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Abstract

Earthquakes have been constantly studied due to their devastating effects in
terms of loss of human life and economic damages. In order to limit these effects
and investigate the nature of this phenomenon, in literature, the generation of
shaking fields has been proposed based on empirical models which predict the
ground motion (Ground Motion Prediction Equation, GMPE). The variance re-
lated to the prediction error of these models and the spatial covariance of their
residuals have been also studied, with the purpose of understanding if GMPEs
are able to describe exhaustively the phenomenon and finding the possible correc-
tive terms. Thanks to several records of waveforms collected during the seismic
sequence of Emilia in 2012, it was possible to model the prediction error of a
GMPE specific for the Northern part of Italy with a fully non-ergodic approach
which identifies a systematic corrective term in the residuals for the median pre-
diction of the model.
The aim of this thesis is to build shaking fields through the combination of the
prediction of the aforementioned GMPE, the prediction and the simulation of
its corrective term and of its residual uncertainty with both the univariate and
the functional approaches to the geostatistics. The application of this last ap-
proach to Applied Seismology is innovative and allows to provide predictions and
joint stochastic simulations of many intensity measures through computational
and modeling efforts comparable to the ones of the multivariate approach. The
thesis shows that for some relevant intensity measures the performances of the
functional approach on the predictions are comparable or better than the ones of
the univariate approach, thus providing more complete and more robust results.



Sommario

I terremoti sono da sempre oggetto di studio per via degli effetti devastanti che
provocano in termini di perdite di vite umane e danni di natura economica. Al
fine di limitare tali effetti e studiare la natura di questi fenomeni, in lettera-
tura è stata proposta la generazione di mappe di scuotimento del suolo basate
su modelli empirici predittivi del moto del terreno (Ground Motion Prediction
Equation, GMPE). Sono inoltre state indagate la varianza associata all’errore di
predizione di tali modelli e la covarianza spaziale dei relativi residui con lo scopo
di capire se le equazioni GMPE descrivano esaustivamente il fenomeno e di stu-
diarne eventuali termini correttivi. Le molteplici registrazioni di forme d’onda
effettuate nella sequenza dell’Emilia nel 2012 hanno permesso la modellizzazione
dell’errore di predizione di una GMPE specifica per il Nord Italia con un ap-
proccio pienamente non ergodico, che individua nei residui della regressione un
termine sistematico correttivo della predizione mediana del modello GMPE.
L’obiettivo della tesi è realizzare mappe di scuotimento tramite la combinazione
di tre elementi: la predizione della sopraccitata GMPE, la predizione e la simu-
lazione del suo termine correttivo e dell’incertezza residua ad esso associata, con
un approccio dapprima univariato quindi funzionale alla geostatistica. L’appli-
cazione di metodi di analisi funzionale alla sismologia applicata è innovativo e
consente di fornire previsioni e simulazioni stocastiche congiunte di molteplici
misure d’intensità con uno sforzo modellistico e computazionale comparabile a
quello del caso multivariato. La tesi mostra che le performance dell’approccio
funzionale sulla previsione di alcune misure d’intensità rilevanti sono comparabili
o migliori dell’approccio univariato, fornendo quindi risultati più completi e più
robusti.
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Introduction

How much does it cost to save a human life through the seismic adaptation of
existing buildings? What are the factors that most significantly influence the
seismic motion? With which criteria can the seismic hazard of a region or a site
be measured? What is the probability that the peak ground acceleration exceeds
a certain intensity? These are just some of the big queries that seismology tries
to answer.
The prediction of ground acceleration when an earthquake occurs is essential to
answer such questions. The probability of exceeding a certain level of ground
motion for a given earthquake scenario is generally computed through the use
of Ground Motion Prediction Equations (GMPE). These prediction models are
linear regression models whose accuracy increases if the features used (e.g. mag-
nitude, distance from the epicenter, etc.) are the most suitable to describe the
phenomenon.
Earthquakes are very complex phenomena to be modeled and a linear predic-
tion model is often unable to capture all the complex interactions between wave
propagation and the path in which it propagates, resulting in a high variance of
prediction error.
In order to take into account these complex interactions, a further analysis of
prediction residuals must be developed to identify the presence of systematic
and repeatable contributions that correct the prediction. If the new prediction,
given by the sum of the model and the corrective term, has a lower prediction
error, it means that an additional deterministic component of the phenomenon
has been identified.
A non-ergodic approach is the most effective for determining the corrective term
but it is applicable to residuals only when a large number of seismic recordings is
available. Using this approach, the Istituto Nazionale di Geofisica e Vulcanolo-
gia (INGV) has calculated the corrective term and the variance of the residuals
related to the spectral acceleration for different natural periods of oscillation.
This quantity allows to compute and model the seismic action for structural
response assessment. Since the residuals and the remaining aleatory variability
are provided with coordinates, their spatial correlation has been investigated in
order to highlight differences in the behavior at low and high periods and predict
their value in new positions of the space. For this purpose, it has been adopted
the univariate approach to geostatistics that models the spatial covariance of the
corrective term considering each period independently.
The corrective term is modelled as the sum of a deterministic term and a ran-
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12 INTRODUCTION

dom one. Variograms have been used to find the spatial covariance while the
prediction has been computed through ordinary kriging, in case the determinis-
tic part is constant in the space, or universal kriging when the deterministic part
depends on the spatial coordinates (Cressie 1993). In order to consider the vari-
ance related to these predictions, Gaussian sequential simulation has been used.
It enables to simulate a new value of the spectral acceleration taking into account
the correlation with the values already simulated. To take into account also the
correlation between the different spectral periods, multivariate geostatistics can
be applied (Chilès et Delfiner, 1999).
However, it presents some limits such as the possibility to compute a restricted
number of spectral periods simultaneously.
In this study, in order to overcame the aforementioned limit, for the first time
a functional geostatistics approach has been implemented in applied seismology
to study the corrective term of the GMPE and the related variance at different
periods jointly. This approach is motivated by the fact that the spectral accel-
eration is a function of the natural period of oscillation of the building. This
approach combines Functional Data Analysis (FDA, Ramsay and Silverman,
2005) techniques with the ones of multivariate geostatistics. Indeed, FDA allows
to approximate a collection of discreet observations through a smooth function
and to project these on a new reference system whose basis is made of the main
principal directions (i.e. Functional Principal Components). In this way, the
function is represented through a vector of coordinates representing the function
in the new reference system.
Instead, the geostatistics multivariate approach, by means of the cokriking, al-
lows us to predict the vector of coordinates in new positions of the space and
thus to create the complete curve of both the corrective terms and the variance
through the linear combination of the functions of the basis.
The application of the Functional Geostatistics approach to Applied Seismol-
ogy is a turning point since it allows to provide predictions and joint stochastic
simulations of all the periods by means of computational and modeling efforts
comparable to the ones of the multivariate approach.
The thesis is organized as follows: Chapter 1 presents a review of literature
regarding the GMPE and the ergodic assumption. Chapter 2 describes the case-
study and the dataset. Chapter 3 describes the univariate approach to the
geostatistical analysis of intensity measures. Chapter 4 describes the Functional
geostatistics approach. Chapter 5 shows models comparison and the results.



Chapter 1

State Of The Art

The aim of this Chapter is first to introduce the reader to the key concepts
of seismology and engineering seismology we have employed in the thesis and
secondly to explain how the previous studies have inspired us and what are the
innovations of our analysis in comparison to the other ones.

1.1 PGA and SA

The peak ground acceleration (PGA), in a specific location, is defined as the am-
plitude of the largest peak acceleration recorded by a local accelerogram during
an earthquake (Douglas 2003).
In order to introduce the acceleration response spectrum (SA), we need to de-
scribe the dynamic equation of a Single Degree Of Freedom System (SDOF).
The SDOF is made up of a mass m, a spring with stiffness k and a dashpot with
a coefficient of viscous damping c.

Figure 1.1: Single degree of freedom system.

Let u(t) be the absolute displacement of the support at time t, x(t) the absolute
displacement of the oscillator and y(t) := x(t) − u(t) the relative displacement
of the oscillator with respect to support.
Then using Newton’s second law we obtain the dynamic equilibrium equation:

mẍ(t) + cẏ(t) + ky(t) = 0 (1.1)

13



14 Chapter 1. State Of The Art

and by substituting x(t) = y(t) + u(t)

mÿ(t) + cẏ(t) + ky(t) = −mü(t) (1.2)

finally
ÿ(t) + 2ωnζẏ(t) + ω2

ny(t) = −ü(t) (1.3)

where:

• ωn =
√

k
m is the natural frequency of the oscillator

• ζ = c
2mωn

= c
ccr

is the damping ratio

The acceleration response spectrum is defined as:

SA(Tn, ζ) = maxt|ẍ(t)| (1.4)

By fixing the parameter ζ and the seismic wave base acceleration, ü(t) the ac-
celeration response spectrum becomes a function only of the natural period Tn.
Finally we can introduce the relation between SA and PGA.

SA(Tn = 0) = PGA (1.5)

The equality is derived by observing that when Tn=0 then wn=0 because Tn =

2πwn. But at the same time wn =
√

k
m so k=0.

In Figure 1.1 we observe that if k=0 than the mass m and the support move
together and also the relative displacement y(t) = 0 and x(t) = u(t). By substi-
tuting x(t) = u(t) into equation 1.4 we obtain

SA(Tn = 0, ζ) = max
∣∣∣ ¨u(t)

∣∣∣ (1.6)

But by definition PGA = max| ¨u(t)| so eq(1.5) holds true.

