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Abstract

Climate change and growing population are expected to severely affect fresh-
water availability by the end of 21th century. Many river basins, especially in
developing countries, are likely to become more prone to periods of reduced
water supply, risking considerable impacts on society, environment, and econ-
omy. The construction of new dams has the potential to bring significant so-
cial and economic benefits, but in the past several negative impacts have been
associated with dam construction. The existing literature concerning optimal
or strategic dam planning mainly focused on sizing and siting of dams and
its associated impacts; these are certainly important, but for many dams the
most severe impact are not associated to regime operations, but to the construc-
tion and the filling phases. The construction phase often requires the resettle-
ment of local populations and the preparation of the construction site, and the
subsequent filling phase can have non-negligible implications downstream the
dam. Extreme precaution towards downstream impacts would require transit-
ing very high percentages of inflow resulting in multi-decadic filling time. A
more efficient strategy for upstream interests would tend to speed up the im-
poundment of water to maximize hydropower production, generating minimal
or negligible inflows for several years downstream. In this process, the hydro-
climatic variability plays a key role: if the filling occurs in an extremely wet
period, the downstream impact is very low, instead in a dry period the impacts
will be amplified. The state of global teleconnections stongly influences the hy-
droclimatic variability, thus introducing a long-term source of predictability on
hydrological fluctuations that can be exploited to design efficient filling opera-
tions. This study investigates different reservoir filling strategies, in particular,
assessing the role that medium and long-term forecasts can play to better in-
form the impounding strategy, eventually modulating it over time to adapt to
the hydroclimatic variability. The proposed methodology is demonstrated onto
the case study of the Omo-Turkana basin in Ethiopia, where the construction
and filling of Gibe III dam raised the strong opposition of the local community
and international organizations. The thesis suggests a retrospective analysis
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of Gibe III filling to evaluate the impacts of alternative filling strategies, and
demonstrate how the availability of long-term forecasts could prove extremely
useful. Rainfall and temperature data necessary for this thesis were retrieved
from satellite data comparing and correcting three precipitation remote sensing
datasets (TRMM, CHIRPS and TAMSAT) and two temperature remote sensing
datasets (MERRA-2 and ORH). Then, the selected and corrected precipitation
dataset (TAMSAT) and temperature (MERRA-2) data are employed to compute
two drought indexes: SPI and SPEI. Thirdly, we detected the relevant telecon-
nections in the area. For each phase of the considered climate signals, our ap-
proach identifies relevant anomalies in Sea Surface Temperature that influence
the local hydrologic conditions which are first aggregated via Principal Com-
ponent Analysis and then used as input in a multi-variate forecast model of
season-ahead drought condition in the Omo basin. The filling strategies that
were implemented and tested are designed to respect natural seasonal inflow
variability while accounting for the forecasted state of water resources, allow-
ing a larger fraction of the inflow to be released when a drought is forecasted.
Results show that the correlation between teleconnections and local variables
in the area is relevant, and can be exploited to produce reliable and accurate
forecasts, e.g., 9 months ahead SPEI predictions demonstrate hindcast accu-
racy of R2 = 0.84. The proposed filling strategies are compared with the actual
strategy employed for the filling of Gibe III and demonstrate a potential to sig-
nificantly decrease downstrem impacts during filling transient, for instance by
maintaining the level of downstream lake Turkana up to one meter higher than
historically.
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Summary

Si prevede che i cambiamenti climatici e la crescita della popolazione influenz-
eranno gravemente la disponibilità di acqua entro la fine del 21◦ secolo. Molti
bacini fluviali, soprattutto nei paesi in via di sviluppo, rischiano di diventare
più inclini a periodi di riduzione dell’approvvigionamento idrico, andando
incontro a notevoli impatti sulla società, sull’ambiente e sull’economia. La
costruzione di nuove dighe ha il potenziale per portare significativi benefici
sociali ed economici, ma in passato molti impatti negativi sono stati associati
alla loro costruzione. La letteratura precedente si occupa principalmente di
pianificazione ottimale o strategica della diga focalizzando l’attenzione sul di-
mensionamento e l’ubicazione con i relativi impatti; questi sono certamente
importanti, ma per molte dighe il vero impatto non è dato dalle operazioni di
regime, ma dalle fasi di costruzione e di riempimento. La fase di costruzione
implica il reinsediamento delle popolazioni locali e la preparazione del sito
di costruzione, e la successiva fase di riempimento può avere implicazioni
non trascurabili con la riduzione della portata a valle della diga. Una strate-
gia di riempimento attenta agli impatti a valle richiederebbe di far transitare
percentuali molto alte di afflusso con tempi di riempimento multi-decennali.
Una strategia più efficiente per gli interessi a monte tenderebbe ad accelerare
il più possibile il sequestro dell’invaso per massimizzare la produzione di en-
ergia idroelettrica, generando afflussi minimi o trascurabili per diversi anni a
valle. In questo processo, la variabilità idro-climatica gioca un ruolo chiave: se
il riempimento avviene in un periodo estremamente umido, l’impatto a valle
è molto basso, invece in un periodo di siccità gli impatti saranno amplificati.
Lo stato delle teleconnessioni globali influisce fortemente sulla variabilità idro-
climatica, introducendo così una fonte a lungo termine di prevedibilità sulle
fluttuazioni idrologiche che possono essere sfruttate per progettare efficienti
operazioni di riempimento. Questo studio indaga diverse strategie di riem-
pimento dei serbatoi, in particolare, valutando il ruolo che possono avere le
previsioni a medio e lungo termine per meglio informare la strategia di riem-
pimento, eventualmente modulandola nel tempo per adattarsi alla variabilità
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idro-climatica. La metodologia proposta è dimostrata sul caso studio del ba-
cino Omo-Turkana in Etiopia, dove la costruzione e il riempimento della diga
di Gibe III hanno sollevato la forte opposizione della comunità locale e delle
organizzazioni internazionali. La tesi suggerisce un’analisi retrospettiva del
riempimento di Gibe III per valutare quale impatto potrebbero avere strate-
gie di riempimento alternative, e dimostra come la disponibilità di previsioni
a lungo termine potrebbe rivelarsi estremamente utile. I dati di precipitazione
e di temperatura necessari per questa tesi sono stati ottenuti da dati satellitari
confrontando e correggendo tre dataset di precipitazione (TRMM, CHIRPS e
TAMSAT) e due dataset di temperatura (MERRA-2 e ORH). Dopodichè, i dati
di precipitazione (TAMSAT) e di temperatura (MERRA-2) che sono stati se-
lezionati e corretti vengono utilizzati per calcolare due indici di siccità: SPI e
SPEI. In terzo luogo, abbiamo rilevato le teleconnessioni pertinenti nell’area.
Per ogni fase dei segnali climatici considerati, la nostra procedura identifica le
anomalie rilevanti nelle Sea Surface Temperature (SST) che influenzano le con-
dizioni idrologiche locali che vengono prima aggregate tramite un’analisi della
componente principale (PC) e poi utilizzate come input in un modello di previ-
sione multi-variata della condizione di siccità della stagione successiva nel ba-
cino dell’Omo. Le strategie di riempimento che sono state implementate e tes-
tate hanno l’obiettivo di rispettare la naturale variabilità di afflusso stagionale,
tenendo conto dello stato previsto delle risorse idriche, consentendo di rilas-
ciare una frazione maggiore di portata quando si prevede una siccità. I risultati
mostrano che la correlazione tra le teleconnessioni e le variabili locali nell’area
è rilevante e che si è in grado di sfruttarla per previsioni affidabili, ad esempio,
le previsioni di SPEI con 9 mesi di anticipo dimostrano un’accuratezza con R2 =
0.84. Le strategie di riempimento proposte sono confrontate con la strategia ef-
fettivamente impiegata per il riempimento di Gibe III e possiamo vedere che le
strategie proposte dimostrano un potenziale per ridurre significativamente gli
impatti di valle durante l’orizzonte di riempimento, ad esempio mantenendo il
livello del lago Turkana a valle fino a un metro più alto di quello storico.
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1
Introduction

1.1 Dam �lling

Climate change and growing population are expected to severely affect fresh-
water availability by the end of 21th century. Many river basins, especially in
developing countries, are likely to become more prone to periods of reduced
water supply, risking considerable impacts on society, environment, and econ-
omy, thus emphasizing the need to rethink the way water resources are man-
aged at the regional and river basin scale. Dams are constructed for many pur-
poses, including flood prevention, irrigation, and hydroelectric power. With
the tens of thousands of existing large dams around the world, and the ever-
increasing demand for water and power, dams will continue to make a sig-
nificant impact on modern day life (McCartney and King, 2011). Worldwide,
many countries rely upon hydropower for a substantial portion of their elec-
tricity production. In developing countries, rapid urbanization and population
growth will result into increasing demand for decades to come and electricity
remains a key ingredient for improving the lives of millions of people (Ledec
and Quintero, 2003).
The construction of new dams have the potential to bring significant social and
economic benefits, but in the past several negative impacts have been associ-
ated with dam construction. These impacts can be contained through a better
planning and management of dams (McCartney and King, 2011). Dam manage-
ment in regime conditions is the object of an extensive literature (for reviews
see Labadie (2004), Castelletti et al. (2008)) and planning issues have been more
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recently addressed from the point of view of dam optimal sizing, location, and
numerosity (Chang et al., 1996; Becue et al., 2002; Awchi and Abdul-Majeed, 2004;
Deltares, 2010; Castelletti et al., 2018). These are certainly important, but for
many dams the real impact is not the regime operations, but the construction
and the filling phases. These aspects of dam planning are often neglected, de-
spite they can occupy almost 10%, in some cases more, of the expected life of an
infrastructure. This elements are crucial especially for large reservoirs, with the
pivotal example of the Grand Ethiopian Renaissence dam (GERD), where the
filling transient may take from 4 to 20 years, one fifth of the projected dam life
(Zhang et al., 2016). In such cases, it is crucial to guarantee an acceptable sys-
tem performance during the filling period by designing appropriate strategies
to reduce downstream impacts. While there have been numerous recent stud-
ies debating the long-term economic, sectoral, resource and social implications
of the GERD, less attention has been devoted to potential impacts on riparian
countries during the reservoir filling stage. Given the massive reservoir volume
and large interannual variations in Blue Nile streamflow, the manner in which
the reservoir is filled is critical. Ethiopia has an incentive to fill the reservoir
rapidly to begin generating hydropower, while downstream countries prefer
a modest filling rate to minimize the possible impacts on dependent lives and
livelihoods. When river basins are transboundary, moreover, basin-wide con-
flicts due to impoundment may translate into sovranational conflicts, as in the
case of the above mentioned GERD on the Blue Nile (encompassing Ethiopia,
Sudan, and Egypt), in Zambesi river basin with Kariba dam conflicts between
Zambia, Zimbabwe and Mozambique (?) or HoaBinh reservoir in the Red river
basin (China, Vietnam, Laos, Castelletti et al. (2012)).
Reservoir filling strategies can be designed as a water balance between inflow
to the reservoir, based on hydroclimatic conditions, and outflow, based on im-
poundment/release strategies and evaporation. The rate at which the reservoir
is filled has direct implications for hydropower generation, and downstream
releases and associated impacts. In non-stationary climates, characterized by
the strong presence of climate signals and teleconnections which influence the
interannual variability of local hydro-meteorology (Diro et al., 2011; Degefu et al.,
2017; Penso, 2018), deciding the filling strategies becomes more complex. The
same filling rates can have very different results in terms of time employed for
filling the dam, and downstream impacts in dry or wet years, and a wise filling
strategy should account for it.
A number of studies have investigated the filling policies of GERD dam in
Ethiopia evaluating the effect of the dam on Blue Nile riparian countries un-
der hydroclimatic variability and climate change. King and Block (2014) and
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Liersch et al. (2017) assess the implications of climate variability and emerging
climate change within Ethiopia, which cast further uncertainty on potential fill-
ing policies and system operations. Zhang et al. (2016) introduce simulations of
probabilistic streamflow via wavelet analysis in order to define the response
of different categories of filling strategy towards wetter or drier conditions.
Wheeler et al. (2016) analyze implications for downstream water resources us-
ing a river basin planning model with a wide range of historical hydrological
conditions and increasing coordination between the co-riparian countries.
All these studies have analyzed the problem of dam filling from different per-
spectives, mainly for GERD, where the conflict had global resonance. How-
ever, none of these works explicity considered hydro-climatic variability and
the possibility of reducing its uncertainty through forecasts during the dam fill-
ing operations. The peculiarity of this work with respect to the previous body
of work on GERD, is that we explicitly consider the non-stationarity character-
izing the Ethiopian climate and design filling strategies based on season-ahead
predicted state of water resources using seasonal forecasts designed account-
ing for the state of climate signals. The procedure is applied to a large reservoir
in southern Ethiopia, namely, the Gibe III dam on Omo river terminating in
Kenyan lake Turkana.
The filling operations of Gibe III dam started in January 2015 impounding in
the reservoir the equivalent of an average year of streamflow of the Omo river,
in the span of around 2 years, and thus significantly reducing the water provi-
sion to downstream stakeholders and altering the natural regime. This endan-
gered the fragile ecosystems and the livelihoods of the tribes, which are closely
linked to the river and its annual flood. Filling the Gibe III reservoir caused a
significant reduction of inflow to the downstream Lake Turkana and the con-
sequent drop in Turkana level. The annual flooding of the Omo River feeds
the rich biodiversity of the region and guarantees the food security of the tribes
especially as rainfall is low and erratic and they depend on it to practice flood
recession agriculture using the rich silt left along the river banks by the slowly
receding waters.
The starting point and the duration of filling process are key factors especially
in climate regime which alternates wet season and dry season. The duration
and impacts caused by filling operations can be estimated using average con-
ditions, but when the filling process starts may occur seasons that deviate from
the average conditions and could produce different impacts compared to those
calculated first. Thus, the medium or long term forecasts give information on
how the seasons will present, allowing to modulate the filling rate, trying to
protect downstream if the expected season is dry, and instead allowing a faster
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fill if we expect wet season. To produce these medium and long-term forecasts
we can rely on teleconnections. Moreover, in our case study the state of global
teleconnections stongly influences the climate in terms of rainfall (Diro et al.,
2011; Degefu et al., 2017; Penso, 2018) and streamflow (Degefu and Bewket, 2017),
thus the timeline of filling operations must take into account the seasonality
and the period of climate signals, through the use of medium and long-term
forecasts based on global teleconnections with 9-12 months lead time.

