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Summary 

 

Breast cancer is the most commonly diagnosed malignancy and the leading cause of cancer 

death in women worldwide. The highest incidence rates were registered in Western and 

Northern Europe, Australia/New Zealand and North America; intermediate rates in South 

America, the Caribbean and Northern Africa; low rates in Sub-Saharan Africa and Asia. 

Factors that influence this variation in incidence rates are related to differences in 

reproductive and hormonal status (women in more developed countries have fewer children 

and a late age at first birth, use oral contraceptives or hormone replacement therapies) or in 

lifestyle (sedentary lifestyle, higher levels of obesity and higher alcohol consumption). 

Moreover in developed countries the screening programs have raised the rate of incidence, 

by permitting diagnoses of cancer that otherwise would have remained undiagnosed. The 

rate of survival for female breast cancer in developed countries is higher than for most of 

other types of cancer and this is due both to earlier diagnosis, made possible by screening 

programs, and to improvement in therapy. Despite the decrease in mortality rate registered 

during the last years, breast carcinomas still remain the leading cause of cancer death in 

female worldwide, accounting for about 14% of all cancer deaths.  

At present, the broad heterogeneity observed among breast cancer reflects the well-accepted 

notion that there is not just one disease with disparate variant subtypes, but that breast cancer 

instead represents a collection of distinct neoplastic diseases of the breast and the cells 

composing it. Behind this complexity, several systems have been developed to classify this 

very highly heterogeneous disease and possibly to get information about tumour behaviour 

and provide more effective therapies. Histological classification categorizes breast cancer 

either in “in situ” , which do not grow into or invade normal tissues within or beyond the 

breast, or “invasive”, which do grow into normal, healthy tissues. However, this 

classification relies only on histological characteristics, without taking into account 

molecular markers or morphological features that can be helpful for prognosis or therapy. In 

addition to this classification, it is crucial to assess the receptor status of a tumour, as it may 

determine the possibility of using targeted treatments in cancer therapy.  

On this basis, various subgroups can be identified, according to their profile of gene 

expression and positivity to oestrogen receptor (ER), progesterone receptor (PR) and the 
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tyrosine kinase receptor, HER2. Moreover, breast tumours may be endowed with a different 

complement of the three above mentioned receptors (ER+/PR+/HER2+; ER+/PR+/HER2-; 

ER+/PR-/HER2+; ER+/PR-/HER2-; ER-/PR+/HER2-; ER-/PR-/HER2+; ER-/PR-/HER2-). 

Tumours that lack expression of all three receptors are defined as Triple Negative Breast 

Cancer (TNBC). 

In recent years several studies on gene expression profiles have been conducted using high-

throughput technologies, in order to identify molecular subtypes of breast cancer, to allow a 

better understanding of the complexity of the disease.  

Based on hierarchical clustering of gene expression microarrays, six subtypes of breast 

cancers have been identified: the luminal A breast cancer is the most common subtype 

accounting for 50 – 60% of all diagnoses; it’s characterized by the expression of ER and the 

absence of HER2 over-expression. The luminal B breast cancer accounts for 10–20% of 

total, it often expresses HER2 and may express low level of oestrogen receptor. The HER2 

positive subtype represents about 15-20% of all breast tumours and is characterized by 

expression of the HER2 gene, genes associated to its pathway and genes associated to 

cellular proliferation. The basal-like subtype, which represents 10-20% of total breast 

cancers, is characterized by expression of genes characteristic of the myo-epithelial (or 

basal) cells. In general, this subtype does not express ER, PR and HER2 and in clinical 

practice, it is often referred to as triple negative breast cancer (TNBC). The normal breast 

subtype is characterized by the expression of genes typical of adipose tissue and accounts 

for 5-10% of breast cancers; it lacks the expression of hormonal receptors and HER2 and so 

tumours belonging to this subtype are TNBC, but they are not basal-like cancers since they 

lack the expression of some genes characteristic of that category. Finally, the claudin-low 

subtype has been recently identified with a low expression of genes that encode for proteins 

involved in the formation of tight junctions, including Claudins and E-cadherin. It is rare 

and characterized by the absence of the oestrogen receptor, progesterone receptor and HER2 

expression.  

In 2009, Parker and colleagues introduced a new system of analysis, PAM50 (Prediction 

Analysis of Microarrays), to select a minimum set of genes, whose expression can predict 

the molecular subtype of a tumour. The PAM50 gene sets allows to obtain a classification 

similar to the one described above; it is based on a selection of  gene sets consisting of a 
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large number of "intrinsic" genes, and therefore can be used in the clinics to define the 

molecular phenotype of the tumours.  

Molecular classification of breast cancer based on gene expression patterns provides a 

connection between molecular biology and the behaviour of cancer cells in the 

corresponding subtypes. However, molecular classification of breast cancer has not yet 

reached clinical implementation as a routine aspect of patient management. 

Although an immunohistochemical staining proxy can be used to stratify and classify breast 

cancers in a clinical setting, the correspondence between clinical and molecular is not yet 

remarkable. 

The term retinoids refers to a group of compounds comprising metabolites and analogues of 

vitamin A, both natural and synthetic. The natural retinoids are essential components of diet 

and physiological regulators of many essential biological processes, such as embryonic 

development, metabolism and haematopoiesis. In adult mammals, retinoids such as All-

Trans Retinoic Acid (ATRA), control homeostasis of different organs and tissues. 

All-trans retinoic acid (ATRA) is a small lipophilic molecule and an important regulator of 

gene expression. The biological action of ATRA and its derivatives is mediated by two 

classes of nuclear receptors for retinoids called Retinoic Acid Receptor (RAR) and Retinoic 

X Receptor (RXR). The receptors are ligand-dependent transcription factors that control the 

activity of several target genes either through a direct or indirect mechanism. Both receptor 

subtypes exist in three different forms known as alpha, beta and gamma, encoded by 

different genes (RARA, RARB, RARG/ RXRA, RXRB, RXRG). Each subtype comprises 

two or more isoforms, which differ in the N-terminal region and are generated by a different 

promoter or by alternative splicing mechanisms. RAR and RXR receptors form stable 

hetero-dimers (RAR/RXR) that bind to specific sequences on DNA, called Retinoic Acid 

Responsive Elements (RAREs), localized within the promoter of target genes. ATRA 

modulates transcription through different mechanisms: it can directly modulate expression 

of target genes, through the interaction of the RAR/RXR with a group of co-activators and 

co-repressors or, in the absence of ligand, the RAR/RXR dimer is bound to the RAREs 

sequences on DNA and is associated with a complex of co-repressors that inhibit the 

transcription of target genes.  

Tumorigenesis is a multistep process characterized by a series of inherited or acquired 

genetic changes (mutations, chromosomal rearrangements, epigenetic phenomena), leading 
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to a disruption of cellular homeostasis and development of the neoplastic process. Several 

lines of evidence indicate an important role of retinoids in homeostasis. 

Mechanisms by which retinoids exert their antitumor activity have not yet been completely 

clarified, although studies in vitro and in vivo have shown the ability of retinoids to inhibit 

proliferation, induce differentiation and apoptosis, making these molecules of therapeutic 

interest.  It is clear that ATRA is able to act through different genomic mechanisms as well 

as to interact with other intracellular signalling systems, that provide the basis for its 

pleiotropic action.  

Currently, the best example of the anticancer action of retinoids is the use of ATRA in the 

treatment of patients suffering from acute promyelocytic leukaemia (APL).   

The retinoids have been investigated extensively for the prevention and treatment of cancer, 

predominantly because of their ability to induce cellular differentiation and to arrest 

proliferation. Systemic retinoids are approved by the U.S. Food and Drug Administration 

(FDA) also for treatment of cutaneous T-cell lymphoma, other than acute promyelocytic 

leukemia. The anti-leukemic action of ATRA is not primarily cytotoxic and it is the result 

of a direct cyto-differentiating action followed by a secondary apoptotic response rendering 

ATRA the first example of clinically useful cyto-differentiating agent. The use of ATRA in 

APL is also an example of targeted therapy, as the retinoids’ primary target is PML-RARα, 

the aberrant retinoid receptor expressed into the leukemic cell.  To date, more than 85% of 

patients with APL achieve complete remission following treatment with ATRA in 

combination with chemotherapy. The unique mechanism of action and the results obtained 

in APL has raised enthusiasm in generalizing the use of retinoids to other types of cancers, 

including breast cancer. Pre-clinical data support the idea that ATRA is a promising agent 

in the treatment and chemoprevention of certain subgroups of breast cancer, with particular 

reference to ER+ and HER2+ tumours characterized by co-amplification of the retinoic acid 

receptor alpha gene. There is also a low proportion of triple negative breast cancers which 

show sensitivity to this unusual anti-tumour agent.  

To evaluate the response of breast cancer cell lines to the anti-proliferative effect exerted by 

retinoic acid, Bolis and colleagues first defined the profile of ATRA-sensitivity in a panel of 

48 breast cancer cell lines of the Cancer Cell Lines Encyclopedia (CCLE), well- representing 

the heterogeneity of the disease. The drug response of each cell line has been quantified by 

computation of a sensitivity score (ATRA-score). 
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ATRA-score was computed on cell-lines that have been treated with vehicle (DMSO) and 5 

logarithmically increasing concentration of ATRA (0.001-10.0 μM) for 9 days and its value 

is calculated from the relative growth-inhibition (GI) data (ATRA vs. vehicle).  

To define the ATRA-score sensitivity metric, they fitted growth-inhibition curves relative to 

DMSO-treated controls and computed the area under the curve (AUC) and the maximal 

inhibitory effect (Amax). At this point, ATRA-score values, which are equal to the log2 

transformation of AUC x Amax , are rescaled in a range between 0 and 1, zero indicating total 

resistance and one standing for maximum sensitivity. 

Moreover,  Bolis and colleagues developed a tool capable of predicting ATRA-sensitivity, 

exploiting the association between this in vitro profiling and basal gene-expression data.  

In previous studies, a large panel of breast cancer cell lines (>50 lines) representative of the 

heterogeneity of the disease, have been profiled for their sensitivity to the anti-proliferative 

action of ATRA. They used a network-guided approach to develop a generalized model 

based on 21 genes (ATRA-21) capable of predicting ATRA-sensitivity across tumour types 

other than breast cancer. 

To identify gene-networks and gene pathways involved in the anti-proliferative action of 

ATRA, in this study we performed total RNA-sequencing experiments in a panel of 16 

sensitive and resistant cell lines, before and after treatment with the retinoid (1.0 µM) for 24 

hours. To better represent breast cancer heterogeneity, cell lines have been chosen based on 

their phenotype (8 luminal, which includes luminal A, luminal B and HER2+, and 8 basal-

like) and their widely variable sensitivity to pharmacological treatment with retinoic acid. 

Alignment of high-throughput paired-end reads derived from RNA-sequencing experiments 

to the reference genome has been performed. Genome-generation was performed using the 

comprehensive gene annotations present in Gencode; in particular, the v27 release of the 

GTF file has been used. As many RNA-sequencing aligners suffer from high mapping error 

rates, read length limitation or mapping biases, sequence–alignment to reference human 

genome (hg38) has been performed using STAR (Spliced Transcript Alignment to a 

Reference) sequence-aligner, which was designed specifically to align non-contiguous 

sequences directly to the reference genome, using a novel strategy for these spliced 

alignments.  
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Differential gene expression analysis was conducted exloiting the R package DESeq2, which 

provides methods to test for differential expression by the use of a negative binomial 

generalized linear model. 

After this first phase of differential expression analysis, we performed a test to verify the 

correlation between fold changes of differentially expressed genes and the predicted 

response of cell lines to pharmacological treatment, in terms of ATRA-score. To this aim, 

we computed both Pearson’s product moment correlation coefficient and Spearman’ rank 

correlation coefficient. We selected only those genes with a Pearson’s coefficient R or a 

Spearman’s coefficient  RHO <0.01. To further select only those genes showing a variation 

across samples that is sufficient to result  in a biologically significant action, we computed 

a variation coefficient, defined as  𝑆𝑑{𝑀𝑎𝑡𝑟𝑖𝑥[𝑖, ] 𝑚𝑒𝑎𝑛(𝑀𝑎𝑡𝑟𝑖𝑥[𝑖, ])⁄ } ∗ 100. 

On the basis of this additionally parameter, a more restrictive selection of genes has been 

performed, considering only those genes with VC>50%. 

Selected genes have been organized in networks based on protein – protein interactions, to 

a more precise visualization of possible interaction mechanisms induced.  

Moreover, gene set enrichment analysis (GSEA) on sequencing data led to the identification 

of ATRA-dependent pathways and gene-networks with significance for the anti-tumour 

activity of the retinoid: “interferon-dependent” and immune modulatory pathways  are found 

to be strictly up- regulated after treatment with ATRA. Genes and pathways that are down-

regulated specifically in ATRA-sensitive cell lines, are linked to cell proliferation and cell 

cycle progression which are tightly connected with the antiproliferative effect exerted by 

retinoic acid, and thus can be considered part of a downstream mechanism of action. 

We inspected ChIP-sequencing data from a public database of two forms of RARs 

transcription factors (RARA, RARG) in one breast cancer cell line treated with retinoic acid 

(MCF-7): we wanted to  evaluate  which of the more central genes in our response network 

were directly perturbated by the binding in the regions of their promoters of the ATRA-

activated transcription factors. To this purpose, raw data obtained in “FASTQ” file format 

have been aligned to the reference genome (hg38), using the Burrows-Wheeler Alignment 

Tool (BWA), a read alignment algorithm that is based on the backward search with Burrows-

Wheeler Transform (BWT). This represents an effective method to align short sequencing 

reads (50 bp) against a large reference sequence, such as the human genome. 
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Next, we used a command line tool designed by Zhang and Liu, MACS (Model-based 

Analysis of ChIP-Sequencing), to analyse pre-processed ChIP-Sequencing data. Given the 

ChIP-Sequencing data with the correspondent control sample, this peak-finding algorithm 

can be used to identify transcription factor binding sites (or even histone modifications, if 

necessary): it uses a dynamic Poisson distribution, which captures local biases in the 

genome, allowing for robust predictions and giving fewer false positives than the other 

available methods. Last, we annotated the identified peaks with an Ensembl based annotation 

package for Homo Sapiens, Ensembl version 86 (EnsDb.Hsapiens.v86). 

As result, we obtained a list of genes that are part of the above-mentioned interferon 

signalling, which have been identified as directs targets for RARA or RARG transcription 

factors; however, some of the most crucial genes involved in such pathways cannot be 

included in the list. Among the genes identified as RARA direct targets, is of particular 

interest the presence of “interferon- related” genes, such as DTX3L and PARP9, such as the 

presence of one of the genes that encodes a protein that is part of the MHC-I complex, HLA-

E. In contrast, one of the more important  transcription factors involved in the regulation of 

the interferon signalling, IRF1, is not a direct target, neither for RARA transcription factor, 

nor for RARG. 

Methylation data available for a panel of almost 40 un-treated breast cancer cell lines have 

been investigated, to find out whether there is a correlation between the basal methylation 

levels of genes necessary to trigger the mechanism of response to retinoids, and the 

sensitivity of cell lines to ATRA. All the data were obtained through the 

HumanMethylation450 BeadChip Array Platform: after a few normalization steps, 

methylation data have been tested for association with a defined parameter, the ATRA-score. 

To this aim, dmpFinder function implemented in the package minfi  in R environment has 

been used, which tested each genomic position for association between methylation and a 

“phenotype”, our defined parameter. Given the ATRA-score as a continuous parameter, 

association has been tested with linear regression. Finally, differentially methylated probes 

have been annotated, exploiting the information stored in the Bioconductor 

package “IlluminaHumanMethylation450kanno.ilmn12.hg19. 

Again, a few genes involved in the interferon-related mechanism have found to have a 

correlation between their methylation levels and the activation of the response to retinoids. 
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In particular, 73 out of the total 298 identified genes are well interesting, because of their 

highly interconnected position in the network defined during the differential expression 

analysis. In particular, among the genes with a higher methylation level we can find TLR3, 

a crucial part of innate immune response, whose transcription is deeply inducted after 

treatment with retinoic acid. Moreover, two other genes involved in the innate immune 

response and inducted by treatment with retinoic acid, HLA-E and PSMB8, have high 

methylation level in basal condition, correlated with the ATRA-score. 

In the second part of the study we took again into account the RNA-sequencing data to  

quantify possible transcription of repetitive elements from retroviral DNA, which are known 

to be widely distributed in the human genome: we hypostasized that they can be the cause 

of the above-mentioned interferon-driven immune system reactivation. 

To quantify expression of these transposable elements, we retrieved their genomic positions 

from RepeatMasker database (http://www.repeatmasker.org/). These coordinates were 

assembled into a customized annotation file (gene transfer file, GTF), which was used to 

determine the abundance of all retroviral-derived transcripts, by using FeatureCounts. To 

avoid detection of false positives, we discarded all transposable elements that show any 

overlap to known gene-associated exons, according to Gencode annotations. Afterwards, 

viral RNA abundance was normalized for library size and tested for differential expression 

between ATRA-treated and untreated samples, using the same approach as described in 

Material and Methods. 

A widely distributed up-regulation of these transcripts can be observed: induction (fold 

change) of the transcriptomic regulation slightly correlates with the sensitivity to ATRA-

treatment. Cell lines which are completely resistant to the pharmacological treatment, 

display no induction; then transcriptomic up-regulation grows with an increasing ATRA-

score. Despite the presence of a general trend of correlation between the induction of the 

retroviral elements transcription and the sensitivity to retinoids, of particular interest is the 

transcriptional effect on a few cell lines (CAMA1, ZR751), which doesn’t follow the global 

behaviour.  To better understand the reasons of such tendency, we proceeded with further 

investigations: it has been shown that this general course tightly correlates with the 

expression levels of RARA in each cell line. 

All things considered, we identified gene-networks whose expression is selectively 

modulated by ATRA in retinoid-sensitive luminal and triple-negative cell lines as well as 
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other gene-networks which are commonly regulated in both cell groups. Among the 

networks stimulated by ATRA, the group of genes involved in interferon- responses is of 

particular interest, as it indicates that the retinoid exerts a strong and specific immuno-

modulatory action in sensitive breast cancer cell lines.  

We are evaluating the functional significance of specific elements of these gene-networks 

for the anti-tumour-metastatic action of ATRA with the use of silencing and over-expression 

approaches.  

The results obtained in our cellular models provide insights into the molecular mechanisms 

underlying the anti-tumour action of ATRA in breast cancer. In addition, the sequencing 

data led to the identification of ATRA-dependent pathways and gene-networks with 

significance for the anti-tumour activity of the retinoid. Finally, the approach provides 

information as to potential new molecular targets for the design of rational therapeutic 

combinations based on ATRA for the treatment and secondary chemo-prevention of certain 

types of breast cancer.  

Beside the anti-proliferative effect described above, our data suggest that the 

pharmacological treatment with ATRA might also have an immunoregulatory effect on these 

cells. In particular, it has been observed that there is a dramatic up-regulation of the 

“Antigen-presentation and assembly/loading of class I MHC” pathways, as well as 

“Inflammatory responses”: this may result in an increased antigen presentation mechanism 

which may activate innate immune response. 

All things considered, this study  provides a strong rationale for the combination of ATRA 

with the immune checkpoint inhibitors.  
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Sommario 

 

Il carcinoma della mammella è il tumore più frequentemente diagnosticato tra le donne nel 

mondo, sia nei Paesi economicamente più avanzati che in quelli in via di sviluppo.  Nel 2018 

sono stati stimati 2 milioni di nuovi casi in tutto il mondo. 

La più alta incidenza è stata osservata in Nord America, in Europa del Nord e Ovest e in 

Oceania, dove sono in aumento la prevalenza dei fattori di rischio e le rilevazioni di tumori 

allo stadio iniziale. Nell'ultimo decennio in questi Paesi si è registrato però anche un aumento 

della sopravvivenza, grazie alla disponibilità di programmi di prevenzione primaria e 

diagnosi precoce (mammografia) e di nuove strategie terapeutiche efficaci, che permettono 

di migliorare la prognosi delle pazienti. Attualmente il tumore della mammella è la quinta 

causa di morte per tumore (552,000, il 6,4%). Nei Paesi in via di sviluppo, come Sud e 

Centro America, Africa e Asia, sono invece in aumento sia l’incidenza che la mortalità; 

questa tendenza riflette il recente cambiamento nello stile di vita (dieta, obesità) insieme a 

cambiamenti relativi allo stato ormonale e riproduttivo (minor numero di gravidanze e in età 

più adulta, allattamento di minore durata, utilizzo di contraccettivi), mancanza di programmi 

di screening efficaci e, in alcuni casi, limitato accesso ai trattamenti.  

In Italia, secondo i dati presentati dall'Associazione Italiana di Oncologia (AIOM) e 

dall'Associazione Italiana dei Registri Tumori (AIRTUM), si registra un aumento 

dell'incidenza di tumore della mammella nelle donne, con 52,300 nuovi casi stimati nel 2018. 

Questo aumento può essere in parte ricondotto all'ampliamento della fascia di screening 

mammografico in alcune Regioni. È il secondo tipo di tumore più frequente nelle donne, ma 

la sopravvivenza a 5 anni si avvicina al 90%, con percentuali ancora più alte se diagnosticato 

ad uno stadio precoce. La mortalità è quindi in diminuzione, seppure con differenze tra le 

Regioni del Nord e Sud Italia, come risultato di una maggiore prevenzione primaria e del 

miglioramento delle strategie terapeutiche 

Il carcinoma della mammella è una malattia eterogenea che comprende entità distinte in 

termini di istologia, caratteristiche molecolari, prognosi clinica e risposta ai trattamenti. 

Questa diversità ha reso più complesso lo sviluppo di classificazioni clinicamente utili per 

determinare il comportamento di un tumore sulla base delle sue caratteristiche biologiche . 
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La classificazione istopatologica si basa sulle differenti caratteristiche morfologiche dei 

tumori. Il tumore della mammella può essere innanzitutto classificato come in situ o 

invasivo. In situ significa che il tumore rimane confinato all’interno del tessuto epiteliale in 

cui si sviluppa, mentre è definito invasivo quando invade il tessuto circostante, diffonde nei 

linfonodi e vasi sanguigni ed eventualmente in altre aree del corpo. 

Negli ultimi decenni è stata dimostrata la fondamentale importanza di due recettori di ormoni 

steroidei, il recettore degli estrogeni (ER) e del progesterone (PR), e del recettore tirosin-

chinasico HER2 (human epidermal growth factor receptor 2) per l’eziologia, la prognosi e 

la terapia dei tumori della mammella. Accanto alla classificazione istopatologica, i tumori 

della mammella si possono distinguere sulla base dell’espressione dei suddetti recettori, 

valutata mediante analisi immunoistochimica, che permette di rilevare la presenza della 

proteina.  Inoltre, I tumori della mammella possono essere caratterizzati da diverse 

complementazioni dei tre recettori sopra citati: (ER+/PR+/HER2+; ER+/PR+/HER2-; 

ER+/PR-/HER2+; ER+/PR-/HER2-; ER-/PR+/HER2-; ER-/PR-/HER2+; ER-/PR-/HER2-). 

Infine, i tumori della mammella tripli negativi (TNBC, triple-negative breast cancer) 

costituiscono un gruppo di tumori molto eterogenei, caratterizzati dalla mancanza di 

espressione del recettore degli estrogeni e del progesterone e dalla mancanza di 

amplificazione/sovra-espressione di HER2. 

L’analisi dell’espressione genica, resa possibile dallo sviluppo di tecniche basate su 

microarray a cDNA, ha permesso di suddividere i tumori in diversi sottotipi molecolari sulla 

base della somiglianza del profilo di espressione genica. In questo modo è stata definita una 

classificazione, detta intrinseca, che ha individuato sei diversi sottotipi. 

Il sottotipo luminale A (50 -60% di tutti i carcinomi della mammella) comprende tumori 

caratterizzati da alti livelli di espressione del recettore degli estrogeni e dall’assenza di over-

espressione del recettore HER2. Il sottotipo luminale B (10-20% di tutti i carcinomi della 

mammella) comprende tumori  

che esprimono alti livelli di HER2 e spesso bassi livelli del recettore per l’estrogeno. 

Il sottotipo HER2-arricchito (15-20% di tutti i carcinomi della mammella) è costituito da 

tumori che sono prevalentemente HER2-amplificati, mostrano elevati livelli di espressione 

di numerosi geni dell'amplicone ERBB2 e geni associati a meccanismi di proliferazione 

cellulare. I tumori basal-like (10-20% di tutti i carcinomi della mammella) sono caratterizzati 

da alti livelli di espressione di marcatori delle cellule mioepiteliali basali e di geni che 



 

Sommario 

XXI  

 

regolano il ciclo cellulare. Sono inoltre caratterizzati dalla mancanza o da bassi livelli di 

espressione di ER e dei geni correlati ad ER, incluso PR, e dalla frequente assenza della 

sovra-espressione/amplificazione di HER2. Per questo motive, in pratica clinica, si fa 

riferimento a questo tipo di tumore come sottotipo triplo negativo.  