1.2 Ground Motion Models (GMM)

Ground motion models are commonly used in seismology to predict the probabil-
ity distribution of the ground-motion intensity at a specific site due to a partic-
ular earthquake event. These models are often obtained through the regression
on observed ground-motion intensities and are fitted using either the one-stage
mixed-effects regression algorithm proposed by Abrahamson and Youngs (1992)
or the two- stage algorithm of Joyner and Boore (1993). Ground-motion models
were originally treated as fixed-effects models that take the following form:

ye,s = µe,s + ∆ (1.7)

Where ye,s is the natural logarithm of the ground-motion parameter (such as
PGA or SA) observed at site s during earthquake e, µe,s is the mean ground
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motion (in log terms) predicted by the GMPE (linear predictor function of mag-
nitude, distance, style of faulting, site conditions and other exogenous variable)
and ∆ is the noise term that captures all the other factors which influence the
response variable and that are not considered by the deterministic part of the
model.
The mixed-effects model differs from the fixed-effects model in its interpretation
of the error term ∆ as the sum of between event residuals δBe and δWe,s within
event residuals:

ye,s = µe,s + δBe + δWe,s (1.8)

δWe,s and δBe are zero-mean, independent, normally distributed random vari-
ables with standard deviations τ and φ, respectively.
The Between event residual describes the average source effects and it is influ-
enced by some factors such as stress drop and variation of slip in space and time
which are not taken into account by regression models based only on magnitude,
style of faulting, and the depth of the source.
The Within event residual (which describes Azimuthal variations in source, path,
and site effects), is function of elements like crustal heterogeneity, deeper geolog-
ical structure, and near-surface layering which are not explained by a distance
metric and a site-classification based on the average shear-wave velocity (Villani
et Abrahamson 2015).
The standard deviation τ of the between event term describes the earthquake-
to-earthquake variability while the within-event standard deviations φ describes
the record-to-record variability.

Since the between-events and within-event residuals are uncorrelated, the total
standard deviation σ can be expressed through the following formula:

σ =
√
τ2 + φ2 (1.9)

1.3 Ergodic And Non-ergodic Assumptions

Definition 1 (Anderson and Brune(1999)). An ergodic process is defined as
a random process in which the distribution of the random variable in space is
assumed to be the same as the distribution of the same variable at a single point
when sampled over time.

This means that the ground-motion uncertainty computed from a global dataset
(i.e.,including various sites and various sources for multiple events) is assumed
to be the same as the variability at a single site (Rodriguez-Marek et al. 2013).

When an ergodic assumption is made, there is a large overestimation of the
aleatory standard deviation σ. The key to reduce the standard deviation of
the model is identifying those components of ground motion variablility at a
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single site that are repeatable rather than purely random, so that these may be
removed from the aleatory variability and transferred to the quantification of
the epistemic uncertainty (Al Atik 2010).

Using the terminology introduced by Al-Atik et al. (2010) and Villani et al.
(2015), we can identify three types of residuals decomposition: the fully ergodic,
the partially ergodic and the fully non ergodic. The Fully ergodic assumption
is made when the empirically based ground motion models are developed to
compensate a lack of data (Anderson and Brune, 1999) and the partially-ergodic
approaches refer to single-station σ models and have a standard deviation that is
more representative of the variability of the ground motion observed at a single
site (Lin et al., 2011; Rodriguez-Marek et al., 2011).
In the fully ergodic approach the prediction value µe,s and the total standard
deviation σ are:

µe,s = µe,s (1.10)

σ =
√
τ2 + φ2 (1.11)

In order to introduce the partially non ergodic approach and the fully non ergodic
approach, we have to split the between-event residuals and the within event
residuals as follows.
The between event residuals in region r, δBe,r, can be considered as the sum of
the systematic regional difference in the median source terms and the aleatory
source variability terms:

δBe,r = δL2Lr + δB0,er (1.12)

The δL2Lr term can be estimated if we have several recordings from a single
source region r and it is computed as

δL2Lr =
1

NEr

NEr∑
e=1

δBe,r (1.13)

in which NEr is the number of earthquakes in region r.

The within-event residuals can be seen as

δWe,s = δS2Ss + δWSe,s (1.14)

in which δS2Ss can be interpreted as the systematic average site correction term
for station s (site-to-site residual) and δWSe,s is called within-site residual.
In order to compute the average site term, we have to calculate the average
within event residual at a site s over all the events observed at that specific site.

δS2Ss =
1

NEs

NEs∑
e=1

δWe,s (1.15)
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in which NEs is the number of earthquakes recorded at site s.
We can also split the within-site residuals in order to highlight an average path
term:

δWSe,s = δP2Ps,r + δW0,es (1.16)

in which δP2Ps,r is the mean path term from sources in region r to site s. The
path term is the mean within-site residual for a given source-site pair:

δP2Ps,r =
1

NEs,r

NEs,r∑
e=1

δWSe,s,r (1.17)

In the partially non-ergodic approach (Rodriguez-Marek et al. 2011)

µe,s = µe,s + δS2Ss (1.18)

σ =
√
τ2 + φ2

WS,s (1.19)

with

φWS,s =

√√√√ 1

NEs − 1

NEs∑
e=1

δWS2
e,s (1.20)

The fully non-ergodic approach can be implemented following Villani and Abra-
hamanson(2015):

µe,s = µe,s + δS2Ss + δP2Ps,r + δL2Lr (1.21)

σ =
√
τ2

0,r + φ2
0,sr (1.22)

where:

τ0,r =

√√√√ 1

NEr − 1

NEr∑
e=1

δB2
0,er (1.23)

φ0,sr =

√√√√ 1

NEsr − 1

NEsr∑
e=1

δW 2
0,esr (1.24)

In this study, starting from two dataset developed by Lanzano et al. (2017)
following a full non ergodic assumption, we investigate the spatial distribution
properties of the corrective term defined as δL2L + δP2P + δS2S and σ0,sr

(eq 1.22) in order to predict and simulate their values in new locations and at
different periods.
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1.4 Modelling the spatial dependence among residu-
als

In the past, several researchers, by adopting a fully ergodic approach, have de-
veloped models to study the spatial dependence of between and within event
residuals.
For example a regression algorithm for mixed effects models considering the spa-
tial correlation of residuals was developed by Jayaram and Baker (Jayaram and
Baker 2010) while the correlation of ground motion parameters such as PGA,
the peak ground velocity PGV, and the PSA responses at two different sites was
elaborated by Katsuichiro Goda, Hong and Atkinson (Goda and Hong 2008,
Goda and Atkinson 2010).
A great contribution to this framework has been made by Park et al. (2007) who
explored the site-to-site correlation of IMs and demonstrated its use in seismic
hazard. The literature findings indicate that the spatial intraevent correlation
depends on the natural vibration periods and on the separation distance.
Through these analysis, based on an univariate approach, it was possible to
evaluate the correlations between residuals of spectral accelerations at the same
spectral period at two different sites.
In 2012 Loth and Baker introduced a new multivariate approach to model
Within-event residuals based on cross-correlation between residuals of spectral
accelerations at different periods and at different sites, which is employed for
example to develop model for risk assessment of a portfoglio of buildings with
different fundamental periods (Loth and Baker 2012).
In our study, instead of modelling the spatial dependence of within event term,
we model the spatial dependence of the corrective term (δL2L+ δP2P + δS2S)
and σ0,sr previously defined in the fully non-ergodic assumption.
As the aforementioned studies, we will adopt both an univariate and a multivari-
ate approaches but through different algorithms with respect to the past that
we will explain in the next chapter.



Chapter 2

Study Framework and Dataset

2.1 Study Area

Our Model has been applied to the Po Plain, located in the Northern part of Italy,
since this area presents some unique features, such as the availability of dataset
of seismic records measured by stations located in sites which have the same soil
classification, particularly suitable for the development and the validation of our
study.
Lots of these records were recorded during the 2012 Emilia Sequence because
after the first mainshock temporary seimsic stations were placed and the stations
were triggered by the aftershock making available a huge dataset of recordings.
Epicenters and faults of the main events of Emilia sequence are reported in
Figure 2.1 and the details in the Table 2.1.

Day latitude longitude depth[km] ML MW

2012/05/20 44.896 11.264 9.5 5.9 6.1

2012/05/29 44.842 11.066 8.1 5.8 6.0

Table 2.1: Features of 1st and 2nd Emilia earthquake. ML is the Ricther magnitude and
MW is the moment magnitude.
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Figure 2.1: Stations, fault and epicenters.

The Po Plain is ”a sedimentary basin with variable sedimentary coverage filled by
Plio-Quaternary marine and continental deposits, whose thickness ranges from
a few tens of meters at the top of buried anticlines up to about 8 km in the
Eastern part of the basin towards the Adriatic sea” (Bigi et al. 1992). Another
important factor is the proximity to the area of the northern Apennines. ”The
northern Apennines frontal thrust system is composed of a pile of NE-verging
tectonic units that have developed as a consequence of the Cenozoic collision
between the European plate and the Adria plate” (Boccaletti et al., 2004).The
terminal part of this system, corresponding to the Po Plain, is made up of a
complex system of thrust faults and folded arcs, called Monferrato, Emilia and
Ferrara-Romagna, from West to East, which locally generated structural highs
(Paolucci et. al 2015).
In Figure (2.2) we show a schematic representation of both the Northern Apen-
nines and the Po Plain.
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Figure 2.2: Location of the geological cross-section(red) and the northern Apennines
frontal thrust(yellow).

As a result of previous researches, some features related to the ground-motion
characterization of the Po Plain area have come to light:

• The reflection of S waves,in correspondence with the Moho discontinuity,
produces the increase of PGA at a distance between 70 km and 200 km
(Bragato at al. 2011).

• When the boby waves are trapped in the basin, surface waves are generated
(Basin effects). Surface waves mainly determine the seismic signal at period
greater than 2 seconds (Luzi et al. 2013).

• The presence of a privileged direction of amplification of the surface waves
during the main event of the 2012 Emilia seismic sequence (Paolucci et al.
2015).

Some of the factors, which mainly influenced the near-source ground motion
during the the main event of the 2012 Emilia seismic sequence, are reported in
Figure 2.3. with a particular attention to the relation between the buried to-
pography and the generation of surface waves created by the irregular geological
configuration(Paolucci et al. 2015).

Figure 2.3: Surface waves generation (Paolucci et al.,2015).

The peculiar structure of the geological cross-section A-A’ passing through the
Ferrara-Romagna folder arc (Figure 2.3) will be crucial to understand by the
physical point of view the results of our analysis.
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2.2 Ground Motion Prediction Equation

The Ground Motion Prediction Equation (GMPE) employed to construct the
datasets introduced in Section 2.3 is a model specifically tailored by Lanzano et
al.,(2016) for the Northern Italy able to predict the geometric mean of horizontal
response spectral accelerations in the period range 0.01-4s.

