
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Matematica

Addressing Privacy and Fungibility
Issues in Bitcoin: Confidential

Transactions

Relatori: Prof. Ferdinando Maria AMETRANO
Prof. Daniele MARAZZINA

Tesi di Laurea di:
Alessandro MIOLA

Matr. 862753

Anno Accademico 2017-2018

i

Contents

List of Tables iv

List of Figures v

List of Algorithms vi

Abstract vii

Acknowledgements viii

1 Introduction 1
1.1 Structure of the thesis . 2
1.2 Notation . 3

2 Transactions in Bitcoin 4
2.1 Transaction outputs and other details 4
2.2 Bitcoin scripting language . 7

2.2.1 Bitcoin script templates 8

3 Privacy and fungibility issues in Bitcoin 12
3.1 Types of privacy in Bitcoin . 13

3.1.1 Confidential transactions address value privacy 15
3.1.2 Compatibility with different solutions 15

3.2 Fungibility . 16
3.2.1 Bitcoin is weakly fungible 16
3.2.2 Fungibility vs scalability 17

4 Cryptographic primitives 19
4.1 Commitment schemes . 21

4.1.1 Additively homomorphic commitment 23
4.1.2 Pedersen commitment 23

4.2 Zero-Knowledge Proofs of Knowledge 26

ii

4.3 Ring signatures . 27
4.4 Elliptic Curve Diffie-Hellman 29

4.4.1 ECDH primitive . 29
4.4.2 ECDH Key Exchange protocol 30

5 Confidential transactions 33
5.1 Transaction amount encryption 33

5.1.1 NUMS generators construction 35
5.1.2 Explicit fees . 36

5.2 Homomorphic encryption features 36
5.2.1 Commitment to value 0 & network verification 36
5.2.2 Blinding factors setting 37

5.3 Zero-Knowledge range proofs 38
5.3.1 Enforce zero-knowledgeness: ring signatures 39
5.3.2 Role of ring signatures in confidential transactions . . . 40
5.3.3 AOS ring signatures 41
5.3.4 Borromean ring signatures 43

5.4 Sender/receiver communication 51
5.5 Benefits and downsides . 54

6 Conclusions 56

A Abstract algebra fundamentals 58
A.1 Groups . 58

A.1.1 Cyclic groups . 60
A.2 Fields . 61

A.2.1 Finite fields . 62
A.3 Discrete Logarithm Problem 62

A.3.1 Generalized Discrete Logarithm Problem 63

iii

List of Tables

2.1 Verification procedure for a P2PK transaction. 8
2.2 Verification procedure for a P2PKH transaction. 9

5.1 Modular addition: example of wrapping 39
5.2 Modular addition: negative-amounts 39
5.3 Borromean ring signature: signature size 47

iv

List of Figures

4.1 Ali Baba cave . 26
4.2 ECDH key exchange . 30

5.1 Graphical structure behind Borromean ring signatures 45
5.2 Total number of commitments plus s-values 51
5.3 Confidential transaction format 55

v

List of Algorithms

4.1 ECDH primitive . 30
4.2 Key Derivation Function . 31
5.1 AOS ring signature: signature algorithm 42
5.2 AOS ring signature: verification algorithm 43
5.3 Borromean ring signature: signature algorithm 46
5.4 Borromean ring signature: verification algorithm 48

vi

Abstract

Insufficient privacy is recognized to be one of the major vulnerabilities of
the Bitcoin’s protocol, even because it undermines its fungibility. Bitcoin
eliminates the need for a trusted third party, but mainly faces users’ privacy
by hiding them behind pseudonymous addresses.
This work aims at presenting confidential transactions, the first proposal for a
transaction format with encrypted amounts in Bitcoin, which would strongly
increase value privacy. It exploits homomorphic encryption which does not
remarkably hurt universal validation of transactions, a crucial premise for the
achievement of a distributed consensus on the order of valid transactions.

vii

Acknowledgements

First of all, I would like to thank my thesis supervisors: Prof. Ferdinando
Ametrano for having shared his passion for the subject and knowledge with
me and Prof. Daniele Marazzina for his precious advices during the drawing
up phase.

Then, I would like to express my profound gratitude to my parents and
Albi for having always been by my side: mum, for for having taught to me
that gentle manners always win, for her sensibility and for being mum (it
is difficult to say it otherwise!); dad, for having wisely taught to me that
anything can be reached with commitment and determination and for all the
efforts spent in helping me become a better man; Albi for having turned bad
days with a smile or a joke. And a big thank goes to my grandparents too,
for having always supported me despite the distance.

Furthermore, I would like to thank my high school friends. Having encoun-
tered all of you has been a great gift. In particular, Gio (the nicest man I
know), the great Lollo and the wise Luca. And again Ambra, Anna, Chiara,
Cicchi, Genna, Marti, Massi, Miks and Ventu.

Finally, a special thanks also goes to the great friends met at university.
First of all to Dodo, Gallo, Gigi, Giulio, Gugo, Michi, Simo and Teo. These
years would have been even harder without you. And again to Antea, Pietro,
Richi and many others I had the opportunity to meet and work with.

Thank you all.

viii

Chapter 1

Introduction

Privacy is fundamental in every financial and monetary system. Bitcoin
should not make any exception. The same whitepaper [18] recognizes the
need for privacy: it explains how users’ privacy is hidden behind pseudony-
mous addresses,1 but admits the flaws of this approach in terms of the pos-
sibility of the history of transactions being linked.
Bitcoin’s blockchain structure seems not to be ideal for privacy and seems
to presume an insurmountable trade-off for its achievement. Bitcoin’s secu-
rity model requires universal verification of the validity of each transaction,
in turn needing public transaction data; indeed, the Bitcoin’s blockchain is
globally accessible and immutable, it takes track of all of the transactions
ever happened and all these characteristics can be effectively harmful to pri-
vacy.
Moreover, this is also crucial as the lack of privacy affects Bitcoin’s capacity
to serve as money. For instance, it is detrimental for its fungibility.
Developers have worked since long time in the direction of improving privacy
in Bitcoin. But on the one hand, integration to the main protocol purposely
takes time; on the other hand, privacy-based solutions are often costly and
this precludes their possibility of being soft-forked.
Confidential transactions [14] is the proposal for a kind of transactional for-
mat where each output amount is encrypted and thus hidden, but without
preventing each transaction to be successfully validated by each node of the
network. This is a consequence of homomorphic encryption and it demon-
strates that it is possible to overcome the previously addressed trade-off.
The introduction of confidential transactions would bring consistent value
privacy, but cannot protect against the possibility of linking transaction his-

1In the reality the white paper speaks of public keys rather than addresses. Indeed, in
the whole paper there’s no mention of addresses at all, but the first code release already
provided this functionality.

1

tories. However it is the case that this proposal well integrates with some
others affecting transactional graph privacy.
Such benefits would not come at zero cost. The described implementation of
confidential transactions suffers from excessively burdening each transaction
size and consequently is not ready yet for integration in the main protocol.

The present thesis has been written during the author’s fellowship at the
Digital Gold Institute, https://www.digitalgoldinstitute.org. The au-
thor has partly contributed to the Python library available at https://

github.com/dginst/BitcoinBlockchainTechnology.

1.1 Structure of the thesis

In Chapter 2 we provide an introduction to transactions in Bitcoin which
can help to highlight some aspects that would be recurrent when speaking
of confidential transactions. In section 2.1 we give an overview of Bitcoin
transactions, starting from their building block. Then from section 2.2 on-
wards we describe the basis of the Bitcoin scripting language.

In Chapter 3 the main aspects behind the lack of privacy and fungibility in
Bitcoin are discussed. After a brief introduction, section 3.1 presents some of
the tracks that privacy-based solutions are following and should follow in the
future; moreover, it briefly describes some of these solutions. Sections 3.1.1
and 3.1.2 explain that confidential transactions address value privacy only,
but show their compatibility with different privacy-based solutions. Then
the discussion moves on fungibility; section 3.2.1 explores Bitcoin’s lack of
fungibility, while section 3.2.2 considers the relation with scalability.

In Chapter 4 we explore the cryptographic primitives which underlie the
construction of a confidential transaction. In section 4.1 we provide a gen-
eral definition and some examples of commitment scheme and we present
the security properties it should satisfy. We proceed by defining the class
of commitment schemes which succeed in making confidential transactions
achieve their purpose: we introduce the additively homomorphic commit-
ment schemes in section 4.1.1 and the Pedersen commitment in section 4.1.2.
In section 4.2 various examples of Zero-Knowledge proofs of knowledge to-
gether with their distinctive properties are presented. In section 4.3 ring
signatures are introduced; eventually in section 4.4 the elliptic curve Diffie-
Hellman primitive is presented.

2

https://www.digitalgoldinstitute.org
https://github.com/dginst/BitcoinBlockchainTechnology
https://github.com/dginst/BitcoinBlockchainTechnology

In Chapter 5 we eventually get into confidential transactions. We describe
how the cryptographic primitives presented in the chapter above are spe-
cialized for their deployment. In particular, sections 5.1 and its related
subsections describe how the amount encryption is achieved through Ped-
ersen commitments and its consequences; section 5.2 explores the features of
homomorphic encryption and particularly the consequences on transaction
validation in section 5.2.1 and the setting of the blinding factors in section
5.2.2. Section 5.3 describes the first solution enabling the construction of the
Zero-Knowledge range proofs, which play the fundamental role of prevent-
ing the possibility to exploit homomorphic encryption to “invisibly” build
invalid transactions; sections 5.3.1, 5.3.2, 5.3.3, 5.3.4 describe how particular
ring signature schemes can help in providing such proofs in Zero-Knowledge.
Section 5.4 deals with the details of ECDH; in section 5.5 we eventually de-
scribe benefits and disadvantages.

Chapter 6 draws the conclusions to the work.

1.2 Notation

For what concerns cryptographic notation we specify it when needed (e.g. at
the beginning of Chapter 4 or in the Appendix A).
For what concerns algorithms,

• || refers to byte array concatenation;

• a← b refers to the operation of assignment;

• z $←− Z denotes uniform sampling from the set Z and assignment to z;

• a >>= b means a = a >> b, namely right-shift bits of a by b and
assign the RHS to a.

3

Chapter 2

Transactions in Bitcoin

The aim of this chapter would be to endow the reader with a first set of basic
instruments to follow the incoming description of the confidential transac-
tions, which represent the core of this thesis. Indeed, the idea to start with
transactions in Bitcoin should not surprise. This chapter can be considered
a brief introduction that the informed reader can skip; a deeper inspection of
the argument can be found for instance in [1, 6, 9].1 Furthermore the chapter
does not deal with SegWit2 as it is out of the scope of this work.

2.1 Transaction outputs and other details

Transactions in Bitcoin enable the transfer of value between users of the net-
work. One of the points that deserves to be stressed is that bitcoins only
exist as unspent transaction outputs (UTXO) on the blockchain. Transac-
tions spend these UTXO and generate new transaction outputs and at the
same time transfer their ownership. Thus they configure as a transfer of
these outputs which embed value in some way (we can say that bitcoins re-
side into them).3 The so called UTXO set, which is the whole collection of
the unspent transaction outputs scattered over the blockchain, continuously
reduces in size as a consequence of spending the previously unspent outputs
and grows as a transaction creates new ones.
Transaction outputs are indivisible chunks of currency (indivisible in the

1We even suggest the talk available at https://www.youtube.com/watch?v=np-
SCwkqVy4 which gives a general yet effective overview for what concerns Scripts.

2Refer to https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki or
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki.

3Wallets store the private keys needed to spend these outputs, not bitcoins. Indeed,
the ideas of the coin entity, rather than the balance of a wallet etc. are only abstractions
that can be useful in figuring out the whole picture.

4

https://www.youtube.com/watch?v=np-SCwkqVy4
https://www.youtube.com/watch?v=np-SCwkqVy4
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki

sense that can only be fully spent) which are recorded on the blockchain and
are associated to addresses.4 They embed the associated amount (denomi-
nated in satoshis5) and the mathematical puzzle, the so called locking script,
that determines the conditions to spend them in the future.
Up to now we have only spoken of transaction outputs, which indeed are the
building blocks of a Bitcoin transaction. However, it is the case that transac-
tions can be visualized as a list of transaction inputs referencing and spending
UTXO and generating new transaction outputs.6 A transaction input holds
a pointer7 to the UTXO that it consumes (together with a zero-based index
which identifies which UTXO from the previous transaction it references),
it embeds an unlocking script that satifies the conditions for spending set
in the UTXO and thus proves that the funds can be effectively spent. The
unlocking script generally holds a digital signature, whose role is to prove
the ownership of the referenced output and consequently allow its tranfer.
Indeed, the whitepaper [18] defines a coin as a chain of digital signatures.
A transaction groups one or several inputs to be spent in order to generate
the desired outputs. Indeed, given that outputs can be only fully spent, on
the one hand transaction inputs could need to reference several UTXO to
generate the output, on the other hand the transaction will generally spend
back a change. The comparison with banknotes should be immediate. The
action of combining UTXO in a proper way is provided by the user’s wal-
let application; it is even the case that each user’s wallet try to minimize
the number of spent coins (and it is also incentivized to group inputs for
an amount which is close to the one of the desired output) by running a
coin selection algorithm. This incentive has several reasons: at first, linking
outputs or even spending an high-valued output, while creating a small one
is detrimental for privacy; then, because fees are paid based on transaction
size as we will see in a while.
Moreover, it should be noticed that output amounts are not encrypted, but
in the clear and this marks a crucial difference with respect to what will come
later with confidential transactions.
Then, transactions are collected in blocks by some special nodes of the net-
work which are called miners. Miners compete in a hash-based Proof-of-Work
contest which determines who will add the next block of transactions to the

4Without entering into the details of their encoding, addresses are basically the result
of hashing a public key.

51 satoshi = 10−8 BTC.
6Transaction inputs are simply references to previously created outputs and this is the

reason why it can be possible to explain transactions avoiding their introduction, from
which the title of the section.

7A hash pointer to the previous transaction where the specific UTXO was created.

5

longer chain of blocks. Basically, miners do work over each block header; the
last field of each block header is represented by a nonce. Mining is a race to
find the proper nonce that makes the hash of the block start with a target
number of zeroes (for a more detailed explanation about mining we refer to
[6]). The winner of the contest (the first one that finds the solution and
sends the proof of his work) is rewarded with the issuance of new bitcoins
plus the fees of each transaction included in the block. The transaction which
rewards the winning miner is the so called coinbase transaction; it is the first
transaction in each block and it breaks the logic explained above because it
does not consume UTXO, but instead has a special input called coinbase.
Fees are part of the compensation miners receive. They are computed based
on the size of the transaction in kilobytes and for each transaction they are
basically the difference between sum of inputs and outputs.
The last aspect we would like to mention in this brief introduction is trans-
action validation as it too highlights a significant difference with respect to
what will come later with confidential transactions. When a node broadcasts
a transaction, all the other nodes will verify its validity; they will check that
each referenced output is effectively unspent, that the sum of the inputs ex-
ceeds the sum of the outputs and eventually check whether unlocking and
locking scripts are consistent.
To conclude the section we think that it can be useful to describe an example
of the workflow the transaction creator (let’s say Alice) uses to send a trans-
action to the recipient (let’s say Bob) and then what the recipient does to
spend the output of this transaction.8 Though the explanation of some of the
possible constructions of locking and unlocking scripts (which in turn allow to
define different types of transactions) is postponed to the section that covers
the scripting language, we consider here the standard case of Alice paying to
an address owned by Bob (the common Pay-To-Public-Key-Hash (P2PKH)
transaction type). Alice creates a transaction output whose locking script
allows whoever will be able to provide knowledge of the private key corre-
sponding to Bob’s address (thus hopefully Bob) to spend the output later.
Then she broadcasts the transaction and the nodes of the network label the
output as a UTXO. When Bob spends this UTXO, he creates a transaction
input referencing the considered output and provides the unlocking script
satisfying the conditions for spending. After broadcasting, when it comes to
the network validating the transaction created by Bob, nodes evaluate the
unlocking script provided by Bob and the retrieved locking script embedded
in the UTXO previously created by Alice.

