
Politecnico Di Milano
Department of Electronic, Informatics and Bioengineering

School of Industrial and Information Engineering

Towards Observability with (RDF) Trace

Stream Processing

Supervisor: Prof. Emanuele Della Valle

Co-Supervisor: Riccardo Tommasini

Author: Mario Scrocca

Personal Number: 874830

This dissertation is submitted for the degree of

Master of Science

December 2018





To my family

"Because the people who are crazy enough

to think they can change the world,

are the ones who do."





Abstract

Distributed software systems and cloud-based micro-service solutions are getting mo-

mentum. Although this paradigm-shift foster scalability, it is making architectures too

complicated to maintain using traditional techniques. How to supervise such complex

systems is not apparent, and industry is investigating the subject under the observability

umbrella. In this thesis, we investigate observability as a research problem. First, we pro-

vide a definition that clarifies the scientific boundaries. Then we investigate the following

research questions: how to expose and how to make sense of the system behaviour at

runtime.

In particular, in order to expose the system behaviour: (i) we employ event as a unifying

data model for metrics, logs, and trace data, (ii) we explain how to map existing data

formats to the proposed model, and (iii) we discuss the benefits of a unified abstraction

for observability.

Moreover, in order to make sense of the system behaviour: (i) we elicit a set of require-

ments, and (ii) we build a proof-of-concept implementing a stream processing solution

that satisfies them. Notably, since the state-of-the-art already provides a stream process-

ing solution that makes sense of metrics and logs, we focus on trace stream processing. We

followed the Design Science framework to realise our proof-of-concept. I.e., we design and

implement an artifact (Kaiju, a Trace Stream Processor) and we study its interactions in the

addressed context (Rim, a reproducible environment capable of emulating a distributed

system and its typical issues). We provide evidence of the artifact validity comparing it

with state-of-the-art distributed tracing tools, and against the typical use cases for such

systems recreated in Rim.

Last but not least, we discuss the benefits of processing together metrics, logs and

trace data. Since stream processing solutions cannot tame the heterogeneity of metrics,

logs, and trace data, we employed a stream reasoning approach. In this direction, we

propose an ontology to model trace data, and we report an explorative analysis of an RSP

engine consuming this type of data.





Estratto

Sistemi software distribuiti e soluzioni a micro-servizi basate sulle tecnologie del cloud

presentano una crescente adozione. Sebbene questo cambio di paradigma favorisca

la scalabilità, al contempo sta rendendo le architetture troppo complicate per essere

gestite attraverso le tecniche tradizionali. Determinare come supervisionare sistemi così

complessi non è scontato, e per questo motivo il mondo dell’industria sta approfondendo

questa tematica definendola con il nome di observability. In questa tesi affrontiamo

l’observability come un problema di ricerca. Per prima cosa forniamo una definizione che

chiarisca il termine da un punto di vista scientifico. Poi affrontiamo le seguenti domande

di ricerca: come esporre e come dare significato al comportamento del sistema a runtime.

Per esporre il comportamento del sistema: (i) utilizziamo l’evento come modello dei

dati unificante per metriche, logs e tracce, (ii) mostriamo come stabilire una corrispon-

denza tra i formati dei dati esistenti e il modello proposto, e (iii) discutiamo i benefici di

un’astrazione unificante per l’observability.

Per dare significato al comportamento del sistema: (i) elicitiamo un insieme di req-

uisiti, e (ii) realizziamo un proof-of-concept che implementi una soluzione di stream

processing rispettando i requisiti. Poichè lo stato dell’arte fornisce già una soluzione di

stream processing per metriche e logs, ci concentriamo sullo stream processing applicato

alle tracce. In questo lavoro ci atteniamo al framework Design Science per realizzare il

nostro proof-of-concept, i.e., progettiamo ed implementiamo un artefatto (Kaiju, un

Trace Stream Processor) e studiamo le sue interazioni nel contesto affrontato (Rim, un

ambiente riproducibile che emuli un sistema distribuito e le sue principali problematiche).

Dimostriamo la validità dell’artefatto comparandolo con gli strumenti correntemente

utilizzati per il tracing distribuito e in relazione ai casi d’uso tipici di questi sistemi ricreati

mediante Rim.

In conclusione, consideriamo i benefici nel processare insieme metriche, logs e dati

delle tracce. Poichè soluzioni di stream processing non possono contrastare efficacemente

l’eterogeneità di metriche, logs e tracce, consideriamo un approccio stream reasoning. In

questa direzione, proponiamo un’ontologia per modellare le tracce e riportiamo un’analisi

esplorativa di un RSP engine che consumi questo tipo di dato.
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Chapter 1

Introduction

In this chapter, we introduce our work on observability for software. The need for ob-

servability is related to the problem of gaining visibility on systems at runtime and has

become relevant because of the growing difficulty in maintaining and debugging complex

systems architectures. In Section 1.1 we introduce the motivations that led this work, in

Section 1.2 we formulate the research questions addressed, and in Section 1.3 we overview

the contributions this thesis offers. To conclude, in Section 1.4 we provide the outline of

this thesis.

1.1 Motivations

Modern software systems are distributed, and a shift towards cloud-based micro-services

architectures is currently ongoing. The development of orchestration systems managing

containers and the sustainability of cloud solutions played a central role. In this con-

text, it is not apparent how to supervise running systems made by widely distributed

and ephemeral architectures. These systems present a complex network of interactions

between components and may exhibit a multitude of possible failure states. Moreover,

virtualisation techniques over machines often managed by external providers shifted the

focus on the users’ experience and the analysis of execution at an application level [48, 58].

Indeed, currently it is more relevant to detect a poor-performed or wrongly-executed user

request than being alerted on restarted containers or machines, scenarios often managed

automatically by orchestrators. We are still interested in how the software impact on

resources available regarding performance but less and less on machine-level monitoring

and all layers beside the virtualisation abstraction.

These challenges are still open, and industry aggregates them under the observability

umbrella. Traditional monitoring tools (described in Section 2.1) mainly addresses metrics,
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i.e., measurements of resource consumption sampled at regular intervals, and logs, i.e.,

reports of operations/errors happening in the system. However, these tools fail to provide

a complete picture of interactions between services. Thus, the interest in end-to-end

distributed tracing tools, focusing on request work-flow, is growing.

Many industrial tools were released aiming at solving the challenge of reactively un-

derstanding black-box complex software systems. Nevertheless, a shared definition for

the observability problem is still missing. Existing approaches were developed facing very

specific issues, and they lack the necessary level of abstraction to offer a comprehensive

solution.

We recognise a lack of formalisation in describing the observability problem and its

challenges and, to the best of our knowledge, there aren’t work in the literature addressing

it specifically. In this thesis, we investigate observability as a research problem, we describe

the related research questions, we elicit requirements from questions proposed, and we

discuss a set of solutions fulfilling them.

1.2 Research questions

Starting from the proposed industrial definitions of observability, we consider observabil-

ity for distributed software systems as the property of a system to expose its behaviour at

runtime through its outputs and we identify two related subproblems. The first subprob-

lem is related to how a running system can expose its behaviour, while the second focuses

on how to make sense of the exposed behaviour.

Traditional monitoring systems focus on one of the three different outputs of the

system, i.e., metrics, logs and trace data. We called these outputs observations, and we

discuss how they provide different perspectives on the problem of exposing the system

behaviour. We pose therefore the following research question: Is it possible to unify the

data models and processing pipelines of metrics, logs and trace data (i.e., observations) to

provide a single and significative output for the observable behaviour of a software system?.

Moreover, we discuss the importance of dynamic analysis to supervise the system

at runtime, and we pose the following research question: Is it possible to make sense in

near real-time of information needs about the system observable behaviour considering the

available observations at runtime, and despite data heterogeneity?.
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1.3 Contributions

The two proposed research questions have been addressed in this thesis discussing: (i) a

data model for observations to expose the system behaviour, and (ii) a processing model to

make sense of system behaviour.

To design a data model for observations, we start from an analysis of currently used

formats for metrics, logs and trace data highlighting their similarities and differences.

We identify the dependency on a timestamp as the unifying aspect and, for this reason,

we propose a data model based on the concept of event where time is a first-class citi-

zen. We detail the observability event data model showing how the proposed model can

map formats currently used for observations, and we explain the benefits of a unified

perspective.

Researching a processing model for observations, we show how a stream processing

approach can fulfil requirements identified. The literature on the topic already indicates

the effectiveness of a stream-based approach for metrics and logs [8, 40, 58] and many

tools exist in the market to deal with those types of data as incoming streams. On the other

hand, even if some research works highlights the benefits of dynamic analysis applied to

trace data [38, 47], none of them uses a stream processing engine and current state-of-

the-art distributed tracing tools focus only on static analysis of data gathered. Therefore,

we provide a specification for a Trace Stream Processor (TSP) dealing with trace data as

a stream, and, as a proof of concept for our specification, we implement Kaiju, a TSP

prototype. Following the Design Science framework, proposed in [66], to effectively design

an artifact it is necessary to evaluate it in its interaction with the addressed context. To

this purpose, not having a real production distributed system nor a dumped dataset, we

also provide a specification for Rim, a reproducible environment capable of emulating a

distributed system and its typical issues.

Once assumed the effectiveness of a stream-based approach dealing separately with

metrics, logs or trace data, we investigated the benefits of processing together all observa-

tion types. However, stream processing solution cannot tame the heterogeneity and, for

this reason, we propose the adoption of a stream reasoning approach, and in particular

of RDF Stream Processing (RSP). RSP engines prescribe how to tame variety and velocity

simultaneously [23]. Therefore, an RDF Stream Processing Engine and a model for seman-

tic data integration (ontology) can offer a solution to the problems raised by both research

questions. Research works modelling ontologies for logs and working on them as RDF

graphs exist in the literature ([26, 52] and RLOG1). Moreover, a related work on metrics

1RLOG - an RDF Logging Ontology http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog/rlog.html#
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analysis with stream reasoning exists [50]. Even if it does not define an ontology, given

the currently ongoing OpenMetric effort towards a standardisation, we leave this as future

work. In this work, we exploit the work done with Kaiju to design an ontology for trace

data based on the OpenTracing specification [35]. Moreover, we report an explorative

analysis of an RSP engine consuming trace data as RDF graphs.

1.4 Outline of the thesis

This thesis develops as follow:

• Chapter 2 provides an overview of the main research areas related to this thesis.

It describes monitoring and tracing techniques for distributed systems, the Infor-

mation Flow Processing domain and the Stream Reasoning research field. It also

presents an introduction to the Design Science framework.

• Chapter 3 defines observability for software. It identifies the two related research

questions addressed in this work, and it elicits the related requirements.

• Chapter 4 describes design. It discusses a data model and a processing model

fulfilling requirements elicited, and it formulates specifications for Kaiju and Rim

prototypes. It also proposes a stream reasoning approach to face simultaneously

the two research questions proposed.

• Chapter 5 contains the details of implementation and describes how we realised

Kaiju and Rim. It also describes an ontology for trace data and how we enable

forwarding of data gathered from Kaiju to an RSP engine.

• Chapter 6 contains the evaluation made. It describes the deployment used in our

experiments, the procedures followed to evaluate Kaiju in the Rim environment,

and a discussion of results. It also describes an explorative analysis of the RSP engine

capabilities in processing trace data.

• Chapter 7 draws the conclusion of this thesis work describing its limitations and

the future works.



Chapter 2

Background

In this chapter, we provide an overview of the principal research topics related to this

work.

In Section 2.1, we present a summary of currently used methods to monitor distributed

systems, reporting tools used in the industry and research works reported in the literature.

In particular, to contextualise our design choices in building Kaiju, in Section 2.2, we

focus on an in-depth review of distributed tracing systems managing data collected from

request work-flow. In Section 2.3, we overview the Information Flow Processing domain

presenting stream-processing alternatives. In Section 2.4, we present the main concepts

related to the stream reasoning research area. In conclusion, in Section 2.5, we provide also

an introduction to the Design Science framework followed in designing the two prototypes,

Kaiju and Rim, as an artifact and the environment emulating the context.

2.1 Monitoring

Systems running software require supervision at runtime to provide performance debug-

ging, failure identification and notification. Existing tools for troubleshooting distributed

systems are built exploiting different input data, however, it is possible to point out three

main categories: (i) monitoring through metrics [49], (ii) log aggregation/analytics tools

ingesting and analysing logs from different processes/components [51, 40], and (iii) trac-

ing systems collecting causally-related data from request work-flow (discussed in details

in Section 2.2).

In this section, we will focus on system monitoring through metrics and logs. Metrics

are numeric data on system and application performances sampled at regular intervals.

Logs are records, unstructured (e.g., plain text) or structured (e.g., JSON), reporting what

happens in the system. The different nature of the data, numeric for metrics and mainly
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string-based for logs, has led to the development of different tools trying to optimise the

management of the two different types of data. However, all tools have to face the following

sets of problems [41]: (i) collection from different components, (ii) storage to persist data,

(iii) processing to manipulate data, (iv) alerting to enable automatic notification in case of

anomalous data, (v) visualization to enable inspection of data.

We will discuss these problems concerning metrics and logs and considering both

research and industrial works.

Collection A monitoring tool should put in place a collection mechanism to gather data

from system components. Highly distributed systems require a scalable approach, as

discussed in the design of the Ganglia monitoring system [49]. Therefore, a network of

daemon agents, lightweight processes, are usually installed in each node to collect and

forward data to components collecting them.

Data gathered are usually: (i) exposed at given endpoints by application components

(instrumented to this purpose through ad-hoc libraries), or (ii) gathered from the system

and mainly related to resources usage (memory, CPU, etc...) and networking. The col-

lector component can be distributed, to avoid networking overhead, or centralised, to

avoid fallacies of distributed computing. Moreover, it should be replicable to guarantee

scalability.

Data collection can follow two different interaction paradigms, in each step of the

monitoring pipeline: (i) pull: receiver asks the sender to forward data, (ii) push: sender

sends data to the receiver as soon as available (guarantees low latency but the receiver

should cope with incoming data to avoid to be flooded).

Storage Monitoring data are usually stored before being accessed and processed. Ad-hoc

storage solutions have been developed to manage metrics and logs efficiently.

Tools for metrics, like Prometheus1 and the Tick stack by InfluxDB2, exploit Time Series

Databases (TSDB) to store and retrieve data efficiently. These databases are optimised to

handle numeric data and also offer techniques to reduce the storage needed from metrics

over time. Granularity reduction operates subsequent aggregations at predefined time

intervals and allows to free space. Indeed, metrics are useful at high granularity when they

are collected, e.g. to observe spikes in CPU trends, but can be used at lower-granularities

for historical analysis since their relevance reduces over time. The main issue TSDB have

to face is related to the indexing of data, since in large systems the number of unique

1Prometheus https://prometheus.io/docs/
2Tick stack https://www.influxdata.com/time-series-platform/
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metrics can be in the order of millions, these databases should handle high cardinality

indexing to support a large number of time series3.

On the other hand, logs are higher-volume data and, differently from metrics, they are

not collected periodically but reported at variable rates. For this reason, they are often

pre-processed and filtered before being stored. Efficient solutions to save and retrieve

logs, like Elasticsearch [34] exists, but given ingesting delay and high-volumes, they cannot

keep high performances for real-time analysis. To solve this issue, when Kafka [40] is

already integrated into the production environment, it is useful to exploit it approaching

logs as a stream of data. In this way it is possible: (i) to enable real-time analytics, (ii) to

buffer logs to be stored, and (iii) to directly expire short-term logs avoiding storing them.

Moreover, new tools like Humio4 or Honeycomb5 are explicitly designed to approach logs

as a stream-processing problem providing platforms to ingest and inspect data rapidly

and efficiently.

Processing In most tools, metrics and logs are saved and then queried, visualised or

analysed. This type of analysis is called offline analysis and processes data statically and a

posteriori. However, some use cases, e.g., anomaly detection, requires to process dynamic

data online, i.e., as soon as they are available [58]. For this reason, as discussed for logs,

a stream processing engine can be exploited to pre-process also metrics, offering also

the possibility of down-sampling before storing and to perform complex and real-time

analytics (e.g., Kapacitor6 or Gemini2 [8]). Moreover, processing logs and metrics as a

stream allows also to query them relying on temporal aspects such as sliding window

calculation or event correlation [8].

Alerting In order to be reactive to failures, monitoring tools allows to specify a set of rules

to generate alerts. This rules can be executed and checked against the storage regularly or

implemented through a stream processor engine pre-processing data. Alerting rules can

be static, i.e. fixed, or dynamic, e.g., varying with respect to historical data or the current

value of some system parameters.

In the past, alerts were principally related to black-box monitoring, checking system

status from an outside perspective to prevent failures of a predictable nature. Currently,

instead, some problems as health-checking and load balancing are automatically solved

3https://www.influxdata.com/blog/path-1-billion-time-series-influxdb-high-cardinality-indexing-
ready-testing/

4Humio https://www.humio.com/
5Honeycomb https://www.honeycomb.io/
6Kapacitor https://www.influxdata.com/time-series-platform/kapacitor/
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(thanks to orchestration systems like Kubernetes7), but, the growing complexity of systems

generates a broad set of unpredictable failures. As pointed out by Alspaugh et al. analysing

Splunk usage [3], human inference is a crucial factor to drive the analyses in these cases

and therefore, it is important for alerting to provide actionable information facilitating

manual inspection of data gathered. The described context asks for white-box monitoring,

i.e., to express alerting rules and to gather metrics also at the application-level [58].

Visualization The last problem faced by monitoring tools is about the visualisation of

data gathered. Often tools provide complete interfaces to deploy alerting rules, query

the storage and to make dashboards plotting data in a meaningful way (e.g. open-source

Grafana8, Kibana for ElasticSearch9, Chronograf for the Tick stack10).

Visualisation is a key component in monitoring since it provides aggregation of data

in an easy and human-readable interface. However, since many issues are often unpre-

dictable, it is difficult to put in place the right dashboards or queries a priori. It is important

then to focus on the possibility of easy and customizable querying of data: (i) helping the

customer in writing meaningful queries, e.g., through domain-specific query languages

abstracting the more common functions applied to data [38] or, (ii) enabling different

development teams to customise the graphical interface easily [57].

2.2 End-to-end distributed tracing

Distributed tracing tools are developed for complex distributed services and micro-service

architectures with the purpose of retrieving end-to-end data and analyse the work-flow of

requests through system components. Indeed, traditional monitoring tools fail to provide

a view of complex interactions between services. On the one hand, black-boxes approaches

exploiting pre-existing logs cannot wholly reconstruct causality relationships and require

many data and expensive processing. On the other hand, monitoring through metrics

offers an orthogonal perspective evaluating single service status and performances, but

cannot offer any insight into the history of single requests. Monitoring the system through

end-to-end trace data, instead, simplifies maintenance and debugging and enables easy

detection of critical paths and bottlenecks to optimise performances.

Critical requirements in designing a distributed tracing tool are [38, 57]:

7Kubernetes https://kubernetes.io
8Grafana https://grafana.com
9Kibana https://www.elastic.co/products/kibana

10Chronograf https://www.influxdata.com/time-series-platform/chronograf/
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• Low overhead: collection and retrieval of traces do not have to affect performances

of the system and have to be done transparently with respect to system primary

activities;

• Minimal instrumentation required: to effectively capture interactions between

components within work-flows, the vast majority of end-to-end distributed tracing

systems adopts ad-hoc instrumentation for metadata propagation, i.e., metadata

identifying the requests are stored within processes and are transmitted in inter-

component communications. Tracing tools must provide easy integration in existing

systems without requiring complex modifications for instrumentation.

Two main models are used for end-to-end tracing systems to represent sampled data:

the span model (see Figure 2.2), adopted for example by Google Dapper [57] and the

OpenTracing specification [35], and the more general event model, adopted for example

by X-Trace [31].

As pointed out in [44] the two models presents a trade-off between simplicity, in

implementing/inspecting data sampled, and expressiveness. Moreover, as discussed by

Leavitt, analysing in details the two alternatives it is possible to prove that spans are less

powerful model with respect to events: each span may be defined as a composition of

events but spans may not represent each possible composition of events.

Fig. 2.1 An example of distributed compu-
tation. Figure taken from the OpenTracing
website11.

Fig. 2.2 Span based representation of the
computation aside. Figure taken from the
OpenTracing website11.

In this section, we discuss the main distributed tracing tools presented in the literature

and currently used in the industry. To conclude, in Section 2.2.7, we present a comparison

table between different data models for trace data.
11OpenTracing https://opentracing.io
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2.2.1 X-Trace

X-Trace framework is one of the first attempts to trace requests in a networked system

preferring a task-centric approach to device-centric monitoring. X-Trace propagates

metadata through the request path by mean of code instrumentation. Each node receiving

metadata issues a report and then all reports are collected to reconstruct the trace model.

X-Trace’s first model, presented in [31], only defines the concept of events and organises

them in a tree structure with edges indicating a causality relation. Edges may be of two

kinds depending on the primitive implemented to propagate metadata: pushDown() if

the next hop in computation is on a lower software layer and pushNext() if it is on the

same layer.

The model used by X-Trace is refined in [32] to allow more expressiveness and general-

ity in the representation of computations. The second version of the framework models

each trace as a direct acyclic graph (DAG) where edges represent the happens-before

relation as defined by Lamport [42].

X-Trace collects traces not only at node boundaries but also within a node when the

request goes across different software layers. When reconstructing a graph from reports, a

transitive reduction is operated to determine redundant edges useful to identify subgraphs

and to summarise task structures. As proved in [44] this model can represent each type of

computation. X-Trace project is no longer maintained, and it has been superseded by the

Pivot Tracing project (see Section ß2.2.4).

2.2.2 Dapper

Dapper is the first large-scale distributed tracing infrastructure, described in a technical

report from Google in 2010 [57]. The model used by Dapper for collected data builds on

the concepts of trees, spans and annotations.

• Each tree represents a computation, i.e., the work-flow of the request through the

system.

• Spans are the tree nodes and represents a basic block of the computation.

• Edges indicates a causal relationship between spans, identifying a hierarchical

structure between them. Each edge connects a span and its parent span. A span

without a parent identifies a root span.

• Annotations are additional data recorded with span data. Developers of a specific

service can define them, and they may be simple text annotations or key-value pairs.

They enable common variables propagation along a request and within a process.
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Fig. 2.3 A single span in Dapper. Figure taken from [57]

A tiny trace context containing trace and span ids is propagated over threads, RPCs

calls and over all other inter-process communication (such as HTTP calls or database

queries) to enable trace reconstruction. Software engineers at Google exploited the uni-

formity of threading models, control flow and RPC system used in their systems to build

a tracing infrastructure that requires instrumentation of only a small set of shared li-

braries to propagate trace context and effectively achieve application transparency and

pervasiveness.

Each process writes span data to local log files. Those data are then pulled from

different hosts by Dapper daemons that collect and write them to Dapper repositories.

Dapper exploits a sparse representation where each trace represents a row of a table, and

each column corresponds to a span. See Figure 2.4.

Fig. 2.4 The pipeline in Dapper. Figure taken from [57]

Dapper allows analysing data through an interactive web-based user interface provid-

ing graphical visualisations of data, such as call tree diagram or traces’ metrics trends over

time, and allowing analysis on aggregated data (on patterns but also on single traces). The

interface is also capable of directly communicate with daemons on production hosts to

retrieve real-time data. Dapper also offers an API (DAPI) for raw trace data in reposito-

ries in order to allow developers to access them through multiple analysis tools, already

provided or easily implementable.
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To reduce overhead due to management on local disks of traces, especially on latency-

sensitive services, Dapper performs sampling of traces. In the experience reported in [57],

aggressive sampling does not affect the reliability of data retrieved for high-throughput

services. However, an adaptive sampling strategy, e.g. parametrised by the desired rate of

sampled traces per unit of time, is suggested to cope with unstable situations.

