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Abstract

Negli ultimi anni la collaborazione tra robot e umani sta prendendo piede

in diversi ambiti tra cui quello clinico: il numero di interventi assistiti e

la vendita di sistemi robotici stanno aumentando notevolmente. I robot

potrebbero garantire lo sviluppo o l’affinamento di nuove tecniche chirurgiche

riducendone l’invasività, migliorandone l’accuratezza ed eliminando gli effetti

creati da fatica o tremori.

Il lavoro qui presentato ha contribuito allo sviluppo di un progetto iniziato

negli anni passati che mira a portare nelle sale operatorie un esemplare di

LBR Med guidato manualmente come supporto ai chirurghi durante gli in-

terventi di chirurgia spinale. Il progetto è stato interamente svolto durante

un periodo di sei mesi presso la sede centrale della KUKA AG in Augsburg.

Scopo finale di questa tesi è quello di presentare un nuovo algoritmo, per

il controllo dei limiti di giunto, sviluppato per far fronte a tutti i requisiti

medici richiesti dal progetto. I due principali requisiti da soddisfare sono

stati:

- la possibilità di muoversi attorno ai limiti di giunto anche una volta rag-

giunto un limite andando a modificare e scalare il comando imposto dalla

spinta dell’utilizzatore ma senza mai produrre alcun movimento inaspettato

- implementare vincoli cinematici sui giunti andando a imporre limiti di ve-

locità e accelerazione assoluti e relativi all’attuale posizione, con lo scopo di

impedire stop improvvisi del robot

La volontà di poter assicurare in ambito clinico specifiche modalità di movi-

mento ha imposto la necessità di poter definire anche vincoli cartesiani al

movimento del robot, i quali devono essere rigidamente rispettati in ogni mo-

mento. Nel’ambito specifico della chirurgia spinale è sicuramente richiesto,

durante il posizionamento degli impianti spinali, un movimento limitato su

di una retta per performare nel modo più lineare possibile le azioni di per-

forazione.
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Lo sviluppo dell’algoritmo è descritto passo a passo in tutte le sue parti. La

soluzione finale proposta prevede la risoluzione di un problema di ottimiz-

zazione vincolato: tutti i vincoli cinematici imposti sono definiti da opportune

matrici e la funzione da minimizzare è rappresentata dal quadrato dell’errore

introdotto nella velocità cartesiana imposta al robot.

L’algoritmo è stato infine confrontato nella fase di test con la soluzione

precedentemente implementata sul LBR Med e con la più diffusa soluzione

reperibile in letteratura, per essa sono stati reclutati 42 soggetti, tra gli imp-

iegati dell’azienda, ai quali è stato chiesto di compiere un semplice com-

pito. I tre metodi sono stati confrontati tramite l’analisi di dati quantitativi

riguardanti lo stress imposto all’hardware durante le esecuzioni e dati qual-

itativi riguardanti l’usabilità percepita dai partecipanti raccolti tramite un

breve questionario. In entrambi casi la soluzione proposta è risultata signi-

ficativamente migliore.
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Abstract

In recent years, the collaboration between robots and humans is taking place

in various areas including the clinical field: the number of assisted inter-

ventions and the sale of robotic systems have been considerably increased.

Robots could guarantee the development or refinement of new surgical tech-

niques, reducing their invasiveness, improving their accuracy and eliminating

the effects created by fatigue or tremors.

The work presented has contributed to the development of a project begun

in the past years that aims to bring a sample of the hand-guided LBR Med

into operating rooms as a support for surgeons during spinal surgery. The

project was entirely carried out during a period of six months at the KUKA

AG headquarters in Augsburg.

The final aim of this thesis is to present a new algorithm, for joint limits

control, developed to fulfil all the medical requirements stated by the project.

The two main requirements to be met were:

- the ability to slide around joint limits even when a position limit has been

reached by modifying and scaling the command imposed by the user’s hand

but without producing any unexpected movement

- implementing kinematic constraints to impose velocity and acceleration

bounds both absolute and relative to the current position, with the aim of

preventing sudden stops of the robot

The desire to be able to provide specific motion modalities for the clinical

use has imposed the need to define Cartesian constraints to the motion,

which must be strictly respected at all times. In the specific field of spinal

surgery, during the positioning of the spinal implants, a limited movement on

a straight line is surely required to perform the drilling actions in the most

accurate linear way.

The development of the algorithm is described step by step. The proposed

final solution involves the resolution of a constrained optimization problem:

all the imposed kinematic constraints are defined by appropriate matrices
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and the objective function to be minimized is represented by the square form

of the error introduced in the Cartesian velocity imposed on the robot.

The algorithm was finally compared in the test phase with the solution previ-

ously implemented on the LBR Med and with the most widespread solution

available in literature , for this purpose 42 subjects were recruited, among

the employees of the company, and they were asked to perform a simple task.

The three methods were compared through the analysis of quantitative data

concerning the stress imposed on the hardware during the performances and

qualitative data regarding the usability perceived by the participants col-

lected through a short questionnaire. In both cases the proposed solution

was significantly better.
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Chapter 1

Medical Background

1.1 Spine surgery

Spine surgery is a delicate and hazardous procedure due to its proximity to

both the central nervous system and main blood vessels.

Spine surgery may be recommended if non-surgical treatment such as med-

ications and physical therapy fails to relieve symptoms. Anyway it is only

considered in cases where the exact source of pain can be determined.

1.2 Common spine disorders and diseases

Deformities

The most common in both child and adults is the scoliosis, it is an abnormal

curving of the spine that can happen at different levels. Kyphosis and lordosis

are two other common deformities, in the respective case the natural kyphotic

and lordotic curvature of the spine is overemphasize.

Disc disease

Degenerative disc disease describes the natural breakdown of an interverte-

bral disc of the spine. The disc can gradually weaken and lose water for

daily stress or minor injuries. The collapsing of the disc can cause increased

1



Figure 1.1: Spinal Deformities [1]

pressure on the nerves and consequent pain.

Spondylolosthesis

It is an anterior displacements of one vertebra over another, commonly in-

volving the fifth lumbar vertebra. It can have different origins:

− degenerative

− traumatic

− pathological

− congenital

Stenosis

The term stenosis defines an abnormal narrowing of the bone spinal canal.

This condition is usually related to aging and can cause chronic back pain

due to high pressures on the nerves.

Instability

Segmental instability occurs when the relative motion is grater than normal

(hypermobility) between two adjacent vertebrae. This instability can be

caused by disc degeneration or spondylolosthesis.
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Spine tumors

A surgical intervention can be necessary both for benign and malignant tu-

mors. The growth can lead to further problems like spine deformities.

1.3 Common surgical procedures

Discectomy or Microdiscectomy

Removal of a herniated intervertebral disc. Therefore, removing pressure

from the compressed nerve. Microdiscectomy is a MISS procedure.

Laminectomy

Removal of the thin bony plate on the back of the vertebra called the laminae

to increase space within the spinal canal and relieve pressure.

Laminotomy

Removal of a portion of the vertebral arch (lamina) that covers the spinal

cord. A laminotomy removes less bone than a laminectomy.

Both laminectomy and laminotomy are decompression procedures. “Decom-

pression” usually means tissue compressing a spinal nerve is removed.

Foraminotomy

Removal of bone or tissue at/in the canal (called the neuroforamen) where

nerve roots branch off the spinal cord and exit the spinal column.

Disc replacement

As an alternative to fusion, the injured disc is replaced with an artificial one.

Spinal fusion

Spinal fusion is a very common procedure and it is performed for a multitude

of cases: fracture of vertebral body, degenerative disc disease,, spine tumors,

scoliosis. By disabling the relative motion between two adjacent vertebrae is

possible to prevent compression during movements.
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The procedure involves the insertion of two screws per fused vertebra on the

left and right spinal pedicles. The screws insertion angle is important to

avoid perforation of the pedicles or damage to the spinal cord. A pilot hole

for each screws is drilled by the surgeons. Once in place, the pedicle screws

are fitted with a screw head and then a rod is placed to connect these two

heads thus forming a unique rigid body.

For this type of procedures a robotic assisted surgery can always be rec-

ommended based on the patient physical status and on the planning phase.

Figure 1.2: Spinal fusion [2]

1.4 Approaches

Spine surgery has experienced much technological innovation over the past

several decades. The field has seen advancements in operative techniques,

implants and biologics, and equipment such as computer-assisted navigation

(CAN) and surgical robotics. With the arrival of real-time image guidance

and navigation capabilities along with the computing ability to process and

reconstruct these data into an interactive three-dimensional (3-D) spinal map

so too have the applications of surgical robotic technology advanced. While

spinal robotics represents promising potential for improving modern spinal
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surgery, it remains to demonstrate its superiority as compared to traditional

techniques prior to assimilation of its use amongst surgeons. The same is

true of intraoperative navigation techniques, which have shown reliability

in performance across many other surgical subspecialties, as well as success

across several studies in their application for improved pedicle screw accuracy.

Spine surgery relies upon meticulous fine motor skills to manipulate neural

elements and a steady hand while doing so, often exploiting small working

corridors utilizing exposures that minimize collateral damage. Additionally,

the procedures may be long and arduous, predisposing the surgeon to both

mental and physical fatigue. In light of these characteristics, spine surgery

may actually be an ideal candidate for the integration of navigation and

robotic-assisted procedures. These platforms have been shown to dramati-

cally improve a surgeon’s manual dexterity allowing for greater control and

manoeuvrability through a less invasive working portal, while dampening a

surgeon’s physiological tremor. By definition, robots do not fatigue and are

capable of performing repetitive tasks with accuracy and precision, yielding

infinitely reproducible outcomes.

Robotic-assisted surgery has been used for years by other surgical subspe-

cialties. The robots come in a variety of designs with varying levels of “as-

sistance” that can be broken down into 3 broad categories:

1. supervisory-controlled systems whereby the machine is programmed

with predetermined actions that are carried out with robotic autonomy

and close surgeon supervision

2. telesurgical systems, like the Da Vinci robot (Intuitive Surgical, Sun-

nyvale, California), that afford the surgeon complete control of the

motions of the machine from a remote command station

3. shared-control models, a form of co-autonomy allowing both the sur-

geon and robot to simultaneously control motions

5



Traditional open surgery

In a traditional open surgery the surgeon makes an incision on the body of

the patient and moves muscles to one side in order to have an open path

to the spine. With muscles pulled away the doctor can access the spine to

remove diseased or damaged bone or intervertebral disks. The surgeon can

also directly see the spinal anatomy and place screws or any other materials

necessary to stabilize the vertebra and help healing.

Minimally invasive surgery

Minimally invasive spine surgery (MISS) does not involve long incisions and

open manipulation of muscles or tissues surrounding the spine is avoided.

The surgeon perform the procedure through small cuts.

There are a lot of advantages compared to a traditional open surgery, here

are listed some of the most significant:

− shorter operation time

− lower blood loss

− less wound complications (i.e. infections)

− less damage to soft tissue

− shorter hospitalization

− short recovery time

Whether open surgery or MISS is performed, the spine can be accessed from

different directions. These are referred to as surgical approaches:

− Anterior approach: the surgeon accesses the spine from the front of

your body, through the abdomen.

