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Abstract

The aim of the thesis is to generate a 3D model from couple of images,
acquired from dental surgery operation. This is done for teaching puproses
because it may help denstist student to understand better crucial part of
the operation, one other possible application is to measure parts inside the
mouth in case, for example, of possible carcinomas.

After the acquisition of the stereo video from a odontoiatric microscope,
we modify the frame of the video in order to make their 3D reconstruction
of the scene possible. In particular, after having computed the calibration
parameters for both cameras (individually and stereo calibration), we rectify
the images in the same time istant take from the two cameras, i.e. with
different point of view, and therefore delete the rotation of the second camera
with respect to the first one. Then we compute the disparity map so we can
compute the depth of the image and finally reconstruct the scene. This
process is done for each pair of frames.

This results in a good 3D reconstruction but with some holes in the final
images. Infact the 3D is degraded because the two cameras are rotated rela-
tive to each other, moreover, the calculated depth values do not correspond
to the real depth values, i.e. how much each pixels is far from the camera.
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Sommario

Lo scopo della tesi è quello di generare un modello 3D da una coppia di
immagini acquisite da un’operazione chirurgica dentistica. Questo è fatto
per dei propositi di insegnamento in quanto potrebbe aiutare gli studenti
di odontoiatria di capire al meglio le parti cruciali dell’operazione, un’altra
possibile applicazione è quella di misurare le parti all’interno della bocca in
caso, per esempio, di possibili carcinomi.

Dopo l’acquisizione del video in modo stereo da un microscopio odon-
toiatrico, modifico i frame del video cos̀ı che la ricostruzione 3D della scena
è possibile. In particolare, dopo aver calcolato i parametri di calibrazione
per entrambe le videocamere (sia individualmente che in modo stereo), si
rettificano le immagini prese dalle due videocamere nello stesso istante di
tempo, cioè con un differente punto di vista, in modo da eliminare la ro-
tazione della seconda videocamera rispetto alla prima. Quindi si computa
la mappa di disparità cos̀ı da poter calcolare la profondità dell’immagine e
infine si ricostruisce la scena. Questo viene fatto per ogni coppia di frame.

Questo porta a una buona ricostruzione 3D anche se con qualche buco
nell’immagine finale. Infatti il 3D è degradato in quanto le due videocamere
sono ruotate una rispetto all’altra, inoltre i valori della profondità calcolati
non corrispondono ai valori reali di profondità, cioè a quanto i singoli pixel
sono distanti dalla videocamera.
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Chapter 1

Introduction

With this work we want to be able to reconstruct, in 3D, the scene captured
by two cameras with different point of view. In particular, we use two
cameras placed on a dental microscope; in this way we can acquire a video
of a dental surgery and help the dentist to observe the operation and to
recognize a possible carcinoma.

The thesis is composed of four chapters. In the first one I introduce the
mathematical tools, useful to understand the algorithms used in the work.
First of all, I explain the principal camera model, the Pinhole Model, useful
to map a point in the real world to a image plane.
Then we need to known the features of the two cameras, this is done with
the Calibration process. In particular, thanks to this process, we can known
the intrisic parameters of the each camera individually and the extrinsic pa-
rameters of the second camera with respect to the first one. The first type
of parameters tell us the values of the internal camera parameters, like the
focal length and the principal point. The second type tell us the values of
the external parameters, like the rotation and the traslation. To compute
the calibration we must use a chessboard patter.
After the explanation of the calibration, I explain the Epipolar Geometry
that is useful to describe the relation and the geometric constraints between
two 2D images of the same 3D scene. This is necessary because we use a
stereo video, so we capture the same 3D scene with two cameras with differ-
ent position and orientation. The essential points of this geometry are: the
epipolar point, the epipolar line, the epipolar plane and the fundametal ma-
trix; in particular this matrix is the algeabric representation of the epipolar
geometry, it relates the corresponding points in stereo images.
As we already said, the two frame, extract at the same time istant from
the two cameras, have two diffetent point of view. To solve this problem
we need to explain the rectification process, i.e. the process that put two
images on the same x axis, whit no difference along the vertical direction.
Finally I explain the disparity map, i.e. the map that tell us the depth of

11



the 2D images, this map exploit the difference of the same pixel, take from
the two images, along the horizontal direction. The disparity map is an
image where the darker shades represent lesser shift and the brighter shader
represent more shift.

In second chapter, I explain how we build the 3D reconstruction of the
scene. First of all we acquire the images from the two cameras, then, we
compute the calibration (first individually, then stereo) and how to improve
it. After this I explain how we compute the rectification of the two frame
and put them in a red-cyan anaglyph and then, with this information, we
compute the disparity map. Finally I explain how we compute the 3D
reconstruction of the scene and the corrispondence between the distance
from the camera in the real world and the values of the depth in the 3D
representation, points3D(:, :, 3).

In the next chapter I show the result of the computation for each couple
of frame extract from stereo video. In particular I show how the param-
eters of the Matlab function, disparity, are fundamental for a successful
reconstruction and the 3D images of the reconstruction in different time
istant.

In the sixth chapter I present the conclusions of this work with possible
future developments.

Figure 1.1: System overview
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Chapter 2

Theoretical Review

In this chapter, I will introduce the fundamental mathematical tools and
the algorithms needed to understand the workspace of the computer vision.
In particular, I will describe the Camera Models, the Camera Calibration,
the Epipolar Geometry, the Image Rectification and the Disparity Map.

2.1 Camera Models

The Camera Model defines the mapping between the 3-D points {x} in a
camera frame and the pixel {u} in the image plane: Π = R2 → Ω.

The points on the image plane are the projection of the three-dimensional
scene to a two-dimensional system; this projection depends from various pa-
rameters like the position and the orientation of the camera, the focal length
of the lens, the optical center and the distortion. In particular, in geometric
optics, distortion is a deviation from rectilinear projection; a projection in
which straight lines in a scene remain straight in an image. We have vary
models that can be correct the distortion all using the distortion coefficient
(see section 2.2.3). It is a form of optical aberration.

