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Abstract

Policy optimization is an effective reinforcement learning approach to solve
continuous control tasks. Recent achievements have shown that alternating
online and offline optimization is a successful choice for efficient trajectory
reuse. However, deciding when to stop optimizing and collect new trajectories
is non-trivial, as it requires to account for the variance of the objective function
estimate. In this work, we propose a novel, model-free, policy search algorithm,
POIS, applicable in both action-based and parameter-based settings. We first
derive a high-confidence bound for importance sampling estimation; then we
define a surrogate objective function, which is optimized offline whenever a
new batch of trajectories is collected. Finally, the algorithm is tested on a
selection of continuous control tasks, with both linear and deep policies, and
compared with state-of-the-art policy optimization methods.
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Estratto in Lingua Italiana

I metodi di ottimizzazione della politica si sono rivelati essere degli ap-
procci molto effettivi per la soluzioni di problemi di controllo continuo
nell’apprendimento per rinforzo. Alcuni recenti risultati hanno mostrato
che alternare l’ottimizzazione online e offline Ãĺ una scelta di successo per
riutilizzare l’informazione proveniente da una traiettoria. Tuttavia, decidere
quando fermare il processo di ottimizzazione ed iniziare a raccogliere nuove
traiettorie non Ãĺ banale, in quanto deve tenere conto della varianza della
funzione obiettivo stimata. In questo lavoro, proponiamo un nuovo algoritmo
di ricerca della politica, POIS, che puÃš essere applicato sia nel setting delle
azioni che in quello di parametri. Per prima cosa, deriviamo un limite in-
feriore per la stima da campionamento di importanza; poi definiamo una
funzione obiettivo surrogata, che viene ottimizzata offline quando un nuovo
gruppo di traiettorie viene raccolto. Infine, l’algoritmo Ãĺ testato su una
selezione di problemi di controllo continuo, sia usano politiche lineari, che
usando Reti Neurali profonde, e confrontato con lo stato dell’arte dei metodi
di ottimizzazione della politica.
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Chapter 1

Introduction

Reinforcement Learning [48] (RL) is a Machine Learning framework for mod-
eling the interactions between an artificial agent and the environment. In
recent years, a class of RL methods, called policy search methods [8] have
achieved state-of-the-art results in continuous control tasks. [21, 39, 41, 40],
robotic locomotion [51, 18] and partially observable environments [29]. Policy
search algorithms can be classified in two different sets, depending whether
the search is performed in the space of parametrized policies (like policy
gradient), or directly in the space of parameters, by exploiting global opti-
mizers [38, 15, 46, 50] or following a proper gradient direction like in Policy
Gradients with Parameter-based Exploration (PGPE) [43, 57, 44]. In this
work, we focus on a very general problems of Reinforcement Learning: given
a dataset of trajectories collected from an agent which interacts with the
environment using a fixed policy, how can we use the information gathered in
the most efficient way?
On-policy methods use a batch of trajectories for doing a single update
step in the optimization process. These methods are the most widely used,
and they can use stochastic policy gradient [49], like REINFORCE [58] and
G(PO)MDP [4] or more advanced contrained methods such as Trust Region
Policy Optimization (TRPO) [39]. However, these methods do not exploit
efficiently the information contained in the trajectories, since they require a
new batch for each update step. On the other hand, off-policy methods collect
trajectories using a behavioral policy and then perform multiple optimization
steps evaluating and improving a target policy. Off-policy learning has been
adapted first in value-based RL [56, 31, 27] and has been then extended
to Deterministic Policy Gradient (DPG) [45] and Deep Deterministic Policy
Gradient (DDPG) [21]. Parameter-based methods have also been adapted in
order to perform off-policy optimization.
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The off-policy optimization can be performed by alternating online steps,
in which a behavioral policy collects new data, and offline optimization steps,
in which a target policy is optimized with these new data. This idea has been
used in Proximal Policy Optimization (PPO) [41], which has achieved new
state-of-the-art performance in continuous control tasks. Optimizing a target
policy with samples collected from a behavioral policy can be performed
using the Importance Sampling (IS) [30, 16] technique, which weight each
sample by the likelihood of having been generated from the target distribution.
Unfortunately, the IS estimator, although unbiased, can have a very high
variance when the two distribution are dissimilar.

In this work, we propose a novel, model-free, actor-only, policy optimiza-
tion algorithm, named Policy Optimization via Importance Sampling (POIS)
that alternates online and offline optimization to efficiently exploit the infor-
mation contained in a batch of trajectories.

The main contributions of this paper are theoretical, algorithmic and
experimental.

The structure of the remaining part of this document is as follows: Chapter
2 provides an introduction on the Reinforcement Learning framework; Chapter
3 briefly reviews the state-of-the-art methods in Policy search; Chapter 4.1
contains an analysis of the Importance sampling estimator and its relation
with the dissimilarity of the policies; Chapter 5 contains the derivation of
the novel algorithm, POIS, and the details of its implementation; Chapter 6
discusses the results of a comparison between POIS and the current state-of-
the-art Policy search methods in a selected group of benchmark problems;
Chapter 7 summarizes the work and suggests future direction of research. The
implementation of POIS can be found at https://github.com/T3p/pois.
POIS was accepted at the 32nd Conference on Neural Information Processing
Systems (NIPS 2018) and selected for an oral presentation [24].
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Chapter 2

Reinforcement Learning and
Markov Decision Process

In many Machine Learning problems, an agent has to learn to solve a task by
interacting with the environment. Markov Decision Process (MDP) [34] can
be used to model this interaction.

2.1 Markov Decision Process

2.1.1 Definition

A discrete-time MDP can be formally defined as a tupleM = (S,A, P, R, γ, µ0)
in which:

• S ⊆ Rn is the set of possible states of the agent s ∈ S

• A ⊆ Rn is the set of possible actions the agent can perform: a ∈ A

• P (·|s, a) is a stochastic markovian transition matrix, which assigns for
each pair (st, at) the probability of transitioning to state st+1

• R(s, a) ∈ [−Rmax, Rmax] is the reward function, which assigns a scalar
reward to the agent for performing action a in state s

• γ ∈ [0, 1] is a discount factor, measuring the actual value of future
reward

• µ0 is a probability distribution over the initial state of the agent

At each discrete time-step t, the agent observes its state st and interacts
with the environment performing action at. The environment receives the
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action of the agent and emits a scalar reward rt = R(st, at). The state of the
agent evolves following the dynamics of the transition matrix P . The goal of
the agent is to choose actions such that the cumulative discounted reward is
maximized, i.e., v =

∑H−1
i=0 γtrt is maximized, where H is the horizon length.

We define the return vt as the total discounted reward from time-step t:

vt = rt+1 + γrt+2 + · · · =
H−t−1∑
k=0

γkrt+k+1.

In order to define the behavior of the agent, we need to introduce the
policy, which is a map between the set of the states S and a probability
distribution over the action set A. More formally, we define π : S → ∆(A)
which specifies the probability of performing action a in state s. A policy
is deterministic when for each state s there exists an action a such that
π(a|s) = 1. When the agent interacts with the environment for H time
steps, the sequence of states and actions collected defines a trajectory, i.e.,
τ = (sτ,0, aτ,0, . . . , sτ,H−1, aτ,H−1, sτ,H). Given a policy π, we can compute the
probability of a trajectory τ as:

p(τ) = µ0(s0)
H−1∏
t=0

π(at|st)P (st+1|st, at).

We can express the problem of maximizing the cumulative discounted reward
in terms of the policy. The objective function is an expectation over π:

Jπ = Eπ[v].

2.1.2 Value Functions

Given a policy π, we want to be able to evaluate its utility in each state. The
state-value function, defined as the expected return for being in a state s and
following policy π, is used to measure the value of the policy in each state and
it is employed by many Reinforcement Learning algorithms. More formally,
it is defined as:

V π(s) = Eπ[vt|st = s].

The value function can also be defined in a recursive way, using Bellman’s
Expectation Equation:

V π(s) =

∫
A
π(a|s)

(
R(s, a) + γ

∫
S
P (s

′ |s, a)V π(s
′
) ds

′
)

da.
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By integrating over the state space S, we can express the maximization
of the expected cumulative reward in terms of the value function:

Jπ =

∫
S
µ0(s)V π(s) ds.

Another way to measure how good is a policy is by defining the action-
value function Qπ, which is defined as the expected return for performing
action a in state s, under the policy π:

Qπ(s, a) = Eπ[vt|st = s, at = a],

which can also be expressed recursively, using Bellman’s Expectation Equation:

Qπ(s, a) = R(s, a) + γ

∫
S
P (s

′ |s, a)

∫
A
π(a

′|s′)Qπ(s
′
, a
′
) da

′
ds
′
.

2.2 Dynamic Programming
For solving an MDP, we need to find the optimal policy. One naive approach
would be to enumerate all possible policies, to evaluate their value function
and then to return the best policy found. However, the number of determin-
istic markovian policies is exponential (|A||S|) when action and states are
discrete and impractical when they assume continuous values.
Dynamic Programming techniques offer a general solution for complex prob-
lems which can be divided in smaller, easier subproblems. In particular, for
solving an MDP, it iterates among two main steps: Prediction and Control.

2.2.1 Policy Iteration

In Policy Iteration algorithm, these two steps correspond to Policy Evalua-
tion and Policy Improvement.

• Policy Evaluation: In Policy Evaluation, the goal is, given a policy
π, to compute its action-value function Qπ using Bellman Equation.

• Policy Improvement: Given the action-value function Qπ for policy
π, compute a better policy π′(s) ∈ arg maxa∈AQ

π(s, a).

Iterating the procedure we obtain a deterministic policy. This method is
guaranteed to find the optimal policy. However, in most Reinforcement
Learning problem, the action-value function cannot be computed exactly and
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needs to be estimated from sample. This can lead to an high variance estimate
and to slow down or prevent the algorithm to converge. One possible solution
is to use a method which does not require to know the dynamics of the MDS
and which directly models the policy, constraining it in a parametric subspace.
We obtain a class of methods called model-free, policy search methods.
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Chapter 3

Policy Search

In Policy Search methods [8] we consider a parametrized policy πθ belonging
to a parametric policy space ΠΘ = {πθ : θ ∈ Θ ⊆ Rp}. The goal is
to find the parameters of the policy such that the expected cumulative
reward is maximized. In a high level, we can divide these methods in two
categories: action-based and parameted-based. In the following sections the
two approaches are described.

