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Abstract

The possibility of adding a large eddy simulation turbulence model to a pre-
existing solver for the incompressible Navier-Stokes equations is investigated.
Preliminary research into turbulence theory and into numerical modelling
methods relevant to the solver in use is performed, then a set of Fortran 90
subroutines implementing a Smagorinsky-Lilly closure model is developed.
The solver, with the addition of this closure model, is tested performing a
simulation of the flow around a sphere at a Reynolds number of 3700. The
results are then confronted with those available in the literature.
The solver in use is based on the one originally proposed by Guermond
and Minev, which employs finite differences on Cartesian staggered grids,
Douglas direction splitting for the momentum equation and an innovative
direction splitting technique for the pressure equation. It was developed for
optimal scalability on a parallel architecture. The version of the software
used for this work differs from the original mainly by the addition of an
immersed boundary method. This allows for the placement of a body of
arbitrarily complex geometry inside the computational domain, such as the
sphere used for the tests peformed.
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Chapter 1

Large Eddy Simulation

1.1 The problem of Turbulence

The behaviour of a Newtonian incompressible fluid is described by the
Navier-Stokes equations, reported here in indicial notation, in the absence
of body forces: 

∂ui
∂t

+
∂ uiuj
∂xj

+
1

ρ

∂p

∂xi
= ν

∂2ui
∂xj∂xj

, (1.1a)

∂uj
∂xj

= 0 , (1.1b)

where summation over repeated indices is understood. Equation (1.1a)
represents the conservation of momentum while equation (1.1b) represents
the conservation of mass.
The behaviour of their solution is influenced by the Reynolds number:
Re = lu

ν with l being a characteristic length and u a characteristic speed
of the flow considered. Re is a non-dimensional parameter representing the
ratio between the advection term ∂ uiuj

∂xj
and the diffusive term ν ∂2ui

∂xj∂xj
of

(1.1a). For low values of Re the solution is well behaved and the flow is said
to be laminar. For greater values of Re, the equations show an increasing
sensitivity to small variations in the initial and boundary conditions and
the solution starts to behave in a chaotic way. While the deterministic
description of the flow provided by (1.1a) and (1.1b) is still valid at high Re,
the difficulty of knowing every detail of the initial and boundary conditions
with arbitrary precision prompts us to consider instead the solution as a
random variable, whose value can not be known univocally since it will
be different every time the experiment, measurement or simulation is
performed. A random variable can only be described in statistical terms. A
flow showing such chaotic behaviour is generally regarded as turbulent.
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1.1. THE PROBLEM OF TURBULENCE

1.1.1 How turbulence looks like

It is difficult to give a unique definition of turbulence, one offered by S.
Corrsin and reported by P. A. Davidson [4, p. 53] is: -"Incompressible
hydrodynamic turbulence is a spatially complex distribution of vorticity which
advects itself in a chaotic manner [...]"- where vorticity is defined as the curl
of the velocity field: ω = ∇× u. Davidson further describes turbuence as a
tangle of lumps of vorticity. Such lumps go by the name of eddy.
The wide variety of scales in which eddies come is a defining characteristic of
turbulence. A common view of Turbulence is Richardson’s energy cascade:
the largest eddies form by subtracting kinetic energy from the mean flow
and diverting it to their chaotic motion. Being short-lived structures, they
break apart into smaller eddies, then these break apart as well, and so on
until the smallest eddies are dissipated by viscosity. The term cascade is
used since energy is passed down from the mean flow to eddies of smaller and
smaller scale through the breakout process, until molecular viscous processes
dissipate it. We can identify three broad ranges of eddy sizes in figure 1.1: the
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Figure 1.1: Energy Cascade. The Energy spectrum function E(κ) is plotted
as a function of the wavenumber κ. κ is proportional to the inverse of the size
of the eddies, while E(κ), defined in (1.9), can be thought of as representative
of the energy content of eddies of a certain size.

energy containing range, the inertial subrange and the dissipation range. The
first one contains eddies that have sizes and speeds comparable to those of the
mean flow, and that are directly influenced by the geometry of the problem.
The other two contain eddies with a more universal behaviour. According to
an hypothesis first put forward by Kolmogorov, which stands at the base of
a great deal of turbulence theory, eddies in the inertial and dissipation range
are approximately independent of the geometry and isotropic; according to a
further hypothesis, in the inertial range their behaviour is also independent

2



1.1. THE PROBLEM OF TURBULENCE

of viscosity.
Energy must be conserved so the rate of energy entering the cascade, Π,
must be equal to the rate of energy exiting it, ε. Π is the energy being
passed to the larger eddies, and it can be estimated as Π ∼ u2

l/u , where u and
l are reference values for the velocity and the length scale of the mean flow.
ε is the energy being dissipated by viscosity. Since viscosity affects only the
smaller eddies, defining their characteristic speed as v and length scale as η,
also known as the Kolmogorov scales, it is possible to estimate the rate of
dissipation as ε ∼ ν v2

η2
. The Reynolds number of the mean flow is Re = lu

ν ,
while the Reynolds number of the smaller eddies is assumed to be ηv

ν ∼ 1,
since below this value dissipation is stronger than advection and the energy
cascade is arrested.
From the previous relations it is then possible to derive the estimates:

η ∼ lRe−3/4 ∼ l
(
ν3/ε

)1/4
, (1.2a)

v ∼ uRe−1/4 ∼ (ν ε)1/4 . (1.2b)

1.1.2 The statistical description of turbulence

One characteristic of turbulence is that while the velocity field itself is ran-
dom, its statistical properties tend to be reproducible from one experiment
to another. At the base of the statistical analysis of a turbulent flow is the
concept of ensemble average, the average of a flow quantity over multiple ex-
periments. Under the hypothesis that the process is ergodic, such ensemble
average is equivalent to the time average:

〈ui(x)〉 = lim
T→∞

1

2T

∫ T

−T
ui(x, t) dt . (1.3)

Since averaging is done over the entire time domain, any time dependence
is cancelled. Such averaged velocity field is then meaningful only under the
hypothesis that the flow is stationary.
Once an average value for the velocity field is defined, it is possible to define
the turbulent fluctuations as:

u′i = ui − 〈ui〉 (1.4)

which have, by definition, zero mean. The process of splitting ui into its
well-behaved reproducible component 〈ui〉 and its random component u′i, is
known as Reynolds’ decomposition. It is possible to decompose the average
of the kinetic energy of the flow into a component associated with the average
velocity field 〈ui〉, and one associated with the turbulent fluctuations u′i:

〈1
2
uiui〉 =

1

2

[
〈〈ui〉〈ui〉〉+ ����〈u′i〈ui〉〉 + ����〈〈ui〉u′i〉 + 〈u′iu′i〉

]
=

1

2
〈ui〉〈ui〉+

1

2
〈u′iu′i〉 ,

3



1.1. THE PROBLEM OF TURBULENCE

The latter is referred to as the turbulent kinetic energy:

k =
1

2
〈u′i u′i〉 . (1.5)

The correlation function is defined as:

Rij(x1, t1, x2, t2) = 〈ui(x1, t1)uj(x2, t2)〉 (1.6a)

in its most general form, as found, for example, in [15, p. 550]. It is more
common to find correlations between either two instants in time or two points
in space, such as

Rij(r, x, t) = 〈ui(x, t)uj(x+ r, t)〉 , (1.6b)

which is linked to the turbulent kinetic energy by the relation

k =
1

2
Rii(r = 0, x, t) . (1.7)

The two-point correlation function’s Fourier transform into wavenumber
space is:

Φij(κ, x, t) =
1

(2π)3

∫∫∫
Rij(r, x, t) e

−j κr dr , (1.8)

which can be used to define the energy spectrum function

E(κ) =

∫∫∫
1

2
Φii(κ

′) δ
(∣∣κ′ − κ∣∣) dκ′ =

∫∫
S(κ)

1

2
Φii(κ) dκ , (1.9)

where S(κ) is a sphere of radius κ in wavenumber space. Using (1.7) the
turbulent kinetic energy can be expressed as

k =

∫ ∞
0

E(κ) dκ ; (1.10)

more generally, E(κ) dκ is the amount of turbulent kinetic energy associated
with motions of size ∼ 1/κ. In the caption to figure 1.1 it was mentioned that
E(κ) could be thought of as representative of the energy content of eddies of
size ∼ 1/κ. While useful for understanding the concept of energy cascade,
this is actually an oversimplification textbooks on turbulence generally warn
against [4, p. 315]. Eddies are complex structures, and while it is possible
to associate a characteristic dimension r = 1/κ to them, if one where to
compute a single eddy’s energy spectrum, they would find it distributed
over a wide range of wavenumbers, peaking in the vicinity of κ, rather than
entirely concentrated at κ.

4



1.1. THE PROBLEM OF TURBULENCE

1.1.3 The RANS equations and the closure problem

Since the average (1.3) commutes with differentiation, it is possible to take
the average of the continuity equation (1.1b) and show that such equation
is valid also for the average velocity field and for the fluctuations defined in
1.4.
Taking instead the average of the momentum conservation equation (1.1a)
one obtains:

∂

∂xj
〈uiuj〉+

1

ρ

∂〈p〉
∂xi

= ν
∂2〈ui〉
∂xj∂xj

,

where the unsteady term disappears as the time derivative of the time average
is null. It is possible to retain the unsteady term if the averaging operation
is substituted by a time-filtering operation, which limits either the time scale
or the frequency bandwidth of the filtered field.
The non-linear term becomes, using Reynolds’ decomposition:

〈uiuj〉 = 〈〈ui〉〈uj〉〉+ ����〈u′i〈uj〉〉 + ����〈〈ui〉u′j〉 + 〈u′iu′j〉 = 〈ui〉〈uj〉+ 〈u′iu′j〉

since the average is an idempotent operator, and, due to linearity, fluctua-
tions have zero mean.
Defining the Reynolds stress tensor as:

τRij = 〈u′iu′j〉 (1.11)

and with 〈τij〉 = 2ν 〈Sij〉 = ν
(
∂〈ui〉
xj

+
∂〈uj〉
∂xi

)
, it is then possible to write:

∂ 〈ui〉〈uj〉
∂xj

+
1

ρ

∂〈p〉
∂xi

=
∂

∂xj

(
〈τij〉 − τRij

)
, (1.12a)

∂〈uj〉
∂xj

= 0 , (1.12b)

which are the Reynolds-averaged Navier-Stokes equations, or RANS equa-
tions. They describe the behaviour of the average velocity field 〈ui〉. They
are analogous to the original (1.1a) and (1.1b) but include the additional
Reynolds stress tensor (1.11), which adds six more unknowns, since it is
symmetric. In the unsteady case, the additional term ∂〈ui〉

∂t is included in
(1.12a), to obtain the unsteady Reynolds-averaged Navier-Stokes or URANS,
that describe the behaviour of the time-filtered velocity field.
It is possible to derive from (1.12a) and (1.12b) additional equations for the
components of (1.11), but they would inevitably contain higher order mo-
ments in the form 〈u′iu′ju′k〉, as well as mixed averages such as 〈p′ui〉, which
would add more unknowns.
While it is possible to derive equations for these additional terms as well,
more unknowns will be introduced. Trying to derive a set of equations de-
scribing the behaviour of 〈ui〉 starting from (1.1a) and (1.1b) alone will
always produce more unknowns than equations. This inability to reach a
closed set of equations is known as the closure problem of turbulence.

5



1.2. TURBULENCE MODELLING

1.2 Turbulence modelling

One way of tackling the problem of turbulence is to simulate all the chaotic
motions in a flow up to the smallest scales: this approach is called Direct
Numerical Simulation, or DNS. The problem with this approach is that in
order to catch the finest turbulent structures the grid elements must have
sizes comparable to those of the smallest eddies. From (1.2a) it is apparent
that the ratio between the smallest and largest scales decreases as Re−3/4,
therefore the number of nodes required for a DNS, in a three-dimensional
simulation, would grow as N ∼ Re9/4. This is only an estimate of the mem-
ory requirement for a single time step of the simulation. The CPU time
necessary will probably grow faster with Re since the number of operations
required to solve a linear system is proportional to the size of the system
only in special cases, such as tridiagonal matrices [17, p. 67], and gener-
ally grows faster. Furthermore, the number of time steps required for the
simulation will grow as N ∼ Re3/4, since the time interval has to be below
a certain limit, proportional to the space interval, due to stability and ac-
curacy requirements [4, p. 425]. For these reasons, the DNS approach is
feasible only for relatively small values of Re. Most practical engineering
applications involve Re having orders of magnitude in the range 105 ÷ 107,
with meteorological applications involving Re up to 1020 [2, p. 6]. Also,
most of the computational effort of a DNS is spent simulating the smallest
scales, which are often not of interest for practical applications.
A different approach is that of employing a closure model: the system of
equations (1.12a) and (1.12b) is closed by defining a procedure to compute
the Reynolds stress tensor (1.11). This model for τRij can not be derived from
(1.12a) and (1.12b) alone, but has to be built on additional hypotheses that
take into account the nature and physics of the flow under consideration. In
simpler eddy viscosity models, τRij is expressed as a function of the spatial
derivatives of 〈ui〉. Additional information is required to define such func-
tion. In more sophisticated Reynolds stress tensor models, a conservation
equation for τRij is derived from (1.12a) and (1.12b), as mentioned in 1.1.3,
and additional relations are added to express the new unknown terms intro-
duced in this equation as functions of the known terms.
Due to the more regular behaviour of 〈ui〉 compared to the velocity field ui,
a much coarser grid than that required by DNS can be used to resolve all its
aspects: the resolution of the grid is no longer dependent on the Reynolds
number.
All information regarding the turbulent fluctuations u′i, at any scale, is sub-
stituted for the closure model. The derivation of a closure model usually
involves the determination of a certain number of parameters such that the
missing turbulent fluctuations are represented correctly. In general, the val-
ues of these parameters have narrow ranges of applicability. Their determina-
tion, ideally, requires the information they represent to be known in advance.

6



1.2. TURBULENCE MODELLING

The applicability of RANS methodologies to new problems is therefore lim-
ited. The parameters can be deduced by similar problems already validated
by DNS or experiments, but the reliability of the results remains uncertain.
The downside of the RANS approach is that validated results lack in gener-
ality, while untested ones lack in reliability.

1.2.1 Eddy viscosity

Eddy viscosity models are based on the hypothesis, first put forward by
Boussinesq, that the deviatoric part of the Reynolds Stress Tensor is pro-
portional to the average velocity gradient tensor

〈Sij〉 =
1

2

(
∂〈ui〉
xj

+
∂〈uj〉
∂xi

)
. (1.13)

This tensor has no isotropic component due to mass conservation (1.12b),
but τRij may have one. For this reason the Reynolds Stress Tensor is split into
its isotropic part (1

3δijτ
R
kk) and deviatoric part, and only the latter is assumed

to be proportional to 〈Sij〉. A turbulent or eddy viscosity coefficient νT (in
general much greater than the molecular viscosity coefficient ν) is postulated
in order to write:

〈u′iu′j〉 −
1

3
δij〈u′ku′k〉 = −νT

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
= −2νT 〈Sij〉 . (1.14)

It is then possible to rewrite (1.12a) as:

∂ 〈ui〉〈uj〉
∂xj

+
1

ρ

∂

∂xi

(
〈p〉+

1

3
δij〈u′ku′k〉

)
=

∂

∂xj

[
(ν + νT ) 〈Sij〉

]
, (1.15)

which, defining a modified pressure p̃ = 〈p〉 +
1

3
δij〈u′ku′k〉 and an effective

viscosity νeff = ν+νT becomes identical to (1.1a), but with a diffusive term
of enough magnitude to ensure a well-behaved solution.
The problem then becomes that of determining the value of νT .
One approach, suggested by Prandtl, consists in re-writing νT as the product
of a reference velocity and a reference length:

νT = lm · u∗ , (1.16)

the latter referred to as the mixing length.
This is in analogy with the estimation of the molecular viscosity in the kinetic
theory of gases which, as reported in [4, p. 114], is:

ν =
1

3
Λv , (1.17)

7



1.3. THE LARGE EDDY SIMULATION APPROACH

where Λ is the mean free path and v the root mean square velocity.
One downside of the mixing length theory is that it merely switches the prob-
lem to the determination of u∗ and lm. In Prandtl’s original formulation for a
two-dimensional boundary layer u∗ is estimated to be u∗ = lm

∣∣∣∂ux∂y ∣∣∣, follow-
ing considerations analogous to those employed to find (1.17) for molecular
diffusion, and lm = κy, with y being the distance from the wall and κ = 0.41
von Kàrmàn’s constant. This choice makes the model consistent with the
law of the wall (1.45).
The mixing length model is generally considered obsolete and for RANS sim-
ulations more sophisticated models are used. These involve expressing νT as
a function of quantities related to the flow turbulence, such as the turbulent
kinetic energy k and the dissipation rate ε. Additional conservation equa-
tions are postulated for these quantities. These models usually involve the
addition of one or two additional conservation equations. The mixing length
model remains of interest as its generalization to a three-dimensional case
is the basis for the Smagorinsky-Lilly model frequently employed in Large
Eddy Simulation.

1.3 The Large Eddy Simulation approach

As mentioned in 1.1.1, turbulence comes in many scales, and as explained
in Section 1.2, the impractical aspect of DNS comes from the need for sim-
ulating all scales down to the smallest ones, while the critical difficulty of
RANS is finding a closure model that accounts for turbulent fluctuations
of any scale with enough precision for a given problem. The Large Eddy
Simulation or LES approach attempts to deal with these issues by assuming
a separation between the larger scales of the turbulence (the Large Eddies)
which are to be simulated directly, and the smaller scales, which are to be
accounted for by a closure model. As a consequence, a coarser grid than that
required by a DNS is sufficient, since the larger structures only need to be
resolved, while the importance of the closure model is reduced compared to
a RANS, as it needs to account for the smaller motions only. The method
leverages on the first Kolmogorov’s hypothesis mentioned in 1.1.1, stating
that the smaller structures of turbulence are universal, thus it should be
possible for LES closure models to be more general than RANS ones.
The separation between larger and smaller scales is formalized as a spatial
filtering operation done on the velocity field:

u(x, t) =

∫∫∫
G(r, x)u(x− r, t) dr , (1.18)

where G(r, x) is the Filter Function or Kernel. Such filtering operation
allows for the decomposition of the velocity field into its filtered part u(x, t)

8
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which, being smoother, corresponds to the larger scales and its residual part

u′(x, t) = u(x, t)− u(x, t) , (1.19)

corresponding to the smaller scales. The size of the finest motions that are
not filtered out is determined by the filter width ∆, and the grid spacing
required to resolve them accurately, h, is generally proportional to it. Very
large eddy simulations or VLES are obtained with larger values of ∆, and
are essentially analogous to URANS, with the exception that the filtering is
spatial instead of temporal.
When ∆ is as small as the Kolmogorov scale η, a DNS is essentially per-
formed.
Ideally, the best choice is a ∆ slightly smaller than the lower limit of the
energy containing range defined in 1.1.1 [21, p. 561].