One of the primary limits of Dapper infrastructure is the low expressiveness of its

data model. Dapper’s model covers only a small portion of inter-process communication

patterns, in particular, multiple-parent relationships (events that cannot occur unless

more than one other event has already taken place) are not allowed in trees, and cannot

represent exhaustively asynchronous relationships.

2.2.3 OpenTracing

OpenTracing12 is an open standard for distributed tracing defining a common API, sup-

porting main platforms and languages, to instrument applications and OSS packages in

order to enable vendor-neutral trace data collection. The API concepts and terminologies

are based on Dapper [57] tool experience, but offer more expressiveness.

In OpenTracing, Dapper trees are replaced with generic directed acyclic graphs (DAG)

of spans (allowing for example multi-parent relationships), and edges between spans

are called references. OpenTracing allows two kind of references: ChildOf, if parent span

depends on the child span in some capacity and FollowsFrom, if the parent does not

depend on the result of the child. Both reference types model direct causal relationships

between parent and child spans and in current specification non-causal relationships (e.g.

queues) are not supported. Dapper annotations are called span tags, but OpenTracing

distinguishes between span tags, information related to the entire span and span logs,

timestamped events occurring during a span.

A span context is used for propagation of metadata across process boundaries. In

relation to span contexts OpenTracing introduces also baggage items. Baggage items are

key-value string pairs propagated within the context, they enable the costless possibility to

transmit data over requests paths but must be used with care since baggage transmission

may affect the network and CPU overhead.

The OpenTracing standard also proposes semantic data conventions prescribing well-

known tag names and log fields for common scenarios. Usage of those names in instru-

mentation is recommended to ensure well-defined data portable across different tracing

backends.
12OpenTracing https://opentracing.io
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Vendor-neutrality allows using the OpenTracing API with a broad set of Tracers, i.e.,

components to retrieve, collect and manage trace data collected. We analyse the two

mostly adopted open-source solutions: Zipkin and Jaeger.

Zipkin

Zipkin13 was the first open-source and production-ready clone of Dapper. It offers a set of

instrumentation libraries, a Java backend collecting traces from instrumented reporters

and a complete pipeline to store, query and visualise traces.

Instrumentation libraries are responsible for propagating metadata needed for tracing,

for generating trace spans but also for asynchronously sending traces to the backend

(possible transports are HTTP, Kafka and Scribe).

Zipkin data model has been designed before OpenTracing specification was defined,

so it does not perfectly match it (it is more similar to Dapper’s model). Nevertheless, instru-

mentation libraries have been adapted to be compliant with the OpenTracing standard

and to bound the two models.

Jaeger

Jaeger is the end-to-end distributed tracing solution developed by Uber engineers and

then released as an open-source project hosted by Cloud Native Computing Foundation

(CNCF). Uber solution stems from a need to gain visibility on the company’s micro-service

based system and its complex interactions without being forced to change already adopted

technological solutions.

Uber developed TChannel14, a network multiplexing and framing protocol for RPC,

designed to guarantee Dapper-like tracing features. However, the Uber infrastructure

presented different solutions in managing interprocess communication, so client libraries

have been build in different languages to allow instrumentation of all services over the

OpenTracing API.

To decouple the collection of trace data from applications, a jaeger-agent sidecar

process is deployed on every host being in charge of communicating with the tracing

backend. It pulls the backend for the sampling strategy (allowing for dynamic values of

the sampling rate, e.g., determined by the actual load) and it pushes trace data exposed by

the jaeger-agent to the jaeger-collector. Client libraries are designed to report trace

data to a local UDP port and poll the local jaeger-agent to obtain the sampling strategy.

13Zipkin https://zipkin.io
14TChannel https://github.com/uber/tchannel
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Trace data are exchanged between components through a Thrift15 model based on

the OpenTracing specification. Jaeger offers a web-based interface to analyse trace data.

Traces can be queried and inspected and also a dependency graph can be reconstructed

from the interactions between services within a trace.

Comparison

In Table 2.1 we propose a comparison between the two end-to-end tracing systems.

Jaeger is a younger project with respect to Zipkin, but it has a strong and active community

working on it and a wide adoption thanks to low memory requirements (executing GoLang

components requires fewer resources) and a scalable and decoupled design.

Zipkin Jaeger

Data model
Custom

Made compliant
to OpenTracing

OpenTracing based

Collection Mechanism
Each instrumentation
library is responsible

to sent data to the backend

Decoupled in jaeger-client
(language specific Tracer)

and jaeger-agent (in GoLang,
sending data to the backend)

Sampling rate Fixed Dynamic
Backend Java GoLang

Scalability

More backend instances
can be spawned but traffic

from instrumented components
must be redirected using a

load balancer

When more backend instances
are spawned, the jaeger-agent

can exploit TChannel’s
service discovery to automatically
balance traffic among collectors

Table 2.1 Comparative table of Jaeger and Zipkin.

OpenCensus

In comparison with OpenTracing, it is meaningful to consider OpenCensus, a project

of Google, recently open-sourced. It consists of a set of libraries for different languages

aiming to offer a unique API to instrument code for both application-level metrics and

distributed trace data. It also offers the possibility to send data gathered to multiple

backends providing a set of exporters.

The API specification is not compliant with OpenTracing, but it is interesting the

approach towards unique instrumentation. A conjunct effort, also with the ongoing

15Thrift https://thrift.apache.org
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OpenMetrics16 initiative to standardise metrics, would be advisable to offer a standardised

solution and a unique API for both application-level metrics and trace data.

2.2.4 Pivot Tracing

Pivot Tracing is a framework to dynamically query events in a distributed system [47]. Tu-

ples models events in a streaming-distributed dataset and Pivot Tracing allows evaluating

relational queries over it. Pivot Tracing combines dynamic instrumentation to reduce not

needed overhead, and causal tracing to correlate events on requests’ work-flow. A user

can install new queries dynamically exploiting Pivot Tracing and its architecture:

• Front-end client libraries: define tracepoints, allow to write text queries, compile

queries to advice and submit them to PT Agents;

• Baggage library: instrumentation library to propagate data through the execution

path between tracepoints;

• PT Agents: manage dynamic instrumentation installing advice at tracepoints, receive

commands and send tuples.

Correlation of events is based on the definition of the happened-before join operator that

joins on Lamport’s happened-before relation [42]. It allows defining queries for arbitrary

metrics, predicating about events correlated in the computation flow but happening at

different parts of the system.

Fig. 2.5 Pivot Tracing overview. Figure taken from [47]

In [47] it is also present an analysis of use cases and a detailed report to show how

causality within request work-flows allows debugging an issue on the replica selections

operated by HDFS (distributed file system used in the Hadoop stack 17). The debug activity

16OpenMetrics.io https://openmetrics.io
17Hadoop https://hadoop.apache.org
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exploits the happens-before join to compare, for each request, block-locations returned by

the NameNode component and the actual replica chosen by the client to retrieve data.

An important issue about Pivot Tracing is that it can cause high overhead in the system.

Installing complex queries, a not negligible overhead due to baggage may be caused by

propagating data over requests flow. Pivot Tracing does not operate sampling and it does

not apply to static analysis since it gathers data only if queries are installed.

Research work made on Pivot Tracing is important to show the effectiveness in debug-

ging distributed systems (i) applying dynamic processing of trace data, and (ii) exploiting

in-traces causality relations.

2.2.5 Canopy

Canopy is the Facebook solution to retrieve data about end-to-end execution path of

requests [38]. Differently, from others distributed tracing systems, it provides a more com-

prehensive solution to query and analyse performance data, focusing both on dynamic

and static analysis.

Fig. 2.6 Flow of trace data in Canopy. Figure taken from [38].

Canopy adopt various abstractions at different levels to cope with the heterogeneity of

its infrastructure and to exploit decoupling. A brief description of Canopy’s pipeline:

1. A wide range of instrumentation APIs is provided to different services to collect per-

formance data, all of them mapped to a common Thrift definition of events. Events

are related to a TraceID (a unique number identifying a request propagated by mean
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of instrumentation), can be of different types and are distinguished through ids, a

timestamp and an optional sequence number. Events definition also provides the

possibility to add annotations, key-value pairs containing performance data and

information useful to help Canopy’s backend to manage events and their depen-

dencies in the graph. APIs can expose high-level primitives to simplify developer

instrumentation simply binding behaviours to event types that determine how the

backend will interpret them.

2. Canopy backend aggregates events by TraceID and constructs a trace model, a high-

level representation of performance traces built analysing edges in the events graph,

events types and annotations.

3. Feature lambdas are applied to each modelled trace to obtain from raw data prede-

fined high-level features that can speed up common queries. Definition of features

may be done on a per-dataset or per-query level. A domain-specific language (DSL)

is provided to describe features as pipelines of functions, but Canopy also supports

iPython notebooks to specify them.

4. Trace derived datasets contain different levels of abstraction and features can be

related to elements of different granularity (e.g., traces or more specific components

within a trace). Engineers can query these datasets but also directly raw data.

Model used by Canopy merges both the Event and Span paradigms and it is simi-

lar to the one proposed in [44]. Each trace is represented as a generic DAG of events

mapped to a model composed of different components (as defined in [38]): (i) Execu-

tion units represent high-level computational tasks approximately equivalent to a thread

of execution, (ii) Blocks represent segments of computation within an execution unit,

(iii) Points represent instantaneous occurrences of events within a block, and (iv) Edges

represent non-obvious causal relationships between points. All elements of the model

can be annotated with performance data retrieved by events annotations.

Canopy’s model provides a common abstraction for traces to hide lower level hetero-

geneity and since it is decoupled from instrumentation can be updated if necessary.

Canopy does not apply to real-time processing, but highlights the importance and

effectiveness of combining dynamic and static analysis to process trace data.

2.2.6 Auto-tracing and service mesh

Tracing tools described can provide value in debugging distributed systems, but often their

adoption is limited because of the effort needed in instrumenting software components.
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To solve this problem, an emerging approach exploits service meshes to operate some

sort of auto-tracing.

Service meshes can be constructed deploying in each node lightweight proxies, like the

EnvoyProxy18, managing all inbound and outbound networking traffic of the component.

Central management of proxies automates tasks like service discovery, routing, health

checking, load balancing and authentication and authorisation. Moreover, it allows to

report per-request statistics, and it can enable distributed tracing. Indeed, instrumenting

only proxies it is possible to support each type and language of software components and

propagate metadata to reconstruct traces and interactions in work-flows.

However, despite guaranteeing fast implementation, this method has a significant

drawback related to the fact that it considers components as interacting black-boxes. It

is nevertheless necessary to instrument single components to provide application-level

data essential to enable white-box monitoring.

2.2.7 Trace data models

In Table 2.2, we summarise the principal models used for trace data in the tools presented,

and we compare them highlighting advantages and disadvantages of each solution.

Table 2.2 Comparative table of trace data models.

Model Elements Advantages Disadvantages

Events model

X-Trace

Generic DAG

Event: single point in time in

the computation

Edges: represent happens-

before relation

Generic DAGs can be repre-

sented (e.g events with multi-

ple incoming edges). All kinds

of computations can be repre-

sented with this model.

The model is not so intuitive

for programmers (both in the

instrumentation and analysis

phases). Graph reconstruc-

tion must be done properly to

highlight concurrent structure

of tasks in a trace.

Spans model

Dapper

Zipkin

Tree

Spans: block of computation

Edges: represent activation

relation between parent and

children spans

Annotations

Simplicity of instrumenta-

tion.

Easily understandable model

for programmers and perfor-

mance engineers.

Low expressiveness: the

model cannot represent all

kinds of computations (e.g.

problems with multi-parent

and asynchronous relation-

ships).

18EnvoyProxy.io https://www.envoyproxy.io/
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Spans model

Open Tracing

Jaeger

Generic DAG

Spans: block of computation

References: represent causal

relationships (ChildOf and

FollowsFrom)

Tags and Logs

Baggage: key-value pairs

propagated through request

path by mean of tracing

instrumentation.

Allows multi-parent relation-

ships.

Baggage offers a costless pow-

erful method to exploit tracing

instrumentation for different

purposes.

Open source standardized

model and semantic conven-

tions on logs e tags.

Only direct causal relation-

ships: the current model can-

not represent non-causal rela-

tionships (e.g. queues)

Hybrid model

Canopy

Generic DAG

Units: high level computa-

tional tasks

Blocks: segments of compu-

tation within an execution

unit

Points: instantaneous oc-

currences of events within a

block

Edges:

non-obvious causal relation-

ships between points

Performance Data

It combines advantages of

both the spans and the events

models: interpretability of the

model and possibility to repre-

sent any computation (e.g also

queues, asynchronous execu-

tions, multi-parent causality)

Quite complex model: map-

ping from instrumentation-

data to the model is not trivial

and also an abstraction layer

(e.g. features) is needed to

help analyzing efficiently

modeled trace.

2.3 Information Flow Processing

In this section, we describe a set of tools supporting scenarios that require to process a

large amount of data with low latencies. Requirements for real-time stream processing [60]

are shared by a large number of distributed applications, for example, systems exploiting

sensor networks or monitoring financial trading, and traditional DBMSs19 cannot address

them.

The Information Flow Processing (IFP) domain includes systems able to collect infor-

mation flows from multiple distributed sources and to process them effectively in a timely

fashion. This set of systems are denominated IFP Engines and a general framework to

characterise and compare them is presented in [17].

Cugola and Margara describe a general model for an IFP Engine: a rule-based system

processing heterogeneous information flows to produce new knowledge consumed by

other systems (shown in Figure 2.7). In particular, the main components depicted are: (i) a

set of sources generating information at system periphery, (ii) information items flowing

to the IFP engine without any guarantees on their ordering or data semantics, (iii) a set

of processing rules specifying how to filter, combine, and aggregate the different flows of

19Database Management Systems
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Fig. 2.7 High level architecture of an Information Flow Processing engine. Figure taken
from [17].

information, (iv) processing managers entities responsible of adding or removing rules,

(v) new flows of information produced as the output of the engine processing, (vi) a set of

information sinks receiving the generated flows.

Information Flow Processing systems reverse the interaction model of traditional

databases. DBMSs store data received and can be interrogated through once-executed

queries, IFP systems instead offer a continuous evaluation of rules, expressed through

graphs of primitive operators, on flowing information items.

Data processed by IFP engines are often related to events in time, and at least a time-

based relation is established while processing the flows. Therefore, items are annotated

with timestamps, to express rules predicating also on their timings relations, and, for this

purpose, two different time domains can be taken into account [2]:

• Event Time: time of occurrence of the item or time of occurrence of the event

represented by the item,

• Processing Time: time at which the processing engine observes the item.

Requirements for an IFP engine are: expressiveness to define effective rules, scalability

to handle large volumes at high rate and guarantee fast responses, and flexibility to handle

heterogeneous, incorrect or incomplete data.

Different solutions have been implemented in the IFP domain, based on: (i) differ-

ent data models, (ii) different languages to express processing rules, and (iii) different

processing techniques. However, they can be generally classified as Data Stream Man-

agement Systems (DSMS) [7], developed by the database community, or Complex Event
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Processing (CEP) systems [46], developed by researchers with different backgrounds but

interested in event-based systems.

2.3.1 Data Stream Management System

DSMS systems inherit from traditional databases both the data model and the query

model. They are developed as an evolution of traditional data processing applying the

relational model and exploiting declarative languages derived from SQL.

Issues in applying DBMSs to streams are related to: (i) unboundedness of data not

representable through finite tables, (ii) impossibility to make assumptions on data arrival

order and rate, (iii) necessity to apply one-time processing avoiding storage to cope with

sizing and timing constraints.

DSMSs solve this issue with the concept of relational data stream, modelling incoming

data, and the windowing mechanism to deal with finite portions of data. Therefore,

DSMSs focuses on transient data management and allow to run continuous queries which

are continuously answered as new data arrives.

Fig. 2.8 CQL DSMS model proposed in [5].

The CQL stream processing model, proposed by Arasu et al. in [5], defines a generic

DSMS through three classes of operators (as shown in Figure 2.8):

• the Stream-to-Relation (S2R) operators transform the Relational Data Stream, that

a priori should be considered unbounded, into a relation, i.e., a finite but time-

varying set of tuples. Different operators can be applied, but the usual one is the

sliding window reporting at any time a finite portion of the stream that is modified

(slides) over time. Windows’ sliding can be time-based if based on time-constraints

or tuple-based if based on the number of tuples (rows) in the window. Moreover, two

parameters regulate how the window slides: the widthω, i.e., the time range/number

of tuples that are considered to fill each window, and the slide β, i.e., how much

time/how many tuples the window moves ahead when it slides.
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• The Relation-to-Relation (R2R) operators applies relational algebra to the exist-

ing time-varying relations in order to produce a relation from one or more other

relations.

• The Relation-to-Stream (R2S) operators are necessary to output query results as a

stream. Every time the continuous query is evaluated, results obtained are processed

by the R2S operator and results are appended to the output stream. There are usually

three R2S operators: (i) RStream outputs as a stream the whole timestamped result

of the query each time it is evaluated, (ii) IStream outputs as a stream only the

new timestamped results, i.e., the difference between the set of tuples computed

at the last step and the ones computed at the previous step, and (iii) DStream

does the opposite of IStream, i.e., outputs as a stream the difference between the

timestamped results computed at the previous step and the ones computed at the

last step.

The main advantage in shifting from traditional processing to a DSMS tool is the famil-

iarity with the relational model. On the other hand, the main drawback is related to the

possibility of processing only within portions identified by windows making challenging

to express and capture complex temporal patterns.

2.3.2 Complex Event Processing

Complex Event Processing systems exploit the notion of event and associate a precise

semantic to the items processed. They consider items as timestamped notifications of

events occurrences observed by sources. The first CEP systems have been developed

within the context of publish-subscribe tools [28]. These systems process incoming in-

formation items one event at the time, they filter them through a set of predefined topic

or analysing their content, and then forwards events considering subscriptions of each

subscriber.

CEP engines extend this behaviour allowing to express rules to detect from the primi-

tive events, i.e., the items of the incoming information flow, a set of composite events, i.e.

representing higher-level events. Indeed, CEP languages, e.g. TESLA [18] enable definition

of complex patterns combining rules on events conjunction, events disjunction, sequences

of events or repetition of events.

Figure 2.9 shows the CEP model proposed in [17]. A CEP Engine is often composed by a

network of event processing agents composing the event processing network responsible for

processing events, detecting higher-level information, and notifying sinks subscribed both
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Fig. 2.9 CEP model proposed in [17].

to primitive and composite events. CEP engines are often highly distributed to reduce the

overhead on the network and to process and filter events efficiently.

CEP Engines provides a solution to the main limitation of most DSMSs, i.e., the ability

to express detecting rules addressing complex patterns on the timing relations of items.

However, they often do not offer the same expressivity in defining transforming rules,

i.e., rules manipulating items through a set of operators, better addressed by DSMSs

declarative languages.

2.4 Stream Reasoning

Applications requiring a stream-based approach needs on-the-fly processing, low latency

responses and capability of managing high volumes of data often also at a high rate.

DSMS and CEP systems fulfil these requirements providing timely processing of data but

show their limits when data are heterogeneous, have complex domain models or need to

combine rich background knowledge to be processed. As highlighted in [25], facing these

scenarios with an IFP engine requires to the user to put large manual effort in developing

complex networks of queries.

The situation described is common in many applications that need to process data

presenting heterogeneity both at a structural and at a semantic level, i.e. data with different

formats and different information "encodings", and that needs to extract higher-level

findings in complex domains from low-level data. This set of issues have been addresses

from research on Knowledge Representation (KR) and Semantic Web (SemWeb) providing

ways to encode semantic of information in data and to enable inference processing to

reason on those data. However, these solutions, have been developed for static analysis of

data with low volume and frequency.
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To bridge the gap and to study how to reason upon rapidly changing information [22] a

new research area called stream reasoning has been devised to integrate stream processing

tools and reasoning systems and to fulfil their requirements simultaneously.

In this section, we first overview the Semantic Web technologies, relying on Knowledge

Representation methodologies, and then we discuss technologies developed to address

the stream reasoning problem.

2.4.1 Semantic Web

The Semantic Web is a framework thought to make data available in the World Wide

Web shareable and reusable. It involves a set of technologies to provide information

with a well-defined meaning that can be understood and also processed from automated

agents. Due to the complexity of the concept, the World Wide Web Consortium (W3C)

proposed a layered approach, presented in Figure 2.10, in which each level contains a set

of specifications for semantic technologies.

Fig. 2.10 The semantic web stack.

In particular, the semantic of information is encoded through the Resource Description

Framework (RDF) that can be used to publish semantically enriched information on the

web. Moreover, a combination of the RDF data model and the Web Ontology Language

(OWL) can enable reasoning on exposed data.

Resource Description Framework (RDF)

The Resource Description Framework (RDF) is the W3C specification for data interchange

and information representation for the Semantic Web [15]. Information is organised in
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sets of statements in the form of triples subject-predicate-object. Elements in triples

can be: (i) IRIs (Internationalized Resource Identifiers), a set of characters identifying

a generic resource uniquely and allowing to enable equality checking between nodes

of different RDF graphs, (ii) literals, representing values and represented by character

strings associated with an IRI identifying their datatype, and (iii) blank nodes, representing

anonymous resources and disjoint from IRIs and literals.

RDF triples can be naturally represented as graphs: subjects and objects are the graph

nodes, and proprieties are edges connecting nodes.

The Resource Description Framework is a data model and, therefore, it has several

possible representations and serialisation formats. The main syntax for RDF models is

RDF/XML20, standardized from W3C, defines an XML syntax for describing RDF. Another

important format is JSON-LD21, a JSON based serialisation format allowing to exploit the

RDF format in systems already using JSON.

W3C also standardizes the RDF Schema (RDFS)22 a data-modelling vocabulary for

RDF data. It provides a way to describe groups of related resources and the relationships

between these resources.

Web Ontology Language (OWL)

The Web Ontology Language (OWL) is the ontology language for the semantic web, it has

been standardised by the W3C in 2004 and then updated as OWL223 in 2012. It allows

representing ontologies, that are conceptual specifications to model knowledge in specific

domains through shared and formalised vocabularies. OWL provides a conceptual model

to express axioms on resources and relations represented in RDF graphs.

OWL is built starting from the RDF Schema Language, and it provides classes, proper-

ties, individuals, and data values. Ontologies itself can be serialised in RDF graphs in the

RDF/XML syntax.

OWL enables reasoning, i.e., the possibility to infer implicit knowledge from asserted

axioms relying on theoretic semantics of description logics. OWL2 is modelled to pro-

vide the semantics of SROIQ, a fragment of First Order Logic guaranteeing decidability

and computational practicability of the reasoning procedure. Moreover, in the trade-

off between expressiveness and complexity of languages, different profiles24 have been

standardised to reduce expressiveness but to make reasoning tractable and scalable.

20RDF/XML https://www.w3.org/TR/rdf-syntax-grammar/
21JSON-LD 1.1 https://w3c.github.io/json-ld-syntax/
22RDFS https://www.w3.org/TR/rdf-schema/
23OWL2 https://www.w3.org/TR/owl2-overview/
24OWL2 Profiles http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
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SPARQL

The SPARQL query language for RDF is the W3C standard25 defining syntax and semantics

to express queries on RDF graphs. SPARQL is defined as a graph-matching query language

and allows to express queries through the specification of required and optional graph

patterns, their conjunction or their disjunction. It formalises an algebra for operators, and

it allows to output both results sets or RDF graphs.

