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ABSTRACT 
 

 

This thesis, is focused on analysing and modelling a mobile inverted pendulum, based on a 

real robot developed in AI&R Lab of the Politecnico di Milano.  

In addition, the control of the system is designed in order to maintain the robot stable and vertical 

during its movement and allow it to be resistant to unexpected perturbances. Different approaches 

and techniques have been followed with the objective to find the most optimal and efficient controller. 

Each controller has been tested in a simulation environment of Matlab/Simulink, providing reliable 

results that allow the comparison and the efficiency of each method. 
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CHAPTER 1: 

INTRODUCTION 
 

Nowadays, human cooperation with robots in a domestic environment is an 

increasing research field in the last years, with several companies and universities 

continuously studying and investigating in this area of knowledge, allowing robotics to 

become one of the most important sector and with one of the brightest futures. 

Due to its structural simplicity, mobility, low economical cost and energy efficiency, self-

balancing robots are a great solution for domestic environment applications, as well as 

human interaction games.   

The objective of the thesis is to model and study a balancing robot, designing controllers 

that will guarantee the stability of the vehicle, as well as the capacity to follow a desired 

trajectory. 

The presented work includes the whole development of the control system of the vehicle, 

from the mathematical modelling of the system, the analysis and study of the different 

control methods that could be applied, and to the testing and simulation of each approach. 

 

1.1. Structure of the thesis 

 

In chapter 2, a synthesis of the consulted literature is listed, including past 

solutions to the problem and articles regarding the addressed topic. 

In chapter 3, the theoretical study is described, with a detailed summary of the robot and 

the computation of the mathematical model of the system. 

In chapter 4, the different analysed techniques are presented, with three different classic 

approaches. 

In chapter 5, each method is implemented and tested in simulation, allowing the result 

discussion and comparison between techniques. 

In chapter 6, the conclusions are stated, and the possible future work is discussed in order 

to improve and complete the current study.  
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CHAPTER 2: 

STATE OF ART 
 

During this century, robotics has suffered an exponentially growth, being present 

in a wide range of fields: home automation, industrial processes, space exploration, 

military, automated vehicles, etc... It is a field in constant change, with more discoveries 

and improvements being made each year. 

One of the many advantages of robots is that they can substitute human labour, realizing 

activities that could be dangerous for humans, and do it in a more efficient and automated 

manner. 

Between all the numerous work sectors of robotics, mobile robots adapted to operate in 

domestic environments is a prominent discipline. These robots must be able to interact 

with humans and cooperate with them. 

Since 1969 there have been developing robots that could interact with their environment. 

This is the case of Shakey, a mobile robot system created by the Artificial Intelligence 

Centre, equipped with a TV camera and sensors, allowing him to perceive and model its 

environment [1]. 

 

Figure 1. Shakey - Mobile robot created in 1969 

 

Although there is much work that can be considered HRI (human-robot interaction), the 

multidisciplinary field started to emerge in the mid-1990s and early years of 2000 [2]. 



From that point, different robot with diverse structures have been studied to create robots 

that could operate in domestic environments, from simple robots with specific task, such 

as cleaning the floor (Figure 2) or more sophisticated like PR2 robot (Figure 3), which 

can grab a beer in the fridge and bring it to a certain location [3]. 

 

Figure 2. iRobot Roomba 560 Vacuum Cleaner 

 

 

Figure 3. PR2, Robot for Research and Innovation 

 

Typically, it has been tried to make domestic robots resemble humans, developing bipedal 

humanoids, such as Ubtech Robotics’ Walker, who offers a butler service at home (Figure 

4). The next step in this direction are the anthropomorphic robots, which try to emulate 

human movement during the walk. However, these types of robots can have complex 

mechanics and be difficult to control. 
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Figure 4. Ubtech Robotics’ Walker, a bipedal robot 

 

An alternative architecture has been studied to work at home: the self-balancing or mobile 

inverted pendulum, with to coaxial wheels that maintain the structure in equilibrium. This 

solution was implemented and commercialized by Segway. Other examples are QA, a 

telepresence robot created by Anybot (Figure 5). 

 

Figure 5. Anybot QA, balance robot on two wheels 

 

 



Numerous robots have been built with academic purposes. Classical control methods have 

been selected to control this type of vehicles, such as PID controllers [4] [5].This method 

usually worked quite fine with small robots or with low mass that allows an easy design 

and tuning for the controller. 

 Another approach to control these systems was using the optimal control theory, a LQR 

controller [6] [7]. With this method, a cost function is minimized, while the controller 

receives all the states of the system. 

Additionally, more original techniques have been proposed, such as fuzzy logic PID 

controllers [8] 
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CHAPTER 3: 

THEORETICAL STUDY OF THE 

PROBLEM 
 

In this chapter, the real robot in which the model is based and from where the 

values of the parameters are obtained is explained and detailed. 

Besides, the mathematical equations that describe the behaviour of the robot are obtained, 

with the purpose of obtaining a model that can be used in a simulation environment to 

compute a controller for the system. 

Lastly, the parameters values used, and the methods applied to estimate and calculate 

them are stated. 

 

3.1. Physical description of the robot 

 

All the simulations and results obtained have been realized with the objective of 

controlling a real robot. This robot was, originally, a mobile inverted pendulum 

constructed by Martino Migliavacca [9].  

As it is shown in Figure 6, it consists of two wheels, a wooden board that functions as 

base for the controller and motors and a metallic frame made of aluminium.  

