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Abstract

According to the Agenda 2030 launched by the United Nations in 2015, to ensure access to
affordable, reliable, sustainable, and modern energy for all is now recognised as a fundamental
goal to reach by 2030. Focusing on electrification, to ensure universal access to electricity, it is
estimated that 2.6 billion people will have to be electrified by 2030, highlighting the need and
the urgency to develop sustainable and appropriate approaches to electricity planning. According
to this, this thesis deals with methods, approaches, and models for formulating and designing
sustainable long-term electrification plans for rural off-grid areas of the world. In particular, the
scientific literature highlights the lack of appropriate modelling frameworks for assessing,
projecting, and integrating the electricity demand within the rural energy planning endeavour. It
also reveals a weak understanding of the dynamic and multifaceted complexities that involve
electricity access and socio-economic development.

To fill these gaps, this thesis sets a novel starting point for the research work on energy demand
models and their integration in electrification planning procedures, by setting the following three
specific objectives: (7) To investigate and discuss the challenge of electricity demand assessment and modelling
Jor rural electrification. This objective is pursued through the development and analysis of specific
case-studies, an extensive synthesis and capitalisation of the related scientific literature, and the
characterisation of the main modelling fundamentals of this research field. The relevance of
electricity demand in rural electricity planning is introduced, by discussing and demonstrating
that unreliable forecasts and projections of short- and long-term electricity demand can
negatively impact the techno-economic sizing of off-grid power systems. This implies a raising
awareness on the criticality of electricity load assessment in rural electrification planning and
advocates more research on this topic. The current methodologies adopted for projecting long-
term energy demand along the planning horizon are then evaluated, finding that most of the
rural energy planning literature neglects the aspect of long-term evaluation of electricity demand.
It is also found that modelling long-term projections of energy demand needs to consider the
multifaceted aspects related to it, which have both a technical and a socio-economic nature. This
leads to the development of the main important causal loop diagrams that characterise the
technical and socio-economic dimensions of the electricity-development nexus, proving that the
evolution of rural electricity demand can be explained by endogenous dynamics. This result
advocates the promotion of modelling techniques able to frame, understand, discuss, and
quantitatively formulate the behaviour of complex systems, such as System Dynamics.

The second specific objective is (2) To assess and model the fundamental dynamics, variables, and
exogenous policies that characterise the electricity-development nexus and determine the evolution of electricity
demand. The chosen method to achieve this objective is system dynamics. All the steps are based
on a real case-study as reference, ie. a hydroelectric-based electrification programme
implemented in the rural community of Ikondo, Tanzania, in 2005 by the Italian NGO named
CEFA Onlus. The conceptualisation of the model leads to the analysis of the dynamic problem to
solve and the purpose to achieve, the model boundary and key variables, and their behaviour.
The formulation phase results in the development of a novel simulation model which simulates
the impact of electricity access and use on the socio-economic development experienced in
Ikondo, and the related feedback on the community’s electricity consumption. This result
provides the first important goal in the research and modelling work committed to develop more
general, flexible, and customizable energy demand models. The calibration of the model and the
analysis of the uncertainties through the Markov-chain Monte-Carlo (MCMC) contributes to
build confidence in the model structure by verifying its ability to replicate the observed historical
behaviour of the system, and by uncovering model flaws and hidden dynamics. The calibration
also confirms the appropriateness of system dynamics in modelling the complexities behind the



evolution of rural electricity demand, and it provides new modelling insights on some presumed
dynamics and their impact on the electricity-development nexus. The zesting of the model leads
to a novel assessment of the most relevant dynamics and it provides a novel discussion on model
results when its inputs take on different values, until the extreme ones, and as if the model were
tested for different contexts than Ikondo. Policy testing is also performed for exploring model
behaviour when subjected to different polices and exogenous decision-making processes. It
provides a list of complementary activities to couple with electrification programmes for
enhancing their positive impact on rural communities. These results can support the definition
of useful guidelines and best practices for rural electrification, and they advocate an updating of
the traditional monitoring and evaluation frameworks commonly used for assessing energy
access projects.

The last objective is (3) To integrate demand, load, and energy optimisation models in a more comprebensive
electricity planning procedure. This is pursued by developing a computational soft-link between the
system dynamics model, a stochastic load profiles generator, and a heuristic energy optimisation
tool. The result is a more comprehensive modelling framework for investigating electrification
processes — if compared with the traditional approaches and hypotheses commonly adopted to
assess and integrate electricity demand in rural electricity planning —, and it provides an important
contribution towards the employment of the robust multi-year energy optimisation as the
referring standard for off-grid electricity planning.

Keywords: rural electrification; electricity-development nexus; system dynamics; energy demand
models; stochastic load assessment; energy modelling; energy optimisation.
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Chapter

Introduction and Motivation

[- -] disons plutot gue nous ne réformerons peut-étre pas le monde, mais an moins nous-mémes, qui
Sommies apres fout une petite partie du monde; gue chacun de nous posséde plus de pouvoir sur le
monde qu’il ne §'imagine ne posséder.

(Marguerite Yourcenar 1980)

We need megawatts not megawords
(Zambian government official 2010)

Energy is at the heart of the sustainable development agenda to 2030
(Fatih Birol, 2018)

This chapter introduces the topic of the research in the field of “access to electricity
for sustainable development”. It discusses the aim and motivation of the research, as
well as the thesis outline and the contributions.
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11. Background

When the world’s governments met in June 2012 at a meeting known as the Rio+20 Summit, the main
challenge was how to foster and support sustainable development. In the key conclusion of the
Summit, the world’s governments called for a new set of goals to guide the world during the next
fifteen-year period from 2015 to 2030. With Rio+20, the UN started a process called Post-2015
Development Agenda, began in May 2013 and ended in August 2015 with a final document adopted
at the UN Sustainable Development Summit in September 2015 in New York City. The document,
called “Transforming our world: the 2030 Agenda for Sustainable Development”, set the official
launch of the 17 Sustainable Development Goals (SDGs). With the “Goal 7 - Ensure access to
affordable, reliable, sustainable and modern energy for all”, the Agenda 2030 recognises the evident
and universally accepted nexus between energy and sustainable development in all its dimensions —
economic, social and environmental. By 2030, the goal aims at ensuring access to electricity and clean
fuels and cooking technology to all the global population. Indeed, about 1 billion people still live
without electricity — with half of them living in sub-Saharan Africa —, and more than 3 billion people
are still relying on biomass and unclean fuels for cooking in developing counttries.

In line with this global goal of the Agenda, this thesis deals with strategies and practices for sustainable
access to electricity in developing countries, and it focuses on multidisciplinary methods, approaches and
models for formulating and designing appropriate, reliable and robust long-term electrification plans
tor rural off-grid areas of the wotld. Three main observations are worth to be done as preconditions to
the motivations of this research:

= sustainable access...” providing energy per se is not a sufficient condition for fostering
sustainable development. On the contrary, inappropriate implementations of electrification
projects could lead to a negative or null impact, or even impede the roadmap to sustainable
development (Bhattacharyya 2012a; Ahlborg and Hammar 2014; Terrapon-Pfaff et al. 2014,
Ikejemba et al. 2017b, 2017a). Deriving insights for planning sustainable power systems in
developing countries is therefore a very current, being discussed, and compelling topic.

= “.electricipy...”: the dynamics of demand growth and planning analysed in this thesis refer to
electricity as energy carrier. Further works would consider the extension of the method and
the results to capture the multi-carrier concept of “energy access”, which includes the use of
different energy forms to satisfy a variety of needs (e.g. cooking, heating, lighting, small-scale
businesses) (Ramakumar 1996).

= “mnltidisciplinary...”’: in the relatively new research field on energy access, many issues are
still unsolved, and the investigation of potential solutions is currently involving
multidisciplinary and exploratory research approaches. In this framework, this thesis tries to
set a starting point for the research work on energy demand models for rural settings, and it
is meant to contribute to the same effort of other researchers focused on this issue.

= “.rural off-grid areas...” The International Energy Agency (IEA) confirms that around 84%!
of the population without electricity access lives in rural areas. In such areas, off-grid systems
are forecast to deliver electricity to 70% of people (IEA 2016), due to financial (e.g. very high
cost) and technical constraints (e.g. distances and morphological issues) to grid extension.
According to (Mandelli et al. 2016a), in this thesis, the term “off-grid” refers to such systems
that operate detached from the national grid. A particular focus is given on off-grid microgrids
(i.e. conversion unit(s) coupled with a distribution grid).

1.2. Aim and Motivation of the research

To achieve the SDG7 and provide electricity for all by the 2030, the World Bank estimates that 2.6
billion people should be electrified in developing countries (IEA and World Bank 2015). Rural
electrification is expected to largely contribute to the achievement of electricity access goals, since

ITEA — Energy Access Database. Retrieved from: https:/ /www.iea.org/energyaccess/database/. Accessed: September 2018.
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Chapter 1 Introduction and Motivation

people still living without electricity will live predominantly in rural areas (IEA 2011; International
Energy Agency 2016). In this framework, the need to develop sustainable and appropriate approaches
to electricity planning clearly emerges. Moreover, with progresses in expanding access to electricity,
the IEA estimates a rapid growth of energy demand in the next 25 years, especially in sub-Saharan
Africa — based on its New Policies Scenario IEA 2014). In the non-OECD regions, it is indeed
expected that the total energy demand exceeds the OECD regions’ one by 89% in 2040 (U.S. Energy
Information Administration 2016), especially in Southeast Asia, China and India. A large contribution
to the regional and national growth of electricity demand in developing countries is given by the
expected evolution of electricity demand in rural off-grid areas.

In this framework, the general objective of my research is to contribute to formulating and designing
sustainable long-term rural electrification plans for off-grid areas of the world. This goal is pursued by
tackling the following three main issues through the following specific objectives:

Problem 1. In rural energy planning, the assessment of long-term electricity demand is one of the
most critical and complicated steps. Indeed, wrong projections of electricity demand could negatively
impact the local socio-economic development and cause an inappropriate sizing of local energy
solutions, leading to supply shortages or cost recovery failure, as argued by Riva et al. (Riva et al.
2018b), Cabral et al. (Cabraal et al. 1996a, 1996b), Kivaisi (Kivaisi 2000). From the literature, it emerges
a lack of understanding and research on this issue, which entails a little attention and consideration of
the long-term evolution of electricity demand within rural electrification-based studies and models.
One of the reasons is due the fact that the socio-economic complexities behind the evolution of the
electricity demand in rural areas are far from being completely analysed, discussed and characterised.

Objective 1 To investigate and discuss the challenge of electricity demand assessment and modelling for rural
electrification. This will set the starting point for solving the Problem 1, and answering to the following
research questions: How does electricity demand impact on the planning solution of off-grid systems?
How does the current literature on rural electrification tackle the analysis and evaluation of electricity
demand? Which are the complexities behind the evolution of rural electricity demand? From a
modelling point of view, which can be the potential way forward for assessing the evolution of rural
electricity demand?

Problem 2. A second reason which prevents a proper understanding and assessment of the long-term
dynamics that determine the evolution of electricity demand in rural areas is the lack of appropriate
quantitative models for characterising and formulating the energy-development nexus. Indeed, “the
dynamics of growth and electrification are complex, involving many undetlying [socio-economic]|
forces” (Khandker et al., 2013, pg. 666). The presence of these complexities suggests that simple black-
box regression models or predefined sets of relations of cause and effect are not appropriate to model
the energy-development nexus and the dynamics behind the evolutions of electricity demand. Rather,
models for projecting and forecasting energy demand should involve detailed multidisciplinary
analysis, which takes a wide range of factor into account (Sterman 1988). Thus, being able to provide
an appropriate modelling framework for formulating the dynamics behind such nexus between
electricity and development can lead to more reliable electricity demand projections and reliable
planning strategies for rural electrification.

Objective 2 To assess and model the fundamental dynamics, variables, and exogenons policies that characterise the
electricity-development nexus and determine the evolution of electricity demand. This will contribute to solving the
Problem 2, and answering to the following research questions: How to formulate the dynamics behind
electricity-development nexus and generate reasonable long-term projections of electricity demand in
rural areas? Why do not we see the same outcome in terms of electricity evolution patterns and rural
development every time we bring electricity?

Problem 3. As for the long-term electricity demand, also the estimation of the short-term dynamics
of electricity load and the integration to sizing methods are extremely important for planning rural
electricity networks; and, according to the literature, they are complex modelling challenges.
Hartvigsson et al. (Hartvigsson and Ahlgren 2018) compared load profiles for different types of
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customers connected to a mini-grid in rural Tanzania, and they found that interview-based load profiles
can fail to provide an accurate overall estimate. Nevertheless, Mandelli et al. (Mandelli et al. 2016d)
remarked that when dealing with off-grid rural electrification, daily load profiles are generally derived
without proper models or methods. Moreover, despite the existence of a number of methodologies
and energy optimisation models for the long-term planning of the energy supply (e.g. Homer,
EnergyPLAN, OSeMOSYS, MESSAGE, MARKAL, TIMES, LEAP, DER-CAM, OnSSET), the
integration of both short- and long-term variabilities in the optimisation is almost never explored and
included for rural electricity planning purposes.

Objective 3. To integrate demand, load, and energy optimisation models in a more comprebensive electricity planning
procedure. This will contribute to solving the Problem 3, and answering to the following research
question: Does the inclusion of short- and long-term electricity demand lead to a more appropriate
power capacity planning of mini-grids and tariff definition mechanisms?

1.3. Thesis outline and contributions

13.1.  “All learning depends on feedback”

In the system dynamics field, /arning is also considered a feedback loop (Sterman 1994), and it often
requires more than one person. Indeed, notable contribution to the development of this thesis has
been provided by the research work of the colleague Elias Hartvigsson (Hartvigsson 2015, 2016, 2018,
Hartvigsson et al. 2015, 2018a), who set the basis for the use of the system dynamic theory in the field
of rural electrification. He focused on the analysis of the endogenous dynamics that affect the viability
of mini-grids through the modelling of feedbacks between electricity availability and the operators’
ability to increase generation capacity, and between the growth in electricity usage and electricity
availability. He used system dynamics especially as an approach for wnderstanding and improving the system
under analysis from the perspective of the energy uzility. Part of this thesis stands on his main findings
and adds the following foci as for the use of system dynamics:

1. asanapproach for characterising the electricity demand-development nexus and its multifaceted
dynamics;

2. for projecting long-term electricity demand scenarios;

3. from the perspective of the energy planner.

This thesis is therefore meant to contribute to the same effort of other researchers focusing on energy
demand models and rural electrification, with the final goal of investigating the socio-economic
complexities of the rural electricity-development nexus, providing a more reliable approach for
modelling long-term projections of rural electricity demand, and planning more reliable off-grid power
systems.

1.3.2. Outline

This thesis is organised in a specific structure which follows a methodological outline divided in two
parts (Fig. 1).

— PartI. The first part aims at pursuing the Objective 1 of the thesis, which brings different elements
of originality: the development and analysis of specific case-studies, an extensive synthesis and
capitalisation of the related scientific literature, and the characterisation of the main modelling
fundamentals of this research field. The relevance of electricity demand in rural electricity
planning is first introduced (Chapter 2), followed by a novel clarification, analysis, and
categorisation of the published energy planning studies in rural areas in order to track the
similarities, weaknesses and strengths, as well as the current methodologies adopted for projecting
long-term energy demand along the planning horizon (Chapter 3). This highlights that modelling
long-term projections of energy demand needs to consider the multifaceted aspects related to it,
leading to the development of causal loop diagrams for analysing the complex nexus between
electricity demand and rural development (Chapter 4). A final comparison between the system
dynamics and the agent-based modelling approaches is carried out for building upon the
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Chapter 1 Introduction and Motivation

quantitative modelling of the endogenous complexities behind the electricity demand-
development in rural areas (Chapter 5).

— Part II. The second part aims at pursuing the Objective 2 and Objective 3 of the thesis, by
describing the modelling effort and results achieved. System dynamics is the first method
employed for the conceptualisation (Chapter 6), formulation (Chapter 7), calibration (Chapter 8),
and testing (Chapter 9) of a novel simulation model which investigates the complex dynamics of
the electricity-development nexus obsetrved in a real case-study in a rural community in Tanzania.
A novel computational soft-link is then developed (Chapter 10) for integrating the simulation
model with a load profile generator and an energy optimisation model, in order to provide a more
comprehensive modelling framework for developing more robust energy optimisation processes.

Part I. Long-term rural electricity planning and electricity demand: practices, models, and complexities
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Fig. 1. Methodological outline and summary of thesis contribution.
The contents of each chapter are detailed below:

Chapter 2. This chapter introduces the relevance of electricity demand in rural electricity planning. In
particular, both the short- and long-term dimensions of electricity demand are discussed,
demonstrating how unreliable forecasts and projections can impact on the techno-economic sizing of
off-grid microgrid power systems. Two case studies are introduced for supporting the discussion. The
first CASE 7 reports and discusses an on-field analysis carried out in rural Tanzania to assess the
electricity needs and to estimate reliable load curves for assessing the profitability of an eventual rural
electrification project considered by the NGO CEFA Onlus. The second CASE 2 investigates the
combined effect of short- and long-term electricity demand on the electricity planning solution of a
rural community in rural India. The chapter is the first contribution to achieving Objective 1, by
analysing how different methods and evaluations of electricity demand can differently impact on the
electricity planning solution. This chapter is based on the following publications:
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Riva F., Berti L., Mandelli S., et al., On-field assessment of reliable electricity access scenarios through
a bottom-up approach: The case of Ninga SHPP, Tanzania, in: 2017 65 Int. Conf. Clean Electr. Power,
Santa Margherita Ligure, Italy, 2017: pp. 340-346. doi:10.1109/ICCEP.2017.8004837.

Riva F, Gardumi F, Tognollo A, Colombo E. (2019) Soft-linking energy demand and optimisation
models for local long-term electricity planning: An application to rural India. Energy, 166, 32-46. doi:
10.1016/j.energy.2018.10.067.

Chapter 3. The chapter contributes to Objective 1, by investigating the main demand models used in
the rural energy planning literature. It proposes a first clarification, analysis, and categorisation of the
published energy planning studies. Indeed, several studies were carried out on long-term rural energy
planning since around the ‘80s, but the different foci, terminology and methodologies make it difficult
to track the similarities, weaknesses, and strengths, especially regarding the methodology adopted for
projecting long-term energy demand along the planning horizon. As a novelty, the analysis of both the
“demand” and the “supply” aspects of the rural energy planning studies is combined, stressing the
need to consider the two parts of the planning as linked and interdependent. For this purpose, it is
followed an approach that classifies the studies firstly in accordance with specific subcategories
suggested by the literature (viz. spatial coverage, planning horizon, energy carrier, decision criteria
mathematical models and energy uses), and secondly in accordance with the methodology they employ
to forecast the evolution of the energy demand. The final section of the chapter highlights that
modelling long-term projections of energy demand in these areas is a complex issue, involving both
technical and socio-economic dimensions. This chapter is based on the following publication:

Riva, F., Tognollo, A., Gardumi, F., Colombo, E. (2018). Long-term energy planning and demand
forecast in remote areas of developing countries: Classification of case studies and insights from a
modelling perspective. Energy Strategy Reviews, 20, 71-89. doi: 10.1016/j.es£.2018.02.006.

Chapter 4. In order to investigate further the complexities behind the evolution of rural electricity
demand, this chapter undertakes a comprehensive and extensive analysis of the peer-reviewed
literature on electricity access and its impact on rural socio-economic development, and vice versa. It
contributes to Objective 1 by investigating the socio-economic and technical complexities which
involve the nexus between electricity demand and development, as well as by setting a basis for the
modelling of electricity demand in rural areas and, hence, the planning of off-grid mini-grids. The
analysis is carried out by developing graphical causal loop diagrams that allow to capture, visualise, and
discuss the complexity and feedback loops characterising the following multiple dimensions of the
electricity-development nexus: income generating activities, market production and revenues, household economy,
local bealth and population, education, and babits and social networks. This chapter is based on the following
publication:

Riva, F., Ahlborg, H., Hartvigsson, E., Pachauri, S., & Colombo, E. (2018). Electricity access and rural
development: Review of complex socio-economic dynamics and causal diagrams for more appropriate
energy modelling. Energy for Sustainable Development, 43, 203-223. doi: 10.1016/j.esd.2018.02.003.

Chapter 5. This chapter sets the basis for building upon the modelling of the endogenous complexities
behind the electricity-development nexus from a quantitative point of view, which is the last result for
pursuing Objective 1. To this aim, the interconnections of multiple factors, the high uncertainty level,
strong non-linear phenomena, and the presence of time delays and feedbacks suggest System
Dynamics (SD) as a potential appropriate systems-modelling approach. On the other hand, the agent-
based complexities behind diffusion mechanisms, energy consumers’ behaviour, social interactions,
spatial constraints, and decision-making processes suggest Agent-based Modelling (ABM) as a further
modelling tool. In order to compare the two methods and guide the final choice towards the most
appropriate approach, an ad-hoc case-study is developed. This chapter is based on the following
conference paper:

Riva F, Colombo E, Piccardi C. Modelling social networks in innovation diffusion processes: the case
of electricity access in rural areas. Proc. 35% Int. Conf. Syst. Dyn. Soc., Cambridge, USA: System Dynamics
Society; 2017.

Chapter 6. This is the first chapter of the part 11 of the thesis. In accordance with the issues emerged
in the analysis on the electricity-development nexus and the specific objectives of the thesis, the
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dynamic problem to solve and the purpose of the SD model are defined. A real case-study is introduced
as reference for achieving these purposes and for going further in the conceptualisation and the next
stages of the modelling process, i.e. a hydroelectric-based electrification programme implemented in
the rural community of Ikondo, Tanzania, in 2005 by the Italian NGO named CEFA Onlus. It sets
the basis for achieving Objective 2, since it allows to identify the model boundary and key variables,
describe their behaviour and the related reference modes, and represent the feedback loops of the
system.

Chapter 7. This chapter reports the formulation of the simulation model: its mathematical specification
of its structure and decision rules — i.e. the conversion of the feedback diagrams to algebraic,
differential, and integral equations. The simulation framework is based on Vensim DSS ® software.
Its formulation follows an iterative process based on the questionnaires implemented in the field, the
information shared with the local experts, and the analysis and re-redefinition of the structure by the
modeller. The final structure of the model is defined by the main dynamics highlighted in the
conceptualisation process, and it counts 11 main sub-models: IG.As formation and Income, Market demand,
Market production and revenues, Agricultural revenues, Population, Time savings, Education, 1GAs electricity
connections, HHs electricity connections, Housebold appliances diffusion, and Electrical Energy consumption. The
model simulates the impact of electricity access and use on the socio-economic development
experienced in Ikondo, and the related feedback on the community’s electricity consumption. The
contents of this chapter are included in the proceedings of the 36th International Conference of the
System Dynamics Society:

Riva F, Investigating and modelling endogenous socio-economic dynamics in long-term electricity
demand forecasts for rural contexts of developing countries. 36% Int. Conf. Syst. Dyn. Soc., Reykjavik,
Iceland: System Dynamics Society; 2018.

Chapter 8. This chapter reports the calibration of the simulation model, in order to (i) verify the ability
of the model to replicate the observed historical behaviour of the system, (ii) uncover model flaws and
hidden dynamics, and (iii) identify a reasonable set of parameters’ values most consistent with relevant
the knowledge of the system. The calibration is performed by relying on historical data on the
electricity consumption in the Ikondo village, and on local interviews to define the search space for all
the calibrating parameters. The Powell algorithm is used to run the optimisation. The Markov-chain
Monte-Carlo (MCMC) is then used to explore the appropriateness of the calibration of the model, and
to assess potential good proxies of the confidence bounds of the calibrated parameters. The contents
of this chapter are included in the proceedings of the 36th International Conference of the System
Dynamics Society:

Riva F, Investigating and modelling endogenous socio-economic dynamics in long-term electricity
demand forecasts for rural contexts of developing countries. 36% Int. Conf. Syst. Dyn. Soc., Reykjavik,
Iceland: System Dynamics Society; 2018.

Chapter 9. This chapter reports the main insights from model testing and use, by assessing the main
fundamental dynamics, variables, and exogenous policies that characterise the model, as stated in the
Objective 2. After the discussion of some aspects related to the concept of model validation in the SD
theory, direct structure tests are performed to check the coherence between the mode structure with the
existing empirical and theoretical knowledge about the actual structure of the analysed system. Structure-
oriented bebaviour tests are then implemented for assessing the most relevant dynamics, and for discussing
the results of the model when its inputs take on different values, until the extreme ones and as if the
model were tested for different contexts than Ikondo. Po/icy festing are performed for exploring model
behaviour when subjected to different polices and exogenous decision-making processes, in order to
petrform a kind of what-if analysis on the model outcome, derive some useful insights on the polices
implemented by CEFA, and propose potential improvements. Further tests are implemented for
evaluating the importance and the impact of electricity access on some socio-economic dynamics, and
the reverse feedback. Finally, the sensitivity analysis is performed to test the robustness of the conclusions
that can be derived from the main model output on varying the assumptions over a plausible range of
uncertainty.

Chapter 10. This chapter addresses the Objective 3. It reports and discusses the modelling effort in
soft-linking demand, load, and energy optimisation models for more appropriate electrification
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planning procedures. To derive stochastic long-term load profiles, the IoadProGen tool model is
modified and improved in order to simulate and aggregate a number of daily profiles in line with the
duration of the desired scenario and the projections obtained with the SD model. The integration with
the Po/iNRG energy model is implemented in order to optimise the size of the energy supply
technologies through a heuristic procedure under a number of constraints and inputs (e.g. the long-
term electric load profiles, the availability of renewable resources, and the fraction of admissible unmet
load). A Hydro-batteries is considered, in order to investigate what would have been a potential optimal
capacity to install for supplying the projected electricity demand of Ikondo from 2005 to the end of
2017. The same optimisation is implemented by considering a PV-batteries system for the planning of
the first 3 years of the horizon, given the flexible nature of solar systems and the low variability in the
electricity demand in the first years. In order to highlight the benefits and challenges of the soft-linked
procedure, the results are compared with the traditional approaches and hypothesis commonly
adopted in the literature to assess and introduce electricity demand in rural electricity planning
processes.

Chapter 11. This chapter provides a summary of the thesis contributions, implications, strengths and
weaknesses of the work, and it discusses the potential future works and research activities.

1.3.3. Other contributions

In the framework of this thesis, other publications not mentioned above had an influence on the
contributions and the research path followed during the doctoral activities of the Author. They allowed
to build confidences on models, theories, and approaches adopted in this work, as well as to explore
and increase the knowledge about the issue of access to energy in developing countries and the related
multidisciplinary and multifaceted complexities.

On Journal

Barbieri |, Parigi F, Riva F, Colombo E. Laboratory Testing of the Innovative Low-Cost Mewar Angithi
Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts.
Energies; 11(12), 3463: doi: 10.3390/en11123463.

Lombardi, F., Riva, F., & Colombo, E. (2018). Dealing with small sets of laboratory test replicates for

Improved Cooking Stoves (ICSs): insights for a robust statistical analysis of results. Biomass and
Bivenergy, 115: 27-34. doi: 10.1016/j.biombioe.2018.04.004

Riva F, Rocco MV, Gardumi F, Bonamini G, Colombo E. Design and performance evaluation of solar
cookers for developing countries: The case of Mutoyi, Burundi. Inz ] Energy Res 2017; 41: 2206-2220.
doi:10.1002/er.3783.

Barbieri ], Riva F, Colombo E. Cooking in refugee camps and informal settlements: A review of
available technologies and impacts on the socio-economic and environmental perspective. Swustain
Energy Technol Assessments 2016; 22: 194-207. doi:10.1016/j.seta.2017.02.007.

Aste N, Barbieri ], Berizzi A, Colombo E, del Pero C, Leonforte F, et al. Innovative energy solutions
for improving food preservation in humanitarian contexts: A case study from informal refugees
settlements  in  Lebanon.  Swustain  Energy  Technol — Assessments 2017, 22: 177-187.
doi:10.1016/j.seta.2017.02.009.

Lombardi F, Riva F, Bonamini G, Barbieri |, Colombo E. Laboratory protocols for testing of
Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass and
Biigenergy 2017;98: 321-335. doi:10.1016/j.biombioe.2017.02.005.

S. Mandelli, C. Brivio, M. Moncecchi, F. Riva, G. Bonamini, M. Metlo, Novel LoadProGen procedure
for micro-grid design in emerging country scenarios: Application to energy storage sizing, in: Energy
Procedia, Elsevier, Dusseldorf, Germany, 2017: 367-378. doi:10.1016/j.egypro.2017.09.528.

Riva F, Lombardi F, Pavarini C, Colombo E. Fuzzy interval propagation of uncertainties in
experimental analysis for improved and traditional three — Stone fire cookstoves. Sustain Energy Technol
Assessments 2016; 18: 59-68. doi:10.1016/j.seta.2016.09.007.
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Conference contributions

Hartvigsson E, Riva F, Colombo E, Ehnberg |, The merry-go-round of electrification programmes:
potential pitfalls when only using electricity access as indicator for electrification. Poster at 365 Int.
Conf. Syst. Dyn. Soc., Reykjavik, Iceland: System Dynamics Society; 2018.

Balderrama Subieta SL, Tarantino A, Sabatini S, Riva F, Bonamini G, Quoilin S. Feasibility Study of
PV & Li-lon Battery Based Micro-Grids for Bolivian Off-Grid Communities. Proc. IRES 2077 - 11#)
Int. Renew. Energy Storage Conf., Dusseldorf, Germany: 2017.

Bonamini G, Riva F, Colombo E. Cost Allocation strategy for off grid system in rural area: a case study
on irrigation for rural agricultural lands in India. Ecos 2016 - 29% International Conference on Efficiency, Cost,
Optimization, Simulation and Environmental Impact of Energy Systems, Portorose: 2016

Caniato M, Barbieri ], Riva F, Colombo E. Energy Technologies for Food Ultilization for Displaced
People: from identification to evaluation. Tech4Dev 2016 Conference, Lausanne: 2016

Under review and to be submitted

Lombatrdi, F., Riva, F.; Sacchi, M., Colombo, E. Enabling combined access to electricity and clean
cooking with PV-microgrids: new evidences from a high-resolution model of cooking loads. Submitted
to an international scientific jonrnal.

Riva, F., Colombelli, F., Sanvito, F. D., Tonini, F., Colombo, E., Modelling long-term electricity load
demand for rural electrification planning. Submitted to the international IEEE PES PowerTech Conference.

Riva, F., Colombo, E., Piccardi, C. System dynamics- and agent-based paradigms for rural electricity
planning: modelling diffusion mechanisms and impact on the sizing of off-grid power systems.
Manuscript.
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Part |

Long-term rural electricity planning
and electricity demand: practices,
models, and complexities

This part addresses the Objective 1 of the thesis. It includes a wide analysis of the
issue of electricity demand in rural electrification, the synthesis and the capitalisation
of the related scientific literature, the characterisation of the main modelling
fundamentals of this research field, and the proposal of useful guidelines for other
researchers.
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Chapter

Relevance of electricity demand in rural
electricity planning

No one wishes to have electricity for itself; but people want it for what it can do
(Bastakoti 20006)

This chapter introduces the relevance of electricity demand in rural electricity
planning. In particular, both the short- and long-term dimensions of electricity
demand are discussed, demonstrating how unreliable forecasts and projections can
impact on the techno-economic sizing of off-grid microgrid power systems. Two
case studies are introduced for supporting the discussion. The first CASE 7 reports
and discusses an on-field analysis carried out in rural Tanzania to assess the electricity
needs and to estimate reliable load curves for assessing the profitability of an eventual
rural electrification project considered by the NGO CEFA Onlus. The second CASE
2 investigates the combined effect of short- and long-term electricity demand on the
electricity planning solution of a rural community in rural India. The chapter is the
first contribution to achieving Objective 1, by analysing how different methods and
evaluations of electricity demand can differently impact on the electricity planning
solution. This chapter is based on the following publications:

Riva F., Berti L., Mandelli S, et al., On-field assessment of reliable electricity access
scenarios through a bottom-up approach: The case of Ninga SHPP, Tanzania, in:
2017 6th Int. Conf. Clean Electr. Power, Santa Margherita Ligure, Italy, 2017: pp. 340—
346. doi:10.1109/ICCEP.2017.8004837.

Riva F, Gardumi F, Tognollo A, Colombo E. (2019) Soft-linking energy demand and
optimisation models for local long-term electricity planning: An application to rural
India. Energy, 166, 32-46. doi: 10.1016/j.energy.2018.10.067.
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2.1. Foreword

Different Authors define energy planning in several ways, emphasizing multiple important aspects. In
general, the literature refers to energy planning as the process aimed at developing long-term policies
for supporting the development, implementation, and management of local, national, regional or even
global energy systems. Prasad et al. (Prasad et al. 2014) quote some authors underling that any energy
planning needs to foster sustainable development. They considered energy planning as “@ roadmap for
meeting the energy needs of a nation [which] is accomplished by considering multiple factors such as technology, economy,
environment, and the society that impact the national energy issues” (Prasad et al. 2014) p. 686). Hiremath et al.
(Hiremath et al. 2007) write that the “energy planning endeavour involves finding a set of sources and technologies
in order to meet the energy demand in an optimal manner” (p. 729). Deshmukh (Deshmukh 2011) suggests that
energy planning aims above all at developing an optimal plan for the allocation of energy resources,
by considering future energy requirements according to several technical, economic, social and
environmental criteria. Yusta and Rojas-Zarpa (Rojas-Zetpa and Yusta 2014) state that “energy planning
implies finding a set of sources and conversion equipment that optimally satisfy the energy demand of all activities” (p.
67). In view of the above discussion and being aware of both the policy- and design-oriented concept
of energy planning, this thesis refers to energy planning as that process aimed at (i) selecting (viz.
identifying, sizing and designing) conversion technologies (ii) by performing an optimisation
based on appropriate criteria (viz. either strictly mathematical programming or multi-criterial
analyses if dealing with less quantitative objectives) (iii) for matching a certain demand with
the available energy resources. This definition emphasizes the importance of objective criteria in
order to confer a more scientific meaning and nature to the concepts of “optimal plan /optimally”
that emerged from the literature. This definition is also in line with the final goal of this thesis, which
mainly focuses on the development of appropriate models for supporting the design phase of rural
off-grid energy systems. In the framework of this thesis, since the energy carrier considered is
electricity, the term electricity planning is used.

2.2. Short-term electricity load and techno-economic sizing

The assessment of electricity load demand is one of the key-elements when planning distributed
electricity systems. In a short-term perspective, electricity use is expressed as a “load profile”, which
contains two important information necessary to size and design off grid systems:

—  Energy needed [RWh). 1t is the area below the electricity profile, and it defines the quantity of
electricity consumed in the 24 hours.

= Peak power [RW]. It is the maximum instantaneous electric power demand, which can occur in
the 24-hours.

The knowledge of these two information allows to propetly size the power capacity of a power system,
as well as the back-up and storage capacity, particularly where economic resources are scarce, as
Kusakana discusses (K. Kusakana 2012). In rural off-grid systems, due to the high unpredictability of
people behaviours and the lack of historical data, the estimation of electricity load is a very complex
modelling challenge (Blodgett et al. 2017; Hartvigsson and Ahlgren 2018). In the literature, models of
a different kind are employed for computing the expected daily load profiles, as reviewed by Hong and
Fan (Hong and Fan 2016). Nevertheless, as remarked by Mandelli et al. (Mandelli et al. 2016d), when
dealing with off-grid rural electrification, daily load profiles are generally derived without proper
modelling or methods: electric loads are estimated adapted from profiles that came from the literature
and/or similar contexts, as done by Nfah et al. (Nfah and Ngundam 2009), Phrakonkham et al.
(Phrakonkham et al. 2012a), Semaoui et al. (Semaoui et al. 2013), Sen and Bhattacharyya (Sen and
Bhattacharyya 2014a), and Sigarchian et al. (Sigarchian et al. 2015) for rural contexts in Africa and Asia;
or by introducing assumptions on the functioning periods of electric appliances or load factors, as
done by Al-Karaghouli and Kazmerski (Al-Karaghouli and Kazmerski 2010), Bekele et al. (Bekele and
Tadesse 2012a), and Gupta et al. (Gupta et al. 2011a). Often, these approaches can represent the only
viable options in case of complete lack of quantitative data. In case of data availability, parameterized
models can be used, but their application is very limited to specific contexts with almost standardized
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habits and uses of energy, as Orosz et al. (Orosz et al. 2018) demonstrate for rural health centres in
sub-Saharan Africa. In this framework, Mandelli et al. (Mandelli et al. 2016d), with the contribution of
the Author of this thesis (Mandelli et al. 2017), introduced a novel mathematical bottom-up stochastic
procedure, which they formalised in the software LoadProGen (Load Profile Generator) implemented
in MATLAB®2, So far, applications of these methods seem limited to the development of short-term
load profiles — within one year at most.

The next sub-section reports a case-study, which aims at highlighting the importance of short-term
electricity in rural electricity planning. It specifically reports the results of an on-field analysis carried
out in rural Tanzania to assess the electric needs and estimate reliable load curves for an eventual rural
electrification projects considered by CEFA NGO.

?The software and its updates can be downloaded free-of-charge from the Eneroyd Growing website.
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CASE 1: “The case of Ninga SHPP”

2.3. CASE 1: “The case of Ninga SHPP”

In 2016 the Italian NGO called CEFA carried out a feasibility study for implementing a small hydro
power plant situated in the region of Njombe, Tanzania. This new important project is called “Ninga-
SHPP” and consists of a 6 MW Small Hydro Power Plant (SHPP) that should provide access to
electricity to 13 rural villages and will produce an excess of electricity that can be sold to the national
electric grid operator TANESCO. In this context, an appropriate forecast of the eventual electricity
demand, once the villages will be provided with access to electricity, is mandatory to correctly estimate
the sustainability of the project (Ahlborg and Sjostedt 2015) and the possible cash flows derivable from
selling the electricity surplus to TANESCO.

2.3.1.  CEFA’s Ninga-SHHP: feasibility analysis

This feasibility study was finalized in March 2015. The proposed 6 MW capacity would exploit the
water of South Ruaha River, and it will supply an area of 10,000 km? situated in Njombe Region,
approximately 55 km north-east far from Njombe township, through an electric line (33kV) 82 km
long. The plant will be a run-of-river and subject to variable seasonal river flows. The main technical
features of the proposed power plant are shown in (Table 1).

Table 1. Technical features of the Ninga-SHPP power plant.
Intake location | UTM 725.465 E; 9.001.143 N 1397.50 m asl
Powerhouse location | UTM 725.167 E; 9.001.159 N 1322.24 m asl
Penstock length | 177.5 m
Gross head | 76 m
Electrical power | 6.0 MW
Expected annual energy output | 26,410,000 kWh

Since the project considers that the exceeding energy produced by the SHPP could be sold to the
TANESCO, any eventual surplus of energy produced during the more “favourable” months will
represent a source of economic revenues. This is the reason why an accurate load demand evaluation
of the 13 villages is required to calculate the excess of saleable energy produced by the plant and to
estimate correctly the economic attractiveness of the project.