3.1 Action-based Methods

Action-based methods, known also al Policy Gradient methods, optimize
the objective function by following the direction of the gradient w.r.t. the
parameters θ, which is estimated using a batch of trajectories generated by
the policy. The expected return can be espressed as an expectation over the
trajectory space:

J(θ) =

∫
T
p(τ |θ)R(τ) dτ,

where R(τ) =
∑H−1

t=0 γtR(sτ,t, aτ,t) is the trajectory return. The goal is to find
the parameter θ∗ such that J(θ) is maximized. Assuming that the policy πθ
is stochastic and differentiable, we can update the parameters using gradient
ascent:

θ′ = θ + α∇θJ(θ),

where:

∇θJ(θ) =

∫
T
p(τ |θ)∇θ log p(τ |θ)R(τ) dτ.
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3.2 Parameter-based Methods
In Parameter-based methods, like in Policy Gradients with Parameter-based
Exploration (PGPE) [43, 57, 44], the agent is endowed with an hyperpolicy ν
belonging to a parametric hyperpolicy space NP = {νρ : ρ ∈ P ⊆ Rr}. At
the beginning of each episode, a vector of policy parameters θ is sampled
from µ. The policy πθ, in the parameter-based setting, is a deterministic
controller and does not need to be differentiable. The expected return can
be espressed as an expectation over the trajectory space and over the policy
parameter space:

J(ρ) =

∫
Θ

∫
T
νρ(θ)p(τ |θ)R(τ) dτ dθ,

where p(τ |θ) = µ0(s0)
∏H−1

t=0 πθ(at|st)P (st+1|st, at) is the trajectory density
function. The goal is to find the hyperparameter ρ∗ such that J(ρ) is
maximized. This can be done, without the assumption of the differentiability
of the policy πθ using gradient ascent:

ρ′ = ρ+ α∇ρJ(ρ),

where α > 0 and

∇ρJ(ρ) =

∫
Θ

∫
T
νρ(θ)p(τ |θ)∇ρ log νρ(θ)R(τ) dτ dθ

Sampling the parameters once per episode can reduce a lot the variance
of the gradient estimate.

3.3 State-of-the-art algorithms in Policy search
Policy search methods [8] have become widely used because of their ability to
solve Reinforcement Learning problems with continuous control tasks [21, 39,
41, 40], robotic locomotion [51, 18] and partially observable environments [29].
We can divide the state-of-the-art Policy search methods in three categories,
depending on how the optimization process is carried on in order to find
the optimal policy. The first, and most common used, category, is the one
of Policy Gradient methods, in which the cumulative expected return is
optimized following the gradient direction. The second category also follows
the direction of the gradient, but subject to a constraints that limits updates
leading to policies too far from the current policy. This constraint is typically
expressed in terms of the dissimilarity between the two policies. The third
category, which includes our algorithm, POIS, optimizes a surrogate objective
function: a function similar w.r.t. the objective function of the problem, but
much easier to optimize.
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3.4 Policy Gradient
In this section, we see some Policy search algorithms using policy gradient
methods.

3.4.1 Policy Gradient Theorem

We can first note that when we perform a parameter update:

θ′ = θ + α∇θJ(θ),

we have to compute the quantity ∇θJ(θ). This can be done analytically,
thanks to the Policy Gradient Theorem [49]:

Theorem 3.4.1. For any Markov Decision Process, the following holds:

∇θJ(θ) =

∫
S
µ0(s)

∫
A
∇θπθ(a|s)Qπθ(s, a) da ds.

3.4.2 REINFORCE/GPOMDP

Unfortunately, in many applications we need to estimate the term Qπθ(s, a)
with sample. One straightforward way of doing it is to use the return:

Q̂πθ(s, a) '
H−1∑
k=0

γkR(sk, ak)

Moreover, we can rewrite the Policy Gradient Theorem using the likelihood
ratio technique [58]:

∇θπθ(a|s) = πθ(a|s)∇θ log πθ(a|s),

and obtain:

∇θJ(θ) =

∫
S
µ0(s)

∫
A
πθ(a|s)∇θ log πθ(a|s)Qπθ(s, a) da ds.

Combining this expression with the approximation of the action-value function,
we obtain the REINFORCE estimator [58]:

∇̂θJ(θ) =

〈(
H−1∑
k=0

∇θ log πθ(ak|sk)

)(
H−1∑
k=0

γkR(sk, ak)

)〉
N

where 〈.〉N denotes the sample mean over N trajectories. One problem of
REINFORCE is that, in the estimator, the value of (sk, ak) depends on the
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past reward. Making this term independent on past reward, we obtain the
G(PO)MDP gradient estimator [4]:

∇̂θJ(θ) =

〈
H−1∑
t=0

(
t∑

k=0

∇θ log πθ(ak|sk)

)(
γtR(st, at)

)〉
N

3.4.3 Natural Gradient

When searching in the space of parameters in order to find the optimal policy,
the optimization process strongly depends on the choice of the parametrization
used for the policy. Natural gradient methods [1] allow to search directly in
the space of the policy and are invariant w.r.t. the parametrization used. The
update formula for the natural gradient becomes:

∇̃θL(θ) = F−1(θ)∇θJ (θ),

where F is the Fisher Information Matrix[36, 2]:

F(θ) =

∫
S
µ0(s)

∫
A
πθ(a|s)∇θ log πθ(a|s)∇θ log πθ(a|s)T da ds

3.5 Constraint Methods

The methods belonging to this category, still follow the direction of the
gradient, but with a constraint on the step size depending on how different
the current policy and the policy at the update are.

3.5.1 TRPO

The most used algorithm of this category, which achieved state-of-the-art
results in many continuous control tasks, is Trust Region Policy Optimization
(TRPO) [39], whose update formula is:
max Êt∼θ

[
wθ′/θ(at|st)Â(st, at)

]
s.t. Êt∼θ [DKL(πθ′(·|st)‖πθ(·|st))] ≤ δ

where Â(st, at) is an estimate of the advantage function Qπθ(s, a)− V πθ(s),
which measures the advantage of taking action a in state s, andDKL(πθ′(·|st)‖πθ(·|st))
is the Kullback-Liebler divergence between the two distributions.
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3.6 Surrogate methods
This class of methods tries to maximize a surrogate objective function, which
is a function similar w.r.t. the objective function of the problem, but much
easier to optimize.

3.6.1 PPO

The most widely used surrogate policy gradient method is Proximal Policy
Optimization (PPO) [41], which optimizes the following surrogate objective
function:

max Êt∼θ
[

min
{
wθ′/θ(at|st)Â(st, at), clip

(
wθ′/θ(at|st), 1− ε, 1 + ε

)
Â(st, at)

}]
.

11





Chapter 4

Importance Sampling

4.1 The Importance Sampling estimator

Importance sampling is a technique that can be used for studying a distribu-
tion, which we call target, using samples collected from another distribution,
called behavioral. In particular, we want to study the problem of estimating
the expected value of a deterministic bounded function f (‖f‖∞ < +∞) of a
random variable x, under a target distribution P , having samples collected
samples from another distribution Q. If we assume that P and Q admit p
and q as Lebesgue probability density functions, we can use the importance
sampling estimator (IS) [6, 30], which weights the collected samples by the
likelihood of being generated by the target distribution. This correction relies
on the importance weights (or Radon-Nikodym derivative or likelihood ratio)
wP/Q(x) = p(x)/q(x):

µ̂P/Q =
1

N

N∑
i=1

p(xi)

q(xi)
f(xi) =

1

N

N∑
i=1

wP/Q(xi)f(xi), (4.1)

where x = (x1, x2, . . . , xN)T is sampled from Q and we assume q(x) >
0 whenever f(x)p(x) 6= 0. The IS estimator is unbiased (Ex∼Q[µ̂P/Q] =
Ex∼P [f(x)]) but it can have a large variance if the two distributions differ a
lot. Even in the particular case in which the two distributions are Gaussian,
the IS estimator can have infinite variance.

We can measure how two distributions are dissimilar using the Rényi
divergence, an information-theoretic index. [37, 54]
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4.1.1 Rényi divergence

Consider two probability measures P and Q on a measurable space (X ,F)
such that P � Q (P is absolutely continuous w.r.t. Q) and Q is σ-finite. Let
P and Q admit p and q as Lebesgue probability density functions (p.d.f.),
respectively. The α-Rényi divergence is defined as:

Dα(P‖Q) =
1

α− 1
log

∫
X

(
dP

dQ

)α
dQ =

1

α− 1
log

∫
X
q(x)

(
p(x)

q(x)

)α
dx, (4.2)

where dP/dQ is the Radon-Nikodym derivative of P w.r.t. Q and α ∈
[0,∞].
Some particular cases are the following:

• for α = 1 we have that D1(P‖Q) = DKL(P‖Q)

• for α =∞ we have D∞(P‖Q) = log ess supX dP/ dQ.

Using the notation of [7], we define the α-Rényi divergence as dα(P‖Q) =
exp (Dα(P‖Q)). Whenever it will be clear within the context, Dα(P‖Q) will
be replaced by Dα(p‖q).

There is a tight relation between the dissimilarity of the two distributions
and the moments of the importance weights. Indeed:

E
x∼Q

[
wP/Q(x)α

]
= dα(P‖Q).

Moreover,
Var
x∼Q

[
wP/Q(x)

]
= d2(P‖Q)− 1,

and for [7]
ess sup
x∼Q

wP/Q(x) = d∞(P‖Q).

4.2 Analysis of the IS estimator
In this section, the importance weights are analyzed under the assumption
that both the behavioral and target distributions are Gaussian. We can note
that for multivariate Gaussian distribution, there exists an analytic expression
for the Rényi divergence [5]. Let P ∼ N (µP ,ΣP ) and Q ∼ N (µQ,ΣQ) and
α ∈ [0,∞]:

Dα(P‖Q) =
α

2
(µP − µQ)TΣ−1α (µP − µQ)− 1

2(α− 1)
log

det(Σα)

det(ΣP )1−α det(ΣQ)α
, (4.3)

where Σα = αΣQ + (1− α)ΣP under the assumption that Σα is positive-
definite.
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In the particular case of univariate Gaussian distributions, the expression
of the importance weights and their probability density function fw can be
computed in closed-form. Let us consider Q ∼ N (µQ, σ

2
Q) as the behavioral

distribution and P ∼ N (µP , σ
2
P ) as the target distribution. Under the

assumption that σ2
Q, σ

2
P > 0 we can analyze the importance weights in the

following two cases: unequal variances and equal variances. The importance
weight wP/Q(x) will be indicated with w(x) for brevity.

