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Abstract 

As Human Robot Interaction (HRI) sees its advancements in medical and industrial 

use, shared control emerged as a new promising field of investigation. The class of impedance 

controllers plays a major role in enabling such continuous physical HRI. Variable impedance 

controllers have the potential to offer reliable accuracy, stability, and therefore safety during 

such kind of HRI. However, they depend on positional and force input by the user. To further 

unlock this potential, they can be provided with information on the dynamical parameters of 

the user’s arm. Human arm stiffness, being the dominant dynamical parameter, had been 

widely investigated. Consequently, experimental offline methods to estimate it had been 

developed. Research suggests that humans extensively use arm configuration to control the 

direction of the stiffness, and muscular cocontractions to control the magnitude. Surface 

electromyography (sEMG) signals have been widely used as a reliable measure of muscular 

activity and therefore they have been utilized in estimating cocontraction of muscles. In this 

work, an online method to estimate human arm stiffness based on human arm configuration 

and sEMG signals is proposed. To further develop the cocontraction estimates based on 

sEMG, Muscular Jacobian matrix is used. The algorithm used to compute this Jacobian in real-

time is derived too. Due to the ability to model complex non-linearities, an Artificial Neural 

Network (ANN) model is developed. Data used to train such model is acquired using 

experimental offline method in the frequency domain. The proposed model performs well 

compared to linear model proposed in the literature. Also, its ability to interpolate between 

samples presented in the training process is verified. The ANN model opens further possibility 

to be used in non-user specific strategy. Thus, sharing the common knowledge conveyed by 

the experimentally acquired data of multiple users. 
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Sintesi 

Man mano che l’Interazione Uomo-Robot  (Human Robot Interaction - HRI) vede i 

suoi progressi nell'uso medico e industriale, il controllo condiviso è emerso come un nuovo 

e  promettente campo di ricerca. La classe di controllori di impedenza svolge un ruolo 

importante nel consentire tale HRI fisica continuamente. I controllori a impedenza variabile 

hanno il potenziale per offrire accuratezza, stabilità e quindi sicurezza durante questo tipo di 

HRI. Tuttavia, dipendono dall'input di posizione e forza dell'utente. Per sbloccare 

ulteriormente questo potenziale, possono essere fornite informazioni sui parametri dinamici 

del braccio dell'utente. La rigidità del braccio umano, essendo il parametro dinamico 

dominante, era stata ampiamente investigata. Di conseguenza, sono stati sviluppati metodi 

sperimentali offline per stimarla. La ricerca suggerisce che gli esseri umani utilizzano 

ampiamente la configurazione del braccio per controllare la direzione della rigidità e le 

cocontrazioni muscolari per controllare la sua grandezza. I segnali di elettromiografia di 

superficie (sEMG) sono stati ampiamente utilizzati come misura affidabile dell'attività 

muscolare e quindi sono stati utilizzati nella stima della cocontrazione dei muscoli. In questo 

lavoro, viene proposto un metodo online per stimare la rigidità del braccio umano in base 

alla configurazione del braccio e ai segnali sEMG. Per sviluppare ulteriormente le stime di 

cocontrazione basate su sEMG, viene utilizzata la matrice Jacobiana Muscolare. Viene anche 

derivato l'algoritmo per calcolare questo Jacobiano in tempo reale. A causa della capacità di 

modellare le non-linearità complesse, viene sviluppato un modello di rete neurale artificiale 

(ANN). I dati utilizzati per addestrare tale modello vengono acquisiti utilizzando un metodo 

sperimentale offline nel dominio della frequenza. Il modello proposto si comporta bene 

rispetto al modello lineare proposto in letteratura. Inoltre, viene verificata la sua capacità di 

interpolare tra i campioni presentati nel processo di addestramento. Il modello ANN apre 

ulteriori possibilità di essere utilizzato in strategie non specifiche a un utente. Quindi, 

condividendo la conoscenza comune trasmessa dai dati acquisiti sperimentalmente di più 

utenti. 
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1. Introduction to  

Human-Robot Interaction 

Robots can be described as machines working with constant interaction with their 

environment, performing certain task of convenience. Methods, tools, and concepts of 

standard robotics today enable only kinematic interaction between the environment and the 

machine. Such limited abilities for interaction require highly structured, organized, and 

controlled environments referred to as robotic cells. Often enough, these cells are furtherly 

adjusted to appeal to the abilities of the robot. It is not a rare case when even the actual 

product is adapted to make the operation of a robotic cell faster, and therefore more 

efficient. Examples of such tasks are: positioning (welding), following trajectory (CNC 

machining), and simple pick and place tasks (palletizing). 

Introducing uncertainty to robot’s environment produces need for handling the problem of 

identification, isolation, and appropriate reaction. Additionally, safety and productivity of the 

cell should be considered too. Uncertainties can be of a nature peculiar to robot’s task e.g. 

agriculture robot has to deal with the event of rain which is not the case with indoor robots. 

But also mutual to all robots e.g. human behavior, mechanical obstacles, etc. If such approach 

is found, so that majority of the uncertainties are handled, then it softens the notion of 

“robotic cell” and improves robotic autonomy.  

Handling uncertainties due to human behavior takes more significant position in the scientific 

development. It ranges from basic safety to putting such uncertainties into practical use by 

treating them as meaningful input information to guide the robot behavior.  

Human-Robot Interaction (HRI) is a field of study dedicated to understanding, designing, and 

evaluating robotic systems for use by or with humans. [1]  

However, handling uncertainties comes with higher cost of equipment, engineering 

expertise, and sacrifice in productivity. Therefore, except for safety, it had long been 

considered economically unjustified 
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1.1 Contemporary use of HRI 
Standard robot practices overwhelm the mass production industry. Their use is by far most 

widespread practice in manufacturing. However, recent socio-economical changes steered 

manufacturing practices from mass to flexible production. 

1.1.2 HRI in manufacturing 

To keep up with the growing customization ambitions of their customers, companies adopted 

flexible approaches throughout their departments. High degree of customization is 

achievable by adjusting the working strategy in the design stage, fabrication, assembly, 

marketing, and even through post-sale stage. However, modification of the assembly process 

is one of the most cost-effective approaches to high product variety [2]. 

Therefore, companies in collaboration with the scientific field searched for ways to increase 

the customization in the assembly process. Since robots were already the dominant 

machines used for assembly, naturally they have been one of the main objects to change. 

This has led to rediscovering the need for handling uncertainties produced by human 

behavior. However, this time not merely as safety requirement. But also, as new and hybrid 

manufacturing concept which utilizes human intelligence and creativity to create agile 

manufacturing paradigm capable of addressing markets’ requirements. The advantages of 

human-robot cooperation have been evaluated in several studies [3, 4, 5]. 

Simple robotic tasks, without any form of computer intelligence, usually had been 

programmed by trained robotic technicians. The easiest way is to use the teach pendant of 

the robot-controller to position it manually into a set of poses in cartesian or joint space. 

During execution, the robot automatically replays the saved poses resulting in a continuous 

movement. Tasks which include intelligent control i.e. computer vision, usually take more 

time and often require an employee with engineering degree. The high demand for 

customization led to demand for minimization of the programming time. To satisfy that call, 

new and innovative method of “teaching-with-guiding” has emerged.  Teaching-with-guiding 

is an HRI method that modulates the virtual impedance of the robot making it appear as 

object with mass, damping, and stiffness far smaller than the actual one. Therefore, operator 

doesn’t need to manually position the robot through the controller’s teach pendant. She/he 

can hold it by the end-effector and intuitively position it to the desired pose.  

During replay of the saved poses, the robot is still unaware of human behavior in his 

environment. Therefore, human safety is not guaranteed. For this reason, conventional 

robots, as well as those programmed by teaching-with-guiding, are guarded by fences which 

limit human proximity to the cell. The safety mechanism in place makes sure that if such 

fence is opened, the movement of the robot comes to a complete halt.  
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Figure 1. (a)-(e) Guiding the robot by holding its end-effector and positioning it in different poses (f) Resulting 
trajectory which is replayed 

To achieve higher degree and diversity of HRI, the abandonment of fending fences is rational 

objective. Naturally, this objective calls for advancements in human safety mechanisms. ISO 

10218 part 1 and part 2 defines safety requirements whose implementation may lead to 

abandonment of fences. Such implementations include [6]: 

• Safety Monitored Stop. This approach monitors the robot’s surroundings using laser 

or vision system and stops the execution of the robotic task if human (or other 

unexpected movement for that manner) is registered. This approach bears 

similarities with the conventional halting mechanism in case of opening the fence’s 

door. However, it is important to notice that in this case the execution is only 

temporarily paused. Detecting human presence in the robot’s surroundings is not 

accounted as dangerous breach of the standard operating protocol. It could be just 

operator continuously feeding more raw material to the cell or bringing out the 

finished product (or semi-product). 

• Speed and Separation Monitoring. There is safety-zone defined around the robot. 

However, when human presence is detected, the robot doesn’t come to a stop. It 

adjusts its velocity according to distance to the human. Linear relation might be one 

potential choice. As the human gets closer to the robot, the robot’s velocity is lower. 

If the distance comes under pre-defined threshold, the execution comes to a 

complete stop. 

• Power and Force limiting. Additional equipment in the mechanical structure of end-

effector and joints allows robotic systems to take into consideration forces (and 

therefore, power) that they release to the environment. Such advantage makes it 

possible to pose limits on dynamical variables that will render the robot virtually 

uncapable of harming human being in its vicinity. As the robot moves through the 

environment, it can sense forces applied to his end-effector, and to his body. If such 

forces are not natural for the task it is performing, it may initiate safety reaction like 
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slowing down or coming to a complete stop. Additionally, it can choose to comply 

with the external forces by adjusting its virtual impedance, similarly like “teaching-

with-guiding” method.  

All these approaches have evident advantages and disadvantages. Out of common 

disadvantages, sacrifice of productivity can be identified as one of special interest. It is 

important to notice that combination and/or composition of these approaches may lead to 

compensating the decrease in productivity to some degree. 

Once safety is guaranteed, the meaningfulness of the interaction is rational objective. Better 

HRI can be achieved if the robot is capable to grasp human intention and act accordingly to 

its functional position within the system. In mass customization, HRI is a way to utilize human 

intelligence and creativity. However, such human qualities can’t be transferred to the 

machine in their native, human form. Therefore, new forms of representation of human 

peculiarities must be proposed. Forms such that, are acceptable by humans and in the same 

time, a machine can draw proper conclusion for action. This objective is fertile ground for 

development and usage of Artificial Intelligence methods. They can provide the system with 

wider spectra of information upon which conclusions for action will be made. In this 

direction, developments in detecting human intention and enabling human-robot skill 

transfer can be observed. 

 

Figure 2. (a) Human demonstrates a grasp with an intention to hand-over an apple. (b) Robot imitates the power 
grasp configuration used by the human and fails to hand-over because there is not enough free space for 

regrasp. (c) Robot estimates that human intends to hand-over the apple. It also learns the task requires leaving 
enough free space on the object. It applies a precision grasp to achieve the task. [7] 

1.1.3 HRI in medicine 

Following the natural expansion of industrial robotics, medical robotics adopted the same 

premise of higher accuracy and higher speed of task execution as main economic incentive. 

After the initial attempts of robot usage in surgery, the premise for higher accuracy was 

confirmed. However, it was not the case with procedure times. Even though medical robotics 

managed to achieve similar time of the surgery workflow, the time required for setting up 

the machine resulted in overall number of procedures equal or lower than what an individual 

surgeon can manage. While reducing procedure time is still an important quest, other 

economic factors driving the medical robotics industry emerged: patient demand, reduction 

of surgical errors, augmenting surgical capabilities, and availability to perform Minimally 

Invasive Surgery.  
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Even though the term is self-explanatory, it is important to notice that MIS is defined as any 

surgery which is less invasive than open surgery of the same type. i.e. surgeries with small 

length of incisions (< 1cm), minimization of bone removal in orthopedic tasks, etc. MIS is the 

largest economical factor driving this industry recently. [8]  

 

In a medical scenario, the human body represents the robotic environment, and it is 

characterized by two properties: 

1. All bodies have the same internal anatomical structure, 

2. bodies intend to have unique, peculiar manifestation of illnesses, malfunctioning, 

and conditions. 

The first property suggests that due to the anatomical equality of all human beings, it is 

reasonable to consider certain repetitiveness in medical tasks. And repetitiveness is the 

natural justifier for robot usage. On the other side, the second property calls for an extremely 

high degree of customization. Such level of customization that conventional programming or 

AI still can’t provide. Therefore, unlike robots used in manufacturing, even the earliest use of 

robots was implemented as a form of HRI. 

 

Tele-operating approaches are one example of HRI in the medical robotics industry. Such 

systems implement slave-master architecture. An architecture that can be described as two 

robots working in collaboration. The slave mimics the movements of the master robot, which 

potentially can be remote or in close vicinity. The two sides don’t have to adopt same 

mechanical and/or kinematical structure. The master robot is controlled by the surgeon, and 

the slave is in contact with the patient. Due to this setup of the system, the master robot 

usually adopts kinematical structure that allows intuitive following of surgeon’s hand 

movements. On the other hand, the slave adopts kinematical structure that supports the 

specific purpose of the system. The kinematical difference is handled by appropriate 

transformations implemented in software.  