2.3.2. Load profile forecasting

Un-electrified rural areas are characterized by high uncertainty and low quality of data. The software
LoadProGen developed by Mandelli et al. (Mandelli et al. 2016d) was used given the possibility to rely
on simple input data that can be easily collected by means of local surveys or assumed by practical
experience on similar context conditions. To derive input data for running LoadProGen, since the 13
villages are not electrified, data were collected from Nyombo and Kidegembye villages, which are
located around 15 km north of Ninga (Fig. 2). The two villages were electrified by TANESCO through
grid extension in 2014.

13 Villages of Ninga

Ikondo

: T R Nvombo and
g

e e e Kidegembye

o T
Kidegembye  Maimbwe

Fig. 2. Google Earth view of the 13 llages of the study area [from (Riva et al. 2017)].

CEFA’s team confirms that those two electrified villages are characterized by very similar features to
the 13 non-electrified villages on Ninga project: similar number of household members (on average
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CASE 1: “The case of Ninga SHPP”

4/5 members per family), similar structure of the villages (2-3 main roads where most of productive
activities are located), same type of productive usages, similar economic conditions (viz. average
income) of households, and similar size of the villages (i.e. on average around 400 households per
village and 2,000 inhabitants).

Based on these assumptions, data about electric appliances and habits adopted by people in the 2
electrified villages (Nyombo and Kydegembye) were collected and used in LoadProGen to estimate
the load curve profile of the 13 non-electrified villages. The population was divided into three
“categories” which are Households (HHs), Public Services (PBs) and Productive Usages (PUs). The
HHs were divided in 33 user classes that correspond to the number of HHs interviewed in the
electrified villages of Nyombo and Kydegembye. Therefore, each HH user class (HH_1, HH_2,
HH_3, HH_4.. .etc.) represents 1/33 of the total population of the 13 villages. The PSs were divided
into 4 User Classes: Schools, Offices, Dispensaties, Churches. The PUs were divided in 7 User Classes:
Milling machines, Carpentries, Shops, Haircutters, Guest Houses, Garages, Pubs. When people
interviewed were unable to describe the minimum continuous functioning time of appliance once it
turns on, values were hypothesized based on literature research (Blennow and Bergman 2004).

2.3.3. Results and discussion

Due to very high number of data analysed by LoadProGen and the extensive computational time of
the software, two Excel-based input data files were created, and two separated load curves were
obtained: the first for the 33 user classes of HHs, supposing 1 family per user class, and the second
accounting for all the users of the 11 user classes of PSs & PUs. Supposing then to electrify 30%, 50%
and 70% of the 5607 families, the simulated HHs curve is multiplied accordingly to the number of
families of the corresponding scenario, and then added to the PSs & PUs curve. For each LoadProGen
simulation, # stochastic load curves with the same input data were created, based on following
conditions:

Mﬁé‘fork295%

y(K),
- B M
std [y(k)_n] — std [y(k),ﬁ-l] < 6 fork > 95%
std [ y(k), |

Where £ refers to the profile time steps (viz. the minutes), ¥(k),, is the average load value of n generated
profiles at the time step k, and std[y(k),] is the average standard deviation of the load value of n
generated profiles at the time step k. Given an acceptable value of tolerance 8=0.25%, # is identified
when the two conditions have been verified for at least the 95% of the time steps. For the three
scenarios, 7 result equal to 254, 208 and 208 for respectively the Scenario 30%, 50% and 70%.

Scenario 30%, 50% and 70%

For the three scenarios, 30%, 50% and 70% of HHs are supposed to respectively have access to
electricity once the Ninga-SHPP project will be completed: 1,526 HHs for Scenario_30%, 2,803 HHs
for Scenario_50% and 4,065 HHs for Scenario_70%. The total mean cumulative curves simulated with
LoadProGen for the three scenarios are reported in Fig. 3.
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Fig. 3. Mean load curves for the three different Scenarios [from (Riva et al. 2017)].

In the Scenario_30%, the daily energy demand of the villages is equal to 9.7 MWh, while the load peak
value is equal to 0.87 MW. In the Scenario_70%, the daily energy demand is equal to 12.5 MWh and
load peak value is equal to 1.17 MW. In the middle of the day, the load curve of the different scenarios
roughly overlaps because energy contribution to the load curve in daytime is mainly due to Productive
Usages, that are the same in all the three scenarios. In all the scenarios, it can be observed that the peak
value of the load curve is at sunset between 19:00 and 20:00, when people come back home from work
and they turn on lights, radios, and televisions.

In order to highlight the “stochasticity” accounted by LoadProGen, the Scenario_50% is represented
in Fig. 4 with the relative uncertainty bands that respectively represent the lowest and highest values
of electricity demand which can occur in each of the 1440 minutes (duration of a day in minutes)
among the 208 simulated curves.
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Fig. 4. Load curve of the thirteen villages: Scenario_50% [from (Riva et al. 2017)].

As shown in the graph, uncertainty bands are very broad, especially due the application of LoadProGen
in contexts with a very high number of users: 2803 HHs, 96 PSs and 351 PUs for Scenario_50%.

Comparison between preliminary and LoadProGen-based load profiles

In this sub-section, the results obtained with LoadProGen are compared with the electricity demand
assessment carried out during the feasibility study by relying on a traditional deterministic approach

(Fig. 5).
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Fig. 5. Comparison between feasibility and LoadProGen-based load curve [from (Riva et al. 2017)].

By looking at the mean values of the profiles, the daily energy demand (viz. the area under the load
curve) evaluated by the company is 17.5 MWh, higher than the 12 MWh estimated by LoadProGen.
This has a direct impact on the monthly and yearly excess of energy that can be sold to TANESCO in
the two cases. Results in Table 2 confirms that the saleable surplus of energy evaluated with
LoadProGen is around 10% higher than that derived by the company’s results, and this makes the
profitability of the project more attractive, since the “surplus” of energy produced is here saleable to
TANESCO and does not represent a loss, but a potential source of profit.

Table 2. Monthly and yearly energy produced and excess of energy [MWh] for the two conducted studies3.

LoadProGen Traditional approach
Energy Energy Energy
Produced demand Ene;idyv?llﬁ;'plus demand Ene;ﬁ;ﬁplus
[MWh] [MWh] [MWh]
Ann. 27230 4387 22'842 6’391 20'838

Furthermore, the “shape” of the two load curves is significantly different: the peak load value is during
central hours of the day with the traditional approach (between 10:00 and 13:00), while the profile
generated with LoadProGen is at sunset (between 18:00 and 19:00). The reason is due to the simplified
hypotheses made during the prefeasibility study, as indicated in the “Ninga SHPP Business Plan 2015”.
It emerged that the feasibility study overestimated the electricity consumption of machinery used by
PUs of the villages. Indeed, the functioning hours of some machinery — “Mills” (power peak 15,000W)
and “Carpenter, welding, battery charging” (2,000W), that are some of the most consuming appliances
used during the day — were considered equal to their functioning windows. As a matter of fact, the
effective functioning time of working machines is much lower than respective functioning windows
during day time (e.g. functioning time of “Mill” is equal to 180 minutes while the width of functioning
windows is equal to 10h — from 08:00 to 18:00). Consequently, this caused an overestimation of the
energy contribution of PUs to the total load curve and a shifting of the peak value.

2.3.4. Conclusion

The case confirms the importance of considering short-term uncertainties in planning rural electricity
systems. Indeed, by relying on the stochastic LoadProGen tool implemented to the Ninga
hydroelectric power system, this analysis suggests that such more reliable estimates might have a non-
negligible impact on the evaluation of the eventual profitability of the project. Moreover, such minute-
and houtly-based estimations might reveal as extremely important also when designing off-grid
microgrids powered by higher intermittent and uncertain renewable resources — like solar and wind —
, in order to find the most appropriate and cheapest configuration of power plants able to satisfy a
certain electricity demand.

3 The energy produced taken from the feasibility study report provided by CEFA.
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2.4. Long-term electricity demand in rural contexts

In a long-term perspective, electricity use is expressed as a “demand”. Based on its New Policies
Scenario (IEA 2014), the International Energy Agency (IEA) estimates a rapid growth of the energy
demand in sub-Saharan Africa and in India in the next 25 years IEA 2015) (Fig. 6 and Fig. 7). In the
non-OECD regions, the total energy demand is expected to exceed the OECD regions’ one by 89%
in 2040 (U.S. Energy Information Administration 2016), especially in Southeast Asia, China and India.
In developing countries, energy access-oriented policies and actions may contribute to the growth of
the global energy demand (Fig. 8). Indeed, for achieving the total access to electricity goal, the World
Bank estimates that 2.6 billion people should be electrified by 2030 in developing countries (IEA and
World Bank 2015).
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Fig. 6. Expected future electricity demand in sub-Saharan Africa [from (International Energy Agency 2015)].
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Fig. 7. Electricity demand by sector in India according to the IEA2015 New Policies Scenatrio [from (IEA 2015)].
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Fig. 8. Electrification rate and population without access to electricity according to the IEA2017 New Policies
Scenario [from (International Energy Agency 2017)].

2.41. Rural demand evolution outlook

As confirmed by the grey and scientific literature, a large contribution to the regional and national
growth of electricity demand in developing countries is given by the expected evolution of electricity
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demand in rural areas. Mustonen (Mustonen 2010) used LEAP model to investigate possible
developments and growth paths for electricity demand from 2006 to 2030 for a rural village in Lao
People’s Democratic Republic. Daioglou (Daioglou et al. 2012) and Ruijven (van Ruijven et al. 2011)
modelled and investigated the growth of household electricity demand in rural India, China, South
East Asia, South Africa and Brazil. Nerini (Fuso Nerini et al. 2015) identified 4 scenarios of energy
demand growth in the village of Suro Craic in Timor Leste, based on the ESMAP/World Bank multi-
Tier framework for measuring energy access. Nfah et al. (Nfah et al. 2007) reported annual data of
electricity demand for a Cameroonian household, indicating a clear positive trend of electricity
consumption over a period of 8 years. In their bottom-up model, Debnath et al. (Debnath et al. 2015)
suggested that electricity demand in rural households in Bangladesh will rise significantly by 2050.
Xiaohua et al. (Wang et al. 2000) indicated that the rural households in the Shouyang County in China
have experienced a growth of electricity use especially due to increased ownership levels of electrical
appliances. Zomers suggested that in the case of developing countries, rural electricity demand can
increase “at more than just a few per cent per annum ((Zomers 2003), pg. 71)”. Gustavsson
(Gustavsson 2007b) presented data from a case-study of a photovoltaic-Energy Service Company
(PV-ESCO) project company in Lundazi, rural Zambia, indicating that the clients of the system have
purchased and used a growing number of appliances over time. Mufioz et al. (Mufioz et al. 2007)
reported monthly data of electricity consumption in two different Moroccan villages, showing a
positive trend of electricity load from 2002 to 2006. Morante and Zilles (Morante and Zilles 2001) and
Reinders et al. (Reinders et al. 1999) reported that in the village of Sukatani, in the Province of West
Java, Indonesia, households have experienced was a large increment of electricity consumption
between 1992 and 1997, from 4.65 to 7.65 kWh/month. Habtetsion and Tsighe (Habtetsion and
Tsighe 2002) investigated the electrification rate of 13 rural villages in Eritrea, finding that an annual
growth of connections of 17%, and an annual consumption growth rate of 54%. They suggested that
the reason can be attributable to the availability of electricity, which supported people’s engagement
in new businesses that in turn required further electricity. Dinkelman (Dinkelman 2011) indicated that
in the electrified areas of South Africa, the percentage of households who cooked with electricity and
used electrical lighting have more than tripled between 1996 and 2001, respectively. Terrapon-Pfaff et
al. (Terrapon-Pfaff et al. 2014) reviewed the sustainability of small-scale renewable energy projects in
developing countries, indicating that in 57% of the cases, the electricity demand increased over time
based on new devices used by people and new connections requested. Alazraki and Haselip (Alazraki
and Haselip 2007) reported the experience of PERMER electrification project in the rural province
Jujuy and Tucuman, where people expressed their desire to double the capacity of their standalone PV
system in order to use more electrical appliances. Khandker et al. (IKhandker et al. 2013) reported data
of electrical appliances ownership between 2002 and 2005 in rural Vietnam, and it emerged a growth
in ownership as people kept consuming electricity from the grid. Den Heeten et al. (Den Heeten et al.
2017) mapped the current domestic electricity needs in rural Cambodia, and they estimated a significant
growth in the electricity consumption and power request for the future.

2.42. Long-term electricity demand and capacity planning

Besides confirming positive evolution patterns of electricity demand in rural areas, the literature
confirms also to pay attention to the long-term electricity demand when designing power systems:
wrong predictions could lead to an inappropriate sizing of energy solutions (Wolfram et al. 2012),
shortages or cost recovery failure for local utility due to unsustainable tariffs (Hartvigsson et al. 2015),
and then negatively impact local prosperity. Cabral et al. (Cabraal et al. 1996a, 1996b), Kivaisi (Kivaisi
2000), Moksnes et al. (Moksnes et al. 2017), Neves et al. (Neves et al. 2014), and Riva et al. (Riva et al.
2018b, 2018a) stressed the need to pay attention to electricity load evolution when planning
electrification programmes, since the marginal costs of electricity services vary among supply
alternatives (7.e. small photovoltaic (PV) systems when the load is low, grid-extension when it is high).
In their scenarios for electricity planning in Senegal, Sanoh (Sanoh et al. 2012) verified that
electrification strategies and capital costs are very sensitive to the expected demand levels. Brivio et al.
(Brivio et al. 2017) demonstrated that in Photovoltaic-batteries based microgrid systems, the optimal
size of the components is sensitive to the load evolution pattern, especially the capacity of the battery
system. Fuso Nerini (Fuso Nerini et al. 2015) demonstrated how the cost of the energy system for
reaching different tiers of electricity access (ze. different levels of energy demand to satisfy) in the
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village of Suro Craic in the years 2010-2030 may vary from few hundreds to 8000 US$. Hartvigsson et
al. (Hartvigsson et al. 2015) showed how the power supply capacity of energy systems for rural areas
should be considered accurately based on the long-term projections of electricity demand, since a
demand larger than the installed capacity can generate lack of power availability that may affect the
willingness of people to stay connected and the utility revenues. Rhonda LeNai Jordan (Jordan 2013)
investigated how the long-term endogenous electricity demand dynamics can significantly impact on
the capacity planning of electricity systems in Tanzania. Mulugetta et al. (Mulugetta et al. 2000) reported
the experience of PV-based electrification in a village in Zimbabwe, indicating that the main problems
have started to occur as soon as people realised that standalone PV have not allowed them to use as
much electricity as they wanted. Jacobson (Jacobson 2007) suggested the rural electrification in Kenya
must consider the implementation of large systems, in order to satisfy the present and future
households electricity needs, otherwise people have to constrain their energy choices due to the limited
capacity of the implemented power systems. In their comprehensive review, Baldwin et al. (Baldwin et
al. 2015) indicated that after the implementation of power systems, rural consumers tend to increase
their electricity use by purchasing and using more electrical appliances, and capacity constraints and
limitations could become a serious issue over time. Gustavsson (Gustavsson 2007b) reported the
experience of rural electrification through solar home systems in Zambia, suggesting that the design
of the systems must consider the consumers’ possibility to acquire additional appliances, which in turn
can exceed the capacity of the systems and then accelerate the deterioration of the batteries due to
long periods of low state of charge. Agoramoorthy and Hsu (Agoramoorthy and Hsu 2009) and Brass
et al. (Brass et al. 2012) confirmed that the undersize of power systems due the underestimation of
long-term electricity demand evolution is a frequent problem in rural distributed generation projects.
Ulsrud et al. (Ulsrud et al. 2011) reported that the reliability of the power supply of the remote villages
in the Sunderban Islands, India, have been negatively affected by the under-sizing of the power systems
due to the unplanned growth of electricity use. Komatsu et al. (Komatsu et al. 2013) surveyed three
districts located in the inner regions of Bangladesh, reporting that in most of the cases the inadequate
load assessment caused to the implementation of undersized systems, leading to a continuous use of
kerosene rather than electricity by people. The importance of projecting the future load demand was
stressed also by Kandpal and Kobayakawa (Kobayakawa and Kandpal 2014), and (Inversin 2000).

From the literatures, it emerges that model and predict reliable long-term evolution patterns of
electricity demand for rural areas is one of the main challenges in the rural electrification field. Tackling
this challenge would allow to set more reliable investments plans, which is also pivotal to increase the
involvement of the private sector (viz. utilities, social enterprises or cooperative) in rural electrification.
The next sub-section reports a case-study, where long-term demand scenarios are tested in an
optimisation model for energy system planning. The goal is to put more emphasis on the techno-
economic implications of short- and long-term load variability on rural electricity planning and set a
first-step towards more reliable rural electricity projection models.
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2.5. CASE2. “The case of Katgaon community”

This study reports a case of electricity planning of a rural Indian community where both the short- and
long-term aspects of electricity demand are introduced, tested, and discussed.

2.5.1. Local context description: Katgaon community

Katgaon is a small village of Osmanabad district, in the State of Maharashtra. It has a population of
7’800 individuals. The village is connected to the national electricity grid, but the supply is characterised
by high level of unreliability, due to the infrastructural weakness: scheduled blackouts occur, and the
total daily supply of electricity is guaranteed for about 16 hours per day for households and 8 hours
per day for agriculture activities. Even within these “guaranteed” time windows, the electricity supply
is weakened by unscheduled blackouts that can last for several hours and by voltage fluctuations. In
this work, the focus is on a small community of twelve households who rely on agriculture-based
activities and are willing to be provided with a more reliable electricity supply system. Data about the
household monthly income and size were gathered though local surveys carried out in 2014 by the
researchers working for the Sanjeevani Project* (Table 3).

Table 3. Household size and income data gathered during local assessment
NC°Family 1 2 3 4 5 6 7 8 9 10 11 12

Household Size
[people] 7 5 5 4 5 6 15 7 5 5 6 6
Monthly household income
JUSD 2000] 134 69 111 245 134 156 735 557 356 111 56 445

2.5.2. B-UPlong-term demand scenario

The first tested scenario, namely Botfom-up (B-UP), is an adaptation and application of van Ruijven’s
model (van Ruijven et al. 2011) for projecting the household electricity needs to the case study of
Katgaon village. Specifically, the main correlations and data are derived from van Ruijven’s paper (van
Ruijven et al. 2011), local surveys data and assumptions. Then, a MATLAB ® code is developed, which
projects the ownership of the electrical appliances of each household of our case study along a 20 years
scenario, from 2014 to 2034, and then used to build the related yeatly load profiles. The different parts
of the model are described in detail in the following sub-sections.

Exogenous input parameters

Based on local surveys and the information concerning the income of the considered 12 families, they
are clustered in quintiles, and associated with an average value of housebold expenditures per capita per
year at time 0 (HHEx,). The expenditures from the income values for each household are derived
according the ratio between the value of Houschold Final Consumption Expenditure and Gross
National Income for India in 2014, derived from World Bank data5. The values for house floor space
(HHFS) for each quintile is assumed based on van Ruijven’s projections (van Ruijven et al. 2011). The
values are reported in Table 4.

Table 4. Household expenditures per capita per year (HHEx() and house floor space (HHFS) for each quintile
input data for each quintile.

Q1 Q2 Q3 Q4 Q5
NP household 2,11 3,5,6,10 1 7 4,8,9,12
HHEx, [$/capita/yr] 174.8 275.5 368.8 489.9 773.2
HHFS [m?] 40 45 50 60 70

The collected information about the electrical appliances the households currently own and their
profile of use are employed to allocate future appliances among the households and to create the future
load curve profiles, as further discussed in the next sub-sections.

4 https:/ /isf.polimi.it/sanjevani-project/
5The Wotld Bank data. Available at: http://data.wotldbank.org/country/india. [Accessed 2016].
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Total appliances ownership

Given the input data on the HHEx, per quintile, the model projects those values along the 20-years
scenario (Fig. 9) — based on correlations derived from (van Ruijven et al. 2011). The values of floor space
HHFS are assumed to not vary along the 20-years scenario: people do not vary significantly the layout
of their houses and the number of components per household is estimated to be the same.
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Fig. 9. Household Expenditures Projection (HHEX) for each quintile along the 20-years scenario [from (Riva et
al. 2019)].

Once the values of HHEx are projected along the 20-years scenario, the van Ruijven et al.’s correlations
and S.K. Singh’s model (Singh 2008) are employed to predict year-by-year the diffusion and the
ownership of electrical appliances among each households quintile. The choice of the type of
appliances is based on local surveys and on the end-use functions and clusters considered by van
Ruijven et al. (van Ruijven etal. 2011). In this case-study, 11 appliances are considered: Fan, Air Cooler,
Air Conditioner, Refrigerator, Washing Machine, Radio, Television (TV), Personal Computer (PC),
Electric Iron, Mobile phone and Electric bulbs. The dynamics of the first nine appliances ownership
are simulated by following the mathematical description of V. Letschert and M. McNeil (Letschert and
Mecneil 2007) through a Gompertz-curve:

—y

_ J 2
10} =a .-EXP{-f .-BEXP| —L |- HHE @
— ;=4 P, 1000 *

where O_app; is the percentage of households per quintile which own appliance j; HHEx are the
household expenditures per capita per quintile; a; is the upper asymptote of the curve evaluated by van
Ruijven et al. (van Ruijven et al. 2011), which depends on the type of appliance /, historical Indian
ownership values, and the HHFS (in case of fan); g; and y; are shape-parameters, estimated by non-
linear regression using historical data for each appliance ; (Letschert and Mcneil 2007; van Ruijven et
al. 2011). Fig. 10 reports the trend of 0_app for refrigerators and fans among the households’ quintiles;
values greater than 1 mean that each household is forecast to own more than one device.
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Fig. 10. Projected ownership of refrigerator (left side) and fan (right side) among each households’ quintile [from
(Riva et al. 2019)].
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Singh’s Gompertz-curve is employed to simulate the ownership of mobile phones among the entire
population at year t (Singh 2008):
O _ape pone = EXP{-B, - EXP(#-1995)- HHEx} 3)

obile phone

—a_ ..
bile phone
100 ™

where @mobite phone > Bmobite phone ANd Ymobite phone €qual respectively 120, 0.1639 and 16.4, estimated by
non-linear regression by Singh (Singh 2008).

Household appliances ownership

Once the total appliances ownership among the entire population year-by-year is determined, the
following step of our approach consists in allocating the projected diffusion of appliances among the
12 households; N_app; indicates the amount of device j that a household will own throughout the 20-
years based scenario. For the first nine appliances, devices are randomly allocated among the
houscholds of each quintile based on the values of O_app;. The allocation of mobile phones is
performed among the entire population, without differences between the quintiles, since the direct
experience of the Author in developing countries suggests that mobile phones are often considered a
basic commodity even in developing countries and it does not depend strongly on the income. Finally,
the diffusion of electric bulbs (j = 11) for lighting is introduced for the 12 households considering that
after the electrification, at year t = 1, the first electrical appliance that people are willing to purchase is
a device for lighting the house, as currently occurs in rural contexts of developing countries (Prasad
and Dieden 2007). Fig. 11 reports some of the projected appliances of a household of the fifth quintile
(Q5) along the 20-years scenario:
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Fig. 11. Ownership of fan, radio, refrigerator, mobile phone and electric bulbs for a household of the 5% quintile
[from (Riva et al. 2019)].

Short-term load profiles

The knowledge of the household appliances ownership along the 20-years scenario allowed to derive
the total yearly load curves (yL.C) for the entire community. The software LoadProGen, version 1.0,
developed by Mandelli et al. (Mandelli et al. 2016d) was used. With LoadProGen, p=250 possible daily
load curves for each year of our scenario were generated. Since the aim of the study was to test the
effect of short- and long-term variability of electricity demand within long-term electricity planning,
the 3 most significative cases of load curves were identified and used as input for the next stage of the
electricity planning procedure: (i) the flattest one (MIN case), (i) the mean among all the 250 houtly
profiles (MEAN case), and (iii) the most fluctuating one (MAX case). Fig. 12 reports the MIN, MEAN;
and MAX daily houtly load curves for the 1+t (left-side) and the 20t (right-side) year. Considering the
MEAN curve at the 1st and the 20th year of the scenario, there is sensible a growth of the energy use
between the 1t and the 20t year especially, around the peak power.
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Fig. 12. MIN, MAX, MEAN houtly load curves generated for the 1st (left) and the 20t (right) year of the scenario
[from (Riva et al. 2019)].

2.5.3. CSTand HT long-term demand scenarios

In order to test the impact of different long-term electricity demand projections on the electricity
planning results, two further scenarios were assumed of electricity demand in addition to the long-
term bottom-up (B-UP) scenario created in the previous sub-sections: the constant (CST) and historical
trend (HT) scenarios.

—  Constant (CST) scenario. This scenario did not take into account any evolution of electricity
demand along the planning horizon. For all the 20 years of the simulation, the MIN, MAX and
MEAN electricity load curves derived previously for the 15t year of the B-UP scenario were
used.

— Historical trend (HT) scenario. This scenario is derived by evaluating the historical trend of
electricity power consumption per capita obtained from World Bank data on India from 1971
to 2013 (The World Bank Group). The historical data are interpolated in order to extrapolate
the trend through MATLAB © use of polyfit and polyval functions. An average value of 4.5%
electricity demand growth per year was obtained. The demand projected along the planning
horizon was then calculated starting from the MIN, MAX and MEAN load profiles derived
previously for the 15t year of the B-UP scenario and multiplying each houtly value of the profiles
for +4.5% from year to year.

In conclusion, 9 scenarios of electricity demand were obtained: 3 potential daily load curves for 3
different scenarios of growth (Table 5).

Table 5. Scenarios of electricity demand projections.

Long-term evolution
Bottom-up scenario Constant scenario Historical trend
g B-UP_MIN CST_MIN HT_MIN
g
s 4
5 5 B-UP_MEAN CST_MEAN HT_MEAN
> <=
=
=
3
R X
; B-UP_MAX CST_MAX HT_MAX

Fig. 13 reports the MEAN load curves for the 20t year for the three scenarios, confirming that the
load demand is sensitive to the approach adopted to build the scenatio.

36




CASE 2. “The case of Katgaon community”

12000 —
——CST_MEAN Y

e HT_MEAN
- - -B-UP_MEAN

10000

8000
Z 6000
4000 ...,

2000 &

0 4 8 12 16 20 24
hours

Fig. 13. Daily load cutves for the B-UP_MEAN, CST_MEAN, HT_MEAN scenarios of the 20t year [from (Riva
et al. 2019)].

2.5.4. Optimisation model for energy system planning

To test the effect of short- and long-term demand on the planning solution, the least cost long-term
energy supply mix for the Katgaon community was identified for each of the scenarios of electricity
demand summarised above. For this step, the Open Source Energy Modeling System (OSeMOSYS)
(Howells et al. 2011) was employed, a linear optimisation modelling framework for long-run energy
planning. OSeMOSYS is selected as it is a well-documented, open source and free modelling
framework. Among the existing formulations of OSeMOSYS, the one in GNU MathProg was used.
OSeMOSYS computes for each year of the planning horizon the electricity supply mix (in terms of
capacity and generation) which allows the demand to be met at the lowest cost, under constraints
dictated by the techno-economic characteristics of the supply technologies and the availability of
resources. For this application, the possible Reference Energy System (RES) for Katgaon was
developed: the RES is a schematic and aggregated representation of the energy supply chain of the
system under study, from the primary resources to the end uses. In the RES of Katgaon (Fig. 14), three
different power generation technologies are considered: diesel generator (DG), wind micro turbine
(MW) and solar photovoltaic panel (SPV). All of these three are fed by primary resources and generate
electricity as output. The DUMMY represents a fictitious tank fuel for supplying DG with gasoline.
This chosen RES represents one of all the potential configurations for Katgaon.
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Fig. 14. The RES for Katgaon community [from (Riva et al. 2019)].

The 9 scenarios of electricity demand were introduced in input to OSeMOSYS. In OSeMOSYS, the
electricity demand input is set through two parameters: the specified annnal demand, which is the projected
total annual electricity consumption, and the specified demand profile, which specifies the fraction of
specified annual demand to be satisfied in each time-step, namely “time-slice”. In our simulations,
24x12 time-slices were considered, that is, 24 hourly time-slices of a typical day for each of the 12
months in one year. Every day of the year was assumed to have the same load curve described by 24-
h time-slices in each of the 9 scenarios. However, the monthly discretization was introduced in order
to consider the high variability of renewable resources across the year. For renewable technologies, the
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capacity factors of solar and wind resources were computed for each time-slice®, by using the NREL's
and NASA databases.

2.5.5. Results and discussion

The results were obtained by using the OSeMOSYS_2075_08_27 version of OSeMOSYS’. The results
of the 9 scenarios were compared by focusing on the wet present cost (NPC) and the fotal capacity installed
every year along the planning horizon.
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Fig. 15. Total capacity installed along the planning horizon for the 9 scenarios, divided by source [from (Riva et
al. 2019)].

The results in Fig. 15 show that DG is the technology installed with the largest capacity. Indeed, in the
absence of batteries, DG satisfy the electricity load during the peak hours and the time windows
characterised by very low or null solar capacity factor (i.e. cloudy days and night). MW technology is
never selected due to very low wind speeds (see the Supplemental Information): these are lower than
the cut-in velocity of the selected power turbine (2.7 m/s) during most of the months, making it
unprofitable to invest in such technology. Fig. 15 confirms also that both the daily- and the long-term
variation of the electricity load impact the choice of the optimal electricity supply mix. The total
capacity installed by 2034 when the lowest daily variability index is assumed (MIN) and the one when
the highest daily variability index is assumed (MAX) differ by 33%, 60% and 32% for the CST, B-UP
and HT scenarios, respectively. This is even clearer by analysing the results displayed in Fig. 16
concerning the new optimal yearly capacity to install every year. The MAX scenarios, which are the
ones with the highest daily variability indexes, consider the installation of much more DG capacity, for
covering the peaks and guaranteeing more flexibility in power production. In turn, the MIN scenarios
are characterised by a higher proportional installation of renewable SPV capacity. This fact highlights

¢ The capacity factor represents the ratio between the useful energy generated and the potential energy output at
the maximum capacity of a technology in each time-slice

70SeMOSYS - Open Source Energy Modelling System: http://www.osemosys.org/

38




CASE 2. “The case of Katgaon community”

New Capacity SPV [W]

New Capacity SPV [W]

W]

New Capacity SPV [

the importance of assessing the short-term variability of the load in renewable electricity planning.
Moreover, according to Vishnupriya and Manoharan (Vishnupriyan and Manoharan 2017), and
Chauhan and Saini (Chauhan and Saini 2016), these results confirm that appropriate load control and
management measures can effectively contribute to better distributing the daily load in rural micro-
grids, and therefore increase the renewable fraction of micro-grid generation.
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Fig. 16. New yearly capacity installed along the planning horizon for the 9 scenarios, divided by source [from
(Riva et al. 2019)].

This difference increases even more by considering the long-term variability of the electricity load: in
the MEAN cases, the B-UP and HT total capacities installed by 2034 are 41% and 144% higher than
the CST scenatio, respectively (Fig. 17). Also Brivio et al. (Brivio et al. 2017), who analysed the design
and sizing process of a PV-batteries micro-grid in Uganda, find that different scenarios of load growth
impact considerably on the capacity of power system, but to a lesser extent — viz. 25% of load growth
along 20 years, as in our B-UP scenario compared to the CST, caused an expected increase of about
9% and 23% for the size of the PV and batteries capacities, respectively.
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Fig. 17. Comparison of the total capacity installed along the planning horizon for the MEAN scenarios [from
(Riva et al. 2019)].

Such results have direct economic implications, as reported in Fig. 18. The cost difference between
the solutions optimised with the lowest daily variability index (MIN) and the highest daily variability
index (MAX) are respectively 7%, 8% and 6% for the CST, B-UP and HT scenarios. The long-term
evolution of the electricity demand impacts considerably on the costs: considering the MEAN cases,
the NPCs of the B-UP and HT optimal solutions are respectively 17% and 50% more expensive than
the CST scenario. These results confirm that long-term variations of electricity demand have a
considerably higher impact on the costs of the systems than the daily variations of the load profiles.

80000 80000.0 80000
75000 75000.0 75000 71130
70000 70000.0 70000 66930 67700
65000 65000.0 65000
@ 60000 ¥ 60000.0 55806 . 60000
§ 55000 § 55000.0 51719 53027 g 55000
50000 aagos 45356 47776 50000.0 D I 50000
45000 . 45000.0 45000
40000 :l 40000.0 40000
OCST_MIN = CST_MEAN ® CST_MAX OB-UP_MIN = B-UP_MEAN m B-UP_MAX OHT_MIN W HT_MEAN  BHT_MAX
Fig. 18. Net Present Cost (NPC) of the final solution optimised by OSeMOSYS for the 9 scenarios [from (Riva et
al. 2019)].

2.5.6. Conclusion

The results confirm that daily- and long- term variations of electricity load impact the optimal electricity
supply mix considerably. These results have a significant impact also on the costs. This finding
confirms that wrong projections of the long-term evolution of the electricity demand have direct
implications on the costs of energy systems, the process of tariff definition, the profitability of
investments promoting the diffusion of off-grid microgrids in developing contexts, and the local socio-
economic sustainability of an energy project. Moreover, considering the B-UP case, the introduction
of socio-economic indicators to make long-term projections allowed to set a first step in the
identification and modelling of the determinants at the basis of the electricity demand. This reduced
the level of “arbitrariness” in the selection of the scenario. On the contrary, the CST and HT were
totally arbitrary. At the same, this contribution highlighted the need to investigate further the
determinants of long-term electricity demand, since the projections used in this case-study depend on
exogenous econometric relations, whose application for local specific contexts is questionable.
Moreover, the resolution of the short-term daily load and the long-term demand growth were limited
to 1 hour and 1 year, respectively. This was due to the effective manageability of a limited number of
time-slices in OSeMOSYS.
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Chapter

Review of energy planning case studies
and demand models

The dynamics of growth and electrification are complex, involving many underlying forces
(Khandker et al. 2013)

Trend exctrapolation seems naive to many observers, who point out — quite correctly — that energy
demand forecasts are often the result of extensive studies involving detailed, multidisciplinary
analysis and sophisticated models.

(Sterman 1988, 2000)

The chapter contributes to Objective 1, by investigating the main demand models used in the
rural energy planning literature. It proposes a first clarification, analysis, and categorisation of
the published energy planning studies. Indeed, several studies were carried out on long-term
rural energy planning since around the ‘80s, but the different foci, terminology and
methodologies make it difficult to track the similarities, weaknesses, and strengths, especially
regarding the methodology adopted for projecting long-term energy demand along the
planning horizon. As a novelty, the analysis of both the “demand” and the “supply” aspects
of the rural energy planning studies is combined, stressing the need to consider the two parts
of the planning as linked and interdependent. For this purpose, it is followed an approach that
classifies the studies firstly in accordance with specific subcategories suggested by the literature
(viz. spatial coverage, planning horizon, energy carrier, decision criteria mathematical models
and energy uses), and secondly in accordance with the methodology they employ to forecast
the evolution of the energy demand. The final section of the chapter highlights that modelling
long-term projections of energy demand in these areas is a complex issue, involving both
technical and socio-economic dimensions. This chapter is based on the following publication:

Riva, F., Tognollo, A., Gardumi, F., Colombo, E. (2018). Long-term energy planning and
demand forecast in remote areas of developing countries: Classification of case studies and
insights from a modelling perspective. Eunergy Strategy Reviews, 20, 71-89. doi:
10.1016/j.est.2018.02.006.
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3.1. Review of long-term energy planning studies

3.1.1. Foreword

Although this thesis focuses on rural electrification, electricity is not the only energy carrier considered
in the review. This rationale behind this decision is based on two considerations:

i, Some of the case studies consider both electricity and the other carriers in the planning;

i.  Considering only electricity planning case studies would have limit the analysis of the demand
models, since some techniques are both applicable to the demand of electricity and the
demand of other energy carriers.

3.1.2. Rationale and methodology of the review

In order to comprehensively investigate energy planning methods and applications (7.e. including input
data processing, such as the load profile, and the final results), only real-life case studies or potential
applications for real contexts are analysed, excluding papers that present only the theoretical
methodologies. For example, Bernal-Agustin et al. (Bernal-Agustin and Dufo-Lépez 2009) propose a
multi-objective evolutionary algorithm and a genetic algorithm to find the most appropriate hybrid
energy system to minimise the costs and the unmet demand. They relied on a reference daily load
profile for implementing the optimisation. However, they did not provide any details about the daily
demand or potential applications, therefore their study was not classified. Gupta et al. (Gupta et al.
2011a, 2011b, 2011c) analyse a hybrid energy system in order to determine its cost optimal operation.
In the first (Gupta et al. 2011a) and second part (Gupta et al. 2011b) of the work they develop the
mathematical model for the optimisation and the necessary algorithm to control the dispatch of battery
storage systems. Only the third part (Gupta et al. 2011c) was classified because it described the
application and simulation of the energy system for a real case study.

At a spatial level, only local rural energy planning for developing countries (and BRICS) was
considered, whereby works referring to other contexts or to global and national scales were not
included in the review. For example, Clark et al. (Clark and Isherwood 2004) and Wies et al. (Wies et
al. 2005) focus on a remote power system for a village in Alaska, so their studies were included. The
same applied for Bala (Bala 1997), who propose a bottom-up approach to minimise CO2 emissions
for Bangladesh, but at national level.

On the contrary, no restriction was put on the type of off-main grid system that the case studies
proposed: standalone systems, microgrids and distributed hybrid microgrids were considered,
according to the classification given by Mandelli et al. (Mandelli et al. 2016a).

The papers were selected starting from a web research on Science Direct editorial platform and Scopus
database, and from references mainly taken from (Bhattacharyya 2012b; Rojas-Zerpa and Yusta 2014;
Mandelli et al. 2016a). At the end, 126 papers were studied and 84 were selected for the analysis and
classification. Even if no range of publication date was fixed, Fig. 19 shows how, among the papers
selected in this study, the greatest number of publications is concentrated between 2004 and 2015.
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Fig. 19. Publication on local energy planning over the years [from (Riva et al. 2018b)].
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Chapter 3. Review of energy planning case studies and demand models

3.1.3. Classification and analysis of long-term energy planning case-studies

The classification of the case-studies was inspired by other reviews on energy modelling and planning.
Prasad et al. (Prasad et al. 2014) present the risks, uncertainties and errors involved in energy planning,
as well as a review of models for energy planning (econometric models, optimisation models, simulation models
and the related computer-assisted tools), highlighting that energy plans must foster sustainable
development, and should be tackled with appropriate tools and correctly validated. Focusing only on
decentralised energy planning, also Hiremath et al. (Hiremath et al. 2007) limit their analysis to the
classification and description of the models that can be used for carrying out an appropriate planning
process: optimisation models, decentralised energy models, energy supply/ demand driven models, energy and
environmental planning models, resource energy planning models and models based on neural networks. Deshmuk
(Deshmukh 2011) discuss how to develop an Integrated Renewable Energy System (IRES) to find the
optimal energy resource allocation in energy planning processes and suggests an alternative
classification based on methodology adopted (bottom-up vs. top-down), spatial coverage, sectoral coverage and
temporal coverage. He also concluded that “the application of models for matching the projected energy
demand with a mix of energy sources at decentralized level is limited” ( (Hiremath et al. 2007) pg. 749),
highlighting the need to increase the research on this topic and the attention on the aspect of future
energy demand. Focusing on developing countries, Nicole van Beeck (Beeck and van van Beeck 1999)
propose nine criteria to classify models for energy planning: purposes of energy models, model structure,
analytical approach (bottom-up vs. top-down), underling methodology, mathematical approach, geographical coverage,
sectoral coverage, time horizon, data requirements. Van Beeck conclude that an appropriate planning model
should at least include sub-models for energy demand, energy supply, and impacts. Yusta et al. (Rojas-
Zerpa and Yusta 2015) investigate the most utilised multi-criteria decision methods for electrification
planning in rural areas and they reviewed approximately 120 publications related to energy planning
(Rojas-Zerpa and Yusta 2014), focusing mainly on 50 cases studies of decentralised power supply
plans. They classify them according to referving conntry, mathematical model, methodology application, adopted
criteria, implemented technologies and target population.