Il sottotipo normal breast-like (5-10% di tutti i carcinomi della mammella) è costituito da 

tumori caratterizzati da elevati livelli di espressione di geni tipici del tessuto adiposo e di 

altri tipi cellulari non epiteliali. Sono caratterizzati dalla mancanza di espressione di ER, PR 

ed HER2, (sottotipo triplo negativo, ma non basal like, in quanto non esprimono geni 

caratteristici di quella categoria. 

Infine, il sottotipo Claudine-low (12-14% dei carcinomi della mammella) è costituito per la 

maggior parte da carcinomi invasivi, caratterizzati da bassi livelli di espressione di geni 

coinvolti nelle giunzioni e nell’adesione cellula-cellula, come quelli codificanti per le 

Claudine 3/4/7 e la E-caderina. Inoltre, sono tumori rari e caratterizzati dall’assenza di 

recettore per l’estrogeno, per il progesterone ed anche HER2 negativi (tripli negativi). 

Nel 2009, Parker e colleghi hanno implementato un sistema di analisi, PAM50 (prediction 

analysis of microarrays), per selezionare un set minimo di geni  (50 geni) la cui espressione 

fosse predittiva di uno specifico sottotipo molecolare. Il set di geni PAM50 permette di 

ottenere una classificazione in accordo con quella precedente, che si basava sulla selezione 

di set costituiti da un numero maggiore di geni "intrinsechi", e può essere utilizzato in clinica 

per definire il fenotipo molecolare del tumore. 

La classificazione molecolare del tumore della mammella basata sui pattern di espressione 

genica costituisce un elemento di connessione tra la biologica molecolare del tumore e il 

conseguente progredire delle cellule tumorali del corrispondente sottotipo. Tuttavia, la 

classificazione molecolare del tumore del seno non ha ancora raggiunto un’implementazione 

standardizzata a livello clinico, poiché la corrispondenza tra gli aspetti clinici e quelli 

molecolari non è ancora completamente definita. 

Con il termine retinoidi ci si riferisce a tutte le molecole strutturalmente e funzionalmente 

analoghe al retinolo (Vitamina A), sia naturali che sintetiche. La vitamina A e i suoi metaboliti 

biologicamente attivi (acido retinoico tutto-trans, acido 9-cis retinoico e acido 13-cis retinoico) 

sono molecole essenziali per lo sviluppo embrionale, il meccanismo della visione e l’omeostasi 

di numerosi tessuti e sistemi, tra cui il sistema nervoso, immunitario e riproduttivo. A livello 

cellulare, regolano la proliferazione, il differenziamento e l’apoptosi. 
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L'acido retinoico tutto-trans (ATRA) è una piccolo vitamina liposolubile, importante regolatrice 

dell’espressione genica. L’acido retinoico e i suoi derivati  regolano infatti l’espressione di geni 

coinvolti nella crescita e nel differenziamento cellulare attraverso specifici recettori nucleari, 

RAR (retinoic acid receptor) e RXR (retinoid X receptor).  Questi recettori, in forma di omo- o 

etero-dimeri (RAR-RXR o RXR-RXR), agiscono da fattori di trascrizione. Sia RAR che RXR 

presentano ciascuno tre sottotipi recettoriali (α, β, γ) codificati da geni distinti. Per ciascun 

sottotipo esistono più isoforme, generate per splicing alternativo, che possono avere una 

differente affinità per i vari retinoidi e mediare differenti funzioni biologiche.  

L’acido retinoico tutto-trans è un agonista di tutte le isoforme recettoriali RAR, a cui si lega con 

la stessa affinità, modulando la trascrizione attraverso diversi meccanismi. In assenza di ligando, 

il dimero RAR-RXR è costitutivamente legato alle sequenze RARE contenute nei promotori dei 

geni bersaglio ed è associato a co-repressori , che inibiscono la trascrizione genica. Il legame di 

ATRA a RAR induce modificazioni conformazionali che possono determinare il rilascio di co-

repressori e il reclutamento di co-attivatori  con attivazione della trascrizione genica 

(meccanismo genomico diretto). Inoltre, i geni regolati direttamente codificano per proteine 

coinvolte nel trasporto, metabolismo e trasduzione del segnale dell’acido retinoico stesso e per i 

fattori di crescita, a loro volta, modulano l’espressione di geni coinvolti nella proliferazione 

cellulare (meccanismo genomico indiretto). In questo modo, ATRA inibisce la crescita 

arrestando il ciclo cellulare e guida la cellula verso un programma di differenziamento. 

La carcinogenesi è un processo caratterizzato dal graduale accumulo di alterazioni genetiche ed 

epigenetiche responsabile della deregolazione dell’omeostasi cellulare. In questo processo, le 

cellule sane vanno incontro ad una serie di trasformazioni neoplastiche con formazione di lesioni 

pre-maligne e sviluppo di carcinomi in situ e metastatici.  

I retinoidi svolgono un ruolo importante nel mantenimento dell’omeostasi: attraverso la 

regolazione dell’espressione genica, garantiscono il corretto equilibrio tra crescita e 

differenziamento cellulare. La perdita della loro attività o la diminuzione dei loro livelli 

intracellulari è associata ad una crescita cellulare aberrante e allo sviluppo di un’ampia varietà 

di tumori.  

I meccanismi con cui i retinoidi esercitano la loro attività antitumorale non sono ancora stati 

completamente chiariti, sebbene gli studi in vitro e in vivo abbiano dimostrato la capacità dei 

retinoidi di inibire la proliferazione, indurre differenziazione e apoptosi, rendendo queste 

molecole di interesse terapeutico. È chiaro che ATRA sia in grado di agire attraverso diversi 
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meccanismi genomici e di interagire con altri sistemi di segnalamento intracellulare, che 

forniscono la base per la sua azione pleiotropica. 

L’acido retinoico tutto-trans è stato il primo agente anti-proliferativo e cito-differenziante ad 

essere utilizzato in clinica nel trattamento di un raro sottotipo di leucemia mieloide acuta 

(AML, acute myeloid leukemia), la leucemia promielocitica acuta (APL, acute 

promyelocytic leukemia). L'azione anti-leucemica di ATRA non è citotossica, ma è il 

risultato di un'azione diretta anti-proliferativa e cito-differenziante, seguita da una risposta 

apoptotica secondaria che rende ATRA il primo esempio di agente cito-differenziante 

correntemente utilizzato in clinica.  L'uso di ATRA in APL è inoltre un esempio della 

cosiddetta “targeted” therapy, poiché l'obiettivo primario del retinoide è la fusione genica  

PML-RARα, che determina un’alterazione della funzione recettoriale di RARα. 

In combinazione con la chemioterapia (antracicline), questa terapia permette a più dell’85% 

dei pazienti con APL di andare incontro a remissione completa della malattia. 

Grazie al successo di ATRA nell’ambito della leucemia promielocitica acuta, l’interesse per 

il potenziale utilizzo terapeutico dei retinoidi si è esteso anche ad altri tipi di carcinomi, come 

il tumore della mammella. Ciò ha portato allo sviluppo di numerosi analoghi sintetici 

dell’acido retinoico, promettenti agenti cito-differenzianti e pro-apoptotici, e alla 

disponibilità di una serie di dati ottenuti da numerosi studi preclinici. Questi ultimi, tuttavia, 

si sono tradotti in un numero molto limitato di studi clinici. Tale insuccesso potrebbe essere 

dovuto al fatto che gli studi sono stati condotti senza tenere in considerazione l’eterogeneità 

del tumore della mammella e senza una selezione dei sottotipi tumorali.  

Si è quindi reso necessario definire i determinanti molecolari della sensibilità e resistenza ad 

ATRA nei diversi sottotipi di tumore della mammella. 

Per valutare la risposta delle linee cellulari di carcinoma mammario all'effetto 

antiproliferativo esercitato dall'acido retinoico, Bolis e colleghi hanno definito il profilo di 

sensibilità ad ATRA in un pannello di 48 linee cellulari di carcinoma mammario, che ben 

rappresentasse l'eterogeneità della malattia. La risposta farmacologica di ciascuna linea 

cellulare è stata quantificata per  il calcolo finale di un punteggio di sensibilità (ATRA-

score).  

Tale punteggio è stato calcolato su linee cellulari che sono state trattate con veicolo (DMSO) 

e 5 una concentrazione logaritmicamente crescente di ATRA (0,001-10.0 μM) per 9 giorni. 
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Il puntegio finale è stato calcolato a partire dai dati relativi alle curve di crescita-inibizione 

(ATRA vs veicolo).  

Per definire la metrica di sensibilità dell'ATRA-score, è stato eseguito un fitting delle curve 

di inibizione della crescita e per ciascuna è stata calcolata l'area sottesa alla curva (AUC) e 

l'effetto inibitorio massimo (Amax). A questo punto, i valori di ATRA-score, pari alla 

trasformazione logaritmica del prodotto AUC x Amax, sono stati riscalati in un range 

compreso tra 0 e 1, dove zero indica la resistenza totale e uno la massima sensibilità. 

Inoltre, Bolis e colleghi hanno sviluppato uno strumento in grado di predire la sensibilità al 

trattamento farmacologico con ATRA, sfruttando l'associazione tra questo profilo di 

sensitività in vitro e i dati disponibili di espressione genica basale.  A partire da questi dati,  

utilizzando un approccio “network-guided” è stato sviluppato un modello basato sui dati di 

espressione basale di  21 geni (ATRA-21), in grado di predire la sensibilità ad ATRA anche 

in tipi di tumori diversi dal cancro al seno. 

Per identificare i meccanismi molecolari coinvolti nell'azione anti-proliferative di ATRA,  

in questo studio sono stati condotti esperimenti di sequenziamento di RNA in un pannello di 

16 linee cellulari di carcinoma della mammella, sensibili e resistenti ad ATRA, prima e dopo 

il trattamento con acido retinoico (1,0 µM) per 24 ore. Per meglio rappresentare 

l'eterogeneità del cancro al seno, le linee cellulari sono state scelte in base al loro fenotipo 

(8 di fenotipo luminale, comprendenti luminali A, luminali B e HER2 +, e 8 di fenotipo 

basale) e la loro variabile sensibilità al trattamento farmacologico con acido retinoico.  

Le sequenze ottenute dagli esperimenti di sequenziamento di RNA sono state allineate al 

genoma di riferimento. La generazione del genoma è stata effettuata usando le annotazioni 

genomiche presenti in GENCODE; in particolare, è stata utilizzata la versione 27 (v27)  del 

file GTF( gene transfer file). 

Poiché molti allineatori di sequenze di RNA soffrono di alti tassi di errore di mappatura, 

limitazioni nella lunghezza delle sequenze che possono essere allineate o biases nella 

mappatura,  l’allineamento delle sequenze al genoma di riferimento (hg38) è stato eseguito 

utilizzando STAR (Spliced Transcripts Alignment to a Reference), progettato in modo 

specifico per l’allineamento di sequenze non contigue, utilizzando una strategia innovativa 

per sequenze soggette a splicing. 

L’analisi di espressione differenziale è tata poi successivamente condotta in ambiente R, 

attraverso l’utilizzo del pacchetto DESeq, in grado di testare l’espressione differenziale di 
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geni tra due diverse condizioni sperimentali (controlli e trattamenti con acido retinoico) 

attraverso l’utilizzo di un modello lineare (GLM) binomiale negativo. 

Dopo questa prima fase di analisi, è stato eseguito un test di correlazione tra l’induzione 

(fold change) dei geni differenzialmente espressi e la risposta predetta di ciascuna linea 

cellulare, in termini di ATRA-score. Per fare ciò, sono stati calcolati sia il coefficiente di 

correlazione secondo Pearson (R),  sia il coefficiente di correlazione secondo Spearman 

(RHO). Sono stati selezionati solo quei geni con R<0.01 o RHO<0.01.  

Da ultimo, sono stati ulteriormente selezionati solo quei geni che mostrassero una variabilità 

nei diversi campioni sufficiente a determinarne un’ azione biologicamente significativa. Per 

fare ciò, è stato calcolato il coefficiente di variazione tra i campioni, definito in termini 

percentuali. Solo i geni con una variazione superiore al 50% sono stati tenuti in 

considerazione per analisi successive. 

I geni selezionati sono stati organizzati in reti basate sulle interazioni proteina-proteina, per 

una visualizzazione più precisa dei possibili meccanismi di interazione indotti. 

Successivamente, l'analisi di arricchimento di espressione genica (GSEA) sui dati di 

sequenziamento ha condotto all'identificazione dei pathways molecolari la cui 

attivazione o repressione sia dipendente dall’attività antitumorale dell’acido retinoico. Le 

vie dipendenti dall’attivazione di interferone e quelli relative all’attivazione della risposta 

immunitaria sono fortemente up-regolate dopo il trattamento con ATRA.  

Al contrario, le vie connesse con la proliferazione e la progressione del ciclo cellulare, 

sono fortemente down-regolate: questo meccanismo sembra connesso con l'effetto 

antiproliferativo dell’ acido retinoico, e quindi si ipotizza essere parte di un 

meccanismo di azione a valle. 

Abbiamo ispezionato i dati di sequenziamento di immuno-precipitazione di cromatina 

(ChIP), depositati in un database pubblico, di due forme di fattori di trascrizione RAR 

-dipendenti (RARA, RARG) in una linea cellulare di cancro al seno trattata con acido 

retinoico (MCF-7): abbiamo voluto valutare quale dei geni più interconnessi nella rete di 

risposta al trattamento, siano stati  direttamente perturbati dal legame nelle regioni del loro 

promotore dei fattori di trascrizione attivati da acido retinoico.  A questo scopo, i dati grezzi 

ottenuti dal sequenzaimento sono stati allineati al genoma di riferimento (hg38), utilizzando 

lo strumento di allineamento Burrows-Wheeler (BWA), un algoritmo basato sull’utilizzo 

della trasformata di Burrows-Wheeler (BWT). Si tratta infatti di un metodo efficace per 
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allineare brevi sequenze (50 paia di basi) su sequenze di riferimento molto lunghe, come 

appunto il genoma umano.  

Successivamente, abbiamo utilizzato un algoritmo implementato da Zhang e Liu, MACS 

(Model-based Analysis of ChIP-Sequencing), per analizzare i dati di sequenziamento di 

immuno-precipitazione di cromatina pre-processati. Una volta associato il dato di 

sequenziamento del trattamento con il corrispondente campione di controllo, questo 

algoritmo di ricerca può essere utilizzato per identificare i siti di legame dei fattore di 

trascrizione (o anche le modifiche istoniche, se necessario): utilizzando un modello basato 

su una distribuzione di Poisson dinamica, permette di ottenere robuste previsioni e un basso 

numero di falsi positivi, confrontato con altri algoritmi disponibili. Infine, i siti di legame 

identificati sono stati annotati, con un pacchetto di annotazione che fa riferimento alla release 

Ensembl 86  (https://www.ensembl.org/index.html). 

Come risultato, abbiamo ottenuto una lista di geni, alcuni dei quali associabili al signalling 

di interferone, che sono stati identificati come bersagli diretti per fattori di trascrizione 

RARA o RARG. Tuttavia, alcuni dei geni cruciali coinvolti nelle vie molecolari 

interferoniche non possono essere inclusi nella lista. Tra i geni identificati come bersagli 

diretti di RARA, è di particolare interesse la presenza di geni correlati alla via interferonica 

come DTX3L e PARP9, insieme ad uno dei geni codificanti una proteina parte del complesso 

MHC-I, HLA-E. Al contrario, uno dei fattori di trascrizione più importanti coinvolti nella 

regolazione del segnale dell'interferone, IRF1, non è un bersaglio diretto, né per il fattore di 

trascrizione RARA, né per RARG. 

I dati di metilazione disponibili per un pannello di quasi 40 linee cellulari di carcinoma della 

mammella in condizioni basali sono stati indagati, per scoprire se esistesse una correlazione 

tra i livelli di metilazione basale di geni necessari per innescare il meccanismo di risposta ai 

retinoidi, e la sensibilità delle linee cellulari ad ATRA.  

Tutti i dati utilizzati, sono stati ottenuti attraverso la piattaforma HumanMethylation450 

BeadChip: dopo alcuni passaggi di normalizzazione, i dati di metilazione sono stati testati 

per l'associazione con un parametro definito, l'ATRA-score. A questo scopo è stata utilizzato 

l’algoritmo implementato nella funzione dmpFinder, implementata nel pacchetto minfi in 

ambiente R, in grado di verificare, per ogni posizione genomica, l’associazione tra la 

metilazione e un "fenotipo" o parametro definito. Dato l'ATRA-score come parametro 

continuo, l'associazione è stata testata con un modello di regressione lineare.  
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Infine, le zone genomiche identificate sono state annotate, sfruttando le informazioni 

contenute nel pacchetto "IlluminaHumanMethylation450kanno. ilmn12. hg19.” In 

Bioconductor (https://bioconductor.org/). 

Anche in questo caso, per alcuni geni coinvolti nel meccanismo molecolare di azione 

dipendente dall’attivazione interferonica, è stata trovata una correlazione fra i livelli di 

metilazione e l'attivazione della risposta all’acido retinoico. 

In particolare, tra i geni più rilevanti per il loro ruolo centrale all’interno dei network di 

interazione identificati, possiamo trovare TLR3, fondamentale nei meccanismi di risposta 

immunitaria innata, il cui livello di metilazione basale correla con una trascrizione 

profondamente indotta dopo il trattamento con acido retinoico. Inoltre, altri due geni 

coinvolti nella risposta immunitaria innata e indotti dal trattamento con acido retinoico, 

HLA-E e PSMB8, hanno un alto livello di metilazione in condizioni basali, che ben correla 

con l'ATRA-score. 

Nella seconda parte di questo studio, abbiamo preso nuovamente  in considerazione i dati di 

sequenziamento di RNA per quantificare la possibile trascrizione di sequenze ripetute da 

DNA retrovirale, note per essere ampiamente distribuite nel genoma umano: l’ipotesi di 

partenza dell’analisi, è la possibilità che la perturbazione trascrittomica di queste sequenze 

possa essere la causa della riattivazione delle vie interferoniche. Per quantificare 

l'espressione di questi elementi trasponibili, abbiamo ottenuto le loro posizioni genomiche 

dal database RepeatMasker (http://www.RepeatMasker.org/). Queste coordinate sono state 

assemblate in un file di annotazione personalizzato (gene transfer file, GTF), che è stato 

utilizzato per quantificare l’induzione nella trascrizione di queste sequenze retrovirali, 

utilizzando l’algoritmo implementato in FeatureCounts.  Per evitare falsi positivi, tutti gli 

elementi trasponibili che mostrano la sovrapposizione con esoni noti associati a geni 

codificanti, sono stati scartati. In seguito, dopo una fase di normalizzazione, la 

quantificazione dell’espressione differenziale di queste sequenze  fra campioni trattati con 

ATRA e  campioni non trattati, è stata condotta usando un approccio analogo a quello usato 

per i geni codificanti. Ciò che si è potuto osservare è un’induzione ampiamente distribuita 

di tutte queste sequenze: l'induzione della regolazione  trascrittomica è inoltre correlata con 

la sensibilità all’acido retinoico. Le linee cellulari che sono completamente resistenti al 

trattamento farmacologico, non mostrano alcuna induzione; linee maggiormente sensibili 

mostrano un maggiore livello di attivazione. Nonostante la presenza di una tendenza 
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generale di correlazione tra l'induzione della trascrizione degli elementi retrovirali e la 

sensibilità ai retinoidi, di particolare interesse è l'effetto trascrizionale su alcune linee 

cellulari (CAMA1, ZR751), che non segue il comportamento globale. Per meglio 

comprendere le ragioni di tale tendenza, sono state effettuate ulteriori indagini: è stato 

dimostrato che questo andamento generale è strettamente correlato con i livelli di 

espressione basale di RARA in ogni linea cellulare. 

I risultati ottenuti in questi modelli cellulari forniscono informazioni sui meccanismi 

molecolari che sottendono l'azione anti-tumorale di ATRA nel tumore della mammella. 

Inoltre, i dati di sequenziamento hanno condotto all'identificazione delle vie e delle reti 

genichedipendenti dall’azione dell’acido retinoico, legate alla sua attività anti-tumorale.  

Infine, l'approccio fornisce informazioni sui potenziali nuovi bersagli molecolari per la 

progettazione di combinazioni terapeutiche razionali basate su ATRA per il trattamento e la 

prevenzione di una chemioterapia secondaria su  alcuni tipi di carcinoma.  

Al di là dell’attività antiproliferativa, che potrebbe essere il risultato di una combinazione di 

fattori diversi, i dati presentati suggeriscono che il trattamento con acido retinoico possa 

avere un effetto immuno-regulatorio.  

Infatti, il possibile aumento nella presentazione di antigeni, unito alla up-regolazione di 

pathway molecolari legati all’attivazione del sistema immunitario innato, avrebbe effetto 

significativo sulla rilevazione dei tumori da parte sistema immunitario e la sua conseguente 

attivazione.  

Secondo questa osservazione, questo studio fornisce un forte razionale per lo studio della 

combinazione di ATRA con farmaci recentemente introdotti nel trattamento immuno-

oncologico, cioè gli inibitori del checkpoint immunitario. 
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Breast cancer is the most common malignancy and the leading cause of cancer deaths in 

women in the Western Hemisphere [1]. This is a very complex and heterogeneous disease 

and numerous efforts have been made to identify histological and molecular characteristics 

associated to clinical outcome. On the basis of gene expression data, different subtypes have 

been identified that show significant differences in incidence, survival and response to drug 

treatment. The most important determinants of these subtypes are the presence or absence of 

the estrogen receptor (ER) and the progesterone receptor (PgR), and the over-expression of 

tyrosine kinase receptor ERBB2 [7]. Given the heterogeneity of the disease, the diversity of 

the molecular mechanisms activated in different subgroups of this tumor and the developing 

of resistance to classical therapies, it would be helpful to use combinations of different drugs. 

All-trans-retinoid acid (ATRA) is the active metabolite of vitamin A and a promising agent 

in the prevention and treatment of breast cancer. In view of the development of ATRA-based 

therapeutic strategies aimed at personalized treatment of mammary tumours, a recent study 

demonstrated that approximately 70% of oestrogen-receptor-positive (ER+) breast cancer 

cell lines and primary tumours are sensitive to anti-proliferative effects of ATRA [20]. In 

contrast, only 10-20% of the HER2-positive and triple-negative counterparts respond to the 

retinoid.   

Mechanisms by which retinoids exerts their antitumor activity have not yet been completely 

clarified, although studies in vitro and in vivo have shown the ability of retinoids to inhibit 

proliferation, induce differentiation and apoptosis, making these molecules of therapeutic 

interest. Therefore, it would be important to decipher retinoids’ transcriptionally 

mechanisms of action, since it could lead to the development of targeted therapeutic 

strategies, able to implement new drug treatments. 

At present, on the basis of the data and the available basal gene-expression profiles of breast 

cancer cell lines and primary tumors, Bolis and colleagues [38] have developed a model 

consisting of 21 genes (ATRA-21) which correctly predicts ATRA-sensitivity in the context 

of breast cancer.  

The present study is aimed at getting insights into the molecular mechanisms underlying the 

anti-tumor action of ATRA in the specific subsets of breast cancer identified.  In addition, 
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we intend to identify specific genes and gene-networks modulated by ATRA which may 

represent pharmacological targets for the design and development of rational combinations 

between the retinoid and unrelated therapeutic agents to be used in the personalized 

treatment of breast cancer agents. A final goal is the identification of potential bio-markers 

of the anti-tumor response to ATRA and potentially pharmacological targets to be used in 

the clinics.   

To address all these points, we used a multi-omics approach to investigate various aspects 

of the molecular mechanisms that can be involved in the response of the breast tumour cells 

to treatment with retinoic acid. 

 

 

 

In the first part of the study, we analysed data obtained after performing deep-sequencing 

experiments on a panel of sixteen cell lines recapitulating the heterogeneity of the breast 

cancer phenotype and characterized for their anti-proliferative response to ATRA. Each cell 

line has been exposed to ATRA (1 µM) for 24 hours and total RNA was extracted and 

subjected to high throughput sequencing. The global gene-expression data were analyzed to 
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evaluate the transcriptomic profile induced by the pharmacological treatment, with a number 

of complementary bio-informatic tools.  

To complement this analysis, we obtained data from available databases, such as the NCBI 

GEO (Gene Expression Omnibus), deriving from different techniques, such as Chromatin 

Immunoprecipitation (ChIP) sequencing and Methylation arrays, performed on a wide 

number of breast cancer cell lines. We analysed these data and then complemented our 

results to the data obtained from the first part of the study. 

In the second part of the study RNA-sequencing data were analysed to quantify transcription 

of possible retroviral elements that are part of the human genome, in order to asses if a 

phenomenon called “viral mimicry” could trigger the mechanism of response to 

pharmacological treatment with retinoids. 

This multi-omics approach gave us a more comprehensive view of the transcriptional and 

molecular mechanisms that are implicated in the sensitivity or resistance of breast cancers 

to the treatment with retinoic acid.  

It is worth noticing that the huge amount of data to be processed and analysed for this project 

required a massive computational time and power: for many processing steps we had to 

exploit CINECA supercomputers.  
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Background 

1 BREAST CANCER   

 1.1 BREAST CANCER EPIDEMIOLOGY 

Breast cancer is the most commonly diagnosed malignancy among females and the leading 

cause of cancer death in women worldwide, accounting for an estimated 2 million new 

cancer cases in 2018 [1]. The highest incidence rates were registered in Western and 

Northern Europe, Australia/New Zealand and North America; intermediate rates in South 

America, the Caribbean and Northern Africa; low rates in Sub-Saharian Africa and Asia 

(Figure 1).  

