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"It is by logic that we prove, but
by intuition that we discover. To
know how to criticize is good, to
know how to create is better."

– Henri Poincaré



i
i

“output” — 2018/12/4 — 14:46 — page — #4 i
i

i
i

i
i



i
i

“output” — 2018/12/4 — 14:46 — page — #5 i
i

i
i

i
i

Acknowledgements

First of all, I would like to thank my Professors at Politecnico di Milano
of the Automation and Control Engineering program as they equipped me
with an arsenal of tools that were vital in the development of this work.
More specifically, Professor Paolo Rocco, who in the coursework of "Control
of Industrial Robots", provided fundamental theoretical concepts underly-
ing my work, and was also my advisor for the thesis.

I would like to also express gratitude to Professor Marco Hutter who hosted
me in the Robotics Systems Lab and was my co-advisor at ETH Zürich.

I am thankful to Jan Carius, Ruben Grandia, and Martin Wermelinger
who were my mentors at ETH. Their continuous guidance and assistance
was extremely helpful throughout this experience.

Most importantly, I am immensely grateful to my family and Mariana
for their nurturing love and unparalleled support throughout every step of
my journey.



i
i

“output” — 2018/12/4 — 14:46 — page — #6 i
i

i
i

i
i



i
i

“output” — 2018/12/4 — 14:46 — page I — #7 i
i

i
i

i
i

Table of Contents

1 Introduction 1
1.1 Aim and Scope . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Non-Smooth Contact Dynamics 5
2.1 Modeling of Contact Dynamics . . . . . . . . . . . . . . . . 5
2.2 Simulation of Non-Smooth Dynamics . . . . . . . . . . . . . 7

3 Trajectory Optimization 17
3.1 Optimal Control Problem Motivation . . . . . . . . . . . . . 17
3.2 Dynamic Programming and Indirect Methods . . . . . . . . . 19
3.3 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Contact-Implicit Optimization (CIO) 27
4.1 Related Work and the CIO Approach . . . . . . . . . . . . . 27
4.2 Preliminary 2D Example: Finger Rolls Ellipse . . . . . . . . 36
4.3 A Modified CIO Approach . . . . . . . . . . . . . . . . . . . 42
4.4 Preliminary 2D Example: Leg Kicks Ball . . . . . . . . . . . 49

5 Dynamic Object Manipulation by 6-DOF ANYpulator 53
5.1 ANYpulator Equations of Motion . . . . . . . . . . . . . . . 53
5.2 ANYpulator-Object CIO Formulation: General Considerations 59
5.3 Preparatory Example Applications . . . . . . . . . . . . . . 66

5.3.1 ANYpulator-Door Problem . . . . . . . . . . . . . . . 66
5.3.2 ANYpulator-Ball Problem . . . . . . . . . . . . . . . . 73

5.4 Exploring a Non-linear Model Predictive Control Approach . 81

6 ANYpulator-Block Problem 89
6.1 Problem-Formulation Specifics Including Dry Friction . . . . 89
6.2 Results: Optimization, Simulation and Experimentation . . . 95

7 Conclusion 113

Bibliography 119

I



i
i

“output” — 2018/12/4 — 14:46 — page II — #8 i
i

i
i

i
i



i
i

“output” — 2018/12/4 — 14:46 — page III — #9 i
i

i
i

i
i

List of Figures

2.1 (a) Hard-Contact Model (b) Soft-Contact Model . . . . 5
2.2 Non-Smooth Discontinuous Dynamics . . . . . . . . . . . . 8
2.3 Normal Cone . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Newton’s Impact Law . . . . . . . . . . . . . . . . . . . . 12

3.1 The Optimal Control Family Tree . . . . . . . . . . . . . . 19
3.2 (a) Shooting Method (b) Multiple-Shooting Method . . 25
3.3 Direct Collocation Method . . . . . . . . . . . . . . . . . . 26

4.1 Multi-phase approach applied for two different contact con-
figurations also allowing for impacts. . . . . . . . . . . . . 28

4.2 (a) Simple mode-sequence (b) Combinatorial explosion of
possible discrete transitions . . . . . . . . . . . . . . . . . 29

4.3 Graphical illustration of a two-link finger rotating the un-
actuated ellipse at the bottom . . . . . . . . . . . . . . . . 37

4.4 Finger rotating ellipse MATLAB animation . . . . . . . . 40
4.5 Minimum distance between the contacting ellipses (bottom)

and the generated normal contact force between them (top) 41
4.6 Block diagram depicting a full picture of the control plan

(trajectory optimization and trajectory stabilization) as used
by Posa et al. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Block diagram depicting a full picture of the control plan
(trajectory optimization and trajectory stabilization) as used
by Posa et al. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Leg kicks ball MATLAB animation . . . . . . . . . . . . . 50
4.9 Minimum distance between the foot and the ground (bot-

tom left) and the generated normal contact force between
them (top left), as well as the minimum distance between
the foot and the ball (bottom right) and the generated nor-
mal contact force between them (top right) . . . . . . . . . 51

5.1 ANYpulator robotic arm mounted on top of a husky mobile
platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

III



i
i

“output” — 2018/12/4 — 14:46 — page IV — #10 i
i

i
i

i
i

List of Figures

5.2 Series-elastic actuators, ANYdrive, constituting the joints
of ANYpulator . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Rviz visualization showing ANYpulator along with the se-
quence of joints, links, and joint-attached reference frames 55

5.4 ANYpulator with a custom-built end-effector that is used
in all ANYpulator-Object manipulation problems . . . . . 59

5.5 Rviz image showing the tool frame {E}, base frame {I},
and object frame {O} . . . . . . . . . . . . . . . . . . . . 63

5.6 Rviz image showing the door and its hinge with respect to
the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 FORCES NLP printed output . . . . . . . . . . . . . . . . 69
5.8 Evolution of the input trajectories for joints 3 and 4 over

the solver’s iterations (0, 800, and 1279) . . . . . . . . . . 70
5.9 Plots indicating the satisfaction of the contact constraints

in the ANYpulator-Door problem . . . . . . . . . . . . . . 71
5.10 Snapshots from a simulation of the assigned manipulation

task (Robot pushes door to open it beyond a certain thresh-
old with a relatively low final velocity) . . . . . . . . . . . 72

5.11 Sketch of a 3D ball rolling on a flat plane . . . . . . . . . . 73
5.12 Optimization results indicating the satisfaction of the con-

tact conditions . . . . . . . . . . . . . . . . . . . . . . . . 77
5.13 Snapshots from a simulation of the assigned manipulation

task (Robot pushes ball to a final position in a desired
direction of 0 degrees) . . . . . . . . . . . . . . . . . . . . 78

5.14 Snapshots from a simulation of the assigned manipulation
task (Robot pushes ball to a final position in a desired
direction of -30 degrees) . . . . . . . . . . . . . . . . . . . 79

5.15 Simulation plots showing the tracking of optimal-reference
joint positions . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.16 (a) Solver exit status (0: maximum iterations reached,
1: local minimum found, 7: infeasible problem), (b) Op-
timal and real joint positions from NMPC without any
PD-compensation, (c) PD-term contribution in total input
torques for NMPC with PD-compensation, (d) Optimal
and real joint positions from NMPC with PD-compensation 86

IV



i
i

“output” — 2018/12/4 — 14:46 — page V — #11 i
i

i
i

i
i

List of Figures

5.17 (a) Optimal and real joint positions from open-loop NLOC
without any PD-compensation, (b) Optimal and real joint
positions from open-loop NLOC with PD-compensation,
(c) PD-term contribution in total input torques for open-
loop NLOC with PD-compensation . . . . . . . . . . . . . 87

5.18 (a) Comparison of optimal joint positions obtained from
open-loop NLOC and NMPC, (b) Comparison of their
contact force trajectories, (c) Simulated ball position for
NMPC, with PD-compensation, (d) Simulated ball posi-
tion for open-loop NLOC, with PD-compensation . . . . . 88

6.1 Various Static Friction Models: (a) Coulomb Friction, (b)
Coulomb with Viscuous Friction, (c) Stiction with Coulomb
and Viscous Friction, (d) Stribeck Effect . . . . . . . . . . 90

6.2 Optimal joint input torques resulting from a CIO formula-
tion that does not include Newton’s restitution law . . . . 97

6.3 Optimal joint input torques resulting from a CIO formula-
tion that includes Newton’s restitution law . . . . . . . . . 98

6.4 Snapshots of a simulation resulting from a CIO formulation
that does not include Newton’s restitution law . . . . . . . 99

6.5 Snapshots of a simulation resulting from a CIO formulation
that includes Newton’s restitution law . . . . . . . . . . . 100

6.6 ANYpulator joint positions tracking optimal-reference tra-
jectories (Experiment 1) . . . . . . . . . . . . . . . . . . . 102

6.7 ANYpulator end-effector tool position (in cartesian coor-
dinates), tracking optimal trajectories, given by forward
kinematics (Experiment 1 ) . . . . . . . . . . . . . . . . . 103

6.8 Normal Contact Force: (a) Optimization Result, (b) Ex-
perimental Result (Experiment 1) . . . . . . . . . . . . . . 103

6.9 Snapshots for the manipulation task with a desired block
displacement of 0.7 m (Experiment 1) . . . . . . . . . . . . 104

6.10 ANYpulator joint positions tracking optimal-reference tra-
jectories (Experiment 2) . . . . . . . . . . . . . . . . . . . 105

6.11 ANYpulator end-effector tool position (in cartesian coor-
dinates), tracking optimal trajectories, given by forward
kinematics (Experiment 2) . . . . . . . . . . . . . . . . . . 106

V



i
i

“output” — 2018/12/4 — 14:46 — page VI — #12 i
i

i
i

i
i

List of Figures

6.12 Normal Contact Force: (a) Optimization Result, (b) Ex-
perimental Result (Experiment 2) . . . . . . . . . . . . . . 106

6.13 Snapshots for the manipulation task with a desired block
displacement of 0.6 m (Experiment 2) . . . . . . . . . . . . 107

6.14 ANYpulator joint positions, tracking optimal-reference tra-
jectories (Experiment 3) . . . . . . . . . . . . . . . . . . . 108

6.15 ANYpulator end-effector tool position (in cartesian coor-
dinates), tracking optimal trajectories, given by forward
kinematics (Experiment 3) . . . . . . . . . . . . . . . . . . 109

6.16 Normal Contact Force: (a) Optimization Result, (b) Ex-
perimental Result (Experiment 3) . . . . . . . . . . . . . . 109

6.17 Snapshots for the manipulation task with a desired block
displacement of 0.4 m (Experiment 3) . . . . . . . . . . . 110

6.18 Observed error between the block’s final position and the
desired one, throughout the three experiments (performed
5 times each) . . . . . . . . . . . . . . . . . . . . . . . . . 111

VI



i
i

“output” — 2018/12/4 — 14:46 — page VII — #13 i
i

i
i

i
i

Abstract

In many robot planning problems, especially those involving locomotion
and manipulation, some non-smooth dynamics arise due to contact events,
frictional forces, or impacts. Designing optimal controllers to deal with such
applications, by relying on classical direct methods for trajectory optimiza-
tion (TO), could certainly be problematic for the underlying gradient-based
optimization solver. One way to incorporate such non-smooth phenomena
within our TO formulation is through the contact-implicit optimization
(CIO) approach, which along with the multi-phase method, is a promi-
nent trajectory optimization scheme intended to tackle systems with hybrid
dynamics. Unlike its counterpart, the contact-implicit method optimizes
through contact events, without the need for an a priori definition of a full
contact schedule. In this thesis work, a previously developed version of
a CIO approach that relies on the description of multi-contact dynamics
in terms of a linear complementarity problem (LCP)-solution, accompa-
nied by certain modifications for improved dynamic feasibility, is consid-
ered. A resulting mathematical program with complementarity constraints
(MPCC) is formulated in order to solve several dynamic object manipula-
tion tasks with a 6-degree of freedom robot. Results are given in terms of
a visualization of the optimization’s output, and a simulation of the con-
trolled system’s evolution. Finally, experimental results are also presented
for a manipulation task that involves the manipulator dynamically push-
ing a block into a desired position that is outside of the robot’s workspace,
while also taking into account an appropriate dry friction model.

Keywords — Contact-Implicit Optimization, Trajectory Optimization,
Non-Linear Optimal Control, Non-Smooth Contact Dynamics, Robotic Ma-
nipulation, Dynamic Object Manipulation
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Sommario

In molti problemi di pianificazione dei robot, in particolare quelli che coin-
volgono la locomozione e la manipolazione, si manifestano alcune dinamiche
non regolari a causa di eventi di contatto, forze di attrito o impatti. La pro-
gettazione di controllori per gestire tali applicazioni, basandosi su metodi
diretti classici per l’ottimizzazione della traiettoria (TO), potrebbe essere
problematica nel caso in cui il problema di ottimizzazione sia risolto uti-
lizzando un metodo basato sul gradiente. Un modo per incorporare tali
fenomeni non regolari all’interno della nostra formulazione TO è attraverso
l’approccio di ottimizzazione implicita del contatto (CIO), che, insieme al
metodo multifase, è uno schema promettente di ottimizzazione della trai-
ettoria sviluppato per affrontare sistemi con dinamica ibrida. A differenza
della sua controparte, il metodo implicito del contatto è in grado di ri-
solvere il problema senza conoscere a priori la successione degli eventi di
contatto. In questo lavoro di tesi, si estende una versione precedentemente
sviluppata di un approccio CIO che si basa sulla descrizione della dinamica
multi-contatto come soluzione del problema di complementarietÃ lineare
(LCP), apportando alcune modifiche per una migliore fattibilità dinam-
ica. Ne risulta un programma matematico con vincoli di complementarità
(MPCC), che è stato implementato per risolvere diversi compiti di ma-
nipolazione di oggetti dinamici con un robot a 6 gradi di libertà. I risultati
sono forniti in termini di visualizzazione dell’output dell’ottimizzazione e
di simulazione dell’evoluzione del sistema controllato. Infine, vengono pre-
sentati i risultati sperimentali per un compito di manipolazione nel quale
il manipolatore spinge un blocco in una posizione desiderata situata al di
fuori dell’area di lavoro del robot, tenendo conto di un appropriato modello
di attrito a secco.

Parola chiave — Ottimizzazione Implicita del Contatto, Ottimizzazione
della Traiettoria, Controllo Ottimale Non-Lineare, Dinamiche Non-Regolari
del Contatto, Manipolazione Robotica, Manipolazione Dinamica di Oggetti
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Chapter 1

Introduction

1.1 Aim and Scope

Throughout the past decade, there has been an ongoing Robot Revolution
that keeps on growing at a highly significant pace. A major ingredient in
this uprising, is the shift in attention that was mostly directed towards in-
dustrial robot applications, – such as pick-and-place, drilling, welding, and
many other manufacturing processes – to tasks involving a more dexterous
interaction between the robot and its environment, such as those in the
field of Locomotion and Dynamic Manipulation. However, the design of
motion plans and control policies within the realm of such applications is
still considered a particularly young field of research.

The associated challenges are heavily connected to the presence of unavoid-
able phenomena such as unilateral contacts, friction, and impact events,
which render the underlying dynamics non-smooth and discontinuous. In
order to deal with such inconveniences, a crucial starting point would be to
have a reliable mathematical model that fairly describes the system’s evo-
lution over time, as is the case for any control design problem. After that,
a problem-dependent control technique is utilized as a tool for deriving a
proper control law.

In the case of controlling smooth, nonlinear, under-actuated robots, state-
of-the-art techniques heavily rely on Trajectory Optimization (TO) meth-
ods, which turn out to be remarkably convenient and favorable when com-
pared with other approaches; as they exploit the power of numerical opti-
mization for systematically formulating and solving such problems (while
also respecting input and state constraints implicitly). Building on this,
extensions of traditional TO methods have been made to incorporate Hy-
brid systems as well. These can be classified into two main categories:

1
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Chapter 1. Introduction

The first one is the Multi-Phase approach, which in brief terms, aims to
identify the points at which the discrete transitions occur (those are trig-
gered by contact events in our case), based on an a priori knowledge of
the mode sequence; then the trajectories leading to and emerging from
the discrete events are optimized separately. The second one is the mode-
invariant method (also referred to as the Contact-Implicit Approach when
the non-smoothness is a result of contact dynamics); with this formula-
tion, a pre-specified mode schedule is not required anymore, but rather
comes out as a result of the optimization itself which searches for an opti-
mal trajectory through the contacts. However, multi-phase methods tend
to produce higher-accuracy optimal trajectories that are more compatible
with the dynamics of the system and thus are more dynamically feasible
than those obtained from the contact-implicit approach.

For the sake of narrowing down the scope, this thesis work – which was
carried out in the Robotic Systems Lab (RSL) at ETH Zürich – will make
use of a variation on the contact-implicit optimization (CIO) formulation
proposed by Posa et al. [39], in order to ultimately solve a number of
dynamic object manipulation problems. Such applications belong to the
family of graspless (also referred to as nonprehensile) manipulation, and
they generally include tasks such as pushing, sliding, tumbling, pivoting
and so on [25]. It is important to differentiate between dynamic manipula-
tion, and quasi-static nonprehensile manipulation, where the latter involves
relatively slow motions such that the inertial effects can be considered neg-
ligible and the robot is assumed to be in contact with the object for the
whole time horizon. Whereas, in the former, these assumptions do not
necessarily hold, meaning that it is possible for the robot to lose contact
with the object during the desired manipulation period. This, in turn,
makes it mandatory for one to reason about the dynamics induced by the
environment on the uncontrollable object, before planning for an optimal
robot motion that moves it from an initial state to a final desired one.

To be more specific, the modified CIO approach will be used along with
a stabilizing linear feedback law, to control a 6-DOF robot referred to as
ANYpulator – developed at the Robotic Systems Lab – in order to dy-
namically push a block from an initial configuration to a final assigned
position that could be outside of the robot’s workspace. The method will

2
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1.2. Outline

be tested in simulation as well as on the real system. Other 2D preliminary
examples (visualizations only) and 3D preparatory examples (simulations
only) will be tackled throughout the development of the thesis. To elabo-
rate, the dynamic equations of motion for ANYpulator will be derived using
the MATLAB Symbolic Math Toolbox, and the finite-dimensional optimiza-
tion problem will be formulated on MATLAB, but under the framework of
FORCES Pro, which is a commercial tool aimed at generating highly cus-
tomized and efficient optimization solvers (in the form of C code) based on
an efficient implementation of the interior point algorithm [15] [51]. Finally,
a C++ class structure will be developed along with the use of libraries and
tools provided by the Robot Operating System (ROS) middleware, to be
able to test the manipulation tasks within the Gazebo Simulation Environ-
ment as well as on the real system.

From this work, it will be demonstrated that our adopted method achieves
optimal state-trajectories that are dynamically feasible, in the sense that
they can be easily stabilized and tracked with a fairly simple linear feedback
law, added to the optimal input sequence – given by the CIO program out-
put – as a feedforward term. Moreover, the resulting motion plan is shown
to adhere to the imposed contact conditions and results in realistic con-
tact forces. These will indeed be the crucial ingredients for successfully
attaining the desired manipulation-task goal, without the need for any sort
of post-optimization modifications. As a result, shifting from a numerical
implementation through simulation, onto an experimental real-time imple-
mentation on the real setup, turns out to be adequately straightforward.
It is the first time that such a method is applied in practice on a dynamic
object manipulation task.

