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Abstract

Operating Rooms account for roughly 40% of Hospitals’ expenses and revenues [63]. The perfor-

mance of the Operating Theater is thus vital for the overall economic efficiency of the Hospital.

This project has been carried out in collaboration with Hospital Bichat (Paris, France) and involves

discrete event simulation with stochastic surgery and cleaning durations, including personnel con-

straints and PACU beds. Input data of surgery durations, PACU Length of Stay (LOS) and first case

delay have been analyzed from historical data recorded by the Hospital. Simulation has been used

to (1) quantitatively evaluate the impact of Turnover, PACU saturation and First Case Delay over

the overall time losses of the Operating Theater, (2) propose a scheduling heuristic which considers

the performance of the Operating Theater and personnel’s satisfaction. ANOVA has been used to

validate the positive effect of the heuristic over the Operating Theater’s makespan. Informal in-

terviews with caregivers and a structured literature review have been conducted to set personnel’s

satisfaction constraints. To incentivize the application of this project, the simulation model has

been integrated with Excel to produce a user friendly interface.

Keywords Discrete event simulation; optimization operating rooms; scheduling heuristic; data

analysis; operating theater performance
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Chapter 1

Introduction

This project is focused on the research of prospective performance improvements in the Operating

Theater Scheduling and Staffing of Hôpital Bichat-Claude Bernard in Paris, while including some

constraints to match care givers’ expectations and satisfaction. Both issues relevantly impact the

overall economic performance of the Institution: process optimization impacts the productivity of

the system, while personnel’s satisfaction is expected to negatively impact the turnover rate. The

project is narrowed on elective patients, since this is the core business of Hospital Bichat (18 out of

21 rooms dedicated to elective patients).

Considerations about personnel’s satisfaction will be developed in Chapter 3, while some eco-

nomic considerations about Operating Theaters follow below in this chapter.

The specific focus on Operating Rooms’ optimization is economically justified by its relevance

on total costs. Roughly 40% of costs in Hospital Departments can be attributed to Operating Rooms

Macario et al. [63].

Expenses attributed to Operating Rooms’ activity are prominent. Raft et al. [79] present the

cost structure of Cancer Institute of Nancy, France, (a system with 4 ORs) and find that the cost

of one active OR and PACU account for €10.80/minute. Authors argue that ≈ 65% of the direct

costs should be attributed to wages, while ≈ 35% to medications and equipment. There is thus a

predominance of fixed costs over variable costs. In the UK, the median cost of Operating Theater

time is £16/min, with a range between £12 and £20 per minute [105]. In the United States, Operat-

ing Rooms cost range between $22 and $133 per minute, with an average cost of $63/minute [84].

Macario [62], presumably refering to the United States, argues that the cost of Operating Rooms

for basic surgical procedures ranges between $15 and $20 per minute, excluding physician costs.

Costs significantly drop in less developed countries. Šárka and Michaela [89] analyze costs in a

Hospital in Czech Republic and find that Operating Room costs range between €90 and €175 per

operating hour. Hariharan and Chen [40] analyze the expenditures of a Hospital in Trinidad and

find $92/hour in 2009.

Due to the significance of fixed costs, AP-HP (Assistance Public Hôpitaux de Paris) and ARS
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(Agence Régionale De Santé) publish annual reports including performance targets and bench-

markings of French Hospitals [30]. Macario [61] proposes a list of 8 performance indicators to

assess OR efficiency: excess staffing costs, start-time tardiness, case cancellation rate, PACU admis-

sion delays, contribution margin per OR hour, turnover times, prediction bias, prolonged turnovers.

Out of the eight indicators, start-time tardiness, turnover times and prolongerd turnovers can be

directly attributed to the need of increasing OR utilization, in order to maximize the exploitation of

fixed costs.

Inefficiencies in the Operating Theater lead to major economic losses. Ang et al. [3] argue

that economic losses due to process inefficiencies at Imperial College NHS Trust account for ≈
£350, 000/OR/year.

In this project, stochastic discrete event simulation has been used to replicate Hospital’s be-

havior, two similar heuristics have been proposed for resequencing surgeries within the workday,

and some managerial insights have been extracted from the simulation model. A tool has been

developed to facilitate the usage of simulation by Hospital’s managers.

1.1 Problem Statement

Hospital Bichat presents an average utilization rate of elective Operating Rooms of ≈ 76%. The

main reported factors affecting this value are turnover time, first case delay and PACU saturation.

Hospital managers are not able to clearly quantify the impact of the three factors over the over-

all time loss during the working day. A first output of the project is the quantitative assessment

obtained through discrete event simulation.

In terms of performance optimization, issues related to PACU saturation and turnover time

could be addressed through proper rescheduling and resource allocation. In particular, one main

issue related to delays in turnaround is the limited capacity of cleaning teams. Over 14 out of 18

Operating Rooms, one cleaning team is allocated on two specific Operating Rooms. This implies

that two contemporary endings make one of the two operating rooms wait for the cleaning.

Conceptually, the problem is the application of one server two to operations, so that the two

operations cannot be performed simultaneously.

Figure 1.1 represents the cleaning problem as a Petri Net. t1 and t2 represent the end of a surgery,

when the Operating Room is available for the cleaning. t3 and t4 represent the beginning of the

cleaning. In order to fire, t3 and t4 require both an empty room (surgery ended) and an available

cleaning team (i.e. cannot do two cleanings at the same time). t5 and t6 represent the end of the

cleaning, and when they fire, a new token is added to P3.

Regarding PACU, regular saturations produce blockings of the Operating Rooms, thus reducing

the productivity of the Operating Theater. The Hospital seeks improvements in this field. In this

case, the scheme is analogous to Figure 1.1, with 15 ORs coupled by only one server (with 14 tokens

in this case).
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P3
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Figure 1.1: Petri Net which conceptualizes the cleaning problem

1.2 Goals of the project

The main goal of the following project is providing Hospital decision makers with managerial in-

sights aimed at reducing the makespan of the Operating Rooms with a fixed list of surgeries to be

performed. The proposed solutions should be both feasible, economically convenient, and accept-

able for care givers’. For example, scheduling surgeries by increasing duration, even if it were posi-

tively affecting the simulated performance of the Operating Rooms, would not comply with general

recommendations for quality of care, safety and would increase the probability of overtime, thus

it would not be accepted by most professionals and would not lead to actual adoption. As the first

simulation project carried out in Hospital Bichat, a second and broader scope is to create and leave

to following researchers a useful starting point for future studies (see Chapter 9.4).

1.3 Use Cases

The outcome of the following project should be used by Hospital Managers both at strategic and

operative level:

• Strategic level: “What-If” scenarios regarding resource allocation;

• Operative level: Scheduling “What-If” scenarios can be used to generate optimal schedules

for the Operating Theater. The overall schedule of the Operating Theater is generated once

per week and submitted to general consensus among Hospital professionals.

1.4 Methodology

At the beginning of the project, a Synopsis has been created in collaboration with Prof. Jouini

(Full Professor of Simulation at École CentraleSupélec), Prof. Longrois (Full Professor, Practic-

ing Anesthesiologist and Chairperson of the National Anaesthesiologists Societies Committee) and
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Dr. Commagnac (IBM Global Healthcare Center of Excellence Leader). In the Synopsis, Goals,

Methodology, Timeline and Participants have been defined.

In this Chapter, the Metodology of each step of the project is defined.

Literature review Literature references have been both scoped from the web and received from

past collaborators of French Institutions (for Reports and Guidelines) received by French national

and local Healthcare Institutions. Web researches have been carried out scoping from Scopus,

INFORMS journals and papers collected by Prof. Franklin Dexter, Professor at University of Iowa,

Department of Anesthesia (available at https://www.franklindexter.net/). In case of limited

findings, researches have been extended to Google and Google Scholar.

Wellbeing and Satisfaction no partipants to the project had a background in psychology nor

were qualified to carry out a rigorous scientific analysis to define factors affecting the Wellbeing in

Hospital Bichat. Therefore, a literature review to verify that management and organizational issues

affected the Wellbeing of the personnel has been conducted. Some informal discussions have been

carried out with caregivers of Hospital Bichat and some actions have been taken in order to match

their expectations. Despite the awareness that this approach does not produce scientific results

(therefore the ”Wellbeing” is not an outcome of the project), trying to satisfy some discussed issues

can be useful for Hospital Managers.

Conceptual modeling Conceptual modeling has been performed by visits to the Hospital cou-

pled to expert descriptions. A first validation has been carried out during the the creation, by prob-

ing respondents and receiving same information by different workers.

Validation of the conceptualmodel The conceptual model has been submitted to Prof. Lon-

grois, the Hospital manager, who validated the correctness of the model.

Data analysis Literature reviews, graphical inspections and numerical analysis have been per-

formed on received data to fit distributions. For missing data, expert opinions have been used to

estimate input parameters.

Simulation modeling Simulation has been implemented on Arena V. 14.70, and integrated

with Excel through VBA codes.

Validationof the simulationmodel Validation has been performed by comparing simulation

results with historical realizations.

https://www.franklindexter.net/
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Chapter 2

State of the Art

The academic literature is rich of applications of simulation models, in particular discrete event

simulation, to test improvements for healthcare systems.

According to Gunal and Pidd [38], the topic has experienced a consistent increase of interest

during mid-2000s, when the literature throughput has almost doubled with respect to the early-

2000s.

Zhang [110] collected 211 papers tackling the topic of discrete event simulation in health care.

In terms of performance, the most recurring KPIs are Utilization Rate (UR), patient waiting time

(mostly tackled in emergency and outpatient systems), overtime, makespan and patient through-

put. AP-HP (Assistance Publique Hopitaux de Paris) in the annual report 2012 [30] reported eight

indicators to be measured in the operating theaters: rate of non-exploitable interventions, rate of

interventions out of catalogue, overture rate, utilization rate, overtime, rate of non-planned inter-

ventions, percentage of non-utilized time and punctuality at the opening time. According to the

association, the desired performance of the operating theatres consists in an overture rate >90%

and utilization rate >80%.

Agence Régionale de Santé Bretagne in a report in 2011 [17] benchmarked the performance of

the Hospitals in Bretagne, considering two graphs : Utilization Rate vs. Overture Rate and Rate

of Overtime vs. Utilization Rate. The desired performance is the combination of utilization rate

>80%, overture rate >90% and overtime rate < 5%.

Cardoen et al. [13] collected 120 publications from 1950 to present days, dealing with planning

and scheduling of operating rooms. One of the output of the review is the prominent use of discrete

event simulation, especially in recent years.

Jacobson et al. [44] carried out a literature review of applications of discrete-event simulation

in health care clinics. They performed a structured taxonomy and divided studies into three main

blocks: patient flows and scheduling problems, resource allocation, lack of implementation. Taking

inspiration from this taxonomy, the State of the Art has been divided into four main blocks:

1. Sequencing
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2. Scheduling

3. Staffing

4. Simulation models to test the adoption of different technologies/configurations

According to Liu et al. [58], decision making in Hospital Management can be divided into three

levels: strategic, tactical and operational level. The Operational level consists in Patient Scheduling,

Tactical level in the construction of a Master Surgical Schedule, at the Strategic level the manage-

ment deals with a problem of resource allocation.

2.1 Sequencing

Bai et al. [6] propose a gradient-based algorithm to sequence multiple Operating Rooms constrained

by a single PACU. The objectives include waiting time reduction, idle time of the Operating Room,

blocking time of the OR (due to PACU constraint), OR overtime and PACU overtime.

Zhang and Xie [111] develop a Simulation-Based optimization model to dynamically sequence

surgeries in multiple operating rooms minimizing OR overtime, OR idling and surgeon waiting

time, which occurs when the surgeon arrives but the OR is not available.

Pham and Klinkert [77] use a generalized job shop approach to minimize the makespan in mul-

tiple Operating Rooms sharing PACU with deterministic surgery duration and the assumption that

recovery does not start until the patient enters PACU.

Mancilla and Storer [65] develop a heuristic solution based on Benders’ decomposition to min-

imize waiting time, idle time and overtime considering stochastic surgery duration. No resource

constraints are included in the model.

Robinson and Chen [83] generate a heuristic based on the structure of the optimal solution to

manage the tradeoff between doctors’ idle time and patient waiting time. The problem considers

stochastic durations and an appointment approach for the scheduling.

Denton and Gupta [19] develop a two-stage stochastic linear program for appointment schedul-

ing. Authors consider a single server and aim at minimizing tardiness, customer waiting time and

facility idle time.

Bosch and Dietz [9] create a heuristic to minimize waiting time and overtime in a medical op-

pointment system, considering stochastic service duration.

Marcon et al. [66] use dicrete event simulation to study the impact of different sequencing rules

on PACU and show that the best rules are those which smooth most the flow, thus Half Increase

and Half Decrease, and MIX OR Time. They show that Longest Case First is detrimental for the

performance of PACU.

Denton et al. [21] develop a stochastic linear programming model for the minimization of pa-

tient waiting time, facility idle time and tardiness for the sequencing of surgeries. Authors also
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propose the following heuristics: sequencing by increasing mean, increasing variance and increas-

ing covariance.

Choi and Wilhelm [15] study the effect of sequencing surgeries following normal, lognormal and

gamma distributions. The goal of the study is to find the optimal sequencing to minimize patient

waiting time, surgeon idle time, OR idle time and staff overtime.

2.2 Scheduling

Denton et al. [22] consider a surgery-to-OR scheduling problem, assuming the complete set of surg-

eries to be known in advance. The goal of the scheduling heuristics is to optimize the tradeoff be-

tween fixed costs of opening individual operating rooms and total cost of overtime. Authors do not

consider minimization of idle time as well as constraints to match care givers’ expectations. They

formulate both deterministic and stochastic models. The authors propose solutions using DORA,

MRORA and SORA algorithms.

Begen and Queyranne [8] study the scheduling problem on a single processor (such as Operating

Rooms) to minimize the expected underutilization and overutilization costs, in a scenario in which

each job has a stochastic duration given by a discrete joint probability distribution. The system

consists on a single OR with all patients arriving on schedule. Therefore, surgeries lasting less

than expected produce underutilization costs, while longer surgeries produce waiting time for the

patient. The authors optimize the tradeoff among underitilization, overtime and patient waiting

time.

Rath et al. [82] develop a two-stage mixed-integer stochastic dynamic programming model with

recourse aimed at minimizing daily expected resource usage and overtime costs. The model in-

cludes parallel resources: Anesthesiologists, Operating Rooms, Nursing Teams and equipment.

The model has been fed with stochastic surgery durations.

Denton et al. [20] analyze an outpatient system in Rochester, MN, USA. The measured perfor-

mance indexes are patient waiting time and overtime. Patient waiting time has been split into two

indicators: waiting for intake (does not apply to inpatient systems) and waiting for surgery. The

objective function has been set to a weighted average of these three indexes. Monte-Carlo simu-

lation has been used to test two different OR allocation scenarios and a simulated annealing (SA)

approach to find a schedule which minimizes the objective function.

Ozen et al. [73] apply MILP to optimize the schedule for a tradeoff among utilization levels,

financial performance, overtime allowance, and case mix. Researchers neglect the effect of PACU.

Authors develop a three-stage approach: 1) case mix optimization to balance Net Operating Income

and Utilization, 2) maximimazion of Staged Surgeries (surgeries on the same patient conducted

over multiple days) 3) determination of Surgeon Schedules.

Henderson et al. [42] carried out another project in the same outpatient system in Minnesota.

The authors used Arena and stochastic surgery durations. Four heuristics have been tested: in-
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creasing mean, decreasing mean, increasing variance and increasing coefficient of variation, with

the objective of minimizing patient waiting time and overtime. Both Operating Rooms and PACU

beds have been considered as capacity constraints, but no human resources have been modeled.

Lamiri et al. [51] develop a column generation approach for the planning of elective surgeries

over a fixed time horizon. The goal is to minimize costs associated to serving patients and operating

room’s utilization costs.

Díaz-López et al. [28] studied the correlation between waiting time, waiting rate and occupation

rate through a simulation-optimization model for a Hospital in Bogotà, Colombia.

Dexter and Traub [26] test two different scheduling approaches: Earliest Start Time (sched-

ule in the OR with the earliest possible time) and Latest Start Time (schedule in the OR with the

latest possible start time which would allow the completion of the intervention). The researches ar-

gue that applying more sophisticated optimization algorithms would achieve little improvements

despite non-intuitive solutions and the computational burden.

Wright et al. [109] show that allowing surgeons to adjust the expected duration of a surgery

reduces the deviation with respect to the pure application of the software prediction.

Dexter et al. [25] studied multiple scheduling approaches to smooth PACU inflow and adjust

nurse staffing. Two alternative strategies have been pointed (but not explored in the paper): time

reduction of patients’ stay in PACU and matching the number of PACU nurse to cope with the

oscillations in the demand. Discrete event simulation with stochastic durations has been used to

test the dispatching rules. Lognormal distributions have been assumed for surgery durations and

PACU recovery.

