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Abstract

The aim of this work is to provide an analytical description of the problem of estimating the
minimum error which occurs when measuring the diameter of a perfect cylinder, representing
a pipe in the context of industrial production, with a computer vision system composed by
m calibrated independent cameras, each one paired with a laser.
The analysis of this problem has been carried out combining the mathematical tools given by
affine and euclidean geometry, Lie group theory, statistical parameter estimation and data
analysis.
More specifically, we derive the system of equations which define the mathematical model
for the deterministic problem. Then we add uncertainty on measurements and we compute
a modified version of the classical Cramer Rao Lower Bound adapted to geometric fitting
problems, the so called Kanatani Cramer Rao Lower Bound.



Sommario

Lo scopo di questo lavoro è dare una descrizione analitica al problema della stima dell’errore
minimo sulla misurazione del diametro di un cilindro perfetto, che modellizza un tubo ideale
nel contesto della produzione industriale, con un sistema di visione artificiale composto da m
telecamere calibrate e indipendenti, ognuna delle quali accoppiata con un laser.
L’analisi di questo problema è stata condotta combinando gli strumenti matematici forniti
dalla geometria affine ed euclidea, dalla teoria dei gruppi di Lie e dalla statistica applicata
alla stima di parametri e all’analisi dei dati.
Nello specifico, deriviamo il sistema di equazioni che definisce il modello matematico per il
problema deterministico. Poi includiamo l’incertezza dovuta agli strumenti di misurazione
e calcoliamo una versione modificata del classico limite inferiore di Cramer Rao addattato
appositamente per i problemi di fitting geometrico, chiamato limite inferiore di Kanatani
Cramer Rao.



Chapter 1

Introduction

The object of this work is the study of the error on the construction of pipes in an industrial
context, where high precision is an essential requirement.
The main problem is to estimate the minimum error which occurs when measuring the di-
ameter of a perfect cylinder, representing the pipe, with a system composed by m calibrated
independent cameras.
Each camera/laser pair can be calibrated with very high precision (meaning in the order of
a few millimeters). At the best of our knowledge, there is not a method able to estimate the
error occurring when coupling the different measurements coming from each camera/laser
pair in order to cover the whole diameter of the cylinder.
Our work aims to evaluate a lower bound for the error, below which any improvement is
impossible, according to the features of the components, the setting and the physics of the
sensors.
There are various approaches to error analysis problem, e.g. among the most popular there
are the ones based on MonteCarlo simulations. However, in this thesis we choose the Cramer
Rao approach to search for a lower bound on the covariance matrix of the estimated param-
eters. Being a parametric approach, the Cramer Rao Lower Bound allows the analysis of the
dependancy of the estimated error on the given instrumental and methodological limitations.
In this work, we are not going to use the classical approach, but a modified version called
Kanatani Cramer Rao lower bound ([21],[22],[23],[24],[25],[26]) which is intended to be specif-
ically adapted for geometric fitting problems.
In the first part of this work we are going to introduce all the theoretical concepts and no-
tations which we use in the last chapters, i.e. the theoretical background needed to develop
our approach, that combines different areas of geometry, algebra and statistics.
In the second part of this work, we are going to explain into details the model that we de-
veloped to solve our problem. Moreover, we will show the results of our theoretical analysis
in a case study. Our computations will be performed in Matlab and R.
The thesis is structured as follows:

• Chapter (2) contains a summary of concepts of affine geometry that are necessary for
1



2 Chapter 1. Introduction

the formulation of the deterministic problem;

• Chapter (3) extends the previous concepts to euclidean geometry;

• Chapter (4) reviews the basics of the theory of Lie groups and algebras with particular
focus on the two and three dimensional cases;

• Chapter (5) is about the definition of conic curves and quadric surfaces in euclidean
spaces;

• Chapter (6) introduces the statistical theory behind methods of parametric performance
evaluation and the Kanatani Cramer Rao Lower Bound;

• Chapter (7) describes the method that we use in order to arrive to the equations for
the deterministic model describing our problem of interest;

• Chapter (8) focuses on the statistical model and here we apply the Kanatani Cramer
Rao Lower Bound to our problem;

• Chapter (9) contains the analysis of the case study;

• Appendix (A.1) contains the most technical computations, while in Appendix (A.2))
we put the codes that we used for our formulations, written in Matlab and R languages.



Chapter 2

Affine geometry

Affine geometry can be seen as a way to generalize classic euclidean geometry in absence of
the notions of angles and distances.
For the sake of brevity, we are not going to prove the results that we show, since they are
well known and their proof can be found easily in the literature (refer to the source [27]).

2.1 Vector spaces

Definition 2.1.1. Given M = {1, . . . ,m} and N = {1, . . . , n}, a matrix of order (m,n) with
elements in the field K is a function

A : M ×N → K

(i, j) 7→ aij

The n-tuple AR(i) = (ai1, . . . , ain) ∈ Kn is called the ith row of A, while the m-tuple AC(i) =
(a1j , . . . , amj) ∈ Km is called the jth column of A. The set of the matrices of the type (n,m)
with ground field K is called Mat(m,n;K).

Definition 2.1.2. Let us consider a system of m linear equations with coefficients aij , con-
stant terms bi in the ground field K and n unknowns xj :

a11x1 + · · ·+ a1nxn = b1

...

an1x1 + · · ·+ annxn = bn

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Then the coefficients matrix and the columns of constant terms and unknowns are

A =


a11 . . . a1n
...

...
an1 . . . ann

 , B =


b1
...
bn

 , X =


x1
...
xn

 .
3



4 Chapter 2. Affine geometry

The complete matrix of the linear system is [A|B], obtained by adding the column B to A on
the right. Finally, the linear system defined by the complete matrix of coefficients [A|0[n×1]]
is called homogeneous system associated to [A|B].

Definition 2.1.3. A linear map (also called a linear mapping, linear transformation or, in
some contexts, linear function) is a mapping f : V → W between two vector spaces on the
same gorund field K that preserves the operations of addition and scalar multiplication.
The set of linear maps from V to W is called Hom(V,W ).
In the case when V = W the map is called a linear operator or an endomorphism of V .

Example: If A is a real m × n matrix, then A defines a linear map from V = Rn to
W = Rm by sending the column vector x ∈ Rn to the column vector f(x) = Ax ∈ Rm.

Definition 2.1.4. In linear algebra, the kernel (also known as null space or nullspace) of a
linear map L : V →W between two vector spaces V andW , is the set of all elements v ∈ V for
which L(v) = 0, where 0 denotes the zero vector in W . That is ker(L) = {v ∈ V |L(v) = 0}.

Definition 2.1.5. Let A and B be two ordered bases of a vector space. The matrix of change
of basis from A to B is the matrix whose columns are the coordinate vectors of the elements
of the new basis B relative to the original basis A and we call such a matrix MBA.

Definition 2.1.6. Let V be a vector space and B = (v1, . . . ,vn) ∈ V n be its basis. For any
vector v ∈ V , the linear combination v = t1v1 + · · ·+ tnvn is called decomposition of v with
respect to the basis B. The coefficients of the decomposition t1, . . . , tn are called components
of v with respect to B. Finally, the function

ΦB : V →Mat(n, 1;K)

v 7→ v|B = [t1, . . . , tn]T

is called map of the components.

Definition 2.1.7. Let V,W be finitely generated vector spaces on the same ground field K
with bases BV = (v1, . . . ,vn) and BW = (w1, . . . ,wm). Then the map of the components
for the linear maps is

ΦBV BW : Hom(V,W )→Mat(m,n;K)

f 7→ F |BV BW

where F |BV BW =
[
F (v1)|BW | . . . | F (vn)|BW

]
. We say that F |BV BW represents f

with respect to the two chosen bases.

Theorem 2.1.8. Let V,W be finitely generated vector spaces on the same ground field K with
bases BV ,BW and f ∈ Hom(V,W ). Then F |BV BW is the only matrix for which f(v)|BW =
F |BV BW v|BV for any v ∈ V . Moreover, the map of the components ΦBV BW :
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• is an isomorphism of vector spaces;

• respects the multiplicative structure, in the sense that if U is a vector space on a ground
field K with basis BU and g ∈ Hom(U, V ) then

ΦBUBW (f ◦ g) = ΦBV BW (f)ΦBUBV (g).

We give the notion of affine spaces by using the so called Weyl axioms.

Definition 2.1.9. Let us consider a non-empty set A, a vector space V and a function

ψ : A×A→ V

(P,Q) 7→ −−→PQ

The structure A = (A, V, ψ) is an affine space if

(i) for any P ∈ A fixed, the function

ψP : A→ V

Q 7→
−−→
PQ

is bijective;

(ii) the parallelogram rule holds

ψ(P,Q) + ψ(P,Q) + ψ(Q,R) = ψ(P,R) for any P,Q,R ∈ A.

Definition 2.1.10. Given A = (A, V, ψ), the elements P ∈ A are called points, the couple
(P,Q) ∈ A×A is called oriented segment from P to Q and the vector −−→PQ is called displace-
ment vector from P to Q. The set A and the vector space V are called support and direction
of A respectively. The dimension of the affine space is defined as dim(A) = dim(V ). The
space is called affine line if dim(A) = 1 and affine plane if dim(A) = 2.

Example: Let V be a vector space and ψ the function

ψ : V × V → V

(v1,v2) 7→ v2 − v1

The function ψ is bijective: indeed for any w ∈ V there exists a unique vector v2 ∈ V

such that w = ψ(v1,v2) = v2 − v1, i.e. v2 = v1 + w. Moreover, ψ(v1,v2) + ψ(v2,v3) =
v2 − v1 + v3 − v2 = v3 − v1 = ψ(v1,v3) for any v1,v2,v3 ∈ V . Therefore (V, V ψ) is an
affine space denoted as AV . The affine space associated with (Kn, (Kn,K,+, ·), ψ) is denoted
as AnK.

The function ψ associates a couple of points P,Q to the displacement vector between them.
This is equivalent to state that it is possible to start from a point P and to reach any



6 Chapter 2. Affine geometry

other point in the space through any of the possible translations, and viceversa any possibile
tranlsation is uniquely determined by the starting point P and the ending point Q. Moreover,
if we move from P to Q first and then from Q to R, this is equivalent to moving directly
from P to R.
Given an arbitrary point O ∈ A, the request for ψO to be a bijective map between the points
in A and the vectors in V is fundamental for the study of A. The reason is that, once we
choose a basis B of V with components ΦB, we can use these components to express ψO,
obtaining a bijection between A and the matrix space Mat(n, 1;K), where n = dim(A) and
K is the field over which V is defined. This way any point of A is assigned a unique n-tuple
in Kn, and viceversa.

Definition 2.1.11. An affine reference system of an affine space A = (A, V, ψ) is a subset
BO ∈ A×V constituted by a point O ∈ A and by the vectors of a basis B of V . The function

ΦBO : A→Mat(n, 1;K)

P 7→ P |BO = (ΦB ◦ ψO)(P )

is called map of coordinates and the elements of the matrix (ΦB◦ψO)(P ) are called coordinates
of P with respect to BO. The point O is called the origin of the reference system.

Remark 2.1.12. If BO is a reference system in A, then the coordinates of a point P ∈ A
satisfy the fundamental relation

P |BO = ΦB(ψO(P )) = ΦB(−−→OP ) = −−→OP |B,

from which we derive −−→PQ|B = (−−→OQ−−−→OP )|B = −−→OQB −
−−→
OPB = Q|BO − P |BO .

In the case of an affine space AV , if the direction V have a canonical basis B then BO = (0V ,B)
is called canonical reference system, with respect to which v|BO = (v − 0)|B = v holds for
any v ∈ AV .

Example: Let us consider the case of the affine plane A2
R with points P0 = (0, 0), P1 =

(1, 0), P2 = (0, 1) and Q = (1, 1). The points P0, P1, P2 determine six possible different
reference systems of A2

R, with respect to each the point Q will have different coordinates.
Let us choose the reference system with origin in P0 and the basis

B0 = (−−−→P0P1 = P1 − P0 = (1, 0),−−−→P0P2 = P2 − P0 = (0, 1)).

This is the canonical reference system for A2
R, with respect to which the coordinates of Q are

Q|BP0
= −−→P0Q|B0 = (Q− P0)|B0 = (1, 1)|B0 = [1, 1].

If instead we choose the origin P1 and the basis

B1 = {−−−→P1P0 = P0 − P1 = (−1, 0),−−−→P1P2 = P2 − P1 = (−1, 1)},

the coordinates of Q with respect to the reference system BP1 = {P1,
−−−→
P1P0,

−−−→
P1P2} are Q|BP1

=
−−→
P1Q|B1 = (Q− P1)|B1 = (0, 1)|B1 = [−1, 1].
The other reference systems are defined anaolgously.
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2.2 Affine subspaces

Definition 2.2.1. Let A = (A, V, ψ) be an affine space, let S be a subset of A and ψ|S×S the
restriction of ψ. Then S is called affine subspace of A if Im(ψ|S×S) is a vector subspace of V
and (S, Im(ψ|S×S), ψ|S×S) is also an affine subspace. If dim(S) = dim(A)− 1, the subspace
is called hyperplane of A.

Proposition 2.2.2. Let A = (A, V, ψ) be an affine space, let S be a subset of A and P be a
point of S. Given the set U = −−→PQ ∈ V |Q ∈ S, then S is an affine subspace of A if and only
if U is a vector subspace of V . In such a case, U is the direction of S.

Remark (2.2.2) means that an affine subspace S is completely determined if we know
a point P and its direction U , since a point Q ∈ A belongs to S if and only if −−→PQ ∈ U .
Therefore, an affine line is uniquely determined by a point P and a non-zero vector belonging
to its direction. Equivalently, an affine plane is uniquely determined by a point P and two
independent vectors composing a basis of its direction.

Proposition 2.2.3. Given the vector spaces V and W , let us consider the application f ∈
Hom(V,W ) and the affine space AV = (V, V, ψ). Then f−1(w) is an affine subspace of
AV for any w ∈ Im(f) ⊆W .

Also the inverse of remark (2.2.3) holds, i.e. for any affine subspace S of AV there exist
a linear application f and a vector w ∈ Im(f) ⊆W such that S = f−1(w).

Proposition 2.2.4. Let A be an affine space with dimension n <∞ on the field K and BO be
a reference system. Let S be an affine subspace of dimension m and BQ = (Q, (u1, . . . ,um))
be a reference system.
Let us call A =

[
u1|B . . . um|B

]
] ∈ Mat(n,m;K), B = [b1 . . . bn]T = Q|BO and X =

[x1 . . . xn]T = P |BO the column of the coordinates of point P ∈ A with respect to BO. Them

(i) decomposition X = B +
∑m
i=1 tiAC(i) exists if and only if P ∈ S, and in such a case

it is said to be a parametric representation of subspace S with respect to the reference
system BO;

(ii) if we reduce the matrix A contained inside the matrix [A|X −B], we obtain the matrix
[S|X ′]. Its last n −m rows constitute an algebraic representation of S with respect to
the reference system BO.

Corollary 2.2.5. Let A be an affine space with dimension n <∞ on the ground field K and
BO be a reference system. The non-empty subset S of A is a subspace with dimension m if
and only if there exists a matrix [A|B] ∈Mat(n−m,n+ 1;K) with maximum rank such that
ΦBO(S) is the set of the solution of the system associated to [A|B] In this case, ΦB is an
homeomorphism between the direction U of S and ker(A).
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Example: In the affine space A3
R, let us search for the plane Π containg the points

P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1). We know that the plane is uniquely determined by
a point, for instance P1, and two vectors composing a basis of the direction. Let us consider
the vectors −−−→P1P2 = P2 − P1 = (−1, 1, 0) and −−−→P1P3 = P3 − P1 = (−1, 0, 1).
They are clearly independent, so the plane is the set of all points of Q ∈ A3

R such that
−−→
P1Q = t1

−−−→
P1P2 + t2

−−−→
P1P3 for any t1, t2 ∈ R, while BP1 = {P1,

−−−→
P1P2,

−−−→
P1P3} is a reference sys-

tem for Π.
The canonical reference system for A3

R is BP0 = {P0,
−−−→
P0P1,

−−−→
P0P2,

−−−→
P0P3} where the origin is the

point P0 = (0, 0, 0) and the basis associated with the direction isB0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Using the notation of proposition (2.2.4), we have

A =
[−−−→
P1P2|B0

−−−→
P1P3|B0

]
=


−1 −1
1 0
0 1

 , B =


1
0
0

 = P1|BP0
.

So a parametric representation of Π is
x

y

z

 =


1
0
0

+ t1


−1
1
0

+ t2


−1
0
1

 .
An algebraic representation of the plane is obtained by reducing the matrix

−1 −1 x− 1
1 0 y

0 1 z

→


1 0 y

0 1 z

0 0 x+ y + z − 1


from which we derive the equation x+ y + z − 1 = 0.

2.3 Mutual position of affine subspaces

Definition 2.3.1. Given the affine space A, let S and T be two subspaces of dimension
greater than zero with directions U and W respectively. Then, S and T are called:

(i) parallel if U ⊆W or W ⊆ U ;

(ii) incident if they are not parallel and they have at least one common point;

(iii) skewed if they are not parallel nor incident.

In particular, note that two subspaces are parallel even if one is nested in the other.

Remark 2.3.2. Let S, T be two affine parallel subspaces of A, with dimension dim(S) ≤
dim(T ) <∞. If S ∩ T 6= ∅, then:

(i) dim(S) < dim(T ) implies S ⊂ T ;
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(ii) dim(S) = dim(T ) implies S = T .

Corollary 2.3.3. Given a finite-dimensional subspace S and a point P of the affine space A,
there exists a unique subspace T parallel to S containing P and satisfying dim(T ) = dim(S).

From now on we assume that A = (A, V, ψ) is an affine space of dimension n <∞, while
S and T are subspaces with dimension p and q respectively, p ≥ q. Given a reference system
BO of A, let us suppose that the linear systems associated to [A|B] ∈Mat(n− p, n+ 1) and
[A′|B′] ∈Mat(n− q, n+ 1) are the algebraic representation of T and S respectively. Finally,
we define

[Ã|B̃] =
[
A B

A′ B′

]
∈Mat(2n− p− q, n+ 1).

Lemma 2.3.4. If S ∩ T is non-empty, then it is an affine subspace of A. In such a case, an
algebraic representation of S ∩ T is the system associated to the reduction of matrix [Ã|B̃].

Theorem 2.3.5. S and T are:

(i) parallel with T ⊆ S if and only if r([Ã|B̃]) = r(Ã) = n− q;

(ii) parallel and disjoint if and only if r([Ã|B̃]) > r(Ã) = n− q;

(iii) incident if and only if r([Ã|B̃]) = r(Ã) > n− q;

(iv) skewed if and only if r([Ã|B̃]) > r(Ã) > n− q.

Corollary 2.3.6. If S is a hyperplane of A, then S and T are either parallel or incident.

2.4 Pencils of hyperplanes

Definition 2.4.1. Let A be an affine space of dimension n ≥ 2. Then:

(i) if S is an affine subspace with dimension n−2, then the set of all hyperplanes containing
S is said to be a proper pencil of hyperplanes having S as axis;

(ii) if T is a hyperplane, then the set of all hyperplanes parallel to T is said to be the
improper pencil of hyperplanes parallel to T .