SPARQL specifies four different types of queries, each of which can take a WHERE

block to specify graph-matching patterns: (i) SELECT query returns a set of variables

and their matching values, (ii) CONSTRUCT query allows returning RDF graphs created

directly from query results, (iii) ASK query returns a boolean value testing whether or not

the query pattern has a solution, (iv) DESCRIBE query allows obtaining an RDF graph

containing RDF data about the retrieved resources.

The most common query is the SELECT query that can be composed of five clauses:

(i) PREFIX keyword allows associating a prefix label to an IRI within the query, (ii) SELECT

keyword specifies variables to be returned and their formats, (iii) FROM keyword allows

specifying the RDF dataset to query, (iv) WHERE keyword provides the graph pattern to be

matched against the data graph (simple graph patterns, group patterns, optional patterns,

union patterns, filtering patterns, alternative graph patterns), and (v) Solution modifiers

keywords like ORDER BY, LIMIT,... allows to modify the result of the query.

The last version is SPARQL 1.1 that extends the 1.0 version with additional features, like

aggregations and subqueries. SPARQL queries can be executed on explicitly given graph

structures, or can work under some entailment regime26 extending SPARQL semantics to

take into account also inferable RDF statements given an entailment relation (e.g., RDF

entailment, RDFS entailment, etc ...).

Reasoning

Given an RDF graph modelling axioms and a related OWL ontology, it is possible through a

reasoner component to materialise the graph of implicit knowledge, i.e., the set of relations

that can be inferred from the ontology and the individuals (instances of ontology classes)

represented in the graph.

Enabling reasoning procedures can provide: (i) automatic consistency checking of

information present in the graph with respect to the domain modelled by the ontology,

(ii) classification of new information exploiting also higher level abstractions, (iii) enrich-

25SPARQL https://www.w3.org/TR/rdf-sparql-query/
26Entailment Regimes https://www.w3.org/TR/sparql11-entailment/
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ment of query answers with new knowledge inferred from combined graphs, e.g., different

sources or historical data.

The main problem of reasoning is its computational cost. Reasoning procedures can

become really expensive or even undecidable and, therefore, they have been applied

initially only to static data. However, balancing expressiveness, as done with OWL profiles,

and designing specific tools, performances can be optimised in order to apply reasoning

also on dynamic data.

2.4.2 RDF Stream Processing (RSP)

Stream reasoning investigates "how to perform online logical reasoning over highly dy-

namic data" [25]. In particular, we focus on research made on RDF Stream Processing

(RSP) to design continuous query models and languages capable of supporting prototypes

extending SPARQL to process RDF streams.

RSP-QL

The RSP-QL model, proposed by Dell’Aglio et al. in [24], aims at providing a unifying

semantic for RSP engines and at describing existing continuous SPARQL extensions and

their operational semantics. This model proposes semantics similar to the one used in

DSMSs [5].

RSP-QL identifies RDF streams as pairs (Gi , ti ), where ti is the timestamp and Gi is

a named RDF graph. Given an RDF Stream, the time-based sliding window operator

W defines a Time-Varying Graph that is a function returning for each time instant an

Instantaneous RDF Graph. Each window is characterized by three parameters, the starting

time t0, the window width α and the sliding parameter β.

An RSP-QL query is continuously evaluated against a streaming dataset (SDS) com-

posed by: (i) an optional default graph, (ii) zero or more named graphs and, (iii) zero or

more named time-varying graphs obtained applying the sliding window operators over a

number of streams.

Evaluation time instants (ET) are defined by mean of reporting policies: (i) CC (Con-

tent Change) if the window content changes, (ii) WC (Window Close) if the current window

closes, (iii) NC (Non-empty Content) if the current window is not empty, and (iv) P (Peri-

odic) at regular intervals.

Outputs of an RSP-QL query may be either a sequence of solution mappings, i.e., a se-

quence of compliant SPARQL answers, or a sequence of timestamped solutions mappings

if a streaming operator is applied. Streaming operators, RStream, IStream and DStream,
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are defined similarly to the R2S operators in [5] and append at each evaluation a new set

of elements to the output stream with respect to the logic they implement.

RSP Engine

The RSP-QL model can be applied to explain the operational semantics of popular RSP

Engines: the C-SPARQL Engine [9], CQELS [43], and Morphstr eam [13]. Moreover, it can

describe the semantics of the different continuous extensions of SPARQL proposed by

these engines, respectively, C-SPARQL, CQELS-QL and SPARQLstr eam .

All the three engines consider a particular case where the RDF stream is made by

timestamped graphs composed by only one triple, i.e., they assume timestamped RDF

triples instead of timestamped graphs. C-SPARQL engine exploits a DSMS to operate

windowing on incoming data. Once retrieved the Instantaneous RDF Graph the query

is carried out by a SPARQL engine. Morphstr eam , instead, exploits virtual RDF streams

and a mapping language to translate queries written in SPARQLstr eam into several DSMSs

queries. To conclude, CQELS engine integrates both the windowing mechanism into a

SPARQL engine and also implements techniques to manage performances with respect to

the velocity of the incoming stream.

The main limitation on the expressiveness of this systems is related to their similarity

to the DSMS approach. They show difficulties in capturing complex temporal patterns

and, for this reason, an approach towards Ontology Based Event Processing has been

proposed by Tommasini et al. in [62].

Inference Process

In the stream reasoning context, processing of streams requires a critical design choice

about the moment in which the inference process must be taken into account. This

choice can impact both performances and expressiveness and characterises the different

solutions proposed to approach the stream reasoning problem.

The discussed RSP Engines do not implement, as default, any entailment regime and

do not consider ontologies and inferential processing. C-SPARQL and CQELS can operate

under RDFS entailment regime, but this deteriorates performances. To face this issue,

Barbieri et al. proposed in [10] an approach to incrementally maintain the entailed triples

(materialisation) avoiding recomputing it from zero at each window change.
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2.5 Design Science

In this section, we analyse the fundamental concepts of the Design Science Methodology

for information systems and software engineering described by Wieringa in [66] and

applied in this thesis to develop and discuss Kaiju and Rim prototypes.

2.5.1 The methodology

Design science is composed by two main activities: Design and Investigation. The former

is related to the design of an artifact to improve a context, and the latter to the investigation

of the interactions between the artifact and the context to gain knowledge and to pose

new design problems.

Problems addressed by design science are improvements problems, i.e., problems

posed with the purpose to improve a context. A fundamental claim of the design science

methodology is related to the fact that the artifact alone doesn’t solve any problem and, for

this reason, it makes sense and must be designed and studied only in its interactions with

a given context. The context can be divided into social context, related to stakeholders

related to a project, and the knowledge context, providing existing designs and answers for

the problem addressed. These two contexts are related to two different kinds of research

problems: (i) design problems, requiring knowledge on the stakeholders and their goals

and evaluating different solutions by utility, and (ii) knowledge questions, requiring

familiarity with the knowledge context of the project and evaluating solutions assuming

only one true answer to be found.

Therefore, stakeholders are more interested in the outcomes of the design activity,

while the investigation activity provides answers to improve the understanding in a given

knowledge context. These activities are tightly coupled, and a design science project is

based on the continuous alternation of solving design problems and answering knowledge

questions.

Design science is a middle range science since it operates under assumptions simpli-

fying conditions of practice and focuses on finding generalisation beyond the case level

but not universal. Often design science projects start from simple simulations of new

technologies under idealised conditions. Once evaluated if something is possible at all,

idealisations are progressively removed in an iterative process to scale up new technology.
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2.5.2 Research projects

Research projects are characterised by research goals and by the set of related research

problems. Design science projects iterate over designing and investigating activities and,

therefore, we can divide projects’ research goals into design goals and knowledge goals.

Design Goals

Design goals define design problems that are mainly related to technical research questions.

Given a design goal it is necessary to identify:

• The problem context: the problem that should be addressed by the artifact and the

existing knowledge on the problem to be solved;

• The artifact to (re)design: what should be designed and, if applicable, the existing

designs;

• The requirements: what are the required interactions between the artifact and its

context and what are the properties the artifact should implement;

• The stakeholders and their goals: who is interested or may be interested in the

project and what are their goals.

Problems are usually formulated employing questions and to formulate a design ques-

tion it is sufficient to substitute elicited information in the following template: "How to

<(re)design an artifact> that satisfies <requirements> so that <stakeholders goals can be

achieved> in <problem context>?". It can be possible not all information are known when

starting a project and subsequent iterations can be necessary to define or refine them.

Knowledge Goals

On the other hand, knowledge goals should be refined in knowledge questions, that in

case of design science are empirical. Indeed, design science aims at improvements in a

real context, and for this reason, their knowledge questions require data about the world to

be answered. Differently from analytical knowledge questions, only exploiting conceptual

analysis, it is not possible to address them.

Empirical knowledge questions may be classified in different ways. A general classifica-

tion can be done through a bi-dimensional matrix identifying questions as descriptive or

explanatory on one dimension and as open or closed questions on the other:
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1.a) Descriptive questions asks for an objective description of what happened without

requiring any explanations;

1.b) Explanatory questions ask causes, effect and reasons of something happened;

2.a) Open questions does not contain a specification of possible answers;

2.b) Closed questions contains hypotheses on possible answers.

Another possible classification is, instead, specific to design science research:

• Effect questions asks for the effects and performances in the interaction between

the artifact and its context;

• Trade-off questions ask for a comparisons between alternatives artifacts, or previ-

ous versions of the same artifact, in their interaction with the context;

• Sensitivity questions asks for evaluation of the artifact if the context changes;

• Requirements satisfaction questions asks if effects and performances registered

satisfy functional and non-functional requirements.

When formulating knowledge questions, it is necessary to distinguish them from pre-

diction problems, i.e., questions asking for something in the future. These questions are

related to an additional type of problems that should be considered together with design

and knowledge problems and not as knowledge questions. However, generalisations

derived from answering knowledge questions can be used to solve prediction problems.

To conclude, it is important to highlight the relation between knowledge and design

goals. There is always at least one knowledge goal in a research project, and design goals

can be hierarchically defined to achieve it. However, it is possible to have also the opposite

situation with a knowledge goal helping to solve a design problem related to the artifact.
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Problem Statement

In this chapter, we define the observability problem, we discuss its relevance, and we

provide the research questions, the hypotheses and a requirement analysis.

3.1 Observability for software

Software is acquiring an essential role in almost any business [4]. Nowadays, more than

ever before, companies are concerned in deploying, maintaining and improving software,

for products, but also as assets that solve internal problems and help to gain a compet-

itive advantage. Consequently, all aspects related to how to use software in production

effectively are getting momentum.

Unpredictable and erroneous software behaviours call for continuous supervision of

execution correctness and performance. Moreover, business analytics are a key aspect to be

competitive on the market [21] and inspecting software components interactions, during

actual use by internal users or clients, can provide useful insight also from a business

intelligence point of view. Therefore, it is valuable to guarantee a prompt answer to the

following questions about software: What can go wrong? and What can we do better?.

Answering these questions properly is harder given the current evolution of software

systems. Indeed, the growing popularity of open-source orchestration systems, the in-

creasing availability of lightweight virtualisation techniques and the decreasing costs of

on-demand cloud services offered by a wide range of providers, accelerated the develop-

ment of service-oriented architectures [33]. This modularisation of applications is shifting

software systems complexity from components to the intricate network of interactions be-

tween them [27, 30]. Furthermore, when modules are run using virtualisation techniques

like containers, which are naturally ephemeral, it is hard to observe the system global

status and fundamental tasks such as debugging or scaling become harder too.



34 Problem Statement

For these reasons, new methods helping to supervise such systems at runtime are

relevant as never before and can benefit the lifecycle of the software products. The

problem of answering the aforementioned questions, in the context described, has been

referred under the observability keyword. While it was previously prerogative of a little

number of companies owning large-scale systems [64], currently, given the increasing

complexity of even small software systems, it has become relevant for many development

teams. A large set of industrial tools (APM vendors1 and logging-intensive solutions2) have

been proposed to mitigate it, approaching observability from a practical and empirical

perspective.

Despite the scientific literature on monitoring and debugging of large-scale system [63]

and several attempts to approach the topic from a technical point of view [6, 11, 12, 20,

29, 59, 64], it is not possible to find a shared and structured definition of observability.

However, the magnitude of the problem calls for a more structured approach. Therefore,

the first question we focus on is:

Can we provide a definition of observability for software-based systems?

The intuition to answer this question comes from [48] which was also inspired by [39]3:

"Observability for software engineers is the property of knowing what is happening inside

a distributed application at runtime by simply asking questions from the outside and

without the need to modify its code to gain insights". Majors’ intuition is the notion of

behaviour, i.e., what is happening within a distributed system at runtime.

Software systems are black-boxes that receive inputs data, process them with respect

to a domain specific logic and produce some sort of application outputs [55]. In a black-

box, we can characterise the internal state only in terms of inputs, outputs and application

logic (as shown in Figure 3.1).

Therefore, we formulate a definition of observability for software systems based on the

concept of system behaviour:

Observability (for software systems) is the property of a system to ex-

pose its behaviour at runtime through its outputs.

1see 2018 Gartner Magic Quadrant for Application Performance Monitoring (APM) Suites
https://www.dynatrace.com/gartner-magic-quadrant-application-performance-monitoring-suites/

2e.g. Honeycomb https://www.honeycomb.io/, Humio https://www.humio.com/
3In the context of Control Theory (CT), Kalman provides a formal definition of observability as a measure

of the knowledge about internal states of a system that can be inferred by mean of its external outputs [39].
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Fig. 3.1 Running software is like a black-box.

3.2 The observability problems

The provided definition of observability leads to questions about two tightly coupled but

parallel problems:

Observability problems (OP)

OP1 How can we expose the system behaviour through the outputs?

OP2 How can we make sense of system behaviour?

In the following sections, we identify the challenges that should be addressed while

approaching these two problems and we elicit the relevant requirements.

3.2.1 Observable behaviour

To approach the OP1 we need to define data composing the observable behaviour of

the system, i.e., the set of data that can be retrieved as outputs of the system to infer the

system behaviour.

The problem to observe a system during its execution has been traditionally addressed

by: (i) observing application outputs correctness (with respect to inputs and application

logic), (ii) collecting and processing metrics from system components, (iii) collecting

and analyzing logs from system components, and (iv) evaluating traces of (distributed)

computations performed (event-based or state-based debugging [19], in some cases

empowered by automatic tools [67]).

Many methodologies evolved during the years to cope with the shift of paradigm from

monoliths to distributed architectures and then to micro-service based architectures.

On the one hand, agent-based collection mechanisms for logs and metrics, combined

with new storage and processing solution, made monitoring scalable [1, 41, 49]. On the
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Fig. 3.2 Axes defining the behaviour of a software-based system.
The two points in figure represents two extreme and opposite situations. The light-blue

point represents a correct behaviour performing really bad, while the orange point
represents a performant but wrong behaviour.

other hand, trace collection evolved to adapt to highly distributed settings through the

development of end-to-end distributed tracing tools empowering analysis of complex

concurrent executions through metadata propagation [38, 57].

Considering the nature of these methods we can classify them as descriptors of two

aspects of the system behaviour at runtime (depicted in Figure 3.2):

• Application: axis representing the system correctness in implementing the specifi-

cation functions between its inputs and its outputs;

• Infrastructure: axis representing the system performances in meeting efficiency

and availability requirements.

The two dimensions are orthogonal, e.g., a system may perform service operations cor-

rectly but with really high latencies making it useless (light-blue point in Figure 3.2); and

a system may provide results with low latencies (e.g. as defined by non-functional re-

quirements) but its services can perform wrong operations with respect to the functional

requirements (orange point in Figure 3.2).

Given this framework and considering current software systems, we can then claim

application outputs provides the observable behaviour of the system on the application

axis, while metrics, logs and trace data do the same on the infrastructure axis. Therefore,

we define the observable behaviour.
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The observable behaviour is the behaviour subsumed by the all avail-

able outputs, i.e.,application outputs,metrics, logs, trace data.

The adjective "observable" highlights that we can examine only the system’s outputs.

In this regard, application outputs are domain-specific and already defined by functional

requirements whereas metrics, logs and trace data instead need ad-hoc instrumentation

that must be carefully designed to guarantee meaningful outputs. For this reason, the OP1

is mainly related to the infrastructure axis and to these three types of data, we will name

observations.

Indeed, the problem about exposing system behaviour is not only a matter to have

this outputs put in place. It is not trivial to determine the right observations a system

must expose in the trade-off between collecting too many data and not exposing enough

information. Therefore, even if determining what should be exposed may be dependent

on the specific piece of software, a set of guidelines to deal with this two-sided risk should

be provided dealing with OP1.

Fig. 3.3 Metrics, logs and trace data collection.
Observations are gathered from different components and then processed as three

separated flows.

Currently, different tools exist to deal with metrics, logs and trace data but each tool is

often specialised to gather, process and analyse only one of these types of data (Figure 3.3).

This differentiation of formats is mainly due to the complexity of domains these data are

meant to represent. However, as pointed out, all observations convey clues on the actual

system behaviour: it is not possible to provide a strict categorisation of their data and,

on the contrary, their interoperability is desirable. Indeed, the definition boundaries of
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metrics, logs and trace data are often blurred, and the same information is represented

multiple times under multiple formats. It is clear the lack of tools capable of providing a

unified instrument avoiding deploying multiple pipelines and allowing to reconcile the

different perspectives towards a common solution for the observability problem.

Therefore, trying to answer OP1 we pose a further question:

Q1 Is it possible to unify the data models and processing pipelines of

metrics, logs and trace data (i.e., observations) to provide a single and

significative output for the observable behaviour of a software system?

To approach this question, trying to define a common data model, we elicit a set of

requirements the proposed answer should fulfill:

Q1.R1 Timestamped

Observations describe the behaviour of the system over time and so its information

content is strictly bound to a specific instant in time: the instant when a metric is

collected, the instant when a log is reported, the instant when a span composing a

trace has been executed.

Q1.R2 Flexible Schema

To empower functional interoperability of observations the schema should be appli-

cable to the different types of data: metrics content is a numeric value, logs content

is a report with different formats under different specifications, trace content can

be defined in multiple ways. Moreover, it should be flexible to model the complexity

of the domain.

Q1.R3 Shared Terminology

To empower semantic interoperability of observations gathered from different com-

ponents of the system, shared vocabularies are desirable, e.g., for error identifiers,

components and operation names, resource naming, metrics naming, etc...

3.2.2 Behaviour interpretation

The OP2 problem is about the methods to derive insights from what we called the observ-

able behaviour of a system.

We start defining an interpretation of behaviour:
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An Interpretation of behaviour, in the general case, is a function of the

observable behaviour of the system.

However, application outputs do not require pre-processing to provide information

and are often addressed within the context of testing. For these reasons, also with re-

spect to OP2 the main challenge is related to observations. Therefore, we define the

interpretation of behaviour on the infrastructure axis as interpretation of observations:

Interpretation of observations = f (Metrics,Logs,Trace Data)

It is important to notice that even if we are interested in the behaviour of the system at

runtime, the processing of data needs to be both dynamic and static to address different

use cases related to observability. For example, applying machine learning algorithms to

set thresholds based on historical data calls for a static analysis of the system behaviour,

while detecting increasing latencies or checking SLA4 requirements at runtime calls for

dynamic analysis.

However, there are a number of reasons why dynamic analysis is becoming more rele-

vant. Firstly complex systems fail in really complex ways [16] and, thus, no effective test

can be done to ensure coverage of all possible situations and facets a largely distributed

system might exhibit. Therefore, testing software in production [48] with a prompt reac-

tion to erroneous behaviours is often the last resort. Second, observations [59] are vast

and ephemeral: process them on-the-fly is the only option since there is not enough time,

and often not enough space too, to store and then process.

For these reasons, we focus on making sense of system behaviour through dynamic

analysis, without neglecting the necessity to persist data to allow also static analysis.

Under this assumptions, we can then pose a further question about OP2:

Q2 Is it possible to make sense in near real-time of information needs

about the system observable behaviour considering the available observa-

tions at runtime, and despite data heterogeneity?

Similarly to Q1, we elicit a set of requirements that a solution should fulfil.

4Service Level Agreement
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Q2.R1 Process Temporal Relations

As stated by Q1.R1, the lowest common denominator between observations is their

dependence on time and so we can factor it in the definition of interpretation of

observations:

Interpretation of observations = f (M(t ),L(t ),T(t )) = f (t , M, L, T)

The resulting formula clearly represents the need to interpret observations and

then process them taking into account their temporal dependencies. The timing

of observations is fundamental to interpret them with respect to the behaviour of

the system. We should be able to express a set of time-dependent rules to process

them [17]:

a) Transforming rules: we should be able to make continuous queries against

observations [5];

b) Detecting rules: we should be able to define and detect simple and composite

patterns on their content and their temporal relations [14].

Q2.R2 Reactiveness

The importance of near real-time supervision of systems mainly targets the need to

observe and process the current status of the system [8, 58]. We should be able to be

reactive, i.e., to observe system behaviour minimizing the processing delay.

Q2.R3 Handle complexity

The variety of data represented in observations and the complexity of domains leads

to complex schemas of data. We need to handle this complexity providing a set of

operators to effectively filter, aggregate and join observations.



Chapter 4

Design

In this chapter, we address the research questions proposed in Chapter 3.

In Section 4.1 we analyse metrics, logs and trace data models considering current stan-

dards. We start pointing out similarities and differences among observations data-types,

and we show how the event abstraction can provide a useful higher-level abstraction rec-

onciling them. To address Q1 and the elicited requirements, we propose the observability

event data model and we discuss it with respect to OP1.

In Section 4.2, we deal with OP2 analysing processing models for observations. We

discuss the need for a stream-oriented approach towards observability given Q2 require-

ments. Therefore, we explain our choices to validate our claim. We follow the investigation

method proposed in [66] modelling two different prototypes: an environment, Rim, capa-

ble of emulating the context we would like to address and, Kaiju, a prototype processing

trace data as a stream.

In conclusion, in Section 4.3, we discuss the possibility of crossing the streams pro-

cessing together different types of observations. We explain how stream reasoning can

provide a suitable solution for the observability problem fulfilling requirements elicited for

both questions Q1 and Q2. Therefore, we detail a specification for a prototype processing

observations through a RSP-QL query language [24].

4.1 Modeling observations

As discussed in Chapter 3, observations are the three methods currently used to expose the

observable behaviour of the system on the infrastructure axis. Each one of these provides a

correct yet partial view of the system behaviour at runtime. In this section, we discuss Q1

addressing this problem. In Section 4.1.1 we analyse the most widely accepted standards

for metrics, logs and trace data. Taking into account considerations made on these data, in
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Section 4.1.2 we propose the observability event data model, we detail how the proposed

model matches requirements Q1.R1, Q1.R2 and Q1.R3 and we discuss how this model

addresses OP1.

4.1.1 Metrics, logs and trace data

Metric A metric is a timestamped and tagged data about system status. Metrics are

collected periodically and can be divided in work metrics, related to the performances of

running processes, and resource metrics, related to the status of physical (e.g. CPU) and

virtual (e.g. a queue) resources being used [20]. Since the discussion for an open standard

for metrics is still ongoing (Open Metrics1), we henceforth consider as a reference the

Prometheus format2, taken as the basis for the standardisation process. Prometheus

format for metrics is:

id [metric name and labels] + sample [timestamp and value]

It is composed by two main parts: (i) the id part that identifies the metric through a name

and a set of key-value pairs (labels) to provide additional metadata, and (ii) the sample

part specifying the timestamped value of the metric.

1 api_http_requests_total {method="POST" , handler ="/messages" } 1542650713 34

2 api_http_requests_total {method="POST" , handler ="/messages" } 1542651425 45

Listing 4.1 Example of two samples of the same metric in the Prometheus format.

Log A log is a time-stamped report of a system performed operation or error encountered.

