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Sommario

Introduzione

Questa tesi è incentrata sullo studio longitudinale dei pazienti post-ictus,

per indagare il meccanismo di plasticità cerebrale alla base della riorga-

nizzazione del controllo motorio in soggetti sottoposti ad un trattamento

di riabilitazione motoria, supportato da stimolazione elettrica funzionale.

Inoltre, uno degli obiettivi principali di questo lavoro è quello di ottenere

maggiori informazioni sui fattori determinanti che portano al raggiungimen-

to di un recupero motorio duraturo (chiamato effetto ”carry-over”) dopo la

riabilitazione motoria basata su FES.

La FES (Functional Electrical Stimulation - stimolazione elettrica funziona-

le) dei muscoli degli arti superiori e inferiori ha ricevuto crescente attenzione

poiché è stato dimostrato che la terapia riabilitativa basata su FES, com-

binata con il trattamento di terapia convenzionale, migliora in modo più

efficace la capacità di deambulazione e migliora il recupero motorio rispetto

alla sola terapia convenzionale, in pazienti sopravvisuti ad ictus [1].

FES ed effetto Carryover - Per quanto riguarda gli arti inferiori, la FES

viene utilizzata principalmente per la correzione ortotica della sindrome da

piede cadente, un problema piuttosto comune in seguito ad un ictus. Una

percentuale di pazienti riapprende a dorsiflettere volontariamente la caviglia

senza l’uso del dispositivo [2]. Il meccanismo di funzionamento di questo

fenomeno, denominato ”effetto carryover”, non è stato ancora pienamente

compreso e , infatti, l’effetto carryover è stato osservato solo in sottogruppi di

pazienti neurologici e le caratteristiche di questi pazienti, con o senza effetto

carryover, non sono chiare. Si ritiene che l’interazione tra sforzo volontario

e stimolazione elettrica si traduca in un effetto neuroplastico, inducendo la

formazione di nuove connessioni funzionali permanenti e, quindi, promuo-

vendo il riapprendimento motorio [3][4][5][6]. Questo meccanismo segue i

principi della teoria di Hebb, che afferma che una stimolazione ripetuta e

persistente di una cellula postsinaptica da parte di una cellula presinaptica,
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favorisca l’aumento dell’efficacia sinaptica [7]. In effetti, la combinazione di

sforzo volontario (segnale efferente) e percezione sensoriale di un movimento

correttamente completato (segnale afferente) sembra facilitare la plasticità

di Hebb.

Gli studi suggeriscono che la capacità di un paziente di pianificare il movi-

mento e di percepire la stimolazione come parte del proprio ciclo di controllo

motorio è molto importante perché l’effetto carryover abbia luogo [8].

Teoria dell’Active Inference - In questo studio, come ipotesi di lavoro,

abbiamo impiegato la recente teoria che suggerisce che l’aggiornamento dei

modelli interni del cervello segue i principi bayesiani, combinando distribu-

zioni di probabilità a priori e livelli noti di incertezza del feedback sensoriale

con le conseguenze sensoriali del movimente [9]. Inoltre, la direzione inter-

pretativa della tesi punta verso teoria dell’Active Inference come meccanismo

di funzionamento del controllo motorio, che prevede che la corteccia motoria

trasmetta previsioni discendenti delle conseguenze sensoriali del movimento

piuttosto che i comandi cinematici di guida specificati dal controllo motorio

ottimale. La possibilità di studiare i correlati neurali funzionalia i cambia-

menti di connettività associati all’utilizzo della FES rappresenta un’utile

condizione sperimentale per discriminare le due teorie alterantive ”Optimal

motor control” e ”Active Inference”, sulla base delle quali ci aspetterem-

mo che l’output del controllo motorio venga diversamente influenzato dalla

presenza della FES (propriocezione alterata), cioè che i comandi cinematici

rimangano inalterati nel caso del controllo ottimale, oppure che la predizione

propiocettiva venga aggiornata nel caso dell’active inference.

Metodi

Partecipanti - I partecipanti coinvolti in questo studio consistono in 16

soggetti sani e 8 pazienti post-ictus. I pazienti sono stati sottoposti a una

classificazione binaria, basata sull’esito del trattamento, a seconda che il

soggetto abbia raggiunto o meno miglioramenti stabili (cioè l’effetto carry-

over) nel recupero motorio, dopo la riabilitazione [10].

In questo lavoro l’attenzione è stata focalizzata su soggetti che presentano la

sindrome da piede cadente, detta anche paralisi flaccida, causata da debolez-

za alle caviglie e paralisi ai muscoli flessori dorsali del piede, e che impedisce

ai soggetti che ne sono affetti di sollevare completamente la gamba o il piede

mentre muovono un passo. Uno degli obiettivi di queste terapie è quindi l’u-

so della FES appropriatemente sincronizzato con la fase di oscillazione del

passo per produrre una dorsiflessione pienamente funzionalecome, e anche



come stimolo di propriocezione alterata. Questa procedura mira a stimolare

i processi neuroplastici per la riorganizzazione del circuito di controllo mo-

torio a livello corticale. L’esecuzione di un movimento volontario, infatti,

richiede al cervello di integrare sia l’intenzione volontaria di eseguire il mo-

vimento, sia la conoscenza dello stato del corpo (cioè integrare il feedback

sensoriale).

Il dataset e il portocollo sperimentale - Nella configurazione speri-

mentale, la FES viene utilizzata per fornire informazioni propriocettive pi-

lotate dall’esterno durante l’esecuzione del movimento - in altre parole, per

alterare sperimentalmente la re-afferenza (cioè l’input sensoriale che risulta

dal movimento del soggetto). Il protocollo sperimentale è stato definito in

modo tale da alterare solo la propriocezione in diverse condizioni, mante-

nendo costante la cinematica del movimento per rilevare quali aree e quali

connessioni sono più sensibili all’alterazione della propriocezione. Il proto-

collo sperimentale originale [6][8], realizzato coninvolgendo la dorsiflessione

della caviglia destra assistita da FES e a ritmo scandito da segnali acustici,

consisteva in un design fattoriale 2× 2, i cui fattori sperimentali erano rap-

presentati dall’intenione volontaria di eseguire il movimento (V) e la FES

(F), ognuno dei quali aveva 2 livelli, cioè ”volontario” / ”passivo” e ”presen-

te” / ”assente”, rispettivamente. Questi comportano 4 condizioni: volontà

del movimento con concomitante FES (FV), movimento passivo con con-

comitante FES (FP), volontà del movimento senza FES (V) e movimento

passivo senza FES (P).

I dati di risonanza magnetica funzionale (fMRI) utilizzati in questo stu-

dio sono stati ottenuti durante sessioni di esercizio duranti le queli sia il

movimento volontario che la propriocezione sono stati manipolati sperimen-

talmente e, cos̀ı facendo, sono stati analizzati gli effetti sulle interazioni tra

le aree corticali motorie e sensoriali, sia in soggetti sani che gruppi di pa-

zienti post-ictus.

I dati utilizzati in questo lavoro sono relativi a 16 volumi cerebrali sani e 16

provenienti da pazienti post-ictus. In fatti, per ciascun paziente erano di-

sponibili 2 sessioni di fMRI, acquisite una prima (PRE) e una dopo (POST)

la riabilitazione.

DCM - Il lavoro in questa tesi si basa sulla struttura di lavoro del Dy-

namic Causal Modeling (DCM), implementato all’interno del software SPM

di Matlab, come strumento per valutare la connettività effettiva tra regioni

corticali del cervello. Oltre a fare inferenze sull’accoppiamento tra regio-

ni cerebrali distinte, lo scopo del DCM è quello di esaminare come questo



accoppiamento dipenda dal contesto sperimentale. Il DCM è usato per rica-

vare gli stati neuronali, dalla misura indiretta dell’attività cerebrale (cioè il

segnale BOLD) all’interno di un imianto bayesiano [11]. Sono stati svilup-

pati diversi tipi di DCM, ma in questo studio è stato utilizzato un modello

deterministico bilineare a stato singolo. DCM è un approccio per l’iden-

tificazione di sistemi di ingresso-stato-uscita non lineari; la richiesta di un

input e la necessità di specificare le regioni del cervello di cui è composto

il sistema, implicano che il DCM è tradizionalmente utilizzato per testare

ipotesi specifiche che hanno motivato un particolare progetto sperimentale.

Utilizzando un’approssimazione bilineare per le interazioni dynamiche tra

gli stati,

ż =

A+
∑
j

ujB
(j)

 z + Cu,

I paramteri del modello causale implicito si riducono a tre set: i parametri

che mediano l’influenza degli input estrinsechi sugli stati del sistema (matrice

C), i parametri che mediano le connessioni intrinseche tra gli stati (matrice

A), e i paramtetri che permettono agli input di modulare queste connessioni

(matrice B) L’identificazione procede seguendo una struttura bayesiana, da-

ti degli input noti e deterministici, e la risposta del sistema misurata. Nello

schema bayesiano di identificazione, le distribuzioni a posteriori dei parame-

tri sono stimate attraverso un algoritmo di ottimizzazione, utilizzando i dati

osservati e le distribuzioni a priori, sotto ipotesi di Gaussianità.

Gli Input - Per estrarre le serie temporali della risposta BOLD, relative

a ingressi sperimentali opportunamente adattati per il nostro modello, ab-

biamo riformulato il modello lineare generale per specificare gli input diretti

e modulatori; questi corrispondono a un’attività di stimolo che rappresen-

ta l’effetto dei segnali volontari discendenti, V (che combina gli onset delle

condizioni V e FV); un secondo input che codifica il contributo della sti-

molazione funzionale elettrica ascendente all input propriocettivo, E (che

combina gli onset delle condizioni FV e FP) e un terzo input che rappresen-

ta l’input propriocettivo dovuto ai movimenti, P (che combina gli onset di

tutte le 4 condizioni). Per riassumere l’attività regionale di ciascun soggetto,

per ciascun soggetto è stato eseguito un contrasto F tra tutte le covariate

della nuova design matrix, ottenendo cos̀ı un’immagine di contrasto relativa

all’attivazione cerebrale per tutti e tre gli input sperimentali.

Scelta delle regioni di interesse (ROI) - Per quanto riguarda i nodi

del modello, le regioni di interesse (ROI) sono state scelte in base agli obiet-



tivi dello studio e alle conoscenze pregresse sul loro ruolo nel meccanismo di

controllo motorio [6][8][12][13][14][15] [16][17] [18]. Le regioni di interesse ri-

sultanti, da cui sono state estratte le serie temporali del segnale BOLD, sono

le aree motorie controlaterali primaria e supplementare (M1 e SMA), l’area

somato-sensoriale controlaterale primaria (S1) e il giro angolare controla-

terale (AG). I volumi di interesse specifici per ogni soggetto, associati alle

regioni sopra menzionate, sono stati selezionati utilizzando sfere del raggio

di 4 mm, centrate nelle coordinate di massima attivazione rilevate all’interno

delle mappe di attivazione mascherate. Mascherare l’immagine di contrasto

significa prendere in considerazione un numero limitato di voxel contenuti

in uno specifico spazio volumetrico, definito dalla corrispondente maschera

della regione anatomica/funzionale del cervello. Le maschere per ogni ROI

sono state ricavate dall’atlante SPM.

Modello gerarchico e Regressori - Nel contesto del nostro studio su

gruppi, per verificare se la connettività effettiva fosse diversa tra sottogruppi

di pazienti, abbiamo deciso di sfruttare lo schema del Parametric Empirical

Bayes (PEB), costruendo un modello gerarchico rispetto ai parametri, come

descritto in studi recenti [19][20]. Oltre al modello bilineare al primo livello,

che descrive l’evoluzione temporale degli stati neurali, questo approccio in-

troduce un secondo livello che modella ogni parametro al primo livello (cioè

i parametri di accoppiamento tra regioni corticali) come una variabile ca-

suale che oscilla attorno a un valor medio di gruppo. Il modello di secondo

livello è rappresentato da un modello lineare generale (GLM), che include

una combinazione lineare di uno o più regressori (o covariate) e un rumore

additivo gaussiano. I regressori sono compattati nella cosiddetta matrice di

progettazione (X):

θi = Xβ + ε

dove β = {β1, . . . , βn} è il set di paramteri al seconod livello che esprime il

contributo di ogni regressore inserito nella design matrix, e ε ∼ N (0, σ).

Nell’analisi sui soggetti sani abbiamo utilizzato un singolo regressore che

rappresenta la media di gruppo, poiché non sono stati ipotizzati altri effetti

di gruppo all’interno del gruppo dei soggetti sani. Nella successiva analisi

sui pazienti, eravamo interessati a osservare le differenze nella connettività

effettiva tra 4 sottogruppi (CE-PRE, CE-POST, nCE-PRE, nCE-POST);

questi sottogruppi derivano dal disegno fattoriale 2× 2 ottenuto dalla com-

binazione del fattore di classificazione carry-over, con livelli ”CE” (presente)

e ”nCE” (assente) e il fattore tempo, con livelli ”PRE” (prima sessione fM-

RI) e ”POST” (seconda sessione fMRI).



Al fine di evidenziare meglio le possibili differenze di connettività tra queste

condizioni, abbiamo definito nella design matrix un regressore carry-over,

che codifica l’appartenenza alla classe, e un regressore tempo, che codifica

il punto temporale della sessione fMRI. Un ulteriore regressore che modella

la media di gruppo è stato inserito nella matrice.

Procedure per l’identificazione della struttura del modello - Prima

di identificare la struttura del modello, alcune semplificazioni sono state

adottate, basate sulla connettività intrinseca e sugli input, in modo da ri-

durre lo spazio dei modelli. Questi vincoli sono basati su ipotesi derivate da

conoscenze pregresse e informazioni trovate in letteratura, sulla connettività

strutturale e funzionale. Abbiamo quindi scelto di adottare un approccio ge-

rarchico, definendo prima uno spazio dei modelli realizzato facendo variare

gli input (matrice C), poi utilizzando il modello vincente cos̀ı selezionato per

definire un nuovo spazio dei modelli ottenuto facendo variare le connessioni

intrinseche (matrice A), ed infine utilizzando il modello cos̀ı ottenuto per

definire un ulteriore spazio dei modelli facendo variare gli effetti modulatori

(amtrice B).

Questa procedura è stata applicata inizialmente al gruppo di soggetti sani.

Nella successiva analisi sul gruppo di pazienti, si è ipotizzato che la matrice

C avesse la stessa struttura di quella ottenuta per i soggetti sani; la ma-

trice A è stata studiata a partire da dalla versione ridotta avente la stessa

struttura di quella risultante dal gruppo dei soggetti sani. Nessun vincolo

è stato imposto sulla matrice B e tutte le possibili combinazioni sono state

testate. Questo approccio ci ha permesso di fare inferenza sulla struttura

del modello, esplorando l’ampio spazio dei modelli in modo efficiente.



Risultati

I risultati riguardanti i oggetti sani sono riportati in Figura 4.5.

(a) Struttura di connettività del modello.

Rappresentazione generale del modello ri-

sultante per soggetti sani; i valori blu sono

relativi alle connessioni intrinseche nella ma-

trice A, i valori rossi sono relativi agli effetti

modulatori dell’input E (FES) nella matrice

B, i valori verdi indicano gli input (V, E, P)

nella matrice C.

(b) Rappresentazione matriciale. Medie a posteriori stimate µ e il loro livello di signifi-

catività Pp, riportate per ogni matrice di primo livello (da sinistra a destra: C - input;

A - connettività intrinseca; B - effetti modulatori dell’input E).

Figura 1



L’inferenza sui parametri ha evidenziato una profonda interazione tra feed-

back sensoriale alterato artificialmente e movimento volontario, nei soggetti

sani (connessioni M1 −→ S1 e SMA −→ S1 in Figura 4). Questa intera-

zione è rispecchiata dagli effetti modulatori che l’input E ha sulle connessioni

da M1 e SMA verso S1 (matrice B(2,1) e B(2,3) in Figura 5) e supporta

la teoria dell’Active Inference per il controllo motorio, poiché questo effetto

modulatorio indica un aggiornamento della previsione propriocettiva dovu-

ta alla stimolazione elettrica applicata. In effetti, nel contesto del controllo

ottimo, dato lo stesso output cinematico atteso in tutte le condizioni, i co-

mandi cinematici di controllo non avrebbero bisogno di essere modulati dalla

presenza di propriocezione alterata. Come si può vedere in Figura 2, nei

pazienti i valori di connettività sono in contrasto con quanto osservato per

i sani, e quindi questi valori evidenziano un malfunzionamento di questa

interazione (M1 −→ S1, SMA −→ S1), che potrebbe indicare una propa-

gazione difettosa della previsione propriocettiva inviata dalle aree motorie.

In Figura 2 sono riportati la struttura del modello e le medie delle distri-

buzioni a posteriori stimate per i pazienti.

Si noti che ogni parametro di primo livello (cioè le connessioni) è espres-

so al secondo livello come la combinazione lineare di 4 componenti, asso-

ciate ai quattro regressori inclusi nella matrice di progetto, ciascuno dei

quali esprime un effetto di gruppo: medai di grupo, raggiungimento del-

l’effetto carryover (CE/nCE), tempo (PRE/POST). Ciò significa che i va-

lori riportati in Figure 2, per ogni connessione, sono stati ottenuti come

θi = βmean ± βcarryover ± βtime.



Figura 2: 2×2 factorial representation of patients model structure, along with estimated

parameter posterior means. Values are obtined as θi = βmean ± βcarryover ± βtime.

Blue values are relative to intrinsic connections in matrix A, red values are relative to

modulatory effects of input E (FES) in matrix B, green values indicate driving inputs

(V, E, P) contribution in matrix C. Values are reported for each subgroup, localised as

follows: in the upper left panel is the CE-PRE subgroup; in the upper right panel is

the nCE-PRE subgroup; in the lower left panel is the CE-poST subgroup; in the lower

right panel is the nCE-POST subgroup

In Figure 7, i valori medi stimati (µ) dei parametri a secondo livello

sono riportate per ogni parametro, insieme al loro livello di significatività

(Pp), in rappresentazione matriciale; i livelli di colore indicano l’intensità del

valore riortato.

Anche la natura gerarchica della elaborazione motoria è stata evidenziata

dai risultati, principalmente sottolineata dal ruolo di SMA, che agisce sia co-

me supervisore dell’area motoria primaria, sopprimendo i programmi motori



standard di M1 ogni qualvolta le condizioni esterne cambiano, sia come unità

di elaborazione motoria di ordine superiore, che interviene qualora l’attività

desiderata comporti movimenti più complessi. In questo contesto, sugge-

riamo che la dorsiflessione della caviglia, che sembra essere un movimento

piuttosto semplice per un soggetto sano, potrebbe essere un compito impe-

gnativo per i soggetti con disabilità, che quindi richiederebbe un maggiore

contributo della SMA. A proposito di questa connessione (SMA −→ M1),

abbiamo osservato differenze sia nel carry-over che nel tempo (matrice B(1,3)

in Figura 7b - pannelli carryover e time), indicando che potrebbe es-

sere soggetta a cambiamenti dovuti a processi neuroplastici e, inoltre, che

questa interazione potrebbe rappresentare un aspetto fondamentale e ca-

ratterizzante per l’insorgenza dell’effetto carry-over. Quest’ultimo risultato

mostra come l’attività soppressiva di SMA nei confonti di M1, meccanismo

che è proprio di un circuito di controllo motorio sano, sia preservata nei

pazienti che esibiscono l’effetto carry-over ma venga a mancare nei pazienti

senza l’effeto carry-over.

Un altro risultato interessante, che potrebbe rappresentare un potenziale

marker dell’effetto carryover, è relativo all’input propriocettivo (P). Come

mostrato in Figura 7c - pannello carry-over , la componente relative al-

l’effetto carry-over dell’input P entrante in S1 ha un valore stimato di 0.44.

Questo vuol drie che i pazienti appartenenti al gruppo nCE hanno dimo-

strato di essere meno capaci di interiorizzare il segnale afferente sensoriale

e di sfruttare queste informazioni propriocettive per integrarle nel circui-

to di controllo motorio. Ciò potrebbe rappresentare un potenziale punto

di partenza per studi futuri su fattori chiave determinanti per il verificarsi

dell’effetto carryover.



(a) Componenti matrice A

(b) Componenti matrice B

(c) Componenti matrice C

Figura 3: Valori stimati a secondo livllo, suddivisi per ognuna delle matrici a primo

livello (A, B, C), relativi ai 3 regressori. Da sinistra a destra i pannelli riportano: media

di gruppo (βmean); effetto carryover (βcarryover); tempo (βtime).



Conclusioni

Per concludere, abbiamo presentato un approccio gerarchico personalizzato

per l’identificazione della struttura di rete del modello. Abbiamo quindi ana-

lizzato e riportato i risultati dell’inferenza sui parametri del modello, per il

nostro studio longitudinale di gruppo. Questi risultati supportano la teoria

alternativa dell’Active Inference per il controllo motorio, forniscono alcune

informazioni sui meccanismi di attenuazione sensoriale, hanno evidenziato

la natura gerarchica del controllo motorio e infine potrebbero indicare po-

tenziali meccanismi di azione della FES nel promuovere l’apprendimento

motorio nella neuroriabilitazione.

Struttura della tesi

La tesi è strutturata come segue.

Il Capitolo 1 introduce il problema della menomazione post-ictus, fa’ una

rapida revisione della letteratura sullo stato dell’arte nel campo della ria-

bilitazione motoria, introduce brevemente le procedure utilizzate durante il

lavoro e dà un’idea degli obiettivi dello studio.

Il capitolo 2 offre una panoramica completa della teoria alla base della

struttura del Dynamic Causal Modeling (DCM).

Il capitolo 3 presenta materiali e metodi utilizzati in questo lavoro.

Nel capitolo 4 sono presentati e discussi i risultati.

Il capitolo 5 riporta conclusioni sui risultati ottenuti, limiti dello studio e

direzioni di ricerca future.



Summary

Introduction

Objective of the work and State of the art - This thesis is focused

on the longitudinal study of post-stroke patients, to investigate the mechan-

ism of brain plasticity underlying motor control reorganisation in subjects

attending a motor rehabilitation treatment, supported by functional elec-

trical stimulation (FES). Moreover, one of the major objectives of this work

is to obtain more information about the determinant factors leading to the

achievement of stable improvements (i.e. the ”carry-over” effect) after FES-

based motor rehabilitation.

FES of upper and lower limb muscles has been receiving increasing attention

as it has been demonstrated that FES-based therapy combined with con-

ventional therapy treatment more effectively improves the walking ability

and enhances the motor recovery when compared with conventional therapy

alone, in stroke survivors [1].

FES and Carryover - As for lower limbs, FES is primarily used for

the orthotic correction of foot drop, a common issue following a stroke. A

proportion of patients relearn the ability to voluntarily dorsiflex the ankle

without the device [2]. The underlying functioning mechanism of this phe-

nomenon, referred to as the ”carryover effect”, has not yet been fully under-

stood and, in fact, the carryover effect has been observed only in subgroups

of neurological patients and the characteristics of those with and without

FES carryover are not clear. It is thought that this interaction between vo-

litional effort and the electrical stimulation results in a neuroplastic effect,

inducing long-lasting formation of new functional connections and, there-

fore, promoting motor re-learning [3] [4] [5] [6]. This mechanism follows

the principles of Hebbian theory, which claims that an increase in synaptic

efficacy arises from a presynaptic cell’s repeated and persistent stimulation

of a postsynaptic cell [7]. Indeed, the combination of volitional effort (effer-

ent signal) and the sensory perception of a properly completed movement
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(afferent signal) seems to facilitate Hebbian-like plasticity.

Studies suggest that the ability of a patient to plan the movement and to

perceive the stimulation as a part of his/her own control loop is important

for the FES carryover effect to take place [8].

Active Inference account - In this study we embraced as work hypo-

thesis the recent theory suggesting that the updating of the internal models

of the brain follows Bayesian principles, combining a priori probability dis-

tributions and known levels of uncertainty of sensory feedback with sensorial

consequences [9]. Moreover, the interpretative direction of the thesis pointed

toward the Active Inference account of motor control, which envisages that

the motor cortex sends descending predictions of the sensory consequences

of movement rather than the driving kinematics commands specified by op-

timal motor control. The possibility to study functional brain correlates

and connectivity changes associated with the use of FES represent a useful

experimental condition to discriminate between the two alternative theories

of optimal motor control and Active Inference, based on which we would

expect the motor control output to be differently influenced by the presence

of FES (altered proprioception), i.e. unaltered kinematics commands in the

case of optimal motor control, or updated propriocptive prediciton in case

of Active Inference account.

Methods

Participants - Participants recruited for this study consisted of 16 healthy

subjects and 8 post-stroke patients. Patients were subjected to a binary clas-

sification, based on the outcome of the treatment, depending whether or not

the subject has achieved long lasting improvements (i.e. carry-over effect)

in motor recovery after the rehabilitation [10].

In this work the attention has been focused on subjects exhibiting foot drop,

or what is occasionally referred to as drop foot, caused by deficiency of con-

trol of the anterior muscles of the lower leg and preventing affected subjects

from being able to fully lift their leg or foot while taking a step. One of the

aim of these therapies is therefore the use of FES properly synchronised with

the swing phase of gait in order to produce a full and functional dorsiflexion,

as well as an altered proprioception stimulus. This procedure aims at stim-

ulating the neuroplastic processes of motor control loop reorganization at

cortical level. The execution of a voluntary movement, in fact, requires the

brain to integrate both the volitional intention to execute the movement and

the knowledge about the state of the body (i.e. integrate sensory feedback).



Dataset and experimental protocol - In the experimental setup, FES

is used to provide externally driven proprioceptive information during move-

ment execution - in other words, to experimentally alter reafference (i.e.

the sensory input that results from the agent’s movement). The experi-

mental protocol was defined so that only proprioception in different con-

ditions was altered, while maintaining constant movement kinematics to

reveal which areas and which connections are sensible to proprioception al-

teration. The original experimental protocol [6][8], performed using FES

assisted ankle dorsiflexion (right leg for healthy subjects, paretic leg for pa-

tients) paced with auditory cues, consisted in a 2× 2 factorial design, which

experimental factors included volitional intention to perform the movement

(V) and FES (F), each of which had 2 levels, i.e. ”voluntary”/”passive” and

”present”/”absent”, respectively. These translated into 4 conditions: will

of movement with concurrent FES (FV), passive movement with concur-

rent FES (FP), will of movement without FES (V) and passive movement

without FES (P).

Functional Magnetic Resonance Imaging (fMRI) data were acquired during

these training sessions in which both volitional movement and propriocep-

tion were experimentally manipulated and, by doing so, the effects on the

interactions between cortical motor and sensory areas were examined, in

both healthy subjects and post-stroke patients groups. Data used in this

work consisted in 16 healthy brain volumes and 16 brain volumes coming

from 8 post-stroke patients. In fact, for each patient 2 sessions of fMRI were

available, acquired one before (PRE) and one after (POST) the rehabilita-

tion.

DCM - The work in this thesis is based on the Dynamic Causal Modelling

(DCM) framework, implemented within the SPM software in Matlab, as a

tool to assess effective connectivity among brain cortical regions. Besides

making inferences about the coupling between distinct brain regions, the

purpose of DCM is to examine how this coupling is dependent upon the

experimental context. DCM is used to infer hidden neuronal states from the

indirect measure of brain activity (i.e. the BOLD signal) within a Bayesian

framework [11]. Different types of DCM have been developed, but in this

study a deterministic single-state bilinear model has been employed. DCM

is an approach to the identification of nonlinear input-state-output systems;

the requirement of an input, and the need to specify the brain regions that

the system is composed of, mean that DCM is traditionally used to test a

specific hypothesis that motivated a particular experimental design.

By using a bilinear approximation to the dynamics of interactions among



states
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the parameters of the implicit causal model reduce to three sets: parameters

that mediate the influence of extrinsic inputs on the states (matrix C),

parameters that mediate intrinsic coupling among the states (matrix A),

and parameters that allow the inputs to modulate that coupling (matrix B).

Identification proceeds in a Bayesian framework given known inputs and the

observed responses of the system.

In the Bayesian identification scheme, parameters posterior distributions are

estimated through an optimisation algorithm, using observed data and prior

distributions, under Gaussian assumptions.

