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Abstract

Innovative manufacturing techniques open the door to improved flexibil-

ity in the design of aerostructures. In the past few years, research efforts

carried out at VTech demonstrated the potential benefits due to structural

panels stiffened with curvilinear – instead of straight – stringers. One crit-

ical issue in the design of these panels is the ability to efficiently cope with

increased geometrical complexity. For instance, finite element models need

to be carefully realized to guarantee proper mesh regularity, and to avoid the

presence of distorted elements. This aspect, in conjunction with the time

needed for the analysis, is of crucial importance when performing prelimi-

nary design optimizations. In this context, the activity aims at developing

a fast method for the efficient analysis of curvilinearly stiffened panels. A

Ritz-based approach is developed, which is capable of predicting the linear

response (static and buckling analysis) and the dynamic one (free vibrations)

with reduced computational burden. The quality of the results is assessed

by comparison against finite element calculations, demonstrating the poten-

tialities of the tool as a mean for performing preliminary parametric studies

to assess the potential benefits of this innovative structural solution.





Sommario

Tecnologie di produzione innovative hanno aperto la strada ad una mag-

giore flessibilità nel progetto di strutture aeronautiche. Negli ultimi anni, at-

tività di ricerca svolte presso il Vtech hanno dimostrato i potenziali benefici

dell’impiego di pannelli strutturali irrigiditi con correnti curvilinei, anzichè

rettilinei. Un problema critico nel progetto di questi pannelli è la capacità

di far fronte alla maggiore complessità geometrica in modo efficiente. Per

esempio, i modelli a elementi finiti devono essere realizzati con particolare

cura in modo da garantire sufficiente regolarità della mesh, ed evitare la pre-

senza di elementi distorti. Questo aspetto, insieme al tempo necessario per

l’analisi, è d’importanza fondamentale per la risoluzione di problemi di ot-

timizzazione strutturale. In questo contesto, il lavoro mira alla realizzazione

di un metodo efficiente per l’analisi di pannelli irrigiditi con correnti curvi-

linei. Attraverso l’utilizzo di un aprroccio alla Ritz, è stato sviluppato uno

strumento in grado di predire con limitato onere computazionale la risposta

lineare (analisi statica e di buckling), e quella dinamica (vibrazioni libere). La

qualità dei risultati è valutata attraverso il confronto con analisi a elementi

finiti, dimostrando le potenzialità del metodo come strumento per realiz-

zare studi parametrici preliminari che possano stimare i potenziali benefici

di questa innovativa soluzione strutturale.
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1. Introduction

Aeronautical structures progress has always been determined by the con-

stant quest for increasingly efficient solutions, that can ensure solid struc-

tures, capable of withstanding high level of stress, with the lowest possible

weight burden. Alongside the necessity to reduce the costs of aircraft pro-

duction, the reasons are nowadays related to fuel efficiency, generated noise,

NOx emissions, that have become of prime importance because of environ-

mental concerns.

The classical configuration adopted for the load-carrying part of the wing (the

wing-box ) is an explicative example of the effort done to solve this trade-off.

Straight stiffening members like spars, ribs, and stringers are riveted to wing

panels, giving shape to a strong lightweight structure, facilitating the manu-

facturing process. Nonetheless, novel manufacturing techniques were recently

developed in an attempt to minimize the joints weight contribute and ma-

terial wastage. Moreover, these technologies open the door to a new design

philosophy, which makes use of unitized structures : monolithic constructions

where the employment of many mechanically fastened structural parts is re-

placed by integrated structures. In addition to reduced manufacturing costs,

this solution can improve the flexibility of airframe design, allowing the fabri-

cation of more complex shape structures. For example curvilinear stiffening

members can be realized with negligible additional cost and time with re-

spect to conventional processes.

In the context of composite materials, it has been proven how the employment

of curvilinear reinforcement fibers can increase the stability performance of

laminated panels [1], by spatially varying the fiber orientation and, conse-

quently, the stiffness of the structure (for this reason they are called variable

stiffness or variable angle tow laminates). Although variable stiffness panels

1



1. Introduction

should not be confused with curvilinearly-stiffened ones, they share the com-

mon idea of tailoring the stiffnesses, and leading to non-uniform elastic prop-

erties over the panel domain. Weaver et al. [2] demonstrate how a unitized

wing-box demonstrator with VAT laminates can be efficiently manufactured

using Automated Fiber Placement technique. A laser-assisted automated

tape placement (LATP) machine is able to wind the wingbox’s skin directly

over the stiffeners, while the bonding of skin and stiffeners is achieved using

a laser beam in-situ consolidation.

Alongside VAT laminates, the design space of aeronautical panels can be

broadened also by using arbitrarily curved stiffeners, recently introduced by

Kapania et al. in [3]. While from a manufacturing point of view these kind

of structures can be easily integrated in an unitized structure manufactur-

ing process [4], they present some critical issues during the modelling phase.

For instance, finite element models need to be carefully realized to guarantee

proper mesh regularity, and avoiding the presence of distorted elements.

In his dissertation, Locatelli [5] implemented curvilinear stiffening members

in the design process of supersonic aircraft wing-box, using a finite elements

based approach. The optimization framework required the development of a

tool able to automatically generate the geometry and perform the re-meshing

for every variation in the structure configuration. To obviate this difficulty,

Kapania et al. [6] proposed the implementation of a contact algorithm to en-

force the compatibility condition between plate and stiffeners, making use of

the interpolation polynomials employed in the finite element method. With

this technique plate and stiffeners do not have to share their nodes and no

re-meshing is needed.

The modelling phase can be further simplified by using ”mesh-free” tech-

niques, as the plate/stiffeners compatibility can be more easily enforced.

Among them, the Ritz method [7] has proved to be a successful alterna-

tive to finite element method, for the structural analysis of plates and shells.

For instance, Bisagni and Vescovini [8–10] developed analytical and semi-

analytical formulations for the linear buckling and non-linear post-buckling

analysis of stiffened panels, using a variational approach and applying the

Ritz method. The geometrical symmetry of the problem, and the assumption

2



1. Introduction

of a local buckling mode shape give the authors the possibility of studying

the complete structure considering only a reduced portion of the whole stiff-

ened panel, giving birth to a very efficient approach which they employed to

develop a fast procedure for the design and optimization of stiffened panels

[11–13].

When unconventional stiffeners configuration lead to increased geometry

complexity, similar simplifications cannot be adopted. However this aspect

does not represent a limitation for the Ritz method. Brubak et al. [14, 15]

used the Ritz method for the vibration and buckling analysis of plates with

arbitrary straight stiffener arrangements, and for the prediction of the ulti-

mate strength [16]. They showed how this approach is capable of achieving

relatively high numerical accuracy with low computational efforts.

Tamijani and Kapania [17] used a Ritz-based approach for the buckling and

vibration analysis of isotropic curvilinearly stiffened plates, while Shi et al.

[18] used the same approach for the free-vibration analysis of curvilinearly

stiffened shallow shells. Alongside the Ritz method, element-free Galerkin

method was employed by Tamijani and Kapania [19, 20] for the analysis

of isotropic curvilinearly stiffened plates, and their results for free-vibration

analysis were validated with experimental data [21].

In this context, the present activity aims at developing a fast yet accurate

method for the efficient analysis of curvilinearly stiffened composite panels.

A Ritz-based approach is developed, which allows to speed-up the modelling

phase, and to predict the structural response with reduced computational

burden.

The work is divided into three parts. The first part mainly focuses on the

formulations for the structural analysis of curvilinearly stiffened composite

plates. In the second part the accuracy of the results is assessed through con-

vergence studies and comparisons against finite element calculations. Para-

metric studies are then performed in order to achieve a better understanding

of the mechanical behaviour of this kind of structure. In the last part fur-

ther studies are conducted on a structure resulting from a preliminary sizing

process of an aircraft wing-box, in order to investigate the benefits that curvi-

linearly stiffened panels may bring in a real application scenario.

3





2. Basic Concepts

2.1 Strong and weak formulation of the elastic problem

The mathematical representation of the elastic problem is expressed by

means of governing equations describing the change of configuration of a

deformable body under the action of external loads and constraints. The set

of non-linear partial differential equations expressing the equilibrium can be

obtained by applying fundamental physical laws such as conservation of the

mass and linear momentum [24]:

∇ ·P + b = ρ0 a in Ω (2.1)

with boundary conditions:

P · n = f on ∂ΩN

u = g on ∂ΩD

(2.2)

where P is the first Piola-Kirchhoff stress tensor and ρ0 is the density of the

reference configuration. From a physical point of view the external volume

forces b along with the inertial ones, if any, determine a state of internal stress

which satisfies Eq. 2.1. Boundary conditions of Eq. 2.2 express the equilib-

rium on the loaded surface ∂ΩN (Neumann or natural boundary condition)

and the prescribed displacement on the constrained surface ∂ΩD (Dirichlet

or essential boundary condition). The stress measure is chosen due the fact

that the equilibrium is written in the initial, or reference, configuration, and

consequently that the physical laws are applied in a lagrangian sense: the

5



2. Basic Concepts

attention is focused on the variation of the quantities of interest experienced

by a particle during the deformation process; since the particle can be iden-

tified by its position x0 in the reference configuration, all of those quantities

(including displacements) can be seen as functions of the initial position x0 of

that particle. This means that there exists a function x = φ(x0,t) that gives

the position of the particle x0 after deformation. The function φ is indeed a

transformation of coordinates and the quantity F = ∇φ, named deformation

gradient, is its Jacobian matrix.

In addition to the equilibrium requirements of Eqs. 2.1 and 2.2, the solution

of the elastic problem demands that compatibility conditions are satisfied as

well. To this aim, the compatibility requirements are introduced in the form

of strain-displacement relations, referring to the strain tensor measure due

to Green-Lagrange. In particular, the expression reads:

ε =
1

2

(
∇u +∇uT +∇uT∇u

)
(2.3)

where ε is the Green-Lagrange strain tensor, which is energetically conjugate

to the II Piola-Kirchhoff stress tensor σ = F−1P. In the case of large dis-

placements, strains are non-linear functions of the displacement field, while

in the case of a non-linear material, the stress-strain relation is non-linear. In

general, a closed form solution of the elastic problem can be hardly achieved.

Moreover strong requirements on the regularity of the solution make the

problem written in differential form difficult to handle when it comes to look

for an approximate solution; in many cases it is more convenient to rewrite

the equations in integral (or weak, or variational) form. To this aim the prin-

ciple of virtual work can be considered. Being a virtual displacement δu an

infinitesimal, arbitrary and constraint compatible change of configuration,

and the virtual work a work done by a real system of forces for a virtual

displacement field, the principle can be stated as: if a continuous body is in

equilibrium, the virtual work of all actual forces in moving through a virtual

displacement is zero [25]:

δWi − δWe ≡ δW = 0 (2.4)

6



2. Basic Concepts

where δWi is the virtual work done by internal stresses, while δWe is the vir-

tual work done by external forces. Substituting their expression the principle

writes:

δW =

∫
Ω

δε : σ dΩ+

∫
Ω

ρ0 δu·ü dΩ−
∫

Ω

δu·b dΩ−
∫
∂ΩN

δu·f d∂Ω = 0 (2.5)

In the weak-form statement of Eq. 2.5, requirements over the regularity of the

solution are relaxed if compared to the strong-form formulation. Indeed, the

solution has to be regular enough to guarantee the existence of the integrals

above, leading to a weaker requirement compared to the strong formulation

case. If the system is conservative, it is sufficient to find the stationarity

point of a functional: δΠ = 0. Considering a static problem this functional

is the total potential energy Πtot:

δΠtot = δ (U + V ) = 0 (2.6)

where the terms in brackets are the strain energy function, U , and the po-

tential of the external forces, V , respectively1. This is consistent with the

stationarity of the total potential energy theorem, which states: among all

the compatible configurations, that one which is also equilibrated minimizes

the total potential energy [22]. In the case of linear hyperelastic constitutive

law, the terms in Eq. 2.6 are:

U =
1

2

∫
Ω

ε : σ dΩ (2.7)

V = −
(∫

Ω

u · b dΩ +

∫
∂ΩN

u · f d∂Ω

)
(2.8)

1For a conservative system the work done by the internal forces going from configuration
A to configuration B, does not depend on the deformation process, and can be obtained
from the values the strain energy function assumes in A and B. This has to be true also
for the work done by external forces that can be computed evaluating the potential in A
and B; in the case of configuration-independent loads such potential always exists. The
virtual internal work can be seen as the differential of the strain energy function, while
the virtual external work as the differential of the potential of the external forces.

7



2. Basic Concepts

In this work the approach is based on the principle of virtual work, where

inertial forces can be easily accounted for by referring to the d’Alembert

principle2. The non-linear problem of Eq. 2.5 can be solved by using specific

techniques for non-linear structural mechanics. Nonetheless this work is fo-

cused on linear behaviour of structures, hence a linearisation of the problem

2.5 around a reference configuration is be performed:

Πδ ' Πδ0 + ∂Πδ = 0 (2.9)

Physically this means that small perturbations around an equilibrated config-

uration are considered. Such reference configuration can be the natural one,

devoid of internal tensions, or a solution of a previously solved, potentially

non-linear, structural problem. Considering only configuration-independent

external forces, the linearisation leads to the following problem [23]:

Πδ '
∫

Ω

δε0 : ∂σ dΩ +

∫
Ω

∂δε : σ0 dΩ

+

∫
Ω

ρ0 δu · ü dΩ−
∫

Ω

δu · b dΩ−
∫
∂ΩN

δu · f d∂Ω = 0
(2.10)

where a quantity evaluated in the reference configuration is identified with the

notation ( · )0 . Considering the constitutive law of an hyperelastic material

and neglecting the volume forces which are not taken into account in this

work, Eq. 2.10 becomes:

∫
Ω

δε0 : D : ∂ε dΩ +

∫
Ω

∂δε : σ0 dΩ +

∫
Ω

ρ0 δu · ü dΩ−
∫
∂ΩN

δu · f d∂Ω = 0

(2.11)

where D is the fourth order elasticity tensor. The linearisation of the Green-

2As an alternative one could use the Hamilton’s principle, which allows to exploit the
definition of conservative system.
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2. Basic Concepts

Lagrange strain tensor ∂ε around the reference configuration results in the

small strain tensor: εl = 1
2

(
∇u +∇uT

)
[23]. In the same way δε0 = δεl.