 

Figure 6. Previous hardware of the robot 



Later, this hardware was physically modified. The idea was to create a mobile robot, 

named Basketbot, that emulated a basketball hoop, with the intention of programming 

different games that could be played with it. For this reason, a Kinect was thought to be 

implemented in order to have a large range of games that could be developed, with the 

interaction of the user.  

To do so, the metallic frame was modified and replace with a single metallic bar, where 

a plastic board was connected, emulating a basketball one. The hoop was also made of 

aluminium and was welded to the frame. 

The final result is it shown in Figure 7 and Figure 8, where the frontal and lateral view of 

the robot can be seen. 

It is important to remark that the robot is equipped with to sensors: an accelerometer and 

a gyroscope. 

 

Figure 7. Frontal view of the robot 
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Figure 8. Lateral view of the robot 

Additionally, in Figure 9 it can be seen the wheels and the platform where the controller 

and the motors were placed. The idea was that the Kinect was also stablished here. 

 

Figure 9. Wheels and base of the robot 

 



3.2. Mathematical model of the system 

 

As it was stated, the robot consists in an inverted pendulum on two wheels. 

Therefore, the system will be modelled by three subsystems: the motors, the wheels and 

the inverted pendulum. 

In the Table 1 all the variables that appear in the equations are described. 

Mw kg Mass of the wheels 

MP kg Mass of the body (pendulum) 

Iw kg*m2 Inertia of the wheel 

IP kg*m2 Inertia of the body 

r m Radius of the wheel 

l m Length to the body centre of mass 

g m/s2 Acceleration of gravity 

θ rad Tilt angle: Angle between the body and the vertical line 

φ rad Angle between the vertical line and the wheel  

Kt Nm/A Motor torque constant 

R Ω Terminal resistance 

Ke Vs/rad Motor back EMF constant 

TM Nm/A Motor torque 

Ve V Back electromotive force 

Ve V Applied voltage 

i A Current through the motor coil 

L H Motor inductance 

FH N Horizontal contact force between the pendulum and the wheel 

FV N Vertical contact force between the pendulum and the wheel 

FF N Friction force on the wheel 

FN N Normal force on the wheel 

Table 1. Description of the variables 
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Firstly, the motors will be modelled. It is assumed that the motors are ideal. Therefore, 

the torque produced by each motor is: 

𝑇𝑀 = 𝐾𝑀 ∗ 𝑖      ( 1 ) 

The back electromotive force is computed as: 

𝑉𝑒 = 𝐾𝑒 ∗ 𝜑̇      ( 2 ) 

The voltages that appear in the circuit are due to back EMF, resistance and inductance of 

the coil. According to the Kirchhoff's second law, the voltages around any closed loop in 

a circuit is zero: 

𝑉𝑎 − 𝑅 ∗ 𝑖 − 𝐿
𝑑𝑖

𝑑𝑡
− 𝑉𝑒 =  0     ( 3 ) 

To simplify the equation, the voltage due to the inductance is neglected. Therefore, 

equation can be computed as: 

𝑖 =  
𝑉𝑎

𝑅
−

𝐾𝑒∗𝜑̇

𝑅
      ( 4 ) 

Applying Newton’s second law, the relation between the motor torque and the angular 

acceleration of the wheels can be obtained. It is assumed that the torque due to the friction 

of the shaft is neglected. 

 𝐼𝑊 ∗ 𝜑̈ =  𝑇𝑀 − 𝑇𝑎     ( 5 ) 

Substituting equation (1) and (4) into (5) and reorganizing the terms, the equation of the 

torque can be computed: 

𝑇𝑎 = 
𝐾𝑀

𝑅
𝑉𝑎 −

𝐾𝑒∗𝐾𝑀

𝑅
𝜑̇     ( 6 ) 

Since two DC motors are used, so the final equation modelling the motor is:  

𝑇𝑎 = 
2𝐾𝑀

𝑅
𝑉𝑎 −

2𝐾𝑒∗𝐾𝑀

𝑅
𝜑̇    ( 7 ) 

Secondly, the model of the inverted pendulum is studied. Figure 10 shows all the forces, 

torques and variables that appear on a pendulum. Rotational friction and wind resistance 

forces have been neglected. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the x direction, the forces acting on the pendulum are:  

𝑀𝑃 ∗ 𝑥̈ =  𝐹𝐻 − 𝑀𝑃 ∗ 𝑙 ∗ 𝜃2̇ − 𝑀𝑃 ∗ 𝑙 ∗ 𝜃̈ ∗ 𝑐𝑜𝑠𝜃   ( 8 ) 

The equation regarding the acting forces in the plane perpendicular to the pendulum is: 

𝑀𝑃 ∗ 𝑥̈ ∗ 𝑐𝑜𝑠𝜃 =  𝐹𝑉 ∗ 𝑠𝑖𝑛𝜃 + 𝐹𝐻 ∗ 𝑐𝑜𝑠𝜃 − 𝑀𝑃 ∗ 𝑔 ∗ 𝑠𝑖𝑛𝜃 − 𝑀𝑃 ∗ 𝑙 ∗ 𝜃̈   ( 9 ) 

Regarding the momentums, the sum of each around the centre of gravity is: 

𝐼𝑃 ∗ 𝜃̈ =  −𝑇𝑀−𝐹𝑉 ∗ 𝑠𝑖𝑛𝜃 ∗ 𝑙 − 𝐹𝐻 ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑙    ( 10 ) 

The relationship between the linear acceleration of the pendulum and the angular 

acceleration of the wheels can be computed as: 

𝑥̈ =  𝑟 ∗ 𝜑̈      ( 11 ) 

