
POLITECNICO DI MILANO 

Scuola di Ingegneria Industriale e dell’Informazione 

Corso di Laurea Magistrale in Automation and Control Engineering 

 

 

 

 

Robot Assisted Minimally Invasive Surgery- Performance Analysis 

 

 

 

 

 

 

 

Supervisor: Tesi di Laurea di: 
Prof. Luca Bascetta        Jagadesh Manivannan 
 Matricola:872291 

Co- Supervisor:  
Prof. Elena De Momi 

 

 

Anno Accademico 2018/2019 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Sommario 
 

 Questa tesi confronta le caratteristiche di prestazione di due controllori per 

un robot 7- GdL (Gradi di libertà) utilizzato per la chirurgia mini-invasiva assistita da 

robot (RAMIS). Questa tecnica garantisce il soddisfacimento di un vincolo chiamato 

"Remote Center of Motion" (RCM). Sono stati implementati due controller chiamati 

Cartesian Compliance Controller (CCC) e Adaptive Fuzzy Controller (AFC). Sono stati 

eseguiti esperimenti con compiti chirurgici virtuali, in un ambiente di realtà 

aumentata. Per validare la strategia di controllo proposta, sono stati eseguiti 

esperimenti con il robot KUKA LWR4+ in cui il robot ha seguito autonomamente il 

percorso relativo ad una attivita in realtà virtuale generata online. I risultati 

ottenuti sono stati analizzati con i metodi Analysis of Variance (ANOVA) e Kruskal-

Wallis, sono stati inoltre eseguiti vari test, basati sulla distribuzione normale, dei 

dati ottenuti con lo Statistics and Machine Learning Toolbox di MATLAB. I risultati 

dimostrano che l'accuratezza dell’end-effector finale e il vincolo RCM possono 

essere garantiti, riducendo quindi l'errore di posizione cartesiano e l'errore di 

restrizione RCM. Oltre a questo, i risultati Kruskal-Wallis dimostrano anche che il 

controller CCC è influenzato dal compito virtuale in modo più evidente mentre l'AFC 

è meno influenzato dalle attività virtuali, migliorando così le sue prestazioni. I 

risultati di ANOVA e Kruskal-Wallis riportano anche che l'errore di posizione 

cartesiano e l'errore di restrizione RCM sono stati tutti ridotti nell'AFC rispetto al 

CCC, dimostando così che l'AFC ha caratteristiche di prestazioni più elevate rispetto 

a CCC. 
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Abstract 
 

 This thesis compares the performance of two controllers for a 7-DoF (Degree 

of Freedom) robot used for robot assisted minimally invasive surgery (RAMIS). This 

guarantees a constraint called “Remote Center of Motion” (RCM). Two controllers 

called Cartesian Compliance Controller (CCC) and Adaptive Fuzzy Controller (AFC) 

are implemented and experiments with virtual surgical tasks, in an augmented 

reality environment are performed. The robot followed the path autonomously 

over a virtual reality task that is generated online, to verify and validate the 

proposed control strategy using the KUKA LWR4+ robot. The obtained results are 

analyzed with the Analysis of Variance (ANOVA) and Kruskal-Wallis tools and 

further followed by several tests based on the normality distribution of the 

obtained data using MATLAB,2018a (Statistics and Machine Learning Toolbox). 

The results demonstrate that the end-effector’s accuracy as well as RCM constraint 

can be guaranteed, thereby reducing the Cartesian positional error and the RCM 

constraint error. In addition to this, Kruskal-Wallis results also prove that the CCC 

controller being influenced by the virtual task to a greater significance while the 

AFC being less influenced by the virtual tasks, thereby making its performance 

better. The results of ANOVA and Kruskal-Wallis also report that the Cartesian 

positional error and RCM constraint error were all reduced in the AFC compared to 

the CCC, thus making AFC with higher performance characteristics than CCC. 
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Introduction 
 

Robot-assisted surgery has been more popular over the recent years for the 
advantages it can offer, like greater surgical precision, increased range of motion, 
improved dexterity and enhanced visualization for surgeons [1]. In the traditional 
Minimally Invasive Surgery, the surgical tip must go through small incisions on the 
patient’s abdominal wall. Each small incision produces a kinematic constraint, 
commonly known as the Remote Center of Motion (RCM) constraint [2], [3]. In 
general, the RCM constraint can be active or passive, where the passive constraint 
is maintained mechanically, while the active method is known to be achieved with 
a software controller [4], [5] and is more popular in the non-clinical research, since 
it is cost-less and provides a flexible task space.  

A Cartesian Compliance Controller (CCC) and an Adaptive Fuzzy Controller 
(AFC) was implemented as in [6]. The two controllers’ performance with respect to 
the RCM constraint error and Cartesian positional error are compared with various 
techniques available for data analysis. 

A collection of statistical models and their associated estimation procedures 
(such as variation among and between groups) were used to analyze the 
differences among group means in a sample. Several methods like Analysis of 
variance (ANOVA), Kruskal-Wallis were in existence from 20th century [7]. 
Randomization models were developed by several researchers as in [8], [9], [10]. 
ANOVA ensures computational elegance, and this made it so popular in the 
mathematics and statistical society; Kruskal-Wallis is more preferred than ANOVA 
especially in cases where the distribution of samples are not normally distributed. 
Kruskal-Wallis performs the non- parametric one-way ANOVA for non-normally 
distributed data [11], [12], [13]. The significant differences among the specific 
groups can be calculated using Mann-Whitney U test, Tukey’s post-hoc test, 
Bonferroni test, Dunn’s test, etc. [14], [15].  Some of the available tools for data 
analysis is reported in Table 1. 
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Type of Test Use 

Correlational These tests look for an association between variables 

Pearson 
correlation 

Tests for the strength of the association between two 
continuous variables 

Spearman 
correlation 

Tests for the strength of the association between two ordinal 
variables (does not rely on the assumption of normally 

distributed data) 

Chi-square 
Tests for the strength of the association between two 

categorical variables 

Comparison of Means: look for the difference between the means of variables 

Paired T-test Tests for the difference between two related variables 

Independent T-
test 

Tests for the difference between two independent variables 

ANOVA 
Tests the difference between group means after any other 

variance in the outcome variable is accounted for 

Regression: assess if change in one variable predicts change in another variable 

Simple 
regression 

Tests how change in the predictor variable predicts the level of 
change in the outcome variable 

Multiple 
regression 

Tests how change in the combination of two or more predictor 
variables predict the level of change in the outcome variable 

Non-parametric: used when the data does not meet assumptions required for 
parametric tests 

Kruskal-Wallis 
test 

Test for the difference between group means performing one-
way ANOVA 

Wilcoxon rank-
sum test 

Tests for the difference between two independent variables—
takes into account magnitude and direction of difference 

Wilcoxon sign-
rank test 

Tests for the difference between two related variables—takes 
into account the magnitude and direction of difference 

Sign test 
Tests if two related variables are different—ignores the 
magnitude of change, only takes into account direction 

Table 1. Available methods and tools of Data Analysis 

 
Analyzing engineering results using statistical methods helps to a great 

extend to validate and verify whether the results were satisfying the expectations 
of the engineers and how well it performed with respect to certain parameters. 
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Finally, experiments using a 7-DoF serial robot KUKA LWR4+ and considering 
a virtual surgical task tracking have been performed; the obtained data was 
validated using the above-mentioned methods of data analysis to validate the 
performance characteristics among the two controllers (CCC & AFC).  