Eventually the problem is written in its final form:

find u ∈ Hd such as

δWi (δu,u) + δWe (δu,ü) = 0 ∀ δu ∈ Hd (2.12)

where space Hd is the linear space where the solution and the virtual displace-

ments are defined, and it has to guarantee the boundedness of the integrals in

Eq. 2.5. After some manipulation on the term ∂δE, the two term in Eq. 2.12

can be written as:

δWi (δu,u) =

∫
Ω

δεl : D : εl dΩ +

∫
Ω

σ0 :
[
(∇0u)T ∇0δu

]
dΩ

δWe (δu,ü) =

∫
Ω

ρ0 δu · ü dΩ−
∫
∂ΩN

δu · f d∂ΩN = 0
(2.13)

The uppercase d in the notation used for the linear space Hd is there only to

highlight that every component ui (i = 1, ... , d) of the vector u ∈ Hd is an

element belonging to H. In this case each component of vectorial fields has

to be square-integrable with square-integrable gradient in Ω, and this has

to be true for every time instant t. A space of square-integrable function is

defined as:

L2(Ω) =

{
f : Ω→ R such that

∥∥∥f∥∥∥
L2

=

√∫
Ω

|f |2 dΩ <∞

}
(2.14)

So each component ui and δui (i = 1, ... ,d) has to satisfy:

ui , δui ∈ V =
{
f ∈ L2(Ω) with ∇f ∈ L2(Ω)

}
(2.15)
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2. Basic Concepts

Another requirement on the unknown functions is the fulfillment of the es-

sential boundary condition for the solution and the compatibility for the

virtual displacements. In the case of homogeneous essential boundary condi-

tion both δu, u, have to be null at the boundary, therefore they are defined

in the same space Hd
0 =

{
f ∈ Hd with f = 0 on ∂ΩD

}
. On the other hand,

in the case of a finite prescribed movement the space of the solution u has

to be Hd
g = {f ∈ H with f = g on ∂ΩD}, while the virtual displacements

are still in Hd
0 , as on the Dirichlet boundary δu is still null by definition.

However it is noted that, introducing a known function u0 ∈ Hd
g , a solution

like u = ũ + u0 with ũ ∈ Hd
0 , satisfies the essential boundary conditions:

the relative displacement ũ is the new unknown and the prescribed one, u0,

leads to a new term in the virtual external work.

2.2 Approximate solution

The principle of virtual work states that the solution of the structural

problem makes the functional δW null for an infinite number of virtual dis-

placement functions δu. The vectorial space H in which the solution and

virtual displacements are defined is an infinite dimensional space. A com-

mon practice to solve the problem in Eq. 2.12 is to look for an approximate

solution through the discretization of the problem: the solution is sought

within a finite dimensional space H that is a subspace of the infinite dimen-

sional one (hence assuring the existence of the integrals in Eq. 2.13):

H ⊂ H , dimH = N <∞ (2.16)

Thanks to this property it is possible to describe any element u ∈ H as a

linear combination of a linearly-independent set of functions φi forming a

basis in H, exactly in the same way as in an euclidean space Rn every point

can be obtained from a set of base vectors [24]:

10



2. Basic Concepts

u(x,y,z,t) = φT (x,y,z) a(t) =

Nh∑
i=1

φi(x,y,z) ai(t) ,

with H = span {φ1, φ2, ... , φN}

(2.17)

where ai(t) ∈ R are unknown coefficients. This approach can be simply

extended to the vectorial fields case. A possible way to define the element

u = {u1, ... , ud} ∈ H
d

as a linear combination of the basis is the following:

u =


u1

u2

...

ud

 =


φT1 0 · · · 0

0 φT2 · · · 0
...

...
. . .

...

0 0 · · · φTd




a1

a2

...

ad

 = ΦTd (2.18)

The same notation can be straightforwardly adopted for the virtual displace-

ments δu. The key aspect is that now Eq. 2.12 does not need to be verified

for all the infinite number of functions δu ∈ Hd, but only for each function

of the basis, as all the element in the finite dimensional space H
d

is a linear

combination of them. As it will be more accurately explained in the following

sections, this means that the problem Eq. 2.12 can be reformulated through

the following system of linear constant-coefficients difference equation:

Md̈ + (K + KG) d = P (2.19)

where the matrix M, K, KG, result from the process of discretization. The

choice of basis functions φi(x,y,z) determines the type of approximate method

that is used. In this work the approach used to solve the structural prob-

lem is based on the Ritz method, where the bases are usually polynomials

or trigonometric functions defined on the overall domain Ω. An important

requirement on the Ritz functions is completeness, intended as the ability

of representing a generic function f ∈ H with the desired level of accuracy.

The distance between a function f ∈ H and a function f ∈ H is measured

using the energy norm, descending from the variational formulation of the

problem. In this case the requirement on completeness can be stated as: for

11



2. Basic Concepts

each f ∈ H and each ε > 0, there exists an N∗ ∈ N such that:

∥∥∥f − f∥∥∥
energy

=

√(
|∇f | − |∇f |

)2
< ε ∀N ≥ N∗ (2.20)

In other words completeness means that with a rich enough set of Ritz func-

tions, it is possible to represent any function in H with any level of accuracy.

For example, considering a 1D problem, any function can be approximated

as a linear combination of polynomials (Weierstrass theorem). The basis

{1,x,x2,x3, ...} is then a complete basis, but if, for instance, the x2 term is

missed, such basis will never succeed in approximating a quadratic function

no matter how rich it is, because it’s not complete. Convergence of the Ritz

method is guaranteed for the solution and its derivatives up to the highest

order of differentiation entering the virtual internal work:

lim
h→∞

∥∥∥u− u
∥∥∥
H

= 0 (2.21)

where:

∥∥∥f∥∥∥
H

=

√∥∥∥f∥∥∥2

L2
+
∥∥∥∇f∥∥∥2

L2
(2.22)

This implies convergence not only for displacements, but also for strains and

stresses, as they are related to the first derivatives of the solution.

Concepts of completeness and convergence have been introduced for the

general three-dimensional problem. There are cases in which it is possible

to reduce the problem dimensions through proper assumptions on the dis-

placement field and the state of stress. This is the case of beam and plate

kinematic models where the expression of the principle virtual work is mod-

ified in order to suit for 2D and 1D continua. First order shear deformation

theory for plates, and Timoshenko theory for beams, provide the kinematic

assumptions considered in the present work to model curvilinearly stiffened

plates. Using these kinematic models, even if the principle of virtual work

assumes different aspects, the conclusions on completeness and convergence

done for the three-dimensional case are still valid, as strains and stresses are

12



2. Basic Concepts

still obtained through the first derivatives of the solution. In other kinematic

models this may not be true. For example in the Euler-Bernoulli beam the-

ory [25], the strain deformation energy is related to the second derivative of

the transversal displacement. This means that energy norm, used to check

completeness, has to be performed on the second derivative of the unknown.

Moreover, in this case, convergence is assured for bending moment, but not

for shear, as it is related to the third derivative of the unknown function.
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3. Modelling of curvilinearly stiffened

plates

In this part all the steps required for the modelling of plates stiffened

with curvilinear stringers are presented in detail. After a brief introduction

of the problem, the attention is focused on the assumptions and the methods

adopted to perform the structural analysis of these kind of structures. The

principle of virtual work will be at first derived for 2-D and 1-D continua, and

then discretized using the Ritz method in order to seek for an approximate

solution for vibrations, linear static and buckling analyses.

3.1 Problem statement

Curvilinearly stiffened panels can be seen as the assembly of two struc-

tural components as shown in the sketch of Figure 3.1. In the picture, a

laminated composite plate is stiffened by an I-shaped beam that follows a

curvilinear path on the plate surface.

In this work the stiffeners lamination direction is taken perpendicular to

that of the plate, meaning that, referring to Figure 3.1, the plies are stacked

along the smallest dimension of the beam section. This subdivision defines

the scheme of the modelling procedure. At first, plate and stringers can be

treated separately, and the displacement field for each structural element is

described through a suitable kinematic model. As said previously, this allows

to reduce the dimensions of the problem and leads to two different expres-

sions for the virtual internal and external works. Then this two models has

to be assembled in a single mathematical description of the problem and the

issue of the plate/stiffener compatibility enforcement is discussed. The seek
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3. Modelling of curvilinearly stiffened plates

for an approximate solution is conducted discretizing the problem with the

Ritz method. One of the important aspects of this thesis is the development

of a technique that is able to create flexible curvilinear shapes using the

least number of inputs as possible, in order to give the possibility to change

the stiffeners geometrical configuration with the least effort. As previously

said, the ”mesh-free” nature of the Ritz method makes it particularly suit-

able to achieving this last target. This modelling phase aims to develop a

programming tool which is capable of predicting the linear response (static

and buckling analysis) and the dynamic one (vibrations).

Figure 3.1: Schematic representation of a curvilinearly stiffened plate.

3.2 Plate model

3.2.1 Kinematics

The plate is modelled using the first order shear deformation theory

(FSDT) where the displacements of every point of the plate is assumed to

be a linear combination of unknown functions and the thickness coordinate

z [25]:

ui(x,y,z,t) =
1∑

k=0

zk ψ
(k)
i (x,y,t) (3.23)
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3. Modelling of curvilinearly stiffened plates

Figure 3.2: Definition of global coordinate system and plate displacement field.

where ui is the ith component of displacement, (x,y) the in-plane coordinates,

t the time, and ψ
(k)
i are the linear displacements and rotation kinematics

parameters of the midsurface 3. More precisely, the form of the displacement

field is the following:

up =


u(x,y,z,t)

v(x,y,z,t)

w(x,y,z,t)

 =


u0(x,y,z,t)

v0(x,y,z,t)

w0(x,y,z,t)

+ z

1 0 0

0 1 0

0 0 0



θx(x,y,t)

θy(x,y,t)

θz(x,y,t)


= u0

p + z Lθp

(3.24)

where the meaning of each variable is explained in Figure 3.2. It has to

be pointed out that there is no elastic or inertial energetic contribute due

to the “drilling” rotation θz, which is introduced for the enforcement of the

plate/stiffener compatibility [26], as discussed later. In the FSDT theory,

the hypothesis that the transverse section has to be perpendicular to the

midsurface after deformation (Kirchhoff hypothesis) is relaxed. In this way

3Extending the summation for values of k > 1 one can obtain higher-order theories,
introducing other unknowns difficult to interpret in physical terms, increasing the accuracy
of the formulation but leading to a larger number of degrees of freedom.
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3. Modelling of curvilinearly stiffened plates

the theory allows to take into account transverse shear energy, which can be

relevant for moderately thick plates. As seen from Eq. 3.24 the transverse

displacement w is constant along the thickness. The main benefit of making

explicit the dependence on the thickness coordinate is to reduce the problem

dimensions: under this assumption a 3D continuum can be studied in a 2D

domain. The non-linear strain tensor components are computed from the

definition of the Green-Lagrange strain tensor, under the assumption that

the only non negligible quadratic terms are those related to the variation of

the transversal displacement w along the in-plane coordinates, introducing

the so called von Kármán hypothesis, a special case of geometric nonlinearity

widely adopted in stability analysis of plates.

Introducing the notation (·)/α to express the derivative with respect to α,

strain components can be written as:

εxx = u/x +
1

2

(
w/x
)2

= u0
/x +

1

2

(
w0
/x

)2
+ z θx/x = ε0

xx + z kxx

εyy = v/y +
1

2

(
w/y
)2

= v0
/y +

1

2

(
w0
/x

)2
+ z θy/y = ε0

yy + z kyy

γxy = u/y + v/x + w/xw/y

= u0
/y + v0

/x + w0
/xw

0
/y + z

(
θx/y + θy/x

)
= γ0

xy + z kxy

γxz = w/x + u/z = w0
/x + θx

γyz = w/y + v/z = w0/y + θy

εzz = w/z = 0

(3.25)

where the notation γαβ = 2εαβ is adopted. Since εzz = 0, the transverse

normal stress σzz, although not zero identically, does not appear in the virtual

internal work. However, from practical considerations, it is more meaningful

to assume σzz = 0, making use of the plane stress constitutive law instead

of the plane strain one. In both cases the effect on the expression of the

virtual internal work is the same. Another important consideration is that the

transverse shear strains are constant along the thickness: in the reality these

components are at least parabolic so this approximation can be corrected
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3. Modelling of curvilinearly stiffened plates

using the shear factors in order to have a more reliable energetic contribute.

All the other strain components depend linearly on the thickness coordinate

z. The following compact notation can be introduced:

ε =


ε0
xx

ε0
yy

γ0
xy

+ z


kxx

kyy

kxy

 = ε0 + z k

γ =

{
γxz

γyz

} (3.26)

where ε0 can be further divided in its linear and non-linear parts: ε0 =

ε0
l + ε0

nl. In the present work laminated composite plates are considered.

The state of tension inside each orthotropic lamina can be described as a

plane-stress state with the addition of the transverse shear stresses (only

σzz = 0). In this case the linear constitutive relations are expressed in lamina

coordinates as:

σ1 =


σ1

σ2

σ12

 =


E1

1−ν12ν21
ν12E2

1−ν12ν21 0

ν12E2

1−ν12ν21
E2

1−ν12ν21 0

0 0 G12



ε1

ε2

γ12

 = Q ε1

τ1 =

{
σ13

σ23

}
=

[
G13 0

0 G23

]{
γ13

γ23

}
= Qn τ1

(3.27)

where E1, E2 are the elastic moduli in fibre and matrix direction respectively,

ν12, ν21 the Poisson coefficients, and G12, G13, G23 the in-plane and transversal

tangential moduli. A laminated plate is made up by the stacking of a number

of orthotropic laminae, called plies, with fibres oriented in different directions.

For this reason the directions of orthotropy of each ply do not coincide with

the global directions of the problem. In order to express stresses and strains

in the same global coordinate system (laminate coordinates), the constitutive
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3. Modelling of curvilinearly stiffened plates

law has to be rotated, obtaining:

σ =


σxx

σyy

σxy

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



εxx

εyy

γxy

 = Q ε

τ =

{
σxz

σyz

}
=

[
Q44 Q45

Q45 Q55

]{
γxz

γyz

}
= Qn γ

(3.28)

Recalling from Section 2.1 the expression of the virtual internal work, it is

possible to carry out the integration along the thickness, turning the integral

over the volume into a surface integral:

δWp =

∫
S

∫
t

(
δε0T + z δkT

)
σ dz dS +

∫
S

∫
t

δγTτ dz dS

=

∫
S

δε0T N dS +

∫
S

δkT M dS +

∫
S

δγT V dS

(3.29)

where the quantities N = {Nxx , Nyy , Nxy}T , V = {Vxz , Vyz}T and M =

{Mxx ,Myy ,Mxy}T are called in-plane force resultants, shear force resul-

tants and moment resultants respectively. They are forces and moments

per unit length. Introducing the linear constitutive relation in Eq. 3.28

and considering a composite laminate made by N plies with different direc-

tion of orthotropy, it is possible to introduce the laminate stiffness matrices

(A ,B ,D ,An ):

N =

∫
t

σ dz =
N∑
k=1

∫ tk+1

tk

Qk dz ε
0 +

N∑
k=1

∫ tk+1

tk

zQk dz k = A ε0 + B k

M =

∫
t

z σ dz =
N∑
k=1

∫ tk+1

tk

zQk dz ε
0 +

N∑
k=1

∫ tk+1

tk

z2 Qk dz k = B ε0 + D k

V =

∫
t

τ dz =
N∑
k=1

∫ tk+1

tk

Kp Qnk
dz γ = An γ

(3.30)
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where Kp is the shear factor. The linearization of the internal virtual work,

see Eq. 3.29, can be performed by observing that:

∂δε = ∂
(
δε0

l + δε0
nl + z δk

)
= ∂δε0

nl =


∂w
∂x

∂δw
∂x

∂w
∂y

∂δw
∂y

∂w
∂x

∂δw
∂y

+ ∂w
∂y

∂δw
∂x

 (3.31)

Referring to Eq. 3.31 and making use of the laminate constitutive equation,

the virtual internal work for a composite laminated plate can be written as:

