 0.00 188.90 377.81

119.00 4.17 637.00 44.54 0.00 194.88 389.76

123.25 4.31 656.52 45.91 0.00 200.85 401.70

127.50 4.46 676.05 47.27 0.00 206.82 413.65

131.75 4.61 695.57 48.64 0.00 212.80 425.59

136.00 4.76 715.09 50.00 0.00 218.77 437.54

140.25 4.91 734.62 51.37 0.00 224.74 449.48

144.50 5.06 754.14 52.73 0.00 230.71 461.43

148.75 5.21 773.66 54.10 0.00 236.69 473.37

153.00 5.36 793.19 55.47 0.00 242.66 485.32

157.25 5.50 812.71 56.83 0.00 248.63 497.27

161.50 5.65 832.24 58.20 0.00 254.61 509.21

165.75 5.80 851.76 59.56 0.00 260.58 521.16

170.00 5.95 826.11 57.77 0.00 252.73 505.46
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The parameters monitored to study the interaction between the two behaviours are the 

megacolumns axial displacements, in particular columns 2B, 2D, 6B and 6D, represented in 

the following graphs. 

 

Figure 5.75: Bending – Torsion Interaction: Axial Displacement Column 2B 

 

Figure 5.76: Bending – Torsion Interaction: Axial Displacement Column 2D 
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Figure 5.77: Bending – Torsion Interaction: Axial Displacement Column 6B 

 

 

 

Figure 5.78: Bending – Torsion Interaction: Axial Displacement Column 6D 
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The numerical results confirm what expected from the theory. Indeed, for zero eccentricity 

there is no displacement due to torsion and columns move according to the bending 

behaviour: 2D and 6D moves upward, whereas 2B and 6B moves downward. Increasing the 

eccentricity, the torsional moment on the structure rises up, leading to a higher warping of 

the core cross section. Due to warping, columns 2B and 6D move upward whereas 2D and 

6B move downward. Superimposing these effects to the bending’s ones (same for all 

eccentricities), we can see that the downward displacement of column 2B and upward 

displacement of column 6B decrease with increasing eccentricity; on the contrary the 

downward displacement of column 2D and upward displacement of column 6D increase. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

 

Outrigger systems are a convenient solution to ensure an adequate transverse stiffness of 

shear-resistant elements in tall buildings. The use of such systems, in spatial configurations, 

has been extensively studied in literature, by analysing the static interaction between 

outriggers, peripheral columns and cores subjected to displacement states deriving from 

biaxial bending. In complex architectural configurations, the rotational effects deriving from 

the warping generated by the application of torsional moments to the core, increases the 

vertical displacements of the outriggers which, in addition to their primary function of 

limiting flexural displacements, also act as torsional rotation reducers. This functionality is 

even more pronounced when the core warping deformations are higher, as occurs in the case 

of cores having a thin-walled open section.  

 

The theoretical analysis conducted were based on classic formulations of the elastic and 

viscoelastic problem, allowing to derive compatibility relations of simple solution and 

excellent approximation.  

 

Theoretical analysis has shown that outriggers placed at top and mid height have great 

efficiency in reducing the torsional rotation of the core, also with regard to delayed concrete 

deformations, evaluated in the two extreme cases of viscoelastic structure with elastic 

outriggers and vice versa. This is true when there are no other reinforcing systems: indeed, 

in presence of lintels the core behaves like a thin-walled closed section with reduced 

warping, therefore the outrigger effects are practically negligible, because of they are not 

activated.  

 

Numerical analysis confirmed what found by theory, except for the case of diaphragms. As 

a matter of fact, diaphragms were theoretically analysed without accounting for the 

additional “outrigger” effects that real floor slabs, which connect the core to the external 

megacolumns and perimeter columns, are able to develop. This fact highly decreases the 

warping of the core cross section, with consequent reduced efficiency of the outriggers 

structural systems. From the point of view of flexural displacements, the efficiency of 

outrigger systems is higher than that for torsional displacements in all the studied cases.  

 

We can conclude that outrigger systems are generally efficient in reducing lateral 

displacements, whereas their contribution in limiting torsional rotation is not so evident, 

because the presence of floor slabs limits warping and torsional rotation of the core cross 
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section even when there are no other reinforcing systems (e.g. lintels), leading to low 

efficiency of outriggers.  

 

In this work the interaction between torsion and bending has also been analysed, showing 

that for high eccentricity of external volumes giving torsion on the core, warping effects can 

prevail on bending ones, leading to an inversion of the displacement in megacolumns 

supporting the outriggers.  

 

A possible future research could be to analyse outriggered structures taking into account the 

effects of lateral loads, like wind and earthquakes, insisting in on the eccentric external 

volumes in more directions, giving in this way additional torsional contributions.  Moreover, 

in this work, it has been studied a structure with double symmetric core, allowing for 

decoupling of torsional and flexural behaviour. An interesting suggestion could be to analyse 

non-symmetric core structures where there a complete interaction between the two 

phenomena can be observed. Finally, the long-term behaviour of the structure has been 

studied only for limit cases, therefore a detailed construction stage analysis could be 

developed to better understand the evolution of the structural behaviour in time and the role 

of outriggers in counteracting delayed deformations. 
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