
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

DESIGN AND DEVELOPMENT OF REXY:

A VIRTUAL TEACHING ASSISTANT FOR

ON-SITE AND ONLINE COURSES

Relatore: Prof. Paolo Cremonesi

Tesi di laurea di:

Manuel Parenti Matr. 876085

Anno Accademico 2017–2018

Acknowledgments

I would like to express my deep gratitude to Professor Paolo Cremonesi, my

research supervisor, for the opportunity he gave me to participate in this project

and for his guidance and enthusiastic encouragement. I would also like to thank

Dr. Luca Benedetto, for his continuous support and constructive recommendations

during my work.

I wish to thank my family for their support and encouragement throughout

my study.

Finally, I would like to extend my thanks to Monica, for being always present

and encouraging me to improve every day, and to my study partners Alberto, Gior-

gio, Giovanni, Marco and Tommaso for the beautiful experiences shared during the

years at Politecnico di Milano.

Abstract

Digital assistants are now present on the main mobile operating systems as

native apps and can be found inside messaging applications and websites where

they aid users with a wide variety of tasks. They pervade our lives, bringing useful

information to our attention and answers to our requests. The educational domain

can bene�t from the adoption of such technology, because it allows to reach all the

students of a course and help them by solving their doubts, navigating through the

content of a course and proposing exercises.

The goal of this thesis is to show how a virtual teaching assistant can be created,

in a modular and general enough manner, allowing its adaptation to di�erent situa-

tions and courses. This work presents the details of the design of Rexy, an assistant

that has been employed for the Recommender Systems course at Politecnico di Mi-

lano, with the aspects considered to choose the underlying technologies. The idea

behind Rexy is to augment the answering capabilities of a teacher, by responding

to frequently asked questions in an automatic way. This initial concept has been

expanded in order to be able to answer to more general and unexpected questions,

test the understanding of concepts and control the behavior of the assistant during

its activity, to improve it with time.

Students can interact with Rexy through Slack, one of the most widespread

messaging applications. Their messages get interpreted by the IBM Watson™ As-

sistant conversational computing service, which proposes the answers that are

completed and sent back to students by a Node.js server. This intermediate appli-

cation orchestrates all the �ow of messages, extends the understanding capabilities

of Assistant while o�ering additional functionalities to the students and teachers.

Sommario

Gli assistenti digitali sono presenti sui principali sistemi operativi mobile sotto

forma di applicazioni native, possono essere trovati anche all’interno di appli-

cazioni di messaggistica e siti web, dove sono sfruttati dagli utenti per svolgere

vari tipi di compiti. Essi pervadono le nostre vite, portando informazioni utili alla

nostra attenzione e rispondendo alle nostre richieste. Il settore dell’educazione

può bene�ciare dell’adozione di tale tecnologia, perché essa consente di raggiun-

gere tutti gli studenti di un corso e aiutarli risolvendo i loro dubbi, guidandoli

attraverso il contenuto di un corso e proponendogli esercizi.

Lo scopo della tesi è quello di mostrare come creare un assistente virtuale per

la didattica, in modo modulare e abbastanza generale da permettere il suo adat-

tamento a diverse situazioni e corsi. Questo lavoro presenta i dettagli di proget-

tazione di Rexy, un assistente impiegato nel corso di Recommender Systems al Po-

litecnico di Milano, insieme agli aspetti considerati nelle scelte delle tecnologie

sottostanti. L’idea dietro al progetto è quella di estendere le possibilità che un in-

segnante ha nel rispondere agli studenti, occupandosi delle domande più frequenti

in modo automatico. A questo scopo iniziale si sono aggiunte funzionalità per

permettere a Rexy di rispondere a domande più generali e inaspettate, di testare

la comprensione dei concetti di un corso e di controllare il suo comportamento

durante il suo periodo di attività, per migliorarlo col tempo.

Gli studenti possono interagire con Rexy attraverso Slack, una delle appli-

cazioni di messaggistica più di�use. I loro messaggi vengono interpretati dal servizio

di calcolo conversazionale IBM Watson™ Assistant, che propone delle risposte ad

un server Node.js che le completa e le inoltra agli studenti. Questa applicazione

intermedia orchestra il �usso di messaggi, estende le capacità di comprensione di

Assistant ed o�re l’adozione di funzionalità addizionali per studenti e insegnanti.

Contents

Introduction 1

1 State of the Art 5
1.1 Chatbots . 5

1.1.1 From ELIZA to Present . 5

1.1.2 Application of Current Chatbot Technologies 6

1.1.3 How Chatbots Are Perceived 7

1.1.4 Chatbot Architecture . 8

1.1.4.1 General Architecture 8

1.1.4.2 Recognizing Intents and Entities 9

1.1.4.3 Conversational Computing Platforms 11

1.2 Virtual Teaching Assistants . 12

1.2.1 Reviews of Virtual Assistants in Education 13

1.2.2 Jill Watson . 13

1.2.3 Design of a VTA . 16

1.3 Thesis Objectives . 17

2 Software and Algorithms 19
2.1 Watson . 19

2.1.1 DeepQA Project . 19

2.1.2 Watson™ Services . 22

2.1.3 Assistant . 23

2.1.3.1 Training Data 23

2.1.3.2 Dialog . 25

2.2 Slack . 28

2.3 Database Engines . 30

2.3.1 MySQL . 30

2.3.2 MongoDB . 30

vii

Contents

2.4 Clustering . 31

2.4.1 Clustering Algorithms . 31

2.4.1.1 K-Means . 31

2.4.1.2 K-Medoids . 32

2.4.1.3 Hierarchical Agglomerative Clustering 33

2.4.2 Clustering Evaluation . 34

2.4.2.1 Adjusted Rand Index 34

2.4.2.2 Fowlkes-Mallows 35

2.4.2.3 Adjusted Mutual Information 35

2.4.2.4 Homogeneity, Completeness, and V-measure . . 35

2.4.2.5 Silhouette Coe�cient 36

2.5 Spelling Correction . 37

3 Statement of the Problem 39
3.1 Recommender Systems at Polimi 39

3.2 Problems and Chosen Solutions 40

4 Architecture 43
4.1 Rexy Architecture . 43

4.1.1 Front End . 44

4.1.2 Application Server . 44

4.1.3 Database Server . 45

4.1.4 NLP Component . 45

4.1.5 Deployment . 45

4.2 Databases . 45

4.2.1 MOOC Database . 45

4.2.2 MongoDB Databases . 47

4.2.2.1 Administrative Database 47

4.2.2.2 Conversation History Database 48

4.2.2.3 User Database 49

4.2.2.4 Question Database 50

4.3 Watson Assistant Workspace . 50

4.3.1 Intents . 51

4.3.2 Entities . 56

4.3.3 Dialog Tree . 56

4.3.3.1 Dialog Nodes and Branches 56

4.3.3.2 Context Variables and Keywords 58

viii

Contents

4.4 Node.js Application . 61

4.4.1 Dependencies . 61

4.4.2 Components . 62

4.4.2.1 Classes . 62

4.4.2.2 MOOC Modules 66

4.4.2.3 Administrative Modules 67

4.4.2.4 Question Modules 69

4.4.2.5 User Modules 70

4.4.2.6 Spelling Correction Modules 71

4.4.2.7 Watson Modules 71

4.4.2.8 Context Manager 73

4.4.2.9 Lookup Manager 74

4.4.2.10 Chatbot . 75

4.5 Sequence Diagrams . 77

4.5.1 High-Level Interactions 77

4.5.2 Initialization . 79

4.5.3 Text Messages . 79

4.5.4 Interactive Messages . 89

4.5.5 Slack Dialogs . 97

5 Results 99
5.1 Interactions with Rexy . 99

5.2 Maintenance and Portability . 101

5.3 Scalability . 102

5.3.1 Testing Scenario . 102

5.3.2 Test Description . 102

5.3.3 Results . 103

5.4 Clustering of Users . 104

5.4.1 Simulation . 104

5.4.2 User Model . 104

5.4.3 Techniques . 105

5.4.4 Results . 106

5.4.4.1 Scenario A - only intents 106

5.4.4.2 Scenario B - intents and entities 110

Conclusions 115

Bibliography 117

ix

Contents

A Dialog Tree 121

B Use Cases 137

x

List of Figures

1.1 Basic chatbot architecture . 8

1.2 Chatbot with intent and entity classi�cation 11

2.1 DeepQA architecture . 20

2.2 Intent example . 24

2.3 Entity example . 25

2.4 Dialog tree example . 26

2.5 Dialog �ow example . 28

2.6 Slack chatbot text message . 29

2.7 Slack chatbot interactive message 29

2.8 Slack chatbot dialog . 29

4.1 High-Level architecture . 43

4.2 MOOC database . 46

4.3 Administrative database . 47

4.4 Conversation history database . 48

4.5 User database . 49

4.6 Question database . 50

4.7 MOOC classes . 63

4.8 Administrative classes . 63

4.9 Question classes . 64

4.10 User class . 64

4.11 Context class . 65

4.12 spell checker class . 65

4.13 MOOC modules . 66

4.14 Administrative modules . 68

4.15 Question module . 69

4.16 User modules . 70

4.17 Spelling correction modules . 71

xi

List of Figures

4.18 Watson modules . 71

4.19 Context Manager module . 73

4.20 Lookup Manager module . 75

4.21 Chatbot module . 76

4.22 High-level view of interactions . 77

4.23 High-level view with Assistant . 78

4.24 High-level view with Assistant and databases 78

4.25 Text message sequence diagram number 1 79

4.26 Text message sequence diagram number 2 80

4.27 Interaction with lookup . 81

4.28 Text message sequence diagram number 3 82

4.29 Interaction with contextual information 83

4.30 Text message sequence diagram number 4 83

4.31 Display of the list of concepts . 84

4.32 Text message sequence diagram number 5 84

4.33 Display of a question . 85

4.34 Text message sequence diagram number 6 85

4.35 Discovery query result . 86

4.36 Text message sequence diagram number 7 87

4.37 Con�rmation question . 88

4.38 Teacher question . 88

4.39 Interactive message sequence diagram number 1 89

4.40 Result after a user con�rmation 90

4.41 Interactive message sequence diagram number 2 90

4.42 Result after a entity selection . 91

4.43 Interactive message sequence diagram number 3 91

4.44 Managing a message that has been con�rmed 92

4.45 Dialog with intent creation . 92

4.46 Dialog with intent selection . 93

4.47 Dialog with direct reply . 93

4.48 Interactive message sequence diagram number 4 94

4.49 Interactive message with intent description 94

4.50 Interactive message sequence diagram number 5 95

4.51 Interactive message sequence diagram number 6 96

4.52 Interactive message with correct answer 97

4.53 Interactive message sequence diagram number 7 97

4.54 Dialog submission sequence diagram 98

xii

List of Figures

4.55 Message received by a student from a teacher 98

5.1 Load test results . 103

5.2 Adjusted Rand Index in Scenario A 107

5.3 Adjusted Mutual Info in Scenario A 107

5.4 Fowlkes-Mallows measure in Scenario A 108

5.5 Silhouette coe�cient in Scenario A 108

5.6 Homogeneity in Scenario A . 109

5.7 Completeness in Scenario A . 109

5.8 V-measure in Scenario A . 110

5.9 Adjusted Rand Index in Scenario B 111

5.10 Adjusted Mutual Info in Scenario B 111

5.11 Fowlkes-Mallows measure in Scenario B 112

5.12 Silhouette coe�cient in Scenario B 112

5.13 Homogeneity in Scenario B . 113

5.14 Completeness in Scenario B . 113

5.15 V-measure in Scenario B . 114

A.1 Dialog tree: part 1 . 122

A.2 Dialog tree: part 2 . 123

A.3 Dialog tree: part 3 . 124

A.4 Dialog tree: part 4 . 125

A.5 Dialog tree: part 5 . 126

A.6 Dialog tree: part 6 . 127

A.7 Dialog tree: part 7 . 128

A.8 Dialog tree: part 8 . 129

A.9 Dialog tree: part 9 . 130

A.10 Dialog tree: part 10 . 131

A.11 Dialog tree: part 11 . 132

A.12 Dialog tree: part 12 . 133

A.13 Dialog tree: part 13 . 134

A.14 Dialog tree: part 14 . 135

A.15 Dialog tree: part 15 . 136

xiii

List of Figures

xiv

List of Tables

4.1 Course intents . 51

4.2 Challenge intents . 52

4.3 Exam intents . 53

4.4 Lecture intents . 53

4.5 Course content intents . 54

4.6 Teacher intents . 54

4.7 Generic questions intents . 54

4.8 General intents . 55

4.9 General speech acts intents . 55

4.10 Entities . 56

B.1 Use Case 1: Lecture schedule . 137

B.2 Use Case 2: Next lecture . 138

B.3 Use Case 3: Exam in september 138

B.4 Use Case 4: Exam possibilities . 139

B.5 Use Case 5: Starting day of the challenge 139

B.6 Use Case 6: Second deadline of the challenge 139

B.7 Use Case 7: One of the challenge rules 140

B.8 Use Case 8: De�nition of a speci�ed concept 140

B.9 Use Case 9: Synonym . 140

B.10 Use Case 10: References of a concept of the course inside the modules 141

B.11 Use Case 11: Description of a module 141

B.12 Use Case 12: Description of a video 142

B.13 Use Case 13: De�nition without speci�ed entities 142

B.14 Use Case 14: Next event . 143

xv

List of Tables

xvi

Introduction

Virtual assistants are employed in various industries to deliver information

and perform a wide array of tasks, from communicating weather conditions to

delivering customer care.

Analogous assistants can bring advantages in the educational domain: for ex-

ample they enable the possibility to reach all the students of a particular course

and try to help them to study better and revise concepts in a personalized way.

These advantages are more noticeable in the case of large classes, where one or

few teachers cannot have a personal interaction with all the students. The positive

e�ects of the presence of a virtual teaching assistant (VTA) in classes are shown

in [32] where di�erent variations of virtual assistants have been compared against

each other and against humans in teaching concepts from di�erent domains.

One domain in particular can gain in terms of quality o�ered to students, that

is e-learning with Massively Open Online Courses (MOOCs). Class Central reports

that in 2017 the total number of people that enrolled to a MOOC reached 81 mil-

lions, distributed over 9.4 thousand online courses [46]. One of the main problems

of MOOCs is the student’s retention rate, which is typically lower than 50% [52].

During on-site classes students interact with each other and with teachers, while

in e-learning students act as autodidacts. As stated in [31], this lack of interac-

tion is one of the main reasons of low student retention . Engaging students with

a VTA could lead to an higher retention rate as it can help them overcome their

di�culties and lead them to the ful�llment of the learning objectives of the course.

The goal of this project is to design and create a VTA that can be used to im-

prove the quality of teaching and of the learning experience both in the case of

online and on-site courses. This improvement is linked with the possibility to

scale and augment the teacher’s ability to interact with students. The proposed

VTA consists in a chatbot, an intelligent system that interacts with users via text

messages on an o�cial Slack workspace. This chatbot is capable of answering

1

Introduction

students’ questions about the content, the structure and the organization of the

Recommender Systems course held at Politecnico di Milano.

Recommender Systems is an introductory course on recommender systems and

in the current academic year, 2018/2019, the Professor Paolo Cremonesi is leading

the class with a �ipped classroom instructional strategy. In this scenario, teaching

material is delivered in the form of online video lectures, while in-class lessons are

reserved for making students engage with the content of the course and explore it

more deeply.

The idea to make experiments with a virtual assistant originated from the in-

tention of the Professor to hold a MOOC on the topics of the Recommender Systems
course on Coursera, arguably the most famous and populated e-learning platform.

The goal of this experiment is to be able to give a helpful service to students that

normally would not be able to interact with the teacher as well as their on-site

colleagues. Indeed, at the beginning of this project the test environment consists

of the class of students of the on-site course.

In the scenario of university courses usually there are a single teacher and few

teaching assistants that can answer a limited number of questions and requests

asked by students. This holds true also in the case of Recommender Systems, where

there is only one professor and one teaching assistant. These questions can be

usually asked during lectures, where the answer reaches the whole classroom of

students, or via e-mail where the answer is received only by the sender of the

message, limiting the e�ect of the teacher’s e�ort. In the case of online courses,

the number of students can be enormously greater than the number of students

enrolled to an on-site course, leading to a number of potential requests too large

to be handled by a single or few teachers.

The students’ requests can be classi�ed into two main categories, those re-

lated to the syllabus of the class and those related to the concepts contained in

the learning units of the class. The learning units can be lectures, videos or doc-

uments depending on the medium utilized to convey information useful for the

students to learn and reach the learning objectives of the course. Among those re-

quests there are frequently asked questions (FAQs) that are repeated many times

and that can be dealt with in a more e�cient way than trying to answer them one

by one. There are also questions that need more human e�ort and knowledge to

be answered correctly and in a satisfying way.

Having a VTA able to answer FAQs gives teachers the time to focus on more

interesting and demanding requests. The work that is mostly related to this the-

sis is the research discussed in [35], in which Professor Goel from Georgia Tech

2

Introduction

discussed the possibility of using VTAs in order to reduce professors’ workloads.

VTAs can make education much more scalable since students can solve most of

their problems without asking the teachers for help. Previous research showed

that it is possible to create and deploy VTAs to help students of online and o�ine

courses, but it did not share the details on how such assistants can be created. The

main di�erence from previous work consists in the focus on the VTA’s architec-

ture, showing how it is built, how it works and how it will be expanded in the

future.

VTAs can also be leveraged to recommend learning material to students, in-

crease student engagement and help students revising concepts from the courses.

The chatbot I propose is quite general and it can be easily adapted to di�erent

courses, how it will be shown in a later section.

One of the VTA’s key features is that it creates an environment where users

can �nd information about the syllabus of the course in a natural way, that is using

their words. It is able to give enrolled students the piece of information they need

about lectures, exams, deadlines and speci�cations for a competition that lasts for

the whole semester. Aside from information about the syllabus, users can interact

with the chatbot while studying or revising concepts from the classes. The bot can

support them by giving de�nitions of those concepts and �nding the right sections

of the course material where they can be studied. The sections consist of a list of

learning units, that can have the form of videos or text documents. Another feature

of the bot is that it can be used to test the user’s understanding of the concepts that

he should have studied through the course, therefore help them revise the concepts

in which they are not very con�dent. This can be useful to gain in terms of user

retention and in having more con�dent students taking the exams.

To give the chatbot the natural language processing capabilities needed in or-

der to understand the student’s questions, I leveraged IBM’s Watson™ Assistant

service. It stands at the core of the architecture of the chatbot, but it needs to del-

egate some tasks to a dedicated application to �nd the most �tting way to select

answers, retrieve information and to bring some external features to the users. One

of the �rst problems that comes up when creating a chatbot is that there might not

be records of prior interactions between teachers and students. This is even more

complicated when the domain of application is very specialized and there needs

to be an expert of the domain to design the best dialog �ows for the end users.

This problem can be overcome by leveraging one of the commercial o�-the-shelf

software solutions on the market. In fact, the choice of Watson™ Assistant as nat-

ural language processing (NLP) service came through because it allows users to

3

Introduction

create and deploy bots easily, since it takes charge of the task of understanding

and recognizing the meaning of the messages sent to the chatbot. Watson™ As-

sistant allows to create a rule-based chatbot, by using this service one can identify

the intent of each of the users’ messages and the entities contained in them and

de�ne the rules for selecting the most appropriate answer in case any intent gets

recognized. Therefore, an initial phase of design of the possible intents, entities

and rules is needed and depending on the domain of the application the structure

of the created dialog �ows can be signi�cantly di�erent.

Whilst the purpose of the VTA described in this thesis is to help the students of

Politecnico di Milano reaching the learning objectives of Recommender Systems, it

can be used as a guideline to build assistants for fully online courses and for other

areas of study.

The structure of the thesis project is described below:

• In Chapter 1 there is an analysis of the state of the art for chatbots, focusing

on VTAs.

• In Chapter 2 there is a description of the most important software technolo-

gies and algorithms that made the development of the VTA possible.

• In Chapter 3 there is a description of the context in which the experiment is

run and of the di�erent problems taken into account to design and develop

the VTA.

• In Chapter 4 the architecture of the VTA, the databases used to store its

knowledge, the training data and dialog tree design, the architecture of the

server application and the ways in which its modules interact are described.

• In Chapter 5 the results of the work and a preliminary study of how to model

groups of users sharing similar interest, based on the interactions they have

with the VTA, are presented.

• In the Conclusions there are the possible future developments for the VTA.

4

Chapter 1

State of the Art

1.1 Chatbots

Chatbots are intelligent systems that interact with users via messaging, text,

speech or customized graphical interfaces. They enable users to retrieve infor-

mation and perform speci�c actions with simple conversations, they are available

24/7, they can answer to multiple people at a time and they can outperform hu-

mans in terms of speed and accuracy in a narrow domain. Users can take advantage

of the functionalities that bots o�er on the channel they prefer, creating person-

alized conversations with a bot that can manage a great number of concurrent

users. Something that is very di�cult and expensive to reproduce with a group

of humans, since the number of requests they can manage at a time is much more

limited. Although, the quality of the answers is a completely di�erent matter and

it depends on the quality of the chatbot and more importantly on the domain of

application and the expertise needed to write a satisfactory response.