Given a reference system BO in A, any algebraic representation of a hyperplane T is given
by one linear equation [A|B] ∈Mat(1, n+1;K). The intersection of 2 generic distinct hyper-
planes T1, T2 of the pencil, with equations [A1|B1], [A2|B2] ∈Mat(1, n+ 1;K) is represented
by the system

[Ã|B̃] =
[
A1 B1

A2 B2

]
∈Mat(2, n+ 1).

If it is a pencil, then T1 ∩ T2 6= ∅ and consequently the solution of the system exists and
has dimension n− 2, as stated by the theorem in linear algebra that determines the number
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of solutions for a system of linear equations, given the rank of its augmented matrix and
coefficient matrix.
This means that the intersection coincides with S. Therefore T1 and T2 are sufficient to
determine the pencil completely.

Remark 2.4.2. T belongs to the pencil containing the two distinct hyperplanes T1, T2 if and
only if there exist t1, t2 ∈ K such that the equation associated to

[t1A1 + t2A2|t1B1 + t2B2] ∈Mat(1, n;K)

is an algebraic representation of T .

In the case of two-dimensional affine spaces we speak of pencil of lines, in the case of three
dimensional affine spaces we speak of pencil of planes.

2.5 Affine transformations

Definition 2.5.1. Let A = (A, V, ψA) and B = (B,W,ϕB) be two affine spaces on the
same field K. Then the function f : A→ B is a homorphism between affine spaces, or affine
transformation, if there exists a linear mapping f̄ : V →W such that for any oriented segment
(P,Q) ∈ A,

ϕB(f(P ), f(Q)) = f̄(ϕA(P,Q)).

The set of all affine transformations from A to B is called Hom(A,B).

Definition 2.5.2. Let A = (A, V, ψA) and B = (B,W,ϕB) be finite-dimensional affine spaces
on the same field K, with reference systems BA = (OA, BV ) and BB = (OB, BW ) respectively.
Then the map of coordinates for affine transformation is the function

φBABB : Hom(A,B)→Mat(m,n+ 1;K)

f 7→
[
F |BV BW | f(OA)|BB

]
where F |BV BW is the matrix representing f̄ ∈ Hom(V,W ).

Now we state explicitely the representation theorem for affine transformations.

Theorem 2.5.3. Let A = (A, V, ψA) and B = (B,W,ϕB) be affine spaces with dimension n
and m respectively, on the same ground field K, with reference systems BA = (OA, BV ) and
BB = (OB, BW ).
Given f ∈ Hom(A,B), then

[
F |BV BW f(OA)|BB

]
is the only matrix for which

f(P )|BB =
[
F |BV BW f(OA)|BB

] [P |BA

1

]

holds for any P ∈ A.
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Definition 2.5.4. Given two affine spaces A and B, an affinity is an affine transformation
f ∈ Hom(A,B) whose associated linear mapping f̄ is an isomorphism. If such an f exists,
then A and B are affinely equivalent.

Example: Translations are affinities. In Euclidean geometry, a translation is a geometric
transformation that moves every point of a figure or a space by the same distance in a given
direction. It is a one-to-one correspondence between two sets of points or a mapping from an
affine space to itself. For any v in a direction V of A there exists an affine transformation fv
called translation, defined as

fv : A→ A

P 7→ ϕ−1
P (v)

so if Q = fv(P ) then −−→PQ = v. We observe that it can be shown that f̄v = Idv and
consequently fv is an affinity of A. The matrix representing fv with respect to a reference
system is

Fv|BO =
[
f̄v|B fv(0)|BO

]
= fv =

[
Idv|B

−−−−→
Ofv(0)|B

]
=
[
Im v|B

]
.

Other examples of affinities are homotheties, i.e. the affine transformations associated to
linear mappings of the type f = cIdV for c ∈ K. From a geometric point of view, affinities can
be characterized as transformations that do not change relations of incidency and parallelism.
This means that the image of parallel subspaces through affinities are still parallel subspaces
of the same dimension as the initial ones, and the equivalent holds for all the other cases
of mutual position. Many properties of affinities are the same as the ones of isomorphisms
between vector spaces.

Remark 2.5.5. Let A and B be two affine spaces. Then:

(i) A and B are affine equivalent if and only if they have the same dimension;

(ii) the affine transformation f ∈ Hom(A,B) is an affinity if and only if the image of a
reference system of A is a reference system of B.



Chapter 3

Euclidean geometry

3.1 Euclidean vector spaces

Definition 3.1.1. Let V be a real vector space. A scalar product on V is an external binary
operation with real values, denoted with

〈 , 〉 : V × V → R

(v1,v2) 7→ 〈v1,v2〉

and satisfying the following properties:

(i) it is linear with respect to the first argument, meaning

〈t1v1 − t2v2,v3〉 = t1 〈v1,v3〉+ t2 〈v2,v3〉

for any t1, t2 ∈ K and v1,v2,v3 ∈ V ;

(ii) it is symmetric, meaning 〈v1,v2〉 = 〈v2,v1〉 for any v1,v2 ∈ V ;

(iii) it is positive defined, meaning 〈v,v〉 ≥ 0 for any v ∈ V , and its value is exactly 0 only
if v = 0.

Definition 3.1.2. A euclidean vector space is the algebraic structure (V, 〈 , 〉) given by a
real vector space and a scalar product.

Definition 3.1.3. In a euclidean vector space V , the scalar product induces a norm that is
the function

‖ ‖ : V → R

v 7→
√
〈v,v〉

Definition 3.1.4. Let V be a euclidean vector space and v ∈ V be a vector. Then:

(i) if ‖v‖ = 1 the vector is called unit vector;
12
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(ii) if ‖v‖ 6= 0, the unit vector ṽ = v
‖v‖ is called either normalization of v or unit vector

associated with v.

A subset U of V is called normalized if it is constituted by unit vectors.

The scalar products definable on a real vector space can be represented through appro-
priate matrices, once a basis has been chosen.

Definition 3.1.5. Let V be a euclidean vector space and U = {u1, . . . ,um} be a finite
subset of V . Then the Gram matrix associated with U is

G|U = [〈ui,uj〉] ∈Mat(m,m : R).

The determinant of G|U is called the gramian of U and it is noted as

det(G|U ) = G(U) = G(u1, . . . ,um).

Proposition 3.1.6. Let V be a euclidean finitely generated vector space and B = {v1, . . . ,vn}
be a basis. Then:

(i) the only matrix A ∈ Mat(n, n;R) such that 〈u,w〉 = u|BTAw|B for any w,u ∈ V is
the Gram matrix G|B;

(ii) the Gram matrix associated to the basis B′ is G|B′ = MB′B
TG|BMB′B.

Definition 3.1.7. Let V be a euclidean vector space. Two vectors v1,v2 are called orthogonal
if 〈v1,v2〉 = 0. If this is the case, we write v1 ⊥ v2. A subset U of V is called orthogonal
if each one of its elements is orthogonal to all the others, and it is called orthonormal if the
vectors are also normalized.
Now let v1,v2 ∈ V both be different from zero. Then, the angle between the two vectors is

v̂1v2 = arccos
( 〈v1,v2〉
‖v1‖‖v2‖

)
.

The angle v̂1v2 is well defined and it is a quantity included in the interval [0, π]. Clearly,
it depends on the euclidean structure associated to the vector space.

Definition 3.1.8. Let BU = (u1, . . . ,um) be an orthonormal basis of the subspace U . Then
the orthogonal projection on U is the map PU : Rm → Rm according to the formula

PU (v) =
m∑
i=1
〈v,ui〉ui.

Definition 3.1.9. Given a finitely generated real vector space, the basis B has the same
orientation as B′ if det(MBB′) > 0.

The request for the vector space to be real guarantees that the inequality makes sense,
since det(MBB′) is necessarly a real number.
Definition (3.1.9) gives a binary relation in the set of the possible bases of real vector space,
which is called orientation relation.
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Proposition 3.1.10. Orientation is an equivalence relation over the set of the bases of a
real vector space. Moreover, for every real space there exist two orientation classes.

Definition 3.1.11. In a finitely generated real vector space V , let B be the quotient set with
the 2 classes of orientation of V as its elements. Then:

(i) an orientation of V is a bijective function ξ : B→ {−1,+1};

(ii) the structure (V, ξ) is called oriented real vector space;

(iii) a basis belonging to ξ−1(1) is called positively oriented;

(iv) a basis belonging to ξ−1(−1) is called negatively oriented.

The canonical orientation of a vector space is the one for which the canonical basis of the
space, if it exists, is positively oriented.

Definition 3.1.12. Let (V, 〈 , 〉V ) and (W, 〈 , 〉W ) be two euclidean vector spaces. Then the
function f : V → W is a homeomorphism of euclidean spaces, or isometry, if it is a linear
application such that 〈f(v1), f(v2)〉W = 〈v1,v2〉V holds for any v1,v2 ∈ V .

3.2 Euclidean cartesian reference systems and isometries

Definition 3.2.1. A euclidean space E = (A, V, 〈, 〉 , ψ) is an affine space A = (A, V, ψ) for
which (V, 〈, 〉) is a vector euclidean space. The euclidean subspaces S of E are the affine sub-
spaces of A with euclidean structure inherited from E. Finally, the dimension of a euclidean
space is equal to its affine dimension.

The canonical euclidean space is En = (Rn, (Rn,R,+, .), 〈 , 〉E , ψ) with associated affine
space AR

n and the euclidean structure is determined by the euclidean scalar product.

Definition 3.2.2. Let P1, Q1, P2, Q2 be points of a euclidean space E. Then:

(i) the distance between two points is the function

d : A×A→ R

(P1, Q1) 7→ −−−→P1Q1

and d(P1, Q1) is called the length of the oriented segment (P1, Q1);

(ii) the angle between the oriented segments (P1, Q1) and (P2, Q2) is

(P1, Q1)(P2, Q2)
∧

= −−−→P1Q1
−−−→
P2Q2

∧

.

Any euclidean space is also a metric space with respect to the induced distance. Indeed:
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Proposition 3.2.3. Given any points P,Q,R in the euclidean space E, the distance satisfies
these properties:

(i) positivity, i.e. d(P,Q) ≥ 0, and moreover d(P,Q) = 0 if and only if P = Q;

(ii) simmetry, i.e. d(P,Q) = d(Q,P );

(iii) triangular, i.e. d(P,Q) + d(Q,R) ≥ d(P,R).

The definition of reference systems (2.1.11) is naturally extended to euclidean spaces by
taking into account the metric structure.

Definition 3.2.4. A cartesian reference system of E = (A, V, 〈 , 〉 , ψ) is a reference system
BO of the associated affine space A given by an origin O ∈ A and an orthonormal basis B of
V . The coordinates associated to BO are called cartesian coordinates.

We know that a euclidean space is oriented whenever the support vector space is euclidean
and oriented. In such a case, we distinguish between positively and negatively oriented
cartesian reference systems, according to the orientation of the associated bases.

Definition 3.2.5. Let E1 = (A1, V1, 〈 , 〉1 , ψ1) and E2 = (A2, V2, 〈 , 〉2 , ψ2) be euclidean
spaces and let f ∈ Hom(A1,A2) be an affine transformation between the two correspondent
support affine spaces. Then we call f an isometry if the associated linear mapping f̄ is an
isometry from (V1, 〈 , 〉1) to (V2, 〈 , 〉2).

If two euclidean spaces have the same dimension, then f is an isometry if and only
if the image of a cartesian reference system is still a cartesian system. If this is the case,
isometries can be geometrically characterized as affinities which do not change the angles and
the distances between geometric objects. Congruence is a concept strichtly close to isometry.

Definition 3.2.6. Let E1 and E2 be two euclidean spaces and let A1, A2 be two subsets. A1

and A2 are called congruent if there exists an isometry f such that f(A1) = A2.

By definition, two sets are congruent if and only if their corresponding points have same
angles and distances.
For example, translations are isometries, while homotheties are not.

3.3 Distance between a point and a subspace

Definition 3.3.1. Let S be a non-empty subset of a metric space and P be a point in the
space. Then

d(S, P ) = inf
Q∈S

d(Q,P ).
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By definition, the distance between two points is a real valued function bounded from
below. In general, the minimum of d(Q,P ) for Q ∈ S may not exist, but its infimum surely
exists and therefore d(S, T ) is well-defined. On the other hand, if S is an affine subspace of
a euclidean space E then Q is the projection of P on S.

Proposition 3.3.2. Let E be a euclidean space, P be a point and S be a subspace of finite
dimension. Then:

(i) d(S, P ) = ‖
−−−−−→
PS(P )P‖;

(ii) if Q ∈ S and B = {u1, . . . ,un} is a basis of the direction U of S, then

d(S, P ) =

√√√√G(u1, . . . ,un,
−−→
QP )

G(u1, . . . ,un) .

Definition 3.3.3. Let S, T be non-empty subspaces of a metric space. The distance between
the two subsets is

d(S, T ) = inf
(P,Q)∈S×T

d(P,Q).

We will focus on the study of the distance between two affine subspaces S and T of a
euclidean space E. The way this quantity can be computed depends on the mutual position
of subspaces.

Proposition 3.3.4. Let E be a euclidean space and S, T be two subspaces of finite dimension
of the direction U,W . If the two subspaces are:

(i) incident, then d(S, T ) = 0 holds;

(ii) parallel with W ⊆ U , then d(S, T ) = d(S, P ) holds, where P is a generic point of T ;

(iii) skewed, then d(S, T ) = d(S, T ′) holds, where T ′ is the smallest affine subspace containing
T and parallel to S.

Now we can write the general formula for computing the distance between two affine
subspaces.

Theorem 3.3.5. Let E be a euclidean space and S, T be two affine subspaces of finite di-
mension and directions U,W . Given (P,Q) ∈ S × T and a basis B = (v1, . . . ,vn)of U +W ,
then

d(S, T ) =

√√√√G(v1, . . . ,vn,
−−→
PQ)

G(v1, . . . ,vn) .
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Rotation groups

4.1 Matrix representation of groups

Definition 4.1.1. A group (G, ∗) is an algebraic structure with the set G and the internal
operation

∗ : G×G→ G

(g1, g2) 7→ g1 ∗ g2.

The operation must satisfy three requirements known as the group axioms:

• Associativity: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for any g1, g2 and g3 ∈ G;

• Identity element: there exists an element e ∈ G such that, for every element g1 ∈ G,
the equation e ∗ g1 = g1 ∗ e = g1 holds. Such an element is unique, and is called the
identity element;

• Inverse element: for each g1 ∈ G, there exists an element g2 ∈ G, such that g1 ∗ g2 =
g2 ∗ g1 = e, where e is the identity element.

Definition 4.1.2. Given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to
(H, ·) is a function h : G→ H such that for all u and v in G it holds that h(u∗v) = h(u) ·h(v).
If a group homomorphism is bijective, then the groups G and H are called isomorphic and it
is a group isomorphism.

Definition 4.1.3. Given a vector space V , a linear application f ∈ Hom(V, V ) is called
endomorphism of V . The set of all endomorphisms of V is called End(V ). An endomor-
phism which is also an isomorphism is called automorphism and we call GL(V ) the set of all
automorphisms of V .

Definition 4.1.4. In a euclidean vector space V , an isometric endomorphism is an applica-
tion f ∈ End(V ) which is also an isometry. The set of all isometric endomorphisms of V is
called O(V ).

17
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Definition 4.1.5. Let (V, ξ) be an oriented euclidean vector space. A rotation of (V, ξ)
is an isometric endomorphism f of the space which respect the orientation, meaning that
ξ(f(B)) = ξ(B) holds for any basis B of V . The set of all the rotations of (V, ξ) is called
SO(V ).

In other terms, a rotation is a linear application which maps any positive (negative)
oriented orthonormal basis into another positive (negative) oriented orthonormal basis.

Definition 4.1.6. Now let us define the following sets of matrices:

• GL(n,K) = {A ∈ Rot(n, n;K),det(A) 6= 0} is called General Linear group;

• SL(n,K) = {A ∈ GL(n,K),det(A) = 1} is called Special Linear group;

• O(n,K) = {A ∈ Rot(n, n;K), AAT = In} is called Orthogonal group;

• SO(n,R) = O(n,R) ∩GL(n,R) is called Special Orthogonal group.

Remark 4.1.7. The sets GL(V ), O(V ), SO(V ) are all groups with respect to the operation of
composition and SO(V ) ⊆ O(V ) ⊆ GL(V ).
The sets GL(n,R), O(,R), SO(n,R) are all groups with respect to the operation of matrix
multiplication and SO(n,R) ⊆ O(n,R) ⊆ GL(n,R).
Once a proper basis has been chosen, an invertible linear application can be represented as a
matrix in the corresponding group.

Theorem 4.1.8. Let V be a finitely generated space and let B be its basis. Then the map of
the components ΦB is an isomorphism of groups from GL(V ) to GL(n,K).
If V is also euclidean and B is also orthonormal, then the map of the components ΦB is an
isomorphism of groups from O(V ) to O(n,K).
Lastly, if (V, ξ) is an oriented finitely generated euclidean space and B is an orthonormal basis
then the map of the components ΦB is an isomorphism of groups from SO(V ) to SO(n,K).

As a consequence of theorem (4.1.8), we observe that the set of rotations does not depend
from the choice of the orientation ξ of the space, so we can speak simply of rotations of the
euclidean space V .

4.2 Lie groups, Lie algebra and exponential map

A comprehensive discussion on this topic falls outside the scope of this thesis, therefore we
are going to give an overview focusing only on the aspects of interest for our work.

A differential manifold is a type of manifold that is locally similar enough to a linear space to
allow one to do calculus. Any manifold can be described by a collection of charts. If the charts
are suitably compatible (namely, the transition from one chart to another is differentiable),
then computations done in one chart are valid in any other differentiable chart.
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An atlas on a topological space M is a collection of pairs {(Uα, ϕα)} called charts, where the
Uα are open sets that cover M , and ϕα : Uα → Rn is a homeomorphism of Uα onto an open
subset of n-dimensional real space for each index α.
The transition maps of the charts are the functions

ϕαβ = ϕβ ◦ ϕ−1
α |ϕα(Uα∩Uβ) : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ).

A Ck-atlas is an atlas whose transition maps are Ck. A continuous atlas is a C0 atlas, a
smooth atlas is a C∞ atlas. If the atlas is at least C1, it is also called a differential structure
or differentiable structure.

Figure 4.1: Charts on a manifold, (https://en.wikipedia.org/wiki/Differentiable manifold).

Different atlases can give rise to the same manifold. The circle can be mapped by two
coordinate charts, but if the domains of these charts are changed slightly a different atlas for
the same manifold is obtained. These different atlases can be combined into a bigger atlas.
It can happen that the transition maps of such a combined atlas are not as smooth as those
of the constituent atlases. If Ck atlases can be combined to form a Ck atlas, then they are
called compatible. Compatibility of atlases is an equivalence relation; by combining all the
atlases in an equivalence class, a maximal atlas can be constructed. Each Ck atlas belongs
to a unique maximal Ck atlas.

A topological manifold is a second countable Hausdorff space with an equivalence class of
atlases.
A differentiable manifold is a topological manifold equipped with an equivalence class of
atlases whose transition maps are all differentiable.
A smooth manifold or C∞-manifold is a differentiable manifold for which all the transition
maps are smooth.