This GMPE by Lanzano et al. (2016) has the functional form:

log10 Y = a+ FM (M) + FD(R,M) + Fsof + FS + Fbas (2.1)

Y is the geometrical mean of the horizontal components of PGA (expressed in
cm/s2) and SA (in cm/s2) for 24 periods in the range 0.04–4 s with damping
ξ=5%.

Members of the model:

• a is the offset.

• FD(R,M) represents the distance function.

• FM (M) is the magnitude scaling.

• FS concerns the site amplification.

• Fsof is the style of faulting.

• Fbas is the basin-effects correction.

R (in km) is the distance, M is the magnitude(if M is missing we adopt Mw or
ML).
ML called Ricther magnitude or local magnitude, is determined at short dis-
tances and it is homogeneously determined for small earthquakes up to satura-
tion at about ML = 7.0, Mw is the moment magnitude which depends on the
size of the source and the slip along the fault (Douglas 2003).

The distance function has equation:

FD(R,M) = [c1 + c2(M −Mr)] log10

R

Rh
(2.2)

where

• c1 and c2 are the attenuation coefficients.

• Mr is a reference magnitude fixed to 5.0.

• R is either the hypocentral distance Rhypo (distance to the hypocenter of
the earthquake, i.e. the distance to the rupture’s starting point (Douglas

2013)) or the distance computed as
√
R2
JB + h2.

RJB (Joyner–Boore distance) is defined as the distance to the surface pro-
jection of the rupture plane of the fault (Douglas 2013).
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• h is the pseudodepth coefficient.

• Rh is a hinge distance thet takes into account changes in the attenuation
rate.

Since attenuation depends on both the geologic domain and distance ranges,
equation 2.2 has been modified introducing the index j:

• j=1 if the site is located in PEA(central Po Plain or eastern Alps). and
R ≤ Rh

• j=2 if the site is located in PEA and R > Rh.

• j=3 if the site is located in NA (Northen Apenines)and R ≤ Rh.

• j=4 if the site is located in NA and R > Rh.

The new form of equation 2.2 is:

FD(R,M) = [c1j + c2j(M −Mr)] log(
R

Rh
) j = 1...4 (2.3)

The Rh is set to 70 km. ( Douglas et al. (2003) assumed the same value for the
Po Plain area and for central Italy, respectively).
To distinguish among the sites located in PEA and NA, a geographic separa-
tion has been defined through the linear equation LATref = 0.33LONs + 48.3,
in which LONs is the station longitude and LATref is the reference latitude,
expressed in decimal degrees.
Positive differences between station latitude LATs and LATref identify the PEA
sites, and negative differences identify the NA ones.

The magnitude function has the form

FM (M) = b1(M −Mr) + b2(M −Mr)
2 (2.4)

The Mr parameter is the reference magnitude, defined in equation (2.2).

The term Fsof in equation (2.1) is needed in order to take into account different
styles of faulting and is given by

Fsof = fjEj j = NF, TF,UN (2.5)

The coefficients fj in the equation are estimated during the analysis, Ej are
dummy variables representing different style of faulting:

• normal (NF)

• thrust (TF)

• unspecified (UN)
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The term Fs in equation (2.1) represents the site effect and it is defined as follows

Fs = sjSj j = A,B,C (2.6)

In which Sj are dummy variables for the three EC8 site classes A, B, and C.
Through regression coefficients sj are estimated.

The term Fs has been introduced to model the bias observed at short periods
in the analysis of ITA10 residuals in the range 30-100 km. This bias is mainly
ascribed to C class stations in the Po Plain.

The basin-effect term in equation (2.1) is defined as

Fbas = δbas∆bas (2.7)

in which δbas is the coefficient to be determined during the analysis and ∆bias is
a dummy variable equal to 1 if the site is located in the middle of a basin and 0
else (Lanzano et al.2016).

2.3 Dataset

In the analysis we use two datasets which have dimension 71 × 25 where the
i-th row refers to the i-th station (whose distribution in space can be observed in
figures 2.3 and 2.4) and the j-th column to the j-th period in the range 0.01-4s.
The first dataset collects the value of the corrective term (δL2L + δP2P +
δS2S) while the second one collects the values of σ0,sr computed with a fully
non ergodic approch.

These two datasets are subsets of systematic components and σ terms computed
by Lanzano et al.,(2017) for the North of Italy using as reference GMPE the
aforementioned model.
The subsets refer to a selection of more than 2200 records (supplied by ESM
”Engineering Strong-Motion” and Itaca ”Italian Accelerometric Archive”; Luzi
et al.,2016; Pacor et al.,2011) and 71 accelerometric stations located in the Po
Plain which satisfy the condition of belonging to the C1 class.
A station belongs to C1 class if VS30 is between 160-360 m/s and the station
is located in the deepest part of the Po Plain or in smaller basins in the Apen-
nines(Lanzano et al. 2016).
We expect to observe 2D-3D complex site effects for these station at the edges of
the basin due to the surface waves which imply soil amplification at frequencies
lower than 1 Hz.
These 71 stations are distributed in an Area which is defined in the latitude range
44.2-45.6 N and in the longitude range 9.23-12,04 E for an area of about 37500
km2. All the records selected refer to events which have epicenters in the ZS912
reported in red in Figure(2.4). ZS9 is a seismic source model (consistent with
the CPTI04 parametric catalogue), based on historical earthquakes, instrumen-
tal seismicity, active faults and their seismogenic potential, and seismotectonic
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evidence from earthquakes since 1998 (Meletti et al. 2008). The model is com-
posed of 36 zones (ZS912 is the 12-th zone) where earthquakes with Mw ≥ 5 are
expected and the probability that an earthquake with Mw up to 5 may occurs
anywhere outside this seismogenic zones is very low (Meletti et al. 2008).

Figure 2.4: Stations and ZS912(red).

The number of available records was crucial because the decomposition of be-
tween event residuals and within event residuals in the systematic source term
δL2Lr, the path term δP2Ps,r and the site correction δS2Ss can be applied when
empirical datasets are sufficiently populated to estimate each single contribution
(Lin et al. 2011).
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Chapter 3

A univariate approach to the
geostatistical analysis of
intensity measures

3.1 Modelling the Covariance of the Random Field

In this Chapter we describe the univariate methods applied in our analysis. Each
intensity measure will be modelled through a random field Zs, s ∈ D.
The random field is a collection of variables having the form

Zs = ms + δs (3.1)

ms is called drift and is the deterministic part of the variable, δs is the random
component.

Definition 2 (Chilès et Delfiner, 1999). Process {Zs, s ∈ D} is said second-order
stationary if the following conditions hold:

• E [Zs] = m for all s in D

• Cov
(
Zsi , Zsj

)
= E

[
(Zsi −m)

(
Zsj −m

)]
= C (h) for all si , sj in D, h =

si − sj.

Function C is called covariogram

Definition 3 (Chilès et Delfiner, 1999). Process {Zs, s ∈ D}is said intrisically
stationary if

• E [Zs] = m for all s in D

• V ar
(
Zsi − Zsj

)
= E

[(
Zsi − Zsj

)2]
= 2γ (h) for all si , sj in D, h = si −

sj.

The function γ is called semivariogram and the function 2γ variogram.
The relation between semivariogram and covariogram is

γ (h) = C (0)− C (h) (3.2)

27
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Definition 4. An intrinsic stationary process {Zs, s ∈ D} is said isotropic if its
variogram is isotropic,i.e,

V ar
(
Zsi − Zsj

)
= 2γ (h) h = ||h||

otherwise it is said anisotropic.

When the structure of the covariance is homogenous over all the directions,
isotropy is verified. To investigate isotropy, directional variograms are employed.

The variogram is characterized by the nugget, the sill and the range.
The sill of the semivariogram is defined as

τ2 + σ2 = lim
h→∞

γ (h)

where τ2 is the nugget effect and σ2 is said partial sill.
The existence of a finite limit indicates that the process is second-order station-
ary, featured by a variance C (0) = τ2 + σ2.
τ2 is called nugget and it is defined as limh→0 γ (h).
The range R of a semivariogram is the value where it reaches the sill:

γ (R) = τ2 + σ2 (3.3)

The semivariogram range quantifies the range of influence of the process: for
distance greater than the range, two elements of the process are uncorrelated.
The variogram range can be infinite if the sill does not exist (indication of non-
stationarity) or if the sill is reached asymptotically.
Given a dataset Zs1 , ..Zsn , under the stationarity assumption, the sample semi-
variogram is computed as

γ̂ (h) =
1

2 |N (h)|
∑

(i,j)∈|N(h)|

[
Zsi − Zsj

]2

where N (h) = {(i, j) : ‖si − sj‖ = h} and |N (h)| is its cardinally.
After sample estimation, we can fit the sample variogram through a parametric
valid model. In particular in our analysis we’ll use and compare the following
models:

• Exponential model:

γ (h) =

{
σ2
(

1− e
−h
a

)
h > 0

0 h = 0

where a, σ ∈ R. The sill is σ2, the range is infinite, but one can define the
practical range as R̃ = 3a . R̃ satisfies γ(R̃) ∼ 95%σ2. In this thesis with
a slight abuse of notation we will name range the practical range of the
exponential model.



3.1. Modelling the Covariance of the Random Field 29

• Spherical model

γ (h) =


0 h = 0

σ2
{

3
2
h
a −

1
2

(
h
a

)3}
0 < h < a

σ2 h ≥ a

with a, σ ∈ R. a is the range, σ2 the sill.

The parameters are estimated following the weighted least squares criterion,i.e.,
looking for the parameters which minimize

K∑
k=1

1

wk

(
γ̂ (hk)− γ (hk; θ)

)2
(3.4)

where wk, k = 1, ..,K are set to the number of couples N(hk) within each class.