Inputs - In order to extract BOLD response time-series related to ex-

perimental inputs conveniently suited for our model, we reformulated the

general linear model to specify the driving and modulatory inputs; these are

a stimulus function representing the effect of descending voluntary signals, V

(combining onsets from V and FV conditions); a second input encoding the

contribution of ascending functional electrical stimulation to proprioceptive

input, E (combining onsets from FV and FP conditions), and a third input

representing underlying proprioceptive input from all movements, P (com-

bining onsets from all conditions). To summarise, the regional activity of

each subject, an F-contrast was performed across all covariates of the new

design matrix for each subject, obtaining a contrast image of brain activation

for all three experimental inputs.

ROIs selection - Concerning the nodes of the model, regions of interest

(ROIs) were chosen based on the objectives of the study and prior knowledge

about their role in motor control [6][8][12][13][14][15] [16][17] [18]. The res-

ulting regions of interest, from which BOLD time-series were extracted, were

the contralateral primary and supplementary motor areas (M1 and SMA),

the contralateral primary somato-sensory area (S1) and the contralateral

angular gyrus (AG). Subject-specific volumes of interest, associated to the

regions mentioned above, were selected using 4mm radius spheres, centred

in the coordinates of maximum activation detected within the masked activ-

ation maps. Masking the contrast image means taking into consideration a

limited number of voxels contained in a specific volumetric space, defined by

the corresponding labeled mask of the anatomical/functional brain region.



Labeled masks for each ROI were taken from the SPM atlas of maximum

probability tissue labels.

Hierarchical Model and Regressors - In the context of our group

study, as to test whether effective connectivity is different between sub-

groups of patients, we decided to exploit the Parametric Empirical Bayes

(PEB) scheme, constructing a hierarchical model over the parameters, as

described in recent studies [19][20]. In addition to the bilinear model at

the first level, which describes the neural states temporal evolution, this

approach introduces a second level that models each parameter at the first

level (i.e. coupling parameters between cortical regions) as a random vari-

able oscillating around a group mean. Second level model is represented

by a general linear model (GLM), including a linear combination of one or

more regressors (or covariates) and an additive Gaussian noise. Regressors

are compacted in the so called design matrix (X):

θi = Xβ + ε

where β = {β1, . . . , βn} is the set of second level parameters that express

the contribution of each regressor (or group effect) included in the design

matrix, and ε ∼ N (0, σ).

In healthy subjects analysis, we used a single regressor representing the

group mean, as no group effects were assumed within the healthy group.

In the subsequent analysis on patients, we were interested in observing dif-

ferences in effective connectivity among subgroups, derived from the 2 × 2

factorial design given by the combination of carry-over classification factor,

with levels ”CE” (present) and ”nCE” (absent), and time factor, with levels

”PRE” (first session) and ”POST” (second session). This way, 4 subgroups

were identified: CE-PRE, CE-POST, nCE-PRE, nCE-POST.

In order to better highlight possible connectivity differences among these

subgroups, we defined in the design matrix a carry-over regressor, encoding

the class membership, and a time regressor, encoding the session time point.

A regressor modelling the overall group mean was also included in the design

matrix.

Model structure identification procedure - Before identifying the

model structure some simplifications have been imposed based on intrinsic

connectivity and inputs, to reduce the model space. These constraints are

based on assumptions derived from prior knowledge and literature informa-

tion about structural and functional connectivity.

Then, we have chosen to adopt a hierarchical approach, by first defining a



model space of varying inputs (matrix C), then using the winning model to

define a new model space of varying intrinsic connectivity (matrix A) and

finally using the model thus obtained to define a further model space of

varying modulatory effects (matrix B).

This was applied to healthy subjects group at first. In the subsequent ana-

lysis on patients group, C matrix was assumed to have the same structure

as that obtained for healthy subjects; A matrix was investigated starting

from a reduced matrix having the same structure as that resulting from

healthy group. No constraints were imposed on the B matrix, and all pos-

sible combinations were tested. This approach allowed us to make inference

on network structure, by exploring the wide model space in an efficient way.

Results

Results concerning healthy subjects are reported in Figure 4 and Figure

5.

Figure 4: Model connectivity structure. Overall representation of final resulting model

for healthy subjects; blue values are relative to intrinsic connections in matrix A, red

values are relative to modulatory effects of input E (FES) in matrix B, green values

indicate driving inputs (V, E, P) contribution in matrix C.



Figure 5: Matrix representation. Estimated posterior means µ and their significance

level Pp, expressed for each first level matrix (from left to right: C - driving inputs; A

- intrinsic connectivity; B - modulatory effects of input E).

Inference about parameters highlighted a profound interaction between arti-

ficially altered sensory feedback and volitional movement in healthy subjects

(M1 −→ S1 and SMA −→ S1 in Figure 4). This interaction is reflected

by modulatory effects of input E over connections from M1 and SMA to-

ward S1 (matrix B(2,1) and B(2,3) in Figure 5) and supports the Active

Inference account for motor control, as this modulation suggests an update

of the proprioceptive prediction due to the applied electrical stimulation.

Indeed, in the optimal control account, given the same expected kinematic

output in all conditions, driving kinematics commands would not need to

be modulated by the presence of altered proprioception.

As can be seen in Figure 6, patients connectivity values are in contrast with

healthy ones, and thus they underlined a malfunctioning of this interaction

(M1 −→ S1, SMA −→ S1), which could indicate a defective propagation

of proprioceptive prediction sent by motor areas.

In Figure 6 model structure and estimated posterior means for patients

are reported. Note that, each first level parameter (i.e. connections) is ex-

pressed, at the second level, as the linear combination of 4 components, each

associated with one of four regressors included in the design matrix, each

of which expresses a group effect: group mean, carryover effect achievement

(CE/nCE), time (PRE/POST). That means, values reported in Figure 6,

for each connection, have been obtained as θi = βmean ± βcarryover ± βtime.
In Figure 7, second level estimated mean values (µ) are reported for each

parameter, along with the their significance level (Pp), in matrix represent-

ation; colour levels indicate the magnitude of the value.
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Figure 6: 2×2 factorial representation of patients model structure, along with estimated

parameter posterior means. Values are obtined as θi = βmean ± βcarryover ± βtime.

Blue values are relative to intrinsic connections in matrix A, red values are relative to

modulatory effects of input E (FES) in matrix B, green values indicate driving inputs

(V, E, P) contribution in matrix C. Values are reported for each subgroup, localised as

follows: in the upper left panel is the CE-PRE subgroup; in the upper right panel is

the nCE-PRE subgroup; in the lower left panel is the CE-POST subgroup; in the lower

right panel is the nCE-POST subgroup.



The hierarchical nature of motor processing has also been highlighted, mostly

by the role of SMA. This region, in fact, seems to act as higher order mo-

tor processing unit, intervening whenever the desired motor task involves

more complex movements. In this context, we suggest that ankle dorsiflex-

ion, that seems to be a fairly simple movement for a healthy subject, may

be quite a challenging task for impaired subjects, requiring an increased

contribution of SMA. Moreover, SMA showed a suppressive activity over

primary motor area M1, in agreement with what is reported in literature

[14][21][22], repressing standard motor programs in M1 whenever external

condition change. About this connection (SMA −→M1), we observed dif-

ferences in both carry-over and time conditions (matrix B(1,3) in Figure 7b

- carryover and time panels), indicating that it is subjected to changes

due to neuroplastic processes and, furthermore, that this interaction could

represent a fundamental and characterising aspect for the onset of carry-over

effect. This latter result shows that the suppressive activity of SMA over

M1, mechanism that is proper to a healthy motor control circuit, is pre-

served in patients exhibiting the carry-over effect but not in those without

the carry-over effect.

Another interesting result, which could represent a potential carry-over

marker, is related to the proprioceptive driving input (P). As shown in

Figure 7c - element C(2,3) in carry-over panel, the carry-over re-

lated component of input P entering in S1 has an estimated value of 0.44,

meaning that patients belonging to the nCE group have shown to be less

able to internalise the sensory afferent signal and exploit the proprioceptive

information to integrate it into the motor control loop. This represents a

potential starting point for future studies on key factors that determine the

occurrence of the carry-over effect.



(a) A matrix components

(b) B matrix components

(c) C matrix components

Figure 7: Second level estimates (µ) and their significance level (Pp), subdivided for

each of the first level matrices (A, B, C), relative to 3 regressors. From left to right

panels represent: group mean (βmean); carryover effect (βcarryover); time (βtime).

Colour levels express the magnitude of the value, i.e., red tones are for positive values,

blue tones are for negative values



Conclusions

To conclude, we presented a customised hierarchical approach for the identi-

fication of network structure. We then analysed and reported results about

inference on model parameters, for our longitudinal group study. These res-

ults support the alternative theory of Active Inference account for motor

control, provide some insight into the mechanisms of sensory attenuation

and may speak to potential mechanisms of action of FES in promoting mo-

tor learning in neurorehabilitation.

Structure of the Thesis

The thesis is structured as follows.

Chapter 1 introduces the problem of post-stroke impairment, outlines a

quick review of literature about the state of the art in the field of motor

rehabilitation, briefly introduces the procedures used during the work and

outlines the objectives of the study.

Chapter 2 gives a comprehensive overview of the theory behind Dynamic

Causal Modelling (DCM) framework.

Chapter 3 presents materials and methods used in this work.

In Chapter 4 results are presented and discussed.

Chapter 5 reports conclusions about obtained results, limitations of the

study and future research directions.





Chapter 1

Introduction

Stroke is one of the leading causes of long-term disability in adults worldwide

[23]. In fact, as most patients survive the initial injury, the biggest effect on

patients and families is usually through long-term impairment, limitation of

activities and reduced participation. The most common clinical deficit and

widely recognised impairment caused by stroke is motor impairment, which

can be caused by ischaemic or haemorrhagic injury to the motor cortex,

pre-motor cortex, motor tracts, or associated pathways in the cerebrum

or cerebellum, and can be regarded as a loss or limitation of function in

muscle control or movement or a limitation in mobility [24]. After-stroke

motor impairment may include hemiparesis, incoordination and spasticity

and typically affects the control of movement of the face, arm, and leg of

one side of the body [25], contralateral to the stroke lesion side. Therefore,

much of the focus of stroke rehabilitation, and in particular the work of

physiotherapists and occupational therapists, is aimed to the recovery of

impaired movement and the associated functions, throughout the recovery

of self-performed daily life activities.

Stroke patients show varying degrees and types of neurological deficits,

that depend on size and location of the brain lesion [26], and whose recov-

ery strongly depends upon the type of rehabilitation program chosen and

perforomed and the degree of commitment of the patients and family mem-

bers. Most of them recover at least some of their lost motor functions over

time, though the degree of this recovery is highly variable, depending on the

severity of the damage and the type and intensity of rehabilitation therapy.

There is evidence that increasing the intensity and repetition of post-stroke

therapy can enhance motor recovery [27]. Brain mapping studies in patients

have revealed that the brain reorganizes after stroke in relation to recovery

of motor function. In recent years, convincing evidence has been produced



in neuroscience that have led to the knowledge that the brain can change or

reorganize itself in response to sensory input, experience and learning [28].

This ability of the brain and other parts of the central nervous system to

reorganize itself is referred to as Neuroplasticity [29] and exclusively of cor-

tex as Cortical plasticity [30]. Neuroplasticity occurs in both a healthy and

injured brain [31]: it is the basic mechanism of learning processes, in which

the nervous system change its structure and its function over a lifetime, in

reaction to environmental diversity, experience and repetition, triggering the

dynamic destruction and reformation of new synaptic connections between

neurons. Basically, brain plasticity is the ability for the brain to recover

and restructure itself. This adaptive potential of the nervous system also

allows the brain to recover after disorders or injuries. Therefore, clinical

improvements of motor function after stroke are accompanied by profound

functional reorganization within motor areas of both hemispheres. It is be-

lieved that appropriately boosting these neuroplastic processes may restore

function via recruitment of spared areas and pathways.

Traditional neurorehabilitation approaches for post stroke patients are

oriented towards motor and functional recovery [32]; motor recovery refers

to the ability of the patient to execute movements under voluntary con-

trol achieving eventually the same performances as before the stroke [33],

while functional recovery refers to the improvement of the individual’s abil-

ity to autonomously perform activities such as self-care and mobility [34].

Post stroke recovery also occurs at brain level, referred to as neurological

recovery, which is generally associated with the structural and functional re-

organization of brain. Both motor and functional recoveries are conditioned

by neurological recovery. Accordingly, neural reorganization after stroke is

thought to be an important mechanism to facilitate motor recovery.

Various novel stroke rehabilitative methods for motor recovery have been

developed based on basic science and clinical studies characterizing brain

remodeling due to neural plasticity [35] [36]. In addition to the more clas-

sic rehabilitation techniques, other methods include Selective Serotonin Re-

uptake Inhibitor Medications (SSRI), Constraint-Induced Movement Ther-

apy (CIMT), Noninvasive Brain Stimulation such as Trans-cranial Magnetic

Stimulation (TMS), Mirror Therapy, Robot-assisted Therapy [37] [38].

One commonly adopted therapy in the rehabilitation of stroke is Func-

tional Electrical Stimulation (FES) [39]. FES of upper and lower limb

muscles has been receiving increasing attention as a therapeutic modality

in post-stroke rehabilitation. A meta-analysis of controlled studies suppor-

ted the conclusion that FES promotes the recovery of muscle strength after

stroke, with a reasonable likelihood of clinically significant results [1].
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In this work the attention has been focused on subjects exhibiting foot

drop, or what is occasionally referred to as drop foot, a common issue follow-

ing a stroke or other neurological injury. Foot drop is caused by interruptions

in the common fibular and sciatic nerves and aggravated by the paralysis of

the anterior (front) muscles of the lower leg. Those experiencing foot drop

are often unable to fully lift their leg or foot while taking a step forward.

Due to this weakness, the knee compensates, bending more deeply and lift-

ing the leg higher off the ground to avoid dragging or ”dropping”. This

compensation creates what is referred to as a steppage gait, that can then

cause exaggerated flexion at the hip and knee. While this prevents the foot

from dropping, it also creates an awkward ground reaction vector on the

joints and subsequent slap of the foot as the pressure of impact is diffused

by the body. There could be a problem of maladaptive plasticity as well,

i.e. the motor re-learning mechanism produce a neural reorganization com-

pensating for this emi-paresis, but leading to lasting defective movements.

Men and women with foot drop complications are often unable to perform

complete dorsiflexion (the flexing of the foot toward the body).

It has been demonstarted that FES therapy combined with conventional

therapy treatment more effectively improves the walking ability and en-

hances the motor recovery when compared with conventional therapy alone

in stroke survivors [40]. Externally induced dorsiflexion using FES was first

introduced by Liberson et al. in 1961 as an alternative treatment for foot-

drop [2]. The application of the peroneal nerve stimulation (PNS) has both

a positive therapeutic and a positive orthotic effect in improving speed and

reduced effort while walking [41] [42].

In the experimental setup, functional electrical stimulation (FES) is used

to provide externally driven proprioceptive information during movement

execution – in other words, to experimentally alter reafference (i.e. the

sensory input that results from the agent’s movement). FES delivered to

a nerve tract containing both efferent motor and afferent sensory fibers,

will synchronously depolarize motor and sensory axons that are bundled to-

gether, eliciting muscle contraction through two pathways. The first (direct

descending pathway) conveys signals along the efferent motor fibers that gen-

erate muscle contraction by direct motoneuron depolarization. The second

(indirect ascending pathway) communicates signals via the afferent sens-

ory fibers [43] that code proprioceptive signals from muscle spindles, Golgi

tendon organs and cutaneous receptors [44], but in particular Ia fibers re-

sponsible for muscle spindle information [45]. This second pathway produces

muscle contractions through a central mechanism, providing excitatory syn-

aptic input to spinal neurons that recruit motor units in the natural or-
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der [46]. Therefore, the proprioceptive signal elicited by the sensory fiber

stimulation creates the impression that the muscle is extended (i.e. muscle

spindles discharge), and leads to firing of the motor neurons in order to

produce a contraction. During FES, it has been demonstrated that this

information can be useful at the level of the spinal cord, inducing a re-

inforcement of the muscle contraction through the myotatic reflex circuit,

however few notions about altered proprioceptive information sent up to the

cortex are available in the literature.

FES is primarily used for the orthotic correction of foot drop, but a

proportion of patients relearn the ability to voluntarily dorsiflex the ankle

without the device [2]. This phenomenon, referred to as the ”carryover ef-

fect”, has been observed in a number of subsequent studies [47] [48]. The

functioning mechanism of this effect has not yet been fully understood, al-

though it has been hypothesised that an interaction between volitional effort

and the electrical stimulation of FES results in a neuroplastic effect on the

central nervous system [3] [4] [5] [6].

Indeed a recent study [8] suggests that the mechanism through which

FES carryover take place is based on movement prediction together with

sense of body ownership. In other words, the ability of a patient to plan

the movement and to perceive the stimulation as a part of his/her own con-

trol loop is important for the FES carryover effect to take place. However,

the carryover effect has been observed only in subgroups of neurological

patients and the characteristics of those with and without FES carryover

are not clear. In patients showing FES carryover, the execution of the

movement with concurrent volitional intention and FES allow them to cor-

rectly plan the movement and to perceive it as self-generated. By doing so,

the motor control loop correctly updates itself [49], showing a long-lasting

formation/strengthening of new functional connections, following Hebbian

principles.

Hebbian theory claims that an increase in synaptic efficacy arises from

a presynaptic cell’s repeated and persistent stimulation of a postsynaptic

cell. It is an attempt to explain synaptic plasticity, the adaptation of brain

neurons during the learning process [7]. Indeed, the combination of voli-

tional effort and the sensorial perception of a properly completed movement

provides somatosensory feedback that facilitates Hebbian-like plasticity [50].

The aim of these therapies is therefore the use FES as stimulus of alterated

proprioception, during task-oriented rehabilitation procedures, in order to

stimulate neuroplastic processes for motor control loop reorganization at

cortical level.

The execution of a voluntary movement in fact requires the brain to
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integrate both the volitional intention to execute the movement and the

knowledge about the state of the body (i.e. integrate sensory feedback).

In humans, changing proprioceptive input influences motor cortex excitab-

ility [51] [52]. Conversely, the response of somatosensory cortex neurons to

proprioception is modified by the nature of the motor task [53]. Currently,

motor control theory proposes that internal models generate motor com-

mands that are sent to the periphery to produce the desired movement. In

this account, internal models combine sensory inputs, prior knowledge and

volitional intention to produce motor commands [54]. Forward models are

thought to be responsible for predicting the sensory consequences of action,

given the motor commands [55] [56]. It has been recently suggested that the

updating of the internal model follows Bayesian principles [54], combining

a priori probability distributions and known levels of uncertainty of sensory

feedback with sensorial consequences [57].

However, an alternative account of motor control has been proposed,

drawing on the hierarchical generative models used in perceptual and active

inference [58]. In this account, motor cortex sends descending predictions of

the sensory consequences of movement rather than the driving commands

specified by optimal motor control. Here, proprioceptive prediction errors

are generated at the level of the spinal cord and result in activation of motor

neurons through classical reflex arcs. Although there are commonalities

between the two accounts, the key difference is that under optimal control,

given a same task and a same state of the system, motor signals are context

independent commands, whereas under active inference they are context-

dependent predictions [59].

In order to disambiguate between these two theoretical accounts of mo-

tor control, a recent work, performed at Nearlab with the collaboration of

Villa Beretta Rehabilitation Center and the Institute of Neurology (UCL,

London) [6], investigated the effect of altered signals from the primary mo-

tor cortex, by experimentally manipulating both volitional movement and

proprioception (i.e. context) and examining the effects on the interactions

between cortical motor and sensory areas. It has been defined an experi-

mental protocol that only alters proprioception in different conditions while

maintaining constant movement kinematics to reveal which areas and which

connections are sensible to proprioception alteration. This study has high-

lighted that M1 and S1 exhibit a profound interaction between artificially

altered sensory feedback and volitional movement. Changes in coupling

between these regions support an active inference account of motor control,

in which sensorimotor integration rests upon the context-sensitive assimila-

tion of descending motor predictions.
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In the context of the same aforementioned study, using the same exper-

imental protocol and considering further cortical regions in addition to M1

and S1, the purpose of this thesis was therefore to investigate the overall

functioning mechanisms of the motor control loop within the brain of healthy

subjects and, conversely, of neurological patients, in order to corroborate the

alternative theory of the active inference account of motor control with par-

ticular attention to the investigation of the carryover effect. Specifically,

through the analysis of time series extracted from functional magnetic res-

onance images (fMRI) taken during FES therapy sessions, has been tried to

assess how and where altered proprioception information interact with the

intentional movement, how cortical brain regions interact and influence each

other and how this coupling/effective connectivity is influenced by altered

proprioception.

Brain connectivity is a concept that can be defined at different spatial

scales, but procedures and models used in this study deals with the macro

scale aspects that are studied in neuroimaging, as opposed to micro scale

connections between individual neurons. Connectivity, when discussing the

whole brain, can refer to three different concepts regarding brain organisa-

tion and function, that are anatomical, functional, and effective connectivity.

Structural connectivity refers to networks in the brain, formed by physical

connections between neurons, neural populations or anatomically segreg-

ated brain regions. The physical connections can be formed by synapses

between neurons, or white matter fibre pathways between neural popula-

tions. Physical pathways are relatively stable over short time periods, but

due to neural plasticity significant morphological changes can occur over

longer time periods. In the field of neuroimaging, functional connectivity is

defined as temporal correlations between neurological events and it is an ob-

servable phenomenon, i.e. correlations in BOLD (Blood Oxygantion Level

Dependent) signal between spatially separated brain regions, and so meas-

uring it does not require a model.

Effective connectivity, instead, is related to causality and directionality, and

it attempts to explain these correlations by way of some model explain-

ing how they arise. The parameters of such a model are said to be the

effective connections. Therefore, effective connectivity methods, that at-

tempt to make inferences about causation and directed influences between

regions, usually require a model that attempts to describe the causal influ-

ence between regions exhibiting some degree of functional interaction.

Crucially this work was aimed to better understand the underlying mech-

anism and key features of the carryover effect, by evaluating differences

between groups of patients showing or not a FES carryover. The pres-
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ence/absence of a long-term recovery of motor functions (i.e. carryover

effect), in patients following the rehabilitation program, was determined us-

ing a quantitative comprehensive method proposed in [10] that evaluates

functional improvement on a single-subject yes/no base combining multiple

measures (e.g., kinematic, muscular) in order to assess a stable functional

improvement and it is validated against clinical evaluation.

In this context the Dynamic Causal Modelling (DCM) methods have

been used to model interactions among neuronal populations at cortical level

and to infer directed connectivity among brain regions and the modulatory

effect of externally driven electrical input over these couplings. DCM is a

technique for the characterization of effective connectivity within networks

of distributed neuronal responses [60] [61], as measured with fMRI [11] or

electromagnetic responses as detectd by EEG or MEG [62]. This technique is

based on the Bayesian inference framework which integrate prior knowledge

and observations to estimate parameters of the posterior distributions.

DCM is an approach aimed at the identification of nonlinear input-state-

output systems. By using a bilinear approximation to the dynamics of in-

teractions among states, the parameters of the implicit causal model reduce

to three sets. These comprise (i) parameters that mediate the influence of

extrinsic inputs on the states, (ii) parameters that mediate intrinsic coupling

among the states, and (iii) parameters that allow the inputs to modulate

that coupling. Identification proceeds in a Bayesian framework given known

deterministic inputs and the observed responses of the system. In the con-

text of the analysis of effective connectivity using experimentally designed

inputs and fMRI responses, the coupling parameters correspond to effective

connectivity and the bilinear parameters reflect the changes in connectivity

induced by inputs (in this case FES).

A number of previous studies used the framework of Dynamic Causal Mod-

eling to model effective connectivity between brain areas involved in the

motor control mechanism [6] [63] [64] [65] [14]. Similarly, in this work func-

tional magnetic resonance images have been used, of subjects undergoing

experimentally designed task-oriented activities. Following the Statistical

Parametric Mapping (SPM) paradigm, after undergoing a pre-processing

step and a statistical analysis, the Blood-Oxygen-Level-Dependent (BOLD)

images resulted in activation maps relative to defined inputs, from which the

time series of activation of neuronal clusters have been extracted to char-

acterize the desired Regions Of Interest (ROI) and used in the subsequent

modeling stage.

From the analysis of estimated parameters of DCM models we would be

able to discriminate the behaviour of patients showing or not the carryover
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effect and to highlight any changes in effective connectivity throughout the

rehabilitation program. In other words the scientific question to which we

tried to answer is: how does the motor control loop update itself in a success-

ful motor recovery and what goes wrong when the rehabilitation treatment

does not show significant motor improvements ?

The thesis is structured as follows.

In Chapter 2 a brief background about stroke symptoms and causes is given,

along with a discussion about the principles behind neural motor control and

the rehabilitation after stroke.

Chapter 3 provides the theoretical background to functional magnetic res-

onance imaging based on the underlying principles of nuclear magnetic res-

onance, the localised change in blood flow that accompanies neural activity,

and the corresponding signal that is measured; then data processing and

the statistical analysis procedures for the creation of activation maps are

described.

Chapter 4 gives a comprehensive overview of the theory behind Dynamic

Causal Modelling (DCM) framework.

Chapter 5 presents materials and methods used in this work.

In Chapter 6 results are presented and discussed.

Chapter 7 outlines conclusions about obtained results, limitations of the

study and future research directions.
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Chapter 2

Dynamic Causal Modeling

2.1 Introduction – DCM for fMRI

Dynamic Causal Modelling (DCM) was first introduced for fMRI data by

Friston and colleagues in 2003 [11], and integrated into the open-source

Statistical Parametric Mapping (SPM) software running in Matlab. DCM

was introduced as a way of inferring effective connectivity and it is fun-

damentally different from previously employed methods in that it was in-

Figure 2.1: A schematic representation summarising the meaning of parameters in the

bilinear equation and the forward mapping of neural states into BOLD response



vented specifically for analysing functional brain imaging data. DCM uses

an input-state-output model, a concept defined well before the advent of

neuroimaging, that however, in this case has been adpated to this particular

purpose. DCM is used for electroencephalography (EEG) and magnetoen-

cephalography (MEG) as well as fMRI, but this thesis focuses on the use

of DCM for fMRI. The purpose of DCM is to make inferences about the

coupling between distinct brain regions, and to examine how this coupling

is dependent upon the experimental context. This means it requires a biolo-

gically plausible model of measured brain responses, which is both dynamic

and non-linear in nature. DCM is used to infer hidden neuronal states

from measured brain activity, in this case from the BOLD signal, within a

Bayesian framework. A schematic representation of the overall principles of

DCM is showen in Figure 2.1.

Numerous types of DCM have been developed, but all of them are based on

the following characteristics [66, 67]:

• The idea of DCM is to construct realistic model of interacting cortical

regions, with a system of differential equations.

• This neural model is then supplemented with a forward model of how

the synaptic activity within these cortical regions translates to the

measured response (BOLD in the case of fMRI).

• Inversion of the model based on Bayesian statistics, allows the para-

meters of the neuronal model of interacting cortical regions to be es-

timated from the data to give a measure of the effective connectivity.

Traditional DCM treats the brain as a deterministic dynamical system of

interacting brain regions which can have several inputs, and treats an ex-

periment as a designed perturbation of the system’s dynamics. The inputs

to the system are the usual stimulus functions that reflect the experimental

design which are used in basic general linear model (GLM) methods. In

this original format, bilinear differential equations are used to model the

system, with the bilinear term representing context dependent modulation

of effective connectivity. Since then DCM has been extended to allow for

neuro-physiological phenomena that are considered important. Three major

extensions to DCM are listed:

• Non-linear DCM [68] attempts to model how connectivity between two

regions may be dependent on connectivity in another region, a process

that is caused by synaptic interactions and that has been established

though invasive electrophysiological experiments.
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• Two-state model DCM [69] allows regions to have more than one state,

i.e. modelling within region connectivity between excitatory and in-

hibitory neuronal populations.

• Stochastic DCM (sDCM) [70, 71], which allows stochastic inputs or

error terms, and thus can be applied to data in the absence of experi-

mental manipulation such as resting-state data.