Definition 4.2.1. A Lie group is a group that is also a differentiable manifold, in which the
group operations of multiplication and inversion are differentiable maps.

The sets of the type GL(n,R), SL(n,R), O(n,R) and SO(n,R) are Lie groups.

Example: Let us consider the case of the group SO(2,R). It is a a one-dimensional compact
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connected Lie group which is diffeomorphic to the circle. Using the rotation angle ϕ as a
parameter, this group can be parametrized as follows:

SO(2,R) =
{[cosϕ − sinϕ

sinϕ cosϕ

]
: ϕ ∈ R/(2πZ)

}
.

Addition of the angles corresponds to multiplication of the elements of SO(2,R), and taking
the opposite angle corresponds to inversion. Thus both multiplication and inversion are
differentiable maps.

Definition 4.2.2. A Lie algebra is a vector space g over some field K together with a binary
operation [·, ·] : g × g → g called the Lie bracket that satisfies the following axioms:

• bilinearity, [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y] for all scalars
a, b ∈ K and all elements x, y, z ∈ g;

• alternativity, [x, x] = 0 for all x ∈ g;

• the Jacobi identity, [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

We observe that, thanks to the bilinearity, the Lie bracket is determined once we know
how it is evalued on the elements of B × B where B is a basis of the vector space G.

Examples:

1. The set of all skew-symmetric 2 × 2 matrices is a Lie Algebra denoted as so(2). Since
so(2) is a vectorial space of dimension equal to 1 with respect to the operations of sum
and multiplication of matrices, its basis is given by only one element:

E =
[
0 −1
1 0

]
.

and the algebra is fixed by the anti-commutation operation [E,E] = 0.

2. The set of all skew-symmetric 3 × 3 matrices is a Lie algebra denoted as so(3). It is
spanned by the basis

Ex =


0 0 0
0 0 −1
0 1 0

 , Ey =


0 0 −1
0 0 0
1 0 0

 , Ez =


0 −1 0
1 0 0
0 0 0

 .
The commutation relations among this generators are

[Ex, Ey] = Ez, [Ey, Ez] = Ex, [Ez, Ex] = Ey.

Every Lie group has an associated Lie algebra, which is the tangent space around the identity
element of the group. That is, the Lie algebra is a vector space generated by differentiating the
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group transformations along chosen directions in the space, at the identity transformation.
The tangent space has the same structure as all group elements, though tangent vectors
undergo a coordinate transformation when moved from one tangent space to another.
There exists a function, called exponential map, which associates each element of the algebra
g to an element of the group G.
If g and G are sets of matrices, then the exponential map is

exp : g → G

A 7→ eA =
∞∑
k=0

Ak

k! .

If G is connected and compact, then the exponential map is surjective, i.e any matrix in the
group G can be derived by applying the exponential map to a matrix in the algebra.

Examples:

1. For any skew-symmetric matrix A ∈ so(2), eA is always in SO(2) and it is a matrix of
the type [

cos θ − sin θ
sin θ cos θ

]
= eθE .

In this case we report also the computations, since they are quite easy: we start by
evaluating the powers of the element of the basis E.

E0 = I, E1 = E,E2 =
[
−1 0
0 −1

]
= −I, E3 =

[
0 1
−1 0

]
= −E.

Then we write explicitely the exponential of E:

etE =
∞∑
i=0

[
t4iI

(4i)! + t4i+1E

(4i+ 1)! −
t4i+2I

(4i+ 2)! −
t4i+3E

(4i+ 3)!

]
=

∞∑
i=0

[
t4i

(4i)! −
t4i+2

(4i+ 2)!

]
I +

∞∑
i=0

[
t4i+1

(4i+ 1)! −
t4i+3

(4i+ 3)!

]
E =

(
1− t2

2! + t4

4! −
t6

6! + . . .

)
I +

(
t− t3

3! + t5

5! −
t7

7! + . . .

)
E.

By writing it as the sum of two separate summations, we observe that the first one must
converge to the terms on the diagonal while the second to the terms on the antidiagonal
of the resulting matrix: by writing explicitely the sum of the terms of each summation
we also observe that the first one is the cosine series expansion, while the second is the
sine series expansion.
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2. For any skew-symmetric matrix A ∈ so(3), eA is always in SO(3,R). For instance

R3(γ) = eγEz =


cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ∈ SO(3,R),

R2(β) = eβEy =


cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 ∈ SO(3,R),

R1(α) = eαEx =


1 0 0
0 cosα −sinα
0 sinα cosα

 ∈ SO(3,R).

Euler stated in his rotation theorem that SO(3,R) can be parametrize with three angles,
called Euler angles. Therefore it is possible to imagine any rotation as a sequence of elemen-
tary rotations with respect to each of the axis in a reference system.
In particular, a rotation can be decomposed into a rotation with angle α around the x axis,
a rotation with angle β around the y axis and a rotation with angle γ around the z axis.
The choice of the order is not unique, since different combinations of elementary rotations
can lead to the same final result.
Since SO(3,R) is connected and compact (surjectivity of the exponential map), for any ro-
tation matrix R ∈ SO(3,R) there exist A ∈ so(3) such that R = eA.
Since so(3) has dimension equal to 3, we can write A = αEx + βEy + γEz so that R is
expressed as the exponential of a linear combination of the elements of the basis of so(3):

R = eαEx+βEy+γEz .

This result is compatible with Euler’s statement that each rotation is described by three
parameters:

R = R3(γ′)R2(β′)R1(α′) =
cosβ′ cos γ′ − cosα′ sin γ′ − sinα′ sin β′ cos γ′ sin γ′ sinα′ − cos γ′ cosα′ sin β′

sinγ′ cosβ′ cos γ′ cosα′ − sin β′ sinα′ sin γ′ − cos γ′ sinα′ − sin γ′ cosα′ sin β′

sin β′ sinα′ cosβ′ cosα′ cosβ′

 .
Euler angles give a parametrization of the group, but not necessarly an injective one.
Indeed, a problem called gimbal lock happens as a result of the composition of elementary
rotations.
If we choose for instance β = π

2 , since cos π2 = 0 and sin π
2 = 1 we obtain

R =


0 − cosα sin γ − sinα cos γ sin γ sinα− cos γ cosα
0 cos γ cosα− sinα sin γ − cos γ sinα− sin γ cosα
1 0 0



=


0 − sin(α+ γ) − cos(γ + α)
0 cos(α+ γ) − sin(α+ γ)
1 0 0


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There are infinitely many values of α and γ which leads to the same rotation matrix (for
example if we choose α = β = π

3 or α = 0 and β = 2π
3 ).
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Quadrics and conics

5.1 Quadric hypersurfaces

Throughout this section, we work in an oriented euclidean space E with dimension equal to
n.

Definition 5.1.1. Respectively, the hypersphere and the hyperdisk with center C and radius
R are the subsets of points

SC,R = {P ∈ E|d(C,P ) = R} and DC,R = {P ∈ E|d(C,P ) ≤ R}.

If dim(E) = 2 then S and D are a circonference and a circle respectively, while if dim(E) = 3
they are a sphere and a disk.

Let us choose a postive-oriented cartesian reference system BO of E, with respect to
which the generic point P and the center C have coordinates P |BO =

[
x1 . . . xn

]T
and

C|BO =
[
x̄1 . . . x̄n

]T
.

Therefore it is

−−→
CP |B = P |BO − C|BO =


x1 − x̄1

...
xn − x̄n

 and d(C,P ) = ‖−−→CP‖.

Definition 5.1.2. Let BO be a positive-oriented cartesian reference system of E. A quadric
hypersurface Q is the locus of the points with coordinates x1, . . . , xn satisfying a second order
equation of the type

n∑
i=1

aiix
2
i + 2

n∑
i=1

n∑
j>i

aijxixj + 2
n∑
i=1

bixi + c = 0,

where aij , bi and c are real coefficients for any 1 ≤ i ≤ j ≤ n. If dim(E) = 2 the quadric
hypersurfaces are called conic curves, while if dim(E) = 3 they are called quadric surfaces.

24
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The hypersphere is an example of quadric hypersurface.

Definition 5.1.3. Given a hyperquadric, we set:

(i) the matrix of second order coefficients A ∈ S(n;R) with elements

(A)ij =

aij if 1 ≤ i ≤ j ≤ n,

aji otherwise
;

(ii) the column of the first order coefficients B ∈Mat(n, 1;R) with elements (B)i1 = bi for
1 ≤ i ≤ n,

(iii) the complete matrix
[
A B

BT C

]
∈ S(n+ 1;R).

Proposition 5.1.4. Given the columns

X =


x1
...
xn

 ∈Mat(n, 1;R) and Y =
[
X

1

]
∈Mat(n+ 1, 1;R),

the equation of the quadric hypersurface is XTAX+2BTX+C = 0 or equivalently Y TCY = 0.

Definition 5.1.5. The epipolar plane of a quadric Q with respect to the point P = (x̃, ỹ, z̃) ∈
E3 is defined as the plane of equation

[
x̃ ỹ z̃ 1

]
C


x

y

z

1

 = 0.

If P lies on the quadric surface, then the epipolar plane coincides with the plane tangent to
the quadric in P , i.e. it is the only plane crossing the surface along a degenerate conic which
contains the point P .

5.2 Euclidean affine spaces and euclidean elements

Let us recall the five postulates of the plane euclidean geometry:

(i) a segment of a line can be drawned between any couple of points;

(ii) any segment can be extended to a line;

(iii) given any segment, it is possible to draw a circle with this segment as radius and one
of its extreme points as centre;

(iv) all right angles are congruent;
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(v) given a line and one point not laying on it, there exist one and only one line containing
the point and not intersecting the line.1

In the section (8.4.2), we have defined the concepts of point, segment, line and plane in the
context of affine spaces. By construction, each couple of points defines a unique segment that
lays on a line, which exists and it is unique. Therefore we have built a model for Euclid’s
geometry.
In particular, we defined the structure of vector euclidean space in section (8.4.1) in order to
define the so-called metric properties of geometric objects, i.e. their length and the angles
they form.

5.3 Reduction to canonical form of quadrics

Let BO and B̃O be two positive-oriented cartesian reference systems in the euclidean space E
of dimension n. Then the coordinates of a point P with respect to the two system are related
by P |BO = MB̃BP |B̃O + Õ|BO where MB̃B ∈ SO(n;R).
From now on, we denote X = P |BO , X̃ = P |B̃O , T = Õ|BO and Q = MB̃B.
Therefore X = QX̃ + T .

Proposition 5.3.1. Let Q be a quadric with associated matrices A ∈ S(n,R), B ∈Mat(n, 1;R),
C ∈ S(n + 1;R) and constant term c ∈ R with respect to BO. Then the hypersurface Q is
still described by a second order equation with respect to B̃O and its associated matrices are
Ã = QTAQ ∈ S(n,R), B̃ = QT (AT +B) ∈Mat(n, 1;R) and C̃ = F TCF where

F =
[

Q T

0[1×n] 1

]
∈Mat(n+ 1, n+ 1,R).

Finally, the constant term of Q with respect to B̃O is c̃ = T TAT + 2BTT + c.

Theorem 5.3.2. Let us suppose that the matrices A and C associated to the quadric Q have
rank equal to r and q respectively. Moreover, let λ1, . . . , λr be the non-zero eigenvalues of A,
eventually overlapping. Then there exists a positive-oriented cartesian reference system B̃ of
E which is canonical for Q, with respect to which the equation of the quadric is:

• λ1x̃
2
1 + · · ·+ λrx̃

2
r = 0 if q = r;

• λ1x̃
2
1 + · · ·+ λrx̃

2
r + c̃ = 0 with c̃ 6= 0 if q = r + 1;

• λ1x̃
2
1 + · · ·+ λrx̃

2
r + 2px̃r+1 = 0 with p > 0 if q = r + 2.

Corollary 5.3.3. After the change of coordinates X = QX̃ + T , the matrices Ã and C̃ still
have the same rank as A and C respectively, Ã has the same eigenvalues of A and C̃ has the
same determinant as C.

1This is an equivalent version of the fifth of Euclid’s postulates.
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Definition 5.3.4. Given a representation of the quadric Q through the matrices A and C,
the invariants of the matrices are:

• Ii = (−1)n−icn−i where ci are the coefficients of the characteristic polynomial of A for
1 ≤ i ≤ n;

• In+1 = det(C).

Example: Let us consider the conic curve Q ∈ E3 with equation

x2 + 3y2 − 2y − 1 = 0

with respect to a reference system B.The matrices associated to Q are

A =
[
1 0
0 3

]
, B =

[
0
−1

]
and C =


1 0 0
0 3 −1
0 −1 −1

 .
The invariants are I1 = 4, I2 = 3 and I3 = −4. As we will see in the next theorem (5.4.1),
we can deduce that Q is a real ellipse. The eigenvalues of A are λ1 = 1 and λ2 = 3, while
for the constant term we observe c̃ = I3

I2
= −4

3 . Therefore a canonical representation of Q is
x̃2 + 3ỹ2 − 4

3 = 0.

Remark 5.3.5. Let Q ∈ SO(3,R) be a rotation matrix and T ∈ R3 a translation vector, the
matrices F of the same type as in proposition 5.3.1 form the Lie group of rototranslations
called Special Euclidean group, SE(3,R). The associated Lie algebra is called se(3) and it is
spanned by the basis (Ex, Ey, Ez, Tx, Ty, Tz), where

Tx =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , Ty =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Tz =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The commutators among the subset of generators (Ex, Ey, Ez) are the same as the ones for
so(3), while the commutators for (Tx, Ty, Tz) are

[Tx, Ty] = 0[4×4], [Ty, Tz] = 0[4×4], [Tz, Tx] = 0[4×4]

and the mixed commutators between the two susets are

[Ex, Tx] = [Ey, Ty] = [Ez, Tz] = 0[4×4], [Ey, Tx] = [Ex, Ty] = Tz,

[Ez, Tx] = Ty, [Ex, Tz] = −Ty, [Ey, Tz] = [Ez, Ty] = −Tx.

In SE(E3), the group of rototranslations in E3, if we choose a cartesian reference system we
have a non-compact Lie group, but it can be shown that the surjectivity holds also for the
translations and rototranslations matrices.
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5.4 Classification of conic curves and quadric surfaces

Historically, a conic section has been defined as any curve that we get by intersecting a cone
and a plane. Depending on the way we intersect the plane with the cone we get four different
types of the conic. The curves that we get can be either open or closed.
If the plane is parallel to the directrix of the cone, we get a circle, which is a closed curve.
If the plane is not parallel to the directrix but the curve we get by the intersection is still
closed, then the curve is an ellipse. When the plane is parallel to a generatrix of the cone
(i.e. to the side of the cone) we get an open curve named parabola. And when the plane is
not parallel to the side of the cone and the curve is open, it is named hyperbola.
These are the so called nondegenerate conics. Then there are also the so called degenerate
conics which are intersections of the cone and the plane going through the tip of the cone
(resulting in either a point or two lines).
Recalling the definition (5.1.2), we can observe that the historical definition of conic curve is
consistent with the one given in the affine geometry context in the case dim(E) = 2.

Theorem 5.4.1. In E2 the equation of any nondegenerate conic curve Q can be reduced to
one and only one of the following canonic forms:

r(C) r(A) I3 I2 I1I3 Canonical form Modules Name

3 2 6= 0 >0 <0 x̃2

α2 + ỹ2

β2 = 1 α, β > 0 real ellipse
3 2 6= 0 >0 >0 x̃2

α2 + ỹ2

β2 = −1 α, β > 0 non real ellipse
3 2 6= 0 <0 x̃2

α2 − ỹ2

β2 = 1 α, β > 0 hyperbola
3 1 6= 0 =0 x̃2 − 2ρỹ = 0 ρ > 0 parabola

Now let us focus on the quadric hypersurfaces in the case dim(E) = 3, i.e. quadrics.
Quadric surfaces in E3 can be classified in an equivalent way as conics in E2, as a direct
consequence of theorem (5.3.2) and of the definition of the invariants:

Theorem 5.4.2. In E3 the equation of quadric surface Q associated to the matrix C such
that r(C) ∈ {3; 4}can be reduced to one and only one of the following canonic forms:
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r(C) r(A) I4 I3 I2 I1I3 Canonical form Modules Name

4 3 < 0 6= 0 >0 >0 x̃2

α2 + ỹ2

β2 + z̃2

γ2 = 1 α, β, γ > 0 real ellipsoid
4 3 > 0 6= 0 >0 >0 x̃2

α2 + ỹ2

β2 + z̃2

γ2 = −1 α, β, γ > 0 non real ellipsoid
4 3 > 0 6= 0 ≤ 0 x̃2

α2 + ỹ2

β2 − z̃2

γ2 = 1 α, β, γ > 0 hyperbolic
4 3 > 0 6= 0 ≤ 0 hyperboloid
4 3 < 0 6= 0 ≤ 0 x̃2

α2 − ỹ2

β2 − z̃2

γ2 = 1 α, β, γ > 0 elliptic
4 3 < 0 6= 0 ≤ 0 hyperboloid
4 2 < 0 =0 >0 =0 x̃2

α2 + ỹ2 − 2ρz̃ = 0 α, ρ > 0 elliptic paraboloid
4 2 > 0 =0 <0 =0 x̃2

α2 − ỹ2 − 2ρz̃ = 0 α, ρ > 0 hyperbolic paraboloid

3 3 = 0 6= 0 >0 >0 x̃2

α2 + ỹ2

β2 + z̃2 = 0 α, β > 0
cone with only one

real point
3 3 = 0 6= 0 ≤ 0 x̃2

α2 + ỹ2

β2 − z̃2 = 0 α, β > 0 real infinite
3 3 = 0 6= 0 ≤ 0 cone
3 2 = 0 = 0 >0 =0 x̃2

α2 + ỹ2

β2 = 1 α, β > 0 real elliptic cylinder

3 2 = 0 = 0 >0 =0 x̃2

α2 + ỹ2

β2 = −1 α, β > 0
non real elliptic

cylinder
3 2 = 0 =0 <0 =0 x̃2

α2 − ỹ2

β2 = 1 α, β > 0 hyperbolic cylinder
3 1 = 0 =0 =0 =0 x̃2 − 2ρỹ = 0 ρ > 0 parabolic cylinder
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Performance evaluation

The problem at hand belongs to the class of geometric fitting: we fit a parameterized geomet-
ric model expressed as implicit equations to a set of data (xi)i=1...N which are geometrically
constrained to be on predetermined curves, surfaces, and hypersurfaces, and the parameters
to be estimated may also be similarly constrained.
Each xi is assumed to be perturbed by independent noise from its true value xi which strictly
satisfies an implicit equation

F (xi,p) = 0, (6.1)

where xi is said to be in the data space domain and p in the parametric space domain.
In traditional statistical etimation, we can arrange the observable set of data into a high di-
mensional vectorX =

[
x1

T . . . xN
T
]T

and the noise into a vectorE =
[
ε1
T . . . εN

T
]T

where εi is the noise on xi.
If X is the true value of X, then we obtain the statistical model

X = X +E (6.2)

where X is the unkown to be estimated.
If f(E) is the probability density of the noise vector E, the task is to estimate X from X,
i.e. a sampling from f(X −X).
The trouble is that the parameter p which we really want to estimate is not contained in
this model (the existence of the parameters is implicit in the sense that they constrain the
mutual relations among the components of xi).
In order to make the implicit constraint explicit, the standard approach consists in introducing
new parameters t to turn the implicit constraint equations (7.3) into an explicit form by
substituting into the equations of the model (6.2) xi = xi(p, t).
Besides the original parameter p that we want to estimate, there exist the so-called nuisance
parameters t and their number increase with the amount of data (see [21] and [12]): this is
referred to as the Neyman-Scott problem, which yields some difficulty in accurately estimating
the parameters of interest when conventional Maximum Likelihood Estimation (MLE) is
applied.
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6.1 Dual approach of Kanatani

Kanatani argued in [22] that MLE is still useful for those problems by considering a different
asymptotic sense from the one used in conventional statistics, provided that we take a limit
as the noise level goes to zero instead of a limit as the data size N approaches infinity (re-
calling the large sample consistency property which states that an estimator is consistent if
its variance approaches the Cramer Rao lower bound for N →∞).
Kanatani showed that the resulting mathematical consequences have corresponding tradi-
tional results in a dual form, e.g., the Kanatani Cramer Rao lower bound (KCRLB), which
we define in section (6.3), corresponds to the traditional Cramer Rao (CR) lower bound.
The correspondence is dual in the sense that small noise expansions have the form · · ·+O(εk)
for geometric fitting, to which correspond traditional asymptotic expansions in the form
· · ·+O( 1√

nk
).