 

Figure 1 Incidence rates of breast cancer worldwide (adapted from [1]) 

Despite the increasing number of breast cancer diagnoses over recent decades, the rate of 

mortality has become stable (or decreasing), reflecting both increased screening programs 

and improvements in treatment’s efficacy. 

In Italy breast cancer is the most frequently diagnosed malignancy (excluding non-

melanoma skin cancers) in women, with about 52.300 new cases expected in 2018, the 29% 

of the total, with 12.274 estimated deaths at different stages of life [2]. 

The main risk factor for developing breast cancer is age, together with female gender and 

individual hormonal status. Inherited genetic factors, such as hereditary mutations in BRCA1 

and BRCA2 tumour suppressor genes, PTEN, p53, CDH1, CHEK2, ATM and a few others 
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also play an important role, significantly increasing lifetime risk of developing breast cancer 

[3]. 

Hormonal and reproductive factors, such as a long menstrual history (early menarche and/or 

late menopause), use of contraceptives or menopausal hormone replacement therapy, or 

never having children, are related to an increased risk of developing breast cancer. Lifestyle 

also affects the risk of developing breast cancer: never breastfed, physical inactivity, 

overweight/obesity, elevated alcohol consumption, high energy diet and smoking can 

increase the risk. 

 

1.2 BREAST CANCER CLASSIFICATION 

Breast cancer is a heterogeneous disease, characterized by several pathological features, 

different response to therapeutics, and substantial differences in long-term patient survival. 

The broad heterogeneity observed among breast cancer reflects the now well-accepted 

notion that there is not just a one disease with disparate variant subtypes, but that breast 

cancer instead represents a collection of distinct neoplastic diseases of the breast and the cell 

composing it [4]. 

To better understand breast cancer and its heterogeneity it is necessary to briefly explain 

breast structure. 

Human breast is a complex secretory organ, made of  two main types of tissue: supporting 

(stromal) tissue and glandular tissue (mammary gland). 

The supporting tissue, or stroma, is composed of collagenous connective tissue and adipose 

tissue, which sustain the mammary gland with blood and lymphatic vessels associated. The 

mature mammary gland consists of 15-20 lobes, each of them further divided into several 

lobules containing the alveoli, the milk producing units, and the ducts, tubes carrying the 

milk from the alveoli to the nipple.  

The alveoli are hollow cavities, delimited by a basement membrane lined by luminal milk 

secreting cells. Lobules and ducts are formed respectively by alveolar and ductal luminal 

epithelial cells, which are surrounded by a basal layer of myo-epithelial cells, that contract 

to excrete the milk through the duct toward the nipple [5].  These cell types form a bi-layer 

that lies adjacent to the basement membrane and lines both the ducts and cluster of lobules 

known as terminal ductal lobules (TDLUs) (Figure 2). 
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Figure 2 Normal breast structure [www.cancer.org/cancer/breastcancer] 

Behind this complexity, several systems have been developed to classify a very highly 

heterogeneous disease and possibly to get information about tumour behaviour and provide 

more effective therapies. 

Histological classification categorizes breast cancer either in “in situ” or “invasive”. 

The term in situ refers to a type of cancer that has developed within the epithelial tissue. It 

can be divided either in ductal (ductal carcinoma in situ, DCIS) or lobular (lobular 

carcinoma in situ, LCIS), depending on the original site of the cancer, ducts or lobules. The 

lobular in situ breast cancer is not considered as a real cancer, but a risk factor for developing 

it. [6] 

The invasive or infiltrating breast cancer has overcome the basement membrane and invaded 

nearby tissue and vessels and possibly spread to other organs. It can be further sub-classified 

into multiple sub-groups [6]: 

• Invasive Ductal Carcinoma (IDC) (70-80%): it is the most common type of breast 

cancer, that starts into the duct and then spread and grows into the surrounding tissue. 

At this point, it may be able to spread (metastasize) to other parts of the body through 

the lymph system and the bloodstream. 
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• Invasive Lobular Carcinoma (ILC) (10%): it is the second most common type of 

breast cancer; it originates in the milk producing lobules and can spread (metastasize) 

to other parts of the body. 

Other sub-types of invasive carcinomas much less common than the breast cancers listed 

above (less than 5%) are adenocystic carcinoma, medullary carcinoma, mucinous carcinoma, 

papillary carcinoma and tubular carcinoma. 

 

Figure 3 Histological classification of breast cancer (adapted from [6]) 

This classification relies only on histological characteristics without taking into account 

molecular markers or morphological features that can be helpful for prognosis or therapy. 

In clinical practice breast cancer classification also relies on clinical-histopathological 

features, on the presence or absence of hormonal receptors and on the Ki67 proliferation 

index. 

In particular, it is critical to assess the receptor status of a tumour, as it determines the 

possibility of using targeted treatment. 

Hormonal receptors for oestrogen (ER) or progesterone (PR) are usually identified through 

immunohistochemistry (IHC). Cancer cells expressing ER need oestrogen to grow, so ER 

positive breast cancer can be treated with drugs that reduce the effects of the production of 

oestrogens.  

Human epidermal growth factor receptor 2 (HER2) is a membrane receptor that can be over-

expressed in breast cancer. HER2 positive tumours are characterized by a DNA-

amplification of the region containing this tyrosine-kinase receptor which leads to its 
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overexpression and abnormal functioning. These cancer cells can be treated with the 

monoclonal antibody Trastuzumab, aimed at blocking HER2 receptor activity, in 

combination with chemotherapy [7]. 

The proliferation marker Ki67 is a nuclear protein associated with cellular proliferation, as 

it is expressed only in proliferating and not in quiescent cells. This factor is associated with 

histopathological parameters, as it has been shown that poorly differentiated cancers have a 

high proliferation index [8] and can be considered as an independent prognostic factor for 

overall survival (OS).  

Moreover, breast tumours may be endowed with a different complement of the three above 

mentioned receptors (ER+/PR+/HER2+; ER+/PR+/HER2-; ER+/PR-/HER2+; ER+/PR-

/HER2-; ER-/PR+/HER2-; ER-/PR-/HER2+; ER-/PR-/HER2-). Tumours that lack 

expression of all three receptors are defined as Triple Negative Breast Cancer (TNBC). 

In recent years several studies on gene expression profiles have been conducted using high-

throughput technologies, in order to identify molecular subtypes of breast cancer, to allow a 

better understanding of the complexity of the disease.  

Based on hierarchical clustering of gene expression microarray data from 65 tumours and 

normal breast samples, six subtypes of breast cancers have been identified [9]. 

The luminal A breast cancer is the most common subtype accounting for 50 – 60% of all 

diagnoses. It’s characterized by the expression of ER, the absence of HER2 over-expression, 

together with a low Ki67 proliferation rate [10]. 

The luminal B breast cancer accounts for 10–20% of total. This subtype of cancer often 

expresses HER2 and may express low level of oestrogen receptor. Moreover, it has a higher 

proliferative rate (measured by Ki67). 

The HER2 positive subtype represents about 15-20% of all breast tumours and is 

characterized by expression of the HER2 gene, genes associated to its pathway and genes 

associated to cellular proliferation [11].  

The basal-like subtype, which represents 10-20% of total breast cancers, is characterized by 

expression of genes characteristic of the myo-epithelial (or basal) cells. In general, this 

subtype does not express ER, PR and HER2 and often, in clinical practice, it is referred to 
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as triple negative breast cancer, even if the terms are not equivalent since a discordance 

between the two groups has been observed [12].  

The normal breast subtype is characterized by the expression of genes typical of adipose 

tissue and accounts for 5-10% of total breast cancers [13]. These tumours lack the expression 

of hormonal receptors and HER2, so they are TNBC, but they are not basal-like cancers 

since they lack the expression of some genes characteristic of that category. Moreover, this 

category is still poorly characterized, and its clinical relevance has yet to be determined. 

The claudin-low subtype has been recently identified [14] with a low expression of genes 

that encode for proteins involved in the formation of tight junctions, including Claudins and 

E-cadherin. It is rare and characterized by the absence of the oestrogen receptor, 

progesterone receptor and HER2 expression. Furthermore, tumours belonging to this 

subtype over-express a set of genes related to the Epithelial to Mesenchymal Transition 

(EMT), that are not present neither in the basal tumours nor in other subtypes. 

The molecular subtypes identified show significant differences in incidence, survival and 

response to treatment (Figure 4), providing a wide range of information that greatly expand 

the knowledge obtained from the classical pathological markers [15]. 

 

 

Figure 4. Kaplan-Meier relapse free survival and overall  survival of intrinsic subtypes of breast cancer 

(adapted from [15]). 
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In 2009, Parker and colleagues[16] introduced a new system of analysis, PAM50 (Prediction 

Analysis of Microarrays), to select a minimum set of genes, whose expression can predict 

the molecular subtype of a tumour. The PAM50 gene sets allows to obtain a classification 

similar to the one described above; it is based on a selection of  gene sets consisting of a 

large number of "intrinsic" genes, and therefore can be used in the clinics [15] to define the 

molecular phenotype of the tumours.  

 

1.3 CLINICAL AND MOLECULAR 

CLASSIFICATION OF BREAST CANCER 

Molecular classification of breast cancer based on gene expression patterns provides a 

connection between molecular biology and the behaviour of cancer cells in the 

corresponding subtypes [16]. However, molecular classification of breast cancer has not yet 

reached clinical implementation as a routine aspect of patient management. Although an 

immunohistochemical staining proxy can be used to stratify and classify breast cancers in a 

clinical setting, the correspondence between clinical (i.e., immunohistochemical) and 

molecular (i.e., gene expression) classification is not remarkable. This situation is illustrated 

in Figure 5 for 381 breast cancers for which both immunohistochemical staining data and 

molecular classification were available [17]. 
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Figure 5. - Correspondence between PAM50 and traditional classification of breast-cancer (adapted from 

[17]). 

Correspondence between the immuno-histochemical and the molecular/transcriptomic classification of breast 

cancer. Mammary-tumors are divided in four groups according to the traditional classification based on the 

immuno-histochemical determination of the ERα, PR and HER2 molecular markers. For each of the four 

groups, the percentage of cases showing the six indicated transcriptomic phenotypes determined on the basis 

of a modification of the PAM50 fingerprint is illustrated.  
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2. RETINOIDS 

The term retinoids refers to a group of compounds comprising metabolites and analogues of 

vitamin A, both natural and synthetic. The natural retinoids are essential components of diet 

and physiological regulators of many essential biological processes, such as embryonic 

development, metabolism and haematopoiesis. In adult mammals, retinoids such as All-

Trans Retinoic Acid (ATRA), control homeostasis of different organs and tissues [18]. 

All-Trans Retinoic Acid (ATRA) is a small lipophilic molecule and an important regulator 

of gene expression. ATRA, synthesized intracellularly from circulating retinol or diffusing 

from an adjacent cell, binds to cellular retinoic acid binding proteins I and II (CRABPI and 

CRABPII). Binding to these two proteins have opposite effects, while binding to CRABPII 

promotes ATRA activity, by stimulating the transfer to the nucleus and the activation of 

transcription, binding to CRABPI reduces its activity, by promoting its degradation [18].  

In addition to degradation, another balancing mechanism of ATRA concentration, to avoid 

excessive stimulation of the cells, is isomerization in less-active and more water-soluble 

isoform 9-cis Retinoic Acid (9-cisRA) and 13-cis Retinoic Acid (13-cisRA), thus the plasma 

concentration of retinoic acid in humans is very low, between 5-10nM [19]. 

The biological action of ATRA and its derivatives is mediated by two classes of nuclear 

receptors for retinoids called Retinoic Acid Receptor (RAR) and Retinoic X Receptor 

(RXR). RAR and RXR receptors have different affinity towards specific ligands: 9-cisRA 

binds both receptors, while ATRA binds only RARs [19].   

The receptors are ligand-dependent transcription factors that control the activity of several 

target genes either through a direct or indirect mechanism. Both receptor subtypes exist in 

three different forms known as alpha, beta and gamma, encoded by different genes (RARA, 

RARB, RARG/ RXRA, RXRB, RXRG). Each subtype comprises two or more isoforms, 

which differ in the N-terminal region and are generated by a different promoter or by 

alternative splicing mechanisms [20]. Each RAR and RXR isoform encoded by a distinct 

gene and transcribed into different splicing-variants is represented in Figure 6 [21]. 

RAR and RXR receptors form stable hetero-dimers (RAR/RXR) that bind to specific 

sequences on DNA, called Retinoic Acid Responsive Elements (RAREs), localized within 

the promoters of target genes. 
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RXR receptors form hetero-dimers with other nuclear receptors such as the Vitamin D 

Receptor (VDR), the Thyroid Hormone Receptor (TR), the Peroxisomal Proliferation 

Receptor (PPAR) and other orphan nuclear receptors [22], allowing modulation of several 

signalling pathways [23]. Moreover, the possibility of forming different combinations 

between the retinoids receptors contributes to different cellular responses in different cell 

types.  

All-trans retinoic acid modulates transcription through different mechanisms. It can directly 

modulate expression of target genes, through the interaction of the RAR/RXR with a group 

of co-activators and co-repressors. In the absence of ligand, or in presence of antagonists, 

the RAR/RXR dimer is bound to the RAREs sequences on DNA and is associated with a 

complex of co-repressors that inhibit the transcription of target genes.  

There are also indirect target genes, which do not contain RARE sequences in their 

promoters, but are regulated by genes that are direct target of ATRA. Among these genes, 

there are several growth factors and growth factors receptors, such as Tumour Necrosis 

Factor (TNF), transforming growth factor β and Epidermal Growth Factor (EGF) [24]. 

Moreover, ATRA can exert its activity in a non-genomic way. Although still largely to 

characterize, this relies on the ability of retinoids to activate specific kinases, suggesting an 

atypical, nongenomic activation. In line with this new concept, though classically thought to 

reside in the nucleus, RARs have been recently reported to be present in the cytosol or in 

membranes [25]. 
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Figure 6. Structure of the RAR/RXR genes and relative mRNA/protein products. 

The exonic structure of the genes coding for the human RARA, RARB, RARG, RXRA, RXRB and RXRG 

genes along with the corresponding chromosomal location are indicated. Below each gene the structure of the 

corresponding transcript variants is shown on the left side. The structure of the encoded proteins from the NH- 

to the COOH terminus (left to right) are indicated on the right. Boxes drawn in different colours represent the 

known structural domains of the various receptors [21].  
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2.1 RETINOIDS IN ONCOLOGY  

Tumorigenesis is a multistep process characterized by a series of inherited or acquired 

genetic changes (mutations, chromosomal rearrangements, epigenetic phenomena) leading 

to a disruption of cellular homeostasis and development of the neoplastic process.  

Several lines of evidence indicate an important role of retinoids in homeostasis. Moreover, 

retinoids are essential components of the diet and regulate embryological development. Low 

levels of vitamin A during development can cause malformations, while high concentrations 

are teratogenic. In adult humans, vitamin A regulates the fertility, the visual function, 

prevents tumour growth and the development of neurodegenerative diseases [26].  

In particular, in vivo studies showed the existence of a correlation between vitamin A 

deficiency and the onset of cancer. Moreover, changes in the bioavailability of retinoids, due 

to alterations in their metabolism, are associated with tumorigenesis. In many cancers, 

including breast cancer, it seems that the gene coding for RARβ is silenced, through a 

deletion, a mutation, or a hyper-methylation of his promoter; the loss of expression of RARβ 

receptor is associated with tumour progression [27]. 

In contrast, the addition of retinol to the diet reduces the risk of hyperplasia and tumour 

incidence in animal models and in organ cultures and changes in the levels of functional 

expression or activity of retinoid receptors (RAR and RXR) have been observed in some 

cancers [28]. 

Mechanisms by which retinoids exert their antitumor activity have not yet been completely 

clarified, although studies in vitro and in vivo have shown the ability of retinoids to inhibit 

proliferation, induce differentiation and apoptosis, making these molecules of therapeutic 

interest.  

It is clear that ATRA is able to act through different genomic mechanisms as well as to 

interact with other intracellular signalling systems, that provides the basis for its pleiotropic 

action.  

Currently, the best example of the anticancer action of retinoids is the use of ATRA in the 

treatment of patients suffering from Acute Promyelocytic Leukaemia (APL). More than 85% 

of patients with APL achieve complete remission following treatment with ATRA in 

combination with anthracyclines. Retinoids also show efficacy in the treatment of three 

precancerous lesions: leucoplakia, actinic keratosis and cervical dysplasia, and are also able 
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to slow the development of melanoma in patients suffering from Xeroderma Pigmentosum 

[29]. 

 

2.2 RETINOIDS IN BREAST CANCER 

Retinoids are of therapeutic interest in breast cancer as they are able to prevent tumours 

induced by carcinogenic agents in murine models [30] and have anti-proliferative effect on 

breast cancer cell lines in vitro. Despite promising preclinical studies, however, retinoids 

have not yet found effective application in clinical practice.  

Interest in the use of retinoids in breast cancer is reflected by the vast scientific literature 

(>1300 articles) available, which concentrates on ATRA. On the other hand, the large 

number of pre-clinical studies has been translated into few clinical trials (Table 1).   

No chemo-preventive trials involving ATRA or classic retinoids have yet been published. 

Except for one report conducted with bexarotene (RXR agonist), all the known chemo-

preventive trials are based on fenretinide, which is not a bona fide functional retinoid despite 

its chemical structure, as it can be considered a retinoid, but has a different mechanism of 

action. In fact, the mechanism underlying its antitumor activity is not linked to the classical 

mode of activation of nuclear receptors for ATRA. In vitro fenretinide inhibits the growth 

of breast cancer cell lines by acting through a mechanism independent from the retinoid 

receptors. Indeed, fenretinide was proven to be a selective RARG agonist and not a pan-

RAR agonist like ATRA.  On the basis of this study on fenretinide, retinoids are not 

recommended outside of a clinical trial. 

In invasive breast cancer, three major therapeutic trials on retinoids, used as single agents, 

have been reported.  The only trial involving ATRA is a phase-II study in pre-treated patients 

which failed to achieve the primary end-point [31].  

A few clinical trials using retinoid-based combinations are available:  

• ATRA + tamoxifen is the object of a dose-escalation phase I/II study conducted in  

patients with ER+ hormone-refractory tumours. Objective responses or stable disease 

(SD) were observed in 9 patients [32].   

• A second pre-operative study in locally advanced breast cancer was conducted to 

determine both the biologic effects and the minimal effective dose of ATRA with or 
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without tamoxifen and interferon alpha-2 (IFNα2). Neither ATRA + tamoxifen nor 

ATRA + tamoxifen + IFNα2 potentiated the ATRA-induced effects [33].  

• A small pilot study was conducted to evaluate the efficacy of combinations between 

ATRA and paclitaxel in pre-treated metastatic breast cancer.  In 17 evaluable patients, 

3 showed partial remission (PR) and 10 presented with SD. Despite the small cohort of 

patients analysed, the data suggest that this well-tolerated combination induces a modest 

frequency of PR but relatively high rates of stable disease [34].   

• Retinyl-palmitate, 9-cis-RA and 13-cis-RA [35] were also tested in combination with 

other agents. Combinations of 13-cisRA and tamoxifen or interferon alpha-2 were 

investigated in post-menopausal pre-treated metastatic breast cancer. No significant 

difference in the overall response rate and overall survival was observed in the 3 

treatment arms. 

The data available stress the paucity and the generally disappointing nature of the clinical 

results obtained with retinoids. 

The molecular determinants responsible for resistance or sensitivity of cancer cells to 

retinoids are still poorly understood but it is reasonable to suppose that they include the 

expression of RARs and RXRs and factors related to them [36]: from this point of view, 

breast cancer is a classic example of the heterogeneous response to retinoids. For that reason, 

although they have shown a potential for therapeutic use in breast cancer, up to now  

retinoids haven’t been approved for clinical use. The variability in the response is yet the 

major problem that limits their use in clinics.  

The starting hypothesis here is that the negativity of the results is predominantly due to the 

design of the clinical trials, which did not take into account the heterogeneity of breast cancer 

and were conducted on cohorts of patients without selection for any particular sub-type of 

tumour.    

Given the heterogeneity of breast cancer, a clinical use of retinoids requires the identification 

of a subset of patient sensitive to their effect.   

To challenge this goal, it would be important to understand the molecular mechanisms and 

the determinants of retinoid sensitivity or resistance. 
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Compound End point Trials 

(No.) 

Pts 

(No.) 

Clinical 

Phase 

Reference 

Fenretinide BC 

prevention 

 

 

 

 

BC 

treatment 

5 

 

 

 

 

 

2 

6521 

 

 

 

 

 

441 

Ph II/III 

 

 

 

 

 

PhI/III 

-Veronesi U et al, (1999) 

J NatlCancerInst91, 1847-56 

-Veronesi U et al, (2006) 

AnnOncol17, 1065-71 

 

 

-Cobleigh MA et al, (1993) 

J ClinOncol11, 474-7 

-Rao RD et al, (2011) 

Med Oncol28, 1:S39-47 

ATRA BC 

prevention 

 

BC 

treatment 

0 

 

4 

0 

 

73 

 

 

Ph I/II 

 

 

-Sutton LM et al, (1997) 

Cancer Chemotherapy and 

Pharmacology40, 335-341 

-Budd GT et al, (1998) 

Clin Cancer Res 4, 635-42 

-Toma S et al, (2000) 

Int J Oncol 17, 991-1000 

9-cis-RA BC 

prevention 

 

BC 

treatment 

0 

 

2 

 

0 

 

34 

 

 

Ph I 

 

 

-Kurie JM et al, (1996) 

Clin Cancer Res 2,287-93 

-Lawrence JA et al, (2001) 

J ClinOncol19, 2754-63 

13-cis-RA BC 

prevention 

 

0 

 

1 

0 

 

94 

 

 

Ph II 

 

 

-Chiesa MD et al, (2007) 

Acta Biomed78, 204-9 
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BC 

treatment 

Bexarotene BC 

prevention 

 

 

BC 

treatment 

1 

 

 

1 

87 

 

 

148 

 

Ph I 

 

 

Ph II 

-Brown P et al, (2008) 

Cancer Prev Res 1, CN04-04 

 

-Esteva FJ et al, (2003) 

J ClinOncol21, 999-1006 

 

Retinyl 

palmitate 

BC 

prevention 

BC 

treatment 

0 

 

1 

0 

 

65 

 

 

Ph II 

 

 

-Recchia F et al, (2009) 

Oncol Rep 21, 1011-6 

Table 1. Selected clinical trials of retinoids in breast cancer 

The table lists the published clinical trials on retinoids in breast cancer along with the corresponding references. 
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3 ATRA SENSITIVITY 

3.1 ATRA – SCORE 

As mentioned above, all-trans retinoic acid and its derivatives have shown a potential for 

therapeutic and preventive use in breast cancer because of their ability to modulate cell 

growth and differentiation [37].  

To evaluate the response of breast cancer cell lines to the anti-proliferative effect exerted by 

retinoic acid, Bolis and colleagues [38] first defined the profile of ATRA-sensitivity in a 

panel of 48 breast cancer cell lines of the Cancer Cell Lines Encyclopedia (CCLE), well- 

representing the heterogeneity of the disease. The drug response of each cell line has been 

quantified by computation of a sensitivity score (ATRA-score). 

ATRA-score is computed on cell lines that were treated with vehicle (DMSO) and 5 

logarithmically increasing concentrations of ATRA (0.001-10.0 μM) for 9 days; its value 

has been finally calculated from the relative growth-inhibition (GI) data (ATRA vs. vehicle).  

To define the ATRA-score sensitivity metric (as shown in Figure 7), they fitted growth-

inhibition curves relative to DMSO-treated controls and computed the area under the curve 

(AUC) and the maximal inhibitory effect (Amax). At this point, ATRA-score values, which 

are equal to the log2 transformation of AUC x Amax , are rescaled in a range between 0 and 

1, zero indicating total resistance and one standing for maximum sensitivity. 

Relative to the sole AUC value, the ATRA-score gives more weight to the maximal growth 

inhibitory effect. This choice was taken in order to benefit in particular those cell lines that 

reached striking levels of maximal growth inhibition.  
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Figure 7. ATRA-score metrics (adapted from[38]). 

The figure illustrates an example of a fitted growth-inhibition curve (top) and provides insights on how ATRA-

dependent growth-inhibition (GI) was determined relative to DMSO treated controls (bottom). Cell growth was 

determined with the sulforhodamine assay.    
 

Moreover, the aim of the study of Bolis and colleagues [38] was to develop a tool capable 

of predicting ATRA-sensitivity, exploiting the association between this in vitro profiling and 

basal gene-expression data.  