1.1.1 From ELIZA to Present

Conversational agents are not a new branch in the �eld of computer science,

though. In the 1960s, Weizenbaum published an innovative study on human in-

teraction with a computer program named ELIZA. It was developed to demon-

strate the super�ciality of communication between humans and machines, its con-

versations were supported by pattern matching, the users’ input messages were

matched with prede�ned texts, and a substitution methodology, needed to insert

part of the input message into the response text. This gave the users the illusion

that the bot was understanding the meaning of their words. The way in which

ELIZA responded depended on prede�ned scripts, that de�ned the rules of the

5

1. State of the Art

response to use in speci�c situations. The most famous script simulated the re-

sponses of a psychotherapist in a therapy session [50].

Dale discusses “the return of chatbots” in recent years and explains how the

current interest in this technology is rooted in previous work on natural language

user interfaces [30]. Dale highlights the impact of the Loebner Prize, which has

taken the form of an annual contest designed to implement the Turing Test. It

has inspired the community to design natural language interfaces in order to be

more human-like. One instance of this active community is Pandorabots, a chatbot

platform that includes more than 250,000 bot developers and that has spawned

more than 300,000 bots as of 2018.

Chatbots and virtual assistants are now a trending technology, in fact they

can be easily found in di�erent websites, chat applications and in the form of na-

tive bots in many operating systems. The reason is likely related to substantial

advances in computing technology and the wide adoption of mobile messaging

applications.

First, recent advances in arti�cial intelligence and machine learning promise

vast improvements in natural language interpretation and prediction capabilities,

including improvements in machine translation. Some modern chatbots are able

to talk about many di�erent subjects, they have a wide variety of possible answers

and can give the illusion of emotion by impersonating a character. All of these

features make them more human-like than their predecessors (such as ELIZA) [47].

From a technical point of view, progress in conversational modeling suggests

that models based on recurrent neural networks and sequence-to-sequence models

will out-perform the rule-based conversational models typically applied to tradi-

tional chatbots in the task of prediction of the next sentence in a conversation [49].

Second, the wide spread of messaging apps is testi�ed by the fact that the

four top messaging apps surpassed the top four social networks in terms of global

monthly active users in 2015, and they continue to grow [28]. Indeed, messaging

apps exceeded 6 billion combined monthly active users in 2017 [51]. This growth

makes it even easier for users to interact with chatbots in their daily lives.

1.1.2 Application of Current Chatbot Technologies

The most popular and pervasive chatbots or digital assistants are the ones em-

bedded in the most widely used digital devices, such as Microsoft’s Cortana, Ap-

ple’s Siri, Google’s Assistant and Amazon’s Alexa. All of these applications can

help users with some of the standard virtual assistant’s tasks, which generally in-

6

1.1. Chatbots

clude scheduling meetings, checking and making appointments on a personal cal-

endar, reading, writing and sending messages, playing music, and, with di�erent

smart solutions, controlling devices of a automation-enabled home. All of them

are cloud based, meaning that the interpretation of the message and the prepara-

tion of the response is created on machines running on the cloud. Some of them

also let users install widgets made by third-party vendors, to increase the number

of functionalities o�ered by the standard assistant.

Aside from these widely known applications, chatbots can be help users of a

website in performing particular tasks by providing a simple and intuitive inter-

face, which doesn’t require them to learn how to navigate a traditional graphical

interface. Also, it is very easy to �nd chatbots that operate in messaging apps such

as Facebook Messenger, Telegram, Slack, WeChat and others. Depending on the

platform where the bot is deployed, di�erent services can be o�ered to the users.

Di�erent industries can bene�t from using chatbots to engage with customers,

leveraging the inexpensive and wide-reaching technology. For instance, people in

the US can search and book trips using Hipmunk’s chatbot, they can also request a

taxi ride from Lyft via chat or voice. Students of Politecnico di Milano can receive

assistance on administrative matters from a FAQ chatbot. These are just a handful

of examples of how chatbots are employed in di�erent businesses, on the internet

there is a huge number of di�erent chatbot solutions that can be applied in the

most diverse �elds.

1.1.3 How Chatbots Are Perceived

Chatbots are considered as human computer interfaces, based on natural lan-

guage. Thus, it is important to study the way in which chatbots are perceived by

their users and what they expect when interacting with them, in order to meet their

requirements and improve the design of functionalities and conversation �ows.

Literature is lacking empirical studies on the reasons why people write or talk

to the modern wave of chatbots, but some early results are available. In [29]

Brandtzaeg et al. present an experiment aimed at �nding the reason and the way

in which people use chatbots to ful�ll their needs. The target user base for the

experiment was people from the US aged between 16 and 55. The method used

to gather data was an online questionnaire, published in April 2017 through an

independent research company. After evaluating the responses, 146 of them were

considered valid, meaning that they came from people that said they were chatbot

users. The results show that 68% of participants reported productivity to be the

7

1. State of the Art

main reason for using chatbots. 42% of participants highlighted the ease, speed,

and convenience of using chatbots as the main reason for using them. Also, they

noted that chatbots provide assistance and access to information. Yet, a substantial

proportion of participants (20%) reported using chatbots for entertainment. This

shows that productivity-oriented bots may bene�t from a empathetic appearance.

The results of this study highlight the most important needs that users have, and

that chatbot designers must take into account. In particular, productivity and so-

cial interaction may drive people to use chatbots in a stable manner over time.

However, this study is subject to limitations. The authors note that the chatbot

users that participated in this study were both self-selected and �ltered by some

initial questions. They are, therefore, not representative of the population at large.

1.1.4 Chatbot Architecture

In this section, a short overview of the software components that make up a

chatbot is presented. A more complete description and exploration of those con-

cepts resides in [39].

1.1.4.1 General Architecture

Chatbots, in their simplest form, can be represented as the union of a messaging

interface and a component that processes users input and responds using natural

language.

Figure 1.1: Basic chatbot architecture

The second component can have various capabilities, such as the ability to

recognize the text of users’ voice messages and reply with synthesized voice mes-

sages. Other additional features can be: the ability to converse in di�erent lan-

guages, data analytics features, support for maintenance. Natural Language Un-

derstanding (NLU), Dialog Manager and Natural Language Generation (NLG) are

8

1.1. Chatbots

key components in the architecture of a chatbot, but they can have many di�erent

�avors.

The NLU component’s job is to understand the meaning of input messages,

recognizing the key details the users want to express. There are many ways to

represent the meaning of sentences and the most common is based on frames and

slot semantics.

The Dialog Manager controls the architecture and structure of dialogue. It

takes input from the NLU component and maintains a state of the conversation. It

then instructs the NLG module on how to create the output message.

The NLG module has the task of assembling the output messages to be sent

to the users. The ideal solution would be to generate a sentence completely from

scratch, creating a unique response for di�erent input sentences in di�erent con-

texts. This approach is the most di�cult to model and develop, usually it involves

using recurrent neural networks, but it has a signi�cant advantage over simpler

models that use prede�ned answers, which might feel more static to the end users.

Another approach is to use retrieval-based models: for every input message, given

the current context of the conversation, they search the best possible answer in-

side a database of answers by following a heuristic. For instance, in the case of an

example-based conversational agent, the answers are de�ned for a group of input

messages and for any of these input strings the reply is decided in a deterministic

way. This simple model can be seen as a combination of a database of known in-

put texts and a set of rules, that link every known input to a particular response.

If a previously unseen message is received from the chatbot, it might look into his

database of pre-recorded input messages and search for the most similar one. As a

reply, the prede�ned answer for the most similar known input is used. Obviously,

a measure of the similarity needs to be de�ned. Pattern-based heuristics can also

be used to create very simple chatbots. They rely on patterns: when the chatbot

receives a message, it goes through all the patterns until it �nds a pattern which

matches the user message. If a match is found, the bot will respond using the cor-

responding pattern. Pattern-based methods are very limited and in order to be able

to respond to various questions, a great number of patterns needs to be created by

hand and this is not an easy and quick task.

1.1.4.2 Recognizing Intents and Entities

A much more �exible approach is to classify the intent of a user’s message. An

intent is the user’s intention. Or, in the case of questions, it represents the type of

9

1. State of the Art

question that can be asked by the user. The main idea behind this approach is that

users can express a particular request in many di�erent ways, e.g. to ask for the

ingredients of a cake they can say “Can you give me the recipe of a cake?”. Things

get more complicated if the user asks for a list of delicious cakes in a message

and then chooses one of them, after some messages he might ask: “ok, how do
I make it?”. In this case the intent of the user is always to get information on

how to make a cake. In other contexts, the meaning, and so the intent, of the

message might be completely di�erent. Chatbots capable of understanding the

intent, leveraging information about the context, are able to manage this kind of

conversations easily. Usually, together with intents, chatbots recognize entities

inside input sentences. This allows them to de�ne more cases (and so answers) to

manage and achieve a better understanding of the requests of the users. A named

entity is a real-world object that can be referred to with a proper name. In the

example of cakes "cheesecake" or "red velvet" could be two di�erent values of an

entity called "cake". If a chatbot recognizes both the intent of request of ingredients

and the "cake" entity, it can search for the ingredients of the requested cake inside

a knowledge base of recipes.

With machine learning techniques it is possible to train an intent or entity

classi�er. These techniques need a training set composed of user messages and

the corresponding intents and entities as examples, in order to �nd patterns in

the data that will allow them to classify previously unseen input data. When the

chatbot gets the intent of the message, it shall generate a response. The simplest

way is just to respond with a static response, one for each intent or combination

of intent and entities. Or, in order to create more dynamic answers, variables can

be inserted in the response. When generating the answer those variables can be

�lled with the values of recognized entities or coming from the context of the

conversation, such as the time or the location of the user. A question-answering

bot can use a knowledge graph, use some algorithm to score the potential answers

and select the most �tting one, as shown in �gure 1.2.

At the start of the processing of an input message the bot tries to understand

what the user is talking about. To do so it gives a score to the intents it already

knows, using the intent classi�cation module, and uses the intent with the highest

score in the following task of identifying a compatible answer. The named entity

recognition module searches for prede�ned entities inside the input message, it can

recognize them using synonyms, patterns, regular expressions or even machine

learning models. The answer generator searches through a database of answers,

looking into a knowledge graph using the selected intent, the recognized entities

10

1.1. Chatbots

Figure 1.2: Chatbot architecture with intent classi�cation and entity recognition

and some information coming from the context of the conversation to select the

most appropriate answer.

1.1.4.3 Conversational Computing Platforms

The conversational computing platforms’ market has several players. The ser-

vices they o�er can be used to design, create and deploy chatbots focusing on the

design of the conversation, while outsourcing the task of analyzing the messages

coming from the users. Usually, bots created with those platforms can be deployed

to the most common messaging applications or to a proprietary web application.

There are services coming from IBM, Amazon, Google, Microsoft and other online

services such as Chatfuel [4], and free services, some of them are wit.ai [27] and

Pandorabots [19].

IBM Watson™ Assistant (formerly Watson Conversation) [7] has a technically

robust conversational platform with developer-friendly tools, being the solution

used here, it will be presented in the following chapter.

Amazon’s Alexa for Business™ [1] leverages AWS and Alexa’s strengths. With

more than 30,000 skills on Alexa, customized voice and chat experiences can be

built on mobile devices and chat applications.

Google’s DialogFlow™ [5] incorporates Google’s machine learning expertise

and products. It is optimized for the Google Assistant, but it can be leveraged to

11

1. State of the Art

deploy bots to wearables, phones, cars, speakers and other smart devices.

Microsoft has three di�erent products: Microsoft Bot Framework™ [12], LUIS™

for natural language processing and intent management [13], Azure Cognitive Ser-

vices for extended AI support [11]. Microsoft o�ers a single development environ-

ment to leverage all their products.

1.2 Virtual Teaching Assistants

Since chatbots generated a lot of interest, examples of the application of this

technology in the education �eld are not lacking.

Chatbots have been used as a natural language interface to gather information

for more complex applications. In [44] an approach to automated learning path

generation inside a domain ontology supporting a web tutoring system is pre-

sented. In the proposed system, a chatbot has the task of asking users for their

preferences on what they want to study as a �rst step. After having received

enough information through a conversation, the system creates a learning path

for the users automatically, telling them what chapters in a MOOC they should be

consulting and in which order.

However, chatbots have been also employed as VTAs in online and on-site

teaching scenarios. The motivation for using chatbots in this �eld is that they can

reach every involved student and address his personal needs to help him achieve

the learning objectives of a course.

A chatbot has been at the center of a study regarding a web-based teaching

system for foreign languages [38]. The idea behind that study is that a chatbots’

conversational abilities could be helpful for a student in learning a new language.

The bot was instructed to respond to the students’ sentences in order to let them

practice with the words and sentences they previously learnt. Furthermore, the

sentences that the chatbot could recognize were organized in more than 20.000

categories inside a knowledge base. Each category contained an input-pattern and

an output-template. If a user typed something as an input, the program would

look into the memory for a matching category. If a matching category was found,

its output-template was retrieved and transformed to the output of the chatbot.

If no matching category was found the chatbot selected a random sentence that

could go well in any situation, to let the conversation continue. The results of the

experiment showed that users would identify the teaching assistant as a bot quite

soon (within 10 rounds) during conversations, since the capabilities of the chatbot

12

1.2. Virtual Teaching Assistants

in understanding the input messages were poor and its responses were static. In

fact, most of the users noticed that the answers from the chatbot were irrelevant

with the topic and the context of the conversation.

Nevertheless, there are also experiments that got promising results, that show

how a VTA could be helpful for students and teachers.

1.2.1 Reviews of Virtual Assistants in Education

B. du Boulay analyzed di�erent researches regarding the e�ectiveness of in-

telligent systems as classroom assistants [32]. His work’s main focus is on the

comparative e�ectiveness of AIED (Arti�cial Intelligence in Education) systems

versus human tutoring and the systems used for the researches are not meant to

substitute teachers, but as a support for blended learning.

One of the studies that du Boulay references to is [48], In which, comparisons

of di�erent styles of tutoring are presented: no tutoring, answer-based tutoring,

step-based tutoring, substep-based tutoring and human tutoring. The di�erences

between answer-based and step-based tutoring are related to the granularity of

the interaction between the assistant and the student. The step-based one consists

of following a reasoning of di�erent steps instead of giving hints about the �nal

solution directly, like answer-based tutoring does. Substep-based tutoring has a

granularity of detail that is even �ner than the one a normal student would go

through when solving a problem. The experiments ran on STEM (science, tech-

nology, engineering, mathematics) subjects, where a step-based tutoring can make

sense. VanLehn reported that step-based tutors were “just as e�ective as adult,

one\hyp{}to\hyp{}one tutoring for increasing learning gains in STEM topics”.

Other meta-reviews are contained inside du Boulay’s study and the overall re-

sult is that intelligent systems adopted in a blended learning scenario, with other

teaching activities, is bene�cial. In particular, this e�ect is more pronounced in

large classes where teachers and teaching assistants have to deal with a great num-

ber of students. The studies showed also that higher levels of education bene�tted

from this technology more than lower levels, and particularly when applied to

STEM subjects.

1.2.2 Jill Watson

This section is about the famous example of virtual teaching assistants em-

ployed by Professor Goel in his course at Georgia Tech, presented in [35], which

13

1. State of the Art

inspired this work.

In 2014, the Knowledge-Based Arti�cial Intelligence (KBAI) course at Geor-

gia Tech had a few dozen students enrolled. The course has a dedicated forum

on Piazza, Georgia Tech’s Q&A platform, where students can post questions, to

be answered by Professor Goel or his teaching assistants. The number of ques-

tions posted on Piazza was manageable, until the launch of the online version of

the course which had nearly 400 students. In fall 2016, the number of questions

posted by students of the online course exceeded the 12,000 units, while the resi-

dential students posted six times less messages. Thus, the activity of monitoring

and responding to those requests took a large amount of sta� time, more than

the professor and his assistants could handle to provide high quality answers in a

timely manner. Goel was worried that online students were losing interest over the

course of the term. The strategy he followed to improve interactivity in the MOOC

related to the KBAI course was to use VTAs to augment interaction with human

teachers. He noticed that some of the questions that were posted were similar to

each other, and that there could be a solution to deal with them e�ciently, leaving

more time for more creative questions. He had the idea that introducing a VTA

in his sta� might be the right solution to handle the FAQs. The �rst generation

of the family of VTAs that Goel and his team created through the years consisted

of a single assistant called Jill Watson. It was introduced for the spring 2016 on-

line class. Jill assisted students in both Goel’s physical class and the more heavily

attended online version. The questions she answered were routine but necessary,

such as queries about proper �le formats, data usage, and the schedule of o�ce

hours; the types of questions that have �rm, objective solutions. Jill’s existence

was revealed at the end of her �rst semester on the job, but most of the students

were surprised because they could not understand it on their own.

Jill was built with Bluemix APIs, an IBM platform for developing applications

using Watson™ and other IBM services. Goel uploaded four semesters’ worth of

data, consisting in more than 40,000 questions and answers, to begin training his

VTA, but Jill wasn’t perfect at the start. Her early test versions gave not only

incorrect answers but also strange answers. Goel’s team created a mirror version

of the live Piazza forum for Jill so that it could observe her responses and �ag

her errors, to help her learn. Eventually, Jill continuously learnt from experience

and became better and better. Then came a breakthrough, part of the intellectual

property of Professor Goel. It included not only Jill’s memory of previous questions

and answers in the process of understanding the meaning of the user input, but also

the context of her interactions with students. In order to maintain a high quality

14

1.2. Virtual Teaching Assistants

in the responses of Jill, the team decided to put a very high threshold (97%) for the

con�dence needed for the bot to answer. Con�dence is one of the output variables

that IBM Watson™ APIs send back when processing an input message, it tells the

probability that the bot’s interpretation of the input text is correct. This probability

is likely to be related to the similarity of the input message with questions used

for the training of the bot.

The results of Jill’s work showed that while she answered only a small per-

centage of questions, the answers she gave were almost always correct or almost

correct. Goel’s sta� wanted to increase the range of questions and tasks covered

by her. This led to the development of a new generation of bots.

Starting from the second generation, they used a proprietary software and

open-source libraries instead of IBM Watson™ APIs, to address their needs of in-

creasing the functionalities and capabilities of the bot. In particular, the newly

created VTA, called Stacy Sisko, was designed to reply to student introductions

and to respond to FAQs as well. Stacy took care of more than 40% of the intro-

ductions and was able to manage more routine questions than Jill. However, this

might be due to the fact that the dataset of answer-question pairs was larger, since

those were collected also during Jill’s existence.

A third generation of bots was developed and was deployed in the spring of

2017. The third version of Jill Watson relied on an episodic memory. It mapped

the students’ questions into relevant concepts and then used those concepts to re-

trieve the best �tting answer from its episodic memory of questions. Two VTAs

were added to Piazza: a new version of Stacy, that took care of the introductions,

and the third version of Jill, whose job was to identify and respond to FAQs. The

new version of Stacy was able to take care of more than 60% of the student intro-

ductions, while Jill’s third reincarnation autonomously answered 34% of student’s

questions, and of all the answers she gave, 91% were correct. The improvement

through the di�erent generations was signi�cant, starting from a small percent-

age of handled questions to a third of the total number of student requests.

The advantages that can be gained through the deployment of such assistants is

still under study, but it is still not possible to say that the teaching activity improved

or that the quality of the answers is comparable to the one that human assistants

can o�er. Even though Goel states that it is too early to determine if Jill Watson was

able to lower the demands on the teaching sta� for the task of question answering,

there is some evidence that Jill reduced the burden related to student introductions

and posting messages to the class. He also states that it is too early to have insights

on the student retention or student performance of a course with access to Jill

15

1. State of the Art

Watson.

The experiments with Jill Watson are fascinating and many of the courses,

especially online, could bene�t from the introduction of such a VTA to reach every

one of their students to help them. Though, it is not clear how to create such

assistants for the education �eld. Furthermore, a course might not have a record

of interactions between students and teachers, making it more di�cult to train a

virtual assistant.

1.2.3 Design of a VTA

The creation and deployment of a chatbot can be facilitated by the available

conversational computing platforms, but a careful design phase needs to be exe-

cuted to implement a chatbot that can act as a VTA. Despite an increasing inter-

est for chatbots in education, clear information on how to design them as VTAs

is scarce. The aforementioned platforms only take care of the implementation

phase of bots, and not of all the design of the conversation �ow and the knowl-

edge needed to understand the user messages. These two tasks are left to the

chatbot designers, that will need to shape the way in which the bot answers in

every possible situation, and they will also need to decide what the bot should be

able to understand and teach him how to do it with example sentences. Since each

domain of application of a chatbot has di�erent needs it would be very di�cult

to create a bot that could provide assistance in any situation. In fact, travel bots

might be good in helping users �nd �ights, but they might not be able to answer

to a question that would be asked to a teacher. Bots applied to di�erent domains

also have di�erent vocabularies, meaning that they can understand di�erent user

intentions but also di�erent entities in the conversation. A travel bot should be

able to recognize dates and cities, while a VTA should be able to recognize the

concepts from the course he is employed in.

A formal methodology for designing and implementing a chatbot as an intel-

ligent tutor for a university level course using commercially available conversa-

tion frameworks is presented in [45]. The proposed methodology is built upon

�rst-order logic predicates and focuses on two phases: knowledge abstraction and

modeling, and conversation �ow. The knowledge abstraction phase consists of

representing the intents and entities to be recognized by the virtual assistant as

�rst-order logic predicates. Intents are used as names of the predicates and enti-

ties as the arguments of those predicates. The conversation �ow phase consists

of designing a tree in which the answer for the user queries is searched for, af-

16

1.3. Thesis Objectives

ter they have been analyzed to �nd the corresponding intents and entities. The

choice of a tree as structure for �nding the right answers is compliant with the

way IBM Watson™ and other conversational computing platforms deal with this

task. This paper analyzes some of the problems that occur when designing a chat-

bot for educational purposes, giving some example on how to apply the proposed

methodology in the �eld of mathematics, using IBM Watson™ ’s services. How-

ever, this is just a �rst step towards formalizing conversational agents in education,

as the authors explain.