1.2 Teleconnection detection and precipitation forecast

Teleconnection patterns are defined by NOAA (NOAA, 2018) as a recurring and
persistent, large-scale pattern of pressure and circulation anomalies which af-
fects large geographical areas. These patterns typically last for several weeks
to several months, but their effects can sometimes last for several consecutive
years, thus representing an important part of both the interannual and inter-
decadal variability of the atmospheric circulation (NOAA, 2018). All telecon-
nection patterns are an effect of internal atmospheric dynamics and are a natu-
rally occurring result of the interaction of the atmospheric circulation with the
land and ocean surfaces. In particular, great amount of energy is absorbed or
dispersed when a region’s Sea Surface Temperature (SST) changes, and even
slow or contained variations may have great effects on some climate patterns
and consequently on the climate variability.
The El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO),
the Pacific Decadal Oscillation (PDO), the Atlantic Multidecal Oscillation (AMO),
and the Indian Ocean Dipole (IOD) are the main teleconnection patterns in the
globe (Araghinejad and Meidani, 2013). They were demonstrated to have a rel-
evant impact large-scale changes in the atmospheric wave and jet stream pat-
terns, as well as influence temperature, rainfall, storm tracks, and jet stream
location/intensity over vast areas. Thus, they are often the culprit responsible
for abnormal weather patterns occurring simultaneously over seemingly vast
distances.
Multiple studies in the last decades have recognized the connection between
large-scale climate phenomena and hydroclimatology worldwide (Ward et al.,
2014; Poveda and Mesa, 1997; Lavers et al., 2013; Grantz et al., 2005) and this in-
formation has been exploited to improve the forecasts. Accounting for the cor-
relation between rainfall and streamflow anomalies, and changes in large-scale
ocean atmospheric patterns, led to improvements in long-lead forecast through
the development of statistical approaches that relate ’at site’ hydrology to large-
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scale ocean-atmosphere state variables providing useful seasonal to interan-
nual forecasts (Araghinejad et al., 2006; Samale et al., 2017). For season-ahead
statistical prediction models, SST anomalies are documented as the best per-
forming large-scale precipitation predictor field, based on the theory that the
lower atmosphere is forced by large-scale anomalous surface processes (Zim-
merman et al., 2016).
Forecasts, coupled with flexible operating rules, may lead to optimal or more
efficient reservoir management of storage and release volumes based on ex-
pected probabilistic future conditions (Block, 2011). In the past, medium and
long-term forecasts were generally inaccurate and of scarse interest, but re-
cently seasonal climate forecasting capabilities have significantly advanced,
both for physically-based global climate models, and for data driven models,
thanks to a better physical understanding of the climate system, that allow to
reliably expand the forecast lead time, i.e., the length of time between the is-
suance of a forecast and the occurrence of the phenomena that were predicted.
Many studies considered the Ethiopian region where our study is focused,
demonstrating the influence that the SST in the equatorial Pacific, the north-
west Pacific and the Gulf of Guinea all exert on the main rainy season in various
parts of Ethiopia. In the case of the equatorial Pacific, a warm anomaly reduces
rainfall in northeast and western part of Ethiopia, while a cold anomaly has
the opposite effect (Diro et al., 2011). Summer rainfall over central and western
Ethiopia is negatively associated with SSTs over the equatorial east Pacific and
Indian Ocean (Diro et al., 2011). New regional insight is found regarding East
Africa, in particular that October-November rainfall over southern Ethiopia
is positively associated with equatorial east Pacific SSTs and with the Indian
Ocean Dipole (IOD) (Degefu and Bewket, 2017).
Block and Rajagopalan (2007) proposed a framework for ensemble forecast of
Kiremt season (June-September) precipitation for the upper Blue Nile basin
within Ethiopia. A nonparametric approach based on local polynomial regres-
sion is adapted for generating ensemble forecasts that demonstrate significant
overall skill, and very high skills during extreme wet and dry years compared
to climatological forecast utilized by the Ethiopian National Meteorological
Services Agency. In the same river basin, a dynamically linked system was de-
veloped, including forecast, rainfall-runoff, and hydropower models, in order
to compare benefits and reliability generated by forecasts ensembles against a
climatology-based approach, commonly practiced in most water resources sys-
tems (Block, 2011).
Block and Goddard (2011) evaluates different precipitation prediction techniques
from statistical and dynamical models, and their combination, to potentially
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augment prediction skill over the Blue Nile basin in Ethiopia. This work con-
siders to what degree greater skill or reliability in a particular prediction tech-
nique translates through hydropower management models given their nonlin-
ear response. The climate forecast-hydropower system is sufficiently flexible
to allow water managers to attain an optimal balance between benefits and the
dependability of energy delivery, by varying exceedance probability and target
energy thresholds, with the added benefit of forecast guidance.
Wolde-Georgis (1997) utilizes ENSO information to improve drought early warn-
ing and to mitigate the adverse impacts of droughts through forecasts that can
provide an early warning with many months of lead time.

1.3 Objective of the thesis

The objective of this thesis is to produce reliable long-term drought forecasts,
based on the state of global teleconnections and demonstrate their operational
potential in informing the filling of subtropical reservoirs. The Gibe III dam in
the Omo-Turkana river basin is used as study.
First of all, we compare and select different satellite data to identify the most
suitable for the study area in terms of precipitation and temperature, then we
correct them with bias tecniques utilizing in-situ observations. Secondly, these
meteorological data are used to compute traditional drought indexes at multi-
ple spatial and temporal aggregations. From our analysis, Standardized Pre-
cipitation and Evaporation Index (SPEI) is identified as a key index to detect
and characterize droughts in the basin.
Thirdly, we apply the Nino Index Phase Analysis, which employs a data mining
techique to capture the state of multiple climatic signals (i.e., teleconnections)
from detected relevant anomalies in Sea Surface Temperature on a seasonal
time scale. The state of teleconnections is then used as input to a non-linear
model calibrated to forecast one season ahead SPEI index, proxy for the basin
drought conditions.
Finally, we exploit the drought index forecasts to implement several reservoir
filling strategies that take into account the state of water resources during the
reservoir filling years. Such strategies demonstrate the ability to reduce the
impacts of reservoir filling for the environment and economic activities down-
stream the dam.
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1.4 Thesis outline

The thesis is structured as follows.
Chapter 2 describes the Omo-Turkana basin case study, including its geomor-
phological features, climate and hydrological regime, main stakeholders in-
volved, and the data and model used for the numerical analysis of this thesis.
Chapter 3 provides the description of the Methods and Tools employed in this
study. First, we describe the methodology to compare and correct satellite data
in order to find the most suitable product for the area of interest. Then, we
present the computational procedure of two widely used drought indexes used
to characterize the state of water resources in a basin (SPI and SPEI). After that,
we present the NIPA procedure designed to detect the effects of different cli-
mate teleconnections on the local scale and we describe a non-linear forecast
model used to predict the local hydroclimatic variable of interest based on the
state of climate signal. Finally, we describe a methodology for the implementa-
tion of different reservoir filling strategies using teleconnection-based seasonal
forecasts.
Chapter 4 contains the results of this thesis. The first section is devoted to the
comparison and correction of satellite derived climate data in terms of their
coherence with the available ground observations. The second section illus-
trates the results of the computation of two traditional drought indexes, SPI
and SPEI, respectively based on precipitation only, and precipitation and tem-
perature. SPEI index is finally deemed more suitable to characterize drought
in the basin given the relevance of the temperature in local hydrological pro-
cesses. The following section applies the NIPA procedure for the detection of
relevant climate signals to forecast SPEI index through a non-linear model. Fi-
nally, the last part reports the result of an application of the produced long term
drought forecat to significantly improve Gibe III reservoir filling strategies.
Chapter 5 sums up the conclusions from this study and suggests further re-
search about the topic.
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2
Study site

2.1 Omo-Turkana basin

The Omo-Turkana basin is almost 190,000 km2 and includes Omo river basin
(60,000 km2) and lake Turkana basin (130,000 km2) (Fig 2.1).
The Omo river is one of the main Ethiopian rivers, it originates in the rainy
mountainous area of the Shewan highlands, and flows southwards into lake
Turkana, constituting around 90% of the lake incoming water. In its 760 km
course, the river rapidly streams through a steep inaccessible area, before slow-
ing its pace as it nears the lowlands of the lower Omo valley. Its most important
tributary is the Gibe river, smaller tributaries include the Wabi, Denchya, Go-
jeb, Mui, and Usno rivers (Avery, 2013).

Lake Turkana is situated in a closed basin within the East African Rift Val-
ley which extends over Ethiopia in the north, Kenya in the south, and Sudan
and Uganda in the west. Lake Turkana is Kenya’s largest lake, Africa’s fourth
largest lake, and the world’s largest desert lake (Avery, 2012). The lake was
formely named lake Rudolf in 1888, after the Crown Prince of Austria, and
nowadays it is also known as the Jade Sea for its remarcable color caused by
algae.
Lake Turkana has a maximum depth of nearly 110 m and an average depth
of 30 m, and extends up to 250 km long and 15−30 km wide, with an aver-
age surface area of nearly 6750 km2 (Velpuri and Senay, 2012). Turkana is an
endorheic lake with no river outflows and the lake losses occur through evap-
oration, while the inflow is primarily provided by the Omo river and southern
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Figure 2.1: Omo-Turkana basin.
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tributaries, Kerio and Turkwel.
Recently, a massive hydroelectric power production project has been imple-
mented with the costruction of several dams along the Omo river and an irri-
gation development of sugarcane plantations. With a total fall of about 1800 m
(from an elevation of 2300 m at its source to 500 m at lake Turkana inlet), the
river is particularly suitable for hydroelectric generation. To exploit its river
hydropower potential, the Ethiopian Electic Power Corporation (EEPCo) has
interrupted the natural course of the river and its affluent with a series of dam,
namely the Gibe cascade. The Gibe cascade includes the existing Gibe I dam
(184 MW, on the Gilgel Gibe river) and Gibe II power station (420 MW) as well
as the newly concluded Gibe III (1870 MW). In addition, in 2016 the construc-
tion of Koysha dam started. While Gibe I and II are conjunctively operated for
hydropower production only, Gibe III and Koysha dams are expected to also
provide water to irrigate the extensive sugar plantations in the lower Omo val-
ley (Avery, 2012). This man-made changes might impact the water level of lake
Turkana, due to reservoir filling and the abstraction of water from Omo river
for irrigation purpose, and alter the hydrological cycle.