δWp =

∫
S


δε0

l

δk

δγ


T A B 0

B D 0

0 0 An



ε0
l

k

γ

 dS

+

∫
S

{
δw/x

δw/y

}T [
N0
xx N0

xy

N0
xy N0

yy

]{
w/x

w/y

}
dS

(3.32)

where N0
αβ represents a prestress contribute. Collecting all the unknowns in

the vector qp =

{
u0
p

θp

}
it is possible to write:

δWp =

∫
S

(
B1δqp

)T
Dp

(
B1qp

)
dS +

∫
S

(
B2δqp

)T [N0
xx N0

xy

N0
xy N0

yy

](
B2qp

)
dS

(3.33)

where B1 and B2 are differential operators through which it is possible to

obtain strain parameters from displacement and rotation fields. They are
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defined as:

B1 =



∂
∂x

0 0 0 0 0

0 ∂
∂y

0 0 0 0
∂
∂y

∂
∂x

0 0 0 0

0 0 0 ∂
∂x

0 0

0 0 0 0 ∂
∂y

0

0 0 ∂
∂x

1 0 0

0 0 ∂
∂y

0 1 0


, B2 =

[
0 0 ∂

∂x
0 0 0

0 0 ∂
∂y

0 0 0

]
(3.34)

The virtual work of the inertial forces is similarly treated. Since the dis-

placements of every point of the plate depend linearly on the thickness, it is

possible to carry out the integration along direction z:

δUp =

∫
Ω

(
δu0

p + z L δθp
)T
ρ0 (ü0

p + z L θ̈p) dΩ

=

∫
S

{
δu0

p

δθp

}T ∫ h/2

−h/2
ρ0

[
I z L

z L z2 L

]
dz

{
u0
p

θp

}
dx dy

=

∫
S

δqTp Mp q̈p dx dy

(3.35)

Considering homogeneously distributed density, components of matrix Mp

are:

Mp = ρ0



h 0 0 0 0 0

0 h 0 0 0 0

0 0 h 0 0 0

0 0 0 h3

12
0 0

0 0 0 0 h3

12
0

0 0 0 0 0 0


(3.36)

The external load are assumed in the form of the in-plane loads P =
{
Px Py

}T
,

forces per unit length acting along the plate edges, and the distributed pres-

sure p on the surface of the plate. The external virtual work can be written
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as:

δVp =

∫
∂S

{
δu0

δv0

}T {
Px

Py

}
d∂S +

∫
S

δw0 p dS (3.37)

3.2.2 Ritz approximation

In the present work Legendre Polynomials are chosen as Ritz functions.

This class of one-dimensional functions is made by the solutions ϕn(x) to

Legendre’s differential equation and can be expressed as [27]:

ϕn(x) =
1

2n!

dn

dxn
(
x2 − 1

)n
(3.38)

It can be demonstrated that these are orthogonal function with respect to

the L2 inner product in the interval −1 < x < 1:∫ 1

−1

ϕm(x)ϕn(x) dx =
2

2n+ 1
δmn (3.39)

where δmn is the Kronecker delta (equal to 1 if m = n, 0 otherwise). By

using Legendre polynomials the components of the displacement and virtual

displacement fields, are defined in the 2D domain S0 = [−1 , 1] × [−1 , 1],

which is linked to the physical domain through the bilinear mapping:{
x

y

}
= z(ξ, η) (3.40)

where ξ and η are the dimensionless coordinates. In the simple case of rect-

angular plates (which are considered in this work) it can be expressed as:{
x

y

}
=

[
a/2 0

0 b/2

]{
ξ

η

}
(3.41)

where a and b are the planar dimensions of the plate. The Jacobian of the
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transformation is simply J = (ab)/4, while the derivative operators are linked

by the following expression:{
∂
∂x
∂
∂y

}
=

[
2/a 0

0 2/b

]{
∂
∂ξ
∂
∂η

}
(3.42)

The generic unknown component f is then written as [28]:

f(ξ,η) = gf (ξ,η)
R∑
r=0

S∑
s=0

ϕr(ξ)ϕs(η)Cf
rs (3.43)

being ϕr(ξ) the rth Legendre polynomial of order r, Cf
rs are the unknown

Ritz coefficients and gf (ξ,η) a function that guarantees the fulfillment of the

essential boundary conditions (as shown in Figure 3.3), defined as:

-1 -0.5 0 0.5 1

ξ

-1

-0.5

0

0.5

1
φ

3
(ξ)

(1-ξ)(1+ξ)φ
3
(ξ)

Figure 3.3: Ritz function based on third order Legendre polynomial, with free
and fixed ends.

gf (ξ,η) = (1− ξ)γ1(1 + ξ)γ2(1− η)γ3(1 + η)γ4 (3.44)

where the terms γi can take values 0 or 1 according to the condition prescribed

on each edge (ξ = ±1) and (η = ±1), as shown in Table 3.1. Aiming
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3. Modelling of curvilinearly stiffened plates

edge free fixed

ξ = +1 γ1 = 0 γ1 = 1
ξ = −1 γ2 = 0 γ2 = 1
η = +1 γ3 = 0 γ3 = 1
η = −1 γ4 = 0 γ4 = 1

Table 3.1: Values of the exponents in equation 3.44.

at simplifying the notation, the vectors ϕr(ξ) =
{
ϕ0(ξ) ... ϕR(ξ)

}T
and

cf =
{
Cf

00 Cf
01 ... Cf

RS

}T
are introduced, then Eq. 3.43 can be written

as:

f(ξ,η) = gf (ξ,η)

(
ϕr(ξ)⊗ϕs(η)

)T
cf = φTf (ξ,η) cf (3.45)

where the symbol ”⊗” identifies the Kronecker product. The formalism can

be extended to the approximation of fields u0
p and θp (the same notation can

be straightforwardly applied to the virtual field δu0
p and δθp):

u0
p =

φ
T
u (ξ,η) 0 0

0 φTv (ξ,η) 0

0 0 φTw(ξ,η)




cu

cv

cw

 = Φu(ξ,η) cup

θp =

φ
T
θx

(ξ,η) 0 0

0 φTθy(ξ,η) 0

0 0 φTθz(ξ,η)




cθx

cθy

cθz

 = Φθ(ξ,η) cθp

(3.46)

and simplifying the notation:

qp =

[
Φu(ξ,η) 0

0 Φθ(ξ,η)

]{
aup

aθp

}
= Φ(ξ,η) ap (3.47)

Substituting equation 3.47 into 3.32, the discretized virtual internal work can
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3. Modelling of curvilinearly stiffened plates

be written as:

δWp = δaTp

∫ 1

−1

∫ 1

−1

(
B1Φ(ξ,η)

)T
Dp

(
B1Φ(ξ,η)

)
J dξ dη ap

+ δaTp

∫ 1

−1

(
B2Φ(ξ,η)

)T [N0
xx N0

xy

N0
xy N0

yy

](
B2Φ(ξ,η)

)
J dξ dη ap

= δaTp Kp ap + δaTp KpG ap

(3.48)

The derivatives about the physical coordinates (x , y), involved by B1 and

B2, can be computed using relation 3.42. The same approach is applied to

discretize the virtual work done by inertial and external forces:

δUp + δVp = δaTp

∫ 1

−1

∫ 1

−1

Φ(ξ,η)TMp Φ(ξ,η) J dξ dη äp

− δaTp
∫ 1

−1

(
Φ(−1, η)T p1 + Φ(+1, η)T p3

)
a

2
dξ

− δaTp
∫ 1

−1

(
Φ(ξ,− 1)T p2 + Φ(ξ,+ 1)T p4

)
b

2
dη

− δaTw
∫ 1

−1

∫ 1

−1

p φw(ξ,η) J dξ dη

= δaTMp ä− δaTPp

(3.49)

where pi represents the loads per unit length acting on the i-th edge. Compu-

tation of the integrals in equations (3.48 and 3.49) can be performed analyt-

ically. In this context, an efficient way to perform this operation is presented

in reference [29].
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3. Modelling of curvilinearly stiffened plates

3.3 Stiffener model

3.3.1 Path parametrisation

The first element to obtain the mathematical model of the stiffener is

its geometrical description. As discussed later, the stiffener is modelled as

a mono-dimensional element and its geometry can be fully described using

its reference line which draws a curve on the 2D domain of the plate. This

curve can be described by a vector function defining the position of its points

r = {x , y , z } depending on a parameter ζ:

r : (ζi , ζf ) ⊂ R→ R3 (3.50)

This function represents the parametrization of the stiffener path. For ex-

ample, the plot of the cubic function y = x3 is a curve on the (x, y) domain,

and can be parametrized in the following way:

x(ζ) = ζ

y(ζ) = ζ3
(3.51)

A requirement on the regularity of the parametrisation is that r(ζ) ∈ C1(ζi , ζf ).

This means that the variation of coordinates (x, y) with the parameter ζ has

to be sufficiently regular to avoid paths characterized by a discontinuity of

the first derivative, an example of which is provided in Figure 3.4b.

The parametrisation permits to define the tangent vector t:

t(ζ) = r′(ζ) =

{
x′(ζ)

y′(ζ)

}
(3.52)

where the notation (•)′ represents the derivative with respect to the param-

eter ζ. As shown in Figure 3.5, t is a vector applied in the point r(ζ) and

tangent to the curve. Its magnitude can vary from point to point along the

curve and depends on the parametrization used. An interpretation of the

quantities involved in the description of the stiffener path is given by the
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3. Modelling of curvilinearly stiffened plates

(a) (b)

Figure 3.4: Requirement on the regularity of the parametrization. The curve in
(b) is not enough regular.

analogy - used throughout this section for clarity purposes - with the trajec-

tory of a material point in the space, where ζ is in analogy with the time

t. For instance, the tangent vector can be seen as the velocity of a particle

moving along the curve at the time instant ζ. Using this interpretation it

is intuitive to define the length of the curve as the distance covered by the

particle at a velocity of magnitude
∥∥∥t(ζ)

∥∥∥ between the two time instants

(ζi , ζf ):

Γ =

∫ ζf

ζi

∥∥∥t(ζ)
∥∥∥ dζ (3.53)

There exist a particular parametrization which uses the so called arc length

parameter s, that makes
∥∥∥t(ζ)

∥∥∥ = 1 for each point along the curve. It follows

that in this case the length of the curve is simply computed as:

Γ =

∫ sf

si

ds = sf − si (3.54)

where sf and si are initial and final values of the arc length parameter. It

can be noted that the relation between parameter s and ζ is of the same

nature as that between coordinates (x , y) and (ξ , η). While s is a curvilinear

coordinate of a physical domain, ζ is defined on a local domain. The Jacobian

of the transformation is Js =
∥∥∥t(ζ)

∥∥∥. A common practice is to normalize the

tangent vector so that t(ζ) and t(s) represent the same quantity:
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3. Modelling of curvilinearly stiffened plates

Figure 3.5: Definition of the curve based reference frame.

t(ζ) =
r′(ζ)∥∥∥r′(ζ)

∥∥∥ or t(s) = r′(s) (3.55)

An orthonormal, curve-based, reference frame has to be introduced to de-

scribe the displacement field of the stiffener. Tangent vector is the first

element of such frame. A normal vector n can be introduced, and its def-

inition can be physically interpreted as the centripetal acceleration of the

aforementioned particle:

n(s) =
r′′(s)∥∥∥r′′(s)∥∥∥ (3.56)

where the normalization is required to have a reference frame composed by

unit vectors. The normalization factor κ(s) =
∥∥∥r′′(s)∥∥∥ is known as geometric

curvature which measures the rate of change of the tangent vector direction.

The third vector is necessarily obtained through the cross product between

the other two:

b(s) = t(s) ∧ n(s) (3.57)

Normal and binormal vectors can be defined using the general parameter ζ

through the following relations:

b(ζ) =
r′(ζ) ∧ r′′(ζ)∥∥∥r′(ζ) ∧ r′′(ζ)

∥∥∥
n(ζ) = b(ζ) ∧ t(ζ)

(3.58)
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3. Modelling of curvilinearly stiffened plates

The reference frame composed by unit vectors (t, n ,b), is known as Frènet

frame and it is described in Figure 3.5. To underline its dependency on the

point of the curve it is often called ”moving” frame, reminding the analogy

of the moving particle. The variation of the unit vectors along the curve is

governed by the Frènet formulas:

t′(s) = κ(s) n(s)

n′(s) = −κ(s) t(s) + τ(s) b(s)

b′(s) = −τ(s) n(s)

(3.59)

where κ(s) is the defined curvature parameter and τ(s) the torsion of the

curve, which are positive quantities. This relations are very important when

it comes to compute the derivative about s of a quantity described in the

curve based frame (e.g. for velocity or strain fields). They are valid for

a generic curve in the 3D space. For plane curves a possibility is to use

this general relations considering τ(ζ) = 0; in this case the binormal unit

vector is constant and the curve lies on a plane. However this is not the

best way to proceed. To give a better understanding of the problem consider

Figure 3.6a, representing the cubic y = x3. The normal unit vector, as it

is defined in Eq. 3.56, always points in the centripetal direction; when the

curvature sign changes the normal unit vector undergoes a reversal, thus

a discontinuous variation; the binormal vector suffers the same fate facing

upwards or downward depending on the sign of the curvature. This leads

to evident issues related to the definition of the displacement field along the

curve. Another problem occurs when the curve is reduced to a straight line

or presents inflection points. In these situations the curvature κ(s) is null

and and the normal vector cannot be defined4. A more reliable definition of

the curve based frame is presented in [30] and, to some extent, makes the

computations any easier. For these reasons, this approach is adopted here.

Thanks to the restriction to plane curves it is possible to obtain the couple

{t ,n} from the couple {e1 , e2} of the plate reference frame, simply through

4The denominator in the definition of n(s) in 3.56 has to be different from zero. In this
case the curve is said to be strongly regular.
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(a)

e
1

e
2

t
n

α

(b)

Figure 3.6: Comparison between curve based frame definitions

a rotation5 of an angle α. Once the tangent vector is computed as in Eq. 3.55,

the normal vector is obtained rotating anticlockwise the latter by π/2. In this

way the binormal vector always face upwards (i.e. in the positive direction

of thickness coordinate z, which is also the axis of rotation).

t(s) =


cosα(s)

sinα(s)

0

 , n(s) =


− sinα(s)

cosα(s)

0

 , b(s) =


0

0

1

 (3.60)

It is worth noting that now n does not depend on r′′. Computing the deriva-

tive about s, the Frénet formulas can be restored:

t′(s) =


− sinα(s)α′(s)

cosα(s)α′(s)

0

 = κ(s)n(s)

n′(s) =


− cosα(s)α′(s)

− sinα(s)α′(s)

0

 = −κ(s)t(s)

b′(s) = 0

(3.61)

5And a traslation since the curve based frame is a moving frame.
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Figure 3.7: Curve path variations changing the position of control point P1.

where the curvature is now defined as κ(s) = α′(s), and it can take posi-

tive or negative values. In Figure 3.6b is reported the new situation. The

only requirement is that the tangent vector varies with continuity and the

normal vector is defined accordingly no matter the sign of the curvature;

consequently inflection points or straight lines do not cause any problem as

they are included in the theory. The type of parametric curves used in this

work is widely adopted in computer graphics and it’s based on the Bézier

curves; their general definition is [31]:

r(µ) =
n∑
i=0

Pi

(
n

i

)
µi (1− µ)n−1 , µ ∈ [0 , 1] (3.62)

where n is the order of the curve and Pi = {xPi , yPi , zPi}
T , are the control

points. These curves are very convenient for the purposes of the present work

as it is possible to change the path of the stringer by merely changing the

position of the control points. In Figure 3.7 it’s shown the changing of the

curve path with the position of control point P1. In this work, curves of the

2nd and 3rd order are considered, and their Bézier parametrization is now
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reported in extended form:

2nd order : r(ζ) =
1

2
(1− ζ)2 P0 + 2ζ (1− ζ) P1 +

1

4
(1 + ζ)2 P2

3rd order : r(ζ) =

(
1

2
− 1

2
ζ

)3

P0 +
3

2
(1 + ζ)

(
1

2
− 1

2
ζ

)2

P1

+
3

2
(1 + ζ)2

(
1

2
− 1

2
ζ

)
P2 +

(
1

2
+

1

2
ζ

)3

P3

with ζ ∈ [−1 , 1]

(3.63)

Note that now the parameter takes values in [−1 , 1], due to the application

of the transformation ζ = 2µ − 1: as described in the following, this trans-

formation is convenient for the implementation of Gauss integration rules.