8Sender and recipient are some sorts of abstractions too, but well serve the purpose of
supporting the comprehension.

6

2.2 Bitcoin scripting language

As we have already observed, in [18] a coin is defined as a chain of digital
signatures, which allows the transfer from one user to another. It could be
the case that on the one hand Bitcoin was initially designed to spend trans-
action outputs to public keys only, in such a case a digital signature provided
with the private key associated to the public key in favour of which the ref-
erenced transaction output was spent would be enough to prove ownership
and that on the other hand the scripting functionality was added together
with the support for Bitcoin addresses. Indeed, there’s no clue about scripts
in the entire whitepaper although the first code release had already added
the scripting functionality.
Restricting transactions just to the simple form described above would have
not endowed Bitcoin transactions with the flexibility and the versatility that
the scripting language effectively provides.
The Bitcoin scripting language, also called Script, is a stack-based program-
ming language; data are pushed on top of a stack, its commands (the op
codes) operate with these data (and eventually pop them). Moreover, it is
not Turing-complete by design, namely scripts have limited complexity (e.g.
no loops are admissible) and finite and predictable execution time. Indeed,
this prevents giving the power to arbitrary users of the network to submit
scripts that may create infinite loops, bringing nodes evaluating these to stall.
Then, it is based on stateless verification, meaning that all the information
needed to execute a script is contained in the script itself.
A script is represented by a list of data and commands (op codes) which
are sequentially pushed on top of the stack and run and which implement a
contract. Two only outputs are possible, namely true or false; if at the end
of the execution the stack is non-empty and the top element is non-zero it
returns true, false otherwise. The locking and unlocking scripts placed on a
UTXO are written in this scripting language; when a transaction is broad-
cast, each node of the network will verify whether the transaction is valid
through the execution of the unlocking and the locking script one at-a-time.9

Eventually, it could be the case that in the near future optimizations to the
scripting language will take place. Indeed, the scripts execute on all nodes,
but this is not really consistent with each node’s intention to validate trans-
actions; verification of the output would be enough.
Next section is devoted to the description of some of the most common script

9Before turning to separate execution of the scripts through a shared stack, code imple-
mentation concatenated unlocking and locking scripts and ran them together (as it were
one only). This was changed because it was a bug which gave the possibility to spend
anyone’s coins.

7

templates, which allow to implement the different contracts (i.e. the different
types of transactions) that Bitcoin provides.

2.2.1 Bitcoin script templates

• Pay-to-Public-Key (P2PK): it represents the very first transaction type.
Its locking script allows to spend the output by providing proof of knowl-
edge of the private key associated to the given public-key (i.e. providing a
digital signature where the message signed is a hash of a specific subset of
the data in the transaction).10 P2PK was soon abandoned as publishing
a public key on the blockchain is not quantum resistant. Here unlocking
and locking scripts are reported.

s c r i p t S i g : <s ig>
scriptPubKey : <pubKey> OP CHECKSIG

How the validation proceeds is described in Table 2.1. Consider a situation
like the one of the simple example of section 2.1, with Alice and Bob
involved in the transaction.11 The unlocking script provided by Bob would
be executed first and will add data on top of the stack; then each node
will retrieve the locking script provided by Alice and run it.

Stack Command Description
<sig>

<sig> <pubKey> The scriptSig is pushed on
top of the stack.

<sig> <pubKey> OP CHECKSIG The public key is pushed on
top of the stack.

1 The op code
OP CHECKSIG requires
two inputs. It checks the
consistency of the signature
with the associated public
key; if valid, it pushes true.

Table 2.1: Verification procedure for a P2PK transaction.

10Indeed, the locking script was first known as scriptPubKey. The reason is exactly that
initially it contained the public key of the receiver. The same for the unlocking script:
known as scriptSig as it contained a digital signature.

11Though there a P2PKH transaction was considered.

8

• Pay-to-Public-Key-Hash (P2PKH): it is the most common transaction
type. Similar to the previous one, but the locking script allows spending
the output by providing proof of knowledge of the private key associated
to the given address. Publishing the address rather than the public key
no longer suffers from not being quantum resistant. Here unlocking and
locking script are reported.

s c r i p t S i g : <s ig> <pubKey>
scriptPubKey : OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY

OP CHECKSIG

Here’s the validation procedure.

Stack Command Description
<sig> <pubKey>

<sig> <pubKey> OP DUP The scriptSig is pushed on
top of the stack.

<sig> <pubKey>
<pubKey>

OP HASH160 OP DUP takes the element
on top of the stack and du-
plicates it.

<sig> <pubKey>
<pubKeyHash>

<pubKeyHash> OP HASH160 takes the ele-
ment on top of the stack and
applies to it SHA-256 and
RIPEMD160 in sequence.

<sig> <pubKey>
<pubKeyHash>
<pubKeyHash>

OP EQUALVERIFY The address
<pubKeyHash> is pushed
on top of the stack.

<sig> <pubKey> OP CHECKSIG The op code
OP EQUALVERIFY
takes the two elements on
top of the stack and checks
if they are equal. If not, the
validation fails.

1 The op code
OP CHECKSIG requires
two inputs. It checks the
consistency of the signature
with the associated public
key; if valid, it pushes true.

Table 2.2: Verification procedure for a P2PKH transaction.

9

From now on, we will no more describe the verification procedure step by
step as the logic should be clear.
It is worth noticing that with P2PKH the potential of the scripting language
(with respect to the pure chain of digital signatures) begins to emerge; but
it is then with multi-signature transactions that it starts to be truly evident.

• Multisignature (or multisig) scripts: called m-of-n, are such that n public
keys are recorded in the locking script and require at least signatures for m
of these public keys (m ≤ n). These are limited to at most 15 public keys.
Various use-cases are related to multi-signature transactions. Commonly
these are used by multiple parties possessing the private keys necessary to
unlock the funds; for instance, a wife and a husband could choose to lock
funds in a 2-of-2 multisignature output that would prevent any of the two
to unlock the funds without the other’s approval. Then, multisig can be
even useful for a single user to build a two-factor authentication wallet,
where private keys are kept on different devices (which would make theft
harder) or to protect against fortuitous loss of one of the keys (for instance
with a 2-of-3 multisig). Here unlocking and locking scripts of a (bare)
multisig are reported.

s c r i p t S i g : 0 <s ig1> <s ig2> . . . <sigm>
scriptPubKey : m <pubKey1> <pubKey2> . . . <pubKeyn> n

OP CHECKMULTISIG

The above implementation of the scripts has some limits.12 At first, the
size increases linearly with the number of public keys and signatures. Then,
it requires the signatures to be ordered with respect to the public keys,
but especially it is beneficial for the receiver (who selects the multisig
policy) and expensive for the sender, which is kind of odd. Indeed, the
sender has to provide a locking script including all of the addresses, the
number of valid signatures and public keys required and would eventually
pay high fees being the script quite big in size; moreover, whatever policy
the receiver choices the sender does not need to know it, quite the opposite.
This would be detrimental to privacy. The solution to these issues came
with P2SH.

• Pay-to-Script-Hash (P2SH): being the receiver in charge of the spending
policy, he should pay for the increased script size. The way this burden is
shifted on receiver side is by letting the locking script only hold the hash
of the script used to spend a transaction (the reedem script).

12The starting 0 in the unlocking script is due to a bug in the OP CHECKMULTISIG
which has become part of the consensus rules.

10

s c r i p t S i g : 0 <s ig1> <s ig2> . . . <sigm>
Redeem s c r i p t : m <pubKey1> <pubKey2> . . . <pubKeyn> n

OP CHECKMULTISIG
scriptPubKey : OP HASH160 <20 bytes hash o f the redeem s c r i p t>

OP EQUAL

The bigger redeem script has to be provided now by the sender, the lock-
ing script is, instead, much less big and only holds the hash of the redeem
script. For what concerns verification, it will be checked whether the re-
deem script hashes to the same value specified in the locking script, then
the redeem script would be processed against the unlocking script.

These are only some of the examples showing how far script flexibility can
be pushed. Scripts are also useful to encode more complicated contracts.

11

Chapter 3

Privacy and fungibility issues in
Bitcoin

Traditional, centralized financial institutions provide a level of privacy in
their systems with respect to the outside world which is necessary for per-
sonal and commercial reasons at first (to preserve the freedom to transact,
not to let commercial competitors monitor your own activity). The obvious
concern, however, is that this level of privacy is not guaranteed against the
same institutions providing the service and this opens a lot of issues regard-
ing data collection and data privacy.
Bitcoin’s breakthrough to have succeeded in building a decentralized dis-
tributed network where distributed consensus is reached among the nodes
of the network has put some constraints on the underlying security model
which seem to conflict with the privacy issues addressed above. However
this is quite unavoidable: whereas decentralized systems are easy to build
without consensus and, on the other hand, consensus is easy to achieve in
centralized systems, maintaining both properties in the same system proves
to be a hard challenge.
Bitcoin’s security model is based on the achievement of distributed consensus
which in turn requires (among the others) universal and independent veri-
fication of the validity of each transaction, made possible by having public
transaction data. That is, transparency is needed to obtain and strengthen
security.
This lack of privacy is recognized to be a weak point within the Bitcoin’s
protocol and several proposals to improve different aspects of privacy in Bit-
coin have appeared in the years, despite never being effectively softforked.
The main reason for this being basically the high costs that the massive
adoption for privacy-based solutions would imply: privacy is costly and re-
quires commitments. Nevertheless, advances in monitoring capabilities of

12

the blockchain, newborn businesses in Bitcoin blockchain’s analysis urge the
need for privacy-based solutions in the long run.
The original protocol has addressed the problem mainly through the adop-
tion of pseudonymous addresses, that on one hand seem robust if one does
not know who owns which addresses, but suffer both from some unsafe users
practices (like address reuse) and from the possibility to exploit coins linka-
bility1 to trace the transaction graph.
Instead, a point in favour of having less privacy and more transparency comes
from whom is mainly concerned with the use of cryptocurrencies like bitcoin
for illicit activities, who argues that this could be a feature that can help
investigations.

3.1 Types of privacy in Bitcoin

Due to how the Bitcoin’s protocol has been conceived and implemented, the
aim to strengthen privacy should regard different aspects whose improvement
can be beneficial. In particular, the concern should be at least on association
privacy, balance privacy, identity privacy and transaction value privacy.
Improving association privacy would mean enhancing transaction graph pri-
vacy not letting the possibility to understand who is paying who, thus ad-
dressing the previously discussed linkage between transactions and making
transaction graph analysis harder. A typical practice undermining it is ad-
dress reuse, that is however nowadays reduced by wallets using a Hierarchical
Deterministic derivation of keys (and so addresses). Moreover, different so-
lutions have been proposed in this field in the years. We present the idea
behind only some of them, but it is worth to notice that solutions trying to
address association privacy are many more.
One of the first is Coinjoin [13], which starts from the important premise that
when a transaction spends from multiple addresses it is not necessarily the
case that these addresses all come from the same party, but instead people
could eventually cooperate to agree on a set of inputs to spend and a set
of outputs to pay to and individually sign their own inputs only. On top of
this it even exploits the absence of a mapping between inputs and outputs in
a transaction or better the many-to-many mapping existing between them
(in a transaction with more than one input, it is not possible to say which

1The need of a user to generally spend the change back to himself when transacting
(due to transaction outputs generally not embedding the right value to be spent in a
successive transaction) basically links transaction outputs and so addresses. Moreover in
case previously collected changes are too small to cover a transaction output in its entirety,
this makes it necessary to combine changes and so further linking transactions.

13

input ends up being which of the outputs or which part of) to create a single
transaction jointly authored2 by several participants in such a way that they
do not have to trust each other. Indeed, each participant is only signing his
own inputs (thus making it unnecessary to know who other is involved in
the coinjoin) and it is the case that if some of the inputs are not signed the
transaction would be invalid.
Observe moreover that the users involved in the coinjoin would even agree
on a uniform output size and on burning inputs of at least that size. Indeed,
unless all of them trading to the same amount it would be easy to discover
the correlation between inputs and outputs.
Another solution which even provides association privacy, although was not
born primarily for this purpose, is certainly Lightning Network [23], whose
gain in transaction graph privacy derives for instance from the possibility of
the parties taking part to a multi-hop channel to basically transact without
sending data to the blockchain.
Improving balance privacy, instead, should aim at protecting against the
possibility of deducing the balance of a wallet. Thus it is somehow linked to
achieving association privacy.
Achieving identity privacy refers to the possibility of each user to prevent
his identity to be associated with the coins. Identities could be at risk first
of all because Internet itself is not really identity preserving (and not very
anonymous); many services such as exchanges or on-line stores accepting bit-
coins generally require and have access to personal information (credit card
or bank account details, shipping addresses, IP addresses and so on).
The last privacy aspect which deserves credit is transaction value privacy,
which actually is the main concern of the Confidential Transactions [14] so-
lution. The idea is to protect against other people knowing the value of
everyone’s transactions, which is kind of standard for traditional financial
services. That is, it affects the confidentiality Bitcoin transactions lack at
all. Some concrete examples could stress the need for such improvements. For
instance, a common implication for employees of a company paying wages in
bitcoin is that they’ll have their wages public, which is not that nice. Another
possible example where amount privacy turns out to be necessary, though
less conflicting common bitcoins’ owners, configures when somebody’s wallet
spends a large sized input for a small payment, thus paying back to itself a
high change; in this case, the possibility of being targeted for theft would be
at least real.
As a final and general note, it should be observed that we have just described

2All of the transaction inputs are shuffled among several participants, each signing their
inputs only.

14

a few of the bunch of proposals that could help achieving better privacy in
Bitcoin and in particular we have considered the proposals more closely re-
lated to the addressed one. But, for instance, it is worth mentioning the
impact that the introduction of Schnorr signatures [28] would have on pri-
vacy in Bitcoin mainly through signatures aggregation (even across signers),
which is obtained by exploiting the linearity property of the Schnorr scheme.

3.1.1 Confidential transactions address value privacy

Confidential transactions is the first and only solution addressing value pri-
vacy in the Bitcoin ecosystem. All previous solutions mainly addressed as-
sociation privacy. However, as well explained by Bitcoin Core developer G.
Maxwell,3 there should be a broader awareness on issues related to value pri-
vacy. For instance in the comparison with the Internet protocols, providing
association privacy means anonymizing the identity of people communicat-
ing, which is not much of a worry unless for people using Tor. On the other
hand, what people worry about is making the content of communications
private, which is what value privacy effectively provides.
The way confidential transactions achieve value privacy is by encrypting the
transaction amount (which is instead available in the clear in a standard Bit-
coin transaction) and more precisely they exploit homomorphic encryption4

to preserve the ability of the network to verify and validate transactions.
It should be noticed that confidential transactions only provide value privacy,
not affecting transaction linkability, but they naturally integrate with various
proposals addressing association privacy.

3.1.2 Compatibility with different solutions

As mentioned, it turns out that confidential transactions can not only in-
tegrate previous solutions addressing association privacy, but also help in
solving some of their problems. In particular we focus again on the relation
with Coinjoin [13], bearing in mind that most of the following arguments are
even valid for similar proposals5.
We have briefly described how Coinjoin works, but we have not focused yet
on all of its limits. The first one is certainly coordination between users: it
is not that easy to find people agreeing on transacting at the same time and
for the same exact amount. The second one was briefly addressed above and

3During a conference whose video is available at https://www.youtube.com/watch?v=
LHPYNZ8i1cU.

4More details will be available in the next chapters.
5E.g. Coinswap or Tumblebit.