Because in this work a deterministic bilinear single-state DCM has been

used, the different types of DCM mentioned above will not be further dis-

cussed, and all references to DCM should be assumed to refer to this. Bi-

linear DCM requires direct inputs as it treats the brain as a dynamical

system of coupled neuronal regions, in which the experiment is a designed

perturbation of this system. In this respect, it is different from established

methods of connectivity such as SEM and other multivariate autoregressive

processes, in which there is no designed perturbation, where the inputs are

treated as stochastic and unknown. The requirement of an input, and the

need to specify the brain regions that the system is composed of, mean that

DCM is traditionally used to test a specific hypothesis that motivated a

particular experimental design, and therefore is not used as an exploratory

technique as are other analyses of effective connectivity. The experimental

inputs to a DCM and how they enter the model are an important aspect of

the technique and form the basis of its ability to infer direct causal interac-

tions between regions, i.e. effective connectivity. Since its inception, DCM

has been widely adopted by the fMRI neuroimaging community and has

been used to probe a variety of cognitive and neurophysiological questions

[67].

2.2 Neuronal state equations

Neuronal state equations are the basis of all variants of DCM, and are known

as ”generative models”, in that they provide a model of interaction of neur-

onal regions, from which the observed data were generated [60].

The original variant of DCM is based on a bilinear model of neural activity

and it is the one used exclusively in this thesis. Given any number of brain

regions with neuronal states z = [z1, . . . , zN ], an arbitrary model can be cre-

ated, with inputs u and parameters θ, of the effective connectivity between

these regions:

ż = f(z, u, θ) (2.1)

A simple truncated Taylor expansion around the system’s resting state (z0 =

0, u0 = 0) provides an approximation to the function that is the bilinear
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Figure 2.2: A schematic showing a system of connected brain regions, having one input

that influence the system directly (u1) and one that modulates connections between

regions (u2).

state equation

f(z, u) ≈ f(z0, u0) +
∂f

∂z
z +

∂f

∂u
u+

∂2f

∂z∂u
zu =⇒

ż = (A+
∑

ujB
j)z + Cu, (2.2)

where

A =
∂f

∂z
=
∂ż

∂z

Bj =
∂2f

∂z∂uj
=

∂

∂uj

∂ż

∂z

C =
∂f

∂u
=
∂ż

∂u

This gives a system of differential equations that describes how activity in

any region can be driven by activity in any other region (matrix A), directly

by external inputs u (matrix C), and by activity in other regions that is

context dependent (matrix B) on the jth input. A response is defined as the

change in activity over time, and so the units of connections are per unit
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time (Hz), and thus a strong connection is one that exerts its effect over a

small time. Figure 2.2 provides a representation of some arbitrary model

of interacting regions z, with inputs u. To understand the model in terms

of the bilinear state equations, it can be written as a system of differential

equations.

Relatively to the example system represented in Figure 2.2, the equations

are:

ż1 = a11z1 + a12z2 + a13z3

ż2 = a22z2 + c12u1

ż3 = a33z3 + a31z1 + (a34 + b34u2)z4

ż4 = a44z4 + a12z2 + a13z3

These equations can be represented in the matrix form as
ż1

ż2

ż3

ż4

 =



a11 a12 a13 0

0 a22 0 0

a31 0 a33 a34

a41 0 0 a44

+ u2


0 0 0 0

0 0 0 0

0 0 0 0

0 0 b34 0




z1

z2

z3

z4

+


0 0

c12 0

0 0

0 0

u1

This form has the advantage of allowing to see how the parameters are ar-

ranged into matrices.

Matrix A represents the intrinsic connectivity which contains forwards, back-

wards and self-connections between regions. Matrix B embodies changes in

connectivity that are context dependent with regards to the experimental

design. Matrix C represents the connectivity induced by the experimental

stimulus.

2.3 Hemodynamic model

The models of neuronal states form the basis of DCM. The aim is then

to estimate its parameters, in order to make inferences about the effective

connectivity. However, in order to make inferences about hidden neuronal

states, a phenomenologically accurate forward model is needed, that can

translate synaptic activity into the BOLD signal that is measured in fMRI,

as schematised in Figure 2.1. This is done in DCM using a hemodynamic

model that is an extended version [72] of the ”Balloon model” [73].

Neural activity in each region is the cause of the BOLD response measured

in that region with fMRI. The BOLD response is specific to fMRI and so,

in other modalities (e.g. EEG, MEG) the forward model is a different one,
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reflecting how the data are generated. Because this work is based on fMRI

data, the focus will be on the forward model based on hemodynamic re-

sponse, shown in Figure 2.3.

Regional changes in synaptic activity are known to cause changes in local

blood volume and dHb (deoxyhemoglobin) concentration. This means that,

for each region, besides the primary state variable z, that corresponds to

the regional neural activity, there are four secondary state variables that

correspond to the biophysical state variable of the hemodynamic forward

model, which was first presented by Friston and colleagues in 2000 [72].

In brief, for a generic region i, neuronal activity zi causes an increase in

a vasodilatoatory signal si that is subject to autoregolatory feedback. Inflow

fi responds in proportion to this signal with concomitant changes in blood

volume νi and deoxyhemoglobin content qi.

ṡ = z − κs− γ(f − 1)

ḟ = s

τ ν̇ = f − ν1/α

τ q̇ = fE(f,E0)/E0 − ν1/αq/ν

(2.3)

Associated with this model are a set of parameters, of which there is a subset

of biophysical related parameters, κ, γ, τ , α, and E0, which correspond to

the rate of signal decay, the rate of flow dependent elimination, the hemo-

dynamic transit time, Grubb’s exponent, and the resting oxygen extraction

fraction respectively.

Outflow, fout(ν) = ν1/α, is related to volume through Grubb’s exponent, α

[74]. The oxygen extraction is a function of flow E(f,E0) = 1− (1−E0)
1/f ,

where E0 is resting oxygen extraction fraction. The BOLD signal is taken

to be a static nonlinear function of volume and deoxyhemoglobin concen-

tration, that comprises a volume-weighted sum of extra- and intra- vascular

signals

y = g(q, ν) = V0(k1(1− q) + k2(1− q/ν) + k3(1− ν))

k1 = 4.3 θ0E0TE

k2 = ε r0E0TE

k3 = 1− ε

(2.4)

Here, TE = 50ms is the echo time, θ0 = 40.3s−1 is the frequency offset

at the outer surface of the magnetized vessel for fully deoxygenated blood

at 1.5T , and ε is the ratio of intra- and extra-vascular signal, also treated

as free parameter. This equation has been obtained throughout subsequent
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2.3. Hemodynamic model 47

Figure 2.3: Schematic of the complete forward model.



Parameter Description Prior mean ηθ Prior Variance

Cθ

κ Rate of signal decay 0.65 per s 0.015

γ Rate of flow-dependent elimina-

tion

0.41 per s 0.002

τ Hemodynamic transit time 0.98 s 0.0568

α Grubb’s exponent 0.32 0.0013

E0 Resting oxygen extraction fraction 0.34 0.0024

ε Ratio of the intra- to extra- vas-

cular components of the gradient

echo signal

-1 0.0078

Table 2.1: Priors of biophysical parameters

modifications of the original Balloon Model equations, to account for fMRI

acquisition parameters and newly updated biophysical constants [75] and

slice timing [76].

In Table 2.1, a list of the biophysical parameters θh = {κ, γ, τ, α,E0, ε},
relative to the SPM12 version, is provided.

2.4 Parameters Estimation

The neuronal state equations and the hemodynamic model combined provide

an explanation of how the data were generated, and they are therefore re-

ferred to as a ”generative model”.

x = {z, s, f, ν, q}
ẋ = f(x, u, θ)

θ = {θc, θh}
(2.5)

For given inputs u, neuronal state parameters θc and hemodynamic para-

meters θh, a predicted response h(u, θ) can be obtained by integrating Eq.

(2.5) and passing it through the output non-linearity (Eq. (2.4)).

Integrating those equations and applying the output non-linearity is

equivalent to a generalized convolution of the inputs with the systems’ Vol-

terra kernels. These kernels are easily derived from the Volterra expansions
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of Eq. (2.5) (Bendat, 1990),

hi(u, θ) =
∑
k

∫ t

0
· · ·
∫ t

0
κki (σ1, . . . , σk)u(t− σ1), . . . , u(t− σk)dσ1, . . . , dσk

(2.6)

where hi(u, θ) is the predicted response of ith region (considering only one

input in this case), and

κki =
∂kyi(t)

∂u(t− σ1 . . . ∂u(t− σk))

is the kth order kernel of the ith region.

These kernels are simply a representation of the model and can be seen

as a generalization of the impulse response of the system; hence, the sys-

tems output can be obtained by convolution of the inputs with the systems

kernels. The Volterra kernels are a time-invariant characterization of the

input-output behavior of the system and can be thought of as generalized

high-order convolution kernels that are applied to a stimulus function to

emulate the observed BOLD response.

Volterra expansion is used as a model for non-linear behaviour similar to

Taylor series, from which it differs for its capacity of capturing the memory

effect. In fact, Taylor series approximates the response of a non-linear sys-

tem for a given input in a fixed time point. The Volterra series, instead,

approximates the response of a non-linear system that depends on the whole

time course of the input.

The observed data y can then be modelled as the sum of the predicted re-

sponse h(u, θ), confounding effects X(t) (with coefficients β), and an error

ε.

y = h(u, θ) +Xβ + ε

Low frequency drifts can be filtered out from time series during processing,

thus the model becomes

y = h(u, θ) + ε (2.7)

under Gaussian assumptions about the parameters θ and errors ε ∼ N (0, Cε).

These high dimensional equations cannot be solved analytically and it would

be computationally very costly to use a brute force numerical method [60].

Therefore when DCM was introduced [11], a Variational Bayesian (VB)

technique was also introduced [11]. Using this Bayesian inversion scheme,

parameters for the complete model are estimated (inverted), given the data

and the prior distributions on the parameters. Using Bayes theorem, the
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posterior probability of the parameters is expressed mathematically as

p(θ | y,m) =
p(y | θ,m) p(θ,m)

p(y | m)

log(p(θ | y,m)) = log(p(y | θ,m)) + log(p(θ,m))− log(p(y | m))

(2.8)

This way, the dynamical system is introduced in Bayes’ world, defining a

likelihood model. As described above, in fact, the forward model can be

made into an observation model by adding a normally distributed error

with zero mean; hence, data are assumed to be a random variable, normally

distributed around the prediction from the dynamic model:

p(y(t)|θ,m) = N (y(t), θσ)

p(y|θ,m) =
∏
t

p(y(t)|θ,m)

The maximum posterior distribution of the parameters is then approximated

using the iterative optimization Expectation Maximization (EM) algorithm,

details of which are given in Appendix C.

2.5 Model priors

Due to the complexity of DCMs, model inversion needs to be more de-

pendent on constraints, which is why DCMs are inverted within a Bayesian

scheme. Each parameter is constrained by a prior distribution which is based

on empirical knowledge, and the estimation procedure produces a posterior

distribution. Placing DCM within a Bayesian framework is a necessity due

to its complexity, but it also has many advantages compared to inference

based on classical statistics. Using classical statistics such as p-values we

are estimating the probability of observing the data given no effect, which

is a problem as we can never say for certain that an observation has not

occurred. Bayesian inference however, produces posterior distributions that

are the probability of the effect given the data observed [77].

There are properties of neuronal dynamics that can be used as priors on

the parameters of the neuronal state model. Neural activity, for example,

cannot increase to infinitely high values and in the absence of an external

input the dynamics are likely to return to a stable mode. These concepts

are used to constrain DCMs through shrinkage priors on the coupling para-

meters that place a small probability on self-excitation and high values of

regional activity. The priors used for the five biophysical parameters of

the haemodynamic model are based on empirical values that have been ob-

tained [78], and are reported in Table 2.1 in Section 2.3. Priors for the
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remaining haemodynamic model parameters, which cannot be biophysically

informed, are identified as those which minimise the sum of squared dif-

ferences between the Volterra kernels they imply and the Volterra kernels

derived directly from data [72]. Additional constraints can be added to op-

timise a particular DCM if information about the anatomical structure are

available. Previous studies have used structural connectivity information

obtained via invasive tract tracing in macaque monkeys to inform the struc-

ture of models for effective connectivity studies [66]. Although these data are

of high resolution, they are not necessarily relevant for human studies due

to inter-species differences in connectivity. This problem can be overcome

by using structural information obtained via DTI. Despite the fact the data

are less detailed and do not contain directional information, they have still

been successfully integrated into DCM as priors by Stephan and colleagues

[79]. In this study, probabilistic tractography based on data collected via

diffusion weighted imaging (DWI) was used to calculate the probability of

anatomical connections existing between visual areas of the brain.

2.6 Inference

There can be two types of inference in DCM: inference about parameter

space and inference about model space [66]. If, for example, we are interested

in the specific effect of a connection, such as whether it exhibits an excitatory

or inhibitory effect, it requires inference about the parameters of a model.

Alternatively, we may wish to make inferences about model structure, for

example to determine the presence of feedback connections. Early DCM

studies tended to be more focused on inference about parameter space [67],

however following a proliferation of methodology papers devoted to model

selection [80, 81, 82, 83, 84], inference about model structure has become

more common. One area in which inference about parameter space is still

dominant, is the one involving group studies between patients and controls

[85].

2.6.1 Bayesian Model Selection (BMS)

The problem of model selection, encountered in any modelling approach,

tries to identify which, of a set of competing models, is most likely given the

data.

The problem is confounded by the fact that the model fit, alone, is not

enough to infer which model is best. Model complexity also needs to be

considered to ensure that the model is not over-fitting the data (i.e. it has
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good generalisation capability) [86]. When it was first introduced, it was

proposed that DCMs should be compared using a combination of Akaike’s

Information Criterion (AIC), and Bayesian Information Criterion (BIC) [83].

In another approach, log differences in model evidence (also known as log

Bayes factor) were used to compare competing models and a value greater

than 3 was suggested as the threshold for accepting one model over an-

other [81]. Since then, this method, denominated Bayesian Model Selection

(BMS), has become the preferred method of comparing models using an ap-

proximation of the Free Energy as model evidence [87]. The model evidence

is given in Eq.(2.9).

p(y | mi) =

∫
p(y | θ,mi)p(θ | mi)dθ (2.9)

This integral cannot be solved analytically, but it can be approximated, as

detailed in Penny et al. (2004) [83]. The approximation is given in Eq.

(2.10) as the log model evidence and consists of an accuracy and complexity

term.

log p(y | m) = Accuracy(m)− Complexity(m) (2.10)

Two models, m1 and m2, can therefore be compared using the Bayes factor

[88] given in Eq. (2.11).

B12 =
p(y | m1)

p(y | m2)
= log p(y | m1)− log p(y | m2) (2.11)

The Bayes factor is simply the difference between the log model evidences

for model1 and model2. This means that the most likely model is the one

with the greatest log evidence. The AIC and BIC provide simple approxima-

tions to the log evidence, and they were used in early DCM studies; however

a free energy approximation is now preferred. As shown in Eq.(2.10), the

complexity term penalises a model based on its complexity. In AIC and

BIC, the complexity term is simply a function of the number of model para-

meters. In the free energy approach, the model evidence is approximated

by Eq. (2.12), where F is known as the free energy, and the last term is the

Kullback-Leibler (DKL) divergence between the true posterior p(θ | y,m)

density and the approximate posterior density q(θ) [60].

log p(y | m) = F (m) +DKL (q(θ) || p(θ | y,m)) (2.12)

Due to the Gibb’s inequality, the KL divergence is always positive, meaning

the free energy provides a lower bound on the log model evidence. When

the KL divergence is equal to zero then the true and approximate posterior
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densities are the same and the free energy is equal to the log model evidence.

Thus the EM optimisation scheme serves to maximize the free energy, impli-

citly decreasing the KL divergence, and making the approximate posterior

distribution as close to the true one as possible, simultaneously providing

an approximation of model evidence. Unlike AIC and BIC, in which each

parameter in the model is penalised equally by the complexity term [81],

the free energy approach has a complexity term that is the KL divergence

between prior and approximate posterior. Thus, parameters are not penal-

ised equally, and so the more a parameter deviates from its prior, the greater

the penalty. This extra sensitivity has been empirically shown to make the

free energy a better approximation to model evidence [82].

For multiple subjects analyses, two options exist depending on how para-

meters are considered to be distributed across subjects [66]. In the Fixed-

Effects (FFX) approach it is assumed that model structure is the same for

each subject in the population, and in the Random-Effects (RFX) approach

it is allowed for the possibility that different subjects have different models,

assuming model structure somehow as a random variable.

Fixed Effects Analysis

In the FFX approach, since every subject is assumed to have the same

model, the model evidence given a dataset Y composed of independent data

for individual subjects yn is simply the sum of the log model evidences for

each subject, given by Eq. (2.13).

p(Y | m) =

N∏
n=1

p(yn | m)log p(Y | m) =

N∑
n=1

log p(yn | m) (2.13)

Random Effects Analysis

The RFX approach assumes that for each subject different models generate

the observed data. Assuming that the data are generated by models drawn

from a probability distribution, this is achieved using a Bayesian hierarchical

approach that can be inverted to obtain an estimate of the distribution [84].

A prior distribution of model probabilities is given by a Dirichlet distribution

given by Eq. (2.14), where rm is the probability of model m from a set of

M total models, αm are the number of times model m is selected in the

population, and so can be viewed as the number of subjects for whom that

model generated the data [84], and Z(α) is a normalisation term.

p(r | α) = Dir(α) =
1

Z(α)

M∏
m=1

rαm−1
m (2.14)
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The inversion of the model produces an approximation to the posterior dis-

tribution P (r | Y ). This was previously achieved using a VB approach [84]

but since then a Gibb’s sampling method has been suggested [83] and is

the preferred method when comparing large numbers of models, i.e. more

models than subjects.

2.6.2 Model Space

Clearly defining a plausible model space should be a fundamental compon-

ent of any DCM study [66]. The problem is a general one in that for any

experimental data, there are an infinite number of models that could explain

it, which vary in both structure and parameter values. For this reason one

always has to place limitations on model space to constrict it to a set of

plausible alternatives. This is already an inherent part of the DCM frame-

work which is based on Bayesian statistics. As already noted, prior distribu-

tions on parameters aim to constrain the parameters, which describe neural

activity and the hemodynamic response, to values which are biophysically

realistic. However given any number of regions, even with constraints on

parameters, there are still a vast number of model structures that could

explain the data. The problem of defining a plausible model space is not a

trivial one and the main issue being highlighted [89, 90] is the problem of

so called ”combinatorial explosions”.

Given a number of brain regions n, the number of possible models in bilinear

DCM is determined by the Eq. (2.16), where j is the number of experimental

manipulations and k is the number of connections between nodes n which

is equal to n(n− 1).

m = (2nj − 1)

(
k∑
i=0

2ij
(
k

i

))
(2.15)(

k

i

)
=

k!

k!(i− k)!
(2.16)

As the number of regions and experimental conditions increases the num-

ber of possible models rises very rapidly; one approach is to impose some

limitations, usually based on intrinsic connectivity, and then estimate all

possible models within a greatly reduced model space [91, 92]. Others have

chosen to adopt a hierarchical approach [93, 94] by first defining a model

space of varying intrinsic connectivity and then using the winning model to

define a new model space of varying modulatory effects. Pyka et al. de-

veloped a genetic algorithm to search model space, and found that it was

computationally more efficient than a brute force search [95]. Many studies
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comparing healthy controls to patient groups have omitted a model space

search altogether and instead chosen to use classical statistics to compare

parameters on a hypothesised model between groups [96, 97, 98]. This is a

particularly popular approach for group studies [85] but has recently been

discouraged except for cases when one has very strong a priori knowledge

concerning model structure [66].

Model Families

Family level inference for DCM is an innovation introduced by Penny and

colleagues [83] as a way of removing uncertainty in model structure. They

showed that comparing large numbers of models in the traditional manner

can be problematic, because, when the number of models to e compared in-

creases, there could be the so called dilution of evidence (when many models

share close values of free energy), and therefore no clear winning model is

identified; they showed, instead, that grouping models into families accord-

ing to some characteristic, e.g. input location, is a more robust approach.

A family partition is defined and models are classified as belonging to one of

the subsets which must be non-overlapping. The partitioning of the model

set into families reflects the question being asked by the researcher.

2.6.3 Post-hoc BMS (model reduction)

The original purpose of DCM was as a hypothesis driven approach, in which

a limited number of carefully selected models were compared in order to test

a specific hypothesis about how the data were generated. It is still primarily

used in this fashion, though there has been a recent trend for comparing an

ever increasing numbers of models [82, 99] and thus using DCM as a more

exploratory method.

The problem with comparing large numbers of models is that it is com-

putationally intensive due to the need to fully invert each model. To face

this problem, Friston and Penny have recently proposed a solution [80] in

which only a single model, for each subject, is fitted to the data. Known

as post-hoc BMS, only the largest of a set of models need be inverted and

then model evidence for all the reduced models within this set is approxim-

ated. In addition to model evidence, the connectivity parameters can also

be estimated from the posterior distribution of parameters in the full model

[100]. In this context, ”reduced” models are referred to as models that are

obtained from the full model by switching off one or more parameters in a

full model by setting their prior mean and variance to zero, resulting in a

reduced number of parameters with respect to the full model.
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The important aspect of Bayesian model reduction is that models differ only

in their priors, which means that the posterior of a reduced model can be

derived from the posterior of the full model.

Based on the ability of post-hoc BMS to score large numbers of mod-

els, Friston and colleagues [99] outlined a method for ”network discovery”

using DCM, along with the additional constraint that connections are bid-

irectional. This work has been expanded by Seghier and colleagues [101] for

a large DCM network containing twenty nodes, using the principle compon-

ents of the functional connectivity network as constraints on the intrinsic

connectivity.

This scheme is also referred to as Bayesian model reduction (BMR), and

refers to the Bayesian inversion of reduced models using only the posterior

densities of a full model. Thus, large numbers of (reduced) models can be

scored extremely efficiently. The post-hoc model evidence shows good agree-

ment with the model evidence computed by classical (and computationally

expensive) model estimation [100]. This means post-hoc BMS or BMR could

be used to infer network structure in the entire model space, and a valid-

ation test could be performed much faster. Following, a rough description

of this procedure is provided.For a more in-depth analysis see [80, 100]. As

mentioned before, the key feature of post-hoc inversion is the assumption

that the full and reduce models differ only in their priors over parameters;

in fact, reduced models are obtained by imposing some parameters prior

expectation and covariance to zero. This means that the full model shares

the same likelihood whit the set of reduced models:

p(y | θ,mi) = p(y | θ,mF )

p(y | mi)

p(y | mF )
=
p(θ | y,mF )

p(θ | y,mi)

p(θ | mi)

p(θ | mF )

(2.17)

where mi indicates the reduced model and mF indicates the full model.

Under Laplace approximation (Gaussian priors and posteriors of full and

reduced models), an approximation of the evidence of the reduced model

can be obtained. This is expressed by

log p(y | mi) =
1

2
log
|Πi| |PF |
|Pi| |ΠF |

−1

2

(
µTFPFµF + ηTi Πiηi − ηTFΠF ηF − µTi Piµi

)
+ FF

(2.18)

where ηi,F and Πi,F are the prior means and precisions for the reduced and

full models, while µi,F and Pi,F are the posterior means and precisions. This

is useful because the required means and precisions of the reduced model can
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be derived in a straightforward way from the means and precisions of the full

model. To obtain the post-hoc parameters estimates, it is again assumed

that the models differ only in the specification of the priors, i.e. they share

the same likelihood. Using this assumption the linearised approximation

can be subtracted to the conditional precision of the full model from the

precision of the reduced model and eliminate the terms that do not depend

on the priors obtaining an expression of the estimates of the parameters

(means and precision) for any reduced model:

Pi = PF + Πi −ΠF

µi = Ci(PFµF + Πiηi −ΠF ηF ),
(2.19)

where Ci = P−1i . Once the log-evidence of every reduced model has been

estimated using its free energy approximation, the best model in the model

space can be selected using BMS. One alternative approach, instead of

explicitly defining the reduced models to be scored and then comparing

them through their Bayes factors (to identify the best), the log-evidence in

Eq.(2.18) could be optimised with respect to the prior distribution. Further-

more, we can consider any hyperparameterisation of the prior p(θ | m(λ)) =

N(η(λ),Σ(λ)) that induces a model. Here the hyperparameters λ control

the mean and precision to produce a log-evidence, F (λ). This perspect-

ive takes us away from the notion of discrete models and into a continuous

model space supported by hyperparameters, m(λ). In this the optimum

model and posterior are:

λ∗ = argmaxλ F(λ)

q(θ | m∗) = N (µ∗, C∗)

P ∗ = PF + Π(λ∗)−ΠF

µ∗ = C∗(PFµF + Π(λ∗)η(λ∗)−ΠF ηF ).

(2.20)

The use of one or the other of the two alternative methods depends on

whether we want (or are able to) to specify all the competing models that

need to be tested, or if we want to perform an exhaustive search over all

possible combinations of connections.

2.6.4 Inference on parameter space

When making inferences on model parameters, the same decision to make as

with group-level BMS emerges, i.e. FFX or RFX. A number of FFX methods

exist, such as Bayesian Parameter Averaging (BPA), in which the posterior

parameter distributions for each subject are combined according to Bayes
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Figure 2.4: Schematic occam’s window

theorem [102, 103]. A comparison of different FFX methods for Bayesian

parameter inference in group studies can be found in Kasess and collegues

[102]. However, a RFX approach in which subject specific parameter estim-

ates are compared using a second level analysis using classical frequentist

tests such as t-test or ANOVA are more common [66]. Another approach

is Bayesian Model Averaging (BMA) [82] in which parameter estimates are

not dependent on a single model but are averaged across multiple models

within a set and are weighted according to the probability of each model, as

shown in Eq. (2.21).

p(θ | y) =
∑
mi

p(mi | y)p(θ | y,mi) (2.21)

Parameter averaging is performed among a reduced set of models, obtained

through an algorithm called ”Occam’s windows”. In brief, this algorithm

uses the Bayes factor, i.e. the ratio between two models evidences, to eval-

uate which of them should be included/discarded from the subset of model

space, absed on a trade-off between model evidence and complexity. This

principle concerns the interpretation of the ratio of posterior model probab-

ilities p(M1 | D) / p(M0 | D). Here M0 is a model with one less parameter

than M1. A representation of the essential idea is shown in Figure 2.4.

If there is evidence for M0, then M1 is rejected, but to reject M0 a storng

evidence for the larger model is required (having a higher complexity). If

the evidence is inclusive (falling within Occam’s window), neither model is

rejected. BMA is useful for scenarios in which there is no clear winning

model or for comparison between groups in which model structure may not

be equal such as patients and controls [66].

2.6.5 Parametric Empirical Bayes (PEB)

A common experimental aim is to test whether effective connectivity is dif-

ferent between groups of subjects, or is different according to a behavioural
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measure (e.g. test scores) within a group. One approach is to take DCM

connectivity parameters and apply a classical statistical test (e.g. t-tests,

CVA).

However, the disadvantage of this approach is that it throws away the es-

timated uncertainty (variance) about the connection strengths. Alternat-

ively, a hierarchical model over the parameters can be constructed, describ-

ing how group level effects constrain parameter estimates on a subject-by-

subject basis. This approach produce a so called Parametric Empirical Bayes

(PEB) model, which makes it possible to evaluate group effects and between-

subjects variability on parameters, by modelling (first level) parameters as

random variables oscillating around a group mean.

In fact, these sorts of models are used (either implicitly or explicitly) in

the analysis of multisubject studies that contain both within and between

subject effects [104, 105, 106].

Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical

models. In hierarchical models, constraints on the posterior density over

model parameters at any given level are provided by the level above, after

they have ”seen” the data. These constraints are called empirical priors

because they are informed by empirical data. These procedures permit the

analysis of data from group studies using nonlinear models, such as dynamic

causal models of neurophysiological timeseries. The inversion or fitting of

hierarchical models in a nonlinear setting is achieved by using Bayesian

Model Reduction (BMR), previously described in section 2.6.3.

This allows to compute posterior densities over model parameters, under new

prior densities, without explicitly inverting the model again. For example,

a nonlinear (causal) model can be inverted for each subject in a group and

then evaluate the posterior density over group effects, using the posterior

densities over parameters from the single-subject inversions.

This can be regarded as a generalisation of the standard summary statistic

approach; however, instead of just using point estimators as summaries of

first (within-subject) level effects, we take the full posterior density to the

second (between-subject) level. In case of DCM, the posterior density over

parameters at the first level is assumed to be approximately Gaussian, and

thus mean and covariance are propagated at the second level.