Latorre-Nùnez et al. [54] developed a metaheuristic genetic algorithm for a scheduling prob-

lem, taking into account human resources, the availability of ORs, as well as PACU availability and

emergency surgeries. The objective function is the makespan minimization. No constraints for

quality of care and personnel satisfaction are taken into account, and the model uses deterministic

durations.

Rajaram and Rath [80] applied a simulation model to UCLA Ronald Reagan Medical Center and

showed that an increase in the performance of an operating theater can be better achieved by fo-

cusing on reduction in time variability than by focusing on buying medical equipment. A proposed

approach to reduce time variability is detailed data collection to have better predictions.

Freeman et al. [31] combined mathematical programming and simulation to address case mix

planning under uncertainty. Due to the amount of conflicting goals, the simulation did not produce

a single result but a pool of solutions from which the decision maker can choose, according to the

goals of the Institution of interest.

Ozkarahan [74] Ozkarahan (2000) developed a goal programming model to address idle time,

overtime and satisfaction of surgeons, patients and staff. Surgeons’ satisfaction has been defined

as a weighted average of workload and meeting the OR preferences.

Azari-Rad et al. [5] developed a discrete event simulation model (using Simul8) on a Canadian
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hospital, for scheduling surgeries to test three “What-If” scenarios: scheduling earlier surgeries

with low LOS, scheduling according to increasing and decreasing surgical variation and the addi-

tion of 2 beds in surgical wards. The target of the optimization was reducing cancellations. The

researchers found that sequencing according to average LOS is the most effective dispatching rule

for that facility.

Saadouli et al. [87] developed a MILP algorithm for scheduling, to address the issue of recovery

in OR due to a fully occupied PACU, and they tested the schedule with a simulation model (im-

plemented on Arena). Operating rooms and PACU beds are the only resources considered in the

model.

Roshanaei et al. [85] extend the scheduling problem from a single Hospital to a set of collabo-

rative Hospitals, pooling surgeons, patients and ORs. They study a patient-to-surgeon allocation

problem and use a MILP algorithm to find the optimal solution. The authors conclude that Hospital

can extract individual benefit from the sharing of resources.

Schmid and Doerner [91] combine a scheduling and a routing study, to achieve an optimal

schedule taking into account the routing of Hospital personnel. A cooperative hybrid metaheuristic

has been used for the optimization of both issues.

Liu et al. [59] propose an heuristic for Operating Rooms scheduling under an open scheduling

approach. Deterministic surgery durations have been used in the formulation of the problem. The

objective of the study is cost minimization, taking into account opportunity cost of underutilization

and overtime cost of overutilization. Dynamic programming has been used to solve the problem.

Ta-Chung and Cheng-Che [101] develop a mixed-integer programming model for staff schedul-

ing, taking into account Fatigue Minimization, expressed as a combination of working hours and

workload, and Day Off preferences. The article is not focused on Healthcare systems, but rather

general for workers on schedule (the paper tests the model on air traffic controllers).

Lin et al. [57] develop a mixed-integer programming model to study a nurse scheduling problem

taking into account Hospital requirements and nurse fatigue. Fatigue is calculated based on the

Dawson and Fletcher fatigue model.

Molina-Pariente et al. [70] develop a MILP model to optimize Operating Room Planning and

Scheduling in a open scheduling scenario, taking into account team composition for the duration

of the schedule, in terms of experience of the surgeon and of his assistant. The objective is the min-

imization of tardiness (difference between scheduled and actual date of surgery) and maximization

of scheduled patients.

2.3 Staffing

Ghanes et al. [33] use DES to address the issue of staffing in an emergency department. Sensitivity

analysis has been used to provide a picture of costs-gain of increasing human resources. Lenght of

stay, costs and door-to-doctor time for urgent patients are the three considered output variables.
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Komashie and Mousavi [48] applied modelled an Emergency Department with Arena, testing

five different “What-If” resource scenarios, considering addition of nurses, doctors and beds. The

objective was the reduction of patients’ queues.

Simwita and Helgheim [95] developed a simulation model to analyze the impact of five different

resource allocation scenarios. No discussion about possible improvements due to rescheduling the

new scenarios has been carried out.

Lowery and Davis [60] developed a simulation model to measure the required to meet the work-

load. The Hospital was evaluating the opportunity of renovating a surgical suite, reducing by two

the number of ORs.

Ghanes et al. [33] applied a simulation and optimization model aimed at optimizing the staffing

of an emergency department close to Paris, minimizing average length of stay (LOS) and average

doctor-to-doctor time (DTDT) for urgent patients.

Paoletti and Marty [75] developed a Monte Carlo stochastic simulation model to study the con-

sequences of staffing each anesthesiologist on more than one operating room. Authors also tested

the opportunity of adding a floating anesthesiologist to cover prospective emergencies. The goal of

the optimization was to minimize the risk of staffing failure, namely the probability that during a

surgery the presence of an anesthesiologist were required with no one immediately available.

Busby and Carter [11] study a discrete-event simulation for Emergency Departments, taking

surge into account. Tested ”What-If” scenarios include both resource allocation and scheduling.

The goal is to support decision-makers with a decision aid tool, to properly choose policies in order

to match desired requirements, among which OR utilization, overtime, undertime, number of used

beds, patient throughput and patient waiting time.

2.4 Adoption of new equipment and configurations

Asamoah et al. [4] made use of discrete event simulation on an outpatient scenario to test a prospec-

tive application of RFID tracking devices on patients to gather real-time information of their posi-

tion and estimate queues on each department.

Koppk et al. [49] propose an integer linear programming optimization algorithm to address the

problem of allocating operating hours to operating rooms, considering the uncertainty of surgery

durations. The objective is to find an allocation configuration which maximizes the probability of

a perfect day, i.e. the probability to end all planned surgeries without cancellations and without

overtime.

Ruiz-Patiño et al. [86] perform an analysis to evaluate the congestion due to PACU and perform

a sensitivity analysis to assess the congestion varying the number of available beds. They also per-

form a rough cost estimation and argue that the investment in 2 additional PACU beds would be

justified.



2.5. CONTRIBUTION 11

Chan et al. [14] use discrete-event simulation to test different layout scenarios of the Operating

Room, in order to minimize the duration of the surgery. The goal and the methodology differ from

this project, it is a different application of DES, aimed at optimizing the time performance of the

Operating Theater.

2.5 Contribution

2.5.1 Research

The research contribution of this project is twofold. First, some constraints related to caregivers’

satisfaction have been incorporated in the model. Insights coming from informal interviews with

patients in the Hospital have been compared and validated with the literature in Chapter 3.

Second, the issue of limited resources to begin surgeries has been considered. Specifically, lim-

ited turnover teams and limited anesthesiologists (required to be in the Operating Room during

anesthesia induction) have been included. To the best of literature research, no research paper has

tackled the issue of contemporary beginning of anesthesia induction in different Operating Rooms.

With regards to turnover teams, Dexter et al. [24] performs a sensitivity analysis of turnover time

with respect to the number of staffed turnover teams. Interventions performed in four months of

Hospital activity have been extracted from the dataset. Surgery durations have been considered

determistic (equal to the realized value). Gul [37] develops a stochastic program and a heuristic

to improve appointment scheduling with limited turnover teams. The author considers, as in this

project, that operations cannot be moved from one OR to another and that the list of surgeries is a

constraint of the model. The author does not include a simulation model to test the goodness of the

results with respect to other resources (such as PACU availability), and considers that the sequence

of surgeries is constrained. He studies only how to set the optimal appoimtment time to minimize

surgeon’s idle time and patient’s waiting time. For the case in Bichat, patients are hospitalized one

day before surgery takes place, thus there is no need to deal with appointments. Conversely, since

patients, at the beginning of the day, are all waiting in Hospital Wards, it is possible and meaningful,

to optimize the sequence of surgeries.

2.5.2 Hospital management

The value proposition for the Hospital lies in the improved transparency and quantitative assess-

ment of Hospital’s wasted time (where it comes from and how much for each category), as well

as in managerial insights to improve the scheduling and rearranging turnover teams to improve

performance and meet caregivers’ satisfaction.
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Chapter 3

Wellbeing

3.1 Introduction

Prof. Longrois, the head of Anesthesia in Hospital Bichat, pointed that lack of Wellbeing and

burnout negatively impact the performance of the Operating Theater. Lack of Wellbeing directly

impacts productivity, and it also leads to high turnover rates, with newcomers typically less pro-

ductive than established personnel. Low performance of the Operating Theater attracts less invest-

ments from national funds, which are distributed proportionally to the efficiency of the hospitals.

With low funds, the hospital struggles to improve its structures, which are one of the drivers of

absence of Wellbeing, thus feeding the vicious circle of malaise and suboptimal performance.

Furthermore, Prof. Longrois pointed that the current French system exhibits a lack of Anesthe-

siologists. To his saying, when Hospital Bichat opens job positions for Anesthesiologists, no can-

didates apply and the recruitment is burdenous. This statement is supported by the WFSA (World

Federation of Societies of Anesthesiologists) statistics: in France there are 15.06 Anesthesiologists

per 100,000 citizens, against 25.92 in Italy, 30.92 in Germany and 17.85 in the United Kingdom

[72]. Furthermore, as reported by the 2017 annual report of the Ordre National des Medecins,

Île-de-France is a low density region in France in terms of Anesthesiologists [45]. As reported by

Pontone et al. [78], in 2019 the demography of French Anesthesiologists is expected to be favorable,

except for Île-de-France, where a further deficit of Anesthesiologists is expected.

3.2 Key Players

The objective of the project is to take into consideration the wellbeing of all caregivers involved in

the operating theater, which are the following ones:

• Surgeons

• Anesthesiologists
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• Nurses: Anesthesia nurses, OR nurses, PACU nurses

• “Brancardiers” (transportation staff)

• Cleaning teams

PACU nurses work on a fixed schedule, with predetermined tasks and always in the same room.

Their Wellbeing has thus been neglected by the model, not for poor consideration of this profes-

sional category, but for the awareness that a DES model would be completely inappropriate to cap-

ture its Wellbeing.

Transportation staff carries out his tasks in the whole hospital, hence it would not be meaningful

to model its Wellbeing, since the DES model includes only the Operating Theater.

3.3 Drivers of wellbeing and burnout found in the literature

No specific literature has been found about the wellbeing of Hospital Cleaners.

Therefore, in terms of wellbeing, Hospital personnel has been divided in three key categories:

• Surgeons

• Anesthesiologists

• Nurses

Anesthesia nurses and OR nurses have been tackled as a single category since their national

contracts do not differ significantly and, from a DES perspective, they perform similar tasks (though

they have distinct roles in the real system).

Examining the literature, both general and professional specific drivers have been found.

3.3.1 Surgeons

About surgeons, several stressors are described in the literature. Due to the extremely vast amount

of stressors, only the main categories have been reported.

Stressors:

1. Work-life interaction [34, 12, 88]

2. Night calls [34, 93]

3. Workload [34, 93, 12, 88, 81]

4. Financial conditions of the Hospital [88]
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5. Relationship with colleagues [36]

6. Communication with patients [36]

Table 3.1: Scientific papers which tackle the six stressors of surgeons

Source 1 2 3 4 5 6
Gifford et al. (2014) [34] T T T
Cambpell et al. (2001) [12] T T
Saleh et al. (2007) [88] T T T
Rama-Maceriras et al. (2012) [81] T
Shanafelt et al. (2009) [93] T T
Guest et al. (2011) [36] T T

3.3.2 Anesthesiologists

Stressors:

1. Workload [46, 32, 56, 52, 106]

2. Night calls [64]

3. Sense of responsibility [53, 108]

4. Surgeons do not respect anesthesiologists [53, 46]

5. Ethical issues [53]

6. Politics and administration [108, 46]

7. Remuneration [46, 106]

8. Clinical problems [81, 56]

9. Variability of workload [56]

10. Overtime and interference with family life [106]

Wellbeing:

1. Control over the job [71]

2. Physician-patient relationship [108, 46]

3. Clinical outcomes [108, 46]

4. Predictability of the workday [27]
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Table 3.2: Scientific papers which tackle the nine stressors of anesthesiologists

Source 1 2 3 4 5 6 7 8 9 10
Larrsson et al. (2005)[53] T T T
Rama-Maceiras et al. (2012) [81] T
Lederer et al. (2005) [56] T T T
Larrsson et al. (2010) [52] T
Malberg et al. (2007) [64] T
A. Wong (2011) [108] T T
Jenkins et al. (2001) [46] T T T T
Gaba et al. (1994) [32] T
Wang et al. (2015) [106] T T T

Table 3.3: Scientific papers which tackle the six stressors of surgeons

Source 1 2 3 4
Nyssen et al. (2003) [71] T
A. Wong. (2011) [108] T T
Jenkins et al. (2001) [46] T T
Dunn et al. (2007) [27] T

3.3.3 Nurses

Stressors:

1. Workload [102, 47, 16]

2. Time Pressure [18]

3. Conflicts with physicians and other nurses [102]

4. Fear of mistakes sense of responsibility [102]

5. Lack of respect and recognition [47]

6. Lack of support from the management [102, 47]

Table 3.4: Scientific papers which tackle the six stressors of surgeons

Source 1 2 3 4 5 6
Tyler et al. (1992) [102] T T T T
Khowaja et al. (2005) [47] T T T
Chou et al. (2012) [16] T
Durawad et al. (2015) [18] T

Wellbeing:
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1. Quality of care [103]

2. Supportive management [103]

3.4 Outcome of informal discussions

The topic of stressors and drivers of satisfaction has been informally discussed with 5 different

caregivers, three Anesthesiologists, one Anesthesia Nurse and one OR nurse. As mentioned in the

Methodology, there is no scientific outcome but some useful actions can be taken to meet the ex-

pectations.

The following issues have been tackled:

• Overtime: conflicting opinions have been received about this issue. Overtime has been

pointed to be a minor issue for caregivers who live alone, while it is perceived more nega-

tively when it conflicts with family life. This aspect has been pointed in the literature too (see

above). In order to reduce the probability of Overtime and increase the probability of cancel-

lation, surgeries are typically scheduled by decreasing expected duration (but rarely executed

in this order).

• Specialy allocation: some specialties require more workload than others. No conflicting

opinions have been gathered. Unfortunately, specialty allocation is out of the scope of this

project, so no actions can be taken to face this problem.

• Schedule disruptions: schedule disruptions have been reported to occur both at the very

beginning of the day and during the workday. Since schedules are regularly discussed and

approved by consensus, disruptions are negatively perceived.

• Waiting time: blocking conditions have been reported to negatively impact the satisfaction,

because they lead to overtime and because care givers are disappointed when some resources

are missing and operations cannot start (e.g. waiting for the cleaning, waiting for a free bed

in PACU, waiting for the patient)
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Chapter 4

Conceptual Model

4.1 Quick Overview

The conceptual model of the system can be quickly visualized as a four block discrete system:

• Preoperative block: all activities preceding the surgery: patient moved from hospital wards

to the operating room and preparation of the patient for the surgery.

• Perioperative block: Anesthesia Induction e Surgical Act. The value adding activities of the

system.

• Postoperative block: patients can be either discharged to PACU (standard case) or brought

to the Reanimation Room (standard process for Chirurgie Cardiologique, it follows compli-

cations for other surgeries).

• Cleaning/Turnover: mandatory activities to be carried out between to consecutive surgeries.

Figure 4.1: Quick graphical overview of the system
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4.2 Detailed description

The operating theater of interest treats elective inpatients, i.e. patients with scheduled surgeries

and mandatory hospitalization. Hospitalization occurs one day before the surgery, thus at opening

time patients are waiting in Hospital Wards.

For each OR, the first patient of the day has a scheduled arrival (he is supposed to be there

at the opening of the OR), while following patients come on call. This is due to the variability of

surgeries’ duration: the end of a surgeries is unknown in advance, hence patients are called when

the OR is about to be available. The call is performed by a nurse who should anticipate the end of the

operations of the OR in order to make sure the following patient arrives before the OR is available

and avoid delays due to the late arrival of the patient. At the same time, as it has been reported

by an Anesthesiologist of the Hospital, the call cannot be performed too much in advance. A long

wait in front of the Operating Room might results in anxiety of the patient, which may complicate

the beginning of the Anesthesia Induction. As reported by a respondent in the Hospital, there are

frequent deviation from this ideal scenario: nurses may not be available to call the Hospital Wards

before the end of the surgery in case of intense workload or may forget to call in advance.