1.3.1 Filtering

The filtering operation was defined earlier as the convolution of the velocity
field and a kernel function. Moving from the physical space to the wavenum-
ber space the filtering operation reduces to the product between the trans-
formed velocity field and the transformed kernel function

û(κ, t) = Ĝ(κ) û(κ, t) , (1.20)

due to the properties of the Fourier transform.
The kernel function must satisfy the normalization condition∫∫∫

G(r, x) dr = 1 . (1.21)

Filtering is similar to the averaging procedures seen in 1.1.2, as it allows
for an analogous decomposition of the velocity field and of the equations of
motion. Two important differences are that the filtering operator in general
is not idempotent like the average operator, and that the filtered residual is
not null. A filter is said to be homogeneous if G depends on r but not on
x; it is said to be isotropic if it depends only on |r| regardless of direction.
The filtering operation commutes with differentiation in time(

∂u

∂t

)
=
∂ u

∂t
,

but it commutes with differentiation in space only if the filter is homogeneous:(
∂u

∂xj

)
=

(
∂ u

∂xj

)
−
∫

∂G

∂xj
udr ,

in this case, in fact, the term ∂G
∂xj

is null.
The most commonly used filters, are reported in table 1.1 for the one-
dimensional case. The Box filter is essentially a space-averaging over a pre-

9
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Kernel function G(r) Transfer function Ĝ(κ)

Box filter
1

∆
H

(
1

2
∆− |r|

)
sin
(

1
2κ∆

)
1
2κ∆

Sharp spectral filter
sin
(
πr
∆

)
πr

H(κc − |κ|), κc =
π

∆

Gaussian filter

(√
6

π∆2

)
e

−6r2

∆2


e

−κ2∆2

24



Table 1.1: Kernel functions and transfer functions of the most commonly
used LES filters. H is the Heaviside step function.

defined interval of size ∆; the Sharp spectral filter works similarly but in
wavenumber space. The Gaussian filter has the same bell shape of a normal
distribution, in both the physical and wavenumber space.
A three-dimensional version of these filters can be easily obtained consid-
ering |r| instead of r, plus slight modifications to satisfy the normalization
condition (1.21). All such filters are homogeneous and isotropic.
Another possible generalization of the box filter in three dimensions, uniform
but not isotropic, is:

G(r) =
3∏
j=1

1

∆j
H

(
1

2
∆j − |rj |

)
(1.22)

which corresponds to a spatial average over a rectangular prism of edges ∆1,
∆2 and ∆3.
Usually, the filtering operation is not applied explicitly for deriving the fil-
tered equations of motion nor for formulating the closure model: it is instead
implicit in the discretization of the domain. This is equivalent to having a
box filter with the shape of the "box" equal to the local cell of the grid.
In such case the filtered velocity field is referred to as resolved, while the
residual one as sub-grid scale or SGS.
One problem of the implicit filtering is that, while for uniform rectangular
structured grids the filter is essentially (1.22), for non-uniform ones the filter
is generally no longer homogeneous. This causes filtering and space differ-
entiation to not commute anymore. Anyway, the error introduced assuming
commutativity is usually limited, while the difficulties in deriving the filtered
equations of motion without this assumption are non-trivial. Therefore, com-
mutativity is usually assumed even on non-uniform grids. This assumption,
however, may not be reasonable in the presence of solid boundaries [2, p.
17].

10
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1.3.2 Filtered equations of motion

Applying filtering to equation (1.1b), and assuming commutativity between
the filtering operation and spatial differentiation, one obtains:(

∂uj
∂xj

)
=
∂ uj
∂xj

= 0

Which means that both the filtered field u and the residual field u′ have
zero divergence.
Applying filtering to (1.1a), with the same commutativity assumption,
brings:

∂ ui
∂t

+
∂ uiuj
∂xj

+
1

ρ

∂ p

∂xi
= ν

∂2 ui
∂xj∂xj

=
∂ τ ij
∂xj

Which is analogous to its Reynolds-averaged equivalent. Once again, the
impossibility of obtaining a closed set of equations for the filtered velocity
field ui is due to the non-linear term uiuj .
Similarly to the Reynolds stress tensor (1.11), the residual stress tensor or
SGS stress tensor is introduced

τRij = uiuj − uiuj (1.23)

by summing and subtracting the space derivative of uiuj from equation
(1.3.2). τRij is then decomposed into its isotropic and deviatoric parts:

τRij =
1

3
δijτ

R
kk + τ rij .

The isotropic part can be added to the pressure to obtain the modified
pressure:

p̃ = p+
1

3
τRkk , (1.24)

so that the equations of motion for the filtered velocity field can be rewritten
as: 

∂ ui
∂t

+
∂ ui uj
∂xj

+
1

ρ

∂p̃

∂xi
=

∂

∂xj

(
τ ij − τ rij

)
, (1.25a)

∂ uj
∂xj

= 0 . (1.25b)

Alternatively to the decomposition into its isotropic and deviatoric part,
another decomposition of the residual stress tensor is:

τRij = uiuj − uiuj = Lij + Cij +Rij , (1.26)

11
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which is called Leonard decomposition: it is analogous to Reynolds’ decom-
position, but does not simplify since the filtering operation is in general not
idempotent. The terms

Lij = uiuj − uiuj , (1.27a)
Cij = uiu′j + u′iuj , (1.27b)

Rij = u′iu
′
j , (1.27c)

are called Leonard stresses, cross stresses and SGS Reynolds stresses respec-
tively. u′i is the residual, defined here as u′i = ui − ui.
Such quantities, however, are not Galilean invariant, that is: they are not
invariant to rotations or reflections of the coordinates. A different decom-
position into components that are Galilean invariant is the one proposed by
Germano:

τRij = uiuj − uiuj = L0
ij + C0

ij +R0
ij , (1.28)

where:

L0
ij = uiuj − uiuj , (1.29a)

C0
ij = uiu′j + u′iuj − uiu′j − u′iuj , (1.29b)

R0
ij = u′iu

′
j − u′iu′j . (1.29c)

1.3.3 The Smagorinsky-Lilly model

The Smagorinsky-Lilly model is a closure model of the eddy viscosity (1.2.1)
type, which works as a three-dimensional generalization of the mixing length
model.
The deviatoric part of the SGS stress tensor is assumed to be proportional
to the filtered rate of strain Sij in the same way as the viscous stress tensor:

τ rij = −2νr · Sij , (1.30)

with Sij = 1
2

(
∂ ui
∂xj

+
∂ uj
∂xi

)
and:

νr = l2S · S , (1.31)

where S is the characteristic filtered rate of strain, defined as S =
√

2SijSij .
lS is the Smagorinsky lengthscale, defined as

lS = CS∆ , (1.32)

where ∆ is the filter width, in the three-dimensional case it can be esti-
mated as 3

√
∆1∆2∆3. CS is called Smagorinsky constant. Its value can be

estimated, at least for the case of fully developed turbulence at very high
Re, as:

CS ≈ 0.17 .

12
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The procedure for this estimation can be found, for example, in [21, p. 588]
and [2, p. 75].
This value tends to be slightly too large to fit experimental or DNS data.
Also, near a solid boundary stronger dissipative effects smooth turbulent
fluctuations. A damping function may be employed so as progressively re-
duce CS to zero at the boundary. One such function, proposed by Van Driest
is

CS(y+) = C0
S

(
1− e−

y+

A

)
, (1.33)

where C0
S = 0.17, A = 25 is the Van Driest constant and y+ is the non-

dimensional distance from the boundary, defined as y+ = y/δv. δv is the
viscouls legthscale, defined in 1.3.6.

1.3.4 Backscatter

As mentioned in 1.1.1, energy flows on average from larger to smaller scales of
motion. RANS eddy viscosity models capture this behaviour by adding a dis-
sipative term which subtracts energy from the average velocity field, however,
statistical likelihood does not equal certainty. It may happen that, locally,
energy flows from smaller to larger scales of motion. This phenomenon is
called backscatter. While this reversed energy flow can not happen between
the residual and the average velocity fields of RANS, due to their statistical
nature, it can happen between the SGS and the filtered velocity fields of
LES. The Smagorinsky-Lilly model, however, since it introduces an always
positive turbulent viscosity coefficient, does not allow for backscatter to take
place. The phenomenon of backscatter is invisible to the Smagorinsky-Lilly
model. More advanced closure models do allow for backscatter to take place
[2, p. 103].

1.3.5 Germano dynamic model

The estimate of the Smagorinsky constant CS = 0.17 is not always the
optimal one. Different values have been applied successfully to various types
of flow, from CS = 0.10 [6][8] to CS = 0.23 [8]. Also, CS needs to get to
zero near walls and when the flow is laminar [8][21, p. 619]. It would be of
interest, in order to refine the Smagorinsky-Lilly model, to couple it with a
technique to find values for CS that are optimal for the flow considered. One
such technique is the Germano dynamic model.
The first step of this technique is defining a new filtering operation. This
new filter, called test filter, has a width ∆̃ that is larger than the width of
the original one ∆, usually double. The velocity filtered by the test filter is
indicated as ũ, in the same way as the velocity filtered by the original one is
indicated as u. By applying both filters to the velocity field, ũ is obtained.

13
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The residual stress tensor after the double filtering would be:

Tij = ũi uj − ũi ũj (1.34)

in the same way as τRij = ui uj − ui uj . Now, applying the test filter to τRij it
is possible to define the resolved stress tensor Lij as

Lij = Tij − τ̃Rij = ũiuj − ũi ũj . (1.35)

This relation is known as Germano identity [21, p. 621]. Lij represents
the stresses due to the smaller motions that are still resolved in the filtered
velocity field u (but not in the field obtained combining both filters). As
such, it depends only on u and not on the unknown term ui uj .
It is possible to re-write the Smagorinsky-Lilly model as

τ rij = −2 cs ∆
2
S Sij , (1.36)

with cs = C2
s . The Smagorinsky-Lilly model can also be used to estimate

the deviatoric part of the residual stress tensor after the double filtering

T dij = Tij −
1

3
δij Tkk = −2 cs ∆̃

2
S̃ S̃ij , (1.37)

where ∆̃ is the equivalent width of the two combined filters. With the
previous two expressions it is possible to estimate the deviatoric portion of
Lij as:

LSij = T dij − τ̃ rij . (1.38)

Under the assumption that cs is uniform, it can be taken out of the filtering
operation to write:

LSij = cs

(
2 ∆

2
S̃ Sij − 2 ∆̃

2
S̃ S̃ij

)
= csMij (1.39)

with Mij = 2 ∆
2
S̃ Sij − 2 ∆̃

2
S̃ S̃ij . The deviatoric part of the resolved

stresses estimated by the Smagorinsky-Lilly model, LSij , can then be con-
fronted with its actual value

Ldij = Lij −
1

3
δij Lkk, (1.40)

obtained from u as in (1.35). The error of the model in estimating Ldij is
quantified as

ε =
(
Ldij − LSij

)2
=
(
Ldij − csMij

)2
. (1.41)

The error is minimized for

cs =
LijMij

MklMkl
, (1.42)
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since LijMij = LdijMij [21, p. 622].
There is, however, an inconsistency at the base of the procedure above: cs is
assumed uniform when filtering τ rij but then is defined in (1.42) as a function
of time and space. cs computed in this way presents large fluctuations [21,
p. 623], also due to the possibility of Mkl going to zero locally [8]. Such
fluctuations render LES computations unstable. It is possible to reduce the
fluctuations by computing cs from average values of LijMij and of MklMkl.
For channel flows, it is possible to average these terms over planes parallel to
the solid boundaries [8]. cs would then have constant values over such planes,
but would vary with the distance from the wall. Different local spatial or
temporal averages may be used in other situations.
One alternative is not making the assumption that cs is uniform. In this
case it will not be possible to collect cs in (1.39), since it will remain inside
the test filter. The problem then becomes that of finding the function cs(x)

that minimizes the error
∣∣∣Ldij − LS(cs (x))ij

∣∣∣ over the whole domain. This
approach is known as localized dynamic model.

1.3.6 Boundary conditions

In the presence of a solid wall, two boundary conditions are applied to the
velocity field: the impermeability condition

un = 0, (1.43a)

and, for a viscous fluid, the no-slip condition

u− (un)n = 0. (1.43b)

These, combined, imply that the velocity field is null at the wall.
For large eddy simulations, there are two possible approaches to treating a
solid boundary. The first one is near wall-resolution (LES-NWR), in which
the near-wall motions are simulated directly. In this case conditions (1.43a)
and (1.43b) can be applied directly to the filtered velocity field u. It has
to be noted, however, that to simulate the near-wall motions with enough
precision the grid spacing at the wall must be on the order of the viscous
lengthscale δv, which approximately decreases with Re as

δv
δ

= Re−0.88, (1.44)

where δ is the flow lengthscale, a characteristic size of the flow [21, p. 598].
This implies that the number of grid points necessary to resolve the near-
wall motions grows as Re1.76, making this approach infeasible for high Re
problems. Still, LES-NWR can be seen as a less expensive DNS when only
the near wall turbulence is of interest, as it allows for a reduction in grid
refinement far from it.
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The second approach is near-wall modeling (LES-NWM) in which the near-
wall motions are not simulated directly, but modelled instead through suit-
able boundary conditions. The impermeability condition (1.43a) is generally
left unaltered, while the no-slip one is substituted by the condition that the
tangential part of the velocity field adheres to a wall function, such as the
log law:

u‖ = uτ
1

κ
ln
(
y+
)

+B, (1.45)

with κ = 0.41 (von Kàrmàn’s constant), u2
τ = τwall/ρ, B = 5.2 and y+ =

y/δv. δv is the viscouls legthscale, defined as δv = ν/uτ . These conditions
can be applied at a certain distance from the boundary, usually they are
applied at the first grid node away from the wall.
Alternatively, it is possible to implement hybrid methods: the domain is
divided into a region close to solid walls, where a RANS is performed, and a
region far from the walls, where a LES is performed. The advantage is that
RANS models tend to behave better than LES ones close to the walls. The
price is that communication between the results of the two methods at their
interfaces is difficult, since the average velocity field of the RANS and the
filtered velocity field of the LES have a very different nature.
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Chapter 2

Numerical solution

It is seldom possible to obtain a solution to a differential problem in closed
form, especially if partial differential equations (PDEs) rather than ordinary
differential equations (ODEs) are involved. An approximate numerical so-
lution can be obtained by substituting the continuous differential problem
with a finite set of discrete algebraic equations, which can be solved auto-
matically by a computer. In wavenumber (or frequency) space differential
and integral relations become algebraic, so a discrete approximation can be
obtained by considering a finite number of modes. This spectral approach
is very accurate [21, p. 344], but is not considered here. In physical space,
it is possible to divide the domain into a finite number of elements, then
consider algebraic approximations for the differential or integral operations
appearing in the problem on this discrete domain.
It is useful to distinguish between boundary value problems (BVP), in which
boundary conditions are given on the frontier of the domain, and initial value
problems (IVP), in which all boundary conditions are given at a single point.
Equations that model unsteady physical processes, such as the Navier-Stokes
equations as presented in Chapter 1, have characteristics of both: they can
be seen as an initial value problem in time and a boundary value problem in
space. For initial value problems, numerical solution techniques usually in-
volve finite differences; for boundary value problems, one of three numerical
schemes is generally used: finite differences, finite elements or finite volumes.
The approach pursued here involves finite differences.