− Posterior approach: the incision is made in your back.

− Lateral approach: the pathway to the spine is made through the side.

6



(a) Open surgery (b) Minimal invasive surgery

Figure 1.3: Approaches [3]

1.5 Computer Assisted Navigation (CAN)

Options

Many platforms are currently available for use in the field of spine surgery.

The Airo Mobile Intraoperative CT-based CAN platform (Brainlab) was

approved for use in the US by the Food and Drug Administration (FDA)

in October, 2013. The technology is one of the pioneers of the navigation

platforms and has many similarities to other CAN systems. Some differences

in the platform include its mobility and larger diameter of scanner than

other manufacturer’s scanner. The circular scanner is attached to the oper-

ating table and allows for full 360° scanning. Additionally, the entire unit is

mobile. The patient is anaesthetized and intubated then transferred to the

operating table. The instruments to be used in the surgery have 3 attached

reference points that are recognized by the system’s scanning stereotactic

camera. These instruments may be calibrated during the anaesthetization

process. Prior to intraoperative CT scanning, an anatomic reference clamp

is attached to a spinous process that allows registration of the CT image

with the same camera used for the instrument registration. The patient
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is then put through the scanner and a full 32-slice CT scan is obtained.

Once the image is obtained, it is automatically registered to the software,

which generates a real-time 3-D map that is registered with the precalibrated

instruments allowing for stereotactic guidance of instrumentation.

Figure 1.4: Airo Mobile [6]

The Stryker SpineMask Tracker provides a different form of reference. This

system relies on a rectangle of trackers that is applied directly on to the

patient. This referencing system negates the possibility of reference point

translation and allows the surgeon to work free of obstacles. The novel design

is not without its own peculiarities though. The camera must have full view,

clear of obstruction to 5 of the 31 LEDs that are actively tracking. This

means that a surgeon’s arm or body resting on the patient must not obstruct

more than half of the reference points of the rectangle tracker. Additionally,

the operative field cannot extend beyond the predefined size parameters of the

rectangular reference points. Additionally, undue skin tension or movement,

such as what might be encountered with large vertical incisions and deep

retraction, may alter the reference point location, effectively altering the 3-D

computer-generated spinal map. For these reasons, this SpineMask Tracker

seems well suited for minimally invasive percutaneous procedures, but may

be less accommodating for larger, open procedures involving many segments

8



of the spine.

Safety and Applications of Intraoperative Navigation

The application of CT-based 3-D navigation in spine surgery has been well

studied with over 20 clinical trials utilizing various manufacturers’ platforms.

Primary end points in the majority of studies have evaluated the accuracy

and safety of pedicle screw placement utilizing this technology. In addition,

several meta-analyses and systematic reviews have attempted to resolve the

clinical equipoise surrounding CAN techniques. However, even with a crit-

ical mass of data on well over 10.000 pedicle screws, many still interpret

the literature as equivocal. This likely has as much to do with the well-

documented success rates and safety profile of free-hand (FH) pedicle screw

instrumentation as it does with the evolving technological limitations of the

many different platforms for CAN that may add significant heterogeneity to

results.

Intraoperative MRI or MRI/CT Coregistration CAN

Leksell et al [29] first described the technique of stereotactic surgery uti-

lizing MRI in 1985 for use during localization of deep brain tumors. This

novel technique allowed surgeons to visualize, real-time, the brain with clear

distinction of white and gray matter, ventricular anatomy, and deep brain

pathology. Their technique utilized a 0.5-Tesla magnet to produce real-

time imaging for stereotactic surgery which utilizes an aluminium head-ring.

A decade later, Cohen et al [30] reported on their clinical results using

coregistration of CT and MRI modalities. They compared the accuracy of

their novel coregistration techniques to those of independent MR and CT

alone and found that coregistration of CT/MRI resulted in a statistically

significant decrease in error, measured in mm, in all 3 planes of view. This

technology has since been used for functional neurosurgery, primarily in form

of thalamotomy, placement of deep brain stimulators, and brain and spinal

tumor resection as previously described. In following years, the application

of 3-D coregistration technology was broadened to visualize both neural

elements and bony structures of the cervical, thoracic, and lumbar spine
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with great success and fine detail.

Efficiency in the OR and Outcomes

While many studies have demonstrated improved accuracy of pedicle screw

instrumentation utilizing CAN techniques, there is a shortage of literature

reporting on patient outcomes. Perhaps with greater accuracy and preci-

sion of instrumentation comes fewer complications and improved outcomes,

though this inference is largely an assumption due to lack of existing data.

The success of a spinal fusion procedure depends on many more variables

aside from pedicle screw instrumentation.

The reported rate of pedicle screw misplacement can be as high as 20%

to 40% based on historical data. However, even in studies with such high

rates of misplaced screws, only a fraction of patients experience neurological,

visceral, or vascular-related complications. Wiesner et al [31] reported on 408

percutaneously placed lumbosacral pedicle screws and found 27 instances of

screw malposition. However, of those 27 misplaced screws, only 1 was found

to cause a neurological complication. This salient point that differences in

pedicle screw accuracy, such as that seen in FH, fluoroscopic guided, and

CAN, are not associated with clinical significance has been reproduced in

the literature with convincing power. This may not be surprising as the

neural elements of the lumbosacral spine tend to be more forgiving due to

their increased mobility as compared to cord-level neural structures, in which

there is less room for error. Therefore, the increased accuracy of CAN pedicle

screw placement may translate into improved safety to a larger degree in the

cervical and thoracic spine.

1.6 Robot-Assisted Spinal Surgery

Robot assisted surgery (RAS) is an interdisciplinary growing field that aims

to support surgeons during surgical interventions.

The first surgical robot prototypes had been developed in the early 1990s,

today the most prominent commercial system are the MAZOR Renais-
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sance/Spine Assist, the Medtech ROSA robot and the new Da Vinci surgical

system.

The main advantages

− reduce intraoperative time

− reduce invasiveness of the procedure, enhance ability to perform mini-

mally invasive surgery

− higher accuracy

− reduce surgeon’s fatigue and hand tremor

− reduce staff exposure to radiation

− reduce operating room staff

− enable new procedure

− improve diagnostic abilities

In last years the number of performed robot-assisted procedures: from few

hundreds in the early 2000s to more than 600.000 in 2017, according to Sur-

gical Intuitive Inc. Anyway for several reasons surgical robotic system are

slowly assimilated in the operating rooms and not homogeneously spread.

Surgical robotic systems are expensive, their use is limited to few large

research hospitals that can afford the high costs. Operating time may be

reduced but usually surgeons must perform hundreds of procedures to be-

come adept and efficient in their use. The systems have big volumes and

they might occupy too much operative space raising safety issues.

The advances in technology that have led to the refinement of CAN tech-

niques previously discussed offer a safe and efficacious alternative to tradi-

tional radiation-intense FH for pedicle screw instrumentation. These plat-

forms are not without flaw; however, accuracy depends on several variables

including a direct line of sight from the tracking system camera to the instru-

mentation tools, relative angles between the camera and registered instru-

ments, camera quality, surgeon skill and expertise in acquiring and registering
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images, and environmental conditions such as heat, humidity, and light. In

an attempt to mitigate some of these shortcomings, miniature robotic sys-

tems that attach directly to bony landmarks were conceptualized in the early

2000s. These robotic assistants utilize the same CAN platforms, but lack the

drawbacks of surgeon interference with the tracking system cameras and in-

troduce the indefatigably and reproducibility inherent to robotic systems.

SpineAssist robot

One of the pioneers and by far the most studied of these robotic-assisted

surgical devices for spine surgery is the SpineAssist/Renaissance robot

(MAZOR Robotics Inc, Orlando, Florida). This device operates under a

shared-control model, with 6° of freedom of motion positioning surgical in-

struments for spinal procedures. It utilizes 3 different outrigger arms, each

accommodating a drill guide sleeve. The robotic software, in sync with a

CAN, determines which arm produces the most accurate pathway for pedicle

instrumentation based on the chosen implant and relative location of the

SpineAssist robot to the predetermined entry point and screw trajectory.

The robot may be attached directly to a spinous process in the case of open

surgery, or attached to a frame triangulated by percutaneously placed guide

wires for MIS procedures.

The first step of the process is to obtain and register CT images of the

desired spinal levels with the SpineAssist software to create a virtual spinal

map for the robot. The second step involves the templating of desired screw

entry point, trajectory, and screw size. This may be done in the OR or even

preoperatively based on the 3-D spinal map constructed by the software and

transferred to the intraoperative SpineAssist workstation.

The final registration involves obtaining 6 still fluoroscopic images for cali-

bration and intraoperative registration purposes. The SpineAssist software

then determines the optimal position of the selected arm for insertion of

the drill sleeve and a cannulated drill guide is placed in the arm, which is

now aligned along the predetermined implant trajectory. The drill is then

used to create a cortical punch at the desired entry point; a guide wire is
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inserted into the vertebral body so a screw pilot hole may be drilled along

the guide wire. The appropriate length and diameter screw is then inserted

into the pilot hole after pedicle probing and surgeon confirmation of accuracy.

Figure 1.5: Spine Assist/Renaissance robot[7]

Studies first verified the accuracy of this novel robotic-assisted technique,

reporting an average deviation of 1 mm or less of actual implant position

compared to preoperative template. Soon thereafter, several clinical studies

sought to expand upon the translational accuracy and efficacy of the SpineAs-

sist robot in Vivo. Roser et al [32] found a 99% accuracy rate of lumbosacral

pedicle instrumentation using the SpineAssist robot compared to 98% utiliz-

ing fluoroscopy guided, and 92% using navigation techniques. Interestingly,

the only study to date demonstrating a reduced accuracy of screw placement

came from Ringel et al in a randomized controlled trial that demonstrated a

significantly reduced accuracy rate of lumbosacral pedicle screw instrumen-

tation with the SpineAssist robot (85%) compared to fluoroscopic-guided

screws (93%, P = .019). The authors also reported that 10 of the 146 screws

placed with robotic assistance necessitated intraoperative removal and reim-

plantation. The authors utilized a percutaneous means of affixation of the

robot to the spine, and noted instability in the wire leading to malposition

of the drill sleeves.
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ROSA robot

In a new application of an existing surgical robot, the ROSA robot by

Medtech (Medtech S.A., Montpellier, France), originally designed for cranial

neurosurgical applications, may provide the answer to the technical flaws

encountered by Ringel et al [33].The ROSA robot is a freestanding robotic

assistant with a floor-fixable base and a rigid robotic arm (Figure 6). This

may help mitigate concerns of fixation strength to bony anatomy like those

encountered by Ringel et al. Additionally, the robotic arm moves in concor-

dance with the patient, based on the tracking camera monitoring, real-time,

several percutaneously placed tracking pins to the patient’s bony anatomy

in reference to tracking spheres affixed to the robot.