4.2.1 Unequal variances

We start considering the case in which the variance of the behavioral and
target policies differ: σ2

Q 6= σ2
P . In this case, the importance weights assume

the following expression:

w(x) =
σQ
σP

exp

(
1

2

(µP − µQ)2

σ2
Q − σ2

P

)
exp

−1

2

σ2
Q − σ2

P

σ2
Qσ

2
P

(
x−

σ2
QµP − σ2

PµQ

σ2
Q − σ2

P

)2
, (4.4)

for x ∼ Q. We can study when the above equation is bounded based on
the sign of the exponential: if σ2

Q − σ2
P > 0, then w(x) is upper bounded by

A =
σQ
σP

exp
(

1
2

(µP−µQ)2

σ2
Q−σ

2
P

)
, while if σ2

Q − σ2
P < 0, then w(x) is unbounded and

it admits A as minimum value. We then compute the probability density
function of w(x):

Proposition 4.2.1. Let Q ∼ N (µQ, σ
2
Q) be the behavioral distribution and

P ∼ N (µP , σ
2
P ) be the target distribution, with σ2

Q 6= σ2
P . The probability

density function of w(x) = p(x)/q(x) is given by:

fw(y) =


σ

y
√
π log A

y

exp
(
− 1

2µ
2
) (

y
A

)σ2

cosh
(
µσ
√

2 log A
y

)
, if σ2

Q > σ2
P , y ∈ [0, A],

σ

y
√
π log y

A

exp
(
− 1

2µ
2
) (

A
y

)σ2

cosh
(
µσ
√

2 log y
A

)
, if σ2

Q < σ2
P , y ∈ [A,∞),

where µ =
σQ

σ2
Q−σ

2
P

(µP − µQ) and σ2 =
σ2
P

|σ2
Q−σ

2
P |
.

Proof. Let us consider w(x) as a function of the random variable x ∼ Q. We can
define the following constants:

m =
σ2
QµP − σ2

PµQ

σ2
Q − σ2

P

, τ =
σ2
Q − σ2

P

σ2
Qσ

2
P

.

Let us start computing the c.d.f.:

Fw(y) = Pr (w(x) ≤ y) = Pr

(
A exp

(
−1

2
τ(x−m)2

)
≤ y
)

15



= Pr
(
τ(x−m)2 ≥ −2 log

y

A

)
.

According to the sign of τ , we can study two different cases, and we observe that
x = µQ + σQz where z ∼ N (0, 1):

τ > 0:

Fw(y) = Pr

(
(x−m)2 ≥ 2

τ
log

A

y

)
= Pr

(
x ≤ m−

√
2

τ
log

A

y

)
+ Pr

(
x ≥ m+

√
2

τ
log

A

y

)

= Pr

(
z ≤

m− µQ
σQ

−
√

2

τσ2
Q

log
A

y

)
+ Pr

(
z ≥

m− µQ
σQ

+

√
2

τσ2
Q

log
A

y

)
.

We call µ =
m−µQ
σQ

=
σQ

σ2
Q−σ

2
P

(µP − µQ) and σ2 = 1
τσ2
Q

=
σ2
P

σ2
Q−σ

2
P
, thus we have:

Fw(y) = Pr

(
z ≤ µ−

√
2σ2 log

A

y

)
+ Pr

(
z ≥ µ+

√
2σ2 log

A

y

)

= Φ

(
µ−

√
2σ2 log

A

y

)
+ 1− Φ

(
µ+

√
2σ2 log

A

y

)
,

where Φ is the c.d.f. of a normal standard distribution. We can obtain the p.d.f by
taking the derivative w.r.t. y:

fw(y) =
∂Fw(y)

∂y
= −

√
2σ2 1

2
√

log A
y

y

A

−A
y2

(
φ

(
µ−

√
2σ2 log

A

y

)
+ φ

(
µ+

√
2σ2 log

A

y

))

=

√
2σ

2y
√

log A
y

(
φ

(
µ−

√
2σ2 log

A

y

)
+ φ

(
µ+

√
2σ2 log

A

y

))

=

√
2σ

2y
√

log A
y

1
√

2π

exp

−1

2

(
µ−

√
2σ2 log

A

y

)2
+ exp

−1

2

(
µ+

√
2σ2 log

A

y

)2


=
σ

y
√
π log A

y

exp

(
−

1

2
µ2
)

exp

(
−σ2 log

A

y

) exp
(
µσ
√

2 log A
y

)
+ exp

(
−µσ

√
2 log A

y

)
2

=
σ

y
√
π log A

y

exp

(
−

1

2
µ2
)( y

A

)σ2

cosh

(
µσ

√
2 log

A

y

)
,

where φ is the p.d.f. of a normal standard distribution.

τ < 0: We can derive the p.d.f. using similar steps. First, let us define
σ2 = − 1

τσ2
Q

=
σ2
P

σ2
P−σ

2
Q
, then the c.d.f. becomes:

Fw(y) = Φ

(
µ+

√
2σ2 log

y

A

)
− Φ

(
µ−

√
2σ2 log

y

A

)
,
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and the p.d.f. is:

fw(x) =
σ

y
√
π log y

A

exp

(
−1

2
µ2

)(
A

y

)σ2

cosh

(
µσ

√
2 log

y

A

)
.

We can consider both cases by defining σ2 =
σ2
P

|σ2
Q−σ

2
P |
.

Studying the behavior of the tail of the distribution when w is unbounded,
we discover that it displays a fat-tail behavior.

Proposition 4.2.2. If σ2
P > σ2

Q then there exists c > 0 and y0 > 0 such that
for any y ≥ y0, the p.d.f. fw can be lower bounded as fw(y) ≥ cy−1−σ2

(log y)−
1
2 .

Proof. Set z = y/A and let a > 0 be a constant, then for sufficiently large y it holds
that:

fw(y) ≥ az−1−σ2
(log z)−1/2 exp

(√
log z

)√2µσ
. (4.5)

We can first observe that, for z > 1, we have exp
(√

log z
)
≥ 1. Then, by replacing

z with y/A, we just need to change the constant a into c > 0.

Thanks to this result, we can see that the α-th moment of w(x) does not
exist when α− 1− σ2 ≥ −1 =⇒ α ≥ σ2 =

σ2
P

σ2
P−σ

2
Q
. As a consequence, we

can not bound in probability the importance weights using Bernstein-like
inequalities. Note that also the fact that the α-Rényi divergence is defined only
when σ2

α = ασ2
Q + (1− α)σ2

P > 0, i.e., α < σ2
P

σ2
P−σ

2
Q
confirms the non-existence

of the finite moments of importance weights.

4.2.2 Equal variances

If σ2
Q = σ2

P = σ2, the importance weights assume the following expression:

w(x) = exp

(
µP − µQ

σ2

(
x− µP + µQ

2

))
, (4.6)

for x ∼ Q. Under this condition, the importance weights w(x) are unbounded
and assume infimum value at 0. Also in this case, we can derive the p.d.f. of
the importance weights.

Proposition 4.2.3. Let Q ∼ N (µQ, σ
2) be the behavioral distribution and

P ∼ N (µP , σ
2) be the target distribution. The probability density function of

w(x) = q(x)/p(x) is given by:

fw(y) =
|σ̃|
√

2πy
3
2

exp

(
−1

2

(
µ̃2 + σ̃2 (log y)2)) , (4.7)
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where µ̃ =
µP−µQ

2σ
and σ̃ = σ

µP−µQ
.

Proof. We start computing the c.d.f.:

Fw(y) = Pr

(
exp

{
µP − µQ

σ2

(
x−

µP + µQ
2

)}
≤ y
)

= Pr

(
µP − µQ

σ2

(
x−

µP + µQ
2

)
≤ log y

)
.

Let us consider first the case µP − µQ > 0 and observe that x = µQ + σz, where
z ∼ N (0, 1):

Fw(y) = Pr

(
x ≤

µP + µQ
2

+
σ2

µP − µQ
log y

)
= Pr

(
z ≤

µP − µQ
2σ

+
σ

µP − µQ
log y

)
.

Set µ̃ =
µP−µQ

2σ and σ̃ = σ
µP−µQ . Then we have:

Fw(y) = Pr (z ≤ µ̃+ σ̃ log y) = Φ (µ̃+ σ̃ log y) .

We can obtain the p.d.f by taking the derivative w.r.t. y:

fw(y) =
∂Fw(y)

∂y

=
σ̃

y

1√
2π

exp

(
−1

2
(µ̃+ σ̃ log y)2

)
=

σ̃√
2πyµ̃σ̃+1

exp

(
−1

2

(
µ̃2 + σ̃2 (log y)2

))
.

When considering the case µP −µQ < 0, the p.d.f. differs only by a minus sign. We
can consider both cases by defining |σ̃| in the final formula.

We can note that, when the variance of the behavioral and target policies
is equal, then the tail behavior is different.

Proposition 4.2.4. If σ2
P = σ2

Q then for any α > 0 there exist c > 0
and y0 > 0 such that for any y ≥ y0, the p.d.f. can be upper bounded as
fw(y) ≤ cy−α.

Proof. If we consider all constant terms as c, we can write the p.d.f. as:

fw(y) = cy−3/2 exp
(

(log y)2
)− σ̃2

2
. (4.8)

For any α > 0, let us solve the following inequality:

y3/2 exp
(

(log y)2
) σ̃2

2 ≥ yα =⇒ y ≥ exp

(
2

σ̃2

(
α− 3

2

))
. (4.9)

Thus, for y ≥ exp
(

2
σ̃2

(
α− 3

2

))
we have that fw(y) ≤ cy−α.
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Figure 4.1: Probability density function of the importance weights when
the behavioral distribution is N (0, 1) and the mean is changed keeping the
variance equal to 1 (a) or the variance is changed keeping the target mean
equal to 1 (b).

The corresponding Rényi divergence is: α(µP−µQ)2

2σ2 , therefore all moments
of the importance weights exist. However, the distribution of w(x) remains

subexponential, as exp
(
(log y)2)− σ̃22 ≥ e−ηy for sufficiently large y.

In Figure 4.1 the p.d.f. of the importance weights, for different values of
mean and variance of the target distribution, is reported.

4.3 The Self-Normalized Importance Sampling
Estimator

In the previous section, we saw that the IS estimator can exhibit a very
high variance, when a target distribution is too far from the behavioral in
terms of the Rényi divergence. In order to reduce the variance problem of the
IS estimator, we can use the self-normalized importance sampling estimator
(SN) [6]:

µ̃P/Q =

∑N
i=1wP/Q(xi)f(xi)∑N

i=1wP/Q(xi)
=

N∑
i=1

w̃P/Q(xi)f(xi), (4.10)

where w̃P/Q(x) = wP/Q(x)/
∑N

i=1 wP/Q(xi) is the self-normalized importance
weight. µ̃P/Q is a biased estimator but it is consistent [30] and, since

∣∣µ̃P/Q∣∣ ≤
‖f‖∞, it has always finite variance. This typically leads to a more desirable
behavior. The SN estimator has the following interpretation: it can be seen
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as the expected value of f under an approximation of the distribution P made
by N deltas, i.e., p̃(x) =

∑N
i=1 w̃P/Q(x)δ(x − xi). The behavior of the SN

estimator can be studied using diagnostic indices [30]. The effective sample
size (ESS) was introduced in [19] and it represents the number of samples
drawn from P such that the variance of the Monte Carlo estimator µ̃P/P is
approximately equal to the variance of the SN estimator µ̃P/Q computed with
N samples. The definition and its estimate are the following:

ESS(P‖Q) =
N

Varx∼Q
[
wP/Q(x)

]
+ 1

=
N

d2(P‖Q)
, (4.11)

ÊSS(P‖Q) =
1∑N

i=1 w̃P/Q(xi)2
. (4.12)

We can note that if d2(P‖Q) = 1, i.e., P = Q almost everywhere, then
ESS = N since we are performing Monte Carlo estimation. If P 6= Q, then
the more the dissimilarity of the distribution increases, the more the ESS
decreases. In order to consider the properties of f , also other diagnostics
similar to ESS have been proposed [22].