Despite the approach mentioned in the previously mentioned paper can be of

support for the design of the intents and entities, how to e�ectively create a VTA

is not fully explained. Moreover, the creation of a dialog tree with a branch for

each tuple of intent and entities could be labour intensive and di�cult to maintain.

For example, if one of the intents of the VTA corresponds to questions asking for

a de�nition of a speci�c concept of a subject, for each concept of the course one

should create a branch inside the tree with the de�nition of that speci�c concept. It

would be easier to have a database containing this kind of knowledge, signi�cantly

lowering the complexity of the dialog tree. When a user asks for the de�nition

of a concept, a single leaf in the tree can launch a query to the corresponding

database and create the answer for the user. Furthermore, a method for considering

the context of the conversation while deciding which branches to take is missing.

Also, a comment must be made about the architectural choices for the development

of a VTA. Relying only on a service such as IBM Watson™ Assistant could limit

the capabilities and the functionalities of such VTA. For instance, it would not be

possible to execute the previously mentioned query to the database of de�nitions.

Also, the use of interactive elements in the user interface of the VTA is very limited.

1.3 Thesis Objectives

The goal of this research is to shed light on how to design and create a VTA

for an online or on-site course, to augment the teacher’s ability to interact with

students and improve their learning experience. The main objective of this VTA

is to support students by answering FAQs regarding the syllabus of the course, as

well as questions about the content of the course. Indeed, in this thesis a complete

architecture for the development and deployment of a VTA is presented. It inte-

grates the conversational computing capabilities of a commercial platform, namely

IBM Watson™ Assistant, with a server application and Slack, a messaging appli-

17

1. State of the Art

cation used as front-end for the VTA. The proposed solution augments the ca-

pabilities of IBM Watson™ Assistant in understanding the user messages and, in

addition, provides functionalities that are not available in such service. Some of

them are: a management of the context of the conversation that is more �exible

than the one o�ered by Assistant, the insertion of interactive elements inside the

conversation with students, control over the conversations between students and

the VTA to maintain a high level of quality in the responses and to make the VTA

improve on messages it doesn’t understand, analytics on the user interactions,

lookups in speci�c databases that store knowledge about the course in which the

VTA is employed. Moreover, the choices for each component of the architecture

are explained, starting from the intents, entities and dialog tree used on IBM Wat-

son™ Assistant, to the design of the databases. To understand how the di�erent

components communicate and bring together useful information for the students,

also the interaction between the nodes of the architecture is illustrated in the next

chapters.

18

Chapter 2

Software and Algorithms

This chapter is written for the readers’ convenience, to introduce them to the

software technologies and algorithms involved in the solution presented. If the

reader is already knowledgeable in the concepts presented he may skip part of or

all the following sections.

In Section 2.1 IBM Watson™ is presented, starting from the experiment that

brought to the di�erent services that are available on the IBM Cloud platform.

The features of Watson™ Assistant are described in Subsection 2.1.3.

Section 2.2 presents the characteristics of the messaging application Slack.

Section 2.3 introduces the database engines, which are MySQL and MongoDB,

involved in the architecture of the VTA.

Section 2.4 o�ers an introduction to the clustering algorithms applied to �nd

student pro�les from their interactions with the VTA.

In Section 2.5 the technique used for correcting the spelling of course speci�c

words is illustrated.

2.1 Watson

IBM Watson™ [6] is a question answering (QA) intelligent system developed

in IBM’s DeepQA project. Watson can answer questions posed in natural language

from an open domain, leveraging advanced NLP, information retrieval, knowledge

representation, automated reasoning, and machine learning technologies.

2.1.1 DeepQA Project

The DeepQA project started as a challenge to build a computer system which

could compete with human champions on Jeopardy! a famous American quiz

19

2. Software and Algorithms

show [33]. Jeopardy! pits three contestants against one another in a competition

that requires answering rich natural language questions over a broad domain of

topics. In 2011, the Watson computer system competed on Jeopardy! against two

of the show’s most successful former champions, winning the �rst-place prize of

$1 million [34].

DeepQA’s architecture is not speci�c to the Jeopardy! challenge, though. It

has been adapted to di�erent business applications including medicine, enterprise

search and gaming.

What IBM’s researchers built is a massively parallel probabilistic evidence-

based architecture. The philosophy behind DeepQA’s approach is to integrate

many di�erent algorithms, each looking at the data from di�erent perspectives.

In fact, for the Jeopardy! challenge, they used more than 100 di�erent techniques

for analyzing natural language, identifying sources, �nding and generating hy-

potheses, �nding and scoring evidence, and merging and ranking hypotheses.

Figure 2.1: High-level architecture of IBM’s DeepQA used in Watson™.

As can be seen in Figure 2.1 the task of answering a question with such an

architecture is decomposed in many di�erent subtasks.

Prior to any attempt to automatically answer a question there is a content ac-

quisition phase, which is executed to gather the content to use as answer and

evidence sources. The �rst step of the acquisition phase is to analyze example

questions from the problem domain to produce a description of the categories of

queries that must be answered, this is primarily a manual task. Given the kinds of

questions and broad domain of the Jeopardy! challenge, the sources for Watson in-

clude a wide range of encyclopedias, dictionaries, thesauri, newswire articles, and

20

2.1. Watson

literary works. Starting from this corpus, DeepQA applies an automatic expansion

process identifying useful documents, as well as structured and semi-structured

content, from the web.

Then, the main steps applied to solve a QA task are:

• Question analysis: the system attempts to understand what the question is

asking and performs the initial analyses that determine how the question

will be processed by the rest of the system.

• Hypothesis generation: this step takes the results of question analysis and

produces candidate answers by searching the system’s sources and extract-

ing text snippets from the search results. Each candidate answer is consid-

ered a hypothesis, which is examined by the system to decide whether it is

relevant or not for the current query.

• Soft Filtering: scoring algorithms are used to prune the set of initial can-

didates down, to pass only a small set of candidates to the more intensive

scoring components.

• Hypothesis and Evidence Scoring: candidate answers that pass the soft �l-

tering threshold undergo an evaluation process that involves gathering addi-

tional supporting evidence for each hypothesis, and applying a wide variety

of deep scoring analytics to evaluate the supporting evidence.

• Final Merging and Ranking: the remaining hypotheses are evaluated based

on potentially hundreds of thousands of scores to identify the single best-

supported hypothesis given the evidence and to estimate its con�dence, or,

in other words, the likelihood of it being correct.

• Answers Merging: Watson identi�es equivalent and related candidate an-

swers, that may have di�erent surface forms. It does this with an ensemble

of matching, normalization, and coreference resolution algorithms. It then

enables custom merging and the calculation of combined scores.

• Ranking and Con�dence Estimation: after merging, the system must rank

the hypotheses and estimate con�dence based on their merged scores. In

this phase, a machine learning approach is adopted. it requires running the

system over a set of training questions with known answers and training a

model based on the scores.

21

2. Software and Algorithms

This illustration of the di�erent phases that a question passes through, in order

to be answered, sheds some light on how the NLP tasks are performed from the

di�erent services that rely on IBM Watson™.

2.1.2 Watson™ Services

Watson™ is now accessible on the IBM Cloud platform through a wide variety

of services, covering di�erent problems related to NLP and information extraction

[10]. They share the same roots, but each one of them focuses on a speci�c task or

group of tasks:

• Discovery: this service allows to build exploration applications. It can be

used to enrich proprietary, public and third-party unstructured data, to run

business speci�c queries on it and gain insights.

• Knowledge Studio: it allows to create a machine learning model that un-

derstands the linguistic nuances, meaning, and relationships speci�c to the

user’s industry or to create a rule-based model that �nds entities in doc-

uments based on rules de�ned by the user. These models can be used to

enrich and tag documents, thus this service can be used as a �rst step in the

integration of Watson services into an application.

• Natural Language Classi�er: it uses machine learning algorithms to return

the top matching prede�ned classes for short text inputs. It can help an ap-

plication understand the language of short texts and make predictions about

how to handle them.

• Tone Analyzer: it uses linguistic analysis to detect emotional and language

tones in written text, both at document and sentence levels.

• Natural Language Understanding: with this service, developers can analyze

semantic features of text input, including categories, concepts, emotion, en-

tities, keywords, metadata, relations, semantic roles, and sentiment.

• Personality Insights: uses linguistic analytics to derive insights about per-

sonality characteristics of individuals from social media, enterprise data, or

other digital communications.

• Speech to Text: it enables applications to derive text from audio �les, allow-

ing them to process speech conversations as if they were text messages.

22

2.1. Watson

• Text to Speech it provides voice-synthesis capabilities to applications.

• Assistant (formerly Conversation): this service can be used to build a vir-

tual assistant that understands natural language input and searches for the

most appropriate answer, mimicking the way in which a normal conversa-

tion goes.

2.1.3 Assistant

IBM Watson™ Assistant provides a framework for building and deploying vir-

tual assistants, taking care of natural language understanding and retrieving suit-

able answers [9]. Chatbots created with this service can be integrated in external

applications leveraging Assistant’s APIs.

This service allows developers to con�gure a workspace in which the training

data can be inserted, and the dialog �ow can be designed. Watson™ Assistant ’s

APIs allow to manage the creation, update, retrieval and deletion of workspaces,

intents, entities and dialog nodes, while also allowing the possibility to send mes-

sages and receive structured responses containing the selected intents and entities

and the candidate answer [8].

2.1.3.1 Training Data

Training data is divided in two categories:

• Intents: they represent the goal a user has during an interaction with the

assistant, therefore they are usually associated with the verbs or actions that

users express. In the initial phases of the creation of a virtual assistant, all

the intents that a user might have must be de�ned. For each intent, some

example sentences must be added as training samples. Those should re�ect

the way in which the users of the �nal system will interact with the assistant

(i.e. using the same lexicon or grammar constructions). Intents are identi�ed

by a unique name and they can have a short description. An illustration of

intent is in Figure 2.2.

23

2. Software and Algorithms

Figure 2.2: Example of intent in an Assistant workspace

• Entities: a named entity is a real-world object that can be referred to with

a proper name. Entities give some additional information about the context

of the analyzed text: indeed, they represent the object of a user’s request

and they can be used to tailor the answer to di�erent situations. In Assis-

tant, entities correspond to categories of terms and for each entity di�erent

values can be de�ned. For every value, synonyms or regular expressions

can be speci�ed in order to increment the ways in which entities can be

recognized. Figure 2.3 shows how entities are presented in Assistant. If an

entity value is contained in another entity value (e.g. "cat" and "red cat"),

coming from the same entity category, only the longest matching value will

be recognized. Some pre-built system entities that represent the most com-

monly used categories, such as numbers and dates, can also be added to a

workspace. In order to allow some degree of �exibility in recognizing spe-

ci�c entities, fuzzy matching can be enabled, which checks for misspelling,

partial matching and stem forms to better recognize the entities inside text

messages.

24

2.1. Watson

Figure 2.3: Example of entity in an Assistant workspace

Assistant provides a natural language classi�er trained to understand and recog-

nize the speci�ed intents and entities. The classi�er is re-trained every time a

change occurs in the set of intents or entities. When an input message is submit-

ted to Assistant, it attempts to map the text to one of the intent of his knowledge

base. It scores a con�dence level for every intent, giving a higher rate to intents

whose training samples are the utterances that are most similar to the input text.

Assistant also looks for entity values, their synonyms and patterns inside the input

text.

During the lifetime of an assistant, the messages it processes can be observed

in the "Improvement" section of the service. This allows to watch how many mes-

sages are managed in di�erent conversations and to monitor the assistant’s actions.

In fact, the responses and the recognized intent and entities for each input message

are stored. It is then possible to correct some of the bot’s interpretations, retrain-

ing the classi�er in order to make it improve on the cases it misunderstood. This

enables active learning, with domain experts instructing the assistant on how to

classify the intent of sentences it struggles to recognize.

2.1.3.2 Dialog

The design of the dialog �ow de�nes the way in which Assistant �nds the

answer for every input message. Assistant uses the results coming from the intent

and entities classi�cation phase, in order to select one of the answers that have

25

2. Software and Algorithms

been prepared by the designer. After the �rst answer selection, the conversation

can be guided by the assistant to gain additional information needed to perform a

task, or it can also leave the user control the conversation.

The dialog �ow is represented as a tree, as illustrated in Figure 2.4, and the

assignment of each branch is to handle a speci�c conversation. Usually a chat starts

with an intent and then moves towards its �nal goal with further re�nements, that

correspond to a better understanding of the context, thus those additional turns of

the conversation focus on the recognition of entities. In each branch, nodes can

be added to manage the di�erent situations in which a request can come to, the

di�erent paths can be speci�ed by the intents or entities that Watson recognizes

or other factors such as context variables.

Figure 2.4: Example of dialog tree in an Assistant workspace

A dialog node must have at least one condition, that speci�es when the node

shall be triggered. Conditions can contain intents, entity values, and context vari-

ables values, that can be mixed using AND or OR operators. Intent names start

with a "#" symbol, entity names start with a "@" symbol and context variables

start with a "$" symbol. Dialog nodes also have responses, de�ning the answer for

the input message. More than one answer can be speci�ed, to change the way the

assistant responds to the same sentence. Responses can also have associated condi-

tions, thus reducing the need to create several dialog nodes and making the dialog

tree more compact. In dialog nodes, context variables can be de�ned. They can be

�lled with values coming from recognized entities, or from external applications.

26

2.1. Watson

Once the �rst input message’s intent and entities in a conversation have been

recognized, the root nodes of the dialog tree are visited from the �rst (top) to the

last (bottom), looking for a matching condition. If a condition is met, the corre-

sponding node is triggered. If none of them matches, a special node at the bot-

tom (thus having the lowest priority) is visited. This node recognizes a special

condition, called "anything else", that accepts any input text and responds that

the assistant didn’t get the meaning of the message. Other special conditions are:

"welcome", which is true during the �rst dialog turn, "irrelevant" that is true if the

user’s input is determined to be irrelevant by the Watson Assistant service, "true"

and "false" to directly decide the outcome of the condition.

When a node has been processed, the conversation moves to its child nodes.

If the following input message matches the condition of one of the children, that

are always visited from top to bottom, that node is executed. Otherwise the dialog

tree is traversed from the beginning, searching for the matching root node. The

service continues to work its way through the dialog tree from the �rst to the last

node, along each triggered node, then from �rst to last child node, and along each

triggered child node until it reaches the last node in the branch it is following. This

behavior is depicted in Figure 2.5.

When designing the conversation �ow this behaviour needs to be considered,

since the order of the branches must follow this priority mechanism. In order to

�nd the correct answers, the dialog nodes with the most speci�c and restricting

conditions have to be put in the higher positions, giving them a higher priority.

Nodes that address a similar subject can be organized in folders, to obtain a

cleaner dialog tree. Folders can have conditions as well, so that the nodes inside a

folder are executed only if the folder condition is met. Folders do not modify the

order in which nodes are evaluated, they continue to be processed from �rst to last.

When the service is exploring the tree, if it visits a folder that has no condition or

a condition that is true, it processes all the nodes in the folder and then continues

its search through the tree from there. Sometimes the conversation �ow might

need to be more complex, looping through dialog nodes or jumping from a node

to another that is not in its children. This can be achieved, by specifying the action

to perform when a node has been processed. The conversation can wait for the

user input, skip the user input and jump directly to the �rst child node to evaluate

its condition, or it can jump to a speci�ed node. In the latter case, the service can

wait for the user input before evaluating the target node’s condition, evaluate it

right away or skip directly to the target node’s response.

27

2. Software and Algorithms

Figure 2.5: Example of how the dialog nodes are visited

2.2 Slack

Slack is a team messaging application o�ering team collaboration tools and

services [24]. Slack teams are organized in workspaces, where users can contact

each other in persistent chat rooms (channels) organized by topic, private groups

and through direct messages. All content inside Slack is searchable, including �les,

conversations, and people. Public channels allow team members to communicate

without the use of email or group SMS. They are open to everyone in the chat

provided they have �rst been invited to join the client. Private channels allow for

private conversation between smaller sects of the overall group. These can be used

to break up large teams into their own respective projects. Direct messages allow

users to send private messages to a speci�c user rather than a group of people.

Custom applications can be added to a Slack workspace, to add some business

speci�c functionalities. A bot user is a type of Slack application that can be added

to a workspace [26]. Bot users are special kinds of users able to read and reply

to conversational interactions in channels and direct messages, as can be seen in

Figure 2.6. They can post text messages, upload �les, images, URLs and they can

also send interactive messages and dialogs to users.

28

2.2. Slack

Figure 2.6: Typical text interaction with a bot user

Interactive messages can contain buttons and menus. While normal messages

do not change over time, interactive ones evolve with user interactions. Message

buttons are shown in Figure 2.7.

Figure 2.7: Example of a interactive message

Dialogs are special interfaces that allow applications to collect structured infor-

mation. They are forms that can contain menus, text �elds and buttons as shown

in Figure 2.8. Instead of interactive messages, dialogs cannot be originated by nor-

mal text messages, but the users can trigger a dialog from an interaction with a

message menu or button.

Figure 2.8: Example of a dialog in Slack

29

2. Software and Algorithms

There are di�erent ways in which an application can communicate with a Slack

bot user. One of these is through the RTM API. The Real Time Messaging API is a

WebSocket-based API that allows applications to receive events from Slack in real

time and send messages as users. To begin an RTM session there is an authen-

tication phase. Once connected to the message server it will provide a stream of

events, including both messages and updates to the current state of the workspace.

2.3 Database Engines

2.3.1 MySQL

MySQL is an open-source relational database management system (RDBMS)

[16], written in C and C++ and compatible with all major operating systems. As

classical RDBMSs, it represents records as tuples, which in turn are stored inside

tables. The rows of the tables are the records, while the columns are the attributes

of the records. Every table has a primary key, that can be a single identi�er or

a combination of multiple attributes. Primary keys are unique for the table. One

of the attributes that a table can have is a foreign key, that links a tuple with a

tuple from another table. MySQL has a full support for indexes, allowing to make

queries very fast on indexed attributes.

2.3.2 MongoDB

MongoDB is a non-relational document-oriented database management sys-

tem [14]. It is free, open-source and cross-platform. It is classi�ed as a NoSQL

database program and it stores JSON-like documents, making the integration with

applications that need to store and retrieve JSON objects very simple. A Mon-

goDB document is the equivalent of a relational database’s tuple. Homogenous

documents are grouped in collections, that are the equivalent of tables. Every doc-

ument has a unique identi�er, associated to it when it is created, which is indexed

by default. Secondary indices can also be created for the other �elds (single or

multiple) of the document.

30

2.4. Clustering

2.4 Clustering

Cluster analysis is the task of grouping a set of objects into subsets in a way

that objects belonging to the same subset are similar, and objects taken from dif-

ferent subsets are dissimilar. This similarity degree is speci�c for each context of

application. For example, it can be the measure of the distance between two data

points in a n-dimensional space. Clustering is an unsupervised learning technique,

since it searches for groups in unlabeled data [37].

Clustering techniques can be used in many domains, an example is to divide a

great amount of documents by their topic (Sci-�, Fantasy, Economics). The formed

groups should contain documents sharing the same or similar topics, depending

on how the features are extracted from text. A simple model of a document can

be a vector of the words it contains, with their frequency. An assumption that

can be made is that documents with the same topic also share the same words,

with similar frequencies. Clustering algorithms di�er on many aspects, the main

being the similarity measure, how data points are assigned to clusters and the

convergence criteria (when the clustering process should stop).

2.4.1 Clustering Algorithms

In this section the clustering algorithms used to divide students in homoge-

neous groups are presented.

2.4.1.1 K-Means

K-Means is the most popular representative-based clustering algorithm. Rep-

resentative-based clustering techniques represent each cluster using an entity that

summarizes its characteristics. This approach makes the process easier to under-

stand. With K-Means clusters are represented with their centroid µ, being the

mean of the points in the cluster. The goal of K-Means algorithm is to �nd the best

division of n objects in k groups, so that the total distance between the group’s

members and its corresponding centroid is minimized [36]. Formally, the goal is

to minimize the sum of squared errors (SSE), de�ned as:

k∑
j=1

n∑
i=1

∥∥xji − cj∥∥2
The most common algorithm, described below, uses a greedy iterative ap-

31

2. Software and Algorithms

proach, following these steps:

1. Choice of the initial centroids. This can be done using di�erent strategies,

for example: random selection of the centroids, selection of points that are

far from each other.

2. For the remaining points: assign every point to the cluster that has the clos-

est centroid. To do so, the algorithm must compute the distance between all

the data points and each centroid.

3. After all the points are assigned to a cluster, the values of the centroids of

each cluster are updated.

4. Iterate until the clusters don’t change.

K-Means has the advantage that it’s fast, since it has a linear complexity O(n). On

the other hand, it has a couple of disadvantages. The number of clusters needs to

be chosen before running the algorithm and K-Means is dependent on the choice

of the initial centroids; therefore it may yield di�erent results on di�erent runs.