This technology platform, however, has yet to be validated for use in spinal

pedicle instrumentation but early clinical results are promising. In their

preliminary study on the novel application of the ROSA robot for spinal

surgery, Lonjon et al reported an accuracy rate of 97.3% for pedicle screw

instrumentation compared to 92% in the FH group. Though seemingly better

suited for percutaneous and MIS procedures due to improved robotic arm

fixation, these are the first published data of the ROSA robot for spinal

applications and more data are needed to validate its use.

Figure 1.6: ROSA robot [8]

Da Vinci Surgical System

A discussion of surgical robotics would not be complete without mention of
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the Da Vinci Surgical System (Intuitive Surgical). The Da Vinci robot was

approved in 2000 for general laparoscopic procedures and is most commonly

used for prostatectomies and hysterectomies, but spinal applications of the

technologically advanced system have been proposed. The Da Vinci robot

operates under the telesurgical model by which the surgeon operates the

robot as an extension of his or her own arm from a remote telesurgical

booth. The system is equipped with 3-D vision screens and portals for the

surgeon’s hands to control robotic instruments. Among the benefits of this

robotic assistant that have led to its widespread use in the fields of general

surgery, urology, and gynaecology are high definition, stereoscopic vision

with magnification up to 10Ö, tremor filtering, limitless wrist range of mo-

tion, and improved surgeon ergonomics. Additionally, the telesurgical model

allows for close oversight from a separate both affording override, making it

an ideal form of trainee education.

The Da Vinci Surgical System (Intuitive Surgical) has been utilized for la-

paroscopic anterior lumbar interbody fusion (ALIF) with promising results.

The primary obstacles to ALIF remain the ureters and large vessels (aorta,

vena cava, and branches) overlying the anterior spine. The first laparoscopic

ALIF was reported in 1991, with hopes of shorter hospital stay, quicker recov-

ery, less postoperative pain, and smaller incisions through the MIS approach.

However, results failed to show any advantage over open ALIF in regards to

length of stay, blood loss, or complication rates, and additionally, the tech-

nical demands, often foreign to spine surgeons, resulted in a steep learning

curve with increased operative time. For these reasons, the procedure was

largely abandoned by spine surgeons. However, with the improved usability

of the Da Vinci robot, the procedure and its hypothesized improved efficacy,

the Da Vinci-assisted laparoscopic ALIF has again become relevant in the

spine realms. Several small case-series studies have evaluated this application

of the Da Vinci robot demonstrating successful dissection of overlying large

vessels and no ureter- or vessel-related complications. However promising,

the use of the Da Vinci is not FDA approved for actual spinal instrumentation

and more exploration is necessary to validate its use.
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Figure 1.7: Da Vinci surgical system [9]
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Chapter 2

Project and Starting Point

2.1 Project introduction

The goal of this thesis work is to implement and test a new software solu-

tion for handling the joint limits problem on an hand-guided robot, while

respecting some precise requirements.

The entire work is the result of a collaboration between my university Po-

litecnico di Milano and the medical department of the KUKA company in

Augsburg and was developed during a six months internship.

It can be considered as a small contribution to a bigger project already

started in the past years from the company. The aim is to introduce an LBR

MED in the operating room for spine surgery interventions, the robot along

with the existing imaging systems can support the surgeons in the drilling

tasks required for safe and accurate spine fusion procedures.

In a standard procedure the surgeons have to perform the drilling manually

using the available medical images as their only support.
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Figure 2.1: Assisted workflow scheme

Instead the ideal workflow using the LBR med will follow the steps reported

in Figure 2.1.

From images it’s already possible to define the optimal position and orien-

tation for the drilling task, then by defining a common reference frame it

would be possible to guide the robot flange to the desired pose while getting

numeric feedback from the robot.
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Figure 2.2: Admittance Control Scheme

At anytime if there are no hand guiding inputs commanded the robot will

hold its current pose, thanks to the gravity compensation, so for the surgeons

it will be a lot easier to check images and make corrections little by little while

the robot remains stable.

The final step is characterized by specific cartesian constraints and three

relative motion mode (fix orientation, fix position, z-axis).

− Position the tcp on the desired drilling starting point (fix orientation

motion)

− Align the tcp on the desired drilling trajectory (fix position motion)

− Perform the drill with a constrained motion on the z-axis

Some of the most notable advantages from robot assisted task are:

− Increased positional accuracy

− Increased drilling task linear precision

− Reduced surgeons fatigue

− Provide numeric feedback

− Possibility to hold the current pose

− Improved ability to perform minimally invasive surgery

Robot Requirements

During the planning of the project a list of medical requirements have been

provided. The final LBR Med prototype must be able to fulfil all of them.
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Figure 2.3: LBR Med [5]

Medical Application Specific Requirements

1. Absolute positional accuracy of the robot (0.5 mm, 0.25 deg)

2. Cartesian kinematics constraints

Customer Additional Requirements

3. The workspace should be restricted as little as possible

4. Possibility to ”slide along” joint limit (the robot must never freeze all

the joints at the same time)

5. Avoid (computationally) unnecessary singularities

6. No noticeable breakaway force/torque

7. No drift

8. Adjustable joint velocity limits (without safety stop)

9. Smooth behaviour in the joint limits

10. No unexpected motion of the robot
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2.2 Project focus and goal

As previously mentioned the focus of my work was the joint limit problem, a

lot of the listed requirements are related to it, some directly other indirectly.

First goal

At first the robot must be able to ”slide along the joint limit”, the robot must

never freeze all the joints at the same time even some limits are reached. As I

will underline in the literature research chapter this is a common drawbacks

for many of the existing solutions that make use of a common scaling factor

for all the joints, in these cases when one limit is reached the maximum

feasible velocity is set to zero and then the scaling factor is reduced to zero

as well, resulting in no motion for the robot.

Second goal

Another requirement is the smooth behaviour in the joint limits, the robot

need to gradually decrease its velocity while approaching one limit and never

produce a hard stop into it. This point is strictly related to the definition of

some joint velocity limits that will bound the maximum velocity and scale

the command send to the robot motors.

Challenge

The most challenging requirement is not directly related to joint limits but

is the presence of cartesian kinematics constraints. These constraints must

always be respected in order to ensure a safe surgical intervention and at

any time must be seen as our primary task to not be violated. When the

robot tries to overcome a position or, if defined, a velocity limit the desired

commanded task is not feasible any more and through the Inverse Kinematic

function is necessary to introduce some kind of truncation or scaling. Under

cartesian kinematics constraints if we just try to scale the critical joints

individually the produced motion will violate them.
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2.2.1 Original Inverse Kinematic

The original IK function solves the problem with a Task Priority formulation

where the cartesian constraints have the highest priority and the hand guided

motion the lowest. When the commanded position tries to violate one of

the position limits the corresponding joint is frozen. To realize that the row

of the Jacobian relative to the critical joint is entirely set to zero, while all

other joints are still able to freely move, respecting the requirement, but the

biggest drawback is the hard stop of joint motion at their limits.

The hard stop can produces an aggressive and behaviour for the user, espe-

cially if he is a non robotic expert and he is not aware of critical configuration,

and at the same time may force the robot to produce unnecessary high peak

torques to suddenly stop the motion, the hardware receives really high stress

under intensive use.

2.3 Starting module features

In this section i want to give an overview of the already existing hand-guiding

module of the KUKA medical team. My entire job was developed on it and

some of its features are briefly described in order to provide a better general

description of the entire hand-guiding module aside from the specific thesis

focus on the joint limits problem solution.

These are the most noticeable features that will be described without many

details:

− Admittance control (accuracy)

− Singularities detection and Elbow motion restriction (singularities

avoidance)

− Drift compensation with dead zone (fine positioning)

22



2.3.1 Admittance Control

The module input are the measured external forces at the TCP and the

output are joint positions.

More precisely external forces are integrated to obtain the desired cartesian

velocity, than cartesian velocity is transformed into joint velocities through

the differential Inverse Kinematic function. At last joint velocities are inte-

grated and the resulting joint positions are commanded to the robot.

The admittance control can achieve the required absolute accuracy of 0.5 mm

for the medical application. While the position accuracy has been proved to

be a lot better than in the most used impedance control, the admittance

control may suffer from stability problem in contact with external rigid en-

vironment, so it may result not well suited for object interaction and manip-

ulation.

Figure 2.4: Admittance Control Scheme

In the figure the preprocessing block include some non-linear transformation

on the input forces. For example a symmetric dead zone around the zero point

is implemented, very low input under a certain threshold are suppressed, this

transformation has been proved to ensure a better absolute accuracy.

2.3.2 Singularities

Singular points are particular configuration of the robot where the minimum

singular value of the Jacobian is equal to zero. The inversion of the Jacobian

around singular point can produce very high values that will lead to high
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peaks in joint velocities. Singularities handling is another well known prob-

lem for robot control The singularities detection of the module is integrated

in the function used to compute the inverse of the Jacobian and realize a

particular weighted pseudo-inverse.
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Chapter 3

Literature Research

3.1 Joint Limits Problem

3.1.1 Gradient Projection Method

This method is one of the first and most used for solving robot redundancy.

Joint velocities q̇ can be compute as the product between cartesian velocity ẋ

and the sudden inverse of the Jacobian J†; then the nullspace of the primary

task is used to minimize an objective function h, z = k∇h.

q̇ = J†ẋ+ (I − J†J)z (3.1)

The vector z can be freely choose to optimize any desired criteria without

affecting the primary task.

The most important optimization criteria used in past works are:

− Least-square joint velocities h(q) = 1
2
q̇TWq̇ [1];

− Distance from joint limits h(q) = 1
2
(q − q̄)TW (q − q̄), [2];

− Singularity avoidance h(q) =
√
det(J(q)JT (q)) [3];

− Obstacle avoidance h(q) = min
p,o
‖p(q)− o‖ [4].
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The method provides only the direction of the homogeneous solution, the

scalar coefficient k has to be manually set in order to adjust the magnitude

of the self motion.

High k can result in excessive and unnecessary self-motion always trying to

keep joints in the middle of their ranges even if they are far enough from

the bounds. A large k has also been proven to produce oscillations near a

minimum.

With low k the nullspace contribution will be able to change the robot con-

figuration only when the projection vector become very large, in proximity of

the limits, that may be too late to avoid them in time for hardware limitation.

Huo [5] in a more recent work presented a method to automatically tune

parameters.

The GPM in general cannot guarantees joint limits avoidance both for the

presence of local minimum and of the primary task.

For these cases the commanded joint motion may still violate some of the

bounds, and its saturation produces then a wrong instantaneous behavior in

the task space, as an hard stop of some joints.

3.1.2 Task Priority

The Task Priority formulation is a generalization of the previous method to

multiple task problems. It aims to solve the conflicting task situation by

suitably assigning an order of priority to them. The lower priority tasks are

satisfied only in the Nullspace of the higher priority ones. [6] [7].