4.4 Analysis of the SN Estimator
In this section, some results regarding the bias and the variance of the
self-normalized importance sampling estimator are provided. Thanks from
the result in [7], we can bound the expected squared difference between
non-self-normalized weight w(x) and self-normalized weight w̃(x).

Lemma 4.4.1. Let P and Q be two probability measures on the measurable
space (X ,F) such that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN
i.i.d. random variables sampled from Q. Then, for N > 0 and for any
i = 1, 2, . . . , N it holds that:

E
x∼Q

[(
w̃P/Q(xi)−

wP/Q(xi)

N

)2
]
≤ d2(P‖Q)− 1

N
. (4.13)

Proof. Since Varx∼Q
[
wP/Q(x)

]
= d2(P‖Q)−1, with basic algebraic manipulations,

we have the following:

E
x∼Q

[(
w̃P/Q(xi)−

wP/Q(xi)

N

)2
]

= E
x∼Q

( wP/Q(xi)∑N
j=1wP/Q(xj)

)2(
1−

∑N
j=1wP/Q(xj)

N

)2
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≤ E
x∼Q

(1−
∑N

j=1wP/Q(xj)

N

)2
 = Var

x∼Q

[∑N
j=1wP/Q(xj)

N

]

=
1

N
Var
x1∼Q

[
wP/Q(x1)

]
=
d2(P‖Q)− 1

N
.

Similarly, a bound on the bias of the SN estimator can be derived.

Proposition 4.4.1. Let P and Q be two probability measures on the measur-
able space (X ,F) such that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN
i.i.d. random variables sampled from Q and f : X → R be a bounded function
(‖f‖∞ <∞). Then, the bias of the SN estimator can be bounded as:∣∣∣∣ Ex∼Q [µ̃P/Q − E

x∼P
[f(x)]

]∣∣∣∣ ≤ ‖f‖∞min

{
2,

√
d2(P‖Q)− 1

N

}
. (4.14)

Proof. Since |µ̃P/Q| ≤ ‖f‖∞, then the bias cannot be larger than 2‖f‖∞. Exploiting
the fact that the IS estimator is unbiased, i.e., Ex∼Q

[
µ̂P/Q

]
= Ex∼P [f(x)], a bound

for the bias, which vanishes as N →∞, can be derived.∣∣∣∣ E
x∼Q

[
µ̃P/Q − E

x∼P
[f(x)]

] ∣∣∣∣ =

∣∣∣∣ E
x∼Q

[
µ̃P/Q − E

x∼Q

[
µ̂P/Q

]]∣∣∣∣ =

∣∣∣∣ E
x∼Q

[
µ̃P/Q − µ̂P/Q

]∣∣∣∣
≤ E

x∼Q

[∣∣µ̃P/Q − µ̂P/Q∣∣] =

= E
x∼Q

[∣∣∣∣∣
∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)
−
∑N
i=1 wP/Q(xi)f(xi)

N

∣∣∣∣∣
]

= E
x∼Q

[∣∣∣∣∣
∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

∣∣∣∣∣
∣∣∣∣∣1−

∑N
i=1 wP/Q(xi)

N

∣∣∣∣∣
]

(4.15)

≤ E
x∼Q

(∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

)2
 1

2

E
x∼Q

(1−
∑N
i=1 wP/Q(xi)

N

)2
 1

2

(4.16)

≤ ‖f‖∞

√
d2(P‖Q)− 1

N
, (4.17)

where (4.16) follows from (4.15) by applying Cauchy-Schwartz inequality

and in (4.17) the fact that
(∑N

i=1 wP/Q(xi)f(xi)∑N
i=1 wP/Q(xi)

)2

≤ ‖f‖2
∞ is used.

Since the the normalization term makes all the samples interdependent, it
is not trivial to bound the variance of the SN estimator. We can exploint the
boundedness of µ̃P/Q and derive some trivial bounds like: Varx∼Q

[
µ̃P/Q

]
≤

‖f‖2
∞. However, this bound does not shrink with the number of samples N .
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The following approximation, derived using the delta method [55, 30], has
been proposed in the literature:

Var
x∼Q

[
µ̃P/Q

]
=

1

N
E

x1∼Q

[
w2
P/Q(x1)

(
f(x1)− E

x∼P
[f(x)]

)2
]

+ o(N−2). (4.18)

The Mean Squared Error (MSE) of the SN estimator, which is the sum of
the variance and the bias squared, can be dicectly bounded.

Proposition 4.4.2. Let P and Q be two probability measures on the measur-
able space (X ,F) such that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN
i.i.d. random variables sampled from Q and f : X → R be a bounded function
(‖f‖∞ < +∞). Then, the MSE of the SN estimator can be bounded as:

MSEx∼Q
[
µ̃P/Q

]
≤ 2‖f‖2

∞min

{
2,

2d2(P‖Q)− 1

N

}
. (4.19)

Proof. Since µ̃P/Q is bounded by ‖f‖∞ then its MSE cannot be larger than 4‖f‖2∞.
We can sum and subtract the IS estimator µ̂P/Q and manipulate the MSE expression:

MSEx∼Q
[
µ̃P/Q

]
= E

x∼Q

[(
µ̃P/Q − E

x∼P
[f(x)]

)2]
= E

x∼Q

[(
µ̃P/Q − E

x∼P
[f(x)]± µ̂P/Q

)2]
(4.20)

≤ 2 E
x∼Q

[(
µ̃P/Q − µ̂P/Q

)2]
+ 2 E

x∼Q

[(
µ̂P/Q − E

x∼P
[f(x)]

)2]
(4.21)

≤ 2 E
x∼Q

(∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

)2(
1−

∑N
i=1 wP/Q(xi)

N

)2
 (4.22)

+ 2 Var
x∼Q

[
µ̂P/Q

]
(4.23)

≤ 2‖f‖2∞ E
x∼Q

(1−
∑N
i=1 wP/Q(xi)

N

)2
+ 2 Var

x∼Q

[
µ̂P/Q

]
(4.24)

≤ 2‖f‖2∞ Var
x∼Q

[∑N
i=1 wP/Q(xi)

N

]
+ 2 Var

x∼Q

[
µ̂P/Q

]
(4.25)

≤ 2‖f‖2∞
d2(P‖Q)− 1

N
+ 2‖f‖2∞

d2(P‖Q)

N
(4.26)

= 2‖f‖2∞
2d2(P‖Q)− 1

N
, (4.27)

where line (4.21) follows from line (4.20) by applying the inequality (a+ b)2 ≤

2(a2 + b2), (4.24) follows from (4.23) by observing that
(∑N

i=1 wP/Q(xi)f(xi)∑N
i=1 wP/Q(xi)

)2

≤
‖f‖2

∞.
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4.5 Importance Sampling and Natural Gradi-
ent

We can look at a parametric distribution Pω, having pω as a density function,
as a point on a probability manifold with coordinates ω ∈ Ω. If pω is
differentiable, we can define the Fisher Information Matrix (FIM) [36, 2]
as: F(ω) =

∫
X pω(x)∇ω log pω(x)∇ω log pω(x)T dx. The FIM is an invariant

metric (up to a scale), [1] on parameter space Ω, i.e., κ(ω′ − ω)TF(ω)(ω′ − ω)
is independent on the specific parameterization and provides a second order
approximation of the distance between pω and pω′ on the probability manifold
up to a scale factor κ ∈ R. We can define the natural gradient [1, 17] for
a loss function L(ω), as ∇̃ωL(ω) = F−1(ω)∇ωL(ω), which represents the
steepest ascent direction in the probability manifold. Thanks to the invariance
property, there is a connection between the geometry induced by the Rényi
divergence and the Fisher information metric.

Theorem 4.5.1. Let pω be a p.d.f. differentiable w.r.t. ω ∈ Ω. Then, it
holds that, for the Rényi divergence:

Dα(pω′‖pω) =
α

2
(ω′ − ω)

T F(ω) (ω′ − ω) + o(‖ω′ − ω‖2
2),

and for the exponentiated Rényi divergence:

dα(pω′‖pω) = 1 +
α

2
(ω′ − ω)

T F(ω) (ω′ − ω) + o(‖ω′ − ω‖2
2).

Proof. Let us compute the second-order Taylor expansion of the α-Rényi divergence.
First, consider the term:

I(ω′) =

∫
X

(
pω′(x)

pω(x)

)α
pω(x) dx =

∫
X
pω′(x)αpω(x)1−α dx. (4.28)

The gradient w.r.t. ω′ is:

∇ω′I(ω′) =

∫
X
∇ω′pω′(x)αpω(x)1−α dx = α

∫
X
pω′(x)α−1pω(x)1−α∇ω′pω′(x) dx.

Thus, ∇ω′I(ω′)|ω′=ω = 0. We can compute the Hessian matrix:

Hω′I(ω′) = ∇ω′∇Tω′I(ω′) = α∇ω′
∫
X
pω′(x)α−1pω(x)1−α∇Tω′pω′(x) dx

= α

∫
X

(α− 1)pω′(x)α−2pω(x)1−α∇ω′pω′(x)∇Tω′pω′(x) dx+

+ α

∫
X
pω′(x)α−1pω(x)1−αHω′pω′(x) dx.
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Evaluating the Hessian in ω we have:

Hω′I(ω′)|ω′=ω = α(α− 1)

∫
X
pω(x)−1∇ωpω(x)∇Tωpω(x) dx

= α(α− 1)

∫
X
pω(x)∇ω log pω(x)∇Tω log pω(x) dx = α(α− 1)F(ω).

Now, Dα(pω′‖pω) = 1
α−1 log I(ω′). Thus:

∇ω′Dα(pω′‖pω)|ω′=ω =
1

α− 1

∇ω′I(ω′)

I(ω′)

∣∣∣∣
ω′=ω

= 0,

Hω′Dα(pω′‖pω)|ω′=ω =
1

α− 1

I(ω′)Hω′I(ω′) +∇ω′I(ω′)∇Tω′I(ω′)

(I(ω′))2

∣∣∣∣
ω′=ω

=
1

α− 1
Hω′I(ω′)|ω′=ω = αF(ω),

since I(ω) = 1. Computing the gradient of dα(pω′‖pω) wrt w.r.t. ω′, we have:

∇ω′dα(pω′‖pω)|ω′=ω = ∇ω′ exp (Dα(pω′‖pω))|ω′=ω
= exp (Dα(pω′‖pω))∇ω′Dα(pω′‖pω)|ω′=ω = 0,

Hω′dα(pω′‖pω)|ω′=ω = Hω′ exp (Dα(pω′‖pω))|ω′=ω
= exp (Dα(pω′‖pω))

(
Hω′Dα(pω′‖pω) +∇ω′Dα(pω′‖pω)∇Tω′Dα(pω′‖pω)

)
|ω′=ω

= αF(ω).