It emerges that most of the current review studies apply their classifications especially to the models
used in the energy planning and the majority of them limits the analysis to electricity systems.
Nevertheless, energy planning is a wider process, which includes multiple considerations, decisions
and energy carriers and it is not limited to the choice of the most appropriate mathematical model to
employ. An appropriate classification should rather be applied to the rural energy planning process as
a whole, in order to provide a comprehensive overview on the approaches used in the literature so far
and highlight the similarities, weaknesses and strengths. Based on the above-mentioned works, an
extended and more comprehensive classification was introduced with the following categories: (i)
spatial coverage, (i) planning horizon, (iii) energy carrier, (iv) energy uses, (v) decision criteria
mathematical models, and (vi) demand models. Categories (i), (i) and (iv) were selected from Deshmuk
(Deshmukh 2011) and Nicole van Beeck (Beeck and van van Beeck 1999). Category (v) is based on
Yusta et al. (Rojas-Zerpa and Yusta 2014), while category (iii) was introduced to understand the level
of attention paid by the existing energy planning literature to the different energy carriers commonly
employed in rural settlements. Category (vi) refers to models and methodologies employed to project
energy demand along the planning horizon, and it is treated in a separate and dedicated section, given
the relevance in the framework of this thesis.

Spatial coverage: local and regional coverage

The studies were categorised based on the extension of the geographical domain they consider: /loca/
coverage considered a village, a community, and a group of small villages (Joshi et al. 1991; Malik et al.
1994; Kanase-Patil et al. 2010) or set of remote houses (Gupta et al. 2011c; Semaoui et al. 2013) located
in the same region of the same nation; regional coverage included remote islands or institutional divisions
according to linguistic boundaries or morphological constraints.

Authors identify and specify the spatial coverage of their work in different ways. Local studies appear
to be the most precise studies, sometimes indicating even the geographic coordinates (Borhanazad et
al. 2014) and the number of people living in the target area (Himri et al. 2008). For example, Salehin
et al. (Salehin et al. 2016) combine a HOMER-based techno-economic optimisation with a
RETScreen-based energy scenario analysis for assessing a PV-Diesel and a Wind-Diesel power system
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in a small locality of 1000 people in Kutubdia Island, Bangladesh. Gupta et al. (Gupta et al. 2007) study
a hybrid energy system for the Juanpur block in India, specifying even the extension of the location
and the number of households. On the contrary, as the spatial coverage increases, the case studies tend
to be less precise, such as Silva et al. (Silva and Nakata 2009), who focus on the applicability of multi-
objective methods to assess the introduction of renewable technologies for general “Non-
interconnected Zones” in Colombia.

From this first categorisation, about 79% of the cases analysed are /Jcal energy planning, suggesting a
lack of regional studies. Moreover, in some cases the spatial coverage of the study was vaguely defined.
This might prevent the extension of the approach and the findings to other similar cases of energy
planning in analogous contexts. Finally, it emerges that modelling frameworks for local planning (e.g.
HOMER ®) allow to analyse and take into account detailed technical aspects of the planned energy
systems; on the other hand, regional planning mainly concerns the selection of the optimal energy
supply strategy, such as the identification of the energy mix and the solution of the off-/on-grid
dilemma.

Planning horizon: short, medium and long term

The second category referred to the time scale considered for implementing the energy planning. Four
subcategories were identified: short-term (from one month to one year), medium-term (from one to ten
years), long-term (beyond fifteen years) and not-specified term. The distribution of the works between these
subcategories is reported in Fig. 20.

Not specified

Fig. 20. Classification of case studies: Planning Horizon [from (Riva et al. 2018b)].

Authors usually introduce the planning horizon in two different ways: some specify explicitly the
lifespan of the project or lifetime of the energy system; others do not point out the planning period
but report the lifetime of the components such as PV, diesel gen-set or wind turbine used to calculate
the net present value or the discounted costs of the system. For example, Haddadi et al. (Saheb-Koussa
et al. 2009) specify three different lifetimes for the systems implemented, equal to 10, 15 and 20 years.
Similarly, Sen et al. (Sen and Bhattacharyya 2014b) indicate a project’s lifetime of 25 years. On the
contrary, Silva et al. (Silva and Nakata 2009) do not point out the lifetime of the entire project but
make the lifetime of the technologies explicit, in order to calculate the net present cost of the renewable
energy system. Daud et al. (Daud and Ismail 2012) state clearly that the life cycle period of the system
is assumed to be the maximum lifetime of the main components of the system. In cases where the
project lifetime was not indicated, the maximum lifetime between all the system components defined
the planning horizon used to classify the study, e.g. Arun et al. (Arun et al. 2009).

Papers that do not specify any information for deriving the planning horizon were accounted for in
the “not-specified” category. For example, Kanase-Patil et al. (Kanase-Patil et al. 2011) applied the
Integrated Renewable Energy Optimization Model IREOM) for the electrification of dense forest
areas in India in order to minimise the cost of energy generation over an amortisation period of 7 years.
Again, Gupta et al. (Gupta et al. 2007) vaguely note that the unit costs are calculated on the basis of
the lifetime of the plants, without indicating a precise value.
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Chapter 3. Review of energy planning case studies and demand models

This analysis highlighted that about 70% of the studies refer to long-term energy planning, while almost
one-quarter does not specify enough information to derive the planning horizon. Only one paper
performs a short-term regional analysis, considering a planning horizon of 1 year (Devadas 2001). This
lack of information about the time horizon undermines the robustness of the planning results, since it
prevents their replicability, as well as any uncertainty analysis on the evolution of the techno-economic
parameters (e.g. energy demand, costs, efficiency). The classification of the case studies based on their
planning horizon further provided useful insights about the details achievable by each energy model:
short-term energy models allow the analyst to consider more precisely short time steps (seconds or
minutes), specific operation constraints of the analysed energy systems and their response in case of
unexpected conditions and phenomena (e.g. fluctuations, changes in weather conditions, variabilities
of renewable resources). Long-term models usually rely on longer time resolutions (hours, days,
weeks). This could prevent the analysis of short-term dynamics but allows the introduction of long-
term variables (eg future energy demand along the planning horizon, useful life-time of the
technologies, discount rates) that are pivotal to a more comprehensive energy planning (#/z. more
complete economic analyses, more reliable choice of off-grid systems’ components and size).

Energy carrier: electricity and thermal energy and oil products

In general, the term “energy carrier” refers to the energy form of the energy inputs required within the
various sectors of a society to perform the related functions. In this work, this category classifies the
case studies based on the energy form of the energy produced by the power systems subject to the
planning. Three types of energy carrier are identified: electricity, thermal energy and oil products.

Electricity results as the most considered energy carrier in the case studies (Fig. 21), especially within
those focusing on rural electricity planning and employing HOMER ® software for the optimal sizing
of the off-grid distributed system (KKamel and Dahl 2005; Agalgaonkar et al. 2006; Akella et al. 2007;
Himri et al. 2008; Nayar et al. 2008; Nfah et al. 2008; Nfah and Ngundam 2009; Setiawan et al. 2009;
Alzola et al. 2009; Kanase-Patil et al. 2010; Lau et al. 2010; Nandi and Ghosh 2010; Al-Karaghouli and
Kazmerski 2010; Bekele and Palm 2010; Demiroren and Yilmaz 2010; Ttrkay and Telli 2011; Bekele
and Tadesse 2012b; Sen and Bhattacharyya 2014a; Kolhe et al. 2015; Ramchandran et al. 2016; Salehin
et al. 2016; Amutha and Rajini 2016; Fulzele and Daigavane 2016; Haghighat Mamaghani et al. 2010).

The thermal energy carrier is the second most considered in the case studies, especially for the
residential sector. This sub-category includes the case studies that carry out a planning of the optimal
energy systems that produce thermal energy for space heating and cooking — often based on non-
commercial energy (e.g. biomass and agricultural residues for cooking) — highlighting the urgency to
address the issue of access to modern energy for cooking in rural areas of developing countries. For
example, Malik and Satsangi (Malik and Satsangi 1997) apply a mixed integer/lineatr programming
model for planning the most cost-effective energy system for cooking in the rural areas in Wardha
District, India. Joshi et al. (Joshi et al. 1991) investigate the most appropriate energy system — based
on fuel wood, agriculture residues and animal dung — for producing thermal energy for cooking and
for space heating in three villages of different zones of rural Nepal.

Oil products are considered by only 4% of the case studies; for example, Srinivasan and Balachandra
(Srinivasan and Balachandra 1993) consider diesel as a potential non-renewable energy carrier for
satisfying the energy demand in the transport and agricultural sector of Bangalore North taluk in India.

Many case studies implemented energy planning by considering more than one energy carrier. For
example, Devadas (Devadas 2001) present a linear programming-based model to optimally allocate
energy resources and related conversion technologies to different end-uses such as household
consumption, agriculture and transport, considering electricity for irrigation and lighting, liquefied
petroleum gas for cooking, and kerosene for the lamps of lower income consumers. When dealing
with households’ energy needs, different case studies considered both electricity for end-use appliances
and thermal energy for cooking (Srinivasan and Balachandra 1993; Howells et al. 2005; Hiremath et al.
2010a; Fuso Nerini et al. 2015).

In accordance with Pachauri et al. (Pachauri et al. 2013), this review indicates that rural energy planning
studies mainly concern electricity planning, revealing that little quantitative analysis focuses on the
other energy carriers. More comprehensive approaches would be needed to tackle all the challenges
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concerning sustainable rural energy planning, including the study of options to supply energy for
cooking. This carrier is highly prioritised in the Sustainable Energy for All (SE4All) global Agenda
(United Nation and World Bank 2017), as one of the pillars for achieving the SDG7 (United Nations
2015).

oil
products
3.9%

electricity
82.5%

Fig. 21. Classification of case studies: Energy Carrier [from (Riva et al. 2018b)].
Decision criteria mathematical models

In accordance with Yusta and Rojas-Zerpa (Rojas-Zerpa and Yusta 2014), the mathematical models
lying behind the planning procedure were classified into seven sub-categories (classes of models):
Linear Programming (LP), Multi-Criteria Decision Making (MCDM), Multi-Objective Programming (MOP),
Non- Linear Programming (NLP), Dynamic Programming (DP), Enumerative Optimisation (EO) and other.

LP is used to analytically optimise a linear objective function subject to a set of linear constraints.
Compared to the other models, it is a computationally fast and easy-to-solve method. Nevertheless, in
a few cases it requires significant simplifications, for real physical phenomena to be represented by
linear relationships. In the analysed case studies, it is especially employed to minimise the cost of
matching supply and demand (Balachandra and Chandru 2003; Akella et al. 2007; Zhang et al. 2013),
both in the local and regional planning studies. The category further includes models using Mixed
Integer Linear Programming (MILP). There are several modelling languages: LINGO is a modelling
software developed by Lindo Systems Inc. and it is used by Kanase-Patil et al. (KKanase-Patil et al. 2010)
to calculate the cost of energy for an off- grid system in India. Fuso Nerini et al. (Fuso Nerini et al.
2015) use OSeMOSYS (Howells et al. 2011) to carry out the energy planning of Suro Craic village in
Timor Leste.

MCDM solves problems involving more than one criterion of evaluation such as cost or price,
efficiency and emissions and social aspects. For example, Semaoui et al. (Semaoui et al. 2013) rely on
the (i) reliability and (ii) economic criterion for the optimisation for the optimal sizing of a stand-alone
photovoltaic system in Algeria. Cherni et al. (Cherni et al. 2007) consider physical, human, social,
natural and financial assets in their multi-criteria decision-support system (named SURE) used to
calculate the most appropriate set of energy alternatives for supplying power to a rural Colombian
community. The most common MCDM-based techniques include Analytic Hierarchic Process (AHP),
Compromise Programming (CP), Goal Programming (GP), and Elimination and Choice Expressing
Reality (ELECTRE). MCDM is a more comprehensive method to use since it provides a more in-
depth, accurate and robust decision-making support (Trotter et al. 2017) to solve actual problems,
especially for local case studies, where the local dimension of energy use and supply is largely affected
by multidimensional techno-economic and social aspects. Nevertheless, the procedures that are
commonly employed to weight the criteria suffer a high level of subjectivity.

MOP is a method for solving optimisation problems with more than one objective function. For
example, Hiremath et al. (Hiremath et al. 2010a) set seven objective functions in their optimisation
problem: minimisation of cost, maximisation of system efficiency, minimisation of use of petroleum
products, maximisation of use of locally available resources, maximisation of job creation,
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minimisation of COx, NOx, and SOx emissions and maximisation of reliability. The Authors
demonstrate that MOP-based models allow to represent more realistic problems, especially when they
are characterised by a large number of alternatives. Nevertheless, MOP suffers from high
computational costs since the number of optimisation-runs increases exponentially with the number
of objectives.

NLP includes analytical optimisation problems whose variables and constraints are linked by non-
linear relations, as usually occurs in most of the real-world problems. For example, Ashok (Ashok
2007) use a Quasi-Newton algorithm to determine the optimal number of renewable energy units for
a typical rural community in India. The META-Net economic modelling tool adopted by Nakata and
Kanagawa (Kanagawa and Nakata 2008) to analyse energy options in rural India is based on a NLP
and partial equilibrium tool. Segurado et al. (Segurado et al. 2011) rely on H2RES software to plan the
future power generation for S. Vincent Island in Cape Verde; the model is based on a single-objective
optimisation, i.e. the minimisation of the Levelised Cost of Energy (LCOE), subject to nonlinear
relations and constraints. Although NLP allows to model real physical phenomena through more
precise and realistic non-linear relationships, the convergence of the model is usually highly dependent
on the initial guess used to initiate the optimisation. Indeed, the examples above confirm that one of
the main drawbacks of the NLP-based methods is the high level of complexity of the algorithms, that
usually requires ad-hoc software.

DP is a technique for solving complex problems by splitting them into a sequence of smaller sub-
problems, resolving and storing them in a data structure. Thus, DP does not identify a single
optimisation algorithm: a variety of optimisation techniques can be employed to solve particular
aspects of the main problem, as done by Nahman and Spiri¢ (Nahman and Spiri¢ 1997) and Bowe and
Dapkus (Bowe et al. 1990). It is applicable to problems that require a sequence of interrelated decisions
to be made, but it is a method that requires a very high level of expertise before being appropriately
employed.

More recently, EO stands out as a methodology of practical interest and straightforward application.
This approach calculates numerically the optimal solutions based on one or more objectives.
Differently from LP and NLP that consider an objective function (linear or non-linear) to be
maximised or minimised analytically (2. through a mathematical analysis), EO is based on a numerical
and heuristic optimisation that usually follows these steps: (i) the definition of a problem space (which
is finite, discrete and includes all the potential solutions), (if) the numerical evaluation at every, or
almost every, discrete point in the space of the value of the function to be optimised, (iii) the
enumeration of all the candidate solutions that respect the imposed constraints, and then (iv) the
identification of the candidate solution(s) with the minimum or maximum value(s) of the function to
be optimised. It is especially used for local applications with electricity as the main analysed carrier,
and usually the objective is to minimise the cost function of electricity supply, by modifying the size
of the supply technologies under a number of constraints (e.g. the availability of renewable resources,
an imposed electricity load); in this case, the EO process starts with the definition of a searching space
of all the potential technological solutions (in terms of size, components, ¢fz.), it calculates the value of
the investment cost function for all the discrete solutions that satisfy a certain energy demand, and
then it identifies the final solution (viz. the final configuration of energy pant) with the lowest
investment cost. A clear example of EO-based cost minimisation of off-grid microgrids is represented
by Mandelli et al. (Mandelli et al. 2016¢) and Brivio et al. (Brivio et al. 2017), who developed a novel
methodology for sizing PV-batteries power systems, which embraces uncertainty on load profiles.
They applied it to electricity planning in a peri-urban area of Uganda. HOMER ® software falls within
the EO category: given the user-specified constraints and lower and upper limits on the size of the
system, the tool simulates every possible system configuration within the search space. The HOMER
Pro’s Optimizer ™ facilitates this operation, selecting the solution that satisfies the lowest total net
present cost (Lambert et al. 2000). For example, Kolhe et al. (KKolhe et al. 2015) apply HOMER ® for
optimally sizing an off-grid distributed system for electrifying a rural community in Sti Lanka.

Case studies that do not fit any of the above-mentioned classes or do not provide enough information
are identified as “Others”. For example, Phrakonkham et al. (Phrakonkham et al. 2012b) minimise the
annualised cost of energy for a remote village in Northern Laos with a genetic algorithm implemented
in MATLAB ®. Rana et al. (Rana et al. 1998) use an intuitive sizing method: they calculate and identify
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the system with the lowest total life cycle cost of six combinations of three possible technology
alternatives (e standalone PV, biogas system, gasifier system) to optimally match the energy supply
and demand. Segurado et al. (Segurado et al. 2011) rely on HoRES software to maximise the penetration
of renewable energy sources in the electricity system of S. Vicente Island in Cape Verde and they
describe it simply as a “simulation tool”.

Fig. 22 illustrates the distribution of the reviewed works across the described decision criteria methods.
Other
13.8%

LP
27.6%

MCDM
5.7%

EO HHE
35.6%

pp NLP
23% 5.7%

Fig. 22. Classification of case studies: Decision criteria mathematical models [from (Riva et al. 2018b)].

EO results to be the most used mathematical method. It is adopted in 35.6% of the case studies,
especially those that rely on HOMER ®. LP follows, used in 27.6% of the case studies. LP is based
on analytical optimisation, requiring less computational time and effort than EO methods. On the
other hand, EO is not constrained by the need to set only linear equations, sometime overly simplistic
(Sinha and Chandel 2015); it therefore results in a better representation of the actual dynamics and
phenomena that characterise the operation of energy systems (e.g. some charge-discharge dynamics
inside the batteries).

This part of the review results suggests that the literature has been mainly limited to mono-objective
optimisation models so far. Considering the multifaceted issue of sustainable rural energy planning
(Trotter et al. 2017) — which includes important socio-economic and environmental aspects, such as
technology appropriateness, indoor air pollution, local know-how and capabilities —, MCDM and MOP
models may provide more comprehensive frameworks for rural energy planning. Interesting options
can consider the soft-linking with behavioural approaches, in order to take into account complex social
aspects. As a pioneer example in this field, Moresino et al. (Fragniere et al. 2016) couple OSeMOSYS
with a share of choice in order to take into account the consumers’ real behaviour. In their case study,
they focus on the consumer’s preferences regarding the purchase and use of electric bulbs.

Energy service: residential, community, agricultural, industrial, commercial and not-specified

The considered energy users and the end-use of energy were: residential, community, agricultural, industrial
and commercial and not-specified. In accordance with IEA’s definition (OECD/IEA 2017), such categories
are the most comprehensive ones of all energy uses. The energy consumption for the residential sector
includes demand for lighting, cooking, air conditioning, food preservation, and powering domestic
appliances such as radios, televisions, fans, etc. The community use of energy refers to schools, medical
centres, radio stations, small shops, churches, and restaurants. An example is represented by Ferrer-
Marti et al. (Domenech et al. 2014), who design an electrification plan for a community in Peru,
considering households and five institutions as direct beneficiaries, namely the church, the school, the
health-centre, restaurants and shops. The agricultural sector includes energy for farming activities:
pumping water, ploughing, supplying tractors and other agricultural uses. The industrial sector
considers rural industries and income generating activities, such as grain mills, coal kilns, small vans
for products transportations, etc. The energy demand for the commercial sector refers to energy used
for all the activities that need roads, telecommunication infrastructure, water and irrigation networks,
bank and credits facilities; transportation (unless otherwise specified) is included as well, with the
hypothesis that few people use cars or mini-vans as private use in rural contexts.
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Chapter 3. Review of energy planning case studies and demand models

Very few case studies specify the sector covered by the planning (Akella et al. 2007; Amutha and Rajini
2016; Mandelli et al. 2016¢, 2016b), but they provide a description of the type of technology and
appliance to supply (Bujorianu 2012; Fuso Nerini et al. 2015) or the end-uses of energy (Iniyan et al.
1998; Howells et al. 2005) — such as lighting, cooking, pumping, heating, cooling and transportation.
Fig. 23 illustrates how case studies are distributed among the five demand sectors.

not specified
5.1%

CoOmMmMuity

22 (0% 1
22.0% residential

34.5%

agricultural
15.3%

industrial

commercial 14.7%
8.5%

Fig. 23. Classification of case studies into the five Demand Sectors [from (Riva et al. 2018b)].

It emerges that rural energy planning deals more with residential demand, in accordance with
Bhattacharyya (Bhattacharyya 2012b), who stated that “the demand in rural areas arises mainly from
the use of domestic appliances” (p. 678). However, the literature concerning the nexus between energy
and rural development shows the need to increase the focus on the industrial use of energy, elsewhere
called productive use of energy. Specifically, it indicates that access to energy, when it is supported by
complementary activities — e.g. educational activities, capacity building and awareness campaigns —,
can be a pivotal driver in developing new business (Bowonder et al. 1985; Ravindranath and Chanakya
1986; Kumar Bose et al. 1991; Meadows et al. 2003; Cabraal et al. 2005; Bastakoti 2006; Mapako and
Prasad 2007; Gibson and Olivia 2010), with a consequent increase in the industrial energy demand. It
emerges that load demand models that are able to differentiate commercial from residential demand
and to consider the potential growth of business activities and their future energy load would
contribute substantially to defining a more comprehensive and reliable energy planning model for rural
areas. This consideration supports the objectives of this thesis. Moreover, this interconnection
between access to energy, the development of new business and the consequent positive feedback on
future commercial energy load suggests that energy load simulation should be an endogenous feature
in rural energy planning models. According to that, Jordan (Jordan 2013) and Hartvigsson et al.
(Hartvigsson et al. 2018b) demonstrate that it is important to consider electricity demand endogenously
in electric power systems planning.

3.2. Overview of energy demand models for rural energy planning

3.2.1. Traditional modelling frameworks

The scientific literature has addressed the classification of models for forecasting energy demand.
Suganthi et al. (Suganthi and Samuel 2012) present a comprehensive review of the various energy
demand models, as well as applications for both developing and developed countries. They find that
econometric models are the most used, especially to link energy demand with Gross National Products,
energy price, gross output and population indicators. They propose new models, such as genetic
algorithms, fuzzy logic, and particle-swarm optimisation, as emerging techniques able to link energy,
economy and environment for planning the future energy demand in a sustainable manner.
Nevertheless, they do not report any example of application of these methods for local contexts and
rural areas of developing countries. Focusing only on developing countries, Bhattacharyya and
Timilsina (Bhattacharyya and Timilsina 2009, 2010) propose a literature review of existing energy
demand forecasting methods and highlight the methodological diversities among them. Their purpose
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is to investigate whether the existing energy demand models are appropriate for capturing the specific
features of developing countries. They find that mainly two approaches are used: econometric (or top-
down) and end-use (bottom-up) accounting. The latter is able to produce more realistic projections as
compared to the former, since it relies on detailed engineering representation of energy systems, it is
based on the identification of the services and end-uses for which demand is forecast (Bhattacharyya
and Timilsina 2010) (e.g. the appliance, the nominal power of the machines, the operation time) and it
allows a representation of complex aspects such as innovation diffusion, income shifts and behavioural
changes. It suffers, however, from data deficiencies (Bhattacharyya and Timilsina 2010), since these
are very specific and contextual. On the contrary, econometric accounting is usually based on
macroeconomic and aggregate data that are easily available, especially at national or regional level.
Table 6 presents an abstract of the main features, strengths and weaknesses of these two most diffuse
approaches discussed by Bhattacharyya and Timilsina and Swan et al. (Swan and Ugursal 2009).

Table 6. Characteristics of bottom-up and top-down models.

Bottom-up Top-down
Strength - detailed sectorial representation of energy demand - identification of the relationship between
- realistic projections economic variable and aggregate demand
- local demand representation - reliance on aggregate data easy to obtain
- modelling of energy services and uses - reliability on historical trends able to
- possible representation of complex aspects such as drive the model
innovation diffusion, income shifts, and behavioural
changes
Weakness -  huge data deficiency especially for developing -  inability to capture technological
countries diversity and technical progress
- not able to capture price-based policy and price
signals

In the next section, the models and approaches for long-term projections of the energy demand
employed in the case studies classified in sub-section 3.1.3 are assessed, in the attempt to derive insights
and guidelines for supporting the development of appropriate demand models for rural energy
planning in developing countries.

3.2.2. Categorisation and adoption of demand models used in rural energy planning

The case studies were classified based on the mathematical forecasting approach adopted; five
categories of long-term energy demand projecting approaches are identified: fixed demand, arbitrary
trends, exctrapolation, system dynamics (SD) and input/ output (I O).

Fixed demand

The fixed demand category was introduced for those energy planning case studies that consider a fixed
value of energy demand —i.e. no evolution of energy consumption — along the planning horizon. Case
studies that do not specify how they project the demand along the planning horizon were also
considered within the ‘fixed demand’ category. For example, Zhang et al. (Zhang et al. 2013) consider
a fixed electricity demand throughout the whole lifetime of the system (15 years) and generate random
weekly load profiles based on typical values of load for rural villages of Southeast Asia. Similarly, in a
MOP-based planning of three micro-grids in rural Iran, Borhanazad (Borhanazad et al. 2014) consider
a constant “hourly load profile for a typical rural area” ((Borhanazad et al. 2014) p. 300) derived by
local assessments, without considering any evolution along the planning period. Almost all the case
studies that employ HOMER ® software to design electricity micro-grids belong to this category
(Kamel and Dahl 2005; Agalgaonkar et al. 2006; Akella et al. 2007; Himri et al. 2008; Nayar et al. 2008;
Nfah et al. 2008; Nfah and Ngundam 2009; Setiawan et al. 2009; Alzola et al. 2009; Kanase-Patil et al.
2010; Lau et al. 2010; Nandi and Ghosh 2010; Al-Karaghouli and Kazmerski 2010; Bekele and Palm
2010; Demiroren and Yilmaz 2010; Turkay and Telli 2011; Bekele and Tadesse 2012b; Sen and
Bhattacharyya 2014a; Kolhe et al. 2015; Ramchandran et al. 2016; Salehin et al. 2016; Amutha and
Rajini 2016; Fulzele and Daigavane 2016; Haghighat Mamaghani et al. 2016), since the software
considers a fixed demand curve along the planning horizon and the only variability lies at a daily and
seasonal level.
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Arbitrary trends

The arbitrary trends method is characterised by the assumption that the energy demand would evolve at
a constant pace during each year of the planning; the trend is often taken from observation of national
plans and “goals” of energy access or of growth trends. For example, for a case study focusing on
India, Nakata and Kanagawa (Kanagawa and Nakata 2008) assume the total energy demand increases
linearly during the planning horizon according to the expected annual growth of population in the
country, which they find to be 1.4% from CIA data in 2015. Such arbitrary trends are frequently
combined with multiple scenarios of energy demand, in order to include a set of descriptive pathways
that indicate how future events may occur. For example, Fuso Nerini et al. (Fuso Nerini et al. 2015)
set arbitrary trends of energy demand growth in the rural village of Suro Craic depending on the
different Tiers of electricity access defined by the World Bank (S.G. Banerjee et al. 2013). Similarly,
Domenech et al. (Domenech et al. 2014) investigate the current energy demand of a community of
Alto, Peru, with local surveys. They derive arbitrary trends of demand growth from considerations on
the “development of small productive activities and/or enjoyment of some domestic comforts”
((Domenech et al. 2014) p. 280). Ferrer-Marti et al. (Ferrer-Marti et al. 2011) propose a “low-demand”
scenario characterised by constant demand for energy for households, the school and a health centre
and a “high-demand” scenario to consider a wider fulfilment of the basic needs and possible
production uses. On the one hand, these case studies confirm that relying on multiple scenarios based
on arbitrary trends is particularly suitable in contexts characterised by high uncertainty; on the other,
it emerges that arbitrary scenarios do not provide a unique clear estimation of how the demand could
evolve in the future and their use in planning processes requitres the employment of stochastic and/or
robust mathematical optimisation models, such as the EO-based model used by Brivio et al. (Brivio et
al. 2017).

System Dynamics (SD)

System Dynamics (SD) models are used to capture the nonlinear behaviour of complex systems over
time, by relying on the use of causal and feedback relationships. SD models are characterised by stocks,
which are the state variables of the dynamic system, and their inflows and outflows (rates), which
increase or decrease the value in the stock. Among the analysed case studies, Hartvigsson et al.
(Hartvigsson et al. 2018b) develop a SD model coupled with DER-CAM energy optimisation tool to
simulate long-term projections of electricity demand in rural Tanzania and test two capacity expansion
strategies on rural mini-grid operator’s long-term economic performance. Their goal is to analyse the
teedback between electricity availability and the operator’s ability to increase generation capacity, and
between the growth in electricity usage and electricity availability. The study confirms the advantage
of using SD for modelling complex interactions between different socio-economic aspects in rural
energy systems. Also Zhen (Zhen 1992) apply a SD approach to model the complexities of rural energy
demand and develop a model to project the development of the energy supply and demand for a rural
village in the North China.

Extrapolation

The Extrapolation technique corresponds to the method used by Malik et al. (Malik et al. 1994; Malik
and Satsangi 1997) in ‘90s to perform the rural energy planning for Wardha district, India, from 1985
to 2000. The authors provided very few details about the model they employed; they just mentioned
few sources through which they gathered data about demographic, agricultural and livestock
characteristics (called “items”) of some villages of the district in 1981 and estimates for 2000. Based
on these scattered data, they built a befa-probabilistic distribution for each item, through which they
then extrapolated an expected value of each item for the entire district. This technique was not found
in other cases studies, probably due to the problem of data scarcity, which prevents the use of this
method for rural energy planning.

Input-output (I/O)

Input-output models (I/O) have long been used for macro-economic and top-down analysis, with scarce
application to rural energy planning, probably because they cannot be employed for modelling informal
activities and non-monetary transactions, due to the lack of reliable data. An example of use is given
by Subhash et al. (Subhash and Satsangi 1990), who carried out the energy planning for an Indian
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village cluster by developing an I/O model. The model adopts inter-sectorial relations for projecting
sector scenarios of the economy in the long-term.

3.3. Observations from the literature and the way-forward

Fig. 24 summarises the distribution of the reviewed studies across the different demand projection
approaches. It clearly emerges that three quarters of the case studies do not consider the variation of
demand over the planning horizon, weakening the reliability and robustness of the design phase of the
planning, especially for long-term approaches. Indeed, the lack of data availability is the most critical
issue that prevents the totality of the case studies from using econometric techniques to forecast and
project energy demand. For this reason, the largest part relies on the use of a fixed demand along the
planning horizon, which is a huge and unrealistic simplification. This is the case of about all the
reviewed case studies that employ the EO-based HOMER ® software or its improvements to catrry
out the electricity planning. Among the case studies with a long-term planning horizon, our study
reveals that only 25% of them apply at least one of the remaining techniques for projecting energy
demand. Among these, the most used approach assumes a fixed growth every year (arbitrary trend)
justified by previous studies, historical trends or specific assumptions, that may fail in capturing the
complexities behind the evolution of energy demand in rural contexts. Therefore, they are often
combined with a seenarios-based approach, as done by (Subhash and Satsangi 1990; Hiremath et al.
2010b; Ferrer-Marti et al. 2011; Fuso Nerini et al. 2015; Brivio et al. 2017; Mandelli et al. 2017), which
is very useful to deal with uncertainties in the demand; nevertheless, the use of scenarios-based
approaches must be compatible — at reasonable computational effort and time — with the decision
criteria mathematical models employed for the energy planning.
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Fig. 24. Percentage of energy demand forecasting approaches adopted in the case studies [from (Riva et al.

2018b)].

In order to overcome the limitations of the current literature on energy demand models for developing
countries, Urban et al. (Urban et al. 2007) list the main characteristics of the energy system of
developing countries that should be captured by energy models: the supply shortages, the transition
from traditional to commercial fuels, the role of income distribution, the urban/rural split, the
underdeveloped markets and informal activities, structural changes in the economy and subsidies.
Moreover, especially in rural areas, energy access planning should firstly consider the structural change
in the socio-economic dynamics caused by the introduction of new energy technologies, such as the
leapfrogging of economies (eg. new income generating activities and opportunities) (Bhattacharyya and
Timilsina 2009, 2010). As Khandker et al. (Khandker et al. 2013) state, “the dynamics of growth and
electrification are complex, involving many undetlying forces” (p. 666) and feedback mechanisms:
rural electrification is expected to positively impact new economic and educational opportunities,
which in turn might make electricity and appliances more affordable, increasing the local electricity
demand. Secondly, an appropriate model for demand projection in rural areas must account for the
demand for end-use functions and appliances (Daioglou et al. 2012), in order to understand the uset-
value of electricity use (Hirmer and Cruickshank 2014), analyse the drivers behind their diffusion, the
operation and change in use and finally build reliable load profiles. This in turn depends on
acceptability, deeply-rooted consumer behaviours, social networks-based diffusion mechanisms,
affordability, elasticity of the demand, people’s disposable income and willingness to pay and the inertia
of the stock of available appliances. This is why Swan at al. (Swan and Ugursal 2009) state that bottom-
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up end-use approaches are more suitable for contexts where there is a rapid technological development
as in developing countries. In this context, Table 7 summarises and proposes the need to move towards
mathematical approaches and instruments able to captute both the technical and the socio-economic-
related dimensions of energy demand evolution.

Table 7. Socio-economic- and energy-related dimensions of energy demand evolution in rural contexts.

Economic dimension

- Considering the informal activities/economies that may bias available aggregate data on income (Urban et al.
2007)

- Considering income distribution and inequity among users, who may behave differently among different
socio-economic classes (Urban et al. 2007), since energy transition is highly dependent on the financial
resources of people and their capability to mobilise these (Ahlborg 2015)

- Modelling the new income generating activities and possibilities driven by more reliable access to energy
(Bhattacharyya and Timilsina 2009, 2010), considering that where the majority of people live below or close
to the economic poverty line, the potential for beneficial dynamics between electricity access and local
business and industrial development is very limited (Ahlborg and Hammar 2014)

Social dimension
- Modelling the urban and rural demand separately, since people have different needs and constraints (Urban
et al. 2007; van Ruijven et al. 2011)
- Considering also non-monetary factors that may influence the users, such as past experience, social norms,
and trust-based information and perceptions of quality, satisfaction and social network (Chakravorty et al.
2014; Hartvigsson et al. 2015; Aklin et al. 2016; Rai and Henry 2016)

Energy dimension
- Modelling the demand for end-use appliances following a bottom-up approach (Daioglou et al. 2012)
- Considering the “user choice” of fuels and transition from traditional to modern enetgies, and vice-versa
(Urban et al. 2007), especially for energy for cooking (Cameron et al. 2016)

All these aspects confirm that rural energy demand is deeply linked with the socio-economic
development that electricity use can bring in a local context. Therefore, being able to understand and
model aspects and dynamics behind such nexus between electricity and development can lead to more
robust energy planning and solutions in rural areas. However, while the relationship between electricity
use and development is known from a macroscopic and macroeconomic point of view, the local
dimensions of the electricity-development nexus in rural contexts are not completely captured and
characterized. Indeed, according to Matinga and Annegarn, when referring to local rural contexts,
“simple deterministic relations between electricity access and development outcomes do not reflect
reality” ((Matinga and Annegarn 2013) pg. 301). Also Ahlborg (Ahlborg 2015) confirms the presence
of multiple interfaces and feedbacks that shape outcomes in electrification processes. The literature
also suggests that the nexus between electricity use and rural socio-economic development has
dynamic components, meaning that the nexus is characterized by complex feedbacks that can reinforce
or balance impacts over time (Ulsrud et al. 2011). Khandker’s (Khandker et al. 2013) study of
Vietnam’s rural electrification program exemplifies how a “virtuous circle of development” emerged
as significant investments in other rural infrastructure services were undertaken (viz. water supply,
roads, health and education) and rural electrification contributed to greater educational attainment,
more business opportunities, and higher income, which in turn improved the affordability of electricity
and appliances, leading to an increase of total electricity load and more investments in rural
electrification. Khandker, as well as others (Kanagawa and Nakata 2008), suggests that electrification,
if supported by enabling complementary actions, can lead to positive feedbacks on future electricity
demand in a rural context.

For all these reasons, a first step towards the development of a more appropriate rural electricity

demand model, an in-depth understanding and conceptualisation of the electricity-development nexus
is advised, which is the aim of the next Chapter.
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Chapter

Electricity demand and socio-economic
complexities

We will make electricity so cheap that only the rich will burn candles
(Thomas Edison 1879)

If I had a rich man in front of me, 1 would ask_for electricity at home. 1'm tired to go to bed and
wafke up based on the sun-light
(Anonymous Namibian breeder)

Ciurrent subsidies to fossil fuel from governments are worth around half the funding needed to bridge
the global energy access gap, to double renewable energy and energy efficiency rates by 2030
(International Institute for Sustainable Development 2017)

In order to investigate further the complexities behind the evolution of rural
electricity demand, this chapter undertakes a comprehensive and extensive analysis
of the peer-reviewed literature on electricity access and its impact on rural socio-
economic development, and vice versa. It contributes to Objective 1 by investigating
the socio-economic and technical complexities which involve the nexus between
electricity demand and development, as well as by setting a basis for the modelling of
electricity demand in rural areas and, hence, the planning of off-grid mini-grids. The
analysis is carried out by developing graphical causal loop diagrams that allow to
capture, visualise, and discuss the complexity and feedback loops characterising the
following multiple dimensions of the electricity-development nexus: zncome generating
activities, market production and revenues, housebold economy, local health and population,
education, and habits and social networks. This chapter is based on the following
publication:

Riva, F., Ahlborg, H., Hartvigsson, E., Pachauri, S., & Colombo, E. (2018). Electricity
access and rural development: Review of complex socio-economic dynamics and

causal diagrams for more appropriate energy modelling. Ewergy for Sustainable
Development, 43, 203-223. doi: 10.1016/j.esd.2018.02.003.
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41. Electricity access and rural development

41.1. State-of-the art

Reviews studies of the socio-economic impacts of rural electrification in developing economies started
emerging in the 1980s. Within the context of the International Labour Office's Wotld Employment
Programme’s research, Fluitman published a working paper in 1983, where he reviewed the available
literature on rural electrification, its effects on rural industrialisation, and its impact on such socio-
economic objectives as employment and income generation. The paper concluded that the socio-
economic benefits of providing people with access to electricity in rural areas seemed to be
overestimated. Also, he saw a need for “more judicious planning, formulation and evaluation of rural
electrification programmes (pg. v)” for maximising the positive impacts of electrification-oriented
investments. In more recent years, other review papers on this topic have been published both in the
grey and scientific literature. Among the grey literature, many country- or region- specific reports and
evaluations papers are from donor organizations (World Bank 2002; Khandker et al. 2009a, 2009b,
2012; UNDP Asia-Pacific 2012). The first chapter in the joint GIZ-ESMAP study “Productive Use of
Energy” (PRODUSE) is a review of the impact of electricity access on economic development (Attigah
and Mayer-Tasch 2013). Their main conclusion is that, despite a growing body of literature that
indicates positive impacts of electricity on local productivity, the magnitude of such impacts is highly
country- and context-specific. The Independent Evaluation Group (IEG) (Independent Evaluation
Group (IEG) 2008) of the World Bank Group published a document, which reviews the
methodological advances made in measuring the socio-economic benefits of rural electrification on
local communities in low-income countries. They conclude that electrification can have positive
impacts on local communities, in terms of growth of local income generating activities, time-savings,
educational and health improvements, but such results lack a quantitative scientific evidence basis.