“Brancardage” (transportation personnel) is entitled to move patients around the Operating

Theater (OT). In particular, “Brancardiers”” are required to move patients from Hospital Wards to

the the Operating Theater. Brancardiers are currently not specifically allocated to the OT, but they

perform activities across the whole Hospital.

Anesthesia Induction is performed after the preparation of the patient and involves one Anes-

thesiologist and one Anesthesia Nurse. One Anesthesiologist can work on two Operating Rooms at

the same time (except for Anesthesia Induction activities, when the presence of an Anesthesiologist

is required by law), while one Anesthesia Nurse is always required for each OR. If the Anesthesia

Nurse is absent, the intervention cannot start. Prof. Longrois suggested that an average of 1.2 anes-

thesia nurses should be available on each room, so that pauses and absence can be covered by the

redundant nurses.

During the extent of the surgery, complications may arise, which lead to the involvement of

the Intensive Care Unit (ICU). ICU involvement is a standard protocol for some types of surgeries

(mainly for Cardiologic interventions). “Brancardiers”” are in charge to move the patient from the

Operating Room to ICU. Patients moved to ICU are excluded from the flow of PACU, they will re-

cover in ICU and will be differently reintroduced in the system according to the specific case. During

surgeries, cleaning teams may be used for missions out of the OR (e.g. bringing blood samples to

the laboratory).

After each surgery, if ICU is not required, patients are moved to PACU by “Brancardiers” (if

“Brancardiers” are not available, other professionals takeover this task), for their post-anesthesia

recovery. In PACU, there are 14 beds available, but some of them can be used for ICU, when it is

not able to fulfill its demand. Specialized nurses work in PACU, they are not modeled because they
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do not participate in the processes of the Operating Theatre. PACU nurses cannot be a blocking

resource because they are able to manage PACU at full capacity. Moreover, they always work in

PACU, which is always utilized (with different rates), hence there is no sharp distinction busy/idle.

From a discrete event perspective, there is no way to model this type of resource. If PACU is full,

post-anesthesia recovery takes place in the OR, with the assistance of one Anesthesia Team. During

periods of PACU full saturation, the recovery is sped up. By expert judgment, 25-30% has been

pointed out as a reasonable decrease of PACU hospitalization.

By national regulation, an Anesthesiologist has to sign a document to allow the dismissal of a

patient. After the signature of the Anesthesiologist, PACU nurses call the “Brancardage”. The pa-

tient waits for the “Brancardiers” in PACU and the dismissal from the Operating Theater is carried

out right upon arrival.

After the end of the surgery, cleaning procedures take place. Cleaning teams are in charge of

cleaning operations. There is typically one cleaning team assigned to two different ORs. Currently,

cleaning teams are not flexible, they are working on the ORs they have been assigned to.

After the cleaning, OR nurses procure instrumentations for the following surgery, and the OR is

available again. Since only elective patients are treated by this project (no urgencies, no emergen-

cies), recorded rates of mortality are very low, to the point that they have been neglected because

they would not significantly impact the performance of the operating theatre and the wellbeing of

the personnel.

The full picture of the conceptual model (for one operating room) has been attached to Appendix

A.

4.3 Scheduling Approach

Two main scheduling approaches are generally adopted in Hospitals [22]:

• block-booking: the Hospital provides the surgeon with time slots for surgeries who plans

surgeries by filling the available slots. Surgeons directly provide patients with a date of surgery.

This approach is more straightforward and convenient for the patient, who immediately re-

ceives a slot for the surgery, but it is suboptimal in terms of performance because it does not

allow for a case-mix optimization of the schedule. The list of surgery is a fixed input data to

the system.

• open-booking: surgeons submit cases which are pooled by the system. Surgeries are then

allocated to ORs to create a schedule. This approach is more effective to improve the perfor-

mance, because surgeries can be allocated to ORs with large degrees of freedom.

Hospital Bichat works with a block-booking policy. The reason of this policy has been pointed by

Prof. Longrois: in France, and in particular in Île-de-France, there is more capacity then demand,
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thus there are no significant waiting lists for elective surgeries.

Waiting lists in France is a controversial and discussed topic. The OECD/EU report of 2016 [1],

points that waiting time is not considered an important policy issue for France, Germany, Belgium

and Germany. There are no records about waiting times for these countries.

Siciliani and Hurst [94] show that countries which do not record waiting times exhibit higher

capacity than the other countries, in terms of public expenditures on Healthcare, acute care beds

over 1000 inhabitants and number of physician over 1000 inhabitants. The combination of free

access to private beds under public health insurance and incentives for specialists are pointed as

additional reasons for minimal waiting lists in France. To quote the article: The health system in

France is regarded as delivering high quality services, with freedom of choice and generally no

waiting lists for treatments.

4.4 Assumptions document

The goal of simulation (opposed to analytical procedures) is to reduce the number of assumptions

and to capture as much as possible the proper functioning of the real system. Due to some non-

transparencies in the real system and to its inherent complexity, some simplifying assumptions

have been placed on top of the simulation model. The use of a written and well defined assumptions

document has been recommended by Law [55].Below the list of assumptions:

1. Anesthesiologists, anesthesia nurses and OR nurses are 100% flexible. Anyone can work in

any room with any team mates. According to Prof. Longrois, the real system is slightly more

rigid, flexibility is judged to be around 80%. Nevertheless, flexibility within the Operating

Theatre is a prominent trend. According to Peltokorpi [76], personnel flexibility can be hy-

pothesized to be a source of increased productivity;

2. Surgeons are perfectly rigid and they do not introduce any constraint to the system;

3. Except for a delay at the beginning of the day, all scheduled human resources are always

available;

4. Surgeries follow the scheduled sequence. This is the most restrictive assumption, since it

is clear that the real system is currently unable to stick to a predefined plan. This is due

to the rare disruptions caused by urgent patients coming to the Hospital, complication with

patients and resource availability. With the current data measured by the Hospital it is not

possible to predict how and when disruptions occur, thus this assumptions is constrained

by the transparency of the current system. An intuitive method to overcome this limitation

is to introduce dynamic tracking systems to dynamically reschedule after the occurrence of

unexpected disruptions;
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5. No emergency case disrupts the schedule. This assumption is now valid because in July 2018

the Hospital has opened one OR fully dedicated to emergency cases. Thanks to this room, the

disruption of the schedule due to emergencies should be, according to the opinion of Prof.

Longrois, absolutely negligible.

6. No cancellation policies have been included in the model. This implies that the system mea-

sures the makespan of all active Operating Rooms with no cancellations.

7. Couples of parallel Operating Rooms do not change over time (THO1 and THO2 together,

URO1 and URO2 together, etc.)

8. Surgery durations are sequence and time independent. It is likely to find correlations between

surgery durations and the schedule (e.g. a long surgery in the morning is unlikely to require

the same time in the afternoon). This assumption has been introduced due to the partially

transparent data set received from the Hospital and to lack of time for performing additional

analysis.
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Chapter 5

Arena Model

The simulation model has been implemented on Arena, commercial software developed and li-

censed by Rockwell Automation. The presented model has been implemented on version 14.70.

For the sake of clarity, the description of the model has been divided in subsections:

1. Structure of the model: description of the blocks and interactions among them;

2. Resources and Variables: resources involved and how variables affect the simulation.
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5.1 Structure of the model

Figure 5.1: Overall overview of the Arena Model

As shown in Figure 5.1, the model can be conceptually divided into two main parts:

1. Preoperative and perioperative activities, which involve one specific OR for each patient

2. Post Anesthesia Recovery, which accounts for a single branch for all patients. When a patient

gets to PACU (Post Anesthesia Care Unit), the following steps are independent on the type of

his surgery

The procedures of each OR are standardized, thus each main Submodel follows the same struc-

ture, with some different names of the blocks and slightly different resources involved (See Section

6).

Hence, the structure of only one OR will be discussed in the following paragraphs. The room

on top of the model has been chosen: THO 1, which stands for “Chirurgie Thoracique (Thoracic

Surgery) Room 1”. The reader can easily deduce the scheme of the other rooms.

Expanding the submodel, the picture is an almost straight flow chart, inclusive of other sub-

models. See Figure 5.2. The chart can be conceptually divided into six regions:
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1. Creation of the patient

2. Transportation to the operating room

3. Anesthesia and surgery

4. ICU (Intensive Care Unit)

5. Turnover activities

6. Postanesthesia procedures

Figure 5.2: The overall flow of a operating room

5.1.1 Creation of the patient

Figure 5.3: Blocks which model patient creations

In the first block, all patients are created at the same time at the beginning of the day. Since the OT

treats elective patients, all patients are scheduled and the list of patients is thus known before the

beginning of the activities (how Arena loads the daily schedule is presented Section 5.3, where the

integration with Excel has been explained in details).

In the second block, a counter (global variable) is updated. The goal of this variable is to provide

a real time information about the number of patients present in the system. It is used to identify the

serial number of the patient in the following block as well as to allow for a check that the simulation

model loads the correct number of patients.

The third block assigns to each patient its attributes. Precisely, it assigns:

• The Anesthesia Module of the surgery, which can be short, medium or long. This attribute

affects the duration of the Anesthesia Process.
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• Cleaning module: since in general different surgeries require different cleaning time, each

patient carries out an attribute with the duration of the cleaning

• Patient ID. In the previous block a global variable has been used as a counter, here an ID is

assigned to each patient so that he can be tracked and recognized if necessary

• Class of surgery: frequent, infrequent, rare. This attributes determines the distribution for

surgery duration (see Data Analysis Chapter)

• Surgery duration: for frequent surgeries,mean and sigma to feed the lognormal distribution.

For infrequent and rare interventions, minimum, average and maximum of the triangular

distribution

• PACU length of stay: mean and sigma to feed the lognormal distribution

• ICU Scheduled. This attribute states if a patient has been scheduled to recover in the ICU

after the surgery or he will follow the standard procedure

5.1.2 Patient transportation

Figure 5.4: Transportation from hospital wards to the operating room

The first decide block is used to differentiate the first patient of the day from the others (the first

one is scheduled to arrive in the OR at the beginning of the day, the following ones are called when

the surgery is about to end). After the first patient, a global variable is updated in the following

Assign Block and all patients will follow the lower branch.

For the first patient, a delay block is added to take into account that activities do not always

begin on time at the beginning of the day.

In the lower branch, the first block is a Hold. It is used to model the following patients of the

day who are waiting in Hospital Wards. The signal to release one patient is given later in the chart

when the previous patient leaves the OR.
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In the following block an attribute is assigned to print on each patient the time his surgery cycle

begins.

The last block of the lower branch is used to model the actual transportation of the patient from

Hospital wards to the Operating Theater. This activity is performed by “Brancardiers”, specialized

professionals who are in charge of moving patients within different sections of the Hospital.

5.1.3 Anesthesia and Surgery

Figure 5.5: Transportation from hospital wards to the operating room

Seize OR THO 1 The seized resources are the following ones:

• OR: anesthesia occurs in the OR, so the availability of the operating room is strictly required

• Anesthesia nurse: one anesthesia nurse is required to assist the patient from the beginning

of anesthesia to the end of the surgery. Without an anesthesia nurse available in the OR, no

surgery can begin

• Anesthesiologist: the presence of an anesthesiologist is required for the beginning of anes-

thesia. Even if an anesthesiologist can monitor two ORs at the same time, he must be fully

allocated to one patient to put him to sleep (mandatory by law).

Assign Anesthesia Begin THO 1 At the beginning of the surgical act, a time attribute is as-

signed to the patient to record the beginning of the anesthesia.

Anesthesia THO 1 This block has been placed to decouple Surgery and Anesthesia Induction. It

is a delay process and the duration of the delay follows a triangular distribution whose parameters

have been assigned at the very beginning.

Release Anesthesiologist THO 1 The anesthesiologist is released. In reality, Anesthesiolo-

gists are not idle after the end of anesthesia induction, but the induction is the only moment when

full allocation of one Anesthesiologist to an Operating Room is required (crisis excluded, not mod-

elled in this project). After the induction, Anesthesiologists can work on two Operating Rooms at

the same time.
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AssignDurationAnesthesia THO 1 The following block measures the duration of Anesthesia

Induction and attributes it to the patient.

Surgery The splitting of surgery classes is shown in Figure 5.6. Frequent surgeries follow the

upper branch, while unfrequent and rare types of surgeries are directed to the second branch.

In both cases, a surgeon is seized to perform the intervention. Since the analyzed data refer to

PatientOUT − PatientIN , the duration of Anesthesia induction has been subtracted to the delay of

these blocks.

Figure 5.6: Distinction between frequent, unfrequent and rare surgeries

Surgery ends THO 1 Release module. The surgeon is released after the end of the surgery

Record intervention duration THO 1 This module is used to record the time between the

first assign of this section (begin of anesthesia induction) and the end of the surgery.

ICU required THO 1 Decide block to differentiate patients with a scheduled ICU recovery.

5.1.4 ICU

This section of the model is reserved to patients who need recovery in the ICU. The chart is shown

in Figure 5.7.

Figure 5.7: Flow in the ICU
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Release anesthesiologist for patient in the ICUTHO1 After the patient leaves the OR to go

to ICU, the anesthesia team is released. The anesthesia nurse who has been seized at the beginning

of anesthesia induction and not yet released is now available for a new surgery. The anesthesiologist

has been already released after the first part of anesthesia.

Move patient to ICU from THO 1 The transportation to ICU requires some time, which has

to take into account some preparatory and mandatory procedures before the patient can leave the

OR.

Call the new patient ICU THO 1 Signal block. When the patient leaves the OR the new one is

called. A signal is given to the Hold block described in section 5.1.2 and the transportation of the

new patient begins.

Go to THO 1 cleaning and release Route block. The entity goes to the first station of the

cleaning and cleaning activities begin.

5.1.5 Cleaning of the operating room

Figure 5.8: Turnover activities

Begin roomcleaning THO1 Station block. It collects dummy entities coming from other parts

of the graph which state the beginning of the cleaning activities.

Begin cleaning THO 1 Assign Module to attribute the beginning of the cleaning.

THO 1 cleaning It is a Seize-Delay-Release block. The seized and released resource is a cleaning

team. The duration of the delay follows a triangular distribution. Expert judgment used to define

the parameters.

Provide instrumentation THO 1 It is another Seize-Delay-Release block. This time the seized

and released resource is an OR nurse who has to procure the sterile instrumentation for the new

surgery. This activity can clearly be performed only after the end of the cleaning and sterilization

of the OR.
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Record cleaning time THO 1 Record block used to measure the time required to clean the

operating room (queues due to unavailability of resources are included in this measure).

Release THO 1 Once the room is clean and the sterile instrumentation has been procured, the

Operating Room is available for a new surgery and it is thus released in this block.

Dispose and THO 1 available Dispose block for the dummy entity flowing in this submodel.

5.1.6 PACU

All patients who do not need a ICU hospitalization must go to PACU (Post Anesthesia Care Unit) to

recover from Anesthesia. The chart is displayed in Figure 5.9

Figure 5.9: Submodel describing flows related to PACU

Free bed PACU THO 1 Decide block used to check and differentiate the route based on the

availability of beds in PACU. If at the end of a surgery no bed is free, the patient cannot go to PACU

and he has to stay in the OR, otherwise he can be moved to PACU.

Release anesthesiologist for patient in PACU THO 1 Release block. If PACU is free, one

Anesthesia Nurse is released as the patient leaves the Operating Room.

Call the new patient THO 1 Once the OR is free, a signal is given to release one patient held in

the hospital wards.

Separate It is a Separate block used to generate a dummy entity which flows in the cleaning

submodel (Section 5.1.5). The other one (actual patient) proceeds in its journey.
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Go to THO 1 Release Route block to move the dummy entity to the cleaning submodel. Since

the OR is now empty, cleaning activities can begin.

TimeBegin PACUTHO 1 In case there is no free bed in PACU, a first Assign follows the Decide

block to attribute to the patient the beginning time of Post Anesthesia recovery in the OR.

Stay in THO 1 Delay block to model the frequency of check of beds availability in PACU. Com-

munications occur via telephone, but there is no continuous update of the availability, hence this

discrete step has been introduced.

Assign time closure PACU THO1 This assign block overwrites a global variable to measure

the makespan of the considered Operating Room.

Patient can be dismissed THO 1 A decide module to check whether the patient has been re-

covering enough to be dismissed or needs more time of Post Anesthesia recovery.

Release anesthesia after PACU in THO 1 If the patient can be dismissed an Anesthesia team

is released in this block. The patient can leave the OT and the Anesthesia nurse is available for the

a new surgery.

Call newpatient THO1 A Signal is given to release a new patient from the Hold block described

in Section 5.1.2. After the patient is moved from the OR, a new one can be called.

Separate This Separate block is used to create a dummy entity which will flow in the cleaning

submodel.

Clean THO 1 Route block to move the dummy entity to the cleaning submodel.