1.2 Outline

Chapters 2 and 3 provide the reader with a theoretical build-up towards
the adopted contact-invariant trajectory optimization approach, while also
motivating the use of this methodology for optimal control problems in-
volving hybrid system dynamics. More specifically, Chapter 2 gives an
overview about the modelling of contact dynamics, before moving on to
discussing the most prominent numerical simulation schemes applied to
systems where set-valued force laws arise due to unilateral hard contacts,

3



i
i

“output” — 2018/12/4 — 14:46 — page 4 — #22 i
i

i
i

i
i

Chapter 1. Introduction

and frictional forces: namely the event-driven methods and time-stepping
techniques. It is discussed also how these set-valued laws can be resolved
either by relying on the augmented Lagrangian approach or by solving a
linear complementarity problem (LCP).

Chapter 3 motivates the introduction of trajectory optimization techniques,
and explores some of the underlying fundamental concepts while elaborat-
ing mostly on the direct methods. In Chapter 4, a general inspection is
made on related work concerning the Multi-Phase method and the differ-
ent versions of Contact-Implicit Optimization approaches adopted in the
robotics and computer graphics communities. Moreover, the original CIO
version that initiated this work is elaborated upon, before moving on to
analyze and explain about modified CIO approach that was eventually
adopted in the thesis within the FORCES Pro framework. Two prelimi-
nary 2D examples are also briefly investigated in this chapter.

Then we move to Chapter 5, where the 6-DOF robot’s equations of motion
are derived, and some general considerations required for building the CIO
program, aimed at solving the ANYpulator-Object problem, are presented.
Furthermore, two 3D preparatory examples are tackled and simulation re-
sults are shown; that is done before concluding the chapter with an explo-
ration of an NMPC (nonlinear model predictive control) method. Finally,
the central dynamic object manipulation application (ANYpulator-Block
Problem) is dealt with thoroughly in Chapter 6; a Coulomb friction model
is incorporated into our optimal control formulation, and both simulations,
as well as experimental results, are provided and assessed carefully. The
thesis work is concluded in Chapter 7.

4
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Chapter 2

Non-Smooth Contact Dynamics

2.1 Modeling of Contact Dynamics

It is undeniable that the analysis and modeling of frictional or frictionless
contact phenomena between deformable solid bodies are best captured in
the realm of solid mechanics. However, this framework generally yields
a set of partial-differential equations to be solved analytically or numeri-
cally with finite element methods; and this could become problematic when
high-accuracy of the resulting contact model is not a main concern, such
as in dynamic simulation and control applications, where efficiency (a com-
promise between accuracy and speed) is a primary aspect. In such cases,
a suitable dynamic modelling approach for the proper description of the
overall system behavior, could be given by either one of two ways: A soft
contact model or a hard contact model (see Figure 2.1)

B1

B2

(a)

B1

B2

(b)

Figure 2.1: (a) Hard-Contact Model (b) Soft-Contact Model

With the first one (also referred to as a regularization approach), it is as-
sumed that the bodies are deformable, but instead of relying on a distributed-
parameter system model, a lumped-parameter system is considered [46]
(i.e. Rigid body along with a set of virtual springs on its boundary, that
would continuously act on any other potentially contacting body). The
advantage here is that a single-valued force law is obtained, meaning that

5
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Chapter 2. Non-Smooth Contact Dynamics

it should be enough to fully describe the system’s evolution by numeri-
cally integrating a set of smooth ordinary differential equations (ODE).
The apparent downside is related to the fact that the resulting ODE’s
tend to be very stiff (due to the high-frequency oscillations induced by
the high-stiffness virtual springs), and this could certainly lead to a high
computational burden (or to numerical instability in case an inappropriate
integration scheme was chosen). Other misfortunes associated with a soft
contact model are: The permittance of unphysical penetration between
contacting bodies and the unavoidable difficulty that comes with tuning
the parameters of the virtual passive elements.

The second method relies on the multi-rigid-body contact formulation,
where a non-interpenetration "law" governs the system’s evolution immedi-
ately before, immediately after, and during contact. To elaborate, similar
to how bilateral constraints (two-sided, equalities) impose a relationship
between the states q(.) and u(.) (whether a set of minimal or non-minimal
coordinates was chosen), hard-contact unilateral constraints (one-sided, in-
equalities) add a restriction on the states that would prevent penetration
between any two bodies. As a consequence, the generalized positions are
only required to be absolutely continuous (which is a stronger notion than
continuity) functions of time, while the velocities are functions of bounded
variation (i.e. They admit a countable set of discontinuities as well as
an existing right and left limit ∀ t). In fact, jumps in velocities arise in
so-called impact events, anytime two bodies meet with a relative velocity
that is inconsistent with the non-penetration condition; and such abrupt
changes can only be caused by non-finite, impulsive forces (accelerations
are undefined at such time instants).

Unlike bilateral constraints which yield a set of Differential Algebraic Equa-
tions (DAE) when added to the equations of motion, unilateral contacts are
characterized by a set-valued force law (the same goes for friction modelling,
where the friction force would be acting in the tangent contact plane), and
this is indeed where the non-smoothness of the problem originates from.
Also in the case of possible impacts, an additional set-valued impact law
has to be included as well.
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2.2. Simulation of Non-Smooth Dynamics

2.2 Simulation of Non-Smooth Dynamics

When it comes to numerical simulation, the considerations typically made
on accuracy, stability, and convergence for basic integration methods (for
instance the Runge-Kutta schemes), only apply when the ODE at hand
(an autonomous system is assumed for now just for the sake of simplicity
and conciseness but without any loss of generality), of the form:

ẋ(t) = f(x(t)) (2.1)

has a continuous forcing function f(x(t)) (more precisely, it should be Lip-
schitz continuous). Otherwise, if it was discontinuous and bounded (as
shown in Figure 2.2), then one could easily see how the evaluation of an
integration scheme fails, by looking at the Taylor series expansion about a
point of interest tk (the expansion is used when deriving the order of the
method through the local truncation error-expression):

x(tk+1) = x(tk) + hẋ(tk) +
1

2
h2ẍ(tk) +O(h3)

The above Taylor polynomial approximation undoubtedly leads to inaccu-
rate depictions of the real solution in a neighborhood of the discontinuity,
as the second and higher order derivatives of x(.) are not bounded.
Such difficulties made the design of numerical methods for non-smooth dy-
namical systems a field of study on its own; and the literature on that is
essentially divided between two approaches:

– The event-driven scheme [44]: This consists of using any of the high-
order integration methods for ODE’s or DAE’s, while at the same
time, implementing an event-detection step. Every time an event is
detected (by keeping track of the status of some switching function),
the problem is re-initialized and the integration process is resumed.
An accurate detection of the discontinuity at t̄ (see Figure 2.2) is key
to guaranteeing an overall order similar to that already associated with
the numerical scheme (had it been applied to a smooth set of ODE’s).
The drawback of this approach is in the difficulty of achieving the
detection-accuracy requirement, especially in cases involving multiple
discrete events.

7



i
i

“output” — 2018/12/4 — 14:46 — page 8 — #26 i
i

i
i

i
i

Chapter 2. Non-Smooth Contact Dynamics

0
t

f(x(t))

t̄ b

Figure 2.2: Non-Smooth Discontinuous Dynamics

– The time-stepping (or event-capturing) scheme: This involves the full
discretization of the non-smooth system dynamics (by discretizing the
equality of measures as will be shown later) in addition to the incorpo-
ration of the set-valued laws. The discretization is independent from
the switching points; so the method is able to accommodate a large
number of contact/discrete events without the need for any detection
plan. However, on the downside, this also means that the accuracy
attained by the use of high-order integrators is now lost, and the best
one could generally achieve here is a local truncation error of O(h)
(similar to that given by Forward or Backward Euler) regardless of
the order of the consistent discretization method applied. The most
prominent time-stepping scheme is that given by J.J. Moreau [31].

In the case of non-smoothness, without any consideration of possible impact
events (for now), the set-valued force laws can be written in terms of normal
cone inclusions :

Definition 2.2.1. A normal cone is given by the following set:

NC(x) = {y | yT (x̂− x) ≤ 0;∀x̂ ∈ C;x ∈ C} (2.2)

where C is any convex set.
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2.2. Simulation of Non-Smooth Dynamics

p1

p2

p3

NC(p1)

NC(p2)

NC(p3) ≡ 0

Figure 2.3: Normal Cone [47]

The interpretation of this set definition is that it contains all vectors y
making an obtuse angle (as shown in Figure 2.3) with all other vectors
(x̂− x) for x ∈ C, ∀x̂ ∈ C (for more details on convex analysis see [41]).

To illustrate, consider a generalized-position-dependent gap function φ(q)
which can be represented by a signed-distance function between two po-
tentially contacting bodies (φ(q) < 0 indicates that the objects are in
penetration mode). The following normal cone inclusion for the contact
force λ (assuming a single contact point: λ, φ(q) ∈ R):

− λ ∈ NR+
0
(φ(q)) (2.3)

is equivalent to having no contact force when the objects are not in contact,
and an arbitrary pushing-force when the distance between them is closed,
i.e.

φ(q) > 0 ⇒ λ = 0

φ(q) = 0 ⇒ λ ≥ 0
(2.4)

Another set-valued force law can be given on the acceleration level, with
the relative (separation) acceleration denoted by γ̇. This is actually the
one needed to be jointly considered along with the dynamic equations of
motion when solving for the full non-smooth dynamics (except in the case
of time-stepping schemes which require the set-valued impulse law on the
velocity level instead, as will be thoroughly discussed later):

φ(q) = 0 : −γ̇ ∈ NR+
0
(λ) (2.5)
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Chapter 2. Non-Smooth Contact Dynamics

This implies that during an already closed contact, the contact remains
closed in the case of a non-vanishing contact force, and may or may not
open otherwise. In the multi-contact case, the three relationships above
hold element-wise.

Such normal cone inclusions can be dealt with through an augmented La-
grangian approach, where the saddle point conditions for the corresponding
augmented Lagrangian function yield a set of non-linear equations, specif-
ically a proximal point problem, that can be solved with Jacobi or Gauss
Siedel like iterative schemes (JORprox or SORprox) [47].

Alternatively, one could take a different direction, by writing the inclu-
sions as a linear complementarity problem (LCP) (or non-linear comple-
mentarity problem that can be solved using a sequence of LCP’s) [45]. A
comprehensive introduction for linear complementarity problems can be
found in [9].

Definition 2.2.2. Given two vectors w, z ∈ Rn, a complementarity con-
dition between them is given by the following:

0 ≤ w ⊥ z ≥ 0 ⇐⇒


w ≥ 0

z ≥ 0

wTz = 0

(2.6)

Definition 2.2.3. Given two vectors w, z(w) ∈ Rn s.t. z = Mw + d,
and solving a linear complementarity problem denoted by LCP(M,d) in
this case, returns the pair (w,z) that satisfies the equality as well as the
complementarity condition between w and Mw + d

One could clearly show from the combination of the general rigid-body sys-
tem dynamic equations (in joint-space coordinates) and the set-valued con-
tact force law, that the multi-contact dynamic problem can be formulated
as an LCP whose solution resolves the contact force vector λ and its com-
plement, the relative acceleration γ̇ between the contacting bodies (see [17]
for an extended proof and for more details on LCP solution-existence):

10
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find λ, γ̇

s.t. γ̇ = Mλ+ d

γ̇ ≥ 0

λ ≥ 0

γ̇Tλ = 0

(2.7)

⇐
⇒

argminλ

1

2
λTMλ+ λTd

s.t. λ ≥ 0
(2.8)

Notice the similarity between the complementarity condition in (2.7) and
the normal cone inclusion in (2.5). On the other hand, the equivalence be-
tween (2.7) and (2.8) can be seen by writing down the first-order necessary
Karush-Kuhn-Tucker (KKT) conditions for optimality of the inequality
constrained optimization problem given in (2.8):

∇λL(λ, µ) = ∇λ

(
1

2
λTMλ+ λTd− µλ

)
= 0 (2.9)

⇒ µ = Mλ+ d (Gradient of the Lagrangian function)

µ ≥ 0 (Lagrange multipliers) (2.10)

µTλ = 0 (Complementarity slackness condition) (2.11)

where the Lagrange multiplier µ plays the same role as the relative accel-
eration γ̇.

This ability to transform LCP’s into a Quadratic Program (QP) is very
convenient, as robust QP solvers are widely available. Other ways for solv-
ing LCP’s, such as Lemke’s method, are also discussed in [9].
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Chapter 2. Non-Smooth Contact Dynamics

It is important to note that both the augmented Lagrangian and the linear
complementarity approach could be used with either one of the two afore-
mentioned numerical integration schemes for non-smooth systems.

Now when impulsive forces come into play due to possible impact events,
as mentioned before, an additional impact law is required. Generally, two
impact models are proposed in the literature: Poisson’s impact law and
Newton’s restitution law. In this thesis, only the second one is dealt with
extensively (refer to Figure 2.4 for a graphical representation of this law):

φ(q) = 0 : −(γ+N + εNγ
−
N) ∈ NR+

0
(ΛN) (2.12)

Meaning that for a closed contact, the following holds:

Contact transmits Impulse: ΛN > 0 ⇒ γ+N = −εNγ−N

Superfluous Contact: ΛN = 0 ⇒ γ+N ≥ −εNγ
−
N

(2.13)

where ΛN is the impulsive force, γ+N/γ
−
N are the post/pre-impact relative

velocities and εN is Newton’s coefficient of restitution.

ΛN

γ+N + εNγ
−
N

Figure 2.4: Newton’s Impact Law

The first case covers a majority of the situations, and what it entails is
basically the reversal of the post-impact relative velocity with respect to
the one at pre-impact, along with a dampening effect given by the Newton
coefficient. It is assumed from now on that εN = 0 in order to ensure a
totally inelastic impact event (no rebound).

12
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2.2. Simulation of Non-Smooth Dynamics

The second case typically occurs in multi-contact situations, when a con-
tact does not participate in the impact, and thus making it safe to assume
that the corresponding contact was not present at this instant (it is un-
necessary and its absence does not change the state evolution). See for
instance the Rocking Rod example in [37].

To quickly demonstrate how this impact law can be used in the context
of event-driven schemes, consider the computation of the post-impact joint
velocities for a manipulator (which are used in the re-initialization step of
the problem). Starting from the Impulse-Momentum equation for a multi-
rigid-body system (frictionless contact is assumed)

M(q)(u+ − u−) = JTN(q)ΛN (2.14)

where M(q) is the generalized mass matrix, and JN(q) the normal Jacobian
which is given by

JTN(q) =
∂φ(q)

∂q
(2.15)

and adding to that, Newton’s restitution law for a participating contact,

γ+N =
dφ(q)

dt

+

= JN(q)u+ = 0 (2.16)

One could derive the expression for u+ in terms of u− and other known
quantities as follows:

– Multiply both sides of (2.14) by JN(q)M(q)−1 from the left

– This yields an expression for ΛN in terms of u−

ΛN = −
(
JNM

−1JTN
)−1

JN u− (2.17)

– Replace (2.17) in (2.14) to obtain the final expression

u+ =
(
I −M−1JTN

(
JNM

−1JTN
)−1

JN

)
u− (2.18)

As for the integration of Newton’s impact law together with time-stepping
schemes, this turns out to be highly convenient, due to the observation that
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Chapter 2. Non-Smooth Contact Dynamics

the time-stepping technique does not differentiate between finite forces and
impulsive forces. That’s because only the integral of the contact force func-
tion is evaluated over every individual time-step, and not its instantaneous
value. This, in turn, avoids the "infinitely large" quantities resulting from
impact events, no matter how small the chosen integration step was (think
of the integral of a Dirac Delta distribution). As a consequence, the main
variables of interest in the integration scheme become the velocities and
the impulses instead of accelerations and forces.

As mentioned previously while introducing the time-stepping approach,
the discretization of the non-smooth dynamics is carried out by discretiz-
ing the equality of measures. What was not mentioned is the fact that
this is truly needed only in the presence of impulsive forces since in their
absence, forces and accelerations are already well-defined and therefore dis-
cretizing the equations of motion should be enough.

In the following, it is shown how one could arrive at an equality of mea-
sures starting from the EOM and the impact equation; before moving on
to the application of a time-stepping scheme (namely Moreau’s suggested
plan [31]) for the discretization procedure.

M(q)u̇+ n(q, u) =
∑
i

JTNiλNi (2.19)

M(q)(u+ − u−) =
∑
i

JTNiΛNi (2.20)

where n(q,u) is the vector of generalized Coriolis, centrifugal and gravita-
tional effects (could also include viscous friction terms), the summation is
carried out over the set of all possible contacts.

Now we multiply the equations of motion by dt, the impact equation by
dη (a Dirac point measure for a velocity discontinuity) and sum them up
to acquire the equality of measures

M(q)du+ h(q, u)dt =
∑
i

JTNidPNi (2.21)

with
du = u̇ dt︸︷︷︸

Lebesgue integrable term

+ (u+ − u−)dη︸ ︷︷ ︸
atomic term

(2.22)
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2.2. Simulation of Non-Smooth Dynamics

dPNi = λNi dt︸ ︷︷ ︸
Lebesgue integrable term

+ ΛNidη︸ ︷︷ ︸
atomic term

(2.23)

note that
∫
dη = 1 at the time of a discontinuity and is zero elsewhere

Integrating the equality of measures between the initial time of an interval
and the final time, we get

∫
[tk,tk+1]

M(q)du+

tk+1∫
tk

h(q, u)dt =

∫
[tk,tk+1]

∑
i

JTNidPNi (2.24)

The trick now is to approximate the integrals with an appropriate quadra-
ture rule (M(q) and h(q,u) are assumed to be non-varying with respect to
the positions q over the whole interval). The difference mainly lies in where
one decides to fix the integrands. So in general one has∫

[tk,tk+1]

M(q)du ≈M(qk+α)(uk+1 − uk) (2.25)

And, ∫
[tk,tk+1]

h(q, u)dt ≈ h(qk+α, uk)∆t (2.26)

where α ∈ [0,1]

The famous Moreau time-stepping scheme uses α = 0.5, and so this re-
sults in the following concluding relationships that form our non-smooth,
frictionless, impulsive contact problem:

M(qk+0.5)(uk+1 − uk) + h(qk+0.5, uk)∆t =
∑
i

JTNiPNi

−(γNik+1
+ εNγNik) ∈ NR+

0
(PNi)

(2.27)
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Chapter 2. Non-Smooth Contact Dynamics

where qk+0.5 = qk +
1

2
uk∆t and where i belongs to the set of indices

corresponding to those contacts which are closed at the middle of the

time-step: i ∈ Iclosed = {i | φi(qk+0.5) ≤ 0}

The system (2.27) can be solved using one of the methods discussed pre-
viously – using the augmented Lagrangian approach or using the system’s
formulation as a complementarity problem. After resolving the so-called
normal Percussions PNi as well as the generalized velocities at tk+1, one
could proceed by computing the generalized positions as such:

qk+1 = qk+0.5 +
1

2
uk+1∆t (2.28)

A final note would be that even though frictionless contact was assumed
so far, adding friction to the problem would not lead to major changes in
the formulation (an additional set-valued law is required, along with the
addition of the tangential Percussions to the equality of measures). The
reason for not incorporating friction in the above demonstrations is due to
the fact that the tangential components of the contact forces/impulses do
not play a significant role in the applications that are dealt with in this
thesis, but are rather dominated by the normal terms.