2.2 Climate and hydrological regime

Ethiopia’s varied topography has created three climatic zones depending on
the elevation: a cool zone, which covers the central sections of the western and
eastern parts of the Ethiopian Highlands above 2400 metres altitude, a temper-
ate zone, which consists of parts of Ethiopian Highlands ranging in altitude
between 1500 metres and 2400 metres, and a hot zone which generally com-
prises areas below 1500 metres altitude.
The climate of the Omo basin ranges from a tropical sub-humid climate in the
northern and middle catchment, which comprises most of the Omo basin, to
a hot-arid climate in the southern parts of the basin (which includes the semi-
desert of lake Turkana in Kenya).
Within this climate zones, three seasons can be identified, characterized by dif-
ferent patterns of precipitations and atmospheric pressure as follows (Avery,
2012):

• The Keremt season: the main rainy season, usually lasting from June to
September

• The Belg season: the light rains season, usually from March to May

• The Bega season: the dry season, that last from October to February
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Figure 2.2: Omo basin rainfall from ground stations dataset obtained through a moving average
between 1998 and 2008 precipitation with a 30 days window span.

This rainy seasons are recognizable in Figure 2.2, which depicts the average
cumulated precipitation of the Omo basin for the years between 1998 and 2008
with the characteristic three seasons described above. Figure 2.3 shows how
the rainfall pattern substantially varies within the watershed. In the northern
part of the basin, where the Wolkite station is located, precipitation shows a
marked unimodal distribution with a pronounced peak in August and a long
dry season from November to March. In the central part (Bonga station), a
trapezoidal distribution can be observed with a quite constant rainfall from
May to September and a less pronounced dry season from December to Febru-
ary. In the southern part (Laske station), a marked bimodal pattern is visible
with a higher peak in April and a secondary peak in October. The variation of
the rainfall pattern in the watershed contributes to the natural regulation of the
lower Omo River flows (SOGREAH, 2010). This peculiar precipitation pattern
determines the streamflow of the Omo river, which shows an unimodal hydro-
graph at the inlet of lake Turkana, with a peak flow in August and a baseline
flow from December to April (Figure 2.4). This figure refers to the natural flow
because it is a monthly mean from 1956 and 1994, when the dams had not yet
been built. Lake Turkana level is influenced by different factors, such as the
intra-annual oscillation due to Omo river discharge fluctuations. On the longer
term, significant drops in the lake level are witnessed in correspondence to
severe drought events and dam impounding along the Omo river which tem-
porarily substracts great amount of water volume. It is also well known that
Lake Turkana displays long term oscillations due to the influence of several
teleconnection pattern in the area. Figure 2.5 illustrates the trajectory of Lake
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Figure 2.3: Typical rainfall pattern of three Omo basin zones. Wolkite in the north, Bonga in the
middle and Laske in the south part of the basin.
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Figure 2.4: Monthly mean Omo river flow at Omorate from 1956 to 1994 (Avery (2012)).
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Turkana level from 1999 to 2017 with an initial period of strong loss of water
level with a minimum peak in 2005 and a later fluctuating pattern until 2015,
when the flow rate peaks following a decreasing period due to drought events
and Gibe III filling (Belete et al., 2015; Bloszies and Forman, 2015).

Figure 2.5: Lake Turkana level from 1999 to 2017.

2.3 Main stakeholders

The Omo river is particularly suitable for hydroelectric generation, due to the
difference of elevation between the northern part and the southern part, and
this indeed motivated government to regulate the natural course of the river
through a series of dams. The filling operations of Gibe III dam started in Jan-
uary 2015 and lasted almost two years (Avery, 2012) impounding in the reser-
voir the equivalent of an average year of streamflow of the Omo river, and thus
significantly reducing water provision to downstream stakeholders. The stake-
holders that we identified to be possibly impacted by dam filling operations
are the following:

• Hydropower

• Environment

• Recession agriculture

• Lake Turkana fisheries

• Environment of Lake Turkana

In the following subsections, each stakeholder will be further described.
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2.3.1 Hydropower

Ethiopia is one of the fastest growing economies in the world and to manage
this rapid development the government redacted a Growth and Transformation
Plan (Commission, 2015) that adresses the fast growing demand for energy and a
strategy to minimize the deficit between supply and demand, eventually even
allowing electricity export.
Ethiopia is considered to be a country with one of the highest hydropower
potentials in Africa (SOGREAH, 2010). For this reason, the government decided
to allocate enormous investments into infrastructures of hydropower sector,
which led to the construction to the Grand Ethiopian Renaissence Dam (6000
MW) and Gilgel-Gibe III (1870 MW), that together will increase the electricity
generation capacity in the country of 234 % (Boulos, 2017). Construction of a
cascade of hydropower schemes (Fig. 2.6) commenced on the Omo River with
the Gibe I (184 MW) commissioned in 2004, the Gibe II hydropower project
(420 MW) followed and was commissioned in 2010, with Gibe III’s construction
(1870 MW) having commenced in 2006 (Avery, 2012); the government plans to
continue the Gilgel-Gibe hydro dam cascade with the addition of the Koysha
dam (2160 MW).

2.3.2 Environment

The overall Omo valley is strictly connected with river regime and suscetible to
a river flow change. The lower Omo floodplain crosses a semi-arid to arid sa-
vannah and its nutrient rich floods provide a rich annual resource for wildlife,
fish and people over a vast and variable area.
Seasonality of the lake and access to fishing localities shifting with seasons is
a key component of indigenous communities settled along lake Turkana. The
annual flood pulse from the Omo river, combined with the prevailing winds
and currents in the lake, combine to establish peculiar seasonal differences.
The lake is exposed to strong winds during certain months, with the prevailing
winds from the southeast being a critical factor in the mixing of lake waters and
nutrients (Carr, 2017).

2.3.3 Recession agriculture

Recession agriculture is a fundamental component of livelihoods in the lower
Omo Basin. In most years, during August and September the lower Omo valley
experiences seasonal river flooding, caused by heavy rains falling upstream
between April and August. The river overflows its banks and floods the land
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Figure 2.6: Hydropower cascade along Omo river and ground stations available in the region.
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along its borders creating the perfect terrain to cultivate when the water recedes
2-3 weeks later to allow planting from September to October. Heavy flooding
also renews oxbow lakes, such as lake Dipa, giving access to large areas of well-
inundated land for cultivation.
The numerous Omo valley tribes practice a sophisticated system of recession
agriculture and seasonal grazing, systems that enable significant populations
to secure subsistence with marginal environmental impacts on other species
and ecosystem services.
The majority of the lower Omo population is dependent upon access to local
natural resources and particularly highly dependent on the Omo river flood
cycle (SOGREAH, 2010).

2.3.4 Lake Turkana �sheries

The Turkana’s aquatic ecology has evolved directly from its former Nile fluvial
connection, and is affected by the presence of an high saline level that make
it the most saline lake in East Africa containing freshwater fauna. Salinity is
already at a critical level for various species and at the extinction level for mol-
lusks.
The productivity of lake Turkana’s fisheries is profoundly linked to volume and
annual patterns of water inflow from the Omo river. These linkages are driven
by the influence of hydrology on fish habitat and food availability, breeding
cues, and catchability (Gownaris et al., 2017). The upstream flooding dilutes the
lake water and lower the salinity levels in the northern parts, in particular ni-
trogen, one of the most important factors limiting the fisheries production, is
also transported into the lake through Omo waters.
Instead, a water level decline will initially lead to an increase in the availabil-
ity of litoral habitats, productivity will be degraded due to the loss of seasonal
inundation cycles. Water level decline will also lead to a reduction in open wa-
ter habitat and productivity, as the river is the major source of nutrients to the
nitrogen-limited lake (Gownaris et al., 2017).

2.3.5 Environment of Lake Turkana

Since the Omo supplies 90 per cent of the water entering Kenya’s Lake Turkana,
the regulation of the Omo flows will alter the hydrological inflow patterns to
Lake Turkana. This will directly impact the ecology of the lake, which is the
Kenya’s largest lake, and the world’s largest desert lake. The alteration of
the downstream hydrological regime is a well established cause of ecological
degradation and to evaluate the alteration inducted to lake Turkana we used
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indicators of hydrologic alteration.
The general approach for the definition of hydrologic alteration indexes is first
to define a series of biologically relevant hydrologic attributes that characterize
intra-annual variation in water conditions and then to use an analysis of the
inter-annual variation in these attributes as the foundation for comparing the
hydrological regimes before versus after a system has been altered by various
human activities (Richter et al., 1996; Bizzi et al., 2012).
Salinity is an important element for the system ecology. For its calculation
equation 2.12 has been used, which was also stated in Avery (2012). Any dra-
matic reduction in river inflow will lead to a reduction in lake volume and
increase in salt concentration.

2.4 Model

The conceptual model of Omo-Turkana system includes the hydropower cas-
cade along Omo river with Gibe I, II and III dams and terminates in the lake
Turkana. The water transport across river reaches is computed with a plug-
flow model, while mass balance equations (eq. 2.1) are computed for the entire
reservoir with a daily time-step. Streamflow data available are obtained by
ETH university through Topkapi model, a fully-distributed physically-based
hydrologic model. This model describes only the reservoir filling phase and
not considered the regime operations.

st+1 = st + nt+1 − rt+1 (2.1)

where st is the storage of the lake at time t, nt+1 is the net inflow to the reser-
voir that enters the lake in the interval [t, t + 1), i.e., the difference between
inflows, evaporation and other losses, and rt+1 is the release from the reser-
voir in the interval [t, t + 1). In our simulations, we will adopted the historical
release for Gibe I, and try different release policies for Gibe III is calculated as:

rt+1 = f (st, ut) (2.2)

where the function f describes the non-linear relationship between the deci-
sion ut and the release rt+1 given the constraints on maximum and minimum
feasible release, and ut is a feedback operating rule.

ut = f (nt, It) (2.3)

The release decision is a function of the inflowing water nt and additional in-
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formation It depending on the predicted state of water resources in the region.
The output of the model are the hydrological trajectories (storage, release, wa-
ter level) for lake Turkana and each reservoir implemented, the performance of
the system under the defined Gibe III filling strategy with respect to the follow-
ing objectives:

• Hydropower, maximize hydroelectric production

Jhyd
tot = Jhyd

GI
+ Jhyd

GI I
+ Jhyd

GI I I
(2.4)

where

Jhyd
Gi

=
1
H
×

H

∑
i=1

qGi
t+1hGi

t ψ (2.5)

where qGi
t+1 is the turbined water by Gi reservoir with i=I,II,III; hGi

t is the
reservoir water level and ψ is a coefficent that includes turbine efficiency,
water density, gravitational acceleration and dimensional conversion.

• Environment, minimize the difference between Turkana inflow and natu-
ral flow

Jenv =
1
H
×

H

∑
i=1

genv
t+1 (2.6)

where

genv
t+1 = (qdelta

t+1 − qnat
t )2 (2.7)

where qdelta
t+1 is the inflow at Turkana delta and qnat

t is the natural flow in
the Omo river, obtained through model simulation without considering
the dam cascade along the river.

• Recession agriculture, minimize irrigation deficit in August-September
(recession agriculture months)

Jrec =
1
H
×

H

∑
i=1

(grec
t+1)

2 (2.8)

where

grec
t+1 = (q f lood

t − qrec
t+1)

+ (2.9)

19



2. Study site

where q f lood
t is a flood pattern which recession agriculture needs and qrec

t+1
is the flow at recession agriculture zones exploit by tribes.