In geometric fitting, data always have the same value however many times we observe them
because the true values are assumed to be fixed points, therefore the number n of observations
is always 1. Even if we suppose they change their values, if we take their sample mean, its
standard deviation is 1√

n
times that of individual observations.

This means that repeating hypothetical observations n times effectively reduces the noise
level ε to ε√

n
.

Thus, the behavior of estimation for ε → 0 is mathematically equivalent to the asymptotic
behavior for n → ∞ of the number n of hypothetical observations (not the number N of
data).

6.2 Cramer-Rao’s lower bound for statistical estimators

In a statistical parameter estimation problem, the Cramer-Rao lower bound (CRLB) answers
the question: what is the accuracy attainable in the estimation of statistical parameters?
If we indicate with Ex[·] the expected value with respect to the distribution of x, we can give
the following statements for the CR in the scalar and vectorial case:

(i) If p̂ = p̂(x) is an unbiased estimator for the true parameter p = p0, the variance is lower
bounded as var[p̂(x)] ≥ CCRB = I−1(p0) where the term

I(p0) = −Ex
[
d2l(x|p)
dp2

]
p=p0

= Ex

[(
dl(x|p)
dp

)2]
p=p0

depends on the loglikelihood function l(x|p) and it is referred to as Fisher Information
term.

(ii) For multiple parameters, let p̂ = p̂(x) be an unbiased estimator for the model in
p = p0, (E[p(x)] = p0), the Cramer Rao Bound sets the bound for the covariance as
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cov[p̂(x)] ≥ CCRB = I−1(p0) where I(p0) is the Fisher Information Matrix with entries

[I(p0)]ij = −Ex
[
d2l(x|p)
dpidpj

]
p=p0

= Ex

[
dl(x|p)
dpi

dl(x|p)
dpj

]
p=p0

implying that the difference cov[p̂(x)]− I−1(p0) is positive semidefinite.

In other words, the Cramer-Rao bound (CRB) matrix provides a lower bound on the covari-
ance matrix of any unbiased estimate of a nonrandom parameter vector.
Geometrically, the Cramer-Rao (CR) bound means that constraints on estimation are seen
to induce an oblique projection of the columns of the inverse Fisher information matrix onto
a linear subspace tangent to the parameter constraint set.

6.3 Kanatani Cramer-Rao Lower Bound

The matrix V , representing the leading terms of the variance, has a natural lower bound (an
analogue of the CR bound): there is a symmetric positive semi-definite matrix Vmin such
that for every geometrically consistent estimator V ≥ Vmin in the sense that V − Vmin is a
positive semi-definite matrix.
In fact, the matrix Vmin coincides with VMLE , i.e. the variance of the Maximum Likelihood
Estimator:

Vmin = VMLE =
( n∑
i=1

PpP
T
p

‖Pxi‖2
)−1

where P is a function of the parameters and of the model variables and

Pp =
[
∂P
p1

. . . ∂P
pk

]T
and Pxi =

[
∂P
x1

. . . ∂P
xm

]T

stand for the gradient of P with respect to the model parameters p1, . . . , pk and for the
gradient P with respect to the variables respectively.
This formula has been derived independently in [6] and [10].
Kanatani showed that for any unbiased estimator V ≥ Vmin, but this has been proven to
hold also for biased estimators in [6].
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6.3.1 Noise description and estimators accuracy

Since we are focusing only on small noise effects in the dual approach of Kanatani framework,
we can simply assume that noise concentrates on a small region around the true value.
As such, noise can be regarded as effectively occurring in the tangent space at that point.
Within this tangent space, the noise distribution can be regarded as Gaussian because the
discrepancy at the tail part is of higher order terms.
Accordingly, we define the covariance matrix of xi by

V [xi] = E[(Pxi
(xi − xi))(Pxi

(xi − xi))T ]

where E[·] denotes expectation over the noise distribution, and Pxi
denotes projection onto

the tangent space to the domain of the data at xi.
The estimator of p computed by solving the geometric fitting problem is p̂(x1, . . . ,xN ).
A natural requirement is that the true value should be obtained in the absence of noise
(condition of consistency):

lim
ε→0

p̂ = p

Since p̂ is a function of random variables, it may be constrained too and its domain may not
be euclidean and we can measure its accuracy by its covariance matrix: V [p̂] = E[(Pp(p −
p̂))(Pp(p− p̂))T ] where Pp denotes projection onto the tangent space of the domain of p.
Kanatani proves in [21] and [22] that if each datum xi is an independent Gaussian random
variable with mean xi and covariance matrix V [xi], then for an arbitrary unbiased estimator
p̂ of p the following expression holds:

V [p̂] ≥
( N∑
i=1

(Pp∇pF̄i)(Pp∇pF̄i)T〈
∇xF̄i, V [xi]∇xF̄i

〉 )† (6.3)
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where the superscript † denotes pseudoinverse and the symbols ∇pF̄i,∇xF̄i denote the gra-
dient of the function F (x,p), with respect to p,x respectively, evaluated at x = xi.

6.3.2 Linearized constraint optimization example

If the constraint equation (7.3) for the geometric fitting problem can be reduced to a linear
form

〈ξ(x),p〉 = 0 (6.4)

by changing variables from x to ξ, then the KCRLB (7.8) has the form

V [p̂] ≥
( N∑
i=1

ξ(xi)ξ(xi)T

〈p, V [ξ(xi)]p〉

)†

The covariance matrix of ξ(xi) has the form V [ξ(xi)] = ∇xξ(xi)TV [xi]∇xξ(xi).
If data xi are vectors of Rm and the parameter vector p is in Rk, then the Jacobian is a
[m× k] matrix

∇xξ(xi) = ∇xξ(x)|x=xi
=


∂ξ1
∂x1

. . .
∂ξp
∂x1...
...

∂ξ1
∂xm

. . .
∂ξp
∂xm


x=xi

.

We do not need the projection operator here because ξ(xi) is orthogonal to p due to equation
(6.4).
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The model

Throughout this section, we consider all the involved variables to be deterministic, therefore
not affected by errors. We will add and discuss the statistical errors in the model in section
8.
As we already summarized in the introduction, our problem conists in problem estimating the
minimum error which occurs when measuring the radius of a perfect cylinder with a system
composed by m calibrated independent cameras.

Figure 7.1: output of the Matlab code which simulates the whole system for one camera (placed in the
green circle point named Oi): we can see the cylinder, the laser plane, the polar plane, the image plane
and the cone whose vertex is the camera and whose intersection with the image plane is an ellipse
(projection of the instersection between the cylinder and the laser plane).

35
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7.1 Camera and laser

We have a system composed by a number m of cameras and m lasers pointing in the direction
of the cylinder. Each pair of one camera and one laser points towards a slightly different arc
section of the cylinder surface, ideally to cover the cylinder diameter.

Figure 7.2: Example of a system of two camera/laser pairs, picture from [18]

Our data are the coordinates of the laser points in the image plane of the camera.
Let us now define some concepts we use from 3D computer graphics:

• The image plane of a camera is that plane in the world which is identified with the
plane of the monitor. The viewing transformation (conceptual model that describes
what steps a graphics system needs to perform to render a 3D scene to a 2D screen)
is a projection that maps the world onto the image plane. A rectangular region of this
plane, called the viewing window, maps to the monitor. This establishes the mapping
between pixels on the monitor and points in the 3D world.

• The camera (or optical) center is the point in 3D space through which all projection
lines must pass.

• The distance between the optical center and the image plane is called focal length.

From the mathematical point of view, a camera is a cartesian reference system in E3, a center
and focal length parameter: it is an object which transfers points from the three-dimensional
world to the image plane and it can be represented by a map H : E3 → E2 that associates a
projection x = HX on the image plane (in E2) to any point X in the affine space E3. The
map H is therefore a [3× 4] matrix and it is called projection matrix.
On the other hand, the plane defined by the intersection between the cylinder surface and the
arc section defined by laser scanner is called laser plane and it is mathematically represented
with the equation of an affine plane.
We have the following setting: our data are the coordinates of the points in the image plane
of each camera, and we know that each point in the image plane is a projection of a point on
the surface of the cylinder.
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We also know that the set of points seen by each camera define approximately the arc of an
ellipse on the surface of the cylinder.
The intersection between the arc (which we parametrize as an ellipse, so we will have to
discard the points lying on the surface of the cylinder opposite to the camera, which cannot
be seen) and the cylinder results into a plane which we call πi, i = 1...m.
In a reference orthonormal system of πi, for each camera we obtain a quadric which is a cone
with vertex in the camera center and whose flat base is defined by the intersection between
the arc of points and the cylinder surface.
In order to set up our approach, for each camera we choose an orthonormal reference system
BOi = (Oi, (vi1,vi2,vi3)) and we assume that it follows the left hand rule to be coherent with
the reference system BÕi = (vi1,vi2) of its image plane π̃i.
We choose vi1,vi2 to be parallel to the image plane π̃i, while consequently vi3 is perpendic-
ular to π̃i.
We define also the basis corresponding to the image plane reference system as BÕi =
(Õi, (vi1,vi2)).
Let fi be the focal length of the ith camera.
We can write

−−−→
OiÕi = fivi3.

Figure 7.3: the laser plane πi and the camera reference system BOi , Matlab plot

As for the laser plane πi, we call ni the normal to this plane and Si the point on the plane
representing the source.
Now we call S the basis of the direction in the affine space (u1,u2,u3) so that we can write

X = P |So = −−→OP |S = −−→OOi|S +−−→OiP |S = −−→OOi|S +MBiS
−−→
OiP |BiS

where MBiS is the change of basis matrix between two orthonormal bases with the same
orientation, which means that MBiS represents a rotation and MBiS ∈ SO(3,R).
We name the unknowns in the expression of X as

T i = −−→OOi|S and Qi = MBiS . (7.1)



38 Chapter 7. The model

Notice that if Xi = P |BOi then X = QiXi + T i.
In order to project the points from the laser plane to the image plane, we have to solve the
following system of equations for each camera in BOi :

< ni,
−−→
SiP >= 0

−−→
OiP = t

−−→
OiQ

−−→
OiQ = t1vi1 + t2vi2 + fvi3

(7.2)

where the first equation describes the laser plane and the third represents the image plane of
the camera.
The second equation represents the line which contains the points P and Q, or equivalently
we may say that it describes any point Q laying on the line that connects the center of the
reference system Oi to a point P laying on the elliptic intersection between the laser plane
and the surface of the cylinder (i.e. the section represented in figure (7.4)).
If t > 1 we obtain a point laying on the line connecting point P to Q, if t < 1 instead we
still obtain a point on the same line but farther from the origin than P .

Figure 7.4: The projection of
the image plane π̃m on the
laser plane πm (the white plane
in figure) intersects the cylin-
der defining an elliptic section,
which is also the flat base of the
cone with vertex in the mth cam-
era center.

7.2 The cylinder

According to the classification of quadric curves given in theorem (5.4), we know the equation
of a real elliptic cylinder in E3 centered on the z axis and that if we fix the parameters to
be equal (α = β), then the cylinder is circular with radius equal to α. We also know the
equation of a real infinite cone from the same theorem.
Let us now consider the canonical form of the equation of a real circular cylinder with radius
α = r:

Q|So := x2 + y2 = r2,
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where So = (O, (u1,u2,u3)) and r is the only parameter in the equation.
The canonical reference is not unique because there are ∞2 reference systems in which a
cylinder can take that form and that they are independent. Indeed, given a cylinder axis
laying along the direction of the vector u3 for example, there are infinitely many rotations
around the axis u3 and infinitely many points on said axis can define the cylinder with the
canonical form equation.
Now we define the cylinder matrix as

C =
[
A B

BT c

]
, where A =


1 0 0
0 1 0
0 0 0

 , B = 0[3×1] and c = −r2. (7.3)

If we take a point on the surface of the cylinder, its coordinates are

P |So = X =


x

y

z

 and Y =
[
X

1

]
.

We do not know the canonical reference system, but we know that in a generic reference
system a cylinder depends on seven parameters to be estimated: six of them are linked to
the rototranslation, three in the unknown T i (point cartesian coordinates) and three in the
other unknown Qi, plus the unknown radius that is the scalar quantity r.
The three parameters contained in Qi are the three Euler angles which we presented and
discussed in section (4.2). Using this representation we can write Qi ∈ SO(3,R) as the
product of three matrices: Qi = Qi3Qi2Qi1 where

Qi3 =


cosγi −sinγi 0
sinγi cosγi 0

0 0 1

 , Qi2 =


cosβi 0 −sinβi

0 1 0
sinβi 0 cosβi



and Qi1 =


1 0 0
0 cosαi −sinαi
0 sinαi cosαi


As a matter of fact, two of the seven parameters for the cylinder can be excluded from our
model: indeed the following theorem holds.

Theorem 7.2.1. Let Qi be a rotation matrix and A be the matrix of second order terms of
the cylinder of radius r with respect to the cylinder reference system SO. Then for any three
dimensional vector Xi the equation of the cylinder in the camera reference system BOi is

XT
i Q̃

T
i AQ̃iXi + 2T̃ Ti Q̃iXi + T̃ Ti T̃ i − r2 = 0.

where Q̃i , Qi2Qi1, T̃ i , QTi3AT i and

T̃ i , QTi3AT i =


Ti1cosγi + Ti2sinγi

−Ti1sinγi + Ti2cosγi

0

 =


T̃i1

T̃i2

0

 .
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Let us divide the proof of theorem (7.2.1) into steps, by stating and proving the following
lemma and proposition.

Lemma 7.2.2. The equation for the cylinder in BOi can be written as

XT
i AiXi + 2BT

i Xi + ci = 0 (7.4)

where we call the matrix of the second order terms, the first order terms vector and the zero
order term respectively as:

Ai = QTi AQi, B
T
i = T Ti AQi and ci = T Ti AT i + c.

Proof. As already pointed out in the notation that we introduced in (7.3), in the canonical
reference system for a cylinder B = 0[3×1].
Keeping this in mind, we now write the coordinates of a point X (with respect to the
global reference system) as a function of the unknowns Qi and T i by expressing it as the
rototranslation of its coordinates with respect to the image plane QiXi + T i. The equation
for the cylinder becomes:

0 = Y TCY = XTAX + c = XT
i Q

T
i AQiXi + 2T Ti AQiXi + T Ti AT i + c.

Proposition 7.2.3. The terms in equation (7.4) contain only four unknown parameters and
they are αi, βi, T̃i1 and T̃i2.
Moreover, the following equalities are true:

(i) XT
i AiXi = XT

i Q̃
T
i AQ̃iXi;

(ii) QTi AT i = Q̃Ti T̃ i;

(iii) T Ti AT i = T̃
T
i T̃ i.

Proof. We proceed to prove each of the equalities enumerated:

(i) since it can be proven by simple calculation that QTi3AQi3 = A, then

XT
i AiXi = XT

i Q
T
i AQiXi = XT

i Q
T
i1Q

T
i2Q

T
i3AQi3Qi2Qi1Xi =

XT
i Q

T
i1Q

T
i2AQi2Qi1Xi = XT

i Q̃
T
i AQ̃iXi;

(ii) QTi AT i = QTi1Q
T
i2Q

T
i3AT i = Q̃Ti T̃ i;

(iii) lastly, from the fact that the matrix A is idempotent and symmetric by definition and
that Qi3 is an orthonormal matrix, we derive

T Ti AT i = T Ti A
2T i = T Ti A

TAT i = (AT i)T (AT i) = (AT i)TQTi3Qi3(AT i)

= (QTi3AT i)T (QTi3AT i) = T̃
T
i T̃ i.
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In order to prove the first statement of the proposition, we observe that the unknown γi

does not appear in the first term of the equation (7.4) since the matrix Q̃i contains only the
unknowns αi and βi. In the second and third terms of equation (7.4), the unkowns T̃i1, T̃i2
appear.

Proposition (7.2.3) shows that the equation proved in lemma (7.2.2) is equivalent to the
one stated in theorem (7.2.1).
We also arrive to the conclusion that the five parameters on which the cylinder depends define
the vector:

ui = (αi, βi, T̃i1, T̃i2, r) ∈ [0, 2π)2 × R2 × R≥0;

and the matrix of the cylinder in each camera reference system as:

Ci =
[
Q̃Ti AQ̃i Q̃Ti T̃ i

T̃
T
i Q̃i T̃

T
i T̃ i − r2

]
= F Ti CFi with Fi =

[
Q̃i T̃ i

0[1×3] 1

]
.

If we are able to estimate all the parameters involved here, then we are left to the problem of
estimating only the two parameters that we left out of our model thanks to the proposition
(7.2.3), which are the third component of the translation and the rotation angle γi.
They both can take infinetly many values once we have fixed the first five parameters in our
problem.
This way of modeling our problem let us take into consideration all the possible configura-
tions without assuming any particular hypothesis and without having a reference camera as
a privileged point of view with respect to others, because we simply choose the canonical
reference system.