3.1.1 Drift Estimation

When the process is not stationary the mean ms of Model 3.1 is modelled as

ms =

L∑
l=0

alfl(s) (3.5)

and we assume residuals stationarity. We can apply drift estimation to perform
our geostatistical analysis on the residuals.
Given Zs1 , ....Zsn , we want to estimate the model parameters a0, ...aL+1 such
that

Z = Fa+ δ (3.6)

Where F is the design matrix and δ the residuals vector characterized by an
unknown covariance structure Σ. If we knew the Σ, we could employ the Gen-
eralized Least Square (GLS) estimator to estimate a.
This is found by minimizing

(Z − Fa)′Σ−1(Z − Fa) (3.7)

over a ∈ Rp. The GLS estimator aGLS has the form

aGLS = (FΣ−1F )−1FΣ−1Z (3.8)

Through the following iterative algorithm we can jointly estimate γ and a via
GLS and avoid the problem of unknown Σ.
Let z = (zs1 , ., zsn) be a realization of the non stationary random field Zs, s ∈ D,D
⊆ Rd:

1. Estimate the drift vectorm through the OLS method (m̂OLS = F (F TF )−1F Tz)
and set m̂ = m̂OLS

2. Compute the residual estimate δ̂ = (δ̂s1 , ., δ̂sn) by difference δ̂ = z − m̂
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3. Estimate the semivariogram γ of the residual process {δs, s ∈ D} from δ̂
first with the empirical estimator and then fitting a valid model.
Derive from γ the stimate Σ̂ of Σ

4. Estimate the drift vector m with m̂GLS , obtained from z using
m̂GLS = F (F TΣF )−1F TΣ−1z

5. Repeat 2-4 until convergence has been reached.

3.1.2 Geostatistical analysis of the corrective term and σ0,sr

As first step of our geostatistical analysis, we plot the spatial distribution of our
data. In Figure 3.1 it’s possible to observe how the 71 stations of the dataset
are distributed (UTM coordinates).
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Figure 3.1: Distribution of stations.

The area of study cover a square of side 200 km (a.k.a. bounding box). We fix
the cut-off distance equal to 100 km that is half of the side of the bounding box
for both the corrective terms δL2L+ δP2P + δS2S and σ0,sr.
The cut-off distance is the maximum distance on which the variogram is fitted.
In order to understand how the period impacts on the spatial correlation of the
corrective term, we develop our analysis on both the short and the long periods
by considering the PGA and T = 4s.
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3.1.3 Analysis of corrective term

The bubbleplot in Figure 3.2 shows at the same time the position and the values
of the corrective term for the Peak Ground Acceleration

Figure 3.2: Bubbleplot PGA.

The PGA bubbleplot doesn’t reveal a strong evidence of a spatial trend in the
data. We assume the drift ms constant and unknown.
Since there isn’t a strong spatial trend, it is reasonable to assume that the process
is intrinsic stationary and to compute both the variogram and the directional
variograms in order to investigate the isotropic assumption.
The directional semivariograms in Figure 3.3 are quite similar in both the range
and the sill. We thus consider the process Zs as isotropic and we can compute
the global sample variogram reported in Figure 3.4.

Figure 3.3: Directional variograms.
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Figure 3.4: Sample variogram.

The linear behaviour in the origin suggests the application of the spherical model
or the exponential one to fit the sample variogram. We choose the best fitting
model through Leave-One-Out cross-validation using, as metric, the mean square
prediction error and the mean square prediction error divided by the variance of
prediction (prediction with high variance are weigthed less). Here, prediction at
a new location s is made via the Best Linear Unbiased Predictor Ẑs which will
be used in the following (see Section 3.2):

MSE =
1

N

∑
(Zs − Ẑs)2 M2 =

1

N

∑ (Zs − Ẑs)2

var(Ẑs)
(3.9)

Model MSE M2

Exponential 0.0269 1.0799

Spherical 0.027 1.115

Table 3.1: Model Comparison.

As we can observe in Table 3.1, the exponential model gets better performance
so we decide to use it to fit the sample variogram. We compute the values of the
parameter of the model by minimizing weighted least squares.
In Table 3.2 we report the values of the parameters and in Figure 3.5 the sample
variogram fitted with the exponential model.

Nugget Psill Range

Exponential 0.0393 32.85

Spherical 0.027 11.15

Table 3.2: Exponential model parameters.
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Figure 3.5: fitted variogram.

We can now compute the covariance for two random variables of the process
zsi , zsj thanks to the equation

γ(h) = C(0)− C(h) (3.10)

where C(h) = Cov(zsi , zsj ) with h = si − sj and C(0) = limh→∞γ(h).
We repeat the previous geo-statistical analysis for the corrective term at period
T = 4. First we plot the data with bubbleplot.

Figure 3.6: Bubbleplot for corrective term at T = 4s.

As you can observe in Figure 3.6, contrary to what we observed for PGA, the
result shows a positive drift (green bubble) from South-Est toward North-West
in the bottom left of the bubbleplot, a positive drift from North to South in
the center (green bubble) and a negative drift (purple bubble) from East toward
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West.

Then we want to understand what happens if we don’t care of the drift and we
model the process {Zs} as intrinsic stationary.
A first warning is captured by the directional sample variograms in Figure 3.7,
since in different directions the variograms show different behaviours.

Figure 3.7: Directional variograms.

If we try to model a unique sample variogram and to fit it with an exponential
model, we obtain a range greater than the cut-off distance that is an indication
that, at the scale of observation, the process cannot be considered as stationary.
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Figure 3.8: Sample variogram fitted.

We can’t assume the intrinsic stationary assumption so it means that ms is a
function of the s coordinates. The idea is that the random field can be seen as
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the sum of a deterministic surface ms and an aleatory second-order stationary
component δs. If we can learn the surface representing the drift, then we can
model the covariance of the residuals δs through the variogram. We try to model
the drift with polynomial surfaces of degree 1 to 4:

1. ms = β0 + β1x+ β2y

2. ms = β0 + β1x+ β2y + β3x
2 + β4y

2 + β5xy

3. ms = β0 + β1x+ β2y+ β3x
2 + β4y

2 + β5xy+ β6x
2y+ β7yx

2 + β8x
3 + β9y

3

4. ms = β0 +β1x+β2y+β3x
2 +β4y

2 +β5xy+β6x
2y+β7yx

2 +β8x
3 +β9y

3 +
β10x

4 + β11y
4 + β12xy

3 + β13x3y

The first two curves are too simple to catch the real drift. Indeed, when the
residuals δs are estimated as δs = Zs − ms and we fit the variogram with an
exponential model, we still obtain a range greater than the cut-off distance.
With surfaces 3 and 4 this problem seems overcome. In the latter case, we are
able to apply the aforementioned algorithm for drift estimation and compare
their performance with LOO Cross-validation based on two different metric, i.e.,
MSE and M2. Since we obtain similar results for these two cases, we adopt the
simplest model which is the number 3. In Figure 3.9 we can observe the sample
variogram of the residuals fitted with the exponential model. In Table 3.3 we
report the comparison between exponential and spherical models and in Table
3.4 the values of the parameters.

Model MSE M2

Exponential 0.028 1.426

Spherical 0.03 1.54595

Table 3.3: Model Comparison.

Figure 3.9: Residual variogram.
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Nugget Psill Range

0.00 0.055 98.55

Table 3.4: Exponential model parameters.

The correlation coefficient ρ(h) in case of exponential model is

ρ(h) = exp(−h/a) a =
range

3
(3.11)

We can compare the shapes of the correlation coefficients, as function of h, for
both PGA and T = 4s.

Figure 3.10: Comparison of correlation coefficients.

The random field of the PGA looses the correlation faster than T = 4s. Indeed,
the range of PGA is lower than the one related to the period T = 4s.
The correlation of spectral intensity measures is period-dependent because short
period waves tend to be more affected by the heterogeneities of the propagation
path, thus resulting correlated at a shorter scale than long period ground motions
(Zerva et Zervas, 2002; Bradley, 2014).

3.1.4 Analysis of σ0,sr

We repeat the statistical analysis, already performed for the corrective term
dataset, also for the variance term σ0,sr working again with PGA and T = 4s.
In Figure 3.11 and Figure 3.12 the Bubbleplot doesn’t show an evident non-
costant drift and the directional variograms are quite similar in all directions so
we can assume that the random field is second-order stationary and isotropic.
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Figure 3.11: Bubbleplot and directional variogram PGA.
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Figure 3.12: Bubbleplot and directional variogram T = 4s.

The exponential model, again, gets a better MSE with LOO Cross Validation
than the spherical one, as reported in Table 3.5 and Table 3.6.

Model MSE M2

Exponential 0.0002739 1.2

Spherical 0.002762 1.23

Table 3.5: Model Comparison PGA.
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Model MSE M2

Exponential 0.000234 1.008

Spherical 0.002531 1.14

Table 3.6: Model Comparison SA(T = 4s).

So the sample variogram is fitted through an exponential model whose parame-
ters are reported in Tables 3.7 and Table 3.8.

Nugget Psill Range

0.0009 0.0021 37.2

Table 3.7: Exponential model parameters PGA.

Nugget Psill Range

0.00 0.0029 12

Table 3.8: Exponential model parameters SA(T = 4s).

Figure 3.13: Variogram of PGA and on the left and variogram of SA(T = 4) on the
right fitted with the exponential model.

At the end, we compute the ρ(h) of the random field PGA and SA(T = 4)
in order to compare how the correlation decreases as function of the period.
Contrary to what we observed for the corrective term, the covariance function
of PGA is now generally above the one corresponding to SA(T = 4) (i.e., the
range for the PGA is higher than that of SA(T = 4)); however, the two curves
are closer than ones in the case of corrective term.
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Figure 3.14: Comparison of correlation coefficients of PGA and SA(T = 4s).

3.2 Kriging

3.2.1 Introduction

After modelling the covariance of the random field associated to different pe-
riods of the corrective term and of σ0,sr, we want to predict their values in a
new location. The kriging predictor linearly combines the data in the available
locations and predicts the values of the random field in an arbitrary location as
Zs0 =

∑n
i=1 λiZsi = λTZ , where the weights are found according to the field

covariance structure (computed in Section 3.1). We can distinguish among 3
types of kriging:

1. Simple: Simple kriging is employed for random fields with known drift.
The weights are found by solving:

Σλ = σ0

where

Σ =
[
Cov

(
Zsi , Zsj

)]
, σ0 = [Cov (Zsi , Zs0)]

2. Ordinary: Ordinary kriging is employed for random fields with constant
unknown mean. The optimal weights are solution of the system(

Σ 1
1 0

)(
λ
β

)
=

(
σ0
1

)

where β are Lagrange multiplier.
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3. Universal: Universal kriging is employed for random fields with variable
drift. The Universal kriging predictor is obtained from

(
Σ F
F T 0

)(
λ
β

)
=

(
σ0

f0

)

where f0 = [fl (s0)],F = [fl (si)] is the design matrix, and β = (β0, .., βl)
is the vector of Lagrange multipliers accounting for the constrains:

n∑
i=1

λifl (si) = fl (s0) , l = 1, ..., L.