This is the general formula for joint velocities fro an arbitrary number of

tasks t:

q̇i = q̇i−1 + (JiP
A
i−1)

†(ẋi − Jiq̇i−1) (3.2)

q̇ = q̇t
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Where

PA
i = I − JA†i JAi

is the projector into the nullspace of the augmented Jacobian:

JAi =


J1

J2

.

.

Ji


The order of priority can be assigned to best fit in the developed application

but is not possible to guarantee the fulfillment of all task at the same time.

3.1.3 Task Space Augmentation

This method is based on the augmentation of the Jacobian matrix to include

joint angle and joint rate constraints. The difference from the previous strat-

egy is that here sub-tasks are executed along with the primary one without

any priority order.

Chiacchio proposed a CLIK (closed loop inverse kinematic) control scheme

with the Jacobian transpose [8], while Baron’s solution [9] is based on a

virtual rotation of the tool-tip in order to obtain an undetermined linear

algebraic system with at least one DoF of redundancy.

The augmented kinematic equation can be written as:

x =

[
xE

xC

]
=

[
fE(q)

fC(q)

]

And by differentiating:

ẋ =

[
JE(q)

JC(q)

]
q̇ = J(q)q̇ (3.3)
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where J(q) is the augmented Jacobian matrix.

The augmentation of the Jacobian can introduce singularities even in fea-

sible configuration for the single tasks, Baillieul named them algorithmic

singularities [10]. A crucial point then remains the specification of suitable

constraint tasks.

Where the augmented Jacobian is not full rank this solutions introduces

relevant errors in both the considered tasks, Chiacchio in his work solved this

problem by switching to a task priority strategy where a suitable specification

of constraint task is not allowed.

3.1.4 Jacobian Weighting

The Weighted Least Norm (WLN) solution was first proposed by Chan [11]

and then generalized for multiple sub-tasks by Xiang [12].

This solution penalize the motion of some joints over others by defining a

weighted norm of the velocities vector:

|q̇w| =
√
q̇TWq̇ (3.4)

The general formula can be write as follow:

q̇w = W−1JT (JW−1JT )−1ẋ (3.5)

The weights matrix is usually a diagonal matrix where the ith element on

the diagonal is defined as:

wi =

1 + |∂H(q)
∂qi
| if ∆|∂H

∂qi
| ≥ 0

1 if ∆|∂H
∂qi
| < 0

(3.6)

The WLN solution was compared to the GPM in the Chan work, here below

are listed some of the resulting advantages:

− it guarantees joint limit avoidance
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− it doesn’t required to set the magnitude of the self motion

− it doesn’t try to maximize the distance of the joints from their limits

reducing all the unnecessary self-motion and oscillation

− it doesn’t damp motion of joints that are moving away from their limits

even if ∂H(q)
∂qi

is high

The bigger drawback of this algorithm is that it cannot always guarantees

the correct execution of the primary task, the damping will introduce an

error in its execution.

3.1.5 Quadratic Programming

This category of methods defines a constrained quadratic optimization

problem (Quadratic Programming problem) to solve the inverse kinematic

problem for redundant manipulators under hard physical constraints. In [13]

[14] is possible to find all the mathematical concepts, the standard formula-

tions and some resolution techniques.

In the robotic field a first formulation for torque minimization was proposed

in the 1980s by Hollerbach and Suh [15], they presented several schemes at

acceleration level but all affected by stability problems. Joint velocity norm

can diverge to infinite value in finite time and it’s possible to obtain local

discontinuities.

The divergence and the instability problems were analyzed respectively by

O’Neil [16] and Park [17], some possible solution are presented but none of

them can entirely solve the problems.

In 2004 Zhang proposed a unified approach for physically constrained redun-

dant manipulators [18][19]. This formulation is general in the sense that it

incorporates equality, inequality and bound constraints at the same time.

There exist several schemes both at velocity and acceleration level based on

different optimization criteria, the ones listed are some of most used:
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− Velocity level

MVN minimum velocity norm

MKE minimum kinetic energy

− Acceleration level

MAN minimum acceleration norm

MTN minimum torque norm

Usually real time applications require sampling time in the order of mil-

liseconds. Some optimization problem can be really expensive in term of

computations and so not suited for those applications. Cheng [20] [21] pro-

posed the Compact QP method, a computationally efficient solution, which

makes use of the Gaussian elimination to eliminate some of the equality

constraints and reduce the number of independent variables.

However these methods do not guarantee in general both the constraint sat-

isfaction and the optimality of the solution, they can result expensive for

real-time application or present some instability problems.

3.1.6 Compensation in the Nullspace

The basic idea here is to compensate the saturation of joints velocities with

the self-motion, so that the velocity in the task space remains unchanged.

In this way we could achieve maximal velocity in the task space within the

allowed joint velocity limits.

The method was present at first by Chen for one primary task [22], while

later Omrčen presented a generalized version for multiple sub-tasks and

introduced a condition that shows if the compensation is kinematically and

mathematically possible or not [23].
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The shared drawback is again the simultaneous treatment of all over driven

joints at the same time, by proportional decreasing all joint velocities, in case

the condition is not satisfy.

3.1.7 Saturation in the Nullspace

This approach was presented by Flacco in his work [24].

The velocities control functions used are able to consider at the same time

all the hard constraints of the robot in terms of position, velocity and accel-

eration bounds:

Q̇max = min

{
L+ − q
dt

, Vmax,
√

2Amax(L+ − q)
}

(3.7)

Q̇min = max

{
L− − q
dt

, −Vmax, −
√

2Amax(L− − q)
}

(3.8)

At first is checked if the original task can be performed with the joint velocity

being within their constraints.

The joint velocities are computed with the following formula:

q̇sns = q̇N + (JW )†(sẋ− Jq̇N) (3.9)

where the parameters are initialized in this way: W = I, q̇N = 0 and s = 1.

If not the algorithm starts by evaluating the most critical joint for task

execution (its velocity needs the smallest task scaling to stay within the

bounds).

The most critical joint is then saturate in the nullspace by setting Wjj = 0

and q̇N = saturate value.
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If the task cannot be executed with this new parameters, so the rank of JW

is strictly less than m (dimension of the task), the algorithm stops with the

best parameters found, otherwise the joint velocity is recomputed with the

current parameters and the process is repeated on the new most critical joint.

At each loop a new scaling factor is obtained. If it’s larger than all the

previous ones it’s stored with the current W and q̇N .

The damping in all directions is still present in this method if no feasible

solution is found, but the task scaling factor used is assured to be the higher

possible.

In more recent works Flacco extended the SNS algorithm also for multiple

prioritized tasks and proposed also an optimal solution to reduce computa-

tion time. [25].

3.1.8 Progressive Clamping

This section refers to all those methods that treat joints singularly by clamp-

ing them according to some decreasing function.

The method presented by Raunhardt [26] for the control of virtual man-

nequins is conceptually similar to the Jacobian Weighting.

He defined a velocities control function with a polynomial profile as follow:

h =


1 if qk+1 < q̄min or qk+1 > q̄min

−2d3 + 3d2 if qk+1 < qk < qmin or qmax < qk < qk+1

0 otherwise

(3.10)

Then the resulting damping factor h is used to module the motion command:

qk+1 = qk + (1− h)∆q
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The method damps only joints heading towards the limits and offers the

same advantages of the JW, but as with the JW algorithm also this solution

can introduce errors in the execution of the task because joints are treated

singularly when any damping is required.
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Chapter 4

Implementation

4.1 Goal

As seen in Chapter 2 the existing KUKA hand-guiding module was already

able to fulfil a lot of the requirements for spine surgery.

Focus:

− Joint limits handling through IK function

Goals:

− Smooth approach to joint limits (kinematic constraints)

− Possibility to ”slide along” joint limit (the robot must never freeze all

the joints at the same time)

Challenge:

− Cartesian Constraints
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4.2 Cartesian Constraints

The medical application requires cartesian kinematic constraints in order to

ensure an accurate and safe surgical procedure, for this reason they have to

be considered as the highest priority task. The precision and the accuracy

are crucial during the execution of a surgical procedure, no rotational or

positional error have to be present even when joint position or velocities are

saturated.

The hand-guiding task, represented by the motion commanded by the user

with his hand, is mapped into the nullspace of the considered cartesian con-

straint by following the general task priority formulation. In this way it’s

guaranteed that kinematic constraints are always respected.

4.2.1 Task Priority Formula

This is the general formula taken from literature (3.1.2) for an arbitrary

number of tasks t:

q̇i = q̇i−1 + (JiP
A
i−1)

†(ẋi − Jiq̇i−1) (4.1)

q̇ = q̇t

Where

PA
i = I − JA†i JAi

is the projector into the nullspace of the augmented Jacobian:

JAi =


J1

J2

.

.

Ji
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4.2.2 Our Case

− Primary task: Cartesian Constraint

− Secondary task: Hand-guiding Motion

Cartesian Constraint

J1 = Jc

q̇1 = q̇c = 0 (4.2)

Hand-guiding Motion

P1 = Nc

J2 = Jhg

q̇2 = q̇hg = q̇1 + (J2P1)
†(ẋ2 − J2q̇1) = (JhgNc)

†(ẋhg) (4.3)

For spine surgery is really important to always keep to zero the error in

the primary task. For this reason solutions that modify the Jacobian (i.e.

“Jacobian Weighting”), or that clamp and saturate joints singularly (i.e.

“Progressive Clamping”) are not suitable for this application.

4.3 Smooth Approach

The smooth approach to joint limits was realized with the introduction of ve-

locity limits. Their formulation is taken from the literature work “Saturation

in the Nullspace”.

With this formulation maximum and minimum velocities are computed tak-

ing into account not just velocity bounds but also position and acceleration

bounds all together.
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Qmin ≤ q ≤ Qmax (4.4)

Vmin ≤ q̇ ≤ Vmax (4.5)

Amin ≤ q̈ ≤ Amax (4.6)

At each step the joint velocity command must guarantee that:

− the joint range limits will not be violated

− the commanded joint velocity doesn’t exceed the velocity absolute limit

− the joint will be able to stop the motion in time before reaching the

position limit, considering the acceleration bounds

Position

Starting from a generic feasible position qk, for a sampling time T , the new

commanded position can be written as:

qk+1 = qk + q̇kT

This new commanded position qk+1 has to fall in the admissible range:

Qmin ≤ qk+1 ≤ Qmax

From here is possible to formulate maximum and minimum velocities that

always guarantee that position limits will not be violated:

Qmin − qk
T

≤ q̇k ≤
Qmax − qk

T
(4.7)

Acceleration

At each sample we also need to be able to stop the joints before they can

hit their position limits. The fastest possible way to stop the motion is to
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decelerate the joint, which is moving at q̇k > 0 speed, with the maximum

acceleration Amax.