 
This thesis report is organized as follows. CHAPTER 1 describes the 

mathematical tools available for statistical analysis, explains the goodness of fit test 
available to check the normality distribution, describes the homogeneity of 
variance tests to be fulfilled. Chapter 2 describes about a robotic application that is 
used to perform Robot Assisted Minimally Invasive Surgery (RAMIS) with different 
control strategies to achieve Remote Center of Motion (RCM) constraint with the 
control equations and block diagrams. The complete data analysis with the 
obtained results (data) from the robotic application has been reported in Chapter 
3. Finally, the conclusions are reported in Chapter 4. 
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CHAPTER 1 

MATHEMATICAL TOOLS FOR STATISTICAL ANALYSIS 
 

After performing experiments, it is always important and much better to 

analyze the data obtained in order to compare them, to analyze the differences and 

to arrive at conclusions. There are several mathematical tools available to carry out 

the statistical analysis as shown in Table 1 based on the requirements. This Chapter 

describes the most widely used mathematical tools and statistical analysis 

techniques whose final aim is to verify and validate the correctness of the result 

obtained with the experimental data.  The two most reliable tools explained below 

are ANOVA test and Kruskal-Wallis test. There are certain assumptions that has to 

be checked/satisfied in order to proceed with both the tests. The chapter consists 

of two main statistical tests (ANOVA and Kruskal-Wallis) and other tests to check 

the assumptions of the two tests mentioned before. For instance, if we have some 

data and we would like to do a statistical analysis, the following table is useful to 

proceed: 

 

 Process I (ANOVA) Process II (Kruskal-Wallis) 

Normally distributed data 
(Kolmogorov-Smirnov test) 

Non-Normally distributed data 
(Lilliefors test) 

Equal variance of data (Bartlett test) Equal variance of data (Levene’s Test) 
Table 2. Two Processes to execute based on results of the assumptions check 

  

If the data is normally distributed (checked by Kolmogorov-Smirnov test), 

then we should proceed with Bartlett test and then the data can be processed 

using ANOVA. If the data is not normally distributed (checked by Lilliefors test), 

then we should proceed with Levene’s test and then the data can be processed 

using Kruskal-Wallis. 
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ANOVA 

 The best way to compare two or more groups of data is to use the ANOVA 

(Analysis Of VAriance) test. In addition to the above tools, there are more tests like 

hypothesis testing, partitioning of sum of squares, additive models. ANOVA was 

founded by Sir Ronald Fisher in 1925 [7], [16] . It is easy to be computed manually 

using simple algebra rather than complex matrices. This was one of the main reason 

for the popularity of using ANOVA over other tools. 

Benefits of ANOVA 

 Analysis of variance is a group of statistical tool to test if there exists a 

significant difference between the means of various groups. When there are only 

two samples, T-test and ANOVA yields the same results. In cases of more than two 

samples, ANOVA is the most effective to compare the means. Hence ANOVA is one 

of the widely used tool in research for validating the experimental data statistically. 

Another advantage of ANOVA is that it can be used effectively even when the 

number of observations is different in each group.  

 

Null Hypothesis 

ANOVA tests the non-specific null hypothesis that all populated means are equal. 

 𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = ⋯ = 𝜇𝑘 
𝐻1: 𝜇1 ≠ 𝜇2 ≠ 𝜇3 ≠ ⋯ ≠ 𝜇𝑘 

 

(1) 

ANOVA generates a P value (probability) for the null hypothesis (𝐻0) and thus a 
probability for the research hypothesis (𝐻1) to be tested. The lower the p value, the 
smaller the probability for the null hypothesis to be true and consequently higher 
is the probability that there is a significant statistical difference between the data 
sets (or the research hypothesis 𝐻1 is true). 
 

 

 



17 
 

Confidence Intervals 

 Confidence interval is a type of interval estimate computed from the 

statistics of the observed data, that might contain the true value of an 

unknown population parameter. The selection of a confidence level for an interval 

determines the probability that the confidence interval produced will contain the 

true parameter value. Common choices for the confidence level are 0.90, 0.95, and 

0.99. These levels correspond to percentages of the area of the normal density 

curve. For example, a 95% confidence interval covers 95% of the normal curve - the 

probability of observing a value outside of this area is less than 0.05 (which is called 

‘alpha’). Because the normal curve is symmetric, half of the area is in the left tail of 

the curve, and the other half of the area is in the right tail of the curve and the peak 

represents the mean value of the distribution. Figure 1 displays the confidence 

intervals of 68%, 95% and 99%. Figure 2 represents the p- values (0.05,0.01,0.10) 

which are tested during the null hypothesis for 95%,99% and 90% confidence 

interval. There is also a z-score corresponding to each p-value which is nothing but 

a value from the standard normal distribution for the selected confidence level. The 

null hypothesis is usually tested for various significance levels (0.05,0.01,0.10). By 

default, the significance level of testing is set to 0.05 in most of the tests. This 

signifies that the means of the data being tested lies in the 95% of the confidence 

region and the rest 5% are prone to errors. If the null hypothesis is rejected, it 

means that the data among various groups compared have a significant difference 

which does not fall under the confidence interval. In any test, this significance level 

can be altered for the level which we would like to compare, and then the null 

hypothesis can be checked. Table 3 displays the significance table showing the p-

values and their significance level during the analysis of data. 

 
  

https://en.wikipedia.org/wiki/Population_parameter
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Figure 1.Confidence Interval of 68%, 95%, 99% 

 

 
Figure 2. Confidence Interval showing p-values 

 

 

Significance Value (p-val) Significance Type 

p<0.05(*) Significant Difference (confidence interval 95%) 

p<0.01(**) Significant Difference (confidence interval 99%) 

p<0.001(***) Very-High Significant Difference 

Table 3. Significance Table displaying significance type for different p-values 
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Types of Error 

 There are two types of error that can occur if ANOVA is executed in a wrong 

way: 

• Type I Error (𝛼 𝑒𝑟𝑟𝑜𝑟 or false positive): Error of finding a significance by 

chance when there is no significance in the data. 

• Type II Error (𝛽 𝑒𝑟𝑟𝑜𝑟 or false negative): Error of rejecting a significance 

when in fact there is a significance in the data. 

Figure 3 represents the two types of errors that can happen when checking for a 

null hypothesis using ANOVA or any other methods. 

 
Figure 3.Type of Errors among groups 

 

Types of ANOVA 

• One-way ANOVA: One-way ANOVA is a hypothesis test, used to test the 

equality of three or more groups of data means simultaneously using 

variance (just one independent variable). The number of data in each group 

need not to be equal. 

• Two-way ANOVA: Two-way ANOVA is a statistical technique wherein, the 

interaction between factors, influencing variable can be studied (i.e. groups 

with more two independent variables). The number of data in each group 

needs to be equal. 
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• N-way ANOVA: N-way ANOVA is the extended process of the two-way 

ANOVA where there are n-independent variables. The evaluation procedure 

remains same. 

Assumptions of ANOVA 

 Before starting to continue the data processing with ANOVA, it is necessary 

to meet or fulfill the assumptions of ANOVA: 

• The data from all the groups are normally distributed. 

• The data from all the groups have almost equal variances. 

• The data obtained are independent. 

 

ANOVA is robust to some violations (mild) of its assumptions and it is conservative. 

Though the ANOVA is robust, it is better to check for the above-mentioned 

assumptions of ANOVA. If the assumptions are not met, the data can be either 

processed to meet the assumptions or to switch to non-parametric test like Kruskal-

Wallis (which does not require any data normalization). 

 

Analyzing and Evaluating the results of One-way ANOVA 

 The output of a one-way ANOVA contains the significance value (p) which 

determines the amount of difference by which a group of data significantly differs 

from another group of data. The tolerance value (represented by 𝛼) is set to 0.05 

by default. 

•  𝒑 > 𝜶: If the p value is greater than 𝛼, it is considered that there is no 

statistically significant difference between the group means as determined 

by the one-way ANOVA; for this reason, there is no need for a post-hoc test. 

• 𝒑 < 𝜶: If the p value is lesser than 𝛼, it is considered that there is a significant 

difference between the group means as determined by the one-way ANOVA; 

which is always followed by a post-hoc test. 
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Post-Hoc Test 

 The results of an ANOVA test provide only the overall difference between 

the groups and doesn’t provide any precise information about which specific group 

differed from another, but post-hoc tests do. The post-hoc test is nothing but a 

follow-up test that is run to confirm whether the differences among the groups 

show an overall statistically significant difference in the groups’ mean.  