2.4.1.2 K-Medoids

K-Medoids is a classical partitioning technique that clusters the data set of n

objects into k clusters. The main di�erence with K-Means is that K-Medoids uses

datapoints as centers of the clusters [40]. It is more robust to noise and outliers

as compared to K-Means because it minimizes a sum of pairwise dissimilarities

instead of a sum of squared Euclidean distances. A medoid is the object of a cluster

whose average dissimilarity to all the objects in the cluster is minimal.

The most common realization of K-Medoids clustering is the Partitioning Around

Medoids (PAM) algorithm that works as follows:

1. Initialization. Selection of the k initial medoids from the n data points.

2. Association of each data point to the closest medoid.

3. For each medoid m and each non-medoid o: m and o are swapped, the cost

(sum of distances between points and their medoid) is recomputed. If the

total cost of the clusterings has increased, the swap is undone.

4. While the cost of the con�guration decreases, repeat step 3.

32

2.4. Clustering

2.4.1.3 Hierarchical Agglomerative Clustering

Hierarchical clustering algorithms can be divided into 2 categories: agglomer-

ative and divisive [37].

Agglomerative algorithms treat each data point as a single cluster and then

successively merge pairs of clusters until all clusters have been merged into a single

cluster that contains all data points. This hierarchy of clusters is represented as a

dendrogram, which can be represented as a tree. Its root stands for the cluster that

contains all the samples, and leaves stand for the clusters with only one sample.

Hierarchical clustering does not require to specify the number of clusters before

their computation, since it �nds all the clusters from 1 to the number of samples.

It is possible to decide how many clusters to retain, choosing when to stop the

building of the dendrogram.

The steps of the algorithm are:

1. Compute a proximity matrix between all the clusters: at the beginning, each

data point is treated as a single cluster, so the matrix contains the distance

between each data point.

2. Find and merge the two closest clusters: the two clusters that are combined

into one are those with the smallest distance, therefore they are the most

similar.

3. Update the proximity matrix: since the clusters do not contain only one data

point anymore, di�erent distance metrics can be used. Average linkage de-

�nes the distance between two clusters as the average distance between data

points in the �rst cluster and data points in the second cluster. Single linkage

computes the distance as the minimum distance between a point from the

�rst cluster and a point from the second one. Ward linkage minimizes the

variance of the clusters being merged. Complete linkage, instead, computes

the distance as the maximum distance between points from the �rst cluster

and points from the second one.

4. Steps 2 and 3 are repeated until only one cluster, containing all data points,

remains.

Hierarchical clustering has a time complexity of O(n3), much worse than the linear

complexity of K-Means.

33

2. Software and Algorithms

2.4.2 Clustering Evaluation

To assess the quality of a clustering, di�erent validation measures have been

de�ned and are well described in [53]. In this section some of the external val-

idation measures are presented, as well as the silhouette coe�cient, which is an

internal measure. External validation measures exploit external information, from

prior or expert knowledge about the clusters, such as the class labels of the data

points. Internal validation measures are based on the notions of intracluster sim-

ilarity and intercluster separation, thus they only focus on the distribution of the

data inside clusters.

De�ning a clustering partition as C and the ground truth partitioning as T ,

the building blocks for computing the external validation measures of Adjusted

Rand Index and Fowlkes-Mallows are true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN). TP is de�ned as the number of pairs (xi,xj)

where xi and xj belong to the same cluster in T and also in the same cluster in

C . TN is de�ned as the number of pairs (xi,xj) where xi and xj do not belong to

the same cluster in T , nor to the same cluster in C . FP is de�ned as the number of

pairs (xi,xj) where xi and xj do not appear in the same cluster in T , but belong to

the same cluster in C . FN is de�ned as the number of pairs (xi,xj) where xi and

xj belong to the same cluster in T , but belong to di�erent clusters in C . The total

number of pairs (N) is de�ned as the sum of TP, TN, FP, FN.

2.4.2.1 Adjusted Rand Index

The Rand Index (RI) computes a similarity measure between two clusterings by

considering all pairs of samples and counting pairs that are assigned to the same

or di�erent clusters in the predicted and true clusterings. It computes the fraction

of true positives and true negatives over all the pairs, as
TP+TN

N
. The Rand index

has a value between 0 and 1, with 0 indicating that the two data clusterings do not

agree on any pair of points and 1 indicating that the data clusterings are exactly the

same. The Adjusted Rand Index (ARI) is the extension of the Rand Index, corrected

for chance. The correction establishes a baseline by using the expected similarity

of all pair-wise comparisons between clusterings speci�ed by a random model.

ARI =
(RI − E(RI))

(max(RI)− E(RI))

The Adjusted Rand Index has a value close to 0 for random labeling and exactly

1 when the clusterings are identical.

34

2.4. Clustering

2.4.2.2 Fowlkes-Mallows

De�nining precision as
TP

TP+FP
and recall as

TP
TP+FN

, the Fowlkes-Mallows (FM)

index is de�ned as the geometric mean of the pairwise precision and recall.

FM =
√
precision · recall

Its highest value is 1, achieved when there are no false positives or negatives.

2.4.2.3 Adjusted Mutual Information

Mutual Information (MI) tries to quantify the amount of shared information

between the clustering C and ground truth partitioning T . It is de�ned as:

MI(C, T) =
r∑

i=1

k∑
j=1

pij log

(
pij

pCi
· pTj

)
where pij is the probability that a point in cluster i also belongs to partition

j, pCi
is the probability of cluster Ci, pTj

is the probability of cluster Tj , r is the

number of clusters in C and k is the number of clusters in T .

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Informa-

tion score to account for chance. It accounts for the fact that the MI is generally

higher for two clusterings with a larger number of clusters, regardless of whether

there is actually more information shared. For two clusterings C and T , the AMI

is computed as:

AMI(C, T) =
[MI(C, T)− E(MI(C, T))]

[max(H(C), H(T))− E(MI(C, T))]

where H(U) is the entropy associated with the partitioning U , de�ned as:

H(U) = −
r∑

i=1

P (i) · log (P (i))

where r stands for the number of clusters contained in U .

2.4.2.4 Homogeneity, Completeness, and V-measure

These three metrics are based on normalized conditional entropy measures of

the clustering labeling to evaluate them, given the knowledge of the ground truth

labels of the same samples contained in the clusters.

35

2. Software and Algorithms

• Homogeneity: a partitioning satis�es homogeneity if all of the predicted

clusters contain only samples that belong to a single class in the ground

truth.

• Completeness: a partitioning satis�es completeness if all the samples of a

given class are contained in the same predicted cluster.

• V-measure: is the harmonic mean of homogeneity and completeness.

All those scores have positive values between 0.0 and 1.0, with larger values rep-

resenting the best clusterings.

2.4.2.5 Silhouette Coe�cient

The silhouette coe�cient is a measure of how close an object is to its own

cluster (cohesion) compared to other clusters (separation). The silhouette ranges

from −1 to +1, where a high value indicates that the object is well matched to its

own cluster and poorly matched to neighboring clusters. In order to compute the

silhouette for a clustering result, the silhouette coe�cient si of each data point xi

needs to be calculated as:

si =
µmin
out (xi)− µin (xi)

max {µmin
out (xi) , µin (xi)}

where µin (xi) is the mean distance from xi to points contained in its cluster yi

and µmin
out (xi) is the mean of the distances from xito points in the closest cluster:

µin (xi) =

∑
xj∈Cŷj

,j 6=i δ (xi, xj)

nŷi − 1

µmin
out (xi) = min

j 6=ŷi

{∑
y∈Cj

δ (xi, y)

nj

}
A value of si close to 1 indicates that xi is close to points in its cluster and is

far from other clusters. If si is close to 0 it means that xi is close to the boundary

between two clusters. If it is close to -1 instead, it means that xi is closer to another

cluster than its cluster, thus it may end in the wrong cluster.

The silhouette coe�cient is de�ned as the mean si value across all the data

points:

SC =

∑n
i=1 si
n

36

2.5. Spelling Correction

2.5 Spelling Correction

In the vocabulary of Recommender Systems there are abbreviations and com-

plex words that students might not be familiar with, hence there is the possibil-

ity of misspelling them in text messages. Digital assistants that have automatic

speech recognition capabilities already perform a spelling correction of the voice

input, when transforming it to text: they pick the known words that correspond

to the input signal with the highest probability. Text-based bots instead accept

input messages as-is, thus they need an additional step if spelling correction is re-

quested. Recognizing entities is an important task for a VTA, since it should be

able to understand which concepts the students refer to, even when typos occur.

The presented VTA is using spelling correction to enhance Watson™ Assistant’s

entity fuzzy matching and detect concepts of the Recommender Systems course in

messages coming from students. Di�erent techniques can be applied for this task,

such as modeling the probability of spelling errors and use a Bayesian methodol-

ogy to infer the most probable correct word [41], or leverage N-GRAM models to

exploit context to �nd the correct words [42].

The method used to correct errors in course related words is presented by Peter

Norvig in [43].

The way in which it works can be divided in four main parts:

• Language model: P(c). The probability that the candidate word c appears as

a word of in a text. It is estimated by counting the number of times each

word appears in a corpus of text and dividing it by the number of unique

words that appear in the corpus.

• Error Model: P(w|c). The probability that a candidate word c is the word

that the writer would have written instead of w. It is approximated in a

very simple way: any known word with a null edit distance has the highest

probability, known words of edit distance 1 have an in�nitely lower proba-

bility, and known words of edit distance 2 have an even lower probability.

The candidate words are produced in order of priority, if the typed word is

contained in the known words it is chosen, otherwise the known words at

edit distance 1 are searched and if there are none, the known words at edit

distance 2 are looked for. After this search, if the candidate words are still

an empty set, the original word remains untouched.

• Candidate Model. The candidate words to search inside the known words

are generated by using simple edits. A simple edit to a word is a deletion

37

2. Software and Algorithms

of one letter, a transposition of two adjacent letters, a replacement or an

insertion of a new letter.

• Selection mechanism. Choice of the candidate with the highest combined

probability.

38

Chapter 3

Statement of the Problem

This chapter presents the scenario in which a VTA has been created and then

deployed, together with the aspects taken into account in the design of its charac-

teristics and functionalities, which are shown in section 3.2 and further explored

in the next chapter.

3.1 Recommender Systems at Polimi

Recommender Systems is a course of the master’s degree in Computer Science

and Engineering at Politecnico di Milano. It explores the leading approaches in

recommender systems, from the underlying theory to their application in a real-

world scenario.

Teaching is divided in di�erent activities: students learn from an online course

the core concepts and during in-class lectures the teacher’s goal is to elaborate

on the notions to explore them in further detail. The online course, that will be

referred to as MOOC, is accessible through an o�cial platform used for sharing

teaching material and it is composed of eight modules, containing video lessons

and their transcriptions. Each module has introductory and wrap-up videos with

the presence of the teacher, and videos made of slides with a voice-over that ex-

plains their content.

The course’s students apply what they learn during theoretical classes in a

competition [22], which mimics the annual ACM RecSys challenge. Students par-

ticipating to the in-class challenge are required to implement recommender algo-

rithms, whose quality is compared against prede�ned baselines and against the

results of the other participants. This challenge is hosted on Kaggle and it runs

throughout the whole semester in which the course is held. Most of the students’

39

3. Statement of the Problem

evaluation comes from it, but there are also regular oral exams for students not

participating to the challenge.

Every semester in which the course is held, the teacher receives questions from

his students. Some of the requests are engaging and require knowledge and exper-

tise to �nd an appropriate response, while others are fairly simple to respond to.

Those are questions regarding the syllabus and organization of the course, thus re-

quiring time and e�ort that could be implied for replying to the more challenging

questions. In the case of an online course, the number of students and questions

raised by them might be signi�cantly higher, demanding more time to reply to.

Recommender Systems is going to be published as a MOOC on Coursera and the

teacher, Paolo Cremonesi, is exploring new ways to enhance his ability to answer

to both online and on-site students’ requests and give them assistance rapidly and

e�ciently.

3.2 Problems and Chosen Solutions

The problem that the presented work is trying to solve consists in responding

to FAQs regarding the organization of Recommender Systems and helping students

to browse the material. This is realized with the employment of a VTA, accessible

through an o�cial channel for the course. This solution could be adapted to any

course, giving students the possibility to interact with a virtual assistant through

natural language sentences. Its introduction could be even easier in cases where

an o�cial public channel for teacher-student communication is already existing.

FAQs belong to just one of the problems that can be addressed by such a VTA,

others being student engagement, student performance assessment and personal-

ized learning. In fact, in order to perform student assessment, a virtual assistant

can ask multi-choice questions about the content of a course, store the answers

given by students and possibly suggest material for revision of such concepts. In a

scenario in which a VTA is integrated in the same platform that delivers material

such as MOOCs, the degree of personalization of the interactions with students can

be even higher, leveraging information about the student’s activity and engaging

with him when he �nishes a part of the course or has some troubles.

The main problem that a�icts the creation of such a VTA is the lack of a corpus

of interactions between students and teachers. In this scenario, trying to predict

what the students will ask when designing a chatbot is an arduous task. Also, un-

derstanding the meaning of the messages coming from students is no less, because

40

3.2. Problems and Chosen Solutions

even for requests that can be predicted they can include a mix of words that could

be easily misinterpreted.

A �rst version of the implemented solution is made accessible to students en-

rolled to the course in the academic year 2018/2019, to observe how they interact

with it and to improve its functionalities and understanding capabilities. The VTA

created for the course at issue is named Rexy, from the combination of the two

words Recommender Systems. Because of the lack of data, the probability that

some requests get misinterpreted by the VTA is high and it was expected that it

could not reply correctly to all of the students’ questions, so an active monitoring

of its actions was performed, in order not to let important requests unanswered

and let Rexy confuse the students. Since the communication channel of the bot is

an instant messaging application, users always expect an answer. Therefore if the

assistant is not very con�dent in the interpretation of the input message, it will

either ask for clari�cations or say it did not understand the request. Con�dence

is computed by Watson™ Assistant for every analyzed message and plays an im-

portant role in the choice of the response for that message. To guarantee a certain

level of quality in the answers sent from the VTA to the learners, especially in

the early phases of the experiment, the bot forwards to human teaching assistants

the questions that cannot be interpreted with enough con�dence. They can eas-

ily decide whether the question should or should not be managed by the bot: in

the �rst case they can tell the bot whether its interpretation was good or wrong,

and they can instruct him on how to read the request and how to respond in the

future cases; in the latter case the human designed reply is sent to the user that

asked the original question. This is part of an active learning strategy performed

in two di�erent ways, by asking students if they think their messages are inter-

preted correctly in what will be referred to as "con�rmation questions", and by

asking teachers their opinion on the interpretation with "teacher questions". This

mechanism is essential to make the VTA continuously learn from experience and

manage in a better way known cases and new cases during its lifetime.

Another important requirement of this project is the adaptability of the VTA

to other courses. Indeed, a VTA that is able to converse with students from any

course, with just some substitutions in his knowledge base can be arguably much

more useful and interesting. This drove the design choices of this project, from

the database schemas to Assistant’s training data. The resulting VTA has some

course-independent conversation capabilities, such as the ability to talk about the

syllabus of a course and the concepts explained in the MOOC. For the �rst one, a

simple adaptation of the responses the VTA shall give is required, but this holds

41

3. Statement of the Problem

true even for Recommender Systems, which has small changes in its organization

every year. For the latter one, there is the need to �ll the knowledge base with

course-speci�c information, as it will be discussed in Chapter 5. In the testing

scenario it was necessary to include some capabilities to understand and converse

about the competition. This is speci�c to Recommender Systems at Politecnico di

Milano, but it can be seen as a proof of how such a VTA can be expanded and

adapted to any speci�c course simply by following the same design guidelines of

the other functionalities.

A future line of research will be focused on the personalization of the conversa-

tions, giving Rexy the possibility to engage with students based on their personal

needs. One of the �rst steps to enable personalization is to identify groups of stu-

dents and their representative pro�les.

42

Chapter 4

Architecture

In this chapter the main components of Rexy are presented, starting from an

overview of the architecture, exploring the structure of the knowledge bases and

�nishing with the schemas of interactions between the di�erent modules in the

di�erent use cases.

4.1 Rexy Architecture

Figure 4.1: High level architecture of the VTA

43

4. Architecture

The VTA presented in this thesis has di�erent components, that are integrated

to cover its various functionalities. The High-Level architecture is illustrated in

Figure 4.1.

4.1.1 Front End

The front end of the VTA consists of a messaging application, which can be

accessed through mobile devices and computers. The proposed VTA lives as a bot

user in a Slack workspace. Slack o�ers a natural way of grouping communities

in teams and it �ts the scenario of a classroom of students, hence the choice of it

for the front end. In Slack users can also chat with each other and collaborate in

shared channels. In addition, Slack allows bot users to send interactive messages

and dialogs, that enrich the way in which students can interact with the assistant,

for instance with multi-choice questions. This platform also allows bot users to

start conversations on their own, instead of waiting for a user input.

4.1.2 Application Server

The application server’s job is to process the requests coming from the users

and orchestrate how the NLP component and database server interact in the search

of the best possible answer. It waits for any message received by the Slack appli-

cation and, when one is caught, it is forwarded to the NLP module, which runs

intent classi�cation and entity recognition tasks and returns a response for the

user. In some cases the NLP module does not have enough information to create a

complete reply, thus it instructs the application server to retrieve the needed piece

of information, which can be related to the context of the conversation or to the

course itself. This server is then responsible of replying to the user and alerting

human teaching assistants in the case the NLP module is not able to understand the

request. These di�erent types of interactions are explored with several sequence

diagrams in Section 4.5. The application server is built with Node.js. This choice

comes from the good performance of this runtime environment on real time appli-

cations that need to manage multiple simultaneous requests. Since a VTA needs to

be able to handle di�erent users writing at the same time, process their messages to

understand the meaning of their requests and access knowledge bases to respond,

the non-blocking nature of Node.js functions makes this framework a good �t for

the job.

44

4.2. Databases

4.1.3 Database Server

The database server stores knowledge about the organization of the course,

such as lectures, exams and challenge deadlines. This information can be easily

managed by a Node.js server if it is stored in a JSON-like format, hence the choice

of a MongoDB database. Another task it performs is to store the information re-

garding the interactions between the chatbot and the end users. This type of in-

formation can easily reach large numbers of records, thus requiring scalability. A

MongoDB database is employed for this task too. There is also a database stor-

ing information about the concepts explained in the course. It follows a relational

schema, so it is managed with a MySQL database.

4.1.4 NLP Component

To understand natural language utterances coming from the users and retrieve

suitable responses IBM Watson™ Assistant is used through its APIs. This service

has been chosen because of the capabilities it o�ers in understanding natural lan-

guage and categorizing the intents of the input messages. It allows to de�ne intents

and design how to �nd the appropriate responses in an intuitive way, and it is even

able to recognize intents with a limited number of examples.

Discovery is instead used to query the text documents that cover the Recom-
mender Systems course, in order to answer questions regarding the main concepts

of the course that are not covered by Assistant.

4.1.5 Deployment

For testing the VTA and during its activity in the Recommender Systems course,

the application and database servers run on an Amazon Web Services (AWS) Elastic

Cloud Computing (EC2) instance. The virtual machine runs Ubuntu Linux 16.04

on a single vCPU and it has access to 1 GiB of RAM and a 20 GB SSD storage.

4.2 Databases

4.2.1 MOOC Database

Information about the MOOC is stored in a relational database, where tables

represent modules, concepts and chapters. The schema of this database is shown

by Figure 4.2.

45

4. Architecture

Figure 4.2: MOOC database schema

The choice of a relational database comes from the nature of the di�erent parts

of a MOOC and how they relate to each other. In fact, modules contain di�erent

chapters, each chapter talks about a number of concepts and every notion pre-

sented in the course can be explained in di�erent chapters.

Follows a description of the di�erent tables:

• Modules: represent the di�erent modules of the MOOC. Each module has an

id, a name, a URL and an abstract, that summarizes its content.

• Items: represent chapters and sub chapters composing the di�erent modules

of the MOOC. Each item is linked to a module through the module_id for-

eign key, it then has an id, a name, a chapter number, a length that speci�es

the duration of the corresponding video in seconds, a starting time which

tells when the item starts in a video (useful in cases when videos contain

di�erent items), a URL and a short abstract explaining its content.

• Entities: correspond to the di�erent concepts introduced and discussed dur-

ing the course. Each entity has an id, a name, an abstract which gives a very

short de�nition and four o�cial synonyms which are part of the teacher’s

vocabulary used for the course, that can be seen as a subset of the students’

vocabulary, which in turn contains all the possible ways in which students

can refer to the entities.

• Roles: represent the many-to-many relationship between entities and items.

They give information on the concepts explained by an item and where en-

tities can be found inside the items, adding a role to each correspondence.

Roles are the di�erent types of occurrence that an entity inside an item can

have, for example: "de�nition", "introduction", "example", "picture" and a spe-

cial role called "main" that de�nes the main entity described by an item, even

when this entity is not referenced directly.

46

4.2. Databases

4.2.2 MongoDB Databases

Other databases are used to store and retrieve information about the organiza-

tion of the course, interactions between the VTA and students, and the di�erent

user. These types of data are stored in MongoDB databases, which are portrayed

in the following subsections.

4.2.2.1 Administrative Database

Figure 4.3: Administrative database collections

Figure 4.3 shows the so-called administrative database and its collections, which

represent the main events in the organization of the course. The description of

their attributes is the following:

• Lectures: have a unique id, a date, a starting and a �nishing time (time_-

start and time_end), an established room where the lecture is held, a

lecture_type �eld that says whether the lecture is theoretical or practi-

cal, a speaker that could be the teacher or a teaching assistant, a topic �eld

that represents the program for that lecture, and a canceled status.