15

https://www.youtube.com/watch?v=LHPYNZ8i1cU
https://www.youtube.com/watch?v=LHPYNZ8i1cU

it is basically the fact that Coinjoin achieves some sort of privacy provided
that input and output values are somehow matching.
If we integrate with confidential transactions some of the previous issues dis-
appear because having amounts encrypted prevents from the necessity to
mix inputs of almost the same size to pay to outputs of the same size, while
taking the advantage of achieving association privacy.

3.2 Fungibility

It turns out that fungibility is quite relevant in this discussion. Thus, we can
start explaining what fungibility is. Fungibility is the property of a unit of
a good to be completely indistinguishable from any other unit of the same
good (or at least treated as such) and consequently completely interchange-
able. To give some examples, diamonds are not completely fungible6: little
differences in their properties (cut, hardness, color etc.) make it difficult to
find diamonds expected to be equally valued. Another possible example of
non-fungible good is a piece of art as it is clearly not possible to exchange
one for one other.
For what concerns currencies, fungibility is a crucial property: we do not
want to care of receiving a physical banknote being worth less than a differ-
ent banknote of the same denomination nor we want to care of the possibility
of the possession of this same banknote being revoked as it was involved in
a robbery some transactions ago.7 The possibility of blacklisting physical
banknotes, other than being quite unfeasible, would destroy confidence in
receiving them, thus impacting the whole economy. And actually that’s not
just a matter of practice but has been established by law. Differently from a
stolen piece of art, whose possession would be revoked in the same moment
of the discovery, that would not be ever the case for physical banknotes in
most countries of the world.

3.2.1 Bitcoin is weakly fungible

When speaking of fungibility, what makes discussion on Bitcoin intertwine
and compare with that on money in its cash-like forms, rather than with that
on its inter-mediated means of payment is Bitcoin’s peculiarity to be (sub-
stantially) immediate and final payment, exactly like cash. Moreover, inter-

6Gold is much more fungible.
7Though observe that even AC or US$ or most of the other currencies are not completely

fungible, they have serial numbers, but we basically treat them as such because non-
fungible solutions for currencies wouldn’t work.

16

mediated means of payment compromise some desirable features of money
(among which fungibility itself).
Bitcoin turns out to be weakly fungible, which is the other recognized weak
point of the protocol. The main reason for it should be found, again, in the
transparency of the blockchain (feature and bug), which makes it possible in
principle to trace the provenance of every coin and so discern between them.
What actually happens is on one side to have some coins which are worth
more than others,8 the ones with less value becoming the preferred ones to
be exchanged; on the other side, the growth of businesses specialized in the
analysis of the transactions flows on the blockchain might turn somebody
unwilling to accept certain coins further or exchanges to freeze accounts just
for the “bad history” of a coin.
Lack of fungibility could even have more risky consequences for Bitcoin it-
self. It can jeopardize its permissionless nature because receiving coins and
be prevented from spending can make users doubt of whether it’s safe to
receive and in turn can make them begin to consult blacklist services before
transacting again. Or it can lead to a generalized loss of confidence which
would make prices drastically decline.
As a side note, it should be said that there have been in time various propos-
als to create services to register Bitcoin users (kind of blacklisting services)
and among the invoked reasons behind their possible adoption was always the
idea of reducing Bitcoin-related crimes. However, it is likely that criminals
already circumvent the regulated exchanges when buying or selling bitcoins,
thus being probably not affected.
Based on the described picture it is evident that the same aspects making
Bitcoin non-private make it also non-fungible.
Thus among the solutions favouring fungibility we can include the same
privacy-based solutions outlined before. Then, another important aspect
fungibility benefits from is mining decentralization9 which guarantees that
sooner or later a user’s transaction will be processed and mined without
miners discriminating between coins in the act of processing transactions.

3.2.2 Fungibility vs scalability

Scalability is another highly debated aspect in Bitcoin. It refers to the pos-
sibility of increasing the transaction capacity, making the network able to
process more transactions per second. In particular, it is in the comparison
with centralized payment solutions, such as Visa, that the discussion gets

8Think of freshly minted coins that, being “clean”, can be traded for a higher premium.
9Though note that mining in Bitcoin is quite centralized.

17

going. The reality is that, by design, Bitcoin is not suited to process the
volume of transactions of a centralized circuit like Visa10 and this for simple
reasons: each transaction in Bitcoin is broadcast to and through all of the
nodes of the network, each of whom has to keep an updated copy of the entire
ledger of transactions; centralized solutions on the other side only require a
centralized ledger to which all transactions are committed and a few back-
ups. If Bitcoin processed the same number of transactions of the Visa circuit
this would result in a bloat of the blockchain size, running totally outside
the realm of processing power of available computers.
Moreover, scalability in Bitcoin is also affected by transactions confirmation
being slow and probabilistic compared to centralized systems, where confir-
mations happen in fractions of a second.
Thus, it is likely that higher scalability will mainly come through off-chain
solutions exploiting the blockchain for verification of balances (and settle-
ment of disputes, see e.g. [23]) rather than transfers.
Far from being a discussion on scalability issues and proposed solutions, this
paragraph only wants to briefly investigate the connection between fungibil-
ity (and privacy) on one side and scalability on the other side. Indeed, the
described expensive nature of privacy-based solutions generally put fungibil-
ity and scalability in a seemingly insurmountable trade-off. However, there
are situations where fungibility helps scalability: the reduction of informa-
tion leakage (in particular that information enabling transactions to be linked
and reducing anonymity) would potentially help scalability by preventing rel-
evant information to go and appear in the blockchain. Mimblewimble [12] is
an example of an application that provides privacy and fungibility (mainly
through the adoption of confidential transactions) but even achieves better
scalability than Bitcoin by the possibility to remove most of historic data by
pruning spent transaction outputs and possibly validating the whole history
without downloading these already spent transactions.
Conversely, having a more scalable network would obviously favour fungi-
bility and let open the possibility to exploit more expensive privacy-based
solutions, but it is indeed difficult to achieve.

10According to https://usa.visa.com/run-your-business/small-business-tools/
retail.html, Visa can be able to process 24000 tps at its peak, Bitcoin only 7 tps.

18

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html

Chapter 4

Cryptographic primitives

In this section we present the cryptographic primitives which are necessary
to build a confidential transaction.
Prior to this, however, we start with a crash dive into some pillars of Elliptic
Curve Cryptography (ECC), the focus being just on what can be useful to
follow the incoming narration. We refer to [2, 20] for a more deep approach.
Elliptic Curve Cryptography is a public-key cryptosystem built on elliptic
curves defined over finite fields and, for our purposes, it is the cryptosystem
Bitcoin uses to secure the transactions. It is based on the intractability of
the Elliptic Curve Discrete Logarithm Problem (ECDLP), namely the infea-
sibility of computing the discrete logarithm of a random elliptic curve point
with respect to a publicly known base point1. The benefits over its prior al-
ternatives (in the field of public-key or asymmetric cryptography) come from
the possibility of providing the same security level with shorter operands,
which is in turn a consequence of the problem being harder to solve. Indeed,
it is even the latest solution which has come out among the mentioned alter-
natives.
Referring to the Appendix A for both the definition of finite field (and how
to get to it) and the presentation of the DLP (in its non-elliptic curve formu-
lations) to avoid making this introduction unintentionally cumbersome, we
give instead here the definition of elliptic curve and we present the known

1At the base of public-key cryptography there is always the intractability of a particular
mathematical problem:

• RSA public-key schemes: hardness of factoring large integers.

• DLP-based public-key schemes: hardness of solving the discrete logarithm problem.

• ECDLP-based public-key schemes: hardness of solving the generalized discrete log-
arithm over an elliptic curve.

19

translation of the DLP over elliptic curves (ECDLP).
The need to introduce elliptic curves is motivated by the necessity of search-
ing a cyclic group where to build the cryptosystem2; observe, however, that
the mere existence of a cyclic group is not sufficient, the problem being to
find such one where the DLP is computationally hard to solve. It turns out
that elliptic curves are fitted for the purpose and thus the goal becomes to
find elliptic curves with a large cyclic group. Later in this section, a theorem
will support the suitability of elliptic curves in providing such a result, thus
explaining their fundamental role in the discussion.
As remarked within the Appendix A, for cryptographic use, the focus is just
on elliptic curves defined over a finite field (in particular we consider K = Fp,
the finite field with p elements) rather than over generic fields (the set R being
an example).

Definition 4.0.1. The elliptic curve over Fp
3 is the set of all pairs (x, y) ∈ Fp

such that {(x, y) ∈ Fp × Fp : y2 = x3 + ax+ b mod p} ∪ {∞} with a, b ∈ Fp

and such that the consistency condition 4a3 + 27b2 6= 0 mod p holds true.

The problem now becomes both identifying the group elements and defining
a group operation with these elements. Group elements are nothing else than
the points fulfilling the curve equation in Definition 4.0.1. The definition of
the group operation is not presented here, for the details we refer to [20].
The only point we want to stress is the meaning of {∞} in Definition 4.0.1:

Remark 4.0.1. {∞} is the so called infinity point and turns out to be the
identity element of the group defined by the points over the elliptic curve
together with its group operation.

At this point, it is possible to state the following theorem, which eventually
closes the circle by explaining the reason why it is possible to build a DLP
with elliptic curves.

Theorem 4.0.1. The points on an elliptic curve, together with the infinity
point {∞} (other than defining a group by themselves once the group oper-
ation is defined) have cyclic subgroups. Moreover, under certain conditions
(merely if the group order is prime) all points on an elliptic curve form a
cyclic group.

Remark 4.0.2. By specializing the notation seen in the Appendix A to the
elliptic curve case, we denote by G the generator of a cyclic (sub)group defined
over an elliptic curve (being an element of the (sub)group itself, it is nothing

2See DLP arguments in section A.3 for more details.
3Which we denote by E(Fp).

20

else than a point on the curve). Thus, starting from G it is possible to explore
the entire (sub)group (thus recovering all the (sub)group points) by repeatedly
applying the group operation to G.

Remark 4.0.3. If the EC (sub)group has order m, the application of the EC
group operation m times gives back the identity element of the EC group.

Remark 4.0.4. If the EC group order n is prime, any point of the curve is
a generator G. This basically comes from Theorem A.1.3.

With this theoretic framework at our disposal, we can conclude the intro-
duction to this chapter by presenting the ECDLP.

Definition 4.0.2. Given the elliptic curve E(Fp) with generator G, consider
another element of the curve, Q. The ECDLP is finding the integer q, 1 ≤
q ≤ #E(Fp), such that G+G+ · · ·+G︸ ︷︷ ︸

q times

=qG=Q.

For what concerns notation, in ECC q represents the private key, which is
an integer, while Q represents the public key, a point on the curve with
coordinates (xQ, yQ).

4.1 Commitment schemes

Commitment schemes are widely used in modern cryptographic protocols
and play a fundamental role in confidential transactions, as will be soon ev-
ident.
A commitment scheme is a cryptographic primitive that allows a prover to
keep a piece of data secret to a verifier, but commit to it so as to prevent a
prover’s change of mind aimed at tampering with the underlying committed
secret data. Moreover, a commitment scheme provides the following charac-
teristics, namely the fact that it should be at least computationally infeasible
to deduce the underlying data from the commitment itself, while being im-
mediate to verify (once the secret is known4) that with high probabilistic
assurance the committed data has effectively produced that commitment.
The most trivial example of commitment scheme in cryptography is repre-
sented by a cryptographic hash, which indeed fulfills previous requirements
(even if an input to a hash function is generally salted to prevent brute-force
attacks). Alternatively, it could be funny to observe that the use of com-
mitment schemes would enable two players to play a game of head-or-tails

4Though observe that the prover does not have to reveal his choice, while he might do
at a later time in some protocols.

21

remotely5 (coin flipping by telephone), a game that couldn’t be played with
the certainty of not being cheated.
We give now a more formal definition of commitment scheme and then we
concentrate on its security properties. Notice that different definitions are
possible depending on the setting and at the same time it is difficult to find
one covering all the possibilities. Driven by this evidence, the definition we
present is mainly fitted to the application we are going to present in the next
chapters and, despite arrangements in notation, is taken from [22].
Let (G, ◦) be an elliptic curve group of prime order n. Let C denote the
(public) commitment.

Definition 4.1.1. Let r, v ∈ Zn. A commitment scheme is a pair of algo-
rithms:

• commit(r, v)→ G

• open(r, v, C)→ {True, False}

such that open(r, v, commit(r, v)) 7→ True ∀(r, v) in the domain of commit.

Then, when it comes to security properties of commitment schemes, the so
called hiding and binding properties should be defined.

Definition 4.1.2. A commitment scheme is said to be perfectly (computa-
tionally) hiding if the distribution of commit(r, v) for uniformly random r is
equal (computationally indistinguishable) for fixed values of v.

Basically, a hiding commitment does not reveal the data it commits to. In
particular, at its highest extent it prevents even an adversary endowed with
infinite computing power to deduce information on the committed values
from the commitment only. If computationally hiding, it makes it computa-
tionally unfeasible (hard in PPT).6

Definition 4.1.3. A commitment scheme is said to be perfectly binding if
∀(r, v) in the domain of commit, @(r′, v′) 6= (r, v) such that open(r′, v′, commit(r, v)) 7→
True; it is said to be computationally binding if no PPT algorithm can pro-
duce such a (r′, v′) with non-negligible probability.

5In this case with the obvious necessity of the prover revealing the committed data at
some time.

6Probabilistic Polynomial Time. PPT algorithms are those algorithms taking polyno-
mial time (∼ O(nα), α > 1) to get a probabilistically correct solution.

22

A binding commitment cannot be opened to a different input. Once a com-
mitment C(r, v) to (r, v) has been made, one cannot later open it as a com-
mitment to (r′, v′). Same considerations as before are valid here, with obvious
shift in reasoning.
Moreover, although it would be nice to have a commitment scheme satisfy-
ing both properties at the highest extent, we anticipate here that it is not
actually possible to have such one as perfect hiding excludes perfect binding
and viceversa. More formal arguments will come with the description of the
Pedersen commitment.7

4.1.1 Additively homomorphic commitment

Additively homomorphic commitment schemes constitutes a class of com-
mitment schemes which is at the basis of confidential transactions and which
falls under the wider research area of homomorphic encryption. Homomor-
phic encryption schemes allow performing computations on encrypted data
without leaking information about underlying ones (and without having ac-
cess to them) and getting the same results as if operations were performed
on unencrypted data.
In particular, as the name should suggest, additively homomorphic commit-
ments preserve the sum and more precisely are those for which the following
holds (again, we refer to the notation introduced above).

Definition 4.1.4. A commitment scheme is additively homomorphic if
commit(r, v) + commit(r′, v′) = commit(r + r′, v + v′) and the distributions
of commit(r, v) + commit(r′, v′) and of commit(r + r′, v + v′) coincide.

4.1.2 Pedersen commitment

The Pedersen commitment is a commitment scheme initially introduced in
[21] as one with homomorphic properties. In [21], it is needed to construct
an efficient and non-interactive scheme for verifiable secret sharing (when
combined with the Shamir’s scheme8). This is an application where a dealer
holds a secret and wants to distribute it in shares to n shareholders he does
not trust (and by whom he is not trusted) in such a way that any subgroup
of at least k shareholders can recover the secret by exploiting the additively
homomorphic property of the Pedersen commitment, while any subgroup of
less than k shareholders can learn nothing about the secret.
Going further this application, here we concentrate on the commitment

7See section 4.1.2.
8Needed to make the entire scheme non-interactive.

23

scheme only and we present its elliptic curve version. Some preliminaries
are necessary before the definition.
Let G be a EC group of prime order n. Let G, H be fixed nothing-up-my-
sleeve (NUMS) generator points of G.

Definition 4.1.5. The EC NUMS points are points whose elliptic curve dis-
crete logarithm (ECDL) relative to each other are unknown.

Remark 4.1.1. Indeed, the following are unknown:

• x s.t. xG = H (Gx = H in multiplicative notation, x = logGH);

• y s.t. yH = G (Hy = G in multiplicative notation, y = logH G).