Starting from the generation of a predictive model based on basal gene expression profile of 

139 genes (ATRA-139), they used a network-guided approach to develop a generalized 

model based on a selection of 21 out of the original 139 genes (ATRA-21) capable of 

predicting ATRA-sensitivity across tumour types other than breast cancer. 
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Materials and methods 

 

 1. EXPERIMENTAL SETUP 

A panel of 16 breast cancer cell lines has been subjected to a total RNA-sequencing 

procedure, before and after treatment with retinoic acid (1.0 µM) for 24 hours. Each 

experiment has been conducted in triplicate, with a total of 96 samples. To better represent 

breast cancer heterogeneity, cell lines have been chosen based on their phenotype (luminal, 

which includes luminal A, luminal B and HER2 [10,11], or basal [12]) and their widely 

variable sensitivity to pharmacological treatment with retinoic acid. Table 2 reports cell lines 

phenotype, their receptors status and  their ATRA-score. 

CELL-LINE PHENOTYPE ER (IHC) HER2(IHC) PR(IHC) 
ATRA-

SCORE 

CAL851 BASAL - - - 0.00 

CAMA1 LUMINAL + - + 0.66 

HCC1187 BASAL - - - 0.00 

HCC1419 LUMINAL - + - 0.09 

HCC1500 LUMINAL + - + 0.66 

HCC1599 BASAL - - - 1.00 

HCC202 LUMINAL - + - 0.24 

Hs578T BASAL - - - 0.19 

MB157 BASAL - - - 0.28 

MDAMB157 BASAL - - - 0.25 

MDAMB175VII LUMINAL + - - 0.19 

MDAMB231 BASAL - - - 0.01 

MDAMB361 LUMINAL + + - 0.58 

MDAMB436 BASAL - - - 0.00 

SKBR3 LUMINAL - + - 0.99 

ZR751 LUMINAL + - - 0.14 

Table 2. Panel of 16 sensitive and resistant cell  lines. 

For each cell line is reported the phenotype, the receptor status and the ATRA-score. 
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2. RNA-SEQUENCING DATA ANALYSIS 

2.1 LOW LEVEL PROCESSING 

Alignment of high-throughput paired-end reads derived from RNA-sequencing experiments 

to the reference genome has been performed. Genome-generation was performed using the 

comprehensive gene annotations present in Gencode [39]; in particular, the v27 release of 

the Gene Transfer File (GTF) file has been used. 

High-throughput sequencing (HTS) experiments generate hundreds of millions of sequences 

that present the unique challenge of detection and characterization of spliced transcript, 

dealing with reads that contain both mismatches, insertions, deletions of genomic regions 

and sequencing errors. The reads sequenced are small fragments (150 bp) compared with the 

median gene size in homo sapiens (24 kbp) [40] and therefore they may ambiguously align 

to multiple genomic regions. 

As many RNA-sequencing aligners [41, 42,43] suffer from high mapping error rates, read 

length limitation or mapping biases, sequence–alignment to reference human genome (hg38) 

has been performed using STAR (Spliced Transcript Alignment to a Reference) [44] 

sequence-aligner, which was designed specifically to align non-contiguous sequences 

directly to the reference genome, using a novel strategy for these spliced alignments. 

STAR algorithm involves two major steps: a first seed searching step and a second 

clustering/stitching/scoring step. 

The central idea of the STAR seed finding phase is the sequential search for a Maximal 

Mappable Prefix (MMP) in uncompressed suffix arrays (SA) [45]. To find the best alignment 

of a given RNA-sequencing read R, a read location i and a reference genome sequence G, 

the MMP (R,i,G) has to be identified,  as the longest substring (Ri, Ri + 1, … , Ri + MML − 

1) that matches exactly one or more substrings of G, where MML is the maximum mappable 

length (Figure 8). 
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Figure 8. STAR alignment algorithm 

Schematic representation of the Maximum Mappable Prefix search in the STAR algorithm for detecting (a) 

splice junctions, (b) mismatches and (c) tails [44]. 

 

As a first step, the algorithm finds the MMP starting from the first base of the read (Figure 

8.A). If the read comprises a splice junction, it cannot be mapped contiguously to the 

genome, and thus the first seed will be mapped to a donor splice site. Moreover, in the 

presence of mismatches, the MMP will serve as an anchor in the genome that can be 

extended, allowing for alignment even in presence of divergencies (Figure 8.B). 

As a second step, the MMP search is repeated for the unmapped portion of the read, which, 

in this case, will be mapped to an acceptor splice site. 

The splice junctions are detected in a single alignment pass without any a priori knowledge 

of splice junctions’ loci or properties, and without a preliminary contiguous alignment pass 

needed by the junction database approaches.  

The MMP search is performed in both forward and reverse direction of the read sequence. 

In a second phase, STAR algorithm builds alignment of the entire read sequence by stitching 

together all the seed that were aligned to the genome in the previous phase. 

First, the seeds are clustered together by proximity to a selected set of “anchor” seeds. The 

size of the user-defined genomic windows determines the maximum intron size for the 

spliced alignments. STAR algorithm allows for any number of mismatches, still for only one 

insertion or deletion (gap). 

Then, a stitching process is guided by a local alignment scoring scheme, with defined scores 

(and penalties) for matches, mismatches, insertions, deletions and splice junctions gaps, 

leading to a subsequently quantitative assessment of the alignment qualities and ranks. 
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Notably, the seeds from the mates of paired-end RNA-sequencing reads are clustered and 

stitched concurrently, with each paired-end read represented as a single sequence, allowing 

for a possible genomic gap or overlap between the inner ends of the mates. This is a 

fundamental way to use the paired-end information, underlying the nature of the paired-end 

reads, reflecting the fact that the mates are pieces (ends) of the same sequence. This type of 

approach increases the sensitivity of the algorithm, as only one correct anchor from one of 

the mates is sufficient to accurately align the entire read. 

 

 

2.2  DIFFERENTIAL GENE EXPRESSION ANALYSIS  

All the analyses and the processing of the RNA-sequencing data were performed using R 

46, 47], a free software environment for statistical computing and graphics. 

The R package DESeq2 [48,49] was used to detect differentially expressed genes between 

ATRA-treated and untreated samples. 

As first step, the input for the Deseq2 package has been defined, as un-normalized counts of 

sequencing reads obtained from the RNA-sequencing experiment, in the form of a matrix of 

integer values. The value in the i-th row and the j-th column of the matrix defines the number 

of reads that can be assigned to gene i in sample j. Moreover, as a further step before starting 

the analysis, a pre-filter of low count genes has been carried out, by removing rows in which 

all the read counts all equal to 0, to both reduce the memory size of the data objects and 

increasing the speed of the transformation and testing functions. 

The phases of the differential expression analysis are designed into a single function, DESeq. 

The analysis that it performs is based on the Negative Binomial (Gamma-Poisson) 

distribution and goes through three different steps: estimation of the size factors, estimation 

of the dispersion coefficients and a Negative Binomial Generalized Linear Model (GLM) 

fitting.  

The generalized linear model used in differential expression analysis is on the form: 

𝐾𝑖𝑗  ~ 𝑁𝐵(𝜇𝑖𝑗 , 𝛼𝑖) 

𝜇𝑖𝑗 =  𝑠𝑗𝑞𝑖𝑗  

log2(𝑞𝑖𝑗) =  𝑥𝑗𝛽𝑖 



 

Materials and Methods  

26  

 

where counts Kij for gene i, sample j, are modelled using a Negative Binomial distribution 

with fitted mean µij and a gene-specific dispersion parameter αi. The fitted mean is composed 

of a sample-specific size factor sj and a parameter qij proportional to the expected true 

concentration of fragments for sample j.  The coefficients 𝛽𝑖 give the log2 fold changes for 

gene i for each column 𝑥𝑗 of the model matrix X. 

To sum up, the first step performed by the function is the estimation of size factor 𝑠𝑗, 

followed by the estimation of dispersion coefficient 𝛼𝑖, and the negative binomial GLM 

fitting for 𝛽𝑖, coupled with a Wald statistic. 

The estimation estimate of size factors is implemented in the function estimateSizeFactors, 

that uses the “mean ration method” described by Anders and Huber [50], to obtain a 

normalized count matrix.  

EstimateDispersions is then the function used in the second step to obtain dispersion 

estimates for such negative binomial distributed data. The dispersion parameter 𝛼𝑖 defines 

the relationship between the variance of the counts observed and its mean value.  

Specifically, how far the observed count is expected to be from the mean value, which 

depends both on size factors 𝑠𝑗 and the covariate dependent part 𝑞𝑖𝑗, as defined above. 

The fitting method proceeds as follows: for each gene is found an estimate of the dispersion 

that maximize the Cox- Reid-adjusted profile likelihood [51]. Then, a trend line capturing 

the dispersion mean relationship is fitted to the maximum likelihood estimates.  

A normal prior is determined for the log dispersion estimates centred in the predicted value 

from the trended fit with variance equal to the difference between the observed variance of 

the log dispersion estimates and the expected sampling variance (Equation 1) . Finally, 

maximum a posteriori dispersion estimates are returned. 

𝑉𝑎𝑟(𝐾𝑖𝑗) = 𝐸 [(𝐾𝑖𝑗 − 𝜇𝑖𝑗)
2

] =  𝜇𝑖𝑗 +  𝛼𝑖𝜇
2

𝑖𝑗
   (1) 

This final dispersion parameter is used in subsequent tests. 

Using the previously calculated size factors and dispersion estimates, the function 

nbinomWaldTest tests for significance of coefficients in a negative binomial generalized 

linear model  (GLM). 

First, standard maximum likelihood estimates for the generalized linear model coefficients 

(𝛽𝑖, or log2fold changes) are calculated. To obtain the Wald test p-values, the coefficients 

are scaled by their standard errors and then compared to a standard normal distribution.  
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Notably, the DESeq2 package performs independent filtering, in order to filter out from the 

procedure those tests that have no, or little chance of showing significant evidence, before 

without even looking at their statistics.  

As underlined in the study of Bourgon and Gentlemen [52], this permits to increase detection 

power at the same experiment-wide type error I, using a two-stage approach that filters 

variable by a criterion independent from the statistics, and then testing only those variables 

that passes the filter.  

Independent filtering is performed here using the mean of normalized counts as a filter. Wald 

test p-values of the subset of genes that have passed the filtering phase are adjusted using 

the Benjamini and Hochberg False Discovery Rate [53] procedure. At the end, the adjusted 

p-values for the genes which do not pass the filter threshold are set to NA. 

The filter threshold value and the number of rejections at each quantile of the filter statistic 

are available as metadata of the object returned as result. 

 

2.2.1 CORRELATION ANALYSIS 

After a first phase of differential expression analysis, a test to verify the correlation between 

fold changes of identified differentially expressed genes and cell lines predicted response to 

pharmacological treatment (ATRA-score [38]), has been carried out. 

After consulting the study of  Hauke and Kossowski [54], we decided to use both Spearman’s 

and Pearson’s correlation coefficients, in order to have a more inclusive result, independent 

from the procedure of association. In fact, Pearson’s correlation coefficient is a measure of 

the strength of the linear relationship between two variables, whether Spearman’s rank 

correlation coefficient is a nonparametric (distribution-free) rank statistic used in this case 

as a measure of the strength for the same comparison. More in details, it is a measure of a 

monotone association, that can be used when the distribution of data may make Pearson’s 

correlation coefficient someway misleading. Unlike Pearson’s product-moment correlation 

coefficient, Spearman’s correlation coefficient does not require the assumption that the 

relationship between the variables is linear, nor does it require the variables to be measured 

on interval scales; it can be used for variables measured at the ordinal level. In principle, it 

can be considered a special case of Pearson’s product-moment coefficient in which the data 

are converted to ranks before calculating the coefficient. 
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For that reason, a first correlation test using Pearson’s method has been carried out, between 

each row of the fold change matrix obtained for differentially expressed genes (i.e. the fold 

change computed for each i-th gene in each j-th sample) and the ATRA-score vector. When 

the statistic test is based on Pearson's product moment correlation coefficient, it follows a t-

distribution with length(x)-2 degrees of freedom. The asymptotic confidence interval is 

given based on Fisher's Z transform. Secondly, when Spearman’s method has been used to 

estimate the rank-based measure of association, p-values are computed via the asymptotic t 

approximation. 

 

2.2.2 VARIATION COEFFICIENT 

To further select only those genes showing a variation across samples that is sufficient to 

result  in a biologically significant action, we decided to compute a coefficient of variation, 

as defined in Equation 2: 

 VC=  𝑆𝑑{𝑀𝑎𝑡𝑟𝑖𝑥[𝑖, ] 𝑚𝑒𝑎𝑛(𝑀𝑎𝑡𝑟𝑖𝑥[𝑖, ])⁄ } * 100  (2) 

For each row of the normalized count matrix, i.e. for each i-th gene, we determined the ratio 

between the value of its expression in each sample and the mean value across all the samples. 

Finally, the normalized standard deviation of this value has been represented in percentage. 

On the basis of this additionally parameter, a more restrictive selection of genes has been 

performed, considering only those genes with VC>50%. 

 

2.3 GENE SET ENRICHMENT ANALYSIS 

Gene set enrichment analysis has been performed using the package Limma in R 

environment [55]. 

The collection of annotated gene sets here used (more than 10.000) is provided by the 

Molecular Signatures Database MSigDB (http://software.broadinstitute.org/gsea/msigdb). 

In this compendium, gene set collections are organized in eight major categories, as 

summarize in Table 3. 

To our aim, we decided to focus on the Hallmark, C2 (KEGG and REACTOME)  and C5 

(Gene Ontology Biological Process, Molecular Function and Cellular Compartment) 

collections. 
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Name of the collection 

Number of 

gene sets 

 

Description 

HALLMARK gene sets 50 Hallmark gene sets summarize and represent 

specific well-defined biological states or 

processes and display coherent expression. These 

gene sets were generated by a computational 

methodology based on identifying overlaps 

between gene sets in other MSigDB collections 

and retaining genes that display coordinate 

expression. 

C1: Positional gene sets 326 Gene sets corresponding to each human 

chromosome and each cytogenetic band that has 

at least one gene. 

C2: Curated gene sets, 4762 Gene sets curated from various sources such as 

online pathway databases, the biomedical 

literature, and knowledge of domain experts.  

C3: Motif gene sets, 836 Gene sets representing potential targets of 

regulation by transcription factors or 

microRNAs. The sets consist of genes grouped 

by short sequence motifs they share in their non-

protein coding regions. The motifs represent 

known or likely cis-regulatory elements in 

promoters and 3'-UTRs. 

C4: Computational gene 

sets 

858 Computational gene sets defined by mining large 

collections of cancer-oriented microarray data. 

C5: Gene Ontology (GO) 

gene sets 

5917 Gene sets that contain genes annotated by the 

same GO term. The C5 collection is divided into 

three sub-collections based on GO ontologies: 

Biological Process, Cellular Compartment, and 

Molecular Function. 

C6: Oncogenic signatures 189 Gene sets that represent signatures of cellular 

pathways which are often dis-regulated in cancer. 

The majority of signatures were generated 

directly from data from NCBI GEO . 

C7: Immunologic 

signatures, 

4872 Gene sets that represent cell states and 

perturbations within the immune system. The 

signatures were generated by manual curation of 

published studies in human and mouse 

immunology. 

Table 3. 3 MSigDB collections (adapted from (http://software.broadinstitute.org/gsea/msigdb)) 
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Competitive gene set tests are widely used in molecular pathways analyses: they are useful 

to test for enrichment of a particular gene annotation category among the differential 

expression results from RNA-sequencing analysis, to display statistically significant and 

concordant differences between two biological states. Briefly, they are similar to differential 

expression analyses in which as set of genes is considered as a unit and therefore associated 

with a  p-value. 

Many traditional competitive tests assume independence of genes [56], evaluating p-values 

by permutation of gene labels, because they rely on parametric approximations that are 

asymptotically equivalent to a gene permutation [57]. Among them, the very popular Gene 

Set Enrichment Analysis (GSEA) [58] procedure, uses sample permutation to test the 

significance of a competitive gene test statistics, but this may result in a hybrid test for which 

the null and alternative hypothesis are difficult to characterize in terms of population 

parameters.  

To avoid these critical issues, we decided to perform this kind of analysis using a new gene 

set test procedure presented by Wu and Gordon [59], CAMERA, that is based on the idea of 

estimating inter-gene correlation from the data and then use them to adjust the statistics of 

the test. 

Starting from a given collection of gene set tests, CAMERA tests whether the genes in the 

set are highly ranked in terms of differential expression relative to genes not in the set.  

This algorithm can be used for any RNA-sequencing experiment resulting in log-expression 

values ygi for genes i = 1, … ,G and RNA samples i =1, …, n. Assuming a linear model for 

the expected value of each expression value given the experimental design, 

𝐸(𝑦𝑔𝑖) =  𝜇𝑔𝑖 =  ∑ 𝛼𝑔𝑗𝑥𝑖𝑗
𝑝
𝑗=1   (3) 

where  𝑥𝑖𝑗 are the design variables specifying which treatment condition is associated with 

each RNA sample, whether 𝛼𝑔𝑗 are unknown regression coefficient representing expression 

fold changes between the two experimental condition in the experimental set up. 

Each gene is supposed to have its own variance 𝑣𝑎𝑟(𝑦𝑔𝑖) =  𝜎𝑔
2. 

CAMERA estimates p-values after adjusting the variance of statistic tests by an estimated 

variance inflation factor (VIF).   

Let’s consider a set of m genewise statistics z1, .., zm. The variance of the mean of the 

statistics is defined as  
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var 𝑧̅ =  
1

𝑚2
 (∑ 𝜏𝑖

2𝑚
𝑖=1 ) + ∑ 𝜌𝑖𝑗𝜏𝑖𝜏𝑗𝑖<𝑗   (4) 

where 𝜏𝑖 is the standard deviation of zi and the 𝜌𝑖𝑗are the pairwise correlations. The second 

term here represents the increase in the variance of the mean that derives from the correlation 

between the genes. In case all the 𝜏𝑖 are equal to 𝜏  

var 𝑧̅ =  
𝜏2

𝑚
 𝑉𝐼𝐹  (5) 

where the variance inflation factor is equal to 𝑐, being �̅� the average of 𝜌𝑖𝑗. 

Notably, the inflation factor depends on estimated genewise correlation and the number of 

genes in the gene set. 

To estimate the inter-gene correlation �̅�, let’s consider Y = {ygi} for the m x n matrix of 

genes in the test set. Here, rows correspond to genes and columns to RNA samples. We 

assume that the expression values can be represented by genewise linear models with a n x 

p  design matrix X = {xij}. The rows of the design matrix correspond to RNA samples and 

the columns to coefficients of the linear model.  

To estimate the average pairwise correlation, the first step is the computation of d 

independent residual for each gene.  Let’s now consider  X = QR for the QR-decomposition 

of the design matrix, where Q is n x n and R is n x p. Here, R is upper-triangular and Q 

satisfies QTQ = 1. The n x d matrix of independent residual is obtained by U = YQ2, Q2 

representing the trailing d columns of Q.  

At this point, correlation matrix for the m genes can be obtained as C = UUT. As m is large, 

the column means uk of U are computed, so that the estimate of VIF became 

 

VIF̂ =  
𝑚

𝑑
 ∑ 𝑢𝑘

−2𝑑
𝑘=1  (5) 

 

In this case, the estimate of the average correlation equal to the average of all pairwise 

correlations in the matrix C, can be estimated by solving 𝑉𝐼𝐹 =  1 + (𝑚 − 1)�̅� for �̅�. 

The estimate of the mean pair-wise correlation within each set of genes is implemented in 

the function interGeneCorrelation : 
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• if interGeneCorrelation = NA, the algorithm will estimate the inter-gene correlation 

for each set. In this way, it gives a rigorous error rate control for all sample sizes and all 

gene sets. 

• If interGeneCorrelation = 0.01, CAMERA will rank biologically interpretable sets 

more highly. This gives a useful compromise between strict error rate control and 

interpretable gene set rankings. 

For our analysis, we decided to use a slightly modified version of the presented algorithm, 

called cameraPR: this  is a "pre-ranked" version of CAMERA where the genes are pre-

ranked according to a pre-computed statistic. In this case, the statistical values given to the 

function arises the significance (p-value) of  the statistical correlation parameter calculated 

through Pearson’s procedure presented in the previous paragraph. 

As final result, CAMERA return a matrix with a row for each gene set tested and a column 

for each of the following parameters: number of genes in the set, direction of change (“up” 

or “down”), a two-tailed p-value and the Benjamini and Hochberg adjusted p-value (FDR). 

 

3. CHIP-SEQUENCING DATA ANALYSIS 

CHIP-sequencing raw data have been obtained from the NCBI GEO repository 

(www.ncbi.nlm.nih.gov/geo/) series GSE60272 and are publicly available. In particular, a 

subset composed by GSM1469981, GSM1469982, GSM1469983, GSM1469984, 

GSM1469985, GSM1469986, GSM1469987, GSM1469988, GSM1469989, GSM1469990, 

GSM1469991 has been chosen for our analysis. We took into consideration for higher level 

analysis only those experiments where biotin ChIP-sequencing have been performed, for 

wild-type (WT) forms of two RAR transcription factors (RARα/γ) in MCF-7 breast cancer 

cells upon retinoic acid (RA) and oestrogen (E2) stimulation. 

 

3.1 LOW-LEVEL PROCESSING 

Raw data in “FASTQ” file format have been aligned to the reference genome (hg38), using 

the Burrows-Wheeler Alignment Tool (BWA), a read alignment package that is based on 

backward search with Burrows-Wheeler Transform (BWT) [60]. This represent an effective 
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method to align short sequencing reads (50 bp) against a large reference sequence, such as 

the human genome. 

Actually, using backward search [61] with BWT, the algorithm is able to effectively mimic 

the top down traversal on the prefix trie of the genome with relatively small memory 

footprint [62] and to count the number of exact hits of a string (read) of a generic length m 

in a time independent of the size of the genome. 

For inexact search, BWA usually sample from the implicit prefix trie the different substrings 

that are less than k edit distance away from the query read.  Because exact repeats are 

collapsed on one path on the prefix trie, we don’t need to align the reads against each copy 

of the repeat. This is the main reason why BWT-based algorithms are efficient and BWA 

has been chosen among different category of software available [63, 64, 65]. 

The prefix tie for a generic string X (in our case the human genome) is a tree where each 

edge is labelled with a symbol and the string concatenation of the edge symbols on the path 

from the leaf to the root gives the unique prefix of X. Hence, the string concatenation of the 

edge symbols from a node to the root gives a unique substring of X, called the string 

represented by the node.  

Notably, the prefix trie of X is the exact copy of the suffix trie of reverse X and therefore 

suffix trie theory can also  be applied to prefix trie. 

Once defined the prefix trie, testing whether a generic query W  is an exact substring of X is 

equivalent to finding the node that represents W, which can be done by matching each 

symbol in W to an edge, starting from the root.  

To allow mismatches, we can completely traverse the trie and match W to each possible path. 

It is also possible to accelerate this search by using prefix information of W.  

To compute the Burrows–Wheeler transform of the human genome, let’s consider Σ being 

an alphabet. Consider now a symbol $, that is not present in Σ and is lexicographically 

smaller than all the symbols in Σ . A string X=a0a1 ...an−1 is always ended with symbol $ (i.e. 

an−1=$) and this symbol only appears in the end.  

Let X[i]=ai , i=0,1,...,n−1, be the i-th symbol of X, X[i,j]=ai ...aj a substring and Xi=X[i,n−1] 

a suffix of X.  

Suffix array (SA) S of X is a permutation of the integers 0,...,n−1 such that S(i) is the start 

position of the i-th smallest suffix. 

Now, we can define the BWT of X as B[i]=$ when S(i)=0 and B[i]=X[S(i)−1] otherwise.  
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In practice, the algorithm usually construct the suffix array first, and then generate the BWT 

of the reference genome. 

To describe the final sequences alignment procedure, we must first consider the suffix array 

intervals.  If string W is a substring of X, the position of each occurrence of W in X will result 

in an interval in the suffix array. This is because all the suffixes that have W as prefix are 

sorted together. Based on this observation, we can define: 

R(W) = min{k :W is the prefix of XS(k)}  (7) 

�̅�(W) = max{k :W is the prefix of XS(k)}  (8) 

In particular, if W is an empty string, R(W)=1 and R(W)=n−1. The interval [R(W),R(W)] is 

called the SA interval of W and the set of positions of all occurrences of W in X is  

{S(k) :R(W) ≤ k ≤ R(W)}.   (9) 

Knowing the intervals in suffix array we can define the positions. Hence, sequence alignment 

is equivalent to searching for the suffix array intervals of substrings of X that match the 

query. For the exact matching problem, we can find only one such interval. 

The backward search procedure, can be now explained as follow. Let C(a) be the number 

of symbols in X[0,n−2] that are lexicographically smaller than a∈ Σ and O (a,i) the number 

of occurrences of a in B[0,i]. Ferragina and Manzini [61] proved that if W is a substring of 

X: 

    R(aW) = C(a)+O(a,R(W) −1)+1                  (10) 

              �̅�(aW) = C(a)+O(a,R(W))           (11) 

and that R(aW) ≤ R(aW) if and only if aW is a substring of X. This result makes it possible 

to test whether W is a substring of X and to count the occurrences of W in O(|W|) time by 

iteratively calculating R and �̅� from the end of W. This procedure is called backward search. 

Notably, equations (10) and (11) realize the topdown traversal on the prefix trie of X; given 

that we can calculate the SA interval of a child node in constant time if we know the interval 

of its parent. In these sense, backward search is equivalent to exact string matching on the 

prefix trie, but without explicitly putting the trie in the memory. 