3.3.2 Kinematics

The formulation adopted for the description of the beam displacement

field is based on the Timoshenko hypotheses: the cross section is not con-

strained to stay perpendicular to the beam reference axis, as is the case of the

Euler-Bernoulli beam theory, but can rotate according to the unknown quan-

tities θn and θb, where the subscript identifies the axis of rotation. Moreover

the dependence on the the cross section coordinates is imposed to be linear

(just as in FSDT the displacement field varies linearly along the thickness).

The displacement of every point in the cross section is then fully described

by the linear displacements and rotations of the reference line:

us = u0
s + (d×)Tθs (3.64)

with:
u0
s = u0

t t + v0
n n + w0

b b

θs = θt t + θn n + θb b

d = 0 t + nn + bb

(3.65)

A schematic representation of the beam is reported in Figure 3.8, along with
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3. Modelling of curvilinearly stiffened plates

Figure 3.8: Definition of curvilinear coordinate system and beam displacement
field.

the dimensions and the kinematic parameters. In this model three relevant

strain components are present: the axial (εt) and two transversal shear strains

(γn, γb) acting on the cross section plane. All the other components don’t

produce any energy contribute as the stresses energetically conjugated are

equal to zero for the beam state of stress hypothesis. The strain tensor

components of interest can be written as described in reference [32] 6:

εt =
∂us
∂s
· t +

1

2

(
∂w0

b

∂s

)2

γn =
∂us
∂n
· t +

∂us
∂s
· n

γb =
∂us
∂b
· t +

∂us
∂s
· b

(3.66)

where the second term of the first relation comes from the hypothesis on the

non-linear part of the Green-Lagrange strain tensor: in a similar way to plate

6In this article the strain components come from the small strain tensor, as the authors
don’t take into consideration the potential presence of a prestress in the linear static
analysis of curved beams. Here a non-linear contribute has been added in order to perform
the linear buckling analysis.
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theory, the only source of non-linearities are the quadratic terms related to

the variation of the transversal displacement wb along the curvilinear coor-

dinate. Theoretically this term should contain also the torsional rotation θt,

but its contribute is considered negligible with respect to the adopted level of

accuracy of the model. The derivatives of us along the coordinates (s , n , b)

lead to:
∂us
∂s

=
∂u0

s

∂s
+ (d×)T

∂θs
∂s

∂us
∂n

=

(
∂d

∂n
×
)T
θs = −θb t + θt b

∂us
∂b

=

(
∂d

∂b
×
)T
θs = θn t− θt b

(3.67)

The first relation in 3.67 needs particular care as the component of dis-

placement and rotation vectors, which are functions of s, are expressed in a

”moving” frame, which depends on the arc length parameter as well:

∂u0
s

∂s
=
∂u0

t

∂s
t + u0

t

∂t

∂s
+
∂v0

n

∂s
n + v0

n

∂n

∂s
+
∂w0

b

∂s
b + w0

b

∂b

∂s

=

(
∂u0

t

∂s
− κ(s) v0

n

)
t +

(
∂v0

n

∂s
+ κ(s)u0

t

)
n +

∂w0
b

∂s
b

∂θ0
s

∂s
=
∂θt
∂s

t + θt
∂t

∂s
+
∂θn
∂s

n + θn
∂n

∂s
+
∂θb
∂s

b + θb
∂b

∂s

=

(
∂θt
∂s
− κ(s) θn

)
t +

(
∂θn
∂s

+ κ(s) θt

)
n +

∂θb
∂s

b

(3.68)

where the Frénet formulas in Eq. 3.61 are used to solve the unit vectors

derivative. The small strain tensor components can be written as:

εs =


εt

γn

γb

 = ε0
s + (d×)Tks =


ε0
t + b kn − n kb
γ0
n − b kt
γ0
b + n kt

 (3.69)

where the definition of the six deformation parameters is obtained by substi-
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tuting 3.67 in 3.66, and considering 3.68:

ε0
s = εls + εnls =


ε0
t

γ0
n

γ0
b

+


εnlt

0

0

 =


∂u0t
∂s
− κ(s) v0

n
∂v0n
∂s

+ κ(s)u0
t − θb

∂w0
b

∂s
+ θn

+


1
2

(
∂w0

b

∂s

)2

0

0


ks =


kt

kn

kb

 =


∂θt
∂s
− κ(s) θn

∂θn
∂s

+ κ(s) θt
∂θb
∂s


(3.70)

As said previously, in this work only blade laminated stiffeners were consid-

ered; the lamination direction is taken perpendicular to that of the plate.

The rotated constitutive law valid for a generic lamina can be written as:
Q11 Q12 Q16 0 0

Q12 Q22 Q26 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55





εt

εb

γb

γbn

γn


=



σt

σb

τb

τbn

τn


(3.71)

The state of stress comes from the beam hypotheses and besides the axial

stress σt, it involves the two shear components, τn and τb, acting on the

cross section plane; the other components (σb and τbn) are null. It is possible

to separate the energetically active components from the others rearranging

rows and columns in 3.71:
Q11 0 Q16 Q12 0

0 Q55 0 0 Q45

Q16 0 Q66 Q26 0

Q12 0 Q26 Q22 0

0 Q45 0 0 Q44





εt

γn

γb

εb

γbn


=



σt

τn

τb

0

0


(3.72)

36



3. Modelling of curvilinearly stiffened plates

and in compact form: [
Qεε Qεβ

Q
T

εβ Qββ

]{
εs

β

}
=

{
σs

0

}
(3.73)

At this point, statically condensing 3.73, it is possible to write the constitutive

relation taking into consideration only the components contributing to the

virtual internal work:

σs =
(
Qεε −Qεβ Q

−1

ββ Q
T

εβ

)
εs = Q̂ εs (3.74)

The components of matrix Qs are then:

Q̂ =


Q11 −

Q
2
12

Q22
0 Q16 −

Q12Q26

Q22

0 Q55 −
Q

2
45

Q44
0

Q16 −
Q12Q26

Q22
0 Q66 −

Q
2
26

Q22



=

Q̂11 0 Q̂16

0 Q̂55 0

Q̂16 0 Q̂66


(3.75)

Considering the expression of the virtual internal work, it is possible to per-

form the integral over the cross section, since the dependency on coordinates

(b , n) are pre-determined, reducing the volume integral into a line integral:

δW s
i =

∫
Γ

∫
A

(
δε0
s + (d×)T δks

)T
σs dAdΓ

=

∫
Γ

δε0T
s

∫
A

σs dAdΓ +

∫
Γ

δkT
∫
A

(d×)σs dAdΓ

=

∫
Γ

δε0T
s Fs dΓ +

∫
Γ

δkT Ms dΓ

(3.76)

where Fs = {Ft , Fn , Fb}T and Ms = {Mt ,Mn ,Mb}T are the beam internal
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forces and moments respectively. By substituting relation 3.74 in the surface

integrals in 3.76, the constitutive relation at internal forces level are obtained:

Fs =

∫
A

Q̂ dA ε0
s +

∫
A

Q̂ (d×)T dAks = DFF ε
0
s + DFM ks

Ms =

∫
A

(d×) Q̂ dA ε0
s +

∫
A

(d×) Q̂ (d×)T dAks = DT
FM ε

0
s + DMM ks

(3.77)

Components of matrices (DFF ,DFM ,DMM), are computed solving the area

integrals, obtaining the following results:

DFF =

hsA11 0 hsA16

0 hsA55Ks 0

hsA16 0 hsA66



DFM =

 hsB16 hseA11 −hsB11

−hseA55Ks 0 0

hsB66 hseA16 −hsB16



DMM =


GJ hseB16 hsD16

hseB16

(
h3s
12

+ hse
2
)
A11 −hseB11

hsD16 −hseB11 hsD11



(3.78)

where shear factor Ks has been introduced, along with beam laminate stiff-

nesses:

A =
ns∑
k=1

∫ nk+1

nk

Q̂ dn B =
ns∑
k=1

∫ nk+1

nk

n Q̂ dn

D =
ns∑
k=1

∫ nk+1

nk

n2 Q̂ dn

(3.79)

Matrices (A, B, D) are obtained performing the first integration along the

thickness coordinate of the laminate, which is also the width coordinate of

the beam considering the assumption on the lamination direction. Surface

integrals are then completed with a second integration along the height of
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3. Modelling of curvilinearly stiffened plates

the beam leading to all the terms in 3.78. To make all these steps more clear,

the case of the torque Mt is considered, which will be useful also to derive

the expression of torsional stiffness GJ :

Mt =

∫
hs

∫
ts

(n τb − b τn) dn db

=

∫
hs

∫
ts

n Q̂16 dn db ε
0
t +

∫
hs

∫
ts

n Q̂66 dn db γ
0
b +

∫
hs

∫
ts

n2 Q̂66 dn db kt

+

∫
hs

∫
ts

n b Q̂16 dn db kn −
∫
hs

∫
ts

n2 Q̂16 dn db kb

−
∫
hs

∫
ts

bKs Q̂55 dn db γ
0
n +

∫
hs

∫
ts

b2Ks Q̂55 dn db kt

(3.80)

and using 3.79:

Mt =

∫
hs

B16 db ε
0
t +

∫
hs

B66 db γ
0
b +

∫
hs

bB16 db kn −
∫
hs

D16 db kb

−
∫
hs

bKsA55 db γ
0
n +

∫
hs

(
D66 + b2KsA55

)
db kt

(3.81)

eventually, integrating along the stiffener height:

Mt = hsB16 ε
0
t + hsB66 γ

0
b + hs eB16 kn − hsD16 kb − hs eK A55 γ

0
n

+

[
hsD66 +K

(
h3
s

12
+ hse

2

)
A55

]
︸ ︷︷ ︸

GJ

kt (3.82)

It is worth noting that the coupling between strain parameters is not only

due to the laminate anisotropy, but it is also linked to the offset e, which

is the distance of the elastic centroid of the beam from the plate midplane.

Since the couple of coordinates (s , n) is forced to lie on the midplane, when

e 6= 0 the adopted axes are not the principal ones. At this point the virtual
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3. Modelling of curvilinearly stiffened plates

internal work for the stiffener can be easily written as:

δW s
i =

∫
Γ

{
δεls

δks

}T [
DFF DFM

DT
FM DMM

]{
εls

ks

}
ds+

∫
Γ

δwb/s F
0
t wb/s ds (3.83)

and collecting all the unknowns in the vector qs(s) =

{
us(s)

θs(s)

}
:

δW s
i =

∫
Γ

(
D1δqs

)T
Ds

(
D1qs

)
ds+

∫
Γ

(
D2δqs

)T
F 0
t

(
D2qs

)
ds (3.84)

where D1 and D2 are differential operators through which it is possible to

obtain strain parameters from displacements and rotations fields:

D1 =



∂
∂s

−κ(s) 0 0 0 0

κ(s) ∂
∂s

0 0 0 −1

0 0 ∂
∂s

0 1 0

0 0 0 ∂
∂s

−κ(s) 0

0 0 0 κ(s) ∂
∂s

0

0 0 0 0 0 ∂
∂s


D2 =

[
0 0 ∂

∂s
0 0 0

]
(3.85)

Virtual work of the external forces, which is composed by the inertial and

external loads contributes, is now considered. Only forces applied at the two

beam ends ps = {Pt , Pn , Pb}T are taken into account.

δW s
e =

∫
Γ

∫
A

δuTs ρ üs dAdΓ−
[
δu0T

s ps

]s=Γ

s=0

=

∫
Γ

∫
A

(
δu0T

s + δθTs (d×)
)
ρ
(
δü0

s + δθTs (d×)
)
dAdΓ

−
[
δu0T

s ps

]s=Γ

s=0

(3.86)
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Considering that the kinematic parameters depend on the curvilinear coor-

dinate only, it is possible to write:

δW s
e =

∫
Γ

{
δu0

s

δθs

}T [ ∫
A
ρ I dA

∫
A
ρ (d×)T dA∫

A
ρ (d×) dA

∫
A
ρ (d×) (d×)T dA

]{
u0
s

θs

}
dΓ

−
[
δu0T

s ps

]s=Γ

s=0

(3.87)

As already done with the plate, density is assumed constant in the whole

continuum. So Eq. 3.87 can be written as:

δW s
e =

∫
Γ

{
δu0

s

δθs

}T [
Muu Muθ

MT
uθ Mθθ

]{
u0
s

θs

}
ds−

[
δu0T

s ps

]s=Γ

s=0

=

∫
Γ

δqTs Ms qs ds−
[
δu0T

s ps

]s=Γ

s=0

(3.88)

with:

Muu =

∫
A

ρ I dA = ρ

A 0 0

0 A 0

0 0 A



Muθ =

∫
A

ρ (d×)T dA = ρ

 0 eA 0

−eA 0 0

0 0 0



Mθθ =

∫
A

ρ (d×) (d×)T dA = ρ

In + Ib 0 0

0 In 0

0 0 Ib



(3.89)

where In and Ib are the area moment of inertia around n and b axis respec-

tively.
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3.4 Plate/Stiffener compatibility

The plate and stiffener models illustrated so far are now coupled to il-

lustrate the modelling a stiffened plate. To this aim compatibility condition

between plate and stiffeners has to be enforced. With this regard, the present

Ritz procedure allows to impose the compatibilty conditions in a straight-

forward way, making the overall modeling process fast and efficient. This

feature represents a noticeable advantage as the time for modelling could

be, in the case of curvinearly-stiffened plates, particularly relevant. In finite

elements, for instance, the plate/stiffener compatibility can be obtained us-

ing contact algorithms, or tritely by ensuring that plate and stiffeners share

their nodes. In the first case, an algorithm able to recognize the plate element

where a beam element node is located is needed, in order to approximate the

displacement of such node using the shape functions of the 2D element7 [6].

Otherwise, if plate and stiffener share the same nodes, the issue of re-meshing

needs to be taken into account whenever the topology (i.e. the path of the

stringer) changes, for example when a preliminary optimisation of the ge-

ometry has to be performed; moreover complex geometries can lead to the

presence of distorted elements potentially decreasing the accuracy of the so-

lution. Essentially, all this difficulties are caused by the presence of basis

function whose support is defined on a small portion of the global domain.