Logs describe the reported operation/error either in a unstructured form, i.e., plain text,

or in a structured form, i.e., a blob of JSON or a binary serialisation of structured data.

Structured data simplifies the automatic processing of logs but, for this purpose, also

unstructured payloads are usually formatted following some specification, e.g., RFC 54243.

1 DEBUG 2018−11−10 16 : 17 : 58 − Incoming request from c l i e n t I d 54732

Listing 4.2 Example of plain text unstructured log

1Open Metrics https://openmetrics.io
2Prometheus: open-source monitoring and alerting system https://prometheus.io/docs
3RFC 5424 https://tools.ietf.org/html/rfc5424
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1 {

2 "msg" : "Incoming request " ,

3 " data " : { " c l i e n t I d " : 54732 } ,

4 "timestamp" : 1541866678 ,

5 " l e v e l " : "DEBUG"

6 }

Listing 4.3 Example of structured log in JSON

Trace data Trace data are timestamped data collected through requests flows and causally

correlated by mean of the happens-before semantic [42]. A trace captures the work per-

formed by a system to process a request. Formats for trace data may be different, as

discussed in Section 2.2.7, but we consider the OpenTracing specification [35], a vendor-

agnostic effort towards a standardization (detailed in Section 2.2.3). Each span represents

a unit of computation within the request workflow. A span is composed by metadata to

reconstruct the trace (spanId, traceId and references to other spans), a timestamp rep-

resenting its start time, a timestamp related to its end time, an operation name, a set of

tags (key-value pairs) and a set of logs (key-value pairs with a timestamp) related to it.

OpenTracing offers an API for multiple languages, but the serialisation format for data

gathered depends on the specific tracer chosen. For this reason, as exemplified in List-

ing 4.4, the serialisation format of the spans may be slightly different from the OpenTracing

specification.

1 {

2 " traceID " : " f6c3c9fedb846d5 " , "spanID" : "5 cfac2ce41efa896 " , " f l a g s " : 1 ,

3 "operationName" : "HTTP GET /customer" ,

4 " references " : [ { " refType " : "CHILD_OF" , " traceID " : " f6c3c9fedb846d5 " , "spanID" : "14a3630039c7b19a" } ] ,

5 " startTime " : 1542877899033598 , " duration " : 747491 ,

6 " tags " : [ { "key" : "span . kind" , " type " : " s t r i n g " , " value " : " server " } , { "key" : " http . method" , " type " :

" s t r i n g " , " value " : "GET" } , { "key" : " http . ur l " , " type " : " s t r i n g " , " value " : "/customer ? customer

=392" } , { "key" : "component" , " type " : " s t r i n g " , " value " : " net / http " } , { "key" : " http . status_code

" , " type " : " int64 " , " value " : 200 } ] ,

7 " logs " : [ { "timestamp" : 1542877899033827 , " f i e l d s " : [ { "key" : " event " , " type " : " s t r i n g " , " value " : "

HTTP request received " } , { "key" : " l e v e l " , " type " : " s t r i n g " , " value " : "INFO" } , { "key" : "method" ,

" type " : " s t r i n g " , " value " : "GET" } , { "key" : " ur l " , " type " : " s t r i n g " , " value " : "/customer ?

customer=392" } ] } , { "timestamp" : 1542877899033872 , " f i e l d s " : [ { "key" : " event " , " type " : " s t r i n g "

, " value " : "Loading customer" } , { "key" : "customer_id" , " type " : " s t r i n g " , " value " : "392" } , { "

key" : " l e v e l " , " type " : " s t r i n g " , " value " : "INFO" } ] } ]

8 }

Listing 4.4 Example of a span collected with the OpenTracing API and serialized by Jaeger

tracer.

This three types of data are meant to handle different aspects of the system behaviour

and, for this reason, different specialised tools have been built to deal with their specific

data formats. The main issue with the current approach is that each type of data is
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processed separately. In doing so, we miss the opportunity to join the information-content

of differently typed data and to obtain an overall perspective on the status of the system.

4.1.2 Observability events

If we consider in more details the descriptions provided and we try to identify the charac-

terizing feature of each type of data we can classify: (i) metrics as aggregatable data given

their numeric nature (ii) logs as records about software execution, and (iii) trace data as

request-scoped data.

Given the following categorization of observations it is, however, easy to notice we

can identify data about system behaviour at the intersection of multiple categories, as

shown in Figure 4.1: (i) aggregatable records, e.g., logs containing numeric information

that is useful to manipulate as metrics data, (ii) request-scoped records, e.g., logs related

to a span, (iii) request-scoped metric, e.g., metrics on resources usage of a request, and

(iv) request-scoped aggregatable records, e.g., a trace containing request-scoped logs and

metrics.

These considerations support our claim of metrics, logs and trace data as a partial

view of the same problem. Therefore, to cope effectively with data in overlapping zones,

we need to reconcile them avoiding possible replication or split of information.

Fig. 4.1 Metrics, logs and trace data are overlapping concepts.
Diagram inspired by [11].

Observations are descriptors of the behaviour of the system at runtime, i.e., of what

happens in the system. Cunha et al. said: "An explicit event-based approach seems more

adequate, both to describe the dynamic distributed program evolution and to provide a

transparent interpretation of correctness properties" [19]. Therefore, while we consider
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useful to have lower-level abstractions, like the concepts of metrics, logs and traces, we

claim that approaching observations as events can help in providing a higher-level unified

point of view towards a single significative output (Q1).

Taking into account the actual formats for metrics, logs and trace data and the require-

ments Q1.R1, Q1.R2 and Q1.R3 we can model the observability events as:

Observability event = Timestamp | Payload | Context

where:

• timestamp is a numeric value representing time (e.g., int64 counting milliseconds

since epoch, i.e. 1970-01-01 00:00:00 UTC);

• payload is a generic set of key-value pairs containing the actual information content

of the event;

• context is a generic set of key-value pairs identifying the type of event (i.e., keys

in the payload) and providing additional metadata contextualizing the event (e.g.,

dimensions and scopes of the event like service name, availability zone, instance

type, software version, etc...).

We proceed to discuss how this proposed model fulfils Q1 requirements and how it

can be helpful to expose the system behaviour.

Q1.R1 Timestamped

The common characteristic between observations is their dependency on time and also

current data formats require a timestamp for each of these data types. In the event world,

time is a first-class citizen [46] and, therefore, the proposed observability event model

requires a timestamp as the only mandatory field in its specification.

Q1.R2 Flexible schema

The proposed model is flexible enough to represent metrics, logs and trace data, to

guarantee the reconciliation of their models and the extensibility of formats. Moreover, it

also enables expressiveness in complex domains providing a way to make observability

events multidimensional as modeled by Pedersen et al.: payload contains the facts, i.e.,

the actual data (the "measure"), and context provides dimensions. Indeed, multiple

dimensions provide a way to model complex data: dimensions add axes on which data

can be aggregated or sliced and can be used to model hierarchies [53].
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We explain how it is possible to bind described data formats to the model proposed

and, exploiting a JSON serialisation. Furthermore, we provide examples on this starting

from Listings 4.1, 4.3 and 4.4.

Metrics are observability events with the timestamp of the sampled value, the payload
composed by the value and the metric name, and context composed by the metric labels.

1 {

2 "timestamp" : 1542650713000 ,

3 "payload" : {

4 "name" : " api_http_requests_total " ,

5 " value " : "34"

6 } ,

7 " context " : {

8 "method" : "POST" ,

9 " handler " : "messages"

10 }

11 }

1 {

2 "timestamp" : 1542651425000000 ,

3 "payload" : {

4 "name" : " api_http_requests_total " ,

5 " value " : "45"

6 } ,

7 " context " : {

8 "method" : "POST" ,

9 " handler " : "messages"

10 }

11 }

Listing 4.5 Example of metrics as observability events.

Logs are observability events with the timestamp of the record, the payload composed

by structured key-value messages describing the record, and the context providing ad-

ditional metadata (e.g., the specification to interpret the payload or metadata about the

process emitting it).

1 {

2 "timestamp" : 1541866678000000 ,

3 "payload" : {

4 "msg" : "Incoming request " ,

5 " l e v e l " : "DEBUG"

6 } ,

7 " context " : {

8 " c l i e n t I d " : 54732

9 }

10 }

Listing 4.6 Example of a log as observability event.

Trace data, despite being more complex than metrics and logs, are observability events.

A wide range of possibilities can be considered to decompose a trace in observability

events [38, 44]. Nevertheless, considering the OpenTracing specification we propose to

associate one observability event to each span. The start time of the span becomes the

timestamp. The payload contains the end timestamp (or, without loss of generality, the

duration), the operation name and the references to other spans, while the context is

made by the traceId, the spanId and the tags related to the span (e.g. metadata about the

process running the span).
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With regard to span logs they can be modelled as separated observability events repre-

senting logs and containing the traceId and spanId of the related span in their context.

1 {

2 "timestamp" : 1542877899033598 ,

3 "payload" : {

4 " duration " : 747491 ,

5 " references " : [ {

6 " refType " : "CHILD_OF" ,

7 " traceId " : " f6c3c9fedb846d5 " ,

8 "spanId" : "14a3630039c7b19a" } ] ,

9 "operationName" : "HTTP GET /customer"

10 } ,

11 " context " : {

12 " traceId " : " f6c3c9fedb846d5 " ,

13 "spanId" : "5 cfac2ce41efa896 " ,

14 "operationName" : "DEBUG" ,

15 " f l a g s " : 1 ,

16 "span . kind" : " server " ,

17 " http . method" : "GET" ,

18 " http . ur l " : "/customer ? customer=392" ,

19 "component" : " net / http " ,

20 " http . status_code " : 200

21 }

22 } ,

1 {

2 "timestamp" : 1542877899033827 ,

3 "payload" : {

4 "msg" : { " event " : "HTTP request received " , "

method" : "GET" , " ur l " : "/customer ?

customer=392" } ,

5 " l e v e l " : "INFO"

6 } ,

7 " context " : {

8 " traceId " : " f6c3c9fedb846d5 " ,

9 "spanId" : "5 cfac2ce41efa896 "

10 }

11 } ,

12 {

13 "timestamp" : 1542877899033872 ,

14 "payload" : {

15 "msg" : { " event " : "Loading customer" , "

customer_id" : 392 } ,

16 " l e v e l " : "INFO"

17 } ,

18 " context " : {

19 " traceId " : " f6c3c9fedb846d5 " ,

20 "spanId" : "5 cfac2ce41efa896 "

21 }

22 }

Listing 4.7 Example of a span as observability events.

Q1.R3 Shared terminology

The proposed model enables the possibility to use a shared terminology defining a set

of common keys and values. A specification of the terminology is outside the scope of

the data model and is not directly enforced by it, but it is supported by mean of a single

flexible structure for observations.

A unified perspective

It is worth to notice we do not aim to provide a fixed schema for all observability events,

but rather to offer a unique unified structure for observations. Indeed, reasoning on how

to expose the system behaviour through a unique data model can provide several benefits:

i) it allows to represent easily observations not categorizable as a metric, log or trace

data (overlapping zones in Figure 4.1) avoiding replication or split of information

under multiple formats;



48 Design

ii) from a technical point of view it could enable a unique instrumentation API and

a unique pipeline to collect observations in a distributed fashion (as shown in

Figure 4.2);

iii) designing observations instrumentation as a whole with a shared terminology can

help to avoid replication of information with different semantics;

iv) the context enables the possibility to slice, aggregate and join observability events,

with different types of payloads, over arbitrary shared dimensions (it is important to

avoid pre-aggregations on predefined variables [48]);

v) a single perspective can help in determining a more general (not influenced by ob-

servations data types) set of guidelines to deal with the trade-off between collecting

too many data and not exposing enough information on system behaviour.

Because of this, we believe the proposed model can provide a meaningful answer to Q1.

Fig. 4.2 Interpretation of observations.

Nevertheless, we claim metrics, logs and trace data remains the three main abstrac-

tions to reason on how to expose and make sense of system behaviour. The proposed

model makes easier to process them also together and allows to process same data inter-

preting it under multiple abstractions, but they define different payloads, and each of them

has its specificity. This consideration must be taken into account while instrumenting

the system and in determining processing mechanisms for fine-grained access. For these

reasons, the interpretation of observations, defined in Section 3.2.2, is still meaningful in

approaching OP2 (Figure 4.2) and this second problem can be decoupled from OP1.
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4.2 Processing observations

As described in Chapter 3, processing of observations requires an engine able to process

data flowing from the different components of the software system and to timely manage

complex rules to make sense at runtime of system behaviour. Given the three requirements

identified for Q2, we claim that the OP2 belongs to the domain of Information Flow

Processing [17].

In particular, the requirement Q2.R2 call for a stream-based approach to achieve low

latencies and to process data as soon as they arrive from sources. Storing operations and

static analysis, if needed, are demanded to information sinks. The other two requirements,

instead, are related to processing rules and must be taken into account to select a stream

processing engine capable of handling observations as described by Q2.R1 and Q2.R3.

Information Flow Processing engines can be described through two models: (i) the

data stream processing model, processing streams as inputs to output new data streams

(traditional data processing applied to streams, e.g., DSMS4) and, (ii) the complex event

processing (CEP) model, consuming stream data as notifications of events and processing

them to produce higher-level events from particular detected patterns.

As pointed out in Q2.R1, to effectively process observations it’s desirable to have the

possibility to express both transforming and detecting rules. Originally, this kind of rules

were respectively implemented by DSMS (transforming) and CEP systems (detecting), but

currently there exist stream processing engines allowing to express both types of rules (e.g.

Esper5, Drools Fusion6, Siddhi [61]). Also, with respect to Q2.R3, it is possible to found

engines adopting languages that provides enough expressiveness to filter, aggregate and

join data despite of their schema and allowing for flexible data models.

Therefore, we would like to validate our claim showing that is possible to process

observations effectively through a stream processing engine. To show the benefits of this

approach also in existing production environments and without requiring a change in

instrumentation, we do not choose to adopt the model proposed in Section 4.1 and we

decided to opt for an already widespread data model.

Stream processing solutions for logs are quite diffused (e.g., Kafka-based pipelines [40],

Humio7 or Honeycomb8) and also stream-oriented pipelines for metrics have been investi-

gated (e.g., research works [8, 58], Tick stack by InfluxData9).

4Data Stream Management System
5Esper http://www.espertech.com/
6Drools https://www.drools.org
7Humio https://www.humio.com
8Honeycomb https://www.honeycomb.io
9InfluxData https://www.influxdata.com/time-series-platform/
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State-of-the-art open-source distributed tracing tools (e.g. Jaeger [56] and Zipkin10) are,

instead, still relatively immature with regard to stream processing of trace data. They are

based on similar pipelines composed by instrumentation libraries in different languages,

agents and collectors to gather data, a storage solution and a visualisation layer. These

tools enable a static analysis of trace data and currently do not implement a solution

for dynamic analysis. However, as pointed out in the literature on distributed tracing,

dynamic analysis plays an important role [47, 54] and can be effectively paired with the

static one to supervise the system behaviour in large-scale systems [38].

Given OP1 and considering research works and technical reports cited, we would

like then to show benefits of near real-time processing also with respect to trace data.

Therefore, we elicit a specification for a set of tools, we named Trace Stream Processor

(TSP), that can implement this approach and can be used to evaluate it. We focus then on

request-scoped observations highlighted in Figure 4.3, and in particular we consider the

OpenTracing specification, offering a widely accepted standard for trace data. It should

be pointed out that we also consider overlapping zones (shown in Figure 4.3) since this

specification can easily embrace all kind of request-scoped observations. Indeed, span

logs are request-scoped records, and metric, e.g. related to resource usages of a specific

request, can be reported as a span tag.

Fig. 4.3 Request-scoped observations.

On these assumptions, to validate our claim, we designed Kaiju, a TSP prototype

implementing a stream-based approach for request-scoped observations, and Rim, an

environment to reproduce the target context (as depicted in Figure 4.4). In this way, fol-

lowing the Design Science framework discussed in Section 2.5, we were able to design

Kaiju exploiting an iterative process of evaluation of the artifact in its context. Require-

10Zipkin https://zipkin.io
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ments for both the artifact and the context have been iteratively elicited focusing on their

interactions but to facilitate the discussion we report them separately.

Fig. 4.4 Kaiju artifact interacting with Rim.

4.2.1 Rim

In this section, we describe the specification for Rim, an environment that should be

representative of the context addressed by Kaiju. The context is related to the problem of

observability for software, as described in Chapter 3, and in particular to the processing of

request-scoped observations produced by running distributed software. Since we do not

have a real production cluster to monitor nor a dump of these types of data, we decided to

build a configurable and reproducible environment that can be used to introduce arbitrary

issues and to produce relevant data to evaluate our prototype.

Rim should represent a running distributed application in a usual production scenario.

Therefore, the application should exploit a service-oriented architecture decomposing

the business logic in multiple micro-services. To produce request-scoped observations

the components should be instrumented with OpenTracing API to propagate metadata

and produce data on incoming requests. Moreover, we would like to observe all traces

produced, i.e., it should be possible not to implement sampling strategies. To be run in

a distributed fashion it should enable the deployment of services on different machines

and, to guarantee portability, we would like to made Rim micro-services shippable as

containers. To ensure the application can scale, it should also provide an easy method to

deploy multiple instances. In this way, it is possible to cope with a high number of requests

and, consequently, to tune the amount of trace data produced. Furthermore, we want

to instrument Rim to output also other types of observations (e.g. not request-scoped
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logs and metrics) to compare the different outputs and to enable approaches taking into

account different types of data.

Given these specifications, the core feature of Rim should be the possibility to tune

some parameters, when launching the application, in order to introduce or remove pro-

grammatically a set of issues on latencies and concurrency of operations. To conclude,

Rim should allow generating load tests to automate requests and the production of trace

data. Moreover, since instances can also be configured in different ways, it should also

enable the possibility to select how the traffic is shared among them.

In summation, we elicited the following specification for Rim:

Rim.1 The application should be composed by multiple micro-services.

Rim.2 Each service should be instrumented with the OpenTracing API and no sampling

strategies implemented.

Rim.3 Each service should be isolated and deployable independently from other services.

Rim.4 Possibility to run multiple instances of the application.

Rim.5 Generate also other types of observations (other than trace data).

Rim.6 Possibility to increase-decrease latencies/concurrency of operations.

Rim.7 Possibility to generate systematic and reproducible load tests to target instances.

Given the specification provided, the Rim environment allows: (i) to easily create a

stream of request-scoped observations, (ii) to emulate a production scenario with multiple

instances of a multi-node application, and (iii) to tune the volume of data produced and

the set of issues introduced in the system.

In this way, we created a white-box system11 to check the effectiveness of tools and

methodologies to observe the system status at runtime.

4.2.2 Kaiju

The main specifications for Kaiju are related to the requirements identified for Q2:

TSP.1 Enable efficient querying on trace data for (near) real-time fine-grained analysis

(Q2.R2, Q2.R3) coping with delayed, missing and out-of-order data.

11Rim is an all respects a distributed application, therefore when it is deployed it can be affected to
common unpredictable issues of distributed systems (e.g., network partitioning).
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Fig. 4.5 A Trace Stream Processor (TSP) as described by the specification.

TSP.2 Enable analytical continuous querying on trace data, also exploiting causality rela-

tionships within the same trace (Q2.R1[a)], Q2.R3).

TSP.3 Enable the possibility to emit events and alerts about incoming trace data and to

detect complex patterns. (Q2.R1[b)], Q2.R3).

Further specifications are related to rules management and to sources and sinks of the

stream processing engine:

TSP.4 Enable ingestion of trace data from instrumented software components.

TSP.5 Enable possibility to install and remove rules at runtime.

TSP.6 Enable possibility to output or store query results.

While metrics and logs have not a widely accepted and structured standard, the

OpenTracing initiative offers a recognised and diffused vendor-agnostic specification for

trace data, and so we decided to focus on this standard for the Kaiju prototype, detailing

specification TSP.4 as follows:

TSP.4 Enable ingestion of trace data from components instrumented with the OpenTracing

API.

An additional specification is related to the high volume of trace data generated by

incoming requests and often requiring sampling. Large complex systems can process
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millions of requests per second, so tracing systems, to avoid high overhead and to reduce

the storage required, usually apply sampling policies selecting traces to-be-collected

(constant or probabilistic, system- or service-wise, static or adaptive with respect to the

actual workload). The main problem is related to the ingesting delay due to indexing-based

stores currently used in distributed tracing tools’ pipelines. Through a stream processor

we can apply tail-sampling (a posteriori sampling strategies), i.e., we can elaborate all data

storing only the relevant ones and avoiding the overhead of storing and then discarding

them12.

TSP.7 Enable a posteriori sampling strategies to store relevant traces for static analysis.

In Figure 4.5 we highlight some of the specifications reported showing required inter-

actions for a TSP.

To conclude, we elicit a non-functional specification related to resources consumption.

Usually, tools for observability, share resources with applications supervised, so we want

to guarantee a TSP can be deployed even if few resources are available to observe the

system:

TSP.8 Lightweight component requiring few resources for basic deployments.

4.3 Crossing the streams

The observability event model, proposed in Section 4.1.2, mainly addresses a problem of

variety between observations data-types. It considers time as a first-class citizen (Q1.R1),

it guarantees functional interoperability (Q1.R2) and the possibility of defining a shared

terminology (Q1.R3). On the other hand, the processing model proposed in Section 4.2

allows to process temporal relations (Q2.R1) and handle complexity (Q2.R3) through

expressiveness of the processing language, but it mainly addresses a problem of velocity

in processing observations (Q2.R2).

Ideally, we would like to combine our two contributions to process different types of

observations simultaneously. However, Kaiju is not suitable to handle data heterogeneity

because, as a stream processor, it does not support semantic interoperability [23]. Indeed,

Kaiju needs a set of adapters for each type of observations we want to ingest. In Section 5.3,

we describe an extension of Kaiju that evaluates this possibility.

On the other hand, the challenge of taming velocity and variety simultaneously was

addressed by the stream reasoning research area as RDF Stream Processing (RSP). RSP

12Networking overhead in data transfer should be anyway considered.
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combines concepts from knowledge representation and reasoning with a stream-based

approach [23]. Moreover, RSP exploits semantic web technologies (see Section 2.4.1), in

particular the RDF data model and SPARQL, to guarantee functional and semantic inter-

operability. Therefore, we envision an RSP approach that fulfils requirements identified

for Q1 and Q2 and requires, in addition, to:

RSP.1 Model observations using semantic technologies

RSP.2 Enable an RDF serialisation of observations.

RSP.3 Provision queries in an RSP dialect (e.g., C-SPARQL, CQELS-QL and SPARQLstr eam).

In the literature, it is possible to find research works modelling ontologies for logs and

working on them as RDF graphs ([26, 52] and RLOG13). Moreover, a related work on stream

reasoning applied to metrics analysis exists [50]. Even if it does not define an ontology,

given the currently ongoing OpenMetric effort towards standardisation for the metric

format, we decided to not focus on this.

In this work, we choose to focus on trace data exploiting the work done with Kaiju, and

the experience made in processing this type of data. Therefore, to fulfil the specification

above and evaluate this approach: (i) we design an ontology for trace data based on the

OpenTracing specification [35], (ii) we generate a stream of trace data annotated in RDF,

(iii) we consider an RSP engine consuming trace data as RDF graphs, and we investigate a

set of queries in the considered RSP dialect.

13RLOG - an RDF Logging Ontology http://persistence.uni-leipzig.org/nlp2rdf/ontologies/rlog/rlog.html#





Chapter 5

Implementation

In this chapter, we describe implementations of prototypes modelled and specified in

Chapter 4. In Section 5.1, we explain the implementation details of Rim, and in Section 5.2

the ones of Kaiju, fulfilling specifications for a Trace Stream Processor (TSP). In Section 5.3,

we describe how we extend Kaiju to process also other types of observations. In Section 5.4,

we detail the integration of Kaiju with an RSP engine.