Definition 4.1.6. Let r,v ∈ Zn. Let r be chosen at random.
Define a Pedersen commitment (to v) as the following scheme:

commit : Z2
n → G

(r, v) 7→ rG+ vH

where we refer to the general definition 4.1.1 for the open algorithm (which
accordingly takes input in Z2

n ×G).
The Pedersen commitment turns out to satisfy the following properties.

Proposition 4.1.1. Let the ECDLP in G be hard.
The Pedersen commitment is an additively homomorphic commitment scheme
providing the following security properties:

• perfect hiding;

• computational binding.

Here’s the intuition driving the proof.
Additively homomorphic: the property comes from the point addition oper-
ation on EC points defining a group (when adding the {∞} point) and the
Pedersen commitment being basically an EC point.

commit(r, v) + commit(r′, v′) = (rG+ vH) + (r′G+ v′H)

= (r + r′)G+ (v + v′)H

= commit(r + r′, v + v′).

Perfect hiding: different (r, v) pairs satisfy C = rG+ vH.
In particular, fixed v, ∃! r = G−1(C−vH) s.t. C = rG+vH (indeed G−1 6= 0
being G a generator).

24

Thus, an exhaustive search cannot discern in between (r, v) pairs, which in
turn implies that an adversary cannot get information about the committed
data v from the commitment C itself, while r is chosen to be random accord-
ing to Definition 4.1.6. As a side note, it will be soon clearer that it’s the
randomness of r to make the scheme perfectly hiding.
Moreover, not being able to distinguish in between (r, v) pairs also means
that more than one (r, v) pair can be a valid opening for the commitment C,
making it intrinsically non-perfectly binding and confirming the incompat-
ibility between perfectly hiding and perfectly binding commitments stated
before.
Computational binding: given a Pedersen commitment to (r, v), opening it
to a different pair (r′, v′) would require breaking the ECDLP on G which is
computationally unfeasible for regular9 computers . In particular:

rG+ vH
?
= r′G+ v′H ↔ r′ = G−1(rG+ vH − v′H) = r + (v − v′) G−1H︸ ︷︷ ︸

x:xG=H

Observe that it is the NUMS hypothesis on generators G, H to make it com-
putationally binding.

The emphasis on the security properties of the Pedersen commitment makes
it interesting to take a further step in explanation. As anticipated, its non-
perfectly binding nature makes it exposed to attacks focused on breaking the
ECDLP and it is widely known that developments in quantum computing
would probably enable to provide such a result (for instance by Shor’s algo-
rithm10). On the other hand, its perfectly hiding nature would provide pri-
vacy guarantees (impossibility to unblind the commitment) even in a scenario
in which the ECDLP is broken: indeed, C = rG+vH ↔ G−1C−v G−1H︸ ︷︷ ︸

known

= r,

but still for any v ∃!r s.t. C = rG+ vH.
Moreover, the discussion is active on whether to prefer perfectly hiding or
perfectly binding solutions on newborn protocols (like Mimblewimble11). The
highly debated trade-off turns in balancing the desire for privacy with the
belief in the likelihood of quantum computers coming into being. But, on the
one hand, except for undisclosed advances in quantum computing, ECDLP
breaking won’t happen overnight; on the other hand, a viable perspective
could be having both a perfectly hiding and a perfectly binding chain with
cross-chain pegs (see [7]), with coins coming into existence on one of the two,

9As opposed to quantum.
10https://en.wikipedia.org/wiki/Shor%27s algorithm.
11See e.g. https://lists.launchpad.net/mimblewimble/msg00114.html up to the end

of the thread.

25

https://en.wikipedia.org/wiki/Shor%27s_algorithm
https://lists.launchpad.net/mimblewimble/msg00114.html

but possibly transferable on the other chain and back.
Finally, it should be noticed that other protocols make use of different com-
mitment schemes providing perfect binding instead (Chain12 for instance
exploits the so-called ElGamal commitment scheme).

4.2 Zero-Knowledge Proofs of Knowledge

Zero-Knowledge proofs of knowledge (ZKPoK) are proofs that yield nothing
but their validity.
There is a subtle distinction between Zero-Knowledge proofs and (Zero-
Knowledge) proofs of knowledge: in a ZKP the prover tries to convince the
verifier that some statement is true and the proof reveals to the verifier no
additional information apart from the fact the statement is true; in a PoK
the prover tries to convince the verifier that he is in possession of some se-
cret information and he cannot succeed in convincing the verifier unless he
truly knows some secret. Then a PoK can be proved in zero-knowledge, thus
providing a ZKPoK.
Proofs that can be performed in zero-knowledge have the following charac-
teristics. First of all, if the statement is true, the verifier will be eventually
convinced of this by the prover; instead, if the statement is false, no cheating
prover can convince the verifier of the contrary. Finally zero-knowledgeness
is enforced by the fact that if the statement is true, no verifier can learn
anything else than the fact that the statement is true. Interestingly enough,
various examples of ZKPoK can be successfully presented without entering
into the math that underpins these primitives.

Figure 4.1: Ali Baba cave

This one is the Ali Baba cave ex-
ample. The cave is ring-shaped and
has a magic door (whose opening re-
quires a secret key) at the opposite
side of the entrance (Victor the ver-
ifier is aware of its presence). Peggy
the prover enters the cave and ran-
domly chooses a path (A or B) with-
out being seen by Victor. Then Vic-
tor eventually enters and shouts the
name of the path he wants Peggy to
take when coming outside.

12https://github.com/chain

26

https://github.com/chain

Provided that Peggy effectively knows the secret key, she can simply open
the door and exit where requested. On the other hand, if she doesn’t know
the secret key, her 50% probability of guessing the right path at the first
attempt would eventually vanish after several repetitions of the experiment.
Another common example is the graph 3-colorability problem, that the in-
terested reader can find in [9].
Eventually, we would like to present an example with higher cryptographic
relevance. It turns out that a prover can possibly prove in zero-knowledge
that he knows the discrete logarithm q of a given value c = gq, g being the
generator of the underlying cyclic group (according to notation in Appendix
A.1.1). There are many of such proofs; we present the Schnorr protocol (in
its interactive form).

• The prover selects a random number r, computes gr mod n and sends
it to the verifier.

• The verifier challenges the prover by sending to him a random value e.

• The prover replies to the challenge computing u = r+ e · q mod n and
sending it to the verifier.

• The verifier accepts if gu mod n = gr ·ce mod n. Indeed, gu mod n =
gr+e·q mod n = gr(gq)e mod n = grce mod n.

Once again, the proof is successfully carried out in zero-knowledge as the
verifier can get no clue about q and at the same time would unmask a cheating
prover.
The provided examples are kinds of interactive proofs we are not strictly
interested in13, but succeed in giving an impressive idea of how these proofs
work. Their non-interactive counterparts (in which there’s no interaction
between prover and verifier) are obtained via the Fiat-Shamir heuristic, where
the challenges by the verifier are replaced by the result of the hash of some
intermediate result.

4.3 Ring signatures

Initially introduced in [25], ring signatures are a cryptographic primitive al-
lowing for any actor in a group to provide a digital signature14 on behalf of

13Indeed as we will see, the solution confidential transactions adopt is non-interactive.
Moreover, even in previous subsections we have always presented the primitives in their
non-interactive form.

14We are not interested in giving a formal definition of digital signature and we refer to
[20].

27

the group itself, but preserving the anonymity of the signer (signer ambigu-
ity). More precisely, the actual signer can select any set of potential signers
which includes himself (provided he knows a public key for each of them)
and signs a message with his own private key in a way that the whole signa-
ture does not leak any information about who has effectively produced the
signature. Moreover, the selected possible signers are usually not aware of
the fact that their public key has been used in a ring signature scheme (like
a multiparty 1-of-m signature scheme without cooperation from the other
m − 1 members). Thus, it shouldn’t be much of a surprise that one of the
described application in [25] was whistleblowing, namely the possibility of
leaking a disgraceful secret of a group of people (think as an example to an
episode of corruption inside a city council) by one of the members of the
group in a way that the whistleblower could not be identified, but at the
same time with certainty that the leak came from a member of the group.
Given that, a ring signature scheme could be seen as a variant of a digital
signature scheme in which the single verification (public) key is replaced by
a ring of verification (public) keys and one private key only is required to
produce a valid signature; moreover, given that the actual signer does not
know the private keys corresponding to the public keys of the other group
members, these are generally forged (but obviously indistinguishable to real
ones).
A ring signature scheme involves two procedures:

• ring−sign(m,Q1, Q2, . . . , Qr, qr): it produces a ring signature σ for the
message m given the public keys Q1, Q2, . . . , Qr of the r ring members,
together with the private key qr of the rth member (the signer).

• ring−verify(m,σ): it accepts a message m and a signature σ (includ-
ing the public keys of all the possible signers) and outputs either true
or false.

We are not going to present here the algorithm that underlies the construction
of ring signatures in [25] both because it would require migrating to the
RSA15 setting and because in the next section we will directly describe the
version adopted by confidential transactions. Before passing to the next
primitive, we only summarize all of the features of ring-signature schemes.
Other than being signer-ambiguous signature schemes (there is no possibility
to revoke the anonymity of the signer and more precisely a verifier has a
probability equal to 1

r
to guess the identity of the real signer), they are

setup-free signature schemes. This means that there is not a pre-arranged

15https://en.wikipedia.org/wiki/RSA (cryptosystem)

28

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

group of members (this is particularly relevant in the comparison with group
signature schemes from which ring-signatures derive and whose underlying
mechanism is basically the same apart from the presence of a trusted group
manager who selects the ring members and can unmask the anonymity of
misbehaving signers). In the end, it has to be noticed that the signature size
grows linearly with the number of rings.

4.4 Elliptic Curve Diffie-Hellman

The elliptic curve Diffie-Hellman primitive is a cryptographic primitive which
is at the basis of the ECDH Key Exchange scheme.
In turn, the elliptic curve Diffie-Hellman Key Exchange (ECDH) is a key
agreement scheme based on ECC, thus relying on the hardness of the ECDLP.
It is the EC counterpart of the well known16 Diffie-Hellman Key Exchange
(DHKE) protocol. In this section we just present the scheme for the elliptic
curve version.
It allows two entities, both endowed with an elliptic curve private-public key
pair, to engage in a key agreement scheme and establish a shared secret over
an insecure (yet authenticated) channel. The shared secret can then be both
used directly as key or as seed to derive other key(s), for instance (but it
is just a possibility) via a deterministic generation procedure like RFC6979
(see [24]).

4.4.1 ECDH primitive

The primitive is built in such a way that both the parties by means of one
of their own private key and one of the public key of the other party can
recover, autonomously, the same (shared) secret.
Here how’s the primitive built. Suppose Alice and Bob want to establish
a shared secret. The primitive is run autonomously by both and takes as
input valid elliptic curve domain parameters T 17, a private key owned by
who is running the procedure (qA for Alice, qB for Bob) and the public key
corresponding to the other party private key (Alice takes QB=qBG as input,
Bob takes QA=qAG as input18). The output is a shared secret field element

16In cryptography at least.
17T = (p, a, b,G, n, h); p specifies the prime finite field Fp; a, b ∈ Fp are the coefficients

of the elliptic curve equation; G ∈ E(Fp) is the elliptic curve generator point; n is the
order of G, that coincides with the number of points of the cyclic subgroup generated by
G; h = #E(Fp)/ n is the so called cofactor.

18Though, Alice does not obviously know qB , nor Bob qA.

29

z or the string “invalid” otherwise.
The algorithm below refers to the generation of the shared secret from Alice.
The same can be done for Bob, by carefully exchanging the roles of the
parameters.

Algorithm 4.1 ECDH primitive

1: procedure ecdh(T, qA, QB)
2: S = (xS, yS)← qAQB

3: assert S 6= {∞}
4: if S = {∞} then
5: return “invalid”
6: end if
7: return z ← xS mod n
8: end procedure

It turns out to be straightforward to prove that the shared secret computed
by both parties is the same. Alice: qAQB = qA(qBG); Bob: qBQA = qB(qAG)
→ by associativity of the group operation (point addition), the result holds
and both compute S = qAqBG.

4.4.2 ECDH Key Exchange protocol

According to notation in [2], the key exchange protocol involves a setup phase,
a key deployment procedure and a key agreement operation (which actually
exploits the ECDH primitive). Here’s a simple graphical representation of the
key exchange protocol combining the key deployment phase (in its associated
public keys exchange phase) and an instance of the ECDH primitive explained
above.

Figure 4.2: ECDH key exchange

The setup phase defines the choice of the elliptic curve domain parameters.
The key deployment phase requires both parties establishing valid private-
public key pairs {qA, QA}, {qB, QB} and exchanging their public keys QA

30

and QB (with further assurance of the public keys being valid ones).
The key agreement operation defines a way to obtain shared keying data
from a shared secret by means of a suitable key derivation function. Ob-
serve, however, that the keying data might not directly be used as a key, this
just depends on the application.
The algorithm below refers to the generation of the shared key by Alice.
Bob’s algorithm is straightforward and just requires rearrangement of the
parameters. We first describe the key derivation function (KDF), taking as
inputs an octet19 string Z derived from the field element z ∈ Fn outputted by
the ECDH primitive,20 the integers keydatalen, hashlen, hashmaxlen which
refer to the length in octets respectively of shared key, hash values and max-
imum lenght of messages that can be hashed with the given hash function.
It outputs a shared key K (octet string) or “invalid”.

Algorithm 4.2 Key Derivation Function

1: procedure kdf(Z, keydatalen, hashlen, hashmaxlen)
2: assert |Z|+ 4 < hashmaxlen, “invalid”
3: assert keydatalen < hashmaxlen ∗ (232 − 1), “invalid”
4: count← 1 . 4 octet, big-endian string
5: for i← 1, dkeydatalen/ hashlene do
6: Ki ← hash(Z||count)
7: count← count+ 1
8: i← i+ 1
9: end for

10: K ← K>>=(keydatalen− hashlen) . leftmost keydatalen octects of
K1|| . . . ||Kdkeydatalen/ hashlene

11: return K
12: end procedure

Thus, the whole key agreement operation requires deriving a shared field el-
ement z ∈ Fn by running an instance of the ECDH primitive, converting it
to an octet string to give as input to the KDF and consequently deriving a
shared key.
For what concerns security arguments, it is required the ECDHP (elliptic
curve Diffie-Hellman problem) to be hard to solve. It comes out it is closely
related to the ECDLP, a third party willing to break it has to solve either
qA = logGQA or qB = logGQB. Consequently, provided a care choice of the
parameters during the setup phase, the more powerful algorithms to break

19To keep it simple we can consider an octet being equivalent to a byte.
20For more details on the field-to-octet conversion, see [2].

31

it are basically the same presented above for the ECDLP (∼ O(|G| 12) steps).
What that means practically is that with an elliptic curve group order higher
than 2160 (i.e. 160 bits)21 the ECDHP wouldn’t be possibly broken.
Then, another important security assumption relies on the so-called chan-
nel authentication for public key exchange, required to prevent man-in-the-
middle attacks. The latter consist in an adversary eavesdropping over the
channel and substituting Alice and Bob’s public keys with his own public
keys. If the channel is not authenticated,22 this would prevent Alice and Bob
being aware of sharing a secret with the eavesdropper rather than themselves.

21Bearing in mind that, as a rule of thumb, security levels of more than 80 bits can be
considered satisfactory.

22Where authentication means that the recipient has strong reasons to believe that the
communication is in place with the “designated” sender and can be achieved by means of
some protocols we do not present here.