Differently, in a Ritz-based approach, the support of the basis functions is the

whole plate surface, making the treatment of the junction much easier. In

the following two different methods to enforce plate/stiffener compatibility

are presented.

3.4.1 Penalty method

This method consists in the addition of an elastic element at the interface

between plate and stiffener. The stiffness of this element has to be tuned so

as to make it much more rigid compared to the other elastic elements of

the system. In other words the contact is modelled through a “fictitious”

distributed and infinitely rigid spring that connects the stiffener to the plate.

7Many contact algorithms are based on the so called multipoint constraint.

42



3. Modelling of curvilinearly stiffened plates

Consequently two sets of degrees of freedom are present, one describing the

motion of the stiffener and the other one the motion of the plate. This

means that a Ritz approximation of stiffener displacements and rotations

is required. Since all the unknowns describing the movement of the beam

depend on a single parameter, their discretization is composed of 1D Ritz

functions defined in the interval [−1 , 1]. This implies a change of coordinate

from the arc-length parameter s ∈ [0 ,Γ], to parameter ζ ∈ [−1 , 1]. The

generic component g(ζ) can be discretized as:

g(ζ) =
K∑
k=0

ψk(ζ)Cg
k (3.90)

being ψk(ζ), the k-th Legendre polynomial. Collecting all the unknowns in

the vector qs(ζ) =

{
us(ζ)

θs(ζ)

}
, similarly to what said for the plate, it is possible

to write:

qs(ζ) = Ψ(ζ) as (3.91)

At this point it is possible to substitute the discretisation in all the energetic

contributes of the stiffener. The virtual internal work becomes:

δWs = δaTs

∫ 1

−1

(
D1Ψ(ζ)

)T
Ds

(
D1Ψ(ζ)

)
Js dζ as

= δaTs Ks as + δaTs KsG as

(3.92)

where Js is the Jacobian of the curvilinear coordinate transformation which is

also used to compute the derivative with respect to s, contained in differential

operator D1:

Js = ‖r/ζ‖ =

√(
∂x

∂ζ

)2

+

(
∂y

∂ζ

)2

∂

∂s
=

1

Js

∂

∂ζ

(3.93)
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The discretization of the virtual work of the inertia and external forces results

in:

δUs + δVs = δaTs

∫ 1

−1

Ψ(ζ)T Ms Ψ(ζ) Js ds as − δaTs
[
Ψ(ζ)Tpstiff

]ζ=1

ζ=−1

= δaTs Ms as − δaTs Ps

(3.94)

The deformation work of the junction element can be written as:

δWps =

∫
Γ

[(
δû0

p − δû0
s

)T
Ku
ps

(
û0
p − û0

s

)
dΓ +

(
δθ̂p − δθ̂s

)T
Kθ
ps

(
θ̂p − θ̂s

)]
dΓ

(3.95)

where (û0
p , θ̂p) and (û0

s , θ̂s) are plate and stiffener fields expressed in the

same reference frame. A good choice is to use the system of coordinate

(x , y , z) both for displacements and for rotations8. In this way the variables

appearing in Eq. 3.95 are linked to the degrees of freedom (up ,θp ,us ,θs) by

the following relations:

û0
p = u0

p , û0
s = RTu0

s

θ̂p = IT θp , θ̂s = RTθs

(3.96)

where:

R =
[
t n b

]T
, I =

 0 1 0

−1 0 0

0 0 1

 (3.97)

By substituting relations 3.97 in 3.95, and collecting the unknowns in vectors

qp and qs, the penalty contribute on the principle of virtual work can be

written as:

δWps =

∫
Γ

{
δqp

δqs

}T [
Λpp Λps

ΛT
ps Λss

]{
qp

qs

}
dΓ (3.98)

8It should be noted that this is not the reference frame used for plate rotation degrees
of freedom, indeed they don’t even follow the right hand rule.
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where:

Λpp =

[
Ku
ps 0

0 IKθ
ps I

T

]

Λss =

[
R Ku

ps RT 0

0 R Kθ
ps RT

]

Λps =

[
−Ku

ps RT 0

0 −IKθ
ps RT

]
(3.99)

At this point it is possible to introduce the Ritz approximation:

δWps =

{
δap

δas

}T ∫ 1

−1

[
ΦTΛpp Φ ΦTΛps Ψ

ΨTΛT
psΦ ΨTΛss Ψ

]
Js dζ

{
ap

as

}

=

{
δap

δas

}T [
Zpp Zps

ZT
ps Zss

]{
ap

as

} (3.100)

The integral in 3.100 can be easily computed with gaussian quadrature rule.

The evaluation in the integration point ζi of terms depending on (ξ , η), and

not directly on ζ, can be performed using relations in Eq. 3.41 and Eq. 3.63.

3.4.2 Strong form approach

The second method that has been developed consists in the description

of the beam kinematics as a function of that of the plate. In other words,

the compatibility is imposed in strong form by enforcing the requirement in

terms of problem unknowns. This can be achieved considering the following

relations:

u0
s(s) = R u0

p(x,y) , θs(s) = RIT θp(x,y) (3.101)

which can be directly substituted in the expressions of the beam virtual work,

making the set of plate degrees of freedom the only unknowns, no matter the

number of the stringers. Consequently a mono-dimensional discretization

of each beam element is unnecessary. The key point is the handling of the

beam strains that are obtained through the differential operator D1 which
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3. Modelling of curvilinearly stiffened plates

involves the derivative with respect to arc-length parameter. Considering,

for example, the axial strain ε0
t :

ε0
t =

∂ u0
t

∂s
− κ v0

n

=
∂
(
u0
p · t
)

∂s
− κ

(
u0
p · n

)
=
∂u0

p

∂s
· t + u0

p ·
∂t

∂s
− κ

(
u0
p · n

)
=
∂u0

p

∂s
· t

(3.102)

where in the last step the Frénét formulas 3.61 have been used to solve the

tangent vector derivative. Now using the chain rule it is possible to write:

ε0
t =

[(
∂u0

p

∂x

∂x

∂s
+
∂u0

p

∂y

∂y

∂s

)]
· t

=

[
1

Js

(
∂u0

p

∂x

∂x

∂ζ
+
∂u0

p

∂y

∂y

∂ζ

)]
· t

(3.103)

At this point Ritz approximation for plate displacement9 u0
p = Φu(ξ,η) aup is

introduced, and recalling the differentiation rule 3.42:

ε0
t =

[
1

Js

(
2

a

∂Φu

∂ξ

∂x

∂ζ
+

2

b

∂Φu

∂η

∂y

∂ζ

)
aup

]
· t

=

[
tT

Js

(
2

a

∂Φu

∂ξ

∂x

∂ζ
+

2

b

∂Φu

∂η

∂y

∂ζ

)]
aup

(3.104)

The same approach can be adopted for all the other strain parameters and

for the derivative of the transversal displacement w0
b/s (Appendix A), and

eventually it is possible to express them as functions of the plate degrees of

freedom (set ap): {
ε0
s

ks

}
= H1 ap , w0

b/s = H2 ap (3.105)

9Φu(ξ,η) is a principal north-west submatrix of matrix Φ(ξ,η), see Appendix A.
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In a similar way substituting the obtained relation into the beam virtual

internal work:

δWs = δaTp

∫ 1

−1

HT
1 DsH1 Js dζ ap + δaTp

∫ 1

−1

HT
2 F

0
tH2 Js dζ ap

= δaTp K̃s δap + δaTp K̃Gs δap

(3.106)

Differently, relations 3.101 can be directly substituted in the virtual external

work:

δUs =

∫
Γ

{
δu0

p

δθp

}T [
RT Muu R RTMuθ RIT

IRT MT
uθ R IRT Mθθ RIT

]{
u0
p

θp

}
ds

δVs = −
[
δu0T

p RT ps

]s=Γ

s=0

(3.107)

and introducing the discretization:

δUs =

{
δaup

δaθp

}T ∫ 1

−1

[
ΦT
uRT Muu RΦu ΦT

uRTMuθ RITΦθ

ΦT
θ IRT MT

uθ RΦu ΦT
θ IRT Mθθ RITΦθ

]
Js dζ

{
δaup

δaθp

}

= δaTp M̃s ap

δVs = −δa0T

p

[
ΦT
uRT ps

]ζ=1

ζ=−1
= −δa0T

p P̃s

(3.108)

Differently from penalty method, as better described in the following section,

in the general case where more than one stiffener is present, the size of the

matrices remains unchanged, as the number of degrees of freedom remains

limited to that of set ap; the same approach is repeated for all the stiffeners

and the resulting matrices have to be added up.

3.5 Discrete governing equations

In this section the discrete equations describing the stiffened plate be-

haviour are discussed with regard to the linear static, buckling and free

vibration responses. The considered structure is the composite laminated
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plate stiffened by an arbitrary number of curvilinear stringers. Plate related

quantities will be labelled with subscript (·)p, while k-th stiffener related ones

with (·)(k)
s .

3.5.1 Linear Static Analysis

The first analysis considered aims to compute displacements, strains and

stresses due to external loads. The problem is static, meaning that the loads

are constant in time or slow enough compared to the characteristic frequen-

cies of the structure. In this circumstances the response can be modelled as

static.

The expression of the principle of virtual work depends on the method

adopted to enforce plate/stiffener compatibility. Considering the penalty

method it can be written as:

δWp + δVp +
N∑
k=1

(
δW (k)

s + δW (k)
ps + δV (k)

s

)
= 0 (3.109)

Recalling the notation adopted, the degrees of freedom are arranged in the

following set:

a =



ap

a
(1)
s

a
(2)
s

...

a
(N)
s


(3.110)

The elastic and geometric global stiffness matrices are so assembled:

K =



Kp 0 0 · · · 0

0 K
(1)
s 0 · · · 0

0 0 K
(2)
s · · · 0

...
...

...
. . .

...

0 0 0 · · · K
(N)
s


KG =



KpG 0 0 · · · 0

0 K
(1)
sG 0 · · · 0

0 0 K
(2)
sG · · · 0

...
...

...
. . .

...

0 0 0 · · · K
(N)
sG


(3.111)
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The penalty matrix gets filled with all the terms coming from the junction

of all the stiffeners to the plate:

Z =



Zpp Z
(1)
ps Z

(2)
ps · · · Z

(N)
ps

Z
(1)T
ps Z

(1)
ss 0 · · · 0

Z
(2)T
ps 0 Z

(2)
ss · · · 0

...
...

...
. . .

...

Z
(N)T
ps 0 0 · · · Z

(N)
ss


(3.112)

Accordingly, the vector of the external loads becomes:

P =



Pp

P
(1)
s

P
(2)
s

...

P
(N)
s


(3.113)

Recalling the arbitrariness of the virtual variations of the unknowns, the

problem is reduced to the following linear system:

(K + KG + Z) a = P (3.114)

In the case of strong form enforcement of the compatibility, the principle of

virtual work does not require the introduction of penalty-related energetic

contributes:

δWp + δVp +
N∑
k=1

(
δW (k)

s + δV (k)
s

)
= 0 (3.115)

In this case, since the set of degrees of freedom is a = ap, the global ma-

trices are computed adding up all the terms related to the single structural
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components:

K = Kp +
N∑
k=1

K̃(k)
s

KG = KpG +
N∑
k=1

K̃
(k)
sG

P = Pp +
N∑
k=1

P̃(k)
s

(3.116)

The linear system is then:

(K + KG) a = P (3.117)

3.5.2 Buckling analysis

Linearized buckling analysis allows to determine the critical load of a

perfect structure over which the uniqueness of the elastic solution is lost.

It has to be pointed out that this analysis does not allow to predict the

so-called post-buckling behaviour of the structure, namely the sequence of

equilibrium configurations with increasing the load after the critical one. The

linearisation is performed around the pre-buckling configuration which is the

result of the linear static analysis:

K a = P0 (3.118)

where for simplicity it is assumed that matrix K includes also Z if the com-

patibility is enforced using the penalty method. The resulting spatial distri-

bution of the stresses is necessary to compute the geometric stiffness matrix

KG. Since the pre-buckling problem is linear, the stress distribution result-

ing from an applied load λP0 will lead to a geometric geometric stiffness

matrix λKG. Linear buckling analysis is performed solving the following

linear eigenvalue problem:

(K + λKG) ∆a = 0 (3.119)
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The solution of the eigenvalue problem gives the critical load λcrP0, and

the corresponding eigenvector provides the mode shape. There are cases in

which the pre-stress distribution is already known due to the simplicity of

the problem, and the pre-buckling analysis can be performed analytically.

This is the case for example of a constant stiffness laminated plate uniformly

loaded at the edges, in which the stresses are constant throughout the plate

surface and equal to the applied forces per unit length. The complexity of the

structure considered here does not allow for such simplification, and the only

way to compute the pre-stress distribution is to perform the pre-buckling

analysis.

3.5.3 Free vibration analysis

The virtual work principle for a dynamic system writes:

δUp + δWp + δVp +
N∑
k=1

(
δU (k)

s + δW (k)
s + δV (k)

s

)
= 0 (3.120)

leading to the following set of ordinary differential equations with constant

coefficients:

M ä + (K + KG) a = P (3.121)

which can be written in the frequency domain:

[
−ω2 M + (K + KG)

]
a = P (3.122)

The characteristic frequencies of the problem can be computed considering

the linear eigenvalue problem associated to the homogeneous problem:

[
−ω2 M + (K + KG)

]
a = 0 (3.123)

The eigenvalues ω2
i give us the natural frequencies fi = 2π

ωi
of the system,

and the eigenvectors ai their mode shapes. All of this is valid when the
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3. Modelling of curvilinearly stiffened plates

compatibility in strongly enforced, but the same notation can be adopted

also for the penalty method remembering to include in K the matrix Z, as

the penalty contribute has to be added in the expression of the virtual work

principle.
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4. Results and discussion

In the following sections the results obtained using the present Ritz-based

procedure are presented for a number of test cases. In the first part of the

chapter, illustrated is the comparison against finite element calculations using

the commercial code Nastran. The efficiency of the proposed computational

tool is exploited to perform parametric studies in the second part of the

chapter. These studies allow to investigate the mechanical behaviour of this

kind of structure and the sensitivity to optimal configuration varying the

number of polynomials.

4.1 Comparisons with Finite Element Method

4.1.1 Bending analysis

In this example a simply-supported composite plate stiffened with one

curvilinear stringer is loaded with a uniform distribution of pressure p =

0.001MPa along the direction z. The dimensions of the structural elements

are summarized in Figure 4.9. Stiffener reference line is parametrised us-

ing a 2nd order Bézier curve, the position of its control points is reported in

Table 4.2. The material considered is a graphite/epoxy composite material

whose mechanical properties are reported in Table 4.3. A quasi-isotropic

lamination sequence [0/90/+45/−45]s is chosen following the guidelines re-

ported in [34], about technological constraints and damage tolerability for

aircraft structures. The thickness of each ply is 0.129 mm. This solution

is adopted for both the plate and stiffeners and it is used also for the other

examples in this work.
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x

y

b = 600 mm

a = 600 mm

h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 30 mm

e = 16.29 mm

p = 0.001 MPa

Figure 4.9: Geometry of the example for bending analysis.