As mentioned in the outline section of Chapter 1, the concepts introduced
in this chapter and those that will be discussed in the upcoming one, will
be very useful for forming a fairly clear and complete picture of the devel-
opments that will be done in Chapter 4 when demonstrating the central
approach underlying the thesis.
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Chapter 3

Trajectory Optimization

3.1 Optimal Control Problem Motivation

The use of linear control methods, whether it was for stabilizing unstable
systems at an equilibrium/trajectory (regularization/tracking) or for at-
taining a desired performance in terms of speed and robustness, has been
extremely widespread within the control community to an extent that in
most industrial applications, it is generally enough to apply a PID-type
control law plus a linear feedforward term along with some minor tweaks.
This is indeed true in some applications which involve non-linear dynamics
as well (the desired equilibrium is stabilized locally, with a certain region
of attraction). In fact, even in the case where strong non-linearities are
present, a very famous state-feedback non-linear control approach would be
to linearize the dynamics by brute-force through the feedback-linearization
technique (sometimes referred to as inverse dynamics in the robotics com-
munity), and then to close another outer-loop that controls the resulting
linear system with a PID-like scheme. However, one issue with feedback-
linearization typically arises when the dynamical system at hand is under-
actuated; that is due to the possibility that the system would be only
partially-feedback-linearizable thereby leaving behind some hidden, zero-
dynamics that could render the full closed-loop system unstable (see [22]
for more details). Another more generic problem with the aforementioned
methods is related to the observation that such control laws usually require
an unnecessary, and yet unavoidable, high control effort. These are some
of the justifications for the importance of introducing Trajectory Optimiza-
tion methods, also referred to as Optimal Control (OC) methods.

Trajectory Optimization (TO) is a very popular and powerful framework
that is adopted in multiple engineering domains; such as in chemical plants,
in aerospace applications, in robotic applications... This control synthesis
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Chapter 3. Trajectory Optimization

approach is based on the formulation of a control problem in terms of
an optimization one; and its beauty lies in its ability to handle a very
broad spectrum of problems (i.e. linear/non-linear plants, deterministic/s-
tochastic systems, continuous/discrete systems, presence of state and input
constraints...). Whereas its strength lies in its systematic structure which
mainly relies on numerical solutions rather than mathematically-tedious
analytical ones, meaning that its effectiveness is purely based on the va-
lidity of the problem formulation and on the proper use of an efficient
Non-linear Programming (NLP) solver.

The simplest form of a finite-horizon Optimal Control Problem formulation
is given by the following system:

min
τ(.)

J(x(.), τ(.), t) = m(x(T ))︸ ︷︷ ︸
Mayer term

+

T∫
0

L(τ(t), x(t))dt

︸ ︷︷ ︸
Lagrange term

s.t. x(0) = x0

ẋ(t) = f(x(t), τ(t))

∀t ∈ [0, T ]

(3.1)

where J(x(.), τ(.), t) is the total cost formed by summing up a terminal cost
with a path-integral cost, τ(.) is the control input, and where f is assumed
to be a continuously differentiable function with respect to its arguments
(needed to derive the optimality conditions)
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3.2 Dynamic Programming and Indirect Methods

Different optimal control methods exist for approaching such a problem, of
which the main ones are highlighted in the diagram of Figure 3.1.

Optimal Control

(Hamiltonian-Jacobi-
Bellman Equation):

Dynamic Programming

Tabulation in
State Space

Indirect Methods

(Pontryagin Maximum
Principle):

Solve Boundary Value
Problem

Direct Methods

Transform into
Nonlinear Program

(NLP)

Single Shooting

Only discretized controls
in NLP

(sequential)

Collocation

Discretized controls and
states in NLP

(simultaneous)

Multiple Shooting

Controls and node start
values in NLP

(simultaneous)

Figure 3.1: The Optimal Control Family Tree [12]

To begin with, it is worth mentioning an essential principle underlying a
significant part of the upcoming analysis, and that is the Dynamic Pro-
gramming Principle, also called Bellman’s Principle of Optimality :

"From any point of an optimal trajectory, the remaining trajectory is op-
timal for the corresponding problem over the remaining number of stages,
or time interval, initiated at that point" [26].

Ultimately, the goal is to obtain a globally optimal, stabilizing control
policy τopt = κ(x, t) (notice here the dependence on the states). In other
words, we would like to obtain at best, a closed form analytical solution
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Chapter 3. Trajectory Optimization

for the control law that stabilizes a desired equilibrium or trajectory, while
also globally minimizing the cost functional (thus, for example, minimiz-
ing energy). One such law can be derived (by building upon the principle
mentioned above) for a special class of problems involving a quadratic cost,
accompanied by a linear time-invariant (LTI) system. The resulting con-
troller is actually well-known in the control literature, and it is the linear-
quadratic-regulator (LQR). However, such closed-form solutions are typi-
cally hard to derive; and it is quite important to understand what underlies
this claim, before moving on to explain the remedy for such a complication.

Let us assume first that we loosen the requirement of an analytical expres-
sion for the globally optimal policy, by keeping only the global optimality
part, but while using a set of discrete states (belonging to a finite state
space), a set of discrete inputs (belonging to a finite action space) and of
course a set of discrete times. In that case, what one has to basically solve
is a graph-search problem and this can be done with the dynamic program-
ming algorithm, or with other optimal "shortest-path" methods such as
Dijkstra’s algorithm, A* search... Clearly, the downside lies in the "curse
of dimensionality" as such an approach holds a computational complexity
that grows exponentially with respect to the number of states, so it would
be best utilized when the state-space dimension is typically less than 3 [49].

Now if we go back to the original continuous-time problem formulation
introduced in (3.1), while also referring to Bellman’s principle of optimal-
ity, one could show after some extensive derivations (refer to a text on
advanced control such as [26]) that the sufficient conditions for optimality
are given by the following set of equations:


−δJopt(x, t)

δt
= min

τ(.)
L(x, τ) +

δJopt(x, t)

δx
f(x, τ)

Jopt(x, T ) = m(x)

(3.2)

These equations are called the Hamilton-Jacobi-Bellman (HJB) equations
of optimal control. The steps to solve them basically include the derivation
of the optimal control law

20



i
i

“output” — 2018/12/4 — 14:46 — page 21 — #39 i
i

i
i

i
i

3.2. Dynamic Programming and Indirect Methods

τopt(t) = argmin
τ(.)

L(x, τ) +
δJopt(x, t)

δx
f(x, τ)

= κ

(
x,
δJopt(x, t)

δx

) (3.3)

then one could replace this expression in (3.2) to eventually obtain a non-
linear partial differential equation (PDE), with the boundary condition
given in (3.2). It should be clear by now, why it is almost impossible to
obtain this closed-form analytical optimal policy that we strive for in most
generic OC problems (LQR is one example where the resulting PDE turns
out to be solvable).

One way to avoid this inconvenience is through the so-called indirect meth-
ods, where the necessary conditions for optimality of the problem defined
in (3.1) (Pontryagin’s minimum principle) can be reproduced from the
HJB equations (or the Euler-Lagrange equations) with a few mathematical
manipulations

Define the adjoint (costate) variables ν(t) as such:

ν(t) =

(
δJ(x, t)

δx

)T
(3.4)

Define the Hamiltonian function H(x, τ, ν)

H(x, τ, ν) = L(x, τ) + νTf(x, τ) (3.5)

Pontryagin’s Minimum Principle:

ẋ(t) = ∇νH(x, τ, ν) dynamic equations

ν̇(t) = ∇xH(x, τ, ν) adjoint equations

0 = ∇τH(x, τ, ν) control equations

x(0) = x0 initial conditions

ν(T ) = ∇xm(x(T )) terminal conditions

(3.6)

The system given by (3.6) is what is referred to as a two-point boundary
value problem (TPBVP), which is different and more difficult to solve when
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Chapter 3. Trajectory Optimization

compared to an initial-value problem (IVP), but still simpler to numerically
deal with than nonlinear PDE’s. As a matter of fact, any of the numerical
methods that are typically used to solve an OC problem with the direct
approach (see Figure 3.1) can also be used for the indirect problem, but the
context in which they are applied differs. To clarify, the indirect method
optimizes then discretizes with these numerical techniques, while the
direct one discretizes then optimizes with these techniques. Therefore,
one could reasonably ask: Why the introduction of direct methods?

The answer is simply because they can find optimal solutions more effi-
ciently than their counterparts (for reasons related to the difficulty of sim-
ulating both the dynamic and adjoint equations forward in time as one of
them is usually unstable if the other is stable); and also due to the fact that
indirect methods find it more difficult to deal with path inequalities. The
only advantage of the indirect approach over the direct one is that when
it successfully converges to a solution, one knows for sure that it is indeed
globally optimal; that is unlike direct methods which typically converge to
a local optimum (for more explanation see [4] [12]). An important final
remark before moving on to the direct approach would be that since our
control policy is being computed with an offline numerical program, what
we ultimately get is an optimal, state-independent, control time-sequence;
meaning that we have obtained an open-loop control law, and that is cer-
tainly not enough for robustly controlling our system. Therefore, either
a stabilizing feedback term is added, or the OC problem is solved online
(such as inModel Predictive Control); and this can only work if the adopted
methods are "fast-enough" (this is also why direct methods highly thrive
in the control community).
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3.3. Direct Methods

3.3 Direct Methods

As formerly mentioned, these methods initially discretize the infinite-dimensional
optimization problem thereby turning it into a finite-dimensional problem,
or non-linear program (NLP) (this process is called transcription), and
then they optimize the resulting structure. Let us now consider a more
general Optimal Control formulation than that given in (3.1):

min
τ(.)

J(x(.), τ(.), t) = m(x(T )) +

T∫
0

L(τ(t), x(t))dt

s.t. ẋ(t) = f(x(t), τ(t))

hmin ≤ h(x(t), τ(t)) ≤ hmax

g(x(t), τ(t)) = 0

∀t ∈ [0, T ]

(3.7)

Note that boundary conditions as well as upper and lower bounds on the
states/inputs can also be considered from (3.7)

– Shooting Method: One way to approach this generic problem is by
discretizing the control inputs τ(.) throughout the whole time hori-
zon. Then to use, for instance, a piecewise function for the controls
(given by an initial guess) while integrating the dynamics forward
in time (shooting). Then an NLP containing as decision variables
Z = [τ1 τ2 ... τN ] is solved such that the cost function is minimized,
the constraints on the inputs are satisfied, and the boundary condi-
tions on the states are attained. The resulting optimization problem
looks as follows: 

min
τ1,...,τN

N∑
k=1

F (τk)

s.t. xN = c(x0, τk)

hmin ≤ h(τk) ≤ hmax

g(τk) = 0

∀ k = 1, ..., N

(3.8)
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Chapter 3. Trajectory Optimization

where c(x0, τk) is a state-transition function that basically represents
any type of integration scheme.

One could immediately notice how the intermediate states were elim-
inated from the formulation, and that’s simply because we do not use
them as decision variables so we have no access to them. This is obvi-
ously a downside as we can no longer impose any cost, bounds, or path
constraints on the state variables. Furthermore, it turns out that the
resulting NLP is hard to solve and so does not converge to a solution
easily.

– Multiple-Shooting Method: A variation of the above method is
given by applying the same underlying idea, but instead of discretiz-
ing the inputs only, we also add the states as optimization variables.
Therefore, instead of simulating (shooting) over the whole time hori-
zon, this method allows shorter fragmented simulations that last as
long as the transcription interval. Finally, all the different simulated
fragments are eventually brought together as a result of constraint
satisfaction from the optimization formulation given below:

Let zk =

[
τk

xk

]


min
z1,...,zN

m(zN) +
N−1∑
k=1

F (zk)

s.t. zk+1 = c(zk) ∀ k = 1, ..., N − 1

hmin ≤ h(zk) ≤ hmax ∀ k = 1, ..., N

g(zk) = 0 ∀ k = 1, ..., N

(3.9)

This certainly turns out to be a larger optimization problem than that
given by the simple shooting method; however, it converges to a local
optimum much more efficiently. Refer to Figure 3.2 for a comparison
between both shooting techniques.
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Figure 3.2: (a) Shooting Method (b) Multiple-Shooting Method [21]

– Direct Collocation Method: This method is similar to the multiple-
shooting method in that it includes the states along with the inputs as
optimization variables. Nevertheless, it differs from it in the way the
dynamic constraints are treated: Instead of using an embedded inte-
grator within the problem formulation (which is quite an advantage
for multiple-shooting methods since they can make use of adaptive in-
tegration schemes), the dynamics are satisfied by relying on piece-wise
polynomial approximations of the state trajectories, and then requir-
ing that the time derivative of the state-polynomial evaluated at a
specific collocation point matches with the value of the forcing func-
tion f(x(t), τ(t)) at that point (this is referred to as the collocation
constraint) [10]. To demonstrate, suppose the states at the different
knot points (those which constitute the decision variables vector) are
interpolated by cubic Hermite splines (see [20] for more details and
for some example applications of the method):

xk(β) = akβ
3 + bkβ

2 + ckβ + dk (3.10)

where β ∈ [0, h], and where h = tk+1−tk is the time-step between knot
points. The boundary conditions needed to compute the polynomial
coefficients are given by:

xk(0) = xk

xk(h) = xk+1

ẋk(0) = fk

ẋk(h) = fk+1

(3.11)
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Chapter 3. Trajectory Optimization

In addition to that, now we can require that the collocation constraint
holds at the middle of the time-step (as shown in Figure 3.3):

xk(h/2) =
1

2
(xk + xk+1) +

h

8
(fk − fk+1) (3.12)

ẋk(h/2) =
3

2h
(−xk + xk+1)−

1

4
(fk + fk+1) (3.13)

τk(h/2) = τk (zero-order hold) (3.14)

⇒ ẋk(h/2) = f(xk(h/2), τk(h/2)) (collocation constraint) (3.15)

Knot
Point

Piecewise Cubic
Hermite Polynomial

Match Slopes at
Collocation-Points
ẋ(t)− f(x, τ)

Figure 3.3: Direct Collocation Method [21]
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Chapter 4

Contact-Implicit Optimization (CIO)

4.1 Related Work and the CIO Approach

Now that we have laid down the main foundations preceding this thesis’s
central idea, we can begin to investigate how the concepts introduced in
Chapters 2 & 3 come together to tackle the problem of applying trajectory
optimization on non-smooth dynamical systems (or Hybrid systems). It is
important to recall first, that the analytical results on optimal control that
have been unfolded so far, require the forcing function f(x(t), τ(t)) to be
sufficiently smooth; as for the numerical results, these rely on nonlinear
programs or optimization algorithms that are typically gradient-based in
nature, meaning that smoothness of the underlying functions is generally
expected by the solver itself. Therefore, one reasonable line of thought
that goes along the indirect approach, would be to repeat the derivation
of Pontryagin’s Minimum Principle with an assumption of non-smoothness
imposed on the dynamics; but this is certainly a highly mathematically-
involved process, and is outside the scope of this thesis. Another idea,
which is much more intuitive and elegant, is one that goes along the lines
of the direct methods for trajectory optimization and thus transcribes (dis-
cretizes) before optimizing, but the difference here is in how the non-smooth
dynamics are integrated and incorporated into the resulting program. In
fact, the primary integration schemes used for simulating hybrid dynamics
have been already introduced extensively in Chapter 2, and in parallel to
those, there exists two main classes of TO methods for hybrid systems as
well.

One is the Multi-Phase approach, which is basically analogous to the event-
driven simulation scheme, and it entails an a priori knowledge of the con-
tinuous phases (or modes) as well as their sequence of occurrence over the
whole time horizon. The switching times for the discrete transitions are
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Chapter 4. Contact-Implicit Optimization (CIO)

not known a priori but are given as a result of the optimization, mean-
ing that the start and end times of each mode are provided as additional
optimization variables in the formulation (which follows from direct col-
location or one of the shooting methods), while also imposing extra con-
straints that would ensure a proper connection among the multiple phases.
Researchers such as (Patterson and Rao [36]) have developed a general-
purpose MATLAB program (GPOPS-II) that utilizes the multi-phase strat-
egy as a framework for solving hybrid optimal control problems. Other
successful applications are repeatedly encountered in the legged-robotics
community such as for bipedal robot locomotion in (Westervelt et al. [50]),
and for quadruped locomotion where an illustration of the method applied
for two different contact configurations is shown in Figure 4.1, see (Pardo
et al. [35]).

t

x(t)

ẋ = fc1(x, τ) ẋ = fc2(x, τ)

ts

Figure 4.1: Multi-phase approach applied for two different contact configurations
also allowing for impacts [35]

Complications with the use of a predefined event-schedule, that separates
our TO problem into distinct continuous modes, begins to arise as the
number of discrete transitions increases (for example in the case of finitely-
many contact constraints between several rigid bodies). That is simply
due to the exponential growth of the possible multi-phase sequences with
respect to these transitions (this idea is depicted in Figure 4.2).
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4.1. Related Work and the CIO Approach

x(t)

(b)

(a)

x(t)

Figure 4.2: (a) Simple mode-sequence (b) Combinatorial explosion of possible
discrete transitions [39]

A remedy to this issue could be found in the Mode-Invariant approach
(which is also referred to in the literature as the Contact-Invariant, Contact-
Implicit, or Through-Contact approach in cases where the non-smoothness
arises from contact constraints). This is in fact an extrapolation of the
time-stepping simulation scheme (introduced in Chapter 2), for accommo-
dating trajectory optimization problems involving hybrid dynamics. The
fundamental idea behind it is that instead of having a predefined mode
sequence along with inter-phase constraints, discrete transitions are not
given any special treatment; hence, the contact constraints are enforced at
every single knot-point. This is also capable of incorporating discontinuous
jumps in the states (such as in velocities during impact events) by treating
the whole problem on an impulse level (refer to the part on the equality of
measures in Section 2.2), thereby not differentiating between finite forces
and impulsive forces. One should keep in mind that similar to multi-phase
schemes, the contact-implicit approach can be implemented along with a
variety of underlying design choices; meaning that one could flexibly choose
any of the direct TO methods, with either a soft-contact model (that can
be continuous, or discontinuous in the case of engaging-disengaging the
passive elements and in the case of non-smooth dampening terms) or a
hard-contact model; and in case the latter was chosen, one could decide to
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Chapter 4. Contact-Implicit Optimization (CIO)

deal with the set-valued force laws (or normal-cone inclusions) discussed
in Chapter 2 by either using the augmented-Lagrangian approach or by
solving a complementarity problem. Moreover, one could decide to add
the contact forces into the vector of decision variables or to resolve them
separately from the optimization iterations. However, the different permu-
tations are certainly not random and thus need to be thought of carefully
before arriving at a proper final combination (for example, using a state-
dependent soft-contact model while also adding extra variables representing
the contact forces as optimization parameters is obviously unjustifiable).
Some remarkable work has been recently done in the computer graphics
and the robotics communities on finding optimal trajectories under the
framework of contact-invariant optimization:

For instance, (Mordatch et al. [29] [30] [28]) use a contact-invariant ap-
proach for producing physics-based animations of anthropomorphic, contact-
rich tasks like walking, climbing, crawling, moving objects and hand ma-
nipulation...Although some variations of their original CIO approach was
implemented, there was a common fundamental treatment of the contact
constraints by imposing them through penalty terms added to the objec-
tive function (soft-constraints rather than hard-constraints); and this re-
laxation, while it certainly aids the gradient-based solver in efficiently con-
verging to a local minimum, it also tolerates non-physical behavior caused
by allowing non-vanishing contact forces to act at a distance. Another soft
CIO formulation is achieved in (Tassa and Todorov [48]) by a Differential-
Dynamic-Programming (DDP) optimal control method, which is similar
to direct-shooting in that it does a full forward simulation of the dynam-
ics but instead of solving for the optimal control sequence with an NLP
solver, it does that through Riccati-based solvers while working backwards
iteratively; and while performing the required forward simulations, the
hard unilateral contact constraints and friction are dealt with by solving
a Stochastic Linear Complementarity Problem rather than an LCP. With
this, they get rid of the discontinuous dynamics and are left with a contin-
uously differentiable system (which is a poorer description of the contact
dynamics), while retrieving an optimal controller that is also robust against
uncertainties. On the other hand, (Carius et al. [6]) rely on the augmented-
Lagrangian approach, specifically the Gauss-Seidel method combined with
a proximal point projection (SORprox), in order to solve the set-valued
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4.1. Related Work and the CIO Approach

force laws arising from the hard frictional contacts. This is performed as
part of a Moreau time-stepping scheme (see Section 2.2) which is used to
simulate the non-smooth dynamics within an iterative-LQR (iLQR) opti-
mal control plan (works similarly to the DDP method). Similarly, (Neunert
et al. [32]) have developed a nonlinear model predictive control (NMPC)
algorithm that functions by solving, online and at high rates, the nonlin-
ear OC problem using a generalization of the iLQR method. The NMPC
scheme was implemented on a quadruped, while adopting a contact-implicit
TO formulation, along with a soft-contact model (that includes smoothing
elements). Problems arising from the use of such a model were already
discussed in Section 2.1.