Patient moved away THO 1 It is a Seize-Delay-Release block. One “Brancardage”” team is

seized and released and the delay is given by a normal distribution whose parameters have been

derived by expert interviews

Released a free bed THO 1 After the decide block Patient can be dismissed, if the patient can-

not be dismissed yet, a check whether there is a free bed in PACU is performed via phone (the

frequency of call has been modeled in the Delay block Stay in THO 1). If there is no free bed, the

patient goes back to Stay in THO 1 where he will wait for a new check of possibility of dismissal and

availability of a PACU bed. If a bed got available, the patient leaves the room and proceeds the rest

of his Post Anesthesia recovery in PACU.
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Time end PACU in THO 1 This module assigns to the patient the time spent in the room which

he should have spent in PACU.

Release Anesthesiologists patient to PACU THO 1 Since the patient can leave the OR, one

Anesthesia Nurse is released.

Record OR Cycle THO 1 This block records the total time a patient has spent to complete the

full surgery cycle (from the call in the Hospital wards to the beginning of his recovery in PACU).

Note that those who completed the full recovery in the OR (highly unlikely case) are excluded from

this calculation as well as those patients who move to ICU. In case a partial Post Anesthesia recovery

occurs in the OR, it is included in this record.

Assign time closureTHO1 Similarly to the previous assign block, this block overwrites a global

variable to measure the makespan. It is place on the second possible branch that the patient can

follow.

5.1.7 PACU recovery and dismissal

Going back to the Main Model, there are the last five blocks which describe the recovery in PACU

and the dismissal

Figure 5.10: Part of the model in which all patients converge to PACU, complete their recovery and
get disposed

Recovery in PACU This Seize-Delay-Release block collects all patients coming from all the ORs

in the OT. The seized resource is a PACU bed and the delay follows a lognormal distribution whose

parameters have been analyzed in Section 6.

Patient moved away At the end of the PACU recovery a “Brancardage”” team is called by a

PACU nurse. This block is thus a Seize-Delay-Relase whose seized and release resource is a “Bran-

cardage”” team. The delay has been derived from expert judgment.
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Closure time OT A global variable is updated each time a patient leaves the system from this

branch. When the last one leaves the system, the replication terminates and the last value assigned

by this block represents the OT makespan.

Patient dismissal from PACU The patient is finally dismissed from the OT, thus the entity is

eventually disposed.

5.2 Resources

The modeled resources are the following ones:

Human resources:

1. Surgeons

2. Anesthesiologists

3. Anesthesia nurses

4. OR nurses

5. Cleaning teams

6. “Brancardiers”

Medical equipment:

1. Operating Rooms

2. PACU beds

5.2.1 Surgeons

Surgeons are specialized professionals and have been modeled to work only in one Operating Room

(this implies that each OR seizes a different resource). Since each surgeon appears only in one OR

and in a single branch, there is no way this resource can block the system. The resource has been

introduced only to measure the utilization rate, which impacts the wellbeing of the professional.

Each type of surgeons is a different resource with a fixed capacity equal to 1.

5.2.2 Anesthesiologists

Considering the real system, Anesthesiologists work on two different ORs at the same time except

for complications with the patient and for the beginning of the Anesthesia, when an Anesthesiologist
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is required to be present. Anesthesiologists can be thus a blocking state only if two surgeries are

beginning at the same time (it occurs every day at opening time).

Generally, the number of Anesthesiologists varies between morning and afternoon. For the

sake of completeness and to provide more flexibility for future scopes, the schedule has been cre-

ated from 8:00 to 20:00 with a step of 30 minutes (it is possible to define a different number of

Anesthesiologists on each block of 30 minutes).

5.2.3 Anesthesia nurses

One anesthesia nurse has to be present during the whole surgery. No surgery starts without an

Anesthesia Nurse. In case an Anesthesia Nurse has to be absent for a period during a surgery,

another nurse has to replace him, or an Anesthesiologist has to look for the patient. This is a sub-

optimal situation for the safety of the patient because, since an Anesthesiologist has to monitor two

rooms at the same time, if in the other room a complication occurs, some problems arise. A patient

cannot be left (by law) without a nurse or an anesthesiologist so the anesthesiologist cannot leave

the room to deal with the complication until a stopgap is provided.

Anesthesia nurses are granted a lunch break to be (generally) spent between 12:00 and 14:00.

The duration of the lunch break is approximately 40 minutes.

Between 12:00 and 14:00 the number of anesthesia nurses dramatically decreases and it is un-

likely that any surgery can begin.

The structure of the schedule is analogous to the one of anesthesiologists.

5.2.4 Cleaning teams

Cleaning teams have been allocated in the following way:

• Team 1: THO1 and THO2

• Team 2: RYT1 and RYT2

• Team 3: CAR1

• Team 4: CAR2

• Team 5: CAR3

• Team 6: ORT1 and ORT2

• Team 7: ORL1 and ORL2

• Team 8: DIG1 and DIG2

• Team 9: MAT1 and MAT2
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• Team 10: MAT3

• Team 11: URO1 and URO2

5.2.5 Global Variables

Global variables are both referred to the whole OT (instead of being specific for one operating room

or a surgery case) and without a schedule. Global variables include:

• Number of PACU beds

• Mean and sigma of PACU duration

• Durations and probability of first case delays

• Parameters for the cleaning

• Frequency of check of PACU availability (in case of congestion)

• Mean and sigma transportation to ICU

• Mean and sigma dismissal from PACU

5.3 Implementation issues

Before presenting the integration between Arena and Excel, some considerations should be dis-

cussed.

Prof. Longrois, at the very beginning of the project (before the writing of the synopsis), pointed

that several research projects have been carried out with the Academia, resulting in a ”waste of

time” for the Hospital, because of lack of implementation. This statement was not aimed at criti-

cizing research itself, but he pointed that him, as a manager, was more interested in the managerial

insights coming from the implementation than in scientific outcomes.

Prof. Matta, during a midterm review of the project, pointed that the implementation of an

actually used tool is non-trivial, due to the natural approach of physicians, who tend to be rigid

with regards to simulation and computed aided management [10].

Brailsford [10] presents some barriers to the implementation of operations research simulation

models in Hospital Management as well as some hints to overcome them.

Wilson [107] analyzed 200 papers tackling the topic of simulation in healthcare. Only 16 of

them lead to some implementation. Although this paper is clearly outdated (1981), thus results are

not valid from a quantitative point of view, issues reported seem to be actual: failure in properly

specifying data collection, extrensive use of solicited data from expert opinions, difficulties and non-

transparencies in model validation and exclusively technical (but politically unaccepted) proposals.
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Harper and Pitt [41] propose some guidelines to facilitate the implementation of simulation

models in Healthcare.

The abovementioned considerations lead to the following question: What shall this project in-

clude to facilitate and incentivize the adoption of the developed simulation model?

Apparently, the question above leads to the definition of two main requirements of the project.

The first one is trivial: simulation must lead to useful managerial insights, otherwise there is no

point in adopting it. The second requirement is less trivial, and has to do with the interface of the

tool.

Regarding the tool, a first questions arises: What is the ideal tool?. In other words, what is the

tool that perfectly matches the habits and expectations of Hospital Managers? The answers is again

trivial: the ideal tool should allow managers to get results without any efforts. Managerial insights

should not come with any time investment. Hospital managers are typically busy and hard-working

professionals, skeptical about the adoption of software-based management, due to the inherent

complexity and case specificity of the subject matter.

At the state of the project, because of the limited available time and absence of economic re-

sources, the ideal tool has been considered out of target. The specification of a target tool, which is

by definition worse of the ideal but at the same time meaningful and affordable, has been defined.

Instead of focusing on what should the end user do, the focus is what he should not be required to

do.

The end user must not be required to:

• Use Arena to simulate the system: Arena is an engineering-oriented tool, user-friendly for en-

gineers but requires a minimum training for its usage, which must not be required to Hospital

decision makers

• Perform data analysis: interpreting data and fitting distributions is both non-intuitive and

time consuming. Decision makers must not be obliged to perform statistical considerations

• Input distribution parameters: even with premade data analysis, decision-makers must not

be required to deal with parameters and distributions, both to reduce the likelihood of mistyp-

ings and to reduce the perceived complexity of the interface

• Code ”What-If” scenarios: the end user must be allowed to use the software through a graph-

ical interface, thus no coding must be required

• Scope the results from a large data set: Arena by default returns a large amount of data, either

on a .txt file or on a dedicated extension. The end user must receive only useful results,

properly rearranged if necessary.

.txt
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5.4 Integration Arena-Excel

As introduced by this section’s title, the proposed solution to achieve the target tool is the integra-

tion of Arena’s simulation model with Excel.

The principle behind the integration is presented in Figure 5.11.

Figure 5.11: Scheme of the principle behind the integration Arena-Excel

The end user deals only with Excel, which works as the User Interface. VBA codes have been

interposed between Arena and Excel. VBA reads inputs from Excel and assigns them to Arena’s

simulation parameters (variables, attributes, resources, schedules, etc.). Simulation is performed

in Arena (run in background so that users do not perceive it) and at the end of the simulation, VBA

extracts outputs and write them in Excel.

The advantages of the proposed solution are the following ones:

• Transparent inputs for the developer: the developer (in this case the author) can test the

model with clear inputs displayed on Excel Sheets, thus largely reducing the probability of

mistakes and enhancing the credibility of the simulation model

• Excel is an easy-to-use software for anyone, thus more easily accepted and adopted by Hos-

pital Managers

• In the future, VBA user forms can be used to replace Excel, creating a more professional user

interface

• Excel enables the fulfillment of the set requirements of the target tool

5.5 Overview of the tool

Since the code does not present any novelty nor significantly difficult instances, it has been omitted.

It has been considered that the value adding part of this section consists in the conceptual design

of the tool, rather than in its implementation.
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Structure of the Excel file - Navigation Tab In order to ease the surfing and the usage of

the Excel File, it has been divided into file Sheets, sequenced following the natural approach to the

Simulation and marked by colors. First, three input Sheets, colored in Orange, then the Sheet to

execute the simulation in green and finally a Sheet for the outputs in blue.

The navigation Tab is presented in Figure 5.12.

Figure 5.12: Navigation Tab of the Excel file

Human resources In the first Excel Sheet, named “Personnel”, the end user can input the num-

ber of Anesthesiologists, OR Nurses and Anesthesia Nurses available on each slot of the schedule.

A screenshot of the Sheet is displayed in Figure 5.13.

Figure 5.13: Screenshot of the Personnel Excel Sheet

ORSchedule In the second Excel Sheet, “OR_Schedule”, the sequence of surgeries is defined for

each OR. It is possible to state whether there is a scheduled ICU after the surgery and whether and

to choose among three modules for cleaning and anesthesia procurement through a window menu.

The number of surgeries scheduled on each operating room is directly loaded from the number of

non-blank cells of each operating room. The sequence follows the order of appearance, from top to

bottom.
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Screenshot displayed in Figure 5.14. To be noted that end users do not type distribution param-

eters but the name of the surgery.

Figure 5.14: Screenshot of the Excel Sheet for OR Schedules

Global variables In the Sheet “Global_Variables”, all inputs which are global (do not depend

on the specific OR) and which do not require a schedule are defined. Since no interesting insights

come from this Sheet, the screenshot has been omitted.

Run Simulation In the Sheet “RunSimulation”, users can input the number of desired replica-

tions (according to the required accuracy of the result and to the willingness to wait for them) and

run the simulation, clicking on “Run Simulation”. The button executes Arena in background (it

does not appear on the screen), the simulation starts with the previously defined inputs, at the end

of the simulation results are written on Excel, Arena gets closed and Excel automatically activates

the “Results” Sheet.

In this Sheet, the user can choose among possible Scheduling approaches and test them. When

clicking on the rescheduling buttons, the order of interventions in Sheet “OR_Schedule” changes.

To test the new schedule, users have to click on Run Simulation.

The screenshot of this Sheet is presented in Figure 5.15.
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Figure 5.15: Screenshot of the Excel Sheet to reschedule and run the simulation

Results Finally, in the “Results” Sheet, the user can look at the simulation outputs. The plotted

outputs are the following ones:

• OT Makespan

• ORs Makespan

• Human Resources Utilization

• ORs Utilization 1:
Surgery + Cleaning +WaitPACU

OTmakespan

• ORs Utilization 2:
Surgery + Cleaning +WaitPACU

ORmakespan

• ORs Utilization 3:
Surgery

ORmakespan

• PACU Beds Utilization

• Wasted time in the ORs because PACU is blocking
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Chapter 6

Data analysis

In this chapter, input data required by the model are analyzed. Two main categories of data can

be pointed: durations and resources. Considering the simulation model as a Petri Net, the former

represents transition delays and holding times, the latter the available tokens.

6.1 Durations

Hopital Bichat collects, for each patient, the following information on a single Excel Sheet:

• Operating block

• Operating room

• Type of operating room (elective surgeries or urgences)

• Specialty

• Type of intervention

• Visit date and time

• Scheduled date and time

• PatientIN date and time

• PatientOUT date and time

• Surgery room occupation time, calculated as PatientOUT − PatientIN

• Type of surgery (scheduled, scheduled today, urgent)

• Destination of the patient (Reanimation or PACU)
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• Name of the surgeon

• Patient identifiers (identification number and age). To comply with the current privacy poli-

cies, the name of the patient has been erased from the submitted data set.

The Hospital also records the length of stay in PACU. Records are stored on paper, no digitalized

system is present in the Hospital.

At the end of each year, the Hospital provides a report with the realized minimum, maximum,

mean and median duration of each type of surgery. Realized data are then compared to their re-

spective catalogue durations.

In terms of process durations, the following inputs are required by the model:

• Surgery duration

• Length of stay in PACU

• First case delay

• Transportation time from surgical wards to the operating theater

• Operating room cleaning time

• Duration of anesthesia induction

A rigorous data analysis has been conducted on the first three entry points, while for the last

three items, because of lack of recorded data, no rigorous quantitative analysis has been carried

out.

6.1.1 Surgery duration

Surgical time is affected by large variations. The recorded maximum duration of a type of operation

can be greater by more than 5 times of the minimum duration (data sheet provided by Hospital

Bichat, containing records of classic and urgent surgeries in 2017).

There is abundant literature regarding factors which affect the duration of a surgery, which

include gender of the surgeon, age of the surgeon, frequency of the intervention, team composition,

daytime and type of anesthesia [43, 99, 97].

The lognormal distribution has been used to fit surgery durations. The choice of using this

distribution can be justified by means of four arguments:

• Intuitive explanation

• Literature literature review

• Visual inspection

• Numerical analysis
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Intuitive explanation

In order to guarantee the safety of the patient, activities carried out in the OR are highly standard-

ized. AP-HP (Assistance Publique Hôpitaux Paris) reports a mandatory check-list of activities to be

performed in the OR. For the high level of required and standardized procedures, surgeries cannot

be much shorter than the expected time, even when the surgery proceeds smoothly. Conversely,

when complications arise, surgeries take much longer than expected. A cut on the left side and a

long tail on the right side suggest a lognormal distribution.

Literature review

The lognormal distribution has been pointed in the literature as the best fitting model of the dura-

tion of the surgery. [98, 112, 68, 39, 2].

May et al. [68] compare normal and lognormal fits for surgical durations, with numerical re-

sults, suggesting that the lognormal distribution is more appropriate to describe the real data. The

limitation of the candidates to normal and lognormal has been justified by previous results in the

literature (does not specify which papers). Shapiro-Wilk test has been used to test the goodness of

fit.

Hancock et al. [39] suggest a lognormal distribution by simply considering that typical distri-

butions display a truncation on the left side and a tail on the right side, thus indicating a lognormal

distribution. Zhou and Dexter (1998) analyzed a large set of data (almost 50,000) from the Univer-

sity of Iowa Hospitals and Clinics. They found evidence that lognormal distributions are a proper

method to represent the real data.

Strum et al. [99] compare a Lognormal and Normal distribution to fit the data, they find that the

lognormal distribution is superior to the normal one. Also, they find that the lognormal distribution

is a legitimate tool to describe surgical durations. The study has been conducted on 40,076 surgical

cases collected from a large teaching hospital (Institution not specified).

Alvarez et al. [2] fitted a lognormal distribution for aortic valve replacement surgeries in a Cana-

dian Hospital. Both surgical times and turnover times have been fitted with a lognormal distribu-

tion, and the Fenton-Wilkinson approximation has been used to sum them up. The good fitting

of a log-normal distribution can be intuitively explained because outlier surgeries tend to be much

longer than the average rather than much shorter [112].

Saadouli et al. [87] directly assume surgeries to follow a lognormal distribution and estimate

the parameters from a dataset with one month of realized surgeries.