Tele-operation implies two channels of HRI. The first one being the interaction between the 

surgeon and its master robot, and second, the remote way of interaction between the 

surgeon and the slave. 

• Master-surgeon Interaction. This case has conceptual similarities as “teaching-with-

guiding” programming method. The virtual impedance of the robot is adjusted so it 

appears as it has altered mass, damping, and stiffness. Combined with gravity 

compensation, this method allows to the surgeon to perform natural, intuitive hand 

movements which are recorded by the system. As a difference from “teaching-with-

guiding”, the system doesn’t record poses which are later replayed, but surgeon’s 

movements are sampled and immediately reproduced by the slave, filtering out 

natural human tremor. 

• Slave-surgeon Interaction. This channel implies the feedback that the surgeon 

receives from the slave as a consequence of mimicking his actions. Visual imagery is 

usually captured by endoscopic or x-ray equipment and fed back to the surgeon. 
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Since it is dominant form of feedback, imagery is often in high-resolution and three 

dimensional. This allows for more meaningful feedback stream that can replace the 

lack of haptics. 

Intuitive®’s (Sunnyvale, CA, USA) da Vinci system is prime example of tele-operating system 

for MIS. It consists of single or dual surgeon’s console and a patient-side part with three or 

four robotic arms. In the surgeon’s console, the master robot and the visual feedback are 

housed. On the patient-side, the robotic arms of the slave machine manipulate laparoscopic 

instruments, including an endoscope. Slave’s arms have 7 DOFs to effectively mimic the 

dexterity of the human arm. This system provides the surgeon with intuitive control, range 

of motion, fine tissue manipulability, and visual feedback during the MIS. 

 

Figure 3. Intuitive®’s Da Vinci surgical system. (a) Slave console. (b) Supporting hardware. (c) Master console. [9] 

Hansen®’s (Mountain View, CA, USA) Sensei robotic catheter system adopts the same tele-

operating architecture. However, its slave console is not equipped for laparoscopic surgery 

like in the Da Vinci case. Sensei’s slave robot has mechanical and kinematical structure that 

allows driving a catheter device at a desired point inside the heart. The visual feedback is 

provided to the surgeon at the master console through x-ray imaging device. The master is 

usually in near-vicinity to the slave, but still on a safe distance from the x-ray source.  

 

 

Figure 4. Hansen®'s Sensei Robotic System. (a) Master console. (b) Slave console and the catheter. [10] 

Aside from the dominance of the tele-operating systems, other robotic devices allow for HRI 

in the medical field. Their superiority in accuracy and their sturdy mechanical structure is 

exploited in neurosurgery and orthopedic tasks. Such example is the Acrobot Sculptor 

(Stanmore Implants Worldwide Ltd, UK) which is a robotic device that is controlled by “hands-
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on” physical interaction with the surgeon. Such HRI is often referred as shared control. 

Acrobot Sculptor enables MIS in certain orthopaedical surgeries. This system will be 

discussed in detail later [8]. 

1.1.4 Exoskeletons 

Exoskeletons are particular class of HRI driven machines. They are a kinematic chain of links 

and joints built to mimic the extremities of the human skeleton. The mechanical structure 

can be custom-made for specific set of skeleton parameters, or it can implement certain 

mechanism for adjustment to the user. 

Such machine is attached to the human body so that the extremities of the user are attached 

to the appropriate link of the exoskeleton. This way, the joints of the exoskeleton mimic the 

movements of the human joints, in a simplified manner. Due to gravity compensation and 

adjusted virtual impedance, the impact on the user’s intuitiveness is minimized. 

Exoskeletons act as an amplifier to the motorial capabilities of the human body. It mimics the 

human movements but amplifies the forces and torques exerted by the user. Sensory 

equipment along the exoskeleton estimates the human intention and mimics it, modifying 

certain dynamical parameters according to a pre-defined rule. 

 

Figure 5. (a) Exoskeleton. (b) Exoskeleton in medical use. (c) Exoskeleton in commercial use. (d) Exoskeleton in 
manufacturing. [11] [12] 

These types of robots only recently have been put in commercial use. Their capability to 

virtually amplify the muscular power of the human body is used in medicine, the military, 

and manufacturing. 

1.2 Architectural concept of HRI 
Foundation of HRI is establishing and maintaining channels of information flow between the 

human and the robotic system. Such channels define the type of data and the direction of 

flow e.g. positional information from the user to the robot, visual information from the robot 

to the user, etc. The technology used to capture and transfer the data depends on the 

required performance, which is specified according to the objective of the task. E.g. in certain 
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cases, tracking the human body with inertial measurements might be more appropriate then 

optical tracking. 

Once the data is acquired, it is interpreted according to the overall objective of the system. 

Systems that have safety as unique objective may estimate the distance between the human 

and the robot in order to tune its velocity or initiate complete stop. Other systems may 

estimate the configuration of the human body joint angles in order to calculate the desired 

cartesian/joint space position of a slave device. 

After the information is extracted from the data, the system’s controller decides how to act 

to satisfy its goal. The difference between the actual state and the reference state is referred 

as the error signal. Even though every type of controller has its own algorithm for calculating 

decisions, the error is usually common variable used in the calculation. The robot, and 

potentially other actuators, execute the controller’s decision. 

The functioning concept behind a controller is general, but it may be specifically tuned to the 

task. Generally, all controllers allow for setting limits on their outputs. Even though in 

manufacturing such limits are usually constant, in other use cases like medicine, such limits 

may vary depending on pre-defined rule or on manual user’s inputs. I.e. virtually adjusting 

the workspace of the robot in order to protect certain vital areas of the body. Such limits 

affect controller’s decision. 

Brief overview of common well-developed controllers, and their use in HRI is done next in 

order to point out the direction of improvement proposed with this work. 

1.2.1 Mimetic position control 

The goal of mimetic position control is to closely mimic the movements of the human body. 

This control structure can be described as a special case of conventional position control 

task planner trajectory planner position controller 

encoders 

environment external sensors 

Figure 6. Conventional position control design. 
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design. In this case, the functionalities of the task and trajectory planners are substituted by 

a human. This difference is shown on Figures 6 and 7. 

Human intelligence does the function of the task planner, and the need for trajectory 

planning does not exist because the motion dynamics are implicitly specified in the 

movement of the human body. Depending on the context of use, the user may be able to 

directly see the changes of the environment done by the robot, or she/he can monitor it 

through external sensors. 

In this control scheme, the channel that enables information flow from the human to the 

system is represented by a positional transducer. Therefore, the data type is positional, and 

the direction Is from the human towards the robot. Mimicking can be done in cartesian space 

or directly in joint space. When position control is applied to cartesian space, the problem of 

inverse kinematics must be taken into consideration. Due to the dexterity of human 

extremities (the arm for example), there might be multiple solutions of the inverse 

kinematics. This may lead to mimicking the position of the endpoint of the human extremity 

but maintaining difference in the joint positions. 

In the case of cartesian space control, the position of certain points of interest on the human 

body is tracked. Usually these are the endpoints of the extremities i.e. hand or foot.  

Joint angles of the human body are either calculated by inverse kinematic or directly 

monitored in the case of joint space control. Then, their values are pre-processed. This 

includes filtering out tremor, applying limits, buffering, etc. Processed data is taken as an 

input to a conventional position feedback control loop consisting of position controller, the 

robot as a controlled object, and feedback that provides the controller with the actual values 

of the robot’s joint angles. 

The position controller implements the actual control algorithm. It outputs the torques that 

shall be applied to the robot’s joints in order to minimize the position error signal. If 

decentralized control is utilized, one example of control algorithm is PID. If the control is 

position controller 

encoder

s 

environment external sensors 

pre-processing 

positional 

transducer 

Figure 7. Mimetic position control design. 
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centralized, model-based algorithms like PD + gravity compensation may be implemented. 

Also, various customizations and augmentations of such algorithms are applicable. 

Purely position controllers monitor, compare, and control only the position of robot. 

Dynamical parameters of the robot’s mechanical structure, force and torques exerted, are 

not part of the control loop. They may be kept constant or varying according to certain pre-

defined rule. 

1.2.2. Impedance control 

Another type of control used in industry is the impedance control. The end-effector of any 

robot can be described as a composition of basic mass-spring-damper systems. Such 

mechanical systems are governed by the relation 𝑀𝑑𝑥̈ + 𝐷𝑥̇ + 𝐾𝑥 = 𝑓, where 𝑀𝑑 is the 

mass of the body, 𝐷 is the damping coefficient of the damper, 𝐾 is the stiffness coefficient 

of the spring, and 𝑥 is the position of the mass along the x-axis. 

The relation governing the end-effector in this case is: 

𝑴𝒙̈ + 𝑫𝒙̇ + 𝑲𝒙 = 𝒇     [ 1 ] 

Where: 

• 𝑴 is mass matrix, 

• 𝑫 is damping matrix, 

• 𝑲 is stiffness matrix, 

• 𝒙 is vector of cartesian position of the end-effector, and 

• 𝒉 is the vector of the resultant force applied at the end-effector. 

𝑴, 𝑫 and 𝑲 matrices depend on the mechanical structure of the robot. 

According to majority of textbooks on basic robotics, we can represent the dynamics of an 

anthropomorphic manipulator by using the following well known model: 

𝑩(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝒈(𝒒) = 𝝉 − 𝑱𝑻(𝒒)𝒇     [ 2 ] 

Figure 8. The end-effector can be observed as a 
composition of basic, one dimensional, mass-

spring-damper systems. 
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Where: 

• q is the joint coordinate vector, 

• 𝑩(𝒒) is the inertia matrix of the manipulator, 

• 𝑪(𝒒, 𝒒̇) are the centrifugal and Coriolis terms, 

• 𝒈(𝒒) is the gravitational term, 

• 𝝉 is a vector representing the actuation torques in the joints, 

• 𝑱𝑻(𝒈) is the transpose of the Jacobian, and 

• 𝒇 is the vector of the contact forces and moments applied by the end-effector on the 

environment. 

Classical impedance control assumes that by adopting appropriate form of inverse dynamics 

control, as: 

𝝉 = 𝑩(𝒒)𝒚 + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝒈(𝒒)     [ 3 ] 

We can obtain completely decoupled control system governed by the relation [13]: 

𝑴𝑑 𝒙̈̃ + 𝑫𝑑 𝒙̇̃ + 𝑲𝑑𝒙̃ = 𝒇𝐴     [ 4 ] 

Where: 

• 𝒙̃ = 𝒙𝑑 − 𝒙. 

𝒙𝑑  is the vector of desired cartesian position, and 𝒙 is the actual cartesian position. 

• 𝑴𝑑 is virtual mass matrix, 

• 𝑫𝑑 is virtual damping matrix, 

• 𝑲𝑑 is virtual stiffness matrix, and 

• 𝒇𝐴 is a vector of the generalized forces.  

This way, the dynamic model of the manipulator has been converted to a mechanical 

impedance system with the corresponding “virtual” parameters 𝑴𝑑, 𝑫𝑑, and 𝑲𝑑 which can 

be arbitrarily chosen by the user.  

torque controller 

torque/current 

sensors 

environment external sensors 

force 

transducer 

impedance 

controller 

Figure 9. Impedance control design. 
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Selecting appropriate values for these three matrices allows to the user to transform the 

behavior of the end-effector to a mechanical system behaving like generalized mass-spring-

damper system with known parameters. Therefore, one can use this approach to convert the 

end-effector behavior to a behavior of an object with relatively small mass, damping, and 

stiffness, easily bearable by a human operator. This allows for easy movement of the end-

effector.  

In this control scheme, the channel that enables information flow from the user to the robot 

is represented by force transducer. Therefore, the data type is force and the direction is from 

the user to the robot. Force information is processed by the impedance controller that 

calculates the required torques to be applied on the robot joint’s angles. The torque control 

loop applies torque to the joints of the robot so that the new error signal is minimized. Torque 

control loop is basic control mechanism that exists in all robotic control schemes. However, 

usually it is nested inside the position or velocity control loop, and therefore it is omitted in 

the previous illustrations. 

Impedance control can be divided in two categories: 

1. Constant impedance control. In this case, the inverse dynamics equation to calculate 

the torques is chosen such that the final decoupled system is governed by the 

relation:  

𝑴𝑑
̅̅ ̅̅̅ 𝒙̈̃ + 𝑫𝑑

̅̅ ̅̅ 𝒙̇̃ + 𝑲𝑑
̅̅ ̅̅ 𝒙̃ = 𝒇𝐴(𝑡)

     [ 5 ] 

Where 𝑴𝑑
̅̅ ̅̅̅, 𝑫𝑑

̅̅ ̅̅ , and  𝑲𝑑
̅̅ ̅̅  denote constant values for the inertia, damping, and stiffness 

matrix.  