Thanks to this result, we have an approximate expression for the vari-
ance of the importance weights, as Varx∼pω

[
wω′/ω(x)

]
= d2(pω′‖pω) − 1 '

α
2

(ω′ − ω)T F(ω) (ω′ − ω). Since performing a step in the natural gradient
has a measurable effect on the variance of the importance weights, this result
justifies the use of natural gradient in off-policy optimization.
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Chapter 5

Optimization via Importance
Sampling

5.1 Concentration Inequality

In the off-policy optimization problem [52], we want to find the best target
policy πT (or hyperpolicy νT ), given samples collected by a behavioral policy
πB (or hyperpolicy νB). We can consider the following, more general, optimiza-
tion problem: finding the target distribution P maximizing the expected value
of a bounded function Ex∼P [f(x)], using samples collected from a behavioral
distribution Q. If we decide to optimize directly the importance sampling
estimator µ̂P/Q or µ̃P/Q the optimization process is going to assign as much
probability mass as possible to the maximum value among f(xi). This would
lead to an unreliable target policy, as the variance of the estimator could be
high. In order to avoid this scenario, we decide to use a risk-averse approach,
optimizing a statistical lower bound of the expected value Ex∼P [f(x)] which
holds with high confidence. The use of a lower bound can be seen as a penalty
optimization method, as it maximizes the IS estimator but it penalizes for
choices of the target distribution leading to a high variance. The connection
between the variance of the estimator and the dissimilarity of the distributions
can be expressed in terms of the Rényi divergence. Indeed, studying the
behavior of the IS estimator, we derive the following bound on the variance
of µ̂P/Q in terms of the Renyi divergence.

Lemma 5.1.1. Let P and Q be two probability measures on the measurable
space (X ,F) such that P � Q. Let x = (x1, x2, . . . , xN)T i.i.d. random
variables sampled from Q and f : X → R be a bounded function (‖f‖∞ <
+∞). Then, for any N > 0, the variance of the IS estimator µ̂P/Q can be
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upper bounded as:

Var
x∼Q

[
µ̂P/Q

]
≤ 1

N
‖f‖2

∞d2 (P‖Q) . (5.1)

Proof. Since xi are i.i.d. we can write:

Var
x∼Q

[
µ̂P/Q

]
≤ 1

N
Var
x1∼Q

[
p(x1)

q(x1)
f(x1)

]
≤ 1

N
E

x1∼Q

[(
p(x1)

q(x1)
f(x1)

)2
]

≤ 1

N
‖f‖2∞ E

x1∼Q

[(
p(x1)

q(x1)

)2
]

=
1

N
‖f‖2∞d2 (P‖Q) .

When P = Q almost everywhere, we get Varx∼Q
[
µ̂Q/Q

]
≤ 1

N
‖f‖2

∞, the
bound on the variance of a Monte Carlo estimator. Thanks to the relation
between the Rényi divergence and the Effective Sample Size (ESS) (4.12), we
can write the bound in terms of the ESS: Varx∼Q

[
µ̂P/Q

]
≤ ‖f‖2∞

ESS(P‖Q)
, i.e., the

variance scales with ESS instead of N .
Several statistical lower bound have been proposed in the literature for

offline policy evaluation [53] and for optimization [52]. However, studying
the properties of the IS estimator, we discover that many of the assumptions
required by these lower bounds are failing to hold, or can introduce unaccept-
able limitations.

Student-T inequality
A first possible choice could be to rely on the Central Limit Theorem (CLT).
If we assume to have x = (x1, x2, . . . , xN )T i.i.d. random variables with finite
variance Var[µ̂P/Q] = σ2, then, applying the CLT, for N sufficiently large, we
have:

µ̂P/Q ∼ N
(
µP/Q,

σ2

N

)
This would lead to the following statistical lower bound:

Theorem 5.1.1. Let P and Q be two probability measures on the measurable
space (X ,F) such that P � Q and Var[µ̂P/Q] = σ2 < +∞. Let x1, x2, . . . , xN
be i.i.d. random variables sampled from Q, and f : X → R be a bounded
function (‖f‖∞ < +∞). Then, for N sufficiently large and for any 0 < δ ≤ 1,
with probability at least 1− δ it holds that:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

wP/Q(xi)f(xi)−
σ√
N
t1−δ,N−1 (5.2)

26



However, the value of σ is unknown and must be estimate using Importance
Sampling. Choosing this bound would introduce further uncertainty in the op-
timization process and would lead to a not reliable estimate with high variance.

Hoeffding Inequality
Hoeffding inequality assumes that we know the maximum of the estimator.
Under this assumption, we have the following lower bound:

Theorem 5.1.2. Let P and Q be two probability measures on the measurable
space (X ,F) such that P � Q and d∞(P‖Q) = M < +∞. Let x1, x2, . . . , xN
be i.i.d. random variables sampled from Q, and f : X → R be a bounded
function (‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with probability
at least 1− δ it holds that:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

wP/Q(xi)f(xi)−M
√

log(1/δ)

2N
(5.3)

Constraining this value to be finite, i.e., ||µ̂P/Q||∞ = M < +∞, is equiva-
lent to constraining d∞ (P‖Q) < +∞. Unfortunately, even in the particular
case of univariate Gaussian distributions, this lead to an unacceptable lim-
itation: as we reported in Section 4.1, this constraint does not allow the
optimization process to reach a target policy whose variance is higher than the
behavioral one. Hence, the variance of the distribution is going to decrease at
every optimization step, which might be a problem if we want our policy to
be able to explore the environment.

Bernstein Inequality
Bernstein-like inequalities, which can also be used under Hoeffding’s assump-
tions, assume that the estimator has a sub-exponential distribution, which
means, in particular, that its tail has to converge to zero at least as fast as
an exponential distribution. Thanks to the analysis on the IS distribution
in Section 4.1, we discover that this is not the case. Indeed, the tail of the
distribution can be lower bounded by a logarithmic function, hence displaying
a fat-tail behavior. This prevents from using bounds which rely on Bernstein
inequality.

Cantelli’s inequality
We decide to rely on Chebyshev-like inequalities, in particular on Cantelli’s
inequality, which assumes that the variance of the importance weights has to
be finite, i.e., d2(P‖Q) < +∞. Under this condition, when using univariate
Gaussian distributions, the target distribution can have a standard deviation
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which is at most two times the behavioral one, thus the policy can still explore
sufficiently the environment.

Theorem 5.1.3. Let P and Q be two probability measures on the measurable
space (X ,F) such that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN be
i.i.d. random variables sampled from Q, and f : X → R be a bounded function
(‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with probability at least
1− δ it holds that:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

wP/Q(xi)f(xi)− ‖f‖∞

√
(1− δ)d2(P‖Q)

δN
. (5.4)

Proof. We take the random variable µ̂P/Q = 1
N

∑N
i=1wP/Q(xi)f(xi) and apply

Cantelli’s inequality:

Pr

(
µ̂P/Q − E

x∼P
[f(x)] ≥ λ

)
≤ 1

1 + λ2

Varx∼Q[µ̂P/Q]

. (5.5)

Set δ = 1

1+ λ2

Varx∼Q[µ̂P/Q]
and consider the complementary event. Then, with proba-

bility at least 1− δ, we have:

E
x∼P

[f(x)] ≥ µ̂P/Q −

√
1− δ
δ

Var
x∼Q

[
µ̂P/Q

]
. (5.6)

By replacing the variance with the bound in Theorem 5.1.3 we get the result.

In this bound, we can see a trade-off between the estimated performance
and the variability introduced by changing the distribution. The main in-
tuition is that we should optimize the unbiased IS estimator µ̂P/Q, but we
should penalize for optimization steps leading to a target distribution which
is too dissimilar w.r.t. the behavioral one. In such cases, the estimator is not
reliable and the learning process could be highly unstable. The penalization
term is expressed in terms of the Rényi divergence of order two between the
target distribution P and the behavioral distribution Q. When using the
SN estimator, accounting for the bias, we can derive a similar lower bound,
hence, the optimization process is the same. We can condense all the constant
of the lower bound of Theorem 5.1.3 in λ = ‖f‖∞

√
(1− δ)/δ and obtain a

surrogate objective function.
Thanks to this result, a high confidence bound for the SN estimator, using

Cantelli’s inequality, can be derived.
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Proposition 5.1.1. Let P and Q be two probability measures on the measur-
able space (X ,F) such that P � Q and d2(P‖Q) < +∞. Let x1, x2, . . . , xN
i.i.d. random variables sampled from Q and f : X → R be a bounded function
(‖f‖∞ < +∞). Then, for any 0 < δ ≤ 1 and N > 0 with probability at least
1− δ:

E
x∼P

[f(x)] ≥ 1

N

N∑
i=1

w̃P/Q(xi)f(xi)− 2‖f‖∞min

{
1,

√
d2(P‖Q)(4− 3δ)

δN

}
.

Proof. In order to obtain this result we have to apply Cantelli’s inequality and to
account for the bias. Consider the random variable µ̃P/Q = 1

N

∑N
i=1 w̃P/Q(xi)f(xi)

and let λ̃ = λ−
∣∣Ex∼P [f(x)]− Ex∼P

[
µ̃P/Q

]∣∣:
Pr
(
µ̃P/Q − E

x∼P
[f(x)] ≥ λ

)
= Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ+ E

x∼P
[f(x)]− E

x∼P

[
µ̃P/Q

])
≤ Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ−

∣∣∣ E
x∼P

[f(x)]− E
x∼P

[
µ̃P/Q

]∣∣∣)
= Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ̃

)
.

We can apply Cantelli’s inequality:

Pr
(
µ̃P/Q − E

x∼P
[f(x)] ≥ λ

)
≤ Pr

(
µ̃P/Q − E

x∼P

[
µ̃P/Q

]
≥ λ̃

)
(5.7)

≤ 1

1 + λ̃2

Varx∼Q[µ̃P/Q]

=
1

1 +
(λ−|Ex∼P [f(x)]−Ex∼P [µ̃P/Q]|)2

Varx∼Q[µ̃P/Q]

. (5.8)

Set δ = 1

1+
(λ−|Ex∼P [f(x)]−Ex∼P [µ̃P/Q]|)2

Varx∼Q[µ̃P/Q]

and consider the complementary event:

then, with probability at least 1− δ, we have:

E
x∼P

[f(x)] ≥ µ̃P/Q −
∣∣∣ E
x∼P

[f(x)]− E
x∼P

[
µ̃P/Q

]∣∣∣−√1− δ
δ

Var
x∼Q

[
µ̃P/Q

]
(5.9)

The bias term
∣∣Ex∼P [f(x)]− Ex∼P

[
µ̃P/Q

]∣∣ can be bounded using equation (4.14)
and the variance term can be bounded using the MSE in equation (4.19).
Then we have:

E
x∼P

[f(x)] ≥ µ̃P/Q − ‖f‖∞

√
d2(P‖Q)− 1

N
− ‖f‖∞

√
1− δ
δ

2(2d2(P‖Q)− 1)

N
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≥ µ̃P/Q − ‖f‖∞

√
d2(P‖Q)

N
− ‖f‖∞

√
1− δ
δ

4d2(P‖Q)

N

= µ̃P/Q − ‖f‖∞

√
d2(P‖Q)

N

(
1 + 2

√
1− δ
δ

)

≥ µ̃P/Q − 2‖f‖∞

√
d2(P‖Q)

N

√
1 +

4(1− δ)
δ

≥ µ̃P/Q − 2‖f‖∞

√
d2(P‖Q)(4− 3δ)

δN
,

when in the last line the fact that
√
a +
√
b ≤ 2

√
a+ b for any a, b ≥ 0 is

used. Finally, since the range of the SN estimator is 2‖f‖∞, we obtain the
result.