32

Chapter 5

Confidential transactions

The aim of this chapter is to present the construction of a confidential trans-
action; in particular, we will see how the cryptographic primitives presented
in the previous chapter are deployed (or specialized) and we try to give an
overview of benefits and downsides.
For this reason we will initially see how a confidential transaction achieves
value privacy by encrypting the output amounts through Pedersen commit-
ments and we will describe all of the consequences of homomorphic encryp-
tion with an impact on the way confidential transactions are built; then, we
will add the range proofs to the scheme, which prevent a malicious trans-
action’s creator to exploit modular arithmetic (and encryption of values) to
build invalid transactions in an undetectable way. These proofs are provided
in Zero-Knowledge through a particular variant of ring signature. Then, we
will enter in the details of the communication between transaction’s sender
and receiver. Indeed encryption would prevent even the receiver to know
the amount associated to each output; thus, some sort of communication is
necessary.
We conclude the chapter stressing the stunning fact that this whole construc-
tion can be obtained without requiring any new cryptographic assumption
with respect to the ones already securing Bitcoin; on the other side, we recap
its disadvantages.

5.1 Transaction amount encryption

Confidential transactions achieve their goal of obscuring output amounts by
replacing output amounts in the clear (Bitcoin-like) with Pedersen commit-
ments to the output amount. This results in substituting the 8-byte integer
representing the output amount in a standard Bitcoin transaction with a 33-

33

byte commitment to the amount. Indeed, recalling Definition 4.1.6, Pedersen
commitments are nothing else than elliptic curve points (the co-domain of
the mapping being the elliptic curve group G) which in compressed form can
be represented by a 33-byte sequence.
On the basis of the previous description of the cryptographic primitive in
section 4.1.2, this section will be devoted first of all to its transposition in
confidential transactions.
As an example, we start describing a step-by-step possible strategy to obtain
safe encryption of the amounts which culminates in having amounts coded
by Pedersen commitments. At each step, we will present pros and cons of
the considered solution.
Consider a standard transaction with 2 inputs and 2 outputs. The “balance”
of such a transaction in Bitcoin would be represented by the following equa-
tion: vi1 + vi2 = vo1 + vo2 (where i stands for input, o stands for output).
While allowing easy verification that no money has been created out of thin
air, such a representation lacks of confidentiality. Next step could be embed-
ding vH in a transaction rather than v only: vi1H + vi2H = vo1H + vo2H.
Indeed, being H an elliptic curve generator (refer to section 4.1.2 for details)
the equality holds and verification is still easily guaranteed to work. However,
this solution suffers from the number of values v being finite and thus from the
possibility of an attacker trying to guess the data underlying the commitment.
Moreover, observe that knowing viH would unmask all of the outputs of value
vi across the blockchain. The final solution to these issues consists in keeping
the skeleton of the previous proposal, but blinding the committed value via
a random factor, thus effectively coding the amounts through Pedersen com-
mitments: (ri1G+vi1H)+(ri2G+vi2H) = (ro1G+vo1H)+(ro2G+vo2H). In
this case the verification of the balance of the equation is guaranteed by the
additively homomorphic property stated above, its perfectly hiding nature
preserves the confidentiality.
The interpretation of the parameters r and v should be now immediate: r
represents the secret random blinding factor, v represents the committed
amount. Thus, in confidential transactions the Pedersen commitment com-
mits to an amount v and requires a random blinding factor r (a private key
basically) to obtain the security property of perfect hiding. Each committed
amount v and blinding factor r (one per input/output) has to be known only
to participants in the transaction; the whole commitment C has to be public
instead.

34

5.1.1 NUMS generators construction

Pedersen commitments are built through nothing-up-my-sleeves (NUMS)
generators. On the one hand, generator G has not a clear origin (it is not
NUMS in principle); on the other, the Bitcoin protocol specification does not
define a second generator associated to the curve.1

The problem becomes to construct one satisfying Definition 4.1.5. After all,
the consequences of having a second generator H not properly built would
be catastrophic, because it would make possible to open the commitment to
a different value (possibly inflating the currency), tampering with its binding
property.
For instance, consider the case in which the second generator H is cho-
sen by a malicious designer who knows the (elliptic curve) discrete loga-
rithm with respect to G, i.e. he knows rH such that H = rHG. Thus,
C = rG + vH = rG + vrHG. In such a case, it is easy to produce an
example in which a commitment to a value v is effectively opened to a dif-
ferent value v′. It would be sufficient to make a commitment to a value v,
Cv = rG + vH = (r + vrH)G = ((r − (v′ − v)rH) + v′rH)G and then make
the same commitment commit to value v′ by publishing r̂ = (r− (v′− v)rH)
instead of r as blinding factor. Indeed, Cv′ = (r̂ + v′rH)G turns out to be a
commitment to value v′. It is clear instead that he would be unable to use
the same trick without knowing rH .
The way such a problem could be generically solved2 is by picking H through
the hash of an encoding of generator G (of its x-coordinate in particular) and
coercing the hash to a curvepoint. Indeed, just hashing the generator could
not be sufficient as it couldn’t possibly result in obtaining a curve point. In
such a case, it suffices to keep on incrementing the obtained hash-value until
getting a valid curve point. Confidential transactions exploit this technique.
To conclude, it is worth to notice that being the procedure to build the sec-
ond generator public (and consequently being H hardcoded and available) is
not a sufficient condition to deduce the elliptic curve discrete logarithm as
at least hashing operations are involved.

1The elliptic curve Bitcoin uses is the so called secp256k1, which is a 256-bit elliptic
curve over the finite field Fp and the specification defines the tuple of parameters T =
(p, a, b,G, n, h) among which generator G, but not generator H.

2See for instance https://crypto.stackexchange.com/questions/25581/second-
generator-for-secp256k1-curve.

35

https://crypto.stackexchange.com/questions/25581/second-generator-for-secp256k1-curve
https://crypto.stackexchange.com/questions/25581/second-generator-for-secp256k1-curve

5.1.2 Explicit fees

Although we need some more steps to figure out completely how a confi-
dential transaction is built, the reader could have possibly already raised an
issue with respect to the way fees are managed in such a design.
Indeed if one thinks to a standard Bitcoin transaction, fees are what comes
out from the difference of amounts associated to transaction inputs and trans-
action outputs3 and can be easily deduced being the amounts associated to
inputs and outputs public.
In confidential transactions, the encryption of amounts effectively prevents
the same mechanism to work. Not being possible to deduce the fee amount
f implicitely, this is explicitely published as a plaintext.
In turn this has consequences on the commitment scheme. Being fees paid
“unmasked”, a Pedersen commitment to fee amount is conceived as Cf = fH,
rather than Cf = rG + fH. Indeed, there’s no need to blind anything and
it is built with blinding factor rf = 0.
For what concern transaction propagation, nodes will just check that

∑
iC

inp
i −∑

iC
out
i − fH = 0 holds, before propagating the transaction further.

5.2 Homomorphic encryption features

It turns out that the additively homomorphic property of the Pedersen com-
mitment plays a key role in the design of confidential transactions. In par-
ticular it affects the very first issue that one could think of when speaking
of confidential transactions, namely how can transaction verification happen.
Indeed, as by Proposition 4.1.1, Pedersen commitment is additively homo-
morphic in both inputs and it is exactly this property to still allow easy
verification of the validity of a confidential transaction4. What this means
is that considering a transaction with 2 inputs and 2 outputs, the following
holds: vi1 + vi2 − vo1 − vo2 = 0↔ Ci1 + Ci2 − Co1 − Co2 = 0.
Then it also affects the way blinding factors are set.

5.2.1 Commitment to value 0 & network verification

As mentioned, the nodes of the network would verify the validity of a transac-
tion and would eventually propagate it by checking whether the commitments
to inputs and outputs sum to 0.
On the other hand the additively homomorphic property ensures that having

3Recall that
∑
i TxOi + fee =

∑
i TxIni.

4Despite inputs/outputs amounts not being public.

36

a sum of commitments to a total value of 0 is just the same as having a sin-
gle commitment to v = 0 (although such a commitment will never appear).
Given that, we anticipate here a result that would be fundamental when we
will deal with ring signatures in confidential transactions.
A commitment to value v = 0 gives the opportunity to create a digital signa-
ture with that commitment as though it was a public key (and v = 0 is special
in this sense, you cannot do it with commitment to v 6= 0). Indeed, given
C = rG+��vHv=0 = rG you can produce a digital signature with C as verifica-
tion public key and r as the corresponding private key. Instead, if v 6= 0, you
would be stuck not knowing the elliptic curve discrete logarithm of C with re-
spect to G because of the addition of vH (i.e. basically because of the NUMS
hypothesis on the generator points): C = rG+ vH → ?︸︷︷︸

unknown

= logGC.

At first sight the previous paragraph can be puzzling, but recall that5 it is
only possible to create a digital signature with a point which is a multiple of
G. By definition, a signature with private key q can be verified with public
key qG; if v 6= 0, it is impossible to find q such that qG = rG + vH as it
would require knowing the ratio (i.e. the elliptic curve discrete logarithm)
between G and H.
Eventually, this means that a way a Pedersen commitment can be proven to
be a commitment to v = 0 consists in signing a transaction with the commit-
ment as public key (the message signed is the hash of this commitment public
key so as to bind the signature to the commitment), the blinding factor as
private key.

5.2.2 Blinding factors setting

Being the Pedersen commitment homomorphic in both inputs by Definition
4.1.4, this has a consequence on the way blinding factors are managed: in
order for all the commitments in a confidential transaction to sum to 0, not
only committed values, but also blinding factors need to sum to 0.
Consider as an example the usual transaction with 2 inputs and 2 outputs
and let Alice be the sender and Bob the receiver. Suppose moreover that
Bob will receive a transaction output only, the other coming back to Alice
as change.
In such a situation, blinding factors from the inputs are already set as they
are associated to commitments to the transaction outputs referenced by the
actual transaction inputs. Let’s say they are rA, rB. Thus, Alice is left with
one degree of freedom in choosing rC , rD (the ones associated to the outputs)

5As successfully explained in https://bitcoin.stackexchange.com/questions/
54042/how-does-a-range-proof-bound-lower-at-0-and-not-1.

37

https://bitcoin.stackexchange.com/questions/54042/how-does-a-range-proof-bound-lower-at-0-and-not-1
https://bitcoin.stackexchange.com/questions/54042/how-does-a-range-proof-bound-lower-at-0-and-not-1

correctly. For instance she could set rC as rC = rA + rB − rD (or she could
do the same with rD). Then she will send rC to Bob6, which is the blinding
factor associated to the commitment to the transaction output he will obtain,
but without rA, rB, rD being disclosed.
At first sight, such a construction seems to have a security flaw. Indeed, in
the example above Alice knows the blinding factor associated to the trans-
action output sent to the receiver (and in a more general example he would
know all of the blinding factors associated to transaction outputs), which
would give her the possibility to spend this output. Though observe that
here we are just describing the skeleton of a confidential transaction, while
not specifying the conditions for spending as they are specific to the different
protocols exploiting confidential transactions.
In [12, 22] the issue is addressed by allowing all the commitments to inputs
and outputs in a transaction to sum to a non-zero value kG, k being the so-
called excess value (another private key, but chosen by the recipient). This
in turn still allows the verification of the validity of the transaction. Indeed,
the total amount v of the transaction is still null, which according to sec-
tion 5.2.1 enables to provide a signature with the commitment as public key.
Therefore, each Mimblewimble transaction will include a digital signature
provided with the excess blinding factor as private key.
On the other hand, this would prevent Alice to be able to spend Bob’s out-
put(s).

5.3 Zero-Knowledge range proofs

The tremendous potential of homomorphic encryption does not come with-
out flaws when applied to Bitcoin. Since the mathematics underlying com-
mitments occurs over a finite field, addition is modular and wraps around:
a+ b = c mod n→ a+ b = c+ kn.
More precisely, the elliptic curve group G is cyclic having prime order n
(which is a 256-bits prime number) which implies that the outlined scheme
based on verifying whether Pedersen commitments to transaction amounts
sum to 0 is insecure without additional measures. What can happen is that
addition of large values can overflow (indeed a small amount can be in the
same equivalent class, modulo the field order, of a very large positive amount)
or that negative values can succeed in providing a valid transaction. As a
consequence, overflow can basically allow to print an unlimited amount of
coins illegally and in such a way that it would be impossible to discover. On
the other hand if negative amount were valid, it would be possible to create

6The safe transfer of blinding factors will require a section on its own.

38

coins from nothing.
As a simple example, yet far from real parameters, overflow can work this
way. Consider to have a curve with prime order n = 13 and a standard 2
inputs - 2 outputs transaction.

Inputs Outputs
C(1, rA) C(8, rC)
C(1, rB) C(7, rD)

Table 5.1: Modular addition: example of wrapping

In such a situation, matching of input and output commitments yields 0 (1 +
1 - 8 - 7 = -13 mod 13 = 0), thus the network would validate it. Meanwhile
the majority of the coins (13 of 15) has been created illegally.
For what concerns the negative-amount-like behaviour, the following could
happen:

Inputs Outputs
C(1, rA) C(5, rC)
C(1, rB) C(−3, rD)

Table 5.2: Modular addition: negative-amounts

Again, the transaction is still well balanced, there’s a creation of coins from
nothing and no easy detection (even if v is negative, vH is a usual elliptic
curve point).
The introduction of Zero-Knowledge range proofs is thus required to pre-
vent wrapping: these configure basically as additional pieces of data which
prove each commitment being genuine. In particular, range proofs are a
cryptographic tool proving that each committed output is within a certain
range ensuring that no overflow is possible and amounts are non-negative
(e.g. [0, 232) satoshi). Moreover, they are Zero-Knowledge proofs of knowl-
edge and so they prove the committed amount is in range without disclosing
neither the amount nor the blinding factor.
Two main approaches to range-proof construction are available in literature.
This work concentrates on the first solution to the problem, which exploits
a particular variant of ring signatures, Borromean ring signatures ([17]). In
recent times, a new and more efficient solution, Bulletproofs ([8]), has come
out.

5.3.1 Enforce zero-knowledgeness: ring signatures

A basic example can motivate the need for providing such a proof in Zero-
Knowledge.

39

Suppose Alice, the prover, wants to prove to Bob that C is a commitment
to the value v = 1, without telling him the blinding factor r, but the value
being known.
What Bob (the verifier) can do is to compute C ′ = C−1H7 and ask Alice to
provide a signature (with respect to G) with public key C ′. If Alice is able
to provide a valid one, then C has to be a commitment to v = 1. Indeed
from section 5.2.1, we know that it is possible to provide a digital signature
with the commitment as public key only with commitments to v = 0. If C
is a commitment to v = 1, then C ′ = C − 1H = rG+��1H −��1H = rG (from
which C = rG + 1H) and Alice knows the blinding factor r to sign with C ′

as it is the one she has set for the commitment C.
However, the exposition of the amount would be detrimental to the fulfillment
of value privacy, which is the primary purpose of confidential transactions.
From here the need to enforce zero-knowledgeness by avoiding giving away
the amount. It turns out that this issue can be efficiently approached through
ring signatures and next sections will explain how.

5.3.2 Role of ring signatures in confidential transac-
tions

In section 4.3 we have described what ring signatures were born for, namely
hiding signer’s identity in a group of potential signers. However, this is not
the only application for which ring signatures can be useful. For instance,
in confidential transactions the use of ring signatures is somehow specialized
due to their intrinsic nature.
Rather than hiding the transaction creator among a group by signing the
transaction with a ring signature, in confidential transactions ring signatures
will be used to prove that single bits (or digits, depending on the considered
encoding) of the encrypted output amount are in a certain range (e.g. {0,1})
without giving away the actual number. In particular, the signer will produce
a “ring” of commitments for each digit of the encrypted output amount. In
turn, from the number of overall commitments (after the encoding of the
encrypted amount is made public) one can deduce the length in digits of
the encrypted amount the whole commitment commits to. For instance,
considering a binary representation, it would possible to encode a 3-bits
amount with 6 Pedersen commitments (2 per bit) and in turn a 3-bits number
can be at most in [0,8). Thus if valid it will prove to be a commitment to a
value in that range. More technical details will come in next sections.
To have an idea of how this can work let us see how the example of section

7Recall that C is public and this would just be a point addition operation on the curve.