This thesis work is based upon the contact-implicit optimization approach
described by (Posa et al. [39]). Their method is particularly motivated by
the Stewart and Trinkle time-stepping scheme [45], where multi-contact dy-
namics are formulated by a linear complementarity problem (LCP) (given
by a blend of complementarity constraints and simple Euler integration
steps), and then these dynamics are simulated by solving the LCP at
each grid point. However, in the case of trajectory optimization, they
reasoned that instead of having to internally solve an LCP within a non-
linear program, one could make use of the simultaneous nature of direct
collocation (also applies for multiple-shooting) by incorporating the con-
tact forces λ(t) ∈ Rnλ as optimization variables along with the control
inputs τ(t) ∈ Rnτ and the states x(t) = [ q(t) u(t) ]T ∈ R(nq+nu); while
additionally imposing the unilateral hard-contact constraints through non-
linear equality and inequality constraints included in the OC problem for-
mulation in the form of complementarity conditions. Then as a result
of transcription, we are left with solving a so-called Mathematical Pro-
gram with Complementarity Constraints (MPCC). The transition from the
infinite-dimensional optimization problem to the finite-dimensional MPCC
is presented below:

– Hybrid Optimal Control Problem (excluding impacts):

We exclude impacts in this formulation in order to avoid dealing
with the impact equations (given in (2.20)) separately from the equa-
tions of motion, and then include them back again into the finite-
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Chapter 4. Contact-Implicit Optimization (CIO)

dimensional optimization formulation after the supposed discretiza-
tion of the equality of measures (which embody both the impact
equations and the EOM’s). This procedure was already demonstrated
while explaining how time-stepping schemes operate in Section 2.2.

We start by noting that the general ODE expression ẋ = f(x(t), τ(t),
λ(t)) can be specifically replaced by the under-actuated rigid body
dynamic equations involving frictionless contacts, in order to have a
formulation that is directed towards solving the applications tackled
in this thesis

M(q)u̇+ b(q, u) + g(q) = ST τ + JN(q)Tλ (4.1)

where M(q) ∈ R(nq+nu)×(nq+nu) is the generalized inertia matrix, b(q,u)
∈ R(nq+nu) contains Coriolis and centrifugal terms (could also contain
viscous friction terms), g(q) ∈ R(nq+nu) represents the gravitational
effects, and S ∈ Rnτ×(nq+nu) is the selection matrix which maps input
torques to generalized forces. Finally, JN(q) ∈ Rnλ×(nq+nu) (given by
the formula in (2.15)) is the normal Jacobian which is used to map
the normal contact forces to generalized forces.

It is worth noting that the symbol u is used in the place of q̇ for
the sake of generality, since in the case where q consists, for exam-
ple, of a set of Euler angles for representing 3D orientations, then
there exists a linear mapping (that is not given by the identity ma-
trix) between the angular velocities and the time-derivatives of these
quantities. Moreover, the generalized positions and velocities are not
given similar dimensions since this would not be true in the case of
a non-minimal representation of 3D orientations (for instance with
quaternions). However, for the sake of this work, it is safe to drop
these assumptions as they do not occur in any of the upcoming appli-
cations.

Now in addition to the equations of motions, we also have to add
the following complementarity condition:

0 ≤ φ(q) ⊥ λ ≥ 0 (4.2)
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4.1. Related Work and the CIO Approach

φ(q) ∈ Rnλ was already introduced in Chapter 2 as the signed-distance
function between the potentially contacting bodies. Three rules are en-
sured by the above condition: There can be no penetration among
different objects, contact forces can only push and not pull, and there
can be no contact forces acting at a distance. The resulting infinite-
dimensional optimization problem is given as follows:

min
τ(.),x(.),λ(.)

m(x(T )) +

T∫
0

L(τ(t), x(t), λ(t))dt

s.t. M(q)q̈ + b(q, q̇) + g(q) = ST τ + JN(q)Tλ

φ(q(t)) ≥ 0

λ(t) ≥ 0

φ(q(t))Tλ(t) = 0

Complementarity Constraints

x(0) = xinit

x(T ) = xfinal

xlb ≤ x(t) ≤ xub

τlb ≤ τ(t) ≤ τub
(4.3)

– Mathematical Program with Complementarity Constraints
(including impacts):

Now following the same line of reasoning as that used to discretize
the equality of measures in Equations (2.24)-(2.26), one could obtain
a transcribed system that also incorporates impact events by con-
sidering a first-order Euler-type time-stepping scheme (explicit, semi-
implicit, or implicit). In [39], they use an implicit-Euler method (since
the state at the next time step is already available in the optimization
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program) in order to guarantee numerical stability (which is essential
when simulating stiff ode’s). The interpretation of that in terms of
collocation constraints, is the introduction of an equality between the
slope of the linear-state trajectory and the value of the dynamics at
the point ending the time-step (the knot points at the end of all time-
steps also happen to be collocation points in this case):

xk+1 − xk
h

= f(xk+1, τk+1, λk+1) (4.4)

Therefore, the resulting finite-dimensional optimization problem
turns out to be as follows:

Let zk =

τkxk
λk




min
z1,...,zN

m(zN) +
N−1∑
k=1

F (zk)

s.t. qk+1 = qk + hq̇k+1 ∀ k = 1, ..., N − 1

q̇k+1 = q̇k + h ·M−1
k+1

(
−bk+1 − gk+1 + ST τk+1 + JTNk+1

λk+1

)
φ(qk) ≥ 0 ∀ k = 1, ..., N

λk ≥ 0

φ(qk)
Tλk = 0

x1 = xinit

xN = xfinal

xlb ≤ xk ≤ xub ∀ k = 1, ..., N

τlb ≤ τk ≤ τub
(4.5)

Note that if the integral cost in (4.3) is replaced with Riemann sums in
(4.5) then F (zk) = h ·L(τ(tk), x(tk), λ(tk)) where h is the time-step length.
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4.1. Related Work and the CIO Approach

To conclude this section, it is worth mentioning that mode-invariant ap-
proaches are destined to find discrete transitions only at the assigned grid
points; and consequently, this leads to a local truncation error that is pro-
portional to the time-step size h in the neighborhood of these transitions
(although some recent work was done on deriving a second-order varia-
tional time-stepping scheme that could be used in a CIO setting [27], but
there is certainly a significant tradeoff between the method’s order and the
computational cost). Whereas multi-phase methods do not have this as a
restriction, since the switching times are found as a result of the optimiza-
tion. In other words, for cases where an a priori knowledge of the mode-
schedule is available, it is more reasonable to use a multi-phase method in
order to attain a higher accuracy solution.

In this thesis, the dynamic object manipulation tasks that will be presented
later, could have been formulated and solved within the multi-phase frame-
work, but the goal was to implement the discussed CIO approach along
with some modifications (given in Section 4.3) in order to allow the NLP
to discover the mode sequence by itself and optimize through the different
modes. This also turns out to be more interesting when dry friction is
involved (in Chapter 6) since a larger combination of possible events exists
in this case. Furthermore, it was important to ensure the dynamic feasibil-
ity of our method by evaluating whether the resulting optimal trajectories
could be easily stabilized and tracked with a simple linear feedback control
law (unlike Posa’s work on trajectory stabilization in [38] [40], as will be
further elaborated upon in Section 4.3).
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Chapter 4. Contact-Implicit Optimization (CIO)

4.2 Preliminary 2D Example: Finger Rolls Ellipse

The above contact-invariant optimization method was initially tested on
a couple of elementary 2D examples before shifting to the central prob-
lem of this thesis (a 6-DOF robot dynamically displacing a 3D block to
a desired position); one of which consisted of a fully-actuated two-link
(ellipse-shaped) finger rotating an unactuated but damped 1-DOF ellipse
(this problem also appears in [39] [48]). In this Chapter, it is not intended
to make a detailed demonstration of the TO formulation for the provided
examples, but rather to use them purely for going over certain points.

The assigned task was to displace the free ellipse, starting at rest, from
an angle of q31 = 0 to a final angle of q3N = −π

2
and zero final velocity

over a time horizon of T = 2s. The objective function was given by

N−1∑
k=1

F (zk) =
N−1∑
k=1

h
(
uTk uk

)
(4.6)

in order to minimize the total energy input.

Although not necessary for our forthcoming discussion, but it would be an
interesting exercise to show how the minimum distance function between
E2 and E3 (see Figure 4.3) was obtained in this example application:
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y0

x0

G1

y1

x1

G2

y
2x

2

E1

E2

E3

G3 y3

x3

p3

p2

Figure 4.3: Graphical illustration of a two-link finger rotating the unactuated ellipse
at the bottom

We start by parameterizing the contour of an ellipse with respect to its
geometric center using the parameter ϕ as such:

x(ϕ) = r(ϕ) cos(ϕ)

y(ϕ) = r(ϕ) sin(ϕ)

s.t.

(
x(ϕ)

a

)2

+

(
y(ϕ)

b

)2

= 1

Solving the above system yields an expression for the coordinates of an
arbitrary point P lying on the ellipse contour with respect to {G}, the cen-
ter’s reference frame.
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Chapter 4. Contact-Implicit Optimization (CIO)

vGGP =

[
xG(ϕ)

yG(ϕ)

]
=

ab√
b2 cos2(ϕ) + a2 sin2(ϕ)

[
cos(ϕ)

sin(ϕ)

]
(4.7)

Therefore, the expression of a vector from a point P2 on E2 to a point
P3 on E3, expressed in the fixed world frame {0}, is given as follows:

v0P2P3
(q1, q2, q3, ϕ2, ϕ3) = v0P3

− v0P2

=
(
v0G3

+R0
G3
vG3

G3P3

)
−
(
v0G2

+R0
G2
vG2

G2P2

) (4.8)

where the unknown quantities appearing in the above equation can be ob-
tained from a straightforward kinematic analysis of the system (R0

G is a
rotation matrix representing the orientation of frame {G} with respect to
frame {0}).

Finally, the minimum distance function φ(q) is retrieved from the eval-
uation of the objective function at the solution of an unconstrained non-
convex optimization problem.

min
ϕ2,ϕ3

‖v0P2P3
‖

2
(4.9)

A closed-form expression could not be attained, so this NLP had to be em-
bedded and solved internally within the parent optimization problem.

One important side note is that φ(q) has to be a signed distance func-
tion, otherwise the non-penetration inequality constraint φ(q) ≥ 0 would
not make sense. It is clear that the minimum distance resulting from (4.9)
is always a non-negative quantity, even during penetration. Therefore, to
satisfy this constraint, an additional condition was placed which requires
the gradients (as unit vectors) of the elliptic level curves g2(x, y) = 0 and
g3(x, y) = 0, at the optimal solution (ϕ∗2, ϕ

∗
3), to have opposing directions

(This relation can be derived from the Karush-Kuhn-Tucker conditions of
a convex-constrained minimization problem [8]). That is to say;

Given

g(x(ϕ), y(ϕ)) =

(
x(ϕ)

a

)2

+

(
y(ϕ)

b

)2

− 1
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4.2. Preliminary 2D Example: Finger Rolls Ellipse

Then,

∇Gg(ϕ∗) =


2x(ϕ∗)

a2

2y(ϕ∗)

b2

 (4.10)

So the extra non-penetration condition is,

R0
G2

(
∇G2g2(ϕ

∗
2)

||∇G2g2(ϕ∗2)||2

)
+R0

G3

(
∇G3g3(ϕ

∗
3)

||∇G3g3(ϕ∗3)||2

)
= 0 (4.11)

As a matter of fact, it would have been possible to use all the conditions
derived in [8] to correctly impose the complementarity constraints without
having to solve an inner nonlinear optimization problem. Nonetheless, to
do that, one has to increase the size of the parent NLP by adding ϕ2 and
ϕ3 at every grid-point as decision variables.

The problem was formulated on MATLAB where it was solved with the
nonlinear programming solver FMINCON, using the Interior-Point Method
as an underlying optimization algorithm. Other algorithms were also tested,
such as Sequential-Quadratic-Programming (SQP) which was leveraged by
Posa et al. [39] in their work; but the interior-point approach produced
better results. The solver took around 45 minutes for 11 grid points, and it
kept on iterating until the maximum number of function evaluations (3000)
was reached without converging to an optimum, but ending up much better
than how it started (most importantly in terms of satisfying the nonlin-
ear equality and inequality constraints up to a certain threshold). The
task was achieved as a result of a contact event purely discovered by the
solver without any prior knowledge of the different modes (as can be seen
in Figures 4.4 and 4.5).
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Chapter 4. Contact-Implicit Optimization (CIO)

Figure 4.4: Finger rotating ellipse MATLAB animation

One could also notice from the plots that the contact force over the whole
time-step can be non-zero if and only if the distance function is zero at
the end of the interval. Meaning that the force starts to act possibly even
before the gap has been closed; this is not an issue for relatively small
time-steps, but in this case it turned out to be problematic since the chosen
step-length was a bit large (h = 0.2s) (because otherwise, for a fixed time
horizon, achieving a smaller step-length requires a higher number of knot
points which in turn increases the size of the problem to be solved). This
led to the rotation of the lower ellipse, 0.2 seconds before it was actually
hit by the finger. As for the non-penetration constraint, it was successfully
satisfied by adding Equation (4.11) into the original CIO formulation.
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4.2. Preliminary 2D Example: Finger Rolls Ellipse

Figure 4.5: Minimum distance between the contacting ellipses (bottom) and the
generated normal contact force between them (top)
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4.3 A Modified CIO Approach

In this section, we discuss the final version of the contact-invariant approach
that will be utilized from now on throughout the rest of the thesis. But first,
it is of paramount importance to introduce the framework within which the
finite-time nonlinear optimal control problem will be formulated. Instead
of relying on general-purpose NLP solvers such as MATLAB’s FMINCON,
we make use of a commercial tool called FORCES Pro [15]. Motivated
by the rising need to solve OC problems in an online fashion (for Model
Predictive Control applications), this web-based service generates highly
customized and efficient optimization solvers which can be deployed on all
embedded platforms (the fact that the generated code is customized for one
particular optimization problem structure makes it smaller and thus eas-
ier to solve efficiently). More specifically, we use the High-Level Interface
of FORCES Pro (FORCES NLP) which basically deals with non-linear,
non-convex finite-dimensional optimization programs holding the following
generic structure:

min
z1,...,zN

Ff(zN , pN) +
N−1∑
k=1

F (zk, pk)

s.t. Ek zk+1 = c(zk, pk) ∀ k = 1, ..., N − 1

S1 z1 = zinit

SN zN = zfinal

zk ≤ zk ≤ z̄k ∀ k = 1, ..., N

hk ≤ h(zk, pk) ≤ h̄k ∀ k = 1, ..., N

(4.12)

where Ek, S1, SN are selection matrices, and where pk represent real-time
data that could possibly change after already generating the code (they are
assigned a blue color to indicate that they are not treated as optimization
variables in the problem).

Furthermore, c(zk, pk) is a state-transition function which maps the states
from stage k to stage k+1; it could be given as a result of any desired inte-
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4.3. A Modified CIO Approach

gration scheme; but to be more general, this function could also consist of
other nonlinear equality constraints, which is actually necessary for includ-
ing our non-penetration condition. One immediately realizes that solving
this multi-staged system resembles solving a continuous-time nonlinear op-
timal control problem using the multiple-shooting method. However, in this
thesis, (4.12) will be used in the context of a contact-implicit optimization
formulation; meaning that a high-order integration method would surely
not be the right way to go (since as mentioned before, generally, the best
one could anyway achieve with any Runge-Kutta scheme is an order of
O(h)). Also from now on, unlike what was used in Sections 4.1 and 4.2
(the implicit-Euler method), we only resort to an explicit or semi-implicit
Euler scheme (intermediary integration steps could also be made within
every time-step h), as the variable at the next stage (zk+1) is not accessible
anymore by the state-transition function c(zk, pk).

The above formulation can be written down on MATLAB and then a cus-
tomized (problem-specific) C code (which is library-free and avoids any
dynamic memory allocation) will be automatically generated. If anything
had to be changed from inside the formulation, then the code has to be
re-generated, unless the change was in one of these quantities: zinit, zfinal,
pk, or z0 (the initial guess). The underlying optimization algorithm is an
interior-point method with adaptive barrier rules and approximated Hes-
sians. Its effectiveness is mainly a result of an efficient linear-system solver
that exploits the multi-stage structure presented in (4.12) in order to solve
the resulting Karush-Kuhn-Tucker (KKT) system. This enables FORCES
NLP to achieve significantly low computation times and thus makes it
faster than the state-of-the-art interior point solver IPOPT by up to an
order of magnitude (refer to [51] for more details).

Another fundamental matter to be discussed, is to state what we expect
from the CIO approach in this work, and what we intend to achieve with it,
compared to how it was utilized by Posa et al. Referring to [38] [40], one
could clearly infer that the proposed contact-invariant method was only
used in order to discover the various contact modes and discrete transi-
tions that would eventually be necessary to formulate a multi-phase hybrid
problem. Then the latter was solved with a technique they developed for
dealing with trajectory optimization regarding constrained dynamical sys-

43



i
i

“output” — 2018/12/4 — 14:46 — page 44 — #62 i
i

i
i

i
i

Chapter 4. Contact-Implicit Optimization (CIO)

tems (DIRCON), which is a third-order integration scheme that extends
from the previously-explained Hermite-Simpson direct collocation method
(DIRCOL). The reason for that is essentially related to the difficulty asso-
ciated with stabilizing and tracking the optimal trajectories resulting from
CIO, especially when dealing with under-actuated systems. Furthermore,
an extension of the linear-quadratic-regulator (LQR) was used on the now-
accurate optimal trajectory to synthesize a cost-to-go function, which was
then minimized (along with additional constraints), online, by a QP solver
(as illustrated in Figure 4.6).