Constant impedance control of this kind Is used in the aforementioned “teaching-with-

guiding” programming method, as well as for master robot devices in tele-operation. 

2. Variable impedance control. This control method assumes that  𝑴𝑑 , 𝑫𝑑, and  𝑲𝑑 

matrices are not constant. Therefore, the torque setpoints are calculated such that 

the final decoupled system behavior can be described as: 

𝑴𝑑(𝑡)
 𝒙̈̃ +  𝑫𝑑(𝑡)

𝒙̇̃ + 𝑲𝑑(𝑡)
𝒙̃ = 𝒇𝐴(𝑡)

     [ 6 ] 

𝑴𝑑(𝑡)
,  𝑫𝑑(𝑡)

, and 𝑲𝑑(𝑡)
 vary with time according to pre-defined rule that is convenient 

for the overall task of the robotic system. 

Variable impedance control results in more complex interaction with the environment, 

which greatly expands the capabilities of the robot. 
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1.2.3. Direction of this work 

In position control, the impedance of the end-effector is constant, and it has the natural 

values of the mechanical structure of the robot. Such control performs satisfactorily when 

the environment of the robot is structured, completely organized, and the task doesn’t 

require significant interaction between the robot and the environment. However, with tasks 

that include interaction between the robot and its uncertain environment, simple position 

control may lead to development of undesirably high contact forces that may lead to 

instability.  

To overcome this limitation, a composition of position and impedance control is performed. 

Constant impedance control protects the system against instabilities to some degree, but it 

also may limit the accuracy of the task. Therefore, to improve stability, accuracy, and safety, 

variable impedance control shall be implemented.  

The law according to which the impedance parameters 𝑴𝑑(𝑡)
,  𝑫𝑑(𝑡)

, and 𝑲𝑑(𝑡)
 change, 

depends on the adoption of a specific strategy regarding the task. For example, if safety is 

the only concern, the impedance parameters may depend on the distance between the 

human and the robot. As the human approaches the robot, the robot adopts values for 

𝑴𝑑(𝑡)
,  𝑫𝑑(𝑡)

, and 𝑲𝑑(𝑡)
 such that will minimize the force exerted from the robot to the user 

in the case of impact. However, if the task involves continuous physical interaction between 

the user and the robot, we can observe such situation as a complex system where the two 

entities are coupled. To make such HRI more human friendly, it is important to design the 

variable impedance controller considering the human characteristics. The impedance 

parameters of the robot are governed by the variable impedance controller, and the 

equivalent parameters of the human arm are controlled by the neuromuscular system of the 

user. 

A real-time procedure to extract information for the impedance parameters of the human 

arm is presented. As a result, a new channel of information flow from the user to the data 

can be established. This new type of information is suitable to play major role in how the 

variable impedance controller calculates the virtual impedance parameters during physical 

HRI scenario. Such insight might potentially increase accuracy and stability of the interaction. 

Also, it might be used to couple robot dynamics to reflect human intention more closely and 

intuitively. Therefore, the aim of this work is to enable higher quality of variable impedance 

control by introducing human arm impedance estimations based on neuromuscular data. 
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positional data 

force data 

impedance data 

Figure 10.  In this work we provide methods to estimate the impedance of the human arm to introduce 
new type of information transferred to the robot during HRI. 
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2. State of art 

Variable impedance controllers based on intrinsic human dynamics, like arm impedance, 

haven’t transitioned from research to practical use, yet. However, certain medical robots use 

models to assume the impedance of the human arm relative to the task. Analyzing such 

robots may give us an insight on the advantages that can potentially be brought by conveying 

the dynamics of the human arm as a new variable in variable impedance control design. 

In the scientific field, few studies propose methods to estimate the impedance of the human 

arm during physical HRI. However, in this direction, conventional data of position and force 

is used. Low data diversity leads to significant approximations and limitations. Therefore, the 

applicableness of such methods in practice is still a challenge. 

2.1. In medical use 
Acrobot Sculptor is shared control robotic surgery system for Total Knee Replacement (TKR). 

Specialized in performing high-precision cuts in order to minimize the deviation of the 

prosthesis from the ideal alignment with the bone. It has spherical construction and relatively 

small reach of 30-50cm. Light mechanical structure actuated by low-power motor drives 

allows the surgeon to detect forces during hard bone cutting without force sensor attached 

to the cutting tool. Additionally, the robot is inherently safe because the potential damage, 

in case of instability, is limited both in terms of force and area.  

The preoperative planning is done with dedicated software fed with appropriate CT scans of 

the patient’s leg. The software generates model of the leg and assists the surgeon in creating 

model of the perfect prosthesis. Once the fit between the model of the leg and the one of 

the prosthesis reach certain correctness threshold, the planning software generates the 

constraint boundaries.  

The robot is controlled by variable impedance controller and therefore 6 axes force sensor is 

attached on the handle at its tip. During surgery, the surgeon guides the robot by pushing on 

this handle. The law according to which the impedance of the robot is adjusted takes as an 
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input the distance between the actual position of the tip and the closest point of the 

boundary generated. This distance is defined as: 

𝑑 = ‖𝒙 − 𝒙𝑛𝑝‖ = (𝒙 − 𝒙𝑛𝑝)𝑵𝑛𝑝     [ 7 ] 

 

Figure 11. (a) Acrobot's kinematical structure. (b)  Acrobot mounted on a gross positioning device. [14] 

Where 𝒙 is the actual robot position, 𝒙𝑛𝑝 is the nearest point of the boundary, and 𝑵𝑛𝑝 is 

the normal of the boundary pointing inside the region. 

The inertia of such light system is negligible, and therefore the torque controller calculates 

the torques applied to the joints of the robot as: 

𝝉 = 𝑲𝑃(𝒒𝑑 − 𝒒) + 𝑲𝐷(𝒒̇𝑑 − 𝒒̇) + 𝝉𝐶 + 𝒇∗(𝒒, 𝒒̇) + 𝒈∗(𝒒)     [ 8 ] 

Where: 

• 𝒒𝑑 and 𝒒̇𝑑 are the vectors of desired joint coordinates and velocities respectively, 

• 𝑲𝑃 and 𝑲𝐷 are the proportional and derivative gains respectively, 

• 𝝉𝐶  is the guiding force compensation, and 

• 𝒇∗(𝒒, 𝒒̇), and 𝒈∗(𝒒) are friction and gravity compensation respectively. 

The variable impedance controller calculates 𝒒𝑑 , 𝒒̇𝑑, and 𝝉𝐶  depending on 𝒙𝑑,𝒙̇𝑑, and 𝑭𝐶: 

𝒒𝑑 = 𝑲−1(𝒙𝑑)     [ 9 ] 

𝒒̇𝑑 = 𝑱−1𝒙̇𝑑 

𝝉𝐶 = 𝑱𝑇𝑭𝐶 

Where: 

• 𝑲−1 is the inverse kinematics function, 

• 𝑱 is the Jacobian matrix of the robot, and 
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• 𝑭𝐶  is the compensation force. 

The variable impedance controller manipulates with the mechanical impedance of the robot, 

dominantly stiffness, by adjusting 𝒙𝑑, 𝒙̇𝑑, and 𝑭𝐶. This control principle goes under the name 

of Active constraint control. Three cases are possible: 

1. 𝑑 > 𝐷1 

Where 𝐷1 is pre-defined constant describing distance from the boundary. When the 

distance of the robot 𝑑 is higher than 𝐷1, the robotic system assumes that the tip of 

the robot is inside the safe region and constant impedance control is applied. In this 

case: 

         𝒙𝑑 = 𝒙     [ 10 ] 

𝒙̇𝑑 = 𝐴𝑭𝐺  

𝑭𝐶 = 𝟎 

Where A is the impedance and it is same in all directions, and 𝑭𝐺 is the surgeon’s guiding 

force.  

2. 𝐷1 ≥ 𝑑 > 0 

In this case it is assumed that the tip of the robot exited the safe region and started 

approaching the boundaries. Two sub-cases are possible: 

a. 𝑭𝐺  ∙ 𝑵𝑛𝑝 ≥ 0, the guiding force points away from the boundary. 

In this subcase  𝒙𝑑, 𝒙̇𝑑, and 𝑭𝐶  stay regulated as in case 1. 

b. Otherwise, the guiding force 𝑭𝐺  is split into normal (𝑭𝐺𝑁), and tangential 

(𝑭𝐺𝑇) components with regards to the boundary, and 

𝒙̇𝑑 = 𝐴𝑁𝑭𝐺𝑁 + 𝐴𝑭𝐺𝑇     [ 11 ] 

where 𝐴𝑁 is the impedance in the normal direction and it increases with 

distance to the boundary: 

𝐴𝑁 =
𝐷1

𝑑𝐴
     [ 12 ] 

Regarding force compensation, another pre-defined constant distance 𝐷2 is 

defined such as: 

𝑭𝐶(𝑑) = {
0, 𝑑 > 𝐷2

− 
𝐷2−𝑑

𝐷2
 𝑭𝐺𝑁   , 𝐷2 > 𝑑 > 0

     [ 13 ] 
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3. 𝑑 ≤ 0. 

In this case it is assumed that the tip of the robot is dangerously close to the 

boundary or even out of it, therefore the control gains are high in this region. 

𝒙𝑑 is set to the nearest point of the boundary 𝒙𝑛𝑝 (𝒙𝑑 = 𝒙𝑛𝑝), and there are again 

two subcases regarding the guiding force: 

a. 𝑭𝐺  ∙ 𝑵𝑛𝑝 ≥ 0, the guiding force points away from the boundary. 

In this subcase  𝒙𝑑, 𝒙̇𝑑, and 𝑭𝐶  stay regulated as in case 1. 

b. Otherwise: 

             𝒙̇𝑑 = 𝐴𝑭𝐺𝑇     [ 14 ] 

𝑭𝐶 = −𝑭𝐺𝑁 

[14] 

 

Figure 12. Three different impedance settings according to three different possible cases. [14] 

Acrobot’s variable impedance controller doesn’t estimate the mechanical impedance of the 

surgeon’s arm.  However, in the second case its modelling the impedance of the robot 

similarly to what human would naturally do. Increasing the impedance when approaching 

the boundary in order to increase accuracy and robustness against undesired disturbances 

or tremor. However, Acrobot’s controller is increasing the impedance only in the direction of 

the normal of the nearest point. With humans, this is the case only if the boundary Is a 

straight line (2D case) or plane (3D case). In case of curved boundary, a human would increase 

the impedance of hers/his arm in multiple directions, therefore: 

𝒙̇𝑑 = 𝑨ℎ𝑢𝑚𝑎𝑛𝑭𝐺     [ 15 ] 
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Where 𝑨ℎ𝑢𝑚𝑎𝑛 is a diagonal matrix whose elements are in accordance with the actual 

mechanical impedance of the surgeon’s arm.  This is presented in Figure 13. 

Augmenting variable impedance controllers with information about the dynamical 

characteristics of the human arm will increase intuitiveness, accuracy, and safety in use 

cases like Acrobot. 

2.2 In research literature 
Various offline experimental methods to estimate dynamical parameters of the human arm 

have been developed. [15] [16] However, majority of them rely on mechanical perturbation 

applied to certain point on the arm. Perturbations inhibit intuitiveness and may also interfere 

with the task performed. Therefore, such methods are inapplicable in online scenarios. 

Online estimation of dynamical characteristic of a human arm in physical HRI scenario has 

been performed in [17]. In this study, a fully decoupled 3-DOF parallel Tripetron planar robot 

is used. Additionally, multi-axes force sensor is mounted at the end-effector. During shared 

control, the user guides the robot by holding the end-effector. This setup is shown in Figure 

14. 

 

Figure 14. Tripetron 3 DOF planar robot with multi-axes force sensor attached to its end-effector. [17] 

Figure 13. Natural human multidirectional impedance adjustment. 
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A variable impedance controller is implemented. It transforms the behavior of the robot to 

the following decoupled system: 

𝒇 = 𝑴𝑑 𝒙̈̃ + 𝑪𝑑𝑣𝑖
𝒙̇̃     [ 16 ] 

𝑪𝑑𝑣𝑖
= 𝑪 − 𝑺     [ 17 ] 

Where: 

• 𝑴𝑑 is the virtual inertia matrix, 

• 𝑪 is the constant part of the virtual damping parameter, 

• 𝑺 is a matrix whose elements 𝑠𝑖𝑗 = 𝛼𝛿𝑖𝑗𝑠𝑔𝑛(𝑥̇𝑖)𝑓𝑖̇. Where: 

o  𝑓𝑖̇ is the time derivative of the 𝑖th component of the force acting on the end-

effector,  

o 𝑥̇𝑖 is the 𝑖th component of the velocity vector, 

o 𝛿𝑖𝑗  is the Kronecker delta, and 

o 𝛼 is a weighting factor.  