• Lake Turkana fisheries, index that computes fish yield from average lake
level and level oscillation between dry season and wet season (Gownaris
et al., 2017).

J f ish = max
y=0,...,Ny

| Fnat − Fy+1 | (2.10)

where

Fy = α · hT
y−1 + β · amply + γ (2.11)

where Fy is the fish biomass in year y, hT
y−1 is the Turkana average level in

the previous year and amply is the current year level oscillation.

• Environment of Lake Turkana, the indicators adopted over the horizon
considered in this study are: mean flow at Turkana, mean annual flow at
Turkana, monthly mean flow at Turkana, annual minimum and maximum
flows at Turkana with 1-3-7-30-90 days means, lake Turkana water level
and lake salinity:

Send =
Vend
Vini
× Sini (2.12)

where Send is the salinity level at the end of the simulation [dS/m] and Sini

is the salinity level at the beginning of the simulation [dS/m].

2.5 Data

In poorly gauged river basins characterized by a limited availability of in-situ
meteorological stations, the satellite data constitute a valid resource to retrieve
hydro-meteorological information. However, the accuracy of the satellite prod-
ucts varies from region to region, and a thorough accuracy assessment of the
satellite products to be employed is warranted before delving into subsequent
analysis.
To overcome this data challenge Gebrechorkos et al. (2018) used a combination of
accessible data sources based on station data, earth observation by remote sens-
ing, and regional climate models. He did so by relating point to pixel, point to
area grid cell average, and stations average to area grid cell average over 21
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regions of East Africa: 17 in Ethiopia, two in Kenya and two in Tanzania. The
correlations were analyzed at daily, dekadal (10 days), and monthly resolution
for rainfall and maximum and minimum temperature.

2.5.1 Precipitation data

Rainfall can be estimated remotely, either from ground-based weather radars or
from satellite. With the advent of geostationary weather satellites in the 1960s
and 70’s, positioned above the equator at 5-6 positions around the globe to pro-
vide complete coverage, various techniques have been developed to estimate
rainfall from visible and infrared (IR) radiation. The higher the cloud albedo,
the more droplets it contains and the deeper it tends to be, so the more likely
rainfall is on the ground.
In the study area are conducted several studies that compare the accuracy of
different satellite product in terms of precipitation and employ the most re-
liable product to calibrate hydrological model and simulate the river inflow
from Omo into Lake Turkana (Velpuri and Senay, 2012; Anghileri et al., 2017).
In this section we describe the rainfall remote sensing datasets collected and
employed in the thesis:

• TRMM, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Pre-
cipitation Analysis (TMPA) provides a calibration-based sequential scheme
for combining precipitation estimates from multiple satellites, as well as
gauge analyses where feasible, at fine scales (0.25◦ × 0.25◦ and 3 hourly).
TMPA is available both after and in real time, based on calibration by the
TRMM Combined Instrument and TRMM Microwave Imager precipita-
tion products, respectively (Huffman et al., 2007). Rainfall data from TRMM
are available from 1998 to present and can be downloaded from the God-
dard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/).

• CHIRPS, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
dataset builds on previous approaches (CHIRP) to smart interpolation tech-
niques and high resolution, long period of record precipitation estimates
based on infrared Cold Cloud Duration (CCD) observations. The algo-
rithm is built around a 0.05◦ climatology that incorporates satellite infor-
mation to represent sparsely gauged locations, incorporates 1981-present
0.05◦ CCD-based precipitation estimates, blends station data to produce
a preliminary information product and uses a novel blending procedure
incorporating the spatial correlation structure of CCD-estimates to assign
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interpolation weights (Funk et al., 2015). The dataset can be downloaded
from the Climate Hazard Group (http://chg.geog.ucsb.edu/data/chirps/).

• TAMSAT, the Tropical Applications of Meteorology using SATellite and ground
based observations rainfall dataset is based on high resolution Meteosat thermal-
infrared (TIR) observations for all of Africa, available from 1983 to the
present using daily calibrated cold cloud duration (CCD) observations.
The TAMSAT algorithm is based on two primary data inputs: Meteosat
TIR imagery provided by The European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) and rain gauge observations for cali-
bration. The TAMSAT algorithm is an example of a cloud-indexing method:
the duration of cloud tops exceeding a predetermined temperature thresh-
old, known as cold cloud duration (CCD), acts as a proxy for rainfall
(Maidment et al., 2017). Rainfall data can be downloaded from the TAMSAT
website (http://www.tamsat.org.uk).

2.5.2 Temperature data

Satellite temperature measurements are inferences of the temperature of the
atmosphere at various altitudes as well as sea and land surface temperatures
obtained from radiometric measurements by satellites. Satellites measure ra-
diances in various wavelength bands, which must then be mathematically in-
verted to obtain indirect inferences of temperature. Satellites may also be used
to retrieve surface temperatures in cloud-free conditions, generally via mea-
surement of thermal infrared from radiometer sensors.
In this section we describe the temperature remote sensing datasets collected
and employed in the thesis:

• MERRA-2, the Modern-Era Retrospective analysis for Research and Applica-
tions, Version 2 (MERRA-2) has many of the same basic features as the
MERRA system but includes several updates among which the forecast
model, new satellite observation sources and bias correction of aircraft
temperature observations (Gelaro et al., 2017). MERRA-2 has a spatial res-
olution of 0.5◦ × 0.625◦ in latitude and longitude and is available from
1980 to present. MERRA-2 products are accessible online through the
NASA Goddard Earth Sciences Data Information Services Center (GES
DISC, https://disc.gsfc.nasa.gov/).

• ORH, is a global and regional (Northern/West/East Africa) three-hourly,
daily, and monthly meteorological data set available until 2005 with a res-
olution of 0.1◦. The spatial downscaling of ORH is done with the inclusion
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of changes in elevation and it is evaluated against ground stations (global
summary of the day) available at the US National Climatic Data Center
(NCDC). ORH is corrected for temporal inhomogeneity and biases, ran-
dom errors are omitted through assimilation with ground observations
(Gebrechorkos et al., 2018). This data is freely available from the Terrestrial
Hydrology Research Group, University of Princeton (http://hydrology.princeton.edu).
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This chapter provides the methodological context for this thesis research by
describing the methods and tools employed. Figure 3.1 presents a flowchart
of the overall methodology divided into four main building blocks, which are
discussed in the following subchapters.
The first block compares climate ground data with remote sensing data in order
to determine which remote sensing product is the most suitable for the analy-
sis of the poorly gauged river basin. Rainfall data from TRMM, CHIRPS and
TAMSAT are compared with in-situ precipitation data. Temperature data from
MERRA-2 and ORH are compared with temperature ground data.
Then, the results of climate analysis are combined into drought indexes to iden-
tify dry periods through two different statistical indicators, SPI and SPEI. In the
following step, we firstly apply the El Niño Index Phase Analysis (Zimmerman
et al., 2016) to detect the effects of different climate teleconnections on the Omo
river basin. Secondly, we construct teleconnection-based seasonal meteorolog-
ical and drought forecasts by predicting precipitation and SPEI index.
Finally, we demostrate the operational value of the produced long-term fore-
casts by employing them to implement smarter reservoir filling strategies fo-
cusing on minimizing downstream impacts.
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Figure 3.1: Thesis flowchart. The sections number reported refer to the sections in this Chapter
that present the framework steps: 1. Climate data processing, 2. Drought indexes comparison,
3. Seasonal forecast identification, 4. Dam filling strategy design
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3.1 Climate data processing

3.1.1 Global dataset comparison

This analysis indicates which global satellite-derived dataset of precipitation
and temperature is the most accurate for the Omo river basin. As described in
section 2.5, this thesis evaluates the performances of three precipitation remote
sensing dataset (TRMM, CHIRPS and TAMSAT) and two temperature remote
sensing datasets (MERRA-2 and ORH) by comparing the satellite datasets with
in-situ measures. Based on the availability of in-situ climate data (Figure 2.6),
the comparison of precipitation is done from Januray 1998 to December 2008,
whereas the comparison for temperature is done from Januray 1998 to Septem-
ber 2008.
All satellite products were rescaled at the same resolution choosing the finer
resolution among the available products to make the results consistent: TRMM
and TAMSAT were adapted to CHIRPS resolution (∆ = 0.05◦ × 0.05◦) and
MERRA-2 to ORH resolution (∆ = 0.1◦ × 0.1◦).
The entire Omo basin is divided into Thiessen polygons where at each cell be-
longing to the Omo basin the values of the nearest ground station are assigned
and the ground data are compared with the data from the corresponding grid
cell of satellite dataset. For this comparison, the correlation coefficient (cor) and
root mean square error (RMSE) between in-situ data and satellite products are
calculated on a daily, decadal, monthly and seasonal timescale (Gebrechorkos
et al., 2018).
With this procedure, the different remote sensing products are compared and
after that the raw satellite datasets are corrected through ground station infor-
mations applying bias correction methods. This analysis indicates which global
satellite-derived dataset of precipitation and temperature is the most accurate
for the Omo basin.

3.1.2 Bias correction

Global satellite products can be affected by systematic errors (namely, bias) at
the local scale that need to be corrected before the rainfall and temperature
estimates can be used for any hydrological application. These biases are due
to the inaccurate estimation of climate variables, errors transferred from GCMs
to RCMs or the incorrect remote detection of rainfall events, and can depend
significantly on elevation, latitude and climate (M’Po et al., 2016). In this study,
two different correction methods are employed: mean bias−remove technique
(Ajaaj et al., 2016) and linear scaling (Adams, 2017).
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1. Mean bias-remove technique (MBR): the mean bias bt is calculated each day
of the time series for each basin cell by calculating the difference between
the ground data cyclostationary mean and satellite data cyclostationary
mean.

bt = Gt − St (3.1)

Scorr = St + bt (3.2)

where Gt and St are the ground data cyclostationary mean and satellite
data cyclostationary mean, respectively. The cyclostationary mean is smoothed
with a 15-days semiwidth window. The mean bias bt is added to the daily
raw satellite data time series to obtain the corrected dataset Scorr.

2. Linear scaling (LS): this method aims to match the monthly mean of the
precipitation/temperature values to be corrected with the observed means

• The total monthly precipitation/temperature is cumulated from the
observed data and the satellite product per pixel

• The mean precipitation/temperature is determined for each month in
each cell

• The bias factor is calculated and multiplicated by the satellite value

τmon =
Gmon

Smon
(3.3)

Scorr = St ∗ τmon (3.4)

where τmon is the monthly bias factor, Gmon is the observed mean monthly
precipitation (or temperature) and Smon is the satellite mean monthly precipi-
tation (or temperature). The corrected datasets are calculated multiplying the
satellite time series by the corresponding monthly bias factor.