Linear static analyses are performed using the Ritz method, gradually in-

creasing the number R = S of polynomials to assess the convergence of the

method. Both the approaches to enforce plate/stiffener compatibility are

used. Then the analysis is performed with finite elements, where the prob-

lem is modelled using CQUAD4 and CTRIA3 elements for the plate, and

PBEAM elements for the stringer. It should be remarked that the PBEAM

property does not allow to define a fully anistropic beam section, therefore

the bendiwng/twisting coupling due to the not null contributions D16 and

D26 is neglected.

A convergence study is presented in Table 4.4, where the maximum values

for bending displacement and rotations are presented by considering an in-

creasing number of trial functions. Also, the two different techniques for

imposing the compatibility conditions are employed in order to highlight the

impact over the convergence of the solution. The values of the maximum

transversal displacement for an increasing number of polynomials are re-

ported in Figure 4.10. It can be noted that convergence is monotonic, and a

relatively large number of trial functions is needed for achieving errors below

5%. Moreover, one can observe that penalty method and strong compati-

bility enforcement produce the same results, demonstrating the correctness

of the two distinct implementations. With a maximum difference of 2.8%
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4. Results and discussions

on the maximum vertical displacement between the present method and the

finite element analysis, it is possible to say that the mechanical behaviour of

the structure under bending load is well captured.

The transversal displacement at points on the line (x = 0 , y) is evaluated

varying number of polynomials considered in the analysis, and reported in

Figure 4.11. The comparison for transversal displacement and rotations be-

tween finite elements result and the present method is shown in Figure 4.12.

The analysis is carried out using 30 polynomials. It should be noted that,

for this comparison, the definition of the sign of the rotation is taken equal

to that adopted in the finite element model.

x, mm y, mm z, mm

P0 −300 0 0
P1 0 −300 0
P2 300 0 0

Table 4.2: Position of the 2nd order Bézier curve control points.

E11, GPa E22, MPa G12, MPa ν12 ρ, kg/m3

150 9080 5290 0.32 1350

Table 4.3: Engineering properties of graphite/epoxy composite material
(IM7/8552) [33].
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Figure 4.10: Convergence of the Ritz method for bending analysis of curvilinearly
stiffened plate.
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strong enforcement penalty method

R = S w (mm) θx (rad) θy (rad) w (mm) θx (rad) θy (rad)

5 0.9640 0.0046 0.0074 0.9589 0.0046 0.0070

10 1.3564 0.0074 0.0081 1.3550 0.0074 0.0081

15 1.4172 0.0076 0.0084 1.4173 0.0076 0.0084

20 1.4409 0.0076 0.0085 1.4411 0.0076 0.0085

25 1.4584 0.0078 0.0086 1.4586 0.0078 0.0086

30 1.4690 0.0078 0.0086 1.4692 0.0078 0.0086

32 1.4715 0.0078 0.0086 1.4717 0.0078 0.0086

35 1.4753 0.0078 0.0086 1.4755 0.0078 0.0086

FEM 1.517 0.0080 0.0088

Table 4.4: Results for bending analysis of simply supported curvilinearly stiffened
plate.

-300 -200 -100 0 100 200 300

y (mm)
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w
 (

m
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)

FEM

5 polynomials

10 polynomials

20 polynomials

30 polynomials

Figure 4.11: Transversal displacement at points on the line (x = 0 , y) for differ-
ent number of polynomials.
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Figure 4.12: Results in terms of transversal displacement and rotations, for
bending analysis of curvilinearly stiffened plate.
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4.1.2 Free-Vibrations

Free vibration analysis is conducted on the same structure presented in

the previous section. Thus, for conciseness, data are not reported here.

The finite element model of the stringer is now carried out using 2D elements,

in order to account for the elastic couplings not captured by the Nastran

beam model in terms of beam constitutive law. Also in this case different

analyses have been performed with increasing the number of polynomials.

The results obtained using the present method, with strong enforcement

of the compatibility, are presented in Table 4.5 along with the results of

the finite element analysis. The first three nondimensional frequencies µ(i)

are summarized in Figure 4.13, where calculations were carried out with

the present Ritz formulation for an increasing number of polynomials. The

normalization factor is given by the finite elements result:

µ(i) =
ω(i)

ω
(i)
FEM

(4.124)

Also in this case, the convergence is monotonic and shows, as expected, a

progressive reduction of the inherent overstiffness associated with the numer-

ical model. At convergence the maximum difference between finite element

and Ritz results is about 4% on the second eigen-frequency. Such difference,

can be partially attributed to the different modelling solution of the stiffener.

In Figure 4.14 are reported the comparison of the first six mode shapes be-

tween the present method and Nastran results. The obtained results are in

good agreement with finite element computations.

As previously said, when using a commercial FEM software for modeling a

curvilinearly stiffened plate, much effort is required for defining the stiffener

mesh, as its elements are required to share their nodes with those of the plate.

Moreover, when the stiffener is modelled with 2D elements as in this case,

a variation of the stiffener size requires a re-definition of the geometry. The

process is very time demanding, as the mesh has to be continuously updated

to the new surface. In the present method, only few parameters are needed

to model the entire structure, and they can be easily modified.
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Number of polynomials R = S FEM

Mode 15 20 25 30 32 35

1 96.12 95.07 94.42 94.04 93.92 93.77 91.49
2 138.22 136.79 135.93 135.46 135.34 135.15 129.81
3 164.24 163.53 163.16 162.92 162.85 162.76 160.22
4 245.13 243.98 243.36 243.01 242.91 242.77 240.41
5 284.98 283.26 282.34 281.77 281.61 281.39 276.35
6 333.48 332.90 332.60 332.41 332.35 332.28 316.99

Table 4.5: Frequencies (Hz) of the first eight natural modes for simply supported
curvilinearly stiffened plate.
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Figure 4.13: Convergence of the Ritz method for the first six natural frequencies
of simply supported curvilinearly stiffened plate.

4.1.3 Pre-buckling analysis: uniaxial compression

In this section, the stiffened panel considered in the two previous sections

is studied in terms of buckling response for uniaxial compression.

The results of the prebuckling analysis are presented in Figure 4.15, where

the contour of the out-of-plane deflections is reported for a unitary membrane

force per unit length Nxx. For simplicity, but with no loss of generality, no

load is applied to the stiffener (sniped stiffener, see Brubak et al. [16]).

One can observe that in contrast to the well-known behaviour of flat unstiff-

ened plates - for which the pre-buckling state is purely a membrane state -
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4. Results and discussions

(a) f1 = 94.04 Hz (b) f2 = 135.46 Hz (c) f3 = 162.92 Hz

(d) f4 = 243.01 Hz (e) f5 = 281.77 Hz (f) f6 = 332.41 Hz

(g) f1 = 91.49 Hz (h) f2 = 129.81 Hz (i) f3 = 160.22 Hz

(j) f4 = 240.41 Hz (k) f5 = 276.35 Hz (l) f6 = 316.99 Hz

Figure 4.14: Mode shapes of the first six natural modes for free-vibration analysis
of curvilinearly stiffened plate. Ritz method (a)-(f), FEM (g)-(l).
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4. Results and discussions

the response is now characterized by not null bending deflections. This be-

haviour is due to the presence of the stiffener offset from the plate midplane,

which couples the membrane and flexural behaviour of the structure.

w, FEM w, Ritz

Figure 4.15: Transversal displacement due to beam offset in pre-buckling analysis
of curvilinearly stiffened panel.

The membrane forces Nxx , Nyy , Nxy, computed with the present method us-

ing 30 polynomials, are reported in Figure 4.16, along with Nastran solutions.

It is possible to note that finite elements results are characterized by a clear

discontinuity on the stress resultants10. This happens because the presence of

the beam causes a variation of the structural stiffness which is concentrated

along a line. On the other hand, looking at the stress resultants computed

with the Ritz method, the gradients near the stiffener are very steep, thanks

to the use of high order polynomials but, clearly, the discontinuity cannot be

represented using global functions. Moreover the solution is characterized by

some low-magnitude oscillations, due to the attempt to replicate with contin-

uous functions (first derivatives of polynomials) the concerned discontinuity

(Gibbs phenomenon). The presence of local, spurious oscillation is clearly

undesired, and alters the accuracy of the results if one is interested in local

values. However, for those cases where the global structural response is of

10In finite elements, continuity at the frontier between two elements is assured for dis-
placement, but not for strains and stresses.
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concern, this oscillating behaviour tends to be filtered out, and the accuracy

of global responses is not compromised.

Nxx, FEM Nxx, Ritz

Nyy, FEM Nyy, Ritz

Nxy, Ritz Nxy, Ritz

Figure 4.16: Membrane forces (N/mm) resulting from pre-buckling analysis of
curvilinearly stiffened panel, in the case of uniaxial compression.
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4.1.4 Buckling analysis

4.1.4.1 Single-stringer panel: uniaxial compression and shear

The buckling phase receives in input the results of the pre-buckling anal-

ysis to compute the geometric stiffness matrix KG, and then solves a linear

eigenvalue problem to find the critical load. The analyses have been carried

out for two different structures, described in Figure 4.17, under uniaxial com-

pression and pure shear loading conditions. The first structure (example 1) is

x
y

b = 600 mm

a = 600 mm

N
xx

0

N
xy

0

Example 1

h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 30 mm

e = 16.29 mm

x

y
b = 600 mm

a = 600 mm

N
xx

0

N
xy

0

Example 2

h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 25 mm

e = 13.79 mm

Figure 4.17: Geometry of the examples considered for linear buckling analysis.

the stiffened plate considered also in the previous sections. In the second ex-

ample (example 2) the stringer path is defined by a third order Bézier curve,

which requires to set the position of four control points (that is reported in

Table 4.6). As it is possible to note, this type of curve description allows to

increase the complexity of the stiffener path: the curvature can vary along

the curvilinear coordinate s, and inflection points can be present. Neverthe-
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less the necessity to define a fourth control point would add two more design

variables for every stringer present in the model, challenging the preliminary

optimization of the structure. Simply-supported boundary conditions are

considered for both the examples.

The results obtained increasing the maximum order of polynomials consid-

ered in the analysis are reported in Table 4.7, along with the results com-

puted by Nastran. Again, it is possible to notice that the overall stiffness of

the model decreases with increasing the number of polynomials until conver-

gence.

The pre-buckling stress resultants computed using 30 polynomials are re-

ported in Figures 4.18, 4.19 and 4.20, along with finite element results for

comparison. Buckling mode shapes for the uniaxial compression and pure

shear loading conditions are presented in Figure 4.21. The results of the

present method are in good agreement with finite element computations for

both the considered example.

x, mm y, mm z, mm

P0 −300 −150 0
P1 0 −150 0
P2 300 150 0
P3 300 150 0

Table 4.6: Position of the 3rd order Bézier curve control points.

example 1 example 2

Polynomials N cr
xx, N/mm N cr

xy, N/mm N cr
xx, N/mm N cr

xy, N/mm

15 32.29 48.01 31.48 39.97

20 32.10 47.62 31.36 39.82

25 32.00 47.38 31.29 39.74

30 31.93 47.25 31.24 39.69

32 31.91 47.21 31.23 39.67

35 31.88 47.16 31.20 39.65

FEM 31.14 46.40 30.74 38.63

Table 4.7: Critical loads for simply supported curvilinearly stiffened plates.
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(a) Nxx, Ritz (b) Nxx, FEM

(c) Nyy, Ritz (d) Nyy, FEM

(e) Nxy, Ritz (f) Nxy, FEM

Figure 4.18: Membrane forces (N/mm) resulting from pre-buckling analysis of
example 1, in the case of pure shear.
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(a) Nxx, Ritz (b) Nxx, FEM

(c) Nyy, Ritz (d) Nyy, FEM

(e) Nxy, Ritz (f) Nxy, FEM

Figure 4.19: Membrane forces (N/mm) resulting from pre-buckling analysis of
example 2, in the case of uniaxial compression.
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(a) Nxx, Ritz (b) Nxx, FEM

(c) Nyy, Ritz (d) Nyy, FEM

(e) Nxy, Ritz (f) Nxy, FEM

Figure 4.20: Membrane forces (N/mm) resulting from pre-buckling analysis of
example 2, in the case of pure shear.
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(a) N cr
xx = 31.14 N/mm, FEM (b) N cr

xx = 31.93 N/mm, Ritz

(c) N cr
xx = 30.74 N/mm, FEM (d) N cr

xx = 31.24 N/mm, Ritz

(e) N cr
xy = 46.40 N/mm, FEM (f) N cr

xy = 47.25 N/mm, Ritz

(g) N cr
xy = 38.63 N/mm, FEM (h) N cr

xy = 39.69 N/mm, Ritz

Figure 4.21: Mode shapes for simply supported curvilinearly stiffened plates
under uniaxial compression (a-d) and pure shear (e-h) load conditions.
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4.1.4.2 Three-stringer panel: combined loads

In this section the general case with more than one curvilinear stringer is

considered for linear buckling analysis with combined loading condition. The

plate is clamped at all its edges and stiffened by three curvilinear stringers

which control points are reported in Table 4.8. A sketch of the problem is

reported in Figure 4.22. The analyses are conducted gradually increasing the

parameter γ defined as:

γ =
N0
xy

N0
xx

(4.125)

Also in this case the finite element model of the stringers is performed using

2D shell elements, and Ritz analysis has been carried out using 30 polyno-

mials. The comparison between finite element and present method results is

reported in Table 4.9. By increasing the amount of shear the critical compres-

sion load decreases for both the methods with a nearly constant difference

of 3.5%. The Ritz method, again, slightly overestimates the stiffness of the

structure compared to finite element solutions, but without compromising

the accuracy of the results. Stress resultants of pre-buckling analysis ob-

tained for γ = 1 are reported in Figure 4.23, while the corresponding mode

shape is shown in Figure 4.24.

h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 20 mm

e = 11.29 mm

Figure 4.22: Geometry of the composite plate stiffened by three curvilinear
stringers.
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stringer 1 stringer 2 stringer 3

x, mm y, mm x, mm y, mm x, mm y, mm

P0 −250 250 −250 0 −250 −200
P1 50 150 50 −50 200 −100
P2 250 −150 150 −500 200 500

Table 4.8: Position of the control points for the case of the panel stiffened by
three curvilinear stiffeners.

(a) Nxx, Ritz (b) Nyy, Ritz (c) Nxy, Ritz

(d) Nxx, FEM (e) Nyy, FEM (f) Nxy, FEM

Figure 4.23: Membrane forces (N/mm) resulting from pre-buckling analysis of
the plate with three stiffeners.
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N cr
xx, N/mm

γ Ritz FEM diff %

0.0 51.49 49.71 3.58
0.1 51.28 49.56 3.47
0.2 50.75 49.01 3.55
0.3 49.95 48.30 3.42
0.4 48.94 47.32 3.42
0.5 47.79 46.19 3.46
0.6 46.54 44.97 3.49
0.7 45.22 43.69 3.50
0.8 43.88 42.39 3.51
0.9 42.54 41.08 3.55
1.0 41.21 39.80 3.54

Table 4.9: Results for linear buckling of the composite panel stiffened by three
curvilinear stringers under combined loading conditions.