Note that the bound has the same dependence on d2 as in Theorem 5.1.3.
This allows to optimize the same surrogate objective function for both IS and
SN estimators.
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Algorithm 1 Action-based POIS
Initialize θ0

0 arbitrarily
for j = 0, 1, 2, ..., until convergence do

Collect N trajectories with π
θj0

for k = 0, 1, 2, ..., until convergence do
Compute G(θjk), ∇θjkL(θjk/θ

j
0) and αk

θjk+1 = θjk + αkG(θjk)
−1∇

θjk
L(θjk/θ

j
0)

end for
θj+1

0 = θjk
end for

5.2 Policy Optimization via Importance Sam-
pling

The bound we found in Theorem 5.1.3 can be adapted to the Reinforcement
Learning setting. In particular, in this section, we see how we can customize
it for policy optimization. This leads to a novel, model-free, actor-only,
policy search algorithm, which we call Policy Optimization via Importance
Sampling (POIS). The proposed bound is adapted both in the Action-based
and Parameter-based settings. We call these two variants A-POIS and P-POIS,
respectively.

5.2.1 Action-based POIS

In Action-based methods, we want to find the policy parameters θ∗ maximizing
JD(θ) within a parametric space ΠΘ = {πθ : θ ∈ Θ ⊆ Rp} of stochastic
differentiable policies. In order to use the results obtained in the previous
section, and to adapt the surrogate objective function, we substitute the
behavioral (resp. target) distribution Q (resp. P) with the behavioral (resp.
target) distribution over the trajectories p(·|θ) (resp. p(·|θ′)) generated by the
behavioral policy πθ (resp. target policy πθ′). In this setting, the uniformly
bounded function f becomes the trajectory return R(τ) (it is uniformly
bounded since |R(τ)| ≤ Rmax

1−γH
1−γ ).

5.2.2 Estimation of the Rényi divergence

The surrogate objective function in A-POIS contains the Rényi divergence
between the target distribution p(·|θ′) and the behavioral distribution p(·|θ)
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in terms of the trajectories. Computing this term is intractable as it requires
to integrate over all the space of trajectories. When the agent is acting
in stochastic environments, computing this term requires also to know the
transition model P, which is unknown in the model-free setting. We can
provide an exact bound on the Rényi divergence over trajectories when the
horizon of the tasks is finite.

Proposition 5.2.1. Let p(·|θ) and p(·|θ′) be the behavioral and target tra-
jectory probability density functions. Let H <∞ be the task-horizon. Then,
it holds that:

dα (p(·|θ′)‖p(·|θ)) ≤
(

sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))
)H

.

Proof. The proposition is proven by induction on the horizon H. Let us define dα,H
as the α-Rényi divergence at horizon H. For H = 1 we have:

dα,1
(
p(·|θ′)‖p(·|θ)

)
=

∫
S
D(s0)

∫
A
πθ(a0|s0)

(
πθ′(a0|s0)

πθ(a0|s0)

)α ∫
S
P (s1|s0, a0) ds1 da0 ds0

=

∫
S
D(s0)

∫
A
πθ(a0|s0)

(
πθ′(a0|s0)

πθ(a0|s0)

)α
da0 ds0

≤
∫
S
D(s0) ds0 sup

s∈S

∫
A
πθ(a0|s)

(
πθ′(a0|s)
πθ(a0|s)

)α
da0

≤ sup
s∈S

dα (πθ′(·|s)‖πθ(·|s)) ,

where in the last but one passage Holder’s inequality is used. Assume that the
proposition holds for any H ′ < H. We need to prove that it holds for H.

dα,H

(
p(·|θ′)‖p(·|θ)

)
=

=

∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

×
∫
A
πθ(aH−1|sH−1)

(
πθ′(aH−1|sH−1)

πθ(aH−1|sH−1)

)α ∫
S
P (sH |sH−1, aH−1) ds0 . . . dsH−1

× daH−2 dsH−1 daH−1 dsH

=

∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

×
∫
A
πθ(aH−1|sH−1)

(
πθ′(aH−1|sH−1)

πθ(aH−1|sH−1)

)α
ds0 . . . dsH−1 daH−2 dsH−1 daH−1

≤
∫
S
D(s0) · · ·

∫
A
πθ(aH−2|sH−2)

(
πθ′(aH−2|sH−2)

πθ(aH−2|sH−2)

)α ∫
S
P (sH−1|sH−2, aH−2)

× ds0 . . . dsH−1 daH−2 dsH−1 × sup
s∈S

∫
A
πθ(aH−1|s)

(
πθ′(aH−1|s)
πθ(aH−1|s)

)α
daH−1

≤ dα,H−1
(
p(·|θ′)‖p(·|θ)

)
sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))
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≤
(

sup
s∈S

dα (πθ′(·|s)‖πθ(·|s))
)H

,

where, as before, Holder’s inequality is applied and, in the last step, we use the
inductive hypothesis.

Unfortunately, this bound is very conservative and it requires to compute
the supremum among all the states. For A-POIS, we need to find an estimate
of the Rényi divergence. We can obtain an estimator using a sample-based
version of the definition (4.2) of the Rényi divergence:

d̂α (P‖Q) =
1

N

N∑
i=1

(
p(xi)

q(xi)

)α
=

1

N

N∑
i=1

wαP/Q(xi), (5.10)

where xi ∼ Q. This estimator is unbiased, but it requires to use distribution
over trajectories. We can express in exact form these probabilities in terms
of the policies, providing the following formula for the α-Rényi divergence:

dα (p(·|θ′)‖p(·|θ)) =

∫
T
p(·|θ)(τ)

(
p(τ |θ′)
p(τ |θ)

)α
dτ =

=

∫
T
D(sτ,0)

H−1∏
t=0

P (sτ,t+1|sτ,t, aτ,t)
H−1∏
t=0

πθ(aτ,t|sτ,t)
(
πθ′(aτ,t|sτ,t)
πθ(aτ,t|sτ,t)

)α
dτ.

The term dα (πθ′(·|s)‖πθ(·|s)) can be computed exactly since both πθ and πθ′
are known. Thus, we propose the following estimate for the Rényi divergence
between two distributions on trajectories:

d̂α (p(·|θ′)‖p(·|θ)) =
1

N

N∑
i=1

H−1∏
t=0

dα (πθ′(·|sτi,t)‖πθ(·|sτi,t)) . (5.11)

Thus, we obtain the following surrogate objective:

LA−POIS
λ (θ′/θ) =

1

N

N∑
i=1

wθ′/θ(τi)R(τi)− λ

√
d̂2 (p(·|θ′)‖p(·|θ))

N
, (5.12)

where wθ′/θ(τi) = p(τi|θ′)
p(τi|θ)

=
∏H−1

t=0

πθ′ (aτi,t|sτi,t)
πθ(aτi,t|sτi,t)

. We focus in the particular case
in which πθ(·|s) is a Gaussian distribution whose mean is a function of the
state and the diagonal covariance is state-independent: N (uµ(s), diag(σ2)),
where θ = (µ,σ). Online and offline optimization steps alternate in learning.
At each online iteration j, we use the current behavioral policy πθj0 to interact
with the environment and collect a batch of trajectories. These trajectories
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Algorithm 2 Parameter-based POIS
Initialize ρ0

0 arbitrarily
for j = 0, 1, 2, ..., until convergence do

Sample N policy parameters θji from ν
ρj0

Collect a trajectory with each π
θji

for k = 0, 1, 2, ..., until convergence do
Compute G(ρjk), ∇ρjkL(ρjk/ρ

j
0) and αk

ρjk+1 = ρjk + αkG(ρjk)
−1∇

ρjk
L(ρjk/ρ

j
0)

end for
ρj+1

0 = ρjk
end for

are used offline to optimize the surrogate objective function LA−POIS
λ via

gradient ascent: θjk+1 = θjk + αkG(θjk)
−1∇θjkL(θjk/θ

j
0), where αk > 0 is the

step size, selected using a line search method (see Section 5.3.1) and G(θjk)
is a general positive semi-definite matrix (e.g., F(θjk), the FIM, for natural
gradient). The pseudo-code of A-POIS is reported in Algorithm 1.

5.2.3 Parameter-based POIS

In Parameter-based methods, we want to find the hyperpolicy parameters
ρ∗ maximizing JD(ρ) within a parametric hyperpolicy space, which we call
NP = {νρ : ρ ∈ P ⊆ Rr} of stochastic differentiable hyperpolicies. In this
setting, the policy πθ′ , which is assumed to be deterministic (πθ(a|s) =
δ(a− uθ(s)), where uθ is a deterministic function of the state s[42, 14]), is
not required to be differentiable. In order to use the results obtained in the
previous section, and to adapt the surrogate objective function, we substitute
the behavioral (resp. target) distribution Q (resp. P) with the behavioral
(resp. target) hyperpolicy νρ (resp. νρ′ . As in A-POIS, the uniformly bounded
function f becomes the trajectory return R(τ). At the beginning of each
episode, the the policy parameters θ are sampled from the hyperpolicy. The
importance weight for P-POIS becomes τ : wρ′/ρ(θ) =

νρ′ (θ)p(τ |θ)

νρ(θ)p(τ |θ)
=

νρ′ (θ)

νρ(θ)
.

Thus, we obtain the following surrogate objective:

LP−POIS
λ (ρ′/ρ) =

1

N

N∑
i=1

wρ′/ρ(θi)R(τi)− λ
√
d2 (νρ′‖νρ)

N
. (5.13)

We focus in the particular case in which νρ is a Gaussian with diagonal
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covariance matrix, i.e., N (µ, diag(σ2)) with ρ = (µ,σ).
As in A-POIS, learning uses online and offline optimization steps. At each

online iteration j, we use the current behavioral hyperpolicy νρj0 to interact
with the environment and collect a batch of trajectories. These trajectories
are used offline to optimize the surrogate objective function LP−POIS

λ via
gradient ascent: ρjk+1 = ρjk + αkG(ρjk)

−1∇ρjkL(ρjk/ρ
j
0), where αk > 0 is the

step size, selected using a line search method (see Section 5.3.1) and G(ρjk)
is a general positive semi-definite matrix (e.g., F(ρjk), the FIM, for natural
gradient). The pseudo-code of P-POIS is reported in Algorithm 2.