Contact-Implicit
Optimization

Known contact
mode schedule

DIRCON Manifold LQR

QP Controller

Real Time

Figure 4.6: Block diagram depicting a full picture of the control plan (trajectory
optimization and trajectory stabilization) as used by Posa et al. [38]

Alternatively, what was desired in this thesis can be illustrated in Fig-
ure 4.7. That is, to purely rely on CIO for obtaining an optimal trajectory
that could be directly tracked with a simple linear feedback control-law
plus a feedforward term, thus achieving the required task at hand without
having to resort to the more accurate multi-phase method; because oth-
erwise, we could have used it in the first place, and the CIO formulation
would be deemed useless for our applications.
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Modified CIO

τopt
qopt
q̇opt

Linear-Time-Invariant
Feedback Law

+
Feedforward Term

Figure 4.7: Block diagram depicting a full picture of the control plan (trajectory
optimization and trajectory stabilization) as used in this thesis

In other words, we solve, offline, a finite-dimensional optimization problem
of the form (4.12), and then use τopt(t), xopt(t), and ẋopt(t) in the following
control policy:

τi(t) = τopti(t)︸ ︷︷ ︸
feedforward term

+ kpi (qopti(t)− qi(t)) + kdi (q̇opti(t)− q̇i(t))︸ ︷︷ ︸
feedback term

(4.13)

where the index (i) refers to an element from the set of the actuated degrees
of freedom, kpi and kdi are the scalar feedback gains; and where τopt(t) is
obtained by applying a zero-order-hold on the sequence τoptk, while qopt(t)
and q̇opt(t) by linearly interpolating the grid-point-values qoptk and q̇optk re-
spectively, as shown below:



∀ k = 1, ..., N − 1; t ∈ [0, T ] :

(k − 1) · h ≤ t ≤ k · h

⇒

τopt(t) = τoptk

(4.14)
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Chapter 4. Contact-Implicit Optimization (CIO)

Now recalling that x(t) =

[
q(t)

q̇(t)

]
;



∀ k = 1, ..., N − 1; t ∈ [0, T ] :

(k − 1) · h ≤ t ≤ k · h

⇒

xopt(t) = xoptk +

(
xoptk+1

− xoptk
h

)
· (t− (k − 1) · h)

(4.15)

Now most importantly, the CIO technique that will be used in the up-
coming tasks has to take into account the physical feasibility of the oc-
curring contact events. That is because we basically have no control over
the improvement of the integration scheme’s accuracy except by making
the step-size as small as possible (and as explained previously, there is a
trade-off between reducing the step-length and increasing the size of the
optimization problem to be solved). Therefore, we mainly reason on the
frictionless hard-contact dynamics and the resulting unilateral constraints
that are imposed in our program as complementarity conditions:

We start the analysis by noting from the state-transition function of (4.12),
c(zk, pk), that the only way the contact forces λ act over the whole interval
is as a result of a zero-order-hold on the values λk at the start of the interval
(similar to the inputs τk). This in turn leads to a different indexing than
that appearing in (4.5), hence there is a slight change in the interpretation
of the contact conditions. To elaborate, it was previously stated in Sec-
tion 4.2 that: "The contact force over the whole time-step can be non-zero if
and only if the distance function is zero at the end of the interval"; whereas
now, the condition holds if and only if the gap is closed at the start of
the interval. However there is still no guarantee that the contact event
φ(q) = 0 is held over the entirety of the time-step, even though the contact
force keeps acting unjustifiably at a non-zero distance and only vanishes at
the end of it. Moreover, the complementarity conditions, which are purely
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4.3. A Modified CIO Approach

imposed on a position-level, only ensure that the resulting percussions PN
(note that percussions and contact forces are proportional in time-stepping
schemes, and in this case are related by PNk = h · λk, so they will some-
times be used interchangeably) are large enough to prevent penetration in
the next step, but there is certainly no upper limit on how big this value
can be (indicating that it is quite arbitrary and only directed towards sat-
isfying the position-based conditions). To illustrate, one could think of a
rigid body grazing another body tangentially; so at this moment, φ(q) = 0,
and even if there is no chance of penetration, the contact force could still
be made arbitrarily large as a result of the optimization, since this would
satisfy the complementarity conditions anyway. This straightforward real-
ization is highly significant and crucial for improving the method’s dynamic
feasibility; and to tackle this issue, we refer to some of the expressions in-
troduced in Chapter 1 while presenting Moreau’s time-stepping scheme:

Particularly, we recall the normal cone inclusion given in Equation (2.27)
relating the percussions to the pre and post relative velocities, as well
as Equations (2.12) and (2.13) which would allow us to interpret the con-
tact event (including impact) on the impulse-velocity level, in terms of a
complementarity condition over each time-step:

φi(qk) = 0 : 0 ≤ PNik ⊥
(
γNik+1

+ εNγNik
)
≥ 0 (4.16)

In other words, whenever a contact is closed, the generated percussion
(which is a combination of the impulse due to impact and the impulse
obtained by integrating the finite contact force acting over the whole time-
step) has to respect Newton’s restitution law. Moreover, noting that the
case of a non-participating contact (which happens in some multi-contact
situations) is non-occurring in any of our example applications, we can
arrive at a final condition that would be added to the optimization formu-
lation in order to ameliorate dynamic feasibility:

PNik ·
(
γNik+1

+ εNγNik
)

= 0 (4.17)

or equivalently,
λik ·

(
γNik+1

+ εNγNik
)

= 0 (4.18)
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Chapter 4. Contact-Implicit Optimization (CIO)

Note that the above expression is not equivalent to λTk ·
(
γNk+1

+ εNγNk
)

= 0
as we do not impose that

(
γNk+1

+ εNγNk
)
≥ 0. One should also note that

the relative velocity at the end of the time step γNik+1
depends on the states

qk+1 and q̇k+1 which are not accessible by the nonlinear equality constraint
present in (4.12).

Now assuming a single potential contact, and replacing the notation γN
with γ, we obtain the following final form of the equality constraint to be
added to our formulation:

Given the integration scheme

[
qk+1

q̇k+1

]
=

[
c1(xk, τk, λk)

c2(xk, τk, λk)

]

λk · (γk+1 + εNγk) = 0

λk · (J(qk+1)q̇k+1 + εNJ(qk)q̇k) = 0

λk · (J(c1(xk, τk, λk)) · c2(xk, τk, λk) + εNJ(qk)q̇k) = 0

(4.19)

Finally, it is important to put this constraint equation into words, for the
case of a purely inelastic collision (εN = 0): Whenever the contact force
is allowed to be non-zero due to a vanishing gap function, λ should hold a
value that not only guarantees a pushing effect and prevents penetration,
but that also tries to ensure (along with the current states and control
inputs) a zero relative velocity at the end of the corresponding time-step.
Consequently, the force is now constrained to fulfill this condition, which
makes it non-arbitrary; in addition to that, the contact is now held over the
whole interval, making the presence of a constant force continuously acting
over it (due to the z.o.h) certainly more justifiable. This in turn led to a
notable and undeniable improvement in terms of imposing dynamic feasi-
bility, as will be seen and further discussed throughout the development of
this thesis.
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4.4 Preliminary 2D Example: Leg Kicks Ball

We briefly describe the application of the modified contact-implicit ap-
proach on another 2D toy-example, while using FORCES NLP to define
and solve our optimal control problem. The system is composed of a planar
leg with two actuated degrees of freedom (revolute joints at the hip and
at the knee) and one free DOF corresponding to the vertical movement of
the body attached to the hip. The desired task at hand can be described
as follows:

Starting at rest from a given initial configuration, the robotic leg is sup-
posed to kick a ball such that it reaches a pre-specified position at the end
of the time horizon (T = 1.1 s) with an arbitrary final velocity (there is
no stopping force acting on the ball, so once it starts rolling, it cannot be
decelerated). Moreover, the leg has to do that whilst respecting certain
upper and lower bounds on the states as well as the joint torques. All
this is done while striving to minimize energy consumption and of course
achieving dynamic feasibility by satisfying the equations of motion (which
were integrated with a simple explicit-Euler scheme), as well as the afore-
mentioned contact conditions. To ensure that the kinematic and dynamic
parameters considered when deriving the EOM’s are realistic, the robotic
system Capler-Leg [19] was used as a reference in our example. The signed
distance function with respect to the ground is simply the height of the foot
end-effector, while that corresponding to the ball will be dealt with in terms
of a generalized distance function in Chapter 5. To make this multi-contact
problem more interesting, the ground plane was assumed to be frictionless
and the robot’s foot was required to keep a zero tangential velocity while
it’s in a closed contact situation with the floor. This resulted in a motion
plan that involves the Capler-Leg jumping several times before and after
making contact with the ball as shown in Figures 4.8 and 4.9; this was
necessary in order to avoid violating the no-slip condition in the presence
of a slippery surface (absence of stiction). One could also notice from the
plots, the satisfaction of the complementarity conditions (no forces acting
at a non-zero distance, a positive contact force and no penetration).
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Chapter 4. Contact-Implicit Optimization (CIO)

Figure 4.8: Leg kicks ball MATLAB animation

A distinction between the original CIO formulation and the modified one
will not be made here, but rather later with the more advanced applications,
where simulations (and not just visualizations as in this example) are added
to the picture. Finally, it is worth noting that the optimization program
was solved within 100 milliseconds (500 iterations) after initializing the
solver with the right initial guess! The solver was called in a loop multiple
times, each time with a random guess, slightly-perturbed from the user-
defined one (given by a linear interpolation of the boundary variables).
Therefore, all in all, it took around 1.5 to 4 seconds before converging to
an optimal solution, for a problem definition consisting of 40 stages
(N = 40 grid points).
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4.4. Preliminary 2D Example: Leg Kicks Ball

Figure 4.9: Minimum distance between the foot and the ground (bottom left) and
the generated normal contact force between them (top left), as well as the

minimum distance between the foot and the ball (bottom right) and the generated
normal contact force between them (top right)
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Dynamic Object Manipulation by
6-DOF ANYpulator

5.1 ANYpulator Equations of Motion

ANYpulator [5] [7] (presented in Figure 5.1 as the robot arm attached to
the mobile platform) is a 6 degree of freedom robot manipulator that was
designed and built by the Robotic Systems Lab (RSL) at ETH Zurich.
It consists of the following links: L0-Base (fixed), L1-Shoulder, L2-Arm,
L3-Forearm, L4-Wrist1, L5-Wrist2, and L6-Wrist3 (end-effector link);
as well as 6 joints responsible for: J1-Shoulder Rotation, J2-Shoulder Flex-
ion/Extension, J3-Elbow Flexion/Extension, J4-Wrist Flexion/Extension,
J5-Wrist Deviation, and J6-Wrist Pronation.

Figure 5.1: ANYpulator robotic arm mounted on top of a Husky mobile platform [7]
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Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

The robot comprises a set of robust and mechanically compliant series-
elastic actuators (ANYdrive, also developed at RSL, is shown in Figure 5.2)
that feature precise position and torque control, high impact robustness,
and temporary energy storage; this, in turn, allows for highly dynamic mo-
tions and provides the robot with inherent interaction safety [1].

Figure 5.2: Series-elastic actuators, ANYdrive, constituting the joints of
ANYpulator [1]

ANYpulator will be used within all the three upcoming dynamic object ma-
nipulation tasks, one of which will be tested experimentally. Tackling these
problems with the CIO approach essentially requires a proper derivation of
the robot and object dynamic equations of motion. In this section, we only
do that for the robot, and leave the objects’ EOM’s for their corresponding
parts.

We start by referring to Figure 5.3 while noting that the x-axes are in-
dicated in red, the y-axes in green and the z-axes in blue. For the sake of
this demonstration, assume the reference frames are labeled from {0} till
{6} going from the bottom left to the top right of the image, and labeling
the last frame (which is attached to the added end-effector) to the far right
of the image with {E}. Also, as we are not dealing with a mobile robot
situation, the base frame {0} can be also referred to as the inertial world
frame {I}.

We define the generalized position vector q =
[
q1 q2 q3 q4 q5 q6

]T and
the generalized velocity vector q̇ =

[
q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

]T .
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{0} ≡ {I}

{1}
{2}

{3}

{4}

{5}

{6} {E}

L0

J1

L1

J2
L2 J3

L3 L4

L5

J5

J4

J6

L6

Figure 5.3: Rviz visualization showing ANYpulator along with the sequence of
joints, links, and joint-attached reference frames

The position-dependent kinematics of the robot are given by the following
homogeneous transformations:

T 0
1 =


cos (q1) − sin (q1) 0

sin (q1) cos (q1) 0 r001
0 0 1

0 0 0 1

 T 1
2 =


1 0 0

0 cos (q2) − sin (q2) r112
0 sin (q2) cos (q2)

0 0 0 1



T 2
3 =


1 0 0

0 cos (q3) − sin (q3) r223
0 sin (q3) cos (q3)

0 0 0 1

 T 3
4 =


1 0 0

0 cos (q4) − sin (q4) r334
0 sin (q4) cos (q4)

0 0 0 1



T 4
5 =


cos (q5) − sin (q5) 0

sin (q5) cos (q5) 0 r445
0 0 1

0 0 0 1

 T 5
6 =


1 0 0

0 cos (q6) − sin (q6) r556
0 sin (q6) cos (q6)

0 0 0 1
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T 6
E =


1 0 0

0 1 0 r66E
0 0 1

0 0 0 1


where ri1i1i2 represents the position vector directed from the origin of frame
{i1} to frame {i2} expressed in frame {i1}. In this case the position vectors
are independent from the generalized positions, and they can be obtained
by referring to the URDF (Unified Robot Description Format) file of the
robot (which actually includes all the kinematic and dynamic properties of
the robot, obtained from the corresponding CAD model). Now to obtain
the homogeneous transformation for any frame {k} (k=1,...,6) with respect
to the world frame {I} we use the formula below:

T Ik =
k∏
i=1

T i−1i (5.1)

and
T IE = T I6 T

6
E (5.2)

The velocity-dependent kinematics (differential kinematics) are given by
the following geometrical Jacobians corresponding to links k expressed in
frame {I}:

J (k)(q) =

[
J
(k)
P

J
(k)
O

]
(5.3)

where

J
(k)
P =

∂rIsk(q)

∂q
(5.4)

such that the position vector rIsk directed from the origin of frame {I} to the
center of mass of link k expressed in frame {I}, is computed by extracting
the first three elements of the vector below:

r̃Isk = T Ik ·

[
rkksk
1

]
(5.5)
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rkksk is also obtained from the URDF file of the robot.

Also
J
(k)
O =

[
RI

1 · d̂11 ... RI
k · d̂kk 0 ... 0

]
3×6

(5.6)

where RI
k is a rotation matrix which can be extracted from T Ik , and d̂

k
k is a

unit vector representing the axis of rotation of joint k in frame {k}:

d̂11 =

0

0

1

 d̂22 =

1

0

0

 d̂33 =

1

0

0



d̂44 =

1

0

0

 d̂55 =

0

0

1

 d̂66 =

1

0

0


Moreover, in order to map the joint velocities to the linear velocity of
frame {E}’s origin we have that

J
(E)
P =

∂rIE(q)

∂q
(5.7)

whereas
J
(E)
O = J

(6)
O (5.8)

Finally, the Projected Newton-Euler formulation [18], which is essentially a
combination between the classical Newton-Euler approach and the Euler-
Lagrange formulation, is used to compute the system mass matrix, Coriolis
and centrifugal terms, as well as gravitational terms, appearing in the fol-
lowing EOM expressed in generalized coordinates:

M(q)q̈ + b(q, q̇) + g(q) = τ (5.9)

where

M(q) =
6∑

k=1

(
J
(k)
P

)T
mk

(
J
(k)
P

)
+
(
J
(k)
O

)T (
RI
k

)
Iksk
(
RI
k

)T (
J
(k)
O

)
(5.10)
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b(q, q̇) =
6∑

k=1

(
J
(k)
P

)T
mk

(
J̇
(k)
P

)
q̇ +

(
J
(k)
O

)T (
RI
k

)
Iksk
(
RI
k

)T (
J̇
(k)
O

)
q̇

+
(
J
(k)
O

)T (
J
(k)
O q̇
)
×
((
RI
k

)
Iksk
(
RI
k

)T
J
(k)
O q̇
)

(5.11)

g(q) =

(
6∑

k=1

−mk g
TJ

(k)
P

)T

(5.12)

where the link mass mk, and the link inertia tensor Iksk (about the center
of mass expressed with respect to frame {k}) are obtained from the URDF
file. Also, gT =

[
0 0 −9.81

]
and the time-derivatives of the jacobians

are obtained by filling the matrices element by element as such: (let’s call
the jacobian matrices A and their time derivatives Ȧ)

Ȧij =
∂Aij

∂q
· q̇ (5.13)

All these expressions were obtained with the help of theMATLAB Symbolic
Math Toolbox, by setting the vectors q and q̇ as symbolic variables in the
program.
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5.2 ANYpulator-Object CIO Formulation: General Con-
siderations

In this section, the CIO formulation commonalities among the upcoming
application examples are indicated, while keeping the problem-dependent
specifics for later. We refer to Equation (4.12) in order to build our finite-
time optimal control problem. Note that the subscripts ’r’ and ’o’ will be
used to differentiate between quantities related to the robot, and the object
respectively.

– The number of stages used was N = 40 with a time-horizon of

T = 1.5 s hence leaving us with a time-step size of h =
T

N − 1
=

0.0385 s

Figure 5.4: ANYpulator with a custom-built end-effector that is used in all
ANYpulator-Object manipulation problems

– A common, custom-built end-effector was used for all the object-
manipulation problems. The specialized tool basically constitutes
of a cylindrical rod with a spherical head, as shown in Figure 5.4.
Therefore, it was quite clear that the rotation of the last joint would
have no contribution at all to the resulting solutions of the applica-
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Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

tions at hand. Therefore, a 5-DOF dynamic model was extracted
from Equation (5.9) by setting q6 = 0 and q̇6 = 0 while also getting rid
of the sixth equation. The jacobians presented in the previous section
were also altered accordingly. This helped reduce the optimization
program significantly by removing 3N = 120 optimization variables.

– The vector of optimization variables is given by z =
[
τ x λ

]T
where τ ∈ R5, λ ∈ R, and x =

[
q q̇

]T
=
[
qr qo q̇r q̇o

]T ∈
R(5+nqo)×(5+nqo)

– Upper and lower bounds were imposed on the robot state variables
and torques by referring to the URDF file. The maximum joint ve-
locity was set to q̇rmax = 12 rad/s and the maximum allowable torque
was set to τmax = 30 N.m . In addition to that, it was set that λk > 0
(one of the complementarity conditions).