In the scientific literature, reviews examine the cumulative evidence base as well as the methodological
basis for measuring impacts. The survey by Ozturk (Ozturk 2010) focuses on the causal relationship
between electricity consumption and economic growth at country-level, by investigating papers that
employ econometric approaches to find relations between national Gross Domestic Product (GDP)
and electricity consumption indicators. Cook (Cook 2011) reviews the literature on the role and
relation of electricity infrastructure in rural areas on economic growth and social development. Brass
et al. (Brass et al. 2012) offer a comprehensive review on the main outcomes — viz. short- and long-
term economic, educational and health implications — of distributed generation (DG) projects and
programmes in developing countries. Terrapon-Pfaff et al. (Terrapon-Pfaff et al. 2014) evaluate the
impact and the sustainability of 23 small-scale renewable energy projects in developing counttries,
suggesting that the majority of the projects had positive effects on sustainable development.

The existing grey and scientific literature focus mainly on how rural electrification and electricity use
affect local socio-economic development, while the reverse feedbacks are not systematically explored.
The aim of this chapter is therefore to build-on the findings of the previous reviews, by adding an
analysis of the consequent feedbacks of socio-economic developments on electricity demand. Indeed,
the electricity-development nexus is characterized by complex dynamic interactions, feedbacks, and
behaviours. The understanding of such complex interactions requires therefore a more comprehensive
investigation, which aims at analysing the “electricity-development nexus” as a system and not as a set
of possible unidirectional correlations between multiple dimensions — i.e. electricity use and access on
one side, and socio-economic indicators on the other.

41.2. Rationale and methodology of the analysis

78 peer-reviewed articles are reviewed using Science Direct editorial platform and Scopus databases —
Fig. 25 reports the main sources, highlighting the multidisciplinarity of the topic. Only case-studies
(and reviews of them) that report and discuss in-depth qualitative and quantitative findings about the
nexus between electricity consumption and socio-economic development at a local level are
considered. In accordance with Brass et al. (Brass et al. 2012), grey papers and reports produced by
intergovernmental organizations, NGOs, donors, and government agencies are excluded, since their
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active role in electrification projects and programmes might have biased the reporting of results and
potential failures. The only exception is represented by Meadows et al.’s review (Meadows et al. 2003),
which covers an unusually wide range of case studies of rural electrification and reports quantitative
data. Studies that only cite anecdotal evidence from other sources, as well as papers that limit their
focus to feasibility studies, cost-benefit analyses, and prospective studies are excluded. In terms of
technologies, the local electricity-development nexus is evaluated by considering the implementation
phases (viz. material supply, construction, start-up) as a given.

= Annual Review of Environment and Resources
= Energy
Energy Economics
Energy for Sustainable Development
= Energy Policy
= Renewable & Sustainable Energy Reviews
= Renewable Energy
u World Development
= QOthers

Fig. 25. Journals in which the reviewed papers were published [from (Riva et al. 2018a)].

The main findings are discussed and synthetized by representing the complex socio-economic
dynamics through causal loop diagrams that highlight the reinforcing and balancing relations between
the main variables characterising the nexus. Causal loop diagrams are conceptual models to represent
complex systems, and therefore they include variables that are meaningful to people (Luna-Reyes and
Andersen 2003). The variables in each diagram represent the different key-aspects of the electricity-
development nexus mentioned in the literature. The arrows indicate the causal relationships; the
positive “+” signs on the arrows indicate that the effect is positively related to the cause: an increase
in the variable at the tail of the arrow causes the variable at the arrowhead to rise above what it would
otherwise have been, in the absence of an increase in the cause. On the contrary, the negative “—”
polarity of the arrows means that if the cause increases then the effect decreases.

From the literature, only two main dimensions of the nexus emerged clearly, and they are analysed
separately: (1) the economic dimension and (2) the social dimension. For these two dimensions, sub-nexuses
are identified, each one analysed with a separate causal-loop. Causal loop diagrams are usually
developed through group modelling, or through the employment of already known systems archetypes
(e.g. the Limits to Growth archetype), or through sub-concepts found in the literature. In this analysis,
the causal-loop diagrams for each sub-nexus are derived from the review on the electricity-
development nexus, following these iterative steps:

a.  Listing the principal variables mentioned in the literature related to the given sub-nexus (e.g.
Free-time, Productivity, Income, Business, Electricity Use, Small-Medium Enterprise, Time for
working, Energy demand);

b.  Grouping words with the same or similar meaning in one variable with the same name (e.g.
Business, Small-Medium Enterprise = Income Generating Activity);

c.  Linking the variables through arrows with positive or negative polarity by extrapolating them
from direct quotations from the articles (e.g. “Access to electricity can impact SMEs by enabling
the use of electric tools and equipment, thus increasing productivity per worker [(Kirubi et al.
2009), pg. 1212)” gives: Electrical appliance availability (“Access to electricity”) —*, Electricity
demand (“electric tools and equipment”) —* ., Productivity (“productivity per worker”). This is an
iterative process, since each quotation can suggest a new link or a new intermediate variable to
add until convergence to a final diagram that is coherent with all the information provided by
the literature.

4.2. Economic dimension

The nexus between electricity demand and local economic development develops over time. In the
following, three main sub-nexuses through which economic development might impact on the
structure of a local rural economy and future electricity demand are discussed: (1) the nature and
amount of income generating activities, (i) production and revennes, and (iii) changes to the household economy.
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42.1. Income generating activities

The term income generating activities (IGAs) refers to all business activities and small-medium
enterprises (SMEs) that provide a person with a regular or irregular cash-flow by selling goods and
services, regardless of the type of the business, the size or the location. The potentially positive
dynamics between electricity use and creation and spread of IGAs are reported and explained at
different analytical levels within the scientific literature. In this sub-section, the analysis of these
dynamics is organised into three different levels. First, it is reported on literature that indicates a
positive linear impact of electricity use on the creation of IGAs, but without explaining it. Second,
studies that report some causal reasons behind such potential impact are discussed, and third, the
literature that cover nexus dynamics including feedbacks between creation of new IGAs and electricity
consumption is discussed. As expressed by Rao, “the causal effect of electricity supply on NFE [non-
farm enterprises| income is complex, and both direct and indirect” ((Rao 2013) p. 535). Last, in this
sub-section, the mechanisms that hinder a positive dynamic and the suggestions made by scholars on
how to enhance the development of rural IGAs are discussed.

The majority of papers simply state that access to electricity brings about an increase in local IGAs,
especially the electricity-reliant ones. This portion of the literature lacks description of the complexity
of the nexus, as summarized in Table 8.

Table 8. Examples of impact of electricity use on IGAs’ growth.

Reference Mentioned impact of electricity use on new IGAs

Ravindranath et al.
(Ravindranath and
Chanakya 1986)

R. Kumar Bose et al.
(Kumar Bose et al. 1991)

B. Bowonder et al.
(Bowonder et al. 1985)

Access to electricity supported the creation of electric flour mills in Malanganj and B.N.Pura
Indian villages

Access to electricity led to a 20% increase in business activities in three villages in Eastern Uttar
Pradesh

Access to electricity led to the creation of repair and serving shops and village entertainment
enterprises such as movie tents and community televisions (T'Vs) in eight rural communities in
India

Cabraal et al. (Cabraal et 25% of households with electricity operated a home business in Philippines, compared to about

al. 2005)  15% of households without electricity
Gibson and Olivia (Gibson ~ Households connected to electricity increased their participation in non-farming enterprises by
and Olivia 2010)  13.3% in rural Indonesia, with the percentage of enterprises operated by rural households 43%
higher after access to electricity
Mapako and Prasad ~ Results of the surveys on 73 small enterprises in the south west of Zimbabwe are reported with
(Mapako and Prasad  all the types and number of activities that were created after electrification; the total number of
2007)  employees in these areas is reported to have been increased by 270%.
Bastakoti (Bastakoti  The Nepalese areas served by the Andhikhola Hydroelectric and Rural Electrification Centre
2006) (AHREC) experienced the creation of 54% more rural industries after electrification, allowing
600 more employees to have an income.
Prasad and Dieden  Data from South African national surveys suggest that somewhere between 40% and 53% of
(Prasad and Dieden 2007)  the inctease in small, medium and micro-enterprises uptake is attributable to the grid roll-out.
Peters et al. (Peters et al.  The creation of electricity-reliant firms in regions with access in Rural Benin has been “a clearly
2011)  positive effect of electrification” ((Peters et al. 2011) p. 781).

Jacobson (Jacobson 2007)

Adkins et al. (Adkins et
al. 2010)

Kooijman-van Dijk and
Clancy (Kooijman-van
Dijk and Clancy 2010)

48% of the households interviewed in rural Kenya reported that the use of solar electricity
supported some work- or income-related activities.

98.1% of adopters of solar lanterns in Malawi reported that the use of solar electricity
supported some work- or income-related activities.

25% of households with electricity operated a home business in Philippines, compared to about
15% of households without electricity

At a second analytical level, some papers analyse the benefits of electrification on employment
generation (related to construction, service provision and electricity use) in more detail by discussing
the causal relations between access to electricity and the operation of rural economies. First,
employment opportunities arise from the creation of new electrical infrastructures needed to satisfy
local electricity demand and with the spread of new appliances and devices. In the causal diagram
representing the dynamics between electricity demand and IGAs (Fig. 26), this positive relation is
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represented by the link between Electricity demand — Off-grid system related organizations — 1GAs. Studies
such as those by Kumar et al. (Kumar et al. 2009) and Somashekhar (Somashekhar et al. 2000) report
the creation of organizations in charge of manufacture, installation, operation and maintenance of new
power generation infrastructures in India. Biswas et al. (Biswas et al. 2001) suggest that the operation,
maintenance and administration activities of renewable energy technologies can bring positive impacts
on the rural employment rate in Bangladesh. Second, an effect of rural electrification is the freeing up
of time thanks to the use of electric appliances and services (instead of manual labour), especially for
women who can use more time for home production (Grogan and Sadanand 2013; Khandker et al.
2013) and market activities (Dinkelman 2011). The time savings allow for the establishment and
extension of IGAs as mentioned in (Bastakoti 2006; Mulder and Tembe 2008; Kumar et al. 2009;
Gurung et al. 2011; Sovacool et al. 2013). This dynamics is represented through the positive Electricity
demand — Free-time — IGAs links. Finally, Dinkelman (Dinkelman 2011) indicates that South African
electrification affected rural labour markets also by facilitating new activities for men and women, who
started producing market services and goods at home through the adoption of new electrical appliances

(e.g., food preparation, services requiring electric appliances) — positive Efectrical machines and devices —
IGAs link.

At a third level of analysis, some literature delves into more depth and investigates the propensity to
establish new activities, invest in and extend IGAs, and the related feedbacks on electricity demand.
As already highlighted, the possibility to use electrical devices makes new activities possible and for
people to invest in: telephone booths, shops that produce and sell yoghurt, fresh drinks (Kirubi et al.
2009; Sovacool et al. 2013), ice-cream (Bastakoti 2000), office support services — e.g. faxing, word
processing, photocopying, printing shops, computer centres (Lenz et al. 2017) —, energy stores, laundry
services, hair dressers, photo studios (Bastakoti 2006; Shackleton et al. 2009; Peters et al. 2011), saw
mills, welders (Peters et al. 2011), village entertainment enterprises such as movie tents and community
TVs (Bowonder et al. 1985; Bastakoti 2006), cold stores (Bastakoti 2006; Matinga and Annegarn 2013)
— the positive Electrical appliances availability — Propensity to invest — 1GAs link. Related to this, the
diffusion and use of new electrical appliances and machines both require and allow the establishment
of new small business activities that can offer regular maintenance and charging services (Electricity
demand — Local maintenance services), as reported for rural Eritrea (Habtetsion and Tsighe 2002), Mali
(Sovacool et al. 2013) (Moharil and Kulkarni 2009) (Meadows et al. 2003), and India (Bowonder et al.
1985). The presence and availability of local maintenance, in turn, encourages people to invest in
electrical machines for starting new income generating activities, because of the easy access to repair
services (Cook 2011) — positive IGAs — Local maintenance services — Propensity to invest — Electrical
machines and devices — 1GAs reinforcing loop. Thus, causal relationships are identified between the
generation of new IGAs, development of maintenance services, people's willingness to make
investments in electric devices and machines and further growth in electricity load — IGAs — Local
maintenance services — Propensity to invest — Electrical machines and devices — Electricity demand.

What the literature also highlights is how the decision to set up a new business activity is highly
dependent on the financial resources of people and their capability to mobilize these (Meadows et al.
2003; Ahlborg 2015) — this is the reason why income increases from businesses or employment favour
especially rich and middle income households (Jacobson 2007; Cook 2011; Kooijman-van Dijk 2012;
Khandker et al. 2013; Matinga and Annegarn 2013) and increase economic inequality. Investment
barriers often hinder poorer households from starting small businesses (IGAs — Income inequality —
Access to financial capital). As a consequence, income is a pivotal driver of the decision to invest in new
IGAs and new electrical devices to support businesses (Obeng and Evers 2010). Therefore, increasing
the income earning opportunities and revenues, or reducing costs — for a larger part of the population
— related to electricity use has a direct positive feedback on potential new investments in productive
electricity demand (Ahlborg and Sjostedt 2015) — the positive IGAs — Average Income — Access to
financial capital — Propensity to invest — Electrical machines and devices feedback on Electricity demand.

Importantly, a significant portion of the literature is sceptical of the positive effects of electrification
on the establishment and expansion of new IGAs (Stojanovski et al. 2017). The main reason provided
by these studies is the high poverty and inequality level, which usually characterizes these contexts. As
stated by Ahlborg and Hammar (Ahlborg and Hammar 2014), as long as a majority of people live
below or close to the economic poverty line, the potential for beneficial dynamics between electricity
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access and local business and industrial development is very limited. Alazraki and Haselip (Alazraki
and Haselip 2007) report that only 3% of people interviewed in rural provinces of Jujuy and Tucuman,
Argentina, stated that access to electricity through PV-powered SHS allowed them to start a new
business. Kooijman-van Dijk and Clancy state that employment opportunities as a consequence of
access to electricity in Bolivian, Tanzanian and Vietnamese villages consist mainly of flexible and
“unpaid involvement of family members” ((KKooijman-van Dijk and Clancy 2010) p. 18). Lenz et al.
(Lenz et al. 2017) indicate that the majority of rural Rwandan households they interviewed were still
farmers after electrification, with no significant changes in IGAs before and after electrification. One
of the most recurrently identified obstacles to the expansion of rural business is the lack of a dynamic
local market (Neelsen and Peters 2011; Kooijman-van Dijk 2012; Baldwin et al. 2015), leading to the
“crowding out effect” of the existing firms, i.e. the creation of new IGAs that is followed by stagnation
or economic losses among already existing IGAs (Kooijman-van Dijk and Clancy 2010; Peters et al.
2011), or a reduction of wages due to an abundance of labour supply over labour demand (Dinkelman
2011). This effect was represented through the positive link IG.As — crowding out which negatively
affect the Average Income variable. In some contexts, the lack of credit for investment in new electrical
equipment and grid connection represents a barrier to the set-up of new activities (Bhattacharyya 2000;
Grimm et al. 2013). For example, some entrepreneurs in rural Benin could not electrify their
manufacturing processes because of the high cost for changing to more modern electricity-driven
technologies (Peters et al. 2011); and more than three quarters of entrepreneurs interviewed in two
rural communities near Lake Victoria in Uganda said that grid connection has too high a break-even
point on the return on investment (Neelsen and Peters 2011). Peters et al. (Peters et al. 2009) suggest
that when there is a single-person business, electric machinery may have an houtly cost higher than
human labour. This confirms that the lack of Access to financial capital discourages people in setting up
or modernizing their business, i.e. it reduces people’s Propensity to invest and consequently the diffusion
of new Electrical machines and devices. The decision to start a new activity and the consequent expansion
of IGAs is also sometimes limited by the low quality of electricity supply (the negative Power unreliability
—> Propensity to invest link). Gibson and Olivia (Gibson and Olivia 2010) report that households in
Indonesian villages, which never suffer blackouts, have an average of 1.3 more non-farm enterprises
than in villages with frequent black-outs.

In order to overcome such bartiers, several papers propose some complementary activities and actions
to enhance the positive impact of electrification on the development of new IGAs, especially where
no business “stemmed from electrification itself” ((Matinga and Annegarn 2013) p. 299). This is
especially important in order to support women entrepreneurs who in many countries find it harder
than men to mobilise financial capital (Ellis et al. 2007). These exogenous activities are represented
through dashed red arrows in the diagram of Fig. 26. Facilitating access to credit and finance is the
most common recommendation (Biswas et al. 2001; Bastakoti 2006; Adkins et al. 2010; Kooijman-van
Dijk and Clancy 2010; Gurung et al. 2011; Peters et al. 2011; Brass et al. 2012; Baldwin et al. 2015),
since it allows people to set-up new IGAs, and facilitates a regular cash-flow, which in turn helps build
financial capital (Bastakoti 20006) (mzcro-credits — Access to financial capital). Several studies (Bastakoti
20006; Cook 2011; Kooijman-van Dijk 2012; Sovacool et al. 2013; Baldwin et al. 2015) encourage
stimulating the development of local markets and demand to decrease the crowding out effect (market
stimulation — Market demand — crowding on?) and increase people’s willingness to invest in new business
opporttunities (market stimulation — Market demand — Propensity to inves?), and disseminating new
technical skills through educational activities, business and manufacturing training for supporting the
start of new 1GAs (capacity building — 1GAs). Providing access to accessible roads (infrastructures —
Martket demand) is also mentioned as a complementary activity (IKirubi et al. 2009; Gibson and Olivia
2010; Kooijman-van Dijk and Clancy 2010).

Fig. 26 represents the dynamics described above, highlighting the positive and negative feedbacks
among variables, as well as indicating the complementary activities and conditions that positively
enhance the dynamics. The diagram indicates that the propensity to invest is a key-aspect affecting the
growth of future electricity demand and the creation of new IGAs. Further, the diagram shows that
people’s propensity to invest is positively affected by their financial capacity, the availability of electric
machines and a local reliable maintenance service, and the growth of local market demand for goods
and services. In particular, in case of investments in an electricity-reliant business, the “propensity to
invest” variable signifies both the start of new electricity consumer-IGAs, as well as increased demand
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from existing electricity consumer-IGAs that expand their business by investing in more appliances
and machinery.
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Fig. 26. Causal loop diagram representing the dynamics between electricity demand and IGAs [from (Riva et al.
2018a)].

4.2.2. Market production and revenues

The second sub-nexus between access to electricity and economic impacts is through local market
production by IGAs and local revenues. The potentially positive dynamics of electricity demand and
market production are discussed through different levels of analysis. First, it is reported on literature
that indicates a positive potential impact of electricity demand on the productivity in local markets.
Next, studies that analyse the impact of electricity use on the local markets are discussed — #z. the
effect of electricity demand on market demand and supply. In the case of literature reporting low or no
impacts, some complementary activities from the literature that might enhance the benefits of
electricity on the operation of local markets are highlighted. Finally, the feedbacks identified in the
literature between local market production and electricity demand are also reviewed.

The first level of literature analysis suggests that electricity use increases local production and people’s
productivity, especially in new electricity-reliant businesses, as exemplified in Table 9.

Table 9. Examples of impact of electricity use on market production and revenues.

Reference Mentioned impact of electricity use on market production and revenues

Ranganathan and ~ An extra kWh of electricity generated an incremental surplus of agricultural production for
Ramanayya (Ranganathan — Indian farmers
and Ramanayya 1998)

Meadows and Kate  In India, energy-intensive enterprises that obtained access to modern energy achieved
(Meadows et al. 2003)  enhanced income levels of 30-40% more than enterprises that did not gain access.

Peters et al. (Peters et al.  1n villages located in Northern Benin, the profits of connected firms were considerably higher,
2011)  wiz. 73.8% higher (statistically significant at the 5% level), than those of non-connected firms,
and this is especially true for electricity-reliant firms.

Kooijman-van Dijk 1t is found a positive relation between ‘electricity use for enterprise products and services’ and
(Kooijman-van Dijk  income from enterprises in the Indian Himalayas, although electricity is not considered the
2012)  definitive solution to poverty reduction.

Gustavsson (Gustavsson  In Zambia, lighting in the evening could improve teachers’ income, enabling them to earn some
and Ellegard 2004, extra income by teaching in the evening.
Gustavsson 2007 a)

Cabraal et al. (Cabraal et Households managing small cottage industties in rural India were able to increase their daily
al. 2005)  income using electric lighting to extend their productive hours after nightfall.
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The studies that focus on the dynamics behind the possible increase in enterprises’ productivity and
revenues suggest that access to electricity and use may positively or negatively impact local markets by
affecting local supply and demand of goods and services.

Market demand

Focusing on local market demand, the number of consumers for a given business may increase thanks
to the increased use of communication devices and advertisements (Jacobson 2007) (Electricity demand
—> Communnication devices — Market demand). Communication devices — e.g. TVs, radio and phones —
may also introduce changes in aspirations and expenditures of rural households (Matinga and
Annegarn 2013) for goods and services, diversifying purchases and leading people to shop locally
rather than elsewhere (Shackleton et al. 2009). Neelsen and Peters (Neelsen and Peters 2011) report
that electric lighting and the consequent increase in perceived security attracted potential customers
also during the evenings in rural Uganda. Kirubi et al. (Kirubi et al. 2009) and Kooijman-van Dijk
(Kooijman-van Dijk 2012) suggest that electric appliances allow for improvements in products’ quality
(Electricity demand — Product quality — Market demand) and production and/or selling of new products
(Electricity demand — Product innovation — Market demand) which can attract more consumers or increase
the demand per-capita, with positive impacts on local production and the consequent revenues (Market
demand — Goods/ services sold — Net revenues). In this context, Peters et al. highlight the risk that “to the
extent that local consumer’s purchasing power is diverted to the new electricity-reliant manufacturers,
existing non-reliant manufacturers are likely to suffer a drain on business” ((Peters et al. 2011) pg. 778),
increasing inequality. Multiple studies report that such increases in the demand for products and
services in turn causes an increase in price, due to market equilibrium rules (Meadows et al. 2003;
Cabraal et al. 2005; Sovacool et al. 2013). However, this conventional equilibrating market mechanism
does not always appear to apply in developing economies — as Banum and Sabot (Barnum and Sabot
1977) report for Tanzanian rural markets — which raises questions about the actual impact of
improvements in products’ quality on the price of goods.

Market supply

On the production-side, there are four mechanisms whereby electricity use can have a positive impact:
(i) enhancing communication, (ii) enhancing work productivity, (iif) enabling longer work days, and
(iv) decreasing energy-related costs. First, communication devices help improve the efficiency of
business activities and the related market revenues (Electricity demand — Communication devices —
Production efficiency — Net revennes in Fig. 27). Cabraal et al. (Cabraal et al. 2005) report that the use of
telephones in rural Thailand enabled farmers to regularly check prices in Bangkok and significantly
increase their profits, while the use of the internet by Indian farmers allowed them to obtain current
information on market prices and good farming practices, and consequently order appropriate
agricultural inputs. Jacobson (Jacobson 2007) suggests that Kenyan owners of business activities
benefited from receiving regular business information via television and radio, while the use of cell
phones helped retail shops and other service-oriented businesses to place orders, make business deals,
be in contact with their clients, and finally increase sales. This positive outcome of electricity use for
productive purposes has been highlighted also by Khandker et al. (Khandker et al. 2013) for Vietnam.

Second, the use of electric machinery and appliances can help increase productivity, i.e. the number of
products and services that an enterprise can supply in a given time period, which in turn increases the
supply of goods to the local market. However, if the demand stays equal, it generates a drop in the
price of goods, which can be offset by an increase in the volume of sales made (depending on the type
of product/setvice), in turn increasing revenues (Electricity demand — Productivity — Market supply —
Goods | services sold — Net revennes). Kirubi et al. (Kirubi et al. 2009) report that the small-medium
enterprises in a community-based electric micro-grid in rural Kenya experienced a significant increase
in revenues in the order of 20—80%. Kooijman-van Dijk (Kooijman-van Dijk and Clancy 2010;
Kooijman-van Dijk 2012) indicates that, when the market-demand is high, tailors that used electric
sewing machines were able to increase the productivity by two to three times more than the average,
while grain millers reported processing larger volumes of grains per day. The increase in demand for
higher-quality products and services supplied by the use of electric machinery may enable sellers to
fetch higher prices and increase revenues (Meadows et al. 2003; Kooijman-van Dijk 2012; Sovacool et
al. 2013). On the other hand, an increase in productivity brought about by access to modern machines
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may decrease the need for human resources, causing a decrease in the employment rate and individual
revenues (the negative Productivity — Human labonr — Average income feedback): Meadows et al.
(Meadows et al. 2003) report that in rural Indonesia, the introduction of a wind power pump reduced
human labour input by a factor of 10, from 1040 to 100 hours.

Third, access to electricity may improve sales and businesses by extending operating hours thanks to
lighting (Alazraki and Haselip 2007; Mishra and Behera 2016) (Electricity demand — Evening work time —
Martket supply). Meadows et al. (Meadows et al. 2003) state that the introduction of battery-operated
lamps in rural Bangladesh allowed tailors to work for four more hours and thereby increase their
revenue by 30%, while rice milling activities were performed during 7 to 9 p.m. in Hosahalli village
(India). Agoramoorthy and Hsu (Agoramoorthy and Hsu 2009) report on the expetience of some
households in India, who suggest that lanterns provide opportunities to expand business and allow
more time to work at night when compared to fuel-based lighting sources. Jacobson (Jacobson 2007)
suggest that lighting in the evening can benefit and positively impact teachers’ income in rural schools
in Kenya, enabling them to grade papers, plan evening lessons at home and earn some extra money.
Similar increases in productive hours during evenings are reported by Komatsu et al. (Komatsu et al.
2011), who report that households in the rural districts of Comilla, Kishoreganj, and Manikganj in
Bangladesh extended their working hours by about two or more hours in the evening, while 56% of
connected firms surveyed by Peters et al. (Peters et al. 2009) in Copargo (Benin) declared working
longer thanks to lighting that extended their daily operating hours. The same effect of night-lighting
was reported by Chakrabarti (Chakrabarti and Chakrabarti 2002) and Baldwin et al. (Baldwin et al.
2015), who indicated that, in Sagar Dweep island in West Bengal (India), shopkeepers and workers
engaged in handicrafts extended their working hours in the evening. The increase of daily working
hours is especially common for commercial activities located in residential areas, where the demand is
higher (Neelsen and Peters 2011), shops and barbers (Meadows et al. 2003; Kooijman-van Dijk and
Clancy 2010), and restaurants, whose increasing in operating hours has a direct impact on revenues
(Kooijman-van Dijk 2012).

Several papers are also sceptical about the positive effects of electrification on the extension of
operating hours. For example, Adkins et al. (Adkins et al. 2010) state that less than 10% of solar lantern
users experienced expanded business opportunities by working more at night. In rural Indian
Himalayas, only half of entrepreneurs with access to light worked regularly in the evening (KKooijman-
van Dijk 2012), because of structural barriers, such as distance from main roads or time limitations of
workers. In some cases, evening light is considered merely a means of guaranteeing more flexibility at
work (Kooijman-van Dijk and Clancy 2010; Kooijman-van Dijk 2012). Moreovet, for producing
enterprises, increasing working hours does not result in new consumers, but simply increases
production volumes (Kooijman-van Dijk 2012). Sometimes, an increase in productivity as a result of
more efficient machines may even reduce working hours (Kooijman-van Dijk and Clancy 2010) (the
negative Productivity — Evening work time feedback). These findings suggest that two determining factors
for increasing night operation may be the availability and reliability of electricity during night hours
(Kooijman-van Dijk and Clancy 2010; Obeng and Evers 2010) (the negative Power unreliability —
Evening work time feedback) and market demand (Market demand — Evening work time).

Fourth, there is evidence that the use of electricity for productive purposes may increase profit margins
by reducing the cost associated with other energy resources (Habtetsion and Tsighe 2002) (Electricity
demand — Traditional sources of energy — Energy cost — production efficiency — Net revenues). Matinga and
Annegarn (Matinga and Annegarn 2013) report that some shopkeepers experienced a marginal
reduction of operational costs associated to refrigeration, since they found gas more expensive than
electricity. Electricity may be cheaper than diesel for running machinery, as evidenced in Mawengi
(Tanzania), where electric milling machines significantly reduced the cost of milling the staple maize
in comparison to the previous use of diesel-powered machinery (Ahlborg 2015). In Vietnam, milling
1 ton of rice with diesel costs at least four times more than by using electricity (viz. US$ 2.6 against
US$ 0.6) (Kooijman-van Dijk and Clancy 2010). In the Syangja District in the western region of Nepal,
an electric mill could reduce costs by 30-50% with respect to diesel-powered ones (Bastakoti 2003).
Sometimes, savings ate attributable to a shift from grid power supply to stand-alone or microgrids
(Kumar et al. 2009). However, fuel-shifting may sometimes cause higher expenditures for the producer
(Power unreliability increases Energy cosi).
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As a matter of fact, energy-cost savings are extremely dependent on the quality of electricity supply,
since unreliable access to electricity — i.e. frequent black-outs, high voltage fluctuations and frequency
instability — may negatively impact productivity and cause huge economic losses (Kooijman-van Dijk
2012) and very low satisfaction with electricity supply (Aklin et al. 2016), as well as the need to pay for
back-up energy options like diesel. In rural Indonesia, power supply unreliability reduced the number
of activities operated by each household (Gibson and Olivia 2010). Zomers (Zomers 2003) and
Meadows et al. (Meadows et al. 2003) report unreliable energy service as one of the main problems
that entrepreneurs in rural areas encounter. Unreliable or expensive electricity can, hence, increase the
cost of production leading to an increase in price and consequent decrease of market demand and
sales. Such drawbacks related to service quality and cost may deter entrepreneurs from gaining access,
as in the case of rural Uganda (Neelsen and Peters 2011).

In light of the discussion above, factors and feedbacks that explain how electricity use can either
positively boost, or have a little impact on, economic production at the local level can be identified. In
order to enhance electricity-related productivity, the literature indicates the need for complementary
activities and certain preconditions. First of all, reliable electricity supply is a key factor for enhancing
the productivity of small-scale operators and rural enterprises (Meadows et al. 2003; Wolde-Rufael
2005), highlighting the importance of appropriate operation and management activities (appropriate
O&&M of power system can reduce Power unreliability and in turn decrease the negative effect of unreliability
on Productivity). Second, access to favourable credit terms can support the decision of local
entrepreneurs to adopt new electrical devices, and therefore increase their production (Bastakoti 2003;
Peters et al. 2009; Kooijman-van Dijk and Clancy 2010) (wicro-credits — Electricity demand). A sustainable
increase in production requires an accompanying increase in market demand (Peters et al. 2009), also
in the evenings (Kooijman-van Dijk 2012). To facilitate such a development, other infrastructures such
as roads and telecommunications need improvements, as these can reduce transactions costs and make
rural IGAs “competitive in out-sourcing of business services and products destined for the lucrative
urban markets”((Kirubi et al. 2009) p. 1219) (infrastructures — Market demand — Goods/ services sold). For
example, Lenz et al. (Lenz et al. 2017) report that in rural Rwanda, only rural communities located next
to a main road and frequented by casual customers from outside experienced a net increase in income
through sales of improved services and goods. In this context, capacity building plays an important
role in supporting entrepreneurs’ social skills and networks to access new markets (capacity building —
Production efficiency), and technical skills to innovate and sell products (capacity building — Product
innovation) (Bastakoti 2006; Kooijman-van Dijk 2012).

Given the social, economic and geographical conditions of poor rural areas, the major impact of
electricity use on local economies occurs when there is an increase in the net revenues or people’s
incomes. Improved access to financial capital may result in a positive feedback on local electricity
demand, enhancing positive dynamics at a firm-level, where net revenues can be invested in more
electrical machinery (INet-revenues — Average income — Access to financial capital — Electricity demand) or in
extending operating hours and business opportunities (Nez-revennes — Market supply). A positive
feedback can develop also at household-level if more income allows people to increase their
expenditures, boosting the market demand for (new) goods and services, which in turn provides
households with further opportunities to reduce costs and make money (Kooijman-van Dijk and
Clancy 2010) (the reinforcing loop desctibed by Average income — Market demand — Goods/ services sold
—> Net revennes — Average income). The financial status of families is a pivotal parameter to consider for
modelling their willingness to increase electricity load, especially in terms of appliance ownership. For
example, Aklin et al. (Aklin et al. 2015) suggest a positive relation between income and electricity access
by deriving econometrically the relation between household’s wealth, electrification status (v if an
household has access to electricity or not) and hours of electricity used per day (for Indian households
living in slums, urban and rural areas). The nexus between household economy and electricity demand
are more thoroughly addressed in the next dedicated sub-section of the paper.

Fig. 27 presents the causal loop diagram for electricity demand and market production and revenues.
It visualizes the dynamics above, highlighting the positive and negative feedback among variables, as
well as indicating the complementary activities and conditions that may enhance the dynamics (the
dashed red lines). The main feedback on growth in electricity demand is an increase of people’s income
and access to financial capital.
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Fig. 27. Causal loop diagram representing the dynam\ics_between electricity demand and local market production
[from (Riva et al. 2018a)].

423. Household economy

In the previous sections, a positive loop was identified between increasing electricity demand, an
increase in net IGAs and their sales of goods and services, which in turn can increase market revenues.
Since the feedback of net revenues on electricity use involves domestic access to financial capital, this
sub-section focuses specifically on the nexus between electricity use and households’ economy, which
involve different dynamics than that related to business activities alone.

Table 10. Examples of impact of electricity use on household economy.
Reference Mentioned impact of electricity use household economy

Shackleton et al.  Entrepreneurs who invested in small “productive use containers” powered by solar panels
(Shackleton et al. 2009)  benefited from extra monthly sources of income in South Affica.

Sovacool et al. (Sovacool et 1t is described the effect of the distribution of “multifunctional platforms”, ze. “small 8-12
al. 2013)  horsepower diesel engines mounted on a chassis, to which various components can be
attached” (pg. 117), in rural Mali. There, families experienced about 13.6% extra income per
year (vz. about $68 in additional revenue per year per family, considering that the average
household lives on $1.37 per day).

Gibson and Olivia (Gibson — Income shares of non-farm enterprises (NFEs) are higher for rural Indonesian households that
and Olivia 2010)  are connected to the public electricity network, »iz. about 3.7% against 2.2%; it is indicated that
the quality of power supply has a direct effect on income from productive activities, since the
share of rural income from non-farm enterprises is estimated to be 27% higher for households
in villages that never suffer blackouts (Power unreliability — Average incomse).

Balisacan et al. (Balisacan ~ Households’ income benefits are mainly experienced by richer families (Income from 1GAs
etal. 2003)  activities — Income inequality): a 10% improvement in access to electricity raised income among
the poor by only 2%.

Rao (Rao 2073)  Through a multivariate regression, it is estimated that at the village level, access to at least 16 h
of electricity per day might be responsible for 18% higher income for connected Indian NFE
than non-connected ones. The study further finds that the expected income for an electrified
household is 43% higher based on a propensity score matching model.

Bensch et al. (Bensch et al. It is found a positive difference in income between connected and non-connected households
2017) in Rwandese electrified villages. It is also confirmed a difference in income also between
connected households in electrified villages and households in non-electrified villages that they
identity as “likely to connect to an electricity grid”. Nevertheless, the robustness and
significance of the results disappear when regional differences are accounted for, suggesting
caution regarding the finding of a positive effect of electricity on income.

Khandker et al. (Khandker — In 42 Vietnamese communes, household electrification is responsible for a growth of 21% and
etal. 2013)  29% in total and non-farm income, respectively. They found also a substantial spill-over benefit
to non-connected households (Electricity demand — Spill-over effect feedback that reduces Income

inequality).
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As a direct effect of the dynamics identified in the previous sections, the increase in market production
and employment given by electricity use can boost households’ financial capacity by a positive change
in financial inflow (Ranganathan and Ramanayya 1998; Cabraal et al. 2005) (Electricity demand — Net
revenues — Income from 1GAs activities in Fig. 28). Table 10 reports some examples from the literature,
which suggests that access to electricity benefits the household economy, since electricity-reliant IGAs
are more productive than their unconnected counterparts, in the range of 30% to 78% more,
depending on the context. However, few studies provide statistically reliable estimates with appropriate
intervals of confidence and clear definitions of the baseline used, reducing the reliability of data for
modelling purposes.

Electricity use impacts also on households’ financial outflows, vig. expenditures. As discussed in the
previous sub-section, this is mainly due to improvements in products’ quality and the availability of
new products and services, following the modernization of production and other technologies
(Electricity demand — Product quality — Average market expenditures and Electricity demand — Product
innovation — Average market expenditures). It attracts more consumers and increase the per capita demand
for some products and services (Average market expenditures — Market demand). Second, since
households’ expenditures depend on people’s access to financial capital, the potential increase in family
income has a direct effect on boosting the demand for goods and services (Average income — Access to
financial capital — Average market expenditures — Market demand). Indeed, as Kooijman-van Dijk and
Clancy (Kooijman-van Dijk and Clancy 2010) state, there must be a willingness to pay for the expected
“new” goods and services produced by new IGAs. Khandker et al. (KKhandker et al. 2012) indicate that
electrification in India increased household per capita food expenditure by 14%, non-food expenditure
by 30%, and total expenditure by more than 18%. Zhang and Samad (Samad and Zhang 2016) report
lower results, suggesting that gaining access to the grid in India is associated with an 8.4% increase in
households’ per capita food expenditure, a 14.9% increase in per capita non-food expenditure, and a
12% increase in per capita total expenditure. Again, these positive results are also dependent on the
reliability of access to electricity and the quality of power supply (Power unreliability decreases Market
demand). Zhang and Samad indicate that every one-hour increase in power outages may decrease food
expenditures by 0.2% on average, which in turn, potentially, reduce farmers’ incomes. What these
results indicate is that increase in household’s access to financial capital can feed back on electricity
demand, Ze the increase in families’ expenditures can in turn stimulate the modernization and
electrification of market production and the use of electric lighting for evening work (Access to financial
capital — Average market expenditures — Market demand — Market supply — Electricity demand).