• Exams: have a unique id, a date, a room where the exam takes place and a

session �eld indicating the exam session.

• Deadlines: have a unique id and a date.

47

4. Architecture

4.2.2.2 Conversation History Database

Figure 4.4: Conversation history database collections

Figure 4.4 shows the conversation history database and its collections, that rep-

resent the di�erent types of interactions between users, both students and teach-

ers, and the VTA. A document stored in the conversations collection represents a

single turn in the conversation between a user and the VTA, documents in user_-
con�rmations reproduce the interactions between users and con�rmation ques-

tions that are sent out as interactive messages, while documents in teacher_ques-
tions are used to store the expert opinion of teachers when asked to classify or

respond to a user message that is of di�cult understanding for Assistant. Their

attributes are listed below:

• Conversations: have a unique id, Slack’s id and channel of the user that sent

the message, a timestamp of the event, the number of the current turn of

the conversation in turn_counter, the text of the message that has been

sent from the user in sent_message, the intent that Assistant recognized

with its con�dence, the intent with the second highest con�dence in sec-

ondary_intent and secondary_confidence, the array of identi�ed

entities, a root_node �eld that indicates whether the intent recognition

was useful for the answer selection if its value is set to true, the response sent

to the user, the current topic of the conversation in current_context_-

topic and some additional information regarding the current context in

current_context_additional_info.

• User con�rmations: have a unique id, the id of the conversation’s turn that

48

4.2. Databases

originated the con�rmation question, the turn counter of such turn, a times-

tamp, and con�rmed and rejected �elds that prove the decision of the user.

• Teacher questions: have a unique id, the identi�er of the conversation’s turn

from which the need to ask the teachers’ opinion originated, the timestamp

of the received message in timestamp_receive, the timestamp of the

answer coming from one of the teachers in timestamp_answer, Slack’s

id of the teacher who answered. Depending on how the teacher decides to

manage the request, the selected intent is saved in teacher_intent; the

created intent, its description and the response that Assistant should give

when detecting that intent are saved respectively in teacher_created_-

intent_name, teacher_intent_description and teacher_an-

swer. If a teacher decides to reply directly to the user without making

changes to intents, only teacher_answer is used.

4.2.2.3 User Database

Figure 4.5: User database collections

Figure 4.5 shows the database of users and its collections, that represent the

users that have interacted with the VTA and the teachers that should be contacted

in case the VTA is not able to understand an input message. Their attributes are

the same: a unique id, a creation date and other information that comes from Slack:

user_id, channel, display_name and real_name.

49

4. Architecture

4.2.2.4 Question Database

Figure 4.6: Question database collections

The question database, shown in Figure 4.6, is used to store multiple-choice

questions about the course, their answers, and the responses that users have se-

lected. The �elds of those three collections are presented below:

• Answers: have a unique id and a text �eld that consists of the answer itself.

• Questions: have a unique id, an array of answers that represents the available

choices, the id of the correct answer, the text of the question, and an array

of the main entities that appear in the question, saved in main_concepts.

• Question interactions: have a unique id, Slack’s id of the user who answered

the question corresponding to question_id, a timestamp of the interac-

tion, and three �elds representing the result obtained by the student, correct,

wrong and skipped.

4.3 Watson Assistant Workspace

In this section, the design choices for the main components of the Assistant

workspace used for the VTA are presented, starting from the training data. Subsec-

tion 4.3.1 contains the list of de�ned intents, Subsection 4.3.2 is about the entities

and Subsection 4.3.3 is about the dialog tree.

Some use cases, that show how some example messages are recognized and

answered, are listed in Appendix B.

50

4.3. Watson Assistant Workspace

4.3.1 Intents

The intents de�ned for the VTA can be divided in di�erent categories, based

on the subject they are related to. This categorization is also noticeable from the

names adopted for the di�erent intents. A table is presented for each category,

with the names of the intents and their description.

Table 4.1 presents intents related to the Recommender Systems course.

Table 4.2 presents intents related to the Recommender Systems challenge.

Table 4.3 presents intents related to the exam calls of Recommender Systems.
Table 4.4 presents intents related to the lectures of Recommender Systems.
Table 4.5 presents intents related to the notions explained in Recommender Sys-
tems.
Table 4.6 presents intents related to the teacher and teaching assistants of Recom-
mender Systems.
Table 4.7 presents intents that need contextual information to �nd a proper an-

swer. #De�nition, #Synonyms, #Content_References, #Item_Module_Description are

other intents that need contextual information, but only when no entities of the

course are recognized.

Table 4.8 presents intents related to general questions that can be asked to a virtual

assistant.

Table 4.9 presents intents related to general speech acts.

Table 4.1: Course intents

Name Description

#Course_-

Program
A user can ask what can be learned from this course

#Course_Topics
Users can ask a detailed list of the topics discussed

during the course

#Course_Website Users can ask if there is a website for the course

51

4. Architecture

Table 4.2: Challenge intents

Name Description

#Challenge_Allowed_-

Languages

Users can ask what programming

languages can be used for the challenge

#Challenge_Allowed_-

Libraries

Users can ask whether they can use a

library for the challenge or not

#Challenge_Baseline
Users might ask what the baselines of

the challenge are

#Challenge_Deadline_Date
Users can request the date of a speci�c

deadline, by date or by number

#Challenge_Duration
Users can ask the period of time in

which the challenge is running

#Challenge_End
Users can ask the ending date for the

challenge

#Challenge_Enrolling
Users can ask how to enroll to the

competition

#Challenge_Evaluation
A user might ask how the grade is

calculated for the challenge project

#Challenge_Find_Partner
Users might be searching for a partner

for the challenge

#Challenge_List_Deadline
Users ask when all the challenge

deadlines are

#Challenge_Metric

Users can ask information about the

evaluation metric used to score

algorithms for the challenge

#Challenge_Modality Users can ask how the challenge works

#Challenge_Next_Deadline
The user wants to �nd out when the

nearest future deadline is

#Challenge_Presentation
Users can ask if there is a presentation

at the end of the challenge

#Challenge_Results
Users can ask the standing points for the

deadlines of the challenge

#Challenge_Rules Users can ask the rules of the challenge

#Challenge_Sharing_Code
Users can ask if they can share code

with other teams

#Challenge_Start
Users can ask the starting date of the

challenge

#Challenge_Website
A user can ask the website for the

challenge

#Challenge_Win Users can ask how to win the challenge

52

4.3. Watson Assistant Workspace

Table 4.3: Exam intents

Name Description

#Exam_Date
Users can ask when the exams take place (with a

number, a date or a session)

#Exam_Duration Users might ask how long the exam lasts

#Exam_List Users can ask the list of scheduled exams

#Exam_Location
Users can ask where an exam will take place

(with a number, a date or a session)

#Exam_Location_-

nearest

Users might be interested in knowing where the

next exam will take place

#Exam_Modality
Users can ask how the exam works and how it is

structured

#Exam_Next
Users want to know the date of the nearest exam

call

#Exam_Topics
A user might ask the list of topics that can be

part of the exam

Table 4.4: Lecture intents

Name Description

#Lecture_Calendar
Users can ask the full schedule for the

course

#Lecture_Canceled
Users may ask if a certain lecture will be

canceled

#Lecture_End
Users can ask the date of the last lecture of

the course

#Lecture_Info
Users can ask information regarding a

speci�c lecture

#Lecture_Info_Nearest_-

Future

Users can ask information regarding the

next lecture

#Lecture_Info_Nearest_-

Past

Users can ask some information regarding

the last lecture

#Lecture_Nearest_-

Canceled

The user wants to know if the next lecture

is canceled

#Lecture_Schedule Users can ask the schedule of the lectures

#Lecture_Start
Users can ask the starting date of the

course

53

4. Architecture

Table 4.5: Course content intents

Name Description

#Content_References
Users can ask where they can �nd an entity of

the course (e.g. URM) inside the modules

#De�nition
Users can ask the de�nition of an entity of the

course

#Item_Module_-

Description

Users can ask a description (abstract) of a

speci�c module or a speci�c chapter of a

module or even a video of a module

#Send_To_Discovery
Users can ask questions that can be better

managed by discovery

#Synonyms
Users can ask the synonyms of a particular

entity or concept of the course

#Test_Knowledge
Users can ask the assistant for a question, to

test their knowledge

Table 4.6: Teacher intents

Name Description

#Teacher_Contact Users might ask for the teacher’s e-mail

#Teacher_Info Users might ask who the teacher is

#Teaching_-

Assistants_Info
Users can ask who the teaching assistants are

Table 4.7: Generic questions intents

Name Description

#Duration
Users can ask the duration of an administrative entity of the

course, e.g. an exam, the challenge, a lecture...

#End
Users can ask the ending date/time of an entity of the course,

for example lectures, the challenge...

#List
Users can ask a list of entities of the course, for example a

list of the exams, the deadlines or lectures

#Location
Users can ask the location of an entity of the course, e.g. a

lecture, an exam...

#Modality
Users can ask how something works, e.g. how the challenge

works, how the exam is done...

#Next
Users can ask when is the next event of some sort, e.g.

exams, lectures, deadlines...

#Start
Users can ask the ending date/time of an entity of the course,

for example lectures, the challenge...

#Time
Users can ask the date or time of an event, that can be a

deadline, a lecture or an exam

54

4.3. Watson Assistant Workspace

Table 4.8: General intents

Name Description

#General_About_You
Generic personal information of the

chatbot

#General_Chatbot_-

Capabilities
A user can ask what the chatbot can do

#General_Human_or_Bot Ask if speaking to a human or a bot

#General_Jokes Request a joke

#General_Negative_-

Feedback
Express unfavorable feedback

#General_Security_-

Assurance

Express concerns about the security of the

bot

Table 4.9: General speech acts intents

Name Description

#Conversation_Topic_-

Change

Users can switch the topic of the

conversation by saying "let’s talk about

exams now"

#Goodbye When the user wants to leave

#Greetings Greetings from the user

#Okay
Users can demonstrate satisfaction on a

response from the bot.

#Really
Users can ask if the bot is sure about what

it said

#RelatedTopics

Users can ask something related to the

course, but that is not something the

chatbot knows

#Thanks Users might want to thank

55

4. Architecture

4.3.2 Entities

In Table 4.10 the list of entities used to better identify the context of the input

messages is presented.

Table 4.10: Entities

Name Description

@administrative_-

entity

It is used to identify if the user wants to talk

about a speci�c entity of the course, such as the

course itself, lectures, exams, or the challenge

@cardinality It is used to detect cardinal numbers in the input

messages

@chapter It represents the di�erent chapter numbers

@course_entity It represents all the main entities introduced and

explained in the course

@exam_session It identi�es the di�erent exam sessions

@module It represents the di�erent modules, by using their

number and name

@reference_role It represents the roles that an entity can have

inside a chapter

@response_types It is used to identify yes, no and maybe in the

input messages

@video It represents the di�erent video identi�ers

@sys-date A system entity provided by IBM, used to

recognize dates inside text

In particular, @course_entity is very important since it de�nes how students

can refer to concepts of the course. It can be called a vocabulary of the students,

thus it should contain the o�cial names of the concepts, as de�ned in the vocabu-

lary of the course, as well as more informal synonyms that can be used by students

in their messages.

4.3.3 Dialog Tree

The dialog tree has several branches, this section focuses on the guidelines

followed in the design phase, rather than the speci�cations of each dialog node.

The complete dialog tree is placed in Appendix A.

4.3.3.1 Dialog Nodes and Branches

There are two types of dialog nodes in the dialog tree:

56

4.3. Watson Assistant Workspace

• Dialog nodes with prede�ned responses: if a node is triggered, the answer

sent to the user is the one de�ned for that node.

• Dialog nodes requiring external information: if one of these nodes is trig-

gered, a request for some speci�c information is sent to the application

server. Then, the server can send the �nal answer to the user or it can return

the requested information to Assistant, which is able to capture it in a child

node and proceed with the current branch.

Nodes with prede�ned responses are added to the dialog tree to handle requests

that don’t require access to a knowledge base. For example, nodes that are trig-

gered when a general intent is identi�ed all have a static response. De�ning more

responses for the same node allows to send a di�erent answer to the same question

in di�erent occasions, making the bot more interesting to converse with.

Nodes that need external information can ask the server for data regarding

the organization of the course (lecture dates, deadlines, exam dates) or its content

(de�nitions, occurrences in the modules, modules and chapters). Another type of

information that can be requested is related to the context of the conversation. In

fact, intents in Table 4.7 need to know what the current topic of the conversation

is, in order to provide an adequate answer. Context management is covered in

Subsection 4.4.2.8.

For every root node that does not trigger for general questions or speech acts,

there is a twin node with higher priority whose task is to acknowledge the in-

tent of the user’s message. When Assistant recognizes an intent with a low con�-

dence level, it asks the user to know if it got the right meaning. These twin nodes

have the same conditions of their siblings, plus a special one related to the con�-

dence level of the intent that has been classi�ed as the most relevant. They have

two child nodes, bearing a simple condition, that is to identify a @response_types
value. When they are executed, a yes-no question is prompted and when the user

responds, the conditions of the two child nodes are evaluated. If the user gives

a positive answer, the bot acts as if the interpreted intent was the right one, oth-

erwise the bot asks the user to reformulate his request. In the proposed VTA the

minimum con�dence level used to answer right away is 75%. This choice allows the

VTA to respond when it is very con�dent, during the design phase Assistant was

usually able to understand the right meaning even with lower con�dence scores,

but in order to be more cautious in a real scenario, the threshold was put to 75%.

At the other end of the spectrum, when Assistant gave a con�dence score near or

below 30% it was replying with wrong answers most of the time. Thus, within this

57

4. Architecture

interval of scores, Assistant relies on disambiguation questions, showing what it

understood to the user and expecting his feedback.

At the top of the tree, there is a special node that �lters messages based on

the con�dence level of the �rst recognized intent. If its score is lower than 30%,

the bot skips all the other root nodes and jumps to the last one, which condition

is anything_else and responds that the bot is not able to understand the meaning

of the request. In the case that an entity of the course is recognized, but the con-

�dence level for the intent is lower than 30%, the de�nition of that entity is sent

to the user. If a date has been recognized instead, a special node is triggered and

contextual information is requested to the server, in order to understand what the

date refers to.

Two types of branches are present:

• A branch containing only one leaf node, used to respond to one-shot ques-

tions. Its condition consists of an intent that does not require contextual

information or additional entities to fully understand the request from the

user, thus when it is executed, the response can be found or created in one

step. For example, when the #Greetings intent is recognized, the bot can

reply with its salutations, because it does not need any other kind of infor-

mation in order to respond, and then wait for any kind of request the user

might ask.

• A more complicated kind of branch, with several child nodes, that guides the

conversation with the user. Such branches are used to gain information from

the user, to perform a �nal task, and require the submission of some type of

message. The bot can make yes-no requests, as well as more open-ended

ones. For example, if the user wants a de�nition, the bot shall ask the entity

of the course to look an abstract for. If he responds with its selected entity,

the bot can start his search and create the proper answer. This is achieved

by creating a child node from the node asking for this piece of information,

that recognize the @course_entity entity.

In order to give instructions to the application server, nodes populate speci�c con-

text variables, which are listed in the following subsection.

4.3.3.2 Context Variables and Keywords

There is one main context variable used for communications between Assis-

tant and the application server, which is called action. It is a JSON object and the

58

4.3. Watson Assistant Workspace

properties it can have are in the following list:

• confirmation: true when asking a disambiguation question to the user.

It is used when the con�dence level is lower than 75%.

• ask_teacher: if true it indicates the need of sending the received message

to a teacher. It is used only to force the server to ask for the teacher’s help.

• ask_confirm: true in nodes that have an intent in the condition. It in-

structs the server to ask the user if the bot’s interpretation is right, in a

con�rmation question.

• no_ask_confirm: is used in nodes that, after their execution, have a jump

to another node which contains ask_con�rm. Its task is to nullify the e�ect

of ask_confirm.

• lookup: instructs the server on the information to look for in the databases.

Admitted values are: "exam_retrieval", "challenge_retrieval", "lecture_retrieval",

"de�nition", "synonyms", "occurrences", "module", "chapter", "video", "joke".

• check_context: true in nodes that need contextual information to select

the answer for a question.

• send_entities: true in nodes that ask the user to select one of the no-

tions of the course, to complete their task. When the server detects this

property, it sends a list of the available concepts.

• send_question: true when the bot is required to ask a multi-choice ques-

tion to the user.

• discovery_search: true when the bot detects the intent #Send_To_Dis-
covery and executes the corresponding node.

• input_text: contains the message sent from the user. It is only used in

the particular case in which the input message has to be analyzed from the

server and there has been a con�rmation question.

• append_response: if true it indicates that the server is required to �ll the

answer and send it to the user without responding to Assistant.

• append_list: is the same as append_response, but for lists of content.

• exam_session: contains the recognized entity @exam_session.

59

4. Architecture

• exam_date: contains the recognized entity @sys-date when the con-

versation is about exams.

• room_only: true when the user wants to know the location of an event.

• exam_number: contains the recognized entity @cardinality when the con-

versation is about exams.

• next_exam: true when the user wants information about the next exam.

• next_from_date: true when the user wants information about the next

event, starting from a speci�c date.

• date: used to specify the date associated to next_from_date.

• list_of_exams: when true it signals that the user has requested all the

exam dates.

• next_deadline: true when the user wants information about the next

deadline of the challenge.

• deadline_date: contains the recognized entity @sys-date when the con-

versation is about challenge deadlines.

• deadline_number: contains the recognized entity @cardinality when the

conversation is about challenge deadlines.

• lecture_date: contains the recognized entity @sys-date when the con-

versation is about lectures.

• canceled: is set to true when the user wants to know if a lecture is can-

celed.

• next_lecture: true when the user wants information about the next lec-

ture.

• last_lecture: true when the user wants information about the last lec-

ture.

• course_entity: contains the recognized value of @course_entity.

• role: contains the recognized value of @role.

• module: contains the recognized value of @module.

60

4.4. Node.js Application

• chapter: contains the recognized value of @chapter.

• video: it contains the recognized value of @video.

• ask_definition: it is set to true when the server has to perform a lookup

and then ask the user if he wants to know a de�nition of a concept of the

course.

• ask_occurrence: it is set to true when the server has to perform a lookup

and then ask the user if he wants to know where to �nd a concept of the

course inside the modules.

• intent: it indicates the top classi�ed intent. It is used when an acknowl-

edgment question is sent to the user and contextual information is needed.

• input_date: it contains the recognized @sys-date, when contextual in-

formation is needed to understand what type of event the date might refer

to.

Another context variable, called topic, is used to classify the current topic of

the conversation and inform the server of it. The available topics are: "exam",

"lecture", "challenge", "challenge_deadline", "course", "content", "items", "generic",

"greetings", "con�rmation", "joke".

Other context variables are used to maintain a sort of state in branches of the

dialog tree, in which the leaf nodes need some information that has been identi�ed

in the root or parent nodes, in order to complete their task. Those are: temp_-
module, temp_chapter, temp_video, temp_entity, temp_role, temp_input, temp_date,
temp_session, temp_number. Their task is to store the value of the corresponding

entity that has been recognized, to be used in a dialog node that is at a lower level

in a branch.

4.4 Node.js Application

4.4.1 Dependencies

Node.js applications can leverage external resources to perform common tasks,

which have already been addressed by di�erent communities. With npm, which is

“the package manager for JavaScript and the world’s largest software registry”

[18], one can import free and open source libraries as local dependencies of a

Node.js application, enabling reuse of public code. The main packages that have

61

4. Architecture

been installed in the application server are Botkit, Watson Developer Cloud, Mon-

goose and mysql.

Botkit is a “developer tool for building chat bots, apps and custom integrations

for major messaging platforms” [3]. It is used as a middleware between the ap-

plication and the Slack front end, to receive text message and interactive message

events from Slack, and to send responses to users.

Watson Developer Cloud allows to call Watson™ ’s APIs from Node.js applica-

tions [10]. It is leveraged to communicate with the Assistant workspace and with

Discovery.

Mongoose is an Object Data Modeling (ODM) library for MongoDB and Node.js

[15]. It is used to query, insert and update documents contained in the MongoDB

server.

mysql is a Node.js driver for MySQL [17]. It is used to connect to the MySQL

server.

The process manager for the deployed version of the VTA is pm2 [20], it does

automatic load balancing and monitoring of the application server.

4.4.2 Components

The �rst part of this section presents the classes used to model information

relevant for the application. The second part focuses on the most important part

of the application server, the modules. They use external libraries and the basic

classes to integrate all the di�erent components present in the architecture of the

VTA. Every basic class has a module that exports the class itself. Those modules

are required to let other modules import and perform tasks involving the use of

those classes. For each category of information there is a manager module (a sort

of domain expert), which is used to abstract the connection to the related database

and the actions needed to store and retrieve the information requested by other

modules. Higher-level modules are only required to handle the conversation be-

tween the users and the VTA, leaving the details of how information is retrieved

to the corresponding managers.

4.4.2.1 Classes

Objects stored in MOOC, administrative, user and question databases have a

corresponding class in the Node.js application. In the �gures below the classes and

their attributes are shown, their methods are omitted for brevity since only getters

62

4.4. Node.js Application

and setters are present. Classes related to the MOOC database are shown in Figure

4.7.