Types of post-hoc tests 

➢ Tukey’s honestly significant difference criterion (‘hsd’ or ‘tukey-kramer’) 

➢ Tukey’s least significant difference procedure (‘lsd’) 

➢ Bonferroni adjustment (‘bonferroni’) 

➢ Dunn-Sidak procedure (‘dunn-sidak’) 

➢ Scheffé's S procedure (‘scheffe’) 

If the data has met the assumptions homogeneity of variances, it is always 

better to use the Tukey’s honestly significant difference post-hoc method over the 

other above-proposed methods. If not, it is advisable to run the Games Howell post 

hoc test.  

ANOVA Table 

Source SS df MS F p 

Model/Group SSG 𝑘 − 1 
𝑀𝑆𝐺 =

𝑆𝑆𝐺

𝑘 − 1
 

𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

 

Residual/Error SSE 𝑛 − 𝑘 
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘
 

 

  

Total SST 𝑛 − 1 
 

   

Table 4. ANOVA table with formulas of the parameters 

 

The following are the key symbols that will be used henceforth: 
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𝑘 = number of groups/ populations/ values of the explanatory variable/ levels of 

treatment 

𝑛𝑖 = the sample size taken from group 𝑖 

𝑥𝑖𝑗 = the 𝑗𝑡ℎ response sampled from the 𝑖𝑡ℎ group/ population 

𝑥̅𝑖 = the sample mean of responses from the 𝑖𝑡ℎ group =
1

𝑛𝑖
∑ 𝑥𝑖𝑗

𝑛𝑖
𝑗=1   

𝑠𝑖 = the sample standard deviation from the 𝑖𝑡ℎ group=
1

𝑛𝑖−1
∑ (𝑥𝑖𝑗 − 𝑥̅𝑖)

2𝑛𝑖
𝑗=1  

𝑛 = the (total) sample, irrespective of groups = ∑ 𝑛𝑖
𝑘
𝑖=1  

𝑥̅ = the mean of all responses, irrespective of groups =
1

𝑛
∑  𝑥𝑖𝑗𝑖𝑗  

Each and every column of the table is explained below as follows. The source (of 

variability) row tell us: 

• SS: Sum of squares (sum of squared deviations) which contains: 

➢ SST (sum of squares total) measures the variation of data around the 

overall mean 𝑥̅. It can be calculated as: 

 
∑ ∑(𝑥𝑖𝑗 − 𝑥̅)

2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

 

 
(2) 

➢ SSG measures variation of the group means around the overall mean 

𝑥. Variability between the group means is given by: 

 
∑ 𝑛𝑖(𝑥̅𝑖 − 𝑥̅)2

𝑘

𝑖=1

 𝑎𝑛𝑑 

 

 
(3) 

➢ SSE measures the variation of each observation around its group mean 

𝑥̅𝑖. Variability within the group means is given by: 

 
∑ ∑(𝑥𝑖𝑗 − 𝑥̅𝑖)

2
= ∑(𝑛𝑖 − 1)𝑠𝑖

2

𝑘

𝑖=1

 

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 
 

(4) 

 𝑆𝑆𝑇 = 𝑆𝑆𝐺 + 𝑆𝑆𝐸 
 

(5) 
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• Df represents the degree of freedom. The degrees of freedom are given as: 

➢ 𝑘 − 1 for SSG, since it measures the variation of the 𝑘 group means 

about the overall mean. 

➢ 𝑛 − 𝑘 for SSE, since it measures the variation of the 𝑛 observations 

about the overall mean. 

• MS represents the mean square which is already given in the ANOVA table 

above. In addition to that, mean square can also be calculated as: 

  

𝑀𝑆𝐸 =
(𝑛1 − 1)𝑠1

2 + (𝑛2 − 1)𝑠2
2 + ⋯ + (𝑛𝑘 − 1)𝑠𝑘

2

(𝑛1 − 1) + (𝑛2 − 1) + ⋯ + (𝑛𝑘 − 1)
 

 

 
(6) 

• The final column of the ANOVA table is the 𝐹 statistic which is given by: 

 
𝐹 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

(7) 

If the null hypothesis is true, the F statistic has an F distribution with  

𝑘 − 1 and 𝑛 − 𝑘 degrees of freedom in the numerator/denominator 

respectively. If the alternate hypothesis is true, then 𝐹 tends to be large. We 

reject 𝐻0 in favor of 𝐻1 if the 𝐹 statistic is sufficiently large.  

The final column in the ANOVA table consists of the significance value which 

yields the result (to accept the null hypothesis or not). 

Drawing Conclusion based on results 

 The ANOVA’s results are used to draw conclusions based on the 

validations and tests performed on the datasets. It is very important to compare 

different methods and find which method is best suited for the aim of the 

experiment for which the data was obtained. ANOVA also helps in finding which 

method has a better performance characteristics based on experiment-specific 

criteria. As a result, the obtained data becomes not only experimentally correct, 

but also statistically valid.  The ANOVA exploits the data among the groups to 

analyze the significant differences and results can be checked further about the 

cause of the significant differences among the groups. 
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Kruskal-Wallis Test 
 

 The Kruskal-Wallis test (named after William Kruskal and W. Allen Wallis) is 

a rank based non-parametric method for testing ANOVA [11], [17]. It is a multiple-

sample generalization of the two-sample Wilcoxon rank sum test [18]. It 

determines the statistical significances between two or more groups of an 

independent variable on a continuous or ordinal dependent variable. It is important 

to realize that the Kruskal-Wallis H test is an omnibus test statistic and cannot tell 

which specific groups of the independent variable are statistically significantly 

different from each other; it only tells that at least two groups were different. The 

greatest advantage of Kruskal-Wallis is that it returns the exact probability values 

for larger sample sizes [19]. 

 

Assumptions of Kruskal-Wallis 

 Though the Kruskal-Wallis is a replacement of ANOVA when the data is not 

normally distributed, it still has some assumption to be checked before proceeding 

with the test. The assumptions of ANOVA are as follows: 

• The data should be measured at a continuous level. 

• The independent variable should consist two or more categorical 

independent groups. 

• The data obtained should have independence of observations, which means 

that there is no relationship between the observations in each group or 

between the groups. 

• In order to know how to interpret the results from a Kruskal-Wallis test, it is 

quite good to determine whether the distributions in each group are the 

same (i.e. having the same shape). This is a non-necessary condition for the 

test. 
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Kruskal-Wallis Table 

Source SS df MS Chi-sq Prob>Chi-sq  

Model/Group SSG 𝑘 − 1 
𝑀𝑆𝐺 =

𝑆𝑆𝐺

𝑘 − 1
 

  

Residual/Error SSE 𝑛 − 𝑘 
𝑀𝑆𝐸 =

𝑆𝑆𝐸

𝑛 − 𝑘
 

 

  

Total SST 𝑛 − 1 
 

   

Table 5.Kruskal-Wallis table with formulas of the parameters 

  

The Kruskal-Wallis table is almost similar to the ANOVA table and its formulas 

are mostly same except for the Chi-sq. Samples of sizes 𝑛𝑗 , 𝑗 = 1, … , 𝑘, are 

combined and ranked in ascending order of magnitude. Tied values are assigned 

the average ranks. If 𝑛 represent the overall sample size, and the sum of ranks for 

the 𝑗𝑡ℎ sample is given by: 

 
𝑅𝑗 = ∑ 𝑅(𝑥𝑖𝑗)

𝑛𝑗

𝑖=1
 

 

 
(8) 

where, 

𝑥𝑖𝑗 = the 𝑗𝑡ℎ response sampled from the 𝑖𝑡ℎ group/ population. 