Electricity use causes changes in people’s expenditures for domestic energy supply. Considering
lighting alone, the literature confirms that households experience a reduction in expenditures for
energy use, especially for purchasing kerosene (Ulsrud et al. 2015; Grimm et al. 2017) (Electricity demand
has a negative feedback on Traditional sources of energy that cause a reduction on Energy cost expenditures).
Edwin et al. (Adkins et al. 2010) report that in rural Malawi, after the introduction of LED lanterns,
lighting expenditures — all sources excluding the cost of the device — had fallen from $1.06 per week
to $0.15 per week after lantern purchase. Similarly, Agoramoorthy and Hsu (Agoramoorthy and Hsu
2009) indicate that after the spread of solar lanterns in Indian Dahod District, each household saved
on average $91.55 (£63.06, n=100) in energy costs per year, a huge saving if compared to houscholds’
yeatly income ranging from $150 to $250. Wijayatunga and Attalage (Wijayatunga and Attalage 2005)
report that when the cost for grid expansion is borne by the government, households in Sri Lanka are
estimated to pay only $1 per month on average, which represents a relatively high cost saving if
compared to the about $5.4 of avoided cost for kerosene usage and battery-charging. Lenz et al. (Lenz
et al. 2017) report that households electrified by grid-extension in 42 rural communities in Rwanda
experienced a reduction of one-third in their energy expenditures. A reduction of energy expenditures
therefore means an increase in people’s access to financial capital that can be allocated for more market
or food expenditures (Energy expenditures — Access to financial capital — Average market expenditures),
contributing to a positive feedback on local market production and electricity consumption.

However, the picture changes when the cost of power production technologies and non-lighting
appliances are considered, with households experiencing sometimes an increase in energy expenditures
after electrification (Davis 1998; Bensch et al. 2011)(Martinot et al. 2002) (Electricity demand — Energy
cost excpenditures). Wijayatunga and Attalage (Wijayatunga and Attalage 2005) report that for households
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that received a subsidy of about $100 for a solar home system (SHS) in Sri-Lanka, the monthly
repayment of the system stood at $8.4 for a period of 5 years, that is, $3 higher than the cost of avoided
kerosene usage and battery-charging — 7.e. a little over 15% of their income was spent on the SHS
repayment, whereas the expenditure on kerosene and battery-charging before SHS installation was
only around 10% of their income. Komatsu et al. (Komatsu et al. 2011) indicate that households with
a SHS spent more in total on energy supply than before, because of the monthly payments for the
system, though the reduced costs of kerosene and rechargeable batteries account for 20—30% of the
monthly payments. Moreover, kerosene saved by some households can represent a source of income
if sold to non-electrified neighbours (Roy 2000). Wamukonya and Davis (Wamukonya and Davis 2001)
state that Namibian houscholds experienced a marked increase in energy expenditure after
electrification. Indeed, whilst a shift from the use of candles and paraffin to electric lighting may
decrease direct energy costs, the adoption and use of other appliances like irons, refrigerators, TVs,
ete., can substantially increase the final energy bill. If the increase of energy expenditures is not
supported by a proportional increase of income, it can cause a decrease in market expenditures and in
turn a decrease in market supply and electricity use.

Income, therefore, plays an important role in defining the capacity of people to increase their electricity
use and their willingness to pay for electricity (Kobayakawa and Kandpal 2014; Alam and
Bhattacharyya 2017) (Average income — Access to financial capital — Electricity demand), especially in its two
main constituents:

— The installed load. The literature suggests that the willingness of people to be connected, and to
buy and own electrical household appliances, depends on their income. In their rural electrification
model, Hartvigsson et al. (Hartvigsson et al. 2018b) define the potential number of electrical
connections as a function of different socio-economic parameters, including the average income
of people. Lenz et al. (Lenz et al. 2017) state that the wealthier or more modern a household is, the
more inclined it will be to get a connection. In their Residential Energy Model Global (REGM),
Ruijven et al. (van Ruijven et al. 2011) and Daioglou et al. (Daioglou et al. 2012) represent the
ownership of household electric appliances, through a logistic (or S-shaped) curve, as a function of
household’s expenditures (considered in their work as a proxy of income). Louw et al. (Louw et al.
2008) suggest that the use of electricity by low-income South-African households is a cost-based
decision based on income, especially regarding the ownership of electrical appliances, which
depends on prices of devices and people’s affordability. The importance of appliances’ costs in
relation to people affordability is also pointed out by Prasad (Davidson et al. 2006).

— The kWh of electricity consumed. The quantity of electricity consumed is another aspect that
might be influenced by people’s income. Louw et al. (Louw et al. 2008) conclude that for South
African households the demand for electricity shows elasticities® ranging from between 0.24 and
0.53, depending on the model. Pachauri and Filippini (Filippini and Pachauri 2004) used
disaggregate survey data for about 30,000 Indian households, and conclude that electricity is income
inelastic in the winter, monsoon and summer seasons. They estimate that elasticity ranges between
0.60-0.64 across the three seasons. Tiwari (Tiwari 2000) derive similar results by analysing the
income elasticity to electricity demand for the city of Bombay, estimating values ranging from 0.28
to 0.40 based on income group. Moharil and Kulkarni (Moharil and Kulkarni 2009) suggest that
despite the higher cost of electricity, people living on Sagardeep Island in West Bengal demanded
more power for entertainment, comfort and developing job opportunities irrespective of their
income level, suggesting very low levels of demand elasticity. Alkon et al. (Alkon et al. 2016) use
nationally representative household data from India, 1987-2010, and suggest that household
income is not a primary determinant for willingness to pay for high-quality modern energy. Hence,
the literature seems to suggest that electricity is income inelastic (Ze. the quantity of electricity
demanded increase less than proportional to an increase in income), since it is often considered a

8 “Elasticity is a measure of a variable's sensitivity to a change in another variable. In business and economics,
elasticity refers to the degree to which individuals, consumers or producers change their demand or the amount
supplied in response to price or income changes. It is predominantly used to assess the change in consumer
demand as a result of a change in a good or service's price” (Source: (Investopedia, LLC 2014)).
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basic need. However, the relatively high positive values estimated (between 0.24 and 0.64,
depending on the context) suggest that an eventual increase in the economic status of people would
lead to a rise in electricity consumption of households, although less than proportionally.

To enhance a positive feedback of household economy on electricity demand, the literature suggests
some complementary activities to increase households’ willingness to buy and use electricity. Among
the recommendations, scholars suggest that electrification projects must be accompanied by
sustainable “cost of connection” policies, such as international “smart” subsidies or cost-sharing
mechanisms (Sovacool et al. 2013) for covering initial investments (Zomers 2003; Baldwin et al. 2015)
(cost of connection polices — Access to financial capital). The importance of appropriate tariffs built into
sustainable payment plans — like the pre-paid mechanism (Moharil and Kulkarni 2009) that allow
people to pay up front, sometimes via their mobile phones, which reduces travel costs (Gustavsson
2004) — is also highlighted in the literature. Such plans can favour the poor (Bhattacharyya 2006, 2013).
In this context, energy needs of rural communities should be considered top of the agenda of national
energy policy making processes (Habtetsion and Tsighe 2002), ¢g through a proper regulation on
energy pricing, taxes, laws and product standards on energy (Biswas et al. 2001). Further, the literature
advise actors to create awareness among beneficiaries (awareness activities — Electricity demand), by first,
creating demand for the “service” provided by energy technologies, rather than for the technology
itself (Mulugetta et al. 2000), and second, involving the local community and consumers, especially
women (Sovacool et al. 2013), in managing and operating energy systems (Sebitosi and Pillay 2005;
Adkins et al. 2010; Sovacool et al. 2013; Terrapon-Pfaff et al. 2014). Complementary activities, thus,
involve: (a) customer educational programmes (Sovacool et al. 2013); (b) the introduction and
integration of some energy end-use services (e.g. lighting, pumping) into daily routines and practices
(Somashekhar et al. 2000); (c) the implementation of demonstration initiatives designed to create
knowledge regarding electricity use (Wamukonya and Davis 2001) and to boost demand for energy
technologies (Baldwin et al. 2015), and; (d) the support for the widespread ownership of mobile
telephones and accessibility of TVs sets (Matinga and Annegarn 2013) (represented through the
positive socio-economic grants — Access to financial capital — Electricity demand feedback). Lastly, improving
capacity building and access to information (know-how) on mechanical and technical matters at the
houschold level — e.g. the basic understanding of the capacity of the system (Gustavsson and Ellegird
2004) — (capacity building — Electricity demand) as well as organizing reliable and competent customer
service (Alazraki and Haselip 2007) and ensuring an appropriate O&M of the system (appropriate O>M
of power systems — Power unreliability) are considered important drivers for growth of electricity demand.

Fig. 28 describes these relations between electricity demand and households’ access to finance,
expressed through its two main determinants, »7z. income and expenditures.
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Fig. 28. Causal loop diagram representing the dynamics between electricity demand and household’s economic
availability [from (Riva et al. 2018a)].
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4.3. Social dimension

In this section, the complex causalities between electricity demand and social dimensions of local
development are discussed on three main aspects: (i) the dynamics of local population and health, (i)
edncation, and (iil) habits, living standards and social networks.

43.1. Local health and population

The literature suggests that increasing electricity access and use is beneficial to people’s health (Wolde-
Rufael 2005; Mulder and Tembe 2008; Sovacool et al. 2013) and can impact on local population
dynamics. These dynamics are discussed by investigating the health dimension at the household, work
and hospital level, and also by analysing the impact of electricity on local population growth and related
feedbacks.

At a household level, access to electricity is reported to be an important driver for improved health of
household members. For example, Wamukonya and Davis (Wamukonya and Davis 2001) indicate that
respectively 49% and 35% of surveyed grid-electrified and solar-electrified rural Namibian households
reported an improvement in health since getting electricity. The diffusion of electrical appliances can
contribute to improving people’s health status through:

—  the use of eclectric refrigerators, which bring benefits by preserving food and drinks from
external contamination and sustaining the qualities of food longer (Kirubi et al. 2009) (Electricity
demand — Food-preservation devices — People’s health in Fig. 29;

—  electric lighting that can reduce household air pollution and associated lung disease and eye
problems, as well as and burns and poisonings caused by the use of kerosene (Alazraki and
Haselip 2007; Gurung et al. 2011; Brass et al. 2012; Aklin et al. 2015; Grimm et al. 2017)
(Electricity demand — Traditional sources of energy — People’s health),

— access to clean and safe groundwater, which can help reduce health diseases (e.g. typhoid,
diarrhoea, parasitic infections (World Health Organization 2003)) associated with contaminated
sources of water (e.g. surface water) (Somashekhar et al. 2000; Cabraal et al. 2005; Bastakoti
20006; Sovacool et al. 2013) (Electricity demand — Water pumping devices — People’s health).

Secondly, as a consequence of more income and free time following electricity use, people are reported
to care more for their health (Sovacool et al. 2013) (Electricity demand — Free-time — People’s health).
Indirectly linked to electricity, complementary activities that support the realization of sanitary facilities
reduce the risk of infective and bacterial disease (Gurung et al. 2011) (sanitary facilities — People’s health).

At work level, Bastakoti (Bastakoti 2006) reports that electrification of energy intensive IGAs led to a
cleaner and more healthy operating environment in rural Nepalese villages, especially by reducing the
health effects caused by the operation of diesel generators, including polluting fumes and irritation
caused by grease and fuel on the body (Elctricity demand — Work security — People’s health). Similarly,
Kooijman-van Dijk and Clancy (Kooijman-van Dijk and Clancy 2010) indicate that the use of electric
machines are characterized by lower noise levels, dust and smoke and contributed to guaranteeing a
healthier and less stressful working environment in rural Bolivia, Tanzania and Vietnam.

At hospital level — piz. local dispensaries, health centres and hospitals — access to electricity is reported
to considerably improve the quality and quantity of medical services offered to local people (Electricity
demand — Health centres electric devices — Medical services — Quality of medical service). Firstly, refrigeration
facilities allow for storing medications, vaccines and blood (Habtetsion and Tsighe 2002; Cabraal et al.
2005; Brass et al. 2012; Aglina et al. 2016; Lenz et al. 2017), and modern machines are used in a variety
of medical examinations and treatments, such as laboratory examinations, X-ray analyses (Bastakoti
20006) and surgical machines (Brass et al. 2012). Moreover, when on-grid or off-grid electricity-access
replaces or reduce the use of diesel, kerosene and LPG for running appliances and machineries,
hospitals might experience high energy cost savings (Lenz et al. 2017). In this context, the literature
specifies that the diffusion and installation of new electric equipment is highly dependent on the
possibility of local health centres to afford them (Peters et al. 2009) (Hospital financial liguidity —
Electricity demand) and the reliability of power supply (Brass et al. 2012) (Power unreliability — Electricity
demand), suggesting the importance of giving financial support to local hospitals and guaranteeing an
appropriate O>M of power systems. Secondly, electric lighting can highly contribute to improving medical
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services by extending operating hours at night (Gustavsson 2007b; Moharil and Kulkarni 2009; Aglina
et al. 20106) and increasing security during surgeries and childbirths (Cabraal et al. 2005) (Electric demand
—> Health centres electric devices — Safety — Quality of medijcal service). Thirdly, improved communication
increases the possibility for health centres to provide people with more information about health-care,
prevention of diseases, and to retrieve clients information (Cabraal et al. 2005; Aglina et al. 2010)
(Electricity demand — Health centres electric devices — Health-care related knowledge — People’s health), as well
as attract more qualified and trained staff (Cabraal et al. 2005; Lenz et al. 2017).

The improvements of people’s health status and medical services can result in a positive feedback on
electricity use. An improved health status reduces the need to frequently spend time being sick and
money for health service, therefore it preserves households’ financial capacity and allows for free-time
to dedicate to other activities (People’s health — Free-time and People’s health — Health-care related
expenditures), but at the same time it reduces the People turnont at local health centres. On the other hand,
the potential improvement of local medical services can positively impact on households’ access to
financial capital and time as well, as in rural Nepal (Bastakoti 2006) where people experienced lower
cost and need to travel to cities nearby for health care (Quality of medical service — Pegple turnont at local
health centres that reduces Long travels for medical treatment and then increase Free-time; and Quality of medical
service — People turnout at local health centres that reduces Long travels for medical treatment and Health-care
related excpenditures). This in turn can benefit local hospitals that experience a higher patient turnover
and larger financial inflows (that can be invested in new machines and installed electric load) (Pegple
turnont at local health centres — Hospital revennes — Hospital financial liguidity — Electricity demand). As
explained in sub-sections 4.2.1 and 4.2.3, an increase in people’s access to financial capital given by
reduced costs for health care can have a positive feedback on electricity demand (a reduction in Hea/th-
care related expenditures supports the positive Access to financial capital — Electricity demand feedback), while
more time being healthy can increase the time spent on economically productive activities, sometimes
the creation of new 1GAs, and subsequently an increase in electricity demand (People’s health — Free-
time — Electricity demand).

The literature suggests that improvements in local health-care can have a direct positive impact on
some dynamics that influence levels of population growth. Cabraal et al. (Cabraal et al. 2005) refer to
a study carried out in rural Bangladesh in 2003, which reports an infant mortality rate of 4.27% in
electrified households, compared to 5.38% and 5.78% in non-electrified households in electrified
villages and non-electrified villages respectively. Brass et al. (Brass et al. 2012) suggest that improved
medical centres can reduce maternal mortality rates (Safetry — Mortality rate — Local population). Apart
from having a positive impact on the health of mothers and children, electricity can positively impact
on population growth locally by changing the in- and out-migration to areas (Rural-to-urban migration
rate — Local population): Neelsen and Peters (Neelsen and Peters 2011) point out that electrification
contributed to the expansion of a southern Ugandan village, which in turn boosted market demand
and profits for local IGAs (Local population — Market demand). Similatly, others (Kanagawa and Nakata
2008; Gurung et al. 2011) report a business in-migration of people who moved in to electrified villages
— in Nepal and India respectively — in order to achieve higher levels of income, while Jacobson
(Jacobson 2007) suggests a long-term reduction in rural-to-urban migration when rural electrification
is followed by local economic growth and positive effects on education. Dinkelman (Dinkelman 2011)
suggests that rural electrification in South Africa impacted rural labour markets by reducing the outflow
of individuals from rural areas. On the other hand, improvements in socio-economic conditions
attributable to electrification might reduce houscehold size, as Ranganathan and Ramanayya report for
electrified households in rural Uttar Pradesh (Ranganathan and Ramanayya 1998), by reducing the
tertility-rate (Electricity demand — Access to financial capital — Fertility rate — Local population).

As a direct feedback on electricity consumption, an increase in local population is followed by an
increase in the number of electricity connections and total electricity demand (Local population —
Electricity connections — Electricity demand). Secondly, it can cause a potential increase in local market
demand with a positive impact on creation of IGAs and business productivity, which in turn generate
a growth in electricity demand (see sub-section 4.2.2) (Local population — Market demand — Access to
[financial capital — Electricity demand).

Fig. 29 shows these nexus causalities between electricity demand and local health and population.
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Fig. 29. Causal loop diagram representing the dynamics between electricity demand and local health and
population [from (Riva et al. 2018a)].

43.2. Education

The impact of access to electricity on education is a widely-discussed topic in the literature. From a
general point of view, the use of electricity seems to be associated with improved educational standards
of people (Alam et al. 1998), also in poor countries (Wolde-Rufael 2005), as reported in Table 11.

At school, the use of electric lighting might benefit students by extending study hours (Aglina et al. 20106)
(Electricity demand — Study time at school in Fig. 30) and by allowing evening (Gustavsson 2007a) or eatly
morning classes (Alazraki and Haselip 2007) (Electricity demand — Evening and morning classes). Peters et
al. (Peters et al. 2009) find that in rural Benin, electric lighting and the provision of evening classes
allow students to work on family business and do housework during the day, contributing to the
household economy (Evening and morning classes — Daily-time for work — Average income). Electricity
availability allows the use of new devices like computers (Bastakoti 2006; Alazraki and Haselip 2007),
audio-tapes (Bastakoti 2000), TVs and radios (Alazraki and Haselip 2007; Brass et al. 2012) for
educational purposes, and fans for creating a more comfortable environment for all students, finally
enhancing the teaching and learning quality (Alazraki and Haselip 2007), as well as the recruitment and
hiring of teachers (Aglina et al. 2016) (Electricity demand — Quality of education and Electricity demand —
Teacher attraction — Quality of education). In this context, the availability of funds for schools is pivotal
for improving equipment and installed load, as confirmed by Bastakoti (Bastakoti 2006), who reported
the diffusion of modern devices especially in private schools. In this regard, electricity might support
schools in generating new income to allocate to educational improvements. In Zimbabwe, a rural
school started a milling service and generated new income (Mapako and Prasad 2007) — it generates
the reinforcing Electricity demand — school IGAs — school financial availability — Electricity demand loop. To
summarize, these effects contribute to increasing children and adults’ schoo/ enrolment, attendance of
classes and grades achievements (Dinkelman 2011; Gurung et al. 2011; Sovacool et al. 2013), i.e.
Education attainments.
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Table 11. Examples of impact of electricity use on education.

Reference

Mentioned impact of electricity use on education

Nakata and Kanagawa
(Kanagawa and Nakata
2008)

In rural areas of Assam, India, data indicate that a 1-point increase in the percentage of
households electrified result in 0.17-point improvement in the percentage of literate people
older than 6 years. Also, it is suggested that domestic electricity consumption per capita has a

positive correlation with educational attainment, indicating that those households with very
low initial levels of electricity consumption can achieve high educational benefits from
increasing their consumption of electricity. Further, the literacy rate of Assam state is estimated
to rise from 63.3% to 74.4% if all the rural areas were to be electrified, other factors being
equal.

Aglina et al. (Aglina et
al. 2016)

An increase in electricity access is correlated with an improved literacy rate in the Economic
Community of West African States (ECOWAS), though countries with low national
electrification rates, such as Cote d' Ivoire and Mali, have better literacy rates than Ghana that
scores higher in both urban and rural electrification rate, indicating the influence of other
factors.

Ranganathan and

Ramanayya
(Ranganathan and
Ramanayya 1998)

The increase in literacy rate that occurred in Uttar Pradesh and Madhya Pradesh during the
period 1991-1997 is, respectively, neatly half and two-thirds attributable to electrification.

Grogan and Sadanand ~ Rural Nicaraguan men and women are more than twice as likely to have completed primary
(Grogan and Sadanand  education if they live in households with access to electricity.
2013)

Sovacool et al.
(Sovacool et al. 2013)

The communities that embraced the Multifunctional Platform (MFP) energy program? in Mali
revealed lower drop-out rates, higher test scotes, and higher proportions of girls entering
school. A possible reason might be the time freed-up by electricity use (see sub-Section 4.2.1)
(Mulder and Tembe 2008), which contributes to decteased irregular attendance (Aglina et al.
2016) and improved marks at school (Gustavsson 2007a).

Dinkelman (Dinkelman  Electrified rural areas in South Africa have higher fractions of adults with a high school-degree,

2011)  compared to non-electrified communities
Gurung et al. (Gurung  Increase in informal education among women in the electrified Tangting village, Nepal
etal. 2011)
Khandker etal. An econometric model applied to 42 Vietnamese communes indicates that household

(Khandker et al. 2013)  electricity connection is correlated with a 9% higher school-enrolment rates for girls and 6.3%

for boys.

Since electricity use has been found to enhance socio-economic status of rural households, there is
also an indirect effect of electrification on school enrolment. Smits and Huisman’s work (Huisman
and Smits 2009) demonstrate, through a multilevel logistic regression analysis applied to 30 developing
countries, that an increase in the level of household’s wealth, parents’ occupation (especially the father),
and education has a positive impact on primary school enrolment of children (Electricity demand —
Average income — Education attainments). Similarly, Al-Zboun and Neacsu (Al-zboun and Neacsu 2015)
interviewed more than 2000 principals and directors of public schools in Jordan, and found that a lack
of opportunities, low economic level of households, low quality of educational infrastructures, and low
cultural level of parents were pivotal factors affecting the non-enrolment of children in primary
schools. This suggests that complementary activities to support community awareness of educational
benefits might enhance enrolment (educational benefits awareness campaigns — School enrolment). A result
that contradicts these findings, is from Lenz et al. (Lenz et al. 2017) who indicate, based on both
econometric models and qualitative interviews with teachers, that the probability of rural Rwandan
households sending their children to school does not increase as an effect of grid-electrification.

At home, many studies mention the increase in evening study hours as the main benefit of electricity on
education (Baldwin 1987; Somashekhar et al. 2000; Wamukonya and Davis 2001; Wijayatunga and
Attalage 2005; Alazraki and Haselip 2007; Mohatil and Kulkarni 2009; Kumar et al. 2009; Gurung et
al. 2011; Aklin et al. 2015; Baldwin et al. 2015; Aglina et al. 2016; Mishra and Behera 2016; Grimm et
al. 2017; Lenz et al. 2017) (Ewvening study time — Education attainments). Since electricity allows replacing
or decreasing fuels use (e.g. kerosene, paraffin, candles) and the related environmental and economic

9 <

a government managed, multilaterally sponsored energy program that distributed a small diesel engine attached
to a variety of end-use equipment” ((Sovacool et al. 2013) pg. 115).
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drawbacks (Cabraal et al. 2005), Gustavsson and Ellegird (Gustavsson and Ellegird 2004) report that
children study at night in 89% of households with a solar home system, compared to 42% of non-
electrified households, where children complain about smearing eyes, lack of candles or paraffin and
too weak light (Electricity demand — Electrical lighting decreases Traditional sonrces of energy's drawbacks and
then increases Evening study time. Gurung et al. (Gurung et al. 2011) indicate an increase of reading
hours for students after electrification of Tangting village, Nepal, due to a reduction in the use of
hazardous traditional lamps. Komatsu et al. (IKomatsu et al. 2011) report that the introduction of SHS
in Comilla, Kishoreganj, and Manikganj districts in rural Bangladesh allowed children to study in a
better environment and to extend their study-time from 8-9 pm until 10—11 pm. Similarly positive
results for solar PV based lighting were seen in Ludanzi, Zambia (Gustavsson 2007b) and Gujarat
State, India (Agoramoorthy and Hsu 2009).

A part of the literature reports limited or very little positive impact of electricity use on educational
attainment. Jacobson (Jacobson 2007) indicates that despite nearly 80% of rural Kenyan households
surveyed by the author having school age children, solar lighting was used for studying in only 47% of
these homes. Gustavsson (Gustavsson 2007a) reports no evidence of actual improvements of school
children’s marks as a consequence of access to solar services in the surveyed Eastern Province of
Zambia (Gustavsson 2007a). Bastakoti (Bastakoti 20006) and Komatsu (Komatsu et al. 2011) find that
in rural western Nepal and Bangladesh respectively, children reported an overindulgence in watching
TV that limited their willingness to complete their homework in time (E/ectricity demand — Entertainment
devices — Bvening study time). In this context, the availability and quality of power supply are two crucial
tactors (Power unreliability — Evening study time). In analysing the social changes in Kenya achieved with
solar electrification, Jacobson (Jacobson 2007) suggests that children in households with a larger PV
system are much more likely to have access to electric light for studying than children in households
with smaller systems. Gustavsson and Ellegird (Gustavsson and Ellegird 2004) also report that
children complained about black-outs and restrictions in the use of the power as crucial limiting factors
for evening study.

Improving educational attainment can generate positive feedbacks on electricity demand in the long
term. Louw et al. (Louw et al. 2008) suggest that education is one of the factors that drives households’
fuel choices, as well as the “subsequent energy portfolio used” (p. 2813). Urpelainen and Yoon
(Urpelainen and Yoon 2015) conducted a survey among 760 respondents in rural Uttar Pradesh, India,
and found that high levels of education increased the willingness to pay for a SHS. Aklin et al. (Aklin
et al. 2015) derive econometrically the relation between household’s educational level (viz. average
years of education) and both electrification status (#2z. if a household has access to electricity or not)
and daily hours of electricity for Indian households living in slums, urban and rural areas. They find
that more educated households have more need for electric assets and may be more willing to pay for
a connection (Education attainments — Connection rate — Electricity demand). Similarly, Bensch et al.
(Bensch et al. 2011) estimate a probit-regression model to determine that the variable “years of
education of household head” is positively correlated at 1% significance level with connection status
in Rwanda. On the contrary, Kandpal and Kobayakawa (Kobayakawa and Kandpal 2014) find that in
Kaylapara village, Sagar Island of West Bengal (India), the mean class completed by the family head
does not show significant difference between households with and without connection to the micro-
grid. Rao and Ummel (Rao and Ummel 2017) evaluate the marginal change in the probability to own
a refrigerator, a washing machine and a TV in India, South Africa and Brazil in relation to head-of-
household’s years of schooling, suggesting that more educated households are more willing to adopt
new technologies (Education attainments — Willingness to adopt — Electricity to adopi). Cabraal et al. (Cabraal
et al. 2005) report empirical evidence from rural India and Peru, where the combined provision of
electricity and education has been found to generate a greater effect on households’ income than each
variable taken separately. As a matter of fact, Kirubi et al. (Kirubi et al. 2009) report the experience of
Mpeketoni Polytechnic educational institution in Kenya, which after connection to the grid became an
important source of technical know-how and skills for youths who then found employment in local
IGAs, generating a time-delayed feedback between Educational attainment and Average income (marked
with two dashes in Fig. 30). Khandker et al. (Khandker et al. 2013) suggest that higher educational
benefits achieved by rural Vietnamese children as an effect of electrification might have resulted in
higher and more productive employment levels. In his econometric study, Rao (Rao 2013) found that
the years of education of household” head is a positive determinant of income for Indian NFEs. Since
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households’ income and financial availability have been found to be pivotal drivers of electricity use,
all these studies confirm that improving peoples’ educational attainments can positively impact future
electricity consumption (Education attainments — Average income — Electricity demand).

Fig. 30 reports the diagram of nexus causalities between electricity demand and educational attainment.
The mark on the causal link, which connects educational attainment and average income, indicates a time-
delay in the occurrence of the represented feedback as evident from the literature. It is also highlighted
the importance of combining electrification activities with awareness campaigns regarding the benefits
of education, programmes of financial support to local schools (financial support — school financial
avatlability), and correct O&M of the power systems (appropriate O>M of power systemr — Power
unreliability).
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Fig. 30. Causal loop diagram representing the dynamics between electricity demand and education [from (Riva
et al. 2018a)].

4.3.3. Habits and social networks

In terms of changes in people’s daily habits and activity scheduling, the availability of electrical lighting
can contribute to extending the length of people’s active day (Electricity demand — Electrical lighting —
Daily-time extension in Fig. 31). Matinga and Annegarn (Matinga and Annegarn 2013) report that the
provision of access to electricity in Tsilitwa village, South Africa, allowed household members to wake
up earlier, about half-hour before sun-rise, and go to bed about 2-3 hours later. Similarly, Roy (Roy
2000) indicates that the lighting hours in households provided with solar lanterns in a rural Indian
village went up from 2 hours to 4 on average (and up to 6 hours in some cases). Lenz et al. (Lenz et
al. 2017) state that in rural Rwanda, “the availability of electricity in the communities clearly had a
significant effect on the daily routine of all household members” (p. 99), since it extended the day by
50 minutes on average. On the contrary, Grimm et al. (Grimm et al. 2017) did not find statistically
significant changes in the time spent on daily and evening domestic labour between electrified and
non-electrified rural households in Rwanda. In addition to this daily time extension, the literature
reports that access to electricity can facilitate household activities by decreasing the burden of work
and time. Kumar (Kumar et al. 2009) reports that in 5 centres in Sagar Dweep Island in India, 38% of
households stated a benefit from time savings for cooking (Electricity demand — Elfficiency (completion rate)
of housework — Daily burden of housework), while 17% indicated having more time for household work at
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night (Evening housework — Daily burden of housework). More time available for women’s household work
at night has been reported also by others (Agoramoorthy and Hsu 2009; Moharil and Kulkarni 2009).
Obviously, the diffusion of TVs and entertainment devices might reduce time dedicated to housework
(Electricity demand — Entertainment devices — Evening housework). Bastakoti (Bastakoti 2000) indicates that
the use of electric water pumps in rural Nepal allowed people to reduce time for collecting water from
7-8 hours per day initially to 1/2 hour per family, increasing available time for farming and leisure
activities. Also Grogan and Sadanand (Grogan and Sadanand 2013) report a decrease in time for
fetching water (and firewood) in Nicaragua. Komatsu et al. (Komatsu et al. 2011) report that
households owning a SHS in rural Bangladesh spend less time for recharging car batteries at recharge
stations, experiencing less burdens (273, heavy weights to carry), and more free time (saving at least 40
minutes for the round trip on average plus the recharging time for batteries).

According to Grogan and Sadanand (Grogan and Sadanand 2013) in Nicaragua, “eclectrification,
particulatly for poor people, may be more about the extension of the working day than about labour-
saving appliances” (p. 253). In this context, time freed-up by electricity can be devoted to productive
activities and it has been found to have a positive effect on people’s propensity to start a new IGA,
with a consequent feedback on electricity demand (sub-section 4.2.1 and 4.2.2) (Daily burden of housework
—> Free-time — Average income — Electricity demand). Grogan and Sadanand (Grogan and Sadanand 2013)
suggest that the daily time spent by rural Nicaraguan women living in electrified households in salaried
work can be three times as much as the time spent by women living in unelectrified households.
Similatly, they report that men living in households with access to electricity decreased by half their
time spent in family agriculture and doubled the time spent in non-agricultural activities. On the
contrary, Lenz et al. (Lenz et al. 2017) do not observe a change in income generation patterns as an
effect of free-time in electrified Rwandan households. More available free-time seems to increase time
dedicated to reading and cultural activities (Gustavsson 2004; Bastakoti 2006; Gurung et al. 2011),
which may potentially benefit people’s educational attainments and all the consequent feedbacks that
has on electricity use (Free-time — Education attainments — Electricity demand). However, Sovacool et al.
(Sovacool et al. 2013) highlight that people are sometimes unable to capitalize on the free time created,
suggesting the need to implement parallel educational activities and capacity building (educational
awareness activities — Education attainments and capacity building — Average income).

The evolution of electricity demand can impact the social structure and network of electrified
communities (Baldwin et al. 2015). In Tsilitwa village, South Africa, Matinga and Annegam report that
differences in household electrical appliances intensified the feelings of exclusion and inequality,
highlighting that “electrical appliances displayed in houses of the better-off represent a world from
which they [poorest families| felt excluded” ((Matinga and Annegarn 2013), pg. 295), pushing people
into changes in aspirations and spending (Electricity demand — People aspirations — Average marfket
expenditures). However, this reinforcing feedback is sometimes hindered by the local social habits,
traditions, gender relations and culture that can negatively influence people’s aspirations and
investment decisions, such as people in Zanzibar having food preferences for traditionally prepared
food over use of electric cookstoves, or male control over money and technology, limiting women’s
abilities to purchase household equipment (Winther 2008). Rahman and Ahmad (Rahman and Ahmad
2013) observe that the diffusion of SHS in rural Bangladesh brought mostly recreational and leisure
benefits. Bastakoti (Bastakoti 2006) indicates that the possession of a television is considered a luxury
and status symbol in rural South Africa. On the other hand, the same author suggests that families
without cable frequently go to their richer neighbours’ homes to watch TV, increasing households’
meetings and time together (Electricity demand — Entertainment devices — Social connectivity). Komatsu
(Komatsu et al. 2011) and Lenz et al. (Lenz et al. 2017) report the same dynamics also for rural
Bangladeshi and Rwandan households respectively. Similarly, Gustavsson and Ellegird (Gustavsson
and Ellegird 2004) report that children living in villages located in the district of Nyimba, Zambia,
gathered together in one of the houses with a SHS to study. Lighting and the related perceived
improved secutity, as well as evening market operation, seem to increase outdoor and/or indoor
evening meetings and chats, and connectivity among people (Gustavsson 2004; Alazraki and Haselip
2007; Shackleton et al. 2009; Kooijman-van Dijk and Clancy 2010; Matinga and Annegarn 2013)
(Electricity demand — Electrical lighting — Social connectivity). Even within the same household, Wijayatunga
et al. (Wijayatunga and Attalage 2005) report that 68% of surveyed households in Badulla district, Sri
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Lanka, claimed to benefit from having more time together through activities such as watching
television while having dinner.

Electrification allowed enhanced access to information (Kooijman-van Dijk and Clancy 2010),
communication and connectivity even outside local communities (Baldwin et al. 2015) (Electricity
demand — Communication devices). Jacobson (Jacobson 2007) report that rural electrification in Kenya
facilitated rural-urban communication through the diffusion of television, radio, and cellular telephone
charging, increasing rural-urban connectivity, especially for the rural elite and middle class. Similarly,
Rwandan houscholds interviewed by Lenz et al. (Lenz et al. 2017) indicated that mobile phones are
especially used for calling people who live outside the province. Gustavsson (Gustavsson 2007a)
suggests that children and adults in rural Zambia experienced more access to news and events taking
place outside the rural community through radio and TV broadcasts.

In accordance to the theory of innovation diffusion (Bass 1969; Peres et al. 2010), enhancing
connectivity and social networks increase the process of word of mouth, acceptability of new products,
and related probability to become an adopter, enhancing the diffusion of electrical products and its
feedback on the evolution of electricity demand (Social connectivity — Word of month (social connectivity) —
Electricity demand). In this context, local government officials or heads of the villages can play the role
of “influentials” (Van den Bulte and Joshi 2007; Goldenberg et al. 2009; Urmee and Anisuzzaman
2016) in bringing electricity to their communities and enhancing the diffusion of electrical devices
(Kooijman-van Dijk and Clancy 2010). Since the use of television and radio might facilitate the ability
of business advertisers to reach a wider audience (Jacobson 2007) and increase local demand for goods
and services, local shops and retailers can experience higher trades and revenues, with related feedbacks
on electricity use, as discussed in sub-section 4.2.1 and 4.2.2 (Communication devices — Adpertisement —
Market demand — Electricity demand).

Fig. 31 reports the diagram of nexus causalities between electricity demand, habits and social networks.
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Fig. 31. Causal loop diagram representing the dynamics between electricity demand, habits, and social networks
[from (Riva et al. 2018a)].
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Chapter

Modelling insights for dealing with
complexities

Give me a place to stand on, and I will move the Earth
(6@¢ pot 70, o1® xal 0w YO xwdow)
(Archimedes of Syracuse c. 287 — ¢. 212 BC)

All models are wrong
(George Box 1976)

This chapter sets the basis for building upon the modelling of the endogenous
complexities behind the electricity-development nexus from a quantitative point of
view, which is the last result for pursuing Objective 1. To this aim, the
interconnections of multiple factors, the high uncertainty level, strong non-linear
phenomena, and the presence of time delays and feedbacks suggest System Dynamics
(SD) as a potential appropriate systems-modelling approach. On the other hand, the
agent-based complexities behind diffusion mechanisms, energy consumers’
behaviour, social interactions, spatial constraints, and decision-making processes
suggest Agent-based Modelling (ABM) as a further modelling tool. In order to
compare the two methods and guide the final choice towards the most appropriate
approach, an ad-hoc case-study is developed. This chapter is based on the following
conference paper:

Riva F, Colombo E, Piccardi C. Modelling social networks in innovation diffusion
processes: the case of electricity access in rural areas. Proc. 357 Int. Conf. Syst. Dyn.
Soc., Cambridge, USA: System Dynamics Society; 2017.
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5.1. Modelling endogenous complexities

5.1.1. From qualitative conceptualisation...

The previous analysis on the electricity-development nexus confirms that it is a complex system. As
such, the behavioutr/outcome of the nexus cannot be intuitively understood (Forrester 1971). In order
to improve understanding of complex systems, a number of computer aided modelling methods have
been developed over the last decades, e.g. agent-based modelling and system dynamics. With the usage
of these tools and methods, complex problems can be analysed and tested in computer environments
in order to improve understanding of the studied systems.