5.1 Rim

In this section, we describe the implementation of Rim, i.e., an environment emulat-

ing a running distributed application, instrumented through the OpenTracing API and

configurable to introduce issues in its behaviour at runtime. We follow the specification

discussed in Section 4.2.1 explaining how Rim fulfils it.

Rim is based on HotR.O.D.1, a demo application emulating a "ride sharing" application

and instrumented to send trace data to the Jaeger distributed tracing tool. HotR.O.D. is a

GoLang2 application composed of four micro-services plus two emulated data storage,

connected as depicted in the component diagram in Figure 5.1.

This basic application offers the user the possibility to make only one type of request in-

teracting with the Frontend service. Each request made crosses all four services interacting

as shown in the sequence diagram of Figure 5.2:

(i) Frontend service provides a simple web-app to make HTTP GET requests to the

\dispatch endpoint. Clicking one of the four buttons available, each related to

a specific customerId, it is possible to ask for a driver to be dispatched at the

1HotR.O.D. - Rides on Demand https://github.com/jaegertracing/jaeger/tree/master/examples/hotrod
2GoLang https://golang.org
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Fig. 5.1 HotR.O.D. component diagram. The HotR.O.D. application is composed by four
microservices (Frontend, Customer, Driver and Route) plus two emulated data storage.

customer location. The request is sent to the back-end service that calls all others

micro-services and responds with the driver’s license plate number and the expected

time of arrival.

(ii) Customer service is called through an HTTP GET call and it emulates a query to an

SQL database returning data about the customer identified by the given customerId:

location and customerName.

(iii) Driver service exposes the findNearest service through Thrift3 over TChannel4.

Emulating a Redis database, it randomly generates ten drivers available in the area

of the customer and for each of them returns the driverId (license plate number)

and locationDriver.

(iv) Route service is called through an HTTP GET call and computes the ETA5 from the

driver to the customer location.

The four microservices are instrumented with the OpenTracing API for GoLang6 and

the Jaeger tracer is configured to handle traces (sampling is not active). In order to

exemplify the goal of distributed tracing some operations are intentionally misconfigured

or not optimised (highlighted in yellow in Figure 5.2): latencies of some operations are

3Thrift https://thrift.apache.org
4TChannel https://github.com/uber/tchannel
5Estimated Time of Arrival
6OpenTracing-Go https://github.com/opentracing/opentracing-go
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Fig. 5.2 Sequence Diagram of HotR.O.D. requests.
The diagram represents requests made through the UI or directly to the /dispatch endpoint of service

Frontend: (1) HTTP GET request asking for a driver to be dispatched at the customer location identified by

the customerId. (2) Customer service is called through an HTTP GET call to retrieve customer data. It

emulates a query to an SQL database (3) returning data about the customer (4). (5) Driver service is then

called through TChannel. It emulates a Redis query to find drivers available near customer location (6) and

for each of them makes another query (7) returning the driverId and locationDriver (8). (9) Route

service is called for each driver returned to compute the ETA from the driver to the customer location (10).

(11) Frontend service select the lowest ETA and returns it with the correspondent driver’s license plate

number, i.e., the driverId (12). In yellow are highlighted operations intentionally not optimized in

HotR.O.D. for demo purposes.

manually increased, some errors are randomly generated, and artificial bottlenecks are

created.

As it is HotR.O.D. satisfies only partially our specification for an experimentation envi-

ronment (Rim.1 and Rim.2). In order to guarantee service isolation (Rim.3), each service

should be deployed separately on a different process/machine. Therefore, we changed the
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networking configurations in HotR.O.D. to enable each service to run as a different pro-

cess on a different machine and thus to enable containerization of services. The original

repository provides a Docker image allowing to run all four services or separated services

but only if they are deployed in the same machine (communicating on localhost ports).

We build a unique Docker7 image for HotR.O.D.8 that can be used to run separately each

service and a docker-compose9 file to instantiate HotR.O.D. with each service running on

a different container10. To allow spawning more than one instance (Rim.4) we made the

docker-compose file configurable through environment variables. In this way, as shown

in Listing 5.1 it is possible to easily launch multiple instances of the application also on the

same machine, reachable at different addresses and not clashing exploiting project names-

pace (-p option of docker-compose). To also generate other types of observations (Rim.5)

and obtain a request-scoped metric we add a tag to the Route service span to report the

CPU used to calculate the ETA. Moreover, HotR.O.D. already generates request-scoped

logs within spans and the service Route already exposes at the endpoint /debug/vars a

bunch of metrics in the Prometheus format.

In order to enable scalability, we guarantee a "for-instance" scaling, i.e., to scale the

application we can run another instance of all four services. Each instance is spawned and

configured through the docker-compose file and has its internal sub-network exposing

only the frontend endpoint. We opted for this solution because it ensures requests sent

to a specific frontend service are served only from micro-services of that instance, giving

guarantees on the configurations provided for the given instance. To clarify this concept

we show an example, let’s suppose we want to launch two instances configured differently,

we can execute the following commands:
1 HOTROD_INSTANCE="hotrod1" FIX_DB_QUERY_DELAY="−−f i x−db−query−delay=2ms" HOST_PORT_FRONTEND=8080

docker−compose −f hotrod−docker−compose . yml −p hotrod1 up

2 HOTROD_INSTANCE="hotrod2" HOST_PORT_FRONTEND=8090 docker−compose −f hotrod−docker−compose . yml −p

hotrod2 up

Listing 5.1 Examples of HotR.O.D. instantiation in Rim.

In this example, the instance hotrod1 will have a simulated query delay in service

customer slower than the default value (300 ms) of instance hotrod2. Since we do not

allow to scale each service independently, we can ensure that each request sent to the

endpoint :8080/dispatch will have the query delay configured for hotrod1, and each

7Docker https://docs.docker.com
8Image available on DockerHub https://hub.docker.com/r/marioscrock/rim/tags/
9Docker-compose https://docs.docker.com/compose/

10Rim https://github.com/marioscrock/Rim
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SD Description Flag Default value
3. Latency SQL query getCustomerData –fix-db-query-delay 300ms
3. Mutex on DB access –fix-disable-db-conn-mutex enabled
6. Latency Redis query FindDriverIDs –fix-redis-find-delay 20ms
7. Latency Redis query FindDriver –fix-redis-get-delay 10ms
9. Number of workers calling Route service –fix-route-worker-pool-size 3
9. Latency ETA calculation –fix-route-calc-delay 50ms

Table 5.1 Configurable parameters in launching HotR.O.D. instances in Rim.

Configurable parameters in launching HotR.O.D. instances in Rim. SD indicates the number of the

correspondent operation in the sequence diagram in Figure 5.2. To avoid all spans having too similar values,

latencies are generated during execution considering a Gaussian distribution with the given value as mean

and a standard deviation of value
4 .

request sent to the endpoint :8090/dispatchwill have the default query delay configured

for hotrod2.

To fulfil Rim.6 and increase-decrease latencies/concurrency of operations we add a

set of flags that can be set when launching the instance through the command line, or

through environment variables in the docker-compose file. In this way, we avoid the need

for recompiling the application. Configurable operations are highlighted in yellow in the

sequence diagram in Figure 5.2 and described in Table 5.1.

To complete Rim implementation we need a way to generate requests on instances re-

producibly and systematically (Rim.7). To this scope we built MakeRequests, a component

of Rim environment composed by:

• a Javascript library makerequests.js11 to generate in-browser load tests given a

set of parameters,

• a UI integrated into the HotR.O.D. application to use the library, and

• a GoLang script, configurable with downloadable files produced by the library, to

execute load tests on target instances.

We decided to build a Javascript library so that it can be integrated with the UI of the

Frontend service (see Figure 5.3). In this way, it is possible to avoid resorting to external

tools for load testing. The UI provided allow to choose the clickable object to make

requests on, or a random selection (for each request made, between all clickable elements

specified). Also, it allows to set a textual seed to initiate the random pseudo-generator to

guarantee reproducibility. The default method to generate requests is to specify a number

11Makerequests https://github.com/marioscrock/makerequests.js
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Fig. 5.3 Interface of the makerequests.js library.

of requests to be generated all at once. Otherwise, it is possible to select a distribution and

provide parameters to determine how requests will be generated.

Modern browsers allow only for a limited set of concurrent requests, therefore, to gen-

erate a higher number of requests, we also implement an option to generate a GoLang file

makeRequestsTimes.go containing endpoint URLs and timing of requests to be executed.

This file can be run together with the makeRequests.go file provided to generate a set of

go-routines executing requests as specified through the graphical interface. Moreover, the

file can be easily tuned to implement more complex logic in the execution of the load test

and to target multiple instances of the application.

5.2 Kaiju

In this section, we describe the implementation experience of Kaiju12, our Trace Stream

Processor (TSP) prototype, following the specification reported in Section 4.2.2. We discuss

the choice of the stream processor engine, i.e., the core component of Kaiju responsible

for the actual processing of trace data. We detail the mechanism to collect trace data,

12Kaiju https://github.com/marioscrock/Kaiju
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and we explain how the design and implementation of the kaiju-collector fulfils the

specification.

5.2.1 Stream Processor Engine

The first design choice we made is about the stream processing engine that should be

used to process incoming request-scoped observations. We decided to use Esper13, a state-

of-the-art open-source complex event processing engine, and in this section we discuss

how it fulfils specifications. Esper is a real-time streaming-capable engine14 exploiting

fast and optimised in-memory computing to process high volumes of data 15 (TSP.1).

Esper queries are written using the Event Processing Language (EPL), a rich and

flexible SQL-like query language that, combined with a powerful event representation

mechanism, allows to write statements fulfilling specifications TSP.2 and TSP.3. EPL

allows to express complex transformation rules using: (i) operators to select, aggregate,

join, and filter, (ii) operators for data and time windowing, (iii) operators to define context

partitioned queries, i.e., partition events on a defined context and execute queries on

each partition, (iv) operators to define output-rate-limited queries, (v) operator to defined

named windows and tables, and (vi) possibility to apply user-defined functions written

in Java in statements and thus enabling whatever type of data processing. Moreover, a

powerful pattern-matching mechanism allows to define also detection rules.

Combined to this high degree of expressiveness EPL also offers an event representation

language that allows managing complex data structure, as trace data, and flexible schemas:

(i) simple, indexed, mapped or nested properties, (ii) inheritance and polymorphism of

event types, (iii) support to dynamic typing, (iv) create-schema syntax to define event

types at runtime through statements, and (v) specific syntax for contained events.

Furthermore, Esper is lightweight in terms of memory, CPU, I/O, it has with no depen-

dencies, and thus it can also be run as a single container with low overhead16(TSP.8).

13http://www.espertech.com/esper/
14From Esper documentation: "Latency to the answer is usually below 10us with more than 99% pre-

dictability.".
15From Esper documentation: "It can process more than 6 million events per second per CPU.".
16From Esper documentation: "Minimum required Java version is fully supported. The compiler and

runtime have no disk or other device or storage dependency and its memory and CPU use requirements
depend only on what statements are needed.".
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5.2.2 Collecting trace data

To gather trace data from software components instrumented with the OpenTracing API

we need a Tracer implementing the interface exposed from the API, i.e. a library to manage

data produced17.

Jaeger18 is one of the Tracer implementations available, it is an open-source project

and a state-of-the-art end-to-end distributed tracing system. Figure 5.4 shows the Jaeger

architecture, discussed in details in Section 2.2.3. We choose to use it as a starting point to

implement Kaiju collection mechanism for the following reasons:

(i) The jaeger-agent component is a sidecar process running on the application node

and must be lightweight to do not add too much overhead. Jaeger components are

written in GoLang, and this guarantees minimisation of overhead and optimisation

of concurrency.

(ii) Jaeger decouples the language-specific tracer (jaeger-client) from the

jaeger-agent, written in GoLang, forwarding asynchronously trace data to the

backend. Indeed, the jaeger-agent component is the same despite the instrumen-

tation library language, and it is the only responsible for communicating with the

backend jaeger-collector. Therefore, modifying only this last component we

can redirect the flow of trace data for all the jaeger-client libraries.

These are also the two main reasons why we choose to select Jaeger instead of Zipkin, an

open-source alternative (Table 2.1 provides a detailed comparison).

Fig. 5.4 The Jaeger architecture. Figure taken from [56].

In order to make Kaiju compatible with the OpenTracing ingestion format (TSP.4)

we made the design choice of assuming jaeger-client libraries as instrumentation

17Tracer documentation, https://opentracing.io/docs/overview/tracers/
18Jaeger https://github.com/jaegertracing. Since Jaeger is constantly updated we choose to select the

stable release 1.5.0 (Jaeger version 1.5.0 https://github.com/jaegertracing/jaeger/releases/tag/v1.5.0).
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libraries and to create a custom jaeger-agent. In this way, we can exploit a set of tracers

available for all common programming languages and a lightweight sidecar component

to asynchronously push trace data to the kaiju-collector.

To implement the proposed pipeline we need then to modify the jaeger-agent
adding kaiju-collector as a registered collector implementing the Reporter interface.

However, this poses another design choice between implementing kaiju-collector as

the MainReporter or as an AdditionalReporter keeping jaeger-collector as the main

one.

Since we are building a prototype, we choose the second option implementing the

architecture described by the component diagram in Figure 5.5. Therefore, we deploy

a lambda architecture [45], maintaining in parallel streaming and batch processing of

the same data and allowing to: (i) use Jaeger storage and visualisation to analyse data

also sent to Kaiju, (ii) to let jaeger-collector manage sampling policies (control flow in

Figure 5.4) without imposing further requirements on kaiju-collector.

Fig. 5.5 Component diagram showing integration of Kaiju and Jaeger.

The last design choice to collect trace data in Kaiju is related to the network stack used

to implement the Reporter interface. We decided to use Thrift over TChannel as done from

Jaeger to report trace data to jaeger-collector. TChannel is a network multiplexing and

framing protocol, it enables service discovery and fault-tolerance and it allows to develop

RPC client and servers according to an interface definition in Thrift. Jaeger defines, using

the Thrift interface description language (Thrift IDL)19, the communication interface

functions (reported in Listing 5.2) and the model, based on the OpenTracing specification,

to represent and (de)serialize transmitted trace data (shown in Figure 5.6).

19Thrift IDL https://thrift.apache.org/docs/idl
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The source code of jaeger-agent already contains a GoLang client for TChannel

supporting the Thrift specification and it can be used also to implement a KaijuRe-

porter. As a result, to enable dispatching of traces to kaiju-collector it is sufficient to:

(i) jaeger-agent: implement and register the Reporter interface for Kaiju, and

(ii) kaiju-collector: compile the Jaeger’s .thrift file and use TChannel to define a

server implementing the specified interface.

Fig. 5.6 Jaeger model described in Thrift.
The Thrift model implements the OpenTracing specification and its main concepts: Span, Log, Tag and

SpanRef. Furthermore, it introduces the concepts of Batch, identifying a set of spans sent from one

component, and Process, identifying a single component emitting spans. This model, here represented as a

graph, is specified in the same file reported in Listing 5.2 in Thrift IDL20.

1 # Copyright ( c ) 2016 Uber Technologies , Inc .

2 namespace java com. uber . jaeger . t h r i f t j a v a

3

4 # BatchSubmitResponse i s the response on submitting a batch .

5 struct BatchSubmitResponse {

6 1: required bool ok # The C o l l e c t o r ’ s c l i e n t i s expected to only log ( or emit a counter ) when

not ok equals f a l s e

7 }

8

9 service Collector {

10 l i s t <BatchSubmitResponse> submitBatches (1 : l i s t <Batch> batches )

11 }

Listing 5.2 Thrift file defining the communication interface.

In Figure 5.7 we summarize the design choices made to collect trace data in Kaiju:

(i) we choose to use the Jaeger tracer to support Kaiju’s collection mechanism, (ii) we
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choose to define the kaiu-collector component as an AdditionalReporter implement-

ing a lambda architecture, and (iii) we select Thrift over TChannel to transmit data.

Fig. 5.7 Decision tree reporting design choices to collect trace data in Kaiju.

5.2.3 The kaiju-collector component

In this section, we will discuss design choices and implementation of the kaiju-collector
component.

This component represents the core component of Kaiju and thus, we designed and

implemented it to fulfil all its specifications, i.e., the ones identified for a TSP: (i) it is

responsible of the actual processing of trace data exploiting Esper (TSP.1, TSP.2, TSP.3,

TSP.8), (ii) it exposes the Thrift-defined interface as discussed in Section 5.2.2 to ingest

trace data (TSP.4), (iii) it exposes an API to enable interaction at runtime (TSP.5), (iv) it

allows to output query results through a set of implemented listeners components (TSP.6),

and (v) it allows to implement a simplified posteriori sampling strategies on file (TSP.7).

Since Esper is a Java-based stream processing engine, consequently, we choose this

language to develop the kaiju-collector component and easily integrate it.

The main class diagram in Figure 5.8 shows the overall class dependencies and pack-

ages structure. We will now detail the two packages separately.

The collector package

The collector package is composed by two main classes, the Collector and the

CollectorHandler classes, as showed in Figure 5.8.

The Collector class contains the main method to run the component: (i) it opens

the TChannel connection, (ii) it exposes the Thrift-defined interface submitBatch reg-

istering an instance of the CollectorHandler class to handle incoming trace data, (iii) it

instantiates a static ThreadPoolExecutor serving a BlockingQueue to let other classes

to schedule Runnable objects exploiting parallelism. To implement kaiju-collector
as a server for the submitBatch interface, the Thrift IDL file has been compiled to Java
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Fig. 5.8 Kaiju UML diagram: collector package and overall dependencies.

through the Thrift compiler and added to the project to manage dependencies of incom-

ing TChannel requests. It is important to point out that, even if the interface exposed by

kaiju-collector is the one used by Jaeger components, every Tracer could be modified

to implement a client for the submitBatch interface and send data to Kaiju.

The CollectorHandler class, when instantiated, is responsible to initialize the Esper

engine through the static method initializeHandler() of class EsperHandler. It also

extends the ThriftRequestHandler class to implement the submitBatch method and

manages the logic to handle incoming trace data. Each request is managed scheduling

a Runnable object on the Collector’s executor: the request is deserialized through the

Thrift-generated classes and the returned Batch object is sent to the EsperHandler class

accessed statically. With respect to this last sentence it is important to highlight that Esper

is guaranteed to be thread-safe and thus, multiple threads can push concurrently events

in the engine. The CollectorHandler class also allows, setting the thriftTiming flag to

true, to save to file records about time spent, for each Batch, to deserialize it.

The eps package

The eps package is composed by two main classes: the EsperHandler class handling the

Esper engine and the KaijuAPI class handling the API exposed by Kaiju.
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Fig. 5.9 Kaiju UML diagram: eps package.

The EsperHandler class can be accessed only statically and offers public methods to

initialize the engine (initializeHandler()) and send to the engine incoming events.

Since Esper allow to set Java POJO as event types, we opted to set all classes defined in the

Jaeger model (5.6) as event types: Batch, Span, Process, Log, Tag, and SpanRef.

However, we need to consider the following issue, keeping all streams separated we

lose relations between events. Taking, for example, a Log stream we would lose the infor-

mation on the related Span unless we apply a traditional relational database approach

exploiting additional data structures and then multiple joins on keys to reconstruct rela-

tions. Therefore, we decided to push incoming data on the Batch and Span streams and

to exploit the contained-event syntax offered by Esper in statements to query contained

events.

We keep the Batch and Span streams for two reasons: (i) even if also Spans are

contained-events in Batches, we decided to build a separate stream since it is often more

common to write statements on the Span stream rather than on the Batch one, and (ii) it

is important to keep the Batch stream to avoid losing the relation between the Span and

its Process.

Given these two considerations, to simplify queries, we also install a statement to build

a SpansWindow named window making explicit the relationship between each Span and

its Process21.
21It is possible to point out that this is the reflection of an error in the Jaeger’s model: the relation between

Span and Process is significant but exists only within the Batch object that is a transient concept only
related to the reporting mechanism and not useful to analyse trace data. Indeed, the Process concept is not
considered in the OpenTracing specification and data specifying it should be reported within the Span Tags.
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The EsperHandler class also accesses statically the EsperStatements class contain-

ing statements to be installed and launches the thread running the KaijuAPI through the

initAPI() method.

The API is implemented through the SparkJava framework22. It fulfils the specification

TSP.5, but it can offer a wider interface as showed in Section 6.2. The two methods to install

and remove statements at runtime exploit the interface provided by the EPAdministrator
instance related to the initialized Esper engine. They define the following API:

• POST /api/statement?statement=<stmt>&msg=<msg>
Installs the given statement (<stmt>) with a listener registered to output data to

kaiju-collector logs with the specified message (<msg>). Returns the statement

code.

• POST /api/remove?statement=<stmt_code>
Removes the statement with the given code.

Note: All requests, to any API methods, return status 400 and the related error

message if Kaiju reports any error while managing the request.

The eps.listener package

To manage queries outputs and updates generated from statements, it is possible, for

each Esper statement, to register instance of classes implementing the UpdateListener
interface and defining the logic to handle events returned (an EventBean array). In our

prototype, we build four different classes implementing this interface to show how Kaiju

can fulfill TSP.6 and TSP.7.

• CEPListener class: A simple listener outputting data received as logs with a given

message.

• CEPListenerRecord class: A simple listener outputting data received as rows in a

specified file.

• CEPListenerHighLatencies class: A specific listener to handle spans reported

because of anomalous latencies. We implemented this listener to show how it

possible to define specific logic to handle specific statements. In this case, we report

data in a custom defined .csv file to make late and further analysis on data reported.

22SparkJava http://sparkjava.com/
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• CEPTailSamplingListener class: A specific listener saving spans reported to a

.json file. We implemented this listener to provide an example of how to implement

a posteriori sampling. However, other custom logic can be provided, e.g. writing

spans to a database.

A posteriori sampling

To fulfill TSP.7, we discuss a possible method in Kaiju to implement an a posteriori

sampling strategy:

1. Create a named window to retain the traceIds related to the traces to be sam-

pled. We specify the #unique keyword to retain each traceId exactly once. The

<retentionTime> is a place-holder and should be substituted with an appropriate

interval.

1 create window TracesToBeSampledWindow#unique ( traceId ) #time( < retentionTime >) ( traceId string )

Listing 5.3 Create named window to store traceId of traces to be sampled in EPL.

2. Exploiting the events hierarchy and implementing sampling strategies through a

set of statements, it is possible to generate a stream of events inheriting from a

TraceAnomaly event that identifies traces to be sampled and populates the named

window.

1 on TraceAnomaly a

2 merge TracesToBeSampledWindow t

3 where a . traceId = t . traceId

4 when not matched

5 then insert into TracesToBeSampledWindow

6 s e l e c t a . traceId as traceId

Listing 5.4 On-merge-update construct to sample traces reported as anomalous in

EPL.

3. Exploiting the rstream of spans leaving a defined SpansWindow we can check if the

span belongs to a trace to be sampled and report it to the CEPTailSamplingListener.

This implicitly assumes that the span triggering the TraceAnomaly event arrives

before the first span of the given trace leaves the SpansWindow.

1 s e l e c t rstream * from SpansWindow as s

2 where e x i s t s ( s e l e c t * from TracesToBeSampledWindow

3 where traceId = ( traceIdToHex ( s . span . traceIdHigh , s . span . traceIdLow ) )

Listing 5.5 Select Spans to be sampled exploiting rstream in EPL.



72 Implementation

5.3 Extending Kaiju

In this section, we describe how we extended Kaiju to enable ingestion of different types

of observations. In particular, we add a further package, called eventsocket package,

handling a web socket ingesting metrics and events in JSON.