40

5.3.1 can be specialized with ring signatures.
This time the proof will not give away the amount. In particular, Alice can
prove to Bob that C is either a commitment to v = 0 or to v = 1, thus it is
in range {0, 1}.
While Alice provides a ring signature over {C,C ′}, Bob can compute again
C ′ = C − 1H. If compared with the example in section 5.3.1 where the
committed value was known, this time it should be less clear the reason why
Bob would compute the same quantity as before. However a single ring with
two commitments only should suggest a binary encoding for the committed
amount, thus motivating the choice. Then,

• if C is a commitment to v = 1, Alice does not know its discrete log-
arithm (recall what we have said in section 5.2.1), but C ′ becomes a
commitment to v = 0 of which she knows the discrete logarithm and
makes her able to provide a valid signature over the ring;

• on the contrary, if C is a commitment to 0, she knows its discrete
logarithm, she doesnt for C ′;

• if C is a commitment to any other amount, none of them commits to
v = 0, thus preventing Alice to be able to sign.

Observe that this can work for any pair of numbers or it can even work to
process larger rings.

5.3.3 AOS ring signatures

Introduced in [3] by Abe, Ohkubo and Suzuki (from which they derive the
name), they are a particular variant of ring signatures able to gain consistent
reductions in size and verification time with respect to earlier ring signa-
tures schemes. It is worth to notice that when used with discrete-log type
keys only (because they allow to use both public keys for integer factoring
based schemes and the ones for discrete-log based schemes), they yield much
shorter signatures with respect to previous ring signature schemes.
The design of the ring is basically the same described in section 4.3, where
a ring of r verification public keys requires knowledge of one of the corre-
sponding secret private keys. Moreover, given that all of the verification
public keys play the same role in verifying the signature, the specific signing
key remains secret.
They provide “OR proofs”: given a ring with r public keys, the ambiguous
signer proves to know {q0 OR q1 OR . . . OR qr}.
Before entering in the details of the full signature algorithm, it is necessary

41

to describe the way a signer can produce a valid signature in a ring, yet not
a ring signature. Let the signer be endowed with his private-public key pair
{q,Q}. This single signature generation involves:

• picking up a random nonce k → K = kG;

• given the message m to be signed, computing hash(K||m) → e =
hash(K||m);

• signing as follows: s = k + eq;

• publishing the signature as (s, e,m).

In turn, its verification (given s, e,m,Q as inputs) would imply computing
sG − eQ. Indeed, sG − eQ = sG − eqG = (s − eq)G = kG = K; then with
K at disposal the verifier could possibly reconstruct hash(K||m) and verify
whether it equals e (given as input). If so, the signature is valid.
Thus, it can be noticed that it is nothing else than one of the variants of a
Schnorr signature (according to [28]); the transition to a valid ring signature
would involve chaining these single signatures together and the way this is
done is explained through the full signature algorithm.
The complete signature algorithm is the following. Let m be the message
to be signed, i be the the index corresponding to the verification public key
Qi in the ring and i∗ the index corresponding to the unique private key. It
outputs the signature σ for (m,Qi).

Algorithm 5.1 AOS ring signature: signature algorithm

1: procedure AOS-sign(m, qi∗ , Qi: 0 ≤ i ≤ r − 1)
2: Initialization:
3: ki∗

$←− {1, ..., n− 1} . n: elliptic curve group order
4: Ki∗ ← ki∗G
5: Forward sequence:
6: for i← i∗ + 1, . . . , r − 1, 0, . . . , i∗ − 1 do
7: ei ← hash(Ki−1||m||i)
8: si

$←− {1, ..., n− 1}
9: Ki ← siG− eiQi

10: end for
11: Forming the ring:
12: ei∗ ← hash(Ki∗−1||m||i∗)
13: si∗ ← ki∗ + ei∗qi∗
14: return (e0, s0, . . . , sr−1)=: σ
15: end procedure

42

The key points of the algorithm are the following. At first, all of the s-values
except for the one which effectively closes the ring are forged.
Then, in principle the signature would include the complete set of e-values
and s-values (e0, s0, e1, s1, . . . , er−1, sr−1). However, as e-values can be de-
terministically retrieved once the first e-value and all of the s-values are
published, it suffices to publish (e0, s0, s1, . . . , sr−1), an (r + 1)-dimensional
tuple of 32-bytes numbers.

Instead, the verification algorithm is the following. It takes as input the
message m, the whole published signature σ and the set of verification pub-
lic keys Qi, 0 ≤ i ≤ r − 1. It clearly shows that the signature is valid if the
computed e0 coincides with the e0 provided as first entry of the tuple σ.

Algorithm 5.2 AOS ring signature: verification algorithm

1: procedure AOS-verify(m,σ,Qi : 0 ≤ i ≤ r − 1)
2: for i← 0, . . . , r − 1 do
3: Ki ← siG− eiQi

4: ei+1%r ← hash(Ki||m||i+ 1%r)
5: end for
6: if e0 = 0 or e0 ≥ n then . n: elliptic curve group order
7: return “false”
8: end if
9: if e0 = σ[0] then

10: return “true”
11: end if
12: end procedure

The algorithm shows that the procedure obviously starts at the node for
which the e-value is known. A valid signature will just ensure that one of the
private keys corresponding to the set of public keys Qi has signed without
giving any clue on which effectively did.

5.3.4 Borromean ring signatures

Introduced in [17], Borromean ring signatures are a generalization of the
AOS ring signature scheme. They generalize the previous construction as
they overcome the simple “OR proofs” and they can represent proofs of
knowledge of more general functions (any monotone boolean function is fine)
of the signing keys.
While the AOS construction chained signatures together to form a ring, here

43

entire rings of signatures are chained together providing a single and more
compact structure of the one that would arise from having r (r being now
the number of rings) separate AOS structures. Indeed, the use case of the
Borromean ring signatures in confidential transactions is the one in which
r separate AOS-like structures and consequently r rings of public keys are
needed.8 Though we do not enter now in the details of the benefits of Bor-
romean ring signatures, it is worth to notice that they provide a significant
space saving for what concerns signature size.
The ambiguous signer can now prove to know one of {q0,0 OR q0,1 OR . . . }
AND one of {q1,0 OR q1,1 OR . . . } AND . . . AND one of {qr−1,0 OR qr−1,1
OR . . . }, where the first index represents the ring, the second one represents
each public key in the ring (the number of public keys in each ring can in
principle differ from ring to ring, but in the described construction it will be
the same).
Thus, a Borromean ring signature configures as a signature on a message m
that can be produced by a signer that knows all of the private keys of all
the rings of verification public keys (one per ring) or by parties knowing all
of them.
Moreover, it is the way in which Borromean ring signature is designed to
make it achieve its compactness, which in turn affects the signature size (a
more compact structure in this case means a structure which requires less
public keys for verification). If we represent each ring by means of a graphical
structure, we can think of it as a graph with nodes, each referring to a public
key and labelled by its e-value. The AND/OR gate described above is ob-
tained without requiring multiple graphs, but by means of a graph structure
made of r rings, with the optimization of pinning a node (e.g. node 0) as
a shared node chaining all the rings. The shared node has an ingoing and
an outgoing edge per ring, which should be pretty clear given that it closes
all of the rings. Eventually, multiple s-values are associated to the shared
node and they either require a real private key or force a random e-value
by picking up a random s-value (in analogy with the description provided in
section 5.3.3).
A graphical representation can help in figuring out the overall structure. Fig-
ure 5.1 considers the example of a structure made of 4 rings all closing in
e0. Dashed edges represent those for which s-values are connected to known
private keys.

8We will enter in the details later in this section. However, we have already given a
hint in section 5.3.2: basically a ring per digit of the encrypted output amount is needed.

44

e0

e0,0

e0,1

e1,0

e1,1

e2,0e3,0

e3,1 e2,1

(s1,0, Q1,0)

(s1,1, Q1,1)

(s1,2, Q1,2)

(s3,0, Q3,0)

(s3,1, Q3,1)

(s3,2, Q3,2)

(s0,0, Q0,0)

(s0,1, Q0,1)

(s0,2, Q0,2)

(s2,0, Q2,0)

(s2,1, Q2,1)

(s2,2, Q2,2)

Figure 5.1: Graphical structure behind Borromean ring signatures

Source: adapted from [17]

The complete signature algorithm is the following. Let Qi,j, 0 ≤ i ≤ r − 1,
0 ≤ j ≤ mi − 1 be the collection of verification public keys. In particular, i
indexes each ring (these are r rings to be chained together), while j indexes
each public key (mi public keys per ring in total). Thus, Qi,j represents the
jth public key in the ith ring.
Moreover, let m be the message to be signed and {qi}i=0,...,r−1 be the private
key9 corresponding to {Qi,ji∗}i=0,...,r−1, ji∗ being the index of the signing
private key of the ith ring. Thus, Qi,ji∗ represents the public key in the ith

ring whose corresponding private key is the signing one (i.e. the one that
closes the ring).

9There’s no need to reference the position in the ring with a second index as there is a
known private key per ring only.

45

Algorithm 5.3 Borromean ring signature: signature algorithm

1: procedure Borromean-sign(m, qi : 0 ≤ i ≤ r− 1, Qi,j : 0 ≤ i ≤ r− 1,
0 ≤ j ≤ mi − 1)

2: M ← hash(m||Q0,0||Q1,0|| . . . ||Qr−1,mr−1−1)
3: for i← 0, . . . , r − 1 do

4: ki
$←− {1, ..., n− 1} . n: elliptic curve group order

5: ji∗
$←− {0, ...,mi − 1}

6: Ri,ji∗ ← kiG
7: if ((ji∗ + 1) % mi) 6= 0 then
8: for j ← (ji∗ + 1) % mi, . . . ,mi − 1 do

9: si,j
$←− {1, ..., n− 1}

10: ei,j ← int(hash(M ||Ri,j−1||i||j))
11: assert ei,j 6= 0 and ei,j < n
12: Ri,j ← si,jG− ei,jQi,j

13: end for
14: end if
15: end for
16: e0 ← hash(M ||R0,m0−1|| . . . ||Rr−1,mr−1−1)
17: for i← 0, . . . , r − 1 do
18: ei,0 ← int(hash(M ||e0||i||0))
19: assert ei,0 6= 0 and ei,0 < n
20: for j ← 1, . . . , ji∗ do

21: si,j−1
$←− {1, ..., n− 1}

22: ei,j ← int(hash(M ||si,j−1G− ei,j−1Qi,j−1||i||j))
23: assert ei,j 6= 0 and ei,j < n
24: end for
25: si,ji∗ ← ki + qiei,ji∗
26: end for
27: return (e0, si,j : 0 ≤ i ≤ r − 1, 0 ≤ j ≤ mi − 1)=: σ
28: end procedure

The algorithm produces a valid signature for the whole structure, namely it
provides a signature of knowledge of the r private keys {qi}i=0,...,r−1 corre-
sponding to public keys {Qi,ji∗}i=0,...,r−1.
For what concerns the computation of the s-values and e-values and focusing
on single rings, it can be noticed that in analogy with the AOS construction
each edge i from a node labelled with its e-value is characterized by a si value
which is either random or equal to si = ki + qiei and each node with a sin-
gle incoming and outcoming edge (all but the shared one) has an associated

46

e-value of the type ei = hash(m||si−1G− ei−1Qi−1).
On the other hand, the unique node with multiple ingoing and outgoing edges
computes the e-value as e0 = hash(m||s0,m0−1G−e0,m0−1Q0,m0−1|| . . . ||sr−1,mr−1−1G−
er−1,mr−1−1Qr−1,mr−1−1) as it closes r rings.
Some other remarks would help in explaining the whole algorithm. First of
all, notice the concatenation of both ring number and position in the ring
into the computation of e-values which guarantees the impossibility of mov-
ing rings around without breaking the signature. This of course does not
apply to the shared node (node 0) as it is common to all rings.
For what concerns the message, it is unique for the whole structure, not ring-
specific. This shouldn’t be surprising if one recalls that the message to be
signed is the hash of the commitment. Thus, being the whole chain of rings
to commit to a single commitment, this implies the message being unique.10

Verification happens according to Algorithm 5.4. Indexes obviously run as
before and the algorithm takes as inputs the message m, the whole signature
σ and the set of verification public keys Qi,j, 0 ≤ i ≤ r − 1, 0 ≤ j ≤ mi − 1.
Observe that it is much simpler than the signature algorithm. It avoids the
two phases of the signature procedure as it does not depend on which signing
keys per ring are known (of course because a verifier does not know them).
Before entering in the details of how Borromean ring signatures are effectively
deployed, let us evaluate their benefits in the comparison with the equiva-
lent structure made of AOS ring signatures. Indeed, the construction above
should have pointed out that a Borromean ring is structurally equivalent to
a number of AOS rings chained in a single shared node. Consider r rings and
N verification public keys per ring.

Signature size
r AOS ring signatures r ·N + r (32-bytes numbers)

Borromean ring signature r ·N + 1 (32-bytes numbers)
∆ r - 1 (32-bytes numbers)

Table 5.3: Borromean ring signature: signature size

The Table 5.3 summarizes signature sizes and computes the saving obtained
via Borromean ring signatures. First of all, observe that verifying r AOS
ring signatures requires r · N s-values (N per ring) and r e-values (1 per
ring) being published. A Borromean ring signature requires instead a unique
e-value (the shared one), from which one can easily derive the overall saving.

10In the AOS ring signature construction each ring commits to a single commitment,
thus the message becomes ring-specific.

47

Indeed, it is worth to notice that as the number of rings increases the saving
becomes significant. For the small structure in Figure 5.1 with 4 rings and 3
verification public keys each we get already a ∼ 20% shorter signature.

Algorithm 5.4 Borromean ring signature: verification algorithm

1: procedure Borromean-verify(m,σ,Qi,j : 0 ≤ i ≤ r − 1, 0 ≤ j ≤
mi − 1)

2: M ← hash(m||Q0,0||Q1,0|| . . . ||Qr−1,mr−1−1)
3: for i← 0, . . . , r − 1 do
4: ei,0 ← int(hash(M ||e0||i||0))
5: if ei,0 = 0 or ei,0 ≥ n then . n: elliptic curve group order
6: return “false”
7: end if
8: for j ← 0, . . . ,mi − 1 do
9: Ri,j+1 ← si,jG− ei,jQi,j

10: if j 6= mi − 1 then
11: ei,j+1 ← int(hash(M ||Ri,j+1||i||j + 1))
12: if ei,j+1 = 0 or ei,j+1 ≥ n then
13: return “false”
14: end if
15: end if
16: end for
17: end for
18: e

′
0 ← hash(M ||R0,m0−1|| . . . ||Rr−1,mr−1−1)

19: return e
′
0 = e0

20: end procedure

This section ends with the explanation of how Borromean ring signatures
effectively provide Zero-Knowledge range proofs. Their role was previewed
in section 5.3.2.
We have already defined range proofs as additional pieces of data attached
to each transaction output proving that the committed output amount lies
in a predetermined range of positive values. The first point that needs clari-
fication is the definition of what a proper range would be. This depends on
the kind of range proof exploited (in terms of bits of randomness one wants
to achieve). For instance, a standard 32-bit range proof limits to a range in
between 1 and 232−1 satoshis (42.94967295 BTC). However this in principle
does not prevent larger outputs to be created, both because any value in be-
tween 2 and 64 bits of randomness can be chosen (provided the relative range

48

is made public) and because confidential transactions even support scaling
the amount by a power of 10. This latter feature means that provided it
is specified that the proof does not deal with satoshi units, but rather with
multiples of them, it is possible to process amounts in higher ranges through
small proofs.11 For instance referring to the above 32-bit proof, dealing with
106 satoshis as unit, it would be possible to embed all possible amounts rang-
ing in between 0.01 and 42949672.95 BTC.
It is also clear that it is even possible to use large ranges for small proofs,
but this would make the proof slower to create and verify and it would even
imply higher fees.
Then it comes the time for the sender to effectively build a range proof per
transaction output. As first step, this implies considering the committed out-
put amount (in a given encoding) and ring-signing (with a Borromean-style
ring signature) over each digit. The encoding chosen by confidential trans-
actions for the output amount is a base-4 encoding and the reason behind
such a choice is that it minimizes the overall number of commitments sent.
We start by building the range proof step by step, then we will justify the
base-4 representation. For simplicity of notation we consider the 32-bit range
proof described above. The procedure is the following:

• consider the output amount in its base-4 expansion;12

v = v0 · 40 + v1 · 41 + v2 · 42 + · · ·+ v15 · 415.