2.1.1 Pinhole Model

Let the centre of projection be the origin of a Euclidean coordinate system,
and consider the plane Z = f the image plane. Under the pinhole camera
model, a point in space with coordinates X = (X,Y, Z)T is mapped to the
point on the image plane where a line joining the point X to the centre of
projection meets the image plane. All the light rays go throught a single
point in the space C called optical center or camera center. Thus, the 2D
image is the intersection between the straight line that connects the points in
the space and the camera center with the image plane. The perpendicular
line that joins the image plane is called principal axis and the distance
between C and the image plane is called focal length [Fig. 2.1(a)].
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(a) (b)

Figure 2.1: The all model is called Pinhole Model
(a)sx:3-D view (b)dx:2-D view.

By similar triangles [Fig. 2.1(b)], one quickly computes that the point
(X,Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the image plane.
Ignoring the final image coordinate, we have:

(X,Y, Z)T → (fX/Z, fY/Z)T (2.1)

this describe the central projection mapping from world to image coordi-
nates. This is a mapping from Euclidean 3-space R3 to Euclidean 2-space
R2 [1]. We can express the central projection (2.1) in matrix form:

XY
Z

→
fXfY
Z

 =

f 0
f 0

1 0



X
Y
Z
1

 (2.2)

The matrix in the equation (2.2) can be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents the identity matrix
plus the zero column vector.

Defining X the world point represented by the homogeneous 4-vector
(X,Y, Z, 1)T , x the image point represented by the homogeneous 3-vector,
and P the 3× 4 homogeneous camera projection matrix, the camera matrix
for the pinhole model of the central projection is described by:

x = PX (2.3)

which defines the camera matrix for the pinhole model of central projection
as

P = diag(f, f, 1)[I | 0] (2.4)

Equation (2.4) is valid if the origin of the coordinates in the image plane
is at the principal point. If the assumption is not valid the relation (2.1) is:

(X,Y, Z)T → (fX/Z + px, fY/Z + py)
T (2.5)
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Figure 2.2: Image (x, y) and camera (xcam, ycam) coordinate systems.

where (px, py)
T are the coordinates of the principal point. Referring at the

figure [2.2], in homogeneous coordinates the equation (2.2) becomes

XY
Z

→
fX + Zpx
fY + Zpy

Z

 =

f px 0
f py 0

1 0



X
Y
Z
1

 (2.6)

Defining

K =

f px
f py

1

 (2.7)

and

Xcam =


X
Y
Z
1

 (2.8)

then

x = K[I | 0]Xcam (2.9)

where Xcam is the camera coordinate frame. Assiuming that the camera is
positioned in the center of the Euclidean coordinate system (i.e. with the
principal axis of the camera pointing straight down the Z-axis).

In general, the points in space are expressed in world coordinate frame
obtained through rotation and translation, as we can see in the figure [2.3],
X̂ is the vector representing the point in a world coordinate frame and X̂cam

is the same point in the camera coordinate frame so

X̂cam = R(X̂− Ĉ) (2.10)

where R is the rotation matrix representing the orientation of the camera
coordinate frame and Ĉ the orientation of the camera coordinate frame
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centre in the world coordinate frame. In homogeneous coordinate,

Xcam =

[
R −RĈ
0 1

]
X
Y
Z
1

 =

[
R −RĈ
0 1

]
X (2.11)

replacing equation (2.11) in equation (2.9):

x = KR[I | −Ĉ]X (2.12)

where X is now in a world coordinate frame.

A general Pinhole Camera P = KR[I | −Ĉ] has 9 degree of freedom: 3
for K (the elements f , px, py), 3 for R, and 3 for Ĉ. The parameters in K are

the internal camera parameters, the parameters of R and Ĉ, which relate
the camera orientation and position to a world coordinate system, are called
the external parameters [1].

Figure 2.3: The Euclidean Transformation.

2.2 Camera Calibration

Geometric Camera Calibration is the process of obtaining the parameters of
a lens and image sensor of an image or video camera [2]. These parameters
are used to correct the distortion due to the lens, to measuring the dimension
of an object in the world units or to determine the position of the camera in

the scene. The algorithm calculates the camera matrix P =
[
R t

]T
K using

the extrinsic and the intrinsic parameters. In particular the world points
are transformed to camera coordinates using the extrinsics parameters and
the camera coordinates are mapped into the image plane using the intrinsics
parameters.
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2.2.1 Extrinsic Parameters

The Extrinsic Parameters are the rotation R and the traslation t and define
the position of the camera center and the camera’s heading in world coordi-
nates. t is the position of the origin of the world coordinate system expressed
in coordinates of the camera-centered coordinate system. The position, C,
of the camera expressed in world coordinates is C = R−1t = −Rtt [2]

2.2.2 Intrinsic Parameters

The Intrinsic Parameters are the focal length, the optical center (principal
point) and the skew coefficient, used to express K in equation (2.12):

K =

αx s x0
0 αy y0
0 0 1

 (2.13)

this is obtained by multiplying equation (2.7) on the left by an extra factor
diag(mx,my, 1), where mx and my are the number of pixels per unit distance
in image coordinates in x and y directions. Thus αx = fmx and αy = fmy

represent the focal length of the camera in pixel dimension; x0 = mxpx and
y0 = mypy are the coordinate of the optical center in pixel dimension and
s = fy tanα is the skew coefficient (when s 6= 0 the image axes are not
perpendicular) [1][3].

2.2.3 Distortion in Camera Calibration

The pinhole camera model does not account for lens distortion because an
ideal pinhole camera does not have a lens. To accurately represent a real
camera, the full camera model used by the algorithm includes the radial and
tangential lens distortion.

Figure 2.4: Negative Distortion, No Distortion and Positive Distortion.
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Radial Distortion

The Radial Distortion occours when the light rays bend more near the edges
of a lens than they do at its optical center. The distorted points are denoted
as:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.14)

where (x, y) are the undistorted pixel in normalized coordinate; i.e. the
coordinate computed from pixel coordinate by translating in the optical
center and dividing by the focal length in pixel and kn is the radial distortion
coefficients of the lens [Fig. 2.4]

Figure 2.5: Tangential Distortion

Tangential Distortion

The Tangential Distortion occours when the lens and the image plane are
not parallel [Fig. 2.5]. The distorted points are denoted as:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [2p2xy + p1(r
2 + 2y2)]

(2.15)

where p1 and p2 are the tangential distortion coefficients of the lens.