7.3 The ellipse arcs

The laser plane crosses the cylinder along an ellipse arc, which is described by the system

Y T
i CY i = 0

< ni,
−−→
SiP >= 0

−−→
OiP = t

−−→
OiQ

−−→
OiQ = t1vi1 + t2vi2 + fvi3

(7.5)

whre the first equation describes the cylinder and the following ones are exactly the same as
in system (7.2).
With respect to the image plane, we define the coordinates of Q and of the normal to the
laser plane respectively as

−−→
OiQ|BOi =


t1

t2

f

 = Q|BOi = Zi and N i , ni|BOi

before stating the following:
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Theorem 7.3.1. The ellipse arc is projected in the image plane in the curve expressed by
the equation:

ZT
i (Q̃Ti AQ̃i + 2N iT̃

T
i Q̃i +N iT̃

T
i T̃ iN

T
i − r2N iN

T
i )Zi = 0 (7.6)

or equivalently

(NT
i Zi)2Y iCiY i =

[
ZT
i NT

i Zi

]
Ci

[
ZT
i

NT
i Zi

]
= 0 (7.7)

Proof. We start from the formula for the distance between point P and the laser source Si
by decomposing it as

−−→
SiP = −−→SiOi +−−→OiP = −−→SiOi + t

−−→
OiQ,

where we used the third equation in system (7.2).
Now we substitute it in the second equation in (7.2) and we obtain

< ni,
−−→
SiOi > +t < ni,

−−→
OiQ >= 0, leading to t = −< ni,

−−→
SiOi >

< ni,
−−→
OiQ >

,

where < ni,
−−→
OiQ >6= 0 because we set the laser plane in such a way that it does not pass

through the origin of the camera reference system.
Now we impose that the point Q belongs to the image plane (which is represented by the
last equation in system (7.2)), recalling the definition of its coordinates in the image plane
as Zi. As we wrote the vectorial equation

−−→
OiP = t

−−→
OiQ = < ni,

−−→
OiSi >

< ni,
−−→
OiQ >

−−→
OiQ,

we now can write by components the equation for mapping the coordinates of any point P
in the laser plane into the corresponding coordinates in the image plane π̃i in a one to one
correspondence:

Xi = < ni,
−−→
OiSi >

< ni,
−−→
OiQ >

Zi.

Since we know that Oi does not belong to the laser plane πi by the way we defined our system,
we can choose ni such that < ni,

−−→
OiSi >= 1.

Then
Xi = 1

NT
i Xi

Zi.

By substituting it in the cylinder equation stated by theorem (7.2.1) and eliminating the
denominators, we obtain the thesis.

Remark 7.3.2. Throughout our work, we are reasonably assuming that the conic is an ellipse.
Indeed the instersection between a cylinder and a plane always results in an ellipse except
for the case in which the cylinder and the plane are parallel, while the intersection between
a cone and a plane may result in any conic as we already discussed in chapter (5.4). For
example if the plane is parallel to one of the generatrices of the cone then the result is a
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parabola. In our model, this could of course happen from a mathematical point of view, but,
since ideal cameras (i.e. cameras with infinite opening) do not exist, a camera would not be
able to see the cylinder in such a configuration because of its smaller opening angle.
Such a configuration could be possible only for the case in which the cylinder is very close to
the camera, but we can reasonably assume the conic always to be an ellipse.

7.4 Change of coordinates

So far, we have obtained all the equations for our geometric objects in each camera reference
system BOi . In this chapter, we investigate their relations.
Let us first introduce some useful concepts from computer graphics.
Remark 7.4.1. The world coordinate system, also known as the universe or the model or global
coordinate system, is the base reference system for the overall model, (generally in 3D), to
which all other model coordinates relate.
Remark 7.4.2. The camera coordinate system, also known as the viewpoint, is based upon the
viewpoint of the observer, and changes as they change their view. Moving an object forward
in this coordinate system moves it along the direction that the viewer happens to be looking
at the time.
Remark 7.4.3. The rotation matrix and the translation vector which relate the world coordi-
nate system to the camera coordinate system are called the extrinsic camera parameters.

We now consider the problem of the change of coordinates between the reference system
BOi of a camera and BOj of an adjacent one in the cameras system.
Let us call the coordinates Xi = P |BOi and Xj = P |BOj respectively, and call MBOiBOj

the
matrix mapping the change from the reference system BOj to BOi .
Therefore we can write

Xi = P |BOi = −−→OiP |BOi = −−−→OiOj |BOi +−−→OjP |BOi = −−−→OiOj |BOi +MBOiBOj

−−→
OjP |Bj .

Moreover, by definition we have

MBOiBOj
= Qji ∈ SO(3,R) and −−−→OiOj |BOi = T ij thus Xi = T ij +QjiXj .

If we recall also the definitions of

Yi =
[
Xi

1

]
, Yj =

[
Xj

1

]
and Fji =

[
Qji T ij

0[1×3] 1

]
then we have Y i = FjiY j .
We must study the transformation of the equation of the conic caused by the change of
coordinates.
According to theorem (7.2.1), the equation of the cylinder in the reference system BOi is
Y T
i CiY i = 0, where

Ci =

Q̃iTAQ̃i Q̃i
T
T̃ i

T̃
T
i Q̃i T̃

T
i T̃ i − r2

 = F Ti CFi and Fi =
[
Qi T i

0[1×3] 1

]
. (7.8)
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In the reference system Bj we obtain

Y T
j F

T
jiCiFjiY j = 0.

Remark 7.4.4. It is important to notice that with this notation we are using the matrix Fji
instead of Fj in order to compute Cj .
In other words, we are stating that using the formulation (7.8) for computing Cj directly from
the matrix C of the cylinder in the canonic reference system, as Cj = F Tj CFj , is equivalent
to compute Cj from Ci, i.e. to calculate Ci = F Ti CFi and derive Cj = F TjiCiFji consequently.
Since it is not obvious, we need to check that this compatibility holds.
Indeed, we assume that Y = FiY i = FiFjiY j = FjY j .
Therefore Fji = F−1

i Fj , and if we substitute it into the equation in the system BOi we obtain
Y T
j F

T
j F
−1
i

T
F Ti CFiF

−1
i FjY j = 0 which clearly leads to Y T

j F
T
j CFjY j = Y T

j CjY j = 0.
We conclude that Cj = F TjiCFji.

Consequently, the equation of the conic in the image plane π̃j is

[
ZT
j NT

j Zj

]
F TjiCiFji

[
ZT
j

NT
j Zj

]
= 0. (7.9)

Figure 7.5: output of the Matlab code which simulates the whole system for two cameras: we can see
the circular cylinder, the image planes of both cameras, their reference systems and the ellipses defined
in their image planes (in green).

7.5 The visible region

The epipolar plane of the cylinder with respect to a camera divides the space in two regions:
one that is visible because it corresponds to the reprojection on the image plane of the points
on the cylinder surface which the camera is looking at, and one that is not visible because it
is the reprojection of the points that are on the cylinder surface opposite to the camera.
Here we assume the hypothesis that the laser do not limit the visible region any further than
the camera does, in other words the coordinates of the points we have are not constrained to
be in a subset of the visible region.
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Figure 7.6: the same system as in figure (7.5) seen from a different perspective: here we can see the
global reference system of the cylinder, the red lines in the image planes that divide the visible region
of the corresponding camera from the non visible one (the blue points on the ellipses are the visible
ones).

Phisically, the visible region is in the bottom half of the image plane.
We recall that

P |BOi = Xi and Yi =
[
Xi

1

]
and we also know that the coordinates of the origin Oi in the reference system BOi are
Oi|BOi = (0, 0, 0).
Recalling the equation of the epipolar plane from definition (5.1.5), its equation with respect
to BOi is [

Oi|BOi
1

]T
CiY i = 0,

or equivalently, if we recall the definition of Ci given in (7.8) and do the calculation:

[
T̃
T
i Q̃i T̃

T
i T̃ i − r2

] [Xi

1

]
= 0.

Since we know that Oi belongs to the visible region, by substituting it to Y i in the epipolar
plane equation we obtain [

Oi|BOi
1

]T
Ci

[
Oi|BOi

1

]
= T̃

T
i T̃ i − r2.

We also that the distance between Oi and the axis of the cylinder, i.e. the projection along
the cylinder axis, is equal to the constant term in the cylinder equation:

T̃
T
i T̃ i = T Ti AT i = T 2

i1 + T 2
i2.

Consequently
[
Oi|BOi

1

]T
Ci

[
Oi|BOi

1

]
≥ 0.
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Remark 7.5.1. A cylinder is not a centered quadric, therefore there is no origin of the canonical
reference system, but the origin may be any point on the axis: indeed in the distance formula
the component Ti3 does not appear.

The subregion that is visible by the camera is
[
Oi|BOi

1

]T
CiY i ≥ 0.

In the image plane π̃i, the visible region is delimited by the line r which is the projection on
the image plane of the intersection between epipolar plane and the laser plane.
Therefore we can write the following system:



Oi|BOi
1

T CY i = 0

< ni,
−−→
SiP >= 0

−−→
OiP = t

−−→
OiQ

−−→
OiQ = t1vi1 + t2vi2 + fvi3

(7.10)

which is exactly the same as system (7.2) except for the first equation, where we subsitute
the equation of the cylinder with the equation of the epipolar plane.

Theorem 7.5.2. For any vector Zi representing the coordinates of a point in the image
plane of the ith camera, the visible region is given by the points in the image plane which
satisfy the inequality

(T̃ Ti Q̃i + T̃ Ti T̃ iNT
i − r2NT

i )Zi ≥ 0.

Proof. In the same way as in the proof of theorem (7.3.1), from system (7.10) we arrive to
the relation between the points on the laser plane and their reprojection on the image plane

Xi = 1
NT

i Zi

with Zi =


t1

t2

f

 = Q|BOi .

Consequently we can write the equation of the line r delimiting the visible region in the image
plane as

[
T̃
T
i Q̃i T̃

T
i T̃ i − r2

] [Xi

1

]
= (T̃ Ti Q̃i + T̃ Ti T̃ iNT

i − r2NT
i )Zi = 0.
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Figure 7.7: the same plot as in figure (7.1) zoomed in and seen from the camera perspective.

7.6 Sampling the conic in the image plane

So far we have derived the equation of the ellipse in the image plane and the portion that
corresponds to the visible cylinder surface. In order to compute the Kanatani Cramer Rao
Lower Bound (as in the formula we introduced in section (6.3)), we need the coordinates of
the points. Therefore we need to develp a way to sample them from the equation.

The procedure that we implemented in Matlab in order to sample the ellipse in the image
plane consists in the following steps.

• As a start, we have to choose and fix the position of the cylinder so that we can
substitute the parameters in the equation given in theorem (7.3.1) and obtain the
numerical equation ZTi ÃiZi + 2B̃T

i Zi + c̃i = 0 where Zi =
[
t1 t2

]T
.

• The second step is to derive the coordinates in the canonical reference system with
respect to which the equation of the ellipse can be written in the form t̃1

2

a2 + t̃2
2

b2 = 1,
which are related to the coordinates in the image plane reference system as:

Z̃i =
[
t̃1

t̃2

]
= Q∗iZi + T ∗i

The ellipse can be parametrized, for ϕ ∈ [0, 2π), ast̃1 = a cosϕ

t̃2 = b sinϕ
(7.11)
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• The next step is to generate the parameters ϕn ∈ [0, 2π) in such a way to have a
constant spacing between the sampled points on the ellpise.
The length of the arc on the ellipse between ϕ1 and ϕ2 is given by the integral of the
module of the vector tangent to the ellipse (that is the vector of derivatives with respect
to ϕ of the parametrization, so it is represented with respect to the canonical reference
system of the ellpise by the vector γ ′ =

[
−a sinϕ b cosϕ

]T
):

L =
∫ ϕ2

ϕ1

√
a2 sin2 ϕ+ b2 cos2 ϕ dϕ

We used the notation ∆ϕ12 = |ϕ2 − ϕ1| to define the angle which is required to move
along the ellipse of an arc of constant length L = ∆s.
By imposing this length for the arc and by using an approximation for the integration
variable since it is the integral of a special function and it would require a complex
analytical computation, we obtain

∆ϕ12 = ∆s
‖γ ′‖ cosϕ,

where ϕ is the angle between the tangent vector γ ′ and one of the axis of the reference
system BÕi of the image plane according to the following rule:

– if | < v1, γ
′ > | ≥ | < v2, γ

′ > |, then α is taken as the angle between the tangent
γ ′ and v2;

– if instead the inverse inequality is true, then ϕ is taken as the angle between the
tangent γ ′ and v1.

The angle ϕ is a correction which lets to take into account the cases when the laser
plane is either oblique or horizontal with respect to the reference system.
In the end we obtain

| cosϕ| = | < vi, γ
′ > |

|vi||γ ′|
= | < vi, γ

′ > |
|γ ′|

=⇒ ∆ϕ12 = ∆s[
−a sinϕ b cosϕ

]
Q∗Tvi

where Q∗Tvi are the coordinates of vi with respect to the canonical reference system
of the ellipse in the image plane.
Given a starting angle ϕ0, ϕ1 = ϕ0 + ∆ϕ01, and so on:

ϕn = ϕn−1 + ∆ϕn−1n till ϕn < 2π.

Now we can generate the points on the ellipse.
Recalling the definition of the coordinates in the canonic reference system

Z̃in =
[
a cosϕn
b sinϕn

]
= Q∗iZi + T ∗i ,

by inverse transformation we obtain

Zin = Q∗i
T (Z̃in − T ∗i ).
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• Finally, we exclude the generated points which are not in the visible region, i.e. which
do not satisfy the inequality

(T̃ Ti Q̃i + T̃ Ti T̃ iNT
i − r2NT

i )
[
Zin

f

]
≥ 0.

At the end of this procedure, we get the coordinates of the points to substitute into the
Kanatani Cramer Rao Lower Bound formula.

Figure 7.8: the image plane of a camera with the ellipse divided in visible points (blue) and non visible
ones (green), with the red line (2D projection of the 3D epipolar plane on the image plane) dividing
the two regions.

7.7 Remarks on the code for simulations

In order to perform simulations, we have to choose a global reference system with respect to
which we write all of our equations: we choose the canonical reference system of the cylinder,
SO.
We arbitrarly choose the coordinates of the center Oi of the ith camera such that it is rea-
sonable in order for it to look at the cylinder.
While the plots reported in all the previous sections of this report are all defining the camera
as perfectly ’centered’ with respect to the origin of the global reference system, we also added
to the code a set of commands to rotate the camera along the three axis with angles chosen
at random to check that the code works with all camera inclinations.
The initial point ϕ0 for sampling the ellipse is chosen to be in the non visible region of the
image plane (so it is one of the green points in figure (7.8)) in order to avoid eventual dis-
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continuities due to the interrumption of the sampling when the angle ϕn reaches the value of
2π.



Chapter 8

Kanatani Cramer Rao Lower Bound

In this chapter we add uncertainty on the measurements of our model with the aim of un-
derstanding how the addition of random noise affects the accuracy on the estimation of the
parameters of the cylinder by computing the Kanatani Cramer Rao Lower Bound.
We proved in section (7.2) that the cylinder has five parameters to be estimated with re-
spect to the reference system of each camera. Moreover, we know that we can measure the
rototranslations between each couple of adjacent cameras in the vision system thanks to the
calibration. Therefore the parameters to be estimated in the overall live in a space of dimen-
sion 5(m− 1) on which the parameters of each camera define a 5D manifold.
We now choose a reference camera (i = 1) so that once we fix the five parameters of one
camera in the system, then we can derive all the others as functions of these fixed and inde-
pendent five parameters.
In this way we are able to compute the KCRLB on all parameters.

8.1 Notation

We now give some remarks on the notations that are going to be useful in the following
sections:

• we are going to use the notation ·̄ to indicate an estimated quantity and the notation
·̂ to indicate a measured quantity;

• from now on, we will refer to the vector u1 = (α1, β1, T̃11, T̃12, r) of the parameters of
the cylinder with respect to the reference camera as u = (α, β, T1, T2, r), for simplicity
of notation;

• we refer to the parameters that have to be estimated for the jth camera as the vector
qj = (αj1, βj1, γj1, Tj11, Tj12, Tj13, tj1, tj2);

• recalling the equation (7.7) stated in theorem (7.3.1), for a point k in the image plane
51
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of the camera we can define the quantity

ξk =
[
ZT
k

NT
kZk

]
;

• in a similar way, recalling the equation (7.9) for any point of k in the image plane of
the jth camera, we can define the quantity

ξjk = Fj1

[
ZT
jk

NT
j Zjk

]
;

• we need the following matrices

FT =


1 0 0 T1

0 1 0 T2

0 0 1 T3

0 0 0 1

 , Fβ = eβMβ =


cosβ 0 −sinβ 0

0 1 0 0
sinβ 0 cosβ 0

0 0 0 1

 ,

and Fα = eαMα =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1



where Mα =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 and Mβ =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0


in order to define the complete matrix of the cylinder in the reference camera coordinate
system: C1 = F TCF = F Tα F

T
β F

T
T CFTFβFα, where C is the complete matrix of the

cylinder in the canonical system defined in (7.3).

In this setting, our data must satisfy constraints which can be expressed as quadratic forms
by simply re-writing equations (7.7) and (7.9) using the notation that we just introduced:

• Ek = ξTkC1ξk = 0 with respect to the reference camera coordinate system;

• Ejk = ξTjkC1ξjk for any point k with respect to the coordinate system of the jth camera.

8.2 From the deterministic to the statistical problem

According to the notation that we introduced in the previous section, the KCRLB (6.3) can
therefore be written for our problem as

V [ū] ≥
( m∑
j=1

Nj∑
k=1

(Pū∇ūEjk)(Pū∇ūEjk)T

(∇qjkEjk)TV [qjk]∇qjkEjk

)−1
(8.1)
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Since relations among the parameters in ū do not exist, we have that Pū is equal to the
identity matrix.
The term which includes uncertainty in the model is the covariance matrix at the denomina-
tor. We are going to discuss this issue first and then describe the calculation of the KCRLB
in sections (8.4.2) and (8.4.1).
Under the reasonable hypothesis that the way points are measured and the way rototransla-
tions are measured are independent, we can assume null covariance between the error on the
rototranslation parameters and the error on the points coordinates.
Therefore we can write the covariance matrix in blocks:

V [qjk] =
[
V [ᾱj1, β̄j1, γ̄j1, T̄j1] 0[5×2]

0[2×5] V [t̂jk]

]
.

If we define w̄j1 = [ᾱj1, β̄j1, γ̄j1] the rotation parameters between the cooridnate system of the
reference camera and the jth camera in order to simplify the notation, the set of constraints
on our data result in a statistical model parametrized with (w21, T21, ...,wmm−1, Tmm−1).
The associated deterministic model is:

(w21, T21, . . . ,wmm−1, Tmm−1,w1m, T1m) =

G(w21, T21, ...,wmm−1, Tmm−1) =

(w21, T21, ...,wmm−1, Tmm−1, H(w21, T21, . . . ,wmm−1, Tmm−1))

(8.2)

We use the classic procedure for the lower bound computation.
The matrix JG of derivatives of the function G with respect to the parameters has 6m rows
(equal to the total number of measured parameters in the whole system of m cameras) and
6 columns (equal to the number of parameters per camera):

JG =


∂G1
∂α21

∂G1
∂β21

... ∂G1
∂Tmm−13

...
...

∂G6m
∂α21

∂G6m
∂β21

... ∂G6m
∂Tmm−13

 =
[
I[6×(m−1)]

JH

]
.

where JH is the matrix of derivatives of the function H with respect to the parameters.
Now let us call E the noise vector which perturbs the data in our model. We assume the
error distribution is gaussian.
This new formulation of our problem is similar to the one of geometric fitting for which we
gave a theoretical overview in section (6), but, if we compare the set of implicit equations
(6.1) with the problem that we have now, we notice that they are different in the sense that
the true data should satisfy now the set of implicit equations in the form

Y = G(X), (8.3)

where both Y and X are measurements affected by errors.
Indeed, geometric fitting is nothing but a particular case of this class of problems, which are
referred to in the literature as Errors-In-Variables problems (a treatment of this topic can
be found in [5]).
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Then we have Y + ε = G(X +E) = G(X) +JGE, where JG is the matrix of the derivatives
of G with respect to the parameters involved in the statistical model.
It implies that E = J†Gε where J†G = (JTGJG)−1JTG is the left inverse of JG, if it exists.
Then V [X] = J†GV [Y ]J†G

T
= (JTGJG)−1JTGV [Y ]JG(JTGJG)−1.