The Kruskal-Wallis one-way analysis of variance test, 𝐻 is defined as: 

 

𝐻 =
1

𝑠2
{∑

𝑅𝑗
2

𝑛𝑗
−

𝑛(𝑛 + 1)2

4

𝑚

𝑗=1

} 

 

 
(9) 

where  

 
𝑆2 =

1

𝑛 − 1
{ ∑ 𝑅(𝑥𝑖𝑗)

2
−

𝑛(𝑛 + 1)2

4
𝑎𝑙𝑙 𝑟𝑎𝑛𝑘𝑠

} 
 

(10) 
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If there are no ties, the equation simplifies to  

 
𝐻 =

12

𝑛(𝑛 + 1)
∑

𝑅𝑗
2

𝑛𝑗
− 3(𝑛 + 1)

𝑚

𝑗=1

 

 

(11) 
 
 

In case of a tie, a correction for tie is implemented using the short cut formula: 

 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

𝐻

1 −
∑ (𝑡𝑖

3 − 𝑡𝑖)𝐺
𝑖=1

𝑛3 − 𝑛

 

 

(12) 
 
 

where 𝐺 is the number of groupings of different tied ranks, and 𝑡𝑖 is the number of 

tied values within group 𝑖 that are tied at a particular value. The correction usually 

makes little difference in the value of 𝐻 unless there are a large number of ties. The 

sampling of the distribution 𝐻 is approximately Chi-square (𝜒2) with 𝑘 − 1 degrees 

of freedom.  

Finally, the p-value is approximated by 𝑃𝑟 (𝜒𝑘−1
2 ≥ 𝐻).  If some 𝑛𝑗  values are small 

(i.e., less than 5), the probability distribution of 𝐻 can be quite different from its 

chi-squared distribution. If a table of chi-squared probability distribution is 

available, the critical value of chi-squared, 𝜒𝛼:𝑘−1
2 , can be found by entering the 

table at 𝑘 − 1 degrees of freedom and looking under the desired significance or 

alpha level. The table of chi-squared probability distribution for 𝑘 = 1,2, … ,1000 

degrees of freedom is reported in [20]. 

Drawing Conclusion based on results 

 The Kruskal-Wallis table is used to draw conclusions based on the 

validations and tests performed on the datasets. Though the Kruskal-Wallis does 

not say which groups are significantly different from each other, it gives a better 

result for the overall significant difference among all the groups (especially for non-

normally distributed data). 
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Goodness of Fit Tests 
 In order to check and satisfy the assumptions of ANOVA, it is mandatory to 

check the distributions of the data in each group. The distributions can be any (e.g. 

‘normal’, ’extreme value’, ‘exponential’, etc.); but ANOVA processes the data at its 

best when the data is normally distributed. The data distribution can be checked 

mainly by the following two tests:  

➢ Kolmogorov- Smirnov (KS) test. 

➢ Lilliefors (LF) test. 

Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test tests whether two arbitrary distributions are 

the same. It can be used to compare two empirical data distributions, or to 

compare one empirical data distribution to any reference distribution. It’s based on 

comparing two cumulative distribution functions (CDFs). Remember that the CDF 

of a random variable x is the probability that the random variable is less than or 

equal to some value. To be a bit more precise, it’s a function 𝐹 such that 

 𝐹(𝑎) = 𝑃(𝑥 ≤ 𝑎) 
 

(13) 

When talking about data, it’s often useful to look at empirical CDFs: 

 
𝐹𝑛(𝑎) =

1

𝑛
∑ 𝕀(𝑥𝑖 − 𝑎)

𝑖
 

 

(14) 

is the CDF of n observed data points; and 𝕀 is a function that returns 1 when its 

argument is true and 0 when its argument is false. Now suppose we want to 

compare two CDFs, 𝐹1 and 𝐹2  . They might be empirical CDFs (to compare two 

different datasets and see whether they’re significantly different) or one might be 

a reference CDF (to see whether a particular distribution is an appropriate choice 

for a dataset). The Kolmogorov-Smirnov test computes the statistic ℎ: 

 ℎ = max
𝑥

|𝐹𝑛
1(𝑥) − 𝐹𝑛

2(𝑥)| 

 

(15) 

This compares the two CDFs and looks at the point of maximum discrepancy. We 

can theoretically show that if 𝐹1  is the empirical distribution of 𝑥  and 𝐹2  is the 
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true distribution 𝑥 was drawn from, then lim
𝑛→∞

ℎ = 0. Similarly, if the two 

distributions have no overlap at all, the maximum difference will be 1 (when one 

CDF is 1 and the other is 0). Therefore, we can test distribution equality by 

comparing the statistic ℎ to 0 (if ℎ is significantly larger than 0 and close to 1, then 

we might conclude that the distributions are not equal). This method is only 

defined for one-dimensional random variables: although there are extensions to 

multiple random variables; they are more complex than simply comparing joint 

CDFs. Also notice that this test is sensitive to any differences at all in two 

distributions: two distributions with the same mean but significantly different 

shapes will produce a large value of ℎ. 

 

Lilliefors (LF) Test  

 Lilliefors (LF) test is a modification of the Kolmogorov-Smirnov test. The KS 

test is appropriate in a situation where the parameters of the hypothesized 

distribution are completely known. However, sometimes it is difficult to initially or 

completely specify the parameters as the distribution is unknown. In this case, the 

parameters need to be estimated based on the sample data. When the original KS 

statistic is used in such situation, the results can be misleading whereby the 

probability of type I error tend to be smaller than the ones given in the standard 

table of the KS test. In contrast with the KS test, the parameters of the LF test are 

estimated based on the sample. Therefore, in this situation, the LF test will be 

preferred over the KS test. Given a sample of 𝑛 observations, the LF statistic is 

defined as: 

 ℎ = max
𝑥

|F∗(𝑥) − 𝑆𝑛(𝑥)| 

 

(16) 

Where 𝑆𝑛(𝑥) is the sample cumulative distributive function and F∗(𝑥) is the 

cumulative normal distribution function with 𝜇 = 𝑥̅, the sample mean and 𝜎2, the 

sample variance, defined with denominator  𝑛 − 1. Even though the LF statistic is 

the same as the KS statistic, the table for the critical values is different which leads 

to a different conclusion about the normality of a data (Mendes & Pala, 2003). If ℎ 

is significantly larger than 0 and close to 1, then we might conclude that the 

distributions are not equal and that it rejects the null hypothesis. 
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Homogeneity of Variance Tests 
 

In order to check and satisfy the assumptions of ANOVA, it is mandatory to check 

the equality of variances of the data in each group. The variances of the data can 

be equal or not equal among the groups. The homogeneity of variances can be 

checked mainly by the following two tests:  

➢ Levene test. 

➢ Bartlett test. 

Levene Test 

 Levene test is used to test whether two or more population variances are 

equal. The test does not assume that all populations are normally distributed and 

is recommended when the normality assumption is not viable. Suppose 𝑔 groups 

each have a normal distribution with possibly different means and standard 

deviations 𝜎1, 𝜎2, … , 𝜎𝑔. Let 𝑛1, 𝑛2, … , 𝑛𝑔 denotes the number of subjects in each 

group, 𝑌𝑘𝑖  denote the response values, and 𝑁 denote the total sample size of all 

groups. The test assumes that the data are obtained by taking a simple random 

sample from each of the g populations. The formula for the calculation of Levene’s 

test is 

 
𝑊 =

(𝑁 − 𝑔) ∑ 𝑛𝑘(𝑍𝑘 − 𝑧̅)2𝑔
𝑘=1

(𝑔 − 1){∑ ∑ 𝑛𝑘(𝑍𝑘𝑖 − 𝑧𝑘̅)2𝑛𝑘

𝑘=1
𝑔
𝑘=1 }

 

 

 
(17) 

where  

𝑍𝑘𝑖 = |𝑌𝑘𝑖 − 𝑌̅𝑘| 

𝑍𝑘 =
1

𝑛𝑘
∑ 𝑍𝑘𝑖

𝑛𝑘

𝑖=1

 

𝑧̅ =
1

𝑁
∑ ∑ 𝑍𝑘𝑖

𝑛𝑘

𝑖=1

𝑔

𝑘=1
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𝑌̅𝑘 =
1

𝑛𝑘
∑ 𝑌𝑘𝑖

𝑛𝑘

𝑖=1

 

If the assumptions are met, the distribution of this test statistic follows the 𝐹 

distribution with degrees of freedom 𝑔 −  1 and 𝑁 −  𝑔. 