– A common objective function was used that aims at minimizing
energy and also puts a cost on the wrist joints velocities (because
otherwise, it was noticed that an unnecessary movement of the two
wrist joints occurs, as they do not contribute much to the total energy
expenditure). Moreover, the torques and joint velocities were normal-
ized as they do not have the same units. Therefore, the cost function
is given as follows:

N∑
k=1

h ·
(
τTk Rτk
τ 2max

+
q̇TrkQq̇rk
q̇2max

)
(5.14)

where R =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 and Q =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


– Two nonlinear inequality constraints were constantly used in the
NLP formulation. The first one is the non-penetration condition
(φ(qk) ≥ 0), while the second one imposes that the height of the tool
frame’s origin (i.e. The origin of frame {E}) relative to the base frame
is always greater than 5 cm

(
zIE(qrk) =

[
0 0 1

]
· rIE(qrk) ≥ 0.05

)
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– The fully-actuated dynamics of the robot were concatenated with the
non-actuated dynamics of the object to form the following under-
actuated system dynamic equations (which are essentially equiv-
alent to those introduced previously in Equation (4.1)):

q̈ =

[
q̈r

q̈o

]

=

[
Mr(qr) 05×nqo
0nqo×5 Mo(qo)

]−1(
ST τ +

[
br(qr, q̇r)

bo(qo, q̇o)

]
+

[
gr(qr)

go(qo)

]
+ JTNλ

)
(5.15)

Furthermore, in order to integrate the dynamics, a state-transition
function was derived on the basis of a Semi-Implicit Euler Scheme.
Similar to the classical explicit Euler, the latter is a first-order in-
tegrator; however, it additionally holds inherent energy-conservation
properties that make it much more reliable. Therefore, the nonlinear
equality constraints responsible for satisfying the dynamics are given
as follows: {

q̇k+1 = q̇k + h · q̈k
qk+1 = qk + h · q̇k+1

(5.16)

– Other common equality constraints were introduced to the formu-
lation: One ensures that no contact forces are able to act at a distance
(λk · φ(qk) = 0) and the other one makes sure that Newton’s restitu-
tion law is satisfied whenever a non-zero contact force (or impulse)
exists (λk · JN(qk+1) · q̇k+1 = 0).

– In order to reduce the computational load while solving the CIO
program, the gradients of the objective function and the nonlinear
inequality constraints were provided analytically (those are not the fi-
nal expressions used in the program since more inequality constraints
will be added later in the problem-specific discussions, but we present
them at this level only, just for the sake of demonstration). The way
analytical gradients are provided in the FORCES Pro framework, is
by filling in the elements corresponding to the variables of a single
stage only. This means that the size of the derived gradient will be of
size equal to the length of zk and not N times this length.
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Gradient of Objective:



2hRτk
τ 2max

0nq×1

2hQq̇rk
q̇2max

0nq̇o×1

0



(5.17)

Gradient of Inequality Constraints:

∇zk

φk
zIEk

 =

01×5 JNk 01×nq̇ 0

01×5
[
0 0 1

]
J
(E)
Pk

01×nqo 01×nq̇ 0

 (5.18)

As for the nonlinear equality constraints, their gradients were not
provided analytically as this procedure is quite intricate and involved
(due to the presence of the dynamic equations of motion among the
constraints).

However, due to FORCES Pro’s integration with CasADi [2] [3], an
open-source package for generating derivatives through automatic (or
algorithmic) differentiation, the required gradients can still be com-
puted efficiently (when compared to numerical or symbolic differenti-
ation). Concerning the hessian expressions of the objective function
and constraints, those are provided neither analytically nor through
CasADi. That is because FORCES NLP does not rely on exact Hes-
sians within its Newton-iterations, but rather approximates them us-
ing Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates [33] [51].
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– For the initialization of the NLP solver, instead of simply relying
on a linear interpolation of the boundary variables as an initial guess
(which is altered in a loop by adding a slight randomness to it), the
solution from a previous non-optimal trial run was used to initialize
the next one (this is referred to as warm-starting the solver). Warm-
starting an inter-point algorithm is generally not so effective as it
is for other optimization algorithms, such as Sequential-Quadratic-
Programming (SQP). Nonetheless, it still enabled faster convergence
in our case. This issue will be brought up again in this thesis when
dealing with a non-linear model predictive control (NMPC) approach
for the ANYpulator-Ball problem.

{I}

{E}

{O}

Figure 5.5: Rviz image showing the tool frame {E}, base frame {I}, and object
frame {O}

– A generalized signed distance function was introduced for the
ANYpulator-Object problem, independently from the object being
manipulated. Additional geometry-dependent constraints are then
added to the optimization accordingly. To elaborate, we start by
referring to the image provided in Figure 5.5; it should be noted that
at this configuration, the object is considered to have an angle (about
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the z-axis) of zero. This choice of frames was made mainly because it
was more convenient to place the objects on this side of the robot (to-
wards the negative y-axis of the base frame) while experimenting on
the real system. The idea behind our choice of the distance function
φ(q) is based on taking the projection of the position vector rOEO onto
the x-axis of the object frame {O}. In that way, it is assumed that
the object frame is attached to a virtual plane (that can be translated
along the x or y-axes, or rotated about the z-axis, and that separates
the robot on one side from the object on the other side), and the gap
function is therefore defined as the minimum signed distance between
a point and a plane (going through the plane renders the gap function
negative thus indicating penetration). However, since our object is not
really an infinitely large plane, then some additional constraints will
have to be added (in later sections) to achieve the desired behavior.
For now, we demonstrate how the expression for φ(q) is derived:

rOEO = RO
I rIEO

=
(
RI
O

)T · (rIO − rIE)

=

sin (θo) − cos (θo) 0

cos (θo) sin (θo) 0

0 0 1


x

I
o − xIE
yIo − yIE
zIo − zIE


(5.19)

Taking the x-component of the above vector yields:

φ(q) = (xIo − xIE) sin (θo)− (yIo − yIE) cos (θo)

= (xo(qo)− xE(qr)) sin (θo(qo))− (yo(qo)− yE(qr)) cos (θo(qo))

(5.20)

It should be noted that xo, yo, and θo do not always necessarily depend
on the object generalized coordinates (as will be seen in the upcoming
examples), but here it is assumed to be the case in order to be as
general as possible.

Now from this signed distance function, we can obtain the normal Ja-
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cobian
(
JN(q) =

∂φ

∂q

)
that is required in our CIO formulation:

JTN(q) =



−
([

1 0 0
]
J
(E)
P

)T
sin (θo) +

([
0 1 0

]
J
(E)
P

)T
cos (θo)

sin (θo)

− cos (θo)

(xo − xE) cos (θo) + (yo − yE) sin (θo)


(5.21)

– The results provided up till now in this thesis work have been purely
given by either plotting the optimization output or by kinematically
visualizing it. Nevertheless, there is still no guarantee that such trajec-
tories are actually feasible (in the sense that they can be easily stabi-
lized and tracked with the control law introduced in Equation (4.13));
and even if they are, it is also not certain that the contact event
that was predicted by our CIO approach is valid enough to attain
the desired task at hand. Therefore, simulating our system is an
unavoidable and essential step to pursue before moving to the real
setup. All our simulations were performed within the Gazebo robot-
simulator environment [23] (except for the NMPC example which was
done on Simulink). The utilized physics engine underlying Gazebo
was the Open Dynamics Engine (ODE) which consists of a rigid body
dynamics simulation engine in addition to a collision detection en-
gine. A C++ executable was written in order to send commands to
the robot joints in terms of feed-forward torques, reference joint posi-
tions, and reference joint velocities; while the PD gains (or PID gains
but with a very small integral term) were tuned manually starting
from a set of previously-assigned gains for the ANYdrives (the gains
used for the Gazebo simulations are: Kp = [20 50 50 50 50]T and
Kd = [10 15 15 1 1]T ).

65



i
i

“output” — 2018/12/4 — 14:46 — page 66 — #84 i
i

i
i

i
i

Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

5.3 Preparatory Example Applications

5.3.1 ANYpulator-Door Problem

5.3.1.1 Problem-Formulation Specifics

In this application, we setup a contact-implicit optimization program which
aims at discovering optimal trajectories that would allow ANYpulator to
open a door dynamically. To begin with, we describe the door as a rectangu-
lar object with these properties: length (l) = 200 cm, width (w) = 80 cm,
depth (d) = 5 cm, mass (m) = 15 kg, and damping coefficient (c) =
3 N.m.s/rad. It is attached to a hinge as depicted in Figure 5.6.

Figure 5.6: Rviz image showing the door and its hinge with respect to the robot

In this case, the manipulated object is a 1-DOF system whose equation
of motion is provided as follows: (the robot equations are left out in this
section for the sake of conciseness, as they are already given in Section 5.1)

Noting that xo = xhinge, yo = yhinge, and θo = qo (which is the only gener-
alized coordinate), then we only extract the last row from Equation (5.21)
to account for the generalized torque caused by the normal contact force
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on the door. Therefore,

Idoorθ̈o = −c θ̇o+λ · (xhinge − xE(qr)) cos (θo)+λ · (yhinge − yE(qr)) sin (θo)
(5.22)

where Idoor is the moment of inertia of the rectangular door with respect
to the z-axis passing through its hinge. So by the parallel axis theorem, we
have that:

Idoor =
1

12
m(d2 + w2) +m

(w
2

)2
(5.23)

Now to tell the program that the robot will be making contact with the
given door rather than with an infinitely large plane, an additional inequal-
ity constraint was introduced:

λ · ψ(q) · (w − ψ(q)) ≥ 0 (5.24)

where ψ(q) is the projection of the position vector rOEO onto the y-axis of
the object frame {O} (see Figure 5.5), so it can be retrieved from Equa-
tion (5.19):

ψ(q) = (xo − xE) cos (θo) + (yo − yE) sin (θo) (5.25)

The inequality in (5.24) guarantees that a contact force is generated only
if the tool of the robot lies within the door’s width.

Finally, the robot and the door were given a starting configuration (as
shown in Figure 5.6), with all initial generalized velocities set to zero (as
well as the final robot joint velocities). As for the door coordinates at the
end of the time horizon, they were chosen in such a way that the desired
task is achieved (sufficiently opening the door with a specified final veloc-
ity). It is important to note that doing the latter by simply adding the
proper final boundary (equality) conditions is problematic, not only for
this problem but also for the other applications, as the solver almost never
converges to an optimal solution. That is because, roughly speaking, hav-
ing to satisfy this specific combination of dynamic equations with a final
"exact" position at an "exact" velocity, given a fixed time horizon, makes
the problem somehow stringent and strict. A good way to deal with such
an issue would be to relax the boundary equality constraints and replace
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them with upper and lower bounds as such:

∀ k = 1, ..., N − 1 :

0 ≤ θok ≤
π

2
− 0.1

−2π ≤ θ̇ok ≤ 2π

π

2
− 0.6 ≤ θoN ≤

π

2
− 0.1

0 ≤ θ̇oN ≤ 0.5

5.3.1.2 Results: Optimization and Simulation

As one might expect from an NLP solver, several optimal solutions were
returned from various initial guesses; however here we focus on one of them.
In this particular case, the program terminates after 1279 iterations, which
takes around 1.5 seconds to attain the optimality conditions up to the
following tolerances on the residuals:

||∇zL||∞ = 10−3 (stationarity residuals)

||c||∞ = 10−5 (equality residuals)

||h+ s||∞ = 10−5 (inequality residuals)

||Us− κ||∞ = 10−5 (complementarity slackness residuals)

where L is the Lagrangian function, c represents the equality constraints,
while h and s represent the inequality constraints and the added slack vari-
ables respectively. Moreover, U is a diagonal matrix containing the in-
equality Lagrange multipliers and κ represents the barrier parameter (as a
vector). Refer to [33] [51] for more details.

The plots in Figure 5.7 demonstrate what occurs throughout the interior-
point (IP) algorithm’s iterations. First of all, one could notice how the
objective starts at a value of zero, and that is because of our initialization
choice, which gives zero-input torques and zero-joint-velocities as part of
the initial guess to the program. Secondly, one could also clearly see that in
contrast to unconstrained optimization iterations, not all search directions
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tend to reduce the value of the primary objective function, since another
concern of the solver would be to keep the decision variables inside the
feasibility region. Indeed, an equivalence relationship could be shown be-
tween the primal-dual IP-method and the minimization of an augmented
cost that consists of the primary objective plus a logarithmic-barrier func-
tion that is dominant when the barrier parameter κ is relatively large (thus
keeping the variables away from the boundary of the feasibility region), but
eventually becomes insignificant as κ decreases (thus truly minimizing the
original cost function) [33].
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Figure 5.7: FORCES NLP printed output
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Another thing that could be noticed from the information outputted by
the solver, is that the equality and inequality residuals tend to satisfy the
desired tolerances earlier (around 150 iterations before) than the satisfac-
tion of the stationarity tolerances. This idea could be exploited to aid with
faster convergence results by slightly increasing the tolerance on the sta-
tionarity residuals.

In Figure 5.8, one could see the transition that the solution, corresponding
to the input torques of joints 3 and 4, goes through before reaching the local
minimum. By looking also at the normal contact force plot in Figure 5.9,
it is apparent how the jumps in the torque values at around t = 0.2 s
relate to the generated contact force between the robot end-effector and
the door (when the gap function φ(q) vanishes). Furthermore, it is clear
how the distance between the tool frame and the hinge (ψ(q)) respects the
requirement that the tool should lie within the door’s width during a con-
tact event (in addition to having its height greater than 5 cm at all times).

Figure 5.8: Evolution of the input trajectories for joints 3 and 4 over the solver’s
iterations (0, 800, and 1279)
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Figure 5.9: Plots indicating the satisfaction of the contact constraints in the
ANYpulator-Door problem

Finally, Figure 5.10 shows a Gazebo-Simulation (the visualization was done
on Rviz while Gazebo published the current states of the system) where the
optimal trajectories were successfully tracked by the manipulator, and the
task was properly achieved as a result. Simulation plots are not provided
here but will be shown in the other examples, in order to avoid repeating
similar ideas and discussions.
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Figure 5.10: Snapshots from a simulation of the assigned manipulation task (Robot
pushes door to open it beyond a certain threshold with a relatively low final

velocity)
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5.3.2 ANYpulator-Ball Problem

5.3.2.1 Problem-Formulation Specifics

In this example application, ANYpulator is required to push a ball with
radius (Rball) = 11 cm andmass (m) = 0.43 kg, along a desired direction,
while reaching a goal position in the plane at the end of the time horizon
(therefore the final ball velocity doesn’t really matter, and an arbitrary
bounded value could be assigned to it).

We start by referring to Figure 5.11 in order to derive the equations of
motion describing a ball rolling on a flat plane.

xb
yb

zb

yI

xI

zI
R P

Fext

B

C

Figure 5.11: Sketch of a 3D ball rolling on a flat plane

Assuming no-slip conditions (vIP = 0), we have that:

vIb = ΩI
b × rIpb (5.26)

Basically, we would like to integrate the above equation in order to get
a minimal set of generalized coordinates which can be used in the Euler-
Lagrange formulation for deriving the EOM’s. However, this does not
apply here since the above constraint is a non-holonomic constraint (or
non-integrable). What can be done in such cases is to use the method of
Lagrange multipliers within the Euler-Lagrange equations, to deal with the
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non-holonomic constraints. But this approach turns out to be mathemati-
cally tedious for this problem, which is why we resort to the Newton-Euler
formulation instead:

Note that all vectors will be expressed with respect to the inertial frame
{I} unless specified otherwise{

Fext +R +mg = mv̇b

τext + rbp ×R + rbc × Fext = IbΩ̇b + Ωb × (IbΩb)
(5.27)

where Ib is the inertia tensor of the ball expressed in the inertial reference
frame.

This quantity is not constant, hence we replace it with an equivalent ex-
pression that includes a constant inertia tensor instead (this is done by
equating the rotational kinetic energies of the ball expressed in the inertial
frame and the ball frame).

Consequently we have that,

IIb = Ib = RI
bI

b
bR

b
I (5.28)

such that

Ibb =

I 0 0

0 I 0

0 0 I

 =


2

5
mR2

ball 0 0

0
2

5
mR2

ball 0

0 0
2

5
mR2

ball

 (5.29)

Therefore, the second equation in (5.27) becomes

τext + rbp ×R + rbc × Fext = IΩ̇b (5.30)

Replacing the expression for R in the above equation, one obtains the
following

τext + rbp × (−Fext −mg +mv̇b) + rbc × Fext = IΩ̇b (5.31)
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Since there are no external torques acting on the ball in our case, and the
gravitational vector g is parallel to the vector rbp while rbc is parallel to
Fext (only in our case because we assume that a normal force will be acting
on the ball and we neglect the forces tangential to the surface), then we
are left with the following equation:

⇒ −rbp × Fext +m rbp × v̇b = IΩ̇b (5.32)

Now by deriving Equation (5.26) with respect to time, and replacing the
expression for Ω̇b in there from (5.32), we get:

v̇b =
1

I
(m rbp × v̇b − rbp × Fext)× rpb (5.33)

Noting that rbp =
[
0 0 −Rball

]T at all times, we solve the above equation
accordingly,

⇒


v̇bx =

5

7m
Fextx

v̇by =
5

7m
Fexty

(5.34)

Therefore, the ball generalized coordinates are given by xo = qo1, and
yo = qo2 (note that those coordinates no longer indicate the position of
the ball COM, but rather the position of the ball-point belonging to the
separating plane), while θo = θdesired which is the user-specified desired
direction along which the ball should travel. Then the final resulting EOM’s
turn out to be as follows:

ẍo =
5

7m
(sin (θdesired) · λ)

ÿo =
5

7m
(− cos (θdesired) · λ)

(5.35)

Now to ensure that the robot’s tool would make contact with the spherical
ball (rather than with any point on the plane that is tangent to it), the
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following equality conditions were added to the program:
λ · ψ(q) = 0

λ ·
(
zIE(q)−Rball

)
= 0

(5.36)

The above conditions actually constrain the manipulator to hit the ball at
a single possible point only.

5.3.2.2 Results: Optimization and Simulation

The problem was formulated such that the ball had to travel a displacement
of 40 cm at an angle of θdesired = 0 rad and another one at an angle of
θdesired = −π

6
rad, over the full time horizon (T = 1.5 s) such that the

final velocity is less than 1 m/s. One would expect that given the low
inertia of the ball and the short distance it is required to travel over T ,
along with the absence of any decelerating forces, the generated contact
force is supposedly low. In fact, this turns out to be the case as can be
seen in Figure 5.12 from the force plot (this is a good indicator of the
dynamic feasibility of our approach). Moreover, the satisfaction of the
complementarity conditions can be deduced from the other two plots in
the figure. On a parallel note, the solver was able to converge to the two
optimal solutions in 365 ms (387 iterations for the case of θdesired = 0 rad)
and in 182 ms (208 iterations for the case of θdesired = −π

6
rad). This is

quite fast for such a highly nonlinear optimization program: not fast enough
to be solved in real-time within an NMPC scheme, but fast enough to at
least test an NMPC controller efficiently in simulation (without having to
wait for long periods of time for the simulation to terminate).
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5.3. Preparatory Example Applications

Figure 5.12: Optimization results indicating the satisfaction of the contact
conditions
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Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

As for the simulation results, Figures 5.13 and 5.14 show how the two
dynamic manipulation tasks are well-satisfied for different desired travel-
directions. While Figure 5.15 reveals how well the joint position-reference
trajectories (obtained from the solution of the CIO problem) are tracked
with our simple linear-feedback control law added to the feed-forward term
given by the optimal torque trajectories. It is not so clear from these plots
when the contact event takes place, and how it affects the tracking process.
This is because, as mentioned before, the generated contact force is quite
small when compared to the other applications. This effect will be encoun-
tered more clearly when working with the ANYpulator-Block problem in
the next chapter.