3.2 Drought indexes comparison

The second step of the framework in Figure 3.1 employs the corrected pre-
cipitation and temperature data obtained from step 1 to compute two widely
used statistical drought indicators, namely, the Standardized Precipitation In-
dex (SPI), and the Standardized Precipitation and Evapotranspiration Index
(SPEI), (Zargar et al., 2011). Statistical drought indicators rely on the analysis
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of time series of the input variables to detect the anomalies that may lead to
drought conditions identifying drought periods when the observed values are
persistently and significantly below the normal condition.
The SPI indicator receives as input only the precipitation time series, which
is then cumulated over a desired time span, fitted to an appropriate probabil-
ity distribution (generally, the Gamma distribution), and, finally, transformed
into a standardized normal distribution (McKee et al., 1993). The indicator val-
ues represent the number of standard deviations the observed precipitation
deviates from the normalized average: positive values indicate an excess of
precipitation with respect to the average, while negative values represent be-
low average conditions (Zaniolo, 2017). SPEI index has the same computational
procedure of SPI, but corrects the precipitation data subtracting the estimated
evaporation, and it has the advantage of combining precipitation and temper-
ature. In hot climates the high temperature results in high evaporation rates
which is an important driver in determining a drought (Vicente-Serrano et al.,
2010).
According to Spinoni et al. (2016), a drought event starts when the indicator
value falls below -1 for two consecutive months and ends when it turns posi-
tive. This assumption is valid for the two drought indicators considered in this
study that are part of the SPI family.
There is no single definition of drought, and meteorological, hydrological, and
agricultural droughts are often distinguished (Palmer, 1965; Spinoni et al., 2016;
Mishra and Singh, 2010; Zaniolo, 2017; Hao et al., 2018)). Meteorological drought
is defined as a lack of precipitation over a region for a period of time. The time
scale for meteorological drought is the short-term.
Agricultural drought, usually, refers to a period with declining soil moisture
and consequent crop failure. A decline of soil moisture depends on several
hydro-meteorological factors, primarily evapotranspiration, and refers to medium
term.
Hydrological drought is related to a period with inadequate surface and sub-
surface water resources for established water uses of a given water resources
management system. The key variable is therefore the streamflow, employed to
describe the abundance of water in the water cycle. This drought concerns the
long term and takes place after a prolonged time of low precipitation and de-
ficient soil moisture. The reduction in the streamflow, and the consequent low
input to water bodies, affects the wellness of wetlands and wildlife making this
drought the most dangerous and difficult to deal with.
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3.3 Seasonal forecast identi�cation

The third step of the framework (see Figure 3.1) analyses the influence of cli-
mate teleconnections on the study area using the Niño Index Phase Analysis
(NIPA) through the different climate indices as a physical influence of the av-
erage state of the atmosphere-ocean system (Zimmerman et al., 2016). Relevant
detected teleconnections are then used to construct a data-driven multivariate
seasonal forecast.

3.3.1 Detection of relevant climate signals (NIPA)

A preliminary analysis is performed in order to select the hydrometeorological
variable or index of interest for the seasonal forecast, and, at the same time,
at the global scale defining the main climate signals that influenced the study
region on the basis of previous analysis and geographical location.
The large-scale climate signals identified as relevant on the global scale are
North Atlantic Oscillation (NAO, Hurrell et al., 2003), El Niño Southern Oscilla-
tion (ENSO, Hanley et al., 2003), Pacific Decadal Oscillation (PDO, Mantua and
Hare, 2002), Indian Ocean Dipole (IOD, Saji and Yamagata, 2003) and Atlantic
Multidecadal Oscillation (AMO, Enfield et al., 2001), as measured by Hurrel
NAO Index, MEI Index, Mantua PDO Index, DMI and AMO index, respec-
tively.
The Niño Index Phase Analysis is a statistical framework for seasonal forecast
developed by Zimmerman et al. (2016), the main steps are the following (Figure
3.2):

1. Phases identification: use of the climate signal index for binning years into
positive and negative phases;

2. SST predictor fields selection: SST predictor regions are identified via corre-
lation analysis;

3. Principal Component Analysis (PCA): the analysis is performed in order to
select the predictors for a linear regression model;

4. Cross-validated predictions: a cross-validated model hindcast is conducted
for evaluating model performance;

5. Validation via Monte Carlo analysis: test the significance of the results via
Monte Carlo simulation.

In the first step, the climate index is used for binning the years in different
phases, the occurrance of large-scale climate events is connected with hydro-
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Figure 3.2: Schematic representation of the NIPA procedure.

climatic anomalies that alter the mean state of the atmospheric-oceanic system.
These variations can be detected by means of suitable indexes that capture the
features of the seasons under study to classify them into climatic phases. The
classification is done by fixing a percentile thresholds defined according to the
number of phases the years are divided in. For example the 50th percentile is
set as threshold to bin the years into two different phases (positive and nega-
tive).
For each phase, NIPA identifies Sea Surface Temperature (SST) regions which
correlate at 95 % significance level with the lagged local hydroclimatic vari-
able. The SST cells identified as relevant are spatially aggregated with a Princi-
pal Component Analysis (PCA) and the first m resulting Principal Components
(PCs) are retained as predictors in a forecast model.
In this work, we considered only the first Principal Component, i.e. m = 1, for
each phase (PC1):

ŷ1 = β ∗ PC1 + α (3.5)

Equation 3.5 describes a linear forecast model where ŷ1 is the estimated hy-
droclimatic variable, β are the regression coefficients and α the intercept.
A cross-validation procedure is applied to the models obtained through the
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PCA, in order to compare different climate signal while avoiding artificial pre-
dictability, for example the bias associated to hindcast skill estimates in sta-
tistical forecasting models (Samale et al., 2017). In particular, a leave-one-out
cross-validation is employed to avoid model overfitting and improving the sta-
tistical significance of the results. This procedure is repeated as many times as
the number of data that are in the dataset changing every round the deleted
observation for the validation. The predicted values and the observations are
contrasted by using as evaluation metric the standard Pearson correlation co-
efficient r:

r = ∑i=1((xi − E[xi])(yi − E[yi])√
∑i=1(xi − E[xi])2(yi − E[yi])2

(3.6)

Lastly, a Monte Carlo test is performed to verify that the obtained results are
statistically significant at a high level of confidence.
This analysis is useful for our purpose to select the climate signals that demon-
strate higher accuracy and level of confidence and only the selected climate
teleconnections are used in the following step to build a seasonal meteorologi-
cal forecast model.

3.3.2 Multi-variate seasonal meteorological forecast

The second step in the third block of the flowchart (Figure 3.1) combines the re-
sults obtained in NIPA procedure into a non-linear forecast model. Thus, NIPA
detects the most relevant climate signals to predict the local variable of interest,
in terms of accuracy and confidence, as well as the relative PCs of SST predic-
tors for each phase of the signal. In this block, the defined PCs are used as in-
put in a non-linear forecast model. For instance, we will assume that the NIPA
procedure detects as relevent two indices, namely A and B. The meta-phases
associated to A and B are obtained by combining the original two phases iden-
tified for the two indexes when considered independently. The result is there-
fore a partition in 4 meta-phases: positive A-positive B, positive A-negative B,
negative A-positive B, and negative A-negative B. An example of meta-phase
creation can be seen in Table 3.1 In this study we used Extreme Learning Ma-
chine (ELM, Huang et al., 2006) as model class, highy non-linear model in the
family of neural networks that was proven effective for this application from
a previous benchmark study (Gentile, 2018). ELM models are a learning algo-
rithm which randomly choose hidden nodes and analytically determines the
output weights (Figure 3.3) and are demonstrated to produce good generaliza-
tion performance in most cases while learning thousands of times faster than
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Table 3.1: Metaphases vector building.

Index A Index B Meta phase (Mph)
1 1 1
1 2 2
2 1 3
2 2 4

conventional feedforward neural networks (Huang et al., 2006). The ELMs are
formulated as follows:

Y = ELM(PCi, PCj, Mph) (3.7)

where Y is the predicted variable, PCi and PCj are the Principal Components
with i, j = (NAO, MEI, PDO, IOD, AMO), and Mph indicates the metaphase
of the considered season, as reported in Table 3.1. To estimate the parame-

Figure 3.3: Structure of the single hidden layer feed forward neural network using Extreme
Learning Machine (ELM).

ters a leave-one-out cross-validation is used, where only one value at a time
is excluded from the calibration set and is used for validation, and the model
training is reiterated as many times as the number of data. The value of the per-
formance is calculated as the maximum value of R2 and Pearson’s coefficient
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obtained in each cross-validation iteration.

3.4 Dam �lling strategy design

A novel and promising application of long term meteorological forecast is to
use them to inform the filling strategies of large new dam with the aim of
minimizing downstream damages due to filling transient. Previous studies
have recognized that effects on downstream users depend on the hydrology
during the filling period, the initial impoundement of existing dam and the
filling policy implemented (see Section 1.1). Three types of filling strategies
are considered in literature, including threshold, fractional and absolute(Zhang
et al., 2016). The threshold filling strategy permits to impound in the reservoir
any streamflow volume in excess of the long-term historical monthly average.
Thus, in months with anomalously high flow, the entire above average vol-
ume of water can be impounded; however, in months with flow below the
average, no impounding is permitted. Threshold strategies generally protect
downstream stakeholders from water shortages due to filling transient, but it
may significantly slow down dam filling.
Fractional filling strategies consent impounding a specific percentage of total
monthly streamflow into the reservoir, this strategy guarantees that some quan-
tity of water can be continuously seized, although this quantity varies month
to month and year to year. Fractional strategies generally favour a sharing
by upstream and downstream countries of the risk associated with streamflow
variability. Absolute filling strategies allow for a guaranteed volume of wa-
ter to be impounded in the reservoir annually. To fill the reservoir in 4 years,
for example, one-fourth of the total reservoir volume may be impounded each
year, irrespective of the streamflow. This strategy secures upstream stakehold-
ers, while the downstream counterpart has to bear the risks of the occurrence
of droughts (Zhang et al., 2016).
Among the three strategies, we decided to explore the fractional filling given
its more equitable sharing risks related to hydrological variability. We will de-
sign and evaluate different fractional filling strategies of Gibe III dam in the
Omo-Turkana basin (see chapter 2 for details on the case study).
The filling strategies that were implemented and tested are designed to repro-
duce natural seasonal inflow variability while accounting for the forecasted
state of water resources and drought condition in the basin. These strategies
will be compared with the actual strategy employed for the filling of Gibe III.
The release decision from the dam are defined as a fraction of the inflow and
it does not depend on the reservoir level. Such fraction is defined through a
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coefficient that depends on the forecasted state of water resources (FSWR) in
the basin allowing more release in case of upcoming droughts, and conversely
impounding a larger inflow fraction in case of wetter than average conditions.
The release strategy is thus defined as follows:

ut = ks(FSWR) ∗ nt+1 (3.8)

Several strategies can be defined by varying the set of coefficients ks. Such
strategies and the historical filling strategy are simulated via a conceputal model
of the systems described in section 2.4 and their impacts on downstream stake-
holders and Gibe III hydropower production are evaluated via a number of
key indicators defined in section 2.3. The values of SPEI forecast index are ob-
tained through NIPA procedure combined with ELM model (as described in
section 3.3) using two different forecasting seasons: a wet season from June to
September and a dry season from December to March.

35





4
Results

This chapter presents the results obtained regarding the comparison and cor-
rection of climate data, the computation of drought indexes, the production of
teleconnection-based seasonal forecast, and the definition of alternative reser-
voir filling strategies.

4.1 Climate data processing

4.1.1 Precipitation

This section presents the results of the daily, decadal, monthly and seasonal
comparison of precipitation extracted from TRMM, CHIRPS, and TAMSAT
satellite products. As ground truth, we use the observed available data from
fourteen rainfall stations located in the Omo basin during the time horizon
from January 1998 to December 2008. The technique adopted for the analy-
sis of satellite products consists in a pixel to pixel comparison between ground
station grid and remote sensing dataset grid at the resolution of the finest scale
satellite product (CHIRPS resolution with ∆ = 0.05◦× 0.05◦). Ground observa-
tions are upscaled to grid resolution by determining their area of influence via
Thiessen polygons.
Figure 4.1 shows the mean annual rainfall for the available ground stations and
the three different satellite datasets over the period 1998-2008. The wettest re-
gion of the basin is in the middle of the basin with TAMSAT dataset reporting
the highest amount of precipitation with respect to CHIRPS and TRMM. The
driest region is in the south of the basin and along the entire eastern border.
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The ground data map reports the observed precipitation values in the ground
stations replicated for each cell belonging to the relative Thiessen polygon of in-
fluence. In-situ measures and satellites data display similar behavior in terms
of precipitation distribution over the basin, but the magnitude of rainfall is
generally underestimated by satellite products all over the basin except for the
southern part where it is overestimated instead.