Since the error on measurements is known, we only compute the error on the estimated
parameters.
In the case of our formulation (8.2), we know that J†G exists because the rank of JG is equal
to the number of columns.
Therefore we observe that we can invert a [6× 6] matrix instead of a [6(m− 1)× 6(m− 1)]:

J†GJG =
[
I6(m−1) JTH

] [I6(m−1)

JH

]
= I6(m−1) + JTHJH =⇒

(JTGJG)−1 = I6(m−1) − JTH(I6 + JHJ
T
H)−1JH

(8.4)

where we used the well-known Woodbury Matrix Identity.
Since we want to find the function H which relates the parameters of one camera to all the
others, we take advantage of the so-called bundle adjustment tecnique, according to which
Fj1 is a function of F̂21, F̂32, ..., F̂mm−1, F̂1m.

8.3 The covariance matrix and the bundle adjustment

Remark 8.3.1. Bundle Adjustment (BA) is an iterative process where 3D information is esti-
mated from 2D image measurements. Typically, the position of object points are estimated
simultaneously with the position and orientation of the cameras.
In photogrammetry, it is an optimization process that simultaneously refines estimates of 3D
object point positions and camera poses (meaning extrinsic camera parameters, see remark
(7.4.3), in computer vision) from measurements in overlapping images from multiple perspec-
tives.
Any BA problem contains the following elements:

• projection model that describes the projection of a 3D object point into 2D image points
in an image taken by a camera;

• a set of unknown parameters to be determined, a number of observations;

• a set of known parameters.

In our problem, bundle adjustment plays a role in the computation of the covariance
matrix V [w̄j1, T̄j1] resulting in two constraints on the measurements, which we are now going
to explore in more detail, in particular:

1. on the computation of V [w̄21, T̄21, ..., w̄mm−1, T̄mm−1, w̄1m, T̄1m], taking into account
the bundle adjustment constraint

F21F32F43 . . . Fmm−1F1m = I4;
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2. on computation of V [w̄j1, T̄j1] by using the fact that

Fj1 = F21...Fj−1j−2Fjj−1 for j = 2, ...,m.

8.3.1 First step

According to how we expressed our statistical problem at the end of section (8.2), we know
that

JTGV [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1, ŵmm−1, T̂1m]JG =

V [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1]+

JTHV [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1; ŵ1m, T̂1m]+

V [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1; ŵ1m, T̂1m]TJH + JTHV [ŵ1m, T̂1m]JH .
Under the hypothesis that the errors on calibration are independent: if

V [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1; ŵ1m, T̂1m]

is our [6× 6(m− 1)] matrix of observed values, then

JTGV [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1, ŵ1m, T̂1m]JG =

V [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1] + JTHV [ŵ1m, T̂1m]JH

where the last six measurements are corrected by the error distribution.
Therefore we can write the error on the estimated parameters as function of the error on the
measured ones:

V [w̄21, T̄21, ..., w̄mm−1, T̄mm−1; w̄1m, T̄1m] =

(I6(m−1) − JTH(I6 + JHJ
T
H)−1JH)(V [ŵ21, T̂21, ..., ŵmm−1, T̂mm−1]+

+JTHV [ŵ1m, T̂1m]JH)(I6(m−1) − JTH(I6 + JHJ
T
H)−1JH).

We are left with the determination of JH .
Recalling the discussion on model formulation which we provide in section (8.2), let us give
the following

Definition 8.3.2. L is the relation between the camera calibrations given by the bundle
adjustment:

L : [0, 2π)[3×m] × R[3×m] −→Mat(4, 4;R) ' R16

L(X,Y ) = F21F32F43 . . . Fmm−1F1m − I4 = 0[4×4], where

X = (w21, T21, ...,wmm−1, Tmm−1) and

Y = (w1m, T1m) = H(w21, T21, ...,wmm−1, Tmm−1).
In brief: L(X,Y ) = 0 if Y = H(X).

Then, in order to determine the matrix JH , we use the rule for the derivative of composed
functions, if J†L,Y exists:

JL,X(X,H(X)) + JL,Y (X,H(X))JH(X) = 0

=⇒ JH(X) = −JL,Y (X,H(X))†JL,X(X,H(X)).
(8.5)
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Now we have to study

JL,X =


∂L11
∂α21

... ∂L11
∂Tmm−13

...
...

∂L44
∂α21

... ∂L44
∂Tmm−13

 and JL,Y =


∂L11
∂α1m

... ∂L11
∂T1m3...
...

∂L44
∂α1m

... ∂L44
∂T1m3

 ,
which are respectively a [16× 6(m− 1)] and a [16× 6] matrix.
Let us start with JL,X(X,H(X)).

Theorem 8.3.3. The elements of the matrix JL,X(X,H(X)) have the following expressions:

• ∂αji(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = Fj1MαF
−1
j1 ;

• ∂βji(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) =

Fj1


0 sinαj1 − cosαj1 0

sinαj1 0 0 0
cosαj1 0 0 0

0 0 0 0

F−1
j1 ;

• ∂γji(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) =

Fj1


0 − cosβj1 sinαj1 cosβj1 sinαj1 0

cosαj1 cosβj1 0 − sin βj1 0
sinαj1 cosβj1 sin βj1 0 0

0 0 0 0

F−1
j1 ;

• ∂Tjil(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = Ml.

Proof. We have that

∂α21(F21F32F43 . . . Fmm−1F1m − I4) = (∂α21F21)F32F43 . . . Fmm−1F1m

and in order to evaluate it in (X,H(X)) we use the fact that Y = H(X) implies F1m =
(F21F32F43 . . . Fmm−1)−1 = F−1

mm−1 . . . F
−1
43 F

−1
32 F

−1
21 .

Therefore ∂α21(F21F32F43 . . . Fmm−1F1m− I4)|(X,H(X)) = (∂α21F21)F−1
21 and the procedure is

the same for any of the other components of JL,X :

∂α32L|(X,H(X)) = F21(∂α32F32)F−1
32 F

−1
21 and so on.

More detailed computations can be found in appendix (A.1).

Theorem 8.3.4. The elements of the matrix JL,Y (X,H(X)) have the following expressions:

• ∂α1m(F21F32F43 . . . Fmm−1F1m − I4) = Mα;

• ∂β1m(F21F32F43 . . . Fmm−1F1m − I4) =


0 − sin(α1m) − cos(α1m) 0

sin(α1m) 0 0 0
cos(α1m) 0 0 0

0 0 0 0

;



8.4. Computation of the KCRLB 57

• ∂γ1m(F21F32F43 . . . Fmm−1F1m − I4) =
0 − cos(α1m) sin(α1m) cos(α1m) sin(β1m) 0

cos(α1m) cos(β1m) 0 − sin(β1m) 0
− cos(α1m) sin(β1m) sin(β1m) 0 0

0 0 0 0

;

• ∂Tl(F21F32F43 . . . Fmm−1F1m − I4) = F1m
−1Ml.

Proof. See computations in appendix (A.1).

Finally, recalling the equation (8.4), we must invert I30 + JH
TJH :

(I30 + JH
TJH)−1 = (I30 + JL̃,X

T (JL̃,Y JL̃,Y
T )JL̃,X)−1 =

= I30 − JL̃,X
T (JL̃,Y JL̃,Y

T + JL̃,XJL̃,X
T )−1JL̃,X

.

8.3.2 Second step

We still have to find out how to estimate the covariance matrix V [w̄j1, T̄j1] that we need to
put into the first block of the covariance matrix V [qjk] in the denominator of the KCRLB
formula. If we define

Fj1 = F21...Fj−1j−2Fjj−1 = K1(w21, T21, ...,wjj−1, Tjj−1) = K2(wj1, Tj1),

we know that K1(x) = K2(y) implies that K1(x + δx) = K2(y + δy), therefore K1(x) +
JK1δx = K2(y) + JK2δy =⇒ δy = J†K2

JK1δx.
Then V [w̄j1, T̄j1] = JK2

†JK1V [w̄21, T̄21, ..., w̄jj−1, T̄jj−1]JTK1
J†K2

T
, where

JK1 =


∂K111
∂α21

... ∂K111
∂Tjj−13

...
...

∂K144
∂α21

... ∂K144
∂Tjj−13

 , JK2 =


∂K211
∂αj1

... ∂K211
∂Tj13

...
...

∂K244
∂αj1

... ∂K244
∂Tj13

 .
The independent equations are given by the first three rows of the rototranslation matrices,
so that we can define K̃l = (Fj11, . . . , Fj134) to obtain

V [w̄j1, T̄j1] = JK̃2
†JK̃1

V [w̄21, T̄21, ..., w̄jj−1, T̄jj−1]JT
K̃1
J†
K̃2

T
.

where J†
K̃2

= (JT
K̃2
JK̃2

)−1JT
K̃2

.
The derivatives appearing in this formulas can be computed in the same way as the ones
already mentioned in the previous section and reported in the appendix (A.1).

8.4 Computation of the KCRLB

We report the espressions of the terms appearing in the KCRLB formula (8.1) for our problem.
Computations are reported with more details in appendix (A.1).
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Proposition 8.4.1. The partial derivatives of C1 with respect to the parameters (see appendix
(A.1) for a more detailed insight in computations) are:

• ∂αC1 = C1Mα −MαC1;

• ∂βC1 = F TMβF ;

• ∂TlC1 = F TMl +MT
l F , where Ml =


0 0 0 δl1

0 0 0 δl2

0 0 0 δl3

0 0 0 0

, for l = 1, 2, 3;

• ∂rC1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2r

.

8.4.1 The numerator

As for the term appearing in the numerator in KCRLB formula (8.1), we get

(Pū∇ūEjk) =


ξTjk∂αC1ξjk

...
ξTjk∂rC1ξjk

 ,
which results in [(Pū∇ūEjk)(Pū∇ūEjk)T ]uv = ξTjk∂uC1ξjkξ

T
jk∂vC1ξjk.

8.4.2 The denominator

Regarding the denominator instead, since ∇ξjkEjk = 2C1ξjk, we get
(∇qjkEjk)TV [qjk]∇qjkEjk = 4ξTjkC1V [ξjk]C1ξjk.
Since ξjk = ξjk(qjk), the covariance matrix of ξjk is computed as

V [ξjk] = ∇qjkξ
T
jkV [qjk]∇qjkξjk,

where Jξ =


∂αj1ξjk1 . . . ∂tj2ξjk1
. . . . . .

∂αj1ξjk4 . . . ∂tj2ξjk4

 .
Proposition 8.4.2. The derivatives appearing in Jξ have the following expressions (again,
see appendix (A.1) for detailed computations):

• ∂αj1ξjk = Fj1


0
−f
tjk2

0

;
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• ∂βj1ξjk = Fj1


− sin(αj1)tjk2 − f cos(αj1)

sin(αj1)tjk1

cos(αj1)tjk1

0

;

• ∂γj1ξjk = Fj1


cos(βj1)(f sin(αj1)− tjk2 cos(αj1))
cos(αj1) cos(βj1)tjk1 − f sin(βj1)
tjk2 sin(βj1)− sin(αj1) cos(βj1)tjk1

0

;

• ∂Tj11ξjk = Fj1


Nj

TZjk

0
0
0

;

• ∂Tj12ξjk = Fj1


0

Nj
TZjk

0
0

; ∂Tj13ξjk = Fj1


0
0

Nj
TZjk

0

;

• ∂tj1ξjk = Fj1


1
0
0
Nj1

; ∂tj2ξjk = Fj1


0
1
0
Nj2

.



Chapter 9

Simulations

In this chapter, we consider a system of m = 3 cameras for which we compute the Kanatani
Cramer Rao Lower Bound for the radius of the cylinder.
We take the canonical reference system of the cylinder, SO = (O, (u1,u2,u3)), as the reference
system, as we did for the plots reported in section (7).
We choose the three cameras to be coplanar on the plane z = 0 and to be equally spaced,
with an angle of 120◦ between each other, and equally distant from the cylinder axis.
The focal length and opening angle (i.e. the field of view) of each camera are assumed to
be known,as well as their distance from the center of the reference system, i.e. the camera
center Oi.
Therefore we can fix the camera reference system BOi = (Oi, (vi1,vi2,vi3)) and we choose
to do it in the following way: vi3 = O − Oi is the vector perpendicular to the image plane
and pointing towards the cylinder such that vi3(3) = 0, vi1 = −u1 + vi3(3)vi3 is the vector
parallel to the cylinder axis and vi2 is derived as the cross product of vi1 and vi3. The three
vectors are then normalized with their norms in order to be unitary.

Figure 9.1: the system with the three cameras (each camera center corresponds to one of the green
points), seen from a top perspective, equally spaced and equally distant from the cylinder

For each camera, we fix the following parameters:
60
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• f = 20cm, the focal length;

• ∆s = 5µm, the pixel size;

• the angular field of view 2tan−1( bf ) with the horizontal field of view b = 1024∆s;

• the total number of pixels in the image plane is two times the horizontal field of view,
2b = 2048;

• the image plane reference system BÕi = (Õi, (vi1,vi2)), where vi1 represents the pixel
rows and vi2 the columns;

• the laser source to be the point S = Oi + dv1, where d is the distance from the camera
center to the cylinder axis, and the normal to the laser plane to be ni = k(vi1√

2 + vi3√
2 ) in

order to form an angle of 45 degrees with respect to the image plane, where k = 1〈
vi1,
−−→
OiS
〉

is the same normalizing constant seen in proof of theorem (7.3.1).

We also fix the true value of the cylinder radius to be equal to 25cm and the cylinder axis to
be parallel to u3.

Figure 9.2: example of one of the cameras in the simulation (represented as its center and reference
system and its paired laser plane in red which crosses the cylinder)

As for the values of the errors on the extrinsic parameters, we choose to put ourselves in
the most conservative case: the covariance matrix is diagonal. In order to make simulation,
we set the errors on the parameters to take values in a range between a reasonable maximum
and minimum values and we initialize them as vectors of equally spaced positive numbers:
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σ min max step measure unit
angles 0.1 1 0.1 deg
∆xy 0.5 5 0.5 micron
∆z 5 50 5 micron

pixels 12 40 2.5 micron

Table 9.1: values of the standard deviations of the error with which we perturb the five parameters of
the model

where the angles are the euler angles α, β, γ of each rotation matrix, ∆xy indicates the
translation along the axis x and y, ∆z indicates the translation along the axis z, i.e. parallel
to the cylinder axis, and the error in the last row is the one on the pixel coordinates in the
image plane.
With this setting, we run a total of 11000 simulations (one for each of the possible combina-
tions of the values in table) and obtain the following maximum and minimum error on the
radius:

σ min max measure unit
radius 0.00397 0.01537 m

Table 9.2: minimum and maximum standard deviation of the error obtained on the radius

Lastly, the following plots show how the error in the radius is related to each of the given
errors on the parameters: in each of the following four simulations, the three errors that do
not appear in the plot are set to be fixed on their mean value:

parameter σangles σxy σz σpixel

mean value 0.0096 2.75 27.5 27.5
measure unit deg micron micron micron

Figure 9.3: σradius vs σangles, [m] Figure 9.4: σradius vs σxy, [m]
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Figure 9.5: σradius vs σz, [m] Figure 9.6: σradius vs σpixel, [m]

We observe that the error on the radius seems to have a linear dependance on the error on
the rotation euler angles and on the error on the pixels, while the slope of its curve increases
more rapidly if plotted versus the errors on the rototranslations.
We can use this informations in order to perform some data analysis.

9.1 Data analysis

We now consider the data we have as a dataset composed by 11000 rows corresponding to
each simulated configuration (i.e. all the possible combinations of all the values taken by the
errors shown in table (9.1)) and 5 columns corresponding to each of the variables involved.
According to the plots at the end of the previous chapter, it seems reasonable to investigate a
way to express the relation between the error on the radius and the given errors on parameters.
Let us start with some descriptive statistical plots of our dataset and then proceed to some
basic analysis in order to explore the results that we obtained.

9.1.1 Descriptive plots

A histogram is a graphical display of data using bars of different heights: on the horizontal
axis there are the values taken by data (which are referred to as cells or bins), while on the
vertical axis the height of the bars in correspondance of each cell value is proportional to
the number of points falling into the cell. If data are normally distributed, their histogram
should recall the bell shape of the normal distribution.
Quantile-quantile (QQ) plots are instead graphs on which every observed value is plotted
against a standard normal distribution with the same number of points. Therefore we stan-
dardize the data before performing the following plots.
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Figure 9.7: histograms and qqplots of the entire dataset

By looking at the plot above, we can see that the first four variables do not match perfectly
the normal distribution, which is of course expected since we fixed their values numerically as
vectors of equally spaced points, while the normal probability density function is continuous
and centered on its mean value (in the sense that it does not give the same probability to
all the points and is usually represented with a characteristic symmetric bell shape with the
peak in the mean point, both in three and two dimensions).
On the other hand, we can say that the variable σradius, which is computed as the output
of our simulations, is normally distributed since its histogram takes the characteristic bell
shape and its points match very well the underlined normal distribution in the qqplot.

9.1.2 Linear regression

The classical linear regression model states that a response variable is composed of a mean,
which depends in a continuous manner on the observations, and a random error, which ac-
counts for measurement error and the effects of other variables not explicitly considered in
the modeI. The values of the predictor variables recorded from the experiment or set by the
investigator are treated as fixed.
The error (and hence the response) is viewed as a random variable whose behaviour is charac-
terized by a set of distributional assumptions, in particular it must be a set of independently
distributed samples with zero mean and costant variance (for a more extensive treatment on
linear regression models, we refer to [20]).
Since we are interested in understanding which of the parameters most influences the error
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on the radius, it would be proper if we could perform a linear regression analysis of the type

σradius = β1σpixel + β2σangles + β3σz + β4σxy + ε

ε ∼ N (0, s2)

σradius|σangles, σxy, σz, σpixel ∼ N (µσradius , Sσradius)

σangles, σxy, σz, σpixel are fixed.

where we indicated with µσradius and Sσradius the mean and the variance of σradius and ε is
the random noise normally distributed with mean 0 and unknown constant variance S2.
This scalar formulation is meant to hold for each one of the configurations that we simulated,
therefore we could also write the model in a vector form where the involved normal distribu-
tions would have a vector of 11000 elements and a [11000×11000] diagonal covariance matrix
as parameters.
Let us consider each of the simulated values for σradius as the response or dependent variable
in our regression model and each of the combinations of σangles, σxy, σz, σpixel as independent
observations or predictors.
Therefore we try to fit a linear regression model without intercept (i.e. with no constant term
to be added to the mean beside the linear combination of predictors) in order to see which
of the covariates influences the response variable the most.