Master et al. [67] verify that the logarithmic transformation of the duration histogram of lombar

punctures in a pediatric hospital in the US, produces a fairly symmetric histogram (resembles a

normal distribution).

Kougias et al. [50] define the lognormal modeling of surgical durations as traditional and di-

rectly estimate mean and standard deviation from historic data.
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Visual inspection

Since in 2017 more than 1,000 types of surgeries have been performed, the consistency of the real-

ized durations with respect to the literature has not been checked on the full dataset, only 4 surgeries

have been properly analyzed: Coloscopie, Coloscopie+Fibroscopie, Endoscopie, Laparatomie Ex-

ploratrice. These surgeries have been chosen from different specialties and from the most frequent

surgeries, so that a sufficiently large sample size has been used to fit the distibutions.

For each of them, visual inspection has been carried out comparing the normalized hinstogram

of the realized durations with the best fitting lognormal probability density function. Visual inspec-

tion is shown in Figures 6.1, 6.2, 6.3, 6.4. An undeniable accordance between data and the fitting

normal can be easily spotted.

Figure 6.1: Empirical histogram and lognormal fitting for Laparatomie Exploratrice
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Figure 6.2: Empirical histogram and lognormal fitting for Coloscopie

Figure 6.3: Empirical histogram and lognormal fitting for Coloscopie + Fibroscopie
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Figure 6.4: Empirical histogram and lognormal fitting for Endoscopie

Numerical analysis

A Shapiro-Wilks and Shapiro-Francia goodness-of-fit test has been carried out over the same four

surgery types. In all cases, the test cannot reject the null hypothesis with a p-value equal to 0.05.

The results of the tests for Coloscopie+Fibroscopie, Laparatomie Exploratrice, Endoscopie are

presented in Figures 6.5, 6.6, 6.7.

(a) Shapiro-Wilks test Endoscopie

(b) Shapiro-Francia test Endoscopie

Figure 6.5: Goodness-of-fit test Endoscopie
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(a) Shapiro-Wilks test Laparatomie Exploratrice

(b) Shapiro-Francia test for Laparatomie Exploratrice

Figure 6.6: Goodness-of-fit test Endoscopie

(a) Shapiro-Wilks test Coloscopie+Fibroscopie

(b) Shapiro-Francia test for Coloscopie+Fibroscopie

Figure 6.7: Goodness-of-fit test Endoscopie

In case of Coloscopie, both Shapiro-Wilks and Shapiro-Francia reject the null hypothesis of a

lognormal distribution. The same test has been then applied to the same data with an appropriate

constant shift, such that the skewness of the underlying normal distribution is equal to zero.

As shown in Figure, Shapiro-Wilks and Shapiro-Francia do not reject the hypothesis of lognor-

mality over the skewed distribution.
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(a) Shapiro-Wilks test Coloscopie skewed

(b) Shapiro-Francia test for Coloscopie skewed

Figure 6.8: Goodness-of-fit test Coloscopie skewed

Even from a visual inspection, it is possible to check that the lognormal distribution is fitting

better the skewed data. Results in Figure 6.9.

Figure 6.9: Empirical histogram and lognormal fitting for Coloscopie

At the same time, it is possible to see that the lognormal distribution better fits the shifted data.

It is then possible to state that, even if from a rigorous perspective the lognormal distribution does

not fit the data, it is not totally unable to catch the duration behavior.

In conclusion, considering the intuitive explanation, the large support of the literature, the vi-

sual inspection and the positive results of a goodness-of-fit in three out of four cases (and the pos-
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itive results for the skewed distribution in the fourth case), the lognormal distribution has been

chosen to feed the simulation model for surgery durations.

Unfrequent surgeries

In 2017, 16,058 total surgeries have been carried out, with 1,026 different types of surgeries. This

data has been extracted from the annual report with aggregate data of each type of interventions

(see Section 6).

This document is the result of a polishing work of the raw data collected for each intervention.

The dataset received is thus “dirty”, with several records dissimilar by some details. Around 5,000

types of interventions were thus present in the data set. A polishing work has been carried out

to reduce the number of interventions, without introducing unreasonable assumptions (e.g. an

intervention on the left foot has been merged with the same one on the right foot). Sometimes, due

to the lack of knowledge in medicines, further reductions have not been carried out. The number

of types of interventions has been reduced to 2,139.

Considering the polished aggregate data set, the first point to be considered is the high number

of very unfrequent interventions (see Figure 6.10).

Figure 6.10: Distribution of the frequency of surgeries
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Figure 6.11: Distribution of the frequency of surgeries

Considering the cumulative distribution, Figure 6.11, surgeries repeated at least once per month

(12 times in the data set) account for 84% of the total surgeries carried out in the hospital, surgeries

repeated at least once every two months but less than once a month account for 8% of the total

surgeries. The last 8% is allocated to surgeries repeated less than once every two months. Since the

lognormal fitting would not produce credible results with too small sample sizes, the following rule

has been applied:

• size ≥ 12 (at least once per month): the pool of data has been considered sufficiently large to

fit a lognormal distribution

• 6 ≤ size < 12 (at least once every two months): the pool has not been considered large

enough to fit a lognormal distribution, but large enough to fit a triangular distribution, using

maximum, minimum and average of the data set as input parameters

• size < 6 (surgery repeated less than once every two months): in this case the pool of data

has not considered large enough to believe that the minimum realized duration represents

the minimum possible realization (and same for the maximum). A triangular distribution

with 0.65 average, average and 1.60 average has been used. The shape of this triangular is

somehow consistent with the lognormal distribution.

6.1.2 PACU length of stay

In the Hospital there is no digitalized system to store the length of stay in PACU of each patient.

Data are stored on paper. 100 samples have been extracted and analyzed.
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A lognormal distribution has been adopted to fit the duration of PACU. Similarly to the case of

surgeries, there is an intuitive explanation for the adoption of the lognormal distribution: anesthe-

siologists prefer to monitor a patient for at least some predefined time. Typically, it is very unlikely

that a patient leaves the Post Anesthesia Care Unit in less than 40 minutes. Conversely, critical

patients can stay for several hours.

F. and J.H. [29] tested a lognormal distribution for PACU duration,s using the Lilliefors test.

Authors consequently use a lognormal distribution to feed a simulation model. Dexter et al. [25]

directly feed a simulation model with a lognormal statistical distribution.

As for surgery durations, both visual inspection and goodness-of-fit tests have been carried out.

As it is visible in Figure 6.12, there is a clear accordance between the data and the best fitting

lognormal distribution.

Figure 6.12: Empirical histogram and lognormal fitting for PACU length of stay

In terms of numerical analysis, Shapiro-Wilks and Shapiro-Francia have been executed over the

logarithms of the recorded data. As shown in Figure 6.13, the results of the tests clearly indicate

that it is not possible to reject the null hypothesis of lognormality.
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Figure 6.13: Shapiro-Wilks and Shapiro-Francia tests to check the goodness-of-fit of the lognormal
distribution

According to the opinion of interviewed Anesthesiologists and PACU nurses, the duration of

PACU length of stay is not independent from type and specialty of surgery. However, since there was

no digitalized database which would make extremely time consuming to analyze the distribution of

PACU length of stay for each surgery, and since several surgeries are grouped together and consume

the same resource, PACU length of stay has been assumed to be independent from the surgery.

6.1.3 First case delay

Scalea et al. [90] define a first case on time if the patient enters the operating room within six

minutes after it has been planned.

From June 2018, 153 presumed first cases have been extracted. The Excel Sheet provided by

the Hospital does not contain any information about a surgery being the first case, but knowing

that all ORs open at 8:00 am (except for Chirurgie Cardiologique which opens at 7:30 am), it has

been assumed that surgeries scheduled at 8:00 am are the first case of the day. Some schedule

disruptions have been noted: it is extremely unlikely that a surgery planned at 8:00 starts at 10:50,

thus it has been assumed that for very long delays, a surgery has been replaced as a first case.

Analogously, a surgery starting with a consistent but reasonable delay (e.g. 50 minutes) but with

a very short duration has been neglected. It has been considered that it could have been replaced

by another short surgeries (e.g. 30 minutes) which started on time. There is awareness that these

assumptions may lead to a slight bias in the estimation of the first-case delay, but this bias has

been considered negligible with respect to a prospective large overestimation of the delay due to

the disruption of the schedule. The following hypothesis have been thus formulated:

• First-case delays cannot be larger than 60 minutes

• First-case delays cannot be longer than the duration of the first surgery
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Delays have been plotted on a histogram, Figure 6.14, considering six time bins of 10 minutes

each.

Figure 6.14: Recorded distribution of first case delays

The graph displays a clear monotone decreasing pattern, thus a Weibull distribution has been

considered as the candidate to capture the behavior. Since the Exponential distribution is a partic-

ular case of the Weibull (β = 1), if the test rejects the goodness-of-fit of a Weibull distribution, it is

sure that the exponential cannot be used.

The Lilliefors test has been used to check the goodness-of-fit. The graphical result of the Weibull

probability plot is presented in Figure 6.15.

Figure 6.15: Weibull Probability plot

As expected, there is some accordance between the Weibull fit and the recorded data in the
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middle of the graph, but the high number of outliers on the left and right hand side make the test

reject the null hypothesis with a p-value of the order of 10−3. The same test has been conducted

removing the zero values with even worse results, as shown in Figure 6.16.

Figure 6.16: Weibull Probability plot of adjusted data

It has been thus decided to adopt an empirical distribution, using the mean values of each delay

bins:

• 5 minutes: p = 0.43

• 15 minutes: p = 0.27

• 25 minutes: p = 0.18

• 35 minutes: p = 0.06

• 45 minutes: p = 0.05

• 55 minutes: p = 0.01

Before the application of an incentive program aimed at increasing on-time first cases and re-

ducing the overall makespan, Scalea et al. [90] recorded a on-time first case (delay lower than 6

minutes) rate between 0.3 and 0.33. The value presented above (0.43) is slightly higher, but it

takes into account delays up to ten minutes. As shown in graph 6.17, if buckets of 6 minutes are

considered, the first bin contains 46 cases which correspond to p = 0.30. Accordance with literature

findings supports to goodness of the performed analysis. Vitez and Macario [104] found a first case

delay rate (computed without a 6 minute margin) around 40%, thus in line with Bichat.
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Figure 6.17: Weibull Probability plot

6.1.4 Solicited data

As mentioned at the beginning of Section 6, transportation time and cleaning time are not been

recorded by the Hospital. Regarding cleaning time, one could argue that the turnover time could

be extracted from the dataset as Patienti+1,IN −Patienti,OUT , but that would not take into account

of several issues:

• OR cleaning is dependent to the type of surgery performed. It must be specified for each

surgery, so this would imply extracting distributions from the dataset for each surgery type,

and dealing with unfrequent surgeries.

• OR cleaning would be independent on the sequence, while letting the user decide the duration

for each surgery allows for a more resonable representation of the cleaning time.

• turnover time includes waiting time for resources constraints (e.g. cleaning team busy with

another operating room or anesthesiologist busy with the anesthesia induction in another

operating room).

• due to lack of personnel, there are often long turnover times at lunchtime, which have nothing

to do with operating room cleaning.

• Patient transportation can be a driver of increased turnover time.

Through expert judgment, cleaning time has been represented with four modules:

• Very short: Mode = 5 minutes

• Short: Mode = 10 minutes

• Medium: Mode = 20 minutes



6.2. RESOURCES 55

• Long: Mode = 30 minutes

For each module, a triangular distribution with 0.7Mode, Mode and 1.3 Mode has been used to

represent the stochasticity of the process.

Anesthesia has been solicited with the same principle, using the following modules:

• Short: Mode = 10 minutes

• Medium: Mode = 20 minutes

• Long: Mode = 40 minutes

For patient transportation, a triangular distribution with 5± 2 minutes has been used.

6.2 Resources

The following resources are required to run the simulation:

• Number of Anesthesiologists

• Number of Anesthesia nurses

• Number of OR nurses

• Number of PACU beds

• Number of cleaning teams

• Number of “Brancardiers””

PACU beds have been simply counted and the total amount is equal to 14. For the other re-

sources, some additional discussions are required.

6.2.1 Anesthesiologists

Anesthesiologists are not required to be always present in the operating room after the Anesthesia

Induction, unless complications arise during the surgery. The minimum allowed ratio
Nanesthesiologist

NOR
=

0.5, but analyzing the working schedule of Anesthesiologists in Bichat, it looks clear that some mar-

gin is kept from the minimum permitted value.

One week of Anesthesia schedule has been analyzed. Each day is divided into morning and

afternoon, and different resources and operating rooms can be deployed in the two parts of the

week.

From Monday to Thursday, an average ratio
Nanesthesiologist

NOR
= 0.63, has been extracted, while

on Friday,
Nanesthesiologist

NOR
= 0.84.
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6.2.2 Anesthesia Nurses

Prof. Longrois reported that, since the presence of an Anesthesia nurse, is a strict constraint for

the beginning of the surgery, a ratio
Nanesthesia nurse

NOR
= 0.1.2 would be desiderable. However, due

to budget constraints, Hospital Bichat works with
Nanesthesia nurse

NOR
= 0.1.

6.2.3 Number of OR nurses

Each operation requires two OR nurses. However, in case of lack of nurses, one OR nurse can be

replaced by a resident or the surgeon may decide to operate in degraded conditions (i.e. with only

one assisting nurse). It turns out that OR nurses are not a significant constraint for the hospital,

thus a total amount of 2 OR nurses for each active operative room has been assigned (no constraint

introduced). This resource has been model to record its utilization and to leave space for prospective

follow up projects.

6.2.4 Cleaning teams

Each cleaning team is assigned to two operating rooms, except for Chirurgie Cardiologique, where

each cleaning team is assigned only to one surgery room. Since, excluding Chirugie Cardiologique,

there are 15 ORs, one surgery room (Mat3) has been assigned to only one cleaning team.

6.2.5 Brancardiers

“Brancardiers”” are working in the whole Hospital, so it is not possible to know their capacity and

availability, thus it is not possible to model them as a resource of the Operating Theater. In order to

represent congestions in case of high demand, “Brancardiers”” have been modeled with arbitrary

capacity.
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Chapter 7

Verification and Validation

Law [55] point that a simulation model must pass through a process of verification and validation

before it can be used for any decision-making purpose. Verification is concerned with determin-

ing whether the assumptions document has been correctly translated into a computer program.

Validation is the process of determining whether a simulation model is an accurate representa-

tion of the system, for the particular objectives of the study.

7.1 Verification

Law [55] suggests 8 techniques to verify a simulation model.

Write and debug, adding complexity gradually The simulation model has been created

step by step, one OR at a time, the correct functioning checked after each step. Also, for the coding

in VBA, an easy support model has been used to develop and test macros in a clean environment.

The tested and working codes have then been applied to the complex model.

Multiple reviewers The project has been set as individual work. Nevertheless, periodic reviews

of the simulation model have taken place with Prof. Jouini, who could provide a third person review

of the simulation model. The model has been reviewed block by block and the simulation has been

run and checked together.

Multiple settings Each input parameter has been set with different values to verify the model

reacts correctly to changes. Particular attention has been paid to the variation of:

• Number of surgeries in each operating room, to check that the VBA code loads the proper

number of surgeries in each OR
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• Duration of the surgeries, to check that VBA attributes correctly the duration to each surgery

and changes values at each simulation

• Personnel schedules

Array values are potentially more critical than scalar quantities because of the poor debugging

features of VBA. For example, VBA quits a Subroutine if it spots issues with the indexes of an array,

without returning errors. This prevents Arena from reading, for example, the updated values of the

surgeries following the index error, but it does not necessarily block the simulation. To prevent the

occurrance of this issues, two techniques have been used:

1 VBA debugger to check that each line has been read by the compiler.

2 Specific focus on the last items of the code.

Traces Several record blocks have been added to the model to make sure that time intervals

return reasonable results. Record blocks include: anesthesia induction, cleaning time, time spent

in the operating theatre and in the operating room. In addition, Arena computes by default min-

max-avg of all queues and resource utilization.

Test under simplifying assumptions This step has been skipped because of the inherent

complexity of the model. To compute by hand an easy model, the original one would be simpli-

fied to the point that it would not provide any credible verification.

Animations Some simple animations are included in Arena, which allow to see the progress of

entities and the amount of queues at each process module. A blocking state is thus displayed by

default by arena with non-served queues on Hold and Seize blocks.

Verification of input distribution See Chapter 6 (data analysis).

Commercial simulation software Arena by Rockwell Automation has been used, leading

software for discrete-event simulation.

7.2 Model Validation

The Hospital provided an Excel data set including, for each surgery performed in 2017:

• Operating room of the surgery

• Medical specialty
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• Specific type of intervention

• Scheduled begin, date and time

• Actual begin, date and time

• Date and time of patient out

• Surgery duration (patient in - patient out)

• Destination (Reanimation or PACU)

• Class of surgery (scheduled, scheduled today, urgent)

From the Excel sheet, four days of realized schedule of each operating room have been extracted.