2.1 Consistency, stability, convergence

A numerical scheme for solving a differential problem has a finite dimension
N , which can be, for example, the number of values used to define the
approximate solution. N is also an indication of the computational effort
required by the scheme. The main objective of a numerical scheme is to
produce an approximated solution so that an increase in N would bring
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it closer (in some sense) to the actual solution of the original problem. If
this is the case the scheme is said to be convergent. Convergence is linked
to two other important properties of a numerical scheme: consistency and
stability. Quarteroni [23, p. 4] provides the following formal definitions of
these properties. A generic differential problem can be summarized as

P(u, g) = 0 , (2.1)

where u is the unknown function, g a set of on which the solution depends
and P a function of u and its derivatives. The discrete problem obtained
applying a numerical method to (2.1) is

PN (uN , gN ) = 0 , (2.2)

uN and gN being discrete approximations of u and g, and PN being the
discrete counterpart of P obtained substituting the differential operators in
it with discrete approximations. Convergence can be defined as:

‖u− uN‖ −→ 0 for N −→ ∞ . (2.3)

A numerical method is said to be consistent if, for N going to infinity, the
real solution u and the real g become solutions of the discrete problem:

PN (u, g) −→ 0 for N −→ ∞ . (2.4)

Consistency can be seen an indication of how well the discrete differential
operators in PN approximate the real ones in P. It is possible to define
an order of convergence, and an order of consistency of a numerical method
depending on the order of the limits (2.3) and (2.4). The order of convergence
may depend on which norm is used for (2.3). Stability relates instead to the
discrete problem’s sensitivity to variations in the data. A numerical method
is stable if, given a perturbation of (2.2):

PN (uN + δuN , gN + δgN ) = 0 , (2.5)

it is possible to write:

∀ ε > 0 ∃ δ > 0 such that ‖δgN‖ < δ =⇒ ‖uN‖ ≤ ε ∀N . (2.6)

Stability is important for keeping in check the unavoidable rounding errors
in the data, and to avoid the amplification of computational errors in time
marching schemes.
A fundamental result in numerical analysis is the equivalence theorem, which
states that if a numerical method is consistent, then it is convergent if and
only if it is stable [23, p. 5]. This result is useful since consistency and
stability are generally easier to prove than convergence. However, sometimes
it is necessary to study the stability of the method directly. Other times this
is excessively difficult, and the convergence of the method has to be tested
empirically on problems whose solution is known in advance.
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2.2 Finite Differences

In order to build a numerical scheme for approximating the solution to a
differential problem, it is necessary to find a discrete substitute for derivation.
For sufficiently regular functions, and for sufficiently small h, the expressions

du

dx
≈ u (x+ h)− u (x)

h
, (2.7a)

du

dx
≈ u (x)− u (x− h)

h
, (2.7b)

can be used. In fact, the definition of derivative is the limit of their right-
hand side for h → 0. (2.7a) and (2.7b) are called forward and bacward
finite differences respectively. It is important to know how accurately they
approximate du

dx . The Taylor series expansions of u around x are:

u(x+ h) = u(x) +
du

dx
h+

1

2

d2u

dx2
h2 +

1

6

d3u

dx3
h3 +

1

24

d4u

dx4
h4 + ... (2.8a)

u(x− h) = u(x)− du

dx
h+

1

2

d2u

dx2
h2 − 1

6

d3u

dx3
h3 +

1

24

d4u

dx4
h4 − ... (2.8b)

By rearranging the terms in (2.8a) and (2.8b) it is possible to express the
errors committed by (2.7a) and (2.7b) as 1

2
d2u
dx2

h+ 1
6

d3u
dx3

h2 + ... and 1
2

d2u
dx2

h−
1
6

d3u
dx3

h2 + ... respectively. For h → 0 the dominant term in the error is,
using the big-o notation, O(h). This means the error decreases linearly
with decreasing h. This approximation is said to be first order accurate.
Subtracting (2.8a) and (2.8b) and dividing the result by 2h expression

du

dx
=
u(x+ h)− u(x− h)

2h
+ O

(
h2
)

(2.9)

is found. (2.9) is known as centred finite difference. It is a second order
accurate approximation for the derivative of u(x), since the dominant term
in the error is O

(
h2
)
. Summing (2.8a) and (2.8b) instead, and dividing the

result by h2, a second order centred finite difference approximation for the
second order derivative of u(x) can be obtained:

d2u

dx2
=
u(x+ h)− 2u(x) + u(x− h)

h2
+ O

(
h2
)
. (2.10)

More generally, a finite difference approximation can be obtained for the
derivative of any order, with any order of accuracy, at any point, by com-
bining a sufficient number of Taylor expansions around it. For example, it is
possible to derive non centred second order accurate approximations of the
first order derivative of u(x) in x:

du

dx
=
−3u(x) + 4u(x+ h)− u(x+ 2h)

2h
+ O

(
h2
)
, (2.11a)
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du

dx
=
u(x)− 4u(x− h) + 3u(x− 2h)

2h
+ O

(
h2
)
. (2.11b)

The points at which the function is evaluated need not be uniformly spaced.
More general expressions for centred finite difference approximations to the
first and second order derivatives are:

du

dx

∣∣∣∣
xi

≈ 1

hi + hi−1

[
hi (u(xi)− u(xi−1))

hi−1
+
hi−1 (u(xi+1)− u(xi))

hi

]
,

(2.12a)
d2u

dx2

∣∣∣∣
xi

≈ 2

hi + hi−1

[
u(xi+1)− u(xi)

hi
− u(xi)− u(xi−1)

hi−1

]
, (2.12b)

as reported by Keating [13, p. 14], with hi = xi+1−xi and hi−1 = xi−xi−1.
While (2.12a) is second order accurate, (2.12b) is only first order. It regains
second order accuracy if the grid is quasi-uniform, that is, if the grid spacing
varies sufficiently slowly along x [13].
The number of different values of u necessary to compute a finite difference
approximation increase with the order of the derivative and with the order of
accuracy desired. The coefficients of the finite difference are obtained solving
a linear system that combines the Taylor series of u so that all "unwanted"
derivatives cancel out. This linear system, however, becomes very badly
conditioned with large numbers of nodes [17, p. 11].
The concept of finite differences presented above can easily be extended to
multidimensional derivatives. For example, an approximation to the two-
dimensional Laplacian operator is:

∇2u
∣∣
xi,yj

≈ u(xi−1, yi)+u(xi, yi−1)−4u(xi, yi)+u(xi+1, yi)+u(xi, yi+1)

h2
,

(2.13)
assuming equal spacing h in all directions. The set of points used to compute
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Figure 2.1: The five-point stencil.

a finite difference is referred to as stencil. The one used for (2.13) is called
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the five-point stencil [17, p. 61], shown in figure 2.1.
When using finite differences, it is customary to use subscripts to identify
the position in space and superscripts to indicate the instant in time [17, p.
120]. For example, uni, j, k would be the value of the approximate solution at
position {xi, yj , zk} and at time tn.

2.2.1 Initial value problems

An initial value problem takes the form
du

dt
= f(u(t), t) , t > t0 (2.14a)

u(t0) = u0 (2.14b)

A time-marching numerical scheme to find an approximate solution to it can
be obtained by substituting the derivative of u on the left-hand side with
either (2.7a) or (2.7b):

un+1 − un

∆t
= f (un, tn) , u0 = u0 , (2.15a)

un+1 − un

∆t
= f

(
un+1, tn+1

)
, u0 = u0 . (2.15b)

These solution methods are called forward Euler and bacward Euler meth-
ods respectively. They are both first order accurate in time. (2.15a) is an
explicit method, as the unknown term un+1 can be expressed immediately
as a function of u’s value at the previous step, while (2.15b) is an implicit
method, as the unknown term appears also inside the forcing term f . Im-
plicit schemes are usually more demanding computationally, but they tend
to present advantages in terms of stability requirements [27, p. 91], [13, p.
28].
A scheme that is second order accurate in time is the so-called leapfrog
method

un+1 − un−1

2 ∆t
= f (un, tn) , (2.16)

which uses a centred difference for the time derivative. The leapfrog method
is an example of a multi-step method, since it references the value of u not
only at tn but also at the previous step. A multi-step method has certain
disadvantages in terms of memory, since additional terms have to be kept in
storage, and it is not obvious how to initialize them, since for the first few
time steps they refer to undefined values of u. Another second order accurate
scheme, which is implicit but does not require any additional values of u, is
the trapezoidal [17, p. 121] or Crank-Nicholson [27, p. 4] method:

un+1 − un

∆t
=

1

2

[
f
(
un+1, tn+1

)
+ f (un, tn)

]
, (2.17)
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where the centred difference in time is evaluated at tn+ 1
2 , and the value of f at

tn+ 1
2 is approximated with an average between its values at n and n+1. This

averaging is second order accurate in time, as long as f depends sufficiently
regularly from u and t [17, p. 116]. Of course, it is possible to use higher
order approximations for the time derivative to obtain more accurate multi-
step schemes, either implicit or explicit. An alternative route to obtaining
higher order accurate multi-step schemes is looking for an approximation of
the integral of f , rather than one of the derivative of u. Two important
families of methods are obtained in this way: the explicit Adams-Bashforth
methods and the implicit Adams-Moulton methods. The two- and three-step
Adams-Bashforth methods are:

un+1 = un +
∆t

2

[
3 f (un, tn)− f

(
un−1, tn−1

)]
, (2.18a)

un+1 = un +
∆t

12

[
23f (un, tn)− 16f

(
un−1, tn−1

)
+ 5f

(
un−2, tn−2

)]
.

(2.18b)
The two-step Adams-Moulton method is:

un+1 = un +
∆t

12

[
5f
(
un+1, tn+1

)
+ 8f (un, tn)− f

(
un−1, tn−1

)]
. (2.19)

2.15a is the one-step Adams-Bashforth method, 2.17 is the one-step Adams-
Moulton method [17, p. 132]. N -step Adams-Bashforth schemes have ac-
curacy of order N [24, p. 401] while N -step Adams-Moulton schemes have
accuracy of order N + 1 [24, p. 402].
An alternative to multi-step schemes is multi-stage schemes [17, p. 124], of
which the more common are the Runge-Kutta methods. These methods use
multiple estimations of the solution during a single time step, progressively
refining the value at the end of the step. A simple example is the two-stage
method:

u∗ = un +
∆t

2
f (un, tn) , (2.20a)

un+1 = un + ∆t f
(
u∗, tn+ 1

2

)
, (2.20b)

Where (2.20a) estimates the value of u at tn+ 1
2 with a forward Euler step as

in (2.15a), then (2.20b) uses this estimate to find un+1 with a leapfrog step,
as in (2.16). The method is second order accurate in time [17, p. 125]. The
general form of a q stage Runge-Kutta method is

u∗i = un + ∆t

q∑
j=1

aij f
(
u∗j , t

n + cj ∆t
)
, i = 1, ..., q (2.21a)

un+1 = un + ∆t

q∑
j=1

bj f
(
u∗j , t

n + cj ∆t
)
. (2.21b)
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In this form the method is fully implicit, as each stage depends on all the
unknowns u∗i . If the summation on the left-hand side of (2.21a) is stopped at
i, then the method is said to be diagonally implicit, as each stage is implicit
only in its unknown. If the summation is stopped at i − 1, then each stage
is explicit. Parameters aij , bj , cj must adhere to certain conditions for the
method to be consistent [17, p. 126]:

q∑
j=1

aij = ci , i = 1, ..., q (2.22)

q∑
j=1

bj = 0 . (2.23)

Further conditions on the parameters exist to ensure the order of accuracy
of the method.

2.2.2 Domain discretization

(a) (b)

Figure 2.2: (a) A two-dimensional structured grid adapted around a NACA
2412 airfoil. (b) A two-dimensional unstructured grid made of triangular
elements around a NACA 2412 airfoil.

In order to obtain a discrete representation of the computational domain it
is necessary to divide it into a finite number of parts. This subdivision is
referred to as grid or mesh. Grids can be structured or unstructured [23,
p. 145]. Structured grids (figure 2.2a) are made of quadrangular elements,
ordered so that it is possible to map their positions to sequences of integers.
They are memory efficient, as they only require a set of indexes to identify a
cell. Unstructured grids (figure 2.2b) are generated filling the domain with
geometric elements that have no pre-determined order. These elements can
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have various shapes, the simplest one being a triangle, and vary in size, al-
though they must satisfy certain regularity constraints. Unstructured grids
are very versatile, they can fill complex geometries and be refined locally, but
require explicit storage of the position of each one of their nodes, so they are
not as memory efficient as structured grids. Structured grids can be adapted
to general domain geometries by applying a coordinate transformation to
a Cartesian grid, but they require the domain boundaries to be sufficiently
regular. They allow for local refinements, but only in "bands" rather than
at specific points. Multiple structured grids can be used to fill more complex
domains.
It is common to associate finite difference methods (FDM) to structured
grids and finite element methods (FEM) with unstructured grids. However,
finite element methods can be implemented on structured grids. It is also
possible to implement a finite difference scheme on an unstructured grid,
although this is rarely done in practice [27, p. 383].
There is another approach to the inclusion of a complex boundary in a struc-
tured grid. Instead of transforming the grid’s geometry, the effects of the
boundary (the boundary conditions) are imposed inside the computational
domain. A boundary treated in this way is said to be immersed. This ap-
proach allows for the retention of the grid’s orthogonal Cartesian structure,
in which finite differences can be expressed in a very simple and efficient
form.

2.2.3 Immersed boundaries

One possible approach to recreating the effects of complex boundaries inside
the computational domain is boundary fitting. It consists of finding where
the immersed boundary crosses the Cartesian grid, and moving the first node
inside the boundary at the crossing point. Finite difference expressions in the
form of (2.12a) and (2.12b) are modified locally to account for the reduced
intervals. They, however, no longer commute, that is, Schwarz’s theorem no
longer applies to the discrete operators [13, p. 16]. Roache advises against
this approach [27, p. 322].
A different approach consists in recreating the values of the velocity field at
the immersed boundary from the surrounding points of the Cartesian grid
without altering its shape, and using this recreation to impose the boundary
conditions.
The immersed geometry is generally provided as an unstructured mesh of
elements. For each element, the point of the Cartesian grid that is closest to it
can be found, and a set of points around it can be used for the reconstruction
of the desired quantity at the boundary through a form of interpolation to
be defined. An immersed boundary procedure can be explicit, when the
velocity at the boundary is extrapolated from known values and used to
apply a correction on the field, for example, in the form of a forcing term.
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It can be implicit, when the reconstruction procedure is used to translate
the boundary conditions on the immersed geometry into conditions on the
surrounding Cartesian points, as is done in the ghost cell methods used in
[18] and in [26].
A list of approaches to immersed boundaries can be found in [13, p. 3].

2.2.4 Solution of boundary value problems

On a discrete domain, functions can be represented by their values at the
nodes of the grid. These values can be arranged into vectors. Spatial deriva-
tive operators can be obtained combining the coefficients of finite difference
expressions like (2.7a), (2.10) or (2.12a) into matrices. Derivatives are com-
puted multiplying these matrices with the vector representations of the func-
tions. These matrices are singular by construction.
A generic boundary value problem, such as the elliptic equation

∂2u

∂x2
= f , x ∈ [0, 1] , (2.24a)

u(0) = u0 , u(1) = uf , (2.24b)

can be turned into the linear system of equations

Dij uj = fi , (2.25)

where {Dij} is the matrix representing the operator ∂2

∂x2
, modified to account

for boundary conditions. If the problem is well posed, this modified matrix
should be invertible. There are many different solution techniques for linear
systems of equations. The brute force approach, Gaussian elimination, re-
quires, in the more general case, a number of operations that is O

(
N3
)
[17, p.

67], with N being the size of the problem. It can be noted, however, that for
a one-dimensional problem the matrix {Di, j} is banded. Specifically using
centred finite differences in the form (2.10), it is tridiagonal. For a tridiag-
onal matrix (or, more in general, a banded matrix with bandwidth � N ,
[24, p. 96]) there is a technique called Thomas algorithm [24, p. 95], that
requires a number of operations that is only O (N) [17, p. 67]. However, for
multi-dimensional boundary value problems, in the presence of derivatives
along different directions, it is not possible to obtain a solution matrix with
a bandwidth � N , regardless of the order chosen for the solution vector.
The matrix would still be sparse, since each finite difference requires a lim-
ited number of adjacent points, and many efficient techniques exist for the
solution of a system of this kind. However, Thomas algorithm on a limited
bandwidth matrix remains one of the simplest, most efficient and scalable [9]
techniques available. It would be advantageous to reformulate the problem
so that only one-directional derivative operators need to be solved at one
time.
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2.2.5 Alternating direction implicit method

A parabolic equation in the form

∂u

∂t
= Lu , (2.26)

where L a generic differential operator, can be solved in two or more passages
through a technique called operator splititng. If it is possible to write

Lu = L1u+ L2u ,

then the solution can be found in two passages:

u∗ − un

∆t
= L1u

∗ , (2.27a)

un+1 − u∗

∆t
= L2u

n+1 . (2.27b)

Solving 2.27b for u∗ and inserting it into 2.27a brings:

un+1 − un

∆t
= L1u

n+1 + L2u
n+1 −∆tL1L2u

n+1 ,

which is a forward Euler approximation for (2.26), plus a term proportional
to ∆t. As a consequence, solving (2.27a) and (2.27b) at each time step
produces an approximate solution to (2.26) that is first order accurate in
time. The same approach can be used to obtain more accurate schemes, for
a variety of time-marching problems. Considering the heat equation

∂u

∂t
= α∇2u , (2.28)

in two dimensions, the alternating direction implicit (ADI) method is an
implicit operator splitting scheme that allows for one-directional problems
only to be solved at each step:

u∗ − un

∆t
=
α

2

(
δ2u∗

δx2
+
δ2un

δy2

)
, (2.29a)

un+1 − u∗

∆t
=
α

2

(
δ2u∗

δx2
+
δ2un+1

δy2

)
. (2.29b)

δ2

δx2
and δ2

δy2
are the finite difference approximations of the spatial derivative

operators. Rearranging the terms, (2.29a) and (2.29b) can be re-written as(
I − α∆t

2

δ2

δx2

)
u∗ =

(
I +

α∆t

2

δ2

δy2

)
un , (2.30a)(

I − α∆t

2

δ2

δy2

)
un+1 =

(
I +

α∆t

2

δ2

δx2

)
u∗ . (2.30b)
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If centred finite differences were used, both matrices
(
I − α∆t

2
δ2

δx2

)
and(

I − α∆t
2

δ2

δy2

)
can be rearranged to be tridiagonal since they involve deriva-

tives in one direction only. As mentioned in 2.2.4, this allows for a particu-
larly efficient solution. By combining (2.30a) and (2.30b) to bypass u∗, it can
be shown that the method is second order accurate in time. The method
is also unconditionally stable [27, p. 101]. It can be shown that u∗ is a
first order accurate approximation of the value of u at tn+ 1

2 [17, p. 199].
This is advantageous, since equation (2.30a) requires boundary conditions,
and the values of un+ 1

2 can be used. According to LeVeque, by using these
boundary conditions the second order accuracy of the complete method is
retained despite u∗ being only a first order accurate approximation for un+ 1

2

[17, p. 199]. The extension of (2.29) to a three-dimensional situation is not
obvious. A three-dimensiononal ADI method was first proposed by Douglas
[7] in 1962:

u∗ − un

∆t
=
α

2

δ2

δx2
(u∗ + un) + α

δ2un

δy2
+ α

δ2un

δz2
, (2.31a)

u∗∗ − un

∆t
=
α

2

δ2

δx2
(u∗ + un) +

α

2

δ2

δy2
(u∗∗ + un) + α

δ2un

δz2
, (2.31b)

un+1 − un

∆t
=
α

2

δ2

δx2
(u∗ + un) +

α

2

δ2

δy2
(u∗∗ + un) +

+
α

2

δ2

δz2

(
un+1 + un

)
. (2.31c)

This method is, again, second order accurate and unconditionally stable
[27, p. 104]. In this case, each intermediate step is a first order accurate
approximation of the value of u at the end of the step. As such, the values of
un+1 at the boundaries can be used for boundary conditions to (2.31a) and
(2.31b). However, this might result in a loss of accuracy. A more detailed
analysis of the problem of boundary conditions for intermediate steps in ADI
schemes can be found in [16].
In the presence of an additional forcing term in equation (2.28)

∂u

∂t
= α∇2u+ f (u, t) ,

it is sufficient to add fn+ 1
2 to each step of (2.31). With some algebra, [10][13,

p. 42], the scheme becomes:
u∗ − un

∆t
=α∇2un + fn+ 1

2 , (2.32a)

u∗∗ − u∗

∆t
=
α

2

δ2

δx2
(u∗∗ − un) , (2.32b)

u∗∗∗ − u∗∗

∆t
=
α

2

δ2

δy2
(u∗∗∗ − un) , (2.32c)

un+1 − u∗∗∗

∆t
=
α

2

δ2

δz2

(
un+1 − un

)
. (2.32d)
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The form of the scheme in (2.31) is recovered by summing each step of (2.32)
to all its previous steps.
(2.32) can be adapted straightforwardly to the treatment of the diffusion
terms for each component of the momentum conservation equation (2.33a),
collecting all other terms in f . Viscous diffusive terms have more demanding
stability requirements than the advection terms when treated explicitly [13,
p. 29]. Treating them with an implicit, unconditionally stable method is
advantageous.