For more details about kriging see Chilès et Delfiner (1999).

3.2.2 Kriging for the corrective terms

The random field of the corrective term of PGA has been modelled in the pre-
vious section considering a constant and unknown drift. We can employ the
ordinary kriging predictor to estimate the random field on a grid of 70000 points
covering the Area of study. In Figure 3.15 we report the prediction and the re-
lated variance and in Figure 3.16 we zoom on the zone of the faults in which the
rectangle on the left represent the projection of the fault planes on the surface
of the second main events of 2012 Emilia seismic sequence and the one on the
right of the first main event.
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Figure 3.15: Ordinary kriging prediction and variance for PGA.
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Figure 3.16: Ordinary kriging prediction in the fault zone. The colour scale has been
modified to highlight local differences.

We can observe a strong amplification of ground motion in the fault zone near
the cross section, whereas smaller variations are observed far from the faults.
The corrective term, for period T = 4s, was modelled in the previous section
through a random field with non constant drift. Note that the value of the
Universal kriging Predictor in a new location coincides with the sum of the drift
estimated via GLS and evaluated in that location and the prediction of the resid-
ual δs via Simple kriging (see Chiles et Delfiner, 1999). In Figure 3.17 we report
in the left panel the values of the drift and in the right panel the Simple kriging
prediction of the residuals whereas Figure 3.18 shows the Universal kriging pre-
diction(the sum of previous maps) and its related variance. Finally Figure 3.19
shows a zoom on the faults.

Figure 3.17: Drift for corrective term (left panel) and simple kriging prediction of the
residuals (right panel).
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Figure 3.18: Universal kriging prediction and variance of corrective term at T = 4s.

Figure 3.19: Universal kriging prediction (zoom). The colour scale has been modified to
highlight local differences.

As already observed for PGA, in the fault zone we have a strong amplification
of the motion. This ground motion amplification could be linked to the complex
geological structure of the cross-section A-A’. Surface waves, which are gener-
ated in direction A-A’ where the thickness of the Quaternario sediment cover
decreases, mainly determine the seismic signal at period greater than 2 seconds.
This element is too complex to be captured by the ground motion prediction
equations. Additionally we can observe a strong amplification in the South of
the Area which corresponds to the Appenninic area. This amplification is not
observed in PGA.
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3.2.3 Kriging for σ0,sr

The random field of σ0,sr has been modelled as an isotropic process with constant
and unknown drift for both PGA and T = 4s so we can use ordinary kriging
to predict the values on the grid. We report the maps for the prediction and
variance in Figure 3.20 and 3.21, and a zoom on the faults in Figures 3.22.

Figure 3.20: Ordinary kriging prediction and variance for the PGA.

Figure 3.21: Ordinary kriging prediction and variance of SA(T = 4s).
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Figure 3.22: Ordinary kriging prediction of PGA and SA(T = 4s), zoom on the faults.
The colour scale has been modified to highlight local differences.

Comparing the PGA and T = 4s kriging predictions for σ0,sr we observe that
on the whole grid PGA has lower values but on the fault zone PGA and T = 4s
are very similar. We have a greater amplification from East to West below the
faults zone.

3.3 Conditional Simulation

3.3.1 Introduction

The kriging prediction represents the average scenario. We would like to take
into account the variability of the range of scenarios compatible with the data to
understand what the best and worst case scenarios could be in a certain location.
In order to consider the variance related to the prediction, we could simply add
to the prediction the realization of a Gaussian noise centered in zero and with
variance the kriging variance. However, this would neglect the spatial depen-
dence among close locations. A better way to include the variance is represented
by the Conditional Simulation.
Here we summarize the main concepts of the conditional simulation in the Gaus-
sian case, by following (Chilès et Delfiner, 1999), with a particular reference to
Sequential Gaussian Simulation.
Let Z = (Z1, Z2, ..., ZM , .., ZN )′ be a vector collecting the random variables Zi
of the random field and suppose that we know the realization of the subvector
(Z1 = z1, Z2 = z2, ..ZM = zm).
Then the conditional distribution of Z given Zi = zi, i = 1, ...,M , can be factor-
ized in the form

Pr {zM+1 ≤ ZM+1 < zM+1 + dzM+1, ...., zn ≤ ZN < zN + dzN |z1, ..zM} =
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Pr {zM+1 ≤ ZM+1 < zM+1 + dzM+1|z1, ..zM}×

Pr {zM+2 ≤ ZM+2 < zM+2 + dzM+2|z1, ..zM , zM+1} × ...×

Pr {zn ≤ ZN < zN + dzn|z1, ..zM , zM+1, ..ZN−1}

Therefore, we can simulate the vector Z sequentially by randomly selecting Zi
from the conditional distribution and including the outcome zi in the condition-
ing dataset for the next step.
Once we have fixed a grid, the sequential simulation algorithm, following a
stochastic path through the grid, repeats the following step (Bivand et al., 2013):

1. Computing the parameters of the conditional distribution based on both
the original data and the values previously sampled

2. Sampling a new value

3. Adding the value to the dataset

4. Reaching a new location of the grid following the random path

At every new simulation (i.e. at every step of the Algorithm) the computational
effort of point 1 increases and it takes more time to compute a new simulation. To
avoid this problem, it is possible to set a maximum number of neighbourhoods (in
our case 40) with respect to which computing the conditional distribution(Bivand
et al. 2013). Here below we report the computation of parameters of point 1 in
case of Gaussian random field recalling the definition of the Multivariate Normal
Distribution and its conditional law(Chilès et Delfiner, 1999).

Definition 5 (Johnson et Wicherin). A p-dimensional normal density for the
random vector Z = [Z1, ...Zp]

′ has the form:

f(z) =
1

2π
p
2 |Σ|

1
2

e(z−µ)′Σ−1(z−µ)/2

where −∞ < zi < ∞, i = 1, 2, .., p, µ is a p×1 vector and Σ is a p×p positive
definite matrix.
We shall denote this p-dimensional normal density by Z ∼ Np(µ, Σ)

Property 1. Let Z=

[
Z1

Z2

]
be distributed as N(µ,Σ)with :

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, |Σ22| > 0

Then the conditional distribution of Z1 , given that Z2 = z2, is normal and has
mean

µ1 + Σ12Σ22
−1 (z2 − µ2)

and covariance
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Σ11 −Σ12Σ22
−1Σ21

The Gaussian random fields assumption commonly adopted in geostatistics has
been introduced in the geostatistical applications by Alabert and Massonat(1990)
(Chilès et Delfiner, 1999).
In the seismology framework, other studies focused on the spatial correlation
within event residuals adopted the same assumption. The assumption has been
introduced in the applied seismology framework by (Park et al.,(2007)); Verros
et al (2017) applied successive conditional simulation in order to estimate the
within event residual, Baker et al. (2007) simulated the global residuals for loss
estimation and Bradley et al. (2014) applied the conditional simulation based
on the Gaussian distribution of within event residuals to develop a PGA map
for the 2010-2011 Cantebury earthquakes.
In the next section we show the results of our conditional simulation applied to
both the corrective term and σ0,sr.

3.3.2 Sequential simulation for corrective term

Figure 3.23 represent the comparison between a simulated scenario and the krig-
ing for the corrective term of PGA in the same scale.

Figure 3.23: The kriging prediction and the conditional simulation for PGA.

We observe that, in the conditional simulation, maps are more rough than the
ones of the kriging prediction; these scenarios differ from each other but we can
also observe a common trends in the fault zone. We can consider a simulation
and kriging prediction focused on the fault zone as reported in Figure 3.24.
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Figure 3.24: The kriging prediction and the conditional simulation, faults zone for PGA.
The colour scale has been modified to highlight local differences.

We observe a strong amplification of the ground motion near the faults and the
cross section A-A’ and that the simulated amplifications reach higher values and
cover a largest area in the fault zone than the kriging prediction. The kriging
prediction represents the average scenario, this imply that in zone of greater
amplification than kriging, there will be simulations with a smaller amplification
and, as consequence, the worst case scenario (strong amplification) and the best
case scenario (deamplification) are very different near the fault zone. As for
PGA, we report the sequential simulation for period T = 4s. In Figure 3.25 we
can observe the conditional simulations and the universal kriging prediction in
the same scale.

Figure 3.25: Comparison between the average scenario and the simulation T=4s.
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Figure 3.26: The kriging prediction and the conditional simulations for SA(T=4s), faults
zone. The colour scale has been modified to highlight local differences.

The simulations assign to the three stations belonging to Appenninies, in the
north of the map, higher values than the universal kriking prediction. Stronger
Amplification with respect to the average scenario could be consequence of com-
plex 2D and 3D site effects due to the presence of surface waves generated at
the basin edges, with remarkable soil amplification at frequencies smaller than
1HZ(Lanzano et al.,2016).

3.3.3 Sequential simulation for σ0,sr

The variable σ0,sr represents the aleatory uncertanty of the GMPE prediction.
If the corrective terms and the GMPE captured all the systematic effects that
influence the ground motion intensities in a specific location, then σ0,sr in that
location would be very low. This entails that for the Area, in which we have
greater values of σ0,sr, we are not modelling all the complex sources and the
propagation effects.
Let’s consider first the PGA. In Figure 3.27 in the left panel we can observe the
ordinary kriging prediction of σ0,sr and in the right we add the uncertainty in
the kriging prediction through the conditional simulation:
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Figure 3.27: The kriging prediction and the conditional simulation.

Under the two faults, we notice a lighter area from East to West in which σ takes
the greatest values. This trend indicates that in this area the model doesn’t
perform as well as in the other ones.
With a focus on the fault zone, it is easier to observe the trend.
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Figure 3.28: The kriging prediction and the conditional simulation, faults zone. The
colour scale has been modified to highlight local differences.