The general idea behind such choice of the impedance parameters is utilizing the information 

conveyed by the rate of change of force. Similarly to the approximation of the future values 

of a function using Taylor expansion, 𝑭̇ conveys information on the future of 𝑭 which might 

reveal the human intention. Therefore, sudden increase of force in the direction of actual 

velocity (or in case of zero velocity) is interpreted as a human intention to accelerate and the 

mechanical impedance of the structure is reduced. Vice-versa, sudden decrease of force is 

interpreted as human intention to decelerate, stop, or change direction, so the impedance is 

increased. 

In order the system to be stable, an equation of the highest possible virtual impedance is 

found. Out of this impedance, the damping is utilized as a control parameter because it is 

related to the dissipation of energy. The critical damping is: 

𝑪𝑑𝑐
= −

1

2𝑇
(𝑴𝑑 + 𝑇𝑪ℎ) +

1

2𝑇
√(𝑴𝑑 + 𝑇𝑪ℎ)𝑇(𝑴𝑑 + 𝑇𝑪ℎ) + 4𝑇2𝑲ℎ𝑴𝑑     [ 18 ] 

Where 𝑪ℎ and 𝑲ℎ are the human 𝑛𝑥𝑛 damping and stiffness matrices respectively, and 𝑇 is 

the time delay. Therefore, in order to check for stability, the impedance of the human arm 

is estimated online. 

Neglecting inertia and damping, the impedance of the human arm is modelled as: 

𝑲ℎ𝒙 + 𝑩 = 𝒇     [ 19 ] 

Where 𝑩 is 𝑛𝑥𝑚 offset matrix, which is generally not constant, and it depends on the human 

desired motion. Estimating 𝑲ℎ as a solution to this system might be made directly. However, 

in order to avoid obtaining singular system it is preferable to minimize the square of the 

errors given by the estimation of the matrix 𝑲ℎ. This way, 𝑲ℎ is calculated as: 
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𝑲ℎ = (𝒇 − 𝑩)𝒙𝑇(𝒙𝒙𝑇)−1     [ 20 ] 

Where 𝑩 is approximated using linear regression as: 

𝑩[𝑛𝑥𝑚] = (𝒇̅ − 𝑽−𝟏𝚺𝐱̅)
[𝑛𝑥1]

𝟏[1𝑥𝑚]     [ 21 ] 

In this equation, 𝒇̅, and 𝐱̅ are the vectors of the 𝑛 means value for the 𝑚 past samples. 𝑽 and 

𝚺 are 𝑛𝑥𝑛 diagonal matrices of the variance of 𝑛 position signals and the covariance between 

the latter and the 𝑛 force components. 

The robot is working in 𝑛 dimensional space, however it is considered impossible to have 

significant measurements in all 𝑛 dimensions. This may lead to singularity of 𝒙 or 𝒇 which 

poses difficulties in calculating (𝒙𝒙𝑇)−1. E.g. if the motion is only translational (or only 

rotational) or it is constrained in a plane, then it is probable that 𝒙 or 𝒇 will be singular. In 

this study, this issue is solved by dimensionality reduction. All coordinates along which the 

variance of the measurements doesn’t satisfy certain threshold are discarded. Which is to 

say, 𝑛𝑥𝑛 diagonal matrix 𝑯 is built according to the following rule: 

ℎ𝑖 = {
0, 𝑉𝑖,𝑖 − 𝑣𝑡ℎ𝑟 < 0 

1, 𝑉𝑖,𝑖 − 𝑣𝑡ℎ𝑟 ≥ 0
     [ 22 ] 

That results with a matrix that has value 1 only for the elements that represent coordinates 

along which the variance is greater than the threshold 𝑣𝑡ℎ𝑟. For example, if the motion is in 

𝑥 − 𝑦 plane, and the vector 𝒙 has the common order of elements 𝒙 = [x y z]𝑇, then the 

matrix 𝑯 would be: 

𝑯 = [
1 0 0
0 1 0
0 0 0

] 

If new matrix 𝑮 is constructed by discarding the zero columns of 𝑯, e. g 𝑮 = [
1 0 0
0 1 0

]
𝑇

 it 

can be used to reduce the dimensionality of 𝑲ℎ estimation and therefore avoiding the 

problems posed by eventual singularity. Therefore, the estimation equation becomes: 

𝑲ℎ = 𝑮𝑇[(𝒇 − 𝑩)𝒙𝑇]𝑮(𝑮𝑇𝒙𝒙𝑇𝑮)−1     [ 23 ] 

[17] 

2.2.1. Limitations 

This method models the human arm impedance as a simple sum of stiffness and a bias 

parameter neglecting the effects of inertia and damping. Such approximation inevitably leads 

to overestimation of the stiffness parameter. Additionally, since only force and positional 

data is used to estimate the impedance, the information of the human arm joint angles is not 

taken into consideration. It is shown in [18] that the configuration of the limbs of the human 

arm plays a role in the shape of the stiffness. The approach to deal with singularities in 𝒙 and 
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𝒇 poses another major limitation to this method. First, no rule for calculation of the variance 

threshold is proposed and validated. This results with choosing 𝑣𝑡ℎ𝑟 by trial and error which 

can yield result peculiar to a specific task and specific hardware setup. Second, the 

dimensionality reduction may lead to reducing a coordinate along which potential 

disturbances are possible. Therefore, losing the advantage of robustness along that particular 

direction. For example, in case when the robot’s workspace is three dimensional, but the task 

performed temporarily requires motion only along two coordinates. In such situation, the 

reduction of dimensionality will discard one coordinate, even though certain disturbances 

may appear along that very same discarded direction. 

This method may be used only in scenarios that satisfy the very particular setup assumed by 

the study, and tasks with relatively low safety requirements. Therefore, we find it useful to 

augment the estimation of dynamic properties of the human arm by introducing easily 

accessible biological signals of neuromuscular nature. 
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3. Human arm stiffness 

We usually use our hands to interact with different environments by moving and 

manipulating objects while performing certain tasks. By doing so, we continuously create and 

abandon mechanical systems where the arm and the environment are coupled. Depending 

on the task, these mechanical systems might be inherently unstable, leading to 

destabilization of the arm posture. However, the central nervous system regulates the 

mechanical properties of the arm compensating for the instability of the coupled system and 

ensuring stable arm posture. [19] Therefore, the regulation of mechanical properties of a 

human arm improves the robustness characteristic of the interaction with the environment. 

One such example is the task of drilling a hole into a material using hand drill, as shown on 

Figure 15 (a). 

In the case of drilling, the uncertainty of unknown or irregular density of the material might 

act as a disturbance with potential to destabilize the coupled system. Therefore, the central 

nervous system regulates the stiffness of the human arm in order to protect against such 

event. Even though the stiffness is highest along the direction of drilling, its magnitude is also 

increased in the other directions to compensate any disturbances that might emerge along 

the normal axis, such as natural tremor.  

This Photo is licensed under CC BY-SA 

Figure 15. Examples where regulation of mechanical 
properties of the arm has significant role. (a) Drilling. (b) 

Handwriting. 

https://en.wikipedia.org/wiki/Drill
https://creativecommons.org/licenses/by-sa/3.0/
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Another illustrative example of natural regulation of mechanical dynamics of the human arm 

Is handwriting. During handwriting, we guide the tip of the pen to follow imaginary path 

which represents the desired character. Leaving this path is considered instability of the 

coupled system. Therefore, the stiffness of the whole arm, including the hand, must be 

increased in a such a way to prevent deviation from the path. This is common case when we 

guide tools in pre-defined boundaries. Such is the case with the aforementioned Acrobot 

Sculptor TKR robotic system too. In these cases, the increased robustness due to regulation 

of dynamical properties of the arm results in increased accuracy of the task. 

3.1. Definition of stiffness of the human arm 
The human arm joint can be described as mechanical impedance system. Model of such 

system follows the form of basic mass-spring-damper system but is adopted to the rotational 

case.  

Therefore, the mechanical impedance model of the human arm in joint space has the form: 

𝑴𝑗(𝑡)
 𝒒̈ +  𝑫𝑗(𝑡)

𝒒̇ + 𝑲𝑗(𝑡)
𝒒 = 𝝉(𝑡)      [ 24 ] 

Where: 

• 𝑴𝑗(𝑡)
 is joint inertia matrix, 

• 𝑫𝑗(𝑡)
 is joint damping matrix, 

• 𝑲𝑗(𝑡)
 is joint stiffness matrix, and 

• 𝒒 and 𝝉 are the vectors of joint angles and torques, respectively. 

From practical point of view, measuring human joint angles and/or joint torques is far more 

complicated then measuring the spatial position and forces applied on a point fixed to the 

arm. In this work we chose such a point to be at the end of the forearm, at the wrist. We also 

refer to this point as the endpoint. The mechanical impedance of the human arm in the 

Figure 16. Human joint described as impedance system. 
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endpoint can be described as a composition of basic mass-spring-damper systems in 

cartesian space. Similar to the description of the robot’s end-effector in Chapter 1.2.2. 

Figure 17. The wrist of the human arm observed as a composition of basic mass-spring-damper systems.4 

In this case, the mechanical impedance of the arm in cartesian space is: 

𝑴𝑐(𝑡)
 𝒙̈ +  𝑫𝑐(𝑡)

𝒙̇ + 𝑲𝑐(𝑡)
𝒙 = 𝒇𝑐(𝑡) 

     [ 25 ] 

Where 𝑴𝑐, 𝑫𝑐, and 𝑲𝑐 are the cartesian inertia, damping, and stiffness matrices, 𝒙 is the 

vector of spatial position of the wrist, and 𝒇𝑐 is the vector of spatial forces acting at the 

endpoint. 

𝑴, 𝑫, and 𝑲 in both joint space and cartesian space are generally not constant as they are 

continuously changed by the central nervous system. 

It has been shown that the effect of the cartesian inertia matrix 𝑴𝑐 is negligible [20]. 

Additionally, the damping matrix 𝑫𝑐 largely depends on the velocity of movement of the 

endpoint. Its manipulability by the central nervous system is limited and it can be safely 

neglected. On the other hand, the stiffness matrix 𝑲𝑐 plays a major role in the mechanical 

impedance of the endpoint and it is predominantly controlled by the central nervous system. 

This makes the stiffness matrix 𝑲𝑐 the obvious variable of choice to satisfactorily describe 

the human arm impedance. 

If we assume two dimensional workspace, the cartesian stiffness 𝑲𝑐 can be represented 

graphically by the following parametric equation of an ellipse: 

[
𝑓𝑥

𝐾(𝑡)

𝑓𝑦
𝐾(𝑡)

] = 𝐾𝑐 [
cos (𝑡)
sin (𝑡)

] ;    0 < 𝑡 < 2𝜋     [ 26 ] 

Where 𝑓𝑥,𝑦
𝐾 (𝑡1) is the elastic component of the force in response to [cos(𝑡1) 𝑠𝑖𝑛(𝑡1)]

𝑇 

displacement along 𝑥 or 𝑦 axis. 
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Intuitively, the orientation (𝜙) of the major axis (𝑎′) denotes the direction along which the 

stiffness is highest, and the arm is most resistant to disturbances. And the orientation(
𝜋

2
+

𝜙) of the minor axis (𝑏′) denotes the direction along which the stiffness is lowest, and the 

arm is least resistant to disturbances. The area of the ellipse denotes the magnitude of the 

cartesian endpoint stiffness. [21]  

This graphical representation can be extended to the three dimensional case too. 

3.2. Central nervous system strategy to endpoint stiffness modulation 
The central nervous system modulates the dynamical properties of the arm endpoint in 

different ways out of which most dominant strategies are: 

• Cocontracting muscle groups acting on the limb [22], 

• adaptation in the sensitivity of the reflex feedback [23], and 

• selective control of the limb configuration [18]. 

Several factors of neuromotor control including: 

1. The dominant contribution of the limb geometry to efficient modulation of the 

ellipse orientation 𝜙, 

2. the ergonomic efficiency of postural adjustments compared with cocontractions, and 

3. the existence of cross-joint muscles in limbs, 

lead to dominant use of the arm configuration to modulate the stiffness ellipse orientation 

𝜙. 

On the other side, plethora of literature suggests the existence of synergistic relationship 

between the muscular activities of mono- and bi-articular muscular activities. These activities 

tend to produce coordinated stiffening profile across the all the arm joints [24] [25] [26]. 

Therefore, it can be safely assumed that humans tend to dominantly use cocontractions to 

modulate the area of the ellipse. [15] 

Figure 18. Graphical representation of 
the cartesian stiffness matrix as an 

ellipse. 
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Figure 19. (a) Joint muscles resting and cocontracting to modulate stiffness ellipse area. (b) Different limb 
posture for different orientation of the stiffness ellipse. 

3.3 Electromyography signals (EMG) 
Muscular cocontraction is defined as the simultaneous contraction of agonist and antagonist 

muscles around a joint. [27]  Therefore, it is justified to assume that a reliable measure of 

muscular activity with a proper method may convey information on the level of muscular 

cocontraction. Which in addition, may be related to the area of the stiffness ellipse. Such 

measure of muscular activity is the Electromyography signal (EMG). 