Figure 4.7: Classes related to the MOOC database

The correspondence between classes and the database tables is straightfor-

ward, except for Occurrence that corresponds to the roles table and Video that

is just a container of items. Ideally each item should have its own video, but this

addition is helpful in cases where short items are collected in the same video.

Classes corresponding to the collections of the administrative database are

shown in Figure 4.8.

Figure 4.8: Classes related to the Administrative database

Classes created to handle questions are shown in Figure 4.9.

63

4. Architecture

Figure 4.9: Classes related to the Question database

A single class, called User, is present to manage both teachers and students. It

is presented in Figure 4.10.

Figure 4.10: Class related to the User database

To represent the context of a conversation and its properties, another class is

used. It has a topic attribute which corresponds to the topic context variable

set in dialog nodes, a timestamp and the turn counter of the last time it has been

used, a current attribute that says if an instance of Context is the currently used

one in the conversation. The additional_info attribute stores all the useful

information that can be accessed when the current context determines the answer

to give to a user. It can contain an instance of Exam, Challenge Deadline, Lecture,
Entity, Item, Module and Video. The methods of this class are all getters and setters,

so they are omitted for brevity. This class is shown in Figure 4.11.

64

4.4. Node.js Application

Figure 4.11: Context class

A last class is spellChecker, shown in Figure 4.12. It is the one used to perform

spelling correction of input messages. It follows the spelling correction technique

explained in Section 2.5.

Figure 4.12: Class used as spell checker

Its methods are:

• train: extracts words from a training corpus, using a regular expression to

�nd them. It stores in NWORDS the number of times that each word compares

in the corpus of text.

• edits1: �nds all the words that are reachable from the input words, with

one edit. The modi�cations that are applied to the input words contain splits,

deletions, transpositions, replacements and insertions.

• edits2: �nds all the words that are reachable from the input words, apply-

ing edits1 two times.

• known: selects the words that are known (the ones appearing in the training

corpus) from the edited words.

65

4. Architecture

• max: selects the best candidate word from the list returned from the edits.

• correct: returns an object that indicates the candidate correction for each

input word.

4.4.2.2 MOOC Modules

Figure 4.13 shows the modules that handle MOOC related information, and

their dependencies.

Figure 4.13: MOOC modules

• course_module_manager : exposes the modules of the MOOC stored in the

MOOC database through two functions:

– getAllModules(callback): retrieves the list of all available mod-

ules of the course and makes them available to the callback function.

– getModuleByID(id, callback): retrieves the module of the

course corresponding to id and makes it available to the callback func-

tion.

• videoManager : exports a function used to obtain information regarding a

video of the MOOC. It is de�ned asgetVideoByModuleAndVideoID(module_-

id, video_id, callback) and after looking for the video inside the

MOOC database it makes it available for the callback.

66

4.4. Node.js Application

• itemManager : can be used to retrieve information about all or speci�c items

of the MOOC. The functions exported by this module are:

– getAllItems(callback): used to obtain the list of all the items.

– getAllChapters(callback): used to obtain the list of items that

are chapters and not sub chapters.

– getItemByID(id, callback): used to obtain the item corre-

sponding to a speci�c identi�er.

– getItemByModuleAndChapter(module_id, chapter, call-

back): used to obtain the item of a speci�c module and chapter.

• occurrenceManager : exports methods that �nd the occurrence of an entity

inside items from the MOOC. Its functions are:

– getOccurrencesByRole(entity_id, role, callback):

�nds the items that contain the entity with entity_id as identi�er,

with the speci�ed role.

– getAllOccurrences(entity_id, callback): �nds all the

items that contain the entity with entity_id as identi�er.

• entityManager : exports methods that retrieve information regarding entities

of the course from the MOOC database. Its functions are:

– getAllEntities(callback): retrieves all the entities contained

in the database.

– getEntityByID(id, callback): retrieves the entity that has id
as identi�er.

– getEntityByName(name, callback): retrieves the entity cor-

responding to the speci�ed entity name.

4.4.2.3 Administrative Modules

There are three modules used to handle information regarding the administra-

tion of the course (exams, lectures and challenge deadlines). They are represented

in Figure 4.14, with their dependencies.

67

4. Architecture

Figure 4.14: Administrative modules

• challengeManager : performs queries on the administrative database to �nd

information regarding the challenge.

– getAllDeadlines(callback): retrieves the list of challenge dead-

lines.

– getDeadlineByDate(date, callback): retrieves the deadline

that is the nearest to the input date.

– getDeadlineByNumber(number, callback): retrieves the dead-

line number number.

– getNextDeadline(callback): retrieves the nearest future dead-

line.

– getNextDeadlineByDate(date, callback): retrieves the near-

est future deadline starting from the speci�ed date.

• examManager : performs queries on the administrative database to �nd exam

related information.

– getAllExams(callback): retrieves the list of scheduled exams.

– getExamByNumber(examNumber, callback): retrieves one exam,

chosen by number of exam call.

– getExamByDate(date, callback): retrieves the exam closest

to the speci�ed date.

68

4.4. Node.js Application

– getExamBySession(examSession, callback): retrieves the

exams scheduled for a speci�ed session.

– getNearestExam(callback): retrieves the nearest future exam.

– getNearestExamByDate(date, callback): retrieves the near-

est future exam, starting from the input date.

• lectureManager :

– getLectureByDate(date, callback): �nds the lecture that is

the nearest to the input date.

– getNearestLecture(callback): �nds the nearest future lecture.

– getLastLecture(callback): �nds the nearest past lecture.

– getNearestLectureByDate(date, callback): �nds the near-

est future lecture, from the input date.

4.4.2.4 Question Modules

The module that handles multi-choice questions and the answers coming from

students is questionManager. Its dependencies are shown in Figure 4.15.

Figure 4.15: Question module

The functions exported by this module are:

• getQuestion(user_id, callback): �nds a question that was never

presented to a user.

• getQuestionByID(question_id, callback): �nds the question

corresponding to the input id.

69

4. Architecture

• getQuestionsSolvedByUser(user_id, callback): retrieves all

the questions that the speci�ed user has answered.

• checkAnswer(question_id, answer, user_id, callback): it

determines whether the user has got the right answer for a question.

• saveInteraction(user_id, question_id, correct, wrong,

skipped): saves the result that the user got with its answer to a question.

4.4.2.5 User Modules

Users are managed by two di�erent modules: userManager and teacherMan-
ager, as shown in Figure 4.16.

Figure 4.16: User modules

• userManager can query and insert users in the user database. The functions

it exports are:

– getAllUsers(callback): used to obtain the list of users who in-

teracted with the VTA.

– getUserByID(id, callback): �nds the user with id as identi�er.

– getChannelByID(id, callback): �nds the Slack channel of

user with identi�er id.

– createUser(id, channel, display_name, real_name,

callback): saves the new user inside the user database.

• teacherManager can be used to retrieve information regarding teachers and

send them custom messages when required. The functions it exports are

70

4.4. Node.js Application

the same as the ones from userManager, in addition to sendToTeach-

ers(user_conversation, bot) which is used to ask for the expert

opinion of all the teachers about how to manage a conversation. This func-

tion sends an interactive message using the input bot, which reports the

message that the bot was not able to interpret with a high con�dence. Inter-

actions between teachers and these interactive messages are handled in the

chatbot module.

4.4.2.6 Spelling Correction Modules

Figure 4.17 shows the spellingManager module, which handles the correction

of input sentences. It exploits the methods of the spellChecker class to repair mis-

spellings. It trains an instance of such class with a corpus of text that consists

of the transcription of the modules of the MOOC. It exposes a checkSentence

method that takes as input a message and, if necessary, corrects the single words

contained in it.

Figure 4.17: Spelling correction modules

4.4.2.7 Watson Modules

To connect to the instances of Watson™ Assistant and Discovery two distinct

modules are employed, as shown by Figure 4.18.

Figure 4.18: Watson modules

71

4. Architecture

• Assistant: connects to the Watson™ Assistant workspace and exposes meth-

ods to communicate with it through the watson developer cloud APIs. Those

methods are:

– sendMessage(text, context): sends a user message to Assis-

tant, alongside the context. In this scenario, the latter variable refers

to the situation in which the current conversation lives. It stores in-

formation regarding the visited dialog nodes, the turn counter, context

variables and the identi�er of the conversation. It is a very important

parameter because it allows to continue conversations from where the

user left. When Assistant has �nished classifying intents, entities and

has found the dialog node to execute, it sends back a response, which

is interpreted using the assistant_response_interpreter module since it

is a complex object.

– createExample(intent, text): addstext as a training sample

for intent in the Assistant workspace.

– listIntents(): is used to retrieve the list of intents and their train-

ing samples.

– createIntentWithOneExample(intent, description, ex-

ample): creates a new intent with the input name, description and

example.

– createDialogNode(name, conditions, output, title):

creates a dialog node with the speci�ed title, name, conditions and out-

put.

– getIntent(name): retrieves the intent with the input name.

– deleteExample(intent, example): deletes the training sam-

ple corresponding to example from intent.

• assistant_response_interpreter : is used to mask the structural details of As-

sistant’s responses. It has methods to get recognized intents, entities and

context variables from them.

• Discovery: connects to the Discovery instance and exposes the method used

to query the documents of the course. Such function is query(text), and

it sends a natural language query to be executed on the document collection

that has been uploaded on Discovery. The service responds with a list of or-

72

4.4. Node.js Application

dered results, corresponding to the most relevant documents for the speci�c

query.

4.4.2.8 Context Manager

When Assistant recognizes an intent that needs contextual information in or-

der to provide an answer, the application logic detects it through assistant response

interpreter and asks contextManager to retrieve the needed data. As shown in Fig-

ure 4.19, contextManager leverages other modules to ful�ll the requests he receives.

Figure 4.19: Context Manager module

Contextual information is stored for every user and it keeps track of the topics

(which correspond to the topic context variable de�ned in Assistant) that appear

in the conversation with the VTA. It is represented as an array ofContext instances,

where each component stands for a di�erent topic. The add_info property helps

to de�ne what the user is interested in, since it can contain complex objects such

as instances of the classes that were previously described.

When a request to look for context to disambiguate the meaning of an input

message is received by the application server, contextManager looks inside an array

of rules with the manageContext method, which receives as input the response

from Assistant, the array of contexts for the user that sent the original message

and a callback function to invoke when the search of the context is �nished. For

each of the intents contained in Table 4.7 a set of rules is de�ned, each of those

lists the kinds of contexts that are allowed for the speci�c intent. For example,

a temporal intent makes sense only with certain conversational topics, such as

exams, lectures and deadlines. Thus, if Assistant recognized #Time as primary

intent, a context with one of those topics is looked for inside the array of contexts.

73

4. Architecture

In such array, only one of the contexts is set as current, and has a greater priority

with respect to the others. If the current context is not of the type the manager

is looking for, the other components of the array are examined, giving a higher

priority to the youngest ones, that can be detected by their timestamp or turn

counter. In this search, only contexts that stay below an age threshold (in terms

of time and turn counter with respect to the current time and turn counter of the

conversation) are taken into account. The current context has to be updated when

it does not fall inside the allowed context topics of an intent. If another context is

found eligible to become the current one, they have to be swapped. If a context is

found, a proper answer is created, otherwise the VTA will respond to the user that

it needs more information in order to reply. Continuing the example, if the user

was talking about exams with the VTA and asks for the nearest one in the future

using #Next as intent, contextManager simulates a request to lookupManager as

if the user asked for “the next exam” and then responds to the user. The answer

creation may be more complex, depending on the add_info of the context found.

In fact, if after receiving an exam date the user writes “and the next?” falling again

in the #Next intent, add_info already contains an instance of the class Exam,

and this drives towards a di�erent request to lookupManager, since the user wants

to know the nearest exam after a certain date. In this simple example, after the

context lookup, the response is sent to the user directly. In other cases, the VTA

can ask a disambiguation question to be sure of the meaning of the message. Thus,

the assistant module is leveraged to understand the answer of the user, which

tells if the bot’s interpretation of the original message with the aid of contextual

information is correct or wrong, and proceed with the conversation.

This simple representation of context in conversations could bene�t from ex-

ternal information, such as the history of interactions between users and content

of the MOOC. This kind of data could be used to better understand what the

users should have studied and exclude information from the remaining parts of

the course in the search for de�nitions and references.

4.4.2.9 Lookup Manager

When Assistant requests information that is stored in one of the databases,

the application logic understands it with the help of assistant response interpreter

and asks lookupManager to perform the queries needed to form complete answers.

Figure 4.20 shows the modules that lookupManager leverages in order to get data

regarding the organization of the course and its content.

74

4.4. Node.js Application

Figure 4.20: Lookup Manager module

There is one main function that handles lookups, and it receives as input the

response from Assistant, the array of contexts and a callback, such as contextMan-
ager. When a lookup is requested, assistant response interpreter drives the deci-

sion of the query to perform, thanks to the keywords of the action context variable

de�ned in dialog nodes. Depending on the type of information needed, lookup-
Manager calls functions from the managers contained in its dependencies. When

it receives the data from them, it can either compose an answer and invoke the

callback or it can send information back to Assistant and let the dialog nodes cre-

ate the �nal answer for the user. This behavior is decided by the dialog nodes that

request the lookup with the append_response keyword in the action con-

text variable. In this project, append_response is always set to true for two

reasons, �exibility in the composition of answers and a signi�cative reduction in

the number of API calls to Assistant.

4.4.2.10 Chatbot

Chabot is the core component of the application, it receives user messages,

calls Assistant to analyze them, performs the actions required to send a complete

answer to user and responds. It handles normal text messages as well as Slack

interactive messages and Slack dialogs. It also manages the context of the con-

versations between users and the VTA. All the dependencies of this module are

shown in Figure 4.21.

75

4. Architecture

Figure 4.21: Chatbot module

Chatbot leverages Botkit’s functionalities to create a slackBot (also called Slack

controller), a middleware used to receive and send events to a bot user residing on a

Slack workspace. Another task that the slackBot performs is to maintain a state for

each user, saving contextual information and data needed from Assistant to con-

tinue the conversations from where users left o�. This module comprises listeners

for direct messages, interactive messages and dialogs coming from Slack, as well

as a function that directs input requests towards the other modules that are able to

ful�ll them. This function is de�ned as manageWatsonResponse(message,

response, bot, conv_contexts, message_type) and it is called after

Assistant has classi�ed an input message, to decide whether to perform a lookup,

check the context or perform other special tasks.

Sequence diagrams in the following section explore in greater detail the pas-

sages that a message goes through when it is received by the application server.

76

4.5. Sequence Diagrams

4.5 Sequence Diagrams

4.5.1 High-Level Interactions

At a very high level of abstraction, interactions between users and the VTA are

shown in Figure 4.22.

Figure 4.22: High-level view of interactions

When a user sends a direct message to the virtual assistant on Slack, the system

receives it, processes it to understand its meaning and creates a proper answer

that, when ready, is sent as a reply to the user in the same channel of the original

message.

A second sequence diagram unveils some of the details of the system, in Figure

4.23. It shows that the understanding and part of the answer selection is done by

the Watson™ Assistant service.

77

4. Architecture

Figure 4.23: High-level view with Assistant

The third sequence diagram, in Figure 4.24, unveils what happens when data

stored in a knowledge base is needed in order to complete an answer. The appli-

cation server sends a particular query to the database server and when the results

become available, it �nalizes the answer.

Figure 4.24: High-level view with Assistant and databases

78

4.5. Sequence Diagrams

4.5.2 Initialization

The starting phase of the application server is characterized by:

• connection to the di�erent databases, performed by Mongoose for MongoDB

and the MySQL driver.

• authentication to Slack as a bot user with the start of an RTM connection

leveraging Botkit to call the corresponding Slack APIs.

• training of the spelling corrector, with the words contained in the documents

of the MOOC.

4.5.3 Text Messages

Figure 4.25 shows what happens when a direct text message is received by the

application server.

Figure 4.25: Text message sequence diagram number 1

The Slack controller retrieves the state of the user, if it is the �rst time the user

sends a message, he is saved in the user database with the execution of the cre-

ateUser function from userManager. Information about the user, such as Slack

ID and Slack channel are retrieved from message while display and real names

are retrieved through Slack’s APIs. The state of the user contains his Slack ID

79

4. Architecture

and Slack channel, the context information (watson_context) needed by As-

sistant to continue conversations and the array of Context objects created during

the user’s interaction with the VTA. This state is updated after the reception of the

response object from Assistant, which is used to update the array of contexts and

the watson_context. Chatbot sends the text of the message to Assistant with

the sendMessage function contained in the assistant module and when the re-

sponse from the service arrives, it calls the manageWatsonResponse function.

Chatbot can call contextManager or lookupManager in order to reply to the user,

it can call functions from questionManager or entityManager to �ll the text of an

interactive message, or even send a query to Discovery to respond with an extract

from chapters of the MOOC. All these cases are exempli�ed in the following se-

quence diagrams, which pick up from the end of the sequence diagram in Figure

4.25.

Figure 4.26: Text message sequence diagram number 2

Figure 4.26 shows what happens when Assistant requests a database lookup.

80

4.5. Sequence Diagrams

The assistant response interpreter module is used to identify the request and un-

derstand what information to look for in the database. LookupManager handles

the call to examManager and the creation of the answer, with prede�ned sentences

which need the insertion of the information related to the retrieved exam. It also

updates the current context of the user’s conversation, appending the exam object

to it. The created answer is appended to the output contained in response, and

when the lookup is concluded, the callback function is invoked with the updated

response and contexts objects. The result of this type of interaction is illustrated

in Figure 4.27.

Figure 4.27: Interaction with lookup

Figure 4.28 shows a sequence diagram of the interactions between the main

modules when Assistant requests contextual information to understand the mean-

ing of the input message. The assistant response interpreter module is used to iden-

tify the request and the classi�ed intent. ContextManager looks inside the array

of contexts to �nd the current context and check if it makes sense with the rec-

ognized intent, as explained in Subsection 4.4.2.8. In the example, the user was

talking about exams and he asked a temporal question. If the found context con-

tains an exam it means that during the conversation, the user already mentioned

that speci�c event, thus he might be looking for temporal information about it. If

no mention of a speci�c exam is found, the decision that contextManager takes is

to retrieve the nearest future exam. It does so by modifying the response object

and sending it to lookupManager, which will take care of the database lookup and

the creation of the answer. Once lookupManager has �nished, contextManager can

invoke its callback function with the updated response and contexts objects. The

result of this type of interaction is illustrated in Figure 4.29.

81

4. Architecture

Figure 4.28: Text message sequence diagram number 3

82

4.5. Sequence Diagrams

Figure 4.29: Interaction with contextual information

Figure 4.30 shows a sequence diagram of the scenario in which the list of con-

cepts of the course has to be sent to a user.

Figure 4.30: Text message sequence diagram number 4

Chatbot requests the list of entities to assistant and when they are returned, it

creates an interactive message with list elements.

83

4. Architecture

The result of this type of interaction is illustrated in Figure 4.31.

Figure 4.31: Display of the list of concepts

Figure 4.32 shows a sequence diagram of the scenario in which a user wants to

practice or to test his understanding of the course.

Chatbot requests a new question for the user to questionManager, which looks

into the question database to �nd a question that the user has not previously seen.

This module makes a Question object available to chatbot, to create the interactive

message for the user, with the text of the questions and the list of answers.

An example of question sent to a user is illustrated in Figure 4.33.

Figure 4.32: Text message sequence diagram number 5

84

4.5. Sequence Diagrams

Figure 4.33: Display of a question

Figure 4.34 shows a sequence diagram of the scenario in which the VTA relies

on Discovery to respond to a user.

Figure 4.34: Text message sequence diagram number 6

The chatbot module detects that it needs to query Discovery through the as-

85

4. Architecture

sistant response interpreter, it sends the text of the input message as a natural

language query, and when the results are available, it creates an interactive mes-

sage to answer the user. An example of interactive message containing the result

of a Discovery query is illustrated in Figure 4.35.

Figure 4.35: Discovery query result

Figure 4.36 shows a sequence diagram of the scenario in which the response

found by Assistant is complete and needs no additional information from the server.

It also shows the �nal passages of themanageWatsonResponse function, which

apply to the previous sequence diagrams as well.

When the prepared answer is ready to be sent to the user, his state is saved,

because the contextual information and watson_context might have been up-

dated. The turn of the conversation is saved in the conversation history database

and the answer is �nally received by the user.

Chatbot performs other two checks: if the con�dence of the intent recognized

by Assistant is below a threshold and the conversation is in a state in which the

recognition of the intent is important to determine the node of the dialog tree to

86

4.5. Sequence Diagrams

execute, a con�rmation question is sent to the user. Similarly, a question contain-

ing the input message can be sent to the teachers of the course, in order to handle

cases in which Assistant might not be able to understand the meaning correctly.

These two types of interactions are saved in the conversation history database.

In Figure 4.37 there is a con�rmation question asked to a student, while in Figure

4.38 the related teacher question is shown.

Figure 4.36: Text message sequence diagram number 7

87

4. Architecture

Figure 4.37: Con�rmation question

Figure 4.38: Teacher question

88

4.5. Sequence Diagrams

4.5.4 Interactive Messages

The sequence diagram in Figure 4.39 shows the interactions between modules

and objects of the application server when a user interacts with a con�rmation

question.