Position and velocity at some t > tk and subject to −Amax can be written

as follow:

q(t) = qk + q̇k(t− tk)−
Amax

2
(t− tk)2 (4.8)

q̇(t) = q̇k − Amax(t− tk) (4.9)

In the extreme situation the joint velocity is reduce to zero (q̇(t) = 0) exactly

in the position limit (q(t) = Qmax). If we solve the system with this param-

eters is possible to demonstrate that in this case the velocity is bounded as

follow:

−
√

2Amax(q −Qmin) ≤ q̇k ≤
√

2Amax(Qmax − q) (4.10)

Complete Formula

Q̇max = min

{
Qmax − q

dt
, Vmax,

√
2Amax(Qmax − q)

}
(4.11)

Q̇min = max

{
Qmin − q

dt
, −Vmax, −

√
2Amax(q −Qmin)

}
(4.12)

The Figure 4.1 shows the profile of the resulting area of admissible velocities

in function of the position. While approaching to the position limit the

admissible velocity is smoothly reduced to zero.

If the user tries to command a velocity over the limit the robot motion will

be damped and the user will feel an increasing resistance to the motion in

direction of the limit.

The Appendix A.1 shows the integral function used in the algorithm.
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Figure 4.1: Feasible velocities area

4.4 Motion Along the Limits

The desired solution has to present the possibility to slide along the joint

limits and never stop the robot if there are some degree of freedom left to

achieve some motion.

In literature is possible to find a lot of works that always try to preserve the

cartesian task direction. Here the redundancy is used in different way to deal

with the joint limits problem but the common drawback is the simultaneous

treatment of all joint at the same time if no feasible solution can be found.

In this case the entire task is scaled by a common factor.

This factor α ∈ [0 1] represents the smallest scaling factor necessary to stay

within the bounds and it is computed as follow:

α = min

{
Q̇maxi

q̇i
,
Q̇mini

q̇i

}
(4.13)

Then the entire task is scaled according to it ẋnew = α ẋd. If one position

limit is hit, the maximum velocity for this joint is equal to zero and then the

scaling factor is also reduced to zero, the motion is stopped and all joints

are frozen.
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To move away from a joint limit is necessary to command a cartesian motion

which doesn’t present any cartesian component that tries to violate this

position limit. If even a small component is present then the robot will

remained frozen.

While for cartesian constraints was necessary to have no error in the primary

task, to achieve the desired behaviour along joint limits will not be possible

to always preserve the task direction but was required the introduction of

an error in the hand-guiding task.

For a generic hand-guiding task is not strictly necessary to preserve the

desired direction because the user has a continuous visual feedback on the

position of the robot and he can decide to change trajectory at any time.

Anyway it’s important to never produce any unexpected or not intuitive mo-

tion, the user should never feel the robot moving against his intended motion.

My final solution can guide the user to move along joint limits but always in

a natural way. The task direction is gradually changed while approaching to

one limit and in the worst case, when a position limit is hit, the task direction

is changed by 90 degrees.

4.4.1 First step: Geometric Clamping

From this section the fix orientation motion is considered, where the carte-

sian input velocity is a 3D vector with the three translational elements for x,

y and z axis. All examples and pictures of this chapter will refer to this case

because it is easier to visualize and to reason with more familiar 3D vectors

and planes. 1

1The same algorithm works also for other motion modes. For the fix position trans-
lational elements and axis are substituted by rotational ones, while the z-axis motion
can be seen as a special case of the fix orientation where the hand-guiding task is mono
dimensional.

40



The idea was to use the information contained in the Jacobian matrix to

move the problem of joint limits from joint space to cartesian space.

The velocity of a generic joint can be written as:

q̇i = invJi ẋd (4.14)

Where invJi is the ith row of the inverse Jacobian matrix, this vector can be

seen as the “critical direction” for the joint at the current robot configuration.

The desired cartesian velocity is decomposed in two components. The first

one parallel to the critical direction and the other one perpendicular to it.

ẋd = ẋd‖ + ẋd⊥ (4.15)

Having the critical direction for the joint is possible to define a plane normal

to it and passing from the zero point, which contains all the cartesian veloc-

ities that result in a zero velocity for the ith joint, this happens because the

scalar product between them and invJi is always zero. The perpendicular

component lays on this plane and doesn’t have any influence on the resulting

joint velocity.

invJi ẋd⊥ = 0 (4.16)

invJi ẋd‖ = q̇i (4.17)

A first feasible solution was computed by removing the parallel component.

ẋf = ẋ⊥ (4.18)

In this way the ith joint is blocked while the entire robot is still able to move

on this perpendicular plane.
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Figure 4.2: Geometric Clamping

4.4.2 Second step: Geometric Scaling

The second step done aims to guarantee continuity for joint and cartesian

velocities.

Assuming to have one joint over its velocity limit

q̇di > Q̇maxi

to achieve a feasible solution the velocity of this joint need to be scaled by a

factor α ∈ [0, 1]

αi =
q̇i

Q̇maxi

(4.19)

Instead of scaling the entire task we leave the robot free to move on the

perpendicular direction, while we only scale the parallel direction.

From here the feasible solution found is:

ẋf = α ẋd‖ + ẋd⊥ (4.20)
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It’s important to remark that since ẋd⊥ as no effect on the resulting joint

velocity (invJi ẋd⊥ = 0), scaling the entire task or scaling just the parallel

component will produce the same joint velocity, in this case equal to the

maximum admissible.

αẋd = αẋd‖ + αẋd⊥ (4.21)

ẋf = αẋd‖ + ẋd⊥ (4.22)

invJi αẋd = invJi ẋf = Q̇maxi (4.23)

Figure 4.3 shows how the parallel component is gradually damped while ap-

proaching to the joint limit. When the limit is reached only the perpendicular

component is saved.

Figure 4.3: Geometric Scaling

4.4.3 Geometric Constraints

In this section is shown that each velocity limit at joint level can be converted

in one cartesian constraint in 3D space.
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From each velocity limit for each joint is possible to find the maximum fea-

sible cartesian component on the critical direction: ẋ‖max = α ẋd‖.

Then is possible to define a plane normal to the critical direction and passing

through this point ẋ‖max , I will refer to it as “boundary plane”. All cartesian

velocities ending on that plane achieve a joint velocity equal to Q̇maxi .

invJi ẋ‖max = Q̇maxi (4.24)

Figure 4.4: Geometric Constraints

Figure 4.4 shows an example of one “boundary plane”. The plane divides

into two hemisphere the entire space, all inputs on the left of the plane are

feasible for the considered joint while all inputs on the right will produce a

solution out of bounds.

Between the infinite feasible solutions we consider as optimal the one min-

imizing the error with the desired cartesian velocity ẋd. In presence of a
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single constraints the optimal solution always coincides with the feasible one

described in the previous section:

ẋopt = ẋf = α ẋd‖ + ẋd⊥ (4.25)

When the desired cartesian velocity violates more than a single joint velocity,

two or more constraints become active.

The boundary planes can still be found easily one by one, the zero point is

the only one to be always included in the feasible region for each of them.

A general solution to solve a case with multiple critical joints may be to

search for the optimal solution on the intersection between the planes as

shown in Figure 6, but this solution is not suitable to all particular cases.

Figure 4.5: Multiple Critical Joints

For example there is the possibility to have two parallel boundaries which

intersection is null, or is possible that the solution on the intersection is not

the optimal with regard to the error.
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For all these cases a more general method is required.

4.5 Third step: Quadratic Programming for-

mulation

The proposed method attains the desired behaviour by formulating a

Quadratic Programming problem.The achieved solution is the best feasi-

ble solution under an arbitrary number of constraints.

A generic QP problem is an optimization problem under linear constraints.

It is defined by a quadratic objective function of the considered variables

that we want to minimize, and by the constraints matrices of those variables.

4.5.1 QP classes

QP problems can be divided into four different classes:

Unconstrained QP

min
x

{
1

2
xTWx+ qTx

} Box-constrained QP

min
x

{
1

2
xTWx+ qTx

}
a ≤ x ≤ b

Equality constrained QP

min
x

{
1

2
xTWx+ qTx

}
Ax = a

Inequality constrained QP

min
x

{
1

2
xTWx+ qTx

}
Bx ≤ b

Table 4.1: QP classes
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Unconstrained

Necessary and sufficient conditions for a local minimum:

− f has zero gradient at x∗

∇xf(x∗) = 0

− the Hessian is semi-definite positive

wT∇2f(x∗)w ≥ 0 , ∀w

Equality Constrained

min
x

{
1

2
xTWx+ qTx

}
s.t. Ax = a

(4.26)

To solve a QP problem under equality constraints the Lagrange Multipliers

method is commonly used. The Lagrange function is defined as follow:

L(x, λ) =

{
1

2
xTWx+ qTx

}
+ λT (Ax− a) (4.27)

If x∗ is a local minimum for L then exists an unique λ∗ that satisfies the

conditions:

− ∇xL(x∗, λ∗) = 0

− ∇λL(x∗, λ∗) = 0

− wT∇2L(x∗, λ∗)w ≥ 0 , ∀w

From the two first conditions is possible to define a linear system of two

equations in two variables:

Qx+ ATλ = −q

Ax = a
(4.28)
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In matrix form: [
Q AT

A 0

][
x

λ

]
=

[
−q
a

]
(4.29)

In this way the optimization problem is reduced to the solution of a system

of linear equations.

For low dimension problems is possible to solve the system analytically by

inverting the K matrix if it is not singular.

For higher dimension problems the inversion process could result computa-

tionally very expensive, in those cases usually is used a pre-conditioned con-

jugate gradient (PCG) method. This is an iterative algorithm used to find

a numerical solution of particular system of linear equations whose matrix is

symmetric and positive-definite.

The K matrix is always symmetric for its definition, in case it is not positive-

definite is necessary to transform Kx = y to (KTK)x = KTy and then apply

the PCG since the matrix (KTK) is always positive definite.

Inequality Constrained

In presence of inequality constraints the optimality conditions change and

they are named KKT conditions/equations.

min
x

{
1

2
xTWx+ qTx

}
s.t. Bx ≤ b

(4.30)

The Lagrange function:

L(x, µ) =

{
1

2
xTWx+ qTx

}
+ µT (Bx− b) (4.31)

If x∗ is a local minimum for L then exists an unique µ∗ that satisfies the

KKT conditions:

− ∇xL(x∗, µ∗) = 0
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− µ∗ ≥ 0

− µ∗(Bx∗ − b) = 0

− (Bx∗ − b) ≤ 0

− µ∗ ≥ 0

− wT∇2L(x∗, µ∗)w ≥ 0 , ∀w

4.5.2 Joint Limits as QP problem

In our case the unknown variable to minimize is the error in cartesian space

while the velocity bounds represent the inequality constraints.

Objective Function

The objective function is the quadratic form of the cartesian error without

any additional term.

1

2
εTWε (4.32)

where

ẋf = ẋd + ε (4.33)

If no constraints are violated the solution is always the zero point, so the

QP problem introduces an error in the hand-guiding task only when really

necessary.

Furthermore by minimizing the error with the desired commanded motion,

the final solution will never produce any unexpected or unintuitive motion.