In this discussion, will be considered an empirical Bayesian approach

to any hierarchical model that can be expressed in terms of an arbitrary

(nonlinear) model at the first level and a standard (parametric) empirical

Bayesian (PEB) model at higher levels. Crucially, these procedures are very

efficient because each hierarchical level of the model requires only the pos-

terior density over the parameters of the level below. This means, deep
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hierarchical models can be inverted without having to revisit lower levels.

This aspect of the scheme rests on Bayesian Model Reduction.

Bayesian model reduction unravels a number of issues in the inversion and

interpretation of group DCM studies. These include the problem of local

maxima when evaluating different models for Bayesian model comparison,

and the fundamental distinction between random (between-subject) effects

at the level of models and their parameters.

In contrast to previous treatment of random model effects at the between-

subject level [84], this work considers random parameter effects in the setting

of parametric empirical Bayes.

As reported by Friston and colleagues [19], Bayesian model reduction provides

more robust estimates of posterior probabilities than fitting models to the

data separately, because it is less susceptible to violations of (e.g., Laplace)

assumptions. This application of Bayesian model reduction provides Bayesian

model averages that could be used for classical inference with the standard

summary statistic approach. However, we can go further in terms of model

comparison and classification, using empirical Bayesian model reduction, as

it has been done in this work. For DCM studies with N subjects and M

parameters per DCM, we have a hierarchical model, where the responses of

the ith subject and the distribution of the parameters over subjects can be

modelled as

yi = Γ
(1)
i (θ(1)) + ε

(1)
i

θ(1) = Γ(2)(θ(2)) + ε(2)

θ(2) = η + ε(3).

(2.22)

In this hierarchical form, empirical priors encoding second (between-subject)

level effects place constraints on subject-specific parameters. The implicit

generative model is defined in terms of multivariate Gaussian distributions

(assuming the data for each subject are conditionally independent):

ln (y, θ(1), θ(2) | m) =
∑
i

ln p(yiθ
(1)) + ln p(θ(1) | θ(2)) + ln p(θ(2) | m)

p(yi | θ(1),m) = N
(

Γ
(1)
i (θ(1)),Σ

(1)
i (θ(1))

)
p(θ(1) | θ(2),m) = N

(
Γ(2)(θ(2)),Σ(2)(θ(2))

)
p(θ(2) | m) = N (η,Σ)

(2.23)

Generally, the second level would be a linear model where the random effects
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are parameterised in terms of their precision.

Γ(2)(θ(2)) = (X ⊗W )β

Π(2)(θ(2)) = IN ⊗ (Q0 +
∑
j

e−γjQj)
(2.24)

Here, β ⊂ θ are group means or effects encoded by a design matrix with

between, X, and within-subject, W , components. The between-subject

part encodes differences among subjects or covariates such as age, while

the within-subject part specifies mixtures of parameters that show random

effects. When every parameter can express different group effects, as in

this work, W = IM . Intuitively, the Kronecker product X ⊗W models the

fact that one or more parameters can show one or more group effects. We

will assume that the first column of the design matrix is a constant term,

modelling group means, and subsequent columns encode group differences

or covariates such as age or clinical scores.

The second (between-subject) level precision is parameterised by log pre-

cisions γ ⊂ θ of (positive definite) precision components Qj that are added

to a lower bound on precision Q0. These components specify whether the

parameters are random or fixed effects. Formally, the difference between a

random and fixed effect rests upon the prior variance at the second level.

Random effects have an informative prior that shrinks subject-specific es-

timates towards their (second level) mean. Conversely, fixed effects have a

relatively flat or uninformative prior Q0 such that they are less influenced

by parameter estimates from other subjects.

We now wish to find the approximate posterior, over second level paramet-

ers, that maximises free energy, where the free energy at the first level has

already been optimised for each subject under full priors.

More precisely, we need the sufficient statistics (mean and covariance) of the

approximate posterior, given the priors and approximate posteriors for each

subject at the first level.

q̃(2) = (µ(2), C(2)) = argmaxq(2)F
(2) (2.25)

As shown in Eq.(2.25), the sufficient statistics of the approximate posterior

over second level parameters are obtained by maximising the second level

free energy. The second level free energy comprises the expected (reduced)

first level free energy summed over subjects and the complexity attribut-

able to the posterior over second level parameters. At second level, the

conditional precision that maximises negative free energy is the solution to:

∂C(2)F (2) =
∑
i

1

2
∂2
µ(2)

F
(1)
i +

1

2
P (2) = 0 =⇒ P (2)∗ = −

∑
i

∂2
µ(2)

F
(1)
i (2.26)
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The second level expectations can now be optimised using gradient ascent

as described in Friston et al. [19].

Note that the overall scheme can be applied recursively: once the second

level parameters have been optimized they can be treated as first level para-

meters for efficient (recursive) inversion of deep hierarchical models.

Moreover, the summary statistics passed from one level to the next include

not only the point estimators, or expectations, but the full (Gaussian) pos-

terior density over parameters at the lower level.

The reduced free energy is a function of the approximate posterior over

second level parameters and the (known) approximate posterior over the

first level parameters, under the full model. Effectively, this means the

expected (reduced) free energy is the free energy that we would get if we

replaced the full priors with the empirical model. In short, we never needs

to actually optimise the first level posterior, when optimising the posterior

at the second level.

Summming up, optimization at the second level proceeds recursively

(until convergence), updating expectations by an amount that is a function

of gradient and curvature of the second level free energy function; in turn

these terms depend on the sufficient statistics of reduced priors and posteri-

ors, that are calculated exploiting the useful scheme of BMR (at the very

first iteration the empirical priors are initialized using the full posteriors of

the first level).

In summary, with a straight forward application of Bayes rule, the posterior

density of any (reduced) model can be expressed in terms of the posterior of

its parent or full model. This affords an efficient way to evaluate posterior

densities under empirical priors, leading to the notion of hierarchical or em-

pirical Bayesian model reduction. This form of hierarchical model inversion

and comparison is interesting because it only requires the forward passing

of the posterior density, from a lower level to a higher level, to generalise

the standard summary statistical approach. In this generalisation, all the

sufficient statistics of the posterior are passed to higher levels (as opposed

to just passing the maximum likelihood or a posteriori parameter estimates).

This scheme enable inference under hierarchical models of (non-linear) within-

subject effects and (linear) between-subject effects. These can be applied in

a number of different contexts. For example, we could simply assume that

between-subject differences are attributable to random variations in their

parameters and use a simple design matrix with X = 1 to provide empir-

ical shrinkage priors, which shrink first level estimates towards the group

mean. However, we can also consider more elaborate second level models
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that contain information about subjects and the groups from which they

were sampled.

This permits inference about group effects directly at the second or between-

subject level.
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Chapter 3

Materials and Methods

3.1 Subjects

The subjects from which fMRI data were taken and used in this work, com-

prised a group of patients and a group of control subjects. Patients were

recruited from the outpatient and inpatient services at the Villa Beretta

Rehabilitation Centre (Costa Masnaga, LC, Italy from 2010 to 2013). All

patients had suffered from first-ever stroke > 6 months previously, resulting

in weakness of at least the tibialis anterior muscle (to < 4+ on the Med-

ical Research Council (MRC) scale [107]). Exclusion criteria consisted of (i)

responsiveness of less than 10◦ in FES-induced ankle dorsiflexion; (ii) lan-

guage or cognitive deficits sufficient to impair cooperation in the study; (iii)

inability to walk even if assisted; (iv) high spasticity at ankle joint plantar

flexor as measured by the modified Ashworth scale index, MAS > 2. The

patients dataset available and used in this study, was relative to 8 patients

and composed of 2 fMRI sessions per patient, taken before (t1) and after

(t2) the rehabilitation treatment, for a total of 16 brain volumes, 2 for each

patient (PRE, POST).

The rehabilitation treatment was based on the functional electrical stimula-

tion (FES) of the Tibials Anterior muscle for the recovery of the drop foot.

Patient characteristics, along with the degree of functional recovery at the

time of scanning, as measured by the selected outcome measures, are listed

in Table 3.1. Mean age was 40.4 ± 17.2 years, and mean time post-ictus

was 31± 16.2 months.

The site of cerebral infarction was determined from the T1-weighted struc-

tural MRI, reported in Figure 3.1 The age-matched control group was com-

posed of 16 healthy volunteers with no neurological or orthopaedic impair-

ment. Mean age was 36.4 ± 13.8. Their results have been fully reported
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Figure 3.1: The site of cerebral infarction as determined from the T1-weighted struc-

tural MRI. ** indicates patients with FES carryover; * indicates patients with no FES

carryover.

previously [6], and basic personal informations are reported in Table 3.2.

Villa Beretta Rehabilitation Centre Ethics Committee and all subjects gave

informed written consent in accordance with the Declaration of Helsinki.

3.2 Capacity Score (CS) and Carryover Effect (CE)

One of the purposes of this study is to evaluate FES-induced mechanisms of

action, and possible predictive biomarkers for the carry-over effect in terms

of brain connectivity. Ideally, the outcome of a rehabilitation treatment

is successful if it induces a stable improvement on the targeted task and,

thus, understanding the key features and causes of carry-over effect would

be fundamental for the evaluation of FES-based treatment effectiveness on

different patients. In fact, analysing the differences in effective connectivity

between patients that exhibited the carry-over effect and those who did not,

could help us to find predictive biomarkers for the rehabilitation outcome

and understand a possible predisposition of patients to it, prior to treatment.

This wold open the way to a process of customization of the treatment based

on subjective connectivity features, which is already thought to be poten-

tially an influential factor on the outcome of motor recovery.

In order to investigate the differences between patients exhibiting or not the

carry-over effect, an evaluation of the improvements after the attendance of

FES-based motor rehabilitation is needed. Dealing in particular with neuro-
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# Age Sex Handedness

1 24 M R

2 24 M R

3 26 F R

4 25 M R

5 25 M R

6 47 F R

7 61 M R

8 45 M R

9 50 F R

10 59 F R

11 51 F R

12 39 M R

13 30 F R

14 22 F R

15 22 M R

16 33 F R

Table 3.2: Healthy subjects individual characteristics

motor rehabilitation trainings, different aspects of motor improvement can

be nowadays accurately evaluated with a wide battery of measures, that are

quantitative, reliable, and safe.

Gandolla and colleagues [10] defined a quantitative and comprehensive method

of combining multiple measures in order to assess a stable functional im-

provement. This approach: (i) encompasses different aspects of motor func-

tion (e.g., kinematic, muscle activity, clinical indices, etc.); (ii) provides a

method that can evaluate treatment-induced improvement in a single sub-

ject; (iii) is simple to interpret in that it provides a binary outcome in

relation to improvement; (iv) is validated with respect to standard clin-

ical evaluation. The patients were classified in a binary fashion, based on

whether or not the patient achieved the carry-over effect: this was done by

combining the outcomes of 5 different clinical and instrumentation meas-

ures, commonly used by clinicians to asses motor ability and improvements

of impaired patients.

The set of outcome measures was designed to assess different aspects of

patients’ functional condition:

1. GV — self-selected gait velocity as measured during the gait analysis

test;
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2. EV — endurance velocity, as calculated during the 6-min walking test;

3. PSL — paretic step length as measured during the gait analysis test;

4. TAAI — tibialis anterior activation index of the tibialis anterior muscle

between toe off and toe strike and during the whole gait cycle as

detected by electromyography measures;

5. MRC index at ankle joint.

The carryover effect was determined using a novel algorithm based on vari-

ables minimum detectable change that combines the outcome measures to

obtain a unique parameter, Capacity Score (CS), where a higher Capacity

Score indicates higher residual ability. In particular, for each assessment

session, patients were assigned to a point in the 5-dimensional space, iden-

tified by the 5 outcome measures listed above. The 5-dimensional space

was centred on the outcome measures derived from healthy subjects, and

therefore the further away the patient is from the origin, the more impaired

he/she is. Moreover, the outcome variables have been normalised with re-

spect to the corresponding minimum detectable change. The difference in

the 5-dimensional space between (i) the Euclidean distance of ”subject zero”

(a patient that scores zero in all outcome measures, i.e., the most impaired

patient in our space) with respect to the origin (i.e., distance of the given pa-

tient from the healthy control group) and (ii) the Euclidean distance of each

patient with respect to the origin (i.e., distance of the ”subject zero” from

the healthy control group) is defined as Capability Score. The difference

between Capacity Scores at different timing (i.e., post-pre) is thresholded

(difference > 5% of initial value) to obtain carryover effect assessment. The

algorithm has been validated against clinical evaluation [10]. This way the

patients group has been subdivided into two subgroups of 4 patients each:

one including subjects that successfully achieved a carry-over effect (CE)

and the other composed by those subjects that did not gain a durable im-

provement (nCE).

A more detailed description of the algorithm can be found in Gandolla et

al. (2015) [10].

3.3 Experimental set-up

The experimental setup was composed of 1.5 T MRI scanner (GE Cv/I), a

motion capture system (Smart µg; BTS), and an electrical stimulator (Re-

haStim proTM; HASOMED GmbH), as previously described and validated

[108, 109], and reported in Figure 3.2.

69



Figure 3.2: Experimental set-up. (A) MRI scanner CV/I 1.5 T; (B) motion capture

system Smart µg with (C) three cameras and (D) reflective markers; (E) FES current-

controlled stimulator RehaStim pro and (F) stimulation electrodes.

3.4 fMRI task design

The fMRI data used in this work were available thanks to the following ex-

perimental design conceived and employed in previous studies [6][8].

A 2 × 2 fMRI design was performed using right ankle dorsiflexion (ADF).

Experimental factors included volitional intention to perfrom the movement

[V: with the levels ”volitional” and ”passive”] and FES [F: with the levels

”present” and ”absent”]. During a continuous 10 minutes scanning session,

subjects performed 20 alternate 9-seconds OFF and 21-seconds ON blocks.

The 4 conditions that constituted the factorial design were performed during

the ON blocks in a semi-randomised order: (i) FV: FES-induced ADF con-

currently with voluntary movement by the subject; (ii) FP: FES-induced

ADF, with no voluntary intention to perform the movement; (iii) V: vol-

untary ADF; (iv) P = passive dorsiflexion (by the experimenter) of the

subject’s ankle without FES. Subjects were specifically instructed to remain

completely relaxed during FP and P conditions and to equally voluntarily

contribute during V and FV conditions. Dorsiflexion was paced every 3.5s

(for 6 repetitions within a block) with an auditory cue. The auditory cues

were presented through an earphone. Prior to scanning, subjects practiced

the protocol until they were comfortable with the task; the experimenter was

assisting the training to check the correct execution of the protocol. All sub-
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jects were free to choose the amplitude of their active movement to preclude

fatigue. Subjects were instructed to keep eyes closed and head movements

were minimized with rubber pads and straps. To ensure minimum trans-

mission of movements to the head, knees were bent with the subject’s legs

lying on a pillow.

3.4.1 FES stimulation paradigm

Functional electrical stimulation was applied to the peroneal nerve through

superficial self-adhesive electrodes, with biphasic balanced current pulses at

20Hz fixed frequency. The pulse width had a trapezoidal profile (maximum

pulse width 400 µs) and the current amplitude was set subject by subject so

as to reproduce the same movement amplitudes as during voluntary move-

ments, within the tolerance threshold. Current amplitude and pulse width

were kept the same for both FP and FV conditions.

3.5 fMRI pre-processing

Imaging data were analyzed using Statistical Parametric Mapping (SPM8,

Wellcome Department of Imaging Neuroscience, http://www.fil.ion.ucl.

ac.uk/spm/) implemented in Matlab (Matlab R2010b). A skull stripping

procedure, on the structural image for each subject, was performed to im-

prove the co-registration of functional and structural images. Participants

with right-sided infarcts (left-leg weakness) were flipped about the mid-

sagittal line, such that all subjects were considered to have left-sided in-

farcts. All fMRI volumes were then realigned and unwarped to suppress

task-related motion artifacts [110]. Realignment parameters were assessed

for excessive motion after unwarping procedure. A threshold of 4 mm in

translation and 5 deg in rotation was applied [111]. The skull stripped struc-

tural image was then coregistered to the mean image of the functional re-

aligned volumes, and segmented. The spatial normalization transformation

(to the Montreal Neurological Institute (MNI) reference brain in Talairach

space [112]) was then estimated using the segmented structural image. The

structural image and functional volumes were normalized and resampled

to 2mm × 2mm × 2mm voxels. Functional normalized images were then

smoothed with an isotropic 8mm full-width half-maximum kernel [113].

The time series in each voxel were high pass filtered at 1/128 Hz during

subsequent modeling to remove low frequency confounds.
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3.6 Statistical analysis and DCM analysis

A detailed description of the construction and results of the statistical ana-

lysis, relative to the experimental factors (FV, FP, V, P), and their interac-

tion, can be found in Gandolla et al. [6, 8].

In this work, we are interested in extracting BOLD response time-series,

representative of specific regions of interest (ROIs), resulting from experi-

mental inputs conveniently suited for our model to build a convenient model

space to test our experimental hypotheses.

Namely, the general linear model was reformulated to specify the driving

and modulatory experimental inputs. These comprised (i) a stimulus func-

tion representing the effect of descending voluntary signals, V (combining

onsets from V and FV conditions, i.e. u1); (ii) a second input encoding the

contribution of ascending functional electrical stimulation to proprioceptive

input, E (combining onsets from FV and FP conditions, i.e. u2), and (iii)

a third input representing underlying proprioceptive input from all move-

ments, P (combining onsets from all conditions, i.e. u3). All ADF onsets

belonging to the same condition were defined as a single event type and

modeled as delta (stick) functions in the corresponding stimulus function;

all onset stimulus functions were then convolved with a canonical hemody-

namic response function and used as regressors in the general linear model of

the observed fMRI time series. Thus, for each subject, voxel-wise parameter

estimates for each regressor were obtained.

To summarize the regional activity of each subject, an F-contrast was per-

formed across all covariates of the new design matrix for each subject, ob-

taining a contrast image of brain activation for all three experimental inputs.

3.6.1 ROIs selection

The choice of the ROIs to be included in the (dynamic causal) model, was

made on the basis of a priori knowledge about the role of cortical areas in

motor control loop. In fact, given the purpose of the project, and depend-

ing on information found in literature, seleceted ROIs included contralateral

leg primary sensorimotor cortices (M1 and S1), supplementary motor area

(SMA) and the angular gyrus (AG). A representation of the ROIs approxim-

ate locations is reported in Figure 3.3 As previously done by Gandolla and

colleagues (2014) [6] in their DCM analysis, performed on healthy subjects

with the same experimental control, M1 and S1 have been included in the

model, as they have a fundamental role in the sensory-motor coupling, and

they have been observed to be active in both healthy subjects and patients
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Figure 3.3: Representation of approximate ROI locations.

during the experiment in Gandolla et al. (2016) [8]. Sensory-motor integ-

ration allows an individual to take sensory information and use it to make

motor actions that, in turn, can be used to modify the sensory system’s

response to future stimuli [114]. Flexible sensorimotor integration would

allow an individual the ability to correct for errors [115]. To produce the

desired flexibility the nervous systems employ the use of internal models and

efference copies [114][115][116].

SMA is also known to contribute to the control of movement [12][13][14];

in fact, neurons in the SMA project directly to the spinal cord and may

play a role in the direct control of movement. Possible functions attributed

to the SMA include the postural stabilization of the body, the coordination

of both sides of the body such as during bimanual action, the control of

movements that are internally generated rather than triggered by sensory

events, and the control of sequences of movements. Moreover, changes in

activation in both contralesional SMA and sensorimotor cortices have been

observed in post-stroke patients during motor rehabilitation [8][15].

AG is a fairly versatile and polyvalent region located in the posterior

part of the inferior parietal lobule, that has been shown in numerous meta-

analysis reviews to be consistently activated in a variety of motor and non-

motor tasks . It is reported to be involved in different functions, includ-

ing cognitive tasks, multi-sensorial integration, memory retrieval, attention

and motor control [16][17]. In fact, AG is associated with high complexity

tasks involving all the functions cited above, such as language processing
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and speech production [18]. In the context of the motor control loop, it is

believed that AG is responsible of both awareness of discrepancy between

intended action and movement consequences, and awareness of action au-

thorship. This region is assumed to be involved with higher order aspects

of motor control, that allows one to consciously access different aspects of

one’s own actions. Hence, this region processes discrepancies between in-

tended action and movement consequences in such a way that these can be

consciously detected by the subject [117][8]. Although these are not the only

cortical areas potentially contributing to the control of movement, SMA and

AG were inserted into the model as they have been proven to be of particu-

lar interest in the context of observing differences in groups of subjects (i.e.

CE, nCE and healthy subjects);

Indeed Gandolla and colleagues (2016) [8] observed different activation pat-

terns in SMA and AG regions between healthy subjects, CE and nCE pa-

tients, during the experiment. Also for this reason they have been included

as nodes in the dynamic model, with the hope to differentiate the behaviour

of the two groups of patients and recognise markers for the carry-over effect.

Functionally, the choice of subject-specific ROI coordinates was informed

by the SPM12 atlas of maximum probability tissue labels provided by Neur-

omorphometrics, Inc. (http://Neuromorphometrics.com/) under academic

subscription. Subject-specific maxima were selected, for each region, inside

the activation map afterwards the corresponding mask, taken from the atlas,

was applied. Crucially, the SPM12 atlas does contain masks labeled for SMA

and AG, while specific masks for M1 and S1 ”leg area” are not included;

in these cases (M1 and S1) statistical parametric maps were masked us-

ing ”pre-central gyrus” and ”post-central gyrus” labeled masks (left sided),

and then activation maxima were selected within these masked maps, with

the researcher paying particular attention that those selected coordinates

felt within the leg area of the corresponding ROI being selected. A further

precaution consisted in ensuring the selected maxima, from the 4 different

ROIs, had an euclidean distance of at least 8mm from one another, in order

to avoid subsequent spatial superimposition of the 4mm radius spheres with

which the volumes of interest have been approximated.

For each subject, regional responses were then summarized with the first

eigenvariate of a sphere (4 mm radius) centered in the subject-specific max-

ima.

Crucially, we allowed E (altered proprioception) to modulate different

connections or combination of connections, where modulation of self-connections

corresponds to a modulation of intrinsic excitability. The rationale for mod-

eling the modulatory effects of E is that we wanted to examine both the
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Figure 3.4: Schematic representation of steps involved in the procedure for model

structure identification.

driving effects of stimulation and activity-dependent effects on cortical ex-

citability or gain.

3.6.2 Model Selection procedure - inference about model

structure

The basis of the DCM is represented by the bilinear state equation

ż = (A+
∑

ujB
j)z + Cu

as previously described in chapter 4.

Here, the parameters of interest used to assess effective connectivity are

identified by the A, B and C matrices.

In this work, we were interested in investigating all three matrices structure,

and in comparing their estimated values between the groups of recruited sub-

jects. As mentioned in the previous chapter, the high number of parameters

(connections) to be tested give rise to such a vast model space that would be

difficult even to define all possible competing models it contains. To identify

the three matrices structures, we proceeded with a customized hierarchical

approach, analysing each matrix structure in succession, by exploring the

corresponding model subspace. At each new step we fixed the structure of

the matrices already identified in previous steps. This procedure is illus-

trated in a schematic in Figure 3.4.

Before proceeding with a more detailed description of this procedure, it

is necessary to anticipate that it was decided to start by identifying model

structure for healthy subjects; in subsequent analysis of patients, the struc-

ture of matrix C (inputs) was not investigated, but instead it was assumed

to be the same as for healthy subjects. In the same way, during testing

of matrix A (intrinsic connections), the structure identified for the healthy
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Figure 3.5: Model space relative to C matrix, containing 3 competing models

group was used as a starting point, exploring then the model space resul-

ted from combinations of remaining connections. Matrices B (modulatory

effects) were fully investigated in both groups.

In this procedure we decided to employ the Parametric Empirical Bayes

(PEB) framework creating a hierarchical model, consisting of first level

within-subject effects (subject specific DCM) and a second level between-

subject group effects (GLM encoding mean and group effects), that permit-

ted us to easily observe differences in groups of patients. Inference on model

space was carried out, one matrix at a time, following Empirical Bayesian

model reduction, comparison and averaging, similarly to the approach de-

scribed by Friston and colleagues [19] in their technical note about Bayesian

procedures for the analysis of group studies. This way we needed to fit only

the full model at the first level, sparing to perform a (computationally ex-

pensive and time consuming) model inversion at the first level for each of the

models in the model space. The results of inference about model structure,

as well as results on inference about parameters, will be presented in the

results chapter.

C matrix identification - Healthy subjects

The effects of experimental inputs were based upon prior knowledge about

functional anatomy: V was assumed to drive either M1 or SMA or both,

modeling top-down intentional signals during voluntary movements; P was

assumed to drive S1, modelling the proprioceptive and somatosensory con-
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sequences of movement (e.g. ascending afferents from muscle spindles and

Golgi tendon) that are known to convey information to sensory areas; E,

instead, was not included between the driving inputs, as its onset functions

(combination of FV and FP onsets) were already included in the P input

(all onsets). On the other hand, E was considered only as modulatory input,

as to isolate the contribution of electrical stimulation and better observe the

modulatory effect of the latter, over intrinsic connections.

Therefore, 3 competing models have been defined to address the identifica-

tion of the C matrix structure. These models differed only in terms of matrix

C, as A and B matrices were, in this first step, assumed as fully connected.

The 3 competing models are represented in Figure 3.5: model 1 had input

P in S1 and input V both in SMA and M1, model 2 had input P in S1 and

input V in M1, model 3 had input P in S1 and input V in SMA.

A hierarchical PEB model requires to define a design matrix at the second

level, modeling between-subject effects. In this case, since we were analysing

model structure of healthy subjects, there were no subgroups of subjects and

thus the GLM at the second model has been modeled using only a single

regressor, i.e. group mean (a 16× 1 vector of ones):
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· βmean + ε, (3.1)

with ε ∼ N (0, Σ)
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Matrix A identification - Healthy subjects

In this step, C matrix has been fixed as resulting from the previous iden-

tification step. In the process of identification of the A matrix structure,

the main issue was again the numerosity of model space. In fact, a model

composed of 4 nodes, would result in thousands of competing models to test,

supposing we want to test the presence/absence of all connections. To solve

this problem, we introduced a number of constraints on model connectivity,

based on prior knowledge about anatomical and functional connections, in

order to reduce the size of the model space to explore. M1 and S1 bidirec-

tional conncections (M1←→ S1) have been fixed and, thus, excluded from

the analysis, by virtue of their anatomical connections [118][119]. This con-

straint was also based on previous DCM studies involving M1 and S1 areas

[6].

A second constraint was placed on the bidirectional connections between

SMA and M1 (M1 ←→ SMA); indeed, anatomical projections between

these two areas are reported in literature [120][14]. Regarding the con-

nection from M1 to SMA, this was assumed to be a functional feedback

connection, most likely via reentrant feedback from M1 to basal-ganglia-

thalamo-cortical circuits, which link the SMA and are known to be crucial

for the initiation and control of voluntary action [14]. All the other bidirec-

tional connections between remaining regions (M1 ←→ SMA,SMA ←→
S1, SMA←→ AG,S1←→ AG) were tested, as no information was found in

literature about the presence of anatomical projections and little knowledge

is reported about indirect functional connectivity between those areas; thus,

we considered reasonable to properly test the presence or absence of such

connections in the model.

A schematic illustration of connections to be tested is reported in Figure

3.6.

The remaining connections to be tested, would still produce a fairly wide

model space; for this reason, we decided to follow a 2-step identification of

matrix A:

1. The first step consisted in defining the model space by forcing connec-

tions to be bidirectional (i.e. considering 2 nodes, for example, either

both connections are discarded, or are present in both directions); this

led to a quite small model space of 16 competing models.

2. Once the models at the first step were compared, and possibly one or

more bidirectional connections were discarded, we proceeded with the

definition of a model space, composed of models obtained by combina-
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Figure 3.6: Schematic illustration of the A matrix connections subjected to test; in

blue are connections that have been fixed based on prior knowledge, in order to reduce

the model space, in yellow are the connections which combination determine the model

space. Note that C matrix has been fixed has from the winning model from the previous

step

tions of the remaining monodirectional connections; having discarded

one bidirectional connection at the first step, this led to a new model

space composed of 64 competing models.

Matrix B identification - Healthy subjects

As described before, input E (electrical stimulation) was the only input

allowed to modulate intrinsic connections, while not being considered as

driving input. Moreover, no constraints were placed on modulatory effects,

i.e. all connections (excluded the missing ones in A) were allowed to be

modulated by E and thus subjected to test.