Through the use of causal diagrams, the analysis presented a conceptualization of factors and processes
found in the energy-development nexus (see Fig. 26 to Fig. 31). Causal diagrams are similar to the
causal loop diagrams used in system dynamics (SD) modelling methods. SD is a systems-modelling
approach first developed by Prof. J.W. Forrester, Massachusetts Institute of Technology (MIT), in
1950s and formalised in his famous book entitled Industrial Dynamics (Forrester 1961). It is used for
understanding, describing, tackling and modelling well-defined endogenous problems concerning
existing systems that are suitable to be formulated as interaction between elements through causal
relationships. In SD, causal loop diagrams are commonly used for formulating a problem through a
dynamic hypothesis, for communicating a model (Morecroft 1982), and for making qualitative analysis
of complex systems (Wolstenholme and Coyle 1984). Even though conceptual models are often used
as intermediate steps towards simulation models (Robinson 2008), important insights can be drawn
from qualitatively analysing conceptual models (Wolstenholme and Coyle 1984). A few of the factors
in the energy-development nexus were identified to be exogenous, but the main part of the diagram
depicts the relationship of the factors through closed causal loops. The causal loop diagrams show
how factors identified in the energy-development nexus literature are interconnected, thereby
improving our understanding of the energy-development nexus. This results in two main insights:

i As factors are largely interconnected, it is not suitable to use reductionist methods to analyse
the energy-development nexus: e.g. the relationship cannot be sufficiently studied using only
a limited set of factors without having knowledge of the full contextual setting. Instead a
systems-thinking approach that includes the full complexity is needed and advised.

ii.  Many of the identified factors are connected through feedback loops. In order to identify the
system’s behaviour and to capture the dynamics in the energy-development nexus, a sizzulation
approach that takes feedbacks into account is needed.

5.1.2. ..to quantitative simulation models

The initial procedure in developing many models consists of a process of identifying factors and
processes that are important for the considered problem, as done in the analysis of the nexus. A
process of formulation of a siuulation mode! follows. This part consists of formulating factors into
variables and formulating the explicit mathematical relationships between variables. In terms of
modelling complex systems, the identification of factors and processes is a substantial part of the
modelling work load. Even though there are several tools (Luna-Reyes and Andersen 2003) available
to help modellers and scientists to identify and assign variables and parameters in models, the process
of quantification is inherently problematic when dealing with social science problems. Indeed,
Bhattacharyya and Timilsina (Bhattacharyya and Timilsina 2010) criticised most global energy models
that forecast future residential energy demand based on relatively simple relationships between energy
consumption and income or GDP per capita, since they neglect such specific socio-economic
dynamics of developing countries and use aggregate macro-data. In line with the findings of Chapter
3, sub-section 3.3, the use of bottom-up models for assessing and projecting energy demand seems
the most suitable option for identifying the socio-economic- and energy-related dimensions of energy
demand evolution in rural contexts. Ruijven et al. (van Ruijven et al. 2011) and Daioglou et al.
(Daioglou et al. 2012) integrate some of the typical features of energy systems in developing countries
mentioned by Urban et al. (Urban et al. 2007) in their bottom-up Residential Energy Model Global
(REMG) applied to India, China, South East Asia, South Africa and Brazil. The model adopts
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deterministic correlations derived from econometric studies and regression analysis on national data
to project the energy use of households. Despite being an interesting approach, the use of such
approaches for local applications might however be prevented and not generalised due to the lack of
local long-term quantitative data, as frequently happens in rural areas. Moreover, it adopts exogenous
correlations for some socio-economic variables, which contradicts the endogenous nature of such
dynamics, as emerged from the analysis of the electricity-development nexus. System dynamics
represents an appropriate candidate approach for modelling a problem characterised my many
feedbacks and endogenous dynamics. In this regards, Hartvigsson et al. (Hartvigsson et al. 2015;
Hartvigsson 2016) highlight how SD can be a valuable methodological approach to capture the long-
term dynamics behind the evolution of energy demand in developing contexts, since the latter are
affected by high uncertainty, strong non-linear phenomena, complex diffusion mechanisms, time-
adjustments of technology perceptions, time delays, and feedbacks.

Despite the advantage of using SD for modelling complex dynamics, these models can present some
limitations when modelling the social interactions that ensue within social networks and impact on
consumers’ energy behaviours, since SD-based modelling assumes individuals to be always well-mixed
and in many cases the interactions between compartments to occur randomly (Lamberson 2017). Rai
and Henry (Rai and Henry 2016) indicate, therefore, that agent-based modelling (ABM) can represent
a powerful tool for representing the complexities behind the energy consumers’ behaviour, such as
social interactions and spatial constraints. Indeed, ABMs can be used for representing systems as
collections of individual or collective entities (namely “agents”), whose decision-making processes,
actions and interactions are simulated in order to assess the effects on the system over time.

ABMs and SD seem promising approaches for formulating simulation models able to make long-term
projections of rural electricity demand. In order to guide the final choice, the next sub-section reports
a case-study, which aims at comparing the two approaches employed for simulating a simple problem:
the diffusion of electricity connections in fictious rural village, which is an important variable of the
electricity demand.
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5.2. CASE 3. “Modelling the Forest or Modelling the Trees”

The aim of this case-study is to compare the ABM and SD approaches for modelling the process of
diffusion of electricity connections in fictious rural village, which is an important at the basis of the
electricity demand. In particular, 3 different cases of innovation diffusion models are modelled with a
SD-approach and compared with the same cases modelled through a discrete ABM-approach. For the
sake of brevity clarity, just one case is reported here, that is the most significant and meaningful from
a modelling point of view. The others are reported in the Appendix A. The ABM-approach is
implemented by rejecting the classical SD-assumption that individuals reveal the same behaviours with
respect to their social contacts — modelling a homogeneous “fores?” — and by introducing the modelling
of social networks in the process — modelling each single “#e¢” of the forest. The title of this case-
study is inspired from the work of Schieritz and Milling Modeling the Forest or Modeling the Trees A
Comparison of System Dynamics and Agent-Based Simulation (Schieritz and Milling 2003).

5.2.1. SD and ABM approaches for innovation diffusion

In rural un-electrified contexts, the growth of electricity connections can be interpreted as the diffusion
of an innovation. Since the 1960s, a body of literature, e.g. the marketing-oriented one, has been
focusing the research on modelling innovation diffusion (Mahajan and Bass 2011), especially in recent
years since the spread of innovations of new products and services has become increasingly
multifaceted and complex (Peres et al. 2010). In this context, the research has put effort in exploring
the implication that different diffusion hypotheses may have in targeting new product prospects and
developing marketing strategies to attract potential new adopters and consumers. The result has been
the development of analytical models for describing and forecasting the diffusion of innovation in a
social system.

In 1969, Frank Bass set up the framework whereon many diffusion models have been based in the
following years. In his well-known work (Bass 1969), Bass modelled the spread of innovations in a
social system through the representation of two main dynamics:

— The time-invariant tendency to adopt through external influences (p) — e.g. advertising and
other communications independent from the social network.

— The social contagion (g) that results from interactions among the agents of the social system
— vi%. adopters and potential adopters of an innovation.

With his model, by assuming that potential adopters become aware of the innovation also through
time-invariant external inputs — »7z. p —, “Bass solved the start-up problem ((Sterman 2000), pg. 332”
typical of previous classical logistic growth models (e.g. Verhulst model (Verhulst 1838), Richards
model (Richards 1959)), that were unable to explain the genesis of the initial adopters of an innovation.
From a mathematical point of view, the Bass model describes the diffusion process as follows:

dr () _

- [p+q-FOI[1-F@®)] )
A

where F(#) is the proportion (v7z. the fraction of the adopters compared to the total population) of
ultimate adopters that have already adopted at time # The analytical solution of this differential
equation leads to the following expression:
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Multiplying F(#) times N, ie. the total population of ultimate adopters, gives the total number of
adopters A(?) at time £
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As it emerges from the above mathematical representation, the main assumptionat the basis of the
Bass model is that the social network where the spread of an innovation takes place is assumed to be
fully connected and homogenous. Indeed, the parameter g can be interpreted as the product of a
“contact rate” ¢ — ze. the number of people that a person come into contact with in a fixed time step
—and an “adoption fraction” 7 — Ze. the probability that a person becomes adopter after a contact with
an already-adopter. The diffusion process based on this “fully connected and homogenous” hypothesis
is suitable to be formulated and simulated with the classical stock and flow diagrams of system
dynamics (SD), as confirmed by a number of studies and books coming from SD-based literature:
Sterman (Sterman 2000) represents the time-invariant tendency to adopt and the social contagion of
the Bass model as two positive feedbacks, respectively interpreted as the effect of advertising and the
mechanism of word of mouth. The same Author models random variations in the adoption
mechanism by introducing some adoption noise in the model described in (Rahmandad and Sterman
2012). Milling (Milling 1986) adopt the Bass model from a SD perspective to describe the innovation
diffusion process of a generic class of products, introducing relevant managerial variables like (i)
market development and technological substitution, (i) capital investment, production volume and
cost, and (iii) product price and operating result. Mooy et al. (Mooy et al. 2004) combine the classical
Bass model with the SIR model of epidemic spreading discussed in (Sterman 2000), and model the
conscious choice to become a non-consumer by relying on the sociological theory of memetics. More
recently, Park et al. (Park et al. 2011) develop a forecasting model for Hydrogen Fuel Cell Vehicles
based on the Bass diffusion model and they simulated it using SD. De Santa-Eulalia et al. (Santa-Eulalia
et al. 2011) rely on a SD perspective to combine the Bass model with a Discrete Choice Model and
Conjoint Analysis, determining the relative purchase probability based on products’ utilities and
describing products as a finite set of perfectly substitutable attributes. Chen and Chen (Chen and Chen
2007) study product diffusion mechanisms from a SD perspective due to the enormous complexity of
micro level factors; in addition to the classical Bass coefficients of innovation and imitation p and g,
their model incorporated the “price” decision variable, the effect of advertising policies and product
brand. Based on the general framework of innovation diffusion for monopolistic markets described
by Milling (Milling 1996), Maier (Maier 1998) uses SD to extend traditional innovation models in order
to incorporate competition effects among firms and to map the process of substitution among
successive product generations. Kumar et al. (Kumar et al. 2015) introduce a preliminary integrated
diffusion model to show the complexity of the mobile diffusion phenomenon, which often does not
reflect the S-shape trend typical of Bass innovation diffusion: they suggest to model adoption as one
of five phase changes of the diffusion process (vz. persuasion, adoption, implementation,
confirmation, abandonment). Ulli-Beer (Ulli-Beer et al. 2010) overcome the inability of Bass model to
capture acceptance and rejection dynamics by proposing a generic model structure for the simulation
of acceptance-rejection behaviour.

As reported above, many Authors focused their research on proposing improvements and solutions
to the main limitations of Bass and SD-based models. They suggest how SD-based models may reveal
some limitations in modelling the complexity of consumer energy behaviours, referring mainly to a
lack of representation of social interactions that ensue within social networks. Indeed, networks play
an important role in shaping individuals’ access to information and perceptions of energy technologies
— their costs and possible benefits —, and their willingness to adopt new patterns of behaviour (Henry
and Vollan 2014; Rai and Henry 2016). As suggested by Rahmandad and Sterman (Rahmandad and
Sterman 2008), network topology and individual heterogeneity affect the diffusion dynamics (of
epidemics, products, e#), generating some behaviours that deterministic SD models, contrary to
ABMs, cannot reproduce. Moreover, when the homogeneity and perfect mixing assumptions of the
classical SD models are not respected, the gap between the SD model and the mean behaviour of the
stochastic agent-based models is statistically significant. To encourage the research on this topic, they
finally suggest examining further dimensions of heterogeneity and other networks, as well as varying
the percentage and distribution of initially infectious people, i.e. initially adopters.

Trying to pursue the same final modelling goal and to contribute to the same effort of other
researchers, this work investigates and discusses the hypothesis of “perfect-mixing” of adopters and
non-adopters within innovation diffusion mechanisms, and it introduces an extra complexity in
innovation diffusion models, i.e. the modelling of social networks. A speculative approach is used by
relying on an ideal case of innovation diffusion in a rural community and designing some experiments.
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Network-based diffusion scenarios are developed through discrete agent-based modelling (ABM)
approaches — modelling the “#rees” —, and results are then compared to classical continuous diffusion
models simulated through a system dynamics (SD) approach — modelling the “fores?”.

5.2.2. Network models

For modelling social networks in diffusion processes, representing an ideal rural community is
represented through 3 types of networks: (i) Random, (ii) Barabasi & Albert, and (iii) Social.

Random (RND) networks

A random graph can be generated by starting from a set of IN isolated vertices and then adding links
between them at random — Ze. with uniform probability p, where 0 < p < 1 — as introduced by Erdés
and Rényi in 1959 (Exrd6s and Rényi 1959). In RND networks, the probability that any given node has
exactly £ links, Ze. the node has degree £, is given by the following binomial expression:

N-1 _1_
A h ©

For large N and small p, this binomial expression can be approximated by a Poisson distribution
(Jackson 2008). Then the degree distribution has the following expression:
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where £.,,=(IN-1)-p is the average degree. Since they are based on a completely random wiring, RND
networks are often used as "null models" to describe the absence of any structure or pattern. This is
in contrast with most real-world observed networks, where e.g. the social, biological, or technological
pressure shapes structures which are far from being purely random.

Barabasi-Albert (BA) networks

Whilst in RND graphs nodes pick their partner nodes to link to uniformly at random, in a large number
of different social networks, especially related to technological, biological, or social interdependencies,
new nodes “pick nodes in proportion to the current degrees of the existing nodes ((Jackson 2008), pg.
168)”. Such process of network construction has been introduced by Barabasi and Albert (Barabasi
and Albert 1999), based on the principle of “preferential attachment™: starting from a small number
Ny of arbitrarily connected nodes, a new node j with 7 links is added at each step j = Np + 1, Ny +
2,..., N. Each one of the # links is connected from ; to an existing node 7 with probability proportional
to the current degree 4; of node 7 The final structure of such network, hereafter named BA, is
characterized by some “older” nodes typically with a very high degree and the rest of the nodes with a
small-medium number of connections, leading, for large N, to a power law degree distribution of the
network of the form:

p(R)~ k1 ®)

In real-world networks, ¢ turns out to range between 2 and 3 as experimentally observed by some
authors (Barrat et al. 2008; Newman 2010; Barabasi 2016), while 4=3 in the case of BA networks.

Social (SC) networks

The two above described network models (RND and BA networks) lack many of the features typical
of social networks, z¢. networks of acquaintances among individuals, which are characterized by some
peculiarities (Newman et al. 2002; Newman and Park 2003; Bogufa et al. 2004): broad degree
distribution, high clustering (z.e. when individuals tend to create tightly knit groups with a relatively
high density of connections), small average distance, and assortative degree distribution (7. highly
connected nodes are more frequently connected with other highly connected nodes).
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Toivonen et al. (Toivonen et al. 2000) proposed a model to generate artificial graphs able to capture
such peculiarities of “social networks”. Based on their model, a network forms starting from a (small)
number Nyof nodes (as in BA networks) and it grows through a mechanism encouraging the creation
of triangles and, as a consequence, of high clustering:

— anew node ;is added to the network at each step of the procedure j = Ny + 1, Np + 2,..., N;

— firstly, the node jis connected to 7, nodes randomly selected, where 7, 2 1 is a random integer
number extracted at each step from a given distribution. After this step, node ; is connected
tothenodes 7 =1,2, ..., my;

— secondly, 7 neighbour nodes of each node 7 are randomly selected and connected to j as well,
where 72 0 is a random integer number. This step encourages the formation of connected
groups and thus yields large clustering.

Following this algorithm, if N is large, the final network shows an average degree £uy = 2-#sa (Msag +
1), while the probability that any given node has 4 links is given by the following power-law
distribution:

p(k)=a-(k+p) 3" o)

5.2.3. Modelling diffusion scenarios

The diffusion mechanism here refers to the diffusion of electrical connections in a rural community
of N = 1000 people, which has hypothetically received potential access to electricity at time #= 0. The
simulation horizon has been set equal to T = 240 months, that is 20 years, which roughly corresponds
to the lifetime of a typical off-grid microgrid system composed by photovoltaic panels and batteries.
The simulated diffusion model includes an element of originality, which made it different and more
meaningful than the classical Bass model: the effect of splitting the entire population among two
different classes of potential adopters: the znfluentials and the imitators. As stated by Goldenberg et al.
(Goldenberg et al. 2009), “in social systems, growth processes are believed to be strongly influenced
by people who have a large number of ties to other people. [...] such people are called influentials,
opinion leaders, mavens, or hubs (pg. 1)”, who may have the potential to accelerate or block the
adoption of a product. From a modelling point of view, Van den Bulte and Joshi (Van den Bulte and
Joshi 2007) describe influentials as people who are more disposed to new developments (ze. affected
by external influences as advertising), who in turn affect both other influentials and the imitators. On
the other hand, imitators have a time-invariant tendency to adopt through external influence p equal
to 0 and the social contagion parameter g depends on the agents they come in contact with. Moreover,
the adoption process of imitators does not affect the choice of influentials. The mathematics of this
type of diffusion mechanism is the following:

influentials: 4O = |:p1 +q, Fl(f):l[l - Fl (z‘):| (10)
imitators: dijU) = { Pytay [w () +(1=w)- F, (;)]} [1 ~F, (;)] (11)

with the subscripts 1 and 2 referring respectively to influentials and imitators; » denotes the relative
importance that imitators attach to influentials’ versus other imitators’ behaviour (0= <1). When w is
equal to ¢ — with 6 the proportion of influentials in the total population (IN) —, the influentials’ and
imitators’ behaviour have the same effect (ze. weight) on the other imitators’ choice. When w> 0,
imitators care much about the decision to adopt taken by influentials, while w<¢ means that imitators
are more affected by the decision undertaken by their “counterparts”. In our simulations, the
proportion of influentials is non-deterministically selected among the N agents, but they are selected
with higher probability among people (7. rural households) with the highest degree. A stochastic
process is introduced by supposing that each node s =1, ..., N of the network is classified as influential
with probability p; equal to:
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_g._S
p=97 (12)
arg
Obviously, in the correspondent SD model, where the homogeneity and perfect mixing hypothesis
stands, such modelling choice simply consists in defining two different stocks of adopters: one with (1

— O)N imitators and the other with AN influentials.

In the simulated case, § = 0.15, and 6 scenarios are simulated: for £,, equals to 4 and 8, w varies equal
to one-fifth of 6, 6, and five times 0 — vz, respectively w = 0.03, w = 0.15, w = 0.75. The adoption
fraction is set 7 = 0.02 for imitators and 7/ = 0.1 for influentials, and the time-invariant tendency to
adopt p = 0.01 for influentials and O for the imitators. Such diffusion process was tested for all the
three types of network (viz. RND, BA, SC) described before, while the hypothesis at the basis of each
simulated mechanism was also modelled in the equivalent SD model. Each one of the 6 scenarios
accounts for 20 simulations per type of network, for a total of 61 simulations per scenario: 20 for
RND, 20 for BA, 20 for SC and 1 for the deterministic Bass model simulated through a SD-based
approach. In this way, our simulations statistically embrace the stochasticity due to the process of
networks creation and discrete diffusion.

5.2.4., Software environment

The simulations were implemented in the MATLAB-Simulink © computing environment. For SD
simulations, the stock-and-flows model was created by using Simulink, while specific MATLAB scripts
for the agent-based diffusion models and for generating the networks were developed. The scripts for
network formation were firstly ran in order to generate pools of graphs to use with the agent-based
diffusion models. For each type of network — RND, BA and SC — 2 pools of graphs for £,y equal to
4 and 8 were generated, for a total of 3x2 pools of networks. Each pool contains 20 graphs, like the
number of simulations per each scenario of the three cases. Examples of RND, BA and SC graphs
created in MATLAB are represented in Fig. 32. C,, is the computed mean clustering coefficient
(Newman 2010), which quantifies the density of triangles in the graph, representative of tightly
connected subnetworks. It is worth to note that RND graph presented some isolated nodes due to the
random process adopted to generate it, while C,, of the SC network is by far the highest one, as
expected.

Erdos-Renyi network

kmax=11
Kmin=0
Kavger=4.000
Cag=0.003

Barabasi & Albert network

Kmax=63
Kimin=2
Kavger=3.994
Cag=0.0153
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"Social networks™ network

Kmax=31
Kmin=1
Kavger=3.914
Cog=0.5607

Fig. 32. Plots of RND, BA and SC graphs for k,,,=4 and N=1000.

Fig. 33 report the sketch of the SD models employed for the simulated case.
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Fig. 33. Stock and flows diagram developed in Simulink © for Case 3.

5.2.5. Results and discussion

In this section, the results of the simulations performed in the three cases are reported. For each
simulation of each scenario, the “electricity adoption curves” representing the total number of adopters
of electrical connections 4(?) at time #are plotted. The blue curves represent the SD model, while red,
green and yellow curves represent respectively the result of the diffusion process on RND, BA and SC
networks. For the AMB simulations with the three types of network, the dashed lines represent the 20
simulations per scenario, and the bold line highlights the average of the simulations. The results are
then discussed by comparing the stochastic agent-based adoption curves with the related SD model:
for each scenario of the three cases, the min and max time interval needed by the agent-based stochastic
curves to reach 50% and 95% of diffusion are compared, together with the values obtained with the
SD model. The time history of the fraction of the population adopting over time #is also reported, to
highlight some particular patterns due to the subdivision of the population among influential and imitator
households.

Results for £, = 4 and w= 0.03, 0.15, 0.75 are plotted in Fig. 34, left column, while results for £.,= 8
are on the right column.
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Fig. 34. Diffusion curves for Case 3. results for k,,,~4 (left) and 8 (right). From top to bottom, w=0.03, 0.15, 0.75.

The figure confirms that the ABM of the Van den Bulte-Joshi process shows high variability and
stochastic uncertainty. Indeed, the model highly depends on the stochastic process adopted for
“assigning” the role of influential among the N agents in a given network. For w = 0.03, the BA process
reveals the highest variability; indeed, a very low » means a low relative importance that imitators
attach to influentials’ versus other imitators’ behaviour. Therefore, whereby there are many nodes with
very high degrees and the stochastic process assigns the role of znfluential to the nodes with the
maximum degrees, such nodes have low influence on the neighbours marked as imitators, despite their
high contacts. On the contrary, whereby the stochastic process assigns the role of nfluential also to
lowly-connected nodes and the preferential attachment mechanism generates less highly-connected
nodes, some imitators result to be highly connected, speeding-up the diffusion process. This
consideration is valid also for SC networks, even if with less intensity, since the highest degrees of the
networks are lower than the BA ones.

When w = 0.15 (Ze. w = 0, the proportion of influential on the whole population), the relative
importance that imitators attach to influentials’ versus other imitators’ behaviour is always the same.
Therefore, the path of the diffusion process is similar to a classical diffusion model, with RND and
SC processes showing a more stretched behaviour.

When » = 0.75, the RND and the SC (only when 4£,,= 4) processes show an extremely high variability.
For RND processes, this is because the stochastic process of nfluential role distribution may assign the
role of znfluential to some isolated nodes or to nodes with very low degrees. When this situation occurs,
imitators may be mainly, or even only, connected to their “counterparts”, whose behaviour has a low
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% of adopters [people] % of adopters [people]

% of adopters [people]

% of adopters [people]

influence on them, and the diffusion process get considerably lower. The same may occur for SC
processes, because when £,, = 4 the role of influential may be assigned to lowly-connected nodes.

The next Fig. 35 represents the fraction of the population adopting over time # for the 4 diffusion
processes when £, is equals to 4, to highlight some particular patterns due to the subdivision of the
population among influential and imitator households.
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Fig. 35. Adoption fraction over time #when k,,;=4. From top to bottom: SD model, ABM on RND, BA, SC
networks, and w=0.03 (left), w=0.15 (centre), w=0.75 (right).

The trend of the curves for the Bass model confirms the particular “double-waves” pattern generated
by Van den Bulte and Joshi in (Van den Bulte and Joshi 2007). They reflect the “intermediate plateaux”
visible in the diffusion curves of Fig. 34. This pattern is due to a different adoption rate which
characterizes the influentials and the imitators. For »w = 0.75, the imitators ate so much influenced by
influentials’ behaviour that also their diffusion rate ramps up quickly. In agent-based models, the
generation of “double-waves” pattern is not evident due to the stochasticity of the processes, which
have been simulated in discrete time, while the SD model is in continuous time. The rate of adoption
of the agent-based models reflects what shown in Fig. 34 and discussed above.

The comparisons between the min and max time interval needed by the agent-based stochastic curves
to reach 50% and 95% of diffusion, and the values of the SD model are reported in Table 12 — the
values in brackets represent the difference with respect to the Bass model.
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Table 12. Results.

50% 95%
Scenario k=4, w=0.03 min max min max
RND 56 (+6) 81 (+31) 147 (+59) 239 (+151)
BA 42 (-8) 121 (+71) 128 (+40) Not reached
SC 56 (+6) 81 (+31) 156 (+68) Not reached
SD 50 88
Scenario kuyz=4, w=0.15 min max min max
RND 56 (+25) 75 (+44) 139 (+71) 211 (+143)
BA 24 (-7) 35 (+4) 83 (+15) 94 (+26)
SC 35 (+4) 67 (+306) 131 (+63) 203 (+135)
SD 31 68
Scenario kayz=4, w=0.75 min max min max
RND 19 (+1) 177 (+159) 54 (+5) Not reached
BA 9 (-9) 26 (+6) 21 (-28) 54 (+5)
SC 15 (-3) 140 (+122) 36 (-13) Not reached
SD 18 49
Scenario k=8, w=0.03 min max min max
RND 31 (+5) 42 (+16) 53 (+8) 117 (+72)
BA 22 (-4) 52 (+26) 64 (+19) 187 (+142)
SC 23 (-3) 63 (+37) 73 (+28) Not reached
SD 26 45
Scenario kay=8, w=0.15 min max min max
RND 25 (+8) 43 (+26) 48 (+13) 143 (+108)
BA 13 (-4) 19 (+2) 39 (+4) 46 (+11)
SC 19 (+2) 27 (+10) 62 (+27) 87 (+52)
SD 17 35
Scenario k=8, w=0.75 min max min max
RND 29 (+18) 105 (+94) 47 (+21) 209 (+183)
BA 6 (-5) 16 (+5) 11 (-15) 35 (+9)
SC 9 (-2 19 (+8) 20 (-6) 163 (+137)
SD 11 26

The results reflect the trend visible from the diffusion curves described above. When » = 0.03, the
variability is very high for all the three agent-based processes, especially for £, = 4 and the BA curves.
The time interval between the min and the max curves is wider than 2 years when approaching 50%
of the adoption for RND and SC process at £.,; = 4, while it reaches 0.5 years for BA process. When
approaching 95% of adoption, the interval increases a lot for all the processes, from 7 to 9 years. Apart
from the minimum value of BA, the curves are all stretched to the right with respect to the SD model,
and some processes do not even reach 95% of adoption. For £, = 8, the interval between the min
and the max values for the agent-based process is from 1 to 3 years when approaching 50% of
adoption, while it increases till about 5 and 10 years when approaching 95% for respectively the RND
and BA, while the max SC process never reach it.

The scenario with » = 0.15 is the least variable one. Apart from the minimum value of BA, the curves
are all stretched to the right with respect to the SD model, especially for the RND and SC models that
approach 95% of adoption respectively about 12 and 11 years later than the Bass model for £,, = 4,
and about 9 and 4 years later for £,, = 8.

When » = 0.75, the RND process is always stretched to the right with respect to the Bass model —
curves approach 95% of adoption from 5 to 192 months later both with 4., = 4 and 4., = 8 — and
presents the highest variability. When £, = 4, the time interval between the min and the max curves
is wider than 13 and 15 years when approaching respectively 50% and 95% of the adoption. When £,
= 8, such time interval is wider than 6 and 13 years when approaching respectively 50% and 95% of
the adoption. The SC model presents a high variability as well, especially for £.,, = 4: the time interval
between the min and the max curves is wider than 8 when approaching 50% of adoption and infinite
when approaching 95%. When £., = 8, such time interval becomes considerable — z¢. almost 12 years
— only when approaching 95% of the adoption.

88




CASE 3. “Modelling the Forest or Modelling the Trees”

In many simulations, the agent-based processes do not reach 100% of adoption for £., = 4, and the
relative portion of population is numerically relevant in the cases resumed in Table 13. While RND
networks present some isolated nodes that prevent complete adoption, the lacking adoption by some
agents in case of BA and SC network processes is due to the too short simulation horizon.

Table 13. Percentage of adoption at t=241 months for RND, BA and SC processes at k,,,~4

max adoption

w=0.03 w=0.15 w=0.75

RND  93.2-98.0 95.7-97.9 71.6-97.8
BA  79.0-99.9 - -
SC  91.3-99.5 97.2-99.6 75.2-100

In case of k., = 8, the maximum adoption fraction is less than 100% in 16 simulation of SC model,
and the final adopters range from 909 to 1000.
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5.3. Choosing system dynamics

The literature debate between SD and ABMs and the previous case study led to this fundamental
consideration: considering the composition of the social structure and behaviour of each-single agent
through ABMs can lead to significantly different results. On the other hand, the case-study pointed-
out that the results obtained with ABMs are affected also by large variability. Despite being an
interesting result from a “speculative” and stochastic point of view, the practicality of having tens,
hundreds, or even thousands of significantly different scenarios is questionable or even useless if the
final aim is to build more reliable electricity demand scenarios and energy plans. Model calibration can
be a solution, but it would encounter three complications:
—  availability of a huge amount of data for the calibration of the socio-economic network, and
the parameters characterising each single agent;
— knowledge of specific social-science competences for the definition of the social structure of
rural communities;
— questionable applicability and possibility to extend the results to different contexts.

Moreover, these considerations refer only to the simulations of the innovation diffusion process
analysed in case-study, which is just one of the multiple dynamics and multifaced complexities
observed in the electricity-development nexus. E.g. the increase in population would require the ability
to investigate and model the dynamics of growth of social networks, with the introduction of further
parameters, logics, and hypothesis difficult to assess with few data. The lack of access to enough
reliable data when working in rural areas in developing countries adds further difficulties to the agent-
based modelling process.

Given these potential drawbacks of using ABM, the multiplicity of cause-effect relations and
feedbacks, and time-delays characterising the nexus between electricity demand and socio-economic
development, the modelling framework based on SD seems a more appropriate approach. In addition
to this, SD theory offers a modelling process which contributes to a more holistic understanding of a
system and its relevant causalities. Also the literature in the field of energy and development supports
the suitability of SD for modelling complex issues. Alam (Alam 1997) develops a SD-model for
representing and simulating an integrated rural energy system for rural Bangladesh, suggesting that
“System-dynamic methodology appears to be the most appropriate technique for handling complex
systems (pg. 593)”, due to the presence of many feedback loops in farming energy systems. Musango
et al. (Musango et al. 2011) and Brent et al. (Brent et al. 2011) state that SD has the potential for
assessing the sustainability of renewable energy technology in developing countties by accounting the
economic, social, environmental and other factors that might influence the process of energy
technology development. Hartvigsson et al. suggest that SD allows to make a holistic analysis of energy
systems in rural contexts “where the introduction of new technological and social arrangements creates
new interfaces between technology, people and their societal and natural surroundings ((Hartvigsson

etal. 2015), pg. 2)”.

Moreover, the use of SD allows to significantly reduce the amount of quantitative data needed for
building a model. Of coutrse, as for ABMs, also SD-based modelling requires long-term time series
both in model development and validation. On the other hand, the validation process of SD models
offers a more structured and codified procedure which gives much emphasis also to qualitative
information. Especially in rural areas, high-quality qualitative data can often be obtained through case
studies and structured interviews. As rural residents often have a plethora of practical knowledge and
‘know-how’, even though they lack precision, they can be good sources for retrieving estimates on
reference modes and historical trends.

5.4. System dynamics and rural electrification

Application of system dynamics in the energy sector counts hundreds of scientific publications. A
research on Secopus limited to “Energy” as subjected area and “System Dynamics™ as keyword counted
362 papers from 1985 to 2018, whose 350 from 2000 to 2018. According to the Energy Special Interest
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Group (S1G) of the System Dynamics Society!’, developments and applications of system dynamics in
the field of energy are related to: Energy systems technology development modelling, Technology
assessment, Energy impact on sustainable development, Energy economics, Investment analysis,
Energy market modelling, Energy regulations and policies, Environmental impact assessment and
strategic environmental assessment, Renewable energy technology and economics, Energy-
environmental policy design and assessment, Institutional questions related to Energy, Sustainable
Development and Environment Protection.

Although these studies mainly focus on developed countries, applications of SD for analysing the
electricity sector in developing countries are mainly represented by the research works of Isaac Dyner
on the electricity market and penetration of renewable energy technologies in Colombia (e.g. (Dyner
et al. 1995; Bunn and Dyner 1996; Castaneda et al. 2017; Redondo et al. 2018; Zapata et al. 2018)) and
Hassan Qudrat-Ullah on electricity policies in Pakistan (e.g. (Huang and Chen 2005; Qudrat-Ullah
2005; Qudrat-Ullah and Seong 2010)). Electricity production and use in developing countries are also
analysed in the Threshold 21 and :SDG models, two simulation tools based on SD developed by the
Millennium Institute!’ to support comprehensive, integrated long-term national development
planning, and to investigate the interconnections between the 17 SDGs. Applications of SD in the
field of rural electrification is very limited. Steel (Steel 2008) develops a SD model to simulate the
decision-making process of electricity consumers in rural KKenya, while choosing between grid and off-
grid power options at national level. She identifies that low electrical reliability generates a vicious loop,
which causes losses of economic resources and reduces the reliability even more. Jordan (Jordan 2013)
uses SD to compute the electricity demand in a long-term power capacity expansion model for
Tanzania, demonstrating that electricity demand should be treated as an endogenous factor in energy
planning processes, rather than exogenous. Zhang and Cao (Zhang and Cao 2012) analyses the future
energy supply mix for a rural Chinese region by using SD to simulate the nexus between rural economic
development, social development (2iz. growth in population) and energy consumption. Notable
contributions have been done by Hartvigsson in investigating the main dynamics affecting the success
of failure of micro-grid projects in rural Tanzania (Hartvigsson 2015, 2016, 2018, Hartvigsson et al.
2015, 2018a). He focused on the analysis of the endogenous dynamics that affect the viability of mini-
grids through the modelling of feedbacks between electricity availability and the operators’ ability to
increase generation capacity, and between the growth in electricity usage and electricity availability. He
used system dynamics especially as an approach for understanding and improving the system under analysis
from the perspective of the energy utility. Part of this thesis stands on his main findings and adds the
following foci as for the use of system dynamics:

1. asanapproach for characterising the electricity demand-development nexus and its multifaceted
dynamics;

2. for pryjecting long-term electricity demand scenatrios;

3. from the perspective of the energy planner.

This thesis is therefore meant to contribute to the same effort of other researchers focusing on energy
demand models and rural electrification, with the final goal of investigating the socio-economic
complexities of the rural electricity-development nexus, providing a more reliable approach for
modelling long-term projections of rural electricity demand, and planning more reliable off-grid power
systems.

10 https:/ /www.systemdynamics.org/energy

1 https:/ /www.millennium-institute.org/integrated-planning
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Part Il

Modelling in action:

system dynamics and optimisation
models for rural electrification

This part addresses the Objective 2 and Objective 3 of the thesis. It desctibes the
main steps of the system-dynamics modelling process (i.e. conceptualisation,
formulation, calibration, testing and validation), as well as the use and integration of
the model with an optimisation-based approach for off-grid micro-grid systems.
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Chapter

Model Conceptualisation and introduction
to the /kondo case

A map is not the territory
(Alfred Korzybski 1931)

Develop a model to solve a particular problem, not to model the system
(Sterman 2000)

This is the first chapter of the part II of the thesis. In accordance with the issues
emerged in the analysis on the electricity-development nexus and the specific
objectives of the thesis, the dynamic problem to solve and the purpose of the SD
model are defined. A real case-study is introduced as reference for achieving these
purposes and for going further in the conceptualisation and the next stages of the
modelling process, i.e. a hydroelectric-based electrification programme implemented
in the rural community of Ikondo, Tanzania, in 2005 by the Italian NGO named
CEFA Oanlus. It sets the basis for achieving Objective 2, since it allows to identify
the model boundary and key variables, describe their behaviour and the related
reference modes, and represent the feedback loops of the system.
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6.1. Problem statement

Defining the appropriate problem to solve through a model is the first pivotal step of the modelling
process. This allows to include only the relevant dynamics and factors, and finally contribute to
improving the knowledge of the system and the system itself. Different problems do emerge when
electrifying rural communities (viz. the sysze), as defined in the “Problem 2” of the thesis:

1. electricity demand evolves following unexpected paths: How to formulate the dynamics
behind electricity-development nexus and generate reasonable long-term projections of
electricity demand in rural areas?

2. electricity access does not always bring rural development: Why do not we see the
same outcome in terms of electricity evolution patterns and rural development every time
we bring electricity?

These issues are obviously linked and subjected to many complexities:

- low understanding of the socio-economic structure of local rural communities (structural
uncertainty);

- multifaced and multidimensional factors characterise the system (structural uncertainty);

- unknown impact and relevance of such factors on the electricity consumption, and vice
versa (parameter uncertainty).

In turn, and in-line with the “Objective 2” of the thesis (sub-section 1.2), the statement of the problems
allows to define the two-fold specific purpose of the model:

“(i) to assess the fundamental dynamics, variables, and exogenous policies that characterise the electricity-
development nexcus and (iz) generate long-term projections of electricity use to support rural electrification”.

In this work, the attempt to achieve this purpose is pursued by developing and testing a simulation
model based on a real case study, and soft-linking it with a model for generating electricity load profile
and sizing an off-grid microgrid.

6.2. The lkondo case-study

6.2.1. Analysis of the context

CEFA Onlus was founded in 1972 by a group of agricultural cooperatives based in Bologna, Italy. It
promotes initiatives of development, cooperation and international volunteer service. CEFA supports
projects in rural regions of the Mediterranean, East Africa and Latin America to establish sustainable
and durable development processes in local communities. In Tanzania, it promotes interventions in
the fields of water supply, agriculture, agro-processing and rural electrification since ‘80s. In this period,
the NGO has realised three mini hydro-electric power plants in the rural areas of Iringa and Njombe
regions, which currently serve around 10 villages connected to the mini-grids. The main characteristics
of the three projects are listed in Table 14.

The village of Ikondo is the target context of this thesis. According to the latest 2016-data gathered by
CEFA, Ikondo has a population of around 4000 people, divided in approximately 820 households
(HHs). The village is characterised by an agriculture-based livelihood, with around 100-120 Income
Generating Activities (IGAs) started after the electrification of the community in 2005. The power
plant is managed by a local utility, namely Matembwe Village Company (MVC), founded by CEFA
and now independent. It is in charge of managing and operating the plant and the line, defining the
tariff, maintaining the relations with the national utlity TANESCO and the Tanzanian Rural
Electrification Agency (REA). CEFA founded also a local micro-credit utility, namely SACCOS, which
is also in charge of recording and collecting the monthly electricity bills in the village.
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Chapter 6 Model Conceptualisation and introduction to the Ikondo case

Table 14. Hydroelectric plants implemented by CEFA in Tanzania [adapted from (Riva et al. 2017)].