Figure 5.13: Snapshots from a simulation of the assigned manipulation task (Robot
pushes ball to a final position in a desired direction of 0 degrees)
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5.3. Preparatory Example Applications

Figure 5.14: Snapshots from a simulation of the assigned manipulation task (Robot
pushes ball to a final position in a desired direction of -30 degrees)
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Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

Figure 5.15: Simulation plots showing the tracking of optimal-reference joint
positions
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5.4. Exploring a Non-linear Model Predictive Control Approach

5.4 Exploring a Non-linear Model Predictive Control
Approach

Non-Linear Model Predictive Control (NMPC) is a feedback control tech-
nique that basically solves the non-linear optimal control (NLOC) problem
presented in (3.7) repeatedly, online, then only applies the first control
input (i.e. τ1) from the entire input sequence obtained over the full hori-
zon from each NLOC solution. This control technique has been extremely
prominent and impactful in the process industry throughout the last three
decades. Its power lies in the same reasons mentioned in Section 3.1 while
motivating the introduction of optimal control methods (more specifically
direct methods), plus the added benefit of retrieving an optimal input
trajectory that is also stabilizing against uncertainties and disturbances
(nominal stability, as well as robust stability results, can be found in [11]).
However, having to continuously solve an NLP within the domain of real-
time applications comes with an immediate drawback which is related to
the large time-delays imposed by the optimization algorithm’s convergence
time. That is not a serious issue when the evolution of the plant is inher-
ently governed by relatively slow dynamics and the desired control behavior
has a low bandwidth (such as in the case of chemical plants). But for ap-
plications involving fast dynamic responses, such as those tackled in this
thesis, the use of a computationally efficient NMPC scheme is key for its
success.

One remedy to the control degradation caused by this expected compu-
tational burden would be to turn our NLP into a quadratic-program (QP)
by taking a quadratic approximation of the objective function and a linear
approximation of the nonlinear constraints. The system dynamics are lin-
earized around the current prediction of the optimal trajectories (given by a
combination of the fed-back states and the last optimal solution obtained),
which yields a linear-time-varying (LTV) system instead (see for exam-
ple [24]). Doing this is indeed very helpful from a computational perspec-
tive, as highly efficient and fast convex QP solvers can attain convergence
times in fractions of a millisecond [16]. Another approach, proposed by
Diehl et al. in [13] (also see [14]), is the Real-Time Iteration (RTI) scheme,
in which the finite-dimensional nonlinear optimization problem is solved
with the sequential-quadratic-programming (SQP) algorithm. However,
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Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

instead of waiting for the solver to return a local minimum, the problem
is solved sub-optimally by performing a single SQP iteration per sampling
step, while initializing the current program with the last returned solution.
As a result, the feedback delay is significantly reduced, and a locally opti-
mal solution is gradually attained.

Both of the methods proposed above can be seen as approximate solutions
to the original NMPC problem, and this could basically imply a sacrifice in
the scheme’s optimality, in addition to its aforementioned stability prop-
erties, for the sake of a reduced computational time-delay. Therefore, the
overall performance of NMPC and its real-time feasibility can be enhanced
by finding a good compromise between speed and solving a proper repre-
sentation of the original problem to optimality. In fact, such a desire is
what actually prompted the introduction of the FORCES NLP software
package [51].

Our goal in this work is to mildly explore a Receding Horizon NMPC
scheme – in which the time horizon is kept constant all throughout, un-
like what happens in Shrinking Horizon NMPC – by purely relying on
the optimal solution of the exact non-linear mathematical program with
complementarity constraints (MPCC), returned by FORCES Pro at every
sampling instant. We test our algorithm on the ANYpulator-Ball prob-
lem using Simulink as a simulation environment by relying on a fixed-step
Runge-Kutta-4 integration scheme (there was no contact model included
in the simulation, but it was simply assumed that the optimal force trajec-
tory will be applied as is on both bodies). Recalling that convergence for
this problem occurred within 500 iterations (around 410 ms), we set the
maximum allowable number of iterations to 500 (so that the solver would
not take more time in case convergence was not achieved before that). One
could notice that such a computational time is not fast enough for a real-
time implementation (which requires in our case a sampling rate no less
than 1 kHz); nonetheless, it is still worth trying in simulation. Generally,
one would expect the optimization algorithm to take this much time only
for poor initial guesses, and then to become significantly faster by initial-
izing our current program with the previous solution. However, as hinted
upon earlier, warm-starting an interior-point method is not very effective
(even initializing the same exact program with its previously computed op-
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5.4. Exploring a Non-linear Model Predictive Control Approach

timal solution sometimes leads to failure in convergence!). That is related
to the fact that when the optimal solution was found, the barrier param-
eter had a different value than the one it starts with when initializing the
problem again (so it is as if a different KKT system is being solved). More-
over, the obtained optimal solution tends to be close to the boundary of the
feasibility region; which means that starting our algorithm from that point
would lead to very short step lengths (to stay within the feasible region)
taken in the corresponding search directions, hence the search space is not
explored properly. As a matter of fact, there are research papers that are
solely devoted for presenting appropriate warm-starting strategies for IP
methods in the context of MPC and NMPC [42] [52], but this is outside
the scope of this thesis.

Let us assume that we were able to achieve a lower computational time,
for example by considering a proper warm-starting technique (or any other
possible improvements), to the extent that this time is somewhat close to
the step-length used inside the definition of our NLP (i.e. h = 38.7 ms).
In that case, we can implement an NMPC-type scheme that is described
by the following generic algorithm (provided in Algorithm 5.1). A couple
of points ought to be brought up concerning the suggested scheme:

– The first thing is that the CIO formulation, being solved online, needs
to have both its initial and final boundary conditions updated. The
former is quite obvious as we intend to obtain a state-feedback con-
troller (so the start of the problem’s horizon represents the current
actual time), whereas the latter is mainly due to the fact that we are
relying on a receding horizon controller (T is kept constant). To elab-
orate, one could think for example of what happens when a contact
event is discovered at stage k starting from the current instant, and
so as a result of that, the ball starts rolling at a required constant
velocity that would allow it to reach the exact final desired position
after T seconds. Now at the next sampling instant, the past opti-
mal trajectory is shifted by one step, thus also leading to an event
occurring after k− 1 stages instead of k. Therefore, at the end of the
time horizon, the dynamic equations of the ball would govern that it
travels a longer distance than that assigned originally. This explains
why a 1-step update was continuously made on the final states (before
reaching the contact event).
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Algorithm 5.1 CIO-NMPC Algorithm for Dynamic Object Manipulation

Given

– Time horizon T

– Total number of stages N

– Time-step length h =
T

N − 1

– Sampling time ∆tsampling ≈ h

– CIO1: Corresponding CIO program to be solved offline, with an arbitrary number
of maximum iterations

– CIO2: Corresponding CIO program to be solved online, with a number of maxi-
mum iterations chosen such that the maximum solve-time is close to h

Do Offline

– Solve CIO1

– Save optimal sequences: zopt = [τopt xopt λopt]
T

– Set k = 0

Repeat Online

– Get state measurement xmeas at t = k ∆tsampling

– Apply the control law: τ = τopt1 + kp(qopt1 − qmeas) + kd(q̇opt1 − q̇meas) (this input
is held over ∆tsampling)

– As long as contact has not been achieved yet: assign the initial boundary con-
ditions (S1z1) from the available parts of xmeas and the remaining elements from
zopt1 ; specify the final boundary conditions (SNzN) by advancing the previous
condition (only the states) with a single step; also assign zguess = zopt

– Otherwise if a contact event has just occurred: assign the initial boundary con-
ditions (S1z1) from the available parts of xmeas (robot states) and choose the
remaining initial and final boundary conditions in a manner that assumes that
the manipulation task is already over from this point on; also assign zguess = zopt

– Solve CIO2 (this should take around ∆tsampling seconds to terminate)

– Disregard the first stage of the new optimal solution zopt (or the old one in case the
solver does not converge to a local minimum), add zoptN+1

= zoptN , then replace
zoptN with zoptN−1

– Increment k by 1
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– Secondly, it should be made clear that for the sake of our dynamic ma-
nipulation problem, the measured quantities that are required to as-
sign the initial boundary condition only include the robot-joint-states.
Hence, sensory feedback on the object’s states and the contact force
is not needed, as it would not make sense to rely on such informa-
tion since the response speed of such a dynamic pushing action is
much higher than that for the model predictive controller’s reaction
needed to alter the contact force. In addition to that, the ball quickly
goes outside of the robot’s workspace when pushed, meaning that it is
doomed to be uncontrollable after this moment; so there is no added
benefit in measuring or even estimating its motion. Therefore, the
wisest thing to do would be to rely on the information revealed to
us by the preceding optimal solution. This also explains why after
contact has taken place, the NLP was formulated and solved as if the
task has already been achieved (the robot is incapable of controlling
the object at this point)

– Finally, one should keep in mind that the NMPC control law is sup-
posed to be stabilizing, without any need for any other feedback terms
(such as the PD-term included in the algorithm); however, this holds
true assuming that the sampling rates are "high enough", the NLP
includes an accurate representation of the dynamics, and that it is
solved up to optimality at every sampling instant.

The major results for this scheme along with a comparison between pure
NMPC (only optimal torques without a PD-term), NMPC plus a PD-
term, and an open-loop solution for the NLOC problem plus a PD-term,
are given in the three figures below. One could see from the Solution Status
plot of Figure 5.16 that the solver only fails twice to converge to an optimal
solution (indicated by an Exitflag of 1). Moreover, a clear distinction can be
made between the position responses in plots (b) and (d) that correspond
to an NMPC scheme without and with PD-action, respectively.

85



i
i

“output” — 2018/12/4 — 14:46 — page 86 — #104 i
i

i
i

i
i

Chapter 5. Dynamic Object Manipulation by 6-DOF ANYpulator

(a) (b)

(c) (d)

Figure 5.16: (a) Solver exit status (0: maximum iterations reached, 1: local
minimum found, 7: infeasible problem), (b) Optimal and real joint positions from
NMPC without any PD-compensation, (c) PD-term contribution in total input
torques for NMPC with PD-compensation, (d) Optimal and real joint positions

from NMPC with PD-compensation

But still, the contribution of this extra term is quite low (relatively low
gains were used: kp = 5 and kd = 0.1) when compared to that applied to
the open-loop optimal trajectory as shown in Figure 5.17 (gains of around
kp = 20 and kd = 1 to obtain the response shown in plot (b)). In fact,
computing the L2-norms of the total input signals reveals the efficiency of
the NMPC scheme (in terms of energy cost minimization) when compared
to the open-loop NLOC solution.
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(a)

(b) (c)

Figure 5.17: (a) Optimal and real joint positions from open-loop NLOC without
any PD-compensation, (b) Optimal and real joint positions from open-loop NLOC

with PD-compensation, (c) PD-term contribution in total input torques for
open-loop NLOC with PD-compensation

Nonetheless, there are still clear similarities between the two approaches
that mainly appear when looking at the resulting optimal reference-position
trajectories, the optimal contact force sequence, and the resulting ball mo-
tion (see Figure 5.18) which happens to satisfy the desired requirement
through the use of both controllers.
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(a) (b)

(c) (d)

Figure 5.18: (a) Comparison of optimal joint positions obtained from open-loop
NLOC and NMPC, (b) Comparison of their contact force trajectories, (c)

Simulated ball position for NMPC, with PD-compensation, (d) Simulated ball
position for open-loop NLOC, with PD-compensation
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ANYpulator-Block Problem

6.1 Problem-Formulation Specifics Including Dry Fric-
tion

In this last example, which is the central application of this thesis, ANY-
pulator is expected to dynamically push a block with length (l) = 23 cm,
width (w) = 23 cm, depth (d) = 29 cm, and mass (m) = 1.4 kg such
that it’s center of mass ends up within a desired narrow position-range
(xdesired ±10 cm) at the end of the time-horizon. What makes this problem
interesting, is that unlike the two previous examples, dry friction plays a
fundamental role in determining how the manipulation task plays out. One
should note that we are not referring to the frictional forces arising in the
tangential contact plane between the end-effector and the block-face, but
rather to the frictional force arising from the interaction of the block with
its own environment. The intricacy here is brought up by having to adopt a
proper friction model, that could also be included into our contact-implicit
optimization program while making sure not to overwhelm our gradient-
based solver with any discontinuous or non-smooth constraints. Going into
the realm of memoryless static friction models, one could clearly see the
intrinsic non-smooth nature of frictional phenomena from Figure 6.1. In
this work, we rely on a simple Coulomb friction model, that would lead
to the following set of equations (set-valued force law) when deriving the
equations of motion for the block in this problem:

Noting that xo = qo1, yo = qo2 (note that those coordinates do not indicate
the position of the block COM, but rather the position of the block-face
belonging to the separating plane), and θo = qo3. Therefore, we extract the
three last rows from Equation (5.21) to account for the generalized forces
resulting from the normal contact force on the block.
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v

F

(a)

v

F

(b)
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(c)

v

F

(d)

Figure 6.1: Various Static Friction Models: (a) Coulomb Friction, (b) Coulomb
with Viscuous Friction, (c) Stiction with Coulomb and Viscous Friction, (d)

Stribeck Effect [34]

m

q̈o1q̈o2
q̈o3

 =

 sin (qo3)

− cos (qo3)

(qo1 − xE(qr)) cos (qo3) + (qo2 − yE(qr)) sin (qo3)

 · λ

−

 sin (qo3)

− cos (qo3)

0

Ff
(6.1)

And {
Ff = λ if vdir = 0 and λ < Fs

Ff = Fs if vdir > 0
(6.2)

where Ff is the actual frictional force acting on the block, vdir is a scalar
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quantity that signifies the velocity along the direction of motion
(vdir = q̇o1 sin (qo3) − q̇o2 cos (qo3)) – which is parallel to the x-axis of the
object frame – and Fs is the static friction force or the breakaway force
and it is related to the normal force N by the so-called coefficient of static
friction µs (Fs = µsN).

It is noteworthy to mention that even though a frictional torque does exist
and acts along the qo3 generalized direction, it is neglected in our problem
formulation since, as will be seen later, we require that the block does not
rotate at all while achieving our task. Furthermore, generally speaking,
the second condition in Equation (6.2) usually takes into account the case
where the velocity vdir is non-zero, and so the expression for Ff would
be (Ff = sgn(vdir)Fs). However, for the sake of our dynamic manipula-
tion tasks, the scenario where vdir < 0 is non-existent, since for any given
block-orientation qo3, there is a unique irreversible direction along which
the object could travel (otherwise, it would mean that the robot is also
capable of pulling the object and not just pushing it).

Now in order to be able to utilize any friction model, its constituent param-
eters have to be determined first. In this case, we perform an identification
experiment that would allow us to determine the friction coefficient µs cor-
responding to the surface interaction between our block and the table that
will be used in our manipulation experiments. The required identification
procedure is fairly simple and straightforward:

1. Measure the mass of the block (m)

2. Use a simple and portable load measurement device (for example a
portable luggage scale)

3. Attach this device to the block and start pulling it slowly and gradually
until the block starts moving (the reading on the device indicates the
breakaway force Fs either directly or indirectly by displaying a mass-
value instead)

4. Compute the friction coefficient with the formula µs =
Fs
mg

5. Repeat the above steps a couple of times, then take the average of all
the obtained results
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In our case, the static friction coefficient turned out to be relatively small
(µs = 0.13).

When wanting to incorporate the resulting friction model within a di-
rect trajectory optimization formulation, the conditional if-statements pre-
sented in Equation (6.2) should be avoided. One way to go around that
would be to smoothen the friction-velocity relationship (for example by
using a sigmoid function); however, such a modification would render the
problem stiff, and could, therefore, lead to significantly slow and inefficient
convergence. In this application, the friction-law was encoded within the
CIO formulation by the addition of the following constraints:

vdir (Fs − Ff) = 0

Fs − Ff ≥ 0

vdir ≥ 0

 ⇐⇒ 0 ≤ vdir ⊥ (Fs − Ff) ≥ 0

(Fs − Ff)(λ− Ff) = 0

(6.3)

where Ff is now added to the vector of optimization variables in the opti-
mal control problem.

A sufficiency proof is provided below:

Proposition:

If System (6.3) is true =⇒ System (6.2) also holds true

Proof:

(a) For the case where λ < Fs and vdir = 0 (which is the first condi-
tion of Equation (6.2)), the satisfaction of (6.3) means that we can either
have Ff = Fs or Ff = λ. But having Ff = Fs with λ < Fs = Ff leads to
the contradiction: vdir < 0 (from the dynamic equations of the block given
in (6.1)). Therefore, Ff = λ

(b) For the case where vdir > 0 (which is the second condition of Equa-
tion (6.2)), it should hold from the first equation in Equation (6.3) that
Ff = Fs
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Now we discuss the remaining considerations that had to be made while
building our CIO formulation for this problem:

– In order to ensure that the robot end-effector actually comes in contact
with the block-face, the following nonlinear inequality conditions were
added: 

λ · (l − zE(qr)) ≥ 0

λ ·
((w

2

)2
− ψ2(q)

)
≥ 0

(6.4)

we recall that ψ(q) has already been introduced in the previous chap-
ter as the projection of the position vector rOEO onto the y-axis of the
object frame {O} (see Figure 5.5).

System (6.4) can be interpreted as allowing a non-zero contact force
to act only if the tool frame origin lies within the block’s width and
length. However, we would like to additionally impose that the block’s
rotational velocity (q̇o3) is always zero as the desired translational mo-
tion is carried out. As a result, the optimal trajectories are expected
to produce a motion plan that involves the robot contacting the block
within the central line’s length only (the vertical line having the same
length as the block and passing through the center of its width).