Matrix identification in Patients

Model structure of patients’ group, as discussed previously, has been invest-

igated starting from few assumptions, derived from the structure identific-

ation of healthy subjects. In particular, C matrix structure was assumed

fixed (same structure for patients and healthy subjects), while the A mat-

rix structure was still reviewed, allowing to possibly discard one or more

intrinsic connections, but using as starting point the structure obtained for

healthy subjects (i.e. we hypothesised that patients can not exhibit effect-

ive connections that are missing in controls’ group). On the other hand, no
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constraints were placed on the A matrix structure, i.e. no connections were

forced to be existent, as patients, due to neurological damage, could have

different connectivity topology with respect to healthy ones. Consequently,

instead of explicitly define all models, an exhaustive search at second level

over the entire model space was applied.

The B matrix structure was inspected starting from a structure correspond-

ing to that of matrix A (i.e. intrinsic connections that have been discarded

can not be modulated).

Basically, this procedure was aimed at making inference about model struc-

ture and model parameters, with the purpose of comparing the structure

and values of effective connectivity among the different groups of subjects.

Unlike the healthy subjects group, patients were divided in CE and nCE

subgroups. Each of these two groups was composed of 4 subjects, for each

of which 2 fMRI scans, related to different sessions, were available, i.e. one

before, PRE, and one after POST the rehabilitation.

For this reason, as to better evaluate connectivity differences, we decided to

construct the design matrix of group effects at the second level as follows;

besides a group mean regressor, we included a carry-over regressor, encoding

the subject classification (CE = 1, nCE = -1) and a time regressor, encoding

the session time point (PRE = 1, POST = -1). Moreover, having a compre-

hensive clinical score to assess a functional improvement for each patient, a

further capacity score regressor has been included, as to take into account

for the inter-subject variability, in the connectivity parameters values, due

to the residual motor capability (potentially being source of confounding ef-

fects). Subject-specific capacity scores were mean-corrected and normalized

between [-1,1], before being included in the design matrix.
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The resulting second level linear model was:



Patients
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−1

0.92
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· βCS + ε (3.2)

with ε ∼ N (0,Σ).

3.7 Objectives of the study and starting hypo-

theses

The main objective of this work is to investigate and possibly identify the

effective connectivity features that ma discriminate patients able to achieve

the carry-over effect from other that do not show stable improvements.

In general, we want to gather further insights in the motor control circuits,

with the aim of corroborating the Active Inference alternative account for

motor control. In this context, borrowing the idea from the predictive cod-

ing framework, we assumed our model as a hierarchy, with different regions

(or nodes) operating at different hierarchical levels, each acting as interface

between converging bottom-up errors and top-down predictions. This re-

current exchange proceeds until prediction error is minimised at all levels of

the system.

Also, in order to better understand motor loop updating mechanism re-

lated to brain plasticity processes during motor recovery, we are interested

in observing the longitudinal changes in effective connectivity, in patients

attending FES-based motor rehabilitation treatment.
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Based on the work done and the results reported in previous studies, and

based on researches in the literature, we have some starting hypotheses:

• The first hypothesis, as anticipated, is to assume the Active Inference

account for motor control. In this view, we expect to observe an ”up-

date” of the information about the proprioceptive prediction sent from

SMA and/or M1 toward S1, as the efference copy of the signal sent

to spinal cord centres of motor control. ”Update” here means we ex-

pect FES to have a modulatory effect over this connection (B matrix).

Conversely, an abnormal behaviour of these connections could be ob-

served in nCE group as possible cause of the missed of achievement of

carryover effect.

• Secondly, we expect to observe a possibly negative value of the estim-

ated mean value of the intrinsic (A matrix) and extrinsic (B matrix)

connection from SMA to M1, as the result of the suppressive activity

that SMA exerts over M1 [14, 121, 12], in abnormal environmental

conditions, in order to suppress standard motor programs in favour of

alternative ones.

• A third hypothesis is based on the fact that the AG is thought to

compute action awareness [8] and to be responsible for detecting dis-

crepancies between intended action and movement consequences: we

expect to observe, at least in a healthy control circuit, non-zero con-

nections from SMA/M1 and S1 toward AG, as this region should in-

tegrate both sensory proprioceptive information and motor planning

information. From the same infromation, and based on previous find-

ings about abnormal activation of AG in nCE patients, we expect to

detect differences in parameters between CE/nCE patients, indicating

different activation in this region (in nCE there could be a less precise

mechanism of motor planning resulting in increased computed predic-

tion error, i.e., discrepancy between intended and performed action).

• Finally, we expect to observe similarities between healthy subjects

and CE patients, indicating similar activation in SMA between the

two groups, as reported in [8].
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Chapter 4

Results and Discussion

4.1 Results

4.1.1 Participants

Activation maps analysis for the healthy controls group and the patients

have been previously descrived in [6][8], and their analysis goes beyond the

goal of this work.

MNI coordinates of mean ROI baricenters, along with their variability (±)

in terms of standard deviation are reported for healty group and patients,

in Table 4.1 and Tabel 4.2, respectively.

4.1.2 DCM results

In the previous chapter, the procedure employed to define and explore the

model space has been discussed along with the methods for assessing para-

meters estimates at the group level. Below are the results about inference

on model structure, first, and inference about parameters of the resulting

model, then.

Inference about model structure

As described in Chapter 5, the identification of model structure was carried

out in a step-wise process, defining at first healthy subjects model structure

(one matrix at a time) and then reviewing patients model structure.

Concerning C matrix structure identification, the posterior probabilities

of the three specified competing models are shown in Figure 4.1a. As can

be seen, the posterior probability of Model 1 over competing models was

0.81, resulting in a strong evidence supporting this model. Therefore, the



x y z

M1 −4.3± 3.9 −30.8± 9.9 64.8± 10.9

S1 −7.6± 3.8 −43.9± 10.6 66.8± 9.2

SMA −4± 2.5 −10.1± 13.4 65.8± 6.4

AG −37.8± 10.1 −67.5± 6.4 43± 9.4

Table 4.1: Healthy ROI coordinates (mean ± standard deviation).

x y z

M1 −4.3± 3.2 −23± 10 67± 8.1

S1 −4.4± 4.3 −35.4± 9.3 67.4± 6.5

SMA −3.3± 2.7 −11.5± 9.4 67.4± 6.1

AG −46.9± 7.2 −59.1± 9 33.6± 12

Table 4.2: Patients ROI coordinates (mean ± standard deviation).

resulting parameters estimated values were strongly affected by estimates of

model 1, being the model with far greater weight in the subsequent Bayesian

model average, reported in Figure 4.1b.

Model 1 indicates the presence of input V on both M1 and SMA, suggesting

that the voluntary intention to execute a movement is processed by the two

cooperating areas.

During the study of A matrix structure, a 2-phase method has been

used. The first phase consisted in the definition (and scoring) of a model

subspace which elements were formed by combinations of bidirectional con-

nections. Posterior model probabilites for each of the 16 specified competing

models are reported in Figure 4.2a. As shown, the best model had a pos-

terior probability of 0.64 over competing models (positive evidence), and was

the one where the bidirectional connection between M1 and AG has been

discarded, as represented in Figure 4.2b. Although not equipped with a

strong evidence, the ”winning” model revealed a poor contribution of the

bidirectional connection M1 ←→ AG to the model evidence. This result

is in agreement with the lack of evidence in the literature supporting the

presence of functional or anatomical connections between the two areas.

In the second phase, the former result was applied, i.e. the bidirectional

connection M1←→ AG was discarded from the model; combinations of the

remaining 6 connections produced a model space of 64 competing models.

Posterior probabilities for the 64 model are shown in Figure 4.3a. The

model with the grater posterior probability corresponds to the ”full” model,

that, however, had a posterior probability lower than 0.5 (weak evidence).
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4.1. Results 85

(a) (b)

Figure 4.1: (a) Posterior probabilities among 3 competing models; (b) Representation

of posterior expectations (grey bars) and their 95% confidence intervals (pink bars),

after BMA.

(a) (b)

Figure 4.2: (a) Posterior probabilities among 16 competing models; (b) schematic of

resulting best model: yellow connections are those who were subjected to test and

survived.



(a) (b)

Figure 4.3: (a) Posterior probabilities over 64 alternatives for the A matrix; (b) repres-

entation of posterior expectations (grey bars) and their 95% confidence intervals (pink

bars), after BMA.

Therefore, in the subsequent Bayesian model averaging (Figure 4.3b) over

the models within the Occam’s window, no further connections were dis-

carded from the model, even though some of them had distibutions whose

means were not significantly different from zero. This will be further dis-

cussed in the next paragraph about inference on model parameters.

Concerning the analysis of B matrix structure, model space was not

explicitly defined, as no a priori hypotheses were made about modulatory

effects of input E. Thus, an exhaustive search over all possible combinations

of B matrix connections has been performed. A schematic representation of

the resulting model is showed in Figure 4.4a along with the representation

of parameters estimates after BMA (Figure 4.4b). In red are represented

the connections modulated by input E. As described in Chapter 5, model

structure of patients group was obtained starting from the results coming

from Healthy subjects group, i.e. with respect to matrices A and C, they

were initially defined as obtained from healthy subjects analysis and then

further inspected, by performing a greedy search over all possible combin-

ations of remaining parameters (B matrix was initialised as full and then

tested). Furthermore, in patients group, PEB model has been defined using

a design matrix containing several regressors, modeling different group ef-

fects, such as carry-over effect and time, and clinical measures (i.e. capacity

score).
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(a) (b)

Figure 4.4: (a) Representation of surviving B matrix connections; (b) representation of

posterior expectations (grey bars) and their 95% confidence intervals (pink bars), after

BMA.

Inference about parameters

For what concerns healthy subjects a representation of the resulting model

is reported in Figure 4.5a. Here a schematic of the model is shown, with

blue values indicating intrinsic connectivity estimates and red values indic-

ating modulatory effects of input E. Green values indicate contributions of

voluntary and proprioceptive inputs (V and P). In Figure 4.5b a graphic

representation of individual matrices is reported, with associated paramet-

ers estimates and their significance (i.e. probability of being different from

zero). Reported values have been thresholded for a significance Pp ≥ 0.8,

i.e. estimates with lower significance has not been reported.

Results about patients model structure and parameters group estimates are

reported in Figure 4.64.74.8. Here parameter estimates are reported (with

color levels) for each first level matrix, highlighting each regressor contribu-

tion (second level estimate). As anticipated, in patients analysis second level

GLM was modeled using several regressors included in the design matrix;

assuming there are n parameters at the first level (A, B, C matrices), and l

regressors at the second level, the inversion of a PEB model would produce

a set of n × l parameters. Basically, that corresponds to split each of the

three matrices at the first level into l matrices at the second level, represent-

ing estimates of the group effects included. In our case we had 4 regressors
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88 Chapter 4. Results and Discussion

(a) Model connectivity structure. Overall rep-

resentation of final resulting model for healthy

subjects; blue values are relative to intrinsic con-

nections in matrix A, red values are relative to

modulatory effects of input E (FES) in matrix

B, green values indicate driving inputs (V, E, P)

contribution in matrix C.

(b) Matrix representation. Estimated posterior means µ and their significance level Pp,

expressed for each first level matrix (from left to right: C - driving inputs; A - intrinsic

connectivity; B - modulatory effects of input E).

Figure 4.5



modelling mean, carry-over, time and capacity score; among these, we are

mostly interested in the carry-over and time regressors, in order to differ-

entiate the behaviour within 4 patients subgroups, i.e. CE-pre, CE-post,

nCE-pre and nCE-post. Schematics of the models for these 4 groups are re-

ported in Table 4.9, along with the overall parameters values, resulting from

the contribution different regressors; here the contribution of the capacity

score regressor has been intentionally ignored, as to isolate and neglect the

inter-subject variability component associated to residual capability, that

could behave as a confounding effect. In order to address punctual values

of first level parameters, considering the contribution of all group effects

(except for capacity score), estimated second level parameters have been

thresholded, using a significance threshold of Pp ≥ 0.80. Then, the over-

all distribution for each parameter at the first level have been calculated as

sum of Gaussian distributions, i.e. having a mean equal to the sum of means

and a variance equal to the sum of variances; after this step a further signi-

ficance threshold has been applied on the resulting overall distribution. It

must be taken into account that distribution means of second level estimates

are multiplied by the regressor, that indeed express different contributions

across subjects. We remember that the design matrix regressors, reported

in Chapter 5, were defined as follows: the carry-over regressor contained

1s for CE patients and −1s for nCE subjects; the time regressor contained

1s for PRE sessions and −1s for POST sessions. Note also that, in recent

versions of SPM software, as the one used during this work (SPM12), self

connections are hyper-parameterised as S = −0.5 × e(Aii+Bii), in order to

ensure them to have negative values and therefore maintain the stability of

the dynamic system.

Inside Figures 4.6, 4.7, 4.8, self connectivity log-values are reported, as

estimated by the SPM software. In Table 4.9, instead, self connectivity

values have been transformed (through the exponential function) and re-

ported as if they were normal rates of change of activity in the regions of

the dynamic system.

4.2 Discussion

The aim of this thesis was to examine the longitudinal changes in motor

control loop mechanisms, influenced by FES treatment during motor tasks,

and to investigate the underlying features of carry-over effect, by evaluating

differences among healthy subjects and groups of patients.

One fundamental hypothesis we started from, and we hoped to confirm,

was the assumption of the Active Inference account for motor control as
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(a)

(b)

Figure 4.6: (a) Second level estimated parameters (thresholded for Pp ≥ 0.8) relative

to C matrix, explicited for each regressor (µ is the parameter posterior mean, Pp is

the probability of the parameter to be different from zero); (b) estimated means (grey

bars) along with their 95% confidence intervals (pink bars).

From left to right panels represent: group mean (βmean); carryover effect (βcarryover);

time (βtime); capacity-score (βCS). Colour levels express the magnitude of the value,

i.e., red tones are for positive values, blue tones are for negative values.

underlying working mechanism. In this context, we borrowed the idea form

the popular predictive coding framework, as reviewed by Friston and col-

legues in 2010 [9], that models the brain as a hierarchical inference engine,

trying to optimize probabilistic representations of what caused its sensory

inputs. From this perspective, different brain regions operate at different

hierarchical levels, acting as interfaces between the converging bottom-up

errors and the top-down predictions. Top-down predictions are conveyed by

backward connections and are compared with the representations being gen-

erated within the region, with the difference between the two reflecting the

prediction error. This prediction error is then forwarded to higher levels to
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(a)

(b)

Figure 4.7: (a) Second level estimated parameters (thresholded for Pp ≥ 0.8) relative

to A matrix, explicited for each regressor (µ is the parameter posterior mean, Pp is

the probability of the parameter to be different from zero); (b) estimated means (grey

bars) along with their 95% confidence intervals (pink bars).

From left to right panels represent: group mean (βmean); carryover effect (βcarryover);

time (βtime); capacity-score (βCS). Colour levels express the magnitude of the value,

i.e., red tones are for positive values, blue tones are for negative values.

adjust and optimize the predictions. The recurrent exchange of bottom-up

prediction errors and top-down predictions proceeds until prediction error

is minimized at all levels of the system. Each hierarchical level contains

both error units, computing prediction error, and state units, processing the

desired prediction. Therefore, error-units receives messages from the state-

units of the same level and the level above, and state-units are driven by

error-units of the same level and the level below.

In our model, M1 and S1 act as low level areas, in that they represent

input-output nodes of the system: input is ascending sensory feedback from

the peripheral proprioceptors (in muscles, tendons, joints) reaching S1, while
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(a)

(b)

Figure 4.8: (a) Second level estimated parameters (thresholded for Pp ≥ 0.8) relative

to B matrix, explicited for each regressor (µ is the parameter posterior mean, Pp is

the probability of the parameter to be different from zero); (b) estimated means (grey

bars) along with their 95% confidence intervals (pink bars).

From left to right panels represent: group mean (βmean); carryover effect (βcarryover);

time (βtime); capacity-score (βCS). Colour levels express the magnitude of the value,

i.e., red tones are for positive values, blue tones are for negative values

output is descending prediction signal (desired proprioceptive consequences)

sent from M1 toward skeletal muscles, through the pyramidal tract. SMA

an AG are assumed to be higher order areas, operating at the upper level

in the hierarchy, responsible for higher processing of preditions and predic-

tion errors. In fact, the supplementary motor area (SMA) has long been

thought to have a special role in the internal generation of complex move-

ments [122][123][124][125] and so to be responsible for higher order aspects

of motor planning. SMA is also known to be involved in the organization

of movements through a suppressive influence of standard motor planning

in favor of an alternative one, when environmental conditions changes are
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Figure 4.9: 2×2 factorial representation of patients model structure, along with estim-

ated parameter posterior means. Values are obtined as θi = βmean±βcarryover±βtime.

Blue values are relative to intrinsic connections in matrix A, red values are relative to

modulatory effects of input E (FES) in matrix B, green values indicate driving inputs

(V, E, P) contribution in matrix C. Values are reported for each subgroup, localised as

follows: in the upper left panel is the CE-PRE subgroup; in the upper right panel is

the nCE-PRE subgroup; in the lower left panel is the CE-POST subgroup; in the lower

right panel is the nCE-POST subgroup.

in place [14][126][127][12][121]. AG is assumed to be a multi-sensorial integ-

ration hub [101], also able to process discrepancies between intended action

and movement consequences, in such a way that they con be consciously

detected by the subject [117].

In such a working architecture, the top-down predictions are based on previ-

ous knowledge of the external world, similar learned experiences that can be

retrieved, and the awareness of own action (sense of agency). They may also

come from other subsystems that maintain the intention (i.e., the planned

action/decision to be made) and the saliency and the priority given to par-

ticular events of interest.
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M1/SMA −→ S1 connections

Regarding the assumption of Active Inference account for motor control,

important parameters to analyse are those identifying connections direc-

ted from primary and supplementary motor areas toward primary somato-

sensory area (M1/SMA←→ S1), in that these regions (SMA, M1) are the

main responsible for the processing of motor plans and the aforementioned

connection should carry the proprioceptive prediction of the voluntary move-

ment to S1, within which this prediction should be compared with the true

propiroceptive information coming from the periphery, to generate an error.

According to Active Inference theory, then, we would expect that the pres-

ence of FES, perturbing the proprioception, would results in an update of

the prediction sent from motor areas toward S1.

Considering healthy patients group, we observed a mean value of −0.36 in

intrinsic connectivity (i.e. A matrix) from M1 to S1 and a value of 0.49 of

the modulatory contribution of input E over this connection (i.e. B matrix).

On the other hand, a reverse behaviour has been observed on the connection

from SMA to S1, which estimated values are 0.23 for intrinsic connectivity

and −0.74 for modulatory effects. Our interpretation recalls the concept of

sensory suppression, widely reported in the literature [128][129][130][131].

This phenomenon involves a reduction in sensory perception that occurs

during movement, also called movement-related gating. This function of

sensory suppression is most likely to suppress redundant movement-related

feedback that can be predicted from the motor commands so that the percep-

tion of unexpected or novel inputs is enhanced. The central motor command

plays a key role in generating sensory suppression. Peripheral feedback from

the moving limb also contributes because sensory suppression is seen during

passive movement as well, i.e. in the absence of a motor command. We

suggest that, in healthy subjects, the observed suppressive influence that

M1 exerts over S1 in normal conditions (no FES), it is due to the sensory

suppression mechanism. During FES, instead, SMA exhibit a suppressive

effect over S1 while M1 to S1 connection become positive. This behaviour

can be explained thinking about the role of SMA in higher order processing

of complex movements and its function of suppression of habitual motor pro-

grams in presence of environmental changes. We propose that, because ankle

dorsiflexion is a fairly simple movement for subjects with no neurological

impairment, in absence of FES, M1 is mostly in charge of movement pro-

gramming (SMA has a minor contribution due to simplicity of movement),

and, accordingly, seonsory suppression is exerted mostly by M1. Conversely,

during FES, the contribute of SMA becomes important, resulting in the sup-
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pression of M1 activity (see M1 ←→ SMA section for details) in favour of

an alternative motor planning; hence, it is SMA responsible of the sensory

suppression, of predicted sensory causes of the movement, over S1.

In patients, the intrinsic connection from M1 to S1 seems to be salient, while

the modulation parameter has an estimated value of −0.66 ± 0.28t, where

0.28t represents the estimated parameter of the time regressor (PRE = 1,

POST = −1). The connection from SMA to S1 has been estimated to be

positive in both intrinsic and modulatory connections, with values of 0.14

and 0.73 (no group effects), respectively. As can be seen, the behaviour of

modulatory effects is opposite with respect to healthy subjects, indicating

possibly a misbehaviour of the updating the proprioceptive prediction sent

to S1 and, therefore, of the tactile suppression mechanism. In patients, these

functions are compromised, probably due to the lack of self-confidence about

motor program.

S1 −→M1/SMA connections

In the reverse direction, representing the prediction error sent back from

S1, for the connection S1 −→M1, estimated values are 0.51 (intrinsic) and

0.22 (extrinsic), for healthy subjects and 0.57±0.13t (intrinsic) for patients,

where 0.13t is the estimated value for time regressor; extrinsic connection

in patients was discarded. For connection S1 −→ SMA estimates are 0.20

for intrinsic connectivity of healthy subjects (extrinsic parameter was dis-

carded), while for patients intrinsic connectivity value is 0.25 and extrinsic

connectivity value 0.41. FES has modulatory effects on S1 −→M1 but not

over S1 −→ SMA, in healthy subjects. This reconfirm the hypothesis of

the different contributions that these two regions have in the motor planning

between the two groups: for healthy subjects, ankle dorsi-flexion represents

a simple movement, requiring little assistance from SMA in the program-

ming of the movement, while for impaired patients, M1 contribute is not

sufficient and the processing support of SMA is required. In fact, modula-

tion of FES in patients can be observed over S1 −→ SMA connection but

is absent on S1 to M1. Moreover, in patients, a time effect is observed over

the connection from S1 to M1, showing a slight decrease of the magnitude of

this connection over time. This result might be explained by the fact that

patients attending FES based rehabilitation, gets more used to electrical

stimulation as time passes by, and the ”surprise” effect decreases as this

procedure becomes habitual, i.e. the prediction error signal sent from S1 to

M1 decreases as rehabilitation proceeds forward.
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M1←→ SMA connections

A second aspect on which we focused, was the bidirectional connectivity

between M1 and SMA. In fact, we know from literature that supplementary

motor areas exert a suppressive action over primary motor areas, whenever

a perturbation of standard external conditions is present [14][21][22]. This

suppression of habitual motor planning happens in favor of alternative pre-

dictions planned by SMA. Concerning SMA to M1 connection, in healthy

subjects the intrinsic value was estimated to be −0.17 , and the modu-

latory effect −0.32. The fact that the experimental context represents an

unusual situation (experimental set-up with MRI, auditory cues, first time

FES) could be the cause for the suppressive activity of SMA even in normal

conditions, i.e. without electrical stimulation. Accordingly, the presence of

FES, introducing a further disturbance of normal considitons, enhances this

effect. Indeed, FES artificially induces part of the movement, in sinergy with

muscle activation. It can thus help the completion of the desired action (for

patients), or it can only introduce a disturbance.

In patients, the estimated mean value for intrinsic connectivity is −0.19

(no group effects), consistent with healthy subjects behavior. This is in

agreement with the findings reported by Gandolla and collegues in 2016 [8]

about the similarity in activation patterns of SMA between CE patients

and healthy subjects. In modulatory effects, differences in both CE/nCE

patients and PRE/POST sessions have been observed; in particular, estim-

ated parameters values are ∓0.39ce for the carry-over regressor and ±0.51t
for the time regressor. This means that the component of modulatory effects

relative to the time course of the treatment goes toward more negative values

with the passing of time (i.e. in POST treatment sessions SMA contribute

is higher, when concomitant FES is applied), meaning that the more the

patients practice with FES treatment, the more this suppressive mechanism

is enhanced, as they are more capable of to consider the disturbance of ex-

ternal conditions in their control loop, or from another point of view, they

can take advantage of the ”help” of FES. Carry-over estimated compon-

ent values suggests that nCE patients have a decreased suppressive action

of SMA over M1, while in CE patients this effect reflects the behavior of

halthy subjects. Interestingly, if we observe the value of modulatory para-

meter, combining carry-over and time effects, we observe that CE-PRE and

nCE-POST patients have similar values, close to zero and indeed with a low

significance probability (i.e. Pp < 0.80), CE-POST patients have a negative

value (suppression) in agreement with healthy subjects, and nCE-PRE pa-

tients have a highly positive value, indicating a clear faulty action of SMA

96



suppressive job.

Looking at connection from M1 toward SMA, we observed consistent negat-

ive values in both healthy a patients groups, either for intrinsic and extrinsic

(modulatory) connections. Estimated values for the healthy group are −0.15

and −0.47 for intrinsic and extrinsic connections, respectively. For patients

intrinsic connectivity parameter has a value of −0.21, while extrinsic con-

nectivity parameter estimated values is−0.75. The interpretation on the role

of this connection is unclear, due to the indirect nature of it: this is most

likely via re-entrant feedback from M1 to basal-ganglia-thalamo-cortical cir-

cuits, which link the SMA and are known to be crucial for the initiation and

control of voluntary action [14][132]. However, the estimated values ensure

the presence of a negative feedback from M1 to SMA, in ageement with

what Kasses and collegues reported in 2007 in a study on the suppressive

influence of SMA over M1 during motor imagery [14].

C matrix discussion

C matrix overall parameters have all positive values for both patients and

healthy groups. However, a significant difference between CE and nCE

patients is observed, i.e., the estimated parameter relative to the carry-over

regressor has a negative value: the proprioceptive input results to be lower

in nCE patients, indicating that these subjects are less able to exploit and

integrate the proprioceptive information in the motor control loop. This

reduced sensitivity of nCE patients to proprioceptive information could be

partly responsible for their inability to achieve stable improvements, due

to the fundamental role of sensory-motor integration in the motor control

mechanism. Another interesting result is about the Capacity-Score related

component, which has been estimated to have a negative contribution over

the voluntary input acting on SMA (V −→ SMA), i.e., the more a patient

has residual capacity, the less is the effect of voluntary input on SMA. This

result can be justified by the involvement of SMA in higher order processing

of complex movements. This translates to the fact that the contribution of

SMA in the motor planning gets lower, as the residual motor ability gets

higher, as indicated in previous longitudinal and cross-sectional studies on

activation changes during motor recovery [133][134].

AG connections

The interpretation of effective connectivity related to AG is not trivial, due

to the versatility and complexity of the functions performed by AG and

due to the absence of direct structural connections with other regions of the
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model.

A major observation we can make, is about effective connections coming

from SMA and S1. These connections, at least in healthy subjects, have not

been discarded from the model, indicating that indeed AG has at some ex-

tent a role in calculating the discrepancy between intended action (proprio-

ceptive prediciton from SMA) and movement consequences (real prorpio-

ception from S1). Similarly, in patients, the estimated parameters for this

connection, associated to the capacity-score regressor, have values that are

consistent with those of healthy subjects, i.e. the more the patient has re-

sidual capability, the more these connections behave as those of a health

subject.

Moreover, concerning the self-connection of AG, we observed a difference

between CE and nCE patients in extrinsic connectivity; in fact, the es-

timated value for the second level parameter of the carry-over regressor is

−0.94 ∓ 0.25ce, where ∓0.25ce is the carry-over related component (multi-

pliers are: CE = 1, nCE = −1). It is not clear how this result should

be interpreted in terms of activation patterns, due to ambiguity of self-

connections role. However, this group difference can be linked with what

Gandolla and colleagues (2015) [10] reported about an increased activation

of AG in nCE with respect to CE an healthy subjects, during the same FES

treatment.

Self Connections

Relatively to other self-connections, as anticipated, their interpretation re-

mains controversial, due to the requisite of constraining these parameters to

be negative, in order to mathematically ensure the stability of the dynam-

ical system. However, differences in self-connectivity have been observed

between CE and nCE group of patients; in particular, these differences in-

volved primary and supplementary motor areas, reflecting a similar activa-

tions of these regions of CE patients with healthy subjects, and abnormal

ones in nCE patients, in accordance with observed activation patterns in

Gandolla et al. (2016) [8]
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Chapter 5

Conclusions and Future

research directions

In conclusion, we presented a customised hierarchical approach for the iden-

tification of brain network structure (including M1, S1, SMA and AG) when

investigating multiple matrices of the bilinear equation.