Combining the equations (9) to (11) it is possible to obtain the equation of the pendulum 

angular acceleration:  

𝜃̈ =  
𝑀𝑃∗𝑔∗𝑙∗𝑅∗𝑠𝑖𝑛𝜃−𝑀𝑃∗𝑙∗𝑅∗𝑟∗𝑐𝑜𝑠𝜃∗𝜑̈+2𝐾𝑀∗𝐾𝑒∗𝜑̇−2𝐾𝑀∗𝑉𝑎

𝑅∗(𝑀𝑃∗𝑙2+𝐼𝑃)
    ( 12 ) 

Then, the variables and forces acting on the wheels are studied. They are shown in the 

Figure 11. It is assumed that the wheels will always be in contact with the ground and 

that there is no slip. Besides, cornering forces will be neglected. 

l 
𝑀𝑃 ∗ 𝑟 ∗ φ̈ 

y 

x 

Fv 

MP ∗ 𝑔 

Ta 

θ 

𝐼𝑃 ∗ θ̈ 

FH 

𝑀𝑃 ∗ 𝑙 ∗ θ̇2 

Figure 10. Variables, forces and torques on the pendulum 
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The equilibrium of moments respect from the centre of the wheel is: 

𝐼𝑊 ∗ 𝜑̈ =  𝑇𝑀−𝐹𝐹 ∗ 𝑟      ( 13 ) 

Computing the sum of forces acting in the x direction: 

𝑀𝑊 ∗ 𝑥̈ =  𝐹𝐹 − 𝐹𝐻      ( 14 ) 

The expression of the wheels angular acceleration can be obtained from equations (8), 

(11), (13) and (14): 

φ̈ =  
𝑀𝑃∗𝑟∗𝑙∗𝑅∗θ2∗𝑠𝑖𝑛𝜃−𝑀𝑃∗𝑙∗𝑅∗𝑟∗𝑐𝑜𝑠𝜃∗θ̈+2𝐾𝑀∗𝐾𝑒∗𝜑̇−2𝐾𝑀∗𝑉𝑎

𝑅∗(𝑀𝑃∗𝑟2+𝐼𝑃+𝑀𝑤∗𝑟2)
   ( 15 ) 

By the combination of the equations (11) and (15), two new expressions of φ̈ and 𝜃̈ can 

be computed: 

𝜃̈ =  
𝑏∗𝑐∗𝑔∗𝑠𝑖𝑛𝜃+𝑐∗𝑟∗𝑐𝑜𝑠𝜃∗(2𝐾𝑀∗(𝐾𝑒∗𝜑−𝑉𝑎)−𝑐∗𝑟∗𝑠𝑖𝑛𝜃∗θ2)+2b∗𝐾𝑀∗(𝐾𝑒∗𝜑−𝑉𝑎)

𝑎∗𝑏−𝑐2∗𝑟∗𝑐𝑜𝑠𝜃
   ( 16 ) 

φ̈ =  
𝑐∗𝑟∗𝑠𝑖𝑛𝜃∗(𝑎∗θ2−𝑐∗𝑔∗𝑐𝑜𝑠𝜃)+2𝑐∗𝑟∗𝑐𝑜𝑠𝜃∗𝐾𝑀∗(𝑉𝑎−𝐾𝑒∗𝜑)+2𝑎∗𝐾𝑀∗(𝑉𝑎−𝐾𝑒∗𝜑)

𝑎∗𝑏−𝑐2∗𝑟∗𝑐𝑜𝑠𝜃
   ( 17 ) 

Where: 

𝑎 =  𝑅 ∗ (𝑀𝑃 ∗ 𝑙2 + 𝐼𝑃)     ( 18 ) 

𝑏 =  𝑅 ∗ (𝑀𝑃 ∗ r2 + 𝐼𝑃 + 𝑀w ∗ r2)    ( 19 ) 

𝑐 =  𝑀𝑃 ∗ 𝑙 ∗ 𝑅      ( 20 ) 

The expressions (16) and (17) are the fundamental equations of the model of the system. 

In order to be able to design a proper controller, they must be linearized with respect to 

y 

x 

Ta 𝐼𝑃 ∗ θ̈ 

Fv 

FH 

FF 

FN 

φ 

Figure 11. Variables, forces and torques on the wheel 



the equilibrium point. In this case, the equilibrium point is 𝜃, 𝜑, 𝜃̇, φ̇ = 0. Therefore, the 

linearized system can be computed as a state space:  

[

θ̇
 𝜃̈
𝜑̇
𝜑̈

] =

[
 
 
 
 

0 1 0 0
𝑏∗𝑐∗𝑔−𝑐2∗𝑟2

𝑎∗𝑏−𝑐2∗𝑟2 0 0
2𝐾𝑀∗𝐾𝑒∗(𝑐∗𝑟+𝑏)

𝑎∗𝑏−𝑐2∗𝑟2

0 0 0 1
𝑎∗𝑐∗𝑟−𝑐2∗𝑟∗𝑔

𝑎∗𝑏−𝑐2∗𝑟2 0 0
2𝐾𝑀∗𝐾𝑒∗(−𝑐∗𝑟−𝑎)

𝑎∗𝑏−𝑐2∗𝑟2 ]
 
 
 
 

 

[
 
 
 
𝜃
φ

𝜃̇
𝜑̇]

 
 
 
+

[
 
 
 
 

0
2𝐾𝑀∗𝐾𝑒∗(−𝑐∗𝑟−𝑏)

𝑎∗𝑏−𝑐2∗𝑟2

0
2𝐾𝑀∗𝐾𝑒∗(𝑐∗𝑟+𝑎)

𝑎∗𝑏−𝑐2∗𝑟2 ]
 
 
 
 

𝑉𝑎   ( 21 ) 

 

 

3.3. Parameters measurement and estimation 

 

For simulating and designing the controller, it is necessary to have the values for 

the parameters that are used in the model. For this instance, the values of the parameters 

of the Basketbot were measured or estimated. 