Bartlett Test  

 Bartlett (1937) presents a test of homogeneity (equal variance). The test 

assumes that all populations are normally distributed and is not recommended 

when the normality assumption is not viable. Suppose g groups each have a 

normal distribution with possibly different means and standard deviations 

𝜎1, 𝜎2, … , 𝜎𝑔. Let 𝑛1, 𝑛2, … , 𝑛𝑔 denotes the number of subjects in each group, and 

let N denote the total sample size of all groups. The test assumes that the data are 

obtained by taking a simple random sample from each of the 𝑔 populations.  

The formula for the calculation of Bartlett’s test is: 

 
𝜒𝑔−1

2 =
(𝑁 − 𝑔) log(𝑆𝑝

2) − ∑ (𝑛𝑘 − 1) log(𝑆𝑘
2)𝑔

𝑘=1

1 +
1

3𝑔 − 3 {∑ (
1

𝑛𝑘 − 1) −
1

𝑁 − 𝑔 
𝑔
𝑘=1 }

 

 

 
(18) 

where  

𝑆𝑝
2 =

1

𝑁 − 𝑔 
∑(𝑛𝑘 − 1)𝑆𝑘

2

𝑔

𝑘=1

 

𝑆𝑘
2 =

1

𝑛𝑘 − 1 
∑(𝑥𝑘𝑖 − 𝑥̅𝑘)2

𝑛𝑘

𝑖=1

 

If the assumptions are met, the distribution of this test statistic follows the Chi-

squared distribution with degrees of freedom 𝑔 − 1. 
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Chapter 2 

Robotic Application- Minimally Invasive Surgery (MIS) 

 This chapter explains the robotic system developed for autonomous MIS 

with its controllers implemented and tested successfully. It gives a brief explanation 

about the state of the art by explaining about the robotic manipulator, 

communication protocols, devices and the control methodology. 

State of the Art- System Description 

 An overview of the developed robot assisted MIS system shown in Figure 4.  

 

               

Figure 4.Overview of the robot assisted MIS system 

 

The system is composed of: 

• a KUKA LWR4+ redundant robot, that is torque-controlled through the Fast 
Research Interface (FRI), providing a direct low-level real-time access to the 
robot controller [21]; 

• an HD endoscopic camera and an ArUco marker board [22], that are used for 
virtual surgical task tracking in an augmented reality environment; 

• a 6-axis M8128C6 force sensor, adopted to measure the interaction force 
between the surgical tip and the abdominal wall. 
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The control system has been developed using two separate computers 
communicating through an UDP channel.  The first one, the “control computer”, 
executes the real-time control loops implemented using OROCOS, with a real-time 
Xenomai-patched Linux kernel. The second one, the “vision computer”, runs the 
perception algorithms developed using ROS Kinetic under Ubuntu. 

Design phases and Execution steps 

 The design phase involves the following set-up procedures that has to be 

executed in order to test the robot with different subjects. 

• RCM constraint; 

• Virtual trajectory tasks generation;  

• Cartesian Compliance Controller (CCC) and 

• Adaptive Fuzzy Controller (AFC). 

 

RCM Constraint 

 During Minimally Invasive Surgery (MIS), the surgical tool tip has to pass 

through small incisions on the patient’s abdominal wall. Each small incisions 

produces a kinematic constraint, commonly known as the Remote Center of 

Motion (RCM) constraint. In general, RCM constraint can be active or passive where 

the passive constraint can be achieved by mechanical designs and active 

constraints can be achieved by online controller design. There are pretty much of 

strategies proposed in the literature to achieve the active RCM constraint by taking 

advantage of the task redundancy. 
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Figure 5.RCM constraint: during surgery, the tool-tip must pass through the trocar position 𝑃𝑡, 
representing the RCM constraint. 𝑋 𝑎𝑛𝑑 𝑋𝑟 are the actual and desired Cartesian position inside 

the abdomen 

 

             

Figure 6.Task redundancy utilized to enforce RCM constraint (the grey and black "wrist" 
positions represent the desired,𝑁1𝑑, and actual 𝑁, positions, respectively) 

 During the auto-tracking of a surgical task, three out of the seven robot 
degrees of freedom are exploited, and the other four degrees of freedom remain 
as redundancy. Part of these redundant degree of freedom are used here by the 
first null-space controller to fulfil the RCM constraint. Figure 5 and Figure 6 shows 
the RCM constraint to guarantee the tool always enters the patient body through 
the trocar point 𝑃𝑡, without influencing the main surgical task, i.e., acting in the null 
space of the surgical task, the “wrist” joint has to track a circular movement around 
the end-effector from its actual position 𝑁1 to the desired position 𝑁1𝑑. 
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A control action that enforces this constraint is thus given by: 
  

𝐹𝑁1 = −𝐾𝑁1𝑒𝑁1 − 𝐷𝑁1𝑒̇𝑁1  
 

 
(19) 

where 𝐾𝑁1, 𝐷𝑁1 ∈ ℝ3 are the stiffness and damping matrices respectively, and  
𝑒𝑁1 = 𝑁1 − 𝑁1𝑑  is the “wrist” tracking error. Projecting this action into the null-
space of the surgical task, the first null-space controller can be introduced as: 
  

𝜏𝑁1 = (𝐼 − 𝐽𝑇
𝑇(𝑞)𝐽𝑇(𝑞))𝐽𝑊

𝑇 (𝑞)𝐹𝑁1 

 
(20) 

 
where 𝐽𝑊(𝑞) ∈ ℝ3×5 is the Jacobian from the base frame to the robot wrist. 
Further, the distance (𝑑 in Figure 6) can be seen as: 
  

𝑑 = ‖(𝑃𝑡 − 𝑋) × 𝑢̂𝑐‖ 
 

 
(21) 

where 𝑢̂𝑐 ∈ ℝ3 is the actual tip direction vector. It can be easily shown that  ‖𝑒𝑁‖ 
is proportional to the RCM constraint error 𝑑, i.e., 𝑑 = 𝜆‖𝑒𝑁1‖, 𝜆 ∈ (0,1], where 
𝑒𝑁1 can be further expressed as 
  

𝑒𝑁1 =
‖(𝑃𝑡 − 𝑋) × 𝑢̂𝑐‖

𝜆
  

 

 
(22) 

where 𝑃𝑡 , 𝑋, 𝑢̂𝑐  are all known terms. In general, 𝜆 varies according to the tip 
position during the operation. But throughout the process, we choose 𝜆 as a 
constant. 
 

Virtual trajectory tasks generation 

 It is important to design any virtual task before practically testing the robot 
on the real human patient. Hence, a virtual trajectory tasks very designed with the 
aid of an HD endoscopic camera and an ArUco marker board in an augmented 
reality environment. By creating this tasks, the robot can autonomously follow the 
path shown by the virtual trajectory to execute the task. Three different task shapes 
were designed: a half ellipsoidal wave, a sine wave and a triangular wave. The size 
of the designed tasks are around 8.0𝑐𝑚 × 15.0𝑐𝑚 on the horizontal plane, which 
is similar to an actual laparoscopic surgical task. The vision interface displays the 
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camera images, the desired task path (in green color) and the actual paths (in blue 
color) performed by the tool tip. 

Figure 7, Figure 8, Figure 9 shows the three different virtual task shapes 

generated in an augmented reality 3D environment. The green dotted line 

represent the virtual task generated in the augmented reality 3D environment and 

the blue line represent the path followed by the end-effector’s tool tip 

autonomously. This gives the sensation of a real surgical operation inside a 

patient’s organ.  This path following task can be visualized directly on the surgeon’s 

console (master PC) with the help of an HD endoscopic camera. 