Following is reported a summary list of the hypotheses we started with and

we wanted to verify:

1. Active Inference account: we expected modulation of SMA/M1 −→
S1 by input E (i.e. during FES) in healthys and CE;

2. Suppressive activity of SMA over M1: both in normal conditions and

during FES we expected estimated negative values in intrinsic and

extrinsic connectivity parameters;

3. AG computes action awareness: we expected non-zero intrinsic con-

nections SMA/M1 −→ AG;

4. Similar activation in SMA, between healthy subjects and CE patients:

we expected differences between CE and nCE in parameters relative

to this region.

This study has highlighted a profound interaction between artificially altered

sensory feedback and volitional movement in healthy subjects. This inter-

action, involving both motor areas and the somato-sensory area, is reflected

by changes in coupling between these regions, supporting an active inference

account of motor control, in which sensorimotor integration rests upon the

context-sensitive assimilation of descending motor predictions. However, in

patients this mechanism seems to be disturbed, indicating some sort of mal-

function in proprioceptive prediction propagation toward S1, even in those



who presented stable improvements after the rehabilitation.

Secondly, the hierarchical nature of the motor processing in the brain has

been exposed. Results have highlighted the role of SMA as higher order

motor processing unit responsible for complex movements, and its super-

intendance role in suppressing standard motor plans as external conditions

changes occur.

This latter aspect resulted to be an important feature, underlining both a

role in the achievement of carry-over effect, and the changes this connection

undergoes throughout the rehabilitation program. A further interesting and

important characterization of nCE patients points toward their inhability

to integrate sensorial proprioceptive information within the motor control

loop, as highlighted by the results regarding the contribution of propriocept-

ive (P) experimental input over S1.

Even though the angular gyrus seemed to be a potentially interesting region

to inspect, it did not reveal much about its role within the motor control

loop; further studies should be made to have a better insight about this

area. Still, a difference in patients with and without carry-over has been ob-

served, in terms of self-connectivity, pointing to abnormal responses in AG

as indicator that the FES carry-over effect is unlikely, as previously reported

in literature.

In conclusion, we were able to confirm some of the initial hypotheses we

had, while other have not been verified; on the other hand, we observed

some interesting behaviours, not completely expected, that, however, are in

agreement with the literature.

Some of the most important limitations of this study are related to the

AG, in that, due to the wide range of functions this area is associated with,

and the lack of direct connections with the other considered cortical regions

(M1, S1, SMA), the model we built seems to be too simple, from the point

of view of the number of regions considered, to obtain useful information

about effective connectivity of the angular gyrus, and its role in motor con-

trol. Other limitations concern available fMRI data: brain volumes used in

this work and acquired during previous studies was missing the cerebellum

area, which is considered to give a major contribution in the generation of

motor commands. Thus, in future developments, it would be appropriate to

use novel images that includes this region, or, alternatively, to incorporate

in the model deeper cortical regions, such as the cingulate gyrus.

In this direction, since increasing the number of nodes can considerably in-

crease the complexity of the model and consequently it can make estimation

and interpretation less precise, it would be certainly interesting to create
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separated DCMs for subcircuits of motor control loop and combine inferred

effective connectivity information thus found.

One consideration has to be made about repeated measures: the fact that

for each patient two sessions have been acquired, at different times, it was

not properly taken into consideration, if not inserting the time regressor in

the design matrix. Another approach, could be that of using a third level

in the hierarchy, i.e. creating a PEB model for each subject modelling the

time course variations, around a subjec-specific mean, and then creating a

further PEB of PEBs modelling effective group effects between subjects.

Another important limitation regards the number of subjects involved. All

the procedures described in this work try to make inferences about the

”population” of post-stroke patients (or healthy subjects), based on cer-

tain statistics calculated from a sample of subjects. Thus, it would be very

important to have a data-set as wide as possible, so that the resulting con-

clusions were as robust as possible. In future studies, then, new subjects

(both healthy and impaired) should be recruited for the collection of new

data.

Finally, the same approaches and procedures employed in this work, for

the investigation of motor control loop in healthy subjects and post-stroke

patients, could be used to gain new insights in other types of pathologies.
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[117] Chlöé Farrer, Scott H. Frey, John Darrell Van Horn, Eugene Tunik,

David J. Turk, Sara K. Inati, and Scott T. Grafton. The angular

gyrus computes action awareness representations. Cerebral cortex, 18

2:254–61, 2008.

[118] Amanda K Kinnischtzke. Cell type specific connections from primary

motor to primary somatosensory cortex. July 2013.

[119] Maxime Guye, Geoffrey J.M Parker, Mark Symms, Philip Boulby,

Claudia A.M Wheeler-Kingshott, Afraim Salek-Haddadi, Gareth J

Barker, and John S Duncan. Combined functional mri and tracto-

graphy to demonstrate the connectivity of the human primary motor

cortex in vivo. NeuroImage, 19(4):1349 – 1360, 2003.

[120] Francesco Vergani, Luis Lacerda, Juan Martino, Johannes Attems,

Christopher Morris, Patrick Mitchell, Michel Thiebaut de Schotten,

and Flavio Dell’Acqua. White matter connections of the supplement-

ary motor area in humans. Journal of Neurology, Neurosurgery &

Psychiatry, 85(12):1377–1385, 2014.

114



[121] Franz-Xaver Neubert, Rogier B. Mars, Ethan R. Buch, Etienne

Olivier, and Matthew F. S. Rushworth. Cortical and subcortical inter-

actions during action reprogramming and their related white matter

pathways. Proceedings of the National Academy of Sciences of the

United States of America, 107 30:13240–5, 2010.

[122] Nathalie Picard and Peter L. Strick. Activation of the supplementary

motor area (sma) during performance of visually guided movements.

Cerebral Cortex, 13(9):977–986, 2003.

[123] Ray M. Chu and Keith L. Black. Chapter 8 - current surgical man-

agement of high-grade gliomas. In Schmidek and Sweet Operative

Neurosurgical Techniques (Sixth Edition), pages 105 – 110. W.B. Saun-

ders, sixth edition edition, 2012.

[124] JM Orgogozo and B Larsen. Activation of the supplementary mo-

tor area during voluntary movement in man suggests it works as a

supramotor area. Science, 206(4420):847–850, 1979.

[125] Ingo Hertrich, Susanne Dietrich, and Hermann Ackermann. The role

of the supplementary motor area for speech and language processing.

Neuroscience & Biobehavioral Reviews, 68:602–610, 2016.

[126] Claire Wardak. The role of the supplementary motor area in in-

hibitory control in monkeys and humans. Journal of Neuroscience,

31(14):5181–5183, 2011.

[127] J. Yang and H. Shu. The causal interactions between bilateral m1 and

sma during verb comprehension, motor imagery and hand motion.

Archives of Neuroscience, 1(3), 2014.

[128] Kazuhiko Seki and Eberhard E. Fetz. Gating of sensory input at

spinal and cortical levels during preparation and execution of volun-

tary movement. Journal of Neuroscience, 32(3):890–902, 2012.

[129] Patrick Haggard and Ben Whitford. Supplementary motor area

provides an efferent signal for sensory suppression. Cognitive Brain

Research, 19(1):52 – 58, 2004.

[130] Manuel A. Castro-Alamancos and Elizabeth Oldford. Cortical sensory

suppression during arousal is due to the activity-dependent depression

of thalamocortical synapses. The Journal of Physiology, 541(1):319–

331.

115



[131] Georgiana Juravle, Gordon Binsted, and Charles Spence. Tactile sup-

pression in goal-directed movement. Psychonomic Bulletin & Review,

24(4):1060–1076, 2017.

[132] G E Alexander, M R DeLong, and P L Strick. Parallel organization

of functionally segregated circuits linking basal ganglia and cortex.

Annual Review of Neuroscience, 9(1):357–381, 1986.

[133] N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak.

Neural correlates of motor recovery after stroke: a longitudinal fmri

study. Brain, 126(11):2476–2496, 2003.

[134] N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak.

Neural correlates of motor recovery after stroke: a cross-sectional

study. Brain, 126(6):1430–1498, 2003.

[135] F. Bloch, W. W. Hansen, and M. Packard. The nuclear induction

experiment. Phys. Rev., 70:474–485, 1946.

[136] F. Bloch, W. W. Hansen, and Martin Packard. Nuclear induction.

Phys. Rev., 69:127–127, 1946.

[137] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption

by nuclear magnetic moments in a solid. Phys. Rev., 69:37–38, 1946.

[138] P. C. Lauterbur. Image formation by induced local interactions: Ex-

amples employing nuclear magnetic resonance. Nature, 242:190, 1973.

[139] K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith,

and R. S. J. Frackowiak. Statistical parametric maps in functional

imaging: A general linear approach. Human Brain Mapping, 2(4):189–

210, 1994.

[140] K.J. Worsley, Alan Evans, Sean Marrett, and P Neelin. A three-

dimensional statistical analysis for cbf activation studies in human

brain. Journal of cerebral blood flow and metabolism : official journal

of the International Society of Cerebral Blood Flow and Metabolism,

12:900–18, 12 1992.

[141] K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and

A. C. Evans. A unified statistical approach for determining signific-

ant signals in images of cerebral activation. Human Brain Mapping,

4(1):58–73, 1996.

116



117

[142] David Parker, Xueqing Liu, and Qolamreza R. Razlighi. Optimal

slice timing correction and its interaction with fmri parameters and

artifacts. Medical Image Analysis, 35:434 – 445, 2017.

[143] Karl J. Friston, Steven Williams, Robert Howard, Richard S. J. Frack-

owiak, and Robert Turner. Movement-related effects in fmri time-

series. Magnetic Resonance in Medicine, 35(3):346–355, 1996.

[144] In Richard S.J. Frackowiak, Karl J. Friston, Christopher D. Frith, Ray-

mond J. Dolan, Cathy J. Price, Semir Zeki, John T. Ashburner, and

William D. Penny, editors, Human Brain Function (Second Edition).

Academic Press, Burlington, second edition edition, 2004.

[145] John Ashburner Stefan Kiebe Thomas Nichols William Penny,

Karl Friston. Statistical Parametric Mapping: The Analysis of Func-

tional Brain Images. Academic Press, 2006.

[146] Karl J. Friston, Christopher D. Frith, Peter F. Liddle, and Richard S.

Frackowiak. Comparing functional (pet) images: the assessment of

significant change. Journal of cerebral blood flow and metabolism :

official journal of the International Society of Cerebral Blood Flow

and Metabolism, 11 4:690–9, 1991.

[147] K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith,

and R. S. J. Frackowiak. Statistical parametric maps in functional

imaging: A general linear approach. Human Brain Mapping, 2(4):189–

210, 1995.

[148] Ludwig Fahrmeir and Gerhard Tutz. Multivariate statistical modelling

based on generalized linear models / ludwig fahrmeir, gerhard tutz.

SERBIULA (sistema Librum 2.0), 01 1994.

[149] Hinton G.E. Neal R.M. A view of the em algorithm that justifies

incremental, sparse, and other variants. 1998.

[150] K.J. Friston, D.E. Glaser, R.N.A. Henson, S. Kiebel, C. Phillips, and

J. Ashburner. Classical and bayesian inference in neuroimaging: Ap-

plications. NeuroImage, 16(2):484 – 512, 2002.



118 Chapter 5. Conclusions and Future research directions



Appendix A

MRI and fMRI principles

A.1 MRI principles

Nuclear magnetic resonance (NMR) is a non-invasive means of obtaining

clinical images and of studying tissue metabolism in vivo. Bloch and Pur-

cell independently discovered NMR in 1946 [135] [136] [137]. Six years later

they were awarded the Nobel Prize for their achievements. Since then, the

development of NMR spectrometers and NMR scanners has led to the open-

ing up of whole new branches of physics, chemistry, biology and medicine,

allowing to observe in-vivo human tissues up to that time unknown. The

process of acquiring two and 3D images by NMR, known as magnetic res-

onance imaging (MRI), was first illustrated by Lauterbur in 1973 [138] who

produced a 2D MR image of a phantom. Over the last 30 years, Fourier

transform imaging techniques have tremendously accelerated the develop-

ment of MRI.

The basic underlying physics of MRI is the same as that of NMR. At the

atomic level, nuclei exhibit a property known as nuclear spin, an intrinsic

angular momentum that can be visualized as a rotating motion of the nucleus

about its own axis. In quantum mechanics spin is represented by a magnetic

spin quantum number. Certain isotopes of elements have an odd number

of protons and/or neutrons such as 1H, 13C, and 15N, and have an overall

positive charge. As a result of having both electrical charge and nuclear

spin, the nuclei will possess an intrinsic magnetic moment µ in the direction

of the spin axis, and the relation can be represented as follows

|~µ| = γ|~I| (A.1)

where I is the angular momentum and γ is the gyromagnetic ratio. The

strength of the magnetic moment is a property of the type of nucleus. Hy-
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drogen nuclei 1H, as well as possessing the strongest magnetic moment, are

present in water molecules and consequently are in high abundance in bio-

logical material. For this reason hydrogen imaging is the most widely used

MRI procedure.

Consider a collection of 1H nuclei (spinning protons). In the absence of

an externally applied magnetic field, the magnetic moments have random

orientations and, therefore, the net magnetization is zero. However, if an

externally supplied magnetic field B0 is imposed, the magnetic moments

have a tendency to align with the external field.

The magnetic moments or spins are constrained to adopt one of two

orientations with respect to B0, denoted parallel and anti-parallel. Nuclei

with higher magnetic spin quantum number than 1H will adopt more than

two orientations. The spin axes are not exactly aligned with B0, they precess

around B0 with a characteristic frequency. The rate of precession ω0 is called

the Larmor frequency and it is directly proportional to the strength of the

magnetic field as expressed below

ω0 =
γB0

2π
(A.2)

where γ is the gyromagnetic ratio.

For a hydrogen nucleus, γH = 4257 Hz/Gauss. Thus at 1.5 Tesla (15,000

Gauss), F = ω0
2π = 63.855 MHz.

A.1.1 The net Magnetisation Vector

Considering a collection of 1H nuclei, when an external magnetic field is

applied, a certain amount of protons will align in the parallel state (high

energy) and others in the anti-parallel state (low energy) with respect to

the direction of the magnetic field. The reason why some spins adopt the

higher energy anti-parallel state is that spins may move from one state to

the other if an exact amount of energy, ∆E = E1 − E2 is supplied to the

system. This amount of energy could be provided in the form of thermal

energy. In fact, if the temperature of the system were absolute zero, all

spins would adopt the parallel orientation. Thermal energy thus will cause

few spins to assume the anti-parallel configuration. Let P1 and P2 be the

number of spins adopting the parallel and anti-parallel states respectively;

at room temperature in a 1.5 Tesla magnetic field there will be a population

ratio P2 : P1 equal to 100, 000 : 100, 006.

The magnetic moments of a collection of protons can be represented as

vectors. Each one of these vectors can be described by its components per-
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pendicular (Mxy) and parallel (Mz) to B0(supposing the direction of B0 is

aligned with the z-axis of R3).

The net magnetization vector can be expressed as ~M = îMz + ĵ Mx+ k̂ My.

For a large enough number of spins, each of which can assume one out of

two possible energy states which have anti-parallel orientation, individual

components perpendicular to B0 cancel, leaving only components in the dir-

ection parallel to the magnetic field. As most spins adopt the parallel rather

than the anti-parallel state, the net magnetization ~M is in the direction of

the B0 field.

A.1.2 Effects of Radio frequency Pulses

In order to obtain the magnetic resonance signal, radio frequency (RF) en-

ergy must be applied. Magnetic resonance will occur only when an electro-

magnetic field (in the radio frequency region of the electromagnetic spec-

trum) is applied with a frequency equal to the Larmor precession rate, in

order to match the energy difference ∆E between the nuclear spin-levels

under a constant field B0. The energy difference between the two states can

be expressed as

∆E = Eanti−parallel − Eparallel

=⇒ ∆E =
γ~B0

4π
− −γ~B0

4π
=
γ~B0

2π
= ~ω0

(A.3)

where ~ is the Planck’s constant. RF pulses at the Larmor frequency will

produce resonance and an efficient transfer of energy will occur, causing

nuclear spins to swap between parallel and anti-parallel states. The energy

transmitted by the RF pulse can be represented as follows:

~f = ∆E =
γ~B0

2π

=⇒ f =
γB0

2π
or ω = γB0

(A.4)

Like all other electromagnetic radiations, RF energy has electric and mag-

netic field components. If the magnetic field component of RF, represented

by B1, lies in the xy plane, it will produce a torque when acting in cohesion

with the net magnetization M . The x − y components of M will be made

coherent by the B1 field giving a net x − y component to M and hence

effectively causing M to tilt from the z direction into the xy plane.

After the RF pulse is applied, the magnetisation vector ~M is flipped by an

angle α, which is proportional to both the intensity of the RF pulse and

the duration τB1 . If the pulse is long and strong enough to rotate the net
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magnetisation ~M onto the transverse xy plane, then is termed as a 90◦ RF

pulse. Similarly, a 180◦ RF pulse would rotate net magnetisation towards

the -z direction. The flip angle α can be expressed as α = γB1τB1 . Once the

magnetisation vector is flipped by 90◦ and begins to precess about the B0

axis, the NMR signal can be detected thanks to a receiver coil, within which

an electromotive force is induced by the precessing magnetisation vector,

according to Faraday’s law of magnetic induction. From this received signal

an MR image can be reconstructed. The waveform the voltage or signal

induced in the receiver coil is termed free induction delay (FID). The mag-

nitude of the generated signal depends on the number of nuclei contributing

to produce the transverse magnetisation and on the relaxation times.

A.1.3 MR relaxation processes

Following termination of an RF pulse, the return of M to its equilibrium

state (the direction of the z − axis) is known as relaxation. In this phase

nuclei will dissipate their excess energy as heat to the surrounding environ-

ment (or lattice) and revert to their equilibrium position. There are three

factors that influence the decay of M : magnetic field inhomogeneity, longit-

udinal T1 relaxation and transverse T2 relaxation.

T1 relaxation (also known as spin-lattice relaxation) is the realignment of

spins (and so of M) with the external magnetic field B0 (z-axis), that leads

to a gradual increase in the longitudinal magnetization, and is defined as

the time the longitudinal magnetization takes to reach 63% of its final value,

following a 90◦ RF pulse. The process of equilibrium restoration follows a

growing exponential trend, described by the equation

Mz = M0(1− e−
t

T1 ) (A.5)

T2 relaxation (also known as transverse relaxation or spin-spin relax-

ation) is the decrease of the x-y component of magnetisation. Under the

influence of the RF pulse, protons begin to precess together or ”in phase”,

leading to the formation of the transverse magnetization; immediately after

the 90◦ RF pulse, these protons will rotate about their z-axis and start to

”dephase”. This occurs as a result of protons processing at slightly different

frequencies due to spin-spin interactions. Due to dephasing, the transverse

magnetization keeps decreasing until the protons are completely dephased,

at which the transverse signal becomes zero. The T2 relaxation constant

is defined as the time taken by the transverse magnetization to decay to

37% of its original value. Different tissues have different values of T2 which

gives rise to T2 contrast. The transverse magnetization Mxy is given by the
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following equation

Mxy = M0(e
− t

T2 ) (A.6)

Regarding magnetic field inhomogeneities, it is practically impossible to

construct an NMR magnet with perfectly uniform magnetic field strength

B0 and, despite the presence of additional hardware to assist the normaliza-

tion of the field, it is inevitable that an NMR sample will experience different

B0’s across its body so that nuclei comprising the sample will have different

processional frequencies (according to the Larmor equation). Due to this

difference in precessing frequency related to magnetic field inhomogeneities,

following an RF pulse, phase differences between nuclei will increase with

time and the vector addition of these phases will reduce Mxy as time goes

on. Basically this inohomegeity of the B0 field causes the dephasing effect

to be accelerated. Hence, typically we do not measure a pure T2 relaxation

time but rather a faster ralaxation called T2*, that characterises dephasing

due to both B0 inhomogeneity and transverse relaxation.

In order to obtain a signal with a T2 dependence rather than a T2* depend-

ence, a pulse sequence known as the spin-echo sequence has been devised,

which reduces the effect of B0 inhomogeneity on (Mxy). A pulse sequence

is an appropriate combination of one or more RF pulses and gradients with

intervening periods of recovery. A pulse sequence consists of several com-

ponents, of which the main ones are the repetition time (TR), the echo time

(TE), flip angle, the number of excitations (NEX), bandwidth and acquis-

ition matrix. Following is a brief description of how the spin echo pulse

sequence works.

After a 90◦ pulse, a MR signal is formed which decays with T2* character-

istics. At time TE/2, a 180◦ pulse is applied to the sample which causes the

spins to invert. After inversion, the order of the spins is reversed with the

fastest lagging behind the others. At time TE, the spins become coherent

again so that a signal (known as the spin echo) is produced. If a further 180◦

pulse is applied at time TE/2 after the peak signal of the first spin echo,

then a second spin echo is reduced from its previous peak amplitude due to

T2 dephasing which cannot be rephased by the 180◦ pulses. A line drawn

through the peak amplitude of a large number of spin echoes describes the

T2 decay, while individual spin echoes exhibit T2* decay.

Signal strength decays with time to varying degrees depending on the dif-

ferent materials in the sample. Different organs have different T1s and T2s

and hence different rates of decay of signal. When imaging anatomy, some

degree of control of the contrast of different organs or parts of organs is

possible by varying TR and TE. The intensity of a spin echo signal, I, can
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be approximated as

I = N(H) · f(V ) · (1− e−TR/T1) · e−TE/T2 (A.7)

where N(H) is the proton density and f(V ) is a function of flow.

A.1.4 MR Imaging

The NMR signal does not contain any spatial information. In order to de-

termine the actual location within the sample from which the RF signal was

emitted, magnetic field gradients are superimposed on the magnet generat-

ing the otherwise (almost) homogeneous external magnetic field B0. Hence,

gradient coils are used in MRI machines to vary the magnetic field in x,

y and z directions. Depending on their function, they are called the slice-

select gradient, the readout or frequency encoding gradient, and the phase

encoding gradients. Based on their directions, they can be termed as Gx,

Gy, and Gz respectively. According to equation (A.2), the magnetic field

gradient causes identical nuclei to precess at different Larmor frequencies.

Slice selection

Let consider the process of slice selection. When the gradient magnetic field

(Gz) is present, applying a single fraquency RF pulse to the whole sample,

only a narrow plane perpendicular to the longitudinal axis will match the

resonant frequency and consequently will absorb the RF energy. Everywhere

else in the sample is receiving the wrong frequency of excitation for resonance

to occur. This technique allows a slice, with thickness determined by the

magnetic field gradient strength, to be selected from a sample. Let ωs be

the frequency of the applied RF pulse applied over an axial slice (which

perpendicular to the long axis of the body) with a bandwidth of ∆ωs. Then

the nuclei which get excited will have precession frequencies between ωs +

∆ωs and ωs − ∆ωs. The thickness of the axial slice selected, is given by

the following equation where T is the slice thickness and Gslice is one of the

magnetic field gradients.

T =
2∆ωs
γGslice

(A.8)

Frequency encoding

The slice selection is followed by processes known as frequency encoding and

phase encoding. Three magnetic field gradients, placed orthogonally to one

another inside the bore of the magnet, are required to encode information

in three dimensions. With a slice selected and excited as described above,
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current is switched to one of the two remaining gradient coils (referred to as

the frequency encoding gradient) This has the effect of spatially encoding

the excited slice along one axis, so that columns of spins perpendicular to

the axis precess at slightly different Larmor frequencies. For a homogeneous

sample, the intensity of the signal at each frequency is proportional to the

number of protons in the corresponding column. The frequency encoding

gradient (Gx) is turned on just before the receiver is gated on and is left

on while the signal is sampled or read out. For this reason the frequency

encoding gradient is also known as the readout gradient. The resulting FID

is a graph of signal (formed from the interference pattern of the different

frequencies) induced in the receiver verses time. If the FID is subjected

to Fourier transform, a conventional spectrum in which signal amplitude is

plotted as a function of frequency can be obtained. Thus, a graph of signal

versus frequency is obtained which corresponds to a series of lines or views

representing columns of spins in the slice.

Phase encoding

Similarly, by the application of phase encoding gradient (Gy), we are able to

allocate different phase angle of spins to different spatial locations. A phase

encoding gradient is applied orthogonally to the other two gradients after

slice selection and excitation, but before frequency encoding. It serves as a

phase memory, remembering relative phase throughout the slice selection.

With both the gradients Gx and Gy acting together, the matrix of voxels

of the axial slice could be represented by unique groups of frequencies and

phase angles, one for each voxel in the slice. A Fourier transformation allows

phase information to be extracted so that a voxel (x,y) in the slice can be

assigned the intensity of signal which has the correct phase and frequency

corresponding to the appropriate volume element. The signal intensity is

then converted to a grey scale to form an image.

K-space

Applying the gradients mean that each voxel is spatially differentiated. As

the slice data is collected, it is slotted into a 2D representation called ”K-

space”, which is in the spatial frequency domain, by using two-dimensional

Fourier transform. Each point in the k-space represents a particular fre-

quency and phase and can be represented as (kFE , kPE): each column of k-

space contains the data obtained during one frequency encoding step. Each

row is filled in by repeating the phase-encoding steps. The two-dimensional

inverse Fourier transform of k-space data S(kx, ky), which is nothing but the
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spatial frequency with units cm−1, gives a complex image of ρ(x, y), which

has both real and imaginary components.

ρ(x, y) =

∫∫
S(kx, ky)e

i2π(kxx+kyy)dkxdky (A.9)

MR images are represented as the magnitude of these real and imaginary

components. In practice, since the data measurements are made discreetly

over a finite region, the discrete Fourier transform is used. The spatial resol-

ution of the image, in fact, depends on the number of k-space measurements

made and therefore there is a sort of trade-off between the number of meas-

urements (time of acquisition) and spatial resolution.

The most two popular ways of acquiring data in k-space are Echo-Planar

Imaging (EPI), which basically sample k-space in a sort of a cartesian ”zig-

zag” grid, and Spirals, which starts from the center and measures outward

following a spiral trajectory. It’s important to note that is not a one-to-one

relationship between the image space and k-space; this means that there

is not a single measurements in the k-space that gives all the information

about a single voxel of the brain, but rather all the points in k-space contain

a little information about every voxel so each individual point in the image

space depends on all the points contained in k-space.

A.1.5 MRI sequences

An MRI sequence is a combination of RF and gradient pulses which are

designed and sequentially arranged to acquire the data to form the desired

image. MRI signal intensity depends on many parameters, including proton

density, T1 and T2 relaxation times. Different pathologies can be selected

by the proper choice of pulse sequence parameters. Repetition time (TR) is

the time between two consecutive RF pulses measured in milliseconds. For a

given type of nucleus in a given environment, TR determines the amount of

T1 relaxation. The longer the TR, the more the longitudinal magnetisation

is recovered. Tissues with short T1 have greater signal intensity than tissues

with a longer T1 at a given TR. A long TR allows more magnetisation to

recover and thus reduces differences in the T1 contribution in the image

contrast. Echo time (TE) is the time from the application of an RF pulse

to the measurement of the MR signal. TE determines how much decay of

the transverse magnetisation is allowed to occur before the signal is read.

It therefore controls the amount of T2 relaxation. The application of RF

pulses at different TRs and the receiving of signals at different TEs produces

variation in contrast in MR images.



A.1. MRI principles 127

Spin Echo (SE) pulse sequence

The spin echo (SE) sequence comprises two radiofrequency pulses - the 90◦

pulse that creates the detectable magnetisation and the 180◦ pulse that re-

focuses it at TE. The selection of TE and TR determines resulting image

contrast. In T1-weighted images, tissues that have short T1 relaxation times

(such as fat) present as bright signal. Tissues with long T1 relaxation times

(such as cysts, cerebrospinal fluid and edema) show as dark signal. In T2-

weighted images, tissues that have long T2 relaxation times (such as fluids)

appear bright. In cerebral tissue, differences in T1 relaxation times between

white and grey matter permit the differentiation of these tissues on heavily

T1-weighted images. Proton density-weighted images also allow distinc-

tion of white and grey matter, with tissue signal intensities mirroring those

obtained on T2-weighted images. In general, T1-weighted images provide

excellent anatomical detail, while T2-weighted images are often superior for

detecting pathology.