In Figure 3.28 the aforementioned spatial trend is clearly visible both in the
kriging prediction and in the simulation. The simulation higlights that σ0,sr

could be even bigger in the zone around the faults and near the cross section
A-A’. We report the same plot for T = 4 s.
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Figure 3.29: The kriging prediction and the conditional simulation.

The first result we observe is that the distribution is much more scattered and
there isn’t a clear zone where sigma has greater values. This observation is
confirmed by the zoom on the fault area.
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Figure 3.30: The kriging prediction and the conditional simulation, faults zone. The
colour scale has been modified to highlight local differences.



3.3. Conditional Simulation 51

3.3.4 Comparison of different periods in the faults zone

Figure 3.31: Comparison of conditional simulation, corrective term, PGA in left panel
and Sigma SA(T=4s) in the right panel.
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Figure 3.32: Comparison of conditional simulation, σ0,sr PGA in left panel and σ0,sr
SA(T=4s) in the right panel.

The comparison between the corrective term at PGA and T = 4s highlights that
for both periods we can observe the amplification of the ground motion in the
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direction A-A’ and that in the Appenninic area the amplification is much more
stronger for T = 4s than for PGA.



Chapter 4

Functional geostatistics for the
joint analysis of intensity
measures over a range of
periods

4.1 State Of The Art

In the previous section we have considered four scalar random fields, namely the
corrective term for PGA and SA(T = 4), and σ0,sr for PGA and SA(T = 4).
These models, unfortunately, don’t take into account the correlation among SA
at different periods as they only describes the correlation of SA at the same
periods in different stations through different kriging techniques.
We are not taking advantage of all the available information. We could think to
employ a multivariate approach and consider a vector random field Zs, which
are vectors collecting all the twenty five periods of our dataset in different loca-
tions s.
This multivariate framework has been already applied by Loth (Loth and Baker,
2012) for the whithin event residuals, to model the spatial correlation of the
spectral acceleration at six natural periods.
In our case, the number of periods is too high to employ the cross-covariograms.
Indeed, fitting the variogram and cross-variogram models jointly for all periods
would require to each period to have the same range and this is not feasible when
one deal with vectors of twenty five components. Even if the fitting is possible,
we would have to deal with the sequential simulation of 25 periods which needs
a huge computational effort.
For this reason, we adopt a functional geostatistics approach instead of the mul-
tivariate framework. Functional geostatistics is a subfield of Object Oriented
Spatial Statistics, a collection of techniques, algorithms and methods focused
on the analysis of high dimensional and complex data. Typically, spatial dis-
tributions of curves and surfaces are the objects of the analysis (Menafoglio et
al. 2017). The use of this approach to the problem we are considering would

53
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allow to smooth the data, to manage their intrinsic noise and to compute, in a
prediction or simulation setting, the value of SA at any arbitrary period in the
range PGA and T = 4s even if that period is not present in the dataset. Indeed,
the model allows to recreate the entire shape of the corrective term and σ at all
periods between PGA and T = 4s.
In the context of simulation of stochastic processes of functional data spatially
distributed, we here follow the approach of Menafoglio et al. (2016), who pro-
pose to employ functional principal component analysis (FPCA) first, and then
kriging and stochastic simulation of the FPC scores. An application to real data
of the decomposition of the curves into a functional basis in order to move from
a problem of kriging in infinite dimensional space to cokriging on basis coeffi-
cients is also proposed by Nerini et. al, (2009). In the next section we propose
an application of these methods to seismology. This is a turning point for the
development of seismic methods not based on a single period but on the joint
consideration of all periods.
For more details about functional geostatistics see Delicado et. al,(2009).

4.2 Functional Data Analysis

4.2.1 Introduction

Given a set of discrete measured values y1, ., yn representing the images (or the
images plus a noise) of a certain function x(t) evaluated in t1, ., tn the first step
of an analysis in the framework of Functional Data Analysis is to reconstruct the
curve x(t). This operation can be done through interpolation or by smoothing.
In the first case we want to find a function able to pass through all yi, in the
second one we consider yi as noisy data so that we want a function which passes
only close to the points in order to avoid to fit the error.

4.2.2 Representing functions by basis functions

A basis for a functional space is a collection of functions φk k = 1, ...,K such that
each function of that space can be represented as the weighted linear combination
of those functions φk

x(t) =

K∑
k=1

ckφk(t) (4.1)

or in vector notation:

x(t) = c′φ (4.2)

where φ is the column vector collecting the functions φk(t) in the basis.

Through K we can control the degree of smoothing the data yj . We aim to use
the smallest number K of functions φk able to reflect the features of the data.
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4.2.3 Spline functions

Here we want to describe a spline function of order m on the interval [a, b] with
knots (or breakpoints) τl ,l = 1, ..., L+ 1.
In order to construct a spline function on the interval [a, b], the first step is
to separate the interval [a, b] in L subintervals in some arbitrary points τl ,l =
1, ..., L + 1 called knots or breakpoints. τ1=a and τL+1 = b are the external
breakpoints. On each of these subintervals the spline function is a polynomial
of order m where the order of a polynomial, by definition, is the number of his
coefficients (e.g y = ax+ b has order 2) while the degree is the highest power of
x (e.g y = ax+ b has order 1).
Adjacent polynomials join up smoothly at the breakpoint which separates them.
The polynomials are constrained to be equal at their junction so the spline is a
continuous function on [a, b]. In addition, all the derivates up to the (m − 2)th
must also match up at these junctions.
The degree of freedom of the spline is define as the sum of the order(m) and the
number of interior points (L− 1) and it represents the flexibility in the fit of the
spline.

4.2.4 The B-spline basis for spline functions

A basis for the space of splines of order m on interval [a, b] with knots τ is a
collection of functions φk(t) which satisfies:

• each φk(t) is a spline of order m on [a, b] and knot τ .

• every linear combination of φk(t) is a spline function.

• every spline function of order m, knots τ on [a,b] can be expressed as a
linear combination of these φk(t)

.

The basis can be created in several ways and the most popular one was introduced
by De Boor (2001). The last important property to consider is that the space of
Spline of order k on [a, b] with knots τ is contained in the space of the Splines
on the same interval, with the same knots and order m+ 1.

4.2.5 Smoothing Functional Data By Least Squares

We consider our data yi as the sum of a deterministc model x(t) and a noise ε:

yj = x(tj) + εj (4.3)

and we aim to learn the function x(t). First we can see the function as the linear
combination of a vector of weights and the functions of a basis

x(t) =

K∑
k

ckφk(t) = c′φ (4.4)
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where the vector c of length K contains the coefficients ck. Now we need to
estimate the coefficients able to minimizing the sum of square errors which is
defined as

SMSSE(y|c) = (y −Φc)′(y −Φc) (4.5)

where Φ is the n (number of knots) × K (number of functions in the basis)
matrix containing the values φk(tj). By setting the derivative of SSE(y|c) with
respect to c at zero we obtain:

2ΦΦ′c− 2Φ′y = 0 (4.6)

Finally solving the equation with respect to c, we can find ĉ that minimizes
the least square criterion and the values of the target variable estimated by the
model ŷ

ĉ = (Φ′Φ)−1Φ′y (4.7)

ŷ = Φĉ = Φ(Φ′Φ)−1Φ′y (4.8)

4.2.6 Smooting functional data with a roughness penality

The spline smoothing method, previously described, is able to find the function
that minimizes the sum of square erros.∑

[yj − x(tj)]
2 (4.9)

If the function has sufficient degrees of freedom,by minimizing SSE, it tends
to interpolate all the points. However, on the one hand we want to ensure a
good fit of the data on the other hand we don’t want to fit the noise. In order
to avoid interpolation, we penalize the functions x(t) that are too much locally
variable and manifest a rapid local variation. First we have to define the function
roughness.

4.2.7 Roughness

The curvature of a function x(t) in t is defined as the square of the second
derivative [D2x(t)]2. Note that straight lines, as we expected, have zero curvature
accordingly with this definition. The roughness is defined as the integral over the
domain of the curvature(or the square of the L2 norm of the second derivative):

PEN2(x) =

∫
[D2x(s)]2ds (4.10)

Functions x(t) which manifests rapid local variation in the first derivative will
have high PEN2(x) value. Instead of minimize SSE, to avoid overfitting, we’ll
look for function x(t) able to minimize PENSSEλ define as

PENSSEλ(x|y) := SSE + λPEN2(x) (4.11)
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In this framework a famous theorem (De Boor, 2002) ensures that the function
that minimize these quantity is a cubic spline with knots in tj , j = 1, ..., n, where
(t1, y1)...(tn, yn) are the observed data. Then, as basis, we could employ a B-
spline basis of order four and same knots. The method is often called cubic
spline smoothing. As we did for SSE, we compute the coefficients ĉ of the model
and the predicted values. First we expess PEN2(x) in vector notation as

PEN2(x) = c′Rc (4.12)

where

R =

∫
DmΦ(s)DmΦ(s)′ds (4.13)

and φ(t) is the column vector collecting the basis functions evaluated in t
PENSSEλ can be rewritten as:

PENSSEm(y|c) = (y − Φc)′(y − Φc) + λc′Rc (4.14)

To find the value c that minimizes the quantity compute the derivative and set
equal to 0

− 2Φ′y + ΦΦc+ λRc = 0 (4.15)

By solving the equation with respect to c we find ĉ:

ĉ = (Φ′Φ + λR)−1Φy (4.16)

4.3 Application to data

First we want to study the corrective term. To each of the 71 stations we have
linked a vector of 25 components which represents SA at 25 different periods,
from PGA to T = 4s.
In Figure 4.1 we plot simultaneously all the 71 station. Each vector is reported
as a collection of segments obtained by linking the single values observed in that
specific station.

Figure 4.1: The original corrective terms at different periods, for different stations.
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Then we have to to find, for each station, the curve that best fit the corrective
terms as function of the period. We follow the aforementioned smoothing spline
method. The first step of the algorithm is to fix an order four B-spline basis of
K=25 splines:

Figure 4.2: B-spline basis.