Table 9.3: summary of the linear model where in the Estimate column we can find the estimated values
β̂i, i = 1, . . . , 4 for the coefficients βi, i = 1, . . . , 4

Estimate Std. Error t value Pr(>|t|)
σpixel 0.6858 0.0002 3729.68 <2e-16
σangles 0.7264 0.0002 4012.37 <2e-16

σz 1.268e-05 0.0002 0.07 0.9438
σxy 7.822e-06 0.0002 0.04 0.9653

Beside the column of estimated coefficients, the most important column in table (9.3) is
the last one, which reports the pvalue or significance level of the variable in the regression
model, i.e. the minimum value for which there is statistical evidence to reject the null hy-
pothesis of the test H0 : βi = 0 against the akternative hypothesis H1 : βi 6= 0.
If the pvalue is less than a chosen significance level (conventionally the threshold for statis-
tical significance is 0.05), then there is no statistical evidence to accept the null hypothesis
of the test.
We see from the summary in table (9.3) that the variables which are statistically significant
are σpixel and σangles beacuse their pvalue is way below the threshold, i.e. our sample of
observations gives reasonable evidence to support the alternative hypothesis H1 : βi 6= 0 for
the correspondent coefficients.
As for the other columns reported in table (9.3), the third one shows the values of the t-
statistic used for the hypothesis test on each of the estimated coefficients and can therefore
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be interpreted as a measure of how much the correspondent coefficient is far from zero.
Lastly, the coefficient standard error in the second column measures the average amount that
the coefficient estimates vary from the actual average value of our response variable, i.e. the
smaller this value is, the better the coefficient estimation is precise.
The conclusion on statistical significance acquired from table (9.3) seems to be compatible
with the plots at the end of the previous chapter which show that σradius has a linear relation
with σpixel and σangles but the relation with σz and σxy seems to be polynomial or exponen-
tial.
Anyway, we need to verify the reliability of the linear model fitting by checking the assump-
tions of normality and homoscedasticity (homogeneity of variance) for the residuals.
This is very important because residuals contain all the information about the lack of goodness-
of-fit in the model: indeed they are defined as the difference between the true value of the
response and the estimated one, i.e. the quantity ε̂ = σradius − σ̂radius.
The estimated regression coefficient values β̂i, i = 1, . . . , 4 give the estimated response vari-
able of the regression model as σ̂radius = β̂1σpixel + β̂2σangles + β̂3σz + β̂4σxy.

In order to verify the assumptions, we use the R function which plots the residual of a
regression model which as output the following plot:

Figure 9.8: Residuals plot

These plots are useful indicators of departures from the assumptions of the model because
of the following reasons:

• the left top and bottom plots shows the dependence of the residuals on the predicted
value: this dependance should not exist, therefore if we can not recognize any straight-
forward pattern in this plot, then we can suppose that the model is good. Moreover, the
residuals should ideally form a horizontal band because this indicates equal variances
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and no dependence on the response.

• the qqplot is useful to determine if the residuals are normally distributed, as we already
mentioned. Anyway, if the number of observations is large, minor departures from
normality will not greatly affect inferences about the parameters.

• as for the bottom right plot, it is usually considered less important than the others
in evaluating the goodnes of a model, but iti more useful to determine the presence
of outliers (the points in the plots that are very far from the others according to a
similarity metric) in the model. Here we limit ourselves to say that leverages are the
elements of the matrix H which is involved in the formula of the covariance matrix
of the residuals S2(I − H) (which is not diagonal). A more in-depth explanation of
leverages can be found in [20].

As we can see in the plot above, conditions do not seem to be fullfilled at the first look at
the residuals plot, so we try some standard procedures to fix this issue.
We now discuss the possible causes of failing the assumptions for goodness-of-fit in the linear
model and what we conclude after trying their solutions:

1. We may use the mahalanobis distance as similarity metric to discard some outliers, but
since we are dealing with simulated data it does not seem reasonable to seek for outliers
nor to loose some of the information by eliminating them.

2. We observe that the term linear refers to the fact that the mean is a linear function
of the unknown parameters β1, . . . , β4, hence the predictor variables may or may not
enter the model as first-order terms.
Hence we try different functions of the predictors in the regression models which seem
to fit the curves in the plots of σradius versus σz and σxy better than the linear one
(in particular we tried the polynomial with power 3 and the exponential). Anyway the
result remains the same in terms of statistical significance, so we do not report them.

3. We might conclude that residuals are not homoscedastic or that σz and σxy are less
significant in explaining the response variable.
The fact that the response variable σradius is significantly more affected by σang and
σpixel seems to be confirmed also from the fact that if we take an extreme case, for
instance all the configurations which give the minimum error on the radius (collected
in the following table), we see that the values for the two significant variables are stuck
to their minimum, while the other two variables are present also with errors slightly
higher then their minimum:
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Table 9.4: table collecting all the simulated configurations which result in the minimum error on the
radius (all values have to be adjusted by a multiplier of 10−6)

σang σxy σz σpixel

1745.33 1.00 5.00 15.00
1745.33 1.50 5.00 15.00
1745.33 2.00 5.00 15.00
1745.33 2.50 5.00 15.00
1745.33 3.00 5.00 15.00
1745.33 3.50 5.00 15.00
1745.33 4.00 5.00 15.00
1745.33 4.50 5.00 15.00
1745.33 5.00 5.00 15.00
1745.33 0.50 10.00 15.00
1745.33 1.00 10.00 15.00
1745.33 1.50 10.00 15.00

4. The problems of our regression model may be due to an issue which frequently occurs
in statistics and it is called multicollinearity, i.e. casual or intrinsic correlation patterns
among the predictors. A sign of the presence of multicollinearity is the fact that if we
fit a linear model considering only one predictor of the ones which resulted significant
in the complete model (for instance, we report the case of σangles in the following table),
we obtain a slightly different coefficient:

Estimate Std. Error t value Pr(>|t|)
σangles 0.8674 0.0030 293.61 <2e-16

Table 9.5: summary for the model σradius = βσangles. If we compare this with table (9.3), we notice
that β̂ = 0.8674 6= β̂2 = 0.7264.

Collinearity is a greatly debated issue. One way to eliminate collinearity is to substi-
tute the predictors with their linear combinations, for instance performing principal
components regression, as we do in the following chapter.

9.1.3 Principal Component Regression

We now the dataset of predictors, meaning that we now consider a data matrix with 11000
rows and 4 columns and perform a Principal Component Regression.
The principal components regression (PCR) approach involves constructing the principal
components and then using them as the predictors in a classical linear regression model that
is fit using least squares.
In other words, we assume that the directions in which the observations show the most
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variation are the directions that are associated with the response. This assumption is in fact
what reduces the multicollinearity effect.
For a more detailed insight in PCR method, we refer to the source [19].
As usual for PCA, all the analysis in this section is performed on standardized data.
If we fit a linear regression model for the response using the 4 principal components as
predictors:

σradius = βpc1 pc1 + βpc2 pc2 + βpc3 pc3 + βpc4 pc4, (9.1)

we find that they are all statistical significant except for the second one:

Table 9.6: summary of the linear model where in the Estimate column we can find the estimated values
β̂pc

i , i = 1, . . . , 4 for the coefficients βpc
i , i = 1, . . . , 4

Estimate Std. Error t value Pr(>|t|)
pc1 0.0010 0.0001 11.03 <2e-16
pc2 -0.0002 0.0001 -1.68 0.0923
pc3 0.0015 0.0001 16.18 <2e-16
pc4 -0.0018 0.0001 -19.68 <2e-16

Therefore we discard the second principal component from our model and obtain the
following summary table and residuals plot, from which we can see that we finally found a
seemingly good fit for our regression model:

Estimate Std. Error t value Pr(>|t|)
pc1 0.0010 0.0001 11.03 <2e-16
pc3 0.0015 0.0001 16.18 <2e-16
pc4 -0.0018 0.0001 -19.68 <2e-16

Table 9.7: summary table of the reduced principal component regression model for which the fitted
values are σ̂radius = β̂rpc

1 pc1 + β̂rpc
2 pc3 + β̂pc

3 pc4

Figure 9.9: Residuals plot of the linear model with the 1st, 3rd and 4th principal components as
predictors
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Now let us denote with σ̄angles, σ̄xy, σ̄z, σ̄pixel the mean values of each of the columns of
the dataset of predictors.
The coefficients of the linear combinations of predictors which form the 4 principal compo-
nents for our dataset are shown in the following plot:

Figure 9.10: loadings of each principal component

Since we know the coefficients of the linear combinations of the observed predictors which
let us compute the principal components:
pc1 = −0.29(σxy − σ̄xy)− 0.29(σangles − σ̄angles)− 0.29(σz − σ̄z) + 0.865(σpixel − σ̄pixel)

pc3 = 0.812(σangles − σ̄angles)− 0.333(σz − σ̄z)− 0.479(σxy − σ̄xy)

pc4 = −0.499(σangles − σ̄angles)− 0.499(σz − σ̄z)− 0.499(σxy − σ̄xy)− 0.502(σpixel − σ̄pixel),

by adding to this system the equation from the model fitted in table (9.7):

σ̂radius = 0.001pc1 + 0.0015pc3 − 0.0018pc4

with a simple computation we obtain a way to compute the estimated error on the radius of
the cylinder from the given errors on camera parameters with the formula

σ̂radius = 0.001826(σangles − σ̄angles)− 0.0001103(σxy − σ̄xy)

+0.0001087(σz − σ̄z) + 0.001768(σpixel − σ̄pixel).

9.2 Summary

The analysis which we performed in this chapter were meant to find relations among the data,
in particular focusing on how the error on the radius depends on the errors on the measured



9.2. Summary 71

camera parameters.
Firstly, we find that the error on the radius has a linear dependancy from the errors on
the rotation angles and the pixel coordinates, while it has a non-linear dependancy on the
translation parameters.
Then, in order to express the error on the radius as a function of the parameters, we evaluate
the fitting of a model both via linear regression and principal components regression.
In the end we conclude that the most appropriate method is PCR because, by projecting
the data along the directions in which they show the most variation, it mitigates the non-
linearity and multicollinearity effects in the data. We also compute the coefficients and report
the complete formulation of the model in equation (9.1.3). This result seems better than any
of the ones we obtained from the simple linear regression models because it permits to reach
statistical significance without eliminating any of the predictors.



Chapter 10

Conclusions and future
development

In this work, we developed a method for computing the Kanatani Cramer Rao Lower Bound
(modified version of the classical Cramer Rao approach in statistical parameter estimation)
for the variance of the error on the radius in the production of industrial pipes, when mea-
surements are made by a system of m independent calibrated cameras and each camera is
paired with a laser.
We first provided a deterministic formulation for the problem, then we included uncertainties
on the measurements and we obtained a statistical parametric formulation of the problem.
Finally, we computed the Kanatani Cramer Rao Lower Bound on the standard deviation of
the error in the estimation of the cylinder parameters, in particular the radius.
In the end, we test our analytical approach by simulating a particular configuration of the
camera/laser and cylinder system.
Lastly, we performed some statistical data analysis in order to obtain a relation between the
errors on the parameters and the estimated error.
Future developments of this work will be:

• the inclusion of other sources of errors in the Kanatani Cramer Rao Lower Bound, such
as the uncertainty on the laser plane position and on the intrinsics parameters of the
cameras;

• the experimental estimation of the input errors of the Kanatani Cramer Rao Lower
Bound;

• finally, a simulative and experimental validation of the method that we proposed in this
thesis.
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Appendix A

A.1 Computations

In this appendix, we report the calculations which lead us to compute all the derivatives
appearing in the KCRLB formula as we write it for our problem.

Remark A.1.1. Firstly, it is necessary to compute the partial derivatives of F = FTFγFβFα

with respect to the parameters:

• Fα = eαMα , =⇒ ∂αFα = MαFα = FαMα;

• Fβ = eβMβ , =⇒ ∂βFβ = MβFβ = FβMβ;

• Fγ = eγMγ ,Mγ =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 =⇒ ∂γFγ = MγFγ = FγMγ ;

• ∂TlFT =


0 0 0 δl1

0 0 0 δl2

0 0 0 δl3

0 0 0 0

 = Ml =⇒ ∂TlFT = Ml = MlFT = FTMl;

• ∂αF = FTFγFβ∂αFα = FTFγFβMαFα = FTFγFβMαF
T
β F

T
γ F−TF ;

• ∂βF = FTFγ∂βFβFα = FTFγFβMβFα = FFαMβFα;

• ∂γF = FT∂γFγFβFα = FTFγMγFβFα = FF Tα F
T
β MγFβFα = FTMγF−TF ;

• ∂TlF = ∂TlFTFγFβFα = FTMlFγFβFα = FF Tα F
T
β F

T
γ MlFγFβFα = F

[
QT 0[3×1]

0[1×3] 1

]
Ml =

Ml.

Remark A.1.2. For the computation of the numerator in the KCRLB formula as described
in section (8.4.1), it is necessary to compute the partial derivatives of C1 with respect to the
parameters:
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• ∂αC1 = F Tα F
T
β F

T
T CFTFβ∂αFα + ∂αF

T
α F

T
β F

T
T CFTFβFα =

F Tα F
T
β F

T
T CFTFβFαMα +MT

α FαF
T
β F

T
T CFTFβFα = C1Mα −MαC1;

• ∂βC1 = F Tα F
T
β F

T
T CFT ∂βFβFα + F Tα ∂βF

T
β F

T
T CFTFβFα =

F TCFTMβFβFα + F Tα F
T
β M

T
β F

T
T CF = (here we use scalar product property)

F TCMβFTFβFα + F Tα F
T
β F

T
TM

T
β CF =

F T


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

F + F T


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0

F = F T


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

F
(where for the last equality we use T3 = 0);

• ∂TlC1 = F Tα F
T
β F

T
T C∂TlFTFβFα + F Tα F

T
β ∂TlF

T
T CFTFβFα =

F TCMlFβFα + F Tα F
T
β M

T
l CF = F TMl +MT

l F ;

• ∂rC1 = F T∂rCF = F T


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2r

F =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2r

.

Remark A.1.3. F−1
ji = (FTjiFγjiFβjiFαji)−1 = F−1

Tji
F−1
γji F

−1
βji
F−1
αji = F−αjiF−βjiF−γjiF−Tji .

Remark A.1.4. For the computation of the denominator in the KCRLB formula as described
in section (8.4.2), it is necessary to compute the following derivatives:

• ∂αj1ξjk = Fj1Mα

[
Zjk

Nj
TZjk

]
= Fj1


0
−f
tjk2

0

;

• ∂βj1ξjk = Fj1


0 − sin(αj1) − cos(αj1) 0

sin(αj1) 0 0 0
cos(αj1) 0 0 0

0 0 0 0


[

Zjk

Nj
TZjk

]
=

= Fj1


− sin(αj1)tjk2 − f cos(αj1)

sin(αj1)tjk1

cos(αj1)tjk1

0

;

• ∂γj1ξjk = MγFj1

[
I3 0[3×1]

0[3×1]
T 0

] [
Zjk

Nj
TZjk

]
= MγFj1

[
Zjk

0

]
=

= Fj1


cos(βj1)(f sin(αj1)− tjk2 cos(αj1))
cos(αj1) cos(βj1)tjk1 − f sin(βj1)
tjk2 sin(βj1)− sin(αj1) cos(βj1)tjk1

0

;



A.1. Computations 79

• ∂Tj11ξjk = M1ξjk = Fj1


Nj

TZjk

0
0
0

;

• ∂Tj12ξjk = Fj1


0

Nj
TZjk

0
0

; ∂Tj13ξjk = Fj1


0
0

Nj
TZjk

0

;

• ∂tj1ξjk = Fj1


1
0
0
Nj1

; ∂tj2ξjk = Fj1


0
1
0
Nj2

.
Remark A.1.5. Let us compute the expressions of the elements of the matrix JL,X(X,H(X))
(most of this computation have been carried out numerically in Matlab Symbolic), starting
with j = 2, i = 1:

• ∂α21(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = (∂α21F21)F−1
21 = F21MαF

−1
21 =

0 − sin β21 cosβ21 sin γ21 T212 sin β21 − T213 cosβ21 sin γ21

sin β21 0 − cosβ21 sin γ21 T213 cosβ21 sin γ21 − T211 sin β21

− cosβ21 sin γ21 cosβ21 sin γ21 0 cosβ21(T211 sin γ21 − T212 cos γ21)
0 0 0 0

;

• ∂β21(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = (∂β21F21)F−1
21 =

F21


0 sinα21 − cosα21 0

sinα21 0 0 0
cosα21 0 0 0

0 0 0 0

F−1
21 ;

• ∂γ21(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = (∂γ21F21)F−1
21 =

0 −1 0 T212

1 0 0 T211

0 0 0 0
0 0 0 0

 = F21


0 − cosβ21 sinα21 cosβ21 sinα21 0

cosα21 cosβ21 0 − sin β21 0
sinα21 cosβ21 sin β21 0 0

0 0 0 0

F−1
21 ;

• ∂T21l(F21F32F43 . . . Fmm−1F1m − I4)|(X,H(X)) = (∂T21lF21)F−1
21 = Ml.

The other derivatives can be calculated with the same approach, for instance for j = 3, i = 2:
∂α32L|(X,H(X)) = F21(∂α32F32)F−1

32 F
−1
21 =

F21


0 − sin β32 cosβ32 sin γ32 T212 sin β32 − T213 cosβ32 sin γ32

sin β32 0 − cosβ32 sin γ32 T213 cosβ32 sin γ32 − T211 sin β32

− cosβ32 sin γ32 cosβ32 sin γ32 0 cosβ32(T211 sin γ32 − T212 cos γ32)
0 0 0 0

F−1
21
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= F31MαF
−1
31 .

Remark A.1.6. Now let us consider JL,Y (X,H(X)) and let us fix the number of cameras in
the system to be m = 6 to show all the computations:

• ∂α16(F21F32F43F54F65F16 − I4) = F21F32F43F54F65∂α16F16 =
F21F32F43F54F65F16Mα = I4Mα = Mα;

• ∂β16(F21F32F43F54F65F16 − I4) = F21F32F43F54F65∂β16F16 =

F21F32F43F54F65F16


0 − sin(α16) − cos(α16) 0

sin(α16) 0 0 0
cos(α16) 0 0 0

0 0 0 0

 =

=


0 − sin(α16) − cos(α16) 0

sin(α16) 0 0 0
cos(α16) 0 0 0

0 0 0 0

;

• ∂γ16(F21F32F43F54F65F16 − I4) = F21F32F43F54F65∂γ16F16 =

F21F32F43F54F65MγF16

[
I3 0[3×1]

0[3×1]
T 0

]
= F16

−1MγF16

[
I3 0[3×1]

0[3×1]
T 0

]
=

0 − cos(α16) sin(α16) cos(α16) sin(β16) 0
cos(α16) cos(β16) 0 − sin(β16) 0
− cos(α16) sin(β16) sin(β16) 0 0

0 0 0 0

;

• ∂Tl(F21F32F43F54F65F16 − I4) = F21F32F43F54F65∂TlF16 =
F21F32F43F54F65MlFT16Fγ16Fβ16Fα16 = F16

−1Ml.