Gradient Recalled Echo (GRE) pulse sequences

Gradient recalled echo (GRE) sequences, which are significantly faster than

SE sequences, differ from SE sequences in that there is no 180◦ refocusing

RF pulse. In addition, the single RF pulse in a GRE sequence is usually

switched on for less time than the 90◦ pulse used in SE sequences. The scan

time can be reduced by using a shorter TR, but this is at the expense of

the signal to noise ratio (SNR) which drops due to magnetic susceptibility

between tissues. At the interface of bone and tissue or air and tissue, there is

an apparent loss of signal that is heightened as TE is increased. Therefore

it is usually inappropriate to acquire T2-weighted images with the use of

GRE sequences. Nevertheless, GRE sequences are widely used for obtaining

T1-weighted images for a large number of slices or a volume of tissue in

order to keep scanning times to a minimum. GRE sequences are often used

to acquire T1-weighted 3D volume data that can be reformatted to display

image sections in any plane.

Summing up, spins or protons immersed in an external magnetic field pre-

cess around their axes as well as around the axis of the static magnetic field

and they have a position either parallel (low energy) or anti-parallel (high

energy) along the axis of the static magnetic field. A radio frequency pulse

is then used to knock that spin out of the alignment of the static magnetic

field after which precession occurs back to its original or resting state and by

using a radio frequency receiver one can measure the energy that is sent out
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by this precession process and measure either the longitudinal or transverse

relaxation time, that is the time that is necessary for that spins system to go

back to its relaxed or low energy state. By measuring that we can create a

T2 signature and different type of tissue have different relaxation times and

we can use that information to create an image of the structure that we’re

trying to create an NMRI image of. Basically MRI studies brain anatomy;

typically, structural images, or T1 images, are taken and these images have

high spatial resolution and can thus be able to distinguish different types

of tissues. Functional MRI instead studies brain function; here, functional

images, or T2* images, are taken and these images have lower spatial resol-

ution but higher temporal resolution. Here one can relate changes in signal

to experimental manipulations. An fMRI experiment consists of a sequence

of individual MR images, where one can study oxygenation changes in the

brain across time and then correlate it with whatever experimental manip-

ulation has been done.

A.2 BOLD signal

For what concerns functional MRI, it is based on very similar principles but

its focused on a slightly different aspect. The most common approach to-

wards fMRI uses the Blood Oxygenation Level Dependent (BOLD) contrast.

It allows to measure the ratio of oxygenated to deoxygenated hemoglobin

in the blood. This method exploits the difference in magnetic properties

of hemiglobin in its two states, oxygenated and deoxygenated. In its basic

resting state, the brain has capillaries, arteries and veins that manage the

blood supply to the brain, and there is a certain ratio of oxygenated versus

deoxygenated hemoglobin present. When neurons are active, or when a

particular area of the brain is active, there is an energy consumption and

consequently and increasing demand of oxygen and glucose to sustain this

activity; these substances are supplied to the brain by the vascular system

in order to replenish for this request. Therefore, at first oxygen is consumed

by neurons and there is more deoxygenated hemoglobin present locally than

there is oxygenated hemoglobin. Later, an influx of additional oxygenated

blood is supplied to the area for that replenishment, increasing and chan-

ging again the ratio of oxygenated versus deoxygenated hemoglobin. Oxy-

genated and deoxygenated hemoglobin have different effects on dephasing

effect, with deoxygenated hemoglobin causing more dephasing than oxygen-

ated hemoglobin does. Basically, fMRI measures the change in the homo-

geneity in the magnetic field within a particular volume, due to varying

oxygenated/deoxygenated blood ratio, which is referred to as T2*. When
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the T2 relaxation is measured, the oxygenated blood can be differentiated

from the deoxygenated blood for a particular area in the brain. There’s

a slight change in the frequency that is measured at each precession indi-

vidually and by focusing on that variation, which is a measure of the phase

decay that’s happening, one can take an estimate of the local distortion

of the magnetic field which is thought to be the result of a change in the

oxygenated versus deoxygenated blood ratio. The reason for this different

behavior is that deoxygenated blood is paramagnetic and it introduces in-

homogeneity. It distorts the local magnetic field that is measured by the T2*

measurement. Oxygenated hemoglobin, instead, is weakly diamagnetic and

has very little effect on the magnetic field. So, essentially it does not distort

the signal in the considered volume. When oxygen is absorbed by the astro-

cytes to replenish oxygen and glucose metabolism in the cell that has been

firing, it causes hemoglobin-induced dephasing which causes a change in the

MRI signal that one is measuring. After a certain period of time, deoxygen-

ated blood will cause more distortions locally in that area than oxygenated

does, and by picking up that difference one can draw a conclusion that brain

activity must occur in that area.

The basic idea is that a stimulus result in brain activation: in an exper-

imental design for example, a person could be asked to tap their finger very

specifically. Initially, oxygen necessary for that brain activation to occur is

removed from the blood. This depletion of the oxygenation results in an

initial dip in the MRI signal. In response to this brain activation, the blood

supply system creates an influx of oxygenated blood that then gives rise

to the BOLD signal, as it does not distort the MRI signal locally, until it

reaches a top. At that point, the activation or the stimulus is removed, for

example asking the person to stop tapping their finger; at that point the

oxygenation and MRI signal drop as the cognitive task ends. It typically

overshoots beyond the base line a little bit a few seconds until it comes back

and the ratio of oxygenated and deoxygenated blood and MRI signal are

back to baseline and essentially back into its resting state. This waveform

just described is knwn as hemodynamic response funtion (HRF). A blood

supply increase and drop in response to a cognitive function or cognitive

task that the brain is executing, essentially producing the brain activation

signal that we need to measure in a particular area of the brain. It is very

important to note that BOLD fMRI does not measure neural activity dir-

ectly, rather it measures metabolic demands, oxygen consumption of active

neurons. The hemodynamic response function mentioned above represents

the change in the fMRI signal triggered by this neural activity.
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A.3 fMRI artifacts and Noise

Bold fMRI signal contains multiple sources of noise related to the hardware

and the participants themselves, what they do, how much they move in the

scanner. Sources of noise include thermal motion of free electrons in the sys-

tem, gradient and magnetic field instability, causing spikes, head movement

and its interactions with magnetic field, physiological effects including heart-

beat and respiration and their effect on the movement of the chest wall and

also on parameters that interact with the vasculature like CO2 levels. When

modeling fMRI time series data is important to understand certain non sig-

nal related components of the signal. One of the main components is drift.

These are slow changes in voxel intensity over time, also called low frequency

noise, which is always present in fMRI signal; one of the primary reasons

for this is thought to be scanner instabilities as drift has been seen even

in cadavers. It is important that experimental conditions that vary slowly

not be confused with drift; for this reason experimental design should use

high frequencies (so use more rapid alternations of stimulus on/off states).

Another important source of confounds is motion: subject motion during

the experiment can give rise to serious problems. Typically motion correc-

tion is performed in the pre-processing stages of the analysis. Respiration

and heart beat, referred to as physiological noise, also give rise to noise to

a particular frequency.



Appendix B

Statistical Parametric

Mapping (SPM)

B.1 fMRI analysis

Statistical parametric mapping or SPM is a statistical technique created

by Karl Friston for examining differences in brain activity recorded during

functional neuroimaging experiments using neuroimaging technologies such

as fMRI or PET. Brain mapping studies are usually analyzed with some

form of statistical parametric mapping. This entails the construction of

continuous statistical processes to test hypotheses about regionally specific

effects. Statistical Parametric Maps (SPM) are images or fields with values

that are, under the null hypothesis, distributed according to a known prob-

ability density function, usually the Student’s t or F-distributions. These

are known colloquially as t- or F-maps. The success of statistical para-

metric mapping is due largely to the simplicity of the idea. Namely, each

and every voxel (i.e., image volume element) is analysed using any stand-

ard (univariate) statistical test, usually based on a General Linear Model

(GLM) of the data. The resulting statistics are assembled into an image -

the SPM. SPMs are interpreted as continuous statistical processes by refer-

ring to the probabilistic behaviour of random fields [139][140][141]. Random

fields model both the univariate probabilistic characteristics of an SPM and

any non-stationary spatial covariance structure. ’Unlikely’ topological fea-

tures of the SPM, like peaks or clusters, are interpreted as regionally specific

effects, attributable to the experimental manipulation. In short, the GLM

is used to explain continuous (image) data in exactly the same way as in

conventional analyses of discrete data. Random Field Theory (RFT) is used

to resolve the multiple-comparison problem when making inferences over
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Figure B.1: Data processing pipeline.

the volume analysed. RFT provides a method for adjusting p-values for the

search volume and plays the same role for SPMs as the Bonferroni correction

for discrete statistical tests.

Researchers are often interested in examining brain activity linked to a spe-

cific psychological process or processes. An experimental approach to this

problem might involve asking the question ”which areas of the brain are sig-

nificantly more active when a person is doing task A compared to task B?”.

Although each task might be designed to be identical, except for the aspect

of behaviour under investigation, the brain is still likely to show changes

in activity between tasks due to factors other than task differences (as the

brain is involved with co-ordinating a whole range of parallel functions unre-

lated to the experimental task). Furthermore, the signal may contain noise

from the imaging process itself.

To accommodate these random effects, and to highlight the areas of activity

linked specifically to the process under investigation, statistics are used to

look for the most significant difference above and beyond background brain

activity. This involves a multi-stage process to prepare the data, and to sub-

sequently analyse it using a statistical method known as the General Linear

Model (GLM).

B.1.1 Image pre-processing

Before the analysis, fMRI data undergoes a series of pre-processing steps

which are basically aimed at identifying and removing artifacts and val-
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idating certain model assumptions. In general, there is a three-fold goal

with pre-processing: one is to minimize the influence of data acquisition

and physiological artifacts; a second one is to check statistical assumptions

and transform the data to meet assumptions; the third is to standardize the

locations of brain regions across subjects to achieve validity and sensitivity

in group analysis. Pre-processing is performed both on the fMRI data and

on the structural scans that are collected prior to the experiment.

Typically this pre-processing procedure involves the following steps:

• Visualisation and Artifact Removal

• Slice Time Correction

• Motion Corrections

• Physiological Corrections

• Co-registration

• Normalization

• Spatial Filtering

• Temporal Filtering

Visualisation and Artifact removal

This should always be the first part of any pre-processing pipeline. Explor-

atory data techniques are used to investigate the raw image data and detect

possible problems and artifacts. For example, fMRI data often contain tran-

sient spike artifacts or slow drift over time. Any exploratory technique such

as principal components can be used to look for these spike related artifacts.

Slice timing Correction

Usually, multiple slices of the brain are sampled during each individual re-

petition time to construct a brain volume. However, each slice is typically

sampled at different time points, because they are acquired sequentially, and

so even though a brain volume is treated as being scanned at a single time

point, this is usually not the case, for example the top of the brain volume

might be sampled a second or two later than the bottom of it, and this is

something that need to be corrected before doing any statistical analysis.

Basically, during slice time correction, each voxel’s time series is shifted so

they appear to have been sampled simultaneously. Figure B.2 illustrate
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Figure B.2: The slice-timing problem: the same signal sampled at different offsets

yields signals that do not look the same. (A) Five adjacent slices acquired with inter-

leaved acquisition all sample the same underlying bold signal. (B) Without correction,

reconstruction yields five different signals despite having the same underlying shape.

this situation in which the same single voxel is sampled, belonging to four

different slices of the brain and they all have the same hemodynamic re-

sponse signal. However, if a time course is extracted from Slice 1, Slice

2, Slice 3 and Slice 4 and without slice time correction, they are going to

look quite different, even though they come from the same underlying sig-

nal. This can be corrected using temporal interpolation and other methods.

In temporal interpolation, the information from nearby time points is used

to estimate the amplitude of the MR signal at the onset of each TR. Con-

ventional interpolation-based techniques attempt to operate on the discrete

signals (Figure B.2b) and estimate the signal value between the sample

points. Mathematically, this can be represented by the convolution of the

sampled signal, F [s, n] with an interpolation kernel h:

f̂ [s, n] =

N−1∑
k=0

F [s, k] h(nTs − k − φ(z)) (B.1)

where f̂ is the shifted/interpolated signal and φ(z) is the offset delay imposed

for each slice by interleaved acquisition. Linear, cubic spline or sinc functions

are commonly used to interpolate time points [142]. Alternatively one can

use Fourier methods and the phase shift methods and slide the time course

by applying a phase shift to the Fourier transform of the time course.
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Motion Correction

Head motion represents a serious confound in neuroimaging, and particularly

in fMRI studies. Folowing are several criticalities that can be introduced by

head motion: movement artefacts add up to the residual variance and re-

duce sensitivity; data may be lost if sudden movements occur during a single

volume; movements may be correlated with the task performed. Even very

small movements of the head during an experiment can be a major source

of error if not treated correctly. Despite restraints on head movement, co-

operative subjects still show displacements of up to several millimeters.

When analyzing a time series associated with a single voxel, we always as-

sume that it depicts the same region of the brain at every time point. How-

ever, if there is head movement, one voxel that was in one position might

be in a completely different brain area because of head motion, and this is

something that need correction. One first procedure for the correction of

motion artifacts is Realignment : it involves the estimation parameters of

an affine ’rigid-body’ transformation that minimizes the differences between

each successive scan and a reference scan (usually the first scan or the av-

erage of all scans in the time series); here the brain is assumed to be ’rigid’

and thus brain shape is assumed not to change. A rigid-body transforma-

tion process is composed by two steps. The first step called ’Registration’

involves the estimation of six parameters describing a spatial trasformation

between the source images and reference image that ”best” match the im-

ages together. The goodness of the match is based on an objective funtion,

which is maximized or minimized using some optimization algorithm. We

have three sets of translations (mm) in the x, y, and z direction (degrees),

and three sets of rotations, one around each axis (pitch, yaw and roll).

The transformations can be represented as matrices, and are multiplied to-

gether:
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Registering images that have been collected with the same modality allows

a relatively simple obective function to be used, i.e. the mean squared

difference between the images. Estimation of the affine transformation is

usually effected with a first-order approximation of the Taylor expansion

of the effect of movement on signal intensity, using the spatial derivatives
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Figure B.3: Example of bi-linear interpolation. The values of the ”new” voxel is com-

puted as weights average of neighbouring voxels as:

f5 = f1x2 + f2x1, f6 = f3x2 + f4x1, f7 = f5y2 + f6y1

of the images. This allows for a simple iterative least square solution that

corresponds to a Gauss-Newton search ([113]).

– Mathematical description of Gauss-Newton algorithm and implement-

ation on realignment ??? (see statistical parametric mapping libro)

After the registration step, the transformation parameters are estimated

and applied to each slice to match the reference image (usually the first

slice of the time series); at this point it is necessary to determine the val-

ues of the ”new” transformed voxels. In the second step, ’Transformation’

(or ”reslicing”) is then applied by resampling the data using an interpola-

tion scheme. There are a number of interpolation methods commonly used,

including Simple interpolation and B-spline interpolation. The simplest in-

terpolation technique, known as nearest neighbour, consists in assigning a

value of a specific voxel by taking the value of the nearest neighbour. A

rather better option is Tri-linear interpolation, which consists of a weighted

average of the neighbouring voxels. This is slower than nearest enighbour,

but the resulting images are less ”blocky”. In Figure B.3 is illustrated a

bi-dimensional example of linear interpolation (bi-linear in this case). This

method is not really optimal because by taking the weighted average of the

neighbouring voxel we are introducing smoothness into the resampled image

causing the loss of information. There are better ways of doing interpolation

although such methods could be slower. This is the case of B-spline inter-
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polation, a generalized interpolation method. In this technique the values

of voxels in the original image are interpolated using a linear combination of

gaussians basis functions. B-splines are a family of functions of varying de-

gree. Interpolation using B-splines of degree 0 or 1 (first and second order)

is almost identical to nearest neighbour or linear interpolation respectively.

The iterative minimization procedure used for fMRI motion correction

schemes is typically a nonlinear least squares routine (e.g., Levenberg-Marquardt).

Possible errors in this process may result from finding only a local (rather

than global) minimum of the cost function, leading to suboptimal results.

Once motion parameters for realignment have been determined, they are

applied to create a new 3D motion-corrected data set. Creation of the

corrected data set requires spatial interpolation, as the new data points typ-

ically fall in between the original uncorrected data points. This process may

be computationally-intensive, so usually some combination of (fast) linear

interpolation is used during the initial motion correction steps, followed by

a more time-consuming interpolation method (such as windowed sinc) for

the final spatial transformation. For most imaging modalities this realign-

ment procedure is sufficient to realign scans to, in some instances, a hundred

microns or so ([143]). Typically head motions are relatively small (¡2 mm)

during normal fMRI experiments, so the assumptions underlying this rigid

body approach are justified.

However, sudden abrupt head motion will violate these conditions and

may not produce an appropriate correction for motion. In fMRI, in fact, even

after perfect realignment, movement-related signals may still persist. This

requires a further step in which the data are adjusted for residual movement-

related effects. Rigid body transformations cannot compensate for non-

linear effects. These include field inhomogeneity effects, motion during slice

acquisition, interpolation artifacts, and spin-excitation history effects. Field

inhomogeneity effects may be the most important. Even though rigid head

motion can be corrected in image space, head displacements affect magnetic

field homogeneity and shimming, so even with perfect realignment some

motion-related errors persist. These additional sources of residual motion

error are often referred to as the residual variance and may be addressed in

part by unwarping.

Field mapping and unwarping

In extreme cases, as much as 90% of the variance in fMRI time-series can be

accounted for by the effects of movement after realignment ([143]). Causes

of these movement-related components are due to movement effects that
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cannot be modelled using a linear model. These non-linear effects include:

subject movement between slice acquisition, interpolation artefacts due to

resampling (Grootoonk et al. 2000), non-linear distortion due to magnetic

field inhomogeneities (Anderson et al. 2001) and spin-excitation history

effects ([143]). One simple way to correct for this residual variance is to

incorporate movement parameters as confounds in the statistical model of

activations. However, this may remove activations of interest if they are

correlated with the movement. Another approach for the correction of non-

linear magnetic field inhomogeneities is ”unwarping”. Different tissues have

different magnetic susceptibilities. The magnetic susceptibility of a sub-

stance is the measure of the extent to which the substance modifies the

strength of the magnetic field passing through it or alternatively the degree

of magnetization of a material in respoonse to an applied magnetic field.

In the human body this difference of magnetic susceptibility among tissues

causes distortions in the magnetic field, distortions that are most notice-

able near air-tissue interfaces. These field inhomogeneities have the effect

of ”deflecting” locations of the image with respect to the real object. In

fact, knowing the location at which 1H spins will precess at a particular

frequency and thus where the signal comes from is dependent upon cor-

rectly assigning a particular field strength to a particular location. If the

field B0 is homogeneous, then the image is sampled according to a regu-

lar grid and voxels can be localized to the same bit of brain tissue over

subsequent scans by realigning. This is because the same transformation

is applied to all voxels between each scan. If, instead, there are inhomo-

geneities in B0, then different deformations will occur at different points in

the field over different scan, giving rise to non-rigid deformation. Therefore

the combination of field inhomogeneities with head movement will result in

changes in the image that do not really follow the rigid body assumption.

Filed inhomogeneities change with the position of the object in the field,

so there can be non-rigid, as well as rigid distortion over subsequent scans.

The movemente-by-inhomogeneity interaction can be observed by changes

in the deformation field over subsequent scan. A deformation field indicates

the directions and magnitudes of location deflections throughout the mag-

netic field (B0) with respect to the real object. A fieldmap measures field

inhomogeneity (potentially per every scan) and thus captures deformation

field. Basic rapid field mapping is commonly performed as a normal part of

automated prescan procedures. In the simplest case a low-resolution dual

echo sequence with relatively short TE’s is first performed, with computa-

tion of magnitude and phase-difference images. The phase-difference images

require unwrapping as all phase measurements are ”wrapped” (compressed)
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over the range of 0◦ − 360◦. After phase unwrapping field map values are

used to calculate corrective pixel shifts in the phase-encode direction, a pro-

cess known as unwarping. Using fieldmaps, unwarping can estimate changes

in distortion from motion parameters obtained from alignment, and return

the predicted change in deformation field with subject movement (estim-

ated via iteration) at each time point. Basically, if a deformation field can

be thought of as little vectors at each position in space showing how that

particular location has been deflected, ”derivative field” is then the rate

of change of those vectors with respect to subject movement. Given these

”derivative fields” we should be able to remove the variance caused by the

susceptibility-by-movement interaction. This means that the time-series will

be undistorted to some ”average distortion” state rather than to the true

geometry. If one wants additionally to address the issue of anatomical fidel-

ity one should combine Unwarp with a measured field-map. The description

above can be thought of in terms of a Taylor expansion of the field as a

function of subject movement. Unwarp alone will estimate the first (and

optionally second, see below) order terms of this expansion. It cannot es-

timate the zeroth order term (the distortions common to all scans in the

time series) since that doesn’t introduce (almost) any variance in the time

series. The measured fieldmap takes the role of the zeroth order term. Once

the deformation field has been modelled over time, the time-variant field is

applied to the image. The image is therefore resampled assuming voxels,

corresponding to the same bits of brain tissue, occur at different locations

over time. Unwarp is of use when variance due to movement is large. It is

particularly useful when the movements are task related as can remove un-

wanted variance without removing ”true” activations. It is useful when high

field strength or long readout time increases amount of distortion in images.

However, it can be computationally intensive and increasing computational

times.

Co-registration

After performing motion correction, the structural MRI image that is col-

lected in the beginning of the session, is registered to the fMRI image in a

process known as co-registration. Co-registration maximizes the mutual in-

formation between two images of different modalities. Co-registration refers

to the alignment of functional and structural images from the same subject

to map functional information into anatomical space. By coregistering the

structural and the functional images to one another, this allows one to visu-

alize single-subject task activations overlaid on the individual’s anatomical
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information and can relate changes in BOLD signal due to experimental ma-

nipulation to anatomic al structures. So even though the statistical analysis

is on low-resolution functional data, we might want to present the results

of the analysis on a high-resolution structural scan where we can make out

detail. This also simplifies later transformation of the fMRI images to a

standard coordinate system, as will be described later in the ”Spatial Nor-

malization” section. The difference between the functional and structural

images from the same brain is not trivial. By contrast to the high-resolution

structural images with clear region boundary contours, functional images

are normally blurry and suffered from geometric and intensity distortions

- particularly in the phase encode direction (Jezzard and Clare, 1999; Jez-

zard, 2000). The basic idea regarding coregistration herein is similar to the

realignment, i.e. defining a cost function with the goal to minimize the dif-

ferences on image parameters among images. Essentially, coregistration is

a process similar to realignment that aligns two images but from different

modalities (i.e. T1 structural and T2 functional images) from the same in-

dividual (within subject). In the same way as the realignment process, core-

gistration follows the rigid-body transformation steps of registration, trans-

formation, interpolation (nearest neighbour, linear or B-spline: the method

used depends on the type pf adta and the research question; the default in

SPM is 4th order B-spline) and reslicing. However, because of distortions

on functional images, the rigid-body transformation with six parameters (3

translations and 3 rotations) may be not enough to correct. Depending on

the complexity of distortions, either a nine-parameter transformation with

another three additional parameters accounting for scaling differences on x-,

y- or z- axes or even more sophisticated algorithms could be used to quantify

the cost function. The overall procedure changes the position without chan-

ging the value of the voxels and give correspondence between voxels. As

the two images are of different modalities, a least squares approach cannot

be performed because of the different shape and signal intensities (relative

intensities of grey/white matter vary between funtional and structural, no

voxel to voxel match, no simple subtraction signal intensities). Therefore, as

a result of the different contrasts between functional and structural images,

the mutual information is more suitable to act as cost function than the

sum of squared differences (Collignon et al., 1995; Wells et al., 1996). The

mutual information (MI) (also known as Shannon information) between two

signals can be expressed as:

I(f, g) = H(f) +H(g)−H(f, g) (B.2)
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where H(f, g) is the joint entropy of the images (also referred to as entropy

of the joint probability), and H(f) and H(g) are the marginalized entropies:

H(f, g) = −
∫ +∞

−∞

∫ +∞

−∞
P (f, g) logP (f, g) dfdg

H(f) = −
∫ +∞

−∞
P (f) logP (f) df

H(g) = −
∫ +∞

−∞
P (g) logP (g) dg

(B.3)

MI is a measure of dependence of one image on the other, and can be

considered as the distance (Kullbacl-Leibler divergence) between the joint

distribution (P (f, g)) and the distribution assuming complete independence

(P (f)P (g)). When the two distributions are identical, this distance (and the

mutual information) is zero. Rearranging, the expression for MI becomes:

I(f, g) = KL(P (f, g)||P (f)P (g))

=

∫ +∞

−∞

∫ +∞

−∞
P (f, g) log(

P (f, g)

P (f)P (g)
) dfdg

(B.4)

The MI between two images is maximized when they are in register. The

discrete representation of the probability distributions is from a joint histo-

gram, which can be considered as an IbyJ matrix P . The entropy is then

computed from the histogram according to:

H(f, g) =
J∑
j=1

I∑
i=1

pij log pij (B.5)

Generating a joint histogram involves scanning through the voxels of the

reference image and finding the corresponding points of the source. The

appropriate bin in the histogram is incremented by one for each of these point

pairs. Pairs are ignored if the corresponding voxel is unavailable because it

lieas outside the image volume. The coordinate of the corresponding point

rarely lies at an actual voxel centre, meaning that interpolation is required.

Spatial Normalisation

Spatial normalisation involves warping all the grey matter images to the

same stereotaxic space, which is achieved by matching to a common tem-

plate image. In general, all brains are different and the brain size of two
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subjects can differ up to 30%. There also may be substantial variation in

the shapes of people’s brains. What normalisation does, is to allow one to

stretch, squeeze, and warp each brain image so that it matches some stand-

ard brain template. This is really important for group analysis, because

one want to be able to compare different brains with one another, and if

considering a single voxel one want to be able to look at that voxel across

the entire population of the subjects. In order to do that, one need all

the brains to be registered to the same standard brain space. Therefore,

using the co-registration procedures, the structural MR image needs to be

warped into the template space. The pros of this procedure are that the

results can be reported and interpreted in a consistent manner: having im-

ages mapped to a standard space allows the activation sites to be reported

according to their Euclidian coordinates within the standard space. Results

can in this way be generalised with a larger population, because one can

compare different subjects with one another. Also results can be compared

across studies, if each study is normalised for the same brain, and they can

also be averaged across subjects. The cons are that it reduces spatial resol-

ution and introduces potential errors. In realignment, the generative model

for within-subject movements is a rigid-body displacement of the first im-

age. The generative model for spatial normalisation instead is a canonical

image or template that is distorted to produce a subject-specific image. Spa-

tial normalisation inverts this model by undoing the warp using a template

matching procedure. After realigning the data, a mean image of the series,

or some other co-registered (e.g. a T1-weighted) image, is used to estimate

some warping parameters that map it onto a template that already conforms

to some standard stereotaxic anatomical space like the Talairach space or

the MNI space (Montreal Neurological Institute). Currently the most com-

mon type of spatial normalisation, implemented in the SPM12 software used

in this work, is the non-label based (intensity based) normalisation. This ad-

opts a two-stage procedure in which the first step is represented by a linear

registration, which involves a 12-parameter affine transformation where the

parameters constitute a spatial transformation matrix: the 3 translation

and 3 rotations of a rigid-body transformation, and additionally 3 shears

and 3 zooms. This estimation is performed automatically by minimizing

squared distance between parameters and expected values. The second step

involves a non-linear registration (warping), that accounts for smaller-scale

anatomical diefferences (e.g head shape). In this step, warps are modelled

by linear combinations of low-frequency cosine basis functions (sometimes

polynomials are used).

Estimation of the parameters of all these models can be accommodated
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in a Bayesian framework, in order to obtain a more robust fit. This re-

quires knowledge of the errors associated with the parameter estimates, and

also knowledge of the a priori distribution from which the parameters are

drawn. In this framework the idea then is to find the warping parameters θ

that have the maximum posterior probability p(θ|y) given the data y, where

p(θ|y)p(y) = p(y|θ)p(θ). Put simply, one wants to find the deformation that

is most likely given the data. This deformation can be found by maximizing

the probability of getting the data, given the current parameters, times the

probability of those parameters. In practice, the deformation is updated

iteratively using a Gauss-Newton scheme to maximize p(θ|y). This involves

jointly minimizing the likelihood and prior potentials H(y|θ) = ln p(y|θ) and

H(θ) = ln p(θ). The likelihood potential is generally taken to be the sum of

squared differences between the template and deformed image and reflects

the probability of actually getting that image if the transformation was cor-

rect. The prior potential can be used to incorporate prior information or

constraints on the warp. Priors can be determined empirically or motivated

by constraints on the mappings. Priors play a more essential role as the

number of parameters specifying the mapping increases and are central to

high-dimensional warping schemes (Ashburner et al. 1997). The deforma-

tions required to transform images to the same space are not clearly defined.