Matembwe

The first power plant was realised in the village of Matembwe, in
the District of Njombe, in 1984. The hydropower plant has a
nominal power of 120 kW and supplies electricity to 2 villages
serving about 700 connections through a 19 km of medium
voltage (MV) distribution network, and it is connected to
TANESCO.

Bomalang’ombe

The second power plant is in the village of Bomalang’ombe, in
the District of Kilolo. The hydropower plant has a nominal
power of 250 kW and supplies electricity to 3 villages serving
about 400 connections through a 17.3 km of MV distribution
network. The plant is not connected to TANESCO. The
availability of electric power determined a rapid development of
the village of Bomalang’ombe, that in these years has seen its
population grow from 5,000 to more than 12,500 inhabitants.

Ikondo

The third power plant was realized in the village of Ikondo, in
the District of Njombe. The hydropower plant was built in 2005
with a nominal power of 83 kW in order to supply electricity to
the village of Ikondo, through 8 km of MV distribution network.
Ikondo is a run-of-river plant, which uses the water provided by
the river Kyepa. The project intended to trigger the development
to the village of Ikondo, a very isolated settlement in the District
of Njombe. In 2016, CEFA completed the upgrade of the power
facility with an additional 350 kW turbine — achieving an overall
generation capacity of 433 kW — and the realization of 47 km of
MYV distribution network that reached other 4 villages in the
immediate surroundings, the Matembwe micro-grid and the
national grid.

6.2.2. Data collection campaign

Data collection on the field was carried out in three time-slot by the author of this work, other
colleagues at Politecnico, and the current Project Energy manager of CEFA. Table 15 reports the main

information regarding the data collection campaigns.
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Table 15. Main information concerning the on-field interviews.

Period Target Villages Aim
. . . . . Defining ranges of income, expenditures;
June 2016 33 Electrified HHs and 78 IGAs in electrified areas  Electrified villages of Gathering inf ion ab he electrici S nd i sion time. 1
Nyombo and Kidegembye athering information about the electricity use (#° and type of appliances, operation time, time
windows, power).
. L . . . Defining ranges of income, expenditures;
September 2017 38Electrified HHs and 251GAs in electrified areas  FElectrified villages of

January 2018

- G experts: (1) the Country Director of CEFA in
Tanzania; (2) The Manager Director of MVC; (3)
the Manager Director of SACCOS; (4)
(Ex)Manager Director of MVC; (5) MVC
accountant; (6) The Manager director of the
Bomalang’ombe Village Company (BVC) and
head of the electricians in Ikondo;

- 31GAs: (1) one grocery; (2) one garage; (3) one
carpentry;

- 2farmers: (1) a land owner; (2) a poor farmer;

- 2women: (1) MVC accountant; (2) House keeper
for CEFA and clothes seller;

- Z2teachers: (1) Head of Matembwe primary
school; (2) Head of Kanikelele’s primary school;

- 1physician at Matembwe dispensary.

Tkondo and Ukalawa

Electrified villages of
Ikondo and Matembwe

Defining hours of working, farming, and for housework;

Defining ranges of connection cost;

Gathering information about the electricity use (#° and type of appliances, operation time, time
windows, power).

Understanding the history of development of Matembwe-Tkondo;

Conceptualising (i.e. identifying the main variables and dynamics) the electricity-
development nexus for Tkondo;

Discussing the structure of the model

Gathering quantitative data about the variables and parameters formulated in the model
(see model calibration in Chapter 8);

Collecting the data of monthly electricity consumption for Ikondo consumers from 2005
to 2017 included.

- The interviews were based on questionnaires composed by both open and multiple-choice questions;

- The interviews to the Country Director of CEFA, The Manager Director of MVC, and The Manager director of the BVC were in Italian;
- The interviews to the other experts, the teachers, and the physician were in English;

- The interviews to the local people, HHs, and IGAs were in English and translated in Swahili by a local Tanzanian interpreter.




Chapter 6 Model Conceptualisation and introduction to the Ikondo case

6.3. Boundary selection and dynamic hypothesis

Defining the appropriate variables of a model entails the inclusion of the fundamental endogenous
dynamics and the exclusion of the negligible ones. Since model conceptualisation does not involve
simulation, this endeavour will be completed with the formulation and testing of the model — the
modelling process is iterative —, but at this stage it allows to simplify the structure and enhance the
knowledge of the analysed system.

6.3.1. Reference modes

Chapter 3 confirms the importance of relying on a “long-term thinking” when dealing with rural
electrification. The electricity-development nexus is affected by delays of years or even decades. Given
the availability of data from the implementation of the Ikondo back in 2005, the time-horizon is set to
13 years. In this time horizon, data and surveys help to define potential reference modes of the system,
viz. set of graphs and other descriptive data showing the development of the problem over time
((Sterman 2000)).

Table 16. Reference modes and insights.

12000 Monthly data of the total -electricity
R consumption of the Tkondo community.
10000 . R
‘e =+ o . " |Electricity consumptions grew from 2005 to
8000 Tt Mt .es . | 2017. Moreover, the growth did not occur
= o AN . .
= Wt et A at a constant rate along all the horizon, and
2 6000 S, . it shows a high level of short-term
= - . S .
£ 4000 . L Sre variability, confirming the presence of non-
= RIS linear dynamics.
2000 | .t
0 =
gen-05 gen-08 gen-11 gen-14 gen-17
Time
T I Reference modes of the growth of business
______________________ activities with electrification. The local
100.00 oo = experts stated that Ikondo had at most 2
_ business in 2005, while it now counts
g 8000 around 100/120 at the 13t year. According
w . .
£ 5000 to this, one expert suggested an Exponential
»n : .
E J growth rate, while data related to the
4 . . .
Z  40.00 /s electrical connections of the local business
— - —Expgrowth suggest a Goal seeking behaviour.
20.00 ‘,-". Linear
----- Goalseeking
0.00
1.00 3.00 5.00 7.00 9.00 11.00 13.00
Time [years]

This indicates an expected substantial
growth of income from the beginning of
2005 to the present days.

“respect to the initial situation, the average income of the village is more
than tripled (the manager director of the MVC)”

“People work more in the evening, while farmers can continue their work
during the night (the manager director of the MVC / BVC /
SACCOS /local workers / local farmers)”

“Before electricity, 50% of students usnally passed the exams at the end of
the primary school, now 67% (Dean of Kanikelele’s primary school)

This suggests an expected growth in the
time spent for doing business and farming
activities during the night hours.

This indicates an expected increase in the
educational attainments for the community
after electrification.
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6.3.2. Mapping key variables and dynamics

The identification of the key variables and dynamics for the Ikondo village are based on the causal
loop diagrams drawn in Chapter 4 for the electricity-development nexus, and modified according to
the local surveys. One dimension of the nexus is not conceptualised, that is the Health and population
dimension. As a matter of fact, despite the clear positive impact of electricity on health, it did not
emerge any significant feedback on electricity demand from the on-field interviews. Moreover, the
complete absence of quantitative information prevented the attempt to include this dimension in the
model structure. As a consequence, the population dynamics are considered and formulated as
€x0genous.

Table 17 reports the “modified” causal loop diagrams for Ikondo, and the related explanation.
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Table 17. Causal loop-diagrams of the main variables and dynamics of the system.
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R7: Propensity to invest — Electrical demand — 1GAs — Average income — Propensity to invest.
Given the possibility to exploit electricity (Access to electricity), good roads (infrastructures)
and access to affordable loans (wicro-credifs), people can invest in electrical machineries
and appliances, set-up a business, increase their income and be more willing to invest
again.

R7: Propensity to invest — 1GAs — Average income — Propensity to invest. Similar as R1 but
concerning all the IGAs that do not require electricity but that were generated as a
result of the increase in community welfare.

R3: Electricity demand — Free-time — 1GAs — Average income — Electricity demand.
Electricity use at home and at work allows to free-up time to use for setting up new
business, increasing income that can reinvest again in more appliances at home or at
work.

B1: IGAs — crowding out — Propensity to invest — IGAs. The growth in the number of
businesses increases also the competition and the saturation of the market for a certain
product or service, reducing the propensity to invest in such activity.

B2: IGAs — crowding ont — Average income — Electricity demand — IGAs. The crowding
out and the competition balance the sales and market turnover, decreasing the revenues
per person, and balancing the use and conception of electricity at home and for
productive purposes.
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Ria: Market supply — Market demand — Market competition — Market supply. The increase
of market supply per effect of electricity (previous loop) has a three important feedbacks
on market demand: (1) people can find locally most of the goods and services that they
were used to buy outside before electrification, decreasing the costs and therefore
increasing their purchasing power; (2) the external demand for goods and services
increases, especially from the villages in the immediate surroundings and by trading; (3)
the market supply of some businesses satisfies the demand for raw materials and
services for some other IGAs. The increase of market demand reduces the market
competition, which in turn encourages more production.

R17b: Market supply — Net revennes — Average income — Market demand — Market competition
— Market supply. The increase of market supply increases the revenues, and so the
average income that can be spent for more demand of goods and services, increasing
the market supply.

B1: Market supply — Market competition — Market supply. This is the fundamental
balancing loop, which controls the market equilibrium between supply and demand.

R2a: Electricity demand — Product innovation [ improvement — Market demand — Market
competition — Net revennes — Average income — Electricity demand. The use of electricity
causes an increase of market demand as a result of product innovation and quality
improvement, increasing the sales, the revenues, and the income that can be reinvested
in more electricity consumption at work or at home.

R2b: Electricity demand — Evening work time — Market supply — Net revenues — Average
income — Electricity demand. The use of electricity for evening lighting allowed local IGAs
to wortk more and increase their sales, the revenues, and the income that can be
reinvested in more electricity consumption at work or at home.

R2¢: Electricity demand — Productivity — Market supply — Net revennes — Average income —>
Electricity demand. The electrification of local production as a result of electricity use (e.g.
electrical milling machines, carpentries, garages) increases the productivity, the sales, the
revenues, and the income that can be reinvested in more electricity consumption at
work or at home.

R3: Average income — Productivity — Market supply — Net revenues — Average income. The
increase in income is partially reinvested in the local business, increasing the
productivity, the sales, the revenues, and the income that can be reinvested again in the
activity.

In all the reinforcing loops R2, capacity building emerged to be an important factor for

improving local productivity.
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R17: Electricity demand — Farming productivity — Income from farming — Average income —>
Electricity demand. Electrical lighting allows people to continue farming activities in the
night (e.g. shelling), increasing their production to sell and the income that can be
reinvested again in the activity.

R2: Market supply — Income from farming — Average income — Average market expenditures
— Market demand — Market supply. The increase of market supply as a result of
electrification (see the loops before) generates a positive spill-over effect also for
farmers because the development of local market of good and services attracts more
external consumers who purchase also local food products. This increases the average
income, the expenditutes, the market demand, and then supply.

R3: Electricity demand — Traditional sources of energy — Marfket demand — Market supply —
Average income — Electricity demand. The use of electricity reduces the need to purchase
and consume the expensive kerosene. This increases the households’ purchasing
power, the demand for other goods and services in the local market, the local supply,
and then the income that can be reinvested in more electricity consumption at work or
at home.

B1: Electricity demand — Energy cost expenditures — Average market expenditures — — Market
demand — Market supply — Average income — Electricity demand. This balancing loop
prevents the unlimited growth of electricity use. Increasing the electricity demand (v7z.
connections and consumption), the expenditures for electricity increase, decreasing the
households’ purchasing power, the demand for other goods and services in the local
market, the local supply, and then the income that can be reinvested in more electricity
consumption at work or at home.
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R17: Electricity demand — Electrical lighting — Daily-time exctension — Productive use of free-time
— Average income — Electricity demand. Electrical lighting allows people to extend the
day, continue farming activities and working in the night, and potentially increase the
income that can be reinvested in more electricity consumption at work or at home.

R2a: Electricity demand — Electrical lighting— Evening housework — Daily burden of housework
—> Productive use of free-time — Average income — Electricity demand. Electrical lighting allows
local women to postpone some housework during the evening, and then exploiting
more daily time for continuing farming and working, which in turn allows to potentially
increase the income that can be reinvested in more electricity consumption at work or
at home.

R2b: Electricity demand — Efficiency (completion rate) of housework — Daily burden of housework
—> Productive use of free-time — Average income — Electricity demand. Electricity at home can
facilitate and speed-up some daily housework (e.g. the electric rice cooker decreases
time for cooking), allowing local women to exploit more daily time for continuing
farming and working, which in turn allows to potentially increase the income that can
be reinvested in more electricity consumption at work or at home.

Ria | R1b: Electricity demand — Electrical lighting — Study time at school | Study time at home
— Education attainments — Productivity — Average income — Electricity demand. With
electricity at schools / at home, evening studying time allows the pupils to continue
studying after the sunset, increasing their educational attainment. This contributes to
enhance people’s skills and know-how in the long-term — the delay is marked with the
two dashes on the causal link —, which is an important driver for increasing
productivity, and then income that can be reinvested in more electricity consumption
at work, at home, or at school as well.

R2: Electricity demand — Quality of education — Education attainments — Productivity —
Average income — Electricity demand. Electricity at schools allows to install and use a local
pump, preventing the students to lose a lot of time for gathering the water in other
wells in the villages, increasing their educational attainment.

R3: Average income — Education attainments — Productivity — Average income. Local experts
confirmed that the percentage of income spent for education is a significant fraction
of the total amount. According to the literature (Huisman and Smits 2009), the income
level can be considered a stimulus for increasing the local educational level of children,
which has a long-term feedback on their future income.




Chapter

Formulation of the simulation model

Specification of the mathematical structure and
decision rules

A point of view, or a model, is realistic to the extent that it can be adequately interpreted,
understood, and accepted by other points of view
(Churchman 1973)

Constructing models, hence, is a process in which expert consensus regarding the feedback structure
is essential to the credibility of any given model

(Scholl 2001)

This chapter reports the formulation of the simulation model: its mathematical
specification of its structure and decision rules —i.e. the conversion of the feedback
diagrams to algebraic, differential, and integral equations. The simulation framework
is based on Vensim DSS ® software. Its formulation follows an iterative process
based on the questionnaires implemented in the field, the information shared with
the local experts, and the analysis and re-redefinition of the structure by the modeller.
The final structure of the model is defined by the main dynamics highlighted in the
conceptualisation process, and it counts 11 main sub-models: IGAs formation and
Income, Market demand, Marfket production and revenues, Agricultural revenues, Population, Time
savings, Edncation, IGAs electricity connections, HHs electricity connections, Household appliances
diffusion, and Electrical Energy consumption. The model simulates the impact of electricity
access and use on the socio-economic development experienced in Ikondo, and the
related feedback on the community’s electricity consumption. The contents of this
chapter are included in the proceedings of the 36th International Conference of the
System Dynamics Society:

Riva F, Investigating and modelling endogenous socio-economic dynamics in long-
term electricity demand forecasts for rural contexts of developing countries. 36% Int.
Conf. Syst. Dyn. Soc., Reykjavik, Iceland: System Dynamics Society; 2018.
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7.1.  Modelling framework

According to (Sterman 2000), the formulation of a simulation model considers the specification of its
structure and decision rules — viz. the conversion of the feedback diagrams to algebraic, differential,
and integral equations —, as well as the estimation of the parameters’ value and the initial conditions.

In this study, the simulation framework is based on Vensim DSS ® software developed by Ventana
Systems. For each discrete time-step d7, the software solves all the equations that describe the dynamic
behaviour of the modelled system. Thus, the time bounds, and the integration method represent
fundamental settings.

Table 18. Time bounds, and integration method set in Vensim DSS ®.

Time unit (t,,) Week
Time step (At) 0.25
Initial time (Week) 1
Final time (Week) 679.25
Integration method Euler:

1+dt
Y, .= J. xedt =Y, +x, At

2

The initial and final time correspond to the January 2005, and the last month of available data at the
end of December 2017.

7.2. Structure formulation

The structure of the model is based on dynamics described in the previous chapter through the
conceptualised causal loop diagrams. Its formulation followed an iterative process based on the
questionnaires implemented in the field and the information shared with the local experts of CEFA.
The formulation of the final structure of the model is based on 11 main modelling blocks (or sub-
models): IGAs formation and Income, Market demand, Market production and revennes, Agricultural revennes,
Population, Time savings, Education, IGAs electricity connections, HHs electricity connections, Household appliances
diffusion, and Electrical Energy consumption.

The model is composed by around 80 levels (viz. integral equations), 260 auxiliary variables (viz.
algebraic and differential equations), 140 parameters, and 8 look-up tables. For formulating individuals’
behaviour, to deal with the classical SD-hypothesis of perfect mixing and homogeneity within the
levels, the agents of the model are represented as households divided in two classes: low income
households (LI HHs) (i.e. who rely only on agricultural-based activities) and high-income households
(HI HHs) (i.e. who rely both on agricultural-based activities and work in an IGA). This assumption,
discussed and reasoned with local CEFA’s experts, does not consider a very small fraction of the
population, viz. the very poor people who live on alms, and very rich traders or large-land owners.

The model simulates the impact of electricity access and use on the socio-economic development
experienced in Tkondo’s community. It then evaluates the feedback on the community’s electricity
consumption by generating long-term evolutions of the electricity load of the entire community along
the simulated time horizon. The next sub-sections are devoted to the definition of the main equations
formulated for the most relevant 7 modelling blocks out of the total 11 ones. The remaining sub-
models are reported in Appendix B. The time-dependent auxiliary variables are explained for each
equation; unless otherwise specified, time-independent vatiables are all calibration parameters.

7.2.1. IGAs formation and Income

The dynamics of IGAs formation is composed by a cascade (or aging chain) of two 1s-order delays
(Fig. 36). One delay occurs during the setting-up of the IGAs — e.g. material procurement and
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Chapter 7 Formulation of the simulation model

authorization —, and the second is due to the time delay required for dismissing a fraction of such
activities that go bankruptcy.

Time to dismiss

Initial number of IGAs activity
financing IGAs
O P Financed IGAs o 1GAs o -
setting-up of bankruptcy rate of
new IGAs IGAs ‘\
. e /
R

. ) fraction of

Time for failing IGAs

setting-up the

IGA

Fig. 36. Cascade of two 15t-order delays representing the IGAs formation process.
IGAs() = j (setting-np of new IGAs(t) — bankruprey rate of IGAs(1) ) - dt

Financed IGAs(1)
setting-up of new 1GAs(t) = ' ) (1 3)
Time for setting-up the IGA

Financed IGAs(t) = j (financing IGAs(t) — setting-np of new IGAs(t)) - dr
t

The setting-up of new 1GAs contains also a positive inflow of 2 IGAs, respectively a tailor shop and a
carpentry, implemented by CEFA in January 2017 (information based on data on IGAs electricity
connections). Local surveys suggested that the dynamics of financing IGAs takes place through two
different mechanisms (Eq. (14)):

(1) by emulation: people ask for a loan without a proper market analysis, but just emulating their
peers who open a business;

(2) by market inspection: people do a proper market analysis before opening a new activity. The
analysis concerns the investigation of the #pe and number of activities potentially needed in the
local market.

Sinancing IGAs@#)=1GAs by emulation(t)+1GAs by market inspection(?)
IGAs by emnlation(t)|=setting-up of new 1GAs(t) - fraction of IGAs started by imitation (14)
IGAs by market inspection(t) = Perceived needed nesw 1GAs(t) - Fraction of feasible IGAs(?)

The variable Perceived needed new 1GAs(?) depends on the operation of the local market and the level of
local demand unsatisfied by the local supply (sub-section 7.2.3), while the variable Fraction of feasible new
IGAs represents the fraction of potential IGAs to be financed based on people’s lag in perceiving
electricity benefits — electricity access was provided in February 2005, one month after the initial time
set in the simulation —, their available time for dedicating themselves to a new business — modelled as
a logistic function —, and their financial means (Eq. (15)).

Fraction of feasible 1IGAs(t)=Fraction of affordable IGAs(t) - Time-based propensity(t) - Electricity availability effect(t)
1
lto [/é—fime (T-sigmoid — Total weekly available fz'me)]
e

Time-based propensity(t) =

Electricity availability(t) a (15)

Electricity availability effect(t) = |
; Time to perceive electricity benefits

0 o ¢ <1 month
[rof potentially affordable IGAs connections if t 21 month

Electricity availability(t) = {

Where the fr of potentially affordable IG.As connections is a calibration parameter that reflects the fact that
some IGAs could be unable to pay the electrical connection, due to two main reasons: (1) distance
from the electrical junction boxes, and (2) unaffordability. These IGAs could potentially benefit form
electricity through spill-over effects caused by a more buoyant market situation. Indeed, as stated by a
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local expert, “some IGAs are not connected, but locate themselves close to the connected ones, hoping
to attract more clients and exploiting some diffuse light”. T-sigmoid and f-#ime are calibration parameters
of the logistic function. The variable Fraction of affordable IGAs represents the fraction of IGAs that
people can afford based on two financing mechanisms: (i) access to micro-credit, and (ii) self-financing.
In Ikondo, micro-credit is managed by the same electricity utility (i.e. SACCOS), and supported by
CEFA. The financing through micro-credit is the product between the fraction of people who ask for
a loan and the amount of income they are willing to spend to pay the debt back, divided by the
investment, the interest (i.e. 2% according to SACCOS), and the payback period. The remaining people
who self-finance their activity are supposed to pay all the investment at once.

People’s income is directly affected by the cost for opening a business. For the HI and LI class, the
income variable represents the households’ financial availability within each time unit Az (viz. 1 week).
It increases or decreases based on the changes in the financial inflows that people experience every
week, and it follows the dynamics of a 1s-order negative feedback with explicit goal (Sterman 2000)
(Fig. 37).

external HI income external LI income

HI farming income f LI farming income> /J
" ’// - //;
\-\ / Tnitial FIT income . / Initial LI income
\ yd .
P . L
<o &‘/ = I Income 3 e p- [IIncome
Change in HI v Change in LI —
income / income ‘ T
. e b4
\ S~ - e
/ \ o / \\
/ \ /
/ \ \\\
Net HI profit ITME STEP LI savings TIME STEP

Fig. 37. Stock-and-flow diagrams for HI Income and LI Income variables.

For both the household categories, income depends on people’s revenues from their agricultural
revenues and from relatives’ remittances. HI HHs have also a net income inflow given by the profit
from their business activity (Gross HI profit, sub-section 7.2.3) minus their debt that they incurred with
the micro-credit utility. LI HHs do not have a business but tend to save part of their financial
availability needed to self-finance the investments for opening an IGA (Eq. (16)).

J- dHI Income(?) _ J.dz‘
Change in HI Income(?)

1
(external HI income(t)+Net HI revennes(t)+HI farming income (1)) — HI Income(?)

Change in HI Income(t) =
At

(16)

J' dLI Income(t) _ Idt
Change in LI Income(?)

I3

(excternal 11 income(t) +1.1 farming income(t) — LI savings ) — LI Income(?)
At

Change in LI Income(t)=

7.2.2. Market demand

Local demand for goods and services is the main driver for the operation of a rural market (Riva et al.
2018a). Demand is based on the households’ expenditures within each time unit Az In accordance
with local surveys, the household expenditures on a weekly basis are equal, in absolute value, to the
Income(t) variable. This hypothesis stands on these two considerations:

1. People living in rural and poor areas do not have the propensity to save money (confirmed also
by the local experts);
2. Potential savings are already accounted in the Nez HI profit and LI savings variables of Eq. (10).

Households” expenditures in the local market represent a fraction of the total weekly expenditures.
The Fraction of market expenditures is therefore the difference between 100% and the fraction of income
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spent for the following main local assets: food, healthcare, education, and electricity. Expenditures for
healthcare and education are exogenous constant inputs, while food and electricity expenditures are
endogenous and time-dependant variables. The review of the electricity-development nexus highlights
that electricity use in local shops may introduce changes in rural households’ expenditures for goods
and services, due to improvements in products' quality and innovation, which increases the demand
per-capita. This dynamics is formulated for both LI and HI households as a decrease in the fraction
of expenditures for food, in favour of an increase in the percentage of income spent for local goods,
and services modelled as a 1-order negative feedback with explicit goal (Eq.(17)).

dElectricity effect on expenditures(?)

. , - : = J.z'mrmxe of market expenditures(t) - dt
| max increase of week expenditures — Electricity effect on expenditures(?)

increase of market expenditures(t) = fr increase of market expeditures - Trend in connected IGAs(?) (17)

Electrici t ditures(t,
Fr income for food(t) = initial fr income for food — J. ey et on espendires() “dt

1

Time to adapt market expenditures

The Fr income for food cannot decrease below a certain minimum such that the total expenditures for
food within each time unit Azis not lower than the initial expenditures for food at time /=7 — i.c. the
fraction of income spent for food decreases as long as households increase their income without
decreasing the absolute value of expenditures for food. The Trend in connected IGAs represents the
fractional rate of IGAs that get connected to the micro-grid (sub-section 7.2.4).

The household expenditures in the local market multiplied by the number of households and divided
by the average price of goods give the total household demand, of which just a percentage can be
potentially satisfied locally due to lack of resources (e.g. specific building material) (Eq. (18)).
Fr of market expenditures HI(2) - HI Income ()

Average price of goods(?)
L1 demandi) = Fr of market expenditures L1(2) - LI Income(?) a8

Average price of goods(?)
Total potential HHs demand(t) = HI demand|(t) - HI households(t) + LI demand|(t) - LI households(?)
HHs demand(t) = fraction of feasible HHs market supply - Total market demand(?)

HI demand(t) =

The Average price of goods is a time-dependent variable because it highly depends on the level of local
supply of goods and services (Fig. 38, Eq. (19)). Local interviews confirmed that the availability of local
products as a consequence of the opening of new IGAs allows people to spend less money and time
for travelling towards other markets outside Ikondo.
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Fig. 38. Stock-and-flow diagram for the Average price of goods variable.
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dAverage price of goods(?) _ Idf
) change in average price(?)
Potential average price(t) — Average price of goods(t)
Ar
Potential average price(t) = fr unsolved demand|(t) - Excternal price + (1~ f unsolved demand|(t)) - 1ocal price (19)
Unsolved market demand|(t)
Total market demand|(t)

change in average price(t) =

[r unsolved demand|(t) =

External price = Local price - externall local prices factor

The frr unsolved demand variable represents the fraction of the total market demand that cannot be
satisfied locally (sub-section 7.2.3). The local market does not supply just the households demand, but
also three other classes of customers:

1. The /local electricity ntility M1'C: according to its charter, MVC has to reinvest almost 50% of its
revenues within the local community. The model captures this practice as a market demand of
the utility for local supply and goods (U#ility demand).

2. The IGAs: some 1GAs supply themselves with raw materials from other local business — 7.
the market costs of some activities represent revenues for others. This dynamics is constrained
by the lack of some specific raw materials, and modelled as 1s-order negative feedback with the
calibration parameter max fr of internal IGAs supply set as upper limit (Eq.(20)).

Market costs(t) )
1GAs demand(t) = ———————————— fr of internal IGAs supply(?)
Specific supply cost(t)
d(fr of internal IGA (1
J‘ Wfrof internal IGAs supphy) = j' change in internal IGAs supph(t) - dt (20)

, max fr of internal IGAs supply — fr of internal IGAs supply(?)

o setting-up of new IGAs(2) . o

change in internal IGAs supply = 1GAD) - [frincrease in internal IGAs supply
s(t

The Market costs and the Specific supply cost variables represent the sum of all the costs and the
average specific cost of the local IGAs at time £ respectively. These variables are time dependent
because the size of the market changes with time and because the specific cost of goods and
services changes with the electrification of the village.

3. The external costumers: local surveys suggest that the electrification of the village and the
consequent expansion of the local market have been pivotal drivers for the attraction of external
costumers living in the villages nearby Ikondo. This dynamics is modelled as a 1st-order positive
teedback (Eq.(21)).

J d(Excternal markel expenditures(t) = J.clmﬂge in external demand(t) - dt
, External market expenditures(?)

change in external demand(t) = fi change in external market demand - perceived trend of market supply(t) (21)
External market demand(t) = Excternal market expenditures(t) - Local price(?)

The perceived trend of market supply is the smoothed trend of the variable representing the market
supply at time 7 perceived by people (sub-section 7.2.3).

The Total market demand of the village is the sum of the households’ demand (HHs demzand), the demand
of the utility (Utility demand), the demand of the local IGAs (IGAs demand), and the demand of external
costumers (External demand).
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7.2.3. Market supply

The dynamics behind the supply of goods and services in the local market are driven by the number
of local IGAs (already described in sub-section 7.2.1), the productivity of each single business, and the
time of operation. In the field of economics, the representation of the production of goods and services
relies on the so-called “production function”, which relates the physical output O of a production
process to quantities of inputs X;, X5, ..., X

n*

O=f(X, X550 (22)

Different forms of production function exist, from the classical linear function — with application to
low income rural areas (Schmitz 1965) —, to more complicated models. The Cobb-Douglas is a
particular functional form of the production function, widely used to represent the technological
relationship between two or more inputs and the total output that can be produced by those inputs. It
takes the name from the work of Charles Cobb and Paul Douglas almost one century ago (Charles W.
Cobb and Paul H. Douglas 1928). In its generalised form, the Cobb-Douglass function is proportional
to the product of 7 terms representing the inputs of the production, each one to the power of their
output elasticities (Eq. (23)).

o=A[]x} 23)
i=1

where /; is the output elasticity of input X, which measures the responsiveness of the output Q to a
change in X. A is the total factor productivity, which measures the portion of output Q) not explained
by the input quantities X:. An application of Cobb-Douglas low-income contexts is proposed by
McArthur and Sachs (McArthur and Sachs 2013), who adopt it to represent the agricultural-based
production of rural African economies as a function of physical capital, labour, and land area as
production inputs.

In this study, a formulation based on Cobb-Douglas is used to express the market production of local
IGAs as the product between the working time and the productivity of each IGA. The latter is
expressed in terms of units of goods produced by each IGA in the unit of time (hours), based on the
following production time-varying inputs:

—  HI Income, as a proxy of the physical capital.

—  Primary education level.
The total factor productivity A, is not constant as well, but it is a function of the electrification rate
of the business activities and the effect of capacity building activities, as stated by CEFA’s experts.
According to local surveys, changes in productivities do not immediately follow changes in the
production inputs, but after a time lag due to people’s hesitation to new investments and the physical
time to adapt their business to increase in the available capital and new knowledges. Eq. (24) below
reports the mathematical formulation of the market production.

HI Income(t)
Initial HI Income

I educational level(?) jwdﬂ

Initial educational level

) &-1GAs income

HI capital effect(t) = [

I education effect(t) = (

A,z (t) = Reference factor productivity - (1 + electrification effect(t) + S-capacity building e/am'f@/)
electrification effect(t) = fraction of EE-reliant IGAs(t)- f-¢l (24
Potential productivity(t) = A,,, .., (2)- HI capital effect(2) - I education effect(z)

J- Actual productivity(t) B 1 J.dl
Potential productivity(t) — Actual productivity(t) — Time to adapt productivity

t 2

Actual production per IGA() = Actual productivity(t) - Actual operating hours(z)
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The fraction of EE-reliant IG.As variable represents the percentage of IGAs that are highly dependent on
electricity use (sub-section 7.2.4), while the variables related to the educational level are proxies of the
educational attainment of primary education in the village, which benefited from access to electricity
(see Appendix B). The expression of Actual production per IGA for each time #is indeed comparable to a
Cobb-Douglas formulation (Eq. (25)) with increasing returns of scale (i.e. the sum of the exponents is
greater than one), which means that the output increases by more than proportional respect to changes
in its inputs.

Actual production per IGA oc Actual operating hours" - (HI Imoﬁze)g'l(mr o (I educational level )HM (25)

The product between the Actual production per IGA and the total number of IGAs gives the value of
Total market supply at each time # while its backward discrete derivate (represented with the #abla symbol
V) represents the trend of the market supply at time # perceived by people used in the previous sub-
section for defining the External demand (Eq. (26). The backward discrete derivate is evaluated along
the time unit 7 =7 week, and not along the time-step A7 in order to make the model more robust to
potential integration errors, but at the expense of the accuracy of the derivate.

Total market supply(t) = Actual production per IGA(1) - IGAs
v, (Perceived total market supphy(?))

3
u (26)
Vv, (Perfez'wd total market mpp/y(l)) = Perceived total marfket supply(t) — Perceived total market supply(t — ¢, )

preceived trend of market supply(z) =

J-( d(Perceived total market supply(t)) j _ 1 J~ &

Total market supply(t) — Perceived total market supply(t) Time to perceive martket dynamics

’ t

The variable Actual operating hours represents the working time of each IGA, which is based on the
market demand, the households’ available time, and the extension of evening working time made
available by electricity use for lighting. This variable is modelled as a 2nd-order information delay due
to:

1. The time needed to form expectations about potential changes in market dynamics. When the
market supply is not balanced by market demand, local businesses adapt their production
accordingly. This dynamics requires a certain amount of time to be perceived by people
working in local activities.

2. The time needed to change operating hours. As soon local businesses perceive a potential
change in the working time, they need time to implement it. Direct observation in the field
suggests that their response to potential changes in the working time varies depending on
weather it is a potential increase or a necessary reduction in their operating hours. Indeed,
people are more willing to increase their working time, and reluctant to reduce it.

<Available operation time>

Feasible change in
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market dynamics>
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Perceived potential change m o

: Actual operating hours
operating hours
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change in
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bt in operating hours

operating hours>

Fig. 39. Stock-and-flow diagram for the Actual operating hours.
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j d(Perceived potential change in operating honrs(t)) | Idf
change in perceiving op. time(z) p

?

Potential change in operating hours(t) — Perceived potential change in operating hours(?)

change in perceiving op. time(t)=
Time to perceive market dynamics

change in operation time(t)

J.( d( Actual operating hours(t)) J _ I dr

Feasible change in operating honrs

(27)

change in operation time(t) = —— — - - - - - -
Time to perceive increase in operating hours if Feasible change in operating hours > 0
Time to perceive decrease in operating hours if Feasible change in operating hounrs < 0
F1 if Perceived potential change in operating hours(t) > 0
Feasible change in operating honrs(t) =
F2 otherwise
F1=MIN (Per:ez'ved potential change in operating hour(t), Available operation time(t) — Actual operating honrs(1))

F2 = MAX (Perceived potential change in operating hours(t), — Actual operating hours(?))

The variable Available operation time represents the maximum number of hours that people can spend
for working (see Appendix B). The Potential change in operating hours is related to the weekly balancing
between local supply and demand. If they differ, the Unbalanced market demand generates a potential
change in the IGAs production (Eq. (28)).

Unbalanced market demand(t) = Total market demand(t) — Total market supply(?)
Unbalanced market demand(?)

IGAs@)
Potential change in 1GAs production(?)

Potential change in IGAs production(z) = (28)

Potential change in operating hours(?) =

Actnal productivity(t)

When the value of the Unbalanced market demand is positive, it represents an unsolved market demand

(Eq. (29)), which represents the main driver for creating new expectation about the creation of new
1GAs.

Unsolved market demand(t) = MAX (Uﬂbd/ﬂmgd market demand(?), 0)
) Unsolved market demand(?)
Theoretical needed new IGAs(t) = (29)
Actual production per IGA(?)
J~ d(Perceived needed new 1G.As(t)) B 1 de

Theoretical needed new 1GAs(t) — Perceived needed new 1GAs(2)  Time 1o perceive market dynamics

1 12

The limiting factor between the market supply and demand gives the quantity of goods and services
sold in the local market, the total market revenues, and the households’ net profit.
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Selling rate(t) = MIN (Total market supply(t) — Total market demand|t))
Market revenues(t) = Selling rate(t) - Local price(t)

Market costs(t) = Total market supply(t) - Specific supply cost(z) (30
Market profits(t) = Market revenues(t) — Market costs(?)

Martket 752,
Gross HI profit(t) = Market profis())

HI households(?)

The Specific supply cost variable represents the mixed average production cost faced by all the IGAs.
Direct observation in the field suggests that the local costs changed after electrification, especially for
electricity-reliant (EE-reliant) IGAs, that can now save money by using electricity (e.g. electricity-
driven milling machines instead of diesel-based mills). The variable is the weighted average between
(i) an ideal mean cost supposing no electricity use, and (ii) the ideal mean cost of the EE-reliant IGAs.
The mean cost of the EE-reliant IGAs is expressed as the production cost without electricity use
multiplied by a decreasing factor which considers the effect of electricity use on production costs.

Specific supply cost(t) = supply cost without EI(2) + supply cost with EE(2)

supply cost without EE(2) = production cost withont EE -(1— fraction of EE-reliant 1GAs(2)) 31)
supply cost with EE(1) = production cost with EE - fraction of EE-reliant IGAs(2)

production cost with EE = production cost without EE - Fractional decrease in cost given by EIX

The Local priceis the product between the Specific supply costand a constant calibration parameter, namely
price to cost factor, which represents the mark-up ratio. This is of course a simplification, useful to set
price is a quick and easy way (Sterman 2000). Nevertheless, in developing local markets, the dynamics
of behind the equilibrium, or market-clearing, price (viz. when supply exceeds demand, prices fall)
does not always work, as Barnum and Sabot (Barnum and Sabot 1977) found out for urban Tanzania.

7.2.4. 1GAs electricity connections

According to the CASE 3. “Modelling the Forest or Modelling the Trees”, the diffusion of electrical
connections can be potentially explained as an innovation diffusion. Indeed, as suggested by Sterman,
“The spread of rumours and new ideas, the adoption of new technologies, and the growth of new
products can all be viewed as epidemics spreading by positive feedback as those who have adopted
the innovation “infect” those who have not ((Sterman 2000), pg. 323)”. Local surveys indicated two
important supporting factors of the diffusion of electrical connections for both IGAs and HHs:

1. The peer- and the awareness-effect, which are the same drivers considered in the Bass
formulation (Bass 1969; Sterman 2000);
2. The financial availability, which is a constraint for people who cannot afford electrical
connections.
In particular, the affordability of the electrical connection represents (i) a barrier for users living too
far from the nearest electrical junction box, or (i) e time-delay for getting the connection. Given these
considerations, the formulation of the IGAs connections dynamics reflects a “corrected” Bass model
in order to consider the income effect (Eq. (32)).
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Unconnected 1IGAs(t) = IGAs(t) — (Coﬂﬂmed IGAs(t) + IGAs to be m;metled(l))
Potential IGAs to be connected(t) = Unconnected IGAs(t) - fraction of potentially affordable IGAs connections
1GAs decision to connect rate(t) = I1GAs awareness(t) + 1GAs social contagion(t)
IGAs awareness(t) = Potential IGAs to be connected(t) - awareness effect IGAs
1GAs to be connected(t)+Connected IGAs(t)
IGAs

1GAs social contagion(t) = Potential IGAs to be connected(t) - social contagion IGAs -

I d(IGAs 1o be connected(t)) B sz‘
IGAs decision to connect rate(t) — IG.As connection rate(t) — bankruptey of IGAs to be connected(t)

t

32)

bankruptey of IGAS to be connected(t) = bankruptey rate of IGAs(2) - fr of IGASs to be connected(t)
1GAs connection rate(t) = IGAs to be connected(t) - affordable connections by IGAs(2)
J- d(Connected 1GAs(2)) _ I 7

IGAs connection rate(t) — bankruptcy of connected IGAs(t) -,

?

bankruptey connected IGAs(t) = bankrupty rate of IGAs(#) - fr of connected IGAs(2)

The variable affordable connections by IGAs(?) is a time-dependent variable, and represents the average
percentage of connections that each IGA can afford at time # It is expressed as a fraction of the HI
Income that all the households composing an IGA are willing to invest in the connection (Eq. (33)).