• Ring-sign over each digit, which implies:

• committing through a Pedersen commitment to each digit value, i.e.
building Ci = riG+vi4

iH, i = 0, . . . , 15, making sure that the sum of
commitments is exactly C, the commitment to the value associated
to the transaction output;

• “arranging” 16 rings of signatures (one per digit) with 4 verification
public keys per ring, each committing to one digit value vi in 0, . . . , 3;

• providing (for each digit) a Borromean ring signature over the ring

{riG+vi4
iH, riG+vi4

iH−4iH, riG+vi4
iH−2·4iH, riG+vi4

iH−3·4iH}.

Thus on the one hand each ring proves each digit to commit to a value
vi ·4i, i = 0, . . . , 3 (without knowing which one), from which it should

11As explained in https://bitcoin.stackexchange.com/questions/46865/
confusion-of-confidential-transactions.

12A 32-bits number can be represented with 16 digits in base-4.

49

https://bitcoin.stackexchange.com/questions/46865/confusion-of-confidential-transactions
https://bitcoin.stackexchange.com/questions/46865/confusion-of-confidential-transactions

be clear that the resulting Borromean ring signature proves the whole

commitment to range in [1,
15∑
i=0

vi · 4i] satoshi. On the other hand, if

vi /∈ {0, 1, 2, 3} none of the commitments would be a commitment
to vi = 0, thus preventing the ring to be signable according to the
arguments given in section 5.2.1 and to the example presented in
section 5.3.2.

• Publish the range proof associated to the transaction output.
Notice that according to the outlined scheme, it consists of the set of
commitments to each digit value vi plus the whole Borromean signature:

RPv = (C0, . . . , C15, e0, s0,0, . . . , s0,3, . . . , s15,0, . . . , s15,3︸ ︷︷ ︸
signature

),

where as usual the indexes of the s-values respectively refer to ring number
and position in each ring.

For the sake of clarity we can show a concrete example of the whole procedure.
Consider a transaction output of 2,010 BTC (i.e. 20100000010 satoshi ↔
00233323001010004 satoshi).
Then, commit to each digit value of the encoded amount through a Pedersen
commitment Ci = riG+vi4

iH. For instance, considering the third digit from
the left (which is a 2), it would mean building the following:

C13 = r13G+ 2 · 413H = r13G+ 134217728H.

Then arrange the following set of public keys (for the considered digit):

C13,0 = C13 − 0H

C13,1 = C13 − 1 · 413H = C13 − 67108864H

C13,2 = C13 − 2 · 413H = C13 − 134217728H

C13,3 = C13 − 3 · 413H = C13 − 201326592H

Eventually provide a Borromean ring signature over this ring, which in the
background means to perform a real signature for C13,2 = r13G.
For what concerns the range proof size, consisting of the shared e-value, 4
s-values per ring and a commitment per ring it is about 2.6 KB per trans-
action output. Given these premises, it can also be proven that the base-4
representation minimizes the total size of the range proof.
Indeed, given that y is the number of bits-per-digit in each encoding13 and

13Base 2 ↔ 1 bit per digit; base 4 ↔ 2 bits per digit; base 8 ↔ 3 bits per digit etc.

50

given that we are considering 32-bit range proofs, it can be proven that the
total number of commitments plus s-values (the e-value is unique indepen-
dently of the encoding) is given by N(y) = 32

y
· (1 + 2y).

Figure 5.2: Total number of commitments plus s-values

As Figure 5.2 shows, N(y) takes its minimum around y = 2, meaning that
the minimization occurs when considering the base-4 encoding.

5.4 Sender/receiver communication

What is left out are the details about the communication between sender and
receiver for what concerns setting of the blinding factors and transmission
of the committed amounts. Indeed, from the point of view of the network
range proofs represent proofs that output amounts are valid, but amounts
(together with blinding factors) stay secret as they are blinded by Peder-
sen commitments. However, both amounts and blinding factors need to be
known by participants in the transaction. This opens the issue of their safe
transfer from sender to receiver.
It turns out that confidential transactions succeed in providing a space-saving
solution to embed these secret data in the transaction without adding more
data rather than commitments and range proofs. Indeed, amounts are em-
bedded in range proofs without taking up more space; blinding factors can
be retrieved by sender and receiver only as part of a deterministic generation
process which enables the transfer to happen non-interactively.
In addition to this, it is even possible to transfer arbitrary user-selected data

51

without further overload.
Thus, we will see how the ECDH primitive presented in section 4.4 is ex-
ploited to serve the purpose this section is all about. First of all we recall
that an instance of ECDH is needed to define a shared key between sender
and receiver.
A peculiarity of confidential transactions is that each address contains a scan-
ning public key for ECDH purpose only. More precisely, the sender ECDH
public key is published as part of the output (it coincides with QA in the
scheme of section 4.4), while each confidential transaction address contains
the ECDH public key of the receiver (QB in section 4.4). Eventually qA and
qB play the role of ECDH ephemeral private keys (respectively associated to
the sender scanning key and the receiver one). Given this, it is clear that
both sender and receiver can compute the same secret key as it was described
in section 4.4.
The shared key is then used by both sender and receiver to seed a RFC6979
[24] pseudo-random number generator (prng) to deduce the same blinding
factors and random s-values which enter in the Borromean ring signature
algorithms. Indeed without entering in the details of the RFC6979 standard,
this is used to deterministically and safely generate the nonce k to be used
in ECDSA signatures and outside ECDSA can basically work as a crypto-
graphically secure pseudo-random number generator taking as input a seed.
Moreover, various rounds of RFC6979 can be run in sequence, each time us-
ing the previous output as seed.
Making this process deterministic, provides some sort of advantages. Among
these there is certainly the possibility to distinguish where randomness re-
sides and exploit the feature accordingly. For the sender, this configures in
the possibility to send the committed transaction output amount (and pos-
sibly other kinds of arbitrary selected data) over predetermined and forged
signature values (we will describe how in a while); for the receiver, this means
to possibly “rewind” the proof and in turn generate the same blinding fac-
tors of the sender, read the transaction output amount and extract further
messages the sender could have sent.
We will enter now in all of these details.

• Setting and transmission of the blinding factors:
the 32-bit range proof of the previous section includes a commitment per
digit of the committed output amount, the blinding factors of which should
be known by the receiver (their sum being nothing else than the blinding
factor of the commitment to the output amount). Indeed, 16 blinding
factors (one per ring) should be shared by sender and receiver.
At this extent the 32-byte shared key derived from the ECDH instance is

52

used as first seed to a RFC6979 prng, each successive output is used as
next seed to deduce all of the blinding factors r0, r1, . . . , r15 (though r15 is
obtained by difference so as to to match the sum of the blinding factors
from inputs).

• Generation of forged signatures and nonces:
as we have described, in the Borromean ring signature algorithm a single
s-value per ring is obtained from a known private key, all the others are
forged, but indistinguishable from random. In the example of the 32-bits
range proof discussed in the previous section, this means that 3

4
of the

s-values are forged and again a RFC6979 prng is used to generate them in
such a way that the receiver would be able to easily retrieve all of them
by seeding the prng with the same seed the sender has used.
For what concerns nonces k, one per ring is required to be picked uniformly
at random. Observe that ki, i = 0, . . . , r − 1 enters in the computation of
the real s-value only, meaning that even for the remaining 1

4
of the s-values

generation of random values is needed (and the same solution is adopted).

• Transmission of committed amount:
the transaction output amount is embedded in the already provided con-
struction in such a way that it is easily available to the receiver and does
not occupy more space.
Given that the published range proof has to be indistinguishable from
random for anybody but the participants in the transaction, after locat-
ing where randomness resides (s-values that can be retrieved via RFC6979
procedure are the forged ones) the idea is to replace this randomness in the
range proof with an encrypted message that the receiver only can decode.
In particular, the amount is embedded into one of the forged signatures
(usually the last one, unless it is the real one) by XORing14 it with the
forged s-value for that signature. Indeed, the XOR does not affect the
pseudo-randomness of the original s-value. Moreover, it could be useful to
stress once more the fact that only forged signatures are tampered with
in this way; the real s-value is necessary to close the ring and validate the
signature, so it mustn’t be manipulated.

14The XOR is the bitwise addition without carry. Among its properties:

• A ⊕ 0 = A;

• A ⊕ A = 0;

• (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C);

• (B ⊕ A) ⊕ A = B ⊕ 0 = B.

53

Referring to forged signatures only (and consequently forged s-values only),
let scommon be the s-value deterministically generated via the RFC6979 pro-
cedure and spublished be the s-value actually published by the sender in the
range proof. What this means is that spublished is given by

spublished = scommon ⊕ amount,

and implies that:

scommon ⊕ spublished = scommon ⊕ scommon ⊕ amount = amount.

Thus, the receiver by looking at the last s-value (unless it is the case that
the last s-value is not forged) and computing scommon ⊕ spublished sees the
amount if the last signature has been tampered with it, 0 if not.

• Transmission of other user-defined data:
the amount takes 32 bytes only, all the rest less the space corresponding to
real s-values (which is however almost 80% of the size of the range proof)
can be exploited in a similar way for the transmission of arbitrary data.
These data rather than the amount would be XORed in with the pseudo-
random s-values.
Thus, at least one (if no arbitrary data is sent) of the forged s-values
published as part of the range proof is the result of a XORing.

• Proof’s “rewind” by the receiver:
given the shared key, the receiver can run the same RFC6979 procedure of
the sender and in turn deduce same blinding factors and s-values. In turn
he can perform the XOR operation as it was described before.

5.5 Benefits and downsides

Confidential transactions can be possibly constructed without adding any
additional cryptographic assumptions with respect to the ones underlying
the main protocol: this means that they just require the hardness of the
ECDLP. This is quite relevant as it is not that common to add privacy fea-
tures without relying on harder assumptions.
However, what effectively makes confidential transactions (at least in the
form presented in this work) not ready yet for integration in the main pro-
tocol is the excessive overload on transaction size. The presented solution
(which builds range proofs through Borromean ring signatures) requires a
proof which is about 2.6 KB per transaction output (with 32 bits of preci-
sion), which means a total size of about 5.4 KB (5 KB of which deriving from

54

the range proof) for a typical transaction with two outputs (the transaction
size even grows linearly with the number of outputs); too much with respect
to a standard Bitcoin transaction.

Moreover, confidential transactions are actually implemented in the Elements
sidechain.15 De facto they introduce a different transaction format with re-
spect to the one presented in Chapter 2. Each output includes Pedersen
commitment to the output amount, associated range proof, ECDH public
key of the sender and locking script. Despite not having presented the de-
tails, in section 5.4 it was mentioned that they even introduce a new type of
address (longer than a standard one) called confidential transaction address
which includes the ECDH public key of the receiver. The locking script in-
cludes the confidential transaction address.
A very powerful comprehensive schema can be seen in Figure 5.3 and is taken
from [11]. It represents a confidential transaction with two inputs and two
outputs.

Figure 5.3: Confidential transaction format

Source: [11]

15See https://github.com/ElementsProject/elements.

55

https://github.com/ElementsProject/elements

Chapter 6

Conclusions

This thesis has tried to motivate the importance for Bitcoin to adopt tech-
nologies enhancing privacy in the incoming years. This would not merely
improve the privacy of people transacting (which is indeed fundamental),
but even strengthen its ability to serve as money. Indeed, though it cannot
be recognized as a good unit of account, Bitcoin is a good store of value
(it is durable, it can be reliably saved, stored with low costs and easily re-
trieved) and an excellent medium of exchange (it is easily portable, divisible,
swappable, resistant to counterfeiting). Its greatest lack is that it is not that
fungible and it is the case that fungibility is strictly linked to privacy.
At the same time, this work should have outlined the reasons why no privacy-
based solutions have been soft-forked yet in Bitcoin at the time of writing; this
is not certainly for a lack of proposals, quite the opposite. Developers have
worked in this direction since long time, but cryptographic, privacy-based
solutions are costly and require commitments, thus opening other issues.
Moreover, through confidential transactions [14] we have explored some nice
features of homomorphic encryption applied to commitment schemes, the in-
teresting field of Zero-Knowledge proofs, a fancy variant of digital signature
scheme and a clever solution for the communication of transaction amount,
blinding factors and other user-selected metadata between participants in
the transaction.
Confidential transactions basically hides each output amount through a Ped-
ersen commitment to the amount and add a range proof ensuring that the
amount does not overflow. The solution we have described builds each range
proof through a Borromean ring signature. Among the strengths of confiden-
tial transactions, the fact that these can be possibly constructed without new
cryptographic assumptions with respect to the main protocol, but relying on
the hardness of the ECDLP (differently from some alternative schemes like
Zcash’s ones) and the substantial savings in terms of size and verification

56

time with respect to previous solutions (which have made them sources of
inspiration for privacy-based alt-coins like Monero, that has effectively im-
plemented confidential transactions through ring signatures, RingCT [19]).
On the other hand, the solution suffers from the size of the range proof at-
tached to each transaction output (and thus of the entire transaction) being
too large.
These weaknesses have prevented confidential transactions to be soft-forked
in Bitcoin up to now.
More recently, however, a new and more efficient solution to range proof
construction [8] has been proposed. Its name is Bulletproofs and it is likely
worth studying: it could be the solution being effectively soft-forked in the
future (it even naturally marries some older proposals) and effectively bring-
ing consistent privacy in the protocol. Indeed, Bulletproofs is still well-suited
for constructing efficient range proofs on committed value, but it also adds
various optimizations.
At first, it provides aggregation of range proofs: it would be possible to
prove that m commitments lie in a given range by just providing additional
O(logm) group elements with respect to a single proof, making it growing
logarithmically with the number of transaction outputs. This would be al-
ready useful for confidential transactions by themselves as standard Bitcoin
transactions have generally at least two outputs and it would even make it
efficiently combine with Coinjoin [13]. Additionally it could simultaneously
double the range proof precision at marginal additional cost.
Then, it would allow batched verification of multiple Bulletproofs.
All of these enhancements with a total transaction size not so bigger than a
standard transaction according to [8, 16].
Moreover, confidential transactions are even beneficial for a newborn and
promising cryptosystem called Mimblewimble [12, 22]. Mimblewimble is still
a transaction output based system (thus a Bitcoin-like blockchain system)
which however implements confidential transactions from the beginning. At
the time of writing it is already being built through Bulletproofs, thus in-
heriting its benefits. Moreover, Mimblewimble removes the need for the
unlocking script because it allows to prove a transaction to commit to a
Pedersen commitment to 0 just signing the transaction through the differ-
ence of the commitments to outputs and inputs. Other than this, it can
benefit from transaction aggregation and enables the construction of a sim-
plified blockchain where spent transactions can be pruned, thus improving
scalability.

57

Appendix A

Abstract algebra fundamentals

This appendix is aimed at providing some fundamental notions of algebra of
sets and number theory at the basis of the considered public-key cryptosys-
tem. Definitions are mainly taken from [20] and adapted when needed.

A.1 Groups

We start from the definition of a group.

Definition A.1.1. A group is a set of elements G together with an oper-
ation ◦ which combines two elements of G. A group satisfies the following
properties:

• The group operation ◦ is closed: ∀a, b ∈ G→ a ◦ b ∈ G.

• The group operation ◦ is associative: ∀a, b, c ∈ G→ (a◦b)◦c = a◦(b◦c).

• Identity: ∃e ∈ G | ∀a ∈ G, e ◦ a = a ◦ e = a.