 

                
Figure 7. Task 1 representing a half-ellipsoidal wave 
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Figure 8. Task 2 representing a sine wave 

 

             
Figure 9. Task 3 representing a triangular wave 

 

Cartesian Compliance Controller (CCC) 

 The dynamic model of a 7-DoF serial manipulator in the Lagrangian 

formulation can be expressed as: 

  
𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝜏𝐶 − 𝜏𝐸𝑋𝑇  

 

 
(23) 
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where 𝑞 ∈ ℝ7 is the vector of joint coordinates, 𝑀(𝑞) ∈ ℝ7×7 is the inertia matrix, 

𝐶(𝑞, 𝑞̇) ∈ ℝ7×7 is a matrix representing the Coriolis and centrifugal terms, and 

𝑔(𝑞) ∈ ℝ7 is the vector of gravitational torques. Torque vectors  𝜏𝐶 ∈ ℝ7 and 

𝜏𝐸𝑋𝑇 ∈ ℝ7 represent the control torque and the external torque vectors 

respectively. The following inverse dynamics control solution can be introduced as: 

  
𝜏𝐶 = 𝜏𝑑 + 𝜏𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝜏̂𝐸𝑋𝑇 

 

 
(24) 

  

𝜏𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 = 𝑀̂(𝑞)𝑞̈ + 𝐶̂(𝑞, 𝑞̇)𝑞̇ + 𝑔̂(𝑞) 

 

 
(25) 

where 𝜏𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 is the estimated dynamics provided by the KUKA Fast Research 

Interface (FRI) [21]. 𝑀̂(𝑞) ∈ ℝ7×7 is the estimated inertia matrix, 𝐶̂(𝑞, 𝑞̇) ∈ ℝ7×7 

and 𝑔̂(𝑞) ∈ ℝ7 are the estimated compensation terms, 𝜏̂𝐸𝑋𝑇  is the filtered torque 

computed from the external torque sensors, and 𝜏𝑑 is an additive control term 

introduced to achieve control objective. The main task for the MIS robot is tracking 

the desired Cartesian trajectory generated by the surgeon [23], [24], while 

guaranteeing safety by way of a Cartesian impedance controller. First of all, to 

guarantee the required smoothness and avoid the trajectory generated by the 

surgeon exceeds the robot acceleration and velocity constraints, an interpolation 

function is introduced. In particular, the surgeon trajectory is interpolated using a 

5th order polynomial in Cartesian space [25], adapting the trajectory duration in 

such a way that the maximum Cartesian acceleration and velocity constraints are 

satisfied. Then, a cartesian space compliance control term, 𝜏𝑇 ∈ ℝ7, can be 

introduced as: 

  

𝜏𝑇 = 𝐽𝑇
𝑇(𝑞) (−𝐾𝑋(𝑋 − 𝑋𝑑) − 𝐷𝑋(𝑋̇ − 𝑋̇𝑑)) 

 

 
(26) 

where 𝐷𝑋, 𝐾𝑋 ∈ ℝ3×3 are the diagonal damping and stiffness matrices, 

respectively. 𝑋𝑑 , 𝑋̇𝑑 ∈ ℝ3 are the desired position and velocity trajectories, 

respectively, and 𝐽𝑇(𝑞) ∈ ℝ3×7 is the Jacobian matrix from the base frame to the 

end-effector.  The magnitude of the Cartesian position error can be written as in 

[26]: 
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 ‖𝐸𝑋‖ = ‖𝑋𝑑 − 𝑋‖ (27) 
   

For simplicity, it is assumed that the surgical robot is far away from singularities, 

and the pseudo-inverse of 𝐽𝑇 exists. This cartesian compliance controller developed 

is almost the same as in [6].  The overall control scheme is shown in Figure 10 where 

the CCC controller and the AFC controller can be seen with their inputs and outputs. 

Adaptive Fuzzy Controller (AFC) 

 The adaptive fuzzy controller is implemented into the robot exactly as in [6] 
and the control equations are as follows: 
  

𝜏𝐹 = −𝐽𝑇𝛩𝜉(𝑋, 𝑋̇, 𝜓, 𝜓̇) 
 

 
(28) 

where               
 
𝐽𝑇 ∈ ℝ6×7 is the jacobian matrix; 
 
Θ = [𝜃1, 𝜃2, … , 𝜃6]𝑇 ∈ ℝ6×7 is a weight parameter matrix; 
 
𝜃𝑖 ∈ ℝ7×1, 𝑖 = 1,2, … ,6 
 

𝜉(𝑋, 𝑋̇, 𝜓, 𝜓̇) = [𝜉1, 𝜉2, … , 𝜉7] ∈ ℝ7×1 is the adaptive basis functions as defined in 

[6]. 
 
 

 
Figure 10.Block diagram of Overall System with two controllers (CCC & AFC) 
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Chapter 3 

Statistical Analysis of Experimental Results 
 

Experimental Validation 

  The experimental set-up is done as described in the Chapter. The robot is 

programmed to autonomously follow a path generated by the “vision computer”. 

The end-effector’s tool tip follows the task path generated in the cartesian space 

(i.e. 3 different task shapes: a half-ellipsoidal wave, a sine wave and a triangular 

wave). In order to make a statistical analysis, we would like to have sufficient data 

to be processed. Taking this into consideration, six different experimental trials 

(test1, test2, …, test6 as shown in Table 6) were executed with the two controllers 

(CCC and AFC) alternatively for three different tasks as shown in Figure 7, Figure 8 

and Figure 9 (named as T1, T2 and T3). The aim of this chapter is to acquire the data 

from the experimental trials and group them for further statistical analysis to 

compare the performance among two controllers (CCC and AFC) with respect to 

the parameters: Cartesian positional error and RCM constraint error. The 

experimental grouping of data can be seen in Table 6.  

 

Parameter Tests Task Controller 
Cartesian 
Positional 

Error 

Test1 T1 CCC 

Test2 T1 AFC 

Test 3 T2 CCC 

Test 4 T2 AFC 
Test 5 T3 CCC 

Test 6 T3 AFC 
RCM 

constraint 
Error 

Test1 T1 CCC 

Test2 T1 AFC 

Test 3 T2 CCC 
Test 4 T2 AFC 

Test 5 T3 CCC 
Test 6 T3 AFC 

Table 6. Experimental grouping of Data 
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Data Grouping 

Once the experimental trials are executed, the data obtained can be 
visualized as shown in Figure 11 (desired cartesian position along x and y axis for 
CCC in one test), Figure 13 (actual cartesian position along x and y axis for CCC). 
The z-axis is not shown here, as it does not have much variations and only the x-
axis is useful for finding the task range for further processing and grouping. Figure 
12, Figure 14 depicts the enlarged image of x-axis with series of different tasks 
executed using the CCC controller. 

  

  
Figure 11.Desired Cartesian position by following three different task shapes for CCC 

                

 

Figure 12. Enlarged image of x-axis with series of three different tasks for CCC 
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Figure 13.Actual Cartesian position by following three different task shapes for CCC 

 

 

Figure 14.Enlarged image of x-axis with series of three different tasks for CCC 

 
The grouping of the data after the experimental trials are executed exactly 

as per the following steps: 

• Since there are sudden jumps during the experiment either at the beginning 
or ending of each task, the complete data cannot be taken into account. The 
data is taken precisely for each task (by cutting exactly the task shape) with 
respect to time for each controller (CCC and AFC). This process is repeated 
also for the data of actual Cartesian position.  

Using the data obtained from the previous step for desired and actual task paths, 

the Cartesian positional error is calculated as discussed in eq. (29). 
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• This returns a vector of data that can be grouped and processed. 

• Finally, the collected data can be grouped as per the controllers (test1, test3 
and test5 are grouped together for CCC, whereas test2, test4 and test6 are 
grouped together for AFC) and executed with the data analysis procedures 
for each cases. 
 

Similarity of two curves using Fréchet Distance 

Another technique to calculate the distance among the two curves (for e.g. 
in our case, the desired cartesian position and the actual cartesian position for each 
task) is called “Fréchet distance” [27]. It returns the distance as a measure of 
similarity between two curves, say P and Q. It is defined as the minimum cord-
length sufficient to join a point travelling forward along P and one travelling 
forward along Q, although the rate of travel of either point may not necessarily be 
uniform. Fréchet distance is available as a functional script in MATLAB [28]. If 
Fréchet distance as in [28] is applied to our scenario, let’s say, among the task 1’s 
desired and actual curves, it returns only a scalar distance value. This cannot be 
considered for further data processing because there are only six scalar values (one 
for each test) which are not sufficient enough to make neither a box-plot nor to 
analyze using any statistical tools. For this reason, Fréchet distance cannot be 
applied to our scenario. 