Inequality Constraints

As seen in a previous section each joint velocity limit can be formulated as

a cartesian constraint.
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For each limit all solutions that fall in the feasible region, delimited by the

“boundary plane”, are viable. The plane sets a limit for the cartesian com-

ponent on the critical direction. The projection of the final solution on this

direction must be lower or equal than the projection of the ẋ‖max = α ẋd‖:

invJi ẋf ≤ invJi ẋ‖max = Q̇maxi (4.34)

Recalling Equation 4.33 is possible to formulate also this constraint in func-

tion of the error.

invJi (ẋd + ε) ≤ Q̇maxi

invJi ε ≤ Q̇maxi − invJi ẋd
invJi ε ≤ Q̇maxi − q̇di

(4.35)

For each joint the constraint matrices will present two rows one for the max-

imum and one for the minimum velocities in the following form:

Bi = invJi bi = Q̇maxi − q̇di
Bi = −invJi bi = −Q̇mini

+ q̇di
(4.36)

The lower limits formulated just by changing all the signs of the equation

4.35.

The final matrices can be written as

B =

[
invJ

−invJ

]

bi =

[
Q̇max − q̇d
−Q̇min + q̇d

] (4.37)

The Appendix A.2 contains the function used to initialize those matrices and

fully define the QP problem.
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4.5.3 QP Solver - Active Set Method

All the already existing Matlab solvers make use of structures or cell arrays

which are not allowed in simulink modules for real time code generation

where static memory allocation is required.

Then I developed a QP solver, as an embedded Matlab function, following

the so called Active-Set method.

Active set method

The active set method is an iterative algorithm used to solved QP problem.

It can ensure fast convergence to the optimal solution for low dimension

problems while for high dimensions different approaches can be suggested as

the Interior Point Method.

The algorithm starts from an initial point x0, that must be a feasible point

for the problem, and it finds the next iterate by setting

xk+1 = xk + αkd
k (4.38)

Here αk is the step-length and dk is the search direction.

At each step the indexes of the active constraints for the current point xk

are stored in the so called Active Set:

Ak = {j | BT
j x

k − bj = 0} (4.39)

To determine the search direction dk solve the equality constrained QP, sub-
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ject to the active set and the equality constraints, if there are any.

min
d

{
1

2
dTWd+ qTd

}
s.t. ATj d = a

BT
j d ≤ b , j ∈ Ak

(4.40)

The KKT optimality conditions lead to the matrix system:Q AT B̃T

A 0 0

B̃ 0 0


dλ
µ̃

 =

−q0
0

 (4.41)

If dk = 0:

− If µ̃k ≥ 0, xk is an optimal point, stop the algorithm.

− If at least one µ̃k ≤ 0 then xk is not an optimal solution, some of

the active constraints are not necessary for the final solution. So the

constraint with the lower Lagrangian multiplier µ̃j is removed from the

active set and the problem is solved again.

If dk 6= 0:

the algorithm can continue with the computation of the new step. The step-

length αk must guarantee that the new step xk + αkd
k is feasible to all the

constraints. A common formulation is the following one:

αk = min

{
1 ,

bj −BT
j x

k

BT
j d

k
| j /∈ Ak and BT

j d
k > 0

}
(4.42)

It is important to observe that if αk < 1, then αk =
bj0 −BT

j0
xk

BT
j0
dk

for some

j0 /∈ Ak. This implies that BT
j0

(xk + αkd
k) = bj0 and so the inequality

constraints corresponding to j0 becomes active at the next step. The active
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set has to be update by adding the index Ak+1 = Ak ∪ {j0}.

In general the Active Set method is a proper solution for low dimension

problems. The biggest issue is how to determine a good starting iterate x0

that is required to be inside all constraints.

In our case the starting ε is set equal to −ẋd. In this way the corresponding

cartesian velocity is:

ẋfintial
= ẋd + ε = 0 (4.43)

that is obviously a generic feasible solution for every possible limit Q̇max and

Q̇min.

Active Set Method - Pseudo Code

1. Give a feasible start vector x0

2. Identify the active set A0

3. Set k = 0

4. While (no convergence) do

5. Compute gk = Qxk + q :

6. Obtain dk, λk, µ̃k by solving the KKT equations for:

min
d

{
1

2
dTWd+ qTd

}
s.t. ATj d = a

BT
j d ≤ b , j ∈ Ak

(4.44)

7. If (dk = 0)

8. If (µ̃k ≥ 0)
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9. Stop: xk is a KKT optimal point

10. Else

11. Compute the minimum negative Lagrangian multiplier:

µ̃kj0 = min{µ̃kj | µ̃k < 0, j ∈ Ak} (4.45)

12. Update the index set Ak → Ak\{j0} and return to step 6

13. End if

14. End if

15. If (dk 6= 0)

16. Compute the step length

αk = min

{
1 ,

bj −BT
j x

k

BT
j d

k
| j /∈ Ak and BT

j d
k > 0

}
(4.46)

17. Update xk+1 = xk + αkd
k

18. Update Active Set:

− if αk = 1, then Ak+1 = Ak

− else Ak+1 = Ak∪{j0}, where αk =
bj0 −BT

j0
xk

BT
j0
dk

for BT
j0
dk >

0

19. Update k → k + 1

20. End if

21. End while

Appendix A.3 encloses the integral embedded matlab function used in the

simulink model.
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4.5.4 Second Formulation

It is possible to formulate the QP problem in a different way to directly get

the joint speeds as solution without the necessity to compute the inverse of

the free Jacobian neither the nullspace matrix of the cartesian constraints.

Objective function

1

2

[
ε

q̇

]T
W

[
ε

q̇

]
(4.47)

In this formulation the variable to minimize is composed by two terms.

Again the term with the highest minimization priority is the cartesian error

(ε = ẋf − ẋd), while there is an additional second term that is represented

by joint velocities q̇.

Joint velocities q̇ act as a regularization term in the problem, it’s more

important to achieve the desired cartesian task than minimize them. Just in

case more than one solution will produce the same minimum cartesian error,

then the algorithm will choose the one minimizing joint velocities.

To give higher minimization priority to ε the diagonal weights matrix W is

defined as follow:

W =



1
. . .

1

10−5

. . .

10−5


(4.48)

Constraints
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Equality:

Jhg q̇ − ε = ẋd

Jcq̇ = 0
(4.49)

Here the first equation is necessary to define the error in the cartesian space,

it can be seen as a soft constraints because ε is a variable term.

The second equation is an hard constraint related to the kinematic constraint

defined by the chosen motion mode.

Inequality:

q̇ ≤ Q̇max

− q̇ ≤ −Q̇min

(4.50)

Also in this formulation inequality constraints are bounded by minimum and

maximum joint velocities, but this time they can be directly formulated in

joint space, so for this case it’s not necessary the computation of the inverse

of the Jacobian.

4.6 Performance Analysis

The two formulations produced almost identical outputs in simulations and

when tested on the robot in non singular configurations.

The singularity detection of the module is included in the computation of the

inverse of the Jacobian, so the second solution doesn’t have any protection

for singular configuration, since it doesn’t required the computation of the

inverse of the Jacobian. At singular point when tested the robot produced

big oscillations while running this second solution.

To find a practical application the second solution requires an additional

development of a specific singularity handling solution.

Anyway a comparison between the two solutions was made in order to asses
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which one can guarantee lower computation time. Performances are partic-

ularly important for real-time application where the sampling time is in the

order of milliseconds.

The two algorithm have been compared on the same trajectory, simulated

for three times in the Simulink module. The “tic” and “toc” functions have

been used to estimate the required computational time for each step.

First formulation:

min

{
1

2
εTWε

}
[
J−1hg
−J−1hg

]
ε ≤

[
Q̇max − q̇d
−Q̇min + q̇d

]

− No equality constraints

− Lower dimension problem

− Requires computation of invJ

Second formulation

min

{
1

2

[
ε
q̇

]T
W

[
ε
q̇

]}
[
−I Jhg
0 Jc

] [
ε
q̇

]
=

[
ẋd
0

]
[
0 I
0 −I

] [
ε
q̇

]
≤
[
Q̇max

−Q̇min

]

− Equality constraints

− Higher dimension problem

− No computation of invJ

Table 4.2: QP formulations

Figure 4.6 shows the number of loop required to the solver at each step.

There are a lot of punctual differences between the two graphs, but in gen-

eral it’s not possible to asses if one has faster convergence than the other.

So the same configuration may required a different number of loops for the

two problems but none of them can be considered always better.

Figure 4.7 shows a first rough comparison of the performances in term of

computation time. From these rough data is possible to notice how the sec-
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Figure 4.6: Number of Loop
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Figure 4.7: Performances

ond one has higher instability and how it presents a bigger number of outliers.

Figure 4.8 shows the same data cut at their 95 percentile, in this way the

outliers had been removed. It’s noticeable that the first formulation can

guarantee better and more stable performances.

In the first solution the inversion of the Jacobian is required once at the

beginning of the algorithm, then the number of loop required to the solver

doesn’t have a big influence on the final time, that is kept almost constant for
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Figure 4.8: Performances 95 percentile

the entire simulation. In the second solution each loop of the solver required

to solve a more complex QP problem with higher dimension KKT-equations,

then the total time is greatly influenced by the number of loops and its

profile faithfully follows Figure 4.6b.

First formulation: Second formulation

µ̄1st = 0.312 · 10−3 s

σ̄1st = 5.122 · 10−5 s

µ̄2nd
= 0.806 · 10−3 s

σ̄2nd
= 5.136 · 10−4 s

Table 4.3: Performances: statistical indicators

The table 4.3 contains the mean value and the standard deviation for the

two problems. The second mean, that is more than double the first one, re-

flects the general worse performances of this second solution, while its higher

variance is due to the strong dependency on the number of loops, a lower

variance is always preferable cause it reflects a more stable and predictable

model.
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Chapter 5

Testing and Evaluation

5.1 Hypothesis

In the testing phase we want to evaluate this new solution in terms of:

− hardware stress

− usability

while respecting all the requirements.

During the test we compared our QP solution with the old version of the

software, that realized a simple Task Priority control, and with the most

interesting and popular state of the art work, Saturation in the Nullspace.

1. Task Priority (original solution):

− Advantages: possibility to slide along joint limits

− Drawbacks: hard stop without any velocity control

2. Saturation in the Nullspace (from literature):

− Advantages: velocity control, smooth approach to the position

limit

− Drawbacks: single scaling factor for the entire task, freeze of all

joints when the position limit is hit
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5.2 Experiment design

The testing phase was entirely accomplished at the KUKA headquarters in

Augsburg at the Med team laboratory.

Subjects

All the subjects have been recruited between KUKA office employees for a

total of 42 testers. The final group was anyway rather various in terms of

ages, gender and experience with hand-guided robot. In table 5.1 all the

generic personal data are displayed as total occurrences.