The default output alignment format is SAM (Sequence Alignment Map format). Once 

obtained, we used SAMtools (http:// http://samtools.sourceforge.net/) to convert it to its 

binary format (BAM file, Binary Alignment Map format) [66].  
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At this point, a BED (Browser Exstensible Data) file format has been obtained using 

bedtools (https://bfastqedtools.readthedocs.io/en/latest/), which was the required input for 

the further steps of analysis. 

 

3.2 PEAK CALLING 

A command line tool designed by Zhang and Liu [67], MACS (Model-based Analysis of 

ChIP-Sequencing), has been used to analyse pre-processed ChIP-Sequencing data. 

Combining both Chromatin immunoprecipitation (ChIP) and high throughput sequencing 

(Seq), this popular technique permits to study the cistrome of transcription factors (TFs) 

[68], the genome-wide set of in vivo cis-elements bound by TFs, necessary to determine 

which genes are directly regulated by those transcription factors. 

To identify TFs binding sites, the information previously obtained of mapped genomic 

locations for sequencing are needed: the input of the analysis was composed by mapped 

reads from CHIP-sequencing experiments, in the “BED” (Browser Extensible Data) file 

format, together with their control data, i.e. “input” DNA, that has been cross-linked and 

sonicated but not immuno-precipitated. Input DNA has also been aligned to the reference 

genome and obtained in the BED file format. 

The final output of MACS is represented by the narrowPeak file format (a type of BED file) 

which contains locations of peaks and some measurements of their statistical significance. 

Given the ChIP-Sequencing data with the correspondent control sample, MACS can be used 

to identify transcription factor binding sites, using a two-step strategy: modelling the reads 

shift size, and then peak calling [69].  

On the basis of the reads distribution, MACS analytically models the shift size of ChIP-

sequencing reads. As ChIP-DNA fragments are equally likely to be sequenced from both 

ends, the reads density around a real TFs binding site is likely to show a bimodal enrichment 

pattern, with forward strand reads enriched upstream of binding and reverse strand reads 

enriched downstream (Figure 9).  

Given two user-dependent parameters, bandwidth (300 bp as default, maintained in our 

study) and mfold (a high-confidence fold-enrichment interval), MACS scans 2*bandwidth 

windows across the genome to find regions with certain reads enrichment relative to the 

expectation (larger than 10 fold and smaller than 30 fold, as default). MACS selects only 
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these high-quality peaks, separates their forward and reverse reads, and then aligns them by 

the midpoint.  

 

Figure 9. MACS model for ChIP-Seq (adapted from [69]). 

The 5' ends of strand-separated tags from a random sample of 1,000 model peaks, aligned by the centre of 

their forward strand reads (Watson)  and reverse strand reads (Cricks).  

The distance between the modes of the forward and reverse peaks in the alignment is defined 

as d, and MACS shifts all the reads by d/2 toward the 3’ end to better locate the precise 

binding sites. It is worth observing that the parameter fold is used in the procedure only in 

the first step, where a suitable mfold parameter will lead to several thousand paired peaks 

from ChIP-Sequencing data for model building. 

Within the genome coverage of ChIP-Sequencing experiments, reads distribution along the 

genome could be modelled by a Poisson distribution [70], which can express the probability 

of a number of events (lambda) happening in a fixed period (in this case distance along the 

genome). It takes this  single parameter, lambda, to define the expected number of instances 

that occur in the given region. 

As the background level varies across the genome, during the phase of peak calling, instead 

of using a uniform λBG (of the entire background) estimated from the whole genome, MACS 

uses a dynamic parameter, λlocal, defined for each reads enriched region, that can be defined 

as   

𝜆𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑎𝑥(𝜆𝐵𝐺 , 𝜆1𝑘 , 𝜆5𝑘, 𝜆𝑣10𝑘 )  (12) 
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where λ1k, λ5k and λ10k are λ estimated from the 1 kb, 5 kb and 10 kb window centred at 

the peak location in the control sample. 

Using λlocal is useful to capture influence of local biases, making the value robust against 

occasional low read counts at small local regions.  

MACS applies λlocal to calculate the p-values for each read enriched region, and only those 

regions with p-values below a user-defined threshold (10−5) are reported as identified peaks, 

being the ratio between the ChIP-Sequencing read counts and λlocal  the “fold enrichment”. 

For each peak identified, the detailed output information includes the chromosome number, 

the start position, the end position, the length of peak region, the summit location related to 

the peak start position, the number of reads in peak region, the fold enrichment for this region 

(compared to the expectation from Poisson distribution with local lambda) and finally the 

False Discovery Rate (FDR). 

 

3.3 PEAK ANNOTATION 

To perform batch annotation of enriched peaks identified from CHIP-sequencing data, we 

used a package available in Bioconductor [71], an open source and open development 

software project specialized in biological data analysis and integration, within the statistical 

programming environment R.  

The package ChIPpeakAnno [72] in Bioconductor uses the IRanges package and represents 

the peak list as RangedData to accurately find the nearest or overlapping gene, exon, 5’UTR, 

3’ UTR, microRNA (miRNA) or transcription factor binding sites.  

In the previous phase of analysis, as final output of the peak calling algorithm (MACS2), we 

obtained a file containing a list of chromosome coordinates in a BED (Browser Extendible 

Data) file format, that is all ChIPpeakAnno package needs.  

Moreover, even if the genome annotations are update periodically, upon the pre-built 

annotation data packages (TSS.human.NCBI36, TSS.human.GRCh37, Exon-

PlusUtr.human.GRCh37), the user has the possibility to customize the annotation data, 

following his specific purpose. To our aim, we loaded in the environment an Ensembl-based 

annotation package for Homo Sapiens, Ensembl version 86 (EnsDb.Hsapiens.v86). One of 

the main advantages of this package is the fact that it generates “versioned” annotation 

packages, i.e. annotation packages that are built for a specific Ensembl release (version 86 

in our study) and are also named according to that. This ensures reproducibility of our 
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analysis, as it allows to load annotations from a specific Ensembl release also if newer 

versions of annotation packages became available.  

To annotate peaks, we used the function annoPeaks implemented in the ChIPpeakAnno 

package. Once loaded the annotation data, in the form of a  GRanges object, the criteria to 

associate peaks with annotations must be specified.  In our case, we set up parameters to 

obtain peaks within 2kb upstream and up to 2kb downstream from Transcription Start Site 

(TSS)  within the gene bodies.  

The output of this phase of analysis, is a GRanges object of the annotated peaks. 

 

 

4. METHYLATION ARRAYS DATA ANALYSIS 

The DNA-methylation data were provided by the Broad Institute Cancer Cell Line 

Encyclopaedia (CCLE) and downloaded from the cBioPortal for Cancer Genomics online 

archive. DNA-methylation profiles have been collected from the NCBI GEO repository 

(www.ncbi.nlm.nih.gov/geo/) series GSE68379.  

All this data were obtained through the HumanMethylation450 BeadChip Array Platform, 

an Illumina scanners which give as output binary two-colour .IDAT files (pair of files with 

names ending in _Red.idat or _Grn.idat). 

All the analyses and the processing of the DNA-methylation data were performed using R 

environment [46,47]. 

The methylation array experiments were read through the function read.metharray.exp 

available in the Bioconductor package minfi [73] in R: the function finds all IDAT files in 

the directory and returns an unique object of class RGChannelSet. 

 

4.1 LOW LEVEL PROCESSING 

The sequential processing of samples can give rise to array-to-array variation in background 

fluorescence, which contribute to an additive error to the measured signal: it can arise from 

many sources, such as non-specific binding or spatial heterogeneity across the array. To 

overcome this critical issue, we applied a background correction method in order to estimate 

the true signal from the observed foreground, modelled as the sum of true signal and ambient 
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signal [74].  For all background-correction methods, probes are pooled and then corrected 

within each single colour channel. 

As suggested in the study of Liu and Siegmund [75], we decided to implement in R a normal 

exponential convolution method (Noob) using the function preprocessNoob, which returns 

an object of class MethylSet, implemented in the Bioconductor package minfi [73]. 

The analysis proceeded as follows. Let’s consider the background signal normally 

distributed XB ~ N (,2) and the true signal following an exponential distribution XS ~ Exp 

(), X being either the Green or Red channel, and the observed foreground intensity as their 

sum Xf = XS+XB.  

For each channel separately, the parameters are estimated from the background distribution 

using the small number of control probes (n= 614 for the HumanMethylation450, designed 

to not match any genomic regions and thus measure background fluorescence), while the 

signal parameter  is obtained by subtracting the background mean from the observed 

foreground intensities ( = Xf - ). The conditional expectation of the signal, given the 

observed foreground and background, is computed by: 

𝐸 = [𝑋S |𝑋f] = μsf + σ2
ϕ(0; μsf, σ2)

1-Φ(0; μsf, σ2)
  (12) 

where μsf =  𝑋f - μ -  σ2 𝛾⁄ , ϕ(∙) is the standard normal density and Φ is the cumulative 

normal distribution. The conditional expectation allows the estimation of the background 

corrected intensities and is used to smoothly interpolate probes with intensities near the 

background level [76]. 

 

4.2 PROBE DESIGN BIAS CORRECTION 

A critical statistical issue when dealing the Illumina 450k BeadChip is the bias introduced 

by the two different types of assay chemistry technologies used, that lead to widely different 

distributions of the methylation values derived from these two probe designs (that we will 

refer to as type 1 and type 2 probe) [77].  

For that reason, type 2 probe values must be normalized into type 1 values distributions, 

enabling them to be comparable and thus reducing the bias. 

Using again as reference the study of Liu and Siegmund [75] in which it was found that the 

within-array combination of Noob + BMIQ always improved signal sensitivity, we 

implemented in R the Beta-Mixture Quantile dilation normalization strategy (BMIQ) 
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exploiting the function bmiq.mc, available in the Bioconductor package ENmix, that returns 

a data matrix of methylation Beta-values [78]. 

 

4.3 CORRELATION ANALYSYS 

Methylation data have been subsequently tested for association with a defined parameter, 

the ATRA-score. To this aim, dmpFinder function implemented in the package minfi  in R 

environment has been used. This function tests each genomic position for association 

between methylation and a “phenotype” or defined parameter. Given the ATRA-score as a 

continuous parameter, association has been tested with linear regression.  

 

4.4 PROBE ANNOTATION 

Essential analysis of 450k DNA-methylation data depends on annotating probes with their 

genomic location: in our study, we exploited the annotation information stored in the 

Bioconductor package “IlluminaHumanMethylation450kanno.ilmn12.hg19” [79] and the 

array design stored in the Bioconductor package 

“IlluminaHumanMethylation450kmanifest”.  

 

5. RETROVIRAL TRANSCRIPTS 

QUANTIFICATION 

Nearly half of the human genome is constituted of repetitive elements that are tightly 

regulated to protect the host genome from destructive consequences associated to their 

inappropriate reactivation [80]. Both full length and fragmented copies of these viral 

genomes have propagated through host genomes to produce repeating instances of their 

sequences [81]. 

 Major families of repeat elements are shown in Figure 10 and include autonomous and 

nonautonomous retrotransposons as well as DNA transposons. Aberrant reactivation of 

transposable elements has been shown to activate cell autonomous anti-viral response [82].  
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Figure 10. Classification and Organization of Repetitive Elements in the Human Genome [81]. 

Two examples of families are shown per class, and families are further stratified into subfamilies. Listed 

abundances are reported in brackets.  

To quantify expression of these transposable elements, we retrieved their genomic positions 

from RepeatMasker database (http://www.repeatmasker.org/). These coordinates were 

assembled into a customized annotation file (gene transfer file, GTF), which was used to 

determine the abundance of all retroviral-derived transcripts, by using FeatureCounts [83]. 

To avoid detection of false positives, we discarded all transposable elements that show any 

overlap to known gene-associated exons, according to Gencode [39] annotations. 

Afterwards, viral RNA abundance was normalized for library size and tested for differential 

expression between ATRA-treated and untreated samples, using the same approach as 

described in 2.2. To this purpose, we stratified all the identified transposable elements 

according to their characteristic family (LINE/SINE/LTR/ALU) and normalized them 

together with the coding genes raw counts. 

 

6. NETWORK GENERATION 

The protein-protein interaction network was generated using the stringApp implemented in 

the Cytoscape Network Inference Toolbox, an open-source software environment for the 

large scale integration of integrating biomolecular interaction  networks with high-

throughput expression data [84].  
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On the base of the results obtained with the differential expression analysis, we entered a list 

of gene symbols in the STRING protein query [85] to import the matching network. STRING 

is a database of known and predicted protein-protein interactions which aims at collecting 

and integrate information about functional interactions between the expressed proteins, by 

consolidating known and predicted protein–protein association data for a large number of 

organisms. 

The network was furtherly analysed using the MCODE algorithm implemented in 

Cytoscape, which allowed the identification of sub-networks. MCODE, a plugin developed 

to perform network module identification specifically in biology, weights nodes by local 

neighbourhood density, then performs an outward traversal from a locally dense seed protein 

node to isolate larger dense regions, and finally graphically displays extracted modules and 

associated information. 
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Results 

1. DATA QUALITY ASSESSMENT 

Principal components analysis was conducted on raw counts normalised on library size, 

averaged for sample replicates. It was performed to assess if data quality was consistent with 

respect to the experimental conditions and to identify possible outliers that might influence 

further analysis. 

As shown in Figure 11, cell lines are grouped on the basis of their phenotype (luminal or 

basal), with a further division between basal cell lines which have or not gone through the 

Epithelial to Mesenchymal Transition (EMT) [86]. Moreover, this kind of analysis separates 

treated from un-treated samples, in a manner which appears to depend on the amplitude of 

their sensitivity to the pharmacological treatment.  

 

Figure 11. Principal components Analysis 

The figure illustrates a PCA plot representing gene expression data averaged for each sample (cell line), 

summarized at the two first principal components coordinates. Each sample is represented with a different 

colour. 

Unsupervised hierarchical clustering is represented in Figure 12. It groups the cell lines into 

two principal clusters on the basis of their phenotypes, with a perfect match between every 
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couple of treated and un-treated sample. Again, the value of the normalized counts for each 

sample is obtained as the average of the three replicates. 

  

Figure 12. Unsupervised hierarchical clustering. 

Cell lines are clustered based on their phenotype. Additional information about PAM50 and histological 

classification are reported for each cell line. 
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2. RETINOIC ACID - INDUCED 

TRANSCRIPTIONAL PERTURBATIONS  

The overall amount of transcriptional perturbations induced by the pharmacological 

treatment with retinoic acid is directly proportional to the associated ATRA-score.  

As shown in Table 13, the number of genes differentially expressed in each cell line 

decreases directly with the sensitivity-score, with a non-significant difference in the number 

of up-regulated and down-regulated genes.  

CELL LINES TOTAL UP  DOWN ATRA-SCORE 

HCC1599 6852 3314 3538 1 

SKBR3 4919 2480 2439 0.99 

HCC1500 1921 798 1123 0.66 

CAMA1 1587 996 591 0.66 

MDAMB361 2713 1348 1365 0.58 

MB157 1509 763 746 0.28 

MDAMB157 1107 474 633 0.25 

HCC202 1168 601 567 0.24 

MDAMB175VII 1803 822 981 0.19 

HS578T 1515 647 868 0.19 

ZR751 2232 1300 932 0.14 

HCC1419 1998 896 1102 0.09 

MDAMB231 330 203 127 0.01 

CAL851 145 85 60 0 

HCC1187 1255 687 568 0 

MDAMB436 692 454 238 0 

Table 4. Number of differentially expressed genes in ATRA-treated cell lines. 

Coloured conditional formatting highlights the correlation between the number of differentially expressed 

genes and the ATRA-score. The number of differentially expressed genes is computed considering only genes 

having a p-value < 0.05 after multiple test correction.  

Indeed, the correlation between the value of the ATRA-score associated to each cell line and 

the number of its differentially expressed genes is equal to 0.833. To identify genes whose 

up/down regulation by the retinoid is directly correlated to ATRA-sensitivity, we determined 

the correlation between drug-induced fold changes of each individual gene and the cell lines 

predicted sensitivity to ATRA (ATRA-score). This step has been carried out, both 

calculating Pearson’s product moment coefficient (R) and Spearman’s coefficient (RHO).  

As a result, we obtained for each gene the correspondent correlation coefficient and p-value 

which represents the significance of the correlation. 
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We took into consideration for downstream analysis, only those gens with a Pearson’s 

coefficient associated p-value (pR) < 0.01 or a Spearman’s coefficient p-value (pRHO) < 

0.01. This step resulted in a restricted list of 1776 genes. 

Subsequently, we calculated the variation coefficient for each of the resulting genes, to 

identify those genes whose variation across samples is enough to result in a biologically 

significant action. On the basis of this parameter, we selected a group of 754 genes, which 

showed a variation higher than the 50% among all the samples. 

Overall, our analysis identified 414 genes as negatively correlated with the sensitivity to 

retinoids and 340 as positively correlated. Genes with a positive correlation are represented 

in a protein - protein interaction network to a more effective visualization [Figure 13]. Genes 

with a negative correlation are similarly represented in Figure 14.  

Most meaningful genes are selected based on the number of gene-neighbours (degree) they 

are connected to. These genes are highlighted in [Figure 13-14]. 
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Figure 13. Network of protein-protein interaction based on positive-correlated genes. 

 

OAS1 and OAS2 are genes which encode two members of the 2-5A synthetase family, 

essential proteins involved in the innate immune response to viral infection; HLA-A is a 

major histocompatibility complex (MHC) antigen specific to humans and  one of three major 

types of human MHC class I cell surface receptors; HLA-E is a non-classical MHC class I 

molecule that is characterized by a limited polymorphism and a lower cell surface exposure 

and more important, it has a very specialized role in cell recognition by natural killer cells 

(NK cells); B2M is a gene that encode β2 microglobulin, a component of MHC class I 

molecules; PSMB8, PSMB9 and PSMB10 genes encode members of the proteasome B-type 

family, that are a 20S core beta subunit. They are located in the class II region of the MHC 

complex; expression of these genes is induced by gamma interferon and their product 

https://en.wikipedia.org/wiki/Major_histocompatibility_complex
https://en.wikipedia.org/wiki/MHC_class_I
https://en.wikipedia.org/wiki/MHC_class_I
https://en.wikipedia.org/wiki/Natural_killer_cells
https://en.wikipedia.org/wiki/MHC_class_I
https://en.wikipedia.org/wiki/Major_histocompatibility_complex
https://en.wikipedia.org/wiki/Gamma_interferon
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replaces a subunit of the immunoproteasome. MR1 encode the major histocompatibility 

complex class I-related protein, which is an antigen-presenting molecule, involved in the 

development and expansion of a small population of T-cells expressing an invariant T-cell 

receptor alpha chain. IRF1, Interferon regulatory factor 1, encode a member of the interferon 

regulatory transcription factor (IRF) family. It is shown to function as a transcriptional 

activator or repressor of a variety of target genes; it regulates expression of such genes by 

binding to an interferon stimulated response element (ISRE) in their promoters. MX1 encode 

the Interferon-induced GTP-binding protein MX1, which has an antiviral activity against a 

wide range of RNA viruses and some DNA viruses, targeting viral negative-stranded RNA; 

TLR3 gene encode a protein member of the toll-like receptor family of pattern recognition 

receptors, in the innate immune system. This proteins recognize pathogen-associated 

molecular patterns expressed on infectious agents, and mediate the production of cytokines 

necessary for the development of effective immunity. 

Finally, we highlight DTX3L ubiquitin-protein ligase which, in association with ADP-

ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated 

antiviral responses. 

https://en.wikipedia.org/wiki/Interferon_regulatory_factor
https://en.wikipedia.org/wiki/Interferon_regulatory_factor
https://en.wikipedia.org/wiki/Promoter_(biology)
https://en.wikipedia.org/wiki/Toll-like_receptor
https://en.wikipedia.org/wiki/Pattern_recognition_receptor
https://en.wikipedia.org/wiki/Pattern_recognition_receptor
https://en.wikipedia.org/wiki/Innate_immune_system
https://en.wikipedia.org/wiki/Cytokine
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Figure 14. Network of protein-protein interaction based on negative-correlated genes. 

E2F3 encodes a protein that is a member of the E2F family of transcription factors, which 

plays a crucial role in the control of cell cycle and synthesis of DNA; PCNA encode for the 

Proliferating Cell Nuclear Antigen, that is found in the nucleus and acts as a cofactor of 

DNA polymerase delta. It also operate increasing the processivity of leading strand synthesis 

during DNA replication. CDC6 and CDC7 encode the cell division cycle 6/7-related protein 

kinase, involved in the regulation of the cell cycle at the point of chromosomal DNA 

replication. They are also required for loading minichromosome maintenance (MCM) 

proteins onto the DNA, as an essential step in the initiation of DNA synthesis. CCNE1 

belongs to the cyclin family, whose members are characterized by a periodicity in protein 

abundance through the cell cycle. Cyclins function as regulators of the Cyclin-dependent 

https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Chromosome
https://en.wikipedia.org/wiki/DNA_replication
https://en.wikipedia.org/wiki/DNA_replication
https://en.wikipedia.org/wiki/Minichromosome_maintenance
https://en.wikipedia.org/wiki/Cyclin
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kinases, which are involved in regulating transcription, mRNA processing and cell 

differentiation.  

Moreover, the MCM5, MCM7, MCM10 genes encode three proteins of the MCM complex, 

DNA helicases essential for genomic DNA replication. They are critical proteins for cell 

division and the complex is also the target of various checkpoint pathways, such as the S-

phase entry and S-phase arrest checkpoints. Both the loading and activation of MCM 

helicase are strictly regulated and are coupled to cell growth cycles. MRPL and MRPS 

family are nuclear genes which encode mitochondrial ribosomal proteins that help in protein 

synthesis within the mitochondrion. 

Finally, a wide down-regulation of genes belonging to the Histone Cluster Family 1 and 2 

can be underline: they encode nuclear proteins involved in the maintenance of the 

nucleosome structure of the chromosomal fibres. 

For the genes which show more than 5 edges in the protein- protein interaction networks 

above, information about their variation coefficient, their correlation (R, RHO) with the 

ATRA-score and the statistics of the correlation (p-values) are reported in Appendix I. 

 

3. RETINOIC ACID-INDUCED PATHWAYS 

PERTURBATIONS  

To analyse the functional enrichment of differentially expressed genes, gene set enrichment 

analysis was performed, considering a various collection of gene sets, from MSigDB 

collection. We considered as significant, enrichments with an FDR adjusted P-values below 

a cut-off threshold of 0.1. We determined pathway enrichments using a pre-ranked order of 

genes, namely those showing a significant direct or indirect correlation between fold 

induction and ATRA-sensitivity (ATRA-score). 

Figure 15 shows the significantly enriched gene sets of the Hallmark collections: the major 

negatively-correlated gene sets are related to cell cycle progression (E2F and G2M) and to 

oxidative phosphorylation, with FDR adjusted p-values < 0.001. The more significant gene 

sets that exhibit a positive correlation with the score can be all associated to cellular  response 

to interferon alpha and gamma activation (FDR adjusted p-value < 0.001) and with the 

inflammatory response (FDR adjusted p-value < 0.01), as shown in Figure 15. 

 

https://en.wikipedia.org/wiki/Transcription_(genetics)
https://en.wikipedia.org/wiki/DNA_helicase
https://en.wikipedia.org/wiki/Mitochondrial_ribosome
https://en.wikipedia.org/wiki/Protein_synthesis
https://en.wikipedia.org/wiki/Protein_synthesis
https://en.wikipedia.org/wiki/Mitochondrion
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Figure 15.Hallmark collection. 

The figure illustrates the result of the gene set enrichment analysis using the Hallmark collection 

GO term enrichment analysis showed that negatively-correlated genes were significantly 

enriched in 231 biological processes, while positive-correlated genes in 156 biological 

processes (FDR adjusted P-value <0.1). The main GO biological process terms for 

negatively-correlated genes showed a wide variety of functional processes ranging from 

RNA splicing and progression, DNA repair, cellular developmental process, cell cycle 

progression, cell differentiation, cell development and regulation of system processes (FDR 

adjusted p-value <10−5). On the other side, the primary GO terms for positively-correlated 

genes are related to interferon alpha, beta and gamma response, innate immune response and 

vesicular- mediated transport (FDR adjusted p-value < 0.001).  

GO term enrichment analysis based on cellular compartments and molecular function relate 

negatively-correlated genes to the helicase and the endonuclease activity in the nucleus, 

whereas positively-correlated genes show enrichment for transport mediated by vesicles in 

the Golgi apparatus. 

A table that provides an overview of the significantly enriched GO terms is provided in 

Appendix II. The table reports the name of the collection, the number of genes it involves, 

the p-value and the FDR adjusted P-value of the enrichment analysis. 
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Gene set enrichment analysis for KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways has also been performed using the same significance threshold of 0.1. 

Figure 16 shows all significantly enriched gene sets. The main KEGG pathways for 

negatively-correlated genes are involved in all the major DNA repair mechanisms and in the 

cell cycle progression; positively-correlated genes exhibit an enrichment for those gene set 

which represent various type of response to viral infections.  

 

Figure 16. KEGG collection. 

The figure illustrates the result of the gene set enrichment analysis using the KEGG gene sets collection. 