The eventsocket package is constituted by: (i) the EventSocket runnable class han-

dling a simple socket to receive events in .json and sending them to the Esper engine,

(ii) the ParserJson class parsing valid .json strings, (iii) the classes implementing the

events recognized by the parser (classes Metric and Event).

Fig. 5.10 Kaiju UML diagram: eventsocket package.

We choose to implement two recognised events type.

The Metric type represents the JSON metric format by InfluxDB23. We choose this

format since to evaluate our prototype we exploit Telegraf 24, an agent to automatically

collect/report metrics and supporting a wider set of formats and tools through an exten-

sible set of adapters. Listing 5.6 shows an example of a metric sampled from a Docker

container. Multiple Metrics can be reported together in a unique .json string through a

JSON array with key "metrics".

1 {

2 " f i e l d s " : {

3 " usage_percent " : 1.700186933667084 ,

4 "usage_system" : 64963160000000 ,

5 " usage_total " : 133570111

6 } ,

7 "name" : " docker_container_cpu " ,

8 " tags " : {

9 " host " : "09378849920c"

10 } ,

23https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
24https://github.com/influxdata/telegraf
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11 "timestamp" : 1458229140

12 }

Listing 5.6 Example of Metric parsable by Kaiju in JSON.

The Event type, instead, is a simple JSON serialization fulfilling the data model pro-

posed in Section 4.1.2 and representing a generic event capable of representing generic

observations. An example reporting a new deployed commit is shown in Listing 5.7. Multi-

ple Events can be reported together in a unique .json string through a JSON array with

key "events".

1 {

2 "timestamp" : 1458229140 ,

3 "payload" : {

4 "commit_msg" : " Fix connection pool"

5 } ,

6 " context " : {

7 "commit_id" : "de9c1a087f47605cd7e33a585ee34d628a4a49b4"

8 }

9 }

Listing 5.7 Example of Event parsable by Kaiju in JSON.

5.4 Kaiju RDF

To implement a prototype of an RDF Stream Processor (RSP) consuming request-scoped

observations, as discussed in Section 4.3, we decided to integrate an RSP engine with the

Kaiju prototype.

In Section 5.4.1, to fulfill RSP.1, we detail an ontology for the OpenTracing specifica-

tion [35] and an extension to this ontology to model Jaeger data model. In Section 5.4.2 to

fulfill RSP.2, we explain how we generate a RDF stream of JSON-LD annotated trace data

in Kaiju. Finally, in Section 5.4.3, to fulfill RSP.3 we describe the RSP engine chosen and

the adapter implemented to register the stream to the RSP engine and provision RSP-QL

queries.

5.4.1 OpenTracing ontology

Given the OpenTracing specification [35], and following design criteria for ontologies [36],

we design an ontological model for trace data.

First we identified the main concepts identifying classes:

(i) Trace identifies the trace related to a request
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Fig. 5.11 OpenTracing ontology.

(ii) Span identifies units composing a trace

(iii) Log identifies timestamped key-value pairs related to a span

(iv) Tag identifies key-value pairs related to a span

Then we identified the main object properties:

(i) reference, asymmetric and irreflexive property with Span as range and domain, with

two sub-properties (childOf and followsFrom) identifying the possible relations

between spans;

(ii) spanOf and the subproperty SpanOfTrace connecting a Span to the Trace it belongs;

(iii) hasLog connecting a Span to one of its Log;

(iv) hasTag and the two sub-properties hasSpanTag, connecting a Span to one of its Tag,

and hasField, connecting a Log to one of its Tag (fields).

To conclude we identified the main data properties:
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(i) operationName: a xsd25:string to represent the operation performed by a Span;

(ii) startTime and endTime: two xsd:integer to represent the starting and ending

timestamp of a Span;

(iii) timestamp a xsd:integer to represent a timestamp (in the ontology used for Log);

(iv) tagKey a xsd:string to represent the key-value of a Tag;

(v) tagValue and all its sub-properties longVal, boolVal, doubleVal, stringVal and bina-

ryVal to represent the possible values of a Tag.

We show the complete ontology in Figure 5.11.

Jaeger ontology

The OpenTracing ontology described do not covers entirely the conceptual data model

used by Jaeger. Therefore, to represent the data model shown in Figure 5.6 and used from

Kaiju, we extend the OpenTracing ontology to model:

(i) the Process class representing a process emitting spans,

(ii) the spanOfProcess object property, sub-property of the spanOf property, and relat-

ing each span to the process that emitted it,

(iii) the hasProcessTag object property, sub-property of the hasTag property, and relat-

ing each span to the set of tags describing it,

(iv) the serviceName data property to represent the name of the service run by the

process,

(v) the traceId data property to represent the identifier of a trace,

(vi) the spanId and flags data properties to represent the identifier and additional

metadata of a span, and

(vii) the duration data property for a Span substituting, without loss of generality, the

concept of endTime.

In Figure 5.12 we highlight classes and properties introduced in the Jaeger ontology.

25XML Schema http://www.w3.org/2001/XMLSchema#
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Fig. 5.12 Jaeger ontology extends the OpenTracing ontology.

5.4.2 Exposing an RDF stream in Kaiju

To feed the RSP engine with a stream of request-scoped observations we pose a further

specification to Kaiju, i.e., it should expose incoming request-scoped observations in one

of the RDF formats as a stream.

As shown in Figure 5.13, we decided to add a further interface in the kaiju-collector
component that through a web socket26 exposes data received as an RDF stream in the

JSON-LD format.

Therefore, we extend the kaiju-collector component adding a further package

(websocket package). We choose to use the JSON-LD serialisation format for the following

reasons: (i) to easily represent the nested structures of the Jaeger data model (in JSON-LD

lists are part of the data model whereas in RDF they are part of a vocabulary), and (ii) to

provide a general interface that can also be processed as JSON and is not bound to the

semantic web stack.
26Web Socket https://tools.ietf.org/html/rfc6455
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Fig. 5.13 Component diagram for Kaiju integrated with CSPARQL2.

In Figure 5.14 we show the complete class diagram for the kaiju-collector com-

ponent. It represents the details of the collector package, updated to handle the web

socket, and the overall dependencies among packages.

Fig. 5.14 Kaiju UML diagram: collector package and overall dependencies (with websocket
package).
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The websocket package

The websocket package is composed by three main classes as shown in Figure 5.15: the

JsonLDSerialize class, the JsonTracesWS class and the WebSocketHandler class.

Fig. 5.15 Kaiju UML diagram: websocket package.

To expose data gathered from kaiju-collector as JSON-LD, we generated a JSON-

LD context from the Jaeger ontology shown in Figure 5.12. Therefore, we created a

JSONLDSerialize class to produce JSON strings from a Batch object that can be in-

terpreted as an RDF graph through the JSON-LD context.

This poses a set of design choices to assign URIs27 to data and to determine which

data should be represented by the same entity in the RDF graph:

• a Trace is uniquely identified by its traceId,

• a Span is uniquely identified by its traceId and spanId,

• a Process is uniquely identified by its serviceName and the set of its tags (to this

purpose we created a custom hash function generating the same hash for two

processes if they have the same serviceName and the same tags despite of their

order)

• a Log is uniquely identified by the traceId and spanId of the Span they are related

to and the timestamp,

• a Tag is uniquely identified by its key and its value.

27Uniform Resource Identifier
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The web socket is implemented through the SparkJava framework28 and the Web-

SocketHandler class, an annotated class implementing the web socket API defined from

the framework. The JsonTracesWS class is a runnable to launch the web socket, it

offers static methods and fields for the WebSocketHandler and it allows through the

sendBatch(JSONObject batch) static method to send a string serialization of the given

JSONObject to each active session.

5.4.3 Adapter for CSPARQL2

In this section, we discuss the custom kaiju-adapter built to consume the stream ex-

posed from Kaiju and redirecting it to the RSP engine. In this way, we can register the

stream to the RSP engine and enable querying on it.

We choose to use the already implemented RSP engine CSPARQL2. CSPARQL229 is an

RSP engine built through Yasper30, a library to build RDF Stream Processing (RSP) engines

according to the reference model RSP-QL [24]. CSPARQL2 exploits underneath Esper

and Jena31 to implement its functionalities and expose an interface based on Jasper32.

Moreover, CSPARQL2 offers a query language fully compliant with the RSP-QL model.

The adapter built is composed by three main classes (as shown in Figure 5.16): the

CSPARQLKaiju class, the GraphStream class and the JsonLDSocket class.

The JsonLDSocket class implements the Jetty API for a web socket client33 and to be

instantiated it requires a RegisteredEPLStream and a file-path to a JSON-LD context.

It is implemented as follows: (i) it listens for incoming messages, (ii) it parses messages

applying the given JSON-LD context through the Jena RDFParser, and (iii) it writes the

parsed RDF graph on the given RegisteredEPLStream.

The GraphStream class extends the RDFStream class provided by Yasper and it ab-

stracts the stream of data. Once instantiated with a given URI, it can be registered to an RSP

engine through Jasper, and it can be set as "writable" passing the RegisteredEPLStream
returned by Jasper. If a RegisteredEPLStream is provided, the GraphStream class can

then be run to launch an instance of the JsonLDSocket class listening on the web socket

exposed by Kaiju and writing data to the registered stream.

The CSPARQLKaiju class contains the main method and exploits an instance of the

Jasper class providing an interface to configure the engine. In the main method, it

28SparkJava http://sparkjava.com/
29CSPARQL2 https://github.com/riccardotommasini/csparql2
30Yasper https://github.com/riccardotommasini/yasper
31Jena http://jena.apache.org
32Jasper https://github.com/riccardotommasini/jasper-ws
33Jetty API https://www.eclipse.org/jetty/documentation/9.4.x/websocket-jetty.html
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Fig. 5.16 UML diagram of the adapter for CSPARQL2.

instantiates the engine, it registers the GraphStream to consume Kaiju data as described,

and it installs a set of provided RSP-QL queries.

Each query can be registered together with a ResponseFormatter handling its results:

if it is a SELECT query the results can be logged or saved if it is a CONSTRUCT query the

new stream can be in turn registered to the engine.

In this way, we implemented a prototype allowing to analyse potentialities of a stream

reasoning approach applied to request-scoped observations.
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Evaluation

In this chapter, we present the procedures followed to evaluate the implemented proto-

types and the results obtained. Since there isn’t an established benchmark to evaluate

processing of request-scoped observations and we would like to offer a comprehensive

analysis of Kaiju’s capabilities we structured our evaluation as follows.

In Section 6.1 we discuss the deployment used for our evaluation. In Section 6.2 we

apply Kaiju and Jaeger within Rim in the deployment described and we compare their

behaviour. We point out differences and advantages of the two solutions, and we pose

a baseline for Kaiju evaluation showing it can offer at least the same expressiveness of

Jaeger in processing request-scoped observations. In Section 6.3 we consider the set of

use cases identified for distributed tracing in [54]: we discuss how Rim can reproduce a

set of issues related to the identified use cases, and to evaluate Kaiju we propose a set of

rules to challenge them and we discuss their effectiveness. In Section 6.4 we show how,

extending Kaiju to ingest other types of observations, we can enable pattern detection

across different streams. Finally, in Section 6.5 we propose an explorative analysis on the

application of stream reasoning to request-scoped observations, pointing out possible use

cases and advantages.

6.1 Architecture and deployment

To evaluate our prototypes we decided to set up Rim in a cloud environment and to

deploy both Kaiju and Jaeger to get the observations. Indeed, the modified version of the

jaeger-agent described in Section 5.2.2 guarantees data produced by the Rim environ-

ment can be sent both to Kaiju and Jaeger instances. The simultaneous deployment has

two goals: (i) we want to observe similarities and differences between the two approaches,

(ii) we want to assess Kaiju correctness with respect to Jaeger.
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As showed in Figure 6.1, the two tools share the collection mechanisms made by

jaeger-clients and jaeger-agents and, to made a fair comparison with the single

node kaiju-collector, we deployed only one instance of the jaeger-collector. Con-

cerning Rim, since in real production environments, the agent collecting spans is thought

to be deployed as a sidecar process of the component producing them, we build a Docker

image1 such that each HotR.O.D service is run together with the modified jaeger-agent.

To complete the deployment we also add an instance of InfluxDB2 and a set of Telegraf

agents3 to collect metrics about containers execution and to collect metrics exposed by

Jaeger and Rim components. To feed the kaiju-collector event socket we exploit the

same Telegraf agents filtering only metrics from Rim and we implement a simple socket

client to send arbitrary observations in JSON.

We deploy software in containers using Docker4, and we generate parametric docker-

compose5 files to easily ship prototypes in a cloud environment and configure their

interactions and communications.

We utilise three EC2 instances on Amazon AWS6 and we implement a VPN (virtual

private network) to manage connections between different machines. We describe the

three instances, their software requirements and their interactions and in Figure 6.1 we

show the main component deployed on M1 and M2.

M1: Rim

• Instance type: 1 Linux instance m4.2xlarge (8 vCPU | 32 GiB Mem)

• Requirements: Docker, docker-compose v2, GoLang v1.10, Rim Docker image

(with jaeger-agents as sidecar process), Rim’s parametric docker-compose file to

run one or multiple application instances, Rim’s GoLang files to generate requests,

Telegraf agent Docker image, Telegraf agents’ configuration file.

• Connections: jaeger-agents connect to M2:14267 to report spans to jaeger-
-collector and to M2:2042 to report spans to kaiju-collector, telegraf agents

connect to M2:9876 to report metrics to kaiju-collector event socket (JSON) and

to M3:8086 to send data to the InfluxDB instance
1Image available on DockerHub https://hub.docker.com/r/marioscrock/rim/tags/
2InfluxDB https://www.influxdata.com/time-series-platform/influxdb/
3Telegraf https://www.influxdata.com/time-series-platform/telegraf/
4Docker https://www.docker.com
5Docker-compose https://docs.docker.com/compose/
6Amazon AWS https://aws.amazon.com



6.1 Architecture and deployment 83

Fig. 6.1 Diagram showing deployment on machines M1 and M2.
M1 hosts Rim (one or multiple instances of modified HotR.O.D. application and GoLang scripts to generate

requests) and M2 hosts instances of Kaiju and Jaeger. Both the machines also host Telegraf agents not

reported in the Figure.

• Expose: at 8080 the HotR.O.D. UI and the /dispatch endpoint (plus other ports if

multiple instances)

M2: Kaiju and Jaeger

• Instance type: 1 Linux instance m4.2xlarge (8 vCPU | 32 GiB Mem)

In order to guarantee at least one core to each component.

• Requirements: Docker, docker-compose v2,

Docker images (jaegertracing/jaeger-collector:1.5, cassandra:3.9,

jaegertracing/jaeger-cassandra-schema:1.5,

jaegertracing/jaeger-query:1.5, kaiju-collector), docker-compose file to
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run Jaeger and Kaiju, Telegraf agent Docker image, Telegraf agents’ configuration

file, Python v3, Python scripts used for evaluation.

• Connections: telegraf agents connect to M3:8086 to send data to the InfluxDB in-

stance

• Expose: at 2042 kaiju-collector accepts incoming spans via TChannel, at 14267
jaeger-collector accepts incoming spans via TChannel, at 9876 kaiju-collector
accepts incoming observations via socket (JSON), at 9278 kaiju-collector ex-

poses its API, at 4567/streams/jsonTraces kaiju-collector exposes the RDF

stream through web socket, at 16686 jaeger-collector exposes its API and UI

M3: InfluxDB

• Instance type: 1 Linux instance t2.micro (1 vCPU | 1 GiB Mem)

• Requirements: InfluxDB v1.6

• Expose: at 8086 InfluxDB exposes its API

6.2 Kaiju vs Jaeger

In this section, we report the evaluation made to compare Kaiju and Jaeger. In particular,

we would like to evaluate the advantages and drawbacks of a stream-oriented approach

and to show Kaiju can provide same expressiveness as Jaeger in processing request-

scoped observations. Indeed, Kaiju and Jaeger cannot be compared side by side since they

approach the problem under two different paradigms: Jaeger stores trace data collected to

provide a static analysis and the possibility of querying collected trace data whilst, Kaiju,

offers a dynamic analysis of data that, if not explicitly stored, are discarded after being

processed.

However, to pose Kaiju on a baseline with respect to state-of-the-art end-to-end

tracing systems, we would like to compare the expressiveness of the two approaches in

processing the same type of data.

Jaeger offers a visualisation layer for trace data and an API offering methods to ask

predefined queries to the storage (in our case Cassandra):

• Get all operation names for a given service

• Get all service names
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• Get all spans of a traces given its traceId

• Get the traceId of all traces fulfilling a set of provided parameters (parameters that

can be passed are service name, operation name, tag key or a JSON key-value map of

tags that should be present in the trace, limit to set the maximum number of traces

reported, minimum and maximum duration of traces reported, start time and end

time timestamps to define an interval of interest, lookback to specify directly an

interval)

• Get the pairs representing services interacting within traces stored (an end times-

tamp, a lookback and a service name parameter can be specified)

To show Kaiju can offer the same expressiveness we set the comparison at the API

level, showing than Kaiju could substitute Jaeger transparently from the user perspective.

Queries in Esper, also referred to as statements, are continuous, so they are installed and

executed until removed. However, it is possible to express fire-and-forget queries against

named windows and tables. Tables offer a sort of in-memory relational database, while, in

case of named windows, we have structured data, but we must specify an interval of reten-

tion for incoming data (configurable parameter when launching the kaiju-collector).

In particular, the API methods are implemented in kaiju-collector exploiting the

concept of prepared queries in Esper. Indeed, it is possible to express parametric fire-and-

forget queries (through the ? operator) that allow the engine to optimise their execution

once fired with a set of parameters. An example is provided in Listing 6.1.

1 s e l e c t span . spanId as spanId , span . operationName as operationName ,

2 span . getLogs ( ) as logs

3 from SpansWindow

4 where span . getLogs ( ) . anyOf ( l =⇒ l . getFields ( ) . anyOf ( f =⇒ f . key = ? ) )

Listing 6.1 Example of prepared query in EPL.

As a steam processor, Kaiju is not meant to store data but to process them on the

fly. We implement these methods to show how Kaiju can offer the same expressiveness

provided by the Jaeger API.

• GET /api/traces/all
Returns all traceIds related to spans currently retained by the Esper Engine.

• GET /api/traces?service=<service>
Returns all spans for a given serviceName currently retained by the Esper Engine.

• GET /api/traces/:id
Returns all spans for a given traceId currently retained by the Esper Engine.
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• GET /api/dependencies/:traceId
Return a set of tuples (serviceFrom, serviceTo, numInteractions) representing

interactions between services in a given trace.

The methods reported are the basic methods needed to provide a visualisation layer

for traces and a dependency graph. However, we also add another method enabling any

arbitrary fire-and-forget queries on named windows and tables to test the possibility of

implementing the other methods offered from the Jaeger API.

• POST /api/query?query=<query>
Executes the fire and forget query sent.

As pointed out in Section 4.2, the main advantage of a stream processing engine is the

possibility to process high volumes of data with low latencies. For this reason, to provide a

more fair evaluation of the two pipelines we tested Jaeger and Kaiju pulling data from the

provided APIs.

6.2.1 Configurations

We set up the environment described in Section 5.1 through the docker-compose files7

and we instantiate two different load tests. We started using the makerequests.js UI to

build a uniform distribution U1 with the following parameters:

• 5000 requests

• seed = "EXP"

• Time interval = 100 seconds

Then, two different load tests are created as follows:

• bigLoad firing U1 uniformly over three HotR.O.D. instances optimized to reduce

requests latencies

• bigLoad+ firing two times U1, with the second one delayed of 50 seconds (both

uniformly distributed over three HotR.O.D. instances optimized to reduce requests

latencies)

7Rim https://github.com/marioscrock/Rim/blob/master/hotrod-docker-compose.yml
Kaiju and Jaeger https://github.com/marioscrock/Kaiju/blob/master/kaiju-docker-compose.yml
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To optimize HotR.O.D. instances we set the following optimizations (compare Table 5.1):

(i) –fix-route-worker-pool-size=1000, (ii) –fix-route-calc-delay=1ms, (iii) –fix-db-query-

delay=1ms, (iv) –fix-disable-db-conn-mutex, (v) –fix-redis-get-delay=1ms, and (vi) –fix-

redis-find-delay=1ms.

To make this test we also remove limits on queue in Jaeger to avoid dropping spans

through the –processor.jaeger-compact.server-queue-size flag in jaeger-agent
and the –collector.queue-size in jaeger-collector.

Therefore, we run the two load tests providing different values for the following pa-

rameters:

• Retention time of Kaiju API named windows (can be specified with the EPL syntax

for time)

• Lookback interval (in seconds) in querying Jaeger API

• Limit parameter in querying Jaeger API

To evaluate the two APIs we exploit two Python scripts jaegerTiming.py and

kaijuTiming.py. These two scripts repeatedly call Jaeger and Kaiju APIs to obtain all the

spans of traces executing the service frontend. Moreover, they record timings at which

each span is returned for the first time. When the APIs repeatedly do not return any trace,

i.e. traces in Jaeger storage are too "old" with respect to the provided lookback or Kaiju

named window is empty, they return.

Listing 6.2 reports the commands to run the experiments. In the comments for each

command, it is specified the machine on which it must be executed. The three parameters

are reported with place-holders, and machines’ IP addresses are substituted with machine

names.

1 # M1 Launch Jaeger and Kaiju

2 sudo RETENTION_TIME="<retention_time >" docker−compose −f kaiju−docker−compose . yml up

3

4 # M2 Launch 3 HotR .O.D. instances

5 # We assume optimizations are e x p l i c i t e d in the docker−compose f i l e

6 sudo HOTROD_INSTANCE="hotrod1" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8080 docker−compose −f hotrod−docker−compose . yml −p hotrod1 up

7 sudo HOTROD_INSTANCE="hotrod2" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8090 docker−compose −f hotrod−docker−compose . yml −p hotrod2 up

8 sudo HOTROD_INSTANCE="hotrod3" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8091 docker−compose −f hotrod−docker−compose . yml −p hotrod3 up

9

10 # M2 bigLoad

11 # This command allows to uniformly f i r e U1 on the 3 instances ( endpoints at ports 8080 , 8090 , 8091)

12 go run makeRequests . go exp1 . go

13 # M2 bigLoad+

14 go run makeRequests . go exp1 . go & sleep 50; go run makeRequests . go exp1 . go
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15

16 # M1

17 JAEGER_LIMIT=<jaeger_l imit > JAEGER_LOOKBACK_S=<jaeger_lookback > python jaegerTiming . py \& python

kaijuTiming . py

Listing 6.2 Configuration for the evaluation of Kaiju and Jaeger

6.2.2 Results

In this section, we report the results obtained discussing how the parameters impact the

performances measured at APIs. We are going to comment results through two types of

plots:

• A pie plot, reporting for Kaiju and Jaeger the percentages of spans/traces observed

and lost.

• A plot showing the number of spans observed over time by the two APIs (blue for

Kaiju, red for Jaeger). Each point represents the total number of spans observed

after a given request to the API, and we overlapped a grey representation of requests

made. Therefore, this plot allows also visualising delays of the two APIs in observing

spans. The plateaus at the end of Kaiju and Jaeger distributions are related to the

final API requests, made by the two scripts, returning an empty response.

bigLoad

We start considering the bigLoad test.

As showed in Figure 6.2, selecting a retention time of one minute in Esper almost all

spans are not observed from the API. This problem is due to the fact that each request

made to the API returns a considerable amount of data slowing down the API and causing

the named windows to shift forward before another request can be made. However, also

Jaeger doesn’t perform better for the same reason.