EMGs are biological signals consisted of electrical currents generated in muscle tissue during 

its activity. Such currents are forced by electrical potentials called Action potentials. The 

nervous system always controls the muscle activity. Therefore, we can utilize EMGs to 

characterize neuromuscular activity in a specific muscle fiber. 

However, measuring EMG signal of a specific muscle fiber needs intrusive probes in the form 

of a needle or wire. Such measuring equipment Is out of the scope of this work. Fortunately, 

we can acquire EMG signals by mounting electrodes on the surface of the skin, acquiring 

what is called, surface EMGs (sEMGs).  In this case, the signal is a composition of all electrical 

potentials generated by a set of nearby muscle fibers. If this set consists of all muscle fibers 

of a single motor unit, then the composition of potentials is called Motor Unit Action 

Potential (MUAP). [28] 

 
Figure 20.Conceptual diagram of sEMG acquisition. [29] 

Due to simplicity, the terms sEMG and EMG will be used interchangeably throughout the 

text.
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4. Materials and methods 

4.1. Least squares identification method 
A method to estimate the stiffness of the human arm in tele-impedance scenario is proposed 

in [15]. In this work, an effort has been done to adopt it and test it to the physical HRI scenario 

of shared control. 

Biomechanical observations point to the conclusion that the human muscle-tendon can be 

modelled as a separate mechanical impedance system as shown in Figure 21. [30] 

 

Figure 21. Hill's model of a muscle-tendon as mechanical impedance. [31] 

Where: 

• CE is the Contractile Element which generates force due to neuromuscular activation 

signal, 

• PE is the Parallel Element which models the spring-damper properties originating 

from connective tissues within the muscle,  

• SE is the Series Element which models the behavior of the tendon, 

• M is muscular mass, 

• 𝑙𝑚 and 𝑙𝑡 are the lengths of the muscle and the tendon respectively, 

• 𝑘𝑆𝐸(𝒒) and 𝑘𝑃𝐸(𝒒) are the stiffness coefficients of the SE and PE and they depend 

on the joint angle vector q. 

• 𝑘𝐶𝐸(𝑝) is the stiffness coefficient of the elastic effect of the CE and it depends on the 

muscular activity p, 
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• 𝐹𝐶𝐸, 𝐹𝑆𝐸, and 𝐹𝑃𝐸 are the reaction forces of the CE, SE and PE respectively, 

• 𝐹 is the resultant external force acting on the muscle-tendon system, and 

• 𝑘𝑚(𝑝, 𝒒) is a representation of the overall stiffness of the individual muscle. 

According to this model, the overall stiffness of the muscle 𝑘𝑚(𝑝, 𝒒) can be calculated by 

superimposing the effects of 𝑘𝑆𝐸(𝒒), 𝑘𝑃𝐸(𝒒), and 𝑘𝐶𝐸(𝑝). However, if the joint angle is not 

nearby its limits, then 𝑘𝑆𝐸(𝒒) ≫ 𝑘𝐶𝐸(𝑝) so 𝑘𝑆𝐸(𝒒) can be approximated as rigid link. In 

addition, under this condition 𝑘𝑃𝐸(𝒒) ≪ 𝑘𝐶𝐸(𝑝) too, so 𝑘𝑃𝐸(𝒒) can be neglected. [32] 

Therefore, 𝑘𝐶𝐸(𝑝) can be considered a reliable approximation of the overall muscle stiffness 

𝑘𝑚(𝑝, 𝒒): 

𝑘̂𝑚(𝑝, 𝒒) ≈ 𝑘̂𝑚(𝑝) = 𝑘𝐶𝐸(𝑝)     [ 27 ] 

By (i) implementing this approximation to the Hill’s model of the muscle-tendon system, and 

(ii) observing the human arm as a chain of such dynamical systems, we could describe a 

mechanical impedance system in the muscle space. Such system would have stiffness matrix 

𝑲̂𝑀(𝒑).  Where 𝒑 is the vector of muscular activities of all considered muscles. The 

transformation between this muscle space and the joint space is performed by the Muscular 

Jacobian 𝑱𝑀(𝒒). Therefore, we can relate the muscle stiffness matrix 𝑲̂𝑀(𝒑) and the joint 

stiffness matrix 𝑲̂𝑗(𝒑, 𝒒) by: 

𝑲̂𝑗(𝒑, 𝒒) = 𝑱𝑀
𝑇 (𝒒)𝑲̂𝑀(𝒑)𝑱𝑀(𝒒)     [ 28 ] 

The Muscular Jacobian 𝑱𝑀(𝒒) will be discussed in detail later. 

On the other hand, the transformation between the joint space and the cartesian space is 

made by the Arm Jacobian 𝑱(𝒒). This Jacobian is equivalent to the analytical Jacobian used 

in conventional robotics to map between the joint space and the cartesian space. If we model 

the human arm as a kinematic chain of bodies and joints, same way we model robots, the 

Jacobian of that model would be Arm Jacobian 𝑱(𝒒). It relates the velocities from the joint 

space of the human arm, to the cartesian space by 𝒙̇ = 𝑱𝒒̇ where 𝒙 is the cartesian pose of 

the wrist, and 𝒒 is the vector of joint angles of the human arm. 

Using the Arm Jacobian 𝑱(𝒒), we can relate the cartesian endpoint stiffness matrix and the 

joint stiffness matrix by: 

𝑲𝑗(𝒑, 𝒒) − 𝑮𝑗(𝒒) = 𝑱𝑇(𝒒)𝑲𝑐(𝒑, 𝒒)𝑱(𝒒)     [ 29 ] 

Where 𝑮𝑗(𝒒) represents the effect of arm geometry due to the presence of external load 

and gravity: 

𝑮𝐽(𝒒) =
δ𝐉T(𝒒)𝒇0

𝛿𝒒
+

𝛿𝝉𝑔(𝒒)

𝛿𝒒
     [ 30 ] 
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𝒇0 is the vector force of the external load, and 𝝉𝑔(𝒒) is the effect of gravity. Due to 

assumption of tele-impedance scenario in [15], the effects of the external load and gravity 

are neglected. Therefore: 

𝒇0 = 𝟎 and 𝝉𝑔(𝒒) = 𝟎 => 𝑮𝐽(𝒒) = 0  [ 31 ] 

𝑲𝑗(𝒑, 𝒒) = 𝑱𝑇(𝒒)𝑲𝑐(𝒑, 𝒒)𝑱(𝒒)     [ 32 ] 

The error between the estimated joint stiffness matrix 𝑲̂𝑗(𝒑, 𝒒) and the actual stiffness 

matrix 𝑲𝑗(𝒑, 𝒒) can be defined as the frobenius norm of their difference: 

𝑒 = ‖𝑲̂𝑗(𝒑, 𝒒) − 𝑲𝑗(𝒑, 𝒒)‖     [ 33 ] 

if eq.28 and eq. 32 are substituted into eq.33 the error adopts the following form:  

𝑒 = ‖𝑱𝑀
𝑇 (𝒒)𝑲̂𝑀(𝒑)𝑱𝑀(𝒒) − 𝑱𝑇(𝒒)𝑲𝑐(𝒑, 𝒒)𝑱(𝒒)‖     [ 34 ] 

Using the DH parameters of the human arm, the Arm Jacobian 𝑱(𝒒) can be calculated 

analytically through standard procedures of robot kinematics. In addition, proper modelling 

of arm muscles allows to compute the Muscular Jacobian for a given vector of joint angles. 

The computation of 𝑱𝑀(𝒒) is discussed in detail later. Therefore, remain two unknown 

variables, 𝑲̂𝑀(𝒒), and 𝑲𝑐(𝒑, 𝒒). 

𝑲̂𝑀(𝒑) can be calculated through Hill’s activation dynamics equations. This procedure takes 

as an input the level of muscular activity that is approximated by the EMG signals. However, 

it depends on complex modelling of the human musculoskeletal system. Therefore, it is 

considered as computationally expensive and not suitable for real-time tasks. On the other 

side, there exist observations suggesting that the Central Nervous System solves this task in 

rather elegant, simple and effective manner. Taking into consideration such strategy utilized 

by the Central Nervous System and the assumption that muscular cocontractions mainly 

contribute to the area of the stiffness ellipse, a linear model for 𝑲̂𝑀(𝒑) is proposed. 

The idea behind such model is to interpret the level of cocontraction as an arithmetic 

operation of EMG signals. And then, identify the contribution of each muscle to the active 

variations of the area of the endpoint stiffness ellipse. It is proposed that: 

𝑲̂𝑀(𝒑) = 𝑎𝑐𝑐(𝒑)𝑲𝑠     [ 35 ] 

𝑎𝑐𝑐(𝒑) = 𝑐1 + 𝑐2𝐼𝑐𝑜𝑐(𝑝)     [ 36 ] 

𝑲𝑠 =

[
 
 
 
 
𝐾𝑠1

0 ⋯ 0

0 𝐾𝑠2
⋯ 0

0
0

0
0

⋱
0

0
𝐾𝑠𝑛𝑚]

 
 
 
 

     [ 37 ] 
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Where: 

• 𝑎𝑐𝑐(𝒑) models the muscular cocontraction taking into consideration the intrinsic 

muscle stiffness 𝑐1 and the active gain 𝑐2,  

• 𝐼𝑐𝑜𝑐(𝒑) is the cocontraction index.  It depends on the number of muscles monitored 

and can adopt several forms. The form proposed in [15] is simple sum of the EMG 

signals of the long heads of biceps brachii and triceps brachii. 

• 𝑲𝑠 is a constant diagonal matrix implementing the contributions of each considered 

muscle to the active variation of the area of the stiffness ellipse. 

Finally, the error can be represented as: 

𝑒 = ‖𝑱𝑀
𝑇 (𝒒)𝑎𝑐𝑐(𝒑)𝑲𝑠𝑱𝑀(𝒒) − 𝑱𝑇(𝒒)𝑲𝑐(𝒑, 𝒒)𝑱(𝒒)‖     [ 38 ] 

Taking into consideration that 𝑐1, 𝑐2, and the elements of 𝑲𝑠 are to be identified, 𝑲𝑐(𝒑, 𝒒) 

remains as the only unknown variable. This matrix is acquired experimentally as explained in 

the following Chapter. Therefore 𝑛𝑚 + 2  parameters should be identified by minimizing the 

error using Least Squares method. 

Once these parameters are identified, the joint stiffness matrix can be calculated as: 

𝑲𝑗(𝒑, 𝒒) = 𝑱𝑀
𝑇 (𝒒)𝑎𝑐𝑐(𝒑)𝑲𝑠𝑱𝑀(𝒒)     [ 39 ] 

The inputs and outputs of this method are summarized in Table 1. 

The joint stiffness matrix can be transformed to the cartesian space, thus resulting with the 

cartesian endpoint stiffness matrix by: 

𝑲𝑐(𝒑, 𝒒) = 𝑱+𝑇
(𝒒)[𝑲𝑗(𝒑, 𝒒) − 𝑮𝐽(𝒒)]𝑱+(𝒒)     [ 40 ] 

Where 𝑱+(𝒒) = 𝑲𝑗(𝒑, 𝒒)−1𝑱(𝒒)(𝑱(𝒒)𝑲𝑗(𝒑, 𝒒)−1𝑱(𝒒)𝑇)
−1

 is the right inverse of the Arm 

Jacobian 𝑱(𝒒) taking 𝑲𝑗(𝒑, 𝒒) as the metric tensor. [15] 

Substituting eq.39 into eq.40 finalizes the expression of the endpoint cartesian stiffness 

matrix to: 

𝑲𝑐(𝒑, 𝒒) = 𝑱+𝑇
(𝒒)[𝑱𝑀

𝑇 (𝒒)𝑎𝑐𝑐(𝒑)𝑲𝑠𝑱𝑀(𝒒) − 𝑮𝐽(𝒒)]𝑱+(𝒒)     [ 41 ] 

 Inputs Output 

𝒑 𝒒  

𝑰𝒄𝒐𝒄(𝒑) 𝑱(𝒒) 𝑱𝑀(𝒒) 𝑲𝑗(𝒑, 𝒒) 

Table 1. Inputs and outputs of the Least Squares identification method 
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4.1.1 Dimensionality of our case 

The model of the human arm developed in [33] has been extensively used, and it is 

considered reliable by the research community. It is preferred due to its compatibility with 

the biomechanics simulation software library, 

OpenSim. This software platform is particularly 

useful since it provides tools for computation of 

different dynamical, kinematical, and biological 

variables. In this model, the human arm is modelled 

as a kinematic chain of bodies and joints with 5 DOF, 

excluding the movements of the wrist. The joints 

considered are: 

1. Elevation angle of the arm, 

2. shoulder elevation angle, 

3. shoulder rotation angle,  

4. elbow flexion angle, and 

5. pro supination angle. 

Their position and direction in the kinematic chain 

can be observed in Figure 22. Therefore, the vector 

of joint angles 𝒒 ∈  ℝ5𝑥1 and the joint stiffness 

matrix 𝑲𝑗(𝒑, 𝒒) ∈  ℝ5𝑥5 . Furthermore, two 

dimensional motion is considered so the cartesian 

endpoint stiffness matrix 𝑲𝑐(𝒑, 𝒒) ∈  ℝ2𝑥2, and the 

Arm Jacobian 𝑱(𝒒) ∈  ℝ2𝑥5. 