2.2.4 Single Camera Calibration

As mentioned earlier to calibrate a camera we need a correspondence be-
tween 3D world points and 2D image points, in particular the calibration
of the intrinsic parameters is based on information obtained from homogra-
phies coming from the configuration of coplanar points. The problem is that
the 3D points cannot be co-planar, so people build 3D calibration rigs, e.g.
a box made of checkerboards [Fig. 2.6]. One image of a rig like that would
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Figure 2.6: Example of a calibration pattern

be enough to calibrate, but those rigs are hard to build, because you have
to get the planes to be at exactly right angles to each other. So we use a
pattern with known dimensions and, in particular, the chessboard because
its realization doesn’t require high requirements, it can be produced by any
graphic software and printed using a good quality laser printer. It is very
important that the pattern is really flat infact we had to choose a good
surface where apply the printed page.

One of the most important concepts for self-calibration is the Absolute
Conic (AC) and its projection in the images (IAC).

Absolute Conic

The absolute conic (AC) Ω∞ is a (point) conic on the plane at infinity Π∞
[1]. The points that lie on Ω∞ must be satisfy

x21 + x22 + x23
x24

}
= 0 (2.16)

This two equations are required to define Ω∞. For directions on Π∞ (i.e.
points with x4 = 0) the defining equation can be written:

(x1, x2, x3)I(x1, x2, x3)
T = 0 (2.17)

so that Ω∞ corresponds to a conic C with matrix C = I. The conic Ω∞ is a
fixed conic under any similarity transformation. More formally, the absolute
conic, Ω∞, is a fixed conic under the projective transformation H if, and
only if, H is a similarity transformation.

Since it is invariant under Euclidean transformations, its relative position
to a moving camera is constant. For constant intrinsic camera parameters
its image will therefore also be constant. This is similar to someone who has
the impression that the moon is following him when driving on a straight
road. Note that the AC is more general, because it is not only invariant to
translations but also to arbitrary rotations. It can be seen as a calibration
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object which is naturally present in all the scenes. Once the AC is localized,
it can be used to upgrade the reconstruction to metric. It is, however, not
always so simple to find the AC in the reconstructed space. In some cases
it is not possible to make the difference between the true AC and other
candidates.

Image of the Absolute Conic

Consider two camera projections P and P′ corresponding to the same camera
(internal parameters) but different poses. The Image of the Absolute Conic
(IAC) is independent of the camera pose. Infact, the IAC is directly related
to the intrinsic parameter matrix K of the camera defined in equation (2.13).

To derive this relation we first must determine the map between the
plane at infinity Π∞, and the camera image plane. Points on Π∞ can be
writtes as x∞ = (dT , 0)T , and are imaged be a general Pinhole camera P as

x = Px∞ = KR[I | −Ĉ]

(
d
0

)
= KRd (2.18)

this show that the mapping between Π∞ and an image is given by the planar
homography. This map is independent of the position of the camera and
depends only on the camera internal calibration and orientation with respect
to the world coordinate frame, as we said previously. Since the absolute conic
Ω∞ is on Π∞ we can compute its image under H = KR, and find that the
IAC is the conic

ω = (KKT )−1 = K−TK−1 (2.19)

Example: A Simple Calibration Device [1]

The image of three squares (on planes which are not parallel, but which
need not be orthogonal) provides sufficiently many constraints to compute
K. Consider one of the squares. The correspondences between its four corner
points and their images define the homography H between the plane Π of
the square and the image. Applying this homography to circular points on
Π determines their images as H(1,±i, 0)T . Thus we have two points on the
ω and a similar procedure applies to the other squares (for a total of 6 points
on ω).

First of all, for each square we compute the homografy H that maps the
corner points (0, 0)T , (1, 0)T , (0, 1)T , (1, 1)T to their imaged points. Then
we compute the imaged circular points for the plane of that square as
H(1,±i, 0)T ; being H = [h1, h2, h3] so the circular points are h1± ih2. Thus
we fit a conic ω to the six imaged circular points, in particular if h1 ± ih2
lies on ω then (h1± ih2)Tω(h1± ih2) = 0, and the imaginary and real parts
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give respectively:

hT1 ωh2 = 0

hT1 ωh1 = hT2 ωh2
(2.20)

which are equations linear in ω. Finally we compute the calibration K from
ω = (KKT )−1 using the Cholesky factorization [7].

Calibration Method

There are many different approaches to calculate the intrinsic and extrinsic
parameters for a specific camera setup. Matlab uses the Zhang’s method
[4]. To perform a full calibration by the Zhang method at least 3 different
images of the calibration target are required, either by moving the gauge
or the camera itself. If some of the intrinsic parameters are given as data
(orthogonality of the image or optical center coordinates) the number of
images required can be reduced to two.

In a first step, an approximation of the estimated projection matrix H be-
tween the calibration target and the image plane is determined using Direct
Linear Transformation method [5]. Subsequently, applying self-calibration
techniques (correspondence between the calibration points when they are in
different positions) is needed to obtained the image of the absolute conic
matrix.