2.3 Numerical solution of the incompressible
Navier-Stokes equations

When dealing with numerical methods for their approximate solutions, equa-
tions (1.1a) and (1.1b) are generally presented in vector notation:

∂u

∂t
+∇ ·

(
uuT

)
+∇p− 1

Re
∇2u = f , (2.33a)

∇ · u = 0 , (2.33b)

where u = {u, v, w}T and f is a generic forcing term. All quantities have
been made non-dimensional considering a reference velocity U0, a reference
length L0, a reference pressure q = ρU2

0 and a reference time scale τ =
L0/U0.
Equations (2.33a) and (2.33b) are defined over a domain Ω × [0, T ], with
Ω ∈ Rd, d = 2, 3. The system of equations (2.33) will have to be completed
with initial and boundary conditions. The initial condition for u will be in
the form:

u|t=0 = u0 in Ω . (2.34)

Boundary conditions can be u = b in ΓD × [0, T ] , (2.35a)
1

Re
∇u · n− pn = σ in ΓN × [0, T ] , (2.35b)

where ΓD and ΓN are two non-overlapping portions of the domain bound-
ary ∂Ω. Dirichlet boundary conditions in the form (2.35a) are also called
essential, they are used to impose conditions (1.43a) and (1.43b) at a solid
wall, or, for example, to prescribe a velocity profile at an inlet. Neumann
boundary conditions in the form (2.35b) define a surface force σ acting on
the fluid at the boundary. If Neumann boundary conditions only are pre-
scribed, the problem is underdetermined. For the pressure the situation is
less clear. Pressure appears only through its gradient in equation (2.33a), so
it is not determined uniquely. It can be determined by artificially setting its
value at a point, or by adding the condition that its average over the domain
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is null [23, p. 447]
In three dimensions, existence and uniqueness of strong solutions for 2.33a
and 2.33b have been formally proven to exist only for very small times [23,
p. 444]. Nonetheless, numerical solutions have been routinely computed for
decades.

2.3.1 Staggered grids

-73 3 3 3 -7-7-7-7 3

x

Figure 2.3: Values arranged in an alternating pattern along the x axis.

In the centred finite difference (2.9), the value of the function at the point in
which the derivative is evaluated, is absent. This means that applying (2.9)
to values arranged in an alternating pattern such as that in figure 2.3 would
produce a null derivative, despite its obvious non-uniformity. The same situ-

3 -7 3 -7

-1 12 -1

3 -7 3 -7

-1 -1
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-1

3 -7

-1

3 -7

-1 -1

3 -7

-1

12 12

12 12 12

12 12 12

3 -7

Figure 2.4: Values arranged in a checkerboard pattern in two dimensions.

ation can happen in more than one dimension, where checkerboard patterns
such as that in figure 2.4 would be invisible to the (2.9) operator [20, p.
116]. The problem is that this kind of pattern may emerge in the pressure
field during a time-marching simulation, without affecting the momentum
equation, which only contains first order derivatives of it. A similar problem
may affect the continuity equation (2.33b).
A remedy for this particular kind of instability is the placement of flow vari-
ables on different grids, positioned so that first order derivative centred finite
differences are evaluated between two adjacent nodes. These grids are said
to be staggered, the velocity components and the pressure are positioned as
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in figure 2.5. The use of staggered grids for the solution of the equations
of motion (2.33) was first suggested by Harlow and Welch for their MAC
(Marker and Cell) method [12]. The three components of the momentum

v v v

v v v

v v v

v v v

v v v

u p u p u p u

u p u p u p u

u p u p u p u

u p u p u p u

(a)

 

u

u

v

u

v

w

w

p

(b)

Figure 2.5: (a): Staggered cells in two dimensions. (b): A staggered cell in
three dimensions.

conservation equation (2.33a) are evaluated at the nodes where the corre-
sponding components of u are placed. This allows for simple expressions for
the diffusion terms

∂2u

∂x2

∣∣∣∣
i+ 1

2
, j, k

≈
ui+ 3

2
, j, k + 2ui+ 1

2
, j, k + ui− 1

2
, j, k

h2
x

,

∂2u

∂y2

∣∣∣∣
i+ 1

2
, j, k

≈
ui+ 1

2
, j+1, k + 2ui+ 1

2
, j, k + ui+ 1

2
, j−1, k

h2
y

,

∂2u

∂z2

∣∣∣∣
i+ 1

2
, j, k

≈
ui+ 1

2
, j, k+1 + 2ui+ 1

2
, j, k + ui+ 1

2
, j, k−1

h2
z

,

and the pressure forces

∂p

∂x

∣∣∣∣
i+ 1

2
, j, k

≈
pi+1, j, k − pi, j, k

hx
,

with analogous expressions for the other components v and w. The evalu-
ation of the continuity equation (2.33b) at the pressure nodes is similarly
easy:

∇ · u|i, j, k ≈
ui+ 1

2
, j, k − ui− 1

2
, j, k

hx
+
vi, j+ 1

2
, k − vi, j− 1

2
, k

hy
+
wi, j, k+ 1

2
− wi, j, k− 1

2

hz
.

The evaluation of the advection term is slightly more complicated, as it
requires the values of certain variables at positions in which they are absent.
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The remedy is using averages between adjacent points, which are second
order accurate in space. For example, the estimation of the value of v in one
of the u nodes would require an average between four points:

vi+ 1
2
, j, k ≈

vi+1, j+ 1
2
, k + vi, j+ 1

2
, k + vi+1, j− 1

2
, k + vi, j− 1

2
, k

4
.

In general, when dealing with non-linear terms, Roache [27, p. 214] suggests
making the products of averages, rather than taking the averages of prod-
ucts.
With staggered grids, some velocity components will not be precisely defined
at the boundaries. In order to enforce boundary conditions on these com-
ponents, Harlow and Welch [12] suggested the use of ghost cells outside the
boundary. In these cells the velocity is defined so that its average with its
adjacent value inside the domain is the desired boundary value. For exam-
ple, at a solid wall normal to the x direction, the value of uN+ 1

2
, j, k in the

gost cell outside the boundary is set to be −uN− 1
2
, j, k, so that their average

uN, j, k is null. See figure 2.6.

U
N +  ½, j, k

U
N - ½, j, k

Figure 2.6: Ghost cell at the boundary.

2.3.2 The pressure term

The system (2.33) contains four equations for the four unknowns u, v, w
and p. It would be tempting to solve all of them together, arranging their
discrete (linearized) equivalents into a single linear system of equations. This
approach, however, is impractical. The resulting matrix, in fact, would be
difficult to solve numerically [13, p. 30]. The origin of the problem is more
readily seen reformulating (2.33) in functional form, as is done, for example,
in [23, p. 451]. The solution of (2.33) among all possible values of u and
p is a saddle point of the functional, which is more difficult to find than an
actual extremum point: it is a minimum in u and a maximum in p. In order
to avoid the saddle-point problem, it would be desiderable to separate the
search for u and the search for p in two different steps.

The Poisson equation for pressure

As pointed out in [20, p. 114], the pressure field p is implicitly specified
by the continuity equation (2.33b). A proper pressure field substituted into

31



2.3. NUMERICAL SOLUTION OF THE NS EQUATIONS

(2.33a) would result in a divergence-free velocity field. The question is how
to determine this proper pressure field. Commonly, this is done by taking
the divergence of the momentum conservation equation, which results in a
Poisson equation for the pressure. In perfect arithmetic, taking the diver-
gence of (2.33a) most terms cancel out due to (2.33b), and the resulting
equation is:

∇2p = −∇u : ∇u . (2.36)

Pressure in the Marker and Cell method

In the original MAC method [12], the pressure was computed from the ve-
locity field at the previous time step, but without assuming this field to be
divergence-free. In fact, it may not have been entirely, due to the finite pre-
cision of the computer arithmetic, or due to an incomplete solution of the
Poisson equation at the previous step, which was generally solved iteratively
[27, p. 211]. Defining D = ∇ · u the equation for pressure in the MAC
method was

∇2p = −∂D
∂t
−∇ ·

[
∇ ·
(
uuT

)]
+

1

Re
∇2D , (2.37)

with ∂D
∂t approximated as Dn+1−Dn

∆t . The satisfaction of the continuity equa-
tion (2.33b) at the next step was imposed by setting Dn+1 = 0 in (2.37).
The same treatment of the pressure was used in [6]. In the last decades this
method has fallen out of favour and projection methods have taken its place.

Projection methods

Projection methods can be seen as an application of operator splitting, as
seen in 2.2.5. The earliest projection method was proposed by Chorin and
Temam. In the first stage the momentum conservation equation is solved
without the pressure term:

ũ
n+1 − un

∆t
= −∇ ·

(
u
∗
u
∗∗T )+

1

Re
∇2

ũ
n+1 + f

n+1 , ũ
n+1
∣∣
∂Ω

= 0 . (2.38)

Homogeneous boundary conditions have been assumed for simplicity. The
advection term can be treated either explicitly or implicitly [23, p. 475]. In
the second stage the following system is solved:

un+1 − ũn+1

∆t
= −∇pn+1 , un+1n

∣∣
∂Ω

= 0 , (2.39a)

∇ · un+1 = 0 . (2.39b)

This is done by taking the divergence of (2.39a) and solving the resulting
Poisson equation for the pressure

∇2pn+1 =
1

∆t
ũn+1 ,

pn+1

∂n

∣∣∣∣
∂Ω

= 0 . (2.40)
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Once the pressure field is known, the velocity field un+1 is found with

un+1 = ũn+1 −∆t∇pn+1 . (2.41)

ũn+1 is, in general, not divergence-free but, according to Ladyzhenskaya’s
theorem [22, p. 178] it admits a unique decomposition into a solenoidal part
and an irrotational-part. (2.41) returns its divergence-free part un+1, and
is therefore referred to as the projection step, since it projects ũn+1 on a
solenoidal functional space.
By deriving ũn+1 from (2.39a) and substituting it into (2.38) a forward
or bacward Euler approximation of (2.33a) is found, with some additional
O (∆t) terms if the advection or diffusion terms are treated implicitly. The
order of consistency of the method is O (∆t), however, the order of conver-
gence considering both pressure and velocity is only O

(
∆t1/2

)
[10, Section

3.1]. This is due to the artificial Neumann boundary condition in (2.40). All
error estimates in [10] are actually for the application of these methods to
the Stokes equations, however, they should apply to the full Navier-Stokes
equations since the advection term does not influence the error due to oper-
ator splitting [10, Section 2].
A variation on the original Chorin-Temam scheme, with the aim of improving
accuracy, is the incremental scheme, obtained adding an explicit approxima-
tion of pn+ 1

2 to (2.38), like, for example, its value at the previous step:
ũn+1 − un

∆t
= −∇ ·

(
u∗ u∗∗T

)
−∇pn−

1
2 +

1

Re
∇2ũn+1 + fn+1 ,

ũn+1
∣∣∣
∂Ω

= 0 .

(2.42)

Equation (2.40) is now solved for the pressure increment φn+ 1
2 = pn+ 1

2 −
pn−

1
2 :

∇2φn+ 1
2 =

1

∆t
ũn+1 ,

φn+ 1
2

∂n

∣∣∣∣∣
∂Ω

= 0 , (2.43)

with the projection step

un+1 = ũn+1 −∆t∇φn+ 1
2 . (2.44)

In this case it is easy to see that

∂pn+ 1
2

∂n

∣∣∣∣∣
∂Ω

=
p−

1
2

∂n

∣∣∣∣∣
∂Ω

;

p−
1
2 is the value used to initialize the pressure. If it is chosen carefully, the

problem of the artificial Neumann boundary condition affecting the original
Chorin-Temam scheme should be avoided [10, Section 3.2].
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Another variation of the projection algorithm is the rotational scheme. (2.42)
is re-written as

ũn+1 − un

∆t
= − ∇ ·

(
uuT

)∣∣n+ 1
2 −∇p̂n+ 1

2 +
1

Re
∇2ũn+ 1

2 + fn+ 1
2 ,

ũn+1
∣∣∣
∂Ω

= 0 ,

(2.45)

where ũn+ 1
2 and un+ 1

2 are approximated as 1
2

(
ũn+1 + ũn

)
and

1
2

(
un+1 + un

)
respectively, and ∇ ·

(
uuT

)∣∣n+ 1
2 and p̂n+ 1

2 are second order
accurate approximations of the advection term and of the pressure. p̂n+ 1

2

needs to be an explicit approximation. The pressure increment is re-defined
as

φn+ 1
2 = pn+ 1

2 − p̂n+ 1
2 +

χ

Re
∇ · ũn+ 1

2 . (2.46)

For simplicity, the case for χ = 1 is considered. The second stage is derived,
again, from the system

un+1 − ũn+1

∆t
= −∇φn+ 1

2 , un+1n
∣∣
∂Ω

= 0 , (2.47a)

∇ · un+1 = 0 . (2.47b)

Making use of the vector identity

∇2u = ∇ (∇ · u)−∇× (∇× u) , (2.48)

and of the fact that, due to the curl of a gradient being null, (2.47a) implies

∇×
(
∇× ũn+1

)
= ∇×

(
∇× un+1

)
, (2.49)

it is possible to sum (2.45) to (2.47a), substitute (2.46) and, after some
algebra, obtain

un+1 − un

∆t
=−∇·

(
uuT

)∣∣n+ 1
2−∇pn+ 1

2− 1

Re
∇×

(
∇×un+ 1

2

)
+fn+ 1

2 . (2.50)

Due to (2.48) and (2.47b), ∇ ×
(
∇× un+ 1

2

)
= −∇2un+ 1

2 , so the rotational
scheme is second order consistent in time. The advantage of the rotational
scheme over the previous ones is that the artificial Neumann boundary con-
dition for the pressure, which can be obtained multiplying (2.50) by n at the
boundary, is consistent [10, Section 3.3]. The rotational scheme converges
with order O

(
∆t3/2

)
[13, p. 35]. A more general formulation can be found

in [10, Section 3.4].
In the classical formulation of projection methods, ũn+1 is considered an
intermediate value with no particular significance, however, it can be shown
[10, Section 3.5] that it converges to the real solution with the same order of

34



2.3. NUMERICAL SOLUTION OF THE NS EQUATIONS

accuracy as un+1. While not entirely divergence-free, ũn+1 has the advan-
tage, over un+1, of adhering entirely to the prescribed boundary conditions.
Due to how (2.47a) is formulated, in fact, only the normal component of
un+1 adheres to the prescribed boundary conditions. It would be possible
to chose ũn+1 instead of un+1 as the end result of the scheme, and, with
some algebra, bypass un entirely. Considering the original Chorin-Temam
scheme, it is possible to sum (2.38) and (2.39a) to obtain

ũn+1 − ũn

∆t
= ∇ ·

(
u∗ u∗∗T

)
−∇pn +

1

Re
∇2ũn+1 + fn+1 . (2.51)

Since the procedure to compute the advection term was not defined earlier,
it is legitimate to compute it from the field ũ, either implicitly or explicitly,
and substitute −∇·

(
u∗ u∗∗T

)
for −∇·

(
ũ∗ ũ∗∗T

)
. This first stage computes

the velocity using the pressure from the previous time step. The second
stage is the pressure update (2.40). The two passages are:
ũn+1−ũn

∆t
−∇·

(
ũ∗ũ∗∗T

)
−∇pn+

1

Re
∇2ũn+1+fn+1 , ũn+1

∣∣∣
∂Ω

= 0 , (2.52a)

∆t∇2pn+1 = ũn+1 ,
∂pn+1

∂n

∣∣∣∣
∂Ω

= 0 . (2.52b)

This scheme can be re-interpreted as a first order accurate approximation of
the system

∂uε
∂t

+∇ ·
(
uε u

T
ε

)
+∇pε −

1

Re
∇2uε = f , uε|∂Ω = 0 , (2.53a)

∇ · uε − ε∇2pε = 0 ,
∂pε
∂n

∣∣∣∣
∂Ω

= 0 , (2.53b)

uε|t=0 = u0 , pε|t=0 = p0 , (2.53c)

which can be seen as a singular perturbation of the Navier-Stokes equations
(2.33), with ε = ∆t as perturbation parameter. Methods such as (2.53) are
also called pressure stabilization or pseudo-compressibility methods. The
additional perturbation term decreases as O (∆t) in this case. The same line
of reasoning can be applied to the rotational scheme. Summing (2.45) and
(2.47), with p̂n+ 1

2 = pn−
1
2 , equation

ũn+1− ũn

∆t
=−∇ ·

(
ũ ũT

)∣∣∣n+ 1
2−∇

(
pn−

1
2 +φn−

1
2

)
+

1

Re
∇2ũn+ 1

2+fn+ 1
2 , (2.54)

is obtained, where, again, the advection term was reformulated in terms of
ũ. It can be proven [13, p. 37] that pn−

1
2 + φn−

1
2 = pn+ 1

2 + O
(
∆t2

)
, so it is

possible to define the pressure predictor

p̃n+ 1
2 = pn−

1
2 + φn−

1
2 , (2.55)
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then, the entire scheme is obtained combining (2.54), (2.43) and (2.46):

ũn+1 − ũn

∆t
= − ∇ ·

(
ũũT

)∣∣∣n+ 1
2 −∇p̃n+ 1

2 +
1

Re
∇2ũn+ 1

2 + fn+ 1
2 ,

ũn+1
∣∣∣
∂Ω

= 0 , (2.56a)

∇2φn+ 1
2 =

1

∆t
ũn+1 ,

φn+ 1
2

∂n

∣∣∣∣∣
∂Ω

= 0 , (2.56b)

pn+ 1
2 = φn+ 1

2 + pn−
1
2 − χ

Re
∇ · ũn+ 1

2 , (2.56c)

This scheme is a second order accurate approximation of the perturbed sys-
tem 

∂uε
∂t

+∇ ·
(
uε u

T
ε

)
+∇pε −

1

Re
∇2uε = f , uε|∂Ω = 0 , (2.57a)

∇ · uε − ε∇2φε = 0 ,
φε
∂n

∣∣∣∣
∂Ω

= 0 , (2.57b)

uε|t=0 = u0 , pε|t=0 = p0 , (2.57c)

φε = ε
∂pε
∂t

+
χ

Re
∇ · uε , (2.57d)

where, again, ε = ∆t. It can be shown that the pressure increment φn+ 1
2 is

O (∆t), so in this case the perturbation term is O
(
∆t2

)
.