Age 20-29 [20 ] 30-39 [19 ] 40+ [3 ]

Gender M [28 ] F [14 ]

Dominant hand Left [5 ] Right [37 ]

Hand-guided robot
experience

Never [11 ] <5 trials [8 ] <20 trials[4 ] Regular [19 ]

Table 5.1: General subject data

Protocol

Each subject has been asked to grab the tcp of the robot with his dominant

hand while standing in front of it. The task assigned was to follow with the

tcp a semicircular trajectory previously drawn on a simple paper sets at the

basis of the robot as shown in Figure 5.2.

The motion of the robot for the testing phase was constrained on the plane

perpendicular to the ground, just in order to avoid unnecessary movements
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Figure 5.1: Robot position

Figure 5.2: Trajectory line

from the subjects and to simplify the task. The starting point was fixed few

centimetres away from the table over one end of the line.

Each subject repeated the trajectory task three times with each algorithm

for a total of nine trials. The order of the algorithms was randomly changed

between different subjects in order to ensure a fair and not biased evaluation.

The trajectory was constructed in order to lead the subject into the positional

limit of the fourth joint (elbow joint), but before the start of the test the

subjects were instructed that at some point they wouldn’t be able to exactly

follow the trajectory, at this point they just had to continue the motion as

close as possible to it.
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Data acquisition

Both quantitative and qualitative data were gathered.

During each trial the running Java application saved a set of data acquired

from the motor sensors. Each set is composed by:

− Cartesian position, velocity and acceleration of the tcp (3 dimensional)

− Joint position, velocity, acceleration and torques (7 degree of freedom)

Furthermore at the end of the nine trials each subject was asked to compile

a short questionnaire about the usability impression they had with each

algorithm with respect to the others. The questionnaire is composed by

four main questions, listed below, and a following blank space to collect any

further impression or suggestion from the users. The first three questions

required to assign a score from 1 to 5 to each algorithm, while the fourth one

to establish a ranking between them based on general impression. A sample

of the questionnaire can be found in the appendix B.

− It was easy and natural to perform the required task (trajectory fol-

lowing); use scale 1 (very difficult) – 5 (very easy/natural)

− I’m satisfied by the amount of time required to perform the task; use

scale 1 (much longer than expected) – 3 (as expected) - 5 (faster than

expected)

− I didn’t notice any unexpected movements/stop of the robot (abrupt

movements or waving); use scale 1 (a lot of unexpected movements) –

5 (no unexpected movements)

− Which algorithm would you prefer from your general impression? as-

sign a rank [1-3], where 1 is the favourite

5.3 Quantitative data analysis

In this section for each of the tested algorithms one sample set of data was

chosen to be reported. Since subjects approached the experiment with differ-

ent attitude and past experience on hand-guided robot, the results recorded
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are quite various but the selected data set is representative of the most com-

mon pattern encountered during all the performed trials.

5.3.1 Algorithm A: Task Priority (old version)

Solution A presents a very regular position series 5.3.1, in the middle of the

graphs is possible to appreciate how after reaching the 4th limit position

the motion continued around it ( 4th joint position saturated) without any

interruption. Also the cartesian position is very smooth showing that for the

subjects was easy to perform the task even after they were stopped by the

limit.

Velocity graph 5.3.1 shows two big discontinuity points when the user hit

the limit and when he leaves it at the end. These points are easier to be

visualized from the acceleration graph 5.3.1 where two big peaks are visible.

The resulting torques 5.3.1 produced to compensate the required acceleration

of the robot present the same kind of peaks with the highest value recorded

on the 4th joint when the position limit is hit.
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5.3.2 Algorithm B: Saturation in the Nullspace (from

literature)

The biggest drawback of algorithm B is the impossibility to slide along the

limit. As we can notice in 5.3.2 after the saturation of the joint position

limit the user had to manually move the robot back away from the limit and

then try to continue the motion around hit. More expert users were able to

move around the limit with regular waving movements while less experience

users tried to force the motion creating abrupt and rough movements of the

robot.

For this method acceleration 5.3.2 and torques peaks are not related to

the 4th joint limit but are created by the user while trying to move away

from it on the other joints. This behaviour is observable from figure 5.3.4

where elbow acceleration are reported and they always remain in the order

of 10−3rad/s2.
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5.3.3 Algorithm C: Developed QP (my work)

The solution developed for this thesis should be able to eliminate the draw-

backs of the other algorithms and should ensure at the same time the

possibility to slide along the joint limit and a smooth approach into it.

As expected the position graphs 5.3.3 are very similar to algorithm A, they

remain very regular and the possibility to slide along the limit is noticeable.

This time no discontinuities points can be found in the velocity graph 5.3.3

as their acceleration values 5.3.3 remains three orders of magnitude lower

than for the previous algorithms, 10−3rad/s2 and 10−3m/s2 respectively.
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5.3.4 Comparative 4th joint overview

Elbow Position
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Elbow Velocity
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Acceleration
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5.3.5 Conclusions

The developed algorithm can guarantee a stable and safe control over the

joint velocities, that result in the achievement of a smooth approach to the

joint limits with no discontinuity points.

The produced accelerations resulted to be three order of magnitude lower

than with the other two algorithms and the produced torques never present

the typical peaks recorded with the other solutions.

Under a continue and intense use the hardware will be subject to lower stress

that may result in less maintenance and longer life span.
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5.4 Qualitative data analysis

In this section results from the usability questionnaire are presented.

The assigned scores are displayed in three separated tables as total occur-

rences 5.3 5.4 5.5.

1 2 3 4 5

0 2 17 19 4

0 5 18 14 5

0 3 15 13 7

Algorithm A: Task Priority (old version)

Scores:

It was esay and natural to perform 
the required task

I'm satisfied by the amount of time 
required to perform the task

I don't notice any unexpected or 
undesirable movemennts of the 
robot (abrupt movements or 
waving)

Figure 5.3: Algorithm A: questionnaire scores

Later the data had been grouped into three histograms where score frequen-

cies from different algorithms are placed side by side 5.6 5.7 5.8.

The fourth histogram 5.9 shows data from the ranking question where each

column represents the number of times the related algorithm have been

placed in this rank position.

5.4.1 Statistical Inference

Due to the small sample size and ordinal data, a non-parametric statistical

significance test was necessary to compare the scores received from each al-

gorithm. The Median Test was selected for statistical inference, because it is

considered a solid approach in presence of ordinal data set where none a priori
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1 2 3 4 5

19 18 4 1 0

16 17 9 0 0

28 10 2 2 0

Algorithm B: Saturation in the Nullspace (from literature)

Scores:

It was esay and natural to perform 
the required task

I'm satisfied by the amount of time 
required to perform the task

I don't notice any unexpected or 
undesirable movemennts of the 
robot (abrupt movements or 
waving)

Figure 5.4: Algorithm B: questionnaire scores

1 2 3 4 5

0 1 9 17 15

0 4 15 17 6

0 1 5 13 23

Algorithm C: Developed QP (my work)

Scores:

It was esay and natural to perform 
the required task

I'm satisfied by the amount of time 
required to perform the task

I don't notice any unexpected or 
undesirable movemennts of the 
robot (abrupt movements or 
waving)

Figure 5.5: Algorithm C: questionnaire scores

hypothesis is needed. The null hypothesis states that no significance different

can be assessed between the central tendency of the two sets. Statistically

significant effects were assessed at p < 0.05.
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Figure 5.6: First question histogram
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Figure 5.7: Second question histogram
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A: original B: sns C: quad prog
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Figure 5.8: Third question histogram
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Figure 5.9: Third question histogram

76



− H0 : M1 = M2

− χ2
critical = 3, 841

For higher χ2 values the null hypothesis must be rejected. The test was

performed once for each question and each algorithm was compared with

both the other ones.

The algorithm B always produced very high χ2 > 25 values in every com-

parison, this method received very bad usability scores in every section, the

main reason is the already mention impossibility to slide along joint limits

and the freeze of the entire robot when one of them is hit. Especially for

non expert user having to manually move back away from the limit was not

intuitive making this simple task rather tricky to perform. This result also

into longer time and unexpected motions or stop from the robot.

The analysis between algorithm A and C leads to different significance results.

The computed χ2 value are listed below with the relative question.

− It was easy and natural to perform the required task:

χ2 = 8.23 , p ≈ 0, 005

− I’m satisfied by the amount of time required to perform the task:

χ2 = 0.76 , p = 0, 25

− I didn’t notice any unexpected movements/stop of the robot:

χ2 = 13.27 , p ≈ 0, 005

For question number two the null hypothesis cannot be rejected and the two

distributions can’t be considered statistically different. Since the big differ-

ence between the two approaches is the presence in C of velocity limits, that

yield to a smoother approach to the elbow limit, this result appear reason-

able since it won’t affect too much the total time required to perform the task.

Question number 1 and 3 had greater value and also for these cases the dis-

tribution difference of the scores must be considered statistically significant.
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Also in this case the hard stop produced by A yields to some unexpected

and non natural motion for the users.

At last if the general ranking is considered the 76% of the subjects preferred

the new solution C to the already existing ones, also this last value reinforces

the assessed superiority of this approach.
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Appendix A

Code

A.1 Velocity Bounds function

1 func t i on [ QdotMax , QdotMin ] = MaxVel allowed ( q ,

Vmax, Amax, Lmax , Lmin , dt )

2 %#eml

3

4 % The func t i on computes maximum j o i n t v e l o c i t i e s f o r

the robot c o n f i g u r a t i o n ”q ” .

5

6 % The func t i on r e q u i r e s :

7 %− j o i n t p o s i t i o n l i m i t s (Lmax , Lmin)

8 %− j o i n t abso lu t e v e l o c i t y l i m i t (Vmax)

9 %− j o i n t abso lu t e v e l o c i t y l i m i t (Amax)

10

11 % The formula takes in to account a l l bounds ( po s i t i on ,

v e l o c i t y , a c c e l e r a t i o n ) at the same time

12

13 QdotMax=ze ro s ( l ength ( q ) ,1 ) ;

14 QdotMin=ze ro s ( l ength ( q ) ,1 ) ;

15
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16 % I f cur r ent p o s i t i o n i s over the p o s i t i o n l i m i t the

r e s p e c t i v e v e l o c i t y i s s e t to 0

17

18 f o r i =1: l ength ( q )

19

20 i f q ( i )>=Lmax( i )

21 QdotMax( i ) =0;

22 e l s e

23 QdotMax( i ) = min ( [ (Lmax( i )−q ( i ) ) /dt , Vmax ,

s q r t (2*Amax*(Lmax( i )−q ( i ) ) ) ] ) ;

24 end

25

26 i f q ( i )<=Lmin( i )

27 QdotMin( i ) =0;

28 e l s e

29 QdotMin( i ) = max( [ (Lmin( i )−q ( i ) ) /dt , −Vmax ,

−s q r t (2*Amax*(q ( i )−Lmin( i ) ) ) ] ) ;

30 end

31

32 end

33

34 end

A.2 Inequality Constraints - matrix initial-

ization function

1 func t i on [B, b ] = ge tCons t ra in t sMat r i c e s ( invJ , QdotMax ,

QdotMin , qdot d , n ,m)

2 %#eml

3
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4 % The func t i on r e tu rn s the i n e q u a l i t y c o n s t r a i n t s

matr i ce s f o r a QP problem s . t . B x <= b

5

6 % We have 14 i n e q u a l i t y c o n s t r a i n t s 7 f o r max and 7 f o r

min v e l o c i t y

7

8 B=ze ro s (2*n ,m) ;

9 b=ze ro s (2*n , 1 ) ;

10

11 f o r i =1: l ength ( qdot d )

12

13 B( i , : ) = invJ ( i , : ) ;

14 b( i ) = QdotMax( i )−qdot d ( i ) ;

15 B( i+n , : ) = −invJ ( i , : ) ;

16 b( i+n) = −QdotMin( i )+qdot d ( i ) ;

17

18 end

19

20 end

A.3 QP solver - Active Set Method

1 func t i on [ x , k ] = q p s o l v e r (W, B, b , x0 )

2 %#eml

3

4 % The func t i on s o l v e s the QP problem de f ined by :

5 % − o b j e c t i v e func t i on : 1/2 x'Wx

6 % − sub j e c t to : B x <= b l i n e a r i n e q u a l i t y c o n s t r a i n t s

7 % the r e s u l t i n g x minimizes the o b j e c t i v e func t i on

whi l e r e s p e c t s the c o n s t r a i n t s .