We choose the B-spline instead of a Fourier basis because we don’t have evidence
of periodicity in our data while the order four is a consequence of the De Boor’s
Theorem (Ramsay et Silverman, 2005).
We fix K, the number of Splines of the basis, equal to 25 which is the number
of knots even if it’s better to use a small value for K since, by increasing K, we
increase both the degrees of freedom of the spline and the possibility of over-
fitting. However, we solve the overfitting problem by minimizing PENSSE. In
this way, the PENλ term will penalize the functions which are too much locally
variable and that manifest rapid local variation.
The value of λ is chosen between different values through the Generalized Cross
Validation. Once the value of λ is fixed, we compute the coefficients c as already
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explained in the last section.
We report the smoothing splines and the original data for some stations located
in the Appenninic Area and in the faults zone(Figures 4.3).
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Figure 4.3: Stations located in the Appenninic Area and in the faults zone.
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Figure 4.4: Smoothing spline for Stations SAG0 and SMS0.
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Figure 4.5: Smoothing spline for stations BON0 and SAN0.
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Figure 4.6: Smoothing spline for stations FICO,FAZ.
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Figure 4.7: Smoothing spline for stations MOLI,MDC

As expected, the splines don’t interpolate the data due to the roughness penal-
ization. In this way we are reducing the noise affecting the data. In the group
of splines, for stations located in the faults zone, we can observe that SMS0 and
SAN0 have similar shapes, the global maximum and minimum of SAN0 are the
same of SMS0 but shifted of one toward left. In the Appenninic group a common
patter is clearly recognizable and the spline value of FAZ,IMOL,MDC increase
moving toward longer periods. We can also observe that FICO and SAGO are
very similar in the shape and close on the map. These pictures tell us that there
could be a connection between shape of the curve and its location.
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Figure 4.8: Original data on the left and on the right the smoothing splines.

σ0,sr is processed in the same way and with the same basis. In Figures 4.9, 4.10,
4.11, 4.12, 4.13 we report the original data and the smoothing splines.

Figure 4.9: Original data on the left and on the right the smoothing splines.
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Figure 4.10: Smoothing spline for Stations SAG0 and SMS0 (σ0,sr).
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Figure 4.11: Smoothing spline for Stations BON0,SAN0 (σ0,sr).
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Figure 4.12: Smoothing spline for Stations FICO, FAZ (σ0,sr).
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Figure 4.13: Smoothing spline for Stations MOLI, MDC (σ0,sr).

4.4 Principal Component Analysis

4.4.1 PCA for multivariate data

The Principal components analysis provides a way of looking at the covariance
structure of data that can reveal new relations among data. Its general objectives
are dimensionality reduction and interpretation (Johnson et Wichern, 2007).
Let x1, ..xN be the observed data. A Principal Component Analysis generally
proceed according to the following steps:

1. substract to each xi the mean x = 1
N

∑
xi

2. find ε1 such that
fi1 = ε1

′xi (4.17)
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have the largest variance

1

N

∑
i

f2
i1 (4.18)

under the condition

‖ε1‖22 = 1 (4.19)

3. at the m step find vector εm such that

fim = εm
′xi (4.20)

have the largest variance

1

N

∑
i

f2
im (4.21)

and satisfies

‖εm‖22 = 1 (4.22)

ε′kεm = 0, ∀k < m (4.23)

The fi,m are called scores and the εm is the m− th principal direction.

4.4.2 Defining PCA for functional data

When we move from vector data to functional data the vectors β and x become
functions β(s), x(s). and the inner product is defined as:∫

β(s)x(s)ds (4.24)

and the L2 Norm as √∫
x(s)2ds (4.25)

Now the PCA for functional data, called Functional Principal Component Anal-
ysis (FPCA, Ramsay and Silverman, 2005) can be obtained by replacing the
functions, inner product for functions and L2 norm for functions to the afore-
mentioned procedure for vector data. Note that before doing the FPCA it’s
necessary to center the functions substracting the cross mean

xn(t) =
1

N

N∑
i=1

xi(t) (4.26)
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4.4.3 Eigenanalysis

In order to find the principal directions previously defined we have to solve the
variance maximization problem by finding eigenvalues and eigenvectors of the
eigenequation:

V ε = ρε (4.27)

where V is the covariance matrix.
The eigenvector ε, with the highest eigenvalues ρ, is the first principal direction
and ρ represents the maximized variance; the second principal direction has the
second highest eigenvalues and so on.
In the functional case, first we define the covariance function v(s, t)

v(s, t) = N−1
N∑
i=1

xi(s)xi(t) (4.28)

then we introduce the eigenequation∫
v(s, t)ε(t)dt = ρε(s) (4.29)

Finally to retrieval the form (27), we define an operator V as follow

V ε =

∫
v(·, t)εdt (4.30)

We can express the operator V as the product of matrix and vector as

V ε ≈ VWε̃ (4.31)

where the matrix V contains the values v(sj , sk), ε̃ collects the values ε(sj)
and the matrix W is a diagonal matrix collecting the weights that activate the
trapezoidal rule to compute integrals:∫

f(s)ds ≈ h[
f(s1)

2
+

n−1∑
j=2

f(sj) +
f(sn)

2
] (4.32)

We are ready to introduce the functional eigenequation in matrix form:

VWε̃ = ρε̃ (4.33)

Furthermore the eigenvectors must satisfy

ε̃′mWε̃m = 1 ∀m (4.34)

We can rewrite the equation 31 as

W
1
2VW

1
2u = ρu (4.35)

Where u = W
1
2 ε̃ and u′u = 1

Then the procedure to find eigenvectors is:
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• Choose n, the wj and the sj

• Compute the eigenvalues ρm and eigenvectors um of W
1
2VW

1
2

• Compute

ε̃ = W− 1
2um

The most relevant eigenvectors (in terms of captured variance) can be used to
create the basis of a new space on which we can project the original functions.
In this way we can move from a virtually infinite-dimensional space to a lower
dimensional space with a limited loss of information. In the next section we are
going to show how dimensionality reduction can be very usefull in our framework.

4.5 PCA Application

In Figure 4.14, we can observe the first 5 principal functional directions for the
corrective term.

Figure 4.14: Principal Component curves for corrective term.

We would like to project the smoothing splines previously computed from the
space generated by the B-spline basis to the space with principal functional
directions as basis. We want to reduce the size of the space while retaining as
much of the information as possible. A way too see how much information we
retain is to look at the cumulative variance. In Figure 4.15 we report how the
cumulative variance captured increases by adding a functional direction to the
space of projection.
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Figure 4.15: Cumulative variance.

It seems that the first three/four components are sufficient to catch most of the
variability. The boxplot of scores, which are the projection of the smoothing
splines on the principal directions, seems to highlight a not negligible variance
till the fourth principal direction.

Figure 4.16: Boxplot of scores.

We now want to understand if four eigenfunctions are enough to get a good
approximation of the original smoothing splines. In the Figures 4.17 and 4.18
we compare the original smoothing splines and their projections by employing
PCA with two, three and four scores.
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Figure 4.17: Smoothing spline projected on different spaces.

Figure 4.18: Smoothing spline projected on different spaces.

Two scores are not enough to reconstruct the splines while with three or four
scores we get a much better approximation. The fourth score helps us to describe
the change in the concavity as we can see in the blue spline with the highest
values.

We project the stations of the Appenninic and the faults zone in the space
generated by the first four eigenfunctions:
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Figure 4.19: Smoothing spline projection for stations SAG0 and SMS0.
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Figure 4.20: Smoothing spline projection for station BON0 and SAN0.
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Figure 4.21: Smoothing spline projection for stations FIC0 and FAZ.
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Figure 4.22: Smoothing spline projection for stations IMOL and MDC.

We can repeat the same procedure for σ0,sr.
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Figure 4.23: Principal Component curves for corrective term.

To understand the number of informative PCA, we look at the barplot for the
cumulative varinace:

Figure 4.24: Cumulative variance
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Figure 4.25: Boxplot of scores

Here, the right number of functions for the basis could be greater than five.
Of course, we know that if we increase the number of functional directions, we
get a better approximation but, as we will see in the next section, it is crucial to
employ only the minimum number of informative principal directions to improve
the computational performance. In the Figure 4.26 we compare the original
smoothing splines and their projections by employing PCA with five scores.

Figure 4.26: Original smoothing spline and smoothing spline projected.
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Figure 4.27: Smoothing spline projection for stations located in the faults zone.
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Figure 4.28: Smoothing spline projection for stations BON0 and SAN0
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Figure 4.29: Smoothing spline projection for stations FIC0 and FAZ
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Figure 4.30: Smoothing spline projection for stations IMOL and MDC

We can observe that the red curves obtained with PCA are a good approxi-
mation of the original smoothing splines and only in FIC0 the PCA curve seems
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to have a different behaviour when the concavity of the function changes sud-
dently. By adding scores, we are able to catch this behaviour. However, in order
to avoid the overfitting, we don’t want to employ models too complex since our
data could be affected by noise and models with a large number of degree of
freedom would fit that noise.