In particular we assume that we have a homography H that maps points
xπ on a ”probe plane” π to points x on the image. The circular points

I,J =
[
1 ±j 0

]T
lie on both proble plane π and on the AC Ω∞. Lying on

the absolute conic means they are projected onte the IAC ω, thus xT1 ωx1 = 0
and xT2 ωx2 = 0. The circular point project as

x1 = HI =
[
h1 h2 h3

] 1
j
0

 = h1 + jh2 (2.21)

x2 = HI =
[
h1 h2 h3

]  1
−j
0

 = h1 − jh2 (2.22)

Ignoring x2 and replacing x1 we have

xT1 ωx1 = (h1 + jh2)
Tω(h1 + jh2)

= (hT1 + jhT2 )ω(h1 + jh2)

= hT1 ωh1 + j(hT2 ωh2) = 0

(2.23)

The circular points remain invariant under similarity transformations, more
formally a transformation is a similarity transformation if and only if it
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preserves the circular points, [1,±i, 0]. This property makes them useful for
determining the angle between two lines; in particular, assume that we have
two lines u1 and u2 which intersect the ideal line at two points, say p1and
p2. Then, the cross ratio between these two points and the two absolute
points I and J yields the directed angle θ from the second line to the first:

θ =
1

2i
logCr(p1,p2; I,J) (2.24)

where Cr is the cross-ratio of four collinear points. (2.24) is known as the
Laguerre formula.

2.3 Epipolar Geometry

Figure 2.7: Essencial elements of a Epipolar Geometry

The Epipolar Geometry describes the relations and the geometric con-
straints between two 2-D images of the same 3-D scene, captured by two
cameras with distinct position and orientation.

When we capture an element, that are in the point X [Fig. 2.7], with 2
cameras in OR and OL then X will be projected into xR and xL respectively.
In particular

xL = PLX

xR = PRX
(2.25)

where PL and PR are the projective transformations; i.e. a matrix that con-
tains the position, the orientation and the formal parameters of the camera.
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2.3.1 Epipole or epipolar point

Because the center OL and OR of the two cameras in [Fig. 2.7] are in
distinct positions we can project one on the image plane of the other.

eL = PLOR

eR = PROL
(2.26)

The points eL and eR are the epipolar points.

2.3.2 Epipolar line

According the [Fig.2.7], the point xL is the intersection between the line
that connects OL and X (projection ray) and the left plane. If we project
this line on the right plane, then the line will connect the projections of OL

and X on the right plane, i.e. the line passing through xR and eR

lR = xR × eR (2.27)

Analogously, we can define lL The two line lL and lR are the epipolar line.

2.3.3 Epipolar plane

The Epipolar Plane is the plane where X, OL and OR lie. This, associated
with a X point, intercepts the image planes exactly in the epipolar line
associated to X

2.3.4 The Fundamental Matrix [6]

Let x = (x, y, t)T be the homogeneous coordinates of a point in the first
image and e = (u, v, w) be the coordinates of the epipole of the second
camera in the first image. The epipolar line through x and e is represented
by the vector l = (a, b, c)T = x × e. The mapping x → l is linear and can
be represented by a 3× 3 rank 2 matrix C:ab

c

 =

yw − zvzu− xw
xv − yu

 =

 0 w −z
−w 0 u
z −u 0

xy
z

 (2.28)

The mapping of epipolar lines l from image 1 to the corresponding epipolar
lines l′ in image 2 can be represented (non-uniquely) as a collineation on the
entire dual space of lines in the projective plane. Let A be a collineation such
that l′ = Al. The constraints on A are encapsulated by the correspondence
of 3 distinct epipolar lines. The first two correspondences each provide two
constraints, because a line in the plane has 2 dof. The third line must
pass through the intersection of the first two, so only provides one further
constraint. Since A has eight degrees of freedom and we only have five
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constraints, it is not fully determined. Nevertheless, the matrix F = AC is
fully determined. Using (2.28) we get:

l′ = ACx = Fx (2.29)

F is called the Fundamental Matrix. It is the algebraic representation of
epipolar geometry; it is a 3 × 3 matrix which relates corresponding points
in stereo images; as C has rank 2 and A has rank 3, F has rank 2. F, also,
defines a bilinear constraint between the coordinates of corresponding image
points. If x′ is the point in the second image corresponding to x, it must lie
on the epipolar line l′ = Fx, and hence x′T · l′ = 0. The epipolar constraint
can therefore be written:

x′TFx = 0 (2.30)

2.4 Image Rectification

The Image Rectification is the process of resampling pairs of stereo images
taken from widely differing viewpoints in order to produce a pair of “matched
epipolar projections”. In this projections the epipolar line is parallel with
the x-axis and so disparities between the images in x direction only.

We apply a series of 2-D projective transformation to the two images,
in this way we match the epipolar line; thus the matched points must be,
more or less, the same x coordinate. Moreover the apply transformations
subjects the images to a minimal distortion [1].

2.4.1 Mapping the Epipole to Infinity

In order to map the epipole to a point at infinity, a projective transformation
is needed. If the epipolar line must be transformed into a line parallel to
the x-axis so, the epipole should be mapped to the particupar infinite point
(1, 0, 0)T .

To choose a good transformation H, it should act as a rigid transforma-
tion in the neighbourhood of a given selected point x0 of the image. In this
way, the neighbourhood of x0 is subjected just to a rotation and a transla-
tion and they will look the same in the original and resampled images. A
good choice may be the center of the image.

We suppose that x0 is in the origin and that the epipole e = (f, 0, 1)T

lie on the x-axis. Considering also the transformation G defined as:

G =

 1 0 0
0 1 0
−1/f 0 1

 (2.31)

Relation (2.31) takes e to the point at infinity (f, 0, 0)T as required. A point
(x, y, 1)T is mapped by G to the point (x̂, ŷ, 1)T = (x, y, 1− x/f)T .
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With |x/f | < 1 then

(x̂, ŷ, 1)T = (x, y, 1− x/f)T = (x(1 + x/f + ...), y(1 + x/f + ...), 1)T (2.32)

The Jacobian is
∂(x̂, ŷ)

∂(x, y)
=

[
1 + 2x/f 0
y/f 1 + x/f

]
(2.33)

plus higher terms in x and y. If x = y = 0 this is an Identity Map.
The required mapping H is defined as H=GRt, where t is the transaltion

from x0 to the origin, R is the rotation about the origin taking the epipole e′

in the point (f, 0, 1)T on the x-axis and G is the mapping when we consider
(f, 0, 1)T to the infinity.