In order to exclude potential correlations, different weekdays in different periods of the year have

been extracted: Wednesday 6 June 2018, Friday 22 June 2018 (data extracted from a file previously

submitted by the hospital which includes only June 2018), Monday 25 September and Thursday 23

February.

Validation has been performed comparing the average makespan over 50 replications with the

realized makespan, for each OR on each day. In order to enhance the credibility of the model,

validation has been performed in two steps:

• Deterministic surgery durations: in this validation step, the actual duration of the surgeries

has been used as a deterministic input for the model.

• Full stochasticity: the model has been fed with the computed probability distributions of the

surgeries

For both the validation steps and for each day, the following objects have been reported:

• Graphical representation of the average simulated makespan and the realized one

• Average percentage error, computed as:

Consistency error =

∑NORs
i=1 MSsim,i −MSreal,i

NORs ×MSsim

× 100

This parameter gives an indication of the consistency of the model. The ideally consistent

model would return Consistency error = 0 for NORs → ∞ and Nrepl → ∞

• Absolute average percentage error, computed as

Average V ariability =

∑NORs
i=1 |MSsim,i −MSreal,i|

NORs ×MSsim

× 100
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This value is by definition different from zero, since one realization is in general different from

the average of the process beneath it. Nevertheless, a relatively small value for is required

by a simulation model which aims at being useful for decision making. An excessively large

variability from the actual outcome would prevent the credibility of singular outputs.

• Percentage mean square error, computed as

MSE =

∑NORs
i=1 (MSsim,i −MSreal,i)

2

NORs ×MSsim

× 100

This term has no physical meaning but it is largely used by researchers as an error indicator.

It has been added to the list of outcomes for the sake of completeness.

In addition, an overview of the number of simulated makespans which differ from the realization

by less than 30 minutes, between 30 and 60 minutes and more than 60 minutes, has been reported.

7.3 Deterministic surgery durations model

As mentioned before, at this step each surgery has been treated as a process with deterministic du-

ration, equal to the realized one. Since recorded durations refer to PatientOUT −PatientIN , PACU

capacity has been arbitrarily increased, to make sure it does not introduce any blocking conditions.

The realized durations already include the waiting time for PACU full, so it would be incorrect to

introduce further delays. This step, which is in between verification and validation, is useful to gain

confidence about two issues:

• To qualitatively verify that the model properly processes inputs without missing entries and

bugs.

• To quantitatively validate the model of the whole structure of the operating theater: first case

delay, cleaning time, personnel constraints, patient transportation. Decoupling the stochas-

ticity of surgery durations (and PACU) from the stochasticity of the surrounding scenario, and

validating the latter first, allows to believe that both blocks are representing reality, not only

their combination.

7.3.1 Graphical inspection

Figures 7.1, 7.2, 7.3, 7.4 show the comparison between the average simulated makespan and the

realization. Despite a few outliers, a clear accordance between simulation and realization can be

spotted on each analyzed workday.
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Figure 7.1: Comparison simulation vs realization for 22 June 2018

Figure 7.2: Comparison simulation vs realization for 6 June 2018
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Figure 7.3: Comparison simulation vs realization for 23 February 2017

Figure 7.4: Comparison simulation vs realization for 25 September 2017

7.3.2 Numerical analysis

The obtained quality indicators (introduced in Section 7.2) are summarized in Table 7.1.
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Indicator 22 June 6 June 23 February 25 September
Bias (%) 2.64 -1.28 1.70 0.08
Absolute average variability (%) 5.15 6.86 6.38 5.48
MSE (%) 0.432 0.472 0.625 0.437

Table 7.1: Numerical analysis of the goodness of simulation results

Data shows the consistency of the model, consistency error is smaller than 2.5% for each ana-

lyzed day. At the same time the absolute variability ranges between 5.22% and 6.72%. As mentioned

in Section 7.2, this value must be different from zero since the expected average of a process differs

from one of its possible realizations. Nevertheless, the average variability interval allows for a local

prediction of the makespan.

Considering all four days and active operating rooms, 60 makespans have been simulated. Out

of them, 37 differed by less than 30 minutes, 18 between 30 and 60 minutes and 5 simulations

produced results which differed by more than 60 minutes.

7.4 Full stochasticity

At this step, the model has been tested applying all the stochastic inputs. In other words, the model

tested in this section, is the tool which will be used for decision making.

At this point, the model incorporates the following drivers of stochasticity:

• Surgery durations extracted from the analyzed distributions

• Length of stay in PACU

• Cleaning time

• Transportation from Hospital Wards to the OT

• First case delay

The goal of this validation step is to check consistency and variability of the results with respect

to realized workdays. Consistency is expected to be similar to the previous scenario because the

fully stochastic model must not introduce a significant bias to the results. Nevertheless, since the

surgery duration recorded by the Hospital is obtained as PatientOUT − PatientIN , data used to

fit the distributions include the waiting time for PACU full. The addition of further delay is thus

expected to introduce a slight bias.

Furthermore, the indicator of variability is expected to be larger, since two big sources of vari-

ability have been introduced.
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7.4.1 Graphical inspection

As for the case of deterministic surgery durations, the graphs of each day and each operating room

have been displayed in Figures 7.5,7.6,7.7,7.8.

Figure 7.5: Comparison simulation vs realization for 22 June 2018

Figure 7.6: Comparison simulation vs realization for 6 June 2018
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Figure 7.7: Comparison simulation vs realization for 23 February 2017

Figure 7.8: Comparison simulation vs realization for 25 September 2017

7.4.2 Numerical analysis

The three measured quality indicators are displayed in Table 7.2.
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Indicator 22 June 6 June 23 February 25 September
Bias (%) 0.42 4.60 2.25 0.22
Absolute average variability (%) 9.89 9.78 9.77 11.54
MSE (%) 3.14 3.26 2.89 3.11

Table 7.2: Numerical analysis of the goodness of simulation results

As expected, consistency error is slightly larger than in the previous case, though it remains

within an acceptable interval. This result confirms the assumption that the recorded surgery du-

rations ( PatientOUT − PatientIN ) are not significantly different from the duration which would

conceptually match the model (Surgical actEND − PatientIN ).

Variability increases with respect to the first scenario (range 9.74-11.64 %) and it can be stated

that roughly 50% of the variability is due to the system and roughly 50% to the surgical act.

Out of the 60 simulated makespans, 22 differed by less than 30 minutes, 18 between 30 and 60

minutes, 20 differed by more than 60 minutes.
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Chapter 8

Heuristics

One of the opportunities enabled by simulation modeling is the testing, in stochastic conditions and

including all the main resources, of different scheduling scenarios.

The optimization of the schedule has been performed by considering couples of ORs. Operat-

ing rooms are coupled two by two for cleaning and anesthesia, but they are all coupled together

for PACU. An effective heuristic, which rigorously tackles PACU congestions, would require to take

into account all 18 operating rooms at the same time. This would add extra complexity and com-

putational burden and it would not be possible to compare the results with the ideal solution.

Assuming four surgeries for 15 active operating rooms, it turns out that the ideal best solution

(which is the best of all the possible combinations), would require to check: 4!15 ≈ 5× 1020 combi-

nations.

Furthermore, even considering pairs of operating rooms, evaluating all combinations does not

result in a meaningful option, since for example, a couple of operating rooms with 9 and 7 surg-

eries (reasonable situation for some specialties) would imply the evaluation of 9! × 7! = 1.8 × 109

combinations.

8.1 Targets and description

Targets The goal of this part of the project is to develop a heuristic which incorporates the fol-

lowing goals:

1 low computational burden: the algorithm must converge within 10 seconds at most for each

pair of operating rooms, using a commercial processor.

2 the obtained schedule should push a short surgery to PACU early in the morning, to smooth

its utilization

3 surgeries ending at the same time should be prevented as much as possible, in order to avoid

blocking states and reduce the makespan
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4 the sequence should stick as much as possible to a decreasing pattern, in order to prevent

long surgeries at the end of the day (personnel satisfaction constraint). The internal policy

of the hospital includes weekly meetings of all care givers of the operating theater, aimed at

achieving consensus about the schedule. Schedules with long surgeries at the end of the day

would hardly be accepted.

To summarize the four items, the goal of this section is to obtain a schedule which minimizes

the occurrence of surgeries ending together, including constraints of computational burden and

personnel satisfaction.

Description of the heuristic The designed heuristic works in the following way:

• The room with the shorter expected makespan starts with the shortest surgery (for PACU).

This is the initial condition of the algorithm.

• At each round, the algorithm adds a surgery to the OR to which a shorter expected duration

has been assigned. When one operating room has completed the filling of the schedule, the

other one proceeds alone.

• At each iteration, the heuristic assigns the longest surgery which does not end within a ±30

minutes interval with the last assigned surgery of the other operating room. If no surgery

fulfills this requirement, the longest available surgery (i.e. the longest not yet allocated) is

scheduled.

Example Considering the following two vectors:

OR1 =



96

45

21

120

55

110


OR2 =


140

30

70

135

120



MS1 = 441

MS2 = 495

The first operating room has a shorter makespan, thus the algorithm places the shortest surgery

of OR1 first. At this point, OR2 has a shorted assigned total duration, thus a surgery is assigned to
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OR2. The algorithm tries with the longest available surgery (140). Since it does not fall in a ±30

minutes interval with OR1, 140 is assigned as the first surgery of OR2. The algorithm proceeds

with OR1, since a shorter duration has been assigned to it. The longest available surgery lasts 120

minutes, thus it cannot be chosen (21 + 120 = 141, too close from the end of the first surgery in

OR2). The second longest available surgery cannot be assigned either, so the algorithm chooses 96.

The algorithm proceeds with these rules. Considering that, if there are no available surgeries which

can prevent a contemporary completion, the longest one is selected, the resulting schedule is the

following one:

OR1 =



21

96

120

110

55

45


OR2 =


140

135

120

70

30



For this specific case, only one contemporary completion occurs, a short surgery has been pushed

early to PACU, and a reasonably decreasing pattern has been followed.

8.2 Benchmarking the heuristic

A preliminary testing of the heuristic has been conducted, considering pairs of realized schedules.

The goal of this preliminary testing is to evaluate whether is to check whether the heuristic manages

to reduce the number of contemporary completions.

The competing schedules are the following ones:

• Original schedule

• Ideal schedule (all combinations tested)

• Schedule produced by the heuristic

• Surgeries scheduled by decreasing duration

• Surgeries scheduled alternating the duration (shortest, longest, second shortest, second longest,

...)

• Shortest surgery scheduled first, then a decreasing pattern is followed

The preliminary benchmarking has been conducted using deterministic durations. Both real-

ized surgery durations and mean values of the distributions have been used as inputs. The two
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analysis have been carried out to check the consistency of the results in a realized scenario (real-

ized durations) and to verify it may be useful from a more general perspective (mean values of the

distributions).

The makespan of each operating room has been computed as the total duration of the surgeries,

adding 15 minutes to surgeries ending immediately after (within 15 minutes) a surgery in the other

operating room. The computed makespans are thus not representative of the real system, but rather

a method to assess whether the algorithm may be useful for a purpose and gather a rough estimation

of how much time can be saved through a proper rescheduling.

In Figure 8.1 results of the realized scenario are displayed, in Figure 8.2, results coming from the

mean duration of the distributions. The first observation is that in no case, the heuristic produces

worse results than the original schedule. In 4 cases, the schedule coincides with the ideal one, in 4

cases it is slightly worse.
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(a) Mat 1 and 2 (b) Urologie

(c) Chirurgie Thoracique (d) ORL

Figure 8.1: Percentage makespan difference between the original schedule, the ideal schedule, the
heuristic, a decreasing pattern and an alternating pattern with the shortest first - Mean values of
the distributions
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(a) Mat 1 and 2 (b) Urologie

(c) Chirurgie Thoracique (d) ORL

Figure 8.2: Percentage makespan difference between the original schedule, the ideal schedule, the
heuristic, a decreasing pattern and an alternating pattern with the shortest first - realized surgery
durations

8.3 DOE

The proposed heuristic has been tested in stochastic conditions. The heuristic has been applied

on two Operating Rooms, removing the capacity constraint on PACU and synchronizing the first

case. The heuristic thus only takes into account the contemporary endings of the cleaning in the

Operating Rooms.

8 different scheduling scenarios have been considered, combining three instances:

• Mean value: M (long surgeries) and m (short surgeries). A short surgery has been defined as

a surgery which lasts less than 90 minutes. A long one lasts between 90 and 240 minutes.
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Surgeries longer than 4 hours have been excluded because they would not allow an actual

sequencing in the Operating Room.

• Variance: V (large variance) and v (small variance). For the case of long surgeries, long vari-

ance has been considered larger than one third of the mean value and small variance, smaller

than one fourth of the mean value. For long surgeries, smaller and higher than one third.

• Loading: L (high loading) and l (low loading). In the former case, surgeries have been added

until the sum of the expected duration is larger than 500 minutes, in the latter one until 250

minutes.

A pool of 10 surgeries with the four possible characteristics (MV,Mv,mV and mv) has been cre-

ated. From each pool of surgeries, 10 schedules have been extracted, both in the full-load and

half-load scenario. Each schedule has been tested with 20 replications.

To summarize: 8 scenarios, 10 schedules for each scenario, 20 replications for each schedule.

In the Appendix, Table D.1 includes, for each one of the 80 schedules:

• Average makespan with the original schedule

• Average makespan after the application of the heuristic

• Average gain

Results in Table D.1 have been summarized in Table 8.1 to provide an overview of the experi-

ments.

Configuration Total average gain Percentage gain
MVL -102 -0.758
MvL -88 -0.656
mVL -129 -0.801
mvL -184 -1.137
MVl -17 -0.221
Mvl -25 -0.350
mVl 67 0.816
mvl -111 -1.311

Table 8.1: Aggregate data of the experiments. Results in minutes

Table 8.1 shows that the average improvement is more interesting when the loading of the Op-

erating Room is greater. This result has two intuitive explanations:

1 The more the surgeries, the wider the pool, the easier to find proper synchronization

2 The more the surgeries, the higher the number of turnovers, thus the more likely to save time
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To summarize and interprete the results numerically, an ANOVA General Linear model has

been performed on the dataset, to evaluate the effectiveness of the heuristic. Table 8.3 summarizes

the results of the test.

Figure 8.3: Results of the the General Regressive Model

Figure 8.3 shows that Mean and Loading have a significant impact on the makespan, while

Variance and Heuristic do not. Mean as an impact because the longer the Mean duration of the

surgeries, the less turnovers have to be performed, thus the result was expected. The significance

of Loading is trivial: less loaded Operating Rooms complete their activity earlier. Regarding the

heuristic, the non significance was expected, because of the very poor results (and even negative in

the mVl scenario) of the heuristic in case of low loading.

Focusing on the most promising scenarios, namely schedules with short surgeries and high load-

ing (both small and large variance), with 80 schedules for each configuration and 50 replications

(to ensure accurate average makespans), significance of the heuristic has been found. Figure 8.4

reports the results of the ANOVA General Linear Model. The variance remains non significant.

Results of the simulations are displayed in the Appendix, Figure D.2.



8.4. LIMITATIONS 75

Figure 8.4: Results of the the General Regressive Model, focusing on schedules with short surgeries

8.4 Limitations

The heuristic has been presented to Prof. Longrois, who has expressed his appreciation for the

idea and positively valued implementation opportunities. Nevertheless, he has pointed that the

heuristic presented above, neglects two constraints of the Operating Theater:

1. Some surgeries require equipment with limited availability (e.g. two surgeries may require

a machine which is shared by two Operating Rooms, thus it is not possible to perform them

both at the same time)

2. Some patients require to receive surgeries early in the morning. Prof. Longrois has mentioned

the issue of children: since patients have to fast the whole day until surgery, children have the

priority to avoid them fasting for a long time span.

Incorporating in the model the abovementioned constraints would require several work with

the Hospital, to define for each surgery the required machinery. Therefore, even if they would not

introduce significant theoretical issues, limitations have been neglected in this project. Awareness

could lead to prospective future improvements.
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Chapter 9

Results and Managerial Insights

The verified and validated simulation model can be now used to gather a quantitative overview

of the system and to test new scenarios aimed at providing decision aiding insights to Hospital

Managers.

In the following Chapter, the following three topics have been tackled:

1. Overview of the system, aimed at understanding bottlenecks and sources of inefficiency.

2. Cost-free “What-If” scenarios: the effect of scheduling following the heuristic proposed in

Chapter 8.

3. Sensitivity analysis of different resource allocations

9.1 System Overview

This Section includes first the computed utilization rate of each Operating Room over each workday,

the average value over the 18 Operating Rooms and some description of the wasted time in the

Operating Theater, extracted from the simulation results.