Differently from A-POIS, here the term d2 (νρ′‖νρ) can be computed ex-
actly. Moreover, when the hyperpolicy is a Gaussian with diagonal covariance
matrix, the FIM F(ρ) is also diagonal and can be computed exactly [25].
This makes the use of the natural gradient much easier in P-POIS.

5.3 Implementation details

In this Section, we provide some aspects about our implementation of POIS.

5.3.1 Line Search

At every iteration k performed offline, we change the parameters in the
direction of the natural gradient G(θjk)

−1∇θjkL(θjk/θ
j
0) with a step size αk such

that the improvement is maximized. Most gradient-based methods use the
step size of the optimizer as an hyperparameter to tune. We adopt a different
approach and derive a line search method for finding an adaptive step-size.
The main idea of this method is to locally approximate the objective function
L(θ), in the direction of the gradient, G−1(θ)∇θL(θ), as a concave parabola
in the Riemann manifold with G(θ) as Riemann metric tensor. Suppose we
know an initial point θ0, the gradient in that point G(θ0)

−1∇θL(θ0) and
another point: θl = θ0 + αlG(θ0)

−1∇θL(θ0). Then we can compute for
both points the loss function: L0 = L(θ0) and Ll = L(θl) and define as
∆Ll = Ll − L0 the objective function improvement. In this approximation
setting, thanks to this assumption, we can compute the global maximum,
which corresponds to the vertex of the parabola. We can define the parabola
l(α) = L (θ0 + αG−1(θ0)∇θL(θ0))− L(θ0), which can be written as l(α) =
aα2 + bα+ c. Since, by definition of l(α), we have that c = 0, we can compute
the value of a and b as follows:

b =
∂l

∂α

∣∣∣∣
α=0

=
∂

∂α
L
(
θ0 + αG−1(θ0)∇θL(θ0)

)
− L(θ0)|α=0 =
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= ∇θL(θ0)TG−1(θ0)∇θL(θ0) =

= ‖∇θL(θ0)‖2
G−1(θ0),

l(αl) = aα2
l + bαl = aα2

l + ‖∇θL(θ0)‖2
G−1(θ0)αl = ∆Ll =⇒

=⇒ a =
∆Ll − ‖∇θL(θ0)‖2

G−1(θ0)αl

α2
l

.

Therefore, the parabola has the form:

l(α) =
∆Ll − ‖∇θL(θ0)‖2

G−1(θ0)αl

α2
l

α2 + ‖∇θL(θ0)‖2
G−1(θ0)α. (5.14)

The parabola is concave only if ∆Ll < ‖∇θL(θ0)‖2
G−1(θ0)αl. We can compute

the position of the vertex as:

αl+1 =
‖∇θL(θ0)‖2

G−1(θ0)α
2
l

2
(
‖∇θL(θ0)‖2

G−1(θ0)αl −∆Ll
) . (5.15)

As in [23], we can define αl = εl/‖∇θL(θ0)‖2
G−1(θ0) and have a simplified

expression. Then we have:

εl+1 =
ε2l

2(εl −∆Ll)
. (5.16)

In the case where the parabola is convex, i.e., ∆Ll ≥ ‖∇θL(θ0)‖2
G−1(θ0)αl, we

can distinguish between two cases: i) ∆Ll > ‖∇θL(θ0)‖2
G−1(θ0)αl, the function

is sublinear and in this case we use (5.16) to determine the new step size
αl+1 = εl+1/‖∇θL(θ0)‖2

G−1(θ0); ii) ∆Ll ≥ ‖∇θL(θ0)‖2
G−1(θ0)αl, the function is

superlinear, in this case we increase the step size multiplying by η > 1, i.e.,
αl+1 = ηαl. We can condense the update procedure as:

εl+1 =

{
ηεl if ∆Ll > εl(2η−1)

2η
ε2l

2(εl−∆Ll)
otherwise

. (5.17)

We iterate this process for a fixed amount of iterations, or until the objective
function improvement is too small. Pseudocode is reported in Algorithm 3.
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Algorithm 3 Parabolic Line Search
Input: tol∆L = 1e− 4, Mls = 30, L0

Output : α∗

α0 = 0
ε1 = 1
∆Lk−1 = −∞
for l = 1, 2, . . . ,Mls do

αl = εl/‖∇θL(θ0)‖2
G−1(θ0)

θl = αlG−1(θ0)∇θL(θ0)
∆Ll = Ll − L0

if ∆Ll < ∆Ll−1 + tol∆L then
return αl−1

end if

εl+1 =

{
ηεl if ∆Ll > εl(1−2η)

2η
ε2l

2(εl−∆Ll)
otherwise

end for

5.3.2 Computation of the Fisher Matrix
In A-POIS we cannot obtain the exact expression of the Fisher Information
Matrix and we need to estimate it off-policy from samples. Using the IS
estimator, we obtain the following estimate for the FIM:

F̂(θ′/θ) =
1

N

N∑
i=1

wθ′/θ(τi)

(
H−1∑
t=0

∇θ′ log πθ′(aτi,t|sτi,t)

)T (H−1∑
t=0

∇θ′ log πθ′(aτi,t|sτi,t)

)
.

We can replace wθ′/θ(τi) with w̃θ′/θ(τi) in order to obtain an estimate of the
FIM using the SN estimator. Unfortunately, when θ′ is far from θ, these
estimators are not reliable due to the high variance induced by the IS process.
On the contrary, in P-POIS, when Gaussian hyperpolicies are used, we can
compute the FIM exactly [47]. If the hyperpolicy has diagonal covariance
matrix, i.e., νµ,σ = N (µ, diag(σ2)), the FIM is also diagonal:

F(µ,σ) =

(
diag(1/σ2) 0

0 2I

)
,

where I is a properly-sized identity matrix.

5.3.3 Practical surrogate objective functions

The exact Rényi divergence for P-POIS and the approximated version for
A-POIS tend to be very conservative. In order to mitigate this problem, we
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can rely on the fact that d2(P‖Q)/N = 1/ESS(P‖Q), from equation (4.12).
We can use an estimate ÊSS(P‖Q), as presented in equation (4.12), in order
to estimate the Rényi divergence. This leads to the following approximated
surrogate objective functions:

L̃A−POIS
λ (θ′/θ) =

1

N

N∑
i=1

wθ′/θ(τi)R(τi)−
λ√

ÊSS (p(·|θ′)‖p(·|θ))

,

L̃P−POIS
λ (ρ′/ρ) =

1

N

N∑
i=1

wρ′/ρ(θi)R(τi)−
λ√

ÊSS (νρ′‖νρ)
.

Moreover, in all the experiments, we use the empirical maximum reward in
place of the true Rmax.

5.3.4 Practical P-POIS for Deep Neural Policies (N-
POIS)

When using Deep policies, P-POIS suffers from a curse of dimensionality
because of the high number of parameters (in the Deep Neural Network we
use as policy, the number of parameters are 103). The dimensionality of the
corresponding Gaussian hyperpolicy (with diagonal covariance matrix) is very
high, producing very unstable results when sampling. This can cause a very
conservative behavior in the optimization process, preventing any learning.
We decide to group the policy parameters in smaller blocks, and to learn each
group independently. We can see each neuron of the network as a function:

Ui(x|θm) = g(xTθm),

where x is the vector of weights an biases connected to the input of the neuron
and g(·) is an activation function. We associate a set of parameters Θm for each
unit Um such that θm ∈ Θm. Then, for each corresponding hyperparameter
subspace Pm, we can compute, as before, a surrogate objective function which
we optimize using natural gradient ascent, with the step size found by the
line search:

L̃N−POIS
λ (ρ′m/ρm) =

1

N

N∑
i=1

w̃ρ′m/ρm(θim)R(τi)−
λ√

ÊSS
(
νρ′m‖νρm

) ,
where ρm,ρ′m ∈ Pm,θm ∈ Θm. This trick reduces the dimension of the
multivariate Gaussian hyperpolicies from ∼ 103 to ∼ 102. This variant of the
algorithm is called Neuron-Based POIS (N-POIS).
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Chapter 6

Experimental Evaluation

6.1 Description of the Simulated Environments
The algorithm is tested in a suite of continuous control tasks [11] and compared
with state-of-the-art policy gradient algorithms. The suite contains classical
problems like Mountain Car [26], Cart-Pole Balancing [3] , Swimmer [33, 20],
double-inverted pendulum [12] and acrobot [9, 28, 10], as well as higher
dimensional problems. In the following section the tasks used to evaluate
both versions of POIS are described.

6.1.1 Cart-Pole Balancing

Figure 6.1: Cart-Pole Balancing environment.
Source: https://gym.openai.com/envs/CartPole-v1

In this task, a cart with an inverted pendulum mounted on a pivot point
is constrained to linear movement. The goal is to apply a horizontal force
to the cart in order to keep the pendulum in a vertical position. For this
problem, the state of the agent is a vector whose elements are the position
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of the cart x, its velocity ẋ, the pole angle θ and its velocity θ̇. The action
the agent has to choose, at each interaction with the environment, is the
horizontal force, which consists of a continuous value. The reward function is
defined as r(s, a) = 10− (1− cos(θ))− 10−5||a||22 and an episode ends when
the cart is too far from its initial point (|x| > 2.4) or when the agent fails
to keep the pendulum upright (|θ| > 0.2). Due to the high instability of the
problem, the action performed by the agent has to be continuous.

6.1.2 Mountain Car

Figure 6.2: Mountain Car environment.
Source: https://gym.openai.com/envs/MountainCarContinuous-v0

In this task, a car starts in the middle of a valley and has to reach a certain
altitude. Since the force applied tangent to the car is limited, the agent has
to alternatively drive up both slopes in order to gain inertia. Without enough
exploration, an agent would apply the force in the direction of the goal and
then stop the car at the maximum high that can be reached. Hence it would
be stuck in a local minimum. The state of the agent in the problem consists of
the horizontal position x and velocity ẋ of the car. The action is a tangential
force applied to the car and the reward is defined as r(s, a) = −1 + height.
The episode ends when the car reaches the height of 0.6.

6.1.3 Double Inverted Pendulum

In this task, which can be seen as an extension of the Cart-Pole Balancing
problem, a double inverted pendulum is mounted on a cart through a pivot
point. The goal is to keep the whole system balanced such that the two-
link pendulum is maintained in an upright position. The action of the
agent is the horizontal force applied to the cart. The state is a vector
consisting of the position of the cart x, the joint angles of the double pendulum,
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Figure 6.3: Double Inverted Pendulum environment.
Source: https://gym.openai.com/envs/InvertedDoublePendulum-v2

θ1, θ2, and their velocities, θ̇1 and θ̇2. The reward function is defined a
r(a, s) = 10 − 0.01x2

tip − (ytip − 2)2 − 10−3θ̇1
2 − 5 · 10−3θ̇2

2
, where xtip, ytip

denote the coordinates of the highest point of the pole. The episode ends when
the vertical coordinate of the highest point of the pole is too low (ytip ≤ 1).