– Taking into account that the final designed formulation will be imple-
mented on the real system and not just in simulation, the accuracy
of the system’s dynamic evolution within the NLP was improved by
decreasing the integration time step from h to h/2. This was not done
by doubling the total number of stages, but rather by implementing
two semi-implicit Euler steps within each interval. Moreover, recall-
ing that the tangential frictional forces arising due to contact events
are neglected in our problem, a condition was added to confine the
tool’s velocity vector along the normal direction, during a closed con-
tact (so no sliding along the tangential contact plane is allowed). In
fact, the tangential direction that is along the y-axis of the object’s
frame is already taken care of by Newton’s restitution law; however,
the one along the z-axis is not considered. Hence, we add the following
nonlinear equality constraint:

λ
(

[0 0 1] · J (E)
P q̇r

)
= 0 (6.5)
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– Finally, after doing all of the required modifications, it is quite in-
evitable to encounter a deterioration in speed and some convergence
difficulties. An effective way to aid the solver was by relaxing the
tolerance on the stationarity residuals (as previously discussed in the
ANYpulator-Door problem of Chapter 5) and through the adopted
initialization scheme. To elaborate on the latter idea, we start by
recalling that the introduction of the modified CIO approach in Sec-
tion 4.3 was based on adding Newton’s restitution law for feasibility
guarantees (this will also be verified in the next Section), but we also
mentioned that this could make it more challenging for the solver to
attain convergence as fast as before. This idea was tested on the cur-
rent problem, and it appears that if one starts with a proper initial
guess (the guess that leads to a local minimum after a number of
iterations), then convergence speeds are quite similar for both formu-
lations. However, for a poor initial guess, getting rid of the impact
law slightly improves (based on observation) the total convergence
speed (after solving the NLP multiple times while continuously up-
dating the initial guess). Therefore, what was eventually done was to
introduce a boolean variable as a real-time parameter (just to avoid
having to re-generate the code again due a change in the formulation)
in Equation (4.12), that would first "turn-off" the no-rebound condi-
tion, solve the problem, then "turn-on" the condition and solve the
problem again using the previous solution as an initial guess.
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6.2 Results: Optimization, Simulation and Experimen-
tation

Just to get an idea of how large is the CIO program needed to solve this ma-
nipulation task: we obtain a problem size that is defined by 896 optimiza-
tion variables, 819 equality constraints, and 1955 inequality constraints!
The resulting NLP is solved in around 800 ms (300 iterations) depending
on which local minimum is attained (some minima required around 2 s to
be found), when the proper initial guess is used of course. For poor initial
guesses, the total solving time can reach up to 1 min, but generally not
more than that. As for the simulations, the same considerations are applied
here as for the other previous problems, but adding to that, the Gazebo
option for specifying the static coefficient of friction was set such that it
emulates our real-life example (i.e. µs = 0.13).

Coming to the experimentation, several test runs were performed on varia-
tions of the ANYpulator-Block problem (i.e. Trying different robot initial
conditions, different block starting configurations and different final desired
positions for the block). Here we emphasize on three experiments that were
tested 5 times each, and then analyze the results and draw conclusions from
them. But first we mention a couple of essential points concerning the ex-
perimental procedure:

Since the time-horizon we are working with is considerably small (the robot
is expected to perform the manipulation task in T = 1.5 s), initial exper-
iments involved testing the resulting optimal trajectories by scaling them
with respect to time: Starting with a larger time horizon and going down
gradually to a scale of 1 (this was done due to safety considerations). More-
over, the block was not introduced at this stage of the experiments, since
the feasibility of the robot joint-trajectories was our mere primary concern.
In order to scale our trajectories (positions, velocities, as well as torques),
formulas obtained from Dynamic Scaling had to be considered (see [43] for
more details):

Given t ∈ [0, T ], let θ = k · t ⇒ θ ∈ [0, kT ]
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So the new scaled optimal trajectories are now referred to as q̂(θ), q̂′(θ),
and τ̂(θ) and can be shown to be computed as follows (for each joint):

q̂(θ) = qopt(t)

q̂′(θ) =
q̇opt(t)

k

τ̂(θ) = g(q̂(θ)) +
τopt(t)− g(qopt(t))

k2

(6.6)

where g(.) is the gravitational torque applied on the joint of interest.

Eventually, with gradual down-scaling and proper manual tuning of the
PID gains, we were able to achieve satisfactory tracking results using the
following gains (the best gains turned out to be given by a set of pre-
viously tuned default values): Kp = [110 120 100 80 80]T , Kd =
[0.2 0.1 0.05 0.15 0.05]T , and Ki = [0.02 0.025 0.015 0.03 0.03]T .

Another issue worth considering, was the proper placement of the block
with respect to the robot’s base frame, because if this was not the case,
then the optimal trajectories to be tracked by the robot would either miss
the block and not make contact with it, or would push it at the wrong
place. So to have a somewhat accurate placement of the initial block pose,
its starting position and orientation were provided as a target reference for
the robot’s tool frame, that was tracked with an inverse kinematics con-
troller. After that, the block was placed accordingly, and then the robot
was commanded to go to its own starting configuration before running our
CIO controller.

Before showing our experimental results, a single simulation result is given
for the mere purpose of comparing the CIO approach with and without
Newton’s restitution law. Even though both methods appear to find the
same optimal contact force sequence (needed to achieve the task of pushing
the block to the desired position), it is clear from the simulations in Fig-
ures 6.4 and 6.5 that one is actually feasible and the other is not (the one
with no impact law doesn’t even cause the block to move, while the other
one sends the block really close to the target position). This infeasibility
can be well-understood by looking at the differences in the optimal torques
obtained from the optimization in Figures 6.2 and 6.3 (notice the jumps
that occur in the torques at the contact event in Figure 6.3).
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6.2. Results: Optimization, Simulation and Experimentation

Figure 6.2: Optimal joint input torques resulting from a CIO formulation that does
not include Newton’s restitution law
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Chapter 6. ANYpulator-Block Problem

Figure 6.3: Optimal joint input torques resulting from a CIO formulation that
includes Newton’s restitution law
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6.2. Results: Optimization, Simulation and Experimentation

Figure 6.4: Snapshots of a simulation resulting from a CIO formulation that does
not include Newton’s restitution law
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Chapter 6. ANYpulator-Block Problem

Figure 6.5: Snapshots of a simulation resulting from a CIO formulation that
includes Newton’s restitution law
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6.2. Results: Optimization, Simulation and Experimentation

As for the obtained experimental results, these will be distributed among
three different parts, where we show, for all of them, the joint position
responses, the end-effector (tool) position responses, and snapshots from
their corresponding videos; in addition to that, a force/torque sensor was
mounted on the robot end-effector in order to compare the contact forces
generated on the real setup to the forces predicted by the optimization.
The three performed experiments involve the same initial block pose and
robot configuration; however, the desired displacement of the block varies
among them.

In the first experiment, the expected block displacement (given from the
optimization) is 0.7 m. The contact event involves a single impulsive
push with a force of about 50 N acting over the whole time step (for
h = 0.0387 s). On the other hand, the desired displacement for experi-
ments 2 and 3 were reduced to 0.6 m and 0.4 m, respectively. Consequently,
this led to a decrease in the maximum generated contact force. More inter-
estingly, in the second experiment, we perceive a contact event that lasts
for approximately 8 · h = 0.3096 s, while in the last one we encounter two
separate contacts (one with a small magnitude and the other with a large
one) held over a single time step each.

The reason why this information is highlighted is basically to pinpoint the
richness of the CIO approach in general, as it yields contact schedules that
couldn’t be easily considered or planned within a multi-phase approach;
and also to indicate the dynamic feasibility of the utilized method in three
different settings by noting that the predicted contact sequence was indeed
true as it was compatible with both the readings of the force sensor and
the observation of the properly-tracked motion plan (from the videos as
well as the joint and end-effector position plots). To elaborate, it could
be noted from the Cartesian coordinates of the tool that the robot indeed
reaches the block’s initial position and tends to sustain the closed contact as
much as specified by the optimal trajectories, while also maintaining a tool
height greater than 5 cm throughout the full time-horizon. Specifically,
recalling that the block is pushed in the negative y-direction, one could
notice the different tool y-position responses among the three performed
experiments. Furthermore, one should keep in mind that eventhough the
force magnitudes in the normal contact force plots are not equivalent, the
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Chapter 6. ANYpulator-Block Problem

resulting impulses, however, tend to be reasonably similar, as the larger
forces (perceived from the experimental force/torque sensor-data) act over
a smaller time-interval.

It is important to recall also that each experiment was repeated 5 times in
order to demonstrate the method’s repeatability and reliability (indeed this
was shown to be true, as the same results as those presented below came
up repeatedly, for various runs of the same experiment). A discussion on
the method’s accuracy is provided after the upcoming experimental results.

Experiment 1

Figure 6.6: ANYpulator joint positions tracking optimal-reference trajectories
(Experiment 1)
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6.2. Results: Optimization, Simulation and Experimentation

Figure 6.7: ANYpulator end-effector tool position (in cartesian coordinates),
tracking optimal trajectories, given by forward kinematics (Experiment 1 )

(a) (b)

Figure 6.8: Normal Contact Force: (a) Optimization Result, (b) Experimental
Result (Experiment 1)
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Chapter 6. ANYpulator-Block Problem

Figure 6.9: Snapshots for the manipulation task with a desired block displacement
of 0.7 m (Experiment 1)
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6.2. Results: Optimization, Simulation and Experimentation

Experiment 2

Figure 6.10: ANYpulator joint positions tracking optimal-reference trajectories
(Experiment 2)

105



i
i

“output” — 2018/12/4 — 14:46 — page 106 — #124 i
i

i
i

i
i

Chapter 6. ANYpulator-Block Problem

Figure 6.11: ANYpulator end-effector tool position (in cartesian coordinates),
tracking optimal trajectories, given by forward kinematics (Experiment 2)

(a)
(b)

Figure 6.12: Normal Contact Force: (a) Optimization Result, (b) Experimental
Result (Experiment 2)
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6.2. Results: Optimization, Simulation and Experimentation

Figure 6.13: Snapshots for the manipulation task with a desired block displacement
of 0.6 m (Experiment 2)
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Experiment 3

Figure 6.14: ANYpulator joint positions, tracking optimal-reference trajectories
(Experiment 3)
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6.2. Results: Optimization, Simulation and Experimentation

Figure 6.15: ANYpulator end-effector tool position (in cartesian coordinates),
tracking optimal trajectories, given by forward kinematics (Experiment 3)

(a) (b)

Figure 6.16: Normal Contact Force: (a) Optimization Result, (b) Experimental
Result (Experiment 3)
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Figure 6.17: Snapshots for the manipulation task with a desired block displacement
of 0.4 m (Experiment 3)
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6.2. Results: Optimization, Simulation and Experimentation

Richness, feasibility, and repeatability of the adopted CIO approach have
been brought up in our discussion on the available experimental results.
Now to add an accuracy-based evaluation into the picture, we refer to the
plot shown in Figure 6.18, which indicates the final error (in absolute value)
between the real block position and the final position that was anticipated
as a result of the optimization. First of all, it was noticed that in all
of our experiments, the block always travels a distance that is less than
the expected one. This could be heavily related to the inaccuracy in our
dynamic model in general, and specifically our impact model (which was
assumed to be purely inelastic) and the assumed static friction model (in
this case it seems that we have underestimated the frictional effects).

Figure 6.18: Observed error between the block’s final position and the desired one,
throughout the three experiments (performed 5 times each)

Secondly, a trend could be fairly noticed and elaborated upon: It is quite
clear that the higher is the desired block displacement, the more erroneous
is our manipulation-task satisfaction. This could be partly related to the
fact that the higher the demanded displacement, the larger the generated
contact force; and since there could be a slight deviation from the required
contact location (the central line of the box), then this would lead to the
block’s rotation along with its translation. This, in turn, would make it
lose a part of its total kinetic energy, thus having less energy left to go
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Chapter 6. ANYpulator-Block Problem

through the whole required translational motion. Moreover, the neglected
frictional forces acting in the tangent contact plane may as well lead to the
block’s undesired rotation. In case the contact force did not turn out to
be larger, but started acting at an earlier time (to attain a farther away
position at the end of the time horizon) this would also increase inaccuracy
due to the greater accumulated integration error. A final comment to be
mentioned concerning the method’s accuracy is that some local minimums
are in fact much worse than others (in the sense that they are not nearly
as accurate as their counterparts). Most of the times, this turns out as
a result of the poor modeling of the contacting bodies (which assumes in
our case that it happens between a point and a plane), whereas in reality,
the sides of the end-effector, and not just its tool-frame’s origin, also can
come into contact with potentially contacting bodies; and this is not taken
into account in our formulation. That is why it is essential to check the
resulting local minimum by visualizing its trajectories and then simulating
them, before thinking of applying them to the real system setup.
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Chapter 7

Conclusion

To conclude, the aim of this work was to tackle robot dynamic object-
manipulation tasks by relying on a contact-implicit optimization (CIO)
approach, that essentially incorporates a hard contact model into the for-
mulation of a direct trajectory optimization scheme. The resulting contact
forces were resolved, along with the state and control input trajectories,
through the use of a multiple-shooting method, within the FORCES Pro
framework. More specifically, the state-transition function was given as a
result of a time-stepping scheme, which treats the problem of non-smooth
dynamic simulation on a velocity-impulse level, thus also allowing for the
treatment of impact events with ease. As for the set-valued force laws,
resulting from the non-smooth contact dynamics, these were dealt with by
the addition of complementarity conditions that needed to be satisfied at
every stage. In addition to that, the dynamic feasibility of the optimal
trajectories was further enhanced by incorporating Newton’s impact law
into the CIO formulation. Consequently, we were left with a mathemati-
cal program with complementarity constraints (MPCC) that was efficiently
solved with a primal-dual interior point algorithm. The obtained control
policy is in open-loop form, as it is the outcome of solving a nonlinear
optimal control problem once, offline. Hence, a control law that combines
the optimal input sequence with a PD-feedback term was utilized instead,
in order to stabilize the desired motion plan.

A theoretical motivation has been made for the adoption of this method-
ology in controlling the hybrid system dynamics governing our applica-
tions. First, different modelling techniques and simulation schemes for
non-smooth contact dynamics have been presented. The key-points that
were addressed in this part reveal the benefits of resorting to a hard contact
model and a time-stepping (event-capturing) integration scheme instead of
a soft model and an event-driven scheme, respectively. This was done
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Chapter 7. Conclusion

while also considering the difficulties and downsides that come along such
a choice, one of which was having to accept the fact that time-stepping
techniques can only yield a local truncation error of O(h), regardless of
the order of the underlying Runge-Kutta scheme. It was also seen that the
choice of a hard contact model gives rise to set-valued force laws, rather
than smooth ordinary differential equations, due to the unilateral contact
constraints. In related works, this matter is generally resolved by solving
a linear complementarity problem (LCP) – which was the basis behind
the adopted CIO formulation – or through the augmented Lagrangian ap-
proach.

Secondly, a survey of the different optimal control methods was made.
We leveraged the use of direct methods in trajectory optimization (such as
single shooting, direct collocation, and multiple shooting), over dynamic
programming or indirect approaches. Therefore, what we end up doing is
a discretization of the optimal control problem – which can also be seen as
an infinite-dimensional optimization problem – thus transforming it into a
finite-dimensional optimization program that was solved with the FORCES
NLP solver. Eventually, the presented concepts were then extended to ac-
commodate problems involving optimal control of hybrid systems. Accord-
ingly, the multi-phase approach was introduced as the control analog of
event-driven simulation techniques – and thus requires an a priori knowl-
edge of the full mode sequence – while the contact-invariant (more gener-
ally, mode-invariant) approach as the analog of time-stepping simulation
schemes – and thus optimizes through the contacts without the need for
a pre-specified contact schedule. We have also shown that it is possible
to have several variations of the CIO formulation, but we constrained this
work to the implementation of the one described at the beginning of our
conclusion.

This method was tested on several manipulation tasks, all involving dy-
namic pushing as their main contact event. Visualizations of low-dimensional
preliminary 2D examples were provided as a result of the optimal trajec-
tories outputted from the nonlinear program, mostly to verify the satisfac-
tion of the contact constraints at every stage, and the boundary conditions
(through which the task is defined). Simulations were performed for the
higher-dimensional 3D applications involving object manipulation by the
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6-DOF ANYpulator robot. The dynamic feasibility of the state trajectories
as well as the generated contact forces, was ensured in all scenarios, in ad-
dition to verifying the satisfaction of the complementarity conditions and
boundary conditions, by the presence of a powerful rigid body dynamics
simulation engine and a collision detection engine (Open Dynamics En-
gine). On the other hand, a nonlinear model predictive control (NMPC)
scheme, that does not require any sensory feedback on the contact force or
the object states, was explored and implemented to solve the ANYpulator-
Ball problem. Simulink simulation results were presented that suggest a
notable similarity in the contact schedule resulting from solving the nonlin-
ear optimal control problem in open-loop versus in closed loop. However,
while NMPC has shown to be more energy efficient than the open-loop
scheme, it is still a hypothetical implementation that assumes reasonably
higher convergence speeds (for the NLP solver); and therefore cannot be
applied in practice so far.

Finally, a contact-implicit optimization program has been formulated, solved,
and tested experimentally for the problem in which ANYpulator is required
to push a block onto a desired position that is outside of the robot’s reach.
In this part, we have demonstrated how the Coulomb static friction model
was identified and then incorporated into our CIO formulation by adding
the friction force as an extra optimization variable and satisfying the fric-
tional set-valued force law with complementarity conditions. The corre-
sponding results displayed satisfactory tracking of joint and end-effector
tool reference positions. Furthermore, a force/torque sensor was mounted
on the tool to retrieve the normal contact force and compare it to the opti-
mal contact force sequence; these produced results that are indeed compat-
ible. This information, along with the observation of the real-time imple-
mentation of the manipulation task, have suggested the richness (in terms
of discovering various contact schedules), dynamic feasibility, and repeata-
bility of this approach; while its task-satisfaction accuracy has been shown
to be adequate, but increases with the assigned desired displacement of the
block. This increased inaccuracy was speculated to be a possible result of
the adopted friction model, the unmodelled frictional forces arising in the
contact plane, the assumption of a purely inelastic collision, accumulated
integration error, the point-plane distance assumption when computing the
minimum signed gap function between the tool and the block, and the lat-
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eral offset between the tool and the block centerline during a closed contact,
that may cause a loss of translational kinetic energy due to the undesirable
rotation of the block.

There are several directions for future work and considerations, one of which
encompasses the improvement of the current CIO approach by moving away
from the typical Runge-Kutta schemes – which when applied within the
time-stepping framework, yield a maximum order proportional to the step-
size – and exploring higher-order time-stepping techniques instead, in order
to improve dynamic feasibility and hence, the method’s accuracy. For ap-
plications that involve frictional forces arising between the environment and
the object (as in the ANYpulator-Block problem), alternative friction mod-
els could be chosen, while finding an appropriate balance between modeling
accuracy and complexity. Frictional forces arising in the tangential contact
plane could also be incorporated into the formulation; in fact, they should
be included for manipulation tasks where the contact force direction is no
longer dominated by the normal direction. Furthermore, the proposed non-
linear model predictive control scheme could be tested in real-time on other
application problems that can be solved within the required computational
time. In addition to that, a deeper exploration of NMPC approaches could
also be made, for instance by relying on a shrinking-horizon concept rather
than the already-used receding-horizon; or by solving our contact-implicit
optimization problem, online, with an SQP algorithm, while following the
steps constituting the real-time iteration scheme. On the other hand, it
would also be interesting to try out different variations of the contact-
invariant method, applied to similar dynamic manipulation tasks, to even-
tually examine their differences and conclude on which one would turn out
to be superior for such applications. Lastly, it is worth mentioning that
the approach presented in this thesis work is expected to be less successful
when applied to tasks involving highly-underactuated dynamics – such as
in locomotion tasks, where also contacts are generally sustained for longer
periods of time – because of the difficulty associated with stabilizing the
optimal trajectories in these cases. However, it would still be compelling
to test it within such domains and improve it accordingly. One could think
of implementing the method on more useful applications, such as, for in-
stance, a legged robot (quadruped or biped), that has to use one of its
limbs to open a door by pushing it dynamically; one could also move away
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from graspless, nonprehensile manipulation and tackle problems involving
robotic hands operating with objects through grasping. Those are just a
few examples of many other future potential robotic tasks to be accom-
plished within contact-rich settings.
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