9.1.1 Operating Room Utilization

Table 9.1 displays the utilization of each Operating Room, computed as:

UOR =
Surgery time

OR makespan

Surgery time includes Anesthesia induction, Incision and Patient Awakening, in other words,

the sum of the value adding activities during which the patient is obliged to occupy the Operating

Room. Everything else does not add value to the Hospital and it can be considered as waste.
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Utilization
06-Jun 22-Jun 23-Feb 25-Sep

THO1 0.847 0.827 0.817 0.791
THO2 0.867 0.809 0.887 0.838
RYT1 0.885 0.886 0.776
RYT2 0.728 0.715 0.808 0.720
CAR1 0.879 0.829 0.859 0.888
CAR2 0.882 0.880 0.868
CAR3 0.871 0.861 0.875
ORT1 0.837 0.816
ORT2 0.817 0.720
ORL1 0.825 0.735 0.860 0.762
ORL2 0.779 0.747 0.816 0.785
DIG1 0.864 0.802 0.832 0.766
DIG2 0.846 0.765 0.862 0.790
MAT1 0.741 0.646 0.804 0.690
MAT2 0.796 0.721 0.830 0.802
MAT3
URO1 0.748 0.768 0.839 0.753
URO2 0.777 0.775 0.868

Table 9.1: Computed average OR utilization over 50 replications

As expected, CAR1, CAR2 and CAR3 present the highest values of occupation, since there is

one cleaning team fully dedicated to each OR (thus no blocking for cleaning) and since patients are

discharged in ICU (thus no time is wasted for PACU blocked).

The average utilization of each workday is displayed in Table 9.2.

Utilization
06-Jun 22-Jun 23-Feb 25-Sep

OT 0.822 0.768 0.844 0.795

Table 9.2: Computed average OT utilization over 50 replications

9.1.2 Sources of inoccupancy

The modeled sources of inoccupancy are the following ones:

1. Turnover time: cleaning time + waiting for cleaning + wating for anesthesiologist

2. Waiting time for a free bed in PACU (when PACU is full it is not possible to discharge the

patient)

3. First case delay
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First case delay is an input of the model, it has been analyzed from the dataset (see Chapter 6).

It turns out that the average first case delay corresponds to 16 minutes.

Pie charts in Figure 9.1 show the impact of each one of the three factors for each workday.

PACU
10.0%

First case delay

17.7%

Turnover

72.3%

(a) June 6

PACU

31.2%

First case delay

13.0%

Turnover

55.8%

(b) June 22

PACU0.4%

First case delay

19.8%

Turnover

79.8%

(c) February 23

PACU

15.1%

First case delay

16.5%

Turnover

68.5%

(d) September 25

Figure 9.1: Impact of the three sources of inefficiency over the overall inoccupation

Figure 9.1 shows that the major driver of inoccupancy is Turnover, ranging between 55.8% and

79.8% while First case delay is a relevant but secondary issue, ranging between 13.0% and 19.8%.

PACU is the most variable source of inoccupancy, ranging from 0.4% (practically negligible) on

February 23rd to 31.2% on June 22nd.

9.1.3 Discussion

Figure 9.1 clearly shows that the highest effect of non-operating time comes from turnover. Part of it

can be avoided by increasing the performance of the system but it cannot be completely erased, since

cleaning is a mandatory operation after each surgery. PACU waiting time could be theoretically lead
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to zero by increasing PACU capacity and properly scheduling surgeries. Scheduling is cost-free

(this topic will be analyzed in the next section), and it cannot completely prevent PACU waiting

time. PACU waiting time can be nullified only by adding beds. The actual cost effectiveness can be

evaluated by Hospital managers, based on the presented results. First case delay cannot be tackled

by simulation; the most intuitive approach to reduce first case delays is the introduction of incentive

programs. Scalea et al. [90] and St Jacques et al. [96] propose incentive programs which turned

out to be successful in terms of reduction of first case delays.

9.2 Cost-free “What-If” scenarios

Following the assumption N.8 of the assumptions document (see Section 4.4), surgeries have been

assumed to be black boxes, time and sequence independent, thus performance improvements can

be reached only through two different methods:

• Choosing the best surgeries to plan each workday of each Operating Room: unfeasible because

of the block scheduling approach of Hospital Bichat. The list of surgeries of each operating

room is a constrained input of the model

• Reducing congestions by redesigning some structures of the system and/or rescheduling surg-

eries

Regarding congestions, two main issues have been gathered by the conceptual modeling of the

Operating Theater:

• Cleaning Teams work on two parallel Operating Rooms, thus contemporary or near terminat-

ing times make one Operating Room wait for the Cleaning Team.

• Analogous issue with Anesthesiologists working on two different rooms at the same time.

Two surgeries cannot begin at the same time because the presence of one Anesthesiology in

the Operating Room during Anesthesia induction is required for safety reasons by law

• PACU saturation leads to patient recovery in the Operating Room, thus reducing the produc-

tivity of the system

The developed heuristic in Chapter 8 is aimed at tackling the abovementioned issues, reducing

the probability of contemporary begins of surgeries in coupled ORs and trying to smooth PACU

utilization by pushing short surgeries at the beginning of the day.

Furthermore, a new configuration has been tested: grouping cleaning teams into a single re-

source instead of having them allocated to couples of Operating Rooms leads for sure to perfor-

mance improvements, but the quantitative advantages due to this configurations are unknown to

the Operating Theater manager.
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To summarize and introduce the results, five different scenarios have been tested:

1. Same allocation of cleaning teams, applying the scheduling heuristic presented in Chapter 8

2. Same allocation of cleaning teams, applying a similar heuristic, but imposing the shortest

surgery first in all Operating Rooms

3. Cleaning teams grouped into a single resource, with the original schedule (i.e. the realized

one)

4. Cleaning teams grouped into a single resource, applying the scheduling heuristic presented

in Chapter 8 Cleaning teams grouped in a single resource, applying a similar heuristic, but

imposing the shortest surgery first in all Operating Rooms

For the sake of clarity, full Tables containing the makespans of the each Operating Rooms have

been attached to Appendix C.

Conversly, the aggregation and the analysis of the results has been included in this Chapter.

9.2.1 Average makespans

Table 9.3 shows that in no case the current configuration corresponds to the optimal one. Different

scheduling approaches and configurations do not produce prominent improvements due to both

constraints (i.e. sticking as much as possible to a decreasing duration pattern to create an acceptable

schedule) and assumption declared in Section 4.4.

Original Cleaning Configuration Grouped Cleaning Teams
Date Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

06-Jun 513 507 504 508 505 501
22-Jun 519 520 519 518 521 517
23-Feb 321 321 316 318 318 317
25-Sep 342 338 340 342 338 339

Table 9.3: Average simulated makespans with different scheduling and cleaning teams allocation
over the four simulated operating days

9.2.2 Aggregate makespan reduction

To provide quantitative data about the overall prospective time saving in the whole Operating The-

ater, the sum of the difference between new makespan and original one over the 18 Operating

Rooms has been displayed in Table 9.4.

In formulas, each of the cells of Table 9.4 has been computed as follows:



9.2. COST-FREE “WHAT-IF” SCENARIOS 81

NORs,active∑
i=1

MSnew −MSoriginal = MSOT ∗NORs,active

Original Cleaning Configuration Grouped Cleaning Teams
Date Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

06-Jun -86 -148 -70 -124 -189
22-Jun 20 1 -10 35 -19
23-Feb -2 -76 -48 -58 -61
25-Sep -70 -35 -11 -68 -49

Table 9.4: Average simulated makespans with different scheduling and cleaning teams allocation
over the four simulated operating days

Before discussing results, it must be pointed that on June 6th there are 16 active Operating

Rooms, on June 22nd, 14 active Operating Rooms, and on September 25th and February rd, 15 active

Operating Rooms.

The effect of improving cleaning time is thus substancial, while on June 22nd, with 14 active

ORs, it does not affect much the system. Furthermore, considering Figure 9.1, it can be noticed that

on June 22nd, a significant congestion in PACU has been experienced. PACU is positioned down-

stream the Operating Rooms, thus most of the improvements generated in the Operating Rooms

are absorbed by the blocking PACU. This statement is also supported by Table 9.4: on June 22nd,

Heuristic 2, which is designed to prioritize PACU smoothing, performes significantly better than

Heuristic 1, which prioritizes cleaning and caregivers’ satisfaction (by introducing one constraint

less than Heuristic 1).

9.2.3 Overtime

Overtime is a crucial KPI related to the economic effectiveness of the Operating Theater [30, 17].

Considering as Overtime anytime a makespan is longer than 10 hours (elective surgeries, except for

Cardiology which anticipates by 30 minutes, are supposed to take place between 8 am and 6 pm),

it has been computed how each configuration affects the overtime.
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Original Cleaning Configuration Grouped Cleaning Teams
Date Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

06-Jun -37 8 -47 -20 -43
22-Jun 11 -3 17 32 3
23-Feb 37 -14 -2 23 26
25-Sep 17 24 11 4 24

Table 9.5: Average simulated overtime with different scheduling and cleaning teams allocation over
the four simulated operating days

Table 9.5 shows the simulated difference between between Overtime in original conditions and

with different configurations. Overtime can be significantly reduced on June 6th, while no signifi-

cant improvements can be achieved with the other configurations. Fortunately, it can be spotted a

correspondence between the best performing configurations in terms of makespan reduction and

overtime.

9.2.4 Required cleaning teams

In the original configuration, 11 cleaning teams are used: cleaning teams coupled 2 by two in 14

ORs and cleaning teams allocated singularly to 4 ORs.

The box plot in Figure 9.2 shows the required Cleaning Teams at peak conditions (i.e. the mo-

ment of the day, in which the maximum number of cleaning teams are working at the same time) in

case of grouping teams into a single resource. Quartiles have been calculated over 50 replications.
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Figure 9.2: Number of simultaneous cleanings at peak condition for each of the four considered
days. Boxplots created over 50 replications.

Cleaning Teams are overstaffed, since at peak condition, no replication requires more than 9

cleaning teams to work at the same time. Considering median values, no workday requires more

than 7 Cleaning Teams at the same time.

9.2.5 Discussion

Results show that, despite the application of scheduling approaches which take into account care

givers’ satisfaction, it is possible to not penalize, and even slightly improve the overall performance

of the Operating Theater. In terms of performance, shifting longer interventions before the last one

(which is the outcome of the heuristic) reduces the measured performance of the Operating The-

ater, because the last cleaning is not included in the OR makespan. Makespan has been measured

as PatientN,OUT − Patient1,IN , thus pushing long surgeries (which are coupled to long cleaning

duration) at the end of the list, improves the measured performance. Despite this penalization, by

reducing congestions due to contemporary cleaning and anesthesia induction, as well as pushing

short cases to PACU at the beginning of the day, an overall reduction in Hospital’s makespan has

been achieved. As expected, improvements are prominent when there are more active Operating

Rooms, and less significant when the PACU generates abundant congestions.

In terms of overtime, non significant improvements have been achieved, except for June 6th,

when the overall Operating Theater is benefiting from a rigorous scheduling. With regards to clean-

ing teams, simulation has clearly shown that the Hospital, by coupling them two by two rooms in



9.3. SENSITIVITY ANALYSIS 84

14 ORs and having 4 teams allocated to a single OR, instead of grouping them into a single re-

source and having them work in the all operating theater, is both penalizing the performance and

overstaffing the resource.

9.3 Sensitivity analysis

One of the results of Section 9.1.2 is that PACU blocking ranges from being an absolutely negligible

issue to accounting for almost one third of the overall inoccupancy. Since PACU is sometimes used

as a backup for ICU (which must not block for safety reasons), a smaller amount of beds can be

available. Also, it has been tested the effect of adding PACU beds on the overall performance of the

Operating Theater.

9.3.1 Makespan original configuration - Sensitivity PACU

The increase/reduction of time wasted because of PACU blocking by adding 1 and 2 beds (prospec-

tive investment) and subtracting 1 and 2 beds (ICU saturated) has been analyzed, considering the

original resource allocation (cleaning teams allocated two by two) and original schedule.

Results have been plotted on Figure 9.3.
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Figure 9.3: Sensitivity of time wasted in the Operating Theater due to PACU blocking

Histograms in Figure 9.3 show that the addition of the first bed in PACU has a greater effect than

the addition of a second one. As expected, on February 23rd, when the effect of PACU blocking is

negligible, the system is not sensitive to changes, while on June 22nd, which experiences prominent
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congestions in PACU, subtracting two beds to PACU would increase by 258 minutes the congestion

and adding two beds would reduce congestions by 235 minutes.

9.3.2 Heuristics with variations in PACU beds

Original Cleaning Configuration Grouped Cleaning Teams
Configuration Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

Original 20 1 -10 35 -19
+1 bed -66 -25 -41 -54 -55

+2 beds 12 -14 -9 -17 -58

Table 9.6: Effect of applying heuristics and grouping cleaning teams with reduced congestions in
PACU

As expected, by adding PACU beds, thus reducing congestions created by PACU saturation, there

is a twofold effect:

• Reduction of time wasted for congestions (quantified in Figure 9.3)

• More relevant effect of the Heuristics: considering a highly overloaded PACU, which is a bot-

tleneck positioned downstream with respect to the Operating Rooms, not much optimization

can be carried out in the Operating Rooms. Any improvement upstream is canceled by PACU.

Also, even pushing short surgeries at the beginning produces slight effect in an overloaded

system.

9.3.3 Discussion

In section above, it has been shown the effect of allocating more PACU beds and having some ICU

urgency in the system. The analysis has been performed with fixed capacity, while patients coming

from ICU are hospitalized temporarily in PACU, until an ICU bed is available. The effect shown in

Figure 9.3 is thus extremely more moderate. The Operating Theater is sensitive to the addition of

one PACU bed, less to the addition of a second one, and as presented in Table 9.6, in case of highly

congested system, the addition of PACU beds, increases the effect of rescheduling and grouping

cleaning teams.

9.4 Conclusions, Limitations and Future Outlooks

The problem of allocating one cleaning team over two parallel operating rooms has been proved

to produce significant time losses, although not vital. According to Prof. Longrois, the reason why

they have not been grouped into a single resource with large capacity lies in the lack of managerial
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culture in Public Hospital. To the extent of his knowledge, there is no technical barrier to this

change of approach, but pure indifference towards performance improvements. Nevertheless, the

proposed heuristic, would provide slight improvements, by sequencing surgeries taking this issue

into account. As shown in Figure 9.2, grouping cleaning team would also lead to redundance, which

could be exploited to smooth the workload or progressively save money by not replacing future

vacancies.

The second major reason of performance losses, namely PACU blocking states, could be faced by

smoothing patients’ inflow or by increasing the number of available beds. As shown in Figure 9.3,

the addition of just one bed would provide large savings in three of the four considered workdays.

The large number of assumptions adopted for the development of this project limits its accuracy

and leads to significant deviations between realized and simulated makespans. Assumptions have

been forced into this project by lack of data collected by the hospital, scarce integration among

different data sets, lack of funds and time to produce more accurate analysis.

The implementation of this simulation model has been pushed early in the system, which was

not able to support it with sufficient transparency. Length of stay in PACU is collected manually,

thus a small-sized sample has been extracted, data about patients’ routing is dirty and often clearly

corrupted (Patient N.2 cannot enter the Operating Room before patient N.1 leaves it). Intervention

IDs are often mistyped, thus an excessive number of records has been processed, thus reducing

sample size and accuracy of data analysis. No measures of cleaning time, anesthesia induction and

time wasted for blocking states are collected by the Hospital. There is no tracking of the ”Bran-

cardiers”, and no data about waiting times. Barjis [7] support the thesis that Simulation should be

supported by a complete and effective data collection infrastructure.

Future outlooks for this project lie in empirical analysis performed on input data. As stated

in the Assumptions Document (Section 4.4), surgeries have been treated as black boxes. There is

extensive literature showing that predictive models based on empirical data analysis improve the

accuracy of surgery durations.

Gillespie et al. [35] find evidence that communication failures explain 4.5% of the variance of

the distribution of surgery durations. Shahabikargar et al. [92] point and test several predictors

of surgery duration: patient characteristics, operation characteristics, specialty and team compo-

sition. Strum et al. [100] find that type of anesthesia, age, gender of the patient and ASA class are

factors affecting variability of surgery duration. Dexter et al. [23] carried out a systematic review

to identify predictors of surgery durations of General Thoracic Surgery.

Feeding the model with predictive analysis of durations, based on historical data, would enhance

the accuracy of the results and increase the possibility of improvements at the same time.