 

Statistical Analysis-Case1  

The main aim of this case is to check the performance of each controller with 

respect to the Cartesian positional error. 

Normality Check 

After completing the process of grouping, the data collected for cartesian 

positional error (test1, test3 and test5 together for CCC and test2, test4 and test6 

together for AFC) were checked for normality distribution using the Kolmogorov- 

Smirnov test and Lilliefors’s test. Lilliefors’s test and Kolmogorov- Smirnov test are 

available as MATLAB functions which returns binary values as a result of normality 

check (0 for normal distribution and 1 for non- normal distribution). The grouped 
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data failed for its normality distribution in both of the test. The distributions can 

also be viewed as histograms as shown in Figure 15, thereby violating the important 

assumption of ANOVA. The non-normally distributed data is depicted in Figure 15. 

Due to its non- normality distribution, the comparison of the groups cannot be 

executed with ANOVA unless the data are normalized. The probability of a type I 

error is more if ANOVA is used. Hence, Kruskal-Wallis is the best bet in this scenario. 

 

Figure 15. Non-normally distributed data for Cartesian positional error 

 

Kruskal-Wallis Test for Cartesian Positional Error Analysis 

The Kruskal-Wallis test was performed for each task group against the two 

controllers and the following box-plot shows the significant differences among the 

groups. (Null hypothesis: The means of all the tasks in CCC are same). 
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Figure 16. Box-plot for three different tasks with two controllers 

 

It can be seen from Figure 16 that the test1, test3 and test5 are shown in 

blue color to represent the CCC whereas test2, test4 and test6 are shown in light 

orange color to represent the AFC. Each box represents the tests in the ascending 

order of 1 to 6 (left to right in Figure 16). For each task, both the controllers are 

compared (test1 and test2; test3 and test4; test5 and test6) and the significant 

differences are obtained. 

The following tables (Table 7, Table 8and Table 9) represent the Kruskal-Wallis one-

way ANOVA table that shows the significant differences among groups. 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 1.91875e+10 1 1.91875e + 10 3519.35 0 

Error 2.49028e+10 8086 3.079794e + 06 
 

  

Total 4.40902e+10 8087 
 

   

Table 7.Task1 significant difference among controllers 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 9.06896e+10 1 9.06896e+10 6853.22 0 

Error 7.6048e+10 12599 6.03603e+06   

Total 1.66738e+11 12600 
 

   

Table 8.Task2 significant difference among controllers 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 7.36201e+11 1 7.36201e+11 15873.29 0 

Error 3.579e+11 23589 1.51723e+07   

Total 1.0941e+12 23590 
 

   

Table 9.Task3 significant difference among controllers 

 

 It is clearly evident that each tasks are significantly different from each other 

among the controllers compared (CCC and AFC). The p-values (last column of the 

Kruskal-Wallis ANOVA table) seems to be less than 0.001 (𝑝 < 0.001) with a very 

high significant difference as described in Table 3. 

 



46 
 

 

Figure 17.Significant Difference between CCC and AFC for task 1 

 

 

Figure 18.Significant Difference between CCC and AFC for task 2 

 

 

Figure 19.Significant Difference between CCC and AFC for task 3 
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The above figures Figure 17, Figure 18 and Figure 19 display the result of the 

Tukey’s post-hoc test which confirms that there is a significant level of differences 

between both the controllers for each task (p<0.001).  Post-hoc tests are required 

only in cases of more than 3 groups involved in the study to find which two group 

differed significantly. For example, if there are at least 5 controller groups that 

needs to be compared, ANOVA and Kruskal-Wallis tells if there are significant 

differences among the groups compared, but the post-hoc test tells us which 

groups exactly have a significant difference with respect to other groups. In our 

scenario, there are only two groups for comparison and hence the post-hoc test is 

not used throughout.  

Comparison among tasks in CCC controller 

Proceeding further to analyze the effect of the three tasks for the same 

controller, the same procedure was adopted and the corresponding box-plots and 

Kruskal-Wallis ANOVA table can be depicted as follows: 

 

 

Figure 20.Box-plot of three different tasks for CCC controller 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 2.41282e+09 1 2.41282e+09 336.17 4.3485e-75 

Error 6.41854e+10 9278 6.91802e+06   

Total 6.65982e+10 9279 
 

   

Table 10.Task1 and 2 comparison using CCC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 5.38134e+08 1 5.38134e+08 26.35 2.84696e-07 

Error 3.19126e+11 15652 2.03888e+07   

Total 3.19664e+11 15653 
 

   

Table 11.Task2 and 3 comparison using CCC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 3.43149e+10 1 3.43149e+10 1519.41 0 

Error 3.37448e+11 16460 2.05011e+07   

Total 3.71762e+11 16461 
 

   

Table 12.Task1 and 3 comparison using CCC controller 
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The box-plot shows the significant differences among the three tasks (test1, test3 

and test5) for the same CCC controller. The p-value< 0.001 for all the three tasks 

when compared with each other (Table 10, Table 11 and Table 12). This fact clearly 

proves that the CCC controller was highly influenced by the three virtual tasks. 

Comparison among tasks in AFC controller  

The data analysis procedure is repeated for the data obtained for the AFC controller 

for all the three tasks (test2, test4 and test6) and the corresponding box-plots and 

the Kruskal-Wallis table are reported below. 

 

Figure 21.Box-plot of three different tasks for AFC controller 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 991346.4 1 991346.4 0.09 0.7624 

Error 123753590249.1 11407 10848916.5   

Total 123754581595.5 11408 
 

   

Table 13.Task1 and 2 comparison using AFC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 6.12752e+09 1 6.12752e+09 174.31 8.45944e-40 

Error 7.15799e+11 20536 3.48558e+07   

Total 7.21927e+11 20537 
 

   

Table 14.Task2 and 3 comparison using AFC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 7.49552e+09 1 7.49552e+09 388.42 1.83158e-86 

Error 2.86138e+11 15215 1.88063e+07   

Total 2.93633e+11 15216 
 

   

Table 15.Task1 and 3 comparison using AFC controller 
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 The tasks with AFC controller are shown in the Figure 21 where there are no 

significant differences among the task 1 and 2. This could be further attested by the 

p-value obtained by the Kruskal-Wallis table in Table 13. The other two task groups 

show significant differences among each other which is also attested by the 

Kruskal-Wallis one-way ANOVA table in Table 14 and Table 15.  

 In case of ANOVA was used to check these data directly, the chances of 

obtaining the type I error is clear from Table 16 .Although the Kruskal-Wallis test 

reported that the task group 1 and 2 did not have any significant difference, the 

ANOVA for the non- normally distributed data clearly shows a significant difference 

which is a false positive. 

 

One-way ANOVA table 

Source SS df MS F p 

Groups 0.47 1 0.47312 4.07 0.0438 

Error 1327.23 11407 0.11635   

Total 1327.71 11408    

Table 16.Task1 and 2 comparison using AFC controller-ANOVA (False Positive) 

 

Statistical Analysis-Case2 

The main aim of this case is to check the performance of each controller (CCC & 

AFC) with respect to the Remote Center of Motion (RCM) constraint error. 

 

Data Grouping  

Unlike the Cartesian positional error, the RCM error is computed online and 
the acquired data is the result of RCM costraint error and it is shown in Figure 22. 
Figure 23 shows the enlarged image with all the tasks, but does not represent the 
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exact task shape. Hence, one should be careful in separating the RCM error data 
for each task. The precise data has to be taken into consideration and so the RCM 
error with respet to time for each task is separated (by cutting each tasks accurately 
with respect to time). This can also be done by selecting the range for each task 
shapes that was obtained from the desired Cartesian position which had all the 
tasks with respect to time. This yields the exact RCM error for each task using 
different controllers’ data.  
Finally, the collected data can be grouped as per the controllers (test1, test3 and 
test5 are grouped together for CCC, whereas test2, test4 and test6 are grouped 
together for AFC) as shown in Table 6 and executed with the data analysis 
procedure. 