8

9 % The method used i s c a l l e d ” Active s e t method ” .
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10 % The a c t i v e s e t i s made o f those c o n s t r a i n t s that are

a c t i v e at the cur rent po int xk , so f o r them B*xk=b

11

12 % At each step we look f o r the optimal s o l u t i o n by

moving on the d i r e c t i o n that s o l v e s the e q u a l i t y

c o n s t r a i n t s problem de f ined by the a c t i v e s e t .

13

14 % The s t a r t i n g po int x0 i s r equ i r ed and must be

f e a s i b l e

15 m = s i z e (W, 2 ) ;

16 x = x0 ( 1 :m) ;

17 k = 0 ;

18

19 % Active Set i n i t i a l i z a t i o n (NaN: non a c t i v e const , 1 :

a c t i v e )

20 A = NaN( s i z e (B, 1 ) ,1 ) ;

21 A(B*x==b) = 1 ;

22

23

24 % While no convergence to optimal po int

25 whi le 1

26

27 % Solve the QP to obta in the optimal search

d i r e c t i o n :

28 % 0 .5 d'Qd + g'd

29 % under the a c t i v e s e t c o n s t r a i n t s cons ide r ed

as e q u a l i t y ones :

30 % A d = 0

31

32

33 % gk = Q xk + q

34 g = x ;
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35

36 % KKT equat ions to s o l v e :

37 % B d = 0 ;

38 % x + B au = 0 ;

39 % [ I B t ' ; B t 0 ] [ d au ] = [−g ; 0 ]

40

41 mu = ze ro s ( s i z e (B, 1 ) ,1 ) ;

42 d = ze ro s (m, 1 ) ;

43

44 % number o f a c t i v e c o n s t r a i n t s

45 a = s i z e (B(˜ i snan (A) , : ) , 1 ) ;

46

47 c = [ eye (m) , B(˜ i snan (A) , : ) ' ; B(˜ i snan (A) , : ) ,

z e r o s ( a ) ] \ [ −g ; z e r o s ( a , 1 ) ] ;

48

49 d = c ( 1 :m) ;

50 mu(˜ i snan (A) ) = c (m+1:m+a ) ;

51

52 % Di r e c t i on d check ( case 1 : d=0, case 2 : d˜=0)

53

54 % case 1 : d=0

55 i f norm(d) < 1e−5 && norm(d) > −1e−5

56

57 % Check lag rang ian m u l t i p l i e r s :

58

59 % a l l p o s i t i v e : opt imal po int

60 i f a l l (mu >= 0)

61 break

62 % some negat ive : remove from a c t i v e s e t the

minor and s o l v e again

63 % the KKT equat ions

64 e l s e
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65 tmp log = mu<0 & ˜ isnan (A) ;

66 tmp ind = f i n d ( tmp log ) ;

67

68 [ ˜ , i mu0 ] = min (mu( tmp log ) ) ;

69

70 A( tmp ind ( i mu0 ) )=NaN;

71 end

72

73 % case 2 : d˜=0

74 e l s e

75

76 % Compute the new step ( x ( k+1) = x ( k ) + a l f a *d

)

77

78 % compute the a l f a (maximum movement along the

d d i r e c t i o n be f o r e

79 % h i t t i n g a c o n s t r a i n t s )

80 tmp log = isnan (A) & B*d>1e−6;

81 tmp ind = f i n d ( tmp log ) ;

82

83 [ a l f a , i a l f a ] = min ( [ 1 ; (b( tmp log )−B(

tmp log , : ) *x ) . / (B( tmp log , : ) *d) ] ) ;

84

85 % update the new step

86 x = x + a l f a *d ;

87 k = k+1;

88

89 % i f a l f a lower then 1 with the new step we are

h i t t i n g the

90 % r e s p e c t i v e c o n s t r a i n t so we need to add i t to

the a c t i v e s e t

91 i f a l f a ˜=1
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92 A( tmp ind ( i a l f a −1) ) = 1 ;

93 end

94 end

95

96 end

97 end
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Appendix B

Usability Questionnaire
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Age: 20-29 30-39 40+

Gender: M F

Dominant hand: Left Right

Previous experience with Hand-Guided robot?

Never <5trials <20 trials Regularly

Algorithm:
First (1-3 trials) Second (4-6 

trials)
Third (7-9 
trials)

It was easy and natural to perform
the required task (trajectory 
following)

use scale 1 (very difficult) – 5 (very
easy/natural)

I’m satisfied by the amount of 
time required to perform the task

use scale 1-5 
1 (much longer than expected) – 3 
(as expected) - 5 (faster than 
expected)

I didn’t notice any unexpected 
movements/stop of the robot 
(abrupt movements or waving)

use scale 1 (a lot of unexpected 
movements) – 5 (no unexpected 
movements)

Which algorithm would you prefer 
from your general impression?

assign a rank [1-3], where 1 is the 
favorite

And why?

optional comments on the ranking

Further impressions/comments:

…………………………………………………
…………………………………………………
…………………………………………………



Bibliography

[1] Whitney, Daniel E. “The mathematics of coordinated control of pros-

thetic arms and manipulators.” ASME Journal of Dynamic Systems,

Measurement and Control 20.4 (1972): 303-309.

[2] A. Liegeois, “Automatic supervisory control of the configuration and be-

havior of multibody mechanisms.” IEEE Trans. Syst. Man Cybern. 7

(12) (1977) 868–871.

[3] Yoshikawa, Tsuneo, “Manipulability of robotic mechanisms.” The inter-

national journal of Robotics Research 4.2 (1985): 3-9.

[4] Maciejewski, Anthony A., and Charles A. Klein. “Obstacle avoidance

for kinematically redundant manipulators in dynamically varying envi-

ronments.” The international journal of robotics research 4.3 (1985):

109-117.

[5] Huo, Liguo, and Luc Baron. “The self-adaptation of weights for joint-

limits and singularity avoidances of functionally redundant robotic-task.”

Robotics and Computer-Integrated Manufacturing 27.2 (2011): 367-376.

[6] Nakamura, Yoshihiko, Hideo Hanafusa, and Tsuneo Yoshikawa, “Task-

priority based redundancy control of robot manipulators.” The Interna-

tional Journal of Robotics Research 6.2 (1987): 3-15.

[7] Walker, Ian D., and Steven I. Marcus. “Subtask performance by redun-

dancy resolution for redundant robot manipulators.” IEEE Journal on

Robotics and Automation 4.3 (1988): 350-354.

88



[8] Chiacchio, P., Chiaverini, S., Sciavicco, L., and Siciliano, B. (1991).

“Closed-Loop Inverse Kinematics Schemes for Constrained Redundant

Manipulators with Task Space Augmentation and Task Priority Strat-

egy.” The International Journal of Robotics Research, 10, 410–425.

[9] Baron, L. (2000). “A Joint-Limits Avoidance Strategy for Arc-Welding

Robots.” Int. Conf. on Integrated Design and Manufacturing in Mech.

Eng., (January).

[10] Baillieul, John. “Avoiding obstacles and resolving kinematic redun-

dancy.” Robotics and Automation. Proceedings. 1986 IEEE Interna-

tional Conference on. Vol. 3. IEEE, 1986.

[11] Chan, Tan Fung, and Rajiv V. Dubey. “A weighted least-norm solution

based scheme for avoiding joint limits for redundant joint manipulators.”

IEEE Transactions on Robotics and Automation 11.2 (1995): 286-292.

[12] Xiang, Ji, Congwei Zhong, and Wei Wei. “General-weighted least-norm

control for redundant manipulators.” IEEE Transactions on Robotics

26.4 (2010): 660-669.

[13] D. Luenberger, “Linear and Nonlinear Programming.” Reading, MA,

USA: Addison-Wesley, 1984.

[14] Lawson, Charles L., and Richard J. Hanson. “Solving least squares prob-

lems.” Society for Industrial and Applied Mathematics, 1995.

[15] Hollerbach, J. O. H. N. M., and Ki Suh, “Redundancy resolution of

manipulators through torque optimization.” IEEE Journal on Robotics

and Automation 3.4 (1987): 308-316.

[16] K. A. O’Neil, “Divergence of linear acceleration-based redundancy reso-

lution schemes.” IEEE Trans. Robot. Automat., vol. 18, pp. 625–631,

Aug. 2002.

[17] J. Park, W.-K. Chung, and Y. Youm, “Characterization of instability of

dynamic control for kinematically redundant manipulators.” IEEE Int.

Conf. Robotics and Automation, vol. 3, 2002, pp. 2400–2405.

89



[18] Zhang, Yunong, Shuzhi Sam Ge, and Tong Heng Lee, “A unified

quadratic-programming-based dynamical system approach to joint torque

optimization of physically constrained redundant manipulators.” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

34.5 (2004): 2126-2132.

[19] Zhang, Yunong, and Shugen Ma, “Minimum-energy redundancy reso-

lution of robot manipulators unified by quadratic programming and its

online solution.” Mechatronics and Automation, 2007. ICMA 2007. In-

ternational Conference on. IEEE, 2007.

[20] F. Cheng, T. Chen, and Y. Sun, “Resolving manipulator redundancy

under inequality constraints.” IEEE Trans. Robot. Autom., vol. 10, no.

1, pp. 65–71, Feb. 1994.

[21] F. Cheng, R. Sheu, and T. Chen, “The improved compact QP method for

resolving manipulator redundancy.” IEEE Trans. Syst.,Man, Cybern.,

vol. 25, no. 11, pp. 1521–1530, Nov. 1995.

[22] Chen, Weihai, I-Ming Chen, and Tianmiao Wang. ”Kinematic fault tol-

erant control for redundant robot based on joint velocities redistribution.”

Proc. of Int. Conf. Advanced Robotics, ICAR, Tokyo, Japan. 1999.
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