Figure 4.2 shows the daily, dekadal and monthly RMSE for the three differ-

Figure 4.1: Mean annual precipitation over 1998-2008 in the Omo basin for the three different
satellite datasets and the available ground stations.

ent satellite datasets with a spatial representation where each pixel is colored
with a color scale of blue, with dark blue for high errors and light blue for
small errors. On a daily timescale, TAMSAT has the best performances over
the basin with lower RMSE values, while extending the temporal aggregation
with decadal and monthly datasets the error decreases consistently, and the
differences between the three products become less noticeable. Furthermore,
the greatest RMSE is generally registered in the middle part of the basin where
the rainfall is most abundant. However, the spatial distribution of errors tends
to flatten for longer time aggregations, with the monthly scale presenting an
almost even error distribution across the whole basin.
Figure 4.3 shows the correlation coefficients. Similarly to the results obtained

for RMSE, the first block reports a relatively low correlation between in-situ
and satellite datasets at daily time scale, which increases when the aggregation
time is extended to decadal or monthly. The most critical area is again the mid-
dle Omo basin, and the highest correlation coefficients are in the northern part
of the basin. Figure 4.4 summarizes the comparison results reporting the aver-
age performance over the entire Omo basin for the different satellite products.
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Figure 4.2: RMSE maps for three satellite datasets at different time scale: daily (top), dekadal
(center), monthly (bottom)
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Figure 4.3: Correlation maps for three satellite datasets at different time scale: daily (top),
dekadal (center), monthly (bottom)
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Figure 4.4: Mean RMSE and correlation coefficients over the entire Omo basin

TAMSAT data are the best on a daily time scale but increasing the aggregation
span, the performances of the three satellite products are similar.
In addition to the analysis on the spatial distribution of the error, we are also

Figure 4.5: Seasonal rainfall at Chida station comparing in-situ data with remote sensing mea-
surments.

interested in how the error is distributed in time, across the different seasons
of the year. For this purpose, we compared the annual cyclostationary mean
of precipitation recorded in the ground station with the corresponding satellite
pixel. Plots are only shown for Chida station (Figure 4.5), situated in the mid-
dle of the basin, where we recorded the worst performances and the largest
precipitation amount. We can observe that the remote sensing data underesti-
mate precipitation in the dry periods of the year and overestimate precipitation
in the wet periods. Dry season underestimation is probably due to technical
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restrictions in satellite machinery, as it is impossible to detect very low precip-
itation (under 5 millimeters) with satellite images. This discrepancies will be
eliminated with the bias correction methods.

4.1.2 Temperature

This section presents the results of the daily, dekadal, monthly and seasonal
comparison of temperature from MERRA-2 and ORH with data from six avail-
able weather stations located in the Omo basin. The comparison is possible
from January 1998 to December 2005, due to the ORH dataset available only
until 2005. The technique utilized for temperature analysis is the same of rain-
fall analysis and consists in a pixel to pixel comparison between ground sta-
tion grid, defined through Thiessen polygons, and remote sensing dataset grid
downscaled at the resolution of ORH resolution (∆ = 0.1◦ × 0.1◦).
Figure 4.6 represents the mean temperature for the available ground stations
and the three different satellite datasets over the period from 1998 to 2005. The
spatial distribution of temperature reported by the remote sensing dataset dif-
fers from the ground stations. In the remote sensing datasets the hottest part
of the basin is the southern part and going north the temperature decreases,
instead the map representing the in-situ stations shows that the hottest region
is the middle-east station.

Figure 4.7 shows the daily, dekadal and monthly RMSE for the two differ-

Figure 4.6: Mean annual temperature over 1998-2005 in the Omo basin for the two different
satellite datasets and the available ground stations.

ent satellite datasets with a spatial representation where each pixel is colored
depending on comparison performances. MERRA-2 has the higher error in the
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Figure 4.7: RMSE maps for two satellite datasets at different time scale: daily (top), dekadal
(center), monthly (bottom)
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Figure 4.8: Correlation maps for two satellite datasets at different time scale: daily (top),
dekadal (center), monthly (bottom)
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Figure 4.9: Mean RMSE and correlation coefficients over the entire Omo basin

southern part of the basin, instead ORH dataset has worse performances in the
south-east part of the basin. In contrast to the behavior observed with precip-
itation, extending the time aggregation does not significantly improve RMSE
values.
Figure 4.8 shows the correlation coefficients for the two different satellite datasets
at different time scale and illustrates the correlation between in-situ and satel-
lite datasets. We observe that correlation on a daily scale is higher for MERRA-2
with respect to ORH, increases for both satellite products when the aggrega-
tion time is dekadal or monthly, and the worst performances are recorded in
the middle-west Omo basin. Figure 4.9 summarizes the comparison results
through the mean performances over the entire Omo basin for the different
satellite products. It is evident how MERRA-2 has better performances with
respect to ORH in terms of RMSE and correlation coefficient.
Moreover, for each ground station we carried out a comparison between the an-
nual cyclostationary mean of ground station measures and the corresponding
satellite cells to analyze how the error is distributed in time across different sea-
sons. Plots are shown for Yaya Otena and Jinka weather stations. The top block
of Figure 4.10 shows seasonal temperature at Yaya Otena station and highlights
that both satellite products underestimate the temperature registered in the
weather station, unlike what happens at the Jinka station (bottom block) where
the remote sensing datasets overestimate the ground measurements.
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Figure 4.10: Seasonal temperature at Yaya Otena and Jinka from MERRA2 and ORH.

4.1.3 Bias correction

The analysis carried out in the previous section highlighted the presence of
systematic errors (namely, bias) in satellite datasets presenting uneven distri-
butions in time and space. In order to reduce the error and improve the quality
of satellite data, two bias correction methods are applied and their results com-
pared: mean bias-remove technique and linear scaling (section 3.1.2).
Figure 4.11 shows the mean performance of the rainfall datasets compared with
the performance of the same satellite products corrected through mean bias-
remove technique (MBR, (Ajaaj et al., 2016)) or linear scaling (LS, (Fang et al.,
2015)). The first row represents RMSE, and the second row reports correla-
tion coefficients. Performance improves significantly with the application of
bias-remove techniques, but the differences between the two different bias cor-
rection techniques is very small and varies depending on satellite product and
on time interval considered. Figure 4.12 shows the bias-corrected annual cy-
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Figure 4.11: Mean RMSE and correlation coefficients over the entire Omo basin for the three
rainfall satellite products with different bias-remove techniques.

clostationary mean at Chida station and we notice how in the dry periods the
satellite trajectories overlap the ground stations line, while in wet periods the
remote sensing lines are lowered and closer to in-situ data. This improvement
is more tangible for the linear scaling method where the satellite trajectories
are very close to the ground station line also in the wet periods. The others
bias correction method applied to different rainfall stations are reported in Ap-
pendix A.1.1. Figure 4.13 shows the mean performance of the temperature
datasets compared with the performances of the same satellite products cor-
rected through bias correction methods. RMSE is halved removing the bias and
correlation coefficient increases more in ORH dataset with respect to MERRA-
2.
Figure 4.14 shows the seasonality at Yaya Otena station where a significant im-
provement in the reproduction of the cyslostationary mean can be recognized
with both correction techniques. The others bias correction method applied to
different temperature stations are reported in Appendix A.1.2.
In conclusion, in this section we compared the accuracy of different satellite
products for precipitation and temperature with different metrics and bias cor-
rection algorithms and it is impossible to identify a product that excels over the
others in all categories. However, the choice of the most suitable satellite prod-
uct for precipitation has fallen on TAMSAT dataset, which better describes the
rainfall on a daily timescale, and for temperature on MERRA-2 dataset, which
better describes the temperature in Omo basin with respect to ORH. Linear
scaling turned out to be a generally better bias-remove technique to remove
systematic bias present on satellite measurements.
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Figure 4.12: Seasonal rainfall at Chida station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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Figure 4.13: Mean RMSE and correlation coefficients over the entire Omo basin for the two
temperature satellite products with different bias-remove techniques.

4.2 Drought indexes comparison

This section employs the satellite derived precipitation and temperature datasets
produced in the previous section to compute two statistical drought indexes:
SPI and SPEI. By using satellite products we were able to extend the time hori-
zon to 32 years from 1986 to 2017 in order to better characterize the hydrological
processes of the region.
The SPI and SPEI values are computed for six basin cells, shown in Figure 4.15,
which are selected with the aim to detect all the different conditions in terms
of precipitation and temperature present inside the basin. The indicators were
computed from 1986 to 2017 for different cumulation periods: 1 month (related
to meteorological drought), 3 months and 6 months (related to agricultural
drought), 9 and 12 months (related to hydrological drought). A drought event
is registered when the indicators falls below -1 for two consecutive months and
ends when it turns positive.

4.2.1 SPI

In Figure 4.16 the SPI indicator is represented and computed using precipi-
tation, with accumulation period of 9 months for the entire Omo basin. It is
possible to identify five main drought events, colored in red: the first three
events have an extended duration of at least three years and the subsequent
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Figure 4.14: Seasonal temperature at Yaya Otena station comparing in-situ data with remote
sensing measurments: raw data (top), corrected with mean bias-remove technique (center),
corrected with linear scaling technique (bottom).
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Figure 4.15: Drought zones in the Omo basin.

51



4. Results

Figure 4.16: SPI index with accumulation period of 9 months in the Omo basin.

two events have a shorter duration. The droughts are interspersed by wet pe-
riods, in particular in the first half of the temporal horizon and at the end of
2017.
Figure 4.17 shows the SPI indicator with accumulation period of 9 months for

each zone detected in the Omo basin. Droughts in each zone become more fre-
quent and their duration decreases with respect to the index value computed
for the entire basin using an average value of precipitation. The five events
identified in the previous figure are still recognizable, despite being interrupted
by short wet periods or accompanied by further dry events in the second half
of the time horizon. The middle-west zone has a different behavior with re-
spect to the other and does not identify drought events in the second half of the
horizon.
Moving the focus on a single zone of the basin, in Figure 4.18 we can see what

happens in the middle-east zone, the area with the lowest amount of rainfall,
varying the accumulation period. With long accumulation periods the drought
events are less in number and more lasting, typical of hydrological droughts,
decreasing the temporal aggregation they become more intermittent with short
durations, as frequently happens in meteorological droughts.

4.2.2 SPEI

Figure 4.19 represents the SPEI indicator, that involves precipitation and tem-
perature variables, with cumulation period of 9 months for all the Omo basin.
It is possible to identify six main drought events: similar to SPI case described
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Figure 4.17: SPI index with accumulation period of 9 months in the Omo basin for the six
drought zones.

Figure 4.18: SPI index in the middle-east zone with different accumulation periods.
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Figure 4.19: SPEI index with accumulation period of 9 months in the Omo basin.

above (Figure 4.16), except for the drought event lasting from 1987 to the end
of 1988 which is splitted into two different events.
Figure 4.20 shows the SPEI indicator with cumulation period of 9 months for

each zone detected in the Omo basin using an average value of precipitation
and temperature. Increasing the spatial scale the drought events become more
frequent and shorter with respect to the index computed for the entire basin.
The drought magnitude and frequency are more significant in the zones that
combine low precipitation and high temperature like middle-east, south-east
and south.
Focusing on a single zone of the basin, in Figure 4.21 we can see the drought

events in the middle-east zone, area with lowest amount of rainfall and a warm
temperature, at various cumulation period. Considering a cumulation period
of 1-3 months the drought events are frequent and have a short duration, in-
stead increasing cumulation period dry periods become longer and less in num-
ber during the horizon.

4.2.3 Comparative analysis of di�erent drought indexes

Figure 4.22 compares the drought conditions in the Omo basin with 9 months
cumulation period (hydrological drought) for SPI and SPEI indexes averag-
ing precipitation and temperature all over the basin. We can detect five main
events that have the same duration but different intensity, when assessed with
different drought indexes. SPEI generally reports more intense droughts, due
to the presence of the temperature variable in the computation that sharpens
the drought magnitude. The main differences between the two indexes are in
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Figure 4.20: SPEI index with accumulation period of 9 months in the Omo basin for the six
drought zones.

the first years of the horizon, where SPEI splits into two different events the
single dry period detected by SPI from 1986 to the end of 1988, and in the mid-
dle years where the third drought event has shorter duration in SPEI index.

In this climate regime the role of temperature is of key importance in iden-
tifying dry periods and their intensity, therefore in our following analysis we
decided to consider the SPEI indicator to assess drougths in the Omo basin
where rainfall and evapotranspiration are strictly connected.