The solution to system (2.53) converges to the solution to the original Navier-
Stokes equation as

‖uε − u‖L∞(0, T ; H1(Ω)) + ‖pε − p‖L∞(0, T ; L2(Ω)) ≤ C ∆t
1
2 , (2.58)

while system (2.57) converges to it as

‖uε − u‖L2(0, T ; H1(Ω)) + ‖pε − p‖L2(0, T ; L2(Ω)) ≤ C ∆t
3
2 , (2.59)

As long as 0 < χ ≤ 1. Proofs of convergence can be found in [25] and in
[31]. The norms in equations (2.58) and (2.59) are defined as:

‖a‖2L∞(0, T ; M) = max
n∈[0, N ]

‖an‖2M (2.60a)

‖b‖2L2(0, T ; M) = ∆t
N∑
n=0

‖bn‖2M (2.60b)

‖v‖2H1(Ω) =

∫
Ω
v · v dΩ +

∫
Ω
∇v : ∇v dΩ (2.60c)

‖q‖2L2(Ω) =

∫
Ω
q2 dΩ (2.60d)

‖q‖2L∞(Ω) = max
x∈Ω
| q |2 . (2.60e)

A more detailed summary of functional spaces and norms can be found in
[23, Chapter 2].
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Alternating direction for the pressure equation

Projection schemes are very effective in solving the Navier-Stokes equations.
However, especially when a highly efficient technique such as the ADI scheme
of section 2.2.5 is used for solving the momentum conservation equation at
the first stage, the subsequent Poisson equation for pressure represents a per-
formance bottleneck. A workaround first proposed by Guermond and Minev
[9] consists of substituting the Laplacian operator in the pressure equation
of a singular perturbation method with a different operator that can be split
into a sequence of one-dimensional problems. This allows for the pressure
equation to be solved by successive applications of the Thomas algorithm, in
the same way as the divergence term of the momentum conservation equa-
tion. This is advantageous not only due to the greater efficiency of Thomas
algorithm compared to the most common solution techniques for solving a
multi-dimensional Poisson equation, such as fast Fourier transform methods,
whose applicability is limited to homogeneous flows, or multigrid methods,
but also due to its better scalability on a parallel computer architecture.
The Laplacian operator −∇2 is substituted by a generic operator A in the
system (2.57):

∂uε
∂t

+∇ ·
(
uε u

T
ε

)
+∇pε −

1

Re
∇2uε = f , uε|∂Ω = 0 , (2.61a)

∇ · uε + ∆tAφε = 0 , φε ∈ D (A) , (2.61b)
uε|t=0 = u0 , pε|t=0 = p0 , (2.61c)

φε = ∆t
∂pε
∂t

+
χ

Re
∇ · uε . (2.61d)

Operator A is defined as

A =

(
1− ∂2

∂x2

) (
1− ∂2

∂y2

) (
1− ∂2

∂z2

)
, (2.62)

and its definition domain D (A) is the set of functions q such that

∂q

∂z

∣∣∣∣
z∈∂Ω

= 0 , (2.63a)(
1− ∂2

∂z2

)
∂q

∂y

∣∣∣∣
y∈∂Ω

= 0 , (2.63b)(
1− ∂2

∂y2

)(
1− ∂2

∂z2

)
∂q

∂x

∣∣∣∣
x∈∂Ω

= 0 . (2.63c)

Operator A induces the bilinear form

a (p, q) =

∫
Ω
qAp dΩ . (2.64)
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It is observed in [9, Section 2.2] that, if operator A satisfies the properties

a (p, q) = a (q, p) , ∀ p, q ∈ D (A) , (2.65a)
a (q, q) ≥ ‖∇q‖2L2(Omega) , ∀ q ∈ D (A) , (2.65b)

then the error estimate (2.59) for the solution of (2.57) applies also to (2.61).
In [9, Section 2.4] it is proven that (2.62) does in fact satisfy properties
(2.65a) and (2.65b). If A is substituted into (2.53c) instead, its solution will
still satisfy error estimate (2.58).
The full method presented in [9, Section 4] is composed of the following
stages:

1. Pressure predictor:
Pressure is initialized by setting p−3/2 = p0 and p−1/2 = p0. For all
subsequent steps:

p̃n+ 1
2 = pn−

1
2 + φn−

1
2 . (2.66)

2. Velocity update:
Equation (2.61a) is solved applying the ADI scheme (2.32) of section
2.2.5:

u∗ − un

∆t
=− ∇ · (uu)|n+ 1

2 −∇p̃n+ 1
2 +

+
1

Re
∇2un + fn+ 1

2 , un|∂Ω = 0 , (2.67a)

u∗∗ − u∗

∆t
=

1

2 Re

δ2

δx2
(u∗∗ − un) , u∗∗|x∈∂Ω = 0 , (2.67b)

u∗∗∗ − u∗∗

∆t
=

1

2 Re

δ2

δy2
(u∗∗∗ − un) , u∗∗∗|y∈∂Ω = 0 , (2.67c)

un+1 − u∗∗∗

∆t
=

1

2 Re

δ2

δz2

(
un+1 − un

)
, un+1

∣∣
z∈∂Ω

= 0 . (2.67d)

The advection term treatment is left unspecified for the moment and
will be considered in 2.3.3.

3. Pressure increment:
Equation (2.61b) is solved one direction at the time:

ψ − ∂2ψ

∂x2
=− 1

∆t
∇ · un+1 ,

∂ψ

∂x

∣∣∣∣
x∈∂Ω

= 0 , (2.68a)

ϕ− ∂2ϕ

∂y2
= ψ ,

∂ϕ

∂y

∣∣∣∣
y∈∂Ω

= 0 , (2.68b)

φn+ 1
2 − ∂2φn+ 1

2

∂z2
= ϕ ,

∂φn+ 1
2

∂z

∣∣∣∣∣
z∈∂Ω

= 0 . (2.68c)

This returns the value of the pressure increment φn+ 1
2 to be used for

the final sage
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4. Pressure update:
The current value of the pressure is obtained from equation (2.56c):

pn+ 1
2 = φn+ 1

2 + pn−
1
2 − χ

Re
∇ · ũn+ 1

2 . (2.69)

2.3.3 The advection term

A fully implicit treatment of the advection term ∇·
(
uuT

)
is difficult, since

it requires a method for the solution of a system of non-linear equations,
such as Newton’s method. While this method is in use for finding solutions
to steady problems [9, Section 5.2], for time-marching problems the cost of
adding an iterative procedure to each step may prove excessive.
It is possible to use a semi-implicit approximation of the value of ∇·

(
uuT

)
at tn+ 1

2

∇ ·
(
uuT

)∣∣n+ 1
2 ≈ ∇ ·

(
un+1 un

T
)
, (2.70)

which is second order accurate in time, is linear in the unknown term un+1

and, according to [13, p. 55], has a wider stability region than explicit ap-
proximations. In [13], however, the second order accurate Adams-Bashforth
scheme (2.18a) is preferred:

∇ ·
(
uuT

)∣∣n+ 1
2 ≈ 1

2
∇ ·
(

3un un
T − un−1 un−1T

)
. (2.71)

This method is conditionally stable, it requires that the Courant–Friedrichs-
–Lewy condition ∆t ≤ 1

2
h
|u| be satisfied [13, p. 55]. In [26], instead, a three-

stage Runge Kutta method is used, in which, at each stage, the advection
term is treated explicitly, while the diffusive and pressure terms are treated
implicitly with the ADI methodology seen in 2.2.5.

2.3.4 The sub-grid scale stresses

The eddy viscosity coefficient for the Smagorinsky-Lilly model (1.31) can be
expressed in non-dimensional form in terms of the non-dimensional gradient
of the (filtered) velocity field u:

νndr = C2
S

(
∆nd

)2
√

1

2

(
∇u+∇uT

)
:
(
∇u+∇uT

)
. (2.72)

Where ∆nd is the non-dimensional filter width obtained assuming the grid
spacings are expressed in terms of the reference length L0. Defining a total
non-dimensional viscosity coefficient

νtot =
1

Re
+ νndr , (2.73)
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the momentum and mass conservation equations for u could be written as:
∂u

∂t
+∇ ·

(
uuT

)
+∇p−∇ ·

[
νtot

(
∇u+∇uT

)]
= f , (2.74a)

∇ · u = 0 , (2.74b)

Where p is the non-dimensional filtered pressure, modified to include the
isotropic part of the sub-grid scale stresses as illustrated in 1.3.2. The forcing
term f has been filtered too. The viscosity coefficient νtot is non-uniform
in space so it cannot be taken out of the divergence operator applied to the
stress tensor. This is one reason why the term ∇uT is retained inside the
expression. The other reason is that, as explained in 2.3.2, the continuity
equation (2.74b) is hardly ever imposed directly, and, depending on the
method used, ∇ ·

(
∇uT

)
, may not entirely cancel out.

Regarding the advancement in time, the eddy viscosity coefficient (2.72)
is best handled in an explicit manner, due to its non-linearity. In [6] it
is computed from the velocity field at the previous step; since a leapfrog
scheme (2.16) is used for time advancement, second order accuracy in time
is preserved. In more general situations, if second order accuracy is of interest
and memory requirements allow it, it is possible to approximate νndr at tn+ 1

2

with a multi-step method, similarly to (2.71). However, stability concerns
may be more pressing than time accuracy ones. The three components of
the viscous and sub-grid scale forces are, expressed in terms of the velocity
components u, v, w:

∂

∂x

(
2 νtot

∂u

∂x

)
+
∂

∂y

[
νtot

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂z

[
νtot

(
∂u

∂z
+
∂w

∂x

)]
∂

∂x

[
νtot

(
∂v

∂x
+
∂u

∂y

)]
+

∂

∂y

(
2 νtot

∂v

∂y

)
+
∂

∂z

[
νtot

(
∂v

∂z
+
∂w

∂y

)]
∂

∂x

[
νtot

(
∂w

∂x
+
∂u

∂z

)]
+
∂

∂y

[
νtot

(
∂w

∂y
+
∂v

∂z

)]
+

∂

∂z

(
2 νtot

∂w

∂z

)
In general, it is possible to apply the ADI method to a situation in which the
diffusion coefficient is non-uniform [7]. However, the cross terms that couple
the three components of the momentum equation (2.74a), such as ∂

∂y

(
νtot ∂v∂x

)
or ∂

∂x

(
νtot ∂u∂z

)
, cannot be included in the tridiagonal formulation of (2.32).

Aside from the fact that different components of velocity are involved, mixed
derivatives require at least a four-point stencil. In [26], the cross terms

∂

∂y

(
νtot

∂v

∂x

)
+
∂

∂z

(
νtot

∂w

∂x

)
(2.75a)

∂

∂z

(
νtot

∂w

∂y

)
+
∂

∂x

(
νtot

∂u

∂y

)
(2.75b)

∂

∂x

(
νtot

∂u

∂z

)
+
∂

∂y

(
νtot

∂v

∂z

)
(2.75c)
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are treated explicitly, in the same way as the advection term, and only the
terms

2
∂

∂x

(
νtot

∂u

∂x

)
+

∂

∂y

(
νtot

∂u

∂y

)
+

∂

∂z

(
νtot

∂u

∂z

)
(2.75d)

∂

∂x

(
νtot

∂v

∂x

)
+2

∂

∂y

(
νtot

∂v

∂y

)
+

∂

∂z

(
νtot

∂v

∂z

)
(2.75e)

∂

∂x

(
νtot

∂w

∂x

)
+

∂

∂y

(
νtot

∂w

∂y

)
+2

∂

∂z

(
νtot

∂w

∂z

)
(2.75f)

are included in the implicit ADI scheme.
Alternatively, one can treat molecular diffusion and turbulent diffusion sep-
arately, using the ADI method for the former and a fully explicit treatment
for the latter. This has some advantages in terms of simplicity, especially if
the turbulence model is added to a pre-existing code, but it may add further
stability constraints to the scheme.
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Chapter 3

The program

The software that this work is meant to expand upon is based on the origi-
nal code developed by Guermond and Minev to test their direction splitting
technique for the pressure equation proposed in [9]. It is written in Fortran
90 and makes use of the MPI Message passing interface libraries for par-
allelization. As explained in Chapter 2, direction splitting techniques can
be used to break down a multi-dimensional problem into a sequence of one-
dimensional ones. These, if centred finite differences on a Cartesian grid
are employed, can be solved very efficiently by means of Thomas’ algorithm.
The latter, in turn, can be easily split into a sequence of independent tasks
using the Schur’s complement technique.
The original software could solve both two-dimensional and three-
dimensional problems, however, some later additions, especially the im-
mersed boundary, are not compatible with the two-dimensional formulation.
In this work, only the three-dimensional formulation is considered.

3.1 Parallel computing and MPI

An algorithm can be seen as the breakdown of a problem into a sequence
of operations. A computer, or, more specifically, its central processing unit,
can be seen a machine built to execute this sequence of operations. In the
simplest case, one operation at a time is executed. Central processing units,
or CPUs, run a certain number of cycles per second. Each cycle generally
consists of an instruction retrieval or "fetching" step and an interpretation
step, after which a read, write, logical or algebraic operation performed on
a piece of data, as dictated by that instruction. General purpose CPUs are
usually capable performing only very basic operations during a single cycle.
Purpose-built processing units, such as GPUs, are optimized instead to per-
form specific, complex tasks repeatedly.
The number of cycles per second a CPU performs is referred to as its clock
speed or frequency. Ever since the introduction of integrated circuits, manu-
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facturers of microprocessors have been trying to increase the maximum clock
speed their products could reach. However, the increase in clock speed seems
to have plateaued around values in the order of the Giga-Hertz (109 cycles
per second) at the turn of the century. This is due to physical constraints:
the faster a CPU runs, the more power it consumes. This power is converted
into heat by the Joule effect, and, for the higher performing processors, has
to be actively extracted. After a certain limit the energy expenditure for
heat extraction becomes impractical, and it seems that this limit has been
reached.
The solution employed by CPU vendors to keep improving performance while
maintaining the same clock speed is parallelization: essentially, building sys-
tems containing more than one CPU, that can run at the same time. The
introduction of parallel architectures in consumer electronics is relatively re-
cent, but has already a long history in high performance applications, with
vector processors being a staple of supercomputers since the 1970s. Nowa-
days, supercomputers with massively parallel architectures, and numbers of
cores ranging in the thousands, are routinely found in the TOP500 list.
It has to be noted, however, that breaking an algorithm into a series of
independent, or semi-independent tasks that can be run in parallel is a non-
trivial problem, and sometimes even impossible. These tasks will, most of
the time, require a certain amount of communication between one another,
which is time-consuming. The lesser amount of communication is necessary
for a particular parallel algorithm, the more scalable the algorithm is said to
be, and the closer the speed multiplication factor brought by running it in
parallel instead of serially will be to the number of processes.
When it comes to parallelization, two different approaches are possible:
shared memory, in which all processes have access to all of the data and
message passing, in which each process has its own set of data, and com-
munication between processes is obtained through a finite amount of com-
munication events, called messages. It must be pointed out that the shared
memory approach does not entirely remove the cost of inter-process commu-
nication: while in some parallel architectures CPUs have a shared memory
cache, whose access is almost instantaneous, most of the shared data will be
in main memory. Both inter-processor communication and communication
between a processor and main memory represent performance bottlenecks.
The MPI libraries, as the name suggests, are an implementation of the mes-
sage passing approach to parallelization. With MPI, a single program is
written and run on each processor: the code is the same, but the behaviour
of each process is different, depending on the portion of data it handles and
on its position in the "hierarchy" of processes.
In MPI, the relations between processes are defined by communicators. The
default communicator, MPI_COMM_WORLD, simply assigns a number, or
rank, to each process, from 0 to N−1, with N the total number of processes.
A process can communicate with another by referencing its rank. This com-
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municator, however, is useful only for a small number of processes, as it is
not representative of either the actual system architecture or of the topology
of the problem considered.
In the software used for this work, a Cartesian communicator is em-
ployed: processes are arranged along N orthogonal axes, and assigned an
N -dimensional rank corresponding to the set of coordinates defining their
position along the Cartesian axes. This way the physical domain of the
problem can be split into blocks, and each block assigned to the process cor-
responding to its position in the Cartesian decomposition. The boundaries
between the processes will then coincide with the boundaries between the
sub-domains.
In MPI, sub-communicators, handling communication between subsets of
processes, can also be defined. In the case of Cartesian communication,
sub-communicators can be defined to handle communication along a single
Cartesian direction.
Message passing in MPI can be either synchronous or asynchronous. In
asynchronous communication, when a process sends a message, execution
continues regardless of whether the target process has received it or not. In
synchronous communication, when a message is sent, execution stops until
the message is received. All processes share the same code, so if a "send"
command is followed by a "receive" command, execution freezes. All pro-
cesses start waiting for their counterpart to receive their message, before ever
checking if they were sent one! However, if the domain is not periodic, there
will be a process at the end of it with no one to send a message to. This
process can be made to bypass the "send" command, for example, by making
all processes check their rank to determine their position in the domain, and
send a message only if they are not at the end of it. The last process will
step immediately to the "receive" command, unlocking the processor next
to it which can then go to its "receive" line. The receiving and sending of
messages cascades in this fashion to the other end of the domain. In the
software in use, synchronous communication only is employed.