The contributions of the following 12 dominant 

muscles in the human arm are taken into 

consideration:  

• Anterior, middle, and posterior deltoids,  

• long and lateral triceps, 

• long and short biceps, 

• brachioradialis, 

• extensors carpi radialis longus and carpi ulnaris, 

• flexors carpi radialis and carpi ulnaris. 

This makes 𝑛𝑚 = 12, so the Muscular Jacobian 𝑱𝑀(𝒒) ∈  ℝ5𝑥12 and 𝑲𝑠 ∈  ℝ12𝑥12. 

Additionally, 8 EMG signals of the muscles on the upper arm and forearm are monitored, 

resulting in 16 different EMG signals meaning 𝒑 ∈  ℝ1𝑥16. 

Figure 22. Kinematics of the human arm 
model developed in [33].  

elv_angle, shoulder_elv, shoulder_rot, 
elbow_flexion, and pro_sup are the notions of 

the joints respectively. 
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Adopting this method to our case results in inputs-output specification shown in Table 2. 

Inputs Output 

𝒑𝟏𝒙𝟏𝟔 𝒒𝟏𝒙5  

𝑰𝒄𝒐𝒄(𝒑)𝟏𝒙𝟏 𝑱(𝒒)2𝒙5 𝑱𝑀(𝒒)5𝑥12 𝑲𝑗(𝒑, 𝒒)5𝑥5 

 4.2 Machine Learning method 
According to the Hill’s model, the force exerted by the CE in the muscle is [31]: 

𝐹𝐶𝐸 = 𝐹max𝑎(𝑡)𝑓(𝑙𝑚)𝑔(𝑣𝑚)     [ 42 ] 

Where: 

• 𝐹max is the maximal force, 

• 𝑎(𝑡) is the percentage of muscle activation, 

• 𝑓(𝑙𝑚) is force-length function,  

• 𝑣𝑚 is the muscle shortening velocity, and 

• 𝑔(𝑣𝑚) is force-velocity function. 

The force-length function 𝑓(𝑙𝑚) and the force-velocity function 𝑔(𝑣𝑚) are both nonlinear 

components [34]. Nonlinearities in the force generating element of the muscle result with 

nonlinear behavior of the overall stiffness of 𝑘𝑚(𝒒, 𝑝). The shape and degree of nonlinearity 

might change due to characteristics of the subject e.g. age. Therefore, it is justified to expect 

that integrating such nonlinearities in a model might yield more accurate estimation results.  

Additionally, information integrated into a model is not completely related to the unique 

peculiar characteristics of the subject. It holds information on the basic phenomena that 

drive stiffness regulation by the Central Nervous System too. Therefore, in the process of 

modelling, it might be useful to exploit information common among the models of other 

users and adopt the peculiarities of the current user. 

Due to the abilities to model complex nonlinearities and reuse common information, Artificial 

Neural Network (ANN) model is proposed in this work.  

4.2.1 Architecture of Shallow Multilayer Artificial Neural Network model 

The architecture of the shallow multilayer ANN used is seven-layer ANN composed of an 

input layer, an output layer and five hidden layers.  

As INPUT, we use z-scores of: 

• The vector of human arm joint angles 𝒒,  

• the corresponding Muscular Jacobian matrix 𝑱𝑀(𝒒), and  

• the cocontraction index  𝐼𝑐𝑜𝑐(𝒑).  

Table 2. Inputs and outputs of the method adopted to the case of interest 
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As OUTPUT, the joint stiffness matrix 𝑲𝑗(𝒑, 𝒒) is used.  

Because 𝒒 ∈  ℝ5𝑥1, 𝑱𝑀(𝒒) ∈  ℝ5𝑥12, and 𝐼𝑐𝑜𝑐(𝒑) is a scalar, the size of the input layer would 

be 66. However, there are 26 elements of the Muscular Jacobian matrix which are constantly 

0. Such inputs don’t convey any information and they are discarded. Therefore, the input 

layer has 40 nodes. Since 𝑲𝑗(𝒑, 𝒒) ∈  ℝ5𝑥5, the output layer has 25 nodes. In between the 

input and the output layer there are five hidden layers. The first hidden layer consists of 30 

nodes, and the next 4 layers have 20 nodes each. This results with 3605 learnable weights 

and 135 biases. Trial and error procedure suggest that this complexity of the network coupled 

with appropriate protection against overfitting produces satisfactory results. The first three 

hidden layers implement standard Tan-Sigmoid activation function, while the others use 

linear activation function. These functions take the expression: 

𝑇𝑎𝑛 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 𝑎 =
2

1+𝑒−2∗𝑛 − 1     𝑃𝑢𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟: 𝑎 = 𝑛      [ 43 ] 

Where 𝑛 is the input of the node, and 𝑎 is the corresponding output. They are graphically 

shown on Figures 23. 

 

Figure 23. (a) Tan-Sigmoid, and (b) pure linear activation functions. 

Such linearity in the output enhances the abilities of the network to fit data instead of 

classifying it. The architecture of the ANN is shown in Figure 24 and the form of the 

input/output data is summarized in Table 3. 

Inputs Output 

𝒒𝟏𝒙𝟓 𝑱𝑀(𝒒)5𝑥8 𝐼𝑐𝑜𝑐(𝒑)1𝑥1 𝑲𝑗(𝒑, 𝒒)5𝑥5 

4.2.2. Training options 

Levenberg-Marquardt is used as optimization algorithm since it is considered to perform well 

with shallow multilayer ANN models. This optimization algorithm calculates the weights of 

the network according to the following equation: 

Figure 24. Architecture of the nominal ANN used. 

Table 3. ANN’s inputs and outputs. 
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𝒘𝑘+1 = 𝒘𝑘 − (𝑮𝑇𝑮 + 𝜇𝑮)−1𝑮𝑇𝒆     [ 44 ] 

Where 𝒘 is the vector of learnable elements (weights and biases), 𝒆 is the vector of network 

output errors, and 𝑮 is the gradient matrix that contains first derivatives of the network 

errors with respect to weights and biases. 𝜇 is a coefficient that transforms the behavior of 

the algorithm between behaving more like Newton’s method or more like Gradient Descent 

method. It’s changing according to the performance function which takes the vector 𝒆 as an 

argument. [35] In this work, the mean squared normalized error is considered as a 

performance function. 𝜇 is decreased for 0.1 after each step that reduces this function, and 

it is increased for 10 after each step that increases the performance function. 

Vector 𝒘 is initialized using Nguyen-Widrow initialization algorithm.  It generates initial 

weights and biases for every layer such that the active regions of the layer’s neurons are 

distributed evenly over the input space. [36] Such initialization contains a degree of 

randomness, so the initial values are not same every time the initialization is performed. 

Thus, the training process has a different starting point with every execution leading to a 

different result every time. Therefore, five training processes with different initializations are 

done. The best performing result is considered. 

The dataset provided to the algorithm is divided in two subsets: training, and testing. The 

ratio and strategy of the split depends on the specific application of the trained ANN. To 

protect against overfitting, Bayesian regularization takes place. The training procedure 

terminates if 𝜇 increases above certain threshold, or if the sum of squared errors is relatively 

constant over several epochs. Due to such regularization strategy, no validation subset is 

used. 

4.3 Experimental offline stiffness estimation1 
In both online stiffness estimation methods described here, the joint stiffness matrix 

𝑲𝑗(𝒑, 𝒒) is considered the output. After estimating 𝑲𝑗(𝒑, 𝒒), the transformation to the 

cartesian endpoint stiffness matrix 𝑲𝑐(𝒑, 𝒒) is straightforward by using the Arm Jacobian 

(eq.40).  

However, obtaining the joint stiffness matrix directly requires monitoring of the human arm 

torques, which in addition requires complex hardware and is hard to perform. Therefore, 

common practice is to estimate the cartesian stiffness matrix 𝑲𝑐(𝒑, 𝒒) and transform it to 

the joint space using eq. 32. 

Cartesian endpoint mechanical impedance was already introduced as dynamical relation 

between force and displacement of the human arm endpoint. Therefore, cartesian stiffness 

is usually estimated by a family of mechanical perturbations methods. Common across all 

these procedures is the applying of known mechanical perturbations on the endpoint of the 

                                                           
1 The experiments for offline generation of outputs were performed by a separate team working on this research project. 

Here considered for completeness. 
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human arm and monitoring the restoring forces. Such perturbations are performed when the 

arm endpoint is positioned in a certain cartesian point within the natural comfort zone of the 

user. This point serves as the nominal position around which the perturbations are 

performed. The union of such cartesian point and the corresponding human arm joint angles 

(arm configuration) is called a pose. Once the data of the displacements 𝒙 and forces 𝒇 is 

recorded, post-processing methods estimate the corresponding cartesian stiffness. 

Number of such methods exist but we take closer look to two of them in this work. The time-

domain displacement method [16], and the frequency domain method [15]. 

4.3.1. Hardware setup 

Both experimental methods may be performed using very similar hardware setup described 

here. 

Mechanical perturbations are applied to the subject’s wrist by anthropomorphic robotic 

manipulator. The subject holds the end-effector of the robot while the wrist is immobilized. 

Therefore, the perturbations of the hand are transferred to the wrist, which is considered 

the endpoint of the arm. There is 6 axes force sensor attached to the end-effector to measure 

the reaction forces of the human arm. The subject is equipped with two armband devices 

recording EMG signals and joint angles. One of these devices is attached to the forearm and 

one to the upper arm. 16 EMG signals are recorded in total. 

During experiments of the time-domain displacement method, the subject also has support 

for the elbow. It puts the axes of the forearm and the upper arm in same plane. This is the 

only setup difference between the two experimental methods. 

The complete hardware setup is shown on Figure 25(a). 

The mechanical perturbations are performed by KUKA® lwr 4+ (KUKA Robotics Corporation, 

Augsburg, Bavaria, Germany) robotic manipulator in position control (constant infinite 

stiffness in all directions). The reaction forces are recorded by M3815C force sensor provided 

by Sunrise Instruments (Nanning, China). Devices used to record EMGs and joint angels are 

Thalmic Labs®’ Myo armbands (Kitchener, Canada).  

The data is sampled with frequency of 250Hz, and every experiment lasts approximately 35 

seconds. 

4.3.2 Time-domain displacement method 

In the time-domain displacement method, the assumption about the dominance of the 

stiffness in the impedance of the muscle is considered. Based on this assumption, it is further 

assumed that the complete neuromuscular system is predominantly spring-like. Therefore, 

the behavior of the endpoint cartesian impedance is also assumed to be purely elastic around 

the equilibrium position. 
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This method is performed solely in the planar case. Therefore, only the 𝑓𝑥 and 𝑓𝑦 components 

of the force and x and y components of the displacement are considered. The subject holds 

the robot’s end-effector in one of a pre-defined set of cartesian positions. 8 perturbations 

are applied per position. The displacements are with magnitude of 5mm-8mm in a casual 

direction selected from a list of possible angles ranging from 0o to 360o, 45o apart. The 

displacement is done in a time-interval of about 120ms and is followed by holding phase in 

the displaced positions lasting 1.5s. 

In the post-processing stage, due to the assumption of pure elasticity around an equilibrium 

position, the following relation between the recorded forces and displacements is 

considered: 

[
𝑓𝑥
𝑓𝑦

] = − [
𝐾𝑥𝑥 𝐾𝑥𝑦

𝐾𝑦𝑥 𝐾𝑦𝑦
] [

𝑑𝑥
𝑑𝑦

]     [ 45 ] 

Where 𝐾𝑥𝑥,𝐾𝑦𝑦, 𝐾𝑥𝑦, and 𝐾𝑦𝑥 are the elements of the cartesian stiffness matrix. Standard 

linear least squares identification procedure is used to determine these elements. [16] 

4.3.2 Frequency domain method 

In this work however, the frequency method is used.  The idea behind this method is to 

identify the parameters of the human arm impedance in certain range of frequencies. 

Therefore, eliminating potential adverse effects of higher harmonics.  

Figure 25. (a) Hardware setup. (b) Experiment performed in different pose in comparison with (a) 

anthropom-

orphic 

manipulator 

force sensor Armband devices 

integrating EMG 

electrodes and 

IMUs 

(a) 

(b) 
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This method is performed in three dimensional workspace, and therefore all components of 

the force 𝑓𝑥, 𝑓𝑦, and 𝑓𝑧 are recorded. All components of the displacement x, y, and z as well. 

The subject holds the robot’s end-effector in one out of pre-defined set of cartesian 

positions. 4 perturbations per second are applied for 35 seconds. The displacement 

amplitude is 20mm and the orientation is completely casual. During the experiment, an index 

of muscular cocontraction is calculated from 16 EMG signals and is displayed to the subject 

in real-time. The subject is asked to keep the cocontraction index in one range out of the pre-

defined set of ranges. Having the cocontraction index in several different ranges results with 

different stiffness levels of the human arm. 