The model required a series of physical parameters of the pendulum and the wheels, such 

as the masses, the moments of inertia and the distances to the centre of mass.  

The masses where measured with a digital scale. The wheels mass measurement realized 

in [10] was used, in order not to separate the body of the robot from the wheels, so the 

whole robot was weighted, and then the wheel mass was subtracted to obtain the 

pendulum mass. 

The centre of mass of the wheels is assumed to be in the centre of the wheel 

circumference. To calculate the centre of mass of the pendulum, it has been divided into 

subsystems with simple geometrical forms. The reason of this division is because the 

centre of mass of a homogeneous object with constant thickness is the barycentre of the 

object. The centre of mass of the base, metallic frame, hoop and basket board will be 

computed separately. 

Since only the vertical distance to the centre of gravity is needed in the model, only 𝑦𝐺 

will be estimated. Thus, the centre of mass of the pendulum will be computed as: 

𝑦𝐺 = ∑
𝑚𝑘∗𝑦𝑔𝑘

𝑀
𝑛
𝑘=1       ( 22 ) 

To compute the moment of inertia of the wheels, it is assumed that most of its mass is 

concentrated in the rim of the circumference. Therefore, it can be modelled as a hoop, 

which moment of inertia is:  

𝐼 =  𝑀𝑤 ∗ 𝑟2      ( 23 ) 
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Regarding the moment of inertia of the pendulum, the division into subsystems previously 

stated will be used. The moment of inertia of a rectangular body with constant thickness, 

with respect to its centre of mass (or barycentre) can be estimated as:  

𝐽𝐺 = 
𝑀

12
∗ (𝑏2 + 𝑙2)      ( 24 ) 

Where b is the width of the rectangle and l is the height. 

Then, according to the parallel axis theorem, it is possible to determine the moment of 

inertia of a rigid body about any axis, knowing the moment of inertia about the axis of 

the object’s centre of gravity: 

𝐽𝐴 = 𝐽𝐺 + 𝑀 ∗ 𝑂𝐴̅̅ ̅̅ 2      ( 25 ) 

Therefore, the moment of inertia of the pendulum can be computed using the moments of 

inertia of each body. The results can be seen in the Table 2. 

 

Parameter Value 

Mw 3.4 kg (both wheels) 

MP 21.6 kg 

Iw 0.068 kg*m2 

IP 10 kg*m2 

r 0.2 m 

l 0.4 m 

Table 2. Value of the parameters of the pendulum and the wheels 

 

Finally, the parameters of the motors are needed. The robot is equipped with two electric 

motors, produced by Maxon Motor, of 150W. 

In the Figure 12. Datasheet of the Maxon motors used the datasheet of the motors is 

shown. From this information, the value of the parameters needed for the model are seen 

in Table 3. 



 

Figure 12. Datasheet of the Maxon motors used [11] 

 

Parameter Value 

Kt 30.2 mNm/A 

R 0.316 Ω 

Ke 3.15 mVs/rad 

Table 3. Values of the parameters of the motor 
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CHAPTER 4: 

CONTROL 
 

There are different techniques to control these types of systems. In this chapter, 

two classic controllers will be studied. Firstly, the PID (proportional–integral–derivative 

controller) controllers will be described. Later, the LQR (Linear-quadratic regulator) and 

optimal control analysed. Finally, the pole placement control design will be examined. 

 

4.1. PID controllers 

 

There PID controller is very useful and can solve a wide range of control 

problems. More than 95% of all industrial control problems are solved by PID control 

[12]. 

In this type of control, the objective is to minimize the error, e, which is the difference 

between the reference, r, and the output signal of the system, y. The control signal, u, is 

computed by the formula:  

𝑢 =  𝐾𝑃 ∗ 𝑒(𝑡) + 𝐾𝑖 ∗ ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝐷
𝑡

0

𝑑

𝑑𝑡
𝑒(𝑡)     ( 26 ) 

The parameters Kp, Ki and Kd are, respectively, the coefficients of the proportional, 

integral and derivative action. These are the tuning parameters that must be designed in 

order to control the system. 

Expression (26) can also be defined in the Laplace domain: 

𝐿(𝑠) =  𝐾𝑃 +
𝐾𝑖

𝑆
+ 𝐾𝐷 ∗ 𝑠      ( 27 ) 

Where s is the complex frequency. 

However, the most common way in which the PID controllers are defined is in what is 

called the standard form: 

𝑢 =  𝐾𝑃 ∗ (𝑒(𝑡) +
1

𝑇𝑖
∗ ∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝐷

𝑡

0

𝑑

𝑑𝑡
𝑒(𝑡)     ( 28 ) 

In this case, Ti is the integral time and Td is the derivative time. These parameters are 

related to the previous gain coefficients by:  

𝐾𝑖 = 
𝐾𝑃

𝑇𝑖
  𝐾𝑑 = 𝐾𝑃 ∗ 𝑇𝐷     ( 29 ) 



4.1.1. PID tuning 

 

In order to use a PID controller, the parameters Kp, Ki and Kd have to be properly 

designed. Each of them has its importance and characteristics.  