2.4.2 Matching Transformation

We apply a mapping to the second image, in this way we match the epipolar
line. Consider 2 images J and J ′; we want resampling this two images
according to transformation H for J and to H′ for J ′. So, the epipolar line
in J is matched with the epipolar in J ′; in particular H−T l = H′−T l′ where
l and l′ are the two epipolar lines.

To choose the transformation H′, the sum-of-squadred distances between
Hxi and H′x′i should miniminized by∑

i

d(Hxi,H
′x′i)

2 (2.34)

Let J and K ′ be the images with fundamental matrix F = |e′| ×M and let
H′ the projected transformation of J ′. The projective transformation H of
J matches H′ if and only if

H = (I + H′e′aT )HM (2.35)

for some vector a. We can therefore affirm that a transformation H of J
matches H′ is and only if H = HAH0 where H0 = H′M. Is we consider that
H′ maps the epipole to the infinity, so we can choose the best transformation
H; i.e. that minimize the disparity.

Writing x̂′i = H′xi and x̂′i = H0xi, then the minimization problem (2.34)
is to find HA such that ∑

d(HAx̂
′
i, x̂
′
i)
2 (2.36)

is minimized. In particupar, let x̂i = (x̂i, ŷi, 1)T and x̂′i = (x̂′i, ŷ
′
i, 1)T and

know H′ and M, so the two vector may be computed from the 2 matched
points xi ↔ x′i. The (2.35) may be written as∑

i

(ax̂i + bŷi + c− x̂′i)2 + (ŷi − ŷ′i)2 (2.37)
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Whit (ŷi − ŷ′i) constant, this is equivalent at∑
i

(ax̂i + bŷi + c− x̂′i)2 (2.38)

this is a simple linear least-squares parameter minimization problem, where
we compute the 3 parameters a, b and c.

2.4.3 Algorithm Outline

Given a stereo pair, the intrinsic and extrinsic parameters, we want find the
image transformation to achieve a stereo system of horizontal epipolar lines;
we also assume that the cameras are calibrated.

1. Rotate both, left and right, camera so that they share the same x -axis:
OR − L = t

2. Define a rotation matrix Rrect

� Make the new x axis along the direction of the baseline [vector
e1]

� Make new y axis orthogonal to the new x and the old z which is
along the old optical axis (cross product) [vector e2]

� Make new z axis orthogonal to the baseline and the new y axis
(cross product) [vector e3]

� Rotation matrix is now complete

Rrect =

e1
e2
e3

T

(2.39)

� Rotates left camera so that epipolar lines are parallel

3. Set RL = Rrect and RR = RRrect the two rotation matrix for left and
right camera

4. For each left-camera point xL = [x, y, z]T compute RLxL = [x′, y′, z′]
and the corresponding rectified point as x′L = f/z′[x′, y′, z′]

5. Repeat the previous step for the right camera using RR and xR

Basically rotate the point and then reproject it, in practice steps 4 and 5
require back projection. This is usually done with a homography [8] which
is computed from the known rotation and calibration.
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2.5 Disparity Map

One of the easiest methods to understand the disparity would be to blink
your eyes, one at a time, alternating between your left and right eye. If you
observe, the objects closer to you would appear to jump about their position
more than the objects further away. This shift is would be negligible as the
objects move away. Infact the brain uses binocular disparity to extract depth
information from the two-dimensional retinal images in stereopsis.

In computer vision, binocular disparity refers to the difference in coordi-
nates of similar features within two stereo images [9]. Taking as a reference
the image [2.7], if X projects to a point in the left frame xL = (u, v) and
to the right frame at xR = (p, q) we can find the disparity for this point
as the magnitude of the vector between (u, v) and (p, q). In particular, the
disparity of xL is defined as: d(xL) = xR − xL.

Obviously this process involves choosing a point in the left hand frame
and then finding its match (the corresponding point) in the right hand im-
age; often this is a particularly difficult task to do without making a lot
of mistakes. If we perform this matching process for every pixel in the left
hand image, finding its match in the right hand frame and computing the
distance between them we would end up with an image where every pixel
contained the disparity value for that pixel in the left image.

Matlab uses the Semi-Global Block Matching algorithm [10] where the
function computes disparity by comparing the sum of absolute differences
(SAD) of each block of pixels in the image and additionally forces similar
disparity on neighboring blocks. In particular, after the rectification process,
i.e. there is no disparity in the y image coordinates (see section 2.4), the
correspondence problem can be solved using the Semi-Global Block Match-
ing algorithm that scans both the left [Fig. 2.8(a)] and right [Fig. 2.8(b)]
images for matching image features. The algorithm, first of all, compute
a measure of contrast of the image by using the Sobel filter [17]. Then it
forms a smaller image patch around every pixel in the left image and these
image patches are compared to all possible disparities in the right image
by comparing their corresponding image patches. The comparison between
these two patches is made throught the Sum of Absolute Differences (SAD):∑∑

|L(r, c)−R(r, c− d)| (2.40)

where L and R refer to the left and right columns, r and c refer to the
current row and column of either images being examined and d refers to the
disparity of the right image. The disparity with the lowest computed value
of (2.40) is considered the disparity for the image feature.
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(a) (b)

Figure 2.8: (a)sx:left image (b)dx:right image

As we saw in the initial example, knowledge of disparity can be used for
depth calculation.

Figure 2.9: A rectified setup viewed from above, showing the two camera centers,
Cl and Cr, and their respective image planes, Il and Ir.

In particular, in rectified images, given a correspondence between one
point of an image and one point of the other. Using the notation from the
[Fig. 2.9] and similar triangles we get:

b− d(xl)

z(xl)− f
=

b

z(xl)
⇔ z(xl) =

fb

d(xl)
(2.41)

for all pixel pairs in the two images, the focal length, f , and baseline, b, are
constant.
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Figure 2.10: Disparity Map

We can see that the depth, z(xl), is inversely proportional to the dis-
parity, d(xl). Therefore in the disparity map, the brighter shades represent
more shift and lesser distance from the point of view (camera). The darker
shades represent lesser shift and therefore greater distance from the camera
[Fig. 2.10].
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Chapter 3

Methodology

In this chapter, I will describe all the procedures that we use to perform the
3D view of the sequence that we have acquired. Using Matlab, this is the
procedure in particular:

1. Perform the stereo calibration of the two cameras;

2. Perform the rectification of the two images at the same time instant;

3. Compute the disparity map;

4. Reconstruct the scene in 3D;

3.1 Images Acquisition

A 2-camera system was employed to acquire experimental data based on
image frames. The cameras adopted are colours C-Mount CMOS digital
cameras and their resolution is 1920×1200. They are mounted onto the two
holes of the microscope made for this purpuse.