In the post-processing stage, the MIMO dynamics of the human arm endpoint are 

decomposed into linear systems associating each input with each output. Therefore, relating 

Fourier transformations of forces and displacements by:  

[

𝑓𝑥(𝜔)

𝑓𝑦(𝜔)

𝑓𝑧(𝜔)

] = [

𝑮𝑥𝑥(𝜔) 𝑮𝑥𝑦(𝜔) 𝑮𝑥𝑧(𝜔)

𝑮𝑦𝑥(𝜔) 𝑮𝑦𝑦(𝜔) 𝑮𝑦𝑧(𝜔)

𝑮𝑧𝑥(𝜔) 𝑮𝑧𝑦(𝜔) 𝑮𝑧𝑧(𝜔)
] [

x(𝜔)
y(𝜔)
z(𝜔)

]     [ 46 ] 

Transfer functions 𝑮𝑖𝑗(𝜔) are estimated by a non-parametric identification algorithm fed 

with smoothed spectral estimates of force and displacement data. Consequently, for 𝑮𝑖𝑗(𝜔) 

a mechanical impedance system of second order is adopted:  

𝑮𝑖𝑗(𝜔) = 𝑰𝑐𝑖𝑗𝑠
2 + 𝑩𝑐𝑖𝑗𝑠 + 𝑲𝑐𝑖𝑗        𝑠 = 𝜔√−1     [ 47 ] 

Where 𝑰𝑐𝑖𝑗, 𝑩𝑐𝑖𝑗, and 𝑲𝑐𝑖𝑗 denote the endpoint inertia, damping, and stiffness matrices, 

respectively. These parameters are identified using least squares algorithm in the frequency 

from 0Hz to 10Hz. [15] 

4.3.3 Performed experiments 

Three healthy subjects of age 25, 24, and 23 took part in the experiments. User 1 performed 

experiments in 7 different poses, each with 5 different ranges of cocontraction index. 

Resulting in 35 successful trials. User 2 performed experiments in 8 different poses, each with 

4 different levels of cocontraction index. Resulting in 32 successful trials. And User 3 

performed experiments in 7 different poses and 4 different cocontraction levels, making for 

28 successful trials. This user data is summarized in Table 4. 

User Poses 
Cocontraction 

level 
Number of 

observations 

1 7 5 35 

2 8 4 32 

3 7 4 28 

Total number of observations: 95 

Table 4. Number of observations per user. 
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The estimated cartesian endpoint stiffness matrix 𝑲𝑐 ∈ ℝ3𝑥3  is transformed to planar 

format in order to fit the goal of this work. In accordance with the online stiffness estimation 

methods proposed in this work, each observation takes the form shown on the following 

Table 5. 

𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒𝟒 𝒒𝟓 𝒑𝟏 … 𝒑𝟏𝟔 𝑲𝒄[𝟐𝒙𝟐] 

 

4.4 Muscular Jacobian  

4.4.1 Definition 

The Muscular Jacobian 𝑱𝑀(𝒒) represent a transformation between the muscular space and 

the joint space of the human arm. It relates the musculotendon length changes to the joint 

angle variations by 𝑱𝑀(𝒒)𝒒̇ = 𝒍̇. Where 𝒍 is the vector of musculotendon lengths. For 

simplicity, by musculotendon length we assume the length of the path of muscle tension 

applied during the activity of muscle. Therefore, the Muscular Jacobian takes the form: 

𝑱𝑀(𝒒) =

[
 
 
 
 
 

𝛿𝑙1(𝒒)

𝛿𝑞1

𝛿𝑙1(𝒒)

𝛿𝑞2
⋯

𝛿𝑙1(𝒒)

𝛿𝑞𝑛

𝛿𝑙2(𝒒)

𝛿𝑞1

𝛿𝑙2(𝒒)

𝛿𝑞2
⋯

𝛿𝑙2(𝒒)

𝛿𝑞𝑛

⋮
𝛿𝑙𝑛𝑚(𝒒)

𝛿𝑞1

⋮
𝛿𝑙𝑛𝑚(𝒒)

𝛿𝑞2

⋱
⋯

⋮
𝛿𝑙𝑛𝑚(𝒒)

𝛿𝑞𝑛 ]
 
 
 
 
 

     [ 48 ] 

Where 𝑛𝑚 is the number of observed muscles and 

𝑛 is the number of considered joint angles. It is 

assumed that no torques are present at the arm 

joints.  In this work, tracking 𝑱𝑀(𝒒) is vital since it’s 

required as input in both online stiffness 

estimation methods discussed. The model of the 

human arm introduced in Chapter 4.1.1 and the 

software libraries associated are used for 

computation of the Muscular Jacobian.  

We can calculate 𝛿𝑙𝑖(𝒒)/𝛿𝑞𝑗 directly by making 

small change of Δ𝑞𝑗 and measuring the resulting 

change Δ𝑙𝑖. This could be applicable for muscles with simple linear musculotendon paths. I.e. 

ones which occupy the shortest path between two points defining the direction of exerted 

tension. Such muscles are shown on Figure 26. However, muscles often have musculotendon 

paths that are wrapped around joints and they are highly nonlinear. The length of such 

musculotendon paths is usually calculated numerically and therefore approximate solution 

is acquired. This leads to numerical variability in the calculated length 𝑙𝑖 which renders the 

Figure 26. The brachialis (BRA) and 
brachioradialis (BRD) muscles are 

representatives of muscles that can be modelled 
with simple linear musculotendon paths (in red). 

JC is Joint Center of the elbow joint. 

Table 5. The set of data in one observation. 
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calculation of Δ𝑙𝑖 problematic. The smaller the change of 𝑙𝑖, the more numerical variability in 

the result. Therefore, alternative approach is used. 

The Muscular Jacobian element gives quantitative expression on the effectiveness of torque 

generation of a musculotendon tension into the considered joint at the specified 

configuration. If we assume that a human arm in certain static configuration is not 

performing any mechanical work, then we can use the work balance equation: 

𝑠𝑖𝑑𝑙𝑖(𝒒) = 𝜏𝑞𝑗
𝑑𝑞𝑗     [ 49 ] 

Where 𝑠𝑖 is the tension of the musculotendon of the muscle 𝑖 with length 𝑙𝑖, and 𝜏𝑞𝑗
 is the 

torque at the considered human arm joint angle. From eq.49 we can represent the general 

element of the Muscular Jacobian matrix: 

𝑑𝑙𝑖(𝒒)

𝑑𝑞𝑗
=

𝜏𝑞𝑗

𝑠𝑖
= 𝑟𝑖𝑗(𝒒)     [ 50 ] 

Where 𝑟𝑖𝑗 is the moment arm of the muscle 𝑖 with regards to the joint 𝑞𝑗. The moment arm 

is mechanical concept defined as the distance from force line of action to the center of 

rotation. Examples of moment arms are shown on Figure 27. Therefore, there is an equality 

between the Muscular Jacobian and the matrix of moment arms: 

𝑱𝑀(𝒒) =

[
 
 
 
𝑟11(𝒒) 𝑟12(𝒒) ⋯ 𝑟1𝑛(𝒒)

𝑟21(𝒒) 𝑟22(𝒒) ⋯ 𝑟2𝑛(𝒒)
⋮

𝑟𝑛𝑚1(𝒒)
⋮

𝑟𝑛𝑚2(𝒒)
⋱
⋯

⋮
𝑟𝑛𝑚𝑛(𝒒)]

 
 
 
     [ 51 ] 

 

Figure 28. Graphical representation of a model of biomechanical joint 𝜃 between 
bodies A and B. 

4.4.2 Algorithm for calculation of the moment arm matrix 

Unfortunately, not all joints systems on the human body are as simple and regular as the 

ones displayed in Figures 26 and 27. To perform reliable simulations, often the 

musculotendon path has to be modelled with higher complexity. Generally, musculotendon 

paths start from a starting point fixed to a body, they pass through several via points and 

Figure 27. Example for 
moment arms (in light blue) 

for muscles that can be 
modelled with simple 
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over frictionless wrapping surfaces before finishing at an insertion point fixed on another 

distal body. Additionally, what is considered biological human arm joint (also called 

generalized coordinate), on the mechanical level might be modelled with few standard joints 

that doesn’t even have to be exclusively revolute. However, they can be coupled and/or 

constrained to realize a generalized coordinate. For example, the neck has few degrees of 

freedom (generalized coordinates), but it involves the coordinated motion of multiple 

mechanical joints in а model. Therefore, the general joint between two bodies A and B is 

denoted with 𝜃. Its motion might be result of several coupled joints, but it also might be a 

primitive joint. Also, it might represent the motion of a generalized coordinate 𝑞, or it may 

be one of the coupled joints used to model the coordinate. Therefore: 

𝜃 = 𝜃(𝜽)      𝑞 = 𝑞(𝜽)     [ 52 ] 

If 𝜽 is scalar, then the joint (or the generalized coordinate) is of the primitive type 

represented in Figure 26.  

Such muscle-joint is presented in Figure 28 where: 

• A and B are two bodies,  

• 𝜃 = 𝜃(𝜽) = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 is the joint angle where 

o  𝜽 = [𝜃1 𝜃2 𝜃3 𝜃4] and 𝜃𝑘 = 𝛼𝑘𝜃 

• 𝑙 is the musculotendon path upon which tension 𝑠 is applied,  

• 𝜃5,6 = 𝛼5,6𝜃 are other coupled joints but they affect the musculotendon path, not 

the joint angle 𝜃. 

To calculate the moment arm of this system, few consequences of such modelling should be 

observed. 

1. It should be stated that in OpenSim, the speeds of the generalized coordinates are 

not given directly by the time derivative of the coordinates, instead: 

𝒒̇ =
𝑑𝒒

𝑑𝑡
= 𝑵𝒖     [ 53 ] 

Where 𝒖 is the vector of generalized speeds, and 𝑵 is a block diagonal matrix.  

2. Regarding the musculotendon path, uniform tension and linear tension-to-force 

transmission is assumed. This means that the spatial force applied by the muscle is 

completely described by a scalar tension 𝑠 > 0. Therefore: 

𝑭(𝒒, 𝑠) = 𝑻(𝒒)𝑠     [ 54 ] 

Where 𝑭(𝒒, 𝑠) is the matrix of spatial forces applied by the muscle with tension 𝑠, 

when the configuration of the arm is 𝒒. 𝑻(𝒒) is the force transmission matrix that 

linearly relates the muscle tension 𝑠 and the spatial force matrix. OpenSim is always 
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capable of computing 𝑭(𝒒, 𝑠) for a given 𝑠 and 𝒒, but the matrix 𝑻(𝒒) is not always 

explicitly calculated.  

3. The matrix of spatial forces 𝑭(𝒒, 𝑠) can be mapped to the vector of forces/torques 

that act along the generalized coordinates (vector of generalized forces) by: 

𝒇𝑞 = 𝑱𝑠
𝑇𝑭     [ 55 ] 

Where 𝒇𝑞 is the vector of generalized forces, and  𝑱𝑠 = 𝑱𝑠(𝒒) is the system 

Jacobian that maps generalized speeds to the body spatial velocities. Even though 

the term generalized forces is used, 𝒇𝑞 also implies torques.  

4. Since we assumed that in general case there is possible coupling between the 

generalized coordinates and 𝜽, then: 

𝒖 = 𝑪𝜽𝜽̇     [ 56 ] 

Where 𝑪𝜽 ∈ ℝ𝑛𝑥1 is a coupling column matrix.  

In order to calculate the muscle moment arm for the general case shown in Figure 28 without 

explicitly computing 𝑙 ̇as Δ𝑙, we can use the definition of moment arm introduced in eq.50 

adapted for the general joint angle 𝜃: 

𝑟(𝜽) =
𝑑𝑙(𝜽)

𝑑𝜃
=

𝑑𝑙(𝜽)

𝑑𝑡
𝑑𝜃

𝑑𝑡

=
𝑙̇(𝜽)

𝜃̇
     [ 57 ] 

Taking into consideration the necessary power equivalence 𝒇𝑞
𝑇𝒖 = 𝑠𝑙,̇ then: 

𝑟(𝜽) =
𝑙̇

𝜃̇
=

𝒇𝑞
𝑇𝒖

𝑠𝜃̇
     [ 58 ] 

Combining equations eq.58, eq.56, eq.55, and eq.54, the final equation for calculating the 

moment arm is derived: 

𝑟(𝜽) =
𝒇𝑞

𝑇𝑪𝜽

𝑠
     [ 59 ] 

It is important to notice that in this equation, there is no need of explicit calculation of 𝑙.̇ 

The algorithm to calculate the moment arm with this expression is: 

1. Calculate 𝐂𝛉. It can be calculated by setting the rate of change of the joint angle of 

interest to a constant non-zero value (𝜃̇ = 𝜃̇0). Then OpenSim’s solver can be used 

to find a vector of generalized speeds 𝒖 such that all coupling constraints are satisfied 

(in both positional and velocity level) so 𝜃̇(𝒖) = 𝜃̇0. Once the elements of this vector 

𝒖 are computed, we can calculate the elements of 𝑪𝜽 as: 𝑐𝑖 =
𝑢𝑖

𝜃̇0
. 
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2. Using eq. 54 calculate the spatial force matrix 𝑭(𝒒, 𝑠) for a non-zero value of the 

tension 𝑠 = 𝑠0. 