Remark A.1.7. By looking at the symbolic computation in Matlab of the matrices JL̃,X(X,H(X))
and JL̃,Y (X,H(X)), we observe that in the equation system (8.5) a set of independent equa-
tions is given by the six components (1, 2), (1, 3), (2, 3), (3, 1), (3, 2), (3, 3).
Therefore we define L̃(X,Y ) = (L12, L13, L23, L31, L32, L33)(X,Y ) so that we can write
JL̃,X(X,H(X)) + JL̃,Y (X,H(X))JH(X) = 0.

It follows from remark (A.1.7) that JH(X) = −JL̃,Y
−1JL̃,X , where

JL̃,Y =


0 − sin(α16) − cos(α16) cos(β16)
0 − cos(α16) sin(β16) cos(β16) 0[3×3]

−1 0 − sin(β16)
0[3×3] QT16

 and, if β16 6=
π

2 ,
3π
2 ,

J−1
L̃,Y

= 1
cos(β16)


cos(α16) sin(β16) − sin(α16) sin(β16) − cos(β16)
− sin(α16) cos(β16) − cos(α16) cos(β16) 0 0[3×3]

− cos(α16) sin(β16) 0
0[3×3] cos(β16)QT16

 .
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A.2 Matlab and R codes

We report in this appendix the codes the Matlab functions and scripts to simulate the system.

1 % script cylinder .m for plotting the cylinder
O=[0;0;0];

3 e1 =[1;0;0];
e2 =[0;1;0];

5 e3 =[0;0;1];
syms x y z real

7 X=[x;y;z];
Y=[x;y;z;1];

9 EPS=[eps;eps;eps];
EPS=EPS ’*X;

11 A=[1 0 0;0 1 0;0 0 0];
C=[1 0 0 0;0 1 0 0;0 0 0 0;0 0 0 -r^2];

13 cilindro=@(Y) Y’*[A zeros (3,1); zeros (1,3) -r^2]*Y;
fimplicit3(cilindro(Y)+EPS ,’b’)%

15

% function receiveing the camera reference system and parameters in input and
17 % returning the coordinate points in the image plane and the normal to the paired

% laser plane , also plotting the system camera / laser
19 function [zcc ,N]= camera_system(Oi,O,e1,e2 ,e3,f,r,Ds ,A,C,EPS ,X,Y,d)

v3=O-Oi;
21 v3 (3)=0;

v3=v3/norm(v3);
23 v1=-e3+v3(3)*v3;

v1=v1/norm(v1);
25 v2=-[v3(3)*v1(2)-v1(3)*v3(2);-(v1(1)*v3(3)-v3(1)*v1(3)); v1(1)*v3(2)-v1(2)*v3(1)];

Q=[v1 v2 v3];
27 T=Oi;

% Piano lama laser nel sistema di riferimento canonico
29 S=Oi+d*v1;

k=1./(v1 ’*(S-Oi));
31 n=k*( sqrt (.5)*v1+sqrt (.5)*v3);

N=Q’*n; %Q ’= M_SBi
33 laser=@(X) n’*(X-S);

fimplicit3(laser(X)+EPS ,’r’)
35 hold on

% Piano immagine rispetto al sistema canonico
37 N_imm=v3; % normale al piano immagine v1v2

p=T+f*v3; % punto del piano immagine
39 immagine=@(X) N_imm ’*(X-p);

fimplicit3(immagine(X)+EPS)
41 % Piano polare

pp=@(Y) [Oi’ 1]*C*Y;
43 fimplicit3(pp(Y)+EPS ,’b’)% piano polare Q ’*(1 -T )=0

% Cono
45 cono=@(X) ((n’*(X-Oi))*Oi+X-Oi)’*A*((n’*(X-Oi))*Oi+X-Oi)-r^2*(n’*(X-Oi))^2;

fimplicit3(cono(X)+EPS ,’w’)
47 plot3 (0,0,0,’y*’)

plot3(T(1),T(2),T(3),’go’)
49 plot3(p(1),p(2),p(3),’yo’) % Otilde_i

Ctil=Q’*A*Q+2*Q’*n*T’*A*Q+Q’*n*T’*A*T*n’*Q-r^2*Q’*n*n’*Q;
51 [a, b, Qc, Tc] = canonicalcoeff(Ctil ,f);

V1=Qc*[a;0]+Tc; % teta =0
53 V2=Qc*[0;b]+Tc; % teta =pi /2

V3=Qc*[-a;0]+Tc; % teta =pi
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55 V4=Qc*[0;-b]+Tc; % teta =3/2* pi
visibile =(T’*A’*Q+T’*A’*A*T*n’*Q-r^2*n’*Q)*[V1 V2 V3 V4;f f f f];

57 for i=1:4
if visibile(i)<0

59 teta0=(i-1)* pi/2; break
end

61 end
teta=teta0;

63 teta_n=teta0;
while(teta_n <teta0 +2*pi)

65 prodotto=max(abs([-a*sin(teta_n) b*cos(teta_n )]*Qc ’*[1;0]) , abs([-a*sin(teta_n)
b*cos(teta_n )]*Qc ’*[0;1]));

67 Dteta=Ds/prodotto;
teta_n=teta_n+Dteta;

69 teta=[teta teta_n ];
end

71 teta=teta (1:end -1);
t1=a.*cos(teta);

73 t2=b.*sin(teta);
zc=[t1;t2];

75 zp=Qc*zc+Tc;
zcc=[zp;f*ones(length(t1),1)’];

77 zp=Q*zcc+T;
plot3(zp(1,:),zp(2,:),zp(3,:),’g*’,’Markersize ’ ,10)% ellisse

79 % plot sistemi di riferimento e1e2e3 e v1v2v3
starts = zeros (3,3);

81 ends = [e1 ’;e2 ’;e3 ’];
quiver3(starts (:,1), starts (:,2), starts (:,3), ends(:,1), ends(:,2), ends (:,3))

83 starts = [T’;T’;T’];
ends = [v1 ’;v2 ’;v3 ’];

85 quiver3(starts (:,1), starts (:,2), starts (:,3), ends(:,1), ends(:,2), ends (:,3))
starts = zeros (3,3);

87 ends = [N’;N’;N’];
quiver3(starts (:,1), starts (:,2), starts (:,3), ends(:,1), ends(:,2), ends (:,3))

89 % retta che separa la regione visibile e non visibile nel piano immagine
% retta nel piano della lama laser

91 Npp=[Oi;1]’*C; % componenti vettore normale del piano polare nel sdr globale
Mcrpll =[Npp (1:3);n’]; % matrice dei coeff della retta nel piano lama laser

93 tn=[-Npp (4);n’*S]; % vettore termini noti
Pll=Mcrpll\tn; % sol particolare = coordinate di un punto P della retta

95 vr=null(Mcrpll ); % sol omogenea = componenti vettore parallelo alla retta
% calcolo proiezione del punto P nel piano immagine

97 t1t2=[v1 v2 -(Pll -Oi)]\[-f*v3];
Ppi=Oi+Q*[t1t2 (1:2);f];

99 % plot della retta
t=linspace (-10,10);

101 Prpi=vr*t+Ppi;
plot3(Prpi(1,:),Prpi(2,:),Prpi(3,:),’r’,’linewidth ’ ,3)

103 visibile =(T’*A’*Q+T’*A’*A*T*n’*Q-r^2*n’*Q)*zcc;
for i=1: length(t1)

105 if visibile(i)>=0
plot3(zp(1,i),zp(2,i),zp(3,i),’b*’,’Markersize ’ ,10)

107 end
end

109

% function used in camera_system .m to compute the canonical equation of the ellipse
111 %in the image plane

function [a, b, Q, T] = canonicalcoeff(Ctil ,f)
113 Ctil =.5*( Ctil+Ctil ’);
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Atil=Ctil (1:2 ,1:2);
115 Btil=Ctil (1:2 ,3);

ctil=Ctil (3 ,3);
117 Btil=Btil*f;

ctil=ctil*(f^2);
119 I2=det(Atil);% invarianti

Ctil=[Atil Btil;Btil ’ ctil];
121 I3=det(Ctil);

[Q,eigAtil ]=eig(Atil);%Q diagonalizza Atil
123 eigAtil=diag(eigAtil );% lambda1x ^2+ lambda2y ^2+ terminenoto =0

c_m=I3/I2;
125 coeff_m=c_m./[ eigAtil;c_m];

a=sqrt(abs(coeff_m (1)));
127 b=sqrt(abs(coeff_m (2)));

T=Atil\(-Btil);
129 return

We report also the Matlab codes to calculate the KCRLB for our problem.
1 % function for computing the numerator of the KCRLB formula

function [F,Q,num]= numerator(C,alpha ,beta ,gamma ,T,N,zp,f,DrNum ,M1 ,M2,Malpha)
3 % input : rototranslation parameters wrt reference camera , normal to laser plane

% coordinates of points in the image plane , focal length , dervative of C_1
5 % wrt the first 2 components of translation

% output : rototranslation matrix , rotation matrix , term in the numerator
7 % corresponding to the camera (the summation on points is already computed )

Q1=[1 0 0;0 cos(alpha) -sin(alpha );0 sin(alpha) cos(alpha )];
9 Q2=[cos(beta) 0 -sin(beta );0 1 0;sin(beta) 0 cos(beta )];

Q3=[cos(gamma) -sin(gamma) 0;sin(gamma) cos(gamma) 0;0 0 1];
11 Q=Q3*Q2*Q1;

F=[eye (3) T;0 0 0 1]*[Q2 zeros (3 ,1);0 0 0 1]*[Q3 zeros (3 ,1);0 0 0 1];
13 C1=F’*C*F;

DalphaNum=C1*Malpha -Malpha*C1; %4x4
15 DbetaNum=F’*[0 0 0 0;0 0 0 0;-1 0 0 0;0 0 0 0]*F;

DT1Num=F’*M1+M1 ’*F;
17 DT2Num=F’*M2+M2 ’*F;

Numsum =0;
19 for i=1: size(zp ,2)

csi=F*[zp(1,i);zp(2,i);f;N’*[zp(1,i);zp(2,i);f]]; %4x1
21 Num=[csi ’* DalphaNum*csi; csi ’* DbetaNum*csi; csi ’* DT1Num*csi; csi ’* DT2Num*csi;

csi ’* DrNum*csi]; %5x1
23 % Num = simplify (Num );

Numsum=Numsum+Num*Num ’;
25 end

num=Numsum;
27

% function for computing the denominator of KCRLB
29 function Den=denominator(C,F,N,zp,f,Vest ,Vpunti ,alpha ,beta ,Q,JK1 ,JK2)

% input : cylinder matrix , rototranslation wrt reference camera , the estimated
31 % covariance matrix with the current configuration of measurement errors , coordinates of the

% points in the image plane , matrices J_K1 and J_K2
33 % output : denominator corresponding to the camera (the summation on points is

% already computed )
35 JK2inv =(JK2 ’*JK2)\JK2 ’;

Vest=JK2inv*JK1*Vest*JK1 ’*JK2inv ’;
37 V=[Vest zeros (6,2); zeros (2,6) Vpunti ];

Cm=F’*C*F;
39 Dt1=F*[1;0;0;N(1)];

Dt2=F*[0;1;0;N(2)];
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41 Dt=[Dt1 Dt2];
Den=zeros(1,size(zp ,2));

43 for i=1: size(zp ,2)
Dalpha=F*[0;-f;zp(2,i);0];

45 Dbeta=F*[-sin(alpha)*zp(2,i)-f*cos(beta );sin(alpha)*zp(1,i);cos(alpha)*zp(1,i);0];
Dgamma=F*[cos(beta )*(-cos(alpha)*zp(2,i)+f*sin(alpha )); cos(alpha)*sin(beta )*zp(1,i)

47 -f*sin(beta);-sin(alpha)*cos(beta )*zp(1,i)+sin(beta )*zp(2,i);0];
DT=[N’*zp(:,i)*Q’;0 0 0];

49 omega=[ Dalpha Dbeta Dgamma DT Dt];
Den(i)=4*[zp(:,i)’ N’*zp(:,i)]*Cm*omega*V*omega ’*Cm*[zp(:,i);N’*zp(:,i)];

51 end
Den=sum(Den);

53

% function for computing the derivatives which are meant to give the matrices J_K1 ,
55 %J_K2 , J_LX and J_LY

function [DalphaDen ,DbetaDen ,DgammaDen ,DalphaF ,DbetaF ,DgammaF ]= derivate(F,alpha ,
57 beta ,Malpha)

% calcolo derivate rispetto a parametri di rototraslazione
59 invF=inv(F);

DalphaDen=F*Malpha*invF;
61 DbetaDen=F*[0 -sin(alpha) -cos(alpha) 0;sin(alpha) 0 0 0;cos(alpha) 0 0 0;0 0 0 0]

*invF;
63 DgammaDen=F*[0 -cos(alpha)*cos(beta) sin(alpha)*cos(beta) 0;cos(beta )*cos(alpha) 0

-sin(beta) 0;-sin(alpha)*cos(beta) sin(beta) 0 0;0 0 0 0]* inv(F);
65 DalphaF=DalphaDen (: ,1:3)*F(1:3 ,:);

DbetaF=DbetaDen (: ,1:3)*F(1:3 ,:);
67 DgammaF=DgammaDen (: ,1:3)*F(1:3 ,:);

69

% the following script is the one which computes the KCRLB for the radius in all
71 % the possible configurations of the errors on the measurements collected in the

% vectors named d_ang , d_xy , d_z , d_pixel
73 [ca , cb , cc, cd] = ndgrid(d_ang , d_xy , d_z , d_pixel );

combs = [ca(:), cb(:), cc(:), cd (:)];
75 ris=zeros(size(combs ,1) ,1);

for j=1: size(combs ,1)
77 % scorrendo i vettori di dev std dei parametri calcola la matrice di KCRLB

V21=diag ([combs(j ,1)^2 combs(j ,1)^2 combs(j ,1)^2 combs(j ,2)^2 combs(j ,2)^2
79 combs(j ,3)^2]);

V32=V21;
81 V13=V32;

Vall=[V21 zeros(size(V21)); zeros(size(V21)) V21];% cov matrix di tutti i parametri
83 %di tutte le telecamere

Vest=invJG*(Vall+JH ’*V21*JH)* invJG;% Vall e V13 sono dati
85 Vpunti=diag ([combs(j ,4)^2 combs(j ,4)^2]);

Den1=denominator(C,F11 ,N1,zp1 ,f,zeros (6),Vpunti ,0,0,Q11 ,eps*eye(size(JK21)),
87 eps*eye(size(JK21 )));

Den2=denominator(C,F21 ,N2,zp2 ,f,Vest (1:6 ,1:6) , Vpunti ,alpha21 ,beta21 ,Q21 ,JK21 ,JK21);
89 Den3=denominator(C,F31 ,N3,zp3 ,f,Vest (1:12 ,1:12) , Vpunti ,alpha31 ,beta31 ,Q31 ,JK132 ,

JK232);
91 dainv=num1/Den1+num2/Den2+num3/Den3;

kcr=inv(dainv);
93 ris(j)= sqrt(kcr (5 ,5));

end
95 dataset =[combs ris];

Finally, we report the R script that we used for the data analysis.
1 setwd("C:/Users/Sara/Documents/tesi/marcon/teoria per modello/articles/kanatani/matlab ")



A.2. Matlab and R codes 85

data <- read.table(’errori.txt’, header=T)
3 dimnames(data )[[2]]<-c(’sig_ang ’,’sig_xy ’,’sig_z’,’sig_pixel ’,’sig_r’)

attach(data)
5 #extreme configurations

dataconfmin <-data[which(data$sig_r ==min(data$sig_r )) ,1:4]
7 dataconfmax <-data[which(data$sig_r ==max(data$sig_r )) ,1:4]

detach(data)
9 ###### Normality of the components , descriptive plots

x11(width =12)
11 par(mfcol=c(2,5))

for(i in 1:5)
13 {

hist(data[,i], prob=T, main=paste(’Histogram␣of␣’, dimnames(data )[[2]][i], sep=’’))
15 lines (900:2800 , dnorm (900:2800 , mean(data[,i]),sd(data[,i])), col=’blue’, lty =2)

qqnorm(data[,i], main=paste(’QQplot␣of␣’, dimnames(data )[[2]][i], sep=’’))
17 qqline(data[,i])

}#
19 data <-as.data.frame(scale(data))

attach(data)
21 fit0 <- lm(sig_r ~ 0+ sig_ang+sig_pixel+sig_z+sig_xy)

summary(fit0)
23 detach(data)

x11()
25 par(mfrow=c(2,2))

plot(fit0)
27 ############### PCA

X<-data [,1:4]
29 n <- dim(X)[1]

p <- dim(X)[2]
31 pc <- princomp(X, scores=T)

summary(pc)
33 load <- pc$loadings

load
35 X11()

par(mfrow=c(2,2))
37 barplot(load[,1], ylim = c(-1, 1),las=2,main=’loadings␣of␣1st␣pc’)

abline(h=0)
39 barplot(load[,2], ylim = c(-1, 1),las=2,main=’loadings␣of␣2nd␣pc’)

abline(h=0)
41 barplot(load[,3], ylim = c(-1, 1),las=2,main=’loadings␣of␣3rd␣pc’)

abline(h=0)
43 barplot(load[,4], ylim = c(-1, 1),las=2,main=’loadings␣of␣4th␣pc’)

abline(h=0)
45 # scores (projected data)

Y<- pc$scores
47 ################### PCR

data <- read.table(’errori.txt’, header=T)
49 dimnames(data )[[2]]<-c(’sig_ang ’,’sig_xy ’,’sig_z’,’sig_pixel ’,’sig_r’)

fitpc <-lm(data$sig_r ~ 0+Y[,1]+Y[,2]+Y[,3]+Y[,4])
51 summary(fitpc)

ridpc <-lm(data$sig_r ~ 0+Y[,1]+Y[,3]+Y[,4])
53 summary(ridpc)

x11()
55 par(mfrow=c(2,2))

plot(ridpc)


	Introduction
	Affine geometry
	Vector spaces
	Affine subspaces
	Mutual position of affine subspaces
	Pencils of hyperplanes
	Affine transformations

	Euclidean geometry
	Euclidean vector spaces
	Euclidean cartesian reference systems and isometries
	Distance between a point and a subspace

	Rotation groups
	Matrix representation of groups
	Lie groups, Lie algebra and exponential map

	Quadrics and conics
	Quadric hypersurfaces
	Euclidean affine spaces and euclidean elements
	Reduction to canonical form of quadrics
	Classification of conic curves and quadric surfaces

	Performance evaluation
	Dual approach of Kanatani
	Cramer-Rao’s lower bound for statistical estimators
	Kanatani Cramer-Rao Lower Bound
	Noise description and estimators accuracy
	Linearized constraint optimization example


	The model
	Camera and laser
	The cylinder
	The ellipse arcs
	Change of coordinates
	The visible region
	Sampling the conic in the image plane
	Remarks on the code for simulations

	Kanatani Cramer Rao Lower Bound
	Notation
	From the deterministic to the statistical problem
	The covariance matrix and the bundle adjustment
	First step
	Second step

	Computation of the KCRLB
	The numerator
	The denominator


	Simulations
	Data analysis
	Descriptive plots
	Linear regression
	Principal Component Regression

	Summary

	Conclusions and future development
	Bibliography
	Appendix 
	Computations
	Matlab and R codes