Each camera records what the dentist sees respectively from the left eye
and the second eye. The two cameras are Power Over Ethernet (POE), and
to connect them to the PC, we used a Gigabit switch POE. We acquired
the video images from the cameras at 20 frame per second. Cameras are
synchronized enabling Precise Time Protocol (PTP) on them in order to
acquire images couple by couple.

Images are saved on a Solid State Disk in Bayer BG format and then
converted later in PNG format.
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3.2 Compute the Calibration

As we have already seen in the section 2.2, we need to calibrate the cameras
to avoid the distortion due to the lens, to compute the position of the two
cameras (individually and each other) and to measuring the dimension of
an object in the world units.

3.2.1 Camera Calibrator

Using the tool of Matlab, Camera Calibrator, we calibrate the two cameras,
Camera0 and Camera1, individually. First of all, we need to prepare the
images, the camera and the calibration pattern. The calibrator requires at
least three images, to obtain a better results it is good practice to use a
number of images between 10 and 20 images of the calibration pattern.

Harris points [14] or Shi-Tomasi corners [15] are a common choice for
localizing junctions in an image. Matlab,however, uses a procedure that
gives more robust results with respect to image clutter, blurring artifacts and
localization accuracy. In order to locate checkerboard corners in a grayscale
image I, it compute a corner likelihood at each pixel in the image using two
different n × n corner prototypes: one for axis-aligned corners and one for
corners, which are rotated by 45 [16]. Each prototype is composed of four
filter kernels {A,B,C,D}, which are convolved with the input image. For
an ideal corner, the response of {A,B} should be greater than the mean
response of {A,B,C,D}, while the response of {C,D} should be smaller,
and vice versa for flipped corners.

Figure 3.1: Size of chessboad square

The checkerboard pattern that we use must not be square, moreover, one
side must contain an even number of squares and the other side must contain
an odd number of squares. Therefore, the pattern contains two black corners
along one side and two white corners on the opposite side. Also we need to
measure the chessboard square [Fig. 3.1]. To calibrate, we use uncompressed
images or lossless compression formats such as PNG of a chessboard (see
section 2.2.4) taken by the Camera0 in different position [Fig. 3.2]. The
calibrator is able to rejects duplicate images, it also rejects images where the
entire checkerboard could not be detected. Possible reasons for no detection
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are a blurry image or an extreme angle of the pattern. Detection takes
longer with larger images and with patterns that contain a large number of
squares.

Figure 3.2: Example of calibration frames

During the calibration computing [Fig. 3.3], we note a certain mean error
in the evaluation of the distance between detected and reprojected points.
The tool calculates reprojected errors by projecting the checkerboard points
from world coordinates, defined by the checkerboard, into image coordinates.
The tool then compares the reprojected points to the corresponding detected
points. As a general rule, mean reprojection errors of less than one pixel
are acceptable [11]; usally a threshold is defined and images with an error
above this value are discarded [Fig. 3.4].

Figure 3.3: Calibration of Camera 0
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Figure 3.4: The bar graph displays the mean reprojection error per image, along
with the overall mean error. The bar labels correspond to the image
IDs. The selected bar labels are the images that we delete

Thanks to the described procedure, we obtain a good calibration of the
cameras. In particual, we check the focal length, the rotation matrices and
the intrinsic matrices to evaluate the calibration process.

3.2.2 Stereo Camera Calibrator

The calibration of the single cameras is important because we can use a
fixed intrisic when we perform the Stereo Camera Calibrator. This type of
calibration is useful because, in this way, we calculate the extrinsic patame-
ters of the two cameras, i.e. the rotation and the traslation of the second
camera with respect to the first one.

Using this Matlab tool, we upload the same images of the chessboard
used for the calbration of Camera0 and Camera1 coupling the images with
the same point of view and, as previously done, we measure the chessboard
square. This last value, in millimeters, is very important because we need it
in the computation of the real world measures (see section 3.5). If the size
of the chessboard square is correct then, the value of the baseline [Fig. 2.9]
is in millimeters too.

Thus we forced the intrinsics of the two cameras previously calculated
and then the stereo calibration is computed. We examine the reprojection
errors of each image [Fig. 3.5] and, if the value is above the chosen threshold,
the pair is delete.
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Figure 3.5: Reprojection error

3.3 Compute the Rectification

After the calibration and before the computation of the disparity map we
need to rectify the pairs of images (see section 2.4).

So, we take two images from two cameras that capture the same scene but
from two different point of view [Fig. 3.6] and put them in the rectification
process [18]. Stereo image rectification projects images onto a common
image plane in such a way that the corresponding points have the same row
coordinates. This image projection makes the image appear as though the
two cameras are parallel along the y direction .

The output of this process is an undistorted and rectified version of the
left images, returned as an M ×N × 3 truecolor image and an undistorted
and rectified version of the right image, returned as an M ×N × 3 truecolor
image.

Figure 3.6: Example of couple of images extract from left and right cameras, before
the rectification

The image pair, after the rectification, are displayed for convenience in a
single plot. In particular, we combine left and right images into a red-cyan
anaglyph (we also can view the output image with red-blue stereo glasses
to see the stereo effect) [Fig. 3.7]. In this way, the rectification process can
be evaluated checking if the two images are parallel, i.e. no differente in the
vertical direction.
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Figure 3.7: Example of a red-cyan anaglyph

For example, [Fig. 3.7] shows a difference in horizontal direction and
only a very small difference in the vertical direction as result of a good
rectificaiton process.