3. Using the transformation in eq.55 map the spatial forces to the generalized forces 

vector 𝒇𝑞
𝑇. 

4. Use eq.59 to calculate the moment arm 𝑟(𝜽). 

[37]  

This algorithm is implemented with OpenSim’s API library, and this software framework is 

used to calculate 𝑱𝑀(𝒒) ∈ ℝ12𝑥 5 for every human arm configuration 𝒒.
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5. Results 

As a general metric to evaluate the results of both the online stiffness estimation methods, 

performance function proposed in [15] is used. This metric is defined as error by: 

𝑒𝐾 =
1

𝑛𝑇
∑

‖𝑱𝑀𝑖

𝑇 (𝒒)𝑎𝑐𝑐𝑖
(𝒑)𝑲𝑠𝐽𝑀𝑖

(𝒒) − 𝑱𝑖
𝑇(𝒒)𝑲𝑐𝑖

(𝒑, 𝒒)𝑱𝑖(𝒒)‖

‖𝑲𝑐𝑖
(𝒑, 𝒒)‖

𝑛𝑇

𝑖=1

    [60]  

Where 𝑛𝑇 is the number of samples considered in the test. Combining eq.39, eq.32, and 

eq.60, the more general form of the metric can be formed: 

𝑒𝐾 =
1

𝑛𝑇
∑

‖𝑲̂𝑗𝑖
(𝒑, 𝒒) − 𝑲𝑗𝑖

(𝒑, 𝒒)‖

‖𝑲𝑐𝑖
(𝒑, 𝒒)‖

    [61]

𝑛𝑇

𝑖=1

 

To evaluate the performance of the Machine Learning method in different strategies of use, 

the 91 observations gathered from the experimental offline stiffness estimation are split into 

different training and test subsets. Each split is used to evaluate the performance of the 

method in a particular strategy of use. It should be noticed that taking into consideration the 

infinite number of possible arm configurations and stiffness levels, dataset of this size 

represents significant challenge. Even more, when the limited diversity of data is considered. 

Additionally, the calculation of the Muscular Jacobian was performed using generic model of 

the human arm. 

5.1 User specific strategy  
In order to make comparison between the LSQ identification method and the machine 

learning approach, a user specific strategy must be evaluated. This is to say, for the 

identification of the linear models and for the training of the ANN models, only the data of a 

specific user is used. The user specific data is casually split in two subsets. 80% is used for 

LSQ identification and training, and 20% is used for testing. Data separation is shown in Figure 

29. Same procedure applies for all users. For such experiments, the evaluation of the 

performance function 𝑒𝐾 is shown in Table 6. Additionally, actual and estimated values of the 
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joint stiffness in the elbow and in the shoulder for the test subset of User 1 are shown in 

Figure 31. User 2 and User 3’s estimates maintain similar behavior. 

 LSQ identification method Machine Learning method 

User 1 6.8% 5.0% 

User 2 9.3% 4% 

User 3 11% 6.3% 

 

 LSQ identification method Machine Learning method 

User 1 6.8% 7.6% 

User 2 9.3% 3.5% 

User 3 11% 8% 

 

5.2 Non-user specific strategy 
To evaluate how considering the data from multiple users affected the user-specific results, 

a non-user specific strategy was applied. The LSQ identification method is user-specific by its 

definition, therefore only the Machine Learning method is evaluated with this strategy. In 

the user-specific strategy, a separate ANN was trained for every user. However, in this case, 

one ANN is used to estimate the joint stiffness of all the users. The model is trained using 

observations of all users, but it is tested with a testing subset specific to each user. This 

dataset split is shown in Figure 30. The evaluation of the performance function 𝑒𝐾 is shown 

in Table 7. 

  

User N 

35 total observations 

User N 

28 observations for ANN training 

 

User N 

28 observations for LSQ identification 

 

User N 

7 test observations 

80% 

20% 80% 

Figure 29. Data separation for user-specific strategy. 

20% 

20% 

20% 

User 1: 35 observations 

User 2: 32 observations 

User 3: 28 observations 

7 test observations 

6 test observations 

5 test observations 

77 observations used 

in ANN model training 

process 

80% 

80% 

80% 

Figure 30. Data separation for non-user specific strategy. 

Table 7. 𝑒𝐾 evaluation for the non-user specific strategy. 

 

Table 6. 𝑒𝐾 evaluation for the user specific strategy. 
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Figure 31. Joint stiffness estimates of the LSQ identification method and the Machine Learning method for the 
test subset of User 1. (a) Elevation plane joint of the shoulder.  (b) Shoulder elevation joint. (c) Shoulder rotation 

joint. (d) Elbow flexion 
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5.3 Interpolation performance 
In order to test the interpolation performance of the ANN model, two separate simulations 

were performed. In the first test, the set of observations of each user was split so that all 

observations for one specific pose were used as test subset. The rest of the data was used 

for training. This simulation is used to evaluate the performance of the ANN when the data 

for a specific arm configuration hasn’t been presented during training. Therefore, the ability 

of the ANN model to interpolate from the data of the nearby arm configurations is tested. 

Data separation for User N for both cases is shown in Figure 32, the sample applies for the 

other users. The performance function 𝑒𝐾 evaluation is shown in Table 8, and the joint 

stiffness estimates for the case of User 1 are presented in Figure 33. Other users maintain 

similar behavior. In the second test, the observations of each user were split so that all 

observations for one specific level of stiffness were used as test subset. The rest of the data 

was used for training.  This simulation intends to test the capability of the ANN model to 

interpolate between levels of stiffness. The 𝑒𝐾 evaluation is shown in Table 8, and the joint 

stiffness estimates for User 1 are shown in Figure 34. User 2 and User 3’s estimates maintain 

similar behavior. 

 
Pose interpolation 

performance 
Stiffness interpolation 

performance 

User 1 6.4% 3.5% 

User 2 8.1% 4.9% 

User 3 9% 4.8% 

 

User 1:  

35 

observations 

5 observations of a 

specific pose used for 

testing 

7 observations of a 

specific stiffness level 

used for testing 

Simulation 

1 

Simulation 

2 

30 observations used for 

training 

28 observations used for 

training 

Simulation 

1 

Simulation 

2 
Figure 32. Data separation for interpolation performance evaluations. 

Table 8. 𝑒𝐾 evaluation of pose and stiffness interpolation performance 
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Figure 33. Pose interpolation performance. Joint stiffness estimates of the Machine Learning method for the 
pose interpolation test subset of User 1. (a) Elevation plane joint of the shoulder.  (b) Shoulder elevation joint. (c) 

Shoulder rotation joint. (d) Elbow flexion 
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Figure 34. Stiffness level interpolation performance. Joint stiffness estimates of the Machine Learning method for 
the stiffness interpolation subset of User 1. (a) Elevation plane joint of the shoulder.  (b) Shoulder elevation joint. 

(c) Shoulder rotation joint. 
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6. Discussion 

Results presented in Table 6 indicate lower evaluation of the performance function 𝑒𝐾 for 

the Machine Learning method in the user specific case. Due to adoption of non-linearities in 

the ANN model, such results are expected. The performance of the ANN model in non-user 

specific strategy indicates lower 𝑒𝐾 evaluation in two cases compared to the linear model, 

and one case compared to the user specific strategy. However, observing the average error 

throughout all the users (Table 9), the user specific strategy with the Machine learning 

method performs slightly better compared to the non-user specific strategy. If the number 

of users considered in the training of the non-user specific ANN model increase, its average 

𝑒𝐾 throughout all the users is expected to decrease further. Possibly, lower than the average 

𝑒𝐾 of the user specific ANN. 

LSQ identification method Machine Learning method 

user specific user specific non-user specific 

9.03% 5.1% 6.36% 

 

The simulations performed to evaluate the interpolation performance suggest reliable 

behavior of the ANN model. This reliability comes from the comparability of the 𝑒𝐾 

evaluations of these simulations, shown in Table 8, to the general evaluation of both methods 

shown in Table 6 and Table 7. 𝑒𝐾 evaluations are lower for the stiffness interpolation 

performance in comparison with the evaluations for the pose interpolation performance. 

This suggests that the ANN internally develops efficient rules for stiffness level interpolation 

in arm configurations presented during training. However, if the ANN is presented with an 

input with general arm configuration, it interpolates the parameters of such rule using 

knowledge of rules for nearby arm configurations. This shows that the ANN model has 

adopted proper fitting properties and it overcame the data diversity limitations of the offline 

experimental stiffness estimation method. 

Table 9. Average 𝑒𝐾 evaluation of all users for both strategies. 
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7. Future work 

As a rule of thumb, the wider the information conveyed by the training subset, the better the 

performance of a Machine Learning method. Such rule applies to the method presented in 

this work too, taken into consideration that in the size of the training subset, the diversity of 

the data is considered too. However, due to the time and resource consuming nature of the 

offline experimental stiffness estimation method, several techniques to increase accuracy 

are proposed for further investigation: 

1. Transfer learning. If offline experimental stiffness estimation is performed for 

sufficient number of subjects, a non-user specific ANN model could be trained. Such 

model would integrate the basic biological phenomenology of the Central Nervous 

System control over human arm stiffness. Therefore, this ANN might serve as a core 

model that describes the stiffness control behavior common among human beings. 

However, in order to achieve better performance, it could be adapted to a particular 

user of interest by Transfer Learning. Such adaption is performed by retraining only 

few of the last layers of the ANN model. Retraining might be done with small training 

subset containing low number of poses and possibly only the highest and the lowest 

stiffness levels. Thus, reducing the burden of the offline experimental method for 

new users. This technique results with hybrid ANN model that integrates the 

advantages of user specific and non-user specific strategies. 

2. ANN ensemble. As pointed out previously, the training of each ANN model starts with 

different initialization values of the learnable elements. This leads to different 

performance of each ANN model. If small set of data is available, training several 

ANN models and averaging their output might result with increased performance. 

3. Ensemble of both methods proposed. Another form of working ensemble might be 

achieved if both the LSQ identification method and the Machine Learning method 

are used together. The output of such approach might be aggregated by averaging 

the individual outputs of both methods. Additionally, an attempt to characterize the 

difference between the individual outputs might be useful. Even more educated 

guess might be made by utilizing such characterization with model predictive 

methods such as Kalman predictor. 
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During this work, it was observed that the interpolation characteristics of the ANN largely 

depend on the ANN architecture. Particularly on the number and arrangement of layers and 

the activation functions they adopt. Possible investigation in the characterization of the 

relation between the ANN’s architecture and the stiffness and pose interpolation 

performance might be meaningful. It may provide guiding information useful in developing 

ANN model that utilizes a-priori information about the nature of the task and workspace. 



53 
 

8. Conclusion 

The aim of this work is to propose and evaluate the performance of human arm stiffness 

estimation by a Machine Learning method. In the beginning, an introduction to HRI is first 

given. Contemporary use in manufacturing and medicine is also reviewed. Attention is payed 

to the special case of exoskeletons too. A review of state of the art places this work in proper 

position in the spectrum of bioengineering, robotics, and applied artificial intelligence. 

Following, definition of human arm stiffness is given with a review on the purpose and 

strategies of its regulation by the Central Nervous System. A Machine Learning method is 

proposed alongside LSQ identification method. Both methods utilize EMG signals along with 

human arm joint angles and the Muscular Jacobian in order to estimate the joint stiffness 

matrix. The LSQ identification method proposes linear model based on biological insight, and 

the Machine Learning method uses shallow multilayer ANN model. Then, two offline 

experimental methods for obtaining human arm stiffness are described. The data obtained 

with such methods is used for identification and training of the models proposed. Following, 

the Muscular Jacobian is defined and its equivalence with the moment arm matrix is shown. 

The method used to perform online calculation of the moment arms is derived. In the Results 

section, user specific and non-user specific strategies of the Machine Learning method are 

evaluated. Lower estimation error is shown by the user specific Machine Learning method 

compared to the linear model identified with LSQ procedure. The possibility of better 

performance of the non-user specific method is also argued. Additionally, the interpolation 

performance of the ANN model is evaluated both in the case of pose and stiffness 

interpolation with acceptable outcomes. 

Potentially, both strategies of the Machine Learning method can be utilized as primary or 

advisory human arm joint stiffness transducers. They could augment the diversity of the input 

of variable impedance controllers. Therefore, enabling them to bring higher stability, 

accuracy, and intuitiveness in physical HRI scenarios. Tasks which require higher degree of 

safety and/or are more likely to involve small number of users might find the user specific 

strategy more appropriate. E.g. medical scenarios. On the other hand, scenarios of industrial 

collaboration, e.g. skill transfer, that don’t involve high degrees of safety might find the non-

user specific strategy more favorable. 
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