Conversation, User Con�rmation and Teacher Question are mongoose models used

to communicate with the corresponding collections stored in the conversation his-

tory database. After the event corresponding to the decision of the user, the con-

�rmation stored in the database is updated. If the user �nds the interpretation

of Assistant correct, thus clicking on the "yes" button, this interaction is used to

train the intent classi�er of Assistant, but only if no teacher already classi�ed that

message. Therefore, the decisions of teachers are given a higher value of trust. If

the user thinks that the interpretation was incorrect, the teachers receive a teacher

question related to it, in the case they did not receive it already.

The updated version of an interactive message containing a con�rmation question,

after the user clicked on "yes" is shown in Figure 4.40.

Figure 4.39: Interactive message sequence diagram number 1

89

4. Architecture

Figure 4.40: Result after a user con�rmation

In the second sequence diagram, in Figure 4.41, the user selects a concept of

the course from a list element.

A message containing its choice is sent to Assistant, following the same passages of

a normal text message. When the �nal answer is ready, it updates the interactive

message, displaying the response from the server, as shown by the example in

Figure 4.42.

Figure 4.41: Interactive message sequence diagram number 2

90

4.5. Sequence Diagrams

Figure 4.42: Result after a entity selection

In the third sequence diagram, in Figure 4.43, a teacher selects one of the op-

tions of an interactive message related to a teacher question.

Figure 4.43: Interactive message sequence diagram number 3

The available choices produce di�erent end results, but they follow the same

passages. Chatbot retrieves the teacher question from the database and if it was

handled by another teacher, the currently active teacher is noti�ed. If a user con�r-

mation is present for the message that has to be handled, and it has been resolved

by a user, a special message is sent to the teacher. This contains the decision of the

user and allows the teacher to approve or reject it. In the latter case and in the case

that no �lled con�rmation questions are present in the database, chatbot creates a

menu (Slack dialog) for the teacher to �ll.

91

4. Architecture

Continuing the example of Figure 4.40, if a teacher tries to manage a teacher

question related to the user’s message, he receives the interactive message in the

left image of Figure 4.44. If he rejects the decision of the user, one of the Slack

dialogs presented in Figures 4.46, 4.45 and 4.47 is displayed, depending on the

teacher’s choice.

Figure 4.44: Managing a message that has been con�rmed

Figure 4.45: Dialog with intent creation

92

4.5. Sequence Diagrams

Figure 4.46: Dialog with intent selection

Figure 4.47: Dialog with direct reply

When a teacher submits a Slack dialog for the selection of an intent, the server

retrieves information regarding that intent to ask the teacher if he is sure of its

choice. The sequence diagram shown in Figure 4.48 illustrates the interactions of

the di�erent modules after a teacher has decided to accept or reject his selection.

If the decision is accepted, an example is created for the selected intent, otherwise

the teacher can make another choice.

93

4. Architecture

Figure 4.48: Interactive message sequence diagram number 4

The interactive message that a teacher receives to con�rm his selection of the

intent is shown in Figure 4.49.

Figure 4.49: Interactive message with intent description

The sequence diagram shown in Figure 4.50 illustrates the interactions of the

di�erent modules after a teacher has decided to accept or reject a user’s answer to

a con�rmation question. If the teacher rejects the user’s input, the example that

was created on Assistant is deleted and the teacher can continue with his task of

handling the user message with a Slack dialog.

94

4.5. Sequence Diagrams

Figure 4.50: Interactive message sequence diagram number 5

The sequence diagram contained in Figure 4.51 shows the operations that the

chatbot module performs when a user answers to a question regarding the course.

It checks the correctness of the answer and if the user got the right one, he receives

a positive message, otherwise the correct answer is displayed to him. If the user

decides to skip a question, a new question is retrieved with the use of question-
Manager. All those interactions are saved in the question database.

An example of interactive message after the correct answer has been given is in

Figure 4.52.

After the results of a selected answer are shown to the user, he can decide to pass to

a new question. The passages involved in the retrieval of such question are shown

in Figure 4.53.

95

4. Architecture

Figure 4.51: Interactive message sequence diagram number 6

96

4.5. Sequence Diagrams

Figure 4.52: Interactive message with correct answer

Figure 4.53: Interactive message sequence diagram number 7

4.5.5 Slack Dialogs

The sequence diagram shown in Figure 4.54 illustrates the passages that are

followed by the server when a teacher submits a �lled dialog.

Slack Controller validates the input and if some �elds have to be modi�ed by the

teacher, it noti�es him. When a correctly �lled dialog submission is received by

chatbot, it checks that the problem has not been solved by another teacher. In the

case the dialog’s goal was to select an existing intent, the message from the user

is added to the training set of the selected intent. If the teacher wants to create

a new intent, the assistant module saves it and creates a dialog node to execute

when Assistant recognizes that intent. Then, the answer de�ned by the teacher

is sent to the user who sent the original message. This also happens in the case

97

4. Architecture

when the teacher only wants to send a direct reply to the user.

An example of a message received by a student after a dialog submission is shown

in Figure 4.55.

Figure 4.54: Dialog submission sequence diagram

Figure 4.55: The message received by a student after a teacher has managed one

of his messages.

98

Chapter 5

Results

This chapter presents the results of Rexy’s activity in the Recommender Systems
course, the tasks needed to update and adapt Rexy to other courses, the amount

of concurrent requests it is able to handle, and a preliminary analysis of student

clustering.

5.1 Interactions with Rexy

At the time of writing, Rexy has been deployed for 40 days, therefore the num-

bers presented in this section show a very early insight of how it worked.

20 students interacted with it, reaching a total of 239 conversation turns, thus

having an average of 11,95 messages per student. The messages that required

the classi�cation of an intent were 158, the remaining ones contained the enti-

ties needed to continue some branches of the dialog tree. The manual inspection

of its activity showed that Rexy detected the right intent 103 times out of 158 and

the messages it was not able to understand properly are divided in 26 requests that

should have been handled and 29 requests that were not relevant (random char-

acters or texts that the assistant should not be able to understand). Entities were

recognized correctly every time.

At the beginning Rexy was lacking some intents because they were not fore-

seen during the creation phase but were added later for future users. The 26 re-

quests that Rexy should have understood were not unique, there were groups of 3

or 4 messages bringing the same intent with di�erent formulations; this happened

because students tried to make Rexy understand their question with multiple at-

tempts even though it was not able to answer. Every group of such requests was

mapped to a new intent in order to be able to respond to them in future occasions.

99

5. Results

Moreover, the students that sent them received an answer from one of the teaching

assistants.

In their interactions with Rexy, students showed that the challenge is their

main interest since most of the time they wrote Rexy asking for information, rules

and deadlines regarding it. The second most requested topic was the content of the

course, mostly in de�nitions of concepts, and the third consisted in the lectures of

the course.

The students used a conversational and idiomatic writing style most of the

times, they wrote complete and articulate sentences, as if they were writing to a

human assistant. Only three students wrote to Rexy command-like messages and

very short sentences. The VTA was able to understand both types of requests,

but this qualitative result shows that most of the students expect digital assistants

to be able to interpret longer sentences and might prefer to use natural language

instead of learning new commands.

The intents that were touched by the requests of the students were only a frac-

tion of all the intents that had been de�ned, leaving a good part of the dialog tree

unexplored. This was expected, because Rexy was deployed a month after the start

of the course. This limited the impact that it could have had, since the organiza-

tion of the course is a topic that is usually discussed in the �rst days. Also, trying

to change the habits of the students to push them to interact with a VTA is not

trivial and needs further investigations in order to understand if such VTA could

be successful in di�erent areas.

What Rexy was really good at was replying to questions related to the syllabus

of Recommender Systems and navigating through the content of the course, while

it struggled on questions regarding very speci�c aspects of the challenge. For in-

stance, some of the messages it received were about computational time of algo-

rithms and how to translate a concept into code; such requests were not expected

because the information needed to answer cannot be found inside the material of

the online course. Additionally some of those questions cannot be answered eas-

ily, with just a short text or few turns of a conversation; for instance, to forecast

the computational time required by some algorithm, one should know how it is

written, the programming language, the size of the involved dataset, the hardware

resources that are available.

100

5.2. Maintenance and Portability

5.2 Maintenance and Portability

Every semester, a course might undergo changes in its organization and its

content. Therefore, the information stored in the knowledge base of the VTA must

be updated, as well as some of its prede�ned responses. This task is necessary to

maintain consistency between the real organization of the course and what the

VTA can say to students. It is not very time consuming, since it consists of an

update of part of the pre-existing data, namely the administrative database and the

response de�ned for the dialog nodes in the Assistant workspace. In detail, on the

database side, the update involves the lectures, exams and deadlines collections,

and on the dialog tree side it involves the responses containing information subject

to change, such as the rules of the competition or the topics covered by the course.

Instructing the VTA for a new course requires more e�ort: its knowledge base

(lectures, exams and questions databases) shall be �lled and some of the static

responses, de�ned for speci�c requests, must be modi�ed in order to �t the new

scenario. However, tagging and creating abstracts of the di�erent modules of the

course to �ll the corresponding database is de�nitely the most time consuming

task. The tagging activity consist in recognizing the concepts of the course in the

transcripts of the video lessons and giving each occurrence a role (e.g. de�nition

or introduction of a concept). The e�ort required depends on the dimension of the

content of the MOOC; tagging the material of an already existing course implies

that the annotator must go through it completely, possibly even multiple times in

order to understand the content and its structure. In the case a new course is being

prepared, this task might be easier and less time consuming since the di�erent

chapters can be tagged during their creation. Moreover, the writer is an expert of

the course, thus the tags and abstracts he produces should be reliable.

The already existing intents used by Assistant to understand the meaning of

messages are quite general and their input samples are not course-speci�c, thus

they do not require any type of adaptation. Entities and their values, instead, have

to be changed since they are related to a single course. The rules de�ned for the

context management should also be revised, since for Recommender Systems the

challenge and its deadlines were taken into account, but those can be reused in

courses that have some side projects or assignments. Furthermore, because courses

are not equal to each other, new intents and branches of the dialog tree shall be

created for the requests that students of a particular course can make. This is nec-

essary since two courses are not equal and teachers know what types of questions

their students usually ask.

101

5. Results

In the case of an online course, only @course_entity, @reference-role, @module,
@chapter, @video entities have to be changed, while most of the intents related to

the organization of the course can be substituted. Thus, the only databases to be

�lled are the ones containing information about the video lessons and the multi-

choice questions for students.

5.3 Scalability

Before Rexy’s deployment, load tests were run to ensure that the application

was able to answer to students in an adequate amount of time. The results showed

that the VTA’s performance was more than acceptable even in situations that far

exceeded the expected tra�c of messages coming from students.

5.3.1 Testing Scenario

The tests were run on a dummy application, which emulated all the function-

alities of the real application, except for the interactive messages, and the recep-

tion/dispatch of messages from and to Slack, because of the limits in the rate of

messages that can be sent by bot users [25] and because the emulation of students

writing many messages at the same time was not possible. In order to mimic stu-

dent interactions, POST requests were sent to the application, with the text of the

message and information about the sender inside the body of the requests. When

the application was ready to answer, it responded to the corresponding POST re-

quest. The tests were run on the same virtual machine used for the deployment of

the real application server, presented in Subsection 4.1.5.

5.3.2 Test Description

The tests were carried out with Artillery, an open source load testing toolkit

[2]. It enables testing of complex user behavior with the de�nition of scenarios,

which specify the type and order of actions performed by the virtual users. It also

allows to test di�erent loads in dedicated phases, which consist of an arrival rate,

a duration and, optionally, a maximum number of requests per second that can be

sent. The tests consisted of sending messages to the application server in di�erent

phases and with di�erent loads, measuring the time elapsed until the reception

of the response. For every message sent, a random user was picked from 50 fake

users, to simulate the management of contextual information. The text of each

102

5.3. Scalability

message was taken randomly from the training samples of all the intents stored

in Assistant. After the reception of all the responses, Artillery calculates statistics

about the performance of the system, such as the minimum (min), maximum (max),

median, 95th (p95) and 99th (p99) percentile values of the request latency.

5.3.3 Results

In a �rst test, 300 requests were sent in a 60 seconds long window (e.g. 5 re-

quests/second or RPS). In a second test, after a warm up phase of 30 seconds in

which the RPS went from 5 to 50 in a linear fashion, a second phase started with

a constant load of 50 RPS for other 30 seconds. The time required to respond in-

creased, as shown in Figure 5.1. When ramping up the RPS to 100 and to 200 in

such scenario, the resulting response times were longer and not acceptable.

During the activity of Rexy as a VTA for Recommender Systems, students wrote

in di�erent times and in a very distributed fashion, so bursts of messages like the

latter tests were not representative of the real environment. In a scenario in which

the end users are numerous and are expected to interact very frequently with the

VTA, it is advisable to allocate more resources to the application server or to dis-

tribute the load on more threads.

Figure 5.1: Load test results

103

5. Results

5.4 Clustering of Users

Since a VTA could be able to personalize the experience of its users, one of

the �rst steps that can be taken in that direction is to analyze their behavior to

�nd pro�les that represent groups of users. Once they have been discovered, the

VTA could bring new functionalities targeted at them or at the whole community

of users. In this section a preliminary study aimed at �nding those groups is pre-

sented. It is based on the clustering algorithms introduced in Section 2.4, and it is

run on simulated user interactions because of the lack of a consistent number of

real user interactions.

5.4.1 Simulation

The simulated groups of users are as follows: 20 users interested to exams

("exam users"), 30 users interested to the challenge ("challenge users"), 20 users

interested to lectures ("lecture users") and 30 users interested to the content of

the course ("content users"). In a second step, other 40 users, interested in all the

di�erent topics in equal manner ("mixed users"), are added. For every user, a ran-

dom number of interactions between 20 and 40 is generated taking text messages

from the training samples of the intents, which are divided in sets for the di�erent

topics: exams, challenge, lectures, content, common phrases and general intents.

Said sets can be partially overlapping in case some intent can be used in questions

about more than one topic. To simulate a user interested in one of the available

topics of conversation at the time of picking a message, the probability associ-

ated to samples of the intents contained in the corresponding group is 0.5, and the

probability of picking a message from each of the other groups is 0.1. All the said

interactions are saved in the conversation history database with their intent and

recognized entities, and, as the id of the user, the group which he belongs to.

5.4.2 User Model

The users are modeled with the main information that is currently gathered

by the VTA, which are the intents recognized in the messages they sent to the

assistant. Thus, the user model is a vector containing the absolute frequency of

messages that were classi�ed as an intent, for all the available intents. This choice

comes from the design of the intents and also from the objective of the partition-

ing activity, since most of the de�ned intents don’t need additional information to

represent the interests of a user. In other cases, intents could be less informative

104

5.4. Clustering of Users

and need contextual information, such as entities, to represent the meaning of a

message. Also, for tasks that need to di�erentiate users based on speci�c informa-

tion that is captured by entities, the user model could bene�t from this additional

information. In this direction, the same clustering algorithms are run on another

environment in which the intents alone are not su�cient to tell the meaning of

a message. For instance, the same intent (#Time) is used to �nd temporal infor-

mation about an exam, a lecture and a deadline of the challenge, and the VTA is

able to discriminate the cases with the recognition of an exam, lecture or deadline

entity. In this scenario, the proposed user model consists of a vector in which the

dimensions are not only the intents, but the result of the cartesian product between

intents and entities, which is �ltered to retain only couples (intent, entity) that can

actually occur during a conversation. The structure of this second simulation is

the same as the previous one, but the sets of intents for the di�erent conversational

topics were much more overlapping and, in order to mimic the user behavior, the

samples of the intents must be divided into coherent groups. For instance, when

picking random samples for a user interested in lectures, if the ambiguous #Time
intent is selected from the lecture group of intents, only samples that talk about

lectures are admitted.

5.4.3 Techniques

The clustering experiments on the simulated data are implemented in Python

with public libraries: in particular, K-Medoids is present in the "pyclustering" li-

brary [21] while K-Means and Hierarchical Agglomerative clustering algorithms,

as well as the clustering evaluation metrics, are provided by the "scikit-learn" li-

brary [23].

K-Medoids clustering is run with a square Euclidean distance metric and 50

random initializations. On the same data, this method with a Manhattan distance

was not as performant. At the end of the clustering process, the partition with the

highest silhouette score is taken as result.

K-Means clustering is also run with 50 initializations and the resulting parti-

tioning is the one which minimizes the Within-Clusters-Sum-of-Squares.

Hierarchical Agglomerative clustering is run with a Euclidean distance and

Ward linkage. This con�guration beat others with Manhattan distance or with

average linkage on the same data.

The clustering algorithms are executed to �nd the four clusters of "exam", "lec-

ture", "challenge" and "content" users, with and without the interactions of "mixed"

105

5. Results

users. During the evaluation of the partitions, the "mixed" users are excluded from

the ground truth and from the predicted clusters, in order to measure the ability of

the algorithms to divide the groups of users that showed a speci�c interest. Di�er-

ent variations of the dataset and the user model have been explored, as described

in the following subsection.

5.4.4 Results

5.4.4.1 Scenario A - only intents

On the simulated interactions containing the intents described in Subsection

4.3.1, the di�erent clustering algorithms were able to �nd the clusters contained in

the ground truth, obtaining the results listed in the following charts. Each �gure

shows the average performance of 10 runs of the di�erent techniques with respect

to one quality measure and for each of the algorithms, they show several variants

which are applied on the dataset and on the user model. In fact, there are results for

both the application of the algorithms on the datasets with and without the "mixed"

users, and orthogonally to the dataset types, there are the di�erent user models:

one containing all the intents and one containing only part of the intents. The dis-

carded ones are: #Goodbye, #Greetings, #Thanks, #General_About_You, #General_-
Chatbot_Capabilities, #General_Human_or_Bot, #General_Jokes, #General_Negative_-
Feedback, #General_Security_Assurance, #RelatedTopics, #Teacher_Contact, #Teacher_-
Info, #Teaching_Assistants_Info, #Okay, #Really. They have been �ltered out of the

model since they are expected to bring less information than the others, for the

goal of separating the 4 clusters speci�ed in the ground truth.

The results show that with the simpler user model caused by the �ltering of

intents, K-Medoids was able to better divide the users in the groups they belong

to, while the other algorithms were not a�ected by this change, apart from the

Agglomerative clustering in the dataset �lled with "mixed" users. In the scenario

in which the "mixed" users are added to the dataset, the performance of every

algorithm decreases, probably due to the noise added by those new users. In order

to improve the partitioning, it is possible to �nd more clusters and reassemble them

later. In this sense, the best result was found by instructing the Agglomerative

algorithm to �nd 6 clusters instead of 4, reaching a homogeneity of 1.0, meaning

that each cluster contained only users of a single group, but those groups are spread

out in more than one predicted cluster. From the results shown in the several

charts, the clustering algorithm that proved to be the most reliable for this speci�c

experiment is K-Means, since it was able to perform equally or better than the

106

5.4. Clustering of Users

others in every situation.

Figure 5.2: Adjusted Rand Index in Scenario A

Figure 5.3: Adjusted Mutual Info in Scenario A

107

5. Results

Figure 5.4: Fowlkes-Mallows measure in Scenario A

Figure 5.5: Silhouette coe�cient in Scenario A

108

5.4. Clustering of Users

Figure 5.6: Homogeneity in Scenario A

Figure 5.7: Completeness in Scenario A

109

5. Results

Figure 5.8: V-measure in Scenario A

5.4.4.2 Scenario B - intents and entities

In this section the evaluation of the same clustering algorithms is presented

for the case in which the simulated interactions contain a new set of intents and

entities, which are used to recognize the same questions that users can ask to

Rexy, but in a di�erent way. In this scenario, the role of the entities is crucial

in understanding questions related to the organization of the course, which share

the same basic intents and rely on the recognition of entities that represent exams,

lectures and deadlines. The intents to be discarded are the same as the previous

scenario. In this case, the user model can comprise a combination of intents and

entities, which brings an improvement over the simpler user model made out of

intents only. This result is shown in the following charts, that follow the same

guidelines of the ones presented in the previous subsection, while also including

the new type of user model.

When the "mixed" users are included in the dataset, the performance of the

algorithms decreases, except for K-Means. In this scenario, deleting the less in-

formative intents from the user model, brings to an improvement of the cluster-

ing only with the K-Medoids algorithm when the "mixed" users are added to the

dataset. It also improves the silhouette score of all the algorithms. As in the pre-

vious scenario, the most reliable clustering algorithm for this speci�c experiment

is K-Means, as shown by the following �gures.

110

5.4. Clustering of Users

Figure 5.9: Adjusted Rand Index in Scenario B

Figure 5.10: Adjusted Mutual Info in Scenario B

111

5. Results

Figure 5.11: Fowlkes-Mallows measure in Scenario B

Figure 5.12: Silhouette coe�cient in Scenario B

112

5.4. Clustering of Users

Figure 5.13: Homogeneity in Scenario B

Figure 5.14: Completeness in Scenario B

113

5. Results

Figure 5.15: V-measure in Scenario B

114

Conclusions

This work shows the design of Rexy, a VTA for an on-site university level

course, as a solution for the automatic handling of FAQs regarding the organization

and the content of the course. While being able to reply e�ciently to expected

questions, it is also capable of engaging students with multi-choice questions and

guarantee some degree of control to the human TAs on the conversations that

students have with the VTA.

The application that is presented in this thesis has a database tier containing

information about the organization of the course (exams, lectures, deadlines) and

about its content (modules, entities, chapters).

A Watson™ Assistant workspace is used to analyze the messages coming from stu-

dents, in particular for running intent classi�cation and entity recognition tasks.

This service provides a way to manage conversations using a dialog tree, in which

the nodes de�ne how the assistant is going to answer in each situation.