N cr
xx = 39.80 N/mm, FEM

N cr
xx = 41.21 N/mm, Ritz

Figure 4.24: Mode shape of clamped composite panel stiffened by three curvi-
linear stringers under combined loading condition with γ = 1.
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4.1.4.3 Panel with run-out

The reduction of the transverse area of an aircraft wing or fuselage causes

modifications in the number of stringers along the longitudinal direction.

This can lead to the abrupt interruption of one or more stringers before they

reach the opposite edge of the panel. Using the present method such situ-

ation can be easily modelled through an appropriate choice of the control

points for stiffener path parametrization. In particular it is sufficient to set

the position of P0 or P2 (or P3 if third order curves are considered) to lie

inside the plate domain. The case of a composite plate stiffened by two

straight stiffener (that can be modelled simply aligning the control points)

is illustrated in Figure 4.25. One of them is interrupted at x = 0. The panel

undergoes combined load condition with γ = 0.5, where gamma is defined

according to Eq. 4.125.

The results of pre-buckling analysis are illustrated in Figure 4.26 in terms

of membrane resultants. The obtained buckling mode shape is shown in

Figure 4.27, along with the value of the critical load. Also in this case the

present method provides an excellent accuracy-to-degrees of freedom ratio,

demonstrating close agreement with finite element calculations. In the fol-

lowing sections it will be shown how the modification of the uninterrupted

stringer’s path can increase the value of the critical load.

x

y
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a = 300 mm

N
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xy

0

h
p
 = 2.58 mm
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s
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 = 20 mm

e = 11.29 mm

Figure 4.25: Geometry of the test case of stiffened composite panel with run-out.
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(a) Nxx, Ritz (b) Nyy, Ritz (c) Nxy, Ritz

(d) Nxx, FEM (e) Nyy, FEM (f) Nxy, FEM

Figure 4.26: Membrane forces (N/mm) resulting from pre-buckling analysis of
the plate with run-out.

N cr
xx = 70.04 N/mm, FEM N cr

xx = 70.78 N/mm, Ritz

Figure 4.27: Buckling mode of stiffened composite panel with run-out under
combined load with γ = 0.5.
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4.2 Parametric studies

One of the most interesting aspects associated with the Ritz method relies

in the ease to perform parametric analyses and sensitivity studies. Indeed,

the almost null modelling time along with the reduced effort to solve the

structural problem make the procedure particularly suitable for these kind

of investigations. In the case of curvilinearly stiffened panels, this feature is

even more appealing, as far as the structural response can be, in a somewhat

manner, less predictable due to the inherent complexity of the panels: the

analyst can hardly say in advance how, for instance, the buckling load will

be affected by the stringer path. The availability of an efficient tool is thus

of crucial importance to gather insight into the effect of the various design

parameters.

4.2.1 Vibrations with pre-stress

The presence of the geometric stiffness KG in the eigenvalue problem in

Eq. 3.123 lead to vibration with pre-stress problem. Due to the linearity of

the system the geometric stiffness due to a load λP0 is simply λKG. Then

solving the eigenvalue problem:

[
−ω2 M + (K + λKG)

]
a = 0 (4.126)

it is possible to study the change of the natural frequencies varying the value

of λ and so the pre-stress applied. This study has been performed on the ex-

ample in Figure 4.9 under uniaxial compression load N0
xx. The free-vibration

problem has been solved in section 3.1.2, while the critical load can be found

in Table 4.7 (example 1).

The results are shown in Figure 4.28, where the first four natural frequen-

cies are plotted in function of the adimensional parameter λ/λcr. The in-

plane compression may have two main effects on the free vibrations of the

stiffened plate: it can change the natural frequency and it may change the

corresponding mode shape. It can be seen that, as expected, an increase

in magnitude of the in-plane loads reduces the natural frequencies. On the
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contrary when the applied load is tensile (λ < 0) the natural frequencies

increase. When λ/λcr = 0 no prestress is applied and the results are equal

to the free-vibration problem ones. The first natural frequency become zero

when the in-plane load is equal to the critical buckling load of the stiffened

plate. Moreover it is possible to see how the second and third frequencies

get close each other until they reach the same value for λ/λcr = 0.38. In this

point the second mode shape switches to the third, and the third mode shape

switches to the second. The same thing happens between first and second

modes at about λ/λcr = 0.9. The shapes of mode 2 for three different values

of λ/λcr are reported in Figure 4.29.
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Figure 4.28: Effect of the pre-load on the first four frequencies for curvilinearly
stiffened plate.

λ/λcr = 0.2 λ/λcr = 0.6 λ/λcr = 1

Figure 4.29: Shape of the second mode of curvilinearly stiffened plate for different
values of pre-load.
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4.2.2 Effect of the stiffener height hs and offset e on the critical load

In this section the variation of the critical load with stiffener height is

studied for the example 1 of section 3.1.4.1. Both uniaxial compression and

pure shear load cases are considered and the study has been performed with

and without taking into account the beam offset from the plate midplane.

The trend of the critical load for increasing values of stiffeners height is re-

ported in Figure 4.30 . Both the cases with e = 0 and e 6= 0 are considered.

The study carried out using finite elements (in this case no geometry updat-

ing is needed if the stiffener is modelled with beam elements) is also reported

to assure the truthfulness of the predictions.

As it is possible to see, the plots can be divided into three regions, identi-

fied by two changes on the trend slope. In the first region the height of the

stiffener is small, so that the bending energy to lift the stiffener in the out-

of-plane direction is relatively small and the structures acts approximately

like an unstiffened composite plate; the mode shape is global.

In the second region the energetic contribute of the stiffener in the internal

work begins to be important and the critical load increases rapidly; modifi-

cations on the mode shape are visible but it remains global.
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Figure 4.30: Variation of the critical load of curvilinearly stiffened panel with the
stiffener height for uniaxial compression (a) and pure shear (b) loading conditions.
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In the third region the stringer bending stiffness is large enough to promote a

local mode and the rise of the critical load is slowed down. The effect of the

beam offset is the increment of the slope and the anticipation of the switching

from one region to the other one. This last phenomenon is more evident in

the uniaxial compression case as it is possible to see in Figure 4.31, where

mode shapes are shown for different values of hs and e.

(a) hs = 0mm (b) hs = 16mm, e = 0 (c) hs = 16mm, e 6= 0

(d) hs = 0mm (e) hs = 16mm, e = 0 (f) hs = 16mm, e 6= 0

Figure 4.31: Buckling mode shapes of curvilinearly stiffened panel for different
values of stiffener height and offset, for uniaxial compression (a-c) and pure shear
(d-f).
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4.2.3 Effect of the stiffeners geometric curvature on the critical load

of stiffened panel under uniaxial compression load

In this section the effect of stiffener curvature on the critical load for the

example shown in Figure 4.32 is investigated. Linear buckling analysis is

performed varying the couple of parameters (α , d ) defining the geometry of

the problem, which is symmetric with respect to the x axis. As shown in

Figure 4.32, α controls the position along y of starting and ending points

of the stiffeners, while d is the distance with sign between control point P1,

which position along x is fixed at x = 0, and the line joining the other two

control points. In such way this parameter gives a measure of the curvature

of the stringers (when d = 0 they are straight). The first study has been

x

y

b = 500 mm

a = 300 mm

d
α

h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 30 mm

e = 16.29 mm

Figure 4.32: Geometry of the model used to investigate the effect of stiffeners
geometric curvature on the stability behaviour of the structure.

conducted for the uniform uniaxial compression load case. The sensitivity of

the present method to the optimal solution, with varying the maximum order

of polynomials considered in the analysis, has been assessed keeping track of

the value of d assuring the maximum critical load. The result of the sensitiv-

ity study is reported in Figure 4.33a, where the value of d corresponding to

the best configuration is plotted for an increasing number of trial functions.

As it can be noted, the optimum is reached quite fast and the parametric

analyses can be performed with reasonable number of polynomials. For this
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4. Results and discussions

study R = S = 16 has been chosen.

The value of the critical load is plotted in Figure 4.34 for different values

of paramters d and α. The graph shows that the maximum critical load is

achieved with the traditional structural solution with evenly-spaced straight

stiffener (α = b/3 , d = 0 ). On the other hand, a solution with curvilinear

stringers is found to be beneficial whenever the distribution of the stiffeners

differs from the evenly-spaced one, as the peak of each curve is reached when

d 6= 0.
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Figure 4.33: Sensitivity study of stiffened composite panel under uniform (a)
and parabolic (b) uniaxial compression.
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Figure 4.34: Effect of the curvature on the critical load of stiffened composite
panel under parabolic uniaxial compression.
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Another study has been performed in the case of variable uniaxial com-

pression. In this example the applied membrane force N0
xx varies with the

parabolic law:

N0
xx(y) = 1− 4

b2
y2 (4.127)

which reaches its maximum value for y = 0 and goes to zero at y = ±b/2.

As done for the previous example, a sensitivity study precedes the analyses.

Figure 4.33b shows that also in this case the optimal configuration can be

accurately computed with a number of polynomials R = S = 16. The

results, reported in Figure 4.35, offer different conclusions from the previous

example. In this case the highest value of the critical load for the evenly-

spaced configuration is reached with curvilinear stiffeners, that can increase

significantly the value of the critical load with respect to the straight stringers

solution. The global optimum is still achieved using straight stiffeners, but

for values of α different from b/3. The mode shapes of the optimum solutions

are reported in Figure 4.36 and 4.37 for some values of α and d, for both the

load case considered. It can be noted that the curvature of the stringers can

cause global mode shapes that in some application (for example aircraft wing

skin) are not allowed. An increment of the beam stiffness is needed, and it

can be obtained, for example, by changing the lamination sequence of the

stiffeners or increasing their cross section, as seen in the previous section.
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Figure 4.35: Effect of the curvature on the critical load of stiffened composite
panel under parabolic uniaxial compression.
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(a) α = 140, d = -87.5 (b) α = b/3, d = 0 mm (c) α = 200, d = 103.8

Figure 4.36: Buckling mode shape of stiffened composite panel under uniform
uniaxial compression with different values of stiffeners spatial distribution α (mm)
and geometric curvature parameter d (mm).

(a) α = b/3, d = -51.1 (b) α = 180, d = 10.7 (c) α = 200, d = 65.2

Figure 4.37: Buckling mode shape of stiffened composite panel under parabolic
uniaxial compression with different values of stiffeners spatial distribution α (mm)
and geometric curvature parameter d (mm).
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4.2.4 Effect of the stiffener geometric curvature on the critical load

of stiffened panel with run-out

As observed in Section 3.1.6, there are cases in which one or more stringers

are interrupted due to the reduction of the wing transverse area. In this

section the example in Figure 4.38 will be used to perform a study on the

effect of the stiffener curvature in this particular application.

The run-out can be performed mainly in two ways. A first possibility is to

interrupt the stringer path in correspondence of the rib (see the works of

Cosentino and Weaver [35],[36]). The presence of ribs and spars is modelled

in the present method by imposing the essential boundary conditions at the

edges of the plate, meaning that in this case the stiffener is interrupted outside

the plate domain ad it’s not part of the model. The mode shape in this

condition is reported in Figure 4.39a, along with the value of the critical

load. As expected, the stability behaviour is driven by the presence of a

large portion of the panel that remains unstiffened. This lead to the decline

of the critical load. In order to obviate this problem - which leads to the

need to increase the panel thickness and, consequently, the weight of the

structure - a common practice is to extend the path of the stiffener within

the plate domain. Figure 4.39b shows the mode shape and the critical load

in this new condition. As it can be noted this solution increases the stability

performance of the panel.

The aim of this section is to understand if a change on the path of the

uninterrupted stiffener can have a positive effect on the stability of the panel

with run-out.

The path of the stringer is defined by the following relations:

P0 =
(
−a

2
yP0

)
P1 =

(
xP1 yP1

)
P2 =

(
a
2

b
8

) (4.128)

where yP0 , xP1 , and yP1 are three design variables taken from a dense-enough

set of values. A Linear buckling analysis is performed for all the possible
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h
p
 = 2.58 mm

t
s
 = 6.192 mm

h
s
 = 30 mm

e = 16.29 mm

Figure 4.38: Description of the geometry of the panel with run-out.

(a) N cr
xx = 95.10 N/mm (b) N cr

xx = 116.93 N/mm

Figure 4.39: Buckling results for panel with run out. In (a) the stiffener is
interrupted on the plate edge. In (b) the stiffener is interrupted within the plate
domain to increase the stability performance.

combinations for both the examples shown in Figure 4.39. The results of the

best configuration founded for both the examples are reported in Figure 4.40.

In both cases a variation of the uninterrupted stiffener path can increase the

value of the critical load. It is worth noting how similar results to those ob-

tained extending the path of the interrupted stiffener (Figure 4.39b) can be

achieved employing only one curvilinear stiffener. It should be pointed out

that these results are not obtained using an optimization technique. Conse-

quently, configurations in Figure 4.40 may not be the optimal ones. The em-

ployment of a global optimization algorithm may allows to achieve a deeper

investigation of the design space and better configurations may be founded.
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(a) N cr
xx = 128.57 N/mm

(b) N cr
xx = 166.15 N/mm

Figure 4.40: Best configurations for the stiffened plate with run-out (case (a):
yP0 = 4.44mm , yP1 = −50mm , xP1 = 90mm ; case (b): yP0 = −3.33mm ,
yP1 = 4.44mm , xP1 = 10.0mm ).
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5. Application to wing-box skin

In the previous sections it has been shown how the geometry of the prob-

lem, and the load condition considered, can affect the optimal configuration

and the stability performance of composite stiffened panel. Curvilinear stiff-

eners can be a good solution, for the case of uniform compression, when

the stiffeners are not evenly-spaced in the plate surface. At the same time,

buckling performance of evenly-spaced configurations can be improved when

the applied loads are variable along the edges of the plate. Moreover, when

the structure involves the presence of run-out, a curvilinear solution for the

uninterrupted stiffeners may increase the stability performance of the struc-

ture. These results suggest that the effect of the stringers curvature is very

case-dependent, and any conclusion on the convenience of using curvilinear

stiffeners can be taken only in relation to their real application. For these rea-

sons further studies were conducted on a composite stiffened panel resulting

from a preliminary sizing of an aircraft wing box.

5.1 Description of the reference aircraft

The aircraft taken as reference is based on the NASA Common Research

Model (CRM) that has been created in order to provide a standardized model

for comparison of computational fluid dynamic codes with experimental data

[37]. The mission defined for this aircraft is similar to a Boeing wide body

commercial transport aircraft11, with gross vehicle weight (GVW) 225000Kg

[38]. The cruise speed is 252m/s at 35000 ft with a Mach number of 0.85.

Wing dimensions are taken from the provided CAD file (illustrated in Fig-

11E.g. Boeing 777-200.
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5. Application

wing span 60m
root chord 11.8m
tip chord 2.7m

mean aerodynamic chord 7m

Table 5.10: NASA CRM wing characteristic dimensions.

(a) (b)

Figure 5.41: Geometry (a) and wing FEM model (b) of NASA Common Re-
search Model.

ure 5.41a) and are reported in Table 5.10.

5.2 Preliminary sizing

5.2.1 Estimation of the loads

The estimation of the loads is carried out performing an aeroelastic anal-

ysis. To this aim a stick airframe model and an aerodynamic panel-based

model are developed in Nastran environment.