3.4 Disparity Map between Stereo Images

Now we must compute the disparity map.

First of all we convert the rectified images to grayscale and use them as
input of the disparity function, then we compute the disparity using Matlab
disparity function. As we have alredy see in section 2.5, the function use
the Semi-Global Block Matching algorithm. To improve the performance of
the algorithm we can modify some parameters, like the Range of disparity,
the Contrast Threshold and the Distance Threshold.

The disparity range depends on the distance between the two cameras
and the distance between the cameras and the object of interest. The dis-
parity range increases if the cameras are far apart and/or the objects are
close to the cameras. In order to compute the value of the minimum dis-
tance, mindis, we have to take the disparity of a point far from the camera.
Consequently to compute the value of the maximum distance, maxdis, we
take a point near to the camera.

Defined a good set of parameters, the disparity map for a pair of stereo
images, return an M × N 2-D grayscale image with the same size as the
input images. Each element of the output specifies the disparity for the
corresponding pixel in the image references as left image. The returned
disparity values are rounded to 1

16th pixel.
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3.5 3-D Reconstruction of the Scene

The Reconstruct Scene function returns an array of 3-D world point coordi-
nates that reconstruct a scene from a disparity map [18].

To implement the 3D reconstruction, the calibratior parameters used
into the rectification process and the disparity map related to the stereo
images are needed.

The disparity map can contain invalid values; these values correspond
to pixels in the first image, which the disparity function did not match in
the second image. The function sets the world coordinates corresponding to
invalid disparity to NaN. Moreover the pixels with zero disparity correspond
to world points that are too far away to measure, given the resolution of the
camera, consequently the function sets the world coordinates corresponding
to zero disparity to Inf.

The output is the coordinates of world points, returned as an M ×N ×3
array. In particular the matrix points3D(:, :, 1) contains the x world coordi-
nates of points corresponding to the pixels in the disparity map; points3D(:
, :, 2) contains the y world coordinates, and point3D(:, :, 3) contains the z
world coordinates. The third coordinate is very important because it tells
us how far a pixel is from the camera in meters and it is crucial to reconstruct
the scene in 3D.

In particular, taking as a reference [Fig. 2.9], we can compute the x,y
and z world coordinates with this system:

X = −Zx1
f

Y = −Zy1
f

Z =
fb

x1 − x2

(3.1)

where f is the focal length, b is the baseline, (x2 − x1) is the disparity d,
(x1, y1) are the coordinates of the first image, x2 is the coordinate x of
the second image and X,Y,Z are the world coordinates [12]. In particular
the equations of this system are the inverse of the equation (2.6), with
x1, y1 = px, py, for the first two equations and the inverse of the equation
(2.41), with x1 − x2 = d(xl), for the third equation.

This is possible only if we measure the focal length in pixel if the disparity
is also in pixel; infact, making the dimensional analysis of (3.1), we have:
[pixel][mm]

/
[pixel] = [mm].

After the computation, we have all the parameters to reconstruct the
scene.
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Chapter 4

Results

In this chapter I specify the values of the parameters that we used and the
results obtained.

4.1 Calibration

First of all, as we mentioned in section 3.2, after the upolad of the chessboad
patter for the single and stereo calibration we need to exploit the size of the
chessboad square. In the images that we used, we have a size of 2.4 [mm].
We upload 285 different images for each camera but the Calibrator tool
accepts only 179 images for the Camera0 and 187 images for the Camera1.
For Camera0, the mean reprojection error of 0.57 pixel is eximated and it
is considered an acceptable error [11]. However, thanks to the large amount
of input images, the performance can be improved by eliminating all the
images characterized by an error above 0.7 pixels. Deleting the bad images
and after the recalibration, the mean error obtained is 0.52 pixels

Same procedure is applied for Camera1 reducing the mean error from
0.71 pixels to 0.51 pixels.

Parameters obtained for Camera0 and Camera1 are, respectively:

1. Focal Lengths of
(
8681.133 8623.96

)
and

(
8367.033 8327.11

)
2. The Radial Distortion of

(
−1.189 15.879

)
and

(
−0.656 −1.989

)
3. Intrinsic Matrices:8681.1 0 888.2

0 8623.9 921.6
0 0 1

 and
8367 0 1258

0 8327.1 937.4
0 0 1

 (4.1)

The Tangential Distortion and the Skew are assumed to be 0 for both cam-
eras. All this values are in [pixel].
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Finally, we can compute the stereo calibration. So, we upload the 285
input couples of images and the tool accepts 168 pairs. As we have already
said, we force the intrinsics of the two cameras recently calculated and then
compute the stereo calibration. The mean reprojection error of the stereo
calibration is around 0.72 pixels [Fig. 4.1]. In order to improve the perfor-
mance of the stereo calibration, we manually deleted all the pair returning
a mean errror above 0.7 in almost one image of the couple, obtaining a new
mean error of 0.57 pixels.

Figure 4.1: Stereo Camera Calibrator tool. The Camera1 refers to the Camera0
and the Camera2 refers to the Camera1

After the calculation we have the final stereo calibration useful for com-
pute the next steps. In particular this results in a rotation matrix of the
second camera with respect to the first one of: 0.9989 0.0424 0.0192

−0.0423 0.9991 −0.0048
−0.0194 0.0039 0.9998

 (4.2)
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4.2 Rectification

Now, we need to compute the rectification. So we extract from the video
the couple of frame from the two cameras at the same time [Fig. 4.2] and
put them in the rectification process.

Figure 4.2: Example of couple of frames extract from left and right cameras, before
the rectification

In [Fig. 4.3], an example of the rectification process is shown, the two
images are parallel along the y coordinate.

Figure 4.3: Example of a red-cyan anaglyph

This process is done for all frame pairs.