4.3 Seasonal forecast identi�cation

In the previous sections, we have selected the most suitable satellite products
for precipitation (TAMSAT) and temperature (MERRA-2), corrected them with
linear scaling bias correction technique, and used them to derive drought in-
dexes. In this section, we apply the NIPA procedure to forecast rainfall and
drought events through SPEI index in the Omo river basin.

4.3.1 Detection of relevant climate signals (NIPA)

As argued in section 1.2, water management can greatly benefit from the indi-
cation provided by middle- to long-term prediction of future water availabil-
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Figure 4.21: SPEI index in the middle-east zone with different accumulation periods.

ity. Given the outcome of the analysis documented in the previous sections of
this chapter, we consider that the key variables related to the state of water re-
sources in the basin are precipitation and SPEI index. In particular, the focus is
on the Keremt season lasting from June to September (JJAS) which is the main
rainy season in the region and the management of this large volume of water
critical in drought management.
Given the well documented influence of teleconnections in determining climate
oscillation in the region (see section 1.2), we employ the NIPA procedure (de-
scribed in section 3.3) to detect the relevant teleconnections in the area that
will constitute the basis for our data driven middle and long term forecast.
The large-scale climate signals selected for detection are North Atlantic Oscil-
lation (NAO), El Niño Southern Oscillation (ENSO), Pacific Decadal Oscilla-
tion (PDO), Indian Ocean Dipole (IOD) and Atlantic Multidecadal Oscillation
(AMO), as measured by Hurrel NAO Index, MEI Index, Mantua PDO Index,
DMI and AMO index, respectively. ENSO (Zimmerman et al., 2016) was selected
because of its influence on climate worldwide. NAO (Penso, 2018), PDO (Wang
et al., 2014), IOD (Williams and Hanan, 2011) and AMO (O‚ÄôReilly et al., 2017)
were selected because of their geographical proximity to the study site and
their recognized impact on Africa.
After defining the local variable to predict and the teleconnection patterns to
investigate, NIPA is run individually for each climate index, variable and for
several lag times (4-5-6-9-12 months) in order to detect the portions of SST that
are significantly correlated (significance level >= 95%) with local meteorology

56



4.3. Seasonal forecast identi�cation

Figure 4.22: SPI and SPEI indexes in the Omo basin with accumulation period of 9 months.
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for each phase of climate signals at different delays. When predicting the SPEI
index, the considered cumulation period is equal to the lag time. The map in
Figure 4.23 reports one examplificative result of correlation maps between pre-
cipitation in the Keremt season and selected SST 4 months ahead for the MEI
index, indicative of the ENSO phenomenon. In MEI positive years, a higher
number of significant cells are detected with positive correlations in western
Pacific, in the Atlantic and in the Indian coasts of central Africa and negative
correleted cells in central Pacific Ocean. In MEI negative years the gridpoints
located in central Pacific Ocean and in the Atlantic Ocean are positevely cor-
related and in a small area of Mexican coast of Pacific Ocean are negatevely
correlated. The others correlation maps for the NAO, PDO, DMI and AMO in-
dexes are reported in Appendix A.2.1.
In order to determine the confidence level of the detected correlations and lim-

iting the risk of the emergence of spurious correlations, we ran a Monte Carlo
analysis (see section 3.3.1 for details). Table 4.1 reports the results of the detec-
tion analysis in term of phase dependent correlation and confidence level. We
can observe how increasing the lag time the correlation coefficients rise and the
same happens for the confidence level.
Predictions for precipitation in JJAS (PJ JAS) are made also running the ’all-
years’ (or ’onephase’) model, where data are not split into phases. This al-
lows to compare NIPA results with the outcomes of a traditional forecasting
approach, which utilizes the same model for all the phases of a certain large-
scale climate pattern. With a lag time of 4-5-6 months the correlation coefficient
is constant, but when lag time increases (9-12 months) correlation grows.
After showing the NIPA results for the precipitation, we focus on the SPEI in-

dex showing the correlation maps with a 9 months lag time (and 9 months time
aggregation) that involved SPEIJ JAS and the SST anomalies from September-
October-November-December (SOND).
Figure 4.24 shows the numerous gridpoints selected using MEI index whith
negative ENSO years which detect an area positively correlated in the Pacific
Ocean and negatively correlated in the Asiatic coasts of Pacific Ocean, in the
Atalntic Ocean, in the eastern part of Mediterranean Sea and in the eastern
part of Indian Ocean. Instead in the positive years of MEI index are found sig-
nificant cells positively correlated in the North Atlantic Ocean and few cells
negatively correlated in the south of Atlantic Ocean. The others correlation
maps for the NAO, PDO, DMI and AMO indexes are reported in Appendix
A.2.1.

Then, deterministic hindcasts are generated and the Monte Carlo analysis is
performed computing for each index and for each lag time the confidence level
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Figure 4.23: Correlation maps between FMAM SST gridded anomalies and JJAS observed pre-
cipitation, generated by binning the years through MEI index.
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Figure 4.24: Correlation maps between SOND SST gridded anomalies and JJAS observed SPEI
at 9 months cumulation period, generated by binning the years through MEI index.
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Table 4.1: For each phase of each climate index and for each lag time the following are reported:
1) correlation coefficients in cross-validation between predicted PJ JAS and observations and 2)
level of confidence of the predictions.

phases Lag 4 Lag 5 Lag 6 Lag 9 Lag 12
cor conf cor conf cor conf cor conf cor conf

NAO pos 0.45 46.2 0.51 95.2 0.42 82.9 0.46 93.0 0.59 99.6

neg 0.58 95.7 0.37 49.8 0.70 68.3 0.63 87.0 0.69 71.4

MEI pos 0.46 95.2 0.48 91.9 0.50 95.3 0.50 95.5 0.68 99.7

neg 0.48 54.5 0.52 81.6 0.57 79.2 0.59 94.1 0.60 92.3

PDO pos 0.54 96.2 0.61 95.2 0.48 80.9 0.51 97.5 0.55 97.7

neg 0.46 43.1 0.39 85.1 0.43 77.8 0.55 71.9 0.72 97.9

DMI pos 0.57 79.2 0.37 41.8 0.31 42.4 0.35 25.8 0.63 88.8

neg 0.58 94.2 0.60 92.8 0.60 97.8 0.68 99.0 0.51 98.9

AMO pos 0.54 83.2 0.55 67.6 0.45 36.5 0.39 47.4 0.43 48.0

neg 0.55 92.6 0.45 89.9 0.58 97.2 0.73 99.7 0.88 100.0

all years 0.48 - 0.48 - 0.48 - 0.51 - 0.53 -

that are shown in Table 4.2 coupled with the correlation coefficients between
SST anomalies and SPEIJ JAS obtained from correlation maps. Predictions for
SPEIJ JAS are made also running the ’all-years’ (or ’onephase’) model. With an
increasing lag time the correlation coefficient grows, but when lag time reaches
12 months correlation diminishes.
Looking at the performances in Tables 4.1 - 4.2 we can identify the best signals

to forecast precipitation and SPEI index by balancing correlations and confi-
dence. In the case of rainfall we select NAO, MEI, and AMO indexes all with a
lag time of 12 months, instead for SPEI we select MEI, PDO and AMO signals
with a lag time of 9 months.
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Table 4.2: For each phase of each climate index and for each lag time the following are reported:
1) correlation coefficients in cross-validation between predicted SPEIJ JAS and observations and
2) level of confidence of the predictions.

phases Lag 4 Lag 5 Lag 6 Lag 9 Lag 12
cor conf cor conf cor conf cor conf cor conf

NAO pos 0.58 70.9 0.66 72.5 0.68 56.6 0.44 42.7 0.60 86.3

neg 0.62 95.2 0.64 83.1 0.68 81.7 0.49 6.2 0.41 13.0

MEI pos 0.71 47.2 0.60 37.3 0.59 38.5 0.26 98.7 0.69 94.5

neg 0.71 99.1 0.63 98.7 0.64 99.0 0.79 40.4 0.64 95.1

PDO pos 0.68 91.7 0.50 90.5 0.54 85.7 0.51 66.9 0.41 98.7

neg 0.55 88.4 0.68 75.8 0.72 79.8 0.80 90.0 0.84 92.9

DMI pos 0.55 84.4 0.76 66.0 0.64 52.9 0.34 55.6 0.41 27.5

neg 0.55 88.6 0.56 98.0 0.62 84.8 0.70 79.5 0.63 82.1

AMO pos 0.47 64.6 0.45 65.2 0.58 60.7 0.66 94.2 0.47 62.4

neg 0.69 88.1 0.56 97.2 0.57 96.7 0.46 62.8 0.71 97.9

all years 0.42 - 0.46 - 0.51 - 0.53 - 0.34 -

4.3.2 Multi-variate seasonal meteorological forecast

In this step, the previously obtained PCs are used as input to a multivariate
prediction model that is calibrated and validated to reproduce the observed
rainfall and SPEI index. As specified in Section 3.3.2, a leave one out cross-
validation is performed for each signal, to limit the risk of over-fitting. A non-
linear ELM model is calibrated for each selected signal, and for each bivariate
combination of such signals. Inputs of the models are the signal phase (or bi-
variate combination of phases) and the PC of the relevant SST.
Figure 4.25 shows the results obtained for rainfall prediction cross-validating
an ELM model using as inputs the phase and the PC of the ENSO signal. In the
first years the model struggles to reproduce the observed values of the index,
while in the last decade the trajectory of forecasted precipitation is very close
to the observed one ensuring excellent performance in terms of correlation co-
efficient equal to 0.87 and R2 equal to 0.76. Complete results for the seasonal
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precipitation forecast can be seen in Appendix A.2.2.
Models accuracies in crossvalidation are summarized in Table 4.3 where is ev-
ident how the univariate model with MEI index provided the best forecasts,
while for the bivariate model the best correlation is obtained coupling NAO
and AMO indexes.

Figure 4.26 shows the forecasts obtained with SPEI index from ELM model

Figure 4.25: Observed and predicted precipitation for univariate JJAS season with MEI index.

Table 4.3: Performance of ELM model in cross-validation using different climate signals and 12
months lag time: precipitation forecasts.

Signals Cor R2

NAO-12 0.77 0.60

MEI-12 0.87 0.76

AMO-12 0.85 0.72

MEI12-NAO12 0.77 0.59

MEI12-AMO12 0.79 0.62

NAO12-AMO12 0.86 0.73

with univariate signals by MEI index. In the first half of the time horizon the
model struggles to replicate the peaks and in the last decade the trajectory of
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forecasted SPEI index is very close to the observed one providing excellent re-
sults in terms of correlation coefficient equal to 0.92 and R2 equal to 0.82. Com-
plete results for the seasonal SPEI forecast can be seen in Appendix A.2.2.
Table 4.4 provides a summary of the performance of each method, where the
univariate model with MEI index provided the best forecasts and coupling the
signal indexes with bivariate model the correlations are low respect to univari-
ate models.
Finally, it is useful to underline that the predictions of SPEI index with ENSO
signal are more accurate with respect to rainfall forecasts, for this reason in the
following section (Section 4.4) are utilized the drought predictions to imple-
ment Gibe III filling strategies.

Figure 4.26: Observed and predicted SPEI index for univariate JJAS season with MEI index.

4.4 Dam �lling strategy design

In this section, we employ the 9 months ahead SPEI forecasts to define alter-
native filling strategies for Gibe III reservoir that consider the predicted state
of water resources in the Omo basin in order to reduce the impacts of the fill-
ing period for downstream water users. The filling strategy is defined as in
equation 3.8, where the forecasted state of water resources is represented by
the forecasted SPEI.

ut = ks(SPEI) ∗ nt+1 (4.1)

SPEI prediction is updated twice a year for a wet season (April to November)
and a dry season (November to April). We designed seven filling strategies
which differ for the values of the coefficients ks, reported in Table 4.5. In each
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Table 4.4: Performance of ELM model in cross-validation using different climate signals and 9
months lag time: SPEI forecasts.