For this work, the provided isotropic aluminum based finite element model of

the wing-box, shown in Figure 5.41b, is used to take informations about the

structural solution in terms of spars and skin thickness, stiffener and spar-cap

dimensions, and distance between ribs. The adopted configuration consists

in a double-cell wing-box, with stringers parallel to the midspar. All these

informations, along with the adopted material properties, are necessary to

estimate the cross section mechanical properties, which are used to develop

the stick airframe model. It should be pointed out that, for this preliminary

estimation of the loads, an isotropic-based structural model has to be used

since no composite solutions are provided. The cross-section properties are
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Figure 5.42: Mechanical properties of wing cross sections along the halfwing
span.

computed for 14 stations along the half-wing span, using the monocoque sec-

tion theory.

The obtained distributions of axial, bending and torsional stiffness are re-

ported in Figure 5.42, while Figure 5.43 shows the position of the neutral

points and shear centres. These properties, along with the in-plane bending

stiffness and the product of inertia, have been interpolated and inserted in

Pbeam finite element entries, developing the stick model of the wing. Using

this simplified description of the wing, ribs are not taken into consideration.

However they represent a substantial contribute to the overall weight of the

structure. For this reason, non-structural mass linearly distributed along the

wing span, has been added to model the mass of the ribs.
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Figure 5.43: Position of section neutral points and shear centres along the
halfwing span.

In order to check the accuracy of the modelling, a modal analysis has been

performed for both the stick model and the provided 3-D model. The com-

parison of the obtained results is shown in Figure 5.46 and confirms the good

estimation of cross-section stiffnesses and masses. As can be noted the po-

sition of the third and fourth mode is inverted. However, this represents an

acceptable discordance, as the natural frequencies are really close one an-

other.

The complete stick model of the wing has been completed by reflecting,

with respect to the aircraft longitudinal axis, the already created beam el-

ements. Leading and trailing edge flaps and engines are modelled using

lumped masses. Another point mass was added to model the remaining part

of the aircraft, making the total weight of the model to approach Boeing

777 Operating Empty Weight. Its location is chosen to match the Boeing

777 most forward position of the centre of gravity (typically critical for wing

sizing [39]). The Maximum Take Off weight is reached modelling the fuel

as non-structural mass linearly distributed along the wing-span (that has

been added to ribs mass contribute). Another element required to compute

the aeroelastic response to symmetric maneuver is the horizontal tail plane,

88



5. Application to wing-box skin

Figure 5.44: Aerodynamic model.

which is modelled using rigid elements RBE2 as no interest is given to tail

plane deformability effects.

In order to analyze static the aeroelastic response, a vehicle aerodynamic

model is needed. The model was created using the Doublet Lattice Method

[40]. This method, implemented in Nastran, is built on the theory of incom-

pressible, inviscid and irrotational flow, also known as ideal or potential flow.

Even if this implies to assume the absence of turbulence and boundary layer

phenomena, the doublet lattice method allows to compute, with a contained

computational effort, the velocity field around the wing and, consequently,

the pressure distribution. The lifting surface is divided into quadrilateral

panels, and modelled as an infinitely thin sheet of discrete vortices. The in-

tensity of each vortex is constant inside the corresponding panel. To account

for twist and camber of the wing airfoil, a downwash correction was used.

Aerodynamic control surfaces were created to allow for trimmed maneuver

analysis. In Figure 5.44 the developed aerodynamic model is reported. The

loads are computed for the maximum load factor (g = 2.5) pull-up maneuver

at cruise speed, which is one of the critical loading condition for wing sizing.

The analysis solved by Nastran falls under the so called static aeroelasticity

analysis: the time variability of the applied loads is considered enough slow

to allow for steady aerodynamics and to neglect structural dynamics. In Fig-

ure 5.45 is reported the distribution of bending moment and torque along
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the half-wing span. These are the loads that will drive the composite wing

box sizing procedure.

(a) Bending moment

(b) Torque

Figure 5.45: Generalized force in beam elements along the halfwing span.
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Mode 1, f = 3.48Hz Mode 1, f = 3.45Hz

Mode 2, f = 8.30Hz Mode 2, f = 8.45Hz

Mode 3, f = 15.38Hz Mode 3, f = 15.07Hz

Mode 4, f = 16.05Hz Mode 4, f = 16.02Hz

Figure 5.46: Comparison of the first four natural modes between stick and 3D
wing FEM models.
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Figure 5.47: Definition of the local coordinate system (taken from [41]).

5.2.2 Composite wing-box sizing procedure

The sizing procedure is based on the thin walled composite beams theory,

which is described in detail in [41]. In Figure 5.47 is reported the schematic

representation of the cross section, which is described by its contour divided

into segments. The segments are equipped with a local reference system

(s,r), while (ξ,η,z) are the principal axes of the cross section. Each segment

is modelled with the constitutive equations of classical lamination theory [25]

and assuming the beam state:



N
(i)
z

N
(i)
s = 0

N
(i)
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M
(i)
z

M
(i)
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M
(i)
zs


=



A11 A12 A16 B11 B12 B16

A22 A26 B12 B22 B26

A66 B16 B26 B66

C11 C12 C16

C22 C26
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
(5.129)

Similarly to what has been done for stiffeners constitutive law in Section 2.3.2,

rows in Eq. 5.129 can be reordered and the matrix statically condensed to
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obtain: 
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 (5.130)

Stiffeners are modelled as concentrated axial stiffnesses. The axial defor-

mation of the cross-section is computed using the beam classical formulas

referred to the principal axes (ξ, η):

εz = ε0
z + ξ kη − η kξ =

Fz
(EA)

+ ξ
Mη

(EIη)
− η Mξ

(EIξ)
(5.131)

where the notation used for the axial stiffness (EA) and the bending stiff-

nesses (EIη), (EIξ) is used to highlight the fact that with composite materials

it is not possible to separate the elastic properties (E and G) from the geo-

metric properties (area, moment of inertia, etc.). For the present work, the

contributes of axial force Fz, and bending moment Mξ are neglected, as their

magnitude is strongly dependent from the aircraft wing configuration and

usually much lower with respect to bending moment Mη. If the laminate

is symmetric Bi = 0, and the normal stress resultant Nz can be computed

substituting the constitutive relation in Eq. 5.130 in Eq. 5.131:

N i
z = ξ

Mη

(EIη)
Ai (5.132)

The torque Mt generates a state of pure shear stress in the skin of each cell.

Shear fluxes q1 and q2, acting in the first and second cell respectively, can be

computed enforcing the moment equilibrium equation and the compatibility

of the rotations: Mt = 2 Ω1 q1 + 2 Ω2 q2

β1 = β2

(5.133)

where Ωi is the area of each cell, while βi is the rotation of the i-th cell that

is computed as:

βi =
1

2 Γi

∮
qi
Fi
ds (5.134)
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Figure 5.48: Block scheme of the wing-box sizing procedure.

being Γi the perimeter.

In Figure 5.48 the block scheme of the sizing procedure is reported. Once

generalised forced in beam elements and cross-section mechanical properties

are known, it is possible to compute the stresses using Eqs. 5.132 and 5.133.

Skin thickness is chosen to satisfy strength and stability constraints. The first

requirement is enforced using the maximum stress method. The stability con-

strained is checked using analytical expressions to compute the critical load

of each panel, which is assumed to be simply supported at its edges. Stiffener

dimensions are chosen in order to promote a local instability at critical load.

This is translated in a requirement on stringers minimum bending stiffness,

as described in detail in [42]. The process is repeated gradually increasing

skin and spars thickness until all the constraints are not fully satisfied.

It should be pointed out that the resulting cross section properties are changed

with respect to the isotropic structure used to compute the loads and, conse-

quently, the aeroelastic response may be slightly different. The entire process

should be repeated from the load computation phase, with the new cross-

section properties, until convergence. Nonetheless, for the aim of this work,

it is sufficient to stop the process at the first iteration, as the attention is not

focused on the design of the wing box.
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5.2.2 Reference wing box

The section of the considered wing-box is located at about 85% of the air-

craft’s half wingspan. Its geometry is schematically described in Figure 5.49.

It is worth noting that the stiffeners are not evenly spaced on the wing-box

skin. More precisely due to the wing taper ratio the external panels are

reduced in width. As expected, skin sizing is stability driven, so the skin

thickness is large enough to guarantee a critical load higher than the applied

state of stress.

The skin of each cell can be modelled using the present method considering

the following assumptions:

• the taper ratio and the distance between ribs are low,

• the effect of the panel curvature can be neglected.

With this hypotheses the wing-box skin is reduced to a stiffened rectangular

plate. The boundary conditions are given by the presence of ribs and spars,

which prevent the out of plane displacement at the edges of the plate. The

presence of the spar-caps is taken into account adopting clamped boundary

conditions in correspondence of the short edges.

The effect of the stiffeners geometric curvature will be studied using the skin

of the largest cell as a baseline. The geometry of the reference configuration

with straight stiffeners, along with thicknesses and dimensions resulting from

the sizing process, is reported in Figure 5.50. The mode shape in the case of

uniaxial compression load, along with the value of the critical load, is plotted

in Figure 5.51.

Figure 5.49: Schematic representation of the wing box chosen as reference.
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h
p
 = 3.25 mm

t
s
 = 8.256 mm

h
s
 = 26 mm

e = 14.625 mm

Figure 5.50: Description of the reference configuration resulting from the wing-
box sizing process.

(a) N cr
xx = 184.5 N/mm

Figure 5.51: Buckling mode shape and critical load value for the reference con-
figuration under uniaxial compression.
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5.3 Results

The number of parameters to describe the geometry of the problem in-

creases rapidly with the number of stiffeners. If they are forced to start and

end at plate edges, the addition of one stringer add four more variables12

to the problem. For this reason the optimal stiffeners configuration can be

achieved using global optimization techniques [43]. Nonetheless topological

optimization of curvilinearly stiffened panels lies outside the scope of this ac-

tivity. A better understanding of the potential benefits of curvilinear stiffen-

ers can be achieved with simple parametric studies by allowing the variation

of few, meaningful parameters.

In this context the stability behaviour of the reference structure in Figure 5.50

is assessed by varying the position of control point P1 of each stiffener, mean-

ing that stiffeners starting and ending points remain unchanged with respect

to the baseline. Similarly to what has been done in Section 3.2.3, the stiffen-

ers curvature is determined by parameter d that measures the distance along

y between P1 and the line joining the other two control points. In order to

further reduce the number of variables, the parameter d of each stiffener is

determined using the following law:

d1 =
1

6
α

d2 =
1

3
α

d3 =
2

3
α

d4 = α

(5.135)

where stiffener numbering is defined in Figure 5.50. The parameter α =

d4 represents the curvature parameter of the fourth stringer. Increasing α,

control points get more dense towards y positive direction. The control points

position along x is the same for all the stiffeners. In this way the curvilinear

12Namely the two coordinates of point P1 and y coordinate of points P0 and P2

97



5. Application

stiffeners configuration is fully determined by parameters α and β:

P
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1 =

(
β , ŷ

(1)
P1 + 1

6
α
)
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(2)
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(
β , ŷ

(2)
P1 + 1

3
α
)
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1 =

(
β , ŷ

(3)
P1 + 2

3
α
)

P
(4)
1 =

(
β , ŷ

(4)
P1 + α

) (5.136)

where ŷ
(i)
P1 is the y coordinate of control point P1 in the reference configura-

tion. The results of the study are summarized in Figure 5.52. The value of

the critical load is plotted for different α and β, considering different values

for the combined load parameter γ. The starting point of each plot (α = 0),

represents the traditional configuration with straight stiffeners. The buckling

mode shapes of the best configurations for different values of γ are illustrated

in Figure 5.53, along with the results of the corresponding traditional con-

figurations. It is worth noting that the presence of global mode for γ ≥ 0.3

is due to the fact that stringers are not sized for such loading conditions.

In all the considered examples, curvilinear stiffeners are found to be bene-

ficial, markedly increasing the value of the critical load and decreasing the

stiffeners out of plane displacement in the case of global modes. It is worth

noting that in the uniaxial compression case the optimal configuration is

symmetric with respect to y axis. Whenever the shear contribute is differ-

ent from zero (γ 6= 0), the optimal configuration loses the symmetry, and

the position along x axis of control point P1 acts an important role in the

stability behaviour of the structure. This means that more complex configu-

ration should be investigated through a global optimization technique, with

the aim to further increase the performance of the structure fully exploiting

the potentiality of curvilinearly stiffened panels.

It should be pointed out the capability of the present method of efficiently

modelling this type of structure. Every change of configuration can be per-

formed varying a small number of parameters, without the need of imple-

menting complex re-meshing or contact algorithms.
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Figure 5.52: Critical load for different values of α, β and γ.
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5. Application

(a) γ = 0.0, N cr
xx = 184.5 N/mm (b) γ = 0.0, N cr

xx = 214.4 N/mm

(c) γ = 0.3, N cr
xx = 176.3 N/mm (d) γ = 0.3, N cr

xx = 201.3 N/mm

(e) γ = 0.7, N cr
xx = 139.0 N/mm (f) γ = 0.7, N cr

xx = 171.9 N/mm

(g) γ = 1.0, N cr
xx = 116.9 N/mm (h) γ = 1.0, N cr

xx = 147.8 N/mm

Figure 5.53: Mode shape of the optimal configuration for different values of γ.
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6. Conclusions

A Ritz-based approach for the analysis of stiffened composite panels

with arbitrarily shaped stiffeners has been developed. A first-order shear-

deformable theory is employed to model the deflections of both the compos-

ite panel and the curved composite stiffeners, and two approaches to enforce

plate/stringers compatibility are explained in detail. The method is capable

of managing different type of boundary and loading conditions.

The almost null modelling time and the reduced computational burden make

the Ritz method particularly suitable for the analysis of these structures: the

inherent complexity of the geometry leads to the need of a deep investigation

of the design space, hence a fast yet accurate modelling procedure is of prime

importance.

After a preliminary validation of the developed computational tool, the po-

tentialities of the Ritz method are exploited to study the mechanical be-

haviour of curvilinearly stiffened panels and the benefits that this solution

could bring to aeronautical airframe design. Curvilinear stiffeners are found

to be beneficial whenever the traditional structural solution does not allow

for a evenly-spaced configuration for the stiffeners. This situation can occur

in the case of an aircraft wing-box where the wing taper ratio, may cause the

reduction of the transverse area.

Nonetheless, this work represents a preliminary investigation of the problem.

All of the considerations are driven here from buckling considerations, whilst

a real design should consider a more complex set of design requirements, in-

cluding, but not restricted to, aeroelastic responses and dynamic ones.

A global optimization technique may be the best approach to have a more

clear idea of the potential advantages of this structural solution, and how
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Conclusionsn

they depend on the geometry of the problem and on the loading conditions.

Moreover the computational tool can be improved, for example adding the

possibility to model non-rectangular plates, or implementing other type of

analysis. In this context the investigation of the post-buckling behaviour of

curvilinearly stiffened panel may be interesting to asses the level of residual

stiffness of these structures after the critical load.
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Appendix A

In section 2.5 it has been showed how it is possible to express the strain

parameter ε0
t in function of the linear displacement of the plate. Here is pre-

sented the same approach for all the other strain components and curvatures:
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