REACTOME database of reactions, pathways and biological processes has also been 

investigated. The main Reactome pathways related to negatively-correlated genes are 

significantly enriched in 132 biological processes, while pathways explored with positive-

correlated genes in 48 (FDR adjusted P-value <0.1). As reported in Appendix III, 

significantly enriched terms for negative-correlated genes are related to mRNA processing, 

Chromosome maintenance, DNA elongation and, more in general, cell cycle development 

(FDR adjusted p-value <10−7). Positively-correlated genes, show enrichment for those 

biological processes related to interferon alpha and beta signalling, antigen presentation and 

peptide loading of class I MHC and innate immune system activation (FDR adjusted p-value 

<0.001). 
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4. IDENTIFICATION OF DIRECT TARGETS 

THROUGH CHIP-SEQUENCING DATA 

ANALYSIS 

ChIP-sequencing data set for two forms of the RAR transcription factors (RARA and 

RARG) obtained from the Gene Expression Omnibus (GEO) were used in this study to 

complement the previous analysis. 

Prior to associating features of interest with peaks, we made a comparison between the data 

obtained from the peak calling phase in the two data sets of interest to evaluate the difference 

in the number of genomic regions that can be bind specifically by the two different 

transcription factors. Also, it is biologically interesting to obtain overlapping peaks from 

different ChIP-sequencing experiments to evaluate the potential formation of transcription 

factor complexes. To this aim, we obtained a Venn Diagram (Figure 17) showing the number 

of overlapping enriched genomic regions. In addition, the significance of overlap was 

determined with hypergeometric testing and an associated p-value attributed.  

 

Figure 17. Venn diagram of overlapping peaks between RARA and RARG. 

 

Next, we annotated peaks, to more precisely identify RARA and RARG binding sites. 

Exploiting the annotation tool described in chapter 3.3 of Material and Methods, we identify 

3092 unique direct target genes for RARA and 1116 unique direct target genes for RARG. 

The size of the binding region considered is between 2 kb downstream and 2 kb upstream 
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the defined binding site, because the binding can take place both upstream and inside the 

gene body.  

This additional information was then linked to the result of the differential expression 

analysis, to find out for which of the selected genes fold induction is related to direct binding 

of the transcription factor, whether it is RARA or RARG. 98 out of the 754 genes correlated 

with the ATRA-score are potentially direct targets of RARA; out of these, 30 genes are also 

potentially direct targets of RARG.  

Interestingly, among the genes identified as RARA direct targets, it is of particular interest 

the presence of “interferon- related” genes, such as DTX3L and PARP9, and of one of the 

genes that encode a protein that is part of the MHC-I complex, HLA-E. In contrast,  one of 

the more important transcription factors being involved in the regulation of the interferon 

signalling, IRF1, is not a direct target, neither for RARA transcription factor, nor for RARG. 

Appendix I reports for each gene which transcription factor (RARA, RARG or both) has 

been found to be able to directly bind its promoter. 

 

5. CORRELATION BETWEEN METHYLATION 

LEVELS AND ATRA-SCORE 

Data from the HumanMethylation450 BeadChip Array Platform have been analysed, in 

order to identify genomic regions that are differentially methylated with respect to the 

associated ATRA-score.  

We retrieved methylation data for 52 breast cancer cell lines from GEO repository, and 

performed correlation analysis using 39 of these samples as 13 of these cell-lines were not 

part of our panel of 48 cell-lines previously profiled for retinoid sensitivity. 

After the application of the dmpFinder algorithm, each of the 458k probes is associated with 

a p-value and a q-value (FDR adjusted p-value) based on  the correlation between its 

methylation level and the associated ATRA-score in each cell line. 

A significance-threshold of 0.01 results in the selection of 16648 probes out of the initial 

458k. Each probe has been subsequently annotated to the nearest Transcription Start Site 

(TSS). As multiple probes fall within the same genes, when summarizing at the gene level, 

we obtained a final list of 7459 gene, which cointains features whose DNA methylation 

levels correlate positively/negatively with the sensitivity to the retinoid (p-value < 0.01).  To 
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complement these results with the previous steps of the analysis, we identified genes, whose 

fold-induction was previously determined to be associated to ATRA-sensitivity, that also 

resulted to be differentially methylated: 298 out of these 754 genes have been found to have 

strong correlation between the ATRA-score and their methylation level. 

Moreover, each of them can be characterized in term of number of methylated sites 

identified: in fact, each probe is able to identify only one methylated site, but each gene may 

have more than one methylated site all over its length. Genes that show multiple sites being 

associated to ATRA-sensitivity are likely to be more reliable, as it’s highly unlikely that they 

represent false positives. Among the genes which show more than 1 differentially methylated 

sites associated to ATRA-sensitivity (143 genes), we can find a group of genes involved in 

the Interleukin-2 / STAT5 signalling: DHRS3, PHLDA1, ODC1, PLEC; CDCP1 and 

SPRY4 are part of a critical signalling pathway which entrains regulatory T cell 

differentiation and affects regulatory T cell function. 

Furthermore, 73 out of the 298 genes are highly interconnected in the network defined during 

the initial step of differential expression analysis. In particular, among the genes with a 

higher level of methylation we can find TLR3, a crucial part of innate immune response, 

whose transcription is deeply inducted after treatment with retinoic acid. Moreover, two 

other genes involved in the innate immune response and induced by treatment with retinoic 

acid, HLA-E and PSMB8, show high methylation level in basal condition, which 

correlateswith the ATRA-sensitivity. 

Appendix I reports information about their methylation status: if their promoters are 

differentially methylated and how many methylation counts can be reported.  
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6. GENOME-WIDE REACTIVATION OF 

ENDOGENOUS RETROVIRUSES 

We quantified transcription of endogenous retroviruses through a differential expression 

approach. Starting from 5 million different sequences, we stratified all these identified 

transposable elements, according to their characteristic belonging family, 

(LINE/SINE/LTR/ALU), into 60 final subgroups. Appendix 3 shows how many sequences 

belongs to each identified family. The transcriptomic analysis performed (see chapter 6 of 

Material an Methods) indicates that ATRA induces a potent up-regulation of the 

transcription of endogenous retroviruses (retrotransposons) that mimics viral infection. 

As shown in Figure 18, a widely distributed up-regulation of transcripts can be observed: 

induction (fold change) of the transcriptomic regulation slightly correlates with the 

sensitivity to ATRA-treatment. Cell lines which are completely resistant to the 

pharmacological treatment, display no induction (Appendix 3); then, transcriptomic up-

regulation grows with an increasing ATRA-score.  

 

Figure 18 Induction of endogenous retroviruses. 
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Despite the presence of a general trend of correlation between the induction of the retroviral 

elements transcription and the sensitivity to retinoids, the transcriptional effect on a few cell 

lines (CAMA1, ZR751) doesn’t follow the global behaviour.  

To better understand the reasons of such tendency, we proceeded with further investigations. 

It has been shown that this general course tightly correlates with the expression levels of 

RARA in each cell line (Figure 19). 

 

Figure 19 Basal Gene expression of RARA 

For each cell lines we reported two bars: left bar represents expression level after ATRA treatment, right bar 

represents expression levels in untreated samples (DMSO). The 3 replicates for each condition are averaged.  

 

To a more analytical analysis, we computed the correlation between the expression levels in 

basal condition (DMSO) of RARA and the fold induction of the retroviral elements (fold 

changes) in the same samples. The scatterplot of such correlation analysis is represented in 

Figure 20. 
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Figure 20. Correlation between induction of retroviral elements and basal expression of RARA. 

The figure demonstrate that the ATRA-dependent process of viral mimicry is correlated 

(R2=0.62) with the expression levels of RARA in our panel of 16 breast cancer cell lines. 

 

 

7. PROTEIN-PROTEIN INTERACTION 

NETWORK 

We imported from the STRING database a protein-protein interaction network matching the 

754 genes that emerged from the various phases of the differential expression analysis. 

The resulting network with 342 nodes is shown in [Figure 20]: any non-interacting gene or 

with less than two connections was excluded from the network. The size of each node is 

proportional to its variation coefficient; the colour of each node is proportional to its 

Pearson’s product moment coefficient (R): nodes along the blue scale are negatively 

correlated with the ATRA-score, while nodes along the red scale are correlated positively. 

Moreover, information from the ChIP-sequencing data analysis and the Methylation arrays 

are also included to constitute a multi-layer and multi-omics network. Nodes which represent 

genes identified as direct target of RARA are represented as triangles, while genes which 

appears to be direct targets of both RARA and RARG are represented as rhombus. The width 

of the border of each node is related to its methylation level: indeed, for those genes whose 
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methylation levels are strictly correlated with the ATRA-score, borders are drawn thicker; 

decreasing correlation is associated with decreasing thickness. 

 

 

Figure 21. Protein – protein interaction network of genes perturbed  by ATRA-treatment 

Protein-protein interaction network, imported from STRING database, matching the top-ranked genes that 

emerged from the sequencing data analysis.  
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Discussion 

 

The retinoids have been investigated extensively for the prevention and treatment of cancer, 

predominantly because of their ability to induce cellular differentiation and to arrest 

proliferation. Systemic retinoids are approved by the U.S. Food and Drug Administration 

(FDA) for the treatment of cutaneous T-cell lymphoma and acute promyelocytic leukemia 

(APL) [87]. The anti-leukemic action of ATRA is not primarily cytotoxic and it is the result 

of a direct anti-proliferative and cyto-differentiating action followed by a secondary 

apoptotic response rendering ATRA the first example of clinically useful cyto-

differentiating agent. More than 85% of patients with APL achieve complete remission 

following treatment with ATRA in combination with chemotherapy [88]. The unique 

mechanism of action and the results obtained in APL has raised enthusiasm in generalizing 

the use of retinoids to other types of cancers.   

Retinoids are of therapeutic interest in breast cancer, that is the subject of the present thesis 

work, because of its anti-tumor activity in in vitro cell lines models and in vivo mouse 

models.  The majority of studies refer to ATRA since it is considering the prototype of the 

family and one of the most powerful retinoids available.   

It is surprising to notice that the huge amount of information obtained at the pre-clinical level 

has translated into a very limited number of clinical trials. Indeed, 18 published clinical trials 

are available, seven of which report on data obtained with Fenretinide and only four refer to 

the use of ATRA. To date, retinoids are not recommended for the clinical practice on the 

basis of chemo-preventive clinical trials performed. Overall, ATRA trials showed no activity 

even if some benefits have been observed in combination with other anti-cancer drugs [89].  

We surmise that these disappointing results are predominantly the consequence of the design 

of the clinical trials which consist of a small cohort of patients and did not take into account 

the intrinsic heterogeneity of breast cancer: they were conducted on cohorts of patients 

recruited without prior selection for any particular sub-type of breast tumor.  There is a 

general agreement in that breast cancer is a large collection of different diseases and we 

don’t know yet, why there are specific subtypes of this tumor which seem to be particularly 

sensitive or refractory to the anti-tumor action of retinoids. Thus, it is important to define 

whether common or distinct molecular determinants and mechanisms are active in different 
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types of breast cancer, or eventually if it possible to identify a novel ATRA-sensitive 

subgroup.   

By treating 16 breast cancer cell-lines characterized by different sensitivity to the retinoid, 

and by analyzing their associated transcriptomic perturbations, we collected evidence of a 

common mechanisms of action.  

Of the identified 754 genes, whose perturbations by ATRA are quantitatively correlated with 

the ATRA-score, of particular interest are those being up-regulated by the retinoid (n=414), 

as they are more likely to be the main effectors of ATRA-mediated anti-tumour activity. 

Indeed, genes and pathways that are down-regulated specifically in ATRA-sensitive cell 

lines, are linked to cell proliferation and cell cycle progression which are tightly connected 

with the antiproliferative effect exerted by retinoic acid, and thus can be considered part of 

a downstream mechanism of action. 

In contrast, the observed strong induction of the interferon signalling on treated cell lines 

may be directly involved in cell-cycle arrest and apoptosis.  

Interferon itself has been proven to exert a strong anti-tumour and anti-proliferative effect in 

large amount of cancer types. Indeed, interferon is administered in some chemotherapeutics 

protocols [90], but its efficacy is limited to tumours that constitutively express interferon 

receptors. Thus, it is not effective in activating its own pathway in case there is a block at 

the receptor level.  At this point, we investigated how ATRA could activate the interferon 

pathway in these cells, as we determined that retinoid-associated up-regulation of the 

interferon-dependent genes is not the consequence of an increase in the levels of any of the 

type I, type II or type III interferons, whose transcripts are undetectable in all cell lines 

regardless of ATRA exposure. Therefore, there must be a mechanism of activation 

independent of the levels of IFN; this is of a particular importance, as the system does not 

depend on the presence of the receptor to activate the pathways. In this scenario, we can 

speculate that ATRA can activate the interferon response in a receptor-independent fashion.  

To evaluate whether direct target of RARs (activated by ATRA) can induce the pathway 

themselves, we wanted to evaluate whether ATRA could increase the transcription of 

endogenous retroviruses, as interferon is mainly a mechanism of innate immune response to 

viral infection events. If this is to be the case, ATRA would be capable of inducing a 

phenomenon known as ‘Viral-mimicry’. At this moment, we still await experimental data to 

determine what is the main mechanism of interferon activation.  
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We need to discriminate if the pathway induction is due to RAR-mediated overexpression 

of DTX3L/PARP9, which would suggest a direct effect, or if it is mediated by increased 

expression of viral double-stranded RNAs, which would favour and indirect effect (Viral 

mimicry). To confirm these two alternative hypothesis, we are performing wet-lab 

experiments aimed at silencing DTX3L/PARP in breast cancer cell-lines or by artificially 

activating viral mimicry using polyriboinosinic:polyribocytidylic acid (poly(I:C) ) .  

Beside the anti-proliferative effect described above, our data suggest that the 

pharmacological treatment with ATRA might also have an immunoregulatory effect on these 

cells. In particular, it has been observed that there is a dramatic up-regulation of the 

“Antigen-presentation and assembly/loading of class I MHC” pathways, as well as 

“Inflammatory responses”: this may result in an increased antigen presentation mechanism 

which may activate innate immune response. From an immunologic point of view, this is of 

a particular interest. Indeed, it has been observed that ATRA induces the interferon pathway 

selectively in those cell lines that have low levels of antigens presentation and therefore an 

inactivated interferon signalling. Hence, those tumours have a low immunogenicity. 

Immunologically quiet tumours usually progress without arousing attention of immune 

system. Therefore, a strong reactivation of the interferon signalling in these tumours and the 

consequent increased exposure of antigens, provides the rational to hypothesize that ATRA 

could favour recognition by the immune system. 

Moreover,  of great relevance is the correlation between endogenous retrovirus reactivation 

and the RARA basal expression in each cell line. According to this, RARA expression levels 

could be used as simple biomarker of induction of viral mimicry and associated increased 

antigen presentation. Following this idea, ideal target for treatment with retinoic acid would 

be tumours with high levels of RARA and low levels of basal interferon activity 

(immunologically quiet). This provides a strong rationale for the combination of ATRA with 

the immune checkpoint inhibitors.  

Finally, we took into consideration the predictive model mentioned before (ATRA-21) [38]. 

Notably, it defined a low level in interferon activation (basal condition) to be a sensitivity 

marker of ATRA-treatment. This suggests that other tumours predicted to be sensitive to 

ATRA may show a similar behaviour, e.g. induction of interferon signalling, antigen 

presentation and endogenous retroviruses transcription.  
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This preliminary evidence led to the planification of experiments involving ATRA in gastric 

carcinoma where a good percentage of tumour (10%) has an amplification of the oncogene 

ERBB2 together with RARA  [91]. 
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Concluding remarks  

 

ATRA and its derivatives have shown a potential for therapeutic and preventive use in breast 

cancer because of their ability to modulate cell growth and differentiation . 

To date, a huge amount of studies, proving the antitumor activity of retinoids in in vitro and 

in vivo models of breast cancer, have translated into a very limited number of clinical trials, 

with disappointing results. There is therefore a need to go define the cellular and molecular 

determinants of retinoid sensitivity in breast cancer.  

To this aim, human breast cancer cell lines have been used, as useful pre-clinical cancer 

models that reflect the heterogeneity of human cancers, thus representing useful tools to 

define the molecular determinants and the mechanisms, underlying the pathogenesis and the 

progression of the disease, and to evaluate the sensitivity to pharmacological treatments.  

The results obtained in the present thesis project provide insights into the molecular 

mechanisms underlying the anti-tumour action of ATRA in breast cancer.  

In the first part of the study, we analysed data from high throughput technologies (RNA-

sequencing and ChIP-sequencing) and Methylation arrays, to go insight the gene expression 

profile inducted by the pharmacological treatment with retinoic acid.  

First, RNA-sequencing data from a panel of 16 breast cancer cell lines treated with retinoic 

acid (1 µM, 24 hours) have been analysed to identify the transcriptomic perturbation 

inducted by the pharmacological treatment. Selected genes have been organized in networks 

based on protein – protein interactions, to more a precise visualization of possible interaction 

mechanisms induced. The sequencing data led to the identification of ATRA-dependent 

pathways and gene-networks with significance for the anti-tumour activity of the retinoid: 

“interferon-dependent” and immune modulatory pathways are found to be strictly up- 

regulated after treatment with ATRA. On the contrary, pathways associated with cell 

proliferation and cell cycle progression, are down-regulated, dealing with the idea that this 

effect is tightly connected with the antiproliferative effect of retinoic acid, and thus can be 

considered part of a downstream mechanism of action. 

Then, we inspected ChIP-sequencing data from a public database of two forms of RARs 

transcription factors (RARA, RARG) in one breast cancer cell line treated with retinoic acid: 

we evaluated which of the more central genes in our response network were directly 
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perturbated by the binding in the regions of their promoter of the ATRA-activated 

transcription factors. As results, we obtained a list of genes that are part of the above-

mentioned interferon signalling, which have been identified as directs targets for RARA or 

RARG transcription factors; however, some of the most crucial genes involved in such 

pathways cannot be included in the list. 

Last, Methylation data available for a panel of almost 40 un-treated breast cancer cell lines 

have been investigate, to find out whether there is a correlation between the basal 

methylation levels of genes necessary to trigger the mechanism of response to retinoids, and 

the sensitivity of cell lines to ATRA. Again, a few genes involved in the interferon-related 

mechanism have found to have a correlation between their methylation levels and the 

activation of the response to retinoids. 

In the second part of the study we took again into account the RNA-sequencing data to  

quantify possible transcription of repetitive elements from retroviral DNA, which are known 

to be widely distributed in the human genome: we hypostasized that they can be the cause 

of the above-mentioned interferon-driven immune response. 

Our data support the idea that up-regulation of the interferon-dependent genes is mediated 

by the induction of non-coding RNAs transcribed from endogenous retroviral DNA.  Indeed, 

the transcriptomic analysis conducted indicates that ATRA induces a potent up-regulation 

of the transcription of these endogenous retroviruses (retrotransposons) that mimics viral 

infection. This mechanism, known as viral mimicry, leads to a strong activation of cell-

autonomous interferon response, which markedly results in increased transcription of 

interferon-related genes and MHC class-I components. Finally, the approach provides 

information as to potential new molecular targets for the design of rational therapeutic 

combinations based on ATRA for the treatment and secondary chemo- prevention of certain 

types of breast cancer. In fact, these last results are consistent with the idea that ATRA exerts 

a strong immune-modulatory action in breast cancer cells: all things considered,  it represents 

proof of principle for the evaluation of combination between the retinoid and cancer 

immunotherapeutic in the treatment of ATRA-sensitive breast cancer subtypes. 
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Appendices 

Appendix 1 

Differentially expressed genes: variation coefficient and correlation of their induction with the ATRA-

score. 

SYMBOL  VC  R  p-value R  RHO  

p-value 
RHO  TFs  

Is 
methylated 

Meth. 
Counts 

H6PD 60.94175347 0.839774 4.71E-05 0.716817 0.001779434    No   

DHX58 72.49401231 0.836593 5.35E-05 0.793514 2.44E-04    No   

TRIM5 86.75056845 0.820271 9.95E-05 0.781714 3.48E-04    No   

REL 56.72582029 0.814124 1.24E-04 0.764015 5.70E-04 RARA  No   

STAT6 71.41966133 0.807511 1.55E-04 0.722717 0.001562577 RARA Yes 1 

TRIM21 65.25023602 0.796459 2.22E-04 0.764015 5.70E-04    No   

IFIT1 147.1123157 0.789463 2.76E-04 0.746316 8.98E-04    No   

PHF21A 58.99307046 0.788204 2.87E-04 0.643071 0.007205587   Yes 3 

VAMP4 60.25004003 0.786491 3.02E-04 0.778764 3.79E-04 RARA  No   

SP100 74.89353251 0.783581 3.29E-04 0.710918 0.002020147   Yes 1 

CHMP1B 51.91950675 0.779332 3.73E-04 0.619472 0.010491653    No   

FBXL20 157.2738491 0.775223 4.19E-04 0.722717 0.001562577    No   

CEBPD 116.3071425 0.77476 4.24E-04 0.584073 0.01751624   Yes 4 

IFIT3 123.9657048 0.774538 4.27E-04 0.734516 0.001193198    No   

IFI35 73.97797279 0.770773 4.74E-04 0.823012 9.01E-05   Yes 1 

PARP14 111.9287226 0.763872 5.72E-04 0.687319 0.003261473    No   

PARP9 92.28707989 0.762018 6.01E-04 0.766965 5.27E-04 RARA/RARG Yes 1 

TRIM56 56.39516038 0.756677 6.92E-04 0.707968 0.002150048 RARA Yes 1 

RNF217 95.38647039 0.756419 6.96E-04 0.563424 0.023040837    No   

GBP2 126.0116956 0.755296 7.17E-04 0.536875 0.032008547    No   

FOXO3 64.2687726 0.755151 7.19E-04 0.675519 0.004079798   Yes 1 

ITGAV 73.48032 0.753089 7.58E-04 0.775815 4.12E-04    No   

OAS2 224.5471714 0.749776 0.001288 0.738356 0.001669669    No   

IFI44 196.0620033 0.732537 0.00125 0.766965 5.27E-04    No   

TMEM173 115.3133257 0.73253 0.00125 0.746316 8.98E-04   Yes 2 

MX1 197.4743712 0.731221 0.001288 0.814163 1.24E-04 RARA/RARG  No   

DECR1 79.98076475 0.727365 0.001407 0.607672 0.012526367 RARA  No   

UBE2L6 97.80328957 0.725762 0.001459 0.710918 0.002020147   Yes 1 

CHMP2B 54.80507037 0.720656 0.001636 0.601773 0.013653454 RARA  No   

ARHGAP31 146.4794684 0.720573 0.002442 0.630828 0.011683494    No   

PJA1 54.29377928 0.719862 0.001665 0.271388 0.30927721    No   

WSB1 55.18716376 0.716844 0.001778 0.607672 0.012526367    No   

SAT2 71.95157473 0.716271 0.001801 0.545725 0.028767026    No   

CYLD 63.61743602 0.715297 0.001839 0.66667 0.004795669    No   
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ARFGAP3 52.40818634 0.712676 0.001946 0.551625 0.026749489    No   

PPP2R5A 55.39272816 0.711565 0.001992 0.702068 0.002430184 RARA  No   

GGT7 66.59309427 0.708348 0.002133 0.483778 0.057610502    No   

DDX60 121.5133868 0.708235 0.002138 0.66667 0.004795669   Yes 1 

UBA7 155.0033355 0.705763 0.002251 0.802363 1.84E-04    No   

LRP10 52.6080542 0.705239 0.002276 0.495577 0.050929762 RARA  No   

STAT3 56.54389923 0.703652 0.002352 0.707968 0.002150048    No   

CTSS 192.1318228 0.703219 0.002373 0.769915 4.86E-04   Yes 1 

MR1 55.10949866 0.701691 0.002449 0.634221 0.008324656    No   

TLR3 136.1325925 0.699501 0.003701 0.645165 0.009397773   Yes 10 

CPD 108.4572875 0.696527 0.00272 0.678469 0.003861255    No   

SORT1 58.05819441 0.696262 0.002734 0.469029 0.066843812    No   

TAF13 74.33701323 0.693362 0.002897 0.64897 0.006528495    No   

USP9X 61.08572028 0.691436 0.003009 0.749266 8.35E-04    No   

ETS1 126.29724 0.688481 0.006478 0.536429 0.047976914   Yes 3 

ACTR2 50.15503768 0.687795 0.003231 0.598823 0.014245964    No   

DPYD 185.9830248 0.686134 0.003337 0.64897 0.006528495    No   

NFKB2 71.56651194 0.681366 0.003656 0.581123 0.018235058    No   

CAPZA1 59.76247417 0.681087 0.003675 0.637171 0.007937331    No   

PIF1 72.61642493 0.680535 0.003714 0.43658 0.090887581    No   

TAPBP 56.63414783 0.67961 0.003779 0.65192 0.006209506    No   

RNF114 76.06746664 0.679093 0.003816 0.557525 0.024842079   Yes 1 

FAM149B1 50.63626371 0.677004 0.003969 0.542775 0.029818337    No   

BCL10 89.00244794 0.674879 0.004128 0.404132 0.120544092    No   

PIK3CD 117.2191648 0.673986 0.004197 0.575224 0.019741194   Yes 2 

PIK3R1 130.8116123 0.672853 0.004286 0.528026 0.035520369 RARA/RARG  No   

PSMB9 117.1985144 0.672569 0.004308 0.545725 0.028767026    No   

SEC24D 70.4744044 0.669254 0.004577 0.598823 0.014245964   Yes 4 

MAGED1 54.79883695 0.669149 0.004586 0.43953 0.08847836    No   

PDGFC 117.2401562 0.668497 0.00464 0.66667 0.004795669    No   

GABARAPL1 101.5481131 0.668493 0.004641 0.672569 0.004308166 RARA  No   

RNASEL 73.34261867 0.667969 0.004685 0.616522 0.01097398    No   

GBP3 107.2333649 0.667694 0.004708 0.681419 0.003652225    No   

GAA 63.96525771 0.666497 0.004811 0.572274 0.020529464    No   

PTK2B 93.64966155 0.664909 0.004949 0.230089 0.391284989    No   

BCL6 105.8418162 0.660281 0.005372 0.477878 0.06118325   Yes 3 

CTSB 142.902409 0.65925 0.00547 0.737466 0.001113013   Yes 1 

PRKCE 70.51891553 0.659161 0.005479 0.539825 0.030898677    No   

NMI 69.40897344 0.658342 0.005558 0.713867 0.00189669    No   

KLHL5 94.65731052 0.658134 0.005578 0.563424 0.023040837    No   

CAMK2D 64.43584067 0.65466 0.005924 0.598823 0.014245964    No   

GPX8 117.5636691 0.654019 0.00599 0.560474 0.023928433    No   

SAMD9L 195.2084606 0.652703 0.006127 0.646021 0.006860399    No   

LRP1 219.0958765 0.65121 0.006285 0.256638 0.33731508    No   

TRIM8 51.7168892 0.648072 0.006628 0.474928 0.063029429    No   
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ALG10B 78.06886449 0.645856 0.006879 0.566374 0.022178802   Yes 1 