3.2 Schur’s complement technique

As explained in Chapter 2, the solution to a one-dimensional diffusion prob-
lem amounts to the solution of a tridiagonal linear system of equations. In
order to understand how the solution of a tridiagonal system can be split into
a series of semi-independent tasks, it is necessary to introduce the concept
of the Schur complement. Given a matrix M , split into blocks:

M =

[
A B
C D

]
, (3.1)
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the Schur complement of D is defined as:

M/D = A−BD−1C , (3.2a)

while the Schur complement of A is defined as:

M/A = D −CA−1B . (3.2b)

Using the Schur complement, a linear system in the form:[
A B
C D

] {
x
y

}
=

{
a
b

}
, (3.3)

Can be split into the two independent problems:{
x = (M/D)−1 (a−BD−1 b

)
, (3.4a)

y = (M/A)−1 (b−CA−1 a
)
. (3.4b)

This, however, is not particularly useful for geneic matrices: while it is true
that the problem is split into smaller, independent tasks, the number of
necessary matrix inversions increases. Figure 3.1 illustrates the structure

=· 

Figure 3.1: Tridiagonal system split between different processes.

of a tridiagonal problem, whose domain is divided among a certain amount
of processes: the red dots represent interface values, which are shared by
different processes. They are the critical part of the problem since their
equation references two values, which are known respectively by one process
but not by the other. Figure 3.2 shows the same problem, but rearranged so
that all interface values are concentrated at the bottom. The problem can
be divided, as in (3.2), between its internal and its interface portions:[

Aii Aie

Aei Aee

] {
xi
xe

}
=

{
f i
f e

}
. (3.5)
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=· 

Figure 3.2: Tridiagonal system rearranged in order to separate its internal
and interface parts.

It is easy to see from figure 3.2 that matrix Aii is block-diagonal:

Aii =


A

(1)
ii 0 · · · 0

0 A
(2)
ii · · · 0

...
...

. . .
...

0 0 · · · A
(Np)
ii

 , (3.6)

with each block corresponding to one process. The software proceeds as
follows: the Schur complement

A/Aii =
(
Aee −AeiA

−1
ii Aie

)
(3.7)

is computed only once at the beginning. It does not need to be re-computed
as long as matrix A does not vary, which is the case in the original formula-
tion. A/Aii is stored in the so-called "master process", the process having
zero rank in the default communicator. At each time step, each process
computes its independent portion of A(p)−1

ii f
(p)
i , using Thomas’ algorithm.

Then, each process sends its portion of vector A(p)
ei A

(p)−1
ii f

(p)
i to the master

process. The latter assembles vector AeiA
−1
ii f i and computes xe as:

xe = (A/Aii)
−1 (f e −AeiA

−1
ii f i

)
, (3.8)

a passage analogous to (3.4b). The solution of (3.8) is simple, since the
Schur complement is diagonal. At this point, the master process broadcasts
vector xe to each process, which then computes:

x
(p)
i = A

(p)−1
ii

(
f

(p)
i −A

(p)
ie xe

)
(3.9)

The entire amount of data exchanged between each process and the master
process for one time step amounts to two vectors of the same size as xe.
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The size of xe is the number of domain subdivisions along the direction of
the one-dimensional problem being solved, times the number of points in the
other two directions. For a three-dimensional problem, the amount of data
that needs to be exchanged grows as N2.

3.3 Data storage

Fortran 90 allows for the definition of multi-dimensional arrays, which are
an easy and intuitive way of representing physical fields over sequences of
indexed points, like those of a structured Cartesian grid. The computer, how-
ever, stores each array as a one-dimensional sequence of values in memory,
so the multi-dimensional structure of the data is lost. A three-dimensional
array defined as fi, j, k in the code will actually be stored as fn in memory,
with n = i+Ni (j − 1) +NiNj (k − 1). In this case, i is the fastest running
direction, in the sense that adjacent values along direction i are the only ones
actually adjacent in memory, while adjacent values along directions j and
k will have, in memory, a distance of Ni and NiNj respectively. Whether
the fastest running direction is the one indexed first, such as i in the case
above, or the last, may depend on the programming language or even on the
compiler used.
It is important to know which is the fastest running direction when writing
high performance code, since sequences of adjacent values in memory can be
accessed faster than sequences of distant ones.
The software considered for this work, at least for its core functionalities,
makes no use of multi-dimensional arrays: each quantity is stored as a one-
dimensional array, indexed as explained above, directly in the code. The
fastest running direction is chosen case by case to be the optimal one for a
particular quantity. Three possible orderings are considered:

1. x fastest running, y second fastest running, z slowest running:
n = NxNy (iz − 1) +Nx (iy − 1) + ix

2. y fastest running, z second fastest running, x slowest running:
n = NyNz (ix − 1) +Ny (iz − 1) + iy

3. z fastest running, x second fastest running, y slowest running:
n = Nz Nx (iy − 1) +Nz (ix − 1) + iz

Quantities are stored as structures having two fields: a one-dimensional ar-
ray of size NxNyNz, and an integer called "direction" having a value of
either 1, 2 or 3, depending on which one of the orderings above is used.
Vector fields, such as the velocity field, are generally ordered so that, for
each component, the fastest running direction is that component’s direction.
Scalar fields are generally ordered with x as the fastest running direction. A
subroutine called reorder can be used to change the ordering of an array.
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The data structures for storing arrays are defined in the source file
./SOURCES/types.f90. In the same file the structure mesh_types is defined.
It contains all information regarding the computational domain, both global
(shared by all processes) and local. Other important global information such
as the time step, the Reynolds number and the final time is stored in the
my_data structure, defined in the source file ./CODE/read.f90. For the im-
mersed boundary, the structures used are SurfaceGrid, defined in the source
file ./SOURCES/surface.f90, IBGeoData and postProcessingData, defined in
the source file ./SOURCES/IBData.f90.

3.4 The main cycle

The program’s source code is organized into four directories: ./CODE/,
./SOURCES/, ./tools/ and ./UTILITIES/. The main executable’s source
code, pCNST.f90, can be found in the ./CODE/ folder. It contains:

1. A list of all the modules included:
PROGRAM NSt

USE MPI
USE types
USE assembling

· · ·
"Module" is the term used in Fortran to refer to external libraries.
With the exception of the MPI library, all external modules are com-
piled from source files contained in the four directories mentioned
above. The program is essentially self-contained.

2. A list of variable declarations. These are usually preceded, in modern
Fortran code, by the statement:
IMPLICIT NONE

This prevents the use of undeclared variables in the code. The compiler,
in fact, may otherwise assign default types to undeclared variables,
potentially different than those intended by the programmer, and this
can cause conversion errors difficult to spot.

3. All information necessary to set up a simulation, except for that con-
cerning the immersed boundary is contained in a file called data, and in
three additional .dat files containing the coordinates of the grid along
each Cartesian direction. The first subroutines called by the program
read all this information and start building the mesh and the MPI
communicators:
CALL MPI_INIT(code)
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CALL read_my_data(mesh)
CALL create_mesh_weights(mesh)
CALL create_cart_comm(mesh%Ndom ,comm_cart ,comm_one_d ,coord_cart)

· · ·

4. The following block builds the solution matrices and computes the
Schur complement (3.7).

5. Following the computation of the Schur complement, the arrays con-
taining all the relevant quantities are allocated.

6. Once allocated, all of these quantities are initialized. This block either
reads their value from a set of restart files, or computes them from the
initial and boundary conditions defined in the source file ./CODE/so-
lutions.f90. Velocity is initialized both at the initial time step, t = 0,
and at the previous one −∆t. Pressure is initialized at −1

2∆t and at
−3

2∆t as required by the initialization of (2.66). The advection term
at −∆t is also computed in this phase.

7. The following block contains a series of calls to the subroutines that
handle the loading and initialization of the immersed boundary:

WRITE (*,*) "Initiatilization␣of␣the␣IB␣started"

CALL IBAllocateIB(mesh , IBGeo) ! Allocator for velocity

CALL IBAllocateSF(mesh , IBGeo) ! Allocator for surface forces

CALL IBAllocatePP(mesh , IBGeo , IBPostProc)

· · ·

8. After the immersed boundary is initialized, the main time stepping
cycle begins: it is a DO WHILE construct, executed until the current
time exceeds the imposed limit:
DO WHILE (t<tend -1D-8)

(a) The very first line inside the DO loop increases the current time:
t = t+ ∆t. The second, increases an integer counting how many
time steps have elapsed:

t = t + dt
i_time_step = i_time_step + 1

(b) The following block is executed by the master processor only, and
only at certain time steps: it outputs the current time:

IF ( (MOD(i_time_step ,w_time_steps) .EQ. 0) .OR. t<5*dt
) THEN

IF ( rank .EQ. 0) THEN
WRITE (*,*) ’␣

---------------------------------------------␣’
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WRITE (*,*) ’␣i/n␣␣␣␣=␣’ , i_time_step , ’/’ ,
n_time_steps

WRITE (*,*) ’␣t/tend␣=␣’ , t , ’/’ , tend
END IF

END IF

(c) Next, a DO loop is started over each component of the momentum
equation:

DO j = 1, dim

The right-hand side of equation (2.67a), called rhs in the code, is
initialized as null:

rhs%direction = vn(j)%direction
rhs%f1 = 0d0

then, one by one all the explicit terms of the equation are added
to it. First the source term:

IF (param%src) THEN
! CALL compute_sponge (rhs ,mesh ,t-0.5d0*dt ,vn)

CALL compute_source (rhs ,mesh ,t-0.5d0*dt)
END IF

then the gradient of the predicted pressure ((2.66)),
CALL grad(rhs , pPred , mesh ,one_d_rank(j)+1)

then the advection term:
IF (param%advect) THEN

rhs%f1=rhs%f1+0.5d0*advn(j)%f1
advn(j)%direction=rhs%direction
advn(j)%f1=0d0
CALL advection(advn(j), vn , mesh , t-dt)
rhs%f1=rhs%f1 -1.5d0*advn(j)%f1

END IF

The latter one is projected at time step t + 1
2∆t as in (2.71):

first rhs is added 1
2∇
(
un−1 un−1T

)
j
from the previous step, then

∇
(
un unT

)
j
is computed, multiplied by 3

2 , subtracted from rhs
and stored to be used on the next step.
Some of the terms computed, like the advection term and the
predicted pressure gradient, involve finite differences that, at
the internal boundaries, may reference values on different pro-
cesses. However, no inter-process communication takes place in
this phase. At the boundary, each process computes its side of
the finite differences. When solving the linear system, all interface
values of rhs must be sent to the master process in order for it to
compute (3.8). At that point the incomplete finite differences are
summed up.

(d) In the next block the momentum equation is solved by applying
scheme (2.67). Actually, the scheme is slightly reformulated to
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work with velocity increases:

∆u0
j = rhs−∆t ν∇2unj , (3.10a)(

1−∆t ν
1

2
,
∂2

∂x2

)
∆u1

j = ∆u0
j , (3.10b)(

1−∆t ν
1

2
,
∂2

∂y2

)
∆u2

j = ∆u1
j , (3.10c)(

1−∆t ν
1

2
,
∂2

∂z2

)
∆u3

j = ∆u2
j . (3.10d)

With ∆u3
j being the actual velocity increase used to update unj to

un+1
j :

rhs%f1 = dt*rhs%f1
CALL predictor(rhs ,vn(j),mesh ,mat_vel ,coord_cart ,t-dt,

param%dt ,param%nu)
DO ii = 1, dim

CALL reorder(rhs ,vin(j),mesh)

!=== Impose boundary conditions ===!
CALL bcs(rhs ,mesh ,t,j,param%dt ,param%nu)
i = rhs%direction
vin(j)%direction=rhs%direction

nb_arrows = nNodes /(mesh%nint(i)+2)
CALL solve_seq(comm_one_d(i),sch_vel(i,j),mat_vel(i

,j),rhs ,vin(j),nb_arrows ,mesh ,i)
rhs%f1 = vin(j)%f1

END DO

The predictor step corresponds to passage (3.10a), while the in-
ner loop performs (3.10b), (3.10c) and (3.10d) with rhs and vin
alternating their role as the ∆ukj terms. Boundary conditions are
also imposed at each passage.

(e) at the end of the DO loop over all components of the momentum
equation, the velocity field is updated and its value corrected with
the application of the boundary conditions:

! === Recover the solution ==!
DO j = 1, dim

vnm1(j)%f1 = vn(j)%f1
vn(j)%f1 = vn(j)%f1 + vin(j)%f1

!=== Impose bcs on second boundary plane/line in in
each direction except

!=== solution direction =!
CALL bcs_end(vn(j),mesh ,t)

END DO

(f) the following block handles the pressure update as in (2.68):
! ========== Pressure loop ==!
rhs%direction = 1
rhs%f1=0d0
CALL div(rhs ,vn,mesh)

51



3.4. THE MAIN CYCLE

! === Compute divergence(u(n)+u(n+1))/2
vin (1)%f1 = 0.5d0*(divN%f1+rhs%f1)
divN%f1 = rhs%f1
rhs%f1 = -rhs%f1/dt
DO i = 1, dim

nb_arrows = nNodes /(mesh%nint(i)+2)
CALL solve_seq(comm_one_d(i),sch_press(i),mat_press(i)

,rhs ,pPred ,nb_arrows ,mesh ,i)
CALL reorder(pPred ,rhs ,mesh)
rhs%direction = pPred%direction
rhs%f1 = pPred%f1

END DO
rhs%f1 = pn%f1

Plus the pressure increase (2.69):

pn+ 1
2 = φn+ 1

2 + pn−
1
2 − χ

Re
∇ · ũn+ 1

2

pn%f1 = pn%f1+pPred%f1-param%xi*vin (1)%f1

And the pressure prediction step: (2.66) p̃n+ 1
2 = pn−

1
2 + φn−

1
2

! === Prediction = p(n-1/2) + phi(n -1/2)
pPred%f1 = pn%f1+pPred%f1

(g) At this point the subroutines that take care of the immersed
boundary are called: the velocity correction necessary to satisfy
the boundary conditions on the immersed geometry is applied
explicitly at this point in the computation:
! ========== Immersed boundary procedure ========== !

! ========== Computation stencil , phi , cl and point on
the border ========== !

CALL IBComputeInterpolationData(mesh , IBGeo , comm_one_d ,
t, dt)

! ========== END Computation stencil , phi , cl and point
on the border ========== !

! ========== Compute Surf velocity ========== !
CALL SurfVelocity(IBGeo , IBPostProc , i_time_step , t, dt,

V_surf , Vo_surf , Voo_surf , VA, 1/param%nu)
! ========== END Compute Surf velocity ========== !

! ========== IB velocity corrector ========== !
CALL IBCorrectVelocity(vn, IBGeo , comm_one_d , mesh , t, dt

, V_surf)
! ========== END IB velocity corrector ========== !

! ========== End immersed boundary procedure ========== !

(h) A further block handles the computations for a passive scalar, if
its inclusion was requested in the file data.

(i) Before the end of the time stepping cycle, a set of subroutines
is called to compute the stresses on the immersed surface. The
resulting force on the body is output on the screen at each time
step:
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! ========== Force computation ========== !
! Computes the force on the external side
CALL IBInitForceCalc(mesh ,IBGeo ,comm_one_d)
CALL IBComputeStressTensor(param%nu, vn, pn, IBGeo ,

IBPostProc , mesh , comm_one_d)
CALL IBComputeForces(IBGeo , IBPostProc , forces)
IF (rank ==0) THEN

DO i = 1, SIZE(IBGeo)
IF(IBGeo(i)%forceflag == 1 .OR. IBGeo(i)%forceflag

== 2) WRITE (*,*) ’Force␣on␣surface␣’, i, ’=’,
forces(:,1,i)

IF(IBGeo(i)%forceflag == 3) WRITE (*,*) ’Force␣on␣
surface␣’, i, ’side␣1␣=’, forces(:,1,i), ’side␣2
␣=’, forces(:,2,i)

END DO
END IF

9. After the time stepping cycle, there is the output block. The computed
fields are exported as .vtk files, readable by post-processing software
such as paraview, and also stored as raw ASCII files, which is the
format the program uses for restarts.