41



4.3 Disparity Map

After the rectification we must compute the disparity map for each pair.
First of all we must set the parameters of the function, in particular the
range of disparity. Thus we take the rectification plot of each couple and,
thanks to imdistline [13], we calculate the values of mindis and maxdis In
this set of frame, in order to compute the value of mindis, it is necessary
to take the disparity of a point located far from the camera. In particular,
a point in the mouth of the patient is chosen [Fig. 4.4] returning a value
of 592 pixels. The value of the maximum distance (maxdis) is computed
taking a point close to the camera. In particular, the choosen point is on
the dentist’s finger [Fig. 4.5] and the value returned is 656 pixels. We must
choose a value for the range that is divisible by 16.

Figure 4.4: Calculation of the minimum disparity

Figure 4.5: Calculation of the maximum disparity

In the set of video frames that we acquired, much attention is needed
to take in to account the possibility that external factors may change the
maximum and minimum distance evaluation. For example, during the op-
eration, the dentist used several tools and the point closest/farther to the
camera changes. Consequently the maximum disparity changes. Infact, in
the following frames, we note that the value of maxdis change; in particular
from the frame number 576 in the image appears a new tool [Fig. 4.6], this
results in a new value of maxdis of 784 pixels.
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Figure 4.6: Calculation of the maximum disparity after the appearance of the new
tool

These two parameters are the most important. We can vary the others
based on the final result of the reconstruction of the scene.

After this we have a 1226 × 1739 disparity matrix for each couple of
frame, [Fig. 4.7] and [Fig. 4.8], where each value exploit the distance along
the x axis of each pixels of left image from the right image.

Figure 4.7: Disparity map of the frame 466
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Figure 4.8: Disparity map of the frame 588

4.4 3D Reconstruction

Now we take this matrix, the stereo calibration parameters and we compute
the 3D reconstruction of the scene for each frame.

After the computation we can see the final result in [Fig 4.9] and in [Fig.
4.10] for the first frame of the video. [Fig. 4.11] shows the goodness of the
reconstruction procedure also when other tools are used by the doctor.

As mentioned in section 3.4 we compute the distance in [mm] of each pixel
from the camera, but, as we can see in all the figures, the 3D reconstruction
is degraded because the values used when we compute the distances do not
represent the real image value. This is due to the fact that the images
from which the 3D is extracted are modified. Infact, when we compute the
rectification process, the rectified images are rescaled and the pixels of the
resulting image come from pixel interpolation of the original image.
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Figure 4.9: 3D reconstruction of the frame 460
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Figure 4.10: Same 3D reconstruction from different POV
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Figure 4.11: 3D reconstruction of the frame 588
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Conclusion

The purpose of this work is to project a system that can build a 3D recon-
struction of the patient’s mouth by acquiring stereo images from an odon-
toiatric microscope. This is useful because, thanks to 3D reconstruction,
the dentist can notice a carcinoma in the patient’s tongue or for teaching
puproses.

The starting point is the acquisition of the stereo video thanks a 2-
camera system, in particular the cameras adopted are a colours C-Mount
CMOS digital cameras with a resolution of 1920 × 1200, that are mounted
onto the two hole of the microscope. The position is congruent with what
the dentist sees with his right and left eye.

So, in the first part of the work, we calibrated the two cameras individu-
ally and one with respect to the other; in this way, we obtain the parameters
of a lens and image sensor of a video camera and thus correct the distortion
due to the lens, measure the dimension of an object in the world units and
determine the position of the cameras in the scene. This process is done
through Matlab, in particular we calibrate the two cameras individually
with the App: Camera Calibrator and the stereo calibration with the App:
Stereo Camera Calibrator. Using a total of 285 chessboard images, with a
square size of 2.4 [mm], for each camera, we compute the intrisic parameters
for the two camera individually, then we use this information to compute
the stereo calibration using the 285 couples of images of the chessboard.
This results in a rotation matrix of the second camera with respect to the
first one different from the identity matrix. This means that the two video
frame, take in the same time istant, have a different point of view because,
in addition to being translated, they are also rotated. The rotation is not ac-
cepted for the 3D reconstruction, so we need to implement the rectification
process.

The rectification is the process with whom the two images are modified
in a way that, the only difference is the translation along the horizontal
direction. However, this leads to a loss of information for 3D reconstruc-
tion because, when we compute the rectification process, the new images
are rescaled and the pixels come from an interpolation of the pixels of the
original image, thus we don’t have the real image values. But, as we have
just said, this process is necessary, so we take all the stereo frames from the
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video and we rectify the two images.

After this, we need to known the depth of each frame, thus we compute
the disparity map. Infact, thanks to this map, we can extract depth infor-
mation of the image; the process is the same as when we blink our eyes,
one at a time, alternating between your left and right eye. The values in
this map tell us the distance of the same pixel in the two different images,
i.e. in the two different point of view. In particular, we convert the recti-
fied images to grayscale and we find the best parameters to implement the
Matlab function. The most important parameter is the disparity range,
the values of the disparity map are inversely proportional to the real dis-
tance from the camera, thus, we are looking for a point far to the camera to
compute the minumum disparity and inversely, we are looking for a point
near to the camera to compute the maximum disparity. In particupar, we
take, for the minimum disparity, a point on the patient’s palate and, for the
maximum disparity, a point on the dentist’s finger. We noticed that, after
some frame (in particular after the frame number 576), the dentist used a
new tool, so the maximum disparity change. With all this information we
have computed the disparity map of each frame [Fig. 4.12]

Figure 4.12: Disparity map of different time istant

Now we can compute the 3D reconstruction of the scene. Thanks to
Matlab, throught the disparity map and the calibration, we have a good
3D reconstruction that, in particular, tell us the real distance from the
camera of each pixel. This is not all true, infact, because of the rectification
process, the 3D is degraded and the values of the depth (point3D(:, :, 3)) in
[mm] are not the real values.
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Depth Value [mm]
Patient’s palate 347.6899

Dentist’s tool 269.4527

How can wee see in the table above, we have a difference of about 0.1
[m] between the palate and the tool in the frame 588. This is a good ap-
proximation of the distance in the real world.

For a better 3D reconstruction it would be necessary to acquire the
images so that the rectfication process was minimal, i.e. take frame from
two cameras with, after the stereo calibration, a rotation matrix, of the
second with respect to the first one, very similar to the identity matrix.
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