 

 

 

Figure 22.RCM Error by following three different task shapes for CCC 
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Figure 23.Enlarged image with series of three different tasks for CCC 

Normality Check 

The data collected for RCM error are checked for normality distribution using 

the Kolmogorov- Smirnov (KS) test and Lilliefors’s (LS) test. The data failed for its 

normality distribution in both the tests, violating the primary assumption of 

ANOVA. The non-normally data is depicted in Figure 24 as a histogram. Due to its 

non- normality distribution, the comparison of the groups cannot be executed with 

ANOVA unless the data are normalized. The probability of a type I error is more if 

ANOVA is used. Hence, Kruskal-Wallis is the best bet in this situation. 

 

Figure 24. Non-normal distribution of data for RCM error 
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Kruskal-Wallis Test for Remote Center of Motion (RCM) Error Analysis 

The Kruskal-Wallis test was performed for each task group (test1 and test2; 

test3 and test4; test5 and test6) against the two controllers and the following 

box-plot shows the significant differences among the groups. (Null hypothesis: 

The means of all the tasks in controller CCC are same). 

 

Figure 25.Box-plot of three different tasks for RCM error 

 

It can be seen from Figure 25 that the test1, test3 and test5 are shown in 

blue color to represent the CCC whereas test2, test4 and test6 are shown in light 

orange color to represent the AFC. Each box represents the tests in the ascending 

order of 1 to 6 (from left to right in Figure 25). For each task, both the controllers 

are compared (test1 and test2; test3 and test4; test5 and test6) and the significant 

differences are obtained. 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 1.98624e+10 1 1.98624e+10 3643.15 0 

Error 2.42278e+10 8086 2.99627e+06   

Total 4.40902e+10 8087 
 

   

Table 17.Task1 significant difference among controllers 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 7.17706e+10 1 7.17706e+10 5423.54 0 

Error 9.49671e+10 12599 7.53767e+06   

Total 1.66738e+11 12600 
 

   

Table 18.Task2 significant difference among controllers 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 8.19736e+11 1 8.19736e+11 17674.4 0 

Error 2.74365e+11 23589 1.1631e+07   

Total 1.0941e+12 23590 
 

   

Table 19.Task3 significant difference among controllers 
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 It is clearly evident that each tasks are significantly different from each 

other among the controllers compared. The p-values are less than 0.001 (𝑝 <

0.001) with a very high significant difference.  

 

Comparison among tasks in CCC controller 

Proceeding further to analyze the effect of the three tasks (test1, test3 and 

test5) for the same controller (CCC), the same procedure is adopted and the 

corresponding box-plots and Kruskal-Wallis ANOVA table can be depicted as 

follows: 

 

Figure 26.Box-plot of three different tasks for CCC controller 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 5.45984e+09 1 5.45984e+09 760.71 1.8837e-167 

Error 6.11384e+10 9278 6.58961e+06   

Total 6.65982e+10 9279 
 

   

Table 20.Task1 and 2 comparison using CCC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 1.2006e+11 1 1.2006e+11 5878.99 0 

Error 1.99604e+11 15652 1.27526e+07   

Total 3.19664e+11 15653 
 

   

Table 21.Task2 and 3 comparison using CCC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 1.09977e+11 1 1.09977e+11 4869.62 0 

Error 2.61785e+11 16460 1.59043e+07   

Total 3.71762e+11 16461 
 

   

Table 22.Task1 and 3 comparison using CCC controller 



58 
 

 

The box-plot shows the significant differences among the three tasks for the 

same CCC controller. The p-value< 0.001 for all the three tasks when compared 

with each other (Table 20, Table 21 and Table 22). This fact clearly proves that the 

CCC controller was highly influenced by the three tasks created to analyze the RCM 

error. 

 

Comparison among tasks in AFC controller 

 The data analysis procedure is repeated for the data obtained for the AFC 

controller group (test2, test4 and test6 - boxes from left to right in Figure 27) for all 

the three tasks to analyze the RCM error and the corresponding box-plots and the 

Kruskal-Wallis table are reported below. 

 

 

 

Figure 27.Box-plot of three different tasks for AFC controller 
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Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 7.25709e+10 1 7.25709e+10 6689.76 0 

Error 5.11837e+10 11407 4.48704e+06   

Total 1.23755e+11 11408 
 

   

Table 23.Task1 and 2 comparison using AFC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 3.45814e+06 1 3.45814e+06 0.1 0.7538 

Error 7.21923e+11 20536 3.5154e+07   

Total 7.21927e+11 20537 
 

   

Table 24.Task2 and 3 comparison using AFC controller 

 

Kruskal-Wallis one-way ANOVA table 

Source SS df MS Chi-sq Prob>Chi-sq  

Groups 1.00118e+11 1 1.00118e+11 5188.08 0 

Error 1.93516e+11 15215 1.27187e+07   

Total 2.93633e+11 15216 
 

   

Table 25.Task1 and 3 comparison using AFC controller 
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The tasks with AFC controller are shown in the Figure 27 where there are no 

significant differences among the task 2 and 3. This could be further attested by the 

p-value obtained by the Kruskal-Wallis table in Table 24. The other two task groups 

show significant differences among each other which is also attested by the 

Kruskal-Wallis one-way ANOVA table in Table 23 and Table 25.  
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Chapter 4 

Discussion and Conclusion 
 

 From the above experimental comparisons and data analysis among the two 

controllers with respect to Cartesian positional error and RCM constraint error, the 

following discussion and conclusion can be drawn as follows: 

• The Cartesian Compliance Controller (CCC)’s data, the box-plots in Figure 16, 

Figure 20 depicts the significant differences among the three tasks with 

respect to the Cartesian positional error. The Kruskal-Wallis one-way ANOVA 

tables (Table 10, Table 11 and Table 12) also confirms the significant 

difference with p-value <0.001. With these observations, we can conclude 

that the three tasks (T1, T2 and T3) influences the CCC controller to a larger 

extent with the data obtained with respect to the Cartesian positional error. 

• At the same time, the Adaptive Fuzzy controller (AFC) for the data obtained 

with respect to the Cartesian positional error shows that the tasks 1 and 2 

had no significant differences. This could be caused due to the fact that the 

task 1 (half-ellipsoid) and task 2 (sine-wave) were almost similar in the first 

half part of their shape similarity. The other task groups 2 and 3; task 1 and 

3 showed significant differences.  

• The Cartesian Compliance Controller (CCC)’s data for the RCM constraint 

error depicts the significant differences among the three tasks as shown in 

Figure 25, Figure 26. The Kruskal-Wallis one-way ANOVA tables (Table 20, 

Table 21 and Table 22) also confirms the significant difference with p-value 

<0.001. These observations confirms that the three tasks (T1, T2 and T3) 

influences the CCC controller to a larger extent with the data obtained with 

respect to the RCM constraint error. 

• The Adaptive Fuzzy controller (AFC) for the data obtained with respect to the 

RCM constraint error shows that the tasks 2 and 3 had no significant 

differences. This could be caused due to the fact that the task 2 (sine-wave) 

and task 3 (triangular-wave) accomplished the virtual task by respecting their 

RCM constraint. The other task groups 1 and 2; task 1 and 3 showed 

significant differences.  
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From all the analysis of data using the one-way ANOVA of Kruskal-Wallis, we can 

conclude that the significant differences among the task groups were reduced 

using the AFC controller for both RCM constraint error as well as Cartesian 

positional error. From the box-plots, the Adaptive Fuzzy Controller (AFC) had 

reduced errors compared with the other controller. Thus, Adaptive Fuzzy 

Controller (AFC) performed better than the Cartesian Compliance Controller 

(CCC) in terms of RCM constraint error and Cartesian positional error. 
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