10. The last few lines take care of deallocating the arrays used for the
computation.

3.5 The immersed boundary

The treatment of the immersed boundary inside the program deserves a
closer look. The implementation, and especially its parallelization aspects,
are very complex, and they are still a work in progress, so only a description
of the core methodology will be provided.
The immersed geometry is passed to the program as a triangulated mesh
in the Gts (Gnu triangulated surface) format. A Gts file starts with a line
specifying the numbers of points, segments and triangular elements contained
in it. After this line, points are listed as triplets of coordinates in floating
point format. Subsequently, the segments are listed as couples of integer
values identifying their extremes from the previous list of points. Then, the
triangular elements are listed as triplets of integers identifying their sides
from the previous list of segments.
In the program, each triangular element is assigned a representative position,
obtained as an average of its vertices, and referred to as Lagrangian point.
This is to distinguish these points from the ones in the Cartesian grid used
for the fluid dynamics computation, which are referred to as Eulerian points.
In fact, the motion (or lack thereof) of the immersed boundary is described
by the position of its elements, which is a Lagrangian approach, while the
motion of the fluid is described by the evolution of fluid flow quantities at
specific "stations", the grid points, which is an Eulerian approach.
The immersed boundary procedure is based on the one described in [5],
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with some differences. In this type of method, the velocity correction is
generally applied on the intermediate velocity of a projection scheme of the
type described in 2.3.2, however, since in the model in use no intermediate
velocity is present, the correction is applied explicitly at the end of each step
to the current velocity field.
The immersed boundary method proceeds as follows:

1. The velocity at the Lagrangian points of the immersed geometry is
computed from its value at (a subset of) the Eulerian points:

ûEi −→ ULi

2. The corrective forcing term at each Lagrangian point is obtained as
the difference between the local fluid velocity and the local immersed
body velocity (null if the object is stationary):

FLi =
V L
i − ULi

∆t

3. the forcing term at (the same subset of) the Eulerian points is com-
puted from its value at the Lagrangian points:

FLi −→ fEi

4. the corrective forcing term is applied to the velocity field:

uEi = ûEi + ∆t fEi

At the core of the method is the mapping between the values of a quantity
at the Lagrangian points and its values at the Eulerian points: for each La-
grangian point, the closest Eulerian point is found. A stencil of seven points
is considered for each Lagrangian point, consisting of the closest Eulerian
point, plus its two surrounding Eulerian points along each Cartesian direc-
tion.
For each seven-point stencil, a set of four coefficients, a, is defined, so that
the velocity can be expressed as a linear function of position:

Ui (x) = pT a , (3.11)

where pT (x) = {1, x, y, z}. These coefficients are found minimizing the
functional:

J =

7∑
n=1

W
(
x− x(n)

) [
pT
(
x(n)

)
a− u(n)

i

]2
(3.12)

Which is the sum of the squares of the errors committed applying (3.11) to
estimate the values u(n)

i of the velocity at the seven stencil points x(n). W
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is a weigh function, such that points in the stencil closer to x contribute
more to the error. Solving (3.12) for a as a function of u(n)

i brings the linear
mapping between the velocity at the Lagrangian point X and the velocity
at the seven stencil points associated to it:

ULi (X) =
7∑

n=1

φ(n) (X) u
(n)
i . (3.13)

Coefficients φ(n) (X) are used also for the inverse relation, mapping the val-
ues of the forcing term each an Eulerian point that is part of at least one
seven-point stencil and the values of the forcing term at the Lagrangian
points corresponding to the Nl stencils it belongs to:

f
(n)
i =

Nl∑
l=1

cL φ
(n)(X l)F

(l)
i . (3.14)

The scaling factors cL are computed so that the Eulerian and the Lagrangian
forcing terms in (3.14), multiplied by their associated volumes, coincide.
This approach to immersed boundaries is called moving least squares. "Mov-
ing" refers to the possibility of movement of the boundary, in which case the
coefficents of (3.13) are recomputed at each step, and "least squares" to the
minimization of the square error used to compute them.
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Chapter 4

Implementation of the model

4.1 Preliminary tests

Both the original Smagorinsky model and the dynamic model require knowl-
edge of the characteristic strain rate S. Prior to the implementation of a LES
closure model inside the program, a strategy to compute S was developed in
Fortran 90 and tested on the velocity field:

u
v
w

 =


sin(x) sin(y + z)
− cos(x) cos(y + z)
2 cos(x) cos(y + z)

 . (4.1)

The spatial derivatives of (4.1) are easy to compute by hand. It can be
readily verified that (4.1) satisfies the continuity equation (2.33b), and com-
puting its gradient is also straightforward. The analytic expression for the
characteristic strain rate of (4.1) is:

S =
√

5 cos(y + z)2 sin(x)2 + 13 sin(y + z)2 cos(x)2 , (4.2)

which, along with analogous expressions for the components of the velocity
gradient, provides an easy reference for testing the accuracy of the method.
When computing the velocity gradient with centred finite differences on stag-
gered grids, its diagonal components are naturally placed on the pressure
nodes, while the off-diagonal components are placed at the corners of the
cells. The situation is illustrated in figure 4.1. The values of the off-diagonal
components of the velocity gradient at the pressure nodes can be obtained
by taking the averages of their values at the four surrounding points:

∂u

∂y

∣∣∣∣
i, j

=
1

4

(
∂u

∂y

∣∣∣∣
i+ 1

2
, j+ 1

2

+
∂u

∂y

∣∣∣∣
i+ 1

2
, j− 1

2

+
∂u

∂y

∣∣∣∣
i− 1

2
, j+ 1

2

+
∂u

∂y

∣∣∣∣
i− 1

2
, j− 1

2

)
; (4.3)

this procedure is second order accurate on a uniform grid, but it may not
be on a non-uniform grid. As shown in figure 4.2, in fact, on a non-uniform
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Figure 4.1: Velocity gradient components on uniform staggered grids.
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Figure 4.2: Velocity gradient components on non-uniform staggered grids.

grid the off-diagonal components of ∇u are not placed exactly at the corners
of the cells. However, for a sufficiently regular grid, the four-point average
(4.3) is still a second order accurate approximation for the values of the off
diagonal components of ∇u at the pressure nodes.
This procedure was applied to (4.1) on a uniform grid and on a non-uniform
grid denser in the middle. Figures 4.3a and 4.3b show the behaviour of the
error in the L∞ norm (2.60e) for various steps of the procedure, with increas-
ing grid refinement. Table 4.1 shows the convergence rates, computed as the
coefficient of the linear regression between the logarithm of the maximum
grid spacing and the logarithm of the error. It can be seen that second order
accuracy is essentially preserved in the non-uniform case.
If greater accuracy is of interest, or if the grid’s non-uniformity is more pro-
nounced, an alternative to the four-point average is bilinear interpolation:
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Figure 4.3: (a): Rates of convergence for the velocity gradient and the char-
acteristic rate of strain on a uniform grid. (b): Rates of convergence on a
non-uniform grid
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Uniform grid Non-uniform grid
Convergence rate for ∇uSG : 1.999948434 1.999646606
Convergence rate for ∇uPN : 1.999919937 1.982622134
Convergence rate for S : 1.987875690 1.987107335

Table 4.1: Convergence rates for the velocity gradient and for the character-
istic rate of strain. ∇uSG is the gradient at the centre of each interval, ∇uPN

is the gradient with all components interpolated at the pressure nodes.

given the four values U1 1, U1 2, U2 1 and U2 2 of a function U at the points
(x1, y1), (x1, y2), (x2, y1) and (x2, y2), its value at (x, y) can be approxi-
mated as:

U ≈ (x2 − x) (y2 − y)

(x2 − x1) (y2 − y1)
U1 1 +

(x2 − x) (y − y1)

(x2 − x1) (y2 − y1)
U1 2 +

+
(x− x1) (y2 − y)

(x2 − x1) (y2 − y1)
U2 1 +

(x− x1) (y − y1)

(x2 − x1) (y2 − y1)
U2 2 , (4.4)

which is the equation of the three-dimensional plane passing through the
four reference points. (4.4) is second order accurate in space, and can be
used to approximate the values of the components of the velocity gradient
at the pressure nodes from four surrounding points, however spaced.
A comparison between (4.4) and (4.3) on the same non-uniform grid used
for the previous test shows that (4.4) produces more accurate results. This
can be seen in figure 4.4. However, as evidenced in table 4.2, the order of
accuracy is lower compared to that of (4.3). This may be due to the greater
amount of floating point operations required by (4.4). Oddly enough, an

Bilinear interpolation
Convergence rate for ∇uSG : 1.999646606
Convergence rate for ∇uPN : 1.933820679
Convergence rate for S : 1.889218352

Table 4.2: Convergence rates for the velocity gradient and for the character-
istic rate of strain with bilinear interpolation on a non-uniform grid.

earlier implementation of (4.4), containing IF constructs inside DO loops
and calls to another subroutine for each point, proved to be slightly faster
than any further attempt at optimization.

4.2 Computing the velocity gradient

The previous tests were performed writing subroutines that made abundant
use of multi-dimensional arrays, however, as explained in 3.3, this approach
is not compatible with the way data is represented inside the software in
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Figure 4.4: Rates of convergence for the velocity gradient at the pressure
nodes, with four-point averaging and bilinear interpolation.

use. As a consequence, the subroutines for the computation of the velocity
gradient inside the program had to be entirely re-written. In order to test
these subroutines while they were being developed, a "reduced environment"
was set up by switching off most functionalities from the program, and leav-
ing only the subroutines strictly necessary for defining the data structures,
operating on the grid and generating the MPI communicators. The module
prescribing the initial conditions was also included, modified so that it would
generate the velocity field (4.1). In this environment, the parallelization as-
pects of the problem could be tested as well.
In order to illustrate how the procedure was developed, it may be beneficial
to explain how the domain is divided between processes. Each process is
assigned, for each direction, a number of internal points, specified in the file
data, however, it stores two additional points that it either shares with an-
other process or with a boundary of the domain. The situation may appear
clearer from figure 4.5. While the figure shows a two dimensional grid, the
three-dimensional case is similar.
The computation of the velocity gradient was organized in three phases: the
first one involving only the internal points of each process, the second one ap-
plying the boundary conditions at the external boundaries and the third one
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4.2. COMPUTING THE VELOCITY GRADIENT

Figure 4.5: The grid assigned to one process. The red points represent the
grid for u, the green ones the grid for v, and the black ones the pressure
grid. The blue square surrounds the internal points, the nodes outside of it
are either shared with another process or with a boundary.

dealing with communication between processes to complete the derivatives
at the internal boundaries. All these three steps were collected in the sub-
routine LESVelocityGradient in the file ./SOURCES/LESEddyViscosity.f90

4.2.1 internal points

The treatment of the diagonal components of the velocity gradient is im-
mediate. The pressure nodes fall exactly halfway between two consecutive
velocity nodes, along that particular velocity component’s direction, there-
fore a simple centred finite difference is sufficient:

∂u

∂x

∣∣∣∣
i, j, k

≈
ui+ 1

2
, j, k − ui− 1

2
, j, k

hi
. (4.5a)

For the diagonal terms, a slightly different approach than the one used during
testing was employed. Instead of using expressions like (4.5a) and then
averaging (or interpolating) the results at a later time, a 6-point stencil was
used to compute the derivative at the desired point in a single passage:

∂u
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2

]
(4.5b)

The expression above can be obtained inserting four expressions in the form
(4.5a) into (4.4). It can be seen from figure 4.5 that, at the last pressure
nodes along the direction of u, both (4.5a) and (4.5b) would be missing the
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4.2. COMPUTING THE VELOCITY GRADIENT

upper values uNx+ 1
2
, j, k. Therefore, the derivatives at these last points are

not computed in this phase. They are either passed from the process ahead,
or computed from the boundary conditions. Similarly, at both the lower and
upper boundaries along the derivation direction, only the upper or lower half
of (4.5b) can be computed. The remaining portion will either be exchanged
from the bordering process or computed using the boundary conditions.

4.2.2 boundary conditions

The assignment of boundary conditions is more complex than the treatment
of the internal points. Different methods are needed depending on the di-
rection of the velocity component, the derivation direction and the direction
normal to the boundary considered. Treatments at the lower boundaries
may differ from those at the upper ones, and Neumann boundary conditions
have to be implemented separately from Dirichlet ones.
The simplest case is that of diagonal components of ∇u, which are already
known at every boundary except the last one along their velocity compo-
nent’s direction. At these boundaries, (4.5a) can be applied, using the value
of u at the ghost point right outside the boundary, computed from the exact
solution provided in ./CODE/solutions.f90. This strategy is used both for
Dirichlet and Neumann boundary conditions, since the latter are conditions
on the velocity derivative along the boundary normal, which is exactly what
is being considered. For off-diagonal components, in the case of Dirichlet
boundary conditions, if the boundary normal is aligned with the derivation
direction, the missing half of (4.5b) is computed from the values ui− 1

2
, j±1, k

and ui+ 1
2
, j±1, k (with j equal to either 1 or Ny) at two ghost points; if the

boundary normal is aligned with the velocity component, at the top bound-
ary, the entire expression (4.5b) is computed from the last values of u before
the boundary, plus the values uNx+ 1

2
, j−1, k, uNx+ 1

2
, j, k and uNx+ 1

2
, j+1, k at

three ghost points right after the boundary. In the case of Neumann bound-
ary conditions, the derivation stencils for off-diagonal components are moved
"off-center" at the boundaries, so that they reference values inside the do-
main only.
At each boundary, for components of ∇u for which neither the velocity com-
ponent nor the derivation direction coincide with the boundary normal, no
treatment is required, since their stencils do not include any value outside
the domain.

4.2.3 communication

The communication between processes is split into two different events. The
first one involves the exchange of the incomplete 6-point stencil derivatives
of the off-diagonal components (4.5b), which are then summed up. After this
first event, each process knows all components of ∇u at the internal points
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4.3. COMPUTING THE EDDY VISCOSITY

but, for each velocity component, it is missing all its three derivatives at the
top boundary along that component’s direction. The second communication
event involves sending these missing values from the bottom boundaries of
each process to the preceding processes.
A slightly different approach to communication is employed, compared to the
rest of the program. Instead of a cascade of messages starting on one side
of the domain and reaching the other, an alternating pattern is used: first
odd-ranked processes send while even-ranked ones receive, then vice versa:
! Even sends , odd receives
IF (MOD(one_d_rank(k2), 2) == 0 .AND. mesh%BCtype(1, k2) == 0) THEN

CALL MPI_SEND(buffer(:, 1), Ntot , MPI_DOUBLE_PRECISION , (one_d_rank(
k2) - 1), tag , comm_one_d(k2), code)

ELSE IF (MOD(one_d_rank(k2), 2) == 1 .AND. mesh%BCtype(2, k2) == 0)
THEN

CALL MPI_RECV(buffer(:, 2), Ntot , MPI_DOUBLE_PRECISION , (one_d_rank(
k2) + 1), tag , comm_one_d(k2), status , code)

END IF

! Odd sends , even receives
IF (MOD(one_d_rank(k2), 2) == 1 .AND. mesh%BCtype(1, k2) == 0) THEN

CALL MPI_SEND(buffer(:, 1), Ntot , MPI_DOUBLE_PRECISION , (one_d_rank(
k2) - 1), tag , comm_one_d(k2), code)

ELSE IF (MOD(one_d_rank(k2), 2) == 0 .AND. mesh%BCtype(2, k2) == 0)
THEN

CALL MPI_RECV(buffer(:, 2), Ntot , MPI_DOUBLE_PRECISION , (one_d_rank(
k2) + 1), tag , comm_one_d(k2), status , code)

END IF

The comparison between the velocity gradient produced in this way and
the exact solution shows that these subroutines have similar convergence
properties to those developed for the preliminary work, as can be seen from
table 4.3 or from figures 4.6a and 4.6b.

4.3 Computing the eddy viscosity

A simple subroutine for computing the characteristic rate of strain given the
velocity gradient was developed, named LES_CSR, employing the expres-
sion:

S =

√
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.6)

Another subroutine combining the grid spacings to obtain the characteristic
filter width at each pressure node was developed, named LES_cfw. This
subroutine allows for choosing between the geometric mean:

∆ = 3
√

∆x ∆y ∆z , (4.7)

and the arithmetic mean:

∆ =
∆x + ∆y + ∆z

3
. (4.8)
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The only missing piece for computing the turbulent viscosity (1.31) is the
Smagorinsky constant CS . A reference value of 0.1 is provided in the file
data, however, the possibility of a varying CS is included.
One of the arguments of the subroutine developed for combining all the pre-
vious results into the turbulent viscosity, LES_nu_t, is the scalar field Cs.
An additional logical argument, Cs_var, specifies whether the subroutine
should consider the local values contained in Cs as the Smagrinsky constant,
or apply the reverence value provided in data everywhere and at all times.
In the latter case, the field Cs can be passed uninitialized, since it is not
used. This strategy allows for a certain flexibility in the definition of CS .
For the tests performed in this work, either the reference value was used, or
a simple CS field was defined at the beginning, and left constant throughout
the computation. However, it is possible to implement methods for recom-
puting CS at each time step, either using more complex wall treatments, or
a dynamic model of the type described in 1.3.5.

4.4 The sub-grid scale stresses

The sub-grid scale stresses are defined as

τSGS = νt
(
∇u+∇uT

)
; (4.9)

their effect on the momentum equation is computed as the divergence of
(4.9). As explained in 2.3.4, it is possible to take the portion

∇ · {νt [∇u+ diag (∇u)]}

of the turbulent diffusion and include it, along with molecular diffusion, in
the explicit ADI scheme, while the mixed term derivatives

∇ ·
{
νt
[
∇uT − diag (∇u)

]}
have to be treated explicitly. This is the strategy employed in [26], and it
was the original intention of this work. However, it became clear as the
work proceeded that modifying the code for the inclusion of a variable vis-
cosity would considerably alter the nature of the numerical scheme. First
of all, the Schur component could not be computed at the beginning and
left unaltered throughout the computation any more, it would have to be
re-computed at each time step. Secondly, aside from having to be updated
as well, the solution matrices would have to be considerably larger. In the
current formulation, in fact, a single solution matrix to each one-dimensional
problem is stored, being the same for all one-dimensional "segments" along
the other two dimensions. With a non-uniform viscosity field, a number of
solution matrices equal to the number of points along the other two dimen-
sions would have to be computed for each dimension. All these modifications
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are possible and, if implemented carefully, may not penalize excessively the
performance of the code. However, for the present work, it was chosen to
treat the turbulent diffusion explicitly.
The subroutine LES_SGS_Stresses was developed to compute the sub-grid
scale stresses (4.9). The option to compute only νt

[
∇uT − diag (∇u)

]
was

included, so that it could be re-used if, in the future, an explicit treatment
of ∇ · {νt [∇u+ diag (∇u)]} is developed.
To compute the divergence of the stress tensor, the subroutine
LES_div_tensor was developed. As all the other subroutines developed
mentioned so far, it was included in the file ./SOURCES/LESEddyViscos-
ity.f90. This subroutine takes as input only one column of the stress tensor
at a time, and adds its divergence to the right-hand side of the component of
the momentum equation being considered. LES_div_tensor employs finite
differences similar to those used in LESVelocityGradient, however, no treat-
ment of the boundaries or communication between processes was included.
At the external boundaries, since the expression of the turbulent diffusion
is not necessarily known analytically, the stencils for the finite differences
were moved off-center to include known values only, similarly to the way in
which Neumann boundary conditions are applied in LESVelocityGradient.
At internal boundaries, analogously to LESVelocityGradient, the derivatives
are either computed on one side only, or each side computes its own half.
However, these partial results are not assembled, since they are added to
rhs inside the main time cycle, which is assembled at passage 8(d) of 3.4. A
subroutine to assemble the partial results of LES_div_tensor through inter-
process communication was developed separately anyway, but simply to be
able to test its accuracy.
As can be seen in table 4.3, LES_div_tensor is less accurate and has a
lower order of convergence compared to the other subroutines, especially on
a non-uniform grid. This is due to the fact that while pressure nodes are
placed exactly half-way between consecutive velocity nodes, the converse is
not true on a non-uniform grid. LES_div_tensor computes, at the veloc-
ity nodes, derivatives between values placed at the pressure nodes. Some of
these derivatives are computed assuming that the velocity nodes are half-way
between the pressure nodes regardless of whether the grid is uniform or not.
It was assumed that the loss in accuracy resulting from this would be toler-
able, in order to avoid the increased complexity of implementing three-point
stencil non-centred finite differences.