4.6 Multivariate Sequential Simulation

Through the FPCA we are able to create a bijection between the smoothing
spline gs in station s and a vector of scores

scs = (sc1,s, sc2,s, sc3,s, sc4,s)
′

where the i-th score represents the projection of the curves on the i-th functional
principal direction fi:

sc1,s =
∫
gsf1 sc2,s =

∫
gsf2 sc3,s =

∫
gsf3 sc4,s =

∫
gsf4

In this way, instead of working with functions, we can reduce the dimensionality
of the problem and we can work with vectors of 4 components. Given the
71 vectors of 4 scores, we would like to simulate, in a new location s0, the
corresponding vector of four scores scs0 = (sc1,s0 , sc2,s0 , sc3,s0 , sc4,s0) and then
by a linear combination of the vector and the FPCA basis {f1, f2, f3, f4} we can
reconstruct the shape of the function of the corrective term versus the period in
that location

gs0 =

4∑
i=1

fisci,s0 (4.36)

The conditional simulation requires to estimate the covariance matrix of the
multivariate random field. The covariance can be recovered from the sample
variogram, as in the scalar random field, but in the multivariate framework we
need to introduce the concepts of the cross-covariance and the cross-variogram.
First we can observe that, by construction, each of the four score random field
has zero mean.
The cross-covariance functions (Chiles et Delfiner,1999) of a p-dimensional(in
our case p=4) stationary random field Z(x) = (Z1(x), ..., .Zp(x))′ with mean
vector m(x) = (m1(x), ...,mp(x))′(in our case m(x) = 0 ∀x) are defined by

Ci,j(h) = E[Zi(x)−mi][Zj(x+ h)−mj ] (4.37)

If we permute the variables, we get another cross-covariance

E[Zj(x)Zi(x+ h)] = Cji(h) (4.38)

note also that

Cij(h) = E[Zi(x)Zj(x+ h)] = E[Zj(x+ h)Zi(x)] = Cji(−h) (4.39)

and in general
Cij(−h) 6= Cij(h) (4.40)
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The total covariance matrix will have the form:

Σ =


C11 C12 .. C1p

C21 C22 .. C2p

..
Cp1 Cp2 .. Cpp

 (4.41)

where Cii collects the covariance of the i-th component of the vector in different
locations. In the univariate random field case

Σ = C11 (4.42)

As previously defined the Cij terms collects the cross-covariance of the i-j com-
ponents of the vector at different locations.
As we did in the univariate case, first we create the sample variogram, secondly
we fit the sample variogram with a valid model and finally we retrieve the co-
variance structure of the field. To construct the Cross-covariance we use the
Cross-variogram. Under the condition E[Zi(x+ h)−Zi(x)] = 0 for i = 1, ., p
the cross-variogram, introduced by Matheron (1965), has the form

γ12(h) = E[(Z1(u+ h)− Z1(u))(Z2(u+ h)− Z2(u))] (4.43)

and the relationship with the cross-covariance is

γi,j(h) = Ci,j(0)− 1

2
[Ci,j(h) + Ci,j(−h)] (4.44)

4.6.1 Application for Correttive Term and σ0,sr

We compute the sample cross-variogram and we fit the exponential model. For
the corrective term, we use a basis of four principal components curves so we
have a vector random field of four components. Instead, for σ0,sr, we use five
scores:

Figure 4.31: Corrective term(on the left) and σ0,sr (on the right) variograms and cross-
variograms fitted with the exponential model.
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From the variogram we estimate the cross-covariance and performs conditional
simulation of the vectors on the grid of 70000 points.
From the simulated scores, we can reconstruct the curves in all the 70000 lo-
cations and from each locations we can find from the curves the value of the
PGA and the corrective term/σ0,sr valutated at T = 4s. Both for σ0, sr and the
corrective term, we compare the simulations for PGA and T = 4s on the whole
grid and on the faults.

Figure 4.32: Sequential simulation of corrective term PGA(on the left) and T = 4s (on
the right).
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Figure 4.33: Sequential simulation of corrective term PGA (on the left) and T = 4s (on
the right), zoom on the faults.
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Figure 4.34: Sequential simulation of σ0,sr PGA (on the left) and T = 4s (on the right).

Figure 4.35: Sequential simulation of σ0,sr PGA (on the left) and T = 4s (on the right),
zoom on the faults.
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Chapter 5

Model validation and testing

5.1 Model Comparison

In the previous chapter we have computed the kriging prediction for both the
corrective term and σ0,sr at PGA and SA(T=4s) through the univariate ap-
proach and the functional one.
Now we want to compare the two models through the leave one out cross vali-
dation.
We report the performances of the two models adopting as metric the mean
square error (MSE) and we take into account also its variance (VAR).

MSE =
1

N

∑
s∈S

(Zs − Ẑs)2 (5.1)

V AR =
1

N − 1

∑
s∈S

((Zs − Ẑs)2 −MSE)2 (5.2)

Where S is the set of the stations.
The performances of the univariate approach in terms of MSE are reported in
Table 5.1. and its variance in Table 5.2

σ0,sr corrective term

PGA 0.0027 0.0269

T = 4[s] 0.0023 0.1496

Table 5.1: Univariate geostatistics performances, MSE.

σ0,sr corrective term

PGA 9.9 ∗ 10−6 0.00144

T = 4[s] 1.99 ∗ 10−5 0.628

Table 5.2: Univariate geostatistics performances, VAR

77
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The performances of the functional approach in terms of MSE are reported in
Table 5.3 and its variance in Table 5.4.

σ0,sr corrective term

PGA 0.0025 0.05287

T = 4[s] 0.0026 0.0281

Table 5.3: Functional geostatisctics performances, MSE.

σ0,sr corrective term

PGA 1.5 ∗ 10−5 0.005

T = 4[s] 2.3 ∗ 10−5 0.0029

Table 5.4: Functional geostatistics performances, VAR.

We can observe that the two methods have comparable MSE when they are
applied to σ0,sr. For the corrective term, the MSE of the univariate approach for
PGA is slightly better than the MSE of the functional approach. Conversely the
functional approach shows a better MSE in case T = 4s in which the univariate
random field of the corrective term is assumed to have drift non-constant in space.
Nevertheless, we have to consider that only the functional approach provides the
prediction and the stocastic simulation of the whole spectrum and not only for
this specific intensity measures (PGA and T = 4s).

5.2 Test

A leave-one-out cross-validation analysis highlights that modeling the spatial
covariance of the corrective term for PGA with the univariate and the functional
statistics provides very similar results while the best model in the case of T=4s
is the functional one. We can compute the shaking fields based on the GMPE
prediction for the first main event of the Emilia sequence (2012-05-20, MW =
6.1).

For fifty five stations we have the values of PGA and SA(T = 4). By computing
the MSE between the intensity measures observed in the aforementioned stations
and the closest point of a grid, defined as a collection of 70000 points where
our GMPE has been evaluated, we test the prediction performance of models
obtained with:

• functional kriging based on the simple cokriging of the FPCA scores (see
Chapter 4) (evaluated in the PGA and T = 4s).

• ordinary kriging for the univariate case PGA (see chapter 3).

In Table 5.5 we report the MSE values for the GMPE and for a model obtained
by adding the GMPE to the kriging prediction of the PGA computed with an
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univariate approach. MSE2 in table 5.5 is computed taking into account all the
stations available, the MSE1 doesn’t consider the station closest to the fault.

GMPE[cm/s2] Model [cm/s2]

MSE1 59.82 56.93

MSE2 171.24 661.51

Table 5.5: MSE for the model (univariate) and GMPE at PGA.

The station closest to the fault is dramatically overestimated by the two models
and it significantly changes the value of the MSE. In the Table 5.6 we report
the MSE for a predictive model of PGA, obtained by adding the GMPE to
the kriging prediction of the PGA computed with the functional geostatistics
approach. The model has a lower MSE in both the cases. We still observe that

GMPE[cm/s2] Model[cm/s2]

MSE1 59.82 56.32

MSE2 171.24 101.56

Table 5.6: MSE for the model (functional) and GMPE at PGA.

if we include the station closest to the fault, the MSE dramatically increases.

In table 5.7 we compare the GMPE predictions of SA(T=4s) and the predic-
tions of a model obtained by adding the GMPE to the kriging prediction of the
SA(T=4s) computed with the functional geostatistics approach,. The MSE1 In
table 5.7 is obtained by taking into account all the stations in the region and
we observe that the GMPE for SA(T=4s) has better performance. The station
close the fault is well estimated by both the GMPE and the model, therefore we
don’t need to report MSE2.

GMPE[cm/s2] Model[cm/s2]

MSE1 16.22 21.56

Table 5.7: MSE for the model(functional) and for the GMPE at T = 4s.

Finally, we report the simulated shaking fields, for the first main event of the
Emilia sequence computed as the sum of the GMPE, the corrective term sim-
ulated through the functional approach and a realization of a gaussian random
field uncorrelated in space with zero mean and variance σ0,sr. Also the variance
σ0,sr has been simulated through the functional approach. We report in Figure
5.1 the simulated shaking fields for PGA and for SA(T=4s) and in Figure 5.2,
5.3 on the left panel, the GMPE and, on the right panel, the simulation of the
shaking fields, with the colour scale saturated in the upper part, in order to
compare it to the GMPE.
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Figure 5.1: Shaking fields for PGA and SA(T=4s).
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Figure 5.2: GMPE and shaking field for PGA, same scale.
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Figure 5.3: GMPE and shaking field for SA(T=4s), same scale.

We can observe that the simulation of the shaking fields presents greater values
than the ones of the GMPE in the fault zone, where the epicenter of the event is
located and the GMPE assigns a constant value to all the points. For SA(T=4s)
we can observe a strong amplification in the area of the Appenninies that could
be consequence of complex site effects due to the presence of surface waves.
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Conclusion

The corrective term and σ0,sr for PGA and SA(T = 4s) have been investigated
in order to study the spatial correlation and to predict their value in new loca-
tions.
First, through the univariate approach, it has been observed that the corrective
term of PGA becomes uncorrelated faster than the one of SA(T = 4s). The sta-
tistical results have been evaluated also considering the features of ground motion
characterization specific for the area of study. S waves, which are generated by
the trapping and conversion of the body waves in the thick sedimentary cover,
dominate the seismic signals at periods longer than two seconds and determine
the increase of correlation distance at long periods.
Since SA is function of the period of oscillation T, it has been possible to repre-
sent our data as a curve and to study their spatial covariance taking into account
the inter-period correlation through FDA methods. We have approximated data
through smoothing spline and we have recreated the curves for the corrective
term of the GMPE and σ0,sr through the prediction and the simulation of the
scores calculated by the Functional Principal Components Analysis. In this way,
we have reproduced possible shaking scenarios for the corrective term and σ0,sr

of PGA and SA(T = 4s). The prediction performance of the univariate and the
functional approaches have been compared by means of cross-validation.
Cross validation indicates that the univariate and the functional approach have
similar results for σ0,sr that don’t depend on the period. For what concerns the
corrective terms, the univariate approach presents slightly better results at low
periods while the functional approach presents much better results for SA(T=4s).
This difference in performance could be connected to the drift estimation prob-
lem of the corrective term when we apply the univariate approach at T=4s. In
conclusion, considering both the results and the availability of joint stochastic
simulation of several periods, the functional approach is the best one.
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