STAP2 79.31546166 0.64452 0.007034 0.637171 0.007937331    No   

TRIM38 79.16832978 0.643944 0.007102 0.769915 4.86E-04    No   

GBP1 135.3183917 0.643715 0.007129 0.643071 0.007205587    No   

BIRC3 210.035201 0.642886 0.007228 0.530976 0.034318889   Yes 1 

OAS1 173.6373292 0.640288 0.007544 0.728617 0.001367745 RARA  No   

DDX60L 101.216574 0.639412 0.007653 0.755166 7.19E-04   Yes 1 

PLD3 53.2249134 0.63865 0.007749 0.362833 0.167211533   Yes 3 

UBQLN2 71.41797839 0.635852 0.008109 0.507377 0.044842307    No   

TBC1D1 61.09039106 0.635286 0.008183 0.707968 0.002150048 RARA Yes 2 

TM7SF2 98.78930363 0.634318 0.008312 0.563424 0.023040837    No   

PARVA 85.52423114 0.633106 0.008475 0.410031 0.11470988   Yes 3 

HLA-E 54.4122551 0.631957 0.008632 0.327435 0.215724174 RARA Yes 3 

SH3GLB1 70.57890845 0.630661 0.008812 0.44838 0.081525044    No   

GCC2 52.6950163 0.630422 0.008845 0.589973 0.016144758 RARA  No   

IFIT2 141.1213865 0.629397 0.00899 0.530976 0.034318889    No   

HLA-A 154.390396 0.629285 0.009006 0.581123 0.018235058    No   

NT5C2 131.1761346 0.625686 0.00953 0.66372 0.005055461    No   

MAT2B 52.15417155 0.624545 0.009701 0.637171 0.007937331    No   

KLC4 55.36984564 0.623356 0.009882 0.687319 0.003261473   Yes 1 

SCCPDH 141.0380828 0.622807 0.009967 0.584073 0.01751624    No   

AKT3 130.2088722 0.620035 0.010402 0.672569 0.004308166   Yes 2 

PTPN6 89.97881731 0.615842 0.011088 0.634221 0.008324656    No   

EGF 144.0878064 0.613537 0.01148 0.690268 0.003079151    No   

IRF1 95.03340854 0.610545 0.012005 0.65192 0.006209506    No   

FN1 289.5496453 0.609023 0.012279 0.65487 0.005903065    No   

QPRT 89.49323555 0.60721 0.016366 0.713137 0.002838928    No   

CD47 64.21211875 0.604526 0.013118 0.799414 2.02E-04   Yes 1 

PSMB10 81.83847743 0.594812 0.015084 0.746316 8.98E-04 RARA  No   

DTX3L 70.21533034 0.590457 0.016036 0.684369 0.003452398 RARA/RARG  No   

TBC1D8B 75.74191337 0.581471 0.018149 0.634221 0.008324656 RARA  No   

IFI44L 235.3077592 0.573849 0.020106 0.684369 0.003452398    No   

RAB20 90.10132244 0.550672 0.027068 0.631271 0.008726804   Yes 1 

OASL 210.3639243 0.537854 0.031637 0.66372 0.005055461    No   

DCP1B 73.72295952 0.513794 0.041769 0.646021 0.006860399   Yes 1 

PARP12 84.66898049 0.508029 0.044523 0.678469 0.003861255    No   

AGPAT4 100.0523765 0.488098 0.055094 0.66667 0.004795669    No   

PSMB8 76.32974227 0.46619 0.068738 0.637171 0.007937331   Yes 2 

CSAD 60.67941634 0.466158 0.06876 0.628321 0.009144172 RARA/RARG  No   

SYNJ2 80.64393729 0.308142 0.245596 0.65487 0.005903065   Yes 7 

B2M 96.23471692 0.235222 0.380506 0.746316 8.98E-04    No   

PPP2R2C 133.3280625 -0.29096 0.29276 -0.67739 0.005529364    No   

HIST1H4J 54.39620506 -0.41948 0.105783 -0.74927 8.35E-04    No   

RBBP7 55.31424891 -0.45716 0.075026 -0.65782 0.005608813    No   

HIST1H2BJ 78.67151307 -0.48651 0.056011 -0.62832 0.009144172    No   
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HIST1H2AJ 67.34486596 -0.50361 0.046724 -0.66667 0.004795669    No   

HIST1H2AL 69.57856943 -0.50586 0.045593 -0.71092 0.002020147    No   

HIST1H1D 64.24294239 -0.54591 0.028703 -0.64602 0.006860399    No   

SNF8 69.21772618 -0.55478 0.025715 -0.62537 0.009577164    No   

SDC3 93.08924551 -0.55698 0.025014 -0.63422 0.008324656    No   

HIST1H3B 57.75595754 -0.56144 0.023635 -0.74042 0.001037287    No   

HIST1H1E 54.02657795 -0.56681 0.022053 -0.65487 0.005903065    No   

RAD54L 53.79388482 -0.57295 0.020346 -0.67257 0.004308166    No   

ORC1 59.99050377 -0.57595 0.01955 -0.70797 0.002150048    No   

CACNG4 148.5394804 -0.57859 0.023841 -0.64701 0.009131655    No   

HIST1H3F 68.29939339 -0.58139 0.018169 -0.72272 0.001562577    No   

LRR1 60.19079718 -0.58268 0.017852 -0.63127 0.008726804    No   

HIST1H4D 77.22111264 -0.58593 0.017076 -0.80826 1.51E-04    No   

HIST1H2BO 64.46132892 -0.58809 0.016574 -0.72567 0.001462519    No   

HIST1H3J 86.24685507 -0.59223 0.015643 -0.75812 6.66E-04    No   

HIST1H2AG 53.1838641 -0.59318 0.015435 -0.72272 0.001562577    No   

HIST2H3D 81.49684387 -0.59689 0.014645 -0.66077 0.005326394    No   

HIST1H1B 66.99400065 -0.60012 0.013983 -0.74632 8.98E-04    No   

HIST2H2AA4 52.5297785 -0.60427 0.013168 -0.62537 0.009577164    No   

HPRT1 53.17952859 -0.60512 0.013005 -0.64012 0.007564437    No   

PKMYT1 62.26426496 -0.61018 0.01207 -0.73157 0.001278041   Yes 1 

ACD 52.02289113 -0.61256 0.01165 -0.78466 3.19E-04 RARA  No   

E2F8 54.35523778 -0.61453 0.01131 -0.69027 0.003079151    No   

HIST1H2AI 50.02718898 -0.61824 0.010691 -0.73157 0.001278041 RARA  No   

HIST1H2BH 60.10763616 -0.62005 0.010399 -0.70502 0.002286641    No   

PGAM1 66.05234413 -0.62152 0.010166 -0.68142 0.003652225    No   

ORC6 64.3450466 -0.62274 0.009978 -0.70502 0.002286641    No   

ZNRD1 61.57365314 -0.62343 0.00987 -0.71682 0.001779434    No   

ATP5I 51.89121045 -0.62406 0.009774 -0.38643 0.139275348   Yes 1 

RMI2 53.56802979 -0.62496 0.00964 -0.67257 0.004308166   Yes 1 

GNL2 55.71712393 -0.62594 0.009493 -0.45723 0.074973989    No   

ESRP2 81.83626608 -0.62668 0.009383 -0.70502 0.002286641    No   

FKBP9 98.88592146 -0.62694 0.009346 -0.36578 0.163530133    No   

GAPDH 57.28685646 -0.62735 0.009285 -0.54573 0.028767026    No   

PEMT 57.99112679 -0.62922 0.009016 -0.48378 0.057610502   Yes 4 

GIT1 69.52545101 -0.62953 0.008972 -0.47493 0.063029429    No   

DUT 50.13344149 -0.63206 0.008618 -0.67257 0.004308166    No   

BLM 54.88528427 -0.63769 0.007871 -0.60767 0.012526367   Yes 1 

LYAR 84.60244905 -0.63786 0.007848 -0.46313 0.070824076    No   

UBFD1 59.65601893 -0.63811 0.007817 -0.69617 0.002739165    No   

HIST1H3A 81.9952244 -0.64022 0.007552 -0.73452 0.001193198    No   

GPHN 56.05347973 -0.64148 0.007397 -0.51623 0.040646801    No   

POP1 54.19748575 -0.64306 0.007207 -0.33628 0.202837527    No   

MRPL41 54.06892486 -0.64311 0.007201 -0.43953 0.08847836 RARA/RARG  No   

KNTC1 55.22091445 -0.64321 0.007189 -0.62537 0.009577164   Yes 1 
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PSMD8 77.22398073 -0.64486 0.006994 -0.57227 0.020529464    No   

FANCB 52.71941906 -0.64563 0.006905 -0.64897 0.006528495    No   

CDC7 60.8547125 -0.64939 0.006482 -0.54573 0.028767026   Yes 3 

PRPF3 58.48974004 -0.64995 0.006421 -0.66077 0.005326394    No   

KCTD7 53.7977105 -0.65277 0.00612 -0.77286 4.48E-04   Yes 1 

FGFR4 162.9031651 -0.65363 0.00603 -0.66372 0.005055461   Yes 1 

EXO1 54.87667589 -0.65448 0.005943 -0.71387 0.00189669    No   

MDN1 56.83201351 -0.65481 0.00591 -0.28319 0.287866173    No   

SRPK1 53.0849639 -0.65499 0.005891 -0.56047 0.023928433    No   

NDUFAF4 59.07661539 -0.65626 0.005763 -0.31564 0.233702896    No   

MRPS12 67.878305 -0.65715 0.005675 -0.35693 0.174739123 RARA  No   

HIST1H4C 52.85708628 -0.6574 0.00565 -0.75222 7.75E-04    No   

AGPAT5 62.67157205 -0.6581 0.005582 -0.46018 0.072877593    No   

KIF1C 51.42387272 -0.65828 0.005564 -0.65192 0.006209506    No   

NIP7 55.99108558 -0.65936 0.00546 -0.51033 0.043409397    No   

DGKE 77.58314549 -0.65939 0.005457 -0.51918 0.039316106    No   

ERLIN1 59.68311761 -0.65941 0.005455 -0.63422 0.008324656    No   

CHMP7 54.97746056 -0.66095 0.00531 -0.59587 0.014858383   Yes 1 

ARF6 59.8108576 -0.66144 0.005264 -0.71682 0.001779434    No   

LBR 53.75215116 -0.66176 0.005235 -0.73747 0.001113013   Yes 1 

GPC1 90.57087609 -0.66178 0.005232 -0.48378 0.057610502   Yes 1 

PODXL2 84.33865043 -0.66194 0.005218 -0.40118 0.12353713    No   

NOP16 65.87474774 -0.66249 0.005167 -0.39528 0.129676812    No   

RNASEH1 62.0226095 -0.66268 0.005149 -0.22714 0.397553714 RARA  No   

CHEK1 52.79467489 -0.6637 0.005057 -0.67552 0.004079798    No   

GNA12 56.21548408 -0.66456 0.00498 -0.69322 0.002905144   Yes 9 

HIST1H2BL 66.79241717 -0.66552 0.004896 -0.71977 0.00166814 RARA  No   

DCLRE1B 68.12739941 -0.66673 0.00479 -0.64012 0.007564437 RARA  No   

AP1M1 71.93679501 -0.66822 0.004663 -0.71977 0.00166814    No   

GLO1 63.55249546 -0.66887 0.004609 -0.31564 0.233702896    No   

ARHGAP39 92.85192612 -0.67027 0.004493 -0.50738 0.044842307    No   

HIST1H4B 61.88344854 -0.67083 0.004447 -0.79056 2.67E-04    No   

NFRKB 62.65696931 -0.67231 0.004329 -0.58112 0.018235058   Yes 1 

ATP5O 52.63184997 -0.67266 0.004301 -0.46313 0.070824076    No   

VMA21 85.78324868 -0.67334 0.004248 -0.35988 0.170947788    No   

RAD51C 59.83916819 -0.67365 0.004223 -0.61062 0.011990908 RARA/RARG  No   

CASP2 56.04472864 -0.67428 0.004175 -0.61947 0.010491653    No   

TPI1 66.4116892 -0.67632 0.004019 -0.63127 0.008726804    No   

PCBP4 77.68308694 -0.67635 0.004017 -0.54867 0.027744243 RARA  No   

PSMA5 59.37822583 -0.67708 0.003963 -0.34808 0.186445717   Yes 1 

RRM2 61.47607086 -0.67816 0.003884 -0.75517 7.19E-04    No   

GINS2 66.77518297 -0.6782 0.003881 -0.73157 0.001278041   Yes 10 

RPF2 55.27304801 -0.67838 0.003868 -0.31859 0.229122599 RARA  No   

RSL1D1 50.17783153 -0.67868 0.003846 -0.29204 0.272406977   Yes 1 

DNAJC8 55.42726331 -0.68048 0.003718 -0.64897 0.006528495    No   
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PCGF6 60.62322647 -0.68054 0.003714 -0.49853 0.049353523    No   

VIM 201.7136611 -0.6806 0.003709 -0.54573 0.028767026   Yes 2 

RFC2 57.16571366 -0.68248 0.003579 -0.70207 0.002430184   Yes 4 

E2F3 53.14583486 -0.68289 0.003551 -0.46608 0.068812972 RARA  No   

MCM5 51.95924846 -0.68376 0.003493 -0.71682 0.001779434    No   

INF2 54.93943449 -0.6852 0.003398 -0.55457 0.025782266 RARA Yes 1 

RPP40 53.53013937 -0.68533 0.00339 -0.41003 0.11470988   Yes 1 

MAK16 54.85352188 -0.68599 0.003346 -0.60472 0.013080403    No   

C1QBP 57.99478034 -0.69189 0.002983 -0.46608 0.068812972    No   

IMPDH2 61.66499149 -0.6926 0.002941 -0.63717 0.007937331    No   

CLSPN 75.90371259 -0.69891 0.002592 -0.70207 0.002430184    No   

SCML2 74.86253463 -0.69979 0.002546 -0.67847 0.003861255 RARA  No   

PDGFA 114.132698 -0.69991 0.00254 -0.50443 0.046310296    No   

HIST1H2AK 59.11138147 -0.70054 0.002507 -0.72567 0.001462519    No   

UTP18 52.08766381 -0.70102 0.002483 -0.43658 0.090887581    No   

WDR3 68.4642988 -0.70194 0.002436 -0.37758 0.149348246   Yes 1 

NDUFS3 61.65275593 -0.70201 0.002433 -0.69027 0.003079151    No   

TRIM3 96.83055657 -0.70319 0.002375 -0.73157 0.001278041    No   

IRAK1 86.66139978 -0.70405 0.002333 -0.58407 0.01751624    No   

CCDC86 60.48926259 -0.70417 0.002327 -0.51033 0.043409397    No   

SOCS7 64.80194522 -0.70752 0.00217 -0.56637 0.022178802    No   

LPCAT1 62.18059753 -0.70775 0.00216 -0.63422 0.008324656   Yes 3 

AMD1 57.52313675 -0.70795 0.002151 -0.25074 0.348922716    No   

POLA1 52.8900045 -0.70815 0.002142 -0.55752 0.024842079    No   

MRPL27 70.60405779 -0.70836 0.002132 -0.59587 0.014858383    No   

WDR77 72.10688748 -0.71139 0.002 -0.52508 0.036753395    No   

U2AF2 56.52985192 -0.71146 0.001997 -0.73157 0.001278041    No   

HIST1H3H 57.99186648 -0.7122 0.001966 -0.84071 4.53E-05    No   

AP2S1 50.96588179 -0.71235 0.001959 -0.74042 0.001037287    No   

LPAR2 67.81001834 -0.71409 0.001888 -0.63127 0.008726804    No   

DNAJC9 55.5112475 -0.7154 0.001835 -0.70502 0.002286641    No   

MSH2 60.24145858 -0.71584 0.001818 -0.55457 0.025782266    No   

PAFAH1B3 55.15414636 -0.7176 0.001749 -0.69617 0.002739165   Yes 2 

POLR3K 50.08094597 -0.71824 0.001725 -0.48083 0.059377103    No   

LDHA 61.57555965 -0.71915 0.001691 -0.51918 0.039316106    No   

MAGOHB 67.1916996 -0.71946 0.001679 -0.61062 0.011990908   Yes 2 

TMEM199 57.62444475 -0.71975 0.001669 -0.53393 0.033148449    No   

SEH1L 62.15944479 -0.72077 0.001632 -0.62537 0.009577164 RARA/RARG  No   

HIST1H2BI 89.03273127 -0.72298 0.001553 -0.71682 0.001779434    No   

HIST1H2AH 57.29095843 -0.7237 0.001529 -0.72862 0.001367745    No   

SNRPF 63.53337178 -0.72385 0.001524 -0.51328 0.042011063    No   

NOLC1 56.08191106 -0.72414 0.001514 -0.46903 0.066843812    No   

UBA2 68.06670727 -0.72623 0.001444 -0.56047 0.023928433    No   

PHB 109.3898129 -0.72626 0.001443 -0.59587 0.014858383    No   

POLR2I 61.88623484 -0.72659 0.001432 -0.50148 0.047813868    No   
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KLHL11 51.17025469 -0.72796 0.001388 -0.57227 0.020529464    No   

EFHD2 81.95876872 -0.72796 0.001388 -0.72272 0.001562577    No   

RNGTT 54.51578383 -0.72928 0.001347 -0.38348 0.142579872   Yes 1 

PVR 69.80292995 -0.7304 0.001313 -0.61947 0.010491653    No   

GEMIN5 53.08909086 -0.73088 0.001299 -0.56047 0.023928433    No   

ENO2 133.4603408 -0.73361 0.001219 -0.75517 7.19E-04    No   

B3GALT6 52.10357821 -0.73431 0.001199 -0.58112 0.018235058    No   

MRPS34 51.77613396 -0.73442 0.001196 -0.60767 0.012526367    No   

LAS1L 54.3905378 -0.73646 0.00114 -0.53983 0.030898677    No   

ADRM1 62.90570232 -0.73677 0.001131 -0.81711 1.11E-04   Yes 1 

MSH6 50.84270801 -0.73684 0.00113 -0.71682 0.001779434    No   

CYC1 58.14144396 -0.73711 0.001123 -0.62242 0.010026187    No   

STX2 94.52072469 -0.74161 0.001008 -0.67257 0.004308166   Yes 1 

GGCT 84.12594735 -0.74279 9.80E-04 -0.55162 0.026749489    No   

NOP2 61.41021053 -0.74299 9.75E-04 -0.51918 0.039316106    No   

PHB2 71.25572153 -0.7444 9.42E-04 -0.55457 0.025782266    No   

PRKDC 51.34901379 -0.7458 9.10E-04 -0.58407 0.01751624    No   

LSM2 52.22170135 -0.74636 8.97E-04 -0.55752 0.024842079    No   

YWHAH 51.41918998 -0.74882 8.44E-04 -0.79646 2.22E-04    No   

PTCD3 53.51276487 -0.75022 8.15E-04 -0.57817 0.018976551    No   

ALG8 51.95061995 -0.7506 8.07E-04 -0.66077 0.005326394    No   

POLE4 67.45276516 -0.75421 7.37E-04 -0.65487 0.005903065    No   

MRPS7 52.99987224 -0.75797 6.69E-04 -0.66077 0.005326394    No   

CDC6 70.70200926 -0.7587 6.56E-04 -0.74632 8.98E-04    No   

CMSS1 56.89945553 -0.75902 6.51E-04 -0.46313 0.070824076   Yes 1 

EIF3K 96.85919636 -0.75954 6.42E-04 -0.71682 0.001779434    No   

HAGHL 127.668463 -0.76182 6.05E-04 -0.59882 0.014245964   Yes 1 

SKI 59.78896263 -0.76221 5.98E-04 -0.45723 0.074973989   Yes 8 

UBE2N 51.12128222 -0.76297 5.86E-04 -0.61357 0.01147359    No   

FBL 110.4442636 -0.76583 5.43E-04 -0.77286 4.48E-04    No   

FEN1 76.46373416 -0.76734 5.21E-04 -0.76696 5.27E-04    No   

LSM6 54.36525066 -0.76997 4.85E-04 -0.62832 0.009144172    No   

MCM7 57.08722298 -0.77031 4.80E-04 -0.76402 5.70E-04    No   

SRM 61.79732046 -0.7704 4.79E-04 -0.69027 0.003079151   Yes 1 

CBX2 82.78459116 -0.77605 4.09E-04 -0.78761 2.92E-04    No   

MCM10 55.62910555 -0.77688 4.00E-04 -0.77286 4.48E-04   Yes 2 

TIMM50 52.21353022 -0.77892 3.77E-04 -0.66667 0.004795669 RARA  No   

HIST2H4A 50.01936937 -0.77908 3.75E-04 -0.76107 6.17E-04    No   

TSEN54 53.60470376 -0.77962 3.69E-04 -0.61357 0.01147359    No   

PAICS 56.0976597 -0.78095 3.56E-04 -0.59292 0.015491163    No   

RPL26L1 62.05832438 -0.78148 3.50E-04 -0.60767 0.012526367    No   

VDAC3 54.54245403 -0.78686 2.99E-04 -0.64602 0.006860399   Yes 1 

GEMIN4 51.05957881 -0.78765 2.92E-04 -0.60767 0.012526367    No   

SUPT16H 53.72549155 -0.78895 2.80E-04 -0.62537 0.009577164    No   

RPS6KA4 57.55477795 -0.79124 2.61E-04 -0.76107 6.17E-04    No   
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UQCRH 56.61520213 -0.79303 2.47E-04 -0.69322 0.002905144    No   

POLE2 85.96918987 -0.79689 2.19E-04 -0.56047 0.023928433    No   

SNRPD1 56.62664824 -0.79931 2.03E-04 -0.68437 0.003452398    No   

NME1 83.40783663 -0.80367 1.76E-04 -0.69912 0.002580936    No   

ADCY7 103.3032281 -0.80456 1.71E-04 -0.78171 3.48E-04    No   

DDX20 67.44243655 -0.80534 1.67E-04 -0.62832 0.009144172    No   

TRIP13 52.83887149 -0.80848 1.50E-04 -0.78761 2.92E-04   Yes 1 

NLE1 51.46785694 -0.80911 1.47E-04 -0.65782 0.005608813    No   

POLR1E 56.9283612 -0.81211 1.33E-04 -0.78761 2.92E-04    No   

BOP1 60.90441092 -0.81249 1.31E-04 -0.65192 0.006209506    No   

NUP155 64.84569835 -0.81435 1.23E-04 -0.75222 7.75E-04    No   

TOP3A 52.2503718 -0.81492 1.20E-04 -0.76107 6.17E-04    No   

GPD1L 71.29646826 -0.81564 1.17E-04 -0.64897 0.006528495 RARA/RARG  No   

CCNE1 116.5425842 -0.81608 1.16E-04 -0.75812 6.66E-04    No   

LRP8 85.75922348 -0.81915 1.04E-04 -0.77876 3.79E-04    No   

PCNA 50.8483213 -0.81929 1.03E-04 -0.75517 7.19E-04 RARA/RARG  No   

AEN 60.09964241 -0.82092 9.72E-05 -0.60472 0.013080403    No   

PFAS 63.20774704 -0.8236 8.82E-05 -0.56047 0.023928433    No   

UNG 50.71275291 -0.82392 8.71E-05 -0.74927 8.35E-04    No   

VAV2 58.65829591 -0.82623 8.00E-05 -0.76696 5.27E-04   Yes 1 

GAS6 145.1435784 -0.83223 1.19E-04 -0.76345 9.26E-04 RARA  No   

FAM57A 76.49933212 -0.83957 4.75E-05 -0.73157 0.001278041    No   

SLBP 54.92094584 -0.84416 3.92E-05 -0.71387 0.00189669    No   

CDC25A 54.58656107 -0.84461 3.85E-05 -0.82596 8.08E-05    No   

SNRNP25 56.34875997 -0.84595 3.64E-05 -0.79941 2.02E-04   Yes 1 

PLXND1 125.3312603 -0.84925 3.15E-05 -0.71682 0.001779434    No   

CTPS1 50.80919704 -0.86021 1.92E-05 -0.79646 2.22E-04   Yes 1 

CCT5 53.58234413 -0.8644 1.57E-05 -0.71092 0.002020147    No   

RAC3 65.81446059 -0.8667 1.40E-05 -0.77876 3.79E-04    No   

F12 105.5270626 -0.87903 7.34E-06 -0.90266 1.71E-06    No   

COPS3 61.53124145 -0.88163 6.35E-06 -0.77581 4.12E-04    No   

ALYREF 56.39342391 -0.89449 2.94E-06 -0.85546 2.39E-05    No   

TIPIN 74.67344359 -0.90057 1.97E-06 -0.76696 5.27E-04   Yes 1 

DDX39A 52.13601059 -0.90342 1.62E-06 -0.91151 8.99E-07   Yes 2 

C9orf142 59.11652356 -0.94468 3.67E-08 -0.85251 2.73E-05    No   
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Appendix 2 