Scenarios Cor R2

MEI-9 0.92 0.84

PDO-9 0.86 0.74

AMO-9 0.84 0.70

MEI9-PDO9 0.84 0.71

MEI9-AMO9 0.78 0.61

PDO9-AMO9 0.76 0.57

strategy, however, lower values of ks are assigned in case of wet conditions
(positive SPEI), corresponding to more water impounded and less released.
The rationale behind this decision is that when a wet season is forecasted, the
water needs of downstream stakeholders will be sustained by abundant rain
and lateral inflows. On the contrary, with a predicted upcoming drought, the
water released downstream becomes a larger fraction of the inflow (larger ks),
in order to contain the combined impacts of drought and dam filling to down-
stream users. The horizon considered lasts from 2015 to 2017. Scenario 0 con-
siders the historical filling release computed with Topkapi model developed
by ETH university. The output of the simulation model are the Gibe III release,
Gibe III water level and the lake Turkana water level. Figure 4.27 represents
the different Gibe III release from 1 January 2015 to 30 October 2017. Scenario
0 starts with no release for the first year and in the following years the release
is constant until it reaches of regime release conditions towards the end of the
time horizon. The trajectories of the other scenarios follow the inflow pattern
with a vertical variability due to the factor ks. Figure 4.28 shows the Gibe III
water level trajectories during the filling operations for the different scenarios,
considering that the operation level is fixed to 201 m (Velpuri and Senay, 2012).
It is evident how scenario 0 is designed for a fast filling reaching operations
already in the first year given the initial null release, instead the other scenar-
ios have a more gradual water level increment due to the significantly higher
amount of water released during the filling process. Two of these scenarios do
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Table 4.5: Gibe III filling strategies with different fraction ks depending on SPEI index values.

Scenarios k1 k2 k3 k4 k5 k6 k7

SPEI > 0 0.3 0.3 0.15 0.4 0.45 0.33 0.5

-0.5 < SPEI < 0 0.4 0.5 0.33 0.6 0.75 0.66 0.75

-1 < SPEI < -0.5 0.6 0.7 0.66 0.8 0.9 1 1

SPEI < -1 0.8 0.9 1 1 1 1 1
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Figure 4.27: Gibe III releases for the different scenarios implemented from 1 Jan 2015 to 30 Oct
2017.

not reach the operation level by the end of the considered time horizon (S5 and
S7).
Figure 4.29 represents lake Turkana water level during the horizon and shows

how the Turkana water level is going to decrease with respect to natural condi-
tions (obtained via simulation in a configuration without Gibe III reservoir) due
to Gibe III filling operations. However, several of the identified filling strategies
allow to reduce the impact on downstream areas. In particular, four scenarios
(S4, S5, S6 and S7) have higher final water level respect to S0 because the dam
releases are more abundant along the horizon period.
Based on the output obtained with the simulation model, four objectives and

different indicators of hydrological alterations are calculated, as described in
section 2.4. In Figure 4.30 the four objectives coupled with three important indi-
cators of hydrological alteration are summerized in a parallel-axes plot where
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Figure 4.28: Gibe III water level for the different scenarios implemented from 1 Jan 2015 to 30
Oct 2017.
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Figure 4.29: Lake Turkana water level for the different scenarios implemented from 1 Jan 2015
to 30 Oct 2017.
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4. Results

the indicators are normalized between their minimum and maximum values
and 0 corresponds to the best indicator value.
The best solution focusing on lake Turkana is S7, that provides the minimum
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Figure 4.30: Parallel-axes plot representing the values of the 8 filling alternatives with respect
to 7 performance indicators.

impacts on lake Turkana and on the downstream environment at the expence
of hydropower. However, with this scenario the Gibe III operation level is not
reached at the end of the horizon. If we consider as a constraint the reach of
Gibe III operating level by October 2017, S5 seems a good compromise between
downstream preservation and hydropower production.
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5
Conclusions and future research

This study investigated the possibility of using drought forecast, based on the
state of global teleconnections, to implement different reservoir filling strate-
gies that take into account the state of water resources and the impacts of fill-
ing operations for the environment and economic activities downstream the
dam. Reservoir filling strategies are a key planning aspect that did not receive
much attention in the literature but hides a great potential to reduce dam im-
pacts downstream. In our case study, the state of global teleconnections stongly
influences the climate in terms of rainfall and streamflow, thus introducing a
long-term predictability on hydrological fluctuations that can be exploited to
design efficient filling operations taking into account the state of climate sig-
nals.
The Omo-Turkana basin is located in southern Ethiopia and northern Kenya,
the basin is drained by Lake Turkana, with the Omo River on the Ethiopian
side supplying 90% of the input to the lake. In the last decade, a massive hy-
droelectric power production project has been implemented with the costruc-
tion of several dams along the Omo river to exploit river hydropower potential.
This man-made changes will cause transformations in river’s regime and its in-
put to Lake Turkana. While a wise operation of the new water infrastructures,
which considers environmental and tribal needs, can be possible in regime con-
ditions, the transient period related to dam filling is likely to provoke serious
stakeholder conflicts and damages downstream providing the rational behind
this thesis work.
In poorly gauged river basins characterized by a limited availability of in-situ
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5. Conclusions and future research

meteorological stations, satellite data constitute a valid resource to retrieve
hydro-meteorological information. This thesis evaluates the performance of
three precipitation remote sensing dataset (TRMM, CHIRPS and TAMSAT) and
two temperature remote sensing datasets (MERRA-2 and ORH) in the Omo
river basin corrected with mean bias-remove technique and linear scaling.
The selected and corrected precipitation dataset (TAMSAT) and temperature
(MERRA-2) data are employed to compute two drought indexes: SPI and SPEI.
The SPI and SPEI values are computed for six sub-basin areas which are se-
lected with the objective to detect all the different conditions in terms of precipi-
tation and temperature present inside the basin. The indicators were computed
over 32 years for different cumulation periods: 1 month (related to meteorolog-
ical drought), 3 months and 6 months (related to agricultural drought), 9 and
12 months (related to hydrological drought).
After defining the main local variables for the case study (precipitation and
SPEI index), we employ the NIPA procedure to detect the relevant teleconnec-
tions in the area that will constitute the basis for our data driven middle and
long term forecast (ELM model). The results show that the correlation between
teleconnections and local varibles in the area is relevant, and that ELM models
are able to use it for reliable forecasts. In particular the comparison between
observations and resulting hindcast provides a Pearson coefficient Cor = 0.87
and the determination coefficient R2 = 0.76 for precipitation, and for SPEI in-
dex we obtain Cor = 0.92 and R2 = 0.84, both using Principal components of
SST identified through from MEI index.
The conclusion we can draw from this analysis is that a clear correlation be-
tween teleconnections and local hydrological variables exist in the region and
can inform water systems filling operations on upcoming dry or wet periods.
The filling strategies that were implemented and tested are designed to respect
natural seasonal inflow variability while accounting for the forecasted state of
water resources and drought condition in the basin. The release decision from
the dam are defined as a fraction of the inflow dependent on the forecasted
SPEI index. These strategies are compared with the actual strategy employed
for the filling of Gibe III in terms of hydropower production and several down-
stream interests. The results during the filling horizon highlight that several
proposed strategies has the potential to significantly decrease downstream im-
pacts during filling transient. In particular, we notice a huge improvement of
lake Turkana condition in terms of water level, which during the considered
horizon is maintained up to one meter higher for several strategies with re-
spect to reference filling strategy.
We advocate that the analyis proposed is general, and case independent, and

70



can thus be applied to other reservoirs. For example, along the Omo river
downstream Gibe III, another large reservoir, Koysha dam, is under construc-
tion since 2016, and according to the previsions will be completed and start to
fill in 2021. The Koysha filling operations will cause a further drop of Turkana
water level and it will be essential to reduce impacts on the lake Turkana.
In light of these results, further research could be conducted. Firstly, the current
filling strategies are based on a fractional method and the fraction coefficients
are fixed a priori trying to explore different scenarios. We can improve the fill-
ing performance including the optimization of fractional coefficients employ-
ing for example a multi objective evolutionary algorithm.
Finally, by extending the forecast lead time even further, it could be possible to
define a favorable time to begin the filling operations, by shifting filling start-
ing point from 2015 to a different years thus avoiding to exacerbate the impacts
of the 2015-2016 drought with a filling transient.
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A. Additional material

Additional material

A.1 Climate data processing

A.1.1 Bias correction - Precipitation

Figure A.1: Seasonal rainfall at Hosana station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.2: Seasonal rainfall at Gubre station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).

81



A. Additional material

Figure A.3: Seasonal rainfall at Yaya Otena station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.4: Seasonal rainfall at Laske station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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A. Additional material

Figure A.5: Seasonal rainfall at Bele station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.6: Seasonal rainfall at Bonga station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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A. Additional material

Figure A.7: Seasonal rainfall at Durame station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.8: Seasonal rainfall at Morka station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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A. Additional material

Figure A.9: Seasonal rainfall at Sawla station comparing in-situ data with remote sensing mea-
surments: raw data (top), corrected with mean bias-remove technique (center), corrected with
linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.10: Seasonal rainfall at Wolkite station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A. Additional material

A.1.2 Bias correction - Temperature

Figure A.11: Seasonal temperature at Jinka station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.12: Seasonal temperature at Bonga station comparing in-situ data with remote sensing
measurments: raw data (top), corrected with mean bias-remove technique (center), corrected
with linear scaling technique (bottom).
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A. Additional material

Figure A.13: Seasonal temperature at Morka station comparing in-situ data with remote sens-
ing measurments: raw data (top), corrected with mean bias-remove technique (center), cor-
rected with linear scaling technique (bottom).
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A.1. Climate data processing

Figure A.14: Seasonal temperature at Wolaita Sodo station comparing in-situ data with remote
sensing measurments: raw data (top), corrected with mean bias-remove technique (center),
corrected with linear scaling technique (bottom).
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A. Additional material

Figure A.15: Seasonal temperature at Hosana station comparing in-situ data with remote sens-
ing measurments: raw data (top), corrected with mean bias-remove technique (center), cor-
rected with linear scaling technique (bottom).
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A.2. Seasonal forecast identi�cation

A.2 Seasonal forecast identi�cation

A.2.1 Detection of relevant climate signals (NIPA)

Figure A.16: Correlation maps between FMAM SST gridded anomalies and JJAS observed
precipitation, generated by binning the years through NAO index.
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A. Additional material

Figure A.17: Correlation maps between FMAM SST gridded anomalies and JJAS observed
precipitation, generated by binning the years through PDO index.
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A.2. Seasonal forecast identi�cation

Figure A.18: Correlation maps between FMAM SST gridded anomalies and JJAS observed
precipitation, generated by binning the years through DMI index.
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A. Additional material

Figure A.19: Correlation maps between FMAM SST gridded anomalies and JJAS observed
precipitation, generated by binning the years through AMO index.
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A.2. Seasonal forecast identi�cation

Figure A.20: Correlation maps between SOND SST gridded anomalies and JJAS observed SPEI,
generated by binning the years through NAO index.
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A. Additional material

Figure A.21: Correlation maps between SOND SST gridded anomalies and JJAS observed SPEI,
generated by binning the years through PDO index.
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A.2. Seasonal forecast identi�cation

Figure A.22: Correlation maps between SOND SST gridded anomalies and JJAS observed SPEI,
generated by binning the years through DMI index.
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A. Additional material

Figure A.23: Correlation maps between SOND SST gridded anomalies and JJAS observed SPEI,
generated by binning the years through AMO index.
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A.2. Seasonal forecast identi�cation

A.2.2 Multi-variate seasonal meteorological forecast

Figure A.24: Observed and predicted precipitation for univariate JJAS season: NAO (top), MEI
(center), AMO (bottom).
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A. Additional material

Figure A.25: Observed and predicted precipitation for bivariate JJAS season: MEI-NAO (top),
MEI-AMO (center), NAO-AMO (bottom).
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A.2. Seasonal forecast identi�cation

Figure A.26: Observed and predicted SPEI index for univariate JJAS season: MEI (top), PDO
(center), AMO (bottom).
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A. Additional material

Figure A.27: Observed and predicted SPEI index for bivariate JJAS season: MEI-PDO (top),
MEI-AMO (center), PDO-AMO (bottom).
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