Also, ICU, roughly modeled but not explored rigorously, could be integrated in future simula-

tion models, and the model could be expanded to the Ambulatory and to Urgent patients. Taking

inspiration from Mielczarek and Zabawa [69], a forecasting of the future demand, based on pop-

ulation aging, could be carried out to test how the system will perform in 5, 10, 20 years and plan
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future resources.
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Appendix A

Conceptual Model

Figure A.1: Full conceptual model of the Operating Theater
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Appendix B

Data Fitting Code

%MATLAB CODE USED FOR FITTING SURGERY DURATIONS

[ ~ , l i s t , l i s t f u l l ]= x l s read ( ’IPOP 2017 Dan ’ , ’E2 : F16103 ’ ) ; %import exce l f i l e

[ ~ , idx ] = sor t ( l i s t ( : , 1 ) ) ; % sor t j u s t the f i r s t column
s o r t e d l i s t = l i s t f u l l ( idx , : ) ; % sor t the whole matrix using the so r t i nd i c e s

data=s o r t e d l i s t ;

un i qu e l i s t=unique ( data ( : , 1 ) ) ; %sor t in a lphabe t i ca l order and merge equal s u r g e r i e s

analyzed_data=zeros ( s i z e ( un ique l i s t , 1 ) , 5 ) ; %i n i t i a l i z e the output matrix

j j =1;
i i =1;

whi le i i < s i z e ( data , 1 )

temp=l i s t ( i i ) ;
counter=0;

whi le i i+counter<=s i z e ( data , 1 ) & strcmp (num2str ( ce l l2mat ( data ( i i+counter , 1 ) ) ) , num2str ( ce l l2mat ( data ( i i ,1))))==1

counter=counter+1;
end

analyzed_data ( j j ,1)= counter ;

i f counter >=12 %surgery repeated at l e a s t once per month
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parmhat=l o g n f i t ( ce l l2mat ( data ( i i : i i+counter - 1 , 2 ) ) ) ;
[M,V]= logns ta t (parmhat (1 ) , parmhat ( 2 ) ) ;
analyzed_data ( j j ,2)=1; %surgery c l a s s
analyzed_data ( j j ,4)=M; %mean
analyzed_data ( j j ,5)= sqr t (V) ; %sigma

end

i f counter>5 & counter<12 %surgery repeated at l e a s t once every two months

min_surgery=min( ce l l2mat ( data ( i i : i i+counter - 1 , 2 ) ) ) ; %se t min
max_surgery=max( ce l l2mat ( data ( i i : i i+counter - 1 , 2 ) ) ) ; %se t max
avg_surgery=mean( ce l l2mat ( data ( i i : i i+counter - 1 , 2 ) ) ) ; %se t average

analyzed_data ( j j ,2)=2; %surgery c l a s s
analyzed_data ( j j ,3)=min_surgery ; %min
analyzed_data ( j j ,4)=avg_surgery ; %mean
analyzed_data ( j j ,5)=max_surgery ; %sigma

end

i f counter<=5 %surgery repeated l e s s than once every two months

avg_surgery=mean( ce l l2mat ( data ( i i : i i+counter - 1 , 2 ) ) ) ; %se t average

analyzed_data ( j j ,2)=3; %surgery c l a s s
analyzed_data ( j j ,3)=avg_surgery*0 .65 ; %min
analyzed_data ( j j ,4)=avg_surgery ; %mean
analyzed_data ( j j ,5)=avg_surgery*1 .6 ; %sigma

end

i i=i i+counter ;
j j=j j +1;

end
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Tables Makespan

Original Cleaning Configuration Grouped Cleaning Teams
Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

THO1 658 642 661 657 651 642
THO2 720 722 729 730 728 727
RYT1 324 301 290 318 300 288
RYT2 547 549 555 546 546 531
CAR1 587 566 557 584 558 563
CAR2 675 685 679 682 685 694
CAR3 308 313 313 308 313 314
ORT1
ORT2 489 470 477 485 470 474
ORL1 573 557 505 568 533 542
ORL2 401 399 391 402 396 390
DIG1 298 302 298 299 301 291
DIG2 633 604 631 596 602 599
MAT1 513 523 511 498 518 508
MAT2 702 697 696 676 700 683
MAT3
URO1 246 238 232 248 235 236
URO2 532 554 534 541 545 535

Table C.1: Simulated makespans with the three different schedules and the two different cleaning
configurations - 6 June 2018
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Original Cleaning Configuration Grouped Cleaning Teams
Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

THO1 670 693 668 684 694 686
THO2 464 468 480 474 474 469
RYT1 543 550 534 542 544 531
RYT2 443 431 442 447 446 443
CAR1 400 397 389 392 390 395
CAR2
CAR3
ORT1
ORT2 503 511 504 502 502 495
ORL1 521 505 481 522 512 483
ORL2 514 515 529 514 526 537
DIG1 679 667 677 682 687 665
DIG2 536 555 547 534 559 553
MAT1 562 573 557 557 563 547
MAT2 482 488 491 468 483 490
MAT3
URO1 575 560 570 555 550 563
URO2 372 371 393 380 371 388

Table C.2: Simulated makespans with the three different schedules and the two different cleaning
configurations - 22 June 2018
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Original Cleaning Configuration Grouped Cleaning Teams
Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

THO1 606 641 619 602 632 621
THO2 660 649 628 652 642 657
RYT1
RYT2 241 231 236 234 231 227
CAR1 322 306 318 316 313 318
CAR2 646 659 651 655 661 660
CAR3 323 317 319 315 323 325
ORT1 227 188 198 232 195 192
ORT2
ORL1 193 202 208 191 195 212
ORL2 268 271 268 254 269 266
DIG1 211 209 208 206 200 214
DIG2 215 215 209 213 206 217
MAT1 273 285 282 272 272 272
MAT2 235 259 245 234 258 235
MAT3
URO1 217 188 178 207 183 173
URO2 186 201 179 190 182 172

Table C.3: Simulated makespans with the three different schedules and the two different cleaning
configurations - 23 February 2017
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Original Cleaning Configuration Grouped Cleaning Teams
Original Heuristic 1 Heuristic 2 Original Heuristic 1 Heuristic 2

THO1 642 632 636 627 632 644
THO2 668 685 690 677 683 683
RYT1 148 145 146 155 144 147
RYT2 509 513 505 499 521 521
CAR1 653 657 647 647 654 644
CAR2 315 318 323 325 320 316
CAR3 603 610 618 626 602 620
ORT1 207 193 189 211 192 199
ORT2
ORL1 302 304 310 289 299 295
ORL2 249 249 256 258 251 251
DIG1 103 75 79 80 70 72
DIG2 43 43 43 43 43 43
MAT1 332 307 307 318 301 296
MAT2 139 127 136 139 138 136
MAT3
URO1 221 207 215 230 215 218
URO2

Table C.4: Simulated makespans with the three different schedules and the two different cleaning
configurations - 25 Semptember 2017
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Appendix D

Conceptual Model Heuristic

Figure D.1: Quick graphical overview of the system
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Configuration MS original 95% confidence MS heuristic 95% confidence Gain

MVL 1261 102 1159 86 -102

MVL 1223 90 1240 95 18

MVL 1342 76 1281 68 -61

MVL 1204 100 1262 103 58

MVL 1385 91 1410 94 25

MVL 1344 75 1364 89 19

MVL 1319 102 1306 79 -13

MVL 1382 106 1483 105 101

MVL 1614 76 1544 92 -70

MVL 1437 118 1359 100 -78

MvL 1317 36 1283 30 -34

MvL 1281 44 1233 30 -49

MvL 1374 47 1357 24 -17

MvL 1330 35 1309 40 -20

MvL 1273 34 1280 25 7

MvL 1416 54 1441 31 26

MvL 1353 38 1327 36 -26

MvL 1239 40 1274 37 36

MvL 1498 45 1522 49 24

MvL 1277 33 1243 34 -34

mVL 1606 60 1628 64 22

mVL 1621 55 1613 39 -9

mVL 1729 61 1685 73 -44

mVL 1639 56 1652 59 13

mVL 1609 44 1602 62 -7

mVL 1589 67 1537 55 -51

mVL 1561 57 1540 42 -21

mVL 1675 44 1670 63 -5

mVL 1510 52 1493 53 -17

mVL 1578 45 1567 48 -11

mvL 1650 26 1677 43 27

mvL 1722 33 1690 28 -32

mvL 1537 24 1529 33 -8

mvL 1510 33 1504 33 -6

mvL 1705 36 1686 26 -20

mvL 1763 28 1766 35 3
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mvL 1604 32 1526 35 -78

mvL 1609 43 1578 32 -31

mvL 1559 40 1536 28 -23

mvL 1564 28 1548 28 -16

MVl 799 46 796 50 -2

MVl 837 87 837 87 0

MVl 1035 68 1021 62 -15

MVl 668 62 668 62 0

MVl 791 56 729 52 -62

MVl 809 85 812 84 3

MVl 665 71 671 73 7

MVl 692 61 692 61 0

MVl 735 77 735 77 0

MVl 732 56 784 58 52

Mvl 643 25 649 22 6

Mvl 644 22 644 22 0

Mvl 677 32 661 26 -15

Mvl 796 24 803 27 6

Mvl 707 25 707 25 0

Mvl 694 30 674 23 -20

Mvl 753 31 754 24 1

Mvl 728 25 728 25 0

Mvl 707 30 704 30 -3

Mvl 739 28 739 28 0

mVl 747 36 769 42 22

mVl 888 37 874 46 -15

mVl 865 37 885 43 20

mVl 796 34 816 35 20

mVl 762 35 783 39 21

mVl 799 47 803 43 4

mVl 879 45 893 50 15

mVl 841 30 823 30 -18

mVl 836 32 832 37 -4

mVl 854 40 857 44 3

mvl 961 24 933 31 -28

mvl 856 27 854 22 -2

mvl 924 36 901 28 -23

mvl 888 26 874 25 -13
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mvl 857 25 888 38 31

mvl 757 23 749 23 -8

mvl 807 25 812 21 5

mvl 878 32 859 26 -20

mvl 822 33 771 25 -51

mvl 749 29 747 27 -2

Table D.1: Results of the DOE, all results presented in minutes

Configuration MS original 95% confidence MS heuristic 95% confidence Gain

mVL 1556 34 1538 32 -18

mVL 1568 29 1557 34 -11

mVL 1579 34 1595 28 16

mVL 1663 26 1702 28 39

mVL 1555 29 1539 30 -16

mVL 1592 29 1565 35 -27

mVL 1667 34 1655 31 -11

mVL 1555 36 1559 34 4

mVL 1583 29 1614 39 31

mVL 1578 36 1552 34 -26

mVL 1693 36 1669 34 -24

mVL 1541 29 1532 33 -9

mVL 1674 37 1656 39 -19

mVL 1587 32 1583 33 -4

mVL 1588 32 1569 27 -19

mVL 1691 35 1645 26 -47

mVL 1627 32 1594 36 -34

mVL 1583 32 1592 37 9

mVL 1532 25 1560 32 28

mVL 1609 37 1603 40 -5

mVL 1460 36 1474 30 14

mVL 1674 34 1657 29 -18

mVL 1618 29 1589 35 -29

mVL 1672 35 1644 38 -28

mVL 1655 30 1643 30 -12

mVL 1634 33 1648 37 13

mVL 1668 39 1605 34 -63

mVL 1668 40 1645 36 -23
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mVL 1550 36 1535 35 -15

mVL 1700 29 1703 30 4

mVL 1623 38 1625 41 2

mVL 1562 29 1551 27 -10

mVL 1490 27 1497 30 7

mVL 1501 28 1519 36 18

mVL 1519 36 1512 35 -7

mVL 1556 30 1522 37 -34

mVL 1667 39 1667 41 0

mVL 1649 35 1661 45 12

mVL 1564 34 1555 30 -9

mVL 1678 27 1694 33 16

mVL 1486 33 1468 40 -18

mVL 1613 34 1602 37 -11

mVL 1537 30 1550 37 12

mVL 1621 34 1565 37 -56

mVL 1538 34 1542 27 3

mVL 1660 36 1668 29 7

mVL 1649 32 1633 33 -17

mVL 1697 25 1705 32 8

mVL 1754 34 1711 31 -43

mVL 1684 39 1668 38 -16

mVL 1594 38 1571 38 -23

mVL 1613 33 1562 35 -50

mVL 1506 33 1505 32 -1

mVL 1610 33 1587 36 -23

mVL 1640 36 1626 26 -14

mVL 1590 33 1577 34 -13

mVL 1563 27 1560 30 -2

mVL 1582 28 1571 30 -10

mVL 1572 33 1526 31 -45

mVL 1509 31 1487 37 -22

mVL 1612 33 1631 31 19

mVL 1629 30 1626 33 -3

mVL 1612 43 1614 36 1

mVL 1655 43 1617 33 -38

mVL 1522 27 1493 28 -30

mVL 1627 31 1615 33 -12
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mVL 1597 36 1576 33 -21

mVL 1597 27 1581 30 -17

mVL 1601 27 1604 32 2

mVL 1548 29 1535 25 -13

mVL 1644 34 1640 37 -4

mVL 1625 37 1593 35 -32

mVL 1607 35 1614 28 7

mVL 1538 33 1546 36 7

mVL 1552 22 1581 33 29

mVL 1589 35 1593 30 4

mVL 1588 30 1564 35 -25

mVL 1559 32 1536 38 -23

mVL 1638 30 1622 36 -16

mVL 1575 33 1563 34 -11

mvL 1596 19 1568 24 -28

mvL 1574 21 1566 26 -8

mvL 1490 22 1500 24 10

mvL 1623 18 1587 26 -36

mvL 1551 24 1526 19 -25

mvL 1605 21 1579 20 -26

mvL 1701 23 1696 18 -4

mvL 1682 21 1686 22 4

mvL 1625 24 1603 21 -23

mvL 1565 23 1548 23 -17

mvL 1656 21 1618 21 -38

mvL 1665 23 1654 23 -10

mvL 1614 23 1602 19 -12

mvL 1643 20 1638 19 -5

mvL 1527 22 1528 18 1

mvL 1657 24 1653 26 -5

mvL 1648 22 1633 25 -15

mvL 1590 19 1566 23 -24

mvL 1626 22 1614 24 -13

mvL 1555 23 1555 21 0

mvL 1558 17 1538 20 -20

mvL 1594 25 1551 22 -43

mvL 1621 20 1594 19 -27

mvL 1684 23 1668 21 -15
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mvL 1543 23 1534 21 -9

mvL 1527 24 1506 17 -21

mvL 1653 22 1667 20 14

mvL 1474 22 1456 25 -18

mvL 1682 17 1663 24 -19

mvL 1689 18 1661 19 -28

mvL 1596 19 1568 24 -28

mvL 1574 21 1566 26 -8

mvL 1490 22 1500 24 10

mvL 1623 18 1587 26 -36

mvL 1551 24 1526 19 -25

mvL 1605 21 1579 20 -26

mvL 1701 23 1696 18 -4

mvL 1682 21 1686 22 4

mvL 1625 24 1603 21 -23

mvL 1565 23 1548 23 -17

mvL 1656 21 1618 21 -38

mvL 1665 23 1654 23 -10

mvL 1614 23 1602 19 -12

mvL 1643 20 1638 19 -5

mvL 1527 22 1528 18 1

mvL 1657 24 1653 26 -5

mvL 1648 22 1633 25 -15

mvL 1590 19 1566 23 -24

mvL 1626 22 1614 24 -13

mvL 1555 23 1555 21 0

mvL 1558 17 1538 20 -20

mvL 1594 25 1551 22 -43

mvL 1621 20 1594 19 -27

mvL 1684 23 1668 21 -15

mvL 1543 23 1534 21 -9

mvL 1527 24 1506 17 -21

mvL 1653 22 1667 20 14

mvL 1474 22 1456 25 -18

mvL 1682 17 1663 24 -19

mvL 1689 18 1661 19 -28

mvL 1683 23 1651 25 -33

mvL 1572 21 1562 20 -11
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mvL 1680 22 1686 24 5

mvL 1487 22 1480 25 -6

mvL 1672 24 1606 27 -66

mvL 1687 21 1656 22 -31

mvL 1741 20 1710 24 -31

mvL 1463 25 1486 25 23

mvL 1657 19 1619 19 -39

mvL 1663 23 1637 18 -26

mvL 1607 19 1582 23 -24

mvL 1492 18 1485 20 -7

mvL 1546 22 1511 21 -35

mvL 1671 17 1658 22 -13

mvL 1636 22 1611 21 -25

mvL 1653 18 1647 21 -6

mvL 1577 20 1537 21 -40

mvL 1604 19 1599 23 -6

mvL 1586 23 1568 21 -18

mvL 1539 21 1502 18 -37

Table D.2: Results of the experiments focusing on fully loaded Operating Rooms with short surg-
eries, all results presented in minutes
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