The increment of the proportional action reduces the asymptotic error. However, high 

values of Kp can create instabilities, because it typically generates oscillations in the 

transient time. This behaviour can be seen in the Figure 13, where the process transfer 

function is G(s)
1

(𝑠+1)3
 and the reference is 1. Different values of the controller gain are 

shown. 

 

Figure 13. Simulation of a closed-loop system with proportional control [13] 

The proportional control usually generates a control error in the steady state. However, 

with the integral action the steady state error will always be zero. Higher values of Ki will 

produce faster responses of the system, but can create oscillations, as it is shown in the 

Figure 14. 

 

Figure 14. Simulation of a closed-loop system with integral control 

The derivative term is proportional to the derivative of the control error and allow a 

prediction of the future error. The effects of the derivative control can be seen in Figure 

15. 

 

Figure 15. Simulation of a closed-loop system with derivative control 
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The most used method to tune the PID parameters is the Ziegler-Nichols method. This 

technique consists of these simple steps: 

• Connect a proportional controller to the system and study the closed-loop 

response 

• Start with a low value of Kp 

• Increase the proportional gain until the response gets to a steady-state oscillation 

• Save this gain as the value of the critical gain, Kcr 

• Measure the oscillation period, Pcr [14] 

• Compute the PID parameters following the Table 4: 

 

Type of controller KP Ti TD 

P 0.5Kcr ∞ 0 

PI 0.45Kcr 0.8Pcr 0 

PID 0.6 Kcr 0.5Pcr 0.125Pcr 

Table 4. Ziegler-Nichols method 

 

4.2. LQR control 

 

The LQR controller is part of the control algorithm in the field of optimal control. 

The objective of this control method is to find a control law such that a certain optimality 

criterion is achieved. 

If a continuous linear system is given, such as:  

𝑥̇ =   𝐴 ∗ 𝑥 + 𝐵 ∗ 𝑢      ( 30 ) 

With a quadratic cost function defined as: 

𝐽 =  
1

2
∫ (𝑥𝑇 ∗ 𝑄 ∗ 𝑥 + 𝑢𝑇 ∗ 𝑅 ∗ 𝑢) ∗ 𝑑𝑡

𝑇

0
+

1

2
𝑥𝑇(𝑇) ∗ 𝑃1 ∗ 𝑥(𝑇)  ( 31 ) 

Where Q≥0, R>0, P1≥0 are symmetric, positive (or semi-positive) definite weighting 

matrices. Matrix Q weights the states, meanwhile matrix R is a weight of the control 

input. 

The control law that minimizes the cost function is a feedback control:  



𝑢(𝑡) =  −𝐾 ∗ 𝑥(𝑡)      ( 32 ) 

Where the gain K is given by:  

𝐾 =  𝑅−1 ∗ 𝐵𝑇 ∗ 𝑃      ( 33 ) 

And P is the unique positive definitive solution of the Ricatti ODE (ordinary differential 

equation):  

𝐴𝑇 ∗ 𝑃 + 𝑃 ∗ 𝐴 − 𝑃 ∗ 𝐵 ∗  𝑅−1 ∗ 𝐵𝑇 ∗ 𝑃 + 𝑄 = 0    ( 34 ) 

The LQR algorithm is, at its core, just an automated way of finding an appropriate state 

[15]. 
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CHAPTER 5: 

IMPLEMENTATION AND 

SIMULATION RESULTS  
 

In this chapter the different proposed control techniques are implemented in 

Matlab/Simulink. Three different control methods are explained: Pole placement, PID 

and LQR control.  

The results of the simulation of each controller will be discussed in detail and the 

differences and advantages between them are stated. 

 

5.1. Model implementation and validation 

 

In the equation 21, the mathematical description of the system represents the robot 

dynamics with four states. The third state, φ̇ , in the state space representation is not used 

to describe any of the other states. For simplicity and faster calculations this state can 

therefore be ignored. 

A first verification to the model is done by applying a constant of 1V as an input of the 

open-loop system. Because the system is inherently unstable, the tilt angle should rise 

unboundedly. This results in the robot falling over. This behaviour can be seen in the 

Figure 16. 



 

Figure 16. Step response of the open-loop system 

 

The same result must occur if the system is excited by an impulse response, emulating a 

nudge, as it is shown in the Figure 17. 

 

Figure 17. Impulse response of the open-loop system 

 

To analyse the instability of the system, the poles of the system can be computed and 

drawn in the plane, shown in the Figure 18. The poles of the system are located at -2.69, 
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-0.0004 and 2.69. Having negative poles result in instabilities. Ideally, all poles should be 

located in the left-hand plane. 

 

Figure 18. Pole/zero map of the system 

 

 

5.2. Pole placement 

 

In order to implement the pole placement technique, the system must be 

controllable. To do so, the controllability matrix must be computed: 

𝐶 =  [𝐵 𝐴𝐵 𝐴2𝐵] =  ⌊
0 −0.363 0

−0.363 0 −0.263
0.172 0 0.265

⌋   ( 35 ) 

The rank of the controllability matrix is 3, the same as the size of the matrix, so the system 

is controllable. 

With the Matlab command place, it can be easily assigned new poles to the closed-loop 

transfer function. It is recommended not choose the closed-loop poles very negative, 

because the system will be fast reacting; and not too far away from the open loop poles, 

because it will result in a high effort control [16].  

Therefore, the new poles of the closed loop system were selected at -5.38, -2.69-1.3i, -

2.69+1.3i, as it is shown in Figure 19. 



 

Figure 19. Poles of the stabilized system with pole placement control 

 

To check if the system is stable, a perturbation is implemented at 1 second. It can be seen 

in  Figure 20 that the responses of the angle and angular velocity of the pendulum; and 

the wheel angular acceleration tends to zero, assuring that the robot remains vertical. 