A server application handles messages coming from students and their replies. It

allows to retrieve information from the database tier to create the answers when

Assistant does not have enough knowledge to do so. It is also used to enrich the

results of the intent and entity analysis performed by Assistant with elements

coming from the context of the conversation, in order to better identify the right

answers. Furthermore, it allows to save the interactions between the VTA and

students and to improve its understanding capabilities in a continuous learning

scenario, by sending special requests to human TAs when Assistant is not able to

handle a student’s question.

The front end consists in the integration with Slack, a messaging application that

has been used by students and teachers to interact with Rexy. The employment of

another popular messaging application or a custom one is possible.

Rexy was deployed in the �rst semester of the academic year 2018/2019 at Po-

litecnico di Milano for the Recommender Systems course, but can be adapted to

other on-site and online courses, by substituting parts of the knowledge base of the

115

Conclusions

VTA, which is composed by the databases containing information about the course

and its content, and course dependent answers. During its activity, Rexy was able

to reply correctly to the majority of the questions coming from the students, which

were mostly related to the organization of the course. Even though some of the

messages were not foreseen and thus misunderstood by Rexy, the human TAs were

enabled to instruct it on how to respond improving its comprehension capabilities

and replying to the students which questions were left unanswered.

The proposed VTA could still bene�t from the addition of new functionalities,

which could make it more interesting and useful for students and adopters of this

solution. Therefore, future work is needed in order to study the e�ect that the pres-

ence of such VTA has in a course, either on-site or online, considering the limited

number of interactions that Rexy had with real students it is not possible to state if

it is really able to improve teaching, student engagement and reduce the number of

requests asked to teachers. Some work can lead to the addition of features aimed

at improving student engagement, and more importantly measure their e�ective-

ness on a broad enough number of courses and demography of users. Another

type of research could focus on automating the creation of the knowledge base of

the VTA, in particular of the database containing information about the content of

the course. If satisfactory results can be obtained in this sense, the adaptation of

the proposed VTA to other courses becomes straightforward and much less time

demanding. The adoption of new, ad hoc solutions for understanding the requests

coming from students could bring much more �exibility for the functionalities of

the VTA, and the creation of responses from scratch or from o�cial resources

like documents, articles and books could improve the quality of its replies, while

extending its knowledge automatically. Another line of research could consider

the possibilities of implementing personalized learning with a VTA, which should

bring a personalization of the interactions with every di�erent student or groups

of similar students.

116

Bibliography

[1] Alexa for Business. URL: https://aws.amazon.com/alexaforbusiness/.

[2] Artillery. URL: https://artillery.io/docs/.

[3] Botkit. URL: https://botkit.ai/.

[4] Chatfuel. URL: https://chatfuel.com/.

[5] DialogFlow. URL: https://dialog�ow.com/.

[6] IBM Watson. URL: https://www.ibm.com/watson/.

[7] IBM Watson Assistant. URL: https://www.ibm.com/watson/ai-assistant/.

[8] IBM Watson Assistant APIs documentation. URL: https://console.

bluemix.net/apidocs/assistant?language=node.

[9] IBM Watson Assistant documentation. URL: https://console.bluemix.net/

docs/services/conversation/index.html.

[10] IBM Watson documentation. URL: https://console.bluemix.net/developer/

watson/documentation.

[11] Microsoft Azure Cognitive Services. URL: https://azure.microsoft.com/en-

us/services/cognitive-services/.

[12] Microsoft Bot Framework. URL: https://dev.botframework.com/.

[13] Microsoft LUIS. URL: https://www.luis.ai/home.

[14] MongoDB documentation. URL: https://docs.mongodb.com/.

[15] Mongoose. URL: https://mongoosejs.com/.

[16] MySQL documentation. URL: https://dev.mysql.com/doc/.

117

https://aws.amazon.com/alexaforbusiness/
https://artillery.io/docs/
https://botkit.ai/
https://chatfuel.com/
https://dialogflow.com/
https://www.ibm.com/watson/
https://www.ibm.com/watson/ai-assistant/
https://console.bluemix.net/apidocs/assistant?language=node
https://console.bluemix.net/apidocs/assistant?language=node
https://console.bluemix.net/docs/services/conversation/index.html
https://console.bluemix.net/docs/services/conversation/index.html
https://console.bluemix.net/developer/watson/documentation
https://console.bluemix.net/developer/watson/documentation
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://dev.botframework.com/
https://www.luis.ai/home
https://docs.mongodb.com/
https://mongoosejs.com/
https://dev.mysql.com/doc/

Bibliography

[17] MySQL driver. URL: https://github.com/mysqljs/mysql.

[18] npm. URL: https://www.npmjs.com/.

[19] Pandorabots. URL: https://home.pandorabots.com/home.html.

[20] pm2. URL: http://pm2.keymetrics.io/.

[21] pyclustering. URL: https://github.com/annoviko/pyclustering.

[22] Recommender System 2018 Challenge Polimi on Kaggle. URL:

https://www.kaggle.com/c/recommender-system-2018-challenge-polimi.

[23] scikit-learn. URL: http://scikit-learn.org/stable/modules/clustering.html.

[24] Slack. URL: https://slack.com/.

[25] Slack APIs rate limits. URL: https://api.slack.com/docs/rate-limits.

[26] Slack Bot Users. URL: https://api.slack.com/bot-users.

[27] Wit.ai. URL: https://wit.ai/.

[28] Messaging apps are now bigger than social networks. URL:

https://www.businessinsider.com/the-messaging-app-report-2015-11?IR=T,

Sept. 2016.

[29] Brandtzaeg, P. B., and Følstad, A. Why people use chatbots. In Interna-
tional Conference on Internet Science (2017), Springer, pp. 377–392.

[30] Dale, R. The return of the chatbots. Natural Language Engineering 22, 5

(2016), 811–817.

[31] Daniel, J. Making sense of MOOCs: Musings in a maze of myth, paradox

and possibility. Journal of interactive Media in education 2012, 3 (2012).

[32] du Boulay, B. Arti�cial Intelligence as an E�ective Classroom Assistant.

IEEE Intelligent Systems 31, 6 (Nov 2016), 76–81.

[33] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur,

A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., et al. Building

Watson: An overview of the DeepQA project. AI magazine 31, 3 (2010), 59–

79.

118

https://github.com/mysqljs/mysql
https://www.npmjs.com/
https://home.pandorabots.com/home.html
http://pm2.keymetrics.io/
https://github.com/annoviko/pyclustering
https://www.kaggle.com/c/recommender-system-2018-challenge-polimi
http://scikit-learn.org/stable/modules/clustering.html
https://slack.com/
https://api.slack.com/docs/rate-limits
https://api.slack.com/bot-users
https://wit.ai/
https://www.businessinsider.com/the-messaging-app-report-2015-11?IR=T

Bibliography

[34] Gabbatt, A. IBM computer Watson wins Jeopardy clash. URL:

https://www.theguardian.com/technology/2011/feb/17/ibm-computer-

watson-wins-jeopardy, Feb. 2011.

[35] Goel, A. K., and Polepeddi, L. Jill Watson: A Virtual Teaching Assistant for

Online Education. Tech. rep., Georgia Institute of Technology, 2016.

[36] Hartigan, J. A., and Wong, M. A. Algorithm AS 136: A K-Means Clustering

Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics)
28, 1 (1979), 100–108.

[37] Jain, A., and Dubes, R. Algorithms for clustering data.

[38] Jia, J. The study of the application of a web-based chatbot system on the

teaching of foreign languages. In Society for Information Technology & Teacher
Education International Conference (2004), Association for the Advancement

of Computing in Education (AACE), pp. 1201–1207.

[39] Jurafsky, D., and Martin, J. Dialog Systems and Chatbots. Speech and
language processing (2017).

[40] Kaufman, L., and Rousseeuw, P. Clustering by means of medoids. North-

Holland, 1987.

[41] Kernighan, M. D., Church, K. W., and Gale, W. A. A Spelling Correction

Program Based on a Noisy Channel Model. In Proceedings of the 13th Confer-
ence on Computational Linguistics - Volume 2 (Stroudsburg, PA, USA, 1990),

COLING ’90, Association for Computational Linguistics, pp. 205–210.

[42] Kukich, K. Techniques for Automatically Correcting Words in Text. ACM
Comput. Surv. 24, 4 (Dec. 1992), 377–439.

[43] Norvig, P. How to Write a Spelling Corrector. URL: http://norvig.com/spell-

correct.html.

[44] Pirrone, R., Pilato, G., Rizzo, R., and Russo, G. Learning path generation

by domain ontology transformation. In AI* IA 2005: Advances in Arti�cial
Intelligence. Springer, 2005, pp. 359–369.

[45] Sánchez-Diaz, X., Ayala-Bastidas, G., Fonseca-Ortiz, P., and Garrido,

L. A Knowledge-based Methodology for Building a Conversational Chatbot

as an Intelligent Tutor.

119

https://www.theguardian.com/technology/2011/feb/17/ibm-computer-watson-wins-jeopardy
https://www.theguardian.com/technology/2011/feb/17/ibm-computer-watson-wins-jeopardy
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

Bibliography

[46] Shah, D. By The Numbers: MOOCs in 2017. URL: https://www.class-

central.com/report/mooc-stats-2017/, Jan. 2018.

[47] Shah, H., Warwick, K., Vallverdú, J., and Wu, D. Can machines talk?

Comparison of Eliza with modern dialogue systems. Computers in Human
Behavior 58 (2016), 278–295.

[48] VanLehn, K. The relative e�ectiveness of human tutoring, intelligent tutor-

ing systems, and other tutoring systems. Educational Psychologist 46, 4 (2011),

197–221.

[49] Vinyals, O., and Le, Q. A neural conversational model. arXiv preprint
arXiv:1506.05869 (2015).

[50] Weizenbaum, J. ELIZA - a computer program for the study of natural lan-

guage communication between man and machine. Communications of the
ACM 9, 1 (1966), 36–45.

[51] Woo, J. W. Messaging apps exceeded 6 billion combined monthly active users

in 2017. URL: https://technology.ihs.com/602537/messaging-apps-exceeded-

6-billion-combined-monthly-active-users-in-2017, May 2018.

[52] Yuan, L., and Powell, S. MOOCs and open education: Implications for

higher education, 2013.

[53] Zaki, M. J., Meira Jr, W., and Meira, W. Data mining and analysis: fun-
damental concepts and algorithms. Cambridge University Press, 2014, ch. 17,

pp. 425–466.

120

https://www.class-central.com/report/mooc-stats-2017/
https://www.class-central.com/report/mooc-stats-2017/
https://technology.ihs.com/602537/messaging-apps-exceeded-6-billion-combined-monthly-active-users-in-2017
https://technology.ihs.com/602537/messaging-apps-exceeded-6-billion-combined-monthly-active-users-in-2017

Appendix A

Dialog Tree

In this appendix the complete dialog tree present on the Assistant workspace is

reported, with the names of the nodes and the jumps between them. They have a

numeric notation that is used to identify the root and leaf nodes of branches. "LC"

stands for low con�dence and it is used to mark disambiguation nodes.

121

A. Dialog Tree

Figure A.1: Dialog tree: part 1

122

Figure A.2: Dialog tree: part 2

123

A. Dialog Tree

Figure A.3: Dialog tree: part 3

124

Figure A.4: Dialog tree: part 4

125

A. Dialog Tree

Figure A.5: Dialog tree: part 5

126

Figure A.6: Dialog tree: part 6

127

A. Dialog Tree

Figure A.7: Dialog tree: part 7

128

Figure A.8: Dialog tree: part 8

129

A. Dialog Tree

Figure A.9: Dialog tree: part 9

130

Figure A.10: Dialog tree: part 10

131

A. Dialog Tree

Figure A.11: Dialog tree: part 11

132

Figure A.12: Dialog tree: part 12

133

A. Dialog Tree

Figure A.13: Dialog tree: part 13

134

Figure A.14: Dialog tree: part 14

135

A. Dialog Tree

Figure A.15: Dialog tree: part 15

136

Appendix B

Use Cases

In this appendix some use cases of students interactions with the VTA are pre-

sented. They include input sentences that students might say, their classi�cation

in terms of intent and entities, the triggered node and the reply created by the VTA

in di�erent situations that might occur.

Table B.1: Use Case 1: Lecture schedule

Input What’s the lecture schedule?

Intent #Lecture_Schedule

Entities @administrative_entity: lecture

Dialog Node 91 – Lecture Schedule

Output The schedule of this course is: Mondays:

10:15-13:15 in room E.G.6. Wednesdays:

12:15-14:15 in room D.0.1.

137

B. Use Cases

Table B.2: Use Case 2: Next lecture

Input When is the next lecture?

Intent #Lecture_Info_Nearest_Future

Entities @administrative_entity: lecture

Dialog Node 77 – Next Lecture Information

Output in case a

lecture is found

The next lecture will be on 2018-10-10 from

12:15 to 14:15 in room D.0.1. The teacher will

be Cremonesi Paolo. It will be a theory lesson.

The topic will be: Evaluation: Cold Start,

New-Item and New-User problems.

Output in case a

lecture is found but is

suspended

The next lecture, scheduled for 2018-11-5 from

10:15 to 13:15, has been canceled. The next

con�rmed lecture will be on 2018-11-12 from

10:15 to 13:15 in room E.G.6. The teacher will

be Cremonesi Paolo. It will be a theory lesson.

Output in case no

lectures are found

Sorry, there are no scheduled lessons yet.

Please ask for it in a while, this information

may be available.

Table B.3: Use Case 3: Exam in september

Input When is the exam in the september session?

Intent #Exam_Date

Entities @administrative_entity:exam

@sys-date:2019-09-01

@sys-date:2019-09-30

@exam_session:september session

Dialog Node 17 – Exam Date

Output in case no

exams are found

Sorry, there are no scheduled exams in this

session yet. Please ask for it in a while, this

information may be available.

Output in case an

exam is found

The scheduled exam in the September session

is on 2018-09-15 at 15:00 in room X.3.

138

Table B.4: Use Case 4: Exam possibilities

Input How do I pass this course?

Intent #Exam_Modality

Entities @administrative_entity:course

Dialog Node 29 – Exam Possibilities

Output You can pass this course in 3 di�erent ways:

1) By participating in the course’s challenge.

This is the recommended path for all the

students. At the end of the semester some

groups will be asked to give a presentation

about their work.

2) By doing an oral exam, which can be passed

with a maximum of 26 points. Usually there

are 5 exam calls distributed over the exam

sessions and students can enroll to all of them.

3) By doing a project, given by the professor.

Be aware that the number of available projects

is limited.

Table B.5: Use Case 5: Starting day of the challenge

Input When does the challenge start?

Intent #Challenge_Start

Entities @administrative_entity:challenge

Dialog Node 39 – Challenge Start

Output The challenge starts on the 10th of October.

Good luck!

Table B.6: Use Case 6: Second deadline of the challenge

Input When is the second deadline?

Intent #Challenge_Deadline_Date

Entities @cardinality:2

@administrative_entity:deadline

Dialog Node 35 – Deadline Date

Output The deadline is on 2018-12-1 at 23:59:00. Good

luck!

139

B. Use Cases

Table B.7: Use Case 7: One of the challenge rules

Input What are the baselines of the competition?

Intent #Challenge_Baseline

Entities @administrative_entity:challenge

Dialog Node 61 – Challenge Baseline

Output A baseline is a recommender algorithm

performance. In the challenge the baselines

represent the performance of some anonym

recommender algorithm. There are 10 of them

and for each baseline that your score will

exceed, you will be awarded 2 points, reaching

a maximum of 20 points.

Table B.8: Use Case 8: De�nition of a speci�ed concept

Input What is the de�nition of item?

Intent #De�nition

Entities @reference_role:de�nition

@course_entity:Item

Dialog Node 107 – De�nition of an Entity

Output This is the de�nition of Item:

An item is any object that users can interact

with, and that we might recommend to them.

It might be a book, a movie, a hotel, a song

and so on.

Would you like to know where to �nd it in the

modules?

Table B.9: Use Case 9: Synonym

Input Are there other ways to call URM?

Intent #Synonyms

Entities @course_entity:URM

Dialog Node 109 - Synonyms

Output A synonym of URM is User Rating Matrix.

140

Table B.10: Use Case 10: References of a concept of the course inside the modules

Input Where can I �nd a schema of URM?

Intent #Content_References

Entities @reference_role:picture

@course_entity:URM

Dialog Node 111 – Content Reference with Role

Output There are pictures of User Rating Matrix

(URM):

In module 1, chapter 2.2 ”Data

representation”. It is in video 2 at 2:19.

In module 1, chapter 5.1 ”Formal

representation of INPUT”. It is in video 5 at

0:10.

In module 1, chapter 5.2 ”Sparsity of URM”. It

is in video 5 at 1:05.

In module 4, chapter 2.1 ”User Rating Matrix -

URM”. It is in video 2 at 0:20.

Table B.11: Use Case 11: Description of a module

Input What is the third module about?

Intent #Item_Module_Description

Entities @cardinality:3

@module:module 3

Dialog Node 122 – Module Description

Output Here is a brief description of what you can

�nd in Module 3: Content Based Filtering.

Module 3 introduces the family of algorithms

called Content Based Recommender Systems.

In particular, Content Based Filtering and

Users Based Filtering. It explains how to use

the Item Content Matrix to compute

recommendations, using some tricks for

computing the similarity between items.

Would you like to know what a chapter of this

module talks about?

141

B. Use Cases

Table B.12: Use Case 12: Description of a video

Input What does the third video introduce?

Intent #Item_Module_Description

Entities @cardinality:3

@video:video 3

@reference_role:introduction

Dialog Node 120 – Video Description, no Module

Output in case no

module is found in the

context of the

conversation

Which module are you interested in?

Output in case a

module is found in the

context

We were talking about module 3. Do you want

video 3?

Table B.13: Use Case 13: De�nition without speci�ed entities

Input Can you tell me a de�nition?

Intent #De�nition

Entities

Dialog Node 146 – De�nition

Output in case no

entity is found in the

context of the

conversation

What should I search de�nitions for?

Output in case an

entity is found in the

context

Do you want to know the de�nition of Item?

142

Table B.14: Use Case 14: Next event

Input And the next?

Intent #Next

Entities

Dialog Node 132 - Next

Output in case the

conversation was

about exams

The next exam is on 2019-1-10 11:30:00. The

room is not available yet.

Output in case the

conversation was

about exams and an

exam date is found in

the context

You recently asked about the exam on

2019-1-10. The following exam is on 2019-2-5

11:30:00. The room is not available yet.

Output in case the

conversation was

about lectures

The next con�rmed lecture will be on

2018-11-12 from 10:15 to 13:15 in room E.G.6.

The teacher will be Cremonesi Paolo. It will

be a theory lesson. The topic will be:

Collaborative Filtering (CF): Machine

Learning approaches to CF: Slim.

Output in case the

conversation was

about lectures and a

lecture date is found in

the context

You recently asked about the lecture of

2018-11-12. The next lecture will be on

2018-11-14 from 12:15 to 14:15 in room D.0.1.

The teacher will be Cremonesi Paolo. It will

be a theory lesson.

Output in case the

conversation was

about deadlines of the

challenge

The next deadline will be on 2018-11-15

23:59:00. Good luck!

Output in case the

conversation was

about deadlines of the

challenge and a

deadline date is found

in the context

You recently asked about the deadline on

2018-11-15. The next deadline will be on

2018-12-1 at 23:59:00.

143

	Introduction
	State of the Art
	Chatbots
	From ELIZA to Present
	Application of Current Chatbot Technologies
	How Chatbots Are Perceived
	Chatbot Architecture
	General Architecture
	Recognizing Intents and Entities
	Conversational Computing Platforms

	Virtual Teaching Assistants
	Reviews of Virtual Assistants in Education
	Jill Watson
	Design of a VTA

	Thesis Objectives

	Software and Algorithms
	Watson
	DeepQA Project
	Watson™ Services
	Assistant
	Training Data
	Dialog

	Slack
	Database Engines
	MySQL
	MongoDB

	Clustering
	Clustering Algorithms
	K-Means
	K-Medoids
	Hierarchical Agglomerative Clustering

	Clustering Evaluation
	Adjusted Rand Index
	Fowlkes-Mallows
	Adjusted Mutual Information
	Homogeneity, Completeness, and V-measure
	Silhouette Coefficient

	Spelling Correction

	Statement of the Problem
	Recommender Systems at Polimi
	Problems and Chosen Solutions

	Architecture
	Rexy Architecture
	Front End
	Application Server
	Database Server
	NLP Component
	Deployment

	Databases
	MOOC Database
	MongoDB Databases
	Administrative Database
	Conversation History Database
	User Database
	Question Database

	Watson Assistant Workspace
	Intents
	Entities
	Dialog Tree
	Dialog Nodes and Branches
	Context Variables and Keywords

	Node.js Application
	Dependencies
	Components
	Classes
	MOOC Modules
	Administrative Modules
	Question Modules
	User Modules
	Spelling Correction Modules
	Watson Modules
	Context Manager
	Lookup Manager
	Chatbot

	Sequence Diagrams
	High-Level Interactions
	Initialization
	Text Messages
	Interactive Messages
	Slack Dialogs

	Results
	Interactions with Rexy
	Maintenance and Portability
	Scalability
	Testing Scenario
	Test Description
	Results

	Clustering of Users
	Simulation
	User Model
	Techniques
	Results
	Scenario A - only intents
	Scenario B - intents and entities

	Conclusions
	Bibliography
	Dialog Tree
	Use Cases