Unlike rigid body transformations, where the constraints are explicit, those

for nonlinear warping are more arbitrary. Without any constraints it is of

course possible to transform any image such that it matches another exactly.

The issue is therefore less about the nature of the transformation and more

about defining constraints or priors under which a transformation is effected.

The validity of a transformation can usually be reduced to the validity of

these priors. In practice, most people use an affine or spatial basis function

warps and iterative least squares to minimize the posterior potential. A nice

extension of this approach is that the likelihood potential can be refined and

taken as the difference between the index image and a mixture of templates

(e.g. depicting grey, white and skull tissue pertitions). This models intensity

differences that are unrelated to registration differences and allows different

modalities to be co-registered ([113]).

When applying non-linear warping one risk is to incur in over-fitting, in-

troducing unrealistic deformations in the image; usually is more preferable

to have a slightly less-good match, that is still anatomically realistic. In or-

der to avoid this, some regularization terms/constraints must be included in

normalization process. Without regularization in the nonlinear registration

it is possible to introduce unnecessary deformations that only reduce the

residual sum of squares by a tiny amount. This could potentially make the
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algorithm very unstable. Regularization is achieved by minimizing the sum

of squared difference between the template and the warped image, while

simultaneously minimizing some function of the deformation field. This ba-

sically ensures voxels stay close to their neighbours and it involves setting

limits to the parameters used in the flexible warp (affine transformation and

weights for basis funtions) The normalization step has still some limitations.

First of all it is difficult to attempt exact structural matches between sub-

jects, due to individual anatomical differences. Moreover, even if anatomical

areas were exactly matched, it does not mean fucntionally homologus areas

are matched too. This is particularly problematic in patients studies with

lesioned brains. One possible solution is to correct gross differences by ap-

plying spatial smoothing to normalized images.

Spatial filtering or Smoothing

In fMRI is common to spatially smooth the acquired data prior to statistical

analysis. THe reasons for applying spatial filtering are multiple. It can

increase the signal-to-noise ratio and therefore increase sensitivity: if there

is a coherent region of activation, it’s actually beneficial to average over that

region because the same signal is maintained but the noise is decreased,

and thus a higher signal to noise ratio is obtained. It can also validate

certain distributional assumptions and remove artifacts. For example, it

is often assumed that data is normally distributed, and by smoothing one

can increase that likelihood by averaging over lots of the different voxels.

This way it may increase the validity of statistical analysis, and finally it

is also required for Gaussian random field theory, which is often used in

multiple comparison. One other prop of spatial filtering is that it may

overcome limitations in the normalization by blurring residual anatomical

differences between subjects, allowing for better spatial overlapping. One

major drawack is that the image resolution is reduced by spatial smoothing,

and thus a portion of information in space is lost.

When doing spatial filtering, it is often used a Gaussian kernel. The

size of the kernel is determined by something called the full width at half

maximum, that measures the width of the kernel at 50% of its peak value.

The relationship between the full-width half maximum and the standard

deviation can be expressed as

σ =
FWHM

2
√

2ln(2)
(B.6)

For what concerns the choice of the width of the filter, the matched

filter theorem states that a filter that’s matched to the signal extent will
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give optimal signal to noise ratio. So if one knows that the spatial extent

is of certain size, one should smooth over those voxels, because in this way

the signal is retained while reducing the noise.

However, typically the amount of smoothing is chosen at priori before

we look at activations, and it’s usually independent of the data. Hence,

the likelihood what one get the smoothing kernel matched to the signal

extent is very unlikely. Furthermore, the same amount of smoothing is

applied throughout the whole image. And the spacial extent of activation

is probably going to differ across the brain. In order to circumvent this,

one could use adaptive smoothing methods. And there are such methods

including non-stationary spatial Gaussian Markov random fields, and this

allows the smoothing to vary across both space and time.

The warped grey-matter images are now smoothed by convolving with

an isotropic Gaussian kernel. This makes the subsequent voxel-by-voxel ana-

lysis comparable to a region of interest approach, because each voxel in the

smoothed image contains the average amount of grey matter from around

the voxel (where the region around the voxel is defined by the from of the

smoothing kernel). This is often referred to as grey-matter density, but

should not be confused with cell packing density measured cytoarchitecton-

ically. Critically, smoothing removes finescale structure from the data that

is not conserved from subject to subject. This increases the sensitivity of

VBM to differences that are expressed at a larger spatial scale. The smooth-

ing conforms to the matched filter theorem, which says that the smoothing

should match the scale of the differences in question. Normally, the smooth-

ing kernel is Gaussian with a FWHM between 4 and 16 mm. By the central

limit theorem, smoothing also has the effect of rendering the data more

normally distributed, thus increasing the validity of parametric statistical

tests.

By the matched filter teorem, the optimum smoothing kernel corres-

ponds to the size of the effect that one anticipates. The spatial scale of

haemodynamic responses is, according to high-resolution optical imaging

experiments, about 2-5mm. Despite the potentially high resolution afforded

by fMRI, an equivalent smoothing is suggested for most applications. By

the central limit theorem, smoothing the data will render the errors more

normal in their distribution and ensure the validity of inferences based on

parametric tests. When making inferences about regional effects using ran-

dom field theory the assumption is that the error terms are a reasonable

lattice representation of an underlying continuous scalar field. This neces-

sitates smoothness to be substantially greater than voxel size. If the voxels

are large, then they can be reduced by sub-sampling the data and smoothing
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(with the original point spread function) with little loss of intrinsic resol-

ution. In the context of inter-subject averaging it is often necessary to

smooth data onto a spatial scale where homologies in functional anatomy

are expressed among subjects.

Temporal filtering

The last step in the pre-processing phase of fMRI is, optionally, temporal

filtering. The typical power spectrum of the signal coming from a subject

at rest in the scanner, highlights the dominant presence of low frequency

noise components. This residual noise arises mostly from physical sources,

sometimes referred to as ”scanner drift”. However, by filtering the data with

an appropriate high-pass filter, most of the noise can be removed, increasing

the SNR. Ideally, the reamaining noise spectrum would be flat (i.e. ”white

noise”, with equal power at all frequencies). The choice of the high pass

cut-off would ideally maximize the signal-to-noise ratio. However, one can-

not distinguish signal from noise on the basis of the power spectrum alone.

Usually, a cut-off period of approximately 128s is used, based on observa-

tions that the noise becomes appreciable at frequencies below approximately

0.008Hz (though this may vary considerably across scanners and subjects).

In other words, some loss of signal may be necessary to minimize noise.

Experimental designs therefore try to avoid significant power at low fre-

quencies. This step can actually be skipped in the pre-processing phase,

including, instead, low frequencies variations as confounds in the definition

of the GLM in order to take into account for low frequency components in

the observed data.

B.1.2 The General Linear Model (GLM)

[144][145] There are multiple goals in the analysis of fMRI data and they

include localising areas activated by a task or in relation to a process of

interest, determining networks corresponding to brain function, functional

connectivity, and effective connectivity, and making predictions about psy-

chological or disease states or other outcomes from functional imaging data.

All of these can be handled in the general linear modelling framework

(GLM). The GLM analysis process is typically a two level hierarchical ana-

lysis, that involves a first level in which within subject effects are analysed,

individual by individual, and a second level analysis across subjects or across

groups, in a group analysis. This can be done in stages or, alternatively, hier-

archical models can combine both those levels into one integrated model.

Basically this procedure involves a stage of design specification, followed by
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the building of the model. Secondly, that model is combined with real data

and estimated: this is done at each single voxel. Finally, contrast images

are calculated.

In fact, the statistical parametric mapping approach through which func-

tional mapping studies are analysed, entails the construction of statistical

processes to test hypotheses about regionally specific effects [146]. Statist-

ical parametric maps are images which values are, under the null hypothesis,

distributed according to a known probability density function, usually the

Student’s t or F-distributions. The idea behind this method consists in ana-

lysing each and every voxel using a standard (univariate) statistical test.

The resulting statistical parameters are assembled into an image.

Statistical parametric mapping exploit the combined use of the Gen-

eral Linear Model (GLM) and Random Field Theory (RFT) to analyse and

make classical inferences about topological features of the statistical para-

metric maps. The GLM is used to estimate some parameters that explain

continuous data. RFT is used to resolve the multiple comparison problem

that ensues when making inferences over the volume analysed, containing

thousands of voxels. RFT provides a method for adjusting p-values for the

search volume and plays the same role for continuous data (i.e. images) as

the Bonferroni correction for a number of discontinuous or discrete statistical

tests.

The GLM family of tests

The general linear model approach treats the data as a linear combination of

model functions (predictors) plus a noise term (error). Essentially the data

are broken up into the part that can be explained with the model, and the

part that can’t be explained. These model functions are assumed to have

known shapes but their amplitudes, or slopes, are unknown and those are

what needs to be estimated when fitting the model.

The GLM encompasses many of the commonly used techniques in fMRI

data analysis. The entire GLM family embodies a wide collection of para-

metric statistics including: linear regression, multiple regression, t-tests,

ANOVA, ANCOVA, correlation, F-tests and so on. All of these are differ-

ent instances of the general linear model framework. In some cases, there

is a simple close form algebraic solution. In this case one could solve the

equations and estimate the model in one step, whereas in many other cases

iterative solutions are required.

The simplest example is simple linear regression: one predictor, one

outcome. In this modelling procedure, four stages can be identified. The first
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is to specify the model. In this case, the assumption is that there is a linear

relationship between the predictor and the outcome. Secondly, the model is

estimated. In this case, this means estimating the slope and the intercept of

that model (linear). Third, the statistical inference is performed. This stage

serves to cast the significance of that slope and get a p-value, which relates

to how likely it is to observe a slope like this under the null hypothesis that

there is no actual true relationship (that the line is actually flat). Finally,

when significant effects are found, scientific interpretation hypothesises the

meaning of this relationship.

All the GLM models are characterised by the use of one variable, which

is a continuous variable, as the dependent variable of the outcome. In the

context of fMRI studies, this observed response variable Y , is associated

with time-series representing the BOLD response of each voxel of the brain.

The general linear model equation for each single voxel can be expressed as

yi = β0 + β1 xi1 + β2 xi2 + · · ·+ βk xik + εi (B.7)

In this notation i indicates time points, so this is relative to a single data

point at time ti. β0 represent the intercept parameter, that capture the

average across time. The beta’s are regression slopes. When estimating the

GLM then, the job is to solve for that beta vector.

Considering all time points, the previous equation can be expressed in matrix

notation as 
Y1
Y1
...

Yn

 =


1 X11 · · · X1k

1 X21 · · · X2k
...

...
...

1 Xn1 · · · Xnk

×

β0
β1
...

βk

+


ε1
ε2
...

εn


which becomes in compact form

Y = Xβ + ε (B.8)

This equation expresses the observed response variable Y in terms of a linear

combination of explanatory variables X plus an error term [147]. The mat-

rix that contains explanatory variables (e.g. designed effects or confounds)

is called the design matrix. Each column of the design matrix corresponds

to an effect that has been built into the experiment or that may confound

the results. These are referred to as explanatory variables, covariates or

regressors. It is essential that the regressors included in the design matrix

are linearly independent; in this way the design matrix will be of full rank.

The effects on the response variable are modelled in terms of functions of
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the presence of these conditions (e.g. delta functions convolved with the

haemodynamic response function) and constitute the first n columns of the

design matrix. Then, usually follows a series of nuisance terms. The very

first column is whole brain activity.

The residual errors εi ∼ N(0, σ2) are assumed to be independent and identic-

ally (normally) distributed. This property is also known as ”sphericity”.

Under IID (Independent and Identically Distributed) assumptions the prob-

ability density function of the errors, from all observations, has spherical

iso-contours, hence sphericity. Deviations from either of the IID criteria con-

stitute non-sphericity. If the error terms are not identically distributed then

different observations have different error variances. Correlations among er-

rors reflect dependencies among the error terms (e.g. serial correlation in

fMRI time series) and constitute the second component of non-sphericity.

In neuroimaging both spatial and temporal non-sphericity can be quite pro-

found.

The violation of sphericity is serious for the repeated measures ANOVA,

with violation causing the test to become too liberal (i.e., an increase in

the Type I error rate). Therefore, determining whether sphericity has been

violated is very important. Luckily, if violations of sphericity do occur, cor-

rections have been developed to produce a more valid critical F-value (i.e.,

reduce the increase in Type I error rate). This is achieved by estimating

the degree to which sphericity has been violated and applying a correction

factor to the degrees of freedom of the F-distribution.

Estimation

In the parameters estimation algorithm, the objective is to find the paramet-

ers β that minimize a cost function, usually identified by the sum of squared

errors (in a least squares approach). Hence, assuming IID errors and us-

ing an Ordinary least squares (OLS) estimation approach, the parameters

estimates can be obtained through a minimization procedure as described

below. The sum of squared error is expressed as

S =
n∑
i=1

e2i =
n∑
i=1

(yi − xi1β̂1 − · · · − xikβ̂k)2

This is minimized when:

∂S

∂β̂j
= 2

n∑
i=1

(−xij)(yi − xi1β̂1 − · · · − xikβ̂k) = 0

This equation is the jth row of matrix XTY = (XTX)β̂. For the general

linear model, the least squares estimates are the maximum likelihood es-
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Figure B.4: Geometric perspective for the minimization of the sum of squared errors:

the predicted values ŷ = Xβ̂ are the projection (P is a projection matrix) of the data

vector y onto the design plane X (in blue). The smallest errors are obtained when

vector e is ortogonal to the X plane

timates, and the best linear unbiased estimates (Gauss-Markov theorem).

That is, of all linear parameters estimates consisting of linear combinations

of the data, whose expectation is the true value of the parameters, the least

squares estimates have the minimum variance. If (XTX) is invertible, which

it is if, and only if, the design matrix X is of full rank (i.e. no regressor

can be expressed as linear combination of other regressors), then the least

squares estimates are:

β̂ = (XTX)−1XT Y (B.9)

This equation can be derived also from the observation of a geometric per-

spective on the GLM, represented in Figure B.4. Looking at this geometric

perspective, where the blue plane represents the design space defined by X,

can be seen that the smallest errors (shortest error vector) are obtained

when the vector e is ortogonal to the X plane. This implies a zero vector

product between X and e, leading to

XT e = 0

XT (Y −Xβ̂) = 0

XTY = XTXβ̂

β̂ = (XTX)−1XT Y

Considering the design matrix, the relative contribution of each of its columns
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is assessed using standard maximum likelihood, as shown above, while infer-

ences about these contributions are made using t or F -statistics, depending

upon whether we are looking at a particular linear combination or all of

them together. This will be discussed below. One aspect that needs to be

mentioned before continuing with the discussion is related to the problems

associated with the use of the GLM for fMRI data. First of all, BOLD re-

sponses have a delayed and dispersed form. To account for this ”shape” of

BOLD responses, one could model haemodynamic responses convolving the

stimulus function with a canonical hemodynamic response funtion (HRF),

obataining an expected BOLD response. This step is essential for the min-

imisation of residuals. Beside that, the variability in the hemodynamic re-

sponse, across subjects and brain regions, could optionally be compensated

by modelling it with a canonical HRF plus its derivatives, with respect to

time and dispersion. Another problem, is that the BOLD signal may include

substantial amounts of low-frequency noise. As discussed before, this can

be corrected in the pre-processing phase, by high-pass filtering in the fre-

quency domain. In the time domain, a high-pass filter can be implemented

by a discrete cosine transform (DCT) with harmonic periods up to the cut-

off. These basis functions can be made explicit as confounds in the design

matrix X or they can be viewed as part of a filter matrix, S, applied to both

data and model. Finally, the data could be serially correlated (temporally

autocorrelated) and this violates the assumptions of the noise model in the

GLM. To face the problem of temporal autocorrelation, a couple of solution

are commonly employed that will be briefly discussed below. One solution,

known as pre-colouring, consists of imposing some known autocorrelation

structure on the data (filtering with matrix W ) and use Satterwaite correc-

tion for df’s. An alternative solution, known as Pre-whitening, consists in

estimating the autocorrelation directly, to create a filter to ”pre-whiten” the

data before fitting the GLM.

B.1.3 Statistical Inference (Contrasts)

Parametric statistical models are assumed at each voxel, using the general

linear model to describe the variability of the data in terms of experimental

and confounding effects and residual variability. Hypotheses expressed in

terms of the model parameters are assessed at each voxel with univariate

statistics. After fitting the GLM model, the estimated parameters are used

to determine whether significant activation is present in a voxel or not. In

fact, in functional imaging experiments, we are often interested in many

sorts of effects such as the main effect of a factor or the possible interactions



152 Appendix B. Statistical Parametric Mapping (SPM)

between factors. In order to extract the desired information, an appropriate

contrast should be applied to the estimated parameters. This contrast can

be either a T-test contrast or an F-test contrast depending on what the

experimenter is interested in.

Inference is based on the fact that, if the design matrix X is full rank,

then the estimates, β̂, are normally distributed as

β̂ ∼ N (β, σ2(XTX)−1) (B.10)

Assuming independent and identical errors, the residual variance σ2 is es-

timated by the residual sum of squares divided by the appropriate degrees

of freedom

σ̂2 =
εT ε

n− p
where n is the number of observations and p = rank(X).

Using these results, t and F -statistics can be derived to perform tests on

linear combinations of effects of interest.

From the normality of parameter estimates, β̂, it follows that for a column

vector c containing k weights

cT β̂ ∼ N (cTβ, σ2cT (XTX)−1c) (B.11)

Furthermore, β̂ and σ2 are independent (Fisher’s law). Thus, prespecified

hypotheses concering linear compounds of the model parameters cTβ can be

assessed using
cT β̂ − cTβ√
σ̂2cT (XTX)−1c

∼ tn−p (B.12)

where tn−p is a Student’s t-distribution with n− p degrees of freedom. For

example, the hypothesis H : cTβ = d can be assessed by computing

T =
cTβ − d√

σ̂2cT (XTX)−1c
(B.13)

and computing a p-value by comparing T with a t-distribution having n− p
degrees of freedom. In SPM package, all null hypotheses are of the form

cTβ = 0 and tests based on this t-value are always one sided.

As described above, t-statistic follows a t distribution with a ”degrees of

freedom” parameter. This has been useful for hypothesis testing, allowing

to test, say, the hypothesis that some explanatory variable has no effect on

the dependent variable. All we need to do is to calculate a t-statistic for this

null hypothesis and the data and see if that test statistic is unlikely under
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the null distribution (the Student’s t-distribution).

Unfortunately, when dealing with more complicated hypotheses, this test no

longer works. Hypotheses involving multiple regression coefficients require

a different test statistic and a different null distribution. These are: the test

statistics F0 and its null distribution, the F -distribution. Suppose we want

to test the null hypothesis that a subset of the regression slopes of the GLM

are zero (i.e. the corresponding regressor/effect does not explain the data).

The null hypothesis then would be, for example,

H : β1 = β2 = ... = βi = 0

The key to implement a F -test is the notion of contrast matrices. A

contrast matrix is a generalization of a contrast vector. Each column of a

contrast matrix consists of one contrast vector. Importantly, the contrast

matrix controls the partitioning of the design matrix. A user-specified con-

trast matrix c is used to determine a subspace of the design matrix, i.e.

Xc = Xc. The orthogonal contrast to c is given by c0 = Ip − cc− (this

notation indicates the pseudo-inverse, a generalization of the inverse matrix

for non-square matrices). Then, let X0 = Xc0 be the design matrix of the

reduced model (model having some parameters imposed to zero, under the

null hypothesis). We wish to compute what effects Xc explain, after first

fitting the reduced model X0. However, the subsequent fitting of two mod-

els is unnecessary, because one can construct a projection matrix from the

data to the subspace of Xc, which is orthogonal to X0. This subspace is

denoted by Xa. The projection matrix M due to Xa can be derived from

the residual forming matrix of the reduced model X0. This matrix is given

by R0 = In −X0X
−
0 . The projection matrix is then M = R0 −R, where R

is the residual forming matrix of the full model, i.e. R = In −XX−. The

F -statistic can then be written as

F =
β̂TXTMXβ̂

Y TRY

n− p
p1

∼ Fp1,n−p (B.14)

where p1 is the rank of Xa. This equation means that a F -statistic can

be conveniently computed, for any user-specified contrast without any re-

parameterization.

In summary, the formulation of the F -statistic is a powerful tool, because

by using a contrast matrix c, a subspace spanned by contrasts of the design

matrix X, can be tested. Importantly, we do not need to reparameterise the

model and estimate an additional parameter set, but we can use estimated

parameters of the full model.
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Multiple testing problem

SPM is a mass univariate method meaning that the same type of test is

performed on each and every voxel in the desired mask of the brain; this

leads to the so called multiple testing problem. Because many statistical

tests are being conducted, adjustments have to be made to control for Type

I errors (false positives) potentially caused by the comparison of levels of

activity at a large number of voxels. In this case, a Type I error would

result in falsely detecting background brain activity as activity related to

the task. Assuming that there are Nv voxels in our brain mask, if we make

inference with a significance level of α at each individual test, this would

mean that the expected number of false positives is not α but α×Nv which

is known as the family-wise error (FWE) rate, αFWE ; thus, a correction for

multiple comparison is in place. In representing statistical results, SPM uses

a family-wise correction based on Gaussian Random Field theory [147].

With an anatomically open hypothesis (i.e. a null hypothesis that there

is no effect anywhere in a specified volume of the brain), a correction for

multiple dependent comparisons is necessary. The theory of random fields

provides a way of adjusting the p-value that takes into account the fact

that neighbouring voxels are not independent by virtue of continuity in the

original data. Provided the data are smoothed, the RFT adjustment is less

severe (i.e. more sensitive) than a Bonferroni correction for the number of

voxels. As noted above, RFT deals with the multiple comparison problem in

the context of continuous, statistical fields, in a way that is analogous to the

Bonferroni procedure for families of discrete statistical tests. Let’s consider

the fundamental difference between an SPM and a collection of discrete

t-values. When declaring a peak or cluster of the SPM to be significant,

we refer collectively to all the voxels associated with that feature. The

false positive rate is expressed in terms of peaks or clusters, under the null

hypothesis of no activation. This is not the expected false positive rate of

voxels. One false positive peak may be associated with hundreds of voxels,

if the SPM is very smooth. Bonferroni correction controls the expected

number of false positive voxels, whereas RTF control the expected number

of false positive peaks. Because the number of peaks is always less than the

number of voxels, RTF can use a lower threshold rendering it much more

sensitive. In fact, the number of false positive voxels is somewhat irrelevant

because it is a function of smoothness. The RTF correction discounts voxels

size by expressing the search volume in terms of smoothness or resolution

elements (Resels).

In brief, adjustments are made, based on the number of resels in the image
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and the theory of continuous random fields, in order to set a new criterion for

statistical significance that adjusts for the problem of multiple comparisons.
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Appendix C

Expectation-Maximisation

(EM) algorithm

The following discussion is taken from the work of Friston and colleagues

(2003) [11].

C.1 E-step

Bayesian inference is based on the conditional probability of the parameters

given the data p(θ | y). Assuming this posterior density is approximately

Gaussian (Laplace approximation), the problem reduces to finding its first

two moments, the conditional mean ηθ|y and covariance Cθ|y.

The ith estimate of these moments will be denoted by η
(i)
θ|y and C

(i)
θ|y.

Given the posterior density we can report its mode, i.e. the maximum a

posterior (MAP) estimate of the parameters (equivalent to ηθ|y), can be

reported, or the probability that the parameters exceed some specific value

(e.g. the probability that parameters are different from zero).

The posterior probability is proportional to the likelihood of obtaining the

data, conditional to θ, times the prior probability of θ:

p(θ | y) ∝ p(y | θ) p(θ), (C.1)

where the Gaussian priors are specified in terms of their expectation ηθ and

covariances Cθ.

The likelihood can be approximated by expanding Eq.(2.7) about a work-
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ing estimate of the conditional mean.

h(θ, u) ≈ h(η
(i)
θ|y) + J(θ − η(i)θ|y)

J =
∂h(η

(i)
θ|y)

∂θ
.

(C.2)

Let r = y − h(η
(i)
θ|y) such that ε ≈ r − J(θ − η(i)θ|y).

Under Gaussian assumptions, the likelihood and prior probabilities are given

by

p(y | θ) ∝ exp
{
−1

2

(
r − J(θ − η(i)θ|y)

)T
C−1ε

(
r − J(θ − η(i)θ|y)

)}
p(θ) ∝ exp

{
−1

2
(θ − ηθ)TC−1θ (θ − ηθ)

}
,

(C.3)

where Cε is the error variance. Assuming the posterior density is approx-

imately Gaussian, we can substitute Eq.(C.3) into Eq.(C.1) to give the ex-

pression of the posterior density

p(θ | y) ∝ exp
{
−1

2
(θ − η(i+1)

θ|y )TC−1θ|y (θ − η(i+1)
θ|y )

}
Cθ|y = (JTC−1ε J + C−1θ )−1

η
(i+1)
θ|y = η

(i)
θ|y + Cθ|y

(
JTC−1ε r + C−1θ (ηθ − η

(i)
θ|y)
)
.

(C.4)

Equation (C.4) can be expressed in a more compact form by augmenting

the residual data vector, design matrix, and covariance components

Cθ|y = (J̄T C̄ε
−1
J̄)−1

η
(i+1)
θ|y = η

(i)
θ|y + Cθ|y(J̄

T ¯C−1ε ȳ)
(C.5)

where

ȳ =

[
y − h(η

(i)
θ|y)

ηθ − η
(i)
θ|y

]
, J̄ =

[
J

I

]
, C̄ε =

[
Cε 0

0 Cθ

]
.

The discussion done so far provides the basis for a recursive estimation

of the conditional mean (and covariance) and corresponds to the E-step

in the EM algorithm. The starting estimate of the conditional mean is

generally taken to be the prior expectation. If Eq.(2.7) were linear, i.e.

h(θ) = Hθ =⇒ J = H, Eq.(C.4) would converge after a single iteration.

However, when h is non-linear, J becomes a function of the conditional

mean and several iterations are required. Note that in the absence of any

priors, iterating Eq.(C.4) is formally identical to the Gauss-Newton method
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of parameter estimation.

The conditional covariance of the parameters is assumed to be Gaussian.

The validity of this assumption depends on the rate of convergence of the

Taylor expansion of h in Eq.(C.2).

Because h is non-linear the likelihood density will be only approximately

Gaussian.

However, the posterior or conditional density will be almost Gaussian, given

a sufficiently long time series [148].

C.2 M-step

So far the error covariance Cε has been assumed to be known. Clearly in

many situations (e.g., serial correlations in fMRI) it is not. When the error

covariance is unknown, it can be estimated through some hyperparameters

λj , where Cε =
∑
λjQj .

Qj = ∂Cε/∂λj represents a basis set that embodies the form of the variance

components and could model different variances for different blocks of data

or indeed different forms of serial correlations within blocks.

Restricted Maximum likelihood (ReML) estimators of λj maximise the (mar-

ginal) log likelihood log p(y | λ) = F (λ).

This log likelihood obtains by integrating over the conditional distribution

of the parameters as described in Neal and Hinton (1998) [149]. Under a

Fisher-scoring scheme [150] this gives

λi+1 = λi −
〈
∂2F

∂λ2

〉−1
∂F

∂λ

∂F

∂λj
= −1

2
tr{PQi}+

1

2
ȳTP TQiP ȳ〈

∂2F

∂λ2jk

〉
= −1

2
tr{PQiPQj}

P = C̄ε
−1 − C̄ε−1J̄Cθ|yJ̄T C̄ε

−1

(C.6)

The above equations are quick to implement due to the sparsity structure of

the covariance basis set Qi. If the basis set is the identity matrix, embodying

i.i.d assumption about the errors, then this is equivalent to the sum of

squared residuals estimation used in classical analysis of variance.

To sum up, this recursive optimisation scheme, also known as Variational

Laplace (VL), updates the moments of the posterior density, q(θ | y,m) by

maximising the negative variational Free Energy, which provides a lower

bound on the log model evidence, log p(y | m), Beal and Ghahramani
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(2003), being the Kullback-Leibler divergence between the approximate and

true posterior, always positive or at least zero.
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