In Figure 6.3 we show the improvement obtained reducing the retention time of Kaiju

drastically from 1 minute to 1 second. Kaiju observes almost any trace, it loses some

spans, but it outperforms Jaeger. We tried intermediate values between 1 second and 1

minute for the retention time of Kaiju, but the lower one is the one performing better.

Given this results, we also made tests reducing the lookback for Jaeger, but this reduces

the processing time for each request and increases the frequency of our script requests

causing too many read calls to Cassandra. Cassandra is deployed on a single node in our

deployment, and since it is already serving a high number of insert request, it returns read

errors (as shown in Figure 6.4).



6.2 Kaiju vs Jaeger 89

Fig. 6.2 Percentages of spans/traces observed and lost: bigLoad, retention time 1min,
lookback 60s, no limit.

Fig. 6.3 Percentages of spans/traces observed and lost: bigLoad, retention time 1sec,
lookback 60s, no limit.

Fig. 6.4 Read errors in Cassandra.

We also tried to modify the limit parameter in Jaeger, not set previously. We get a slight

improvement for Jaeger but the final number of spans observed from the Kaiju API is still

higher, as shown in Figure 6.5. Reducing, even more, the limit parameter we encounter

the same problem described in reducing the lookback parameter.
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Fig. 6.5 Number of spans observed over time: bigLoad, retention time 1sec, lookback 60s,
limit 100.

Performances in Jaeger improves if we increase the lookback parameter, as shown in

Figure 6.6 and in Figure 6.7. This causes less but higher-latency calls to the Jaeger API

allowing to observe a higher number of spans with respect to Kaiju but introducing a

lookback delay.

Fig. 6.6 Percentages of spans/traces observed and lost: bigLoad, retention time 1sec,
lookback 120s, no limit.

Trying to set the limit parameter in Jaeger and considering the same lookback, we

also obtain for Jaeger a high number of low latencies requests. However, as shown in

Figure 6.8, the limit does not allow looking back to recover the same amount of spans as

in the previous case, and in the end, Kaiju APIs observes a higher number of spans.
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Fig. 6.7 Number of spans observed over time: bigLoad, retention time 1sec, lookback 120s,
no limit.

Fig. 6.8 Number of spans observed over time: bigLoad, retention time 1sec, lookback 120s,
limit 100.

bigLoad+

The load test bigLoad+ allows testing the two API with respect to an increasing load.

We consider the best case for Jaeger and Kaiju observed with the bigLoad test and

so, we set the retention time to 1 sec and the lookback parameter to 120s. As shown in

Figure 6.9, when the load increases the slope for Kaiju changes since fewer spans are

reported in the same interval (higher latencies for each call). However, the little retention

time for Kaiju allows to immediately increase frequencies of requests when the load test

decreases. Jaeger, instead, increases latencies and doesn’t manage in the end to observe

the same amount of spans of Kaiju (Figure 6.10).
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Fig. 6.9 Number of spans observed over time: bigLoad+, retention time 1sec, lookback
120s, no limit.

Fig. 6.10 Percentages of spans/traces observed and lost: bigLoad+, retention time 1sec,
lookback 120s, no limit.

Setting the limit parameter we do not have any significative improvement in Jaeger

(Figure 6.11). To improve percentages of spans observed from the Jaeger API we need to

increase the lookback causing higher delays in the timing at which the spans are observed

(Figure 6.12).

Discussion

With this experiment, we highlight the indexing overhead introduced by storing data

before processing them and the effectiveness of Kaiju in handling high volumes of data.

Using Kaiju, as we have done to implement the API, is similar to implement a Jaeger

pipeline with in-memory storage. In both cases, it is possible to avoid index-based storage

latencies and to access quickly data gathered, but Kaiju offers a lot of other potentialities

processing data dynamically.
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Fig. 6.11 Number of spans observed over time: bigLoad+, retention time 1sec, lookback
120s, limit 100.

Fig. 6.12 Number of spans observed over time: bigLoad+, retention time 1sec, lookback
180s, limit 100.

To conclude we can claim Kaiju can be effectively used to process request-scoped

observations since it can provide fast access to data through an API with the same expres-

siveness of state-of-the-art end-to-end tracing systems. Moreover, it allows processing

data as soon as they arrive, allowing anyway to store data at a later stage (e.g., it allows to

implement a posteriori sampling exposing to the API, or storing, only interesting traces).

In this section, we set a baseline to evaluate Kaiju, while in the next ones, we will inves-

tigate the advantages offered by the dynamic processing of request-scoped observations.
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6.3 Processing the stream

In this section, we focus on the evaluations of Kaiju potentialities in processing request-

scoped observations. We decided to make this evaluation against the set of use cases

identified in [54] for distributed tracing:

• Anomaly detection: use case related to the identification and debugging of prob-

lems related to unusual workflows rarely manifesting.

• Diagnosing steady-state problems: use case related to the identification and de-

bugging of problems present in the workflow structure. These problems are not

anomalies occurring rarely but issues limiting performances of the system.

• Distributed profiling: use case related to the identification of slow components or

functions also with respect to the inputs provided.

• Resource usage attribution: use case related to the attribution of resource usage to

the client or request that originally caused it.

• Workload modeling: use case related to the creation of workload models represent-

ing work-flows trends between components and services.

In evaluating Kaiju we exploit Rim. Indeed, for each use case, we first show how Rim

can reproduce a related issue and then we discuss if and how Kaiju can address it.

6.3.1 Anomaly detection

Rim

We can configure Rim as follows to simulate the presence of anomalies. We deploy: (i) two

instances of HotR.O.D. with the default values and the flag –fix-disable-db-conn-mutex
disabling the mutex, and (ii) a third instance of HotR.O.D. with the default values and the

mutex enabled. We execute a uniform workload of requests on the first two instances, and

then with predefined timings, we send a little number of requests to the third instance. In

this way, we can simulate a misconfigured connection pool guaranteeing for some types

of requests only one connection at the time and, thus, simulating an abnormal increase of

latency for a small percentage of requests.

Moreover, for this use case, we report in Listing 6.3 the configuration in the deployment

described in Section 6.1 and the obtained results. We started using the makerequests.js
UI to build 2 uniform distributions with the following parameters:



6.3 Processing the stream 95

• U1: 5000 requests, seed = "EXP", Time interval = 100 seconds

• U2: 50 requests, seed = "EXP", Time interval = 10 seconds

We then implement the GoLang scripts to fire U1 on the first two instances and U2

on the misconfigured one creating a workload test as reported in Figure 6.13 (in green

requests made to the first two instances, in red requests made to the third one).

Fig. 6.13 Workload applied in anomaly detection experiments.

1 # M1

2 sudo RETENTION_TIME="1min" docker−compose −f kaiju−docker−compose . yml up

3

4 # M2

5 sudo HOTROD_INSTANCE="hotrod1" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8080 docker−compose −f hotrod−docker−compose . yml −p hotrod1 up

6 sudo HOTROD_INSTANCE="hotrod2" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8090 docker−compose −f hotrod−docker−compose . yml −p hotrod2 up

7 sudo HOTROD_INSTANCE="hotrod3" JAEGER_COLLECTOR_ADDRESS="M2:14267 " KAIJU_ADDRESS="M2:2042 "

HOST_PORT_FRONTEND=8091 FIX_DISABLE_DB_CONN_MUTEX="−−f i x−disable−db−conn−mutex" docker−compose −f

hotrod−docker−compose . yml −p hotrod3 up

8

9 #M2

10 go run makeRequests . go aU1 . go & sleep 50; go run makeRequests . go aU2 . go & sleep 50; go run

makeRequests . go aU2 . go & go run makeRequests . go aU1 . go

Listing 6.3 Configuration for the anomaly detection experiment.

Kaiju

Anomaly detection requires rapid processing of observations to guarantee low latency of

detection and the possibility to express conditions triggering anomalies. Kaiju can offer

both providing stream processing and offering an expressive query language. Moreover,

it can handle a large amount of data requiring less strict sampling strategies and for this

reason more suitable to detect anomalies occurring sporadically.
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We will now discuss how we can address the issue proposed in Rim with Kaiju. We

need to monitor anomalies in operation latencies to detect the misbehaving service and

operation and to report the spans showing the issue. To this purpose we can create a table

to keep track of the mean and variance of each operation, updated following the Welford’s

Online algorithm through the on-merge-update syntax of Esper. We express this logic in

EPL, but it is also possible to implement it through a custom Java function aggregating

values with the same logic and then use it in the statement.

Listing 6.4 creates the MeanDurationPerOperation table selecting service name and

operation name as primary keys.
1 create table MeanDurationPerOperation ( serviceName string primary key , operationName string primary

key , meanDuration double , m2 double , counter long )

Listing 6.4 Create table MeanDurationPerOperation in EPL.

As shown in Listing 6.5, on each incoming span we check if the service name and

operation name are already present in the table, if true we update the corresponding

row following the algorithm, otherwise, we initialize the row. We also need to select a

resetValueInt, showed in the listing as a place-holder, since coefficients of the algorithm

are monotonically increasing and then we need to reset them at some point.

1 on SpansWindow s

2 merge MeanDurationPerOperation m

3 where s . serviceName = m. serviceName and s . span . operationName = m. operationName

4 when matched and counter ≤ <resetValueInt >

5 then update set counter = ( i n i t i a l . counter + 1) , meanDuration = ( i n i t i a l . meanDuration +

( ( span . duration − i n i t i a l . meanDuration ) / counter ) ) , m2 = ( i n i t i a l .m2 + ( span . duration −
meanDuration ) * ( span . duration − i n i t i a l . meanDuration ) )

6 when matched and counter > <resetValueInt >

7 then update set counter = 1 , meanDuration = s . span . duration , m2 = 0

8 when not matched

9 then insert s e l e c t s . serviceName as serviceName , s . span . operationName as operationName ,

s . span . duration as meanDuration , 0 as m2, 1 as counter

Listing 6.5 On-merge-update of table MeanDurationPerOperation in EPL.

Given the table described above, we need to express a rule to identify anomalous

spans. Listing 6.6 implements the so-called three-sigma rule, that assumes a Gaus-

sian distribution of samples and detects tails of the distribution fulfilling the equation

(dur ati on −meanDur ati on) > 3∗ stdDev . It is important to notice that the detection

of anomalies can also rely on a custom data function, for example, reporting a dynamic

threshold computed on historical data.

1 insert into HighLatency3SigmaRule

2 s e l e c t traceIdToHex ( span . traceIdHigh , span . traceIdLow ) as traceId , Long . toHexString ( span . spanId ) as

spanId , serviceName , span . operationName as operationName , span . startTime as startTime ,

span . duration as duration , p . hostname as hostname

3 from SpansWindow as s join ProcessesTable as p
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4 where s . hashProcess = p . hashProcess and ( span . duration − MeanDurationPerOperation [ serviceName ,

span . operationName ] . meanDuration ) > 3 *
java . lang . Math . sqrt ( ( MeanDurationPerOperation [ serviceName , span . operationName ] .m2) /

( MeanDurationPerOperation [ serviceName , span . operationName ] . counter ) )

Listing 6.6 Rules generating HighLatency3SigmaRule events in EPL.

Once generated the HighLatency3SigmaRule stream, we can listen for this type of

events marking related traces as to-be-sampled and, thus, reporting traces containing

spans with anomalous latency values (as shown in Section 5.2.3). We run the experiment

proposed to evaluate the latency of detection and to check only anomalous traces are

reported. In Figure 6.14 we show almost all anomalous requests directed to the miscon-

figured instance are detected in four different executions of the same workload. The

number of anomalies detected is not total since first requests get the database connection

immediately without the need to wait for the mutex and, therefore, are executed with the

same latencies of other operations.

Fig. 6.14 Catched anomalies on total anomalous requests generated.

In Figure 6.15 and in Figure 6.16, instead, we show the distance in time between

anomalies introduction and anomalies detection. We here represent all anomalies de-

tected for a specific service name or operation name to check anomalies are reported only

in correspondence of requests made to the misconfigured instance. In Figure 6.15 we

represent all anomalies detected querying for the operation name SQL SELECT, the oper-

ation affected by the introduced mutex, while in Figure 6.16 we represent all anomalies

detected querying for the service name customer, the service performing the operation.

We can observe in both cases anomalies are reported (with low latencies) only on anomaly

introduction. The exception, related to the anomalies reported at the beginning, reflects

the fact that the algorithm is initialised with default values. Therefore, mean and variance

need some time to become stable and meaningful.
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Fig. 6.15 Anomalies reported for operation name SQL SELECT on all instances.

Fig. 6.16 Anomalies reported for service name customer on all instances.

To conclude, we can claim Kaiju enables rapid detection of anomalies allowing ex-

pressiveness in defining rules. Moreover, we can exploit Kaiju to further analyse the

system behaviour once an anomaly is reported, e.g., in the scenario considered: (i) we

can install a statement counting for traces with latency higher than a specific threshold

(e.g. three-sigma rule) and grouping them by the process, (ii) we can point out almost all

traces are related to the same process, (iii) we query for traces served by the given process,

and we inspect them, (iv) from logs of the span we can notice a high number of locked
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requests trying to access the DB, and (v) we understand the problem is in the connection

pool and we can alert the responsible team.

6.3.2 Diagnosing steady-state problems

Rim

Steady-state problems are related to issues present in almost any trace. One example

in Rim can be provided launching an instance of HotR.O.D. with the default values for

route-calc-delay and route-worker-pool-size. Indeed, in this case, the worker pool

size is too small, and requests made to the route service are not efficiently parallelised.

Kaiju

These type of problems are often easily-discoverable though a visualisation layer, and

indeed they are the primary use case addressed from tools like Jaeger and Zipkin. However,

Kaiju can be used to compute useful analytics to understand which traces or spans should

be investigated to optimise the overall performance, e.g. to discover possible bottlenecks.

For example, Listing 6.7 uses the table in Listing 6.4, aggregating average latencies per

operation, to report the TOP-K operations ordered by latency.

In Listing 6.7 the parameter K is a place-holder to be tuned.

1 s e l e c t serviceName , operationName , meanDuration , (m2/ counter ) as variance , counter

2 from MeanDurationPerOperation

3 output snapshot every 5 seconds

4 order by meanDuration desc

5 l imit <K>

Listing 6.7 Top-K query on MeanDurationPerOperation table in EPL.

To conclude, Kaiju can be useful to point out bottlenecks and to compute analytics

on system performances, but for some use-cases, it is more relevant to investigate traces

through a visualisation layer. For example, not exploited parallelism cannot be easily

identified through a statement, whereas a static analysis of a Gantt trace representation

can easily show operations executed in a sequence that can be parallelised.

6.3.3 Distributed profiling

Rim

Issues addressed by distributed profiling are often related to specific stacks and inputs

causing functions or components to be slow. In Rim we can, for example, simulate an



100 Evaluation

issue of this type as follows: (i) one instance of HotR.O.D. with an optimization to reduce

db-query-delay (e.g., –fix-db-query-delay=1ms), and (ii) one instance of HotR.O.D.

with default values. We can then redirect requests between the two instances based on the

customer id of the request to simulate data about some customers are cached (simulated

by the optimised instance), and others are not cached, and the database needs to be

accessed (simulated by the instance with the default value).

Kaiju

Distributed profiling is about computing analytics on request-scoped observations and

for this reason it can be addressed effectively by Kaiju.

Considering the issue proposed in Rim, we can profile trace latencies grouping them

per customer to determine if they are similar or different. As shown in Listing 6.8, we can

aggregate latencies of traces asking for the root span (parentSpanId=0) and then exploit

the contained events syntax ([] parentheses) to query logs and group them by customerId.

1 s e l e c t customerId , avg ( duration ) as meanDuration , stddev ( duration ) as stdDevDuration

2 from Span ( parentSpanId = 0) [ s e l e c t duration , l . getFields ( ) . f i r s t O f ( f =⇒ f . key =
’ customer_id ’ ) . getVStr ( ) as customerId from logs as l where l . f i e l d s . anyOf ( f =⇒
f . key= ’ customer_id ’ ) ]

3 group by customerId

4 output snapshot every 5 seconds

5 order by meanDuration desc

Listing 6.8 Average latency of traces per customer in EPL.

With this statement, we can detect if requests related to a specific customer performs

differently. Moreover, considering the issue proposed, we can count the number of

requests for each customer and determine if it would be beneficial to force caching

for specific customers data. Similarly we can aggregate data for each type of parameter

characterising the request enabling profiling.

6.3.4 Resource usage attribution

The resource usage attribution use case exploits a key aspect about querying request-

scoped observations. It is based on the possibility to enable request-wise correlation

between events happening in the system. In this way, it is possible to attribute resources

usage in a component taking into account the entire request generating that usage.
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Rim

In Rim, considering a default instance of HotR.O.D., the route service tags in its span the

time spent by the CPU to perform the computation. This data can be used to compute the

total usage in a specific interval but also allows aggregating this value taking into account

the request generating that usage. For example, we can group usage by customerId or

sessionId of the request. These are parameters tagged or logged in others spans of the

request but retrievable exploiting request-wise querying.

Kaiju

In Kaiju we can join Span streams and exploits the contained-event selection to address

the issued proposed. Listing 6.9 joins for each trace the span related to the operation HTTP
GET /customer, selecting from its logs the customerId, and the one related to the HTTP
GET /route operation, selecting the CPU usage. In this way, we can group data retrieved

per customerId and attribute CPU usage on a per customer basis.

1 s e l e c t customerId , sum(timeCPU) as timeCPURouteCalcperCustomerId

2 from Span ( operationName = "HTTP GET /customer" ) [ s e l e c t traceIdHigh , traceIdLow ,

l . getFields ( ) . f i r s t O f ( f =⇒ f . key = ’ customer_id ’ ) . getVStr ( ) as customerId from logs as l where

l . f i e l d s . anyOf ( f =⇒ f . key= ’ customer_id ’ ) ]# time( < retentionTime >) as s1 ,

3 Span ( operationName = "HTTP GET / route " ) [ s e l e c t traceIdHigh , traceIdLow , l . getFields ( ) . f i r s t O f ( f =⇒
f . key = ’ time ’ ) . getVDouble ( ) as timeCPU from logs as l where l . f i e l d s . anyOf ( f =⇒ f . getVStr ( ) =
’ RouteCalc ’ ) ]# time( < retentionTime >) as s2

4 where s1 . traceIdHigh = s2 . traceIdHigh and s1 . traceIdLow = s2 . traceIdLow

5 group by customerId

6 output l a s t every 10 seconds

Listing 6.9 CPU usage in route service per customerId in EPL.

Similarly, Listing 6.10 joins for each trace the span related to the operation Driver::findNearest,

selecting from its logs the sessionId, and the one related to the HTTP GET /route oper-

ation, selecting the CPU usage. In this way, we can group data retrieved per sessionId
and attribute CPU usage on a per session basis.

1 s e l e c t sessionId , sum(timeCPU) as timeCPURouteCalcperSessionId

2 from Span ( operationName = " Driver : : findNearest " ) [ s e l e c t traceIdHigh , traceIdLow ,

l . getFields ( ) . f i r s t O f ( f =⇒ f . key= ’ value ’ ) . getVStr ( ) as sessionId from logs as l where

l . f i e l d s . anyOf ( f =⇒ f . getVStr ( )= ’ session ’ ) ]# time( < retentionTime >) as s1 ,

3 Span ( operationName = "HTTP GET / route " ) [ s e l e c t traceIdHigh , traceIdLow , l . getFields ( ) . f i r s t O f ( f =⇒
f . key = ’ time ’ ) . getVDouble ( ) as timeCPU from logs as l where l . f i e l d s . anyOf ( f =⇒
f . getVStr ( )= ’ RouteCalc ’ ) ]# time( < retentionTime >) as s2

4 where s1 . traceIdHigh = s2 . traceIdHigh and s1 . traceIdLow = s2 . traceIdLow

5 group by sessionId

6 output l a s t every 10 seconds

Listing 6.10 CPU usage in route service per sessionId in EPL.
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This powerful possibility is complementary to the concept of baggage proposed in

OpenTracing. The baggage exploits the propagation of metadata operated by tracing

instrumentation to share data between components across request flow. This method

is beneficial for some functionalities but can be a bad choice for others as resources

usage attribution. Indeed, in the example proposed, it would have been possible to put

customerId, and sessionId in the baggage and allow the route service to directly log

CPU usage on a per customer and per session basis. However, this has one main drawback.

To extend the set of parameters on which we can aggregate, we will need to propagate

them in the baggage modifying code. It is better to log the CPU usage without any pre-

aggregation and then correlate it with parameters provided by other spans of the same

trace.

Pivot Tracing [47] addresses this problem through baggage and enabling dynamic

instrumentation of components, Kaiju exploits static instrumentation, avoid baggage

overhead and allows to correlate spans when being processed.

6.3.5 Workload modelling

Rim

To model an unusual workload in Rim we can consider three instances of HotR.O.D., a

uniform workload targeting two of them and a gaussian workload targeting the other

instance. In this way, assuming IP-based load balancing between instances we simulate a

peak of requests from a particular region to be rapidly detected and re-directed among

other instances.

Kaiju

In Kaiju we can process data in several ways to model workloads.

One example, as described in Section 6.2, is to construct a service dependency graph

as done by Jaeger reporting dependencies among services observed within traces. Sim-

ilar analytics can be useful, for example, in large and highly distributed applications to

optimise network communications between components. To build the graph we need

to retrieve span references within traces. Listing 6.11 creates a named window to store

dependencies between services within a trace (<retentionTime> is a place-holder and
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should be substituted with an appropriate interval).
1 create window DependenciesWindow#time( < retentionTime >) ( traceIdHexFrom string , spanIdFrom long ,

traceIdHexTo string , spanIdTo long )

Listing 6.11 Create named window to store dependencies between services within a trace

in EPL.

Listing 6.12 shows how to insert dependencies in the built named window from the

Span stream.

1 insert into DependenciesWindow

2 s e l e c t traceIdToHex ( s . traceIdHigh , s . traceIdLow ) as traceIdHexTo , s . spanId as spanIdTo ,

traceIdToHex ( s . r . traceIdHigh , s . r . traceIdLow ) as traceIdHexFrom , s . r . spanId as spanIdFrom

3 from Span [ s e l e c t spanId , traceIdLow , traceIdHigh , * from span . references as r ] s

Listing 6.12 Detection of Spans’ references within a trace in EPL.

Another example in Kaiju is the possibility to profile workload over the day/week

setting sliding windows (e.g., to automate resources scaling following workload patterns).

A last example is related to the issue proposed in Rim. Through Kaiju we can set

a gauge counting requests on a per instance basis (Listing 6.13), we can evaluate if the

workload is correctly balanced among instances and we can determine instances receiving

anomalous number of requests to fix the load-balancing mechanism.

1 s e l e c t hostname , count ( * ) as counter from Batch [ s e l e c t process . tags . f i r s t O f ( t =⇒ t . key =
’hostname ’ ) . getVStr ( ) as hostname , * from spans as s where s . parentSpanId =
0]# time( < retentionTime >)

2 group by hostname

3 order by counter desc

Listing 6.13 Gauge counting requests per instance in EPL.

6.3.6 Results

To conclude this section we summarise our evaluation through the Table 6.1.

Use cases Jaeger Kaiju
Anomaly detection
Diagnosing steady-state problems
Distributed profiling
Resource usage attribution
Workload modeling

Table 6.1 Evaluation of Kaiju and Jaeger against tracing use cases.

Jaeger pipeline enables a static analysis of traces that can be visualised through the

interface and inspected. It mainly addresses the use cases related to the diagnosis of steady-
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state problems and partially the workload modelling offering a services dependencies

graph. As shown in Section 6.2, Kaiju offers the same expressiveness of Jaeger, even if,

currently, it cannot offer full coverage for the use cases mentioned for Jaeger. Indeed, both

use cases requires a visualisation layer, currently not implemented in Kaiju, even if, we

showed we could provide a suitable API to implement it.