 

Figure 20. System response to a perturbation with pole placement control 
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5.2. PID control 

 

As it was stated before, since there are 3 inputs in the system, but only 1 output, 

with a PID controller only one variable can be controlled. The pendulum angle, θ, was 

selected to be the control variable. Therefore, the design of the controllers will have the 

objective to minimize the error in the tilt angle. 

 

5.2.1. Ziegler-Nichols method 

 

In order to tune the PID by the Ziegler-Nichols method, the response of the system 

with a proportional controller must reach a steady state oscillation, as it is shown in Figure 

21. Then, the period of the oscillation is measured. Thus, the critical gain and the critical 

period are:  

𝐾𝑐𝑟  =  920.75  𝑃𝑐𝑟  =  2.973     ( 36 ) 

 

 

Figure 21. Critical oscillation of the closed loop system with a proportional controller 

 

According to the Ziegler-Nichols table, the tuned PID parameters are: 

𝐾𝑃  =  552.45  𝑇𝑖  =  1.49 𝑇𝑑  =  0.37    ( 37 ) 

 



Applying a disturbance at 1 second, the response of the system with this controller can 

be checked. In the Figure 22, all 3 signals tend to zero after oscillation during a short 

period of time because of the perturbation. Thus, the robot will remain vertical and will 

not fall. 

 

 

Figure 22. System response to a disturbance with PID control (Ziegler-Nichols) 

If a unitary step is applied, the tilt angle is maintained stable, but does not reach the 

reference, as it is shown in Figure 23. This means that the controller does not guarantee 

zero error, and it can be improved. 
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Figure 23. Step response of the system controlled by a PID (Ziegler-Nichols) 

 

5.2.2. Manual tuning 

 

The Ziegler-Nichols is a good method to design an initial controller but can be 

optimised. Therefore, another PID controller was tuned using the Matlab rtool, which 

allows to manually choose the parameters of the PID in order to have a successful 

response. The PID selected was: 

𝐾𝑃  =  −1.77 ∗ 104  𝐾𝑖  =  −9.52 ∗ 104 𝐾𝑑  =  −770   ( 38 ) 

Realizing the same test as the previous controller, it can be seen in Figure 24 that, after a 

nudge, the robot recovers its vertical position, in a much faster way than the other PID 

controller. 



 

Figure 24. System response to a disturbance with PID control (manual) 

 

Regarding the step response it is shown in Figure 25  that the tilt angle reaches the desired 

reference in a short period of time. However, the angular acceleration of the wheel 

continuously increases. This behaviour is most likely caused by the integral action of the 

controller, because it has accumulated the positive angular error and is still causing an 

output signal even if the angle error is very small. 

As a conclusion, the second PID designed reacts in a much faster and less oscillatory 

manner than the first controller, and reaches the reference given, contrary to the designed 

with the Ziegler-Nichols method. Therefore, it provides a better result. 
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Figure 25. Step response of the system controlled by a PID (manual) 

 

 

5.3. LQR control 

 

Contrary to PID control, LQR control will allow to act on the response of the 3 

signals. The first step is to check if the system is controllable, which has previously done 

in the pole placement section. 

Next, the weight matrices Q and R have to be estimated. The simplest case is: 

𝑄 = [
1 0 0
0 1 0
0 0 1

]   𝑅 =  1    ( 39 ) 

The command lqr will provide with the appropriate feedback gain K: 

𝐾 = [
−419.01
−156.78

−1
]      ( 40 ) 

It can be checked that all the poles of the closed loop system are in the negative plane, as 

it is shown in Figure 26: 

θ 

θ dot 

φ dot dot 



 

Figure 26. Poles of the closed loop system with LQR control 

 

Moreover, the response to a perturbation can be studied, as seen in.the Figure 27. The 3 

control variables go to zero after certain time, meaning that the closed loop system is 

stable, and the robot conserves the verticality. 

 

Figure 27. System response to a disturbance with LQR control 
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The estimation of the weight matrices can be improved. Considering that the most critical 

control variable is the pendulum angle, a higher value of the term (1,1) can be computed 

to reflect its importance: 

𝑄 = [
1000 0 0

0 1 0
0 0 100

]   𝑅 =  1    ( 41 ) 

The command lqr will provide with the appropriate feedback gain K: 

𝐾 = [
−621.92
−238.49

−10
]      ( 42 ) 

Again, the poles of the closed loop system are in the negative plane, as it is shown in 

Figure 28: 

 

 

Figure 28. Poles of the closed loop system with LQR control (second design) 

 

Analysing the system response to a disturbance, as it is shown in Figure 29, it is faster 

and with a smaller oscillation than in the previous case.  

 



 

Figure 29. System response to a disturbance with LQR control (second design) 

 

Besides, if a step input is given, it can be checked in Figure 30, that the system does not 

follow it, and that the wheel angular acceleration remains with a constant negative value. 

 

Figure 30. Step response of the system with LQR control 
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5.4. Results discussion 

 

Analysing the results obtained, it can be stated that, while the PID controllers 

allow the system to follow a reference in the pendulum angle and are quite robust to 

perturbances, they have an important drawback: it is not possible to control the wheel 

angular acceleration, so the vehicle will not be able to stop, without implementing some 

kind of solution. 

On the contrary, pole placement control and LQR control are really robust to unexpected 

disturbances and can control each variable, but the controlled system is not able to follow 

the desired reference. 