GO Biological Process: 30 more significantly  up-regulated pathways 

Gene Set NGenes PValue FDR 

GO_RESPONSE TO TYPE I INTERFERON 42 1.86E-10 7.50E-08 

GO_INTERFERON GAMMA MEDIATED SIGNALING PATHWAY 38 1.88E-08 4.15E-06 

GO_CELLULAR RESPONSE TO INTERFERON_GAMMA 49 6.53E-07 7.61E-05 

GO_RESPONSE TO INTERFERON GAMMA 60 1.96E-06 0.000181 

GO_VACUOLE ORGANIZATION 136 3.07E-05 0.001579 

GO_PROTEIN LOCALIZATION TO GOLGI APPARATUS 25 9.57E-05 0.003925 

GO_GOLGI ORGANIZATION 77 0.000108 0.00434 

GO_IMMUNE EFFECTOR PROCESS 227 0.000121 0.004755 

GO_DEFENSE RESPONSE TO VIRUS 96 0.000121 0.004755 

GO_POSITIVE REGULATION OF RESPONSE TO EXTERNAL STIMULUS 120 0.000147 0.005529 

GO_ENDOSOME ORGANIZATION 54 0.000191 0.006786 

GO_GOLGI TO PLASMA MEMBRANE PROTEIN TRANSPORT 21 0.00022 0.007629 

GO_RETROGRADE TRANSPORT VESICLE RECYCLING WITHIN GOLGI 16 0.000256 0.008667 

GO_I KAPPAB KINASE NF KAPPAB SIGNALING 48 0.000342 0.010893 

GO_REGULATION OF I KAPPAB KINASE NF KAPPAB SIGNALING 153 0.000421 0.01331 

GO_REGULATION_OF VACUOLE ORGANIZATION 37 0.000426 0.013379 

GO_UTERUS_DEVELOPMENT 8 0.000497 0.015074 

GO_INNATE  IMMUNE RESPONSE 240 0.000516 0.015374 

GO_POST GOLGI VESICLE MEDIATED TRANSPORT 74 0.000516 0.015374 

GO_REGULATION OF VESICLE MEDIATED TRANSPORT 271 0.000517 0.015374 

GO_VESICLE  MEDIATED TRANSPORT 787 0.000537 0.01585 

GO_SERTOLI CELL DIFFERENTIATION 11 0.000716 0.020638 

GO_ESTABLISHMENT OF PROTEIN LOCALIZATION TO  GOLGI 13 0.000717 0.020638 

GO_IMMUNE RESPONSE 390 0.000735 0.020892 

GO_VACUOLAR TRANSPORT 214 0.000736 0.020892 

GO_REGULATION OF RHO PROTEIN SIGNAL TRANSDUCTION 78 0.000744 0.021007 

GO_CYTOKINE MEDIATED SIGNALING PATHWAY 191 0.000792 0.021947 

GO_REGULATION OF ACTIN FILAMENT_LENGTH 99 0.000793 0.021947 

GO_PATTERN RECOGNITION RECEPTOR  SIGNALING PATHWAY 67 0.000815 0.022412 

GO_RESPONSE TO INTERFERON ALPHA 15 0.000835 0.022561 
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GO Biological Process: 30 more significantly down-regulated pathways 

Gene Set NGenes PValue FDR 

GO_RIBOSOME BIOGENESIS 285 2.30E-14 1.02E-10 

GO_NCRNA_PROCESSING 349 1.31E-13 2.91E-10 

GO_RIBONUCLEOPROTEIN COMPLEX BIOGENESIS 404 3.08E-13 3.83E-10 

GO_TRANSLATIONAL TERMINATION 84 3.45E-13 3.83E-10 

GO_MITOCHONDRIAL TRANSLATION 97 1.28E-12 1.13E-09 

GO_rRNA METABOLIC PROCESS 237 1.63E-12 1.20E-09 

GO_tRNA PROCESSING 95 5.90E-12 3.73E-09 

GO_ncRNA METABOLIC PROCESS 468 1.47E-11 8.16E-09 

GO_TRANSLATIONAL ELONGATION 96 4.85E-11 2.39E-08 

GO_TRNA METABOLIC PROCESS 153 1.25E-10 5.53E-08 

GO_RNA PROCESSING 724 2.40E-10 8.87E-08 

GO_SPLICEOSOMAL  SNRNP ASSEMBLY 35 8.24E-10 2.69E-07 

GO_RIBOSOMAL LARGE SUBUNIT BIOGENESIS 46 8.51E-10 2.69E-07 

GO_CELLULAR PROTEIN COMPLEX DISASSEMBLY 108 1.81E-09 5.33E-07 

GO_DNA DEPENDENT DNA REPLICATION 93 4.13E-09 1.14E-06 

GO_tRNA MODIFICATION 49 7.26E-09 1.89E-06 

GO_RIBONUCLEOPROTEIN COMPLEX LOCALIZATION 106 9.46E-09 2.33E-06 

GO_DNA REPLICATION INITIATION 27 1.36E-08 3.16E-06 

GO_RNA_SPLICING_VIA_TRANSESTERIFICATION_REACTIONS 244 2.19E-08 4.61E-06 

GO_RIBOSOMAL SMALL SUBUNIT BIOGENESIS 55 2.91E-08 5.86E-06 

GO_AMIDE BIOSYNTHETIC PROCESS 402 3.09E-08 5.95E-06 

GO_REGULATION OF TELOMERASE  RNA LOCALIZATION TO CAJAL  
BODY 15 5.94E-08 1.10E-05 

GO_DNA TEMPLATED  TRANSCRIPTION TERMINATION 90 7.00E-08 1.24E-05 

GO_RNA MODIFICATION 98 1.51E-07 2.57E-05 

GO_RIBONUCLEOPROTEIN COMPLEX SUBUNIT ORGANIZATION 176 1.90E-07 3.12E-05 

GO_tRNA TRANSPORT 33 2.14E-07 3.39E-05 

GO_DNA REPLICATION 188 2.28E-07 3.48E-05 

GO_RNA SPLICING 318 2.73E-07 4.03E-05 

GO_RIBOSOME ASSEMBLY 46 2.91E-07 4.16E-05 

GO_MULTI ORGANISM METABOLIC PROCESS 132 4.56E-07 6.31E-05 

 

 

GO Cellular Compartments: 30 more significantly up (UP)– and down (DN)-regulated 

pathways 

Gene set NGenes Direction PValue FDR 

GO_NUCLEOLAR PART 56 DN 1.50E-12 8.64E-10 

GO_ORGANELLAR RIBOSOME 64 DN 2.95E-11 8.53E-09 

GO_RIBOSOME 194 DN 7.49E-11 1.44E-08 

GO_MITOCHONDRIAL PROTEIN COMPLEX 117 DN 2.82E-10 3.90E-08 

GO_INNER MITOCHONDRIAL MEMBRANE PROTEIN 
COMPLEX 91 DN 3.38E-10 3.90E-08 
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GO_RIBOSOMAL_SUBUNIT 145 DN 4.82E-10 4.54E-08 

GO_PRERIBOSOME 57 DN 5.50E-10 4.54E-08 

GO_MITOCHONDRIAL MEMBRANE PART 144 DN 5.62E-09 4.06E-07 

GO_ORGANELLE INNER MEMBRANE 407 DN 1.04E-08 6.66E-07 

GO_RIBONUCLEOPROTEIN COMPLEX 613 DN 1.58E-08 9.15E-07 

GO_LARGE RIBOSOMAL SUBUNIT 87 DN 5.22E-08 2.75E-06 

GO_SMALL SUBUNIT PROCESSOME 31 DN 5.95E-08 2.86E-06 

GO_SMN - SM PROTEIN COMPLEX 15 DN 7.21E-08 3.04E-06 

GO_SMALL NUCLEOLAR RIBONUCLEOPROTEIN 
COMPLEX 17 DN 7.37E-08 3.04E-06 

GO_DNA PACKAGING COMPLEX 79 DN 9.22E-08 3.55E-06 

GO_SPLICEOSOMAL TRI SNRNP COMPLEX 24 DN 1.98E-07 7.16E-06 

GO_90S PRERIBOSOME 23 DN 2.62E-07 8.92E-06 

GO_METHYLOSOME 12 DN 3.94E-07 1.27E-05 

GO_MITOCHONDRIAL ENVELOPE 539 DN 7.49E-07 2.28E-05 

GO_SMALL RIBOSOMAL SUBUNIT 58 DN 1.01E-06 2.91E-05 

GO_CYTOSOLIC RIBOSOME 97 DN 1.16E-06 3.18E-05 

GO_RESPIRATORY CHAIN 69 DN 2.38E-06 6.26E-05 

GO_SMALL_NUCLEAR RIBONUCLEOPROTEIN 
COMPLEX 56 DN 2.76E-06 6.89E-05 

GO_NUCLEAR PORE 66 DN 2.86E-06 6.89E-05 

GO_PROTEIN DNA COMPLEX 130 DN 3.16E-06 7.31E-05 

GO_MITOCHONDRIAL PART 749 DN 3.46E-06 7.69E-05 

GO_MITOCHONDRIAL MATRIX 337 DN 4.26E-06 9.11E-05 

GO_CATALYTIC STEP 2 SPLICEOSOME 85 DN 4.42E-06 9.11E-05 

GO_ORGANELLAR LARGE RIBOSOMAL SUBUNIT 30 DN 4.59E-06 9.14E-05 

GO_SPLICEOSOMAL COMPLEX 159 DN 5.08E-06 9.78E-05 

 

 

GO Molecular Functions: 30 more significantly up (UP)– and down (DN)-regulated pathways. 

 

Gene Sets NGenes Direction PValue FDR 

GO_STRUCTURAL CONSTITUENT OF RIBOSOME 176 DN 3.80E-11 3.37E-08 

GO_RNA POLYMERASE ACTIVITY 37 DN 5.79E-08 2.57E-05 

GO_RAN GTPASE BINDING 28 DN 2.67E-07 7.93E-05 

GO_POLY A RNA BINDING 1064 DN 3.75E-07 8.33E-05 

GO_SNORNA BINDING 23 DN 1.08E-06 0.000192 

GO_RNA BINDING 1357 DN 1.87E-06 0.000278 

GO_STRUCTURAL CONSTITUENT OF NUCLEAR PORE 13 DN 1.05E-05 0.00134 

GO_PURINE NTP DEPENDENT HELICASE ACTIVITY 81 DN 2.09E-05 0.002232 

GO_RIBONUCLEASE ACTIVITY 73 DN 2.50E-05 0.002232 
GO_ENDONUCLEASE ACTIVITY ACTIVE WITH EITHER RIBO 
OR DEOXYRIBONUCLEIC ACIDS AND PRODUCING 5' 
PHOSPHOMONOESTERS 30 DN 2.51E-05 0.002232 
GO_ENDORIBONUCLEASE ACTIVITY PRODUCING 5' 
PHOSPHOMONOESTERS 24 DN 3.02E-05 0.002319 



 

Appendices   

 

85 

 

GO_TRNA SPECIFIC RIBONUCLEASE ACTIVITY 14 DN 3.13E-05 0.002319 

GO_RNA HELICASE ACTIVITY 54 DN 3.75E-05 0.002497 

GO_NUCLEASE ACTIVITY 151 DN 3.93E-05 0.002497 

GO_RRNA BINDING 51 DN 5.94E-05 0.00347 

GO_SINGLE STRANDED DNA BINDING 76 DN 6.24E-05 0.00347 

GO_TRANSLATION FACTOR ACTIVITY RNA BINDING 72 DN 8.79E-05 0.004438 

GO_TRANSLATION INITIATION FACTOR ACTIVITY 46 DN 8.99E-05 0.004438 

GO_METAL CLUSTER BINDING 51 DN 0.00012 0.005593 

GO_PSEUDOURIDINE SYNTHASE ACTIVITY 12 DN 0.000154 0.006839 

GO_NUCLEOCYTOPLASMIC TRANSPORTER ACTIVITY 23 DN 0.000171 0.007234 

GO_ENDONUCLEASE ACTIVITY 87 DN 0.000231 0.009324 

GO_ENDORIBONUCLEASE_ACTIVITY 38 DN 0.000241 0.00933 
GO_RAS GUANYL NUCLEOTIDE EXCHANGE FACTOR 
ACTIVITY 122 UP 0.000287 0.010213 

GO_EXONUCLEASE ACTIVITY 66 DN 0.000287 0.010213 

GO_DNA SECONDARY STRUCTURE BINDING 20 DN 0.000341 0.011675 

GO_HELICASE ACTIVITY 133 DN 0.000444 0.014626 

GO_DNA HELICASE ACTIVITY 48 DN 0.000468 0.014861 

GO_RNA METHYLTRANSFERASE ACTIVITY 38 DN 0.000502 0.015386 

GO_FOUR WAY JUNCTION DNA BINDING 13 DN 0.000578 0.017131 

GO_GUANYL NUCLEOTIDE EXCHANGE FACTOR ACTIVITY 174 UP 0.000604 0.017311 

GO_ARF GUANYL NUCLEOTIDE EXCHANGE FACTOR 
ACTIVITY 19 UP 0.000664 0.018446 

GO_NUCLEOTIDYLTRANSFERASE ACTIVITY 106 DN 0.000735 0.019792 

GO_TRANSFERASE ACTIVITY TRANSFERRING ONE CARBON 
GROUPS 160 DN 0.000815 0.021319 

GO_PEPTIDE ANTIGEN BINDING 13 UP 0.000953 0.024217 

GO_SH3 DOMAIN BINDING 74 UP 0.001192 0.028864 

GO_4 IRON 4 SULFUR CLUSTER BINDING 38 DN 0.001201 0.028864 

GO_RIBONUCLEASE P ACTIVITY 9 DN 0.001522 0.035246 

GO_DNA DEPENDENT ATPASE ACTIVITY 70 DN 0.001546 0.035246 

GO_ENZYMEACTIVATOR ACTIVITY 308 UP 0.001752 0.038546 

GO_PHOSPHATIDYLINOSITOL BINDING 139 UP 0.001778 0.038546 

GO_STRUCTURAL_MOLECULE_ACTIVITY 402 DN 0.001828 0.038687 

GO_RHO  GUANYL NUCLEOTIDE EXCHANGE FACTOR 
ACTIVITY 56 UP 0.001915 0.039596 

GO_PHOSPHATIDYLINOSITOL PHOSPHATE BINDING 78 UP 0.002005 0.040506 

GO_RIBONUCLEOPROTEIN COMPLEX BINDING 84 DN 0.002163 0.041377 

GO_PROTEIN CHANNEL ACTIVITY 9 DN 0.002181 0.041377 

GO_TRANSLATION INITIATION FACTOR BINDING 23 DN 0.002189 0.041377 

GO_OXIDOREDUCTASE ACTIVITY ACTING ON NAD P H 
QUINONE OR SIMILAR COMPOUND AS ACCEPTOR 44 DN 0.002234 0.041377 

GO_CADHERIN BINDING 19 UP 0.002613 0.046818 



 

Appendices   

 

86 

 

GO_TRANSLATION REPRESSOR ACTIVITY 13 UP 0.002633 0.046818 

GO_1-PHOSPHATIDYLINOSITOL BINDING 13 UP 0.002787 0.048582 

 

 

REACTOME: 30 more significantly up -regulated pathways. 

 

Gene Sets NGenes PValue FDR 

REACTOME_INTERFERON ALPHA-BETA SIGNALING 38 1.19E-08 6.03E-07 

REACTOME_INTERFERON GAMMA SIGNALING 33 2.94E-06 4.49E-05 

REACTOME_ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE 
LOADING OF CLASS I MHC 17 0.000145 0.001136 
REACTOME_GRB2 SOS PROVIDES  LINKAGE TO  MAPK SIGNALING FOR  
INTERGRINS 8 0.000321 0.002318 

REACTOME_SIGNAL REGULATORY PROTEIN SIRP FAMILY INTERACTIONS 7 0.000471 0.003298 

REACTOME_MEMBRANE TRAFFICKING 102 0.000563 0.003779 

REACTOME IL RECEPTOR_SHC SIGNALING 14 0.000677 0.0045 
REACTOME_RIG 1 MDA5 MEDIATED INDUCTION OF IFN ALPHA-BETA 
PATHWAYS 49 0.000759 0.004846 

REACTOME_CELL CELL COMMUNICATION 70 0.000905 0.005672 

REACTOME_INNATE IMMUNE SYSTEM 138 0.002596 0.014776 

REACTOME_IL 6 SIGNALING 8 0.002605 0.014776 

REACTOME_CELL SURFACE INTERACTIONS AT THE VASCULAR WALL 40 0.002672 0.015029 

REACTOME_SYNTHESIS OF PIPS AT  THE PLASMA MEMBRANE 23 0.002777 0.015357 

REACTOME_SIGNALING  BY ILS 72 0.003303 0.017961 

REACTOME_P130CAS LINKAGE TO MAPK SIGNALING FOR  INTEGRINS 8 0.003616 0.019342 

REACTOME_IL 3 5 AND GM CSF SIGNALING 26 0.003934 0.020711 

REACTOME_TRANS GOLGI NETWORK VESICLE BUDDING 52 0.004405 0.023003 

REACTOME_REGULATION OF IFNA SIGNALING 10 0.00567 0.028922 

REACTOME_BIOLOGICAL OXIDATIONS 41 0.006274 0.031515 

REACTOME_APOPTOTIC CLEAVAGE OF CELLULAR PROTEINS 30 0.00783 0.037882 

REACTOME_PI METABOLISM 38 0.008375 0.040083 

REACTOME_NEPHRIN INTERACTIONS 13 0.010027 0.047129 

REACTOME_SIGNALING BY HIPPO 20 0.010505 0.048257 

REACTOME_ENDOSOMAL VACUOLAR PATHWAY 6 0.010561 0.048257 

REACTOME_REGULATION OF KIT SIGNALING 12 0.011207 0.050858 

REACTOME_CYTOKINE SIGNALING IN IMMUNE SYSTEM 178 0.011382 0.051299 

REACTOME_METABOLISM OF LIPIDS AND LIPOPROTEINS 322 0.012209 0.054652 

REACTOME_TIE2 SIGNALING 10 0.0128 0.056527 
REACTOME_TRANSPORT TO THE GOLGI AND SUBSEQUENT 
MODIFICATION 26 0.013687 0.06004 

REACTOME_SIGNALING BY BMP 15 0.014538 0.06335 

 

 

 

 



 

Appendices   

 

87 

 

REACTOME: 30 more significantly down -regulated pathways. 

Gene set NGenes PValue FDR 

REACTOME_PROCESSING OF CAPPED INTRON CONTAINING PRE MRNA 133 4.65E-12 3.06E-09 

REACTOME_MRNA PROCESSING 147 1.86E-11 4.72E-09 

REACTOME_MRNA SPLICING MINOR PATHWAY 40 2.15E-11 4.72E-09 

REACTOME_METABOLISM OF NON CODING RNA 46 3.58E-11 5.21E-09 

REACTOME_TELOMERE MAINTENANCE 68 3.96E-11 5.21E-09 

REACTOME MRNA SPLICING 104 4.62E-10 5.07E-08 

REACTOME_TRANSCRIPTION 184 5.79E-10 5.45E-08 

REACTOME_DNA STRAND ELONGATION 29 1.87E-09 1.54E-07 

REACTOME_CHROMOSOME MAINTENANCE 104 4.10E-09 3.00E-07 

REACTOME_MEIOTIC RECOMBINATION 66 7.83E-09 5.15E-07 

REACTOME_ACTIVATION OF THE PRE REPLICATIVE_COMPLEX 29 9.56E-09 5.72E-07 

REACTOME_RNA POL I RNA POL III AND MITOCHONDRIAL TRANSCRIPTION 103 1.05E-08 5.78E-07 

REACTOME_RNA POL I PROMOTER OPENING 52 1.57E-08 7.37E-07 

REACTOME_TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM 52 3.04E-08 1.26E-06 

REACTOME_INFLUENZA LIFE CYCLE 126 3.22E-08 1.26E-06 

REACTOME_EXTENSION  OF TELOMERES 25 3.26E-08 1.26E-06 

REACTOME_RNA POL I TRANSCRIPTION 74 3.46E-08 1.26E-06 

REACTOME_S PHASE 100 6.22E-08 2.15E-06 

REACTOME_TRANSPORTOF  MATURE MRNA DERIVED FROM AN 
INTRONLESS TRANSCRIPT 33 9.98E-08 3.19E-06 

REACTOME_DEPOSITION OF  NEW  CENPA  CONTAINING NUCLEOSOMES 
AT THE  CENTROMERE 58 1.02E-07 3.19E-06 

REACTOME_MITOCHONDRIAL PROTEIN IMPORT 44 1.07E-07 3.21E-06 

REACTOME_ACTIVATION OF ATR IN RESPONSE  TO REPLICATION STRESS 34 1.24E-07 3.55E-06 

REACTOME_METABOLISM OF RNA 239 2.88E-07 7.90E-06 

REACTOME_MITOTIC G1/G1/S PHASES 121 3.29E-07 8.67E-06 

REACTOME_RNA POL II TRANSCRIPTION 93 3.78E-07 9.50E-06 

REACTOME_CELL CYCLE 366 4.01E-07 9.50E-06 

REACTOME MEIOSIS 87 4.04E-07 9.50E-06 

REACTOME_PACKAGING OF TELOMERE ENDS 43 5.25E-07 1.19E-05 

REACTOME_HIV LIFE CYCLE 103 5.64E-07 1.20E-05 

REACTOME_G1/S TRANSITION 100 5.65E-07 1.20E-05 
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Appendix 3 

Number of sequences belonging to each family of endogenous retrotransposon 

Family Number of sequnces  Family Number of sequnces 

SINE/Alu 1205213  RC/Helitron      1739 

LINE/L1  983004  DNA/hAT 1501 

Simple_repeat    671061  rRNA             1246 

SINE/MIR         581929  LTR/ERV1        1235 

LINE/L2          461251  LINE/Penelope    1040 

LTR/ERVL-MaLR    348738  srpRNA            982 

DNA/hAT-Charlie  256286  scRNA             601 

LTR/ERV1         175743  SINE/tRNA-Deu     600 

LTR/ERVL         163045  LINE/Dong-R4      518 

DNA/TcMar-Tigger 116242  RNA               399 

Low_complexity    96306  RC?/Helitron  395 

LINE/CR1          65860  Satellite/telo    367 

DNA/hAT-Tip100    45158  DNA/TcMar  345 

DNA/hAT-Blackjack 19212  DNA/PiggyBac 212 

LTR/Gypsy         16631  DNA/TcMar         169 

DNA/TcMar-Mariner 16012  DNA/hAT-Tag1      145 

LINE/RTE-X        15215  Satellite/acro   85 

LTR/ERVK          10923  DNA/Merlin       56 

DNA/hAT          8631  DNA/TcMar-Pogo   35 

LINE/RTE-BovB    8609  SINE 33 

DNA/TcMar-Tc2    8019  DNA/PIF-Harbinger 30 

LTR/Gypsy 7303  SINE/tRNA        5 

Retroposon/SVA   5529    
LTR 5523    
Unknown          5433    
SINE/tRNA-RTE    5382    
Satellite        4270    
DNA/hAT-Ac       4108    
DNA 3167    
LTR              3143    
Satellite/centr  2782    
snRNA            2512    
SINE/5S-Deu-L2   2390    
DNA              2200    
LTR/ERVL 2147    
DNA/PiggyBac     2146    
SINE/tRNA        2102    
DNA/hAT-Tip100 1979    
DNA/MULE-MuDR    1953    
tRNA             1932    
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Induction of Endogenous retroviruses in ATRA totally-resistant (ATRA-score = 0, part A) and ATRA-

sensitive (part B) cell lines. 

Part A 
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Part B  
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