Kaiju, moreover, enables a dynamic analysis of traces through continuous querying,

fire-and-forget queries on specific windows, event-based pattern rules and detection of

complex events. Thanks to the expressiveness of its language and the stream-oriented

approach, processing request-scoped observations it can then cover all other use cases of

tracing: (i) anomaly detection, (ii) distributed profiling, (iii) resource usage attribution.

6.4 Pattern detection

In this section we discuss a further use case enabled extending Kaiju to ingest also other

types of observations, as detailed in Section 5.3. Exploiting the simultaneous processing of

multiple streams, and the possibility in EPL to express detecting rules, we can enable the

following use case:

Pattern detection use case related to the identification of patterns and complex

events on system behaviour crossing information coming from different sources

and different types of observations.

As we have done for previous use cases, we explain how Rim can reproduce a set of

issues related to the use case, and we show how Kaiju can challenge this issues.

Rim

For this use case we propose two different issues in Rim:

a) We consider one instance of HotR.O.D. optimizing the route-worker-pool-size
(e.g. –fix-route-worker-pool-size=1000) and another instance with default

values. We consider a uniform workload initially directed to the optimized instance,

and then redirected to the one not optimized. In this way, we can simulate a de-

ployed commit producing a misconfigured new build of the service.

b) We consider one instance of HotR.O.D. optimizing parameters with the exception of

the route-worker-pool-size and route-calc-delay and an exponential work-

load targeting it and causing an increment in CPU usage.
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Kaiju

Considering Issue a) we can assume the Kaiju’s event socket receives a new event each

time a new commit is deployed. We can then write a statement to generate a CommitEvent

when this is detected in the Event stream generated from the socket (Listing 6.14). We

here assume the CommitEvent is characterized by the commit_id key in its context.

1 insert into CommitEvent

2 s e l e c t timestamp , context ( ’ commit_id ’ ) as commit , payload ( ’commit_msg ’ ) as commitMsg

3 from Event

4 where context . containsKey ( ’ commit_id ’ )

Listing 6.14 Detect CommitEvent in EPL.

We can know declare a pattern that given a CommitEvent generates an alert for every

Anomaly event observed in a specified interval (within place-holder in Listing 6.15). In

our implementation we made the HighLatency3SigmaRule a subtype of the Anomaly event

testing the pattern is caught in the situation described in Issue a).

1 s e l e c t b . commit , a . *
2 from pattern [b=CommitEvent −> every a=Anomaly where timer : within ( < within >) ]

Listing 6.15 Detect CommitEvent and Anomaly pattern in EPL.

Considering Issue b) we assume, instead, Kaiju’s event socket receives metrics from

the Telegraf agent collecting Rim’s metrics. We can then write a statement to generate a

ProcessCPUHigherThan80 when the CPU usage of one of the HotR.O.D. services exceeded

the 80% (Listing 6.16).

1 insert into ProcessCPUHigherThan80

2 s e l e c t hashProcess , process . serviceName as serviceName , hostname ,

Float . parseFloat ( f i e l d s ( ’ usage_percent ’ ) ) as usagePercent

3 from Metric (name= ’ docker_container_cpu ’ ) as m join ProcessesTable as p

4 where m. tags ( ’ host ’ ) = p . hostname and Float . parseFloat ( f i e l d s ( ’ usage_percent ’ ) ) > 80.0

5 output l a s t every 10sec

Listing 6.16 Detect ProcessCPUHigherThan80 in EPL.

We can know declare a pattern that given a ProcessCPUHigherThan80 generates an

alert for every HighLatency3SigmaRule event observed in a specified interval (within
place-holder in Listing 6.17) and having same hostname.

1 s e l e c t a . hostname as hostname

2 from pattern [ a=ProcessCPUHigherThan80 and b=HighLatency3SigmaRule ( hostname = a . hostname ) where

timer : within ( < within >) ]

Listing 6.17 Detect ProcessCPUHigherThan80 and HighLatency3SigmaRule pattern in EPL.
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6.5 Processing the RDF stream

In this section, we made an explorative analysis of the benefits of applying RDF Stream

Processing to request-scoped observations.

Given the deployment described in Section ch6:sec1, we attach a CSPARQL2 Engine to

the Kaiju JSON-LD web socket, as described in Section 5.4, to query the RDF stream of

data gathered.

In Section 6.5.1 and in Section 6.5.2, we consider two use cases requiring complex

queries in EPL, and we show examples on how it is possible to solve them with queries in

the RSP-QL syntax.

In Section 6.5.3, we discuss a further possibility enabled from RDF Stream Processing.

We can bound RDF graphs to higher level concepts, e.g., belonging to the application

domain, and query information from request-scoped observations without the need of

knowing their data format.

6.5.1 Resource usage attribution

To apply RDF Stream Processing to the resource usage attribution use case, we consider

the same issue reproduced by Rim and described in Section 6.3.4. We express in RSP-QL

the same queries shown in EPL to provide a comparison in query writing for resource

usage attribution.

In Listing 6.18, we show the aggregate CPU usage in route service grouped by customerId,

whilst, in Listing 6.19, we show the aggregate CPU usage in route service grouped by

sessionId.

1 PREFIX t r : <http : // polimi . deib / tracing #>

2 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>

3

4 REGISTER RSTREAM <s1> AS

5 SELECT ( ? cid AS ? CustomerId ) (SUM( ? tCalc ) AS ? timeCPURouteCalcperCustomerId )

6 FROM NAMED WINDOW <win> ON <jsonTraces > [RANGE PT10S STEP PT10S ]

7 WHERE {

8 WINDOW ?w {

9 ? t a t r : Trace .

10 ? s a t r : Span ;

11 t r : spanOfTrace ? t ;

12 t r : operationName "HTTP GET /customer"^^xsd: s t r i n g ;

13 t r : hasLog ? log .

14 ? log t r : hasField ? f .

15 ? f t r : tagKey "customer_id"^^xsd: s t r i n g ;

16 t r : s tr i n gV a l ? cid .

17 ? s2 a t r : Span ;

18 t r : spanOfTrace ? t ;

19 t r : operationName "HTTP GET / route "^^xsd: s t r i n g ;
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20 t r : hasLog ? log2 .

21 ? log2 t r : hasField ? fR ;

22 t r : hasField ? fT .

23 ? fR t r : s t r i ng V a l "RouteCalc"^^xsd: s t r i n g .

24 ? fT t r : tagKey "time"^^xsd: s t r i n g ;

25 t r : doubleVal ? tCalc .

26 }

27 }

28 GROUP BY ? cid

Listing 6.18 CPU usage in route service per customerId in RSP-QL.

1 PREFIX t r : <http : // polimi . deib / tracing #>

2 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>

3

4 REGISTER RSTREAM <s1> AS

5 SELECT ( ? sid AS ? SessionId ) (SUM( ? tCalc ) AS ? timeCPURouteCalcperSessionId )

6 FROM NAMED WINDOW <win> ON <jsonTraces > [RANGE PT10S STEP PT10S ]

7 WHERE {

8 WINDOW ?w {

9 ? t a t r : Trace .

10 ? s a t r : Span ;

11 t r : spanOfTrace ? t ;

12 t r : operationName " Driver : : findNearest "^^xsd: s t r i n g ;

13 t r : hasLog ? log .

14 ? log t r : hasField ? f s ;

15 t r : hasField ? f s i d .

16 ? f s t r : s t r i ng V a l " session "^^xsd: s t r i n g .

17 ? f s i d t r : tagKey " value "^^xsd: s t r i n g ;

18 t r : s t r i ng V a l ? sid .

19 ? s2 a t r : Span ;

20 t r : spanOfTrace ? t ;

21 t r : operationName "HTTP GET / route "^^xsd: s t r i n g ;

22 t r : hasLog ? log2 .

23 ? log2 t r : hasField ? fR ;

24 t r : hasField ? fT .

25 ? fR t r : s t r i ng V a l "RouteCalc"^^xsd: s t r i n g .

26 ? fT t r : tagKey "time"^^xsd: s t r i n g ;

27 t r : doubleVal ? tCalc .

28 }

29 }

30 GROUP BY ? sid

Listing 6.19 CPU usage in route service per sessionId in RSP-QL.

6.5.2 Workload modeling

To apply RDF Stream Processing to the workload modelling use case, we consider the

query required to build the service dependency graph of a trace. In Listing 6.20, for

each trace, we report all pairs of services interacting between them and the number of

interactions present in the trace.
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1 PREFIX t r : <http : // polimi . deib / tracing #>

2

3 REGISTER RSTREAM <s1> AS

4 SELECT ( ? t i d AS ? traceId ) ( ? sn2 AS ? serviceFrom ) ( ? sn AS ? serviceTo ) (COUNT( * ) AS ? n_interactions )

5 FROM NAMED WINDOW <win> ON <jsonTraces > [RANGE PT10S STEP PT10S ]

6 WHERE {

7 WINDOW <win> {

8 ? s t r : reference ? s2 .

9 ? s t r : spanId ? sid ;

10 t r : spanOfProcess ?p .

11 ?p t r : serviceName ? sn .

12 ? s2 t r : spanOfTrace ? t ;

13 t r : spanId ? sid2 ;

14 t r : spanOfProcess ?p2 .

15 ? t t r : traceId ? t i d .

16 ?p2 t r : serviceName ? sn2 .

17 }

18 }

19 GROUP BY ? t i d ? sn ? sn2

20 ORDER BY ? t i d

Listing 6.20 Number of interactions between each pair of services within a trace in RSP-QL.

6.5.3 Domain-driven debugging

In this section, we would like to highlight the possibilities provided by an ontological

representation of request-scoped observations. We will show how to enable querying

on request-scoped observations produced by Rim, considering only the domain-specific

terminology of HotR.O.D. application, e.g., to compute analytics on drivers, customers

and users.

To this purpose, we designed a simple HotR.O.D. ontology representing its application

domain (shown in Figure 6.17):

(i) the User class representing a UI active session,

(ii) the Customer class representing a customer (and the 4 individuals in Customer

HotR.O.D. UI),

(iii) the Driver class representing a driver,

(iv) the requestCarTo object property relating each user to the customers he requests a

car to,

(v) the assignedDriver object property relating each user to the driver assigned to it,
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(vi) the driverToCustomer object property relating each driver to the customer he

should reach,

(vii) the userProperty data property, super-property of the sessionID and requestID prop-

erty,

(viii) the customerProperty data property, super-property of the customerID and cus-

tomerName property,

(ix) the driverProperty data property, super-property of the licensePlateNumber prop-

erty,

(x) the location data property relating an entity to a string representing its location.

Fig. 6.17 HotR.O.D. ontology.

Therefore, we can exploit the CONSTRUCT query type in RSP-QL to generate a stream

based on patterns matched in the Kaiju stream. In Listing 6.21, we first select data on

the user instantiating the request (sessionId), data on the customer location requested

(customerId) and data on the assigned driver (licensePlateNumber). Then, we con-

struct an RDF stream modelling the data selected through the HotR.O.D. ontology.
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1 PREFIX t r : <http : // polimi . deib / tracing #>

2 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>

3 PREFIX ht : <http : // polimi . deib /hotrod#>

4

5 REGISTER RSTREAM <s1> AS

6 CONSTRUCT {

7 ? user a ht : User ;

8 ht : sessionID ? sid ;

9 ht : assignedDriver ? driver ;

10 ht : requestCarTo ? customer .

11 ? driver a ht : Driver ;

12 ht : licensePlateNumber ? did .

13 }

14 FROM NAMED WINDOW <win> ON <jsonTraces > [RANGE PT5S STEP PT5S ]

15 WHERE {

16 WINDOW <win> {

17 ? t a t r : Trace .

18 ? s a t r : Span ;

19 t r : spanOfTrace ? t ;

20 t r : operationName "HTTP GET / dispatch "^^xsd: s t r i n g ;

21 t r : hasLog ? logd ;

22 t r : hasLog ? logc .

23 ? logd t r : hasField ? fd ;

24 t r : hasField ? fdid .

25 ? fd t r : s t r i ng V a l " Dispatch successful "^^xsd: s t r i n g .

26 ? fdid t r : tagKey " driver "^^xsd: s t r i n g ;

27 t r : s t r i n gV a l ? did .

28 ? logc t r : hasField ? fc ;

29 t r : hasField ? f c i d .

30 ? fc t r : s t r i ng V a l " Getting customer"^^xsd: s t r i n g .

31 ? f c i d t r : tagKey "customer_id"^^xsd: s t r i n g ;

32 t r : s t r i n gV a l ? cid .

33

34 ? s2 a t r : Span ;

35 t r : spanOfTrace ? t ;

36 t r : operationName " Driver : : findNearest "^^xsd: s t r i n g ;

37 t r : hasLog ? log .

38 ? log2 t r : hasField ? f s ;

39 t r : hasField ? f s i d .

40 ? f s t r : s t r i ng V a l " session "^^xsd: s t r i n g .

41 ? f s i d t r : tagKey " value "^^xsd: s t r i n g ;

42 t r : s t r i n gV a l ? sid .

43 }

44

45 BIND(URI(CONCAT( " http : // polimi . deib /hotrod#User" , MD5(STR ( ? sid ) ) ) ) as ? user )

46 BIND(URI(CONCAT( " http : // polimi . deib /hotrod#Customer" , STR ( ? cid ) ) ) as ? customer )

47 BIND(URI(CONCAT( " http : // polimi . deib /hotrod#Driver " , MD5(STR ( ? did ) ) ) ) as ? driver )

48 }

Listing 6.21 CONSTRUCT query for the HotR.O.D. stream in RSP-QL.

In this way, we can register the stream obtained to the engine to query it through the

HotR.O.D. ontology. Listing 6.22 counts the number of times a User requests a car to a

given Customer. Listing 6.23, instead, counts the number of times a Driver is assigned to a
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given User.

1 PREFIX t r : <http : // polimi . deib / tracing #>

2 PREFIX ht : <http : // polimi . deib /hotrod#>

3 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>

4

5 REGISTER RSTREAM <s1> AS

6 SELECT ? uid ? cid (COUNT( * ) AS ? n_requests )

7 FROM NAMED WINDOW <win> ON <constructHotrod > [RANGE PT30S STEP PT30S ]

8 WHERE {

9 WINDOW <win> {

10 ?u ht : requestCarTo ? c ;

11 ht : sessionID ? uid .

12 ? c ht : customerID ? cid .

13 }

14 }

15 GROUP BY ? uid ? cid

Listing 6.22 Count the number of times a User requests a car to a given Customer in

RSP-QL.

1 PREFIX t r : <http : // polimi . deib / tracing #>

2 PREFIX ht : <http : // polimi . deib /hotrod#>

3 PREFIX xsd: <http : //www.w3. org /2001/XMLSchema#>

4

5 REGISTER RSTREAM <s1> AS

6 SELECT ? uid ? did (COUNT( * ) AS ? n_requests )

7 FROM NAMED WINDOW <win> ON <constructHotrod > [RANGE PT30S STEP PT30S ]

8 WHERE {

9 WINDOW <win> {

10 ?u ht : assignedDriver ?d ;

11 ht : sessionID ? uid .

12 ?d ht : licensePlateNumber ? did .

13 }

14 }

15 GROUP BY ? uid ? did

Listing 6.23 Count the number of times a Driver is assigned to a given User in RSP-QL.





Chapter 7

Conclusions and Future Work

In this thesis work, we framed and investigated the research challenges, around the

problem of observability for software systems, that are getting industrial attention.

In Chapter 3, we described the issues around modern systems architectures motivat-

ing our work, and we clarified the boundaries of the observability problem. Finally, we

formulated two research questions on how to expose (OP1) and how to make sense (OP2)

of system behaviour at runtime. Last but not least, we elicited a set of requirements for

the solution to satisfy.

In Chapter 4, we presented the design of our solution. In particular, to solve OP1, we

presented a unifying data model based on the concept of event that reconciles metrics,

logs and trace data. To solve OP2 we showed how a stream processing approach fulfils

requirements. Given precedent works applying stream processing successfully on metrics

and logs, we focused on the specification for a Trace Stream Processor (TSP). Following

the Design Science framework, we designed a prototype, Kaiju, together with Rim, a

reproducible environment emulating the context addressed by Kaiju. Finally, we devised

a stream reasoning approach to cope with both the problems presenting a specification

for an RDF stream processing engine.

In Chapter 5, we described our implementation experience. We provided implementa-

tion details for Kaiju and Rim. Moreover, we proposed an ontology for trace data based on

the OpenTracing ontology and we explained how we implement an RSP engine ingesting

RDF trace data.

In Chapter 6, we compared Kaiju with respect to state-of-the-art distributed tracing

tools, and to the typical use cases they address. We showed how Kaiju approaches the

problem in different ways than state-of-the-art solutions, but can provide the same func-

tionalities and deal with a broader set of use cases. We demonstrated all this in Rim.

Moreover, we showed how Kaiju could be extended to process other types of observations
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and to correlate heterogeneous data on system behaviour. Finally, we also provide an

explorative analysis on the use for observability of an RSP engine.

7.1 Discussion

In this work, we introduced a more structured approach towards observability for software

discussing it as a research problem. We proposed a definition focusing on the concept

of system behaviour, and we exploited it to formulate better the observability problem.

We identified two separated but tightly coupled sub-problems: OP1 How can we expose

the system behaviour through the outputs? and OP2 How can we make sense of system

behaviour?. We addressed these problems discussing two related research questions and

eliciting the related requirements.

In Q1 we asked if it is possible to unify data models and processing pipelines of metrics,

logs and trace data (i.e., observations) to provide a single and significative output for the

observable behaviour of a software system. For this question, we elicited requirements

pointing out the dependency of observations on time and the necessity to provide both

structural and semantic interoperability. Therefore, we proposed a data model based on

the concept of event to establish time as a first-class citizen, and we offered a unique

unified structure for observations through the definition of a payload and a context. This

data model has several benefits:

i) it could enable a unique instrumentation API avoiding replication or split of infor-

mation under multiple formats or with different semantics;

ii) the context enables the possibility to slice, aggregate and join observability events,

with different types of payloads, over arbitrary shared dimensions;

iii) a single perspective can help in determining a more general set of guidelines to

deal with the trade-off between collecting too many data and not exposing enough

information on system behaviour.

However, we pointed out the importance of still considering metrics, logs and traces data

as the three main abstractions to expose and make sense of system behaviour. Indeed,

they define different payloads, and each of them has its specificity (calling for different

guidelines to understand what should be exposed) and different processing mechanisms

(must be taken into account to make sense of the system behaviour).

In Q2 we asked if it is possible to make sense in near real-time of information needs

about the system observable behaviour, considering the available observations at runtime,
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and despite data heterogeneity. For this question, we elicited requirements pointing

out the need for velocity and reactivity in processing observations, the importance of

taking into account their timing relations and the need to handle the complexity of

data. Given the elicited requirements we demonstrated how this problem belongs to

the Information Flow Processing domain and, therefore, can be adequately addressed

by a stream processing solution. Since the validity of a stream processing solution for

metrics and logs has been already proved, we decided to focus on trace data. Indeed,

some research works highlights the potentialities of dynamic analysis for trace data, but

state-of-the-art distributed tracing systems, e.g. Jaeger, only focuses on static analysis.

With the development and evaluation of Kaiju, we demonstrated how a Trace Stream

Processor could cover almost any use case related to tracing and eventually postpone

storing and static analysis.

Moreover, we showed how it could empower a posteriori sampling to store only in-

teresting traces. We highlighted the necessity to process observations expressing both

transforming and detecting rules, and for this reason, we selected Esper as a stream pro-

cessing engine capable of providing both types of rules. We also showed how EPL, the

language offered by Esper, can effectively deal with complex data also exploiting the con-

tained event syntax. Furthermore, listeners offer a flexible mechanism to define the logic

to handle outputs for each rule, and the API implemented allows to install and remove

rules at runtime.

In our comparison of Jaeger and Kaiju, we highlighted the indexing overhead intro-

duced from the former and the effectiveness of the latter in handling high volumes of

data.

Jaeger enables a static analysis of traces through a visualisation allowing to inspect

them. It mainly addresses the use cases related to the diagnosis of steady-state problems

and partially the workload modelling offering a services dependencies graph.

As shown in our evaluation, Kaiju can partially cover this use cases even if both require

a visualisation layer to be adequately addressed. Currently, an interface is not provided in

Kaiju, even if, we showed we could provide a suitable API to implement a visualisation

similar to the one of Jaeger. Moreover, Kaiju enables a dynamic analysis of traces through:

(i) continuous querying, (ii) fire-and-forget queries on specific windows, and (iii) event-

based pattern rules to detect complex events.

Therefore, thanks to the expressiveness of its language and the stream-oriented ap-

proach, Kaiju allows processing request-scoped observations covering all other use cases

of tracing: anomaly detection, distributed profiling, resource usage attribution.
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In this thesis, we also presented Rim, a reproducible environment that allows emu-

lating a distributed system running a multi-node multiple-instance application instru-

mented to output request-scoped observations. In our evaluation, we showed how Rim

could reproduce typical issues of the context reproduced allowing to check the effective-

ness of tools and methodologies to observe the system status at runtime.

Finally, we tried to address both the challenges simultaneously. Although we could

extend Kaiju to handle multiple types of data, this is not the prescribed way to handle

heterogeneity. Alternatively, a stream reasoning approach as RDF Streaming Processing

(RSP) can handle both variety and velocity. To this extent, we proposed an ontology for the

OpenTracing specification, and we annotated traces in RDF enabling ingestion of trace

RDF graphs through an RSP engine. We then provided an explorative analysis showing

how it can solve a set of use cases presented for Kaiju, and how it allows querying also

application level details.

7.2 Limitations and future work

The main limitation of our work is related to the fact we operated on an emulated environ-

ment. We do not have the opportunity to inspect traces produced by a real production

cluster, and therefore, our analysis is limited to the set of issues reproducible in Rim. We

plan, therefore, to extend our evaluation to an industrial scenario to better understand

the advantages and limits of our approach, also with respect to real users’ traffic.

Furthermore, we observed the lack of instruments capable of evaluating tools dealing

with trace data. We evaluated Kaiju on the tracing use cases, but we devised the necessity

of a shared benchmark for a more systematic comparison. Recent works, like the one from

Zhou et al. [68] proposed an open source dataset for this purpose. However, their work

misses the opportunity to release trace data compliant with the OpenTracing specification.

A future work may be to extend Rim to produce a referential benchmark, or to become a

tool for technical action research (TAR) as defined in [65], i.e. a tool for the validation of

artifacts related to observability applied in a realistic case.

A second limitation consists in the fact that we do not consider and include in Rim

an orchestration system. Nowadays clusters are mainly run by mean of these tools and,

therefore, it is necessary to process also their outputs in order to obtain an overall view of

systems.

Another aspect that should be investigated in greater details is the scalability of Kaiju.

A shown in [8] it can be useful to distribute the stream processor, exploiting pre-processing

at the node level, to reduce the overhead in the network and to process less data contem-
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poraneously. Moreover, we implemented Kaiju as a lambda architecture [45] exploiting

Jaeger to offer a parallel batch solution for data gathered. It would be useful to inves-

tigate further the possibility of a kappa architecture for trace data and, in general, for

observability.

To conclude, concerning the proposed stream reasoning approach, it is necessary to

extend the explorative analysis made with the RSP engine to RDF logs and metrics. For

metrics, moreover, an ontology should be defined once a specification is released for

the OpenMetrics standard. Furthermore, it is worth to investigate other forms of stream

reasoning. E.g., those based on CEP like [62] and those based on metric temporal logic

like [37] looks promising for time-aware analysis of observations.
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