The best solution could be a compromise between the two approaches, having a PID 

controller for the pendulum angle, while implementing a LQR/pole placement control for 

the wheel angular acceleration. 
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CHAPTER 6: 

CONCLUSIONS AND FUTURE WORK  
 

This thesis focused on the analysis and modelling of a self-balancing robot, with 

the objective of designing and studying different control alternatives to be able to control 

the system.  

The mathematical model described, even though that it is a simplification, reflects and 

emulates the real behaviour of the system. 

The proposed methods achieve a successful control of the system, maintaining the robot 

stable in its vertical position. Additionally, the proposed PID controller allows the system 

to follow a reference in the pendulum angle.  

However, there is room for improvement in the controller. The PID follow with accuracy 

the reference and reacts to the uncertainties, but it is not able to control the wheel angular 

acceleration. On the other hand, the LQR control can control each of the three control 

variables but cannot reach the desired reference. 

In order to improve the results obtained, compromise between the two control methods 

should be implemented, having a PID controller for the pendulum angle, while 

implementing a LQR/pole placement control for the wheel angular acceleration. 

Besides, a Kalman filter could be developed to estimate the sensors measurement, 

because in reality the signal provided by the sensor contains noise and it is not immediate.  

It is important to remark that this work has been realized in a simulation environment, 

due to the unavailability of physical controllers to be placed on the robot. Therefore, the 

next step should be to implement and validate the results achieved in the real system. 

Besides, once the control is implemented in the robot, several games and programmes 

can be developed for it, taking advantage of the basketball hoop that is welded and the 

Kinect device that could be placed in the base. 
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APPENDIX 
Matlab simulation file 

 

  

  

%% Basketbot parameters 

  

Mw = 1.7*2;         % Mass of the wheels [Kg] 

Mp = 25-Mw;         % Mass of the body [Kg] 

Ip = 10;            % Inertia of the body [Kg*m^2] 

Iw = 0.034*2;       % Inertia of the wheel [Kg*m^2] 

l = 0.4;            % Length to the body's centre of mass [m] 

r = 0.2;            % Radius of wheel [m] 

g = 9.81;           % Gravity [m/s^2] 

  

  

%% Motor parameters 

  

Kt = 30.2e-3;                 % Motor torque constant [Nm/A] 

R = 0.316;                    % Terminal Resistance [Ohm] 

Ke = 1/317;                   % Back EMF constant [Vs/rad] 

  

  

%% Computation of the system 

  

% Denominatior for A and B matrices 

alpha = R*(Mp*l^2+Ip);  

beta = R*(Iw+Mp*r^2+Mw*l^2);  

gamma = Mp*l*R; 

  

% System matrices 

A = [0 1 0; (beta*gamma*g-r^2*gamma^2)/(alpha*beta-gamma^2*r^2) 

0 2*Kt*Ke*(gamma*r+beta)/(alpha*beta-gamma^2*r^2); 

(gamma*r*alpha-gamma^2*r*g)/(alpha*beta-gamma^2*r^2) 0 

2*Kt*Ke*(-gamma*r-alpha)/(alpha*beta-gamma^2*r^2)];  

B = [0 2*Kt*(-gamma*r-beta)/(alpha*beta-gamma^2*r^2) 

2*Kt*(gamma*r+alpha)/(alpha*beta-gamma^2*r^2)]';  

C = [1 0 0; 0 1 0; 0 0 1];  

D = [0 0 0]'; 

  

% Transfer function of the state space model 

[num,den] = ss2tf(A,B,C,D); 

SegwaySys = ss(A, B, C, D); 

Gs = tf(SegwaySys); 

  

  

%% System response 

  

% Time  and input vector 

T = 0:0.02:10; 

U = zeros(size(T)); 

U(1) = 1;       % Input voltage 

  

% Representation of the system impulse response  

figure() 



[Y,X] = lsim(SegwaySys,U,T); 

plot(T,Y); 

title('Open loop impulse response of the system') 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

legend('\theta','\theta dot','\psi dot') 

grid on 

  

% Representation of the system step response  

figure() 

step(Gs(1)) 

hold on 

step(Gs(2)) 

hold on 

step(Gs(3)) 

title('Open step response of the system') 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

legend('\theta','\theta dot','\psi') 

grid on 

  

figure() 

bode(Gs(1)) 

grid on 

title('Bode diagram of \theta tf') 

figure() 

bode(Gs(2)) 

title('Bode diagram of \theta dot tf') 

grid on 

figure() 

bode(Gs(3)) 

title('Bode diagram of \psi dot tf') 

grid on 

  

  

%% Poles/zeros analysis 

  

% Poles and zeros of the voltage-tilt angle transfer function 

figure() 

pzmap(Gs(1)) 

title('\theta tf: Poles and zeros') 

  

% Poles and zeros of the voltage-angular velocity transfer 

function 

figure() 

pzmap(Gs(2)) 

title('\theta dot tf: Poles and zeros') 

  

% Poles and zeros of the voltage-wheel velocity angle transfer 

function 

figure() 

pzmap(Gs(3)) 

title('\psi dot tf: Poles and zeros') 

  

%% Pole placement 

  

% New poles assignation (in the left-hand plane)  
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poles = pole(Gs(1)); 

negPole = poles(poles<0); 

im = negPole(1)*tan(acos(0.9)); 

newPoles = [negPole(1)*2, (negPole(1) + im*1i),(negPole(1) - 

im*1i)]; 

  

% Feedback matrix  

K = place(SegwaySys.A, SegwaySys.B, newPoles); 

  