4.5 Convergence rates

In order to test the accuracy of the subroutines developed, exact solutions
for all the relevant quantities, for the velocity field (4.1), were implemented
in the file ./SOURCES/LESSolutions.f90. Figures 4.6a and 4.6b show the
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Figure 4.6: (a): Rates of convergence for the quantities computed on a
uniform grid. (b): Rates of convergence on a non-uniform grid
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behaviour of the errors with increasing grid refinement. The convergence
rates are reported in table 4.3.
It can be noted that the turbulent viscosity and the SGS stresses are third

Uniform grid Non-uniform grid

Convergence rate for ∇u : 1.995688 1.962728

Convergence rate for S : 1.997826 1.967738

Convergence rate for the eddy viscosity νt : 4.005001 3.130042

Convergence rate for the SGS stresses : 3.960816 3.062371

Convergence rate for ∇
[
ν
(
∇u+∇uT

)]
: 1.994265 1.765501

Table 4.3: Convergence rates for the subroutines added to the program.

order accurate, or even fourth order accurate on a uniform grid. This is due
to the presence of the characteristic filter width, which is of the same order
of magnitude as the squate of the grid spacing. For a uniform grid, in fact:

νfdt = (CS ∆)2 [S + O
(
h2
)]

= C2
S ∆2 S + C2

S ∆2 O
(
h2
)

= νt + O
(
h4
)
,

while for a non-uniform grid:

νfdt =
[
CS

(
∆ + O

(
h2
))]2 [

S + O
(
h2
)]

=

= C2
S ∆2 S + 2C2

S ∆ O
(
h2
)
S + ... = νt + O

(
h3
)
,

The same does not apply to the rate of convergence of ∇
[
ν
(
∇u+∇uT

)]
,

since for its test a unitary viscosity was imposed.

4.6 Inclusion in the code

The initialization of the necessary quantities, including the possible CS field,
was placed between passages 5 and 6 of 3.4; their deallocation between pas-
sages 9 and 10. Passages 6 and 9 were modified so that the eddy viscosity
would be one of the variables loaded and stored for post-processing and
restart. The computation of the velocity gradient, the eddy viscosity and
the sub-grid scale stresses inside the time loop was added between passages
8(b) and 8(c), before the loop over the components of the momentum equa-
tion starts. The computation of the divergence of the current column of
the SGS stress tensor was positioned at the end of passage 8(c), right after
the computation of the advection term. A further block for the output of
intermediate results was added after passage 8(i).
Initially, the velocity gradient, and therefore all quantities descending from
it would be computed from a velocity field projected at step t + 1

2∆t with
the expression

un+ 1
2 =

3

2
un − 1

2
un−1 .
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However, since the first time-marching tests of the code showed stability
problems, this approach was abandoned: the eddy viscosity would be com-
puted at each step from the current velocity field, and its value stored for ten
time steps. The SGS stresses would be computed using the velocity gradient
at time t and an eddy viscosity averaged over the last ten time steps.
Later, an option was added to choose the number of previous time steps over
which the averaging of the eddy viscosity is done. Choosing one, the value at
time step t is used without any averaging. For the option "zero" the possi-
bility of projecting νt at time step t+ 1

2∆t was re-introuduced. However, the
gradient of the velocity in use for computing the SGS stresses remains the
one at time step t, so, in retrospect, this re-introduction may be redundant.
When excessive spatial variations in νt were suspected to be the cause of
further instabilities, an option for keeping νt outside of the divergence of
the sub-grid scale stresses was added: LES_SGS_Stresses would be passed
a unitary viscosity, LES_div_tensor would store the divergence of the re-
sulting tensor in a temporary array, which would then be multiplied by a
properly reordered eddy viscosity, and added to rhs. Spatial accuracy might
suffer from this approach, since the eddy viscosity, placed on the pressure
nodes, is unceremoniously multiplied by diffusion terms placed on the veloc-
ity nodes.
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Chapter 5

Test case and results

5.1 Case set up

All tests were run on the same case: the flow around a sphere of unitary
diameter, at a Reynolds number of 3700, with a time step equal to 0.001
time units. The computational domain was the one illustrated in figure 5.1.
The boundary conditions were of the Dirichlet type everywhere except at the

  

 

 5

5

5

10

10

30

y

x

z
31

sponge

Figure 5.1: An outline of the computational domain used for the tests.

upper boundary along the x axis, on which Neumann boundary conditions
were imposed. The velocity field at the boundary was unitary in the x
direction, null in all other directions, and gradually increasing from 0 to 1
during the first time unit of simulation. This set up was chosen to be close to
the one used in [28], so that their results could be used for comparison. There
are, however, some key differences: in [28] a direct numerical simulation is
performed, without any turbulence model, and an unstructured grid is used
on a cylindrical domain. Most of the results found in [28] were collected
between 200 and 550 time units of simulation, while the results collected in
this work come from an earlier phase of the simulation. It was assumed,
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however, that the wake would be developed enough after 65 time units.

5.1.1 forcing terms

If the same restart files were to be used to launch multiple simulations, they
would produce exactly the same results. For the purpose of collecting flow
statistics, this is undesirable. In order to be able to sightly stir up a simu-
lation, so that in the long term it would produce unpredictable results, the
source term in the file ./CODE/solutions.f90 was modified to apply a weak,
random force on the fluid. The main executable ./CODE/pCNST.f90 was
modified so that after one time unit it would turn off the source term.
Neumann boundary conditions at the outlet of the computational domain
allow for the wake of the sphere to evolve freely up to the end. Turbulent
fluctuations, however, may be reflected at the boundary and cause insta-
bilities. To avoid this, a forcing term referred to as sponge was applied on
the last three sphere diameters of the domain along the x direction (with
an additional transitory sphere diameter). The sponge has the purpose of
penalizing deviations from a reference velocity field, in this case, the one
prescribed by the Dirichlet boundary conditions.

5.1.2 The Smagorinsky Constant

The original intention was to set the Smagorinsky constant to zero in the first
portion of the domain, then have it increase asymptotically from 0 to 1 after
the sphere. At Re = 3700, the flow around the sphere is still laminar, while
the wake is turbulent. The portion of the domain up to the sphere could
theoretically be simulated without a turbulence model, therefore avoiding
the problem of properly damping CS at the sphere’s surface. This strat-
egy, however, was abandoned almost immediately, in favour of a constant,
uniform CS . Later, the possibility of using a simple implementation of the
Van Driest damping function (1.33) was added: instead of using the local
stresses on the sphere computed during the simulation, however, a constant
distribution of stresses, interpolated from the ones reported in [28], was used
to compute the viscous length. The CS field computed in this way could be
initialized at the beginning of the computation and kept unchanged.

5.1.3 The hardware

The initial tests were performed on the author’s laptop, having a four-core
(eight with multithreading) Intel Core i7-6700HQ with a reported clock speed
of 2.60 Giga-Hertz and eight Gigabytes of RAM. Later tests were performed
on a machine at the Dipartimento di Scienze e Tecnologie Aerospaziali, hav-
ing two ten-core Intel Xeon CPU E5-4620 v4 (for a total of 40 cores with
multithreading) running at 2.10 Giga-Hertz and having 252 Gigabytes of
RAM.
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5.2. GRID CHOICE

5.2 Grid choice

The first attempts were run on a grid that was uniform around the sphere,
and decreased in resolution away from it. It consisted of 201 points along
the x direction, and 101 points along directions y and z. The domain was
split among eight processors. The grid was set up so that at least 50 points
were concentrated around the sphere. The jump in grid resolution obtained
in this way proved to be excessively steep and caused the computation to
destabilize after a few time units. A more smoothly varying grid with the
same numbers of nodes along each direction was constructed, but it did not
improve the situation. Nor did the addition of the time averaging of νt
explained in 4.6. In the end, an attempt was done with a grid of the same
size generated through a third degree polynomial. The reasoning behind
this choice was that the previous grids were generated as piecewise curves,
continuous up to the first order derivative but having discontinuous second
order derivatives. The characteristic filter width used for computing νt is
a function of the grid spacings, which vary like the first order derivative of
the grid density. Therefore, when computing the divergence of the sub-grid
scale stresses, the discontinuous derivative of the characteristic filter width
was encountered. Providing a grid density function continuous up to the
second order derivative would solve this problem.
A test launched on this polynomial grid ran without instabilities for 25 time
units. Its results were used to seed all subsequent simulations.

Figure 5.2: u component of the velocity field at 25 time units of simulation.
It can be noted that the wake is not fully developed yet. It can also be noted
that the velocity is not null inside the sphere.

5.3 Multiple runs

All the simulations up to 5.5 were run on the 201x101x101 polynomial grid
mentioned above, split among 8 processors, with a uniform CS . Some at-
tempts were made to launch simulations using the empirical Van Driest
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5.3. MULTIPLE RUNS

damping function described in 5.1.2, however, they proved to be unstable.
The considerable jump in velocity at the immersed boundary coupled with
the absence of proper damping resulted in very high values of νt on the
sphere, as can be seen in figure 5.3. The simulation mentioned in 5.2 was re-

Figure 5.3: Turbulent viscosity field νt at 140 time units. The high values
at the front of the sphere are a result of the absence of any wall treatment.
Their "staircase" appearance hints that their presence is also an artefact of
a not sufficiently fine grid.

launched. A second simulation, not employing any time averaging of νt, was
launched from the intermediate results of the first one at 65 time units. The
random forcing term was employed so that the resulting flow fields would
differ. These two simulations seemed to be running smoothly, but diverged
at 80 and 100 time units respectively. Any attempt to re-launch them from
the last saved states resulted in divergence, suggesting that the cause of the
instability was already present. The state at 65 time units, however, was
deemed safe, since the two simulations, while both originating from it, had
diverged at different times. To maximize the chances of obtaining mean-
ingful results, five simulations were launched in parallel, all starting from
the safe state at 65 time units, with the initial random forcing from 5.1.1
and averaging of νt over 100 time steps. For these simulations, νt was kept
outside of the divergence of the SGS stresses. The results reported in 5.3.1
come from these simulations. Three out of five diverged at around 120 time
steps, with one reaching 180 and another reaching 200 before diverging too.

5.3.1 Comparison of results

Figures 5.4a and 5.4b show the distribution of the pressure and friction coef-
ficients around the sphere, confronted with the results reported in [28]. The
results were collected at the Lagrangian points of the sphere, averaged over
the azimuthal angle around the x axis, then averaged in time, then ensem-
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5.4. INSTABILITY

(a) (b)

Figure 5.4: (a): Pressure coefficient on the sphere. (b): Friction coefficient
normalized with Re−

1
2 on the sphere.

ble averaged over all simulations performed. While the pressure coefficient
does follow the experimental and DNS data, the friction coefficient is far
off. This is probably due to the absence of wall damping for CS : a greater
viscosity is present at the sphere, resulting in a thicker boundary layer and
lower stresses-per-dynamic-pressure. figure 5.5 shows a comparison between
the values of the axial component of the velocity at various points in the
wake reported in [28], and the ones collected during the previous simula-
tions. Again, averaging is done along the azimuthal angle around the x axis
and in time, as well as between different realizations of the simulation. The
difference in behaviour decreases the further one moves from the sphere. All
these results were collected between 65 and 200 time units of simulation.

5.4 Instability

In order to investigate the mechanism behind the instabilities encountered,
the restart files stored by the longest running simulation, at 200 time units,
were considered. If a simulation was to be launched from these restart values,
it would diverge in about 2.8 additional time units. With this knowledge,
a simulation was launched, with the program set up so that snapshots of
the entire velocity field would be taken with increasing frequency as the
instability approached. This would allow for a detailed observation of the
development of the instability.
In the first few frames, no values outside the expected range could be seen,
although the motor of the instability is already at play. Getting closer to
the critical point, a halo of higher velocity could be seen forming around
the diameter of the sphere, normal to the x axis and increasing in size.
Upon closer inspection, a point with an anomalous value of the axial velocity
was found. This point, as illustrated in figure 5.6, seems to be a vortex
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5.5. TESTS AT INCREASED RESOLUTION AROUND THE
SPHERE
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Figure 5.5: Average u component of the velocity along the transversal direc-
tion, at five points in the wake.

generated at the boundary layer which starts to move upstream and grows
uncontrollably in intensity until it compromises the entire computation.

5.5 Tests at increased resolution around the sphere

It was hypothesized that the most likely cause of instabilities of the kind
described in 5.4 was an insufficient grid resolution around the sphere. In
the previous simulations, a quasi-stable situation was inadvertently obtained
thanks to the absence of wall damping for CS . The artificially inflated values

Figure 5.6: Five subsequent frames show how the instability departs from
the boundary layer and grows in intensity while moving upstream.
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5.5. TESTS AT INCREASED RESOLUTION AROUND THE
SPHERE

(a) (b)

Figure 5.7: (a): u velocity component around the sphere on the under-refined
grid. (b): u velocity component around the sphere on the refined grid.

of νt on the sphere, observable in figure 5.3, would keep the instabilities
resulting from the insufficient resolution at bay, but only up to a point. The
simulation would eventually diverge when a sufficiently intense instability
would appear. Attempts to use the Van Driest damping function on this
insufficiently resolved grid resulted in the computation destabilizing almost
immediately, because they removed the peak in turbulent viscosity on the
sphere.
It was decided, in light of these considerations, to build a new grid. A
greater number of points would be used: 333 along the x axis and 167 along
the other two axes. The idea of having a uniform portion of the grid around
the sphere was brought back, but this time the remaining portions of the
grid were joined to it in a smoother way. The sphere was enclosed in a cube
with a side 1.5 sphere diameters long, divided in 80 equally spaced intervals.
This simulation would be split among 16 processors instead of 8.
To save time, data from restart files saved at 160 time units during one of the
previous computations, and deemed stable enough, was linearly interpolated
to produce restart files compatible with the new grid. A first simulation was
launched, with the Van Driest damping function active, νt kept outside of
the divergence of the SGS stresses and averaged over 100 time steps. Once
it became clear that this simulation was more stable than the previous ones,
a second one was launched, with νt inside the divergence and not averaged
in time. Both simulations showed no sign of the previously encountered
instabilities, and could be kept running seemingly indefinitely.

5.5.1 Comparison of results

During the two simulations performed on the refined grid, flow statistics were
collected in the same way as during the previous simulations. The results,
confronted with the ones from [28], are reported in figures 5.8a, 5.8b, 5.9
and 5.10. It can be seen that the situation of the friction coefficient has not
improved significantly. These results were collected between 170 and 230
time units.
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5.5. TESTS AT INCREASED RESOLUTION AROUND THE
SPHERE

(a) (b)

Figure 5.8: (a): Pressure coefficient on the sphere, on the refined grid. (b):
Friction coefficient normalized with Re−

1
2 on the sphere, on the refined grid.
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Figure 5.9: Average u component of the velocity along the x axis.
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5.6. UPSTREAM DISTURBANCES
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Figure 5.10: Average u component of the velocity along the transversal di-
rection, at five points in the wake, computed on the refined grid.

5.6 Upstream disturbances

One distinct feature of all the flow visualizations presented so far is the ap-
pearance of straight, wave-like disturbances upstream of the sphere. While
it is true that disturbances can travel upstream, the ones considered here
have an artificial appearance. They seem to concentrate around areas in
which the grid spacings vary the most, as the visualizations of the νt field
in figures 5.11a and 5.11b show. They may be an artefact of subroutine
LES_div_tensor ’s lack of accuracy on non-uniform grids, and be visible
only in the mildly disturbed portion of the flow ahead of the sphere. This
hypothesis may be tested by running simulations on a uniform grid, or with-
out the LES closure model turned on, to see if they disappear. If this is
the case, attempts to improve the accuracy of subroutine LES_div_tensor
by implementing more precise finite difference expressions could be made, to
try to eliminate, or at least to reduce, these disturbances.
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5.6. UPSTREAM DISTURBANCES

(a) (b)

Figure 5.11: (a): Disturbances in νt, front view. (b): Disturbances in νt,
side view. A slice of the sphere can be seen on the right.

Figure 5.12: u component the velocity at 240 time units, computed on the
refined grid.
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Chapter 6

Final remarks

The software in use had already been thoroughly validated at Reynolds num-
bers ranging from 50 to 100. Most of its applications, at lest to the author’s
knowledge, were at Reynolds numbers in the order of a few hundreds.
Despite the preliminary nature of this work, it showed that the extension
of the software’s range of applicability to higher values of Re by means of a
turbulence closure model is feasible. The Smagorinsky-Lilly closure model
developed here ended up being simpler than originally intended. The critical
aspect proved to be the performance of the model close to the sphere, which
is to be expected for a large eddy simulation with no wall treatment. How-
ever, the end results of the simulations performed were not too far removed
from the ones found in the literature.
There is a lot of potential for improvement in the approach developed here:
a proper formulation of the Van Driest damping function could be added,
for example, taking into account the actual stresses on the immersed surface,
which are available inside the program. If an efficient strategy for determin-
ing the distance of a given grid point from an immersed surface is developed,
such wall treatment could be employed on bodies of any shape, moving or
otherwise. Alternatively, a hybrid method could be developed, with the in-
terface between different closure models handled as an immersed boundary.
A proper implicit treatment of turbulent diffusion is another possible devel-
opment, and so is the addition of a dynamic model for determining CS .
If the turbulence closure model introduced here is developed further, along
with the ongoing improvement of the immersed boundary routines, the ad-
vantages of Guermond and Minev’s direction splitting approach could be
made available to whole new classes of problems.
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