• Invertibility: ∀a ∈ G, ∃b ∈ G | a ◦ b = b ◦ a = e. This element is called
inverse of a and it is commonly denoted either as a−1 or −a, depending
on the notation (multiplicative or additive).

• A group G is abelian (or commutative) if, furthermore, ∀a, b ∈ G →
a ◦ b = b ◦ a.

Depending on whether we consider additive or multiplicative notation, the
operation ◦ stands respectively for addition or multiplication.

Remark A.1.1. The group operation ◦ is called group law of G.

58

Remark A.1.2. The number of elements in a group G is called group order
(or cardinality). We denote it by |G|.

Example A.1.1. (Z,+) is a group. Particularly, it forms an abelian group
where e = 0 is the identity element, b = −a is the inverse of an element
a ∈ Z.

Example A.1.2. (Z\{0}, ·) is not a group. Particularly, @b = a−1 for an
element a ∈ Z with the exception of the elements -1 and 1.

Example A.1.3. (Zm,+), where Zm = {0, 1, . . . ,m−1} and the operation is
the addition modulo m, form a group (of order m) with the identity element
e = 0. Every element a has an inverse b = −a such that a + (−a) = 0 mod
m.

Remark A.1.3. This last example points out a straightforward, yet impor-
tant, fact. By definition, the inverse must belong to the group → b = m− a
is the inverse of any group element a.

Remark A.1.4. Observe that (Zm, ·) is not a group. Most elements a do
not have an inverse such that aa−1 = 1 mod m.

Actually, in cryptography it turns out that the groups playing a significant
role are those with a finite number of elements. We briefly focus now on one
of them, (Z∗m, ·), the multiplicative group of Zm.
Let’s start with some definitions.

Definition A.1.2. Given x, y ∈ Z, gcd(x, y) is the greatest common divisor
of x, y.

Remark A.1.5. If gcd(x, y) = 1, we say that x, y are relatively prime.

Lemma A.1.1. ∀x, y ∈ Z, ∃a, b ∈ Z s.t. ax + by = gcd(x, y). a,b, can
be efficiently found through the extended Euclidean algorithm (see [20] for
details).

Given the definition of inverse element of a group seen above, we introduce
the following:

Lemma A.1.2. x in (Zm, ·) has an inverse ←→ gcd(x,m) = 1.

Proof. (−→) Suppose by contradiction that gcd(x,m) > 1. Then, ∀a :
gcd(ax,m) > 1 → ax 6= 1 in Zm, which (according to Definition A.1.1)
contradicts the hypothesis.
(←−) ∃a, b: ax+��bm = 1 (bm = 0 mod m, thus bm = 0 in Zm) → ax = 1 in
Zm → x is invertible in Zm, the inverse being x−1 = a.

59

Proposition A.1.1. (Z∗m, ·) = {x ∈ Zm : gcd(x,m) = 1} forms an abelian
group. The identity element is e = 1.

Proof. The proof is straightforward and comes from the verification of the
group properties described above.

Remark A.1.6. In particular, if m is prime, then Z∗m = Zm\{0}.

A.1.1 Cyclic groups

Next step before coming to field structures is to introduce the notion of cyclic
group, necessary in turn to introduce the Generalized Discrete Logarithm
Problem, which is at the basis of ECC.
Let’s first start with some preliminary definitions.

Definition A.1.3. A group (G, ◦) is finite if it has a finite number of ele-
ments.

Definition A.1.4. The order ord(x) of an element x of a group (G, ◦) is the
smallest positive integer k such that xk = 1, e = 1 being the identity element
of G.

Example A.1.4. In (Z∗7, ·), ord(x = 2) = 3. Indeed 21 = 2 mod 7, 22 = 4
mod 7, 23 = 1 mod 7.
It is even interesting to see that by keeping on computing powers of x = 2,
those will keep on running through the above sequence. Indeed, 24 = 2 mod
7, 25 = 4 mod 7, 26 = 1 mod 7.

Based on this,

Definition A.1.5. A group (G, ◦) which contains an element x with maxi-
mum order ord(x) = |G| is said to be cyclic. Elements with maximum order
are called generators and are denoted by g.

Remark A.1.7. The reason for which g is called generator is that it gen-
erates (or spans) the entire group (all the group elements can be recovered
by raising g to the powers 1, . . . , |G|). In the previous example, g = 3 is a
generator.

Remark A.1.8. It is also clear that not every element is a generator of the
cyclic group (x = 2 being an example).

Then we introduce three more theorems defining fundamental properties of
cyclic groups. The first one is the following, by Euler.

60

Theorem A.1.1. For every prime p, (Z∗p, ·) is an abelian finite cyclic group.

Theorem A.1.2. Let G be a finite cyclic group. Then ∀x ∈ G, ord(x)
divides |G|.

Consequently, in a cyclic group there exist only element orders dividing ex-
actly the cardinality of the group.

Remark A.1.9. In the already analyzed (Z∗7, ·), the only possible element
orders are ord(x) = 1, 2, 3 being |G| = 6.

Theorem A.1.3. Let G be a finite cyclic group. Then, if |G| is prime, all
elements x 6= 1 ∈ G are generators.

Proof. By Theorem A.1.2, being the group cardinality a prime, the only
possible element orders are ord(x) = 1 or ord(x) = |G|. As ord(x) = 1 ←→
x = 1, then any x = g 6= 1 ∈ G is a generator.

The last needed definition concerning group is the one of subgroups, basically
non-empty subsets H of a (cyclic) group G being themselves groups.

Theorem A.1.4. Let (G, ◦) be a cyclic group. Then every element x ∈ G
with ord(x) = s is the generator of a cyclic subgroup with s elements.

A.2 Fields

We can eventually introduce the definition of field.

Definition A.2.1. A field K 6= 0 is a set of elements with the following
properties:

• (K,+) is an abelian (additive) group, with identity element e = 0.

• (K\{0}, ·) is an abelian (multiplicative) group, with identity element
e = 1.

• The distributivity law holds, i.e., ∀ a, b, c ∈ K: a·(b+c) = (a·b)+(a·c).

Example A.2.1. The set (R,+, ·) of real numbers is a field with identity
element e = 0 for the additive group and identity element e = 1 for the mul-
tiplicative group. ∀a ∃b = −a additive inverse, ∀a 6= 0 ∃b = 1

a
multiplicative

inverse.

Example A.2.2. For every prime p, the set (Zp,+, ·) is a field.

61

Remark A.2.1. Example A.2.2 shouldn’t be much of a surprise, given the
premises. Indeed, we have already seen (Zp,+) is an additive group; (Zp\{0}, ·)
in principle (p generic) wouldn’t be a multiplicative group, but p prime im-
plies (Zp\{0}, ·) ≡ (Z∗p, ·), which we have already seen being a multiplicative
group.

Remark A.2.2. Example A.2.2 is also the most common representative of
prime finite field, which cryptography is most concerned on.

A.2.1 Finite fields

Definition A.2.2. A finite field is a field with a finite number of elements
(also called Galois field).

Theorem A.2.1. A finite field of order q, denoted as Fq, only exists if
q = pk, p prime number, k positive integer.

In particular, prime finite fields (Example A.2.2 being the most representative
example) takes a fundamental role in dealing with the DLP, argument of the
next section.

A.3 Discrete Logarithm Problem

We conclude the appendix with the Discrete Logarithm Problem, in its var-
ious formulations.
Consider the prime finite field Fp = (Zp,+, ·), p prime.
It turns out that the DLP can be directly explained through cyclic groups
(from which our previous concern in their description). We present it in its
multiplicative form (thus DLP over (Z∗p, ·)), the additive one being simple to
recover from.

Definition A.3.1. Given the finite cyclic group (Z∗p, ·), a generator g ∈ Z∗p
and another element y ∈ Z∗p, the DLP is the problem of determining the
integer 1 ≤ k ≤ p− 1 such that gk = y mod p.

Remark A.3.1. Being g a generator of a finite cyclic group and y another
group element, k must necessarily exist due to Remark A.1.7.

Remark A.3.2. k = logg y mod p, from which its name.

Remark A.3.3. The obvious transposition to additive groups: determining
k such that kg = y.

62

Here it comes, instead, the reason of the introduction of subgroups.

Remark A.3.4. It is often desirable to have the DLP in groups where |G| is
prime to prevent the so called Pohlig-Hellman attack1; being |Z∗p| = p−1 (not
prime), subgroups of Z∗p with | · | = n, n < p, n prime are usually exploited.

A.3.1 Generalized Discrete Logarithm Problem

It is possible to generalize and present the DLP over an arbitrary cyclic
group, which is at the basis of ECC.

Definition A.3.2. Given a finite cyclic group (G, ◦) such that |G| = n, a
generator g ∈ G and y ∈ G, the GDLP is the problem of determining the
integer k, 1 ≤ k ≤ n such that y = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

k times

= gk.

Remark A.3.5. The same considerations presented before hold here.

1For security considerations we refer to [20]; the only thing we point out is that the
cited one is not the only possible attack (brute-force search, Baby-step giant-step, Pollard ρ

method being other possibilities) and that the best known algorithm runs in time O(|G| 12).

63

Bibliography

[1] Bitcoin developer guide. https://bitcoin.org/en/developer-
reference.

[2] Sec 1: Elliptic curve cryptography. http://www.secg.org/sec1-v2.pdf,
2009.

[3] Abe, M., Ohkubo, M., and Suzuki, K. 1-out-of-n signatures from
a variety of keys. https://www.iacr.org/archive/asiacrypt2002/
25010414/25010414.ps, 2002.

[4] Ammous, S. The Bitcoin Standard. Wiley, 2018.

[5] Andreev, O. Blockchains in a quantum future - protecting against
post-quantum attacks on cryptography. https://blog.chain.com/
preparing-for-a-quantum-future-45535b316314, 2017.

[6] Antonopoulos, A. M. Mastering Bitcoin. O’Reilly, 2017.

[7] Back, A., Corallo, M., Dashjr, L., Friedenbach, M.,
Maxwell, G., Miller, A., Poelstra, A., Timn, J., and Wuille,
P. Enabling blockchain innovations with pegged sidechains. https:

//blockstream.com/sidechains.pdf, 2014.

[8] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P.,
and Maxwell, G. Bulletproofs: Short proofs for confidential trans-
actions and more. https://eprint.iacr.org/2017/1066.pdf, 2017.

[9] Franco, P. Understanding Bitcoin. Wiley, 2014.

[10] Gibson, A. From zero (knowledge) to bulletproofs. https://

github.com/AdamISZ/from0k2bp/blob/master/from0k2bp.pdf.

[11] Gibson, A. An investigation into confidential transactions.
https://github.com/AdamISZ/ConfidentialTransactionsDoc/
blob/master/essayonCT.pdf.

64

https://bitcoin.org/en/developer-reference
https://bitcoin.org/en/developer-reference
http://www.secg.org/sec1-v2.pdf
https://www.iacr.org/archive/asiacrypt2002/25010414/25010414.ps
https://www.iacr.org/archive/asiacrypt2002/25010414/25010414.ps
https://blog.chain.com/preparing-for-a-quantum-future-45535b316314
https://blog.chain.com/preparing-for-a-quantum-future-45535b316314
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://eprint.iacr.org/2017/1066.pdf
https://github.com/AdamISZ/from0k2bp/blob/master/from0k2bp.pdf
https://github.com/AdamISZ/from0k2bp/blob/master/from0k2bp.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf

[12] Jedusor, T. E. Mimblewimble. https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.txt, 2016.

[13] Maxwell, G. Coinjoin: Bitcoin privacy for the real world. https:

//bitcointalk.org/index.php?topic=279249.0, 2013.

[14] Maxwell, G. Confidential transactions. https://people.xiph.org/

~greg/confidential values.txt, 2015.

[15] Maxwell, G. Improve transaction privacy / fungibility in bitcoin core
and the bitcoin system [meta tracking issues]. https://github.com/
bitcoin/bitcoin/issues/6568, 2015.

[16] Maxwell, G. [bitcoin-dev] updates on confidential transactions ef-
ficiency. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2017-November/015283.html, 2017.

[17] Maxwell, G., and Poelstra, A. Borromean ring signatures.
https://github.com/ElementsProject/borromean-signatures-
writeup.

[18] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system, http:
//bitcoin.org/bitcoin.pdf, 2008.

[19] Noether, S., Mackenzie, A., and the Monero Research Lab.
Ring confidential transactions. ledgerjournal.org (2015). https://

eprint.iacr.org/2015/1098.

[20] Paar, C., and Pelzl, J. Understanding Cryptography. Springer,
2009.

[21] Pedersen, T. P. Non-interactive and information-theoretic secure
verifiable secret sharing. https://link.springer.com/content/pdf/
10.1007/3-540-46766-1 9.pdf, 1991.

[22] Poelstra, A. Mimblewimble. https://download.wpsoftware.net/
bitcoin/wizardry/mimblewimble.pdf.

[23] Poon, J., and Dryja, T. The bitcoin lightning network: Scalable
off-chain instant payments. https://lightning.network/lightning-
network-paper.pdf, 2016.

[24] Pornin, T. Deterministic Usage of the Digital Signature Algo-
rithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA).
https://rfc-editor.org/rfc/rfc6979.txt, Aug. 2013.

65

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/bitcoin/bitcoin/issues/6568
https://github.com/bitcoin/bitcoin/issues/6568
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-November/015283.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-November/015283.html
https://github.com/ElementsProject/borromean-signatures-writeup
https://github.com/ElementsProject/borromean-signatures-writeup
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://link.springer.com/content/pdf/10.1007/3-540-46766-1_9.pdf
https://link.springer.com/content/pdf/10.1007/3-540-46766-1_9.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://rfc-editor.org/rfc/rfc6979.txt

[25] Rivest, R. L., Shamir, A., and Tauman, Y. How to leak a secret.
https://www.iacr.org/archive/asiacrypt2001/22480554.pdf, 2001.

[26] Rosenberg, M. Confidential transactions from basic princi-
ples. http://cryptoservices.github.io/cryptography/2017/07/
21/Sigs.html, 2017.

[27] Song, J. Programming bitcoin. https://github.com/jimmysong/
programmingbitcoin.

[28] Wuille, P. Schnorr’s bip. https://github.com/sipa/bips/blob/
bip-schnorr/bip-schnorr.mediawiki, 2018.

66

https://www.iacr.org/archive/asiacrypt2001/22480554.pdf
http://cryptoservices.github.io/cryptography/2017/07/21/Sigs.html
http://cryptoservices.github.io/cryptography/2017/07/21/Sigs.html
https://github.com/jimmysong/programmingbitcoin
https://github.com/jimmysong/programmingbitcoin
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Acknowledgements
	Introduction
	Structure of the thesis
	Notation

	Transactions in Bitcoin
	Transaction outputs and other details
	Bitcoin scripting language
	Bitcoin script templates

	Privacy and fungibility issues in Bitcoin
	Types of privacy in Bitcoin
	Confidential transactions address value privacy
	Compatibility with different solutions

	Fungibility
	Bitcoin is weakly fungible
	Fungibility vs scalability

	Cryptographic primitives
	Commitment schemes
	Additively homomorphic commitment
	Pedersen commitment

	Zero-Knowledge Proofs of Knowledge
	Ring signatures
	Elliptic Curve Diffie-Hellman
	ECDH primitive
	ECDH Key Exchange protocol

	Confidential transactions
	Transaction amount encryption
	NUMS generators construction
	Explicit fees

	Homomorphic encryption features
	Commitment to value 0 & network verification
	Blinding factors setting

	Zero-Knowledge range proofs
	Enforce zero-knowledgeness: ring signatures
	Role of ring signatures in confidential transactions
	AOS ring signatures
	Borromean ring signatures

	Sender/receiver communication
	Benefits and downsides

	Conclusions
	Abstract algebra fundamentals
	Groups
	Cyclic groups

	Fields
	Finite fields

	Discrete Logarithm Problem
	Generalized Discrete Logarithm Problem