% Close loop of the stabilized system and poles/zeros 

calculation 

StabilizedSys = feedback(SegwaySys, K); 

figure() 

pzmap(StabilizedSys); 

title('Poles of the stabilized system') 

  

% Bode plot  

figure() 

bode(StabilizedSys); 

title('Bode stabilized system') 

  

% Transfer function of the stabilized system  

Gv = tf(StabilizedSys); 

  

% Stabilized system response  

figure() 

step(Gv(1)) 

hold on 

step(Gv(2)) 

hold on 

step(Gv(3)) 

title('Step response to a perturbation with pole placement') 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

legend('\theta','\theta dot','\psi dot') 

grid on 

  

% Stabilized system response  

figure() 

U2 = zeros(size(T)); 

U2(50:60) = 1;   % Disturbance force 

[Y2,X2] = lsim(StabilizedSys,U2,T); 

plot(T,Y2); 

title('System response to a perturbation with pole placement') 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

legend('\theta','\theta dot','\psi dot') 

grid on 

  

  

%% Matlab tuning PID Controller 

  

% PID tuning 

C1 = pidtune(Gv(1),'PID'); 

% C2 = pidtune(Gv(2),'PID'); 

% C3 = pidtune(Gv(3),'PID'); 

  



% Close loop connection 

Gv2 = feedback(C1*Gv,eye(1,3)); 

% Gv2(2,1) = feedback(C2*Gv(2),1); 

% Gv2(3,1) = feedback(C3*Gv(3),1); 

  

% Response of the controlled system 

figure() 

step(Gv2) 

grid 

title('Step response of the PID controlled system (manual)') 

  

% Stabilized system response  

figure() 

T2 = 0:0.02:5; 

U3 = zeros(size(T2)); 

U3(50:60) = 1;   % Disturbance force 

[Y3,X3] = lsim(Gv2,U3,T2); 

hold on 

% plot(T,Y2); 

% title('Open loop impulse response of the controlled system') 

% ylabel('Angle[rad]') 

% xlabel('Time[s]') 

% legend('\theta','\theta dot','\psi dot') 

% grid on 

subplot(3,1,1) 

plot(T2,Y3(:,1)); 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

title('Response of the controlled system with a PID (manual)') 

grid on 

subplot(3,1,2) 

plot(T2,Y3(:,2)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

subplot(3,1,3) 

plot(T2,Y3(:,3)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

  

  

%% Ziegler-Nichols Method for PID controller 

  

% Critical gain and frequency 

Kc1 = 920.74734; 

Pc1 = 2.9730; 

  

% Critical oscillation plot 

Osc1 = feedback(Gv(1),Kc1); 

figure() 

step(Osc1) 

title('Critical oscillation for \theta tf') 

  

% Ziegler-Nichols parameters for the PID 

Kp1 = 0.6*Kc1; 
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Ti1 = 0.5*Pc1; 

Td1 = 0.125*Pc1; 

ZN1 = pid(Kp1,Kp1/Ti1,Kp1*Td1); 

  

% Response of the system 

Gv3 = feedback(ZN1*Gv,eye(1,3)); 

  

% Response of the controlled system (Ziegler-Nichols) 

figure() 

step(Gv3) 

grid 

title('Step response of the controlled system (Ziegler-

Nichols)') 

  

figure() 

[Y4,X4] = lsim(Gv3,U2,T); 

hold on 

subplot(3,1,1) 

plot(T,Y4(:,1)); 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

title('Response to a disturbance with Ziegler-Nichols') 

grid on 

subplot(3,1,2) 

plot(T,Y4(:,2)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

subplot(3,1,3) 

plot(T,Y4(:,3)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

  

  

%% LQR control  

  

% Check if the system is controllable 

C = ctrb(SegwaySys);                    % Controllability matrix 

[B AB A^2*B...]  

controllability = rank(C); 

if controllability==size(C) 

    disp('System is controllable') 

else 

    disp('System is not controllable') 

end 

  

% Weight matrices (simplest case) 

% Q = C'*C; 

% R = 1; 

  

% Weight matrices (another simple case) 

% Q = eye(3,3); 

% R = 1; 

  

% Weight matrices 

Q = [10000 0 0; 0 1 0; 0 0 100]; 



R = 1; 

  

% Optimal gain matrix 

K_lqr = lqr (SegwaySys,Q,R); 

  

% Close loop of the stabilized system and poles/zeros 

calculation 

StabilizedSys2 = feedback(SegwaySys, K_lqr); 

figure() 

pzmap(StabilizedSys2); 

title('Poles of the system with LQR control') 

  

% Stabilized system response  

T3 = 0:0.02:20; 

U3 = zeros(size(T3)); 

U3(50:60) = 1;   % Disturbance force 

figure() 

[Y5,X5] = lsim(StabilizedSys2,U3,T3); 

hold on 

subplot(3,1,1) 

plot(T3,Y5(:,1)); 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

title('System response to a perturbation with LQR control') 

grid on 

subplot(3,1,2) 

plot(T3,Y5(:,2)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

subplot(3,1,3) 

plot(T3,Y5(:,3)); 

ylabel('Angular velocity[rad/s]') 

xlabel('Time[s]') 

grid on 

  

% Transfer function of the stabilized system  

Gv4 = tf(StabilizedSys2); 

  

  

% Stabilized system response  

figure() 

step(Gv4(1)) 

hold on 

step(Gv4(2)) 

hold on 

step(Gv4(3)) 

title('Step response with LQR control') 

ylabel('Angle[rad]') 

xlabel('Time[s]') 

legend('\theta','\theta dot','\psi dot') 

grid on 

 

 