6.1.4 Acrobot

Figure 6.4: Acrobot environment.
Source: https://gym.openai.com/envs/Acrobot-v1

In this task, a two-link underactuated robot has to oscillate until it reaches
an upright position and stabilizes. The robot consists of two joints: the first
has a fixed position and can only rotate, while the second can exert torque.
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The action of the agent is the value of the torque applied to the second joint and
the state is a vector including the two angles of the joints, θ1 and θ2 and their
velocities, θ̇1 and θ̇2. The reward function is r(s, a) = −||tip(s)− tiptarget||2,
where tip(s) denotes the coordinate of the tip of the robot.

6.1.5 Swimmer

Figure 6.5: Swimmer environment.
Source: https://gym.openai.com/envs/Swimmer-v2

In this task, a robot, composed by three links and two joints, has to
swim in a viscous fluid with the goal of moving forward as fast as possible.
The action of the agent is the torque on each joint, while the state is a 13
dimensional vector including the angles and velocities of the joints, as well
as the position of the center of mass. The reward function is defined as
r(s, a) = vx − 0.005||a||22, where vx indicates the forward velocity.

6.2 Results for Linear Policy
Although many state-of-the-art results for policy gradient methods have been
achieved using Deep Neural Networks, comparable performances can also be
realized by linear parametrized gaussian policies [35]. In this section, POIS,
in both parameter-based and action-based versions, is compared to TRPO
[39] and PPO [41], using the following policy:

π(a|s) = N (uM(s), e2Ω), (6.1)

where the mean uM(s) is a linear function of the state and the variance e2Ω

is a diagonal matrix not dependent on the state.
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Task A-POIS P-POIS TRPO PPO

(a) 0.4 0.4 0.1 0.01
(b) 0.1 0.1 0.1 1
(c) 0.7 0.2 1 1
(d) 0.9 1 0.01 1
(e) 0.9 0.8 0.01 0.01

Table 6.1: Table representing the best hyperparameters (δ for POIS and the
step size for TRPO and PPO)

In Figure 6.6 it is possible to see that the learning curves for both versions
of POIS significantly outperform TRPO and PPO in Cartpole. In Acrobot
and Inverted Double Pendulum, the performance of P-POIS is remarkable,
while A-POIS is not able to learn efficiently the tasks. In the Mountain Car
environment, the learning curves of A-POIS, TRPO and PPO are almost one-
shot, while A-POIS is much slower and needs more trajectories for learning.
An insightful task is Inverted Pendulum, where we can observe that both
versions of POIS fail to learn the task. This problem highlights one of the
limitations of the algorithm: since POIS computes the importance weights
at trajectory level, it is not able to assign credit to good actions in bad
trajectories, while TRPO and PPO operate at step level. This problem
could be overcome by using per-decision Importance Sampling [32]. Table 6.1
reports the best hyperparameters for POIS, TRPO and PPO across all the
tasks.
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Figure 6.6: Learning curves of A-POIS, P-POIS, TRPO and PPO, representing
the average return as a function of the number of trajectories used for learning
(average across 20 runs, 95% c.i.).
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Figure 6.7: From left to righ, top to bottom: Plot of the average return, the
Effective Sample Size (ESS), the variance of the importance weights (Var[w]),
the standard deviation σ of the policy, the value of the bound before and afer
the optimization process, as a function of the number of trajectories, and
for different values of δ in the Cartpole environment (average across 20 runs,
95% c.i.)

In Figure 6.7 it is possible to see how the parameter δ (significance level)
is able to influence the tradeoff between maximizing the expected return
and minimizing the penalty due to a step leading to a policy far from the
behavioral one. In particular, for a small value of δ the Effective Sample Size
is very high, leading to over-conservative updates. On the other hand, a big
value of δ is responsible for a low ESS, producing an update in the gradient
step with a very high variance. In the bottom-left figure we can see that the
value of the parameter δ is affecting the speed of convergence to zero of the
variance of the policy. For small values of δ, the penalization term in the
objective function is very high, therefore, as policies with a small variance
induce a large Rényi divergence, it is more difficult to reduce the variance of
the policy. Large values of δ (very low penalization) can produce estimators
whose variance is very high (large Rényi divergence). In the bottom-right
figure, it is shown that a policy with a high δ will produce a higher bound
after optimization, since it will account for a large uncertainty. The optimal
value for δ in this environment is 0.4.
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seeds 10, 109, 904, 160, 570, 662, 963, 100, 746, 236,
247, 689, 153, 947, 307, 42, 950, 315, 545, 178

Task horizon 500
Iterations 500
Max line search attempts 30
Max iterations offline 10
Episodes for each iteration 100
IW estimator Importance Sampling for A-POIS

Self-Normalized Importance Sampling for
P-POIS
Natural Gradient Yes for P-POIS

No for A-POIS
Policy π(a|s) = N (uM(s), e2Ω)

uM(s) is a linear function of the state
e2Ω is a diagonal matrix not dependent on

the state.
Policy initialization mean sampled from N (0, 0.012)

variance initialized to the value of 1

Table 6.2: Table representing the hyperparameters used in the experiments
with linear policies

6.2.1 Experiments Details

The following table 6.2 shows the hyperparameter values used in the experi-
ments for A-POIS and P-POIS with linear policy, while Table 6.3 reports the
hyperparameters tuned for POIS, TRPO and PPO:
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Table 6.3: Hyperparameters tuned for each environment: in A-POIS and P-
POIS δ represents the significance level, while in TRPO and PPO it represents
the step-size. Hyperparameters in bold are the best found.

Environment A-POIS (δ)

Cart-Pole Balancing 0.1, 0.2, 0.3, 0.4, 0.5
Inverted Pendulum 0.8, 0.9, 0.99, 1
Mountain Car 0.8, 0.9, 0.99, 1
Acrobot 0.1, 0.3, 0.5, 0.7, 0.9
Double Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5

Environment P-POIS (δ)

Cart-Pole Balancing 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Mountain Car 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Acrobot 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1
Double Inverted Pendulum 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 1

Environment TRPO (δ) PPO (δ)

Cart-Pole Balancing 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1 , 1
Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Mountain Car 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Acrobot 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
Double Inverted Pendulum 0.001, 0.01, 0.1, 1 0.001, 0.01, 0.1, 1
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Table 6.4: Performance of POIS compared with [11] using deep neural policies
(average across 5 runs, 95% c.i.). For each task, the performances not
statistically significantly different w.r.t. the best performance are reported in
bold.

Cart-Pole Double Inverted
Algorithm Balancing Mountain Car Pendulum Swimmer

Random 77.1± 0.0 −415.4± 0.0 149.7± 0.1 −1.7± 0.1
REINFORCE 4693.7± 14.0 −67.1± 1.0 4116.5± 65.2 92.3± 0.1
TNPG 3986.4± 748.9 −66.5± 4.5 4455.4± 37.6 96.0± 0.2
RWR 4861.5± 12.3 −79.4± 1.1 3614.8± 368.1 60.7± 5.5
REPS 565.6± 137.6 −275.6± 166.3 446.7± 114.8 3.8± 3.3
TRPO 4869.8± 37.6 −61.7± 0.9 4412.4± 50.4 96.0± 0.2
DDPG 4634.4± 87.6 −288.4± 170.3 2863.4± 154.0 85.8± 1.8
A-POIS 4842.8± 13.0 −63.7± 0.5 4232.1± 189.5 88.7± 0.55
CEM 4815.4± 4.8 −66.0± 2.4 2566.2± 178.9 68.8± 2.4
CMA-ES 2440.4± 568.3 −85.0± 7.7 1576.1± 51.3 64.9± 1.4
P-POIS 4428.1± 138.6 −78.9± 2.5 3161.4± 959.2 76.8± 1.6

6.3 Results for Deep Policy
In this section, POIS is compared with the state-of-the-art algorithms when
using a deep neural network to represent policy. The action performed by
the agent is still sampled from a Gaussian distribution:

π(a|s) = N (uM(s), e2Ω), (6.2)

but in order to be fully compatible with the results in [11], the mean uM is an
Artificial Neural Network with 3 layers (100, 50 and 25 neurons respectively).
Each hidden layer has a tanh activation function, while the output layer is
linear. The variance e2Ω is still a state-independent diagonal matrix. Table
6.4 reports the results of P-POIS and A-POIS w.r.t. the other state-of-the-art
algorithms. In particular, A-POIS is able to obtain performances compara-
ble with TRPO and to beat DDPG, while P-POIS reaches a performance
comparable w.r.t. CEM, the best among the parameter-based algorithms.
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seeds 10, 109, 904, 160, 570
Task horizon 500
Iterations 500
Max line search attempts 30
Max iterations offline 20
Timesteps for each iteration 50000
IW estimator Importance Sampling for A-POIS

Self-Normalized Importance Sampling
for P-POIS
Natural Gradient Yes for P-POIS

No for A-POIS
Policy π(a|s) = N (uM(s), e2Ω)

uM(s) is a 3-layers Multi-Layer Perceprton
e2Ω is a diagonal matrix not dependent

on the state.
Policy initialization Xavier initialization [13]

Table 6.5: Table representing the hyperparameters used in the experiments
with deep policies

6.3.1 Experiments Details

The following table 6.5 shows the hyperparameter values used in the experi-
ments for A-POIS and P-POIS with deep policy, while Table 6.6 reports the
hyperparameters tuned for POIS:
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Table 6.6: Hyperparameters tuned for each environment: in A-POIS and
P-POIS δ represents the significance level. Hyperparameters in bold are the
best found.

Environment A-POIS (δ)

Cart-Pole Balancing 0.9, 0.99, 0.999
Mountain Car 0.9, 0.99, 0.999
Double Inverted Pendulum 0.9, 0.99, 0.999
Swimmer 0.9, 0.99, 0.999

Environment P-POIS (δ)

Cart-Pole Balancing 0.4, 0.5, 0.6, 0.7, 0.8
Mountain Car 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Double Inverted Pendulum 0.4, 0.5, 0.6, 0.7, 0.8
Swimmer 0.4, 0.5, 0.6, 0.7, 0.8
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Chapter 7

Conclusion

In this work, we started by addressing a general problem in Reinforcement
Learning, which is "how to use the information contained in a batch of
trajectories in the most efficient way". We showed how this can be done
by using a technique, called Importance Sampling. The main theoretical
contributions in this work are the studying of the IS and SN estimators,
the study of why some statistical lower bounds are not appropriate for this
optimization problem, the derivation of a novel concentration inequality for off-
distribution learning. The algorithmic and experimental contribution are also
significant and include the derivation of a novel, model-free, actor only, policy
gradient algorithm, which can be used both in action-based and parameter-
based setting, and which achieves results comparable with state-of-the-art
RL algorithms in continuous control tasks. There are several possible future
contributions on this work, which include the use of per-decision importance
sampling, the study of other variance-reduction techniques (control variate
such as baselines), the extension to the multi-goal case and the use of multiple
importance sampling for trajectory reuse. We believe that this work is a good
starting point for a deeper understanding of Policy Optimization.
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