HI Income(t)
_ IGAs per HH . .
affordable connections by IGAs(t) = - Willingness to pay for connection for IGAs (33)

IGA connection cost(2)

The IGA connection cost(z) is a time-dependent variable due to the changes in the tariff scheme
implemented by CEFA over the years. Indeed, both data and interviews with the experts confirmed
that before 2006-2007, the cost of connection was much lower and based on a fixed-price mechanism.
After that period, the tariff was increased and customised for each household based on the proximity
to the nearest electrical junction box (Eq. (34)).

IGA connection cost in period I if  'TIME < Duration of period I for IGAs
IGA connection cost(t) = (34)

GA connection cost in period I elsewhere

fr of IGAS to be connected bankruptey rate of IGAs “fr of connected
IGAs to be 4 IGAs
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Fig. 40. Stock-and-flow diagram for the IGAs connections process.

Notably, the Initial number of IGAs are “innovators” of the diffusion process, viz. already determined
to be connected and set as initial value in the IGAs fo be connected stock. The product between the
Connected IGAs variable and the calibration parameter fraction of EE-reliant IGAs respect to connected 1G.As
provides the number of Connected EE-reliant IGAs and Connected not EE-reliant IGAs, to identify the
large energy-consuming IGAs (e.g. milling machines, carpentries, garages) from the others,
respectively. Another hypothesis is that the connection rate does not account for the time needed for
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physically extending and installing the connection, since it is negligible if compared to the time delay
due to affordability reasons.

7.2.5.

HHs electricity connections

The formulation of the electricity connections diffusion for households is based on a two-level chain,
one for each HHs class. Each level contains the same equations formulated for IGAs connections.
Two are the main differences:

i

1.

The proximity of the HHs to the grid is not a fixed parameter, but it is a time-dependent
variable. Indeed, contrary to the IGAs, which were almost all set-up after electrification, the
village planning of the houses dates back to years before electrification. Although local surveys
suggest that some families decided to move and rebuild their house close to the mini-grid, many
households are still waiting for the extension of the network to their neighbourhoods. This is
formulated as a 1s-order negative feedback with explicit goal (viz. the Toal access to electricity =
1), and the discrete Trend in HH connections multiplied by the effect of internal migration is as a
proxy of the network expansion.

=jdf
t

network expansion(t) = (Total access o electricty — fr of HHs dlose to the grid(2)) - household approach(?)

j d( fr of HHs close to the grid(?))
network expansion(z)

household approach(t) = Trend in HH connections(t) - internal migration effect

v, (Tota/ connected HH&(;‘)%
t//t

(35)

Trend in HH connections(t) =

Total households (t)
Total connected HHs(#) = Connected HI HHs(2) + Connected LI HH (#)

The “innovators”, viz. the households already determined to be connected, are just a fraction
of the initial HHs, not all the initial population.

As for the formulation of the IGAs connections, the affordable connections by HI and LI HHs are
tractions of the HI Income and LI Income that the HI and I.I HHs to be connected are willing to invest in
the connection.

HI ] o be affordable connections
HI house! connect by HI HHs
N\ L / fraction of initial HI HHs
/ 10 be connected e /’
Poteatial HI HHs to be Hl HH“‘W[}X Connected HI HHs
o omected HI HHs decision to | comeete HI HHs
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Fig. 41. Two-level chain of the HHs connections.
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7.2.6. Household appliances diffusion

The local surveys and the literature confirm that the financial availability is the key factor for the
decision to buy new electrical appliances, followed by people’s willingness to imitate their peers. E.g.,
in their Residential Energy Model Global (REGM) applied to India, China, South East Asia, South
Africa and Brazil, Ruijven et al. (van Ruijven et al. 2012) and Daioglou et al. (Daioglou et al. 2012)
represent the diffusion and ownership of household electric appliances through a logistic (or S-shaped)
curve, as a function of household’s expenditures (considered in their work as a proxy of income). Also,
Louw et al. (Louw et al. 2008) suggest that the use of electricity by low-income South-African
houscholds is a cost-based decision based on income, especially regarding the ownership of electrical
appliances, which depends on prices of devices and people’s affordability.

With this precondition, the sub-model concerning the diffusion of electrical appliances among
households is based on Hartvigsson et al. (Hartvigsson et al. 2018a), who represent the diffusion of an
electrical appliance 7 in a Tanzanian rural village as the product between the average income and a
parameter, namely “diffusion rate”, which represent the expected ownership of appliance 7 per unit of
income. In accordance with this, the diffusion of each appliance is formulated as a 1s-order delay with
a saturation limit, which represents the maximum number of appliance / that each family can
realistically own (Eq. (30)). Fig. 42 represents an example for the diffusion of lights for HI households.

J- d(App/Z'aﬂ[ei (l)) _ J- &
appliance; purchasing rate(t)

t

Potential appliance, — Appliance, (2)

i Potential appliance, < saturation,
purchasing rate, ()= Time to purchase appliances (36)

0 elsewhere

Potential appliance, = Income(t) - diffusion rate,

time to purchase

HI Lights
rchasing rate -

”'pl.l

) HI Lights VAN
Potential HI Lights > _ e “-._saturation limit
ol . o LIGHTs
diffusion l‘até LIGHTs HI T.ncomc

Fig. 42. Stock-and-flow diagrams for the diffusion process of HI Lights.

The classes of appliances modelled in this work are based on two surveys to 67 houscholds with access
to electricity carried out in 4 electrified villages in the Ikondo-Matembwe area in May 2016 (Nyombo
and Kidegembye) and September 2017 (Ikondo and Ukalawa). The main 6 classes of appliances owned
by at least 3% of the survey households are resumed in Table 19 below.

Table 19. Main classes of electrical appliances owned by the interviewed people in Ikondo-Matembwe area.

Electrical appliance class Ownership
Lights (indoor and/or outdoor) 100%
Phone chargers 84%
Stereos 67%
TVs 48%
Irons 24%
Decoders 4%

7.2.7. Electrical energy consumption

This sub-model contains the formulation of the energy demand of the entire Ikondo community. The
total electricity consumption of the entire community is given by the sum of the electricity demand of
households and IGAs.

Total electricity demand(t) = Total HHs electricity demand(t)+ Total 1GAs electricity demand (¢) (37)
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Household electricity demand

For HHs, the Total HHs electricity demand in each dt (Eq. (38)) is the summation of the electricity
consumption of the two income groups (viz. HI and LI HHs), which is in turn defined as the
summation of the product between the number of connected users within each income group
(Connected HH)), the number appliances owned for each class (Appliance), their nominal power (Electric
Powery), their functioning time within each dz (Functioning time for appliance)), and the power plant reliability
(E/ Reliability).

2
Total HHs electricity demand (t) = ZCMﬂm‘ed HHs () - HHs electricity consumption(s)

j=1
. (38)

HHs el. load(t) = ZApp/iame . (t) - Electric Power, - Functioning time for appliance, (t) - EI Reliability
i=1

With Connected HH;and Appliance; defined in sub-sections 7.2.5 and 7.2.0, respectively; Electric Power; for
all the 6 classes of appliances is a calibration parameter, and the E/ Reliability is a parameter that
considers the unmet load due to unexpected outages. The Functioning time for appliance; a time-dependent
variable, which depends on the elasticity of houschold electricity demand. Indeed, the electricity-
development nexus and the model conceptualisation suggest that the electricity load in the 47 is an
aspect that might be influenced by people's income and electricity cost. People adjust their electricity
consumption by limiting the functioning time (i.e. the time of use) of their appliances, especially the
most energy consuming ones. The formulation of this dynamics follows a 1s-oder delay applied to
both connected HI and LI HHs, since the hypothesis is that people can potentially adjust their
electricity consumptions once received the bill every month (for the sake of clarity, Eq. (39) is
formulated for households in general, but the same equations both apply for HI and LI HHs).

[ change in time to use electricity(t) = Electricity-Income elasticity - change in fr income for el. use(?)
Frincome for el. use(t)— Fr income for el. use(t — time to adapt electricity use)
Frincome for el. use(?)

change in fr income for el. use(t) =

Fr income for-el, use(t) = HH electricity bill(?) (39)
Tncome(t)
d(Functioning time for appliance(?)) _ 1 [dr

s Functioning time for appliance(t)- fr change in time to use electricity(s)  time to adapt electricity nse

Where the time to adapt electricity use parameter represents a lag of at least 4.25 weeks (i.e. 1 month), and
the Electricity-Income elasticity is a calibration parameter representing households’ load sensitivity to
changes in the electricity cost respect their income. HHs electricity bill is the variable representing the
cost of electricity in the unit of time #, for the connected HHs. It is calculated as the monthly fixed
electricity fee (converted to a weekly basis in accordance with the #) plus the product between the
electricity consumption of each household in the time unit #, (HHs ¢/. load) and the variable electricity
fee. The two components of the fee are derived from MVC’s data and introduced as look-up tables,
apart from the missing values from 2005 to 2010 set as calibration parameters (Fig. 43).

Variable electricity fee RESIDENTIAL Fixed electricity fee RESIDENTIAL

02 1000 !
[TZS/Wh]

[TZS/Week]

Calibrated

0 0 !
1 [Weeks] 675 1 [Weeks] 675
Fig. 43. Look-up tables for the two components of electricity fee in local currency (TZS) for domestic customers.
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Chapter 7 Formulation of the simulation model

Productive electricity demand

For IGAs, the Total IGAs electricity demand in each df is the summation of the electricity consumption
of the two types of IGAs (viz. EE-reliant IGAs and the others), which is in turn defined as the product
between the number of users of each type of 1GAs (Connected 1GAs), the related electric energy
consumption in the #, (IGAs electricity demand,), and the power plant reliability (5/ Reliability).

2
Total IGASs electricity demand (1) = Z Connected 1GAs (1) - IGAs electricity demand (1) El Reliability (40)

J=1

With Connected IGAs; defined in sub-section 7.2.4. IGAs electricity demand; is a time-dependent variable,
which depends on the elasticity of productive electricity demand. Indeed, electricity consumption
represents a significant share of the total production costs especially for EE-reliant IGAs. Local IGAs
adjust their electricity consumption based on changes in the electricity tariff. The formulation of this
dynamics follows a 1s-oder delay applied to both EE- and notEE-connected 1GAs, with the same
hypothesis that local business can potentially adjust their electricity consumptions every month (for
the sake of clarity, Eq. (41) is formulated for “IGAs” in general, but the same equations both apply
for EE- and notEE-connected 1GAs). The Variable ¢l. fee for IGAs is detived from MVC’s data and
introduced as look-up table.

e 2 IGA . demand) [ change in IGAs electricity fee (t) - Electricity-Fee elasticity for IGAs
r change in el. demand(t) =

time to adapt electricity use
Variable el. fee for IGAs(t) — V ariable el. fee for IGAs(t — time to adapt electricity use)
Variable el.fee for IGAs(2) (41)

Jr change in IGAs el. fee(t) =

d(Time of productive electricity nse(?)) 7

t 12
IGAs el. load(t) = El.Power 1GA - Time of productive electricity use(?)

change in electricity use for IGAs(?)

The parameter E/Power IGA is different between the two types of IGAs and they are calibration
parameters. Also the variable change in electricity use for IGAs(?) is different between notEE-reliant IGAs
and EE-reliant IGAs. For notEE-reliant IGAs, it is modelled as a co-flow of the working hours (viz. the
Actual Operating hours of Eq. (27)), with the hypothesis that the utilisation of electricity in these IGAs
increases proportional to the working hours but decreases proportional to the change in the electricity
fee (Eq. (42)). For EE-reliant IGAs, the utilisation time of electricity is much lower than the working
hours — they are characterised by very low coincidence factors (Hartvigsson and Ahlgren 2018) —, and
it changes based only on variations in the electricity fees (Eq. (43)).

{f/mﬂge in el.use for not EE-reliant IGAs(t) = fr of operating time with electricity - change of el. utilisation(?)
(42)

change of el. utilisation(t) = (szznge in operation time(t)+ fr change in IGA el. dewaﬂd(zj)

change in el.use for EE-reliant IGAs(t) = fr change in EE-reliant IGA el. dermand(t) (43)

The calibration parameter f of operating time with electricity indicates the fraction of the working hours
during which electricity is used. The sum between the fixed electricity fee for productive use and the
product between the IG.As el. load and the variable electricity fee gives the IG.As electricity bill for the two
types of IGAs. As for the HHs electricity fees, the two components of the tariff are derived from
MVC’s data and introduced as look-up tables, apart from the missing values from 2005 to 2010 that
are introduced as calibration parameters.

Local utility revenues

The sum of the expenditures for electricity consumption and the new connections for both households
and business activities (Eq. (44)) gives the total E/ utility revennes, which was introduced in sub-section
7.2.2 for defining the market demand.
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HI HHs el. use expenditures(t) = HI HHs electricity bill(z) - Connected HI HHs(2)
LI HHs el. use expenditures(t) = 1.I HHs electricity bill(t) - Connected 1.I HHs(?)
HHs connections expenditures(t) = HH connection cost()- (LI HHs connection rate(t) + HI HHs connection mfe(f))

(44)
EE-reliant IGAs el. use expenditures(t) = EE-reliant IGAs electricity bill(t) - Connected EE-reliant IGAs(2)
notEE-reliant IGAs el. use expenditures(t) = notEE-reliant IGAs electricity bill(t) - Connected notEE-reliant IGAs(2)
IGAs connections expenditures(t) = 1GAs connection cost(t)- IGAs connection rate(t)
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Chapter

Model Calibration

Assessing behaviour reproduction and uncovering
hidden flaws and dynamics

Sherlock Holmes: “1t is a capital mistake to theorize before one has data”
(Arthur Conan Doyle 1887)

In God we trust. All others must bring data
(Edwards Deming 1900s)

As for the future, your task is not to foresee, but to enable it
(Pour ce qui est de 'avenir, il ne s'agit pas de le prévoir, mais de le rendre possible)
(Antoine de Saint-Exupery 1948)

This chapter reports the calibration of the simulation model, in order to (i) verify the
ability of the model to replicate the observed historical behaviour of the system, (ii)
uncover model flaws and hidden dynamics, and (iii) identify a reasonable set of
parameters’ values most consistent with relevant the knowledge of the system. The
calibration is performed by relying on historical data on the electricity consumption
in the Ikondo village, and on local interviews to define the search space for all the
calibrating parameters. The Powell algorithm is used to run the optimisation. The
Markov-chain Monte-Catrlo (MCMC) is then used to explore the appropriateness of
the calibration of the model, and to assess potential good proxies of the confidence
bounds of the calibrated parameters. The contents of this chapter are included in the
proceedings of the 36th International Conference of the System Dynamics Society:

Riva F, Investigating and modelling endogenous socio-economic dynamics in long-
term electricity demand forecasts for rural contexts of developing countries. 36% Int.
Conf. Syst. Dyn. Soc., Reykjavik, Iceland: System Dynamics Society; 2018.
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8.1. Calibration settings

Model calibration is a fundamental step of the formulation of a SD-model. According to Sterman
(Sterman 2000), model calibration should not be used to assess the validity or confirming the model,
but for building confidence in it. Accordingly, it is here employed for assessing the structure and the
uncertainty of the model, since it aims at:

@) verifying the ability of the model to replicate the observed historical behaviour of the system;

(i) uncovering model flaws and hidden dynamics;

(i) identifying a reasonable set of parameters’ values most consistent with relevant the

knowledge of the system, that could be employed for further applications of the model.

The model calibration needs appropriate and reliable data. According to Jay W. Forrester (Forrester
1980), three types of data are necessary to develop the structure in models: #umerical (e.g. time series),
written (e.g. operating procedures, archival materials), and mwental data (e.g. people’s impressions, their
perception of the system). In this study, numerical data are used for comparing model behaviour, while
mental and written data are employed to set the search-space of the optimisation.

8.1.1. Historical time-series

The lack of reliable and available data is one of the most critical challenges for tracking the progress
and supporting the research and new investments in rural electrification. In this context, CEFA has
been implementing a data recording system of electricity use information from the beginning of 2005,
when the Tkondo plant started producing electricity. For accounting purposes, 2 main types of time-
series data have been tracking:

(1) Number of metered electricity connections;

(2) Monthly electricity consumptions of all the connected users.
Each data point contains the information (viz. “data items”) resumed in Table 20. The villages of
Isoliwaya, Kanikelele, Nyave, and Ukalawa were electrified through the extension of the transmission
line implemented in 2016, and they are not considered in this work since they are outside the boundary
of the system. Similarly, also CEFA’s facilitates and cooperatives are excluded due to data scarcity, a
different accounting mechanism of electricity use, and because their operations do not cope with the
dynamics of market supply described in sub-section 7.2.3. Schools, churches, administrative offices are
excluded as well since they are outside the boundaries of the analysis.

Table 20. Data items for CEFA’s time-series data
Households

Consumer type 1GAs
(Public services)
Ikondo

(Isoliwaya)

Villages (Kanikelele)
(Nyave)
(Ukalawa)

Raw data were processed to fix some issues observed in the main database — Table 21 reports the main
problems and the implemented solutions. The final panel database contains 524 data points. Fig. 44
and Fig. 45 report the time-series data of monthly electricity consumptions and the number of metered
electricity connections for both the HHs and the IGAs. The solid black lines, whose values vary from
0 to 100% (the holes in the lines indicate 0% of data availability), represent the percentage of data
available each month after the data processing.
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Chapter 8 Model Calibration

Table 21. Data processing rules of CEFA’s database.

Issue Condition Solution
> 1 consecutive missing datum —  REMOV AL of the datum
Missing data points MEAN VVALUE between the first
= 1 isolated missing datum —  (two) preceding and the first (two)
consecutive value(s)
data referring to 2 different months are The aggregated records SPLITTED
Aggregated records recorded all in 1 month ~  INHALFin two monthly values
the value of electricity demand for a month
. 0 .
Monthly outlier differs more than 75% from the first . REMOVAL of that monthly

preceding and the first consecutive datum
available value
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* Metered connected HHs DATA + Metered connected IGAs DATA
Fig. 44. Data on monthly electricity demand for HHs Fig. 45. Data on monthly electricity demand for IGAs
[129 data points] (top) and on the number of HHs [131 data points] (top) and on the number of IGAs
connected to the mini-grid [137 data points] (bottom). connected to the mini-grid [133 data points] (bottom).

8.1.2. Optimisation Controls

Model calibration is a mathematical optimisation, which finds the combination of the parameters,
which minimises the difference between model output and historical data. Two are the main controls
to set in order to perform an appropriate optimisation: the Optimiser and the Search-space.

Optimiser

The settings of the optimiser define the mathematical procedure to employ in Vensim DSS ® in order
to search the optimal solution. The Powell’s algorithm is used, based on a numerical procedure
proposed by Michael ]. D. Powell (Powell 1964). It consists in an iterative algorithm, which starts from
an initial point (i.e. an initial set of values for all the parameters to optimise) through a set of initial
search-vectors, and proceeds towards bi-directional minimisations along each vector and their linear
combinations until final convergence.

Search-space

The definition of the search-space for the optimisation guarantees that the final solution is found
within feasible values of each parameter to calibrate. The model counts 139 constant parameters, 123
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of which are calibrated through the definition of an appropriate search-space based on the literature,
local interview, modeller’s choice. For each calibrated parameter, Table A 6 in the Appendix C reports
the search-space and the related source and reference. The acronyms LB and UB stand for “Lower
Bound” and “Upper Bound”, respectively.

8.1.3. Payoff Definition

In the calibration process of a dynamic model, the payoff is a number that summarizes the goodness
of a simulation respect to the available data. Let us consider the optimisation of a model through the
calibration on one variable respect to the corresponding single time-series: for each iteration £
performed by the optimiser, the model is simulated with such set of calibration parameters’ values
corresponding to that iteration 4. During each simulation 4, the difference between the historical
datum and the simulated value of the corresponding model variable is computed for each time 7 along
with any possible likelihood term 4, then squared and divided by the scale parameter weight. The
opposite of the sum of all such differences computed along the entire horizon T gives the payoff of
the simulation £ (Eq. (45)). The final iteration performed by the optimiser is the one with the minimum
value of the payoff that determines the end of the calibration.

! model vane(t) — datum(t 2
poff, =Y (e vaneft) — datumfy))

=1, dr weight

(45)

The scale parameter weight is a fundamental element to choose if the optimisation of a model is
performed on mores variables and corresponding time-series that have different orders of magnitude.
E.g., performing an optimisation on a variable which varies between 0-1 and on another one which
varies between 0-10000 means that a small change in the 0-10000 variable will far outweigh the 0-1
variable. So, a weight of the order of 10000 will bring the 0-10000 variable into the same range as the
0-1 one. The scale parameter allows therefore to define the following formulation of the payoff in case
of calibration on multiple variables »=7,...,1” and corresponding time-series (Eq. (46)):

2

L | (odel vane, (2) — datwm, 1,
paveff, == 2. ( . .

] a, (46)
=1, dr 1=1 weight,

The weight and the likelihood term a can be express arbitrarily and in different ways. In this study, they
are formulated in the way described in Eq. (47), which makes it possible to estimate the weight as a
calibration parameter.

StdDen, 2
2 (47)
a,=lIn ( StdDev, )

weight,, =

Where the S7dDev is standard deviation of the measurement error for the variable », which is estimated
by the model itself during the optimisation process.

In accordance with the 4 historical time-series data introduced in sub-section 8.1.1, 4 model variables
are employed for calculating the minimum payoff, as reported in Table 22.

Table 22. Data and variables used for the definition of the calibration payoff.

Data used compared to Model variable

Metered IGASs electricity demand DATA  Since the availability of IGAs electricity demand data is not always

(Fig. 45-top) 100%, data are compared to the time-dependent variable Partial
IGAs electricity demand obtained by the product between the Tota/
IGAs electricity demand variable (sub-section 7.2.7, Eq.(40)) with the
time-seties Availability IGAs demand DATA (as cleatly visible in Fig.
45-top) containing the values of data availability for electricity
demand of local businesses.
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Chapter 8 Model Calibration

Metered connected IGAs DATA Local surveys pointed out the presence of shared meters for

(Fig. 45-bottom) business. The Metered connected IGAs D.ATA time-series is therefore
compared to the time-dependent variable Metered IG.As obtained by
multiplying the variable Tofal connected IGAs (sub-section 10.2.9, Eq.
(32)) with the calibration parameter fraction of sharing meter.

Metered HHs electricity demand DATA Since the availability of HHs electricity demand data is not always

(Fig. 44-top) 100%, the data are compared to the time-dependent variable Partial
HHs electricity demand obtained by the product between the Toza/
HHs electricity demand variable (sub-section 7.2.7, Eq.(38)) with the
time-seties Availability HHs demand DATA (as clearly visible in Fig.
44-top) containing the values of data availability for electricity
demand of local households.

Metered connected HHs DATA Local surveys did not point out the presence of shared meters for
(Fig. 44-bottom) residential connections. Data are compared to the Tozal connected
HH (sub-section 10.2.9, Eq. (35)) variable.

8.2. Results and discussion

Fig. 46 reports the calibrated output of the Tozal electricity demand variable, which represents the total
monthly consumption of electricity by the Ikondo community. From the result, different interesting
considerations about the model behaviour and dynamics can be reported.

1. First, the initial months show the trend typical of a S-shape diffusion curve, but with a short ear/y-
stage of adoption. This suggests that electricity access is not perceived as an actual innovation by
people, but something that they already know, desire, and are willing to pay for. This conclusion is
supported also by the relatively high calibrated values of awareness effect parameters, as discussed in
Table 26.

2. Second, the change in the trend after the first 20/25 months caused by the change of the tariff
scheme of the electrical connections has a significant impact on the electricity consumption. This
indicates the importance of connection cost on the diffusion of the connections.

3. Third, also the electricity tariff emerges to be a definitively significant determinant of the electricity
demand, as clearly visible with step-changes in the figure. In accordance with (Hartvigsson 2018),
this confirms the importance of affordability when planning rural electrification strategies.
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Fig. 46. Main output of the model: Total electricity demand.

The next sub-sections aim at assessing the ability of the model to qualitatively and quantitatively
reproduce the actual behaviour of the system, in order to build confidence in the model results, and
uncover hidden dynamics and model flaws. The SD-based literature (Sterman 1984, 2000; Bala et al.
2017) proposes various statistical measures for assessing the correspondence between model and data
of the calibration. In this work, two approaches were followed:

i Descriptive statistics to assess the point-by-point fit;

. Experts and data assessment, by comparing the end-time values of some simulated variables with

the experts’ opinion and data.

125



8.2.1. Behaviour consistency with data

Many common metrics exist for measuring the error between a data series on # observations and the
model output over the relevant time horizon. Table 23 reports the ones employed in this study.

Table 23. Metrics used for assessing the fit between model output and data

Metrics Formulation and meaning
. L — — 2
Coefficient of determination 5 1 & (X - X, ) (sz -X, )
. R?>=|=. z .
7 g Sd S

This measure represents the ability of a regression to explain the variability
of data.

— 0% indicates that the model explains none of the variability of the
response data around its mean;

— 100% indicates that the model explains all the variability of the
response data around its mean.

This parameter cannot be used to predict the error, since it does not assess
the causality between dependent and independent variables and the
goodness of fit.

Mean Absolute Percent Error ”

1
MAPE =~
MAPE p Z:; X,

X, . —X

m,i d,i

This measure is a proxy of the accuracy of a forecast. It presents some
drawbacks due to the fact that its interpretation is undefined for values
closed to 0 (Kim and Kim 2016), it gives more penalty on positive errors
than on negative errors (Hyndman and Koehler 20006), and assumes that
percentages of variable X make sense.

Theil’s Inequality The Theil statistics is an elegant decomposition of the Mean Square Error
UM, S, UC (MSE), which is an absolute measure of the average of the squares of the
errors:
13 2
MSE =~ (X, -X,,)

i=1

As for the variance, the MSE has the disadvantage of put more penalty to
large errors much than small ones and, being an absolute value, it does not
provide an immediate perception of the error. The Theil’s Ineguality provides
an easily interpreted breakdown of the MSE by dividing it in 3 main

components:
(}—(2 _ sz ) It is a measure of the bias that occurs when
UM = ” d the model output and the data series have
MSE different mean.
(; 2_, 2) It is a measure of the unequal variation that
U =" 4 occurs when the model output and the
MSE data series have different trends.

\/_2 It is a measure of the wnequal covariation that
2-(1=~R" |-s, -5,

c occurs when the model output and the
U= data series are imperfectly correlated, viz.
MSE they differ point by point

The previous statistics were calculated for the 4 variables used for defining the payoff and discussed
in Table 22, indicating a good statistical fit between model and data, increasing the confidence in the
model output.
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Table 24. Statistics applied to calibration results

Graphical fit Statistics Comment
R2=0.99 The model explains almost all the variability of the response data around its mean.
Metered IGA . . L g .
erere i e The model presents a high level of accuracy, since the variability of data around the mean of the model output is
50 —— MAPE = 4.4%
= very low.
375 " UM = 0.00 NO bias .
~— The model output and the data series have the same mean.
I 5 .
€ @ - . NO unequal variation
- US = 0.00 ? ‘
-~ The model output and the data series have the same trend.
12.5 -
ONLY unequal covariation
0 7 The error term is exclusively attributable to an error term with zero mean, which makes the model output and the
O 6l 1z 18 244 305 366 427 4% 549 610 671 uc=1 data series to differ point by point. In particular, the model is not able to reproduce the “step-trend” of data that
Ilistorical e soasssmmssseasasamsase el S;:ujluwd in this case is probably due to the process of IGAs formation that is not continuous in time.
It is an UNSYSTEMATIC error since the purpose is not to study cycles in the data.
Rz =0.61 The model explains more than half of the variability of the response data around its mean.

Metered 1GAs electricity demand

F000
5250

3500 . '. ..“' <UL . S

kWh/Month

1750

0 61 122 183 244 305 366 427 488 549 610 0671
I'ime |Week]|
Simulated

MAPE = 21.2%

The model presents a quite low level of accuracy, since the variability of data around the mean of the model output
is not negligible. This means that the model is not able to capture the variability of data. This issue can be solved
by (i) introducing and calibrating a random error term, or (2) by formulating the dynamics that can explain such
variability. Potential reasons of this variability can be:
—  Intra-season variabilities, due to the dependency of people financial availability with the harvesting period;
—  Daily load variability, due to the unpredictability of people’s habits and use of electricity within the 24
hours.
This high level of variability is not a systematic error, since the purpose is not to study such variabilities in the
long-term forecast, and because intra-days uncertainties are specifically modelled through a stochastic load profile
generator in Chapter 10.

UM =0.01

NO bias

The model output and the data series have the same mean.

Us =0.04

NO unequal variation
The model output and the data series have quite the same trend.

Uc=095=1-08

ONLY unequal covariation

The error term is exclusively attributable to an error term with zero mean, which makes the model output and the
data series to differ point by point.

It is an UNSYSTEMATIC error since the purpose is not to study cycles in the data.
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R2=10.99

The model explains almost all the variability of the response data around its mean.

MAPE = 3.6%

Metered connected HHs

The model presents a high level of accuracy, since the variability of data around the mean of the model output is
very low.

300
UM = 0.00

225

NO bias
The model output and the data series have the same mean.

Us =0.00

NO unequal variation
The model output and the data series have the same trend.

Households
o
=3

75 p—

Uc=1.00

1 98 195 292 389 486 583 680
Time [Week]

Historical =sccezassczasaacszassacas Simulated

ONLY unequal covariation

The error term is exclusively attributable to an error term with zero mean, which makes the model output and the
data series to differ point by point. In this case, the “step-trend” in the data is probably due to the fact that the
physical process of grid extension — viz. the constructions of further junction boxes in unelectrified areas of the
village — is obviously not continuous in time. Once a junction box is built, the houses in its surroundings can start
asking for a connection (if they can afford it). The other households that live farther have to wait that a new
junction box is built, and this probably creates a wait with no further connections (viz. the flat side of the steps).

It is an UNSYSTEMATIC error since the purpose is not to study cycles and short-term trends in the data.

R2=10.88

The model explains much of the variability of the response data around its mean.

Metered HHs electricity demand
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The model presents a quite low level of accuracy, since the variability of data around the mean of the model output
is not negligible. This means that the model is not able to capture the variability of data. The potential reasons and
solutions are the same mentioned for electricity demand of IGAs.

Moreover, the model underestimates the household demand in the first weeks of the simulations. Although this
does affect the total electricity demand of the community (the IGAs demand is much higher) and the purpose of
the model, the causes of this deviation respects to data are worth to be investigated. The problem is probably
intrinsic to the perfect-mixing hypothesis of system dynamics, which cannot capture the presence of some actors
(e.g. very rich people) who behave differently from the average. Although these actors represent a very small
fraction of the population, at the beginning of the simulation their different behaviour could be predominant since
they are reasonably the first people to be connected and to consume electricity. In accordance with the CASE 3
presented in Chapter 5, ABM would have probably captured this dynamics. On the other hand, this consideration
is valid just for the first simulation time period, and the hypothesis of perfect-mixing remains reasonable over the
entire simulation horizon.

UM =0.00

NO bias

The model output and the data series have the same mean.

Us =0.09

240

NO unequal variation
The model output has almost 10% different trend.

Uc=090=1-0Us

ONLY unequal covariation

The error term is attributable to an error term with zero mean, which makes the model output and the data series
to differ point by point.

It is an UNSYSTEMATIC error since the purpose is not to study cycles in the data.
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8.2.2. Behaviour consistency with the experts’ knowledge

The second approach for assessing the ability of the model in reproducing the data considered the
comparison of the output values of some variables against the knowledge of the experts and the data
gathered during the surveys carried out on September 2017 in Ikondo. Table 25 reports the vatiables
analysed and the potential range of values indicated by the experts at the end of the simulation time,
and at the week corresponding to September 2017 in the simulation. The same table reports also the
values of the variables simulated by the model, some graphical representations, and the related
discussion.
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Table 25. Comparison between model’s output, local data and experts’ assessment.

t=665.75 t=679.25
Variable Range Simulated Range ﬁro'nf Simulated Graphical representation and discussion
from data experts’ opinion

69

68
e o The daily time available for farming reflects
8 the trend of the number of HHs connected
Total daily farming hours for LI = 6 to the grid (Table 24). As soon as HHs get

3-8] 6.85 o .

connected, they start exploiting more time

HHs [Hours/ day]

HI Income /§/Week/HHs)

LI Income /§/ Week/HHs)

[3.1-133.8]12

0.9-154]

30.66

9.08

63
64
0 200 400 600
Time (Week)
—— 'CALIBRATED'
40

$1(Week *Touscholds)

Time (Week)

—— HIIncome:'CALIBRATED'  ------- LIIncome :'CALIBRATED'

0 200 400 600

for continuing their farming activities in the
evening.

After electrification, both HI and LI
farmers experience a drop in their weekly
income. This is due to the initial high level
of unsatisfied market demand, which
creates a backlog of perceived needed new
IGAs. To set-up all such initially desired
IGAs, the initial level of debt that people
take out with the micro-credit utility, or the
savings needed to set-up the business, is
high. Once reduced the backlog, income

starts increasing.

12According to S. Pachauri in (Filippini and Pachauri 2004), data of households’ expenditure is considered more representative of the economic activity of people than households’
income: income data are hard to obtain for developing countries, since poor households do not pay income tax, many subsistence activities are not monetised and during surveys
people often hide part of their income. Moreover, this is in line with the modelling hypothesis such that on a weekly basis, households’ expenditures are equal to their income inflow.
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IGAs [IGAs]

Fraction of HI HHs /-]

Fraction of LI HHs /-]

IGA income ratio HI HHs /-/
farming income ratio HI HHs /-/
farming income ratio LI HHs /-]

Fr income for food HI /-/

Fr income for food LI /-]

40 - 120

[0.28 - 0.42]

[0.52-0.78]

[0.40 - 0.95]
[0.05-0.50]
0.75-1]

[0.05 - 0.30]

[0-0.7]

104

0.36

0.64

0.73
0.24
1.00

0.24

0.52

1GA
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Time (Week)
——  'CALIBRATED
.
05
0 200 400 600
Time (Week)

——  Fraction of Hl HHs :'CALIBRATED'

Dmnl
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0.7 [
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03
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Time (Week)

—— Frincome for food HI :'CALIBRATED'

Frincome for food LT :'CALIBRATED'

The trend of the variable clearly shows an
initial rapid growth of IGAs, due to the
initial high level of unsatisfied market
demand, and therefore a backlog of needed
IGAs. Once reduced the backlog, the
process of IGAs formation follows a
smoother path. The step visible around
time 100 weeks is due to an exogenous input
of 2 IGAs from CEFA.

The fraction of HI HHs follows the same
trend of the IGAs variable, while the
fraction of LI HHs is its 1’s complement.

At the beginning of the simulation hotizon,
HHs experience a drop in their income to
take out the debt with the micro-credit and
save money to invest in IGAs. In this time-
frame, in order to keep the demand for food
at the same initial level, HHs increase their
fraction of income for food expenditures at
the expense of lower market expenditures.
It then starts decreasing due to the gradual
increase of HHs’ expenditures for new
and/or improved goods and services at the
expense  of lower  relative food
expenditures.
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Fraction of external/internal /-/
farming revenues

fr of connected IGAs /-]

[0.5-0.9]

[0.67-0.80]

0.59

0.79

0.9

08

0.7

Dmml
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—— 'CALIBRATED'

08
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400
Time (Week)

400
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This variable represents the ratio between
the farming turnover from the external and
internal customers. As clearly visible, the
external demand of agricultural products
represents more than half of the total
demand. At the beginning of the simulation
horizon, HHs experience a drop in their
expenditures to take out the debt with the
micro-credit and save money to invest in
IGAs. In this time-frame, the external
demand for food product is therefore
largely predominant. It then decreases
below the initial level, due to an increase of
the HHs’ income and expenditures for food
per effect of the increasing socio-economic
development triggered by electricity. It then
starts increasing again due to the gradual
increase of HHs’ expenditures for more
goods and services at the expense of lower
relative food expenditures.

This variable shows an interesting
behaviour. It initially increases rapidly due
to the affordable cost of the connection —
viz. IGAs get connected almost at the same
time they set-up. With the change of the
connection tatiff, the process of IGAs
connection become slower than the process
of IGAs creation, causing the negative
trend displayed in the figure. As soon as the
number of IGAs reaches the plateau, the
backlog of IGAs to connect starts reducing,
inverting the sign of the derivative.



Fraction of market expenditures

HI /-]

Fraction of market expenditures LI

7

fr of HHs close to the grid /-/

Final/initial income ratio HI /-]

Final/initial income ratio LI /-/

[0.05 - 0.60]

[0.1-0.6]

~50%

>3

0.35

0.15

27%

1.52

5.95
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Time (Week)
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""""" Fraction of market expenditures LI :'CALIBRATED'

fr of HHs close to the grid
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——  'CALIBRATED'
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Time (Week)

——  Finalinitial income ratio HI :'CALIBRATED'
------- Final/initial income ratio LI : '"CALIBRATED'

At the beginning of the simulation horizon,
HHs experience a drop in their market
expenditures to take out the debt with the
micro-credit and save money to invest in
IGAs. In this period, in order to keep the
demand for food at least at the same initial
level, the demand for market products and
services decreases. For LI HHs, it even goes
to zero for some months. It then starts
increasing again due to the gradual increase
of the socio-economic development
triggered by electricity, and to the
improvement and innovation of market
products.

This variable reflects the trend of the
number of HHs connected to the grid
(Table 30). As soon as HHs get connected,
the micro-grid expands accordingly. This is
the only variable, which takes on a value
significantly different from the expert
opinion at the end of the simulation
horizon.

This figure reflects well the “economic
boom” (as said by the experts) experienced
in Ikondo-Matembwe after electrification.
After an initial drop in their weekly income
due to the payback of the dept, both
farmers and business man increased their
financial  availability. ~This  benefited
especially the farmers due to an increase of
the food trading. In fractional terms, HHs
with an IGAs experienced a relative lower
increase of the income, but the percentage
of people moving from the LI to the HI
condition increased from almost 0% to

36%.
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The last comparison concerns the income from farming activities. According to the experts, in terms
of farming revenues, LI HHs earns more from this activity than HI HHs. The simulations reported in
Fig. 47 confirm this assessment.

10

Fi(Week*Housgholds)

0 200 400 600
Time (Week)

—— HI farming income : 'CALIBRATED'
------- LI farming income : 'CALIBRATED'

Fig. 47. Simulations for farming income variable for HI and LI HHs.

The comparison of Table 25 confirms that the model output is in line with the experts’ judgment.
Indeed, just one simulated variable does not reflect the value suggested by the one expert, namely the
variable representing the fraction of HHs close to the grid who could potentially afford the electrical
connection. This could be due to two main reasons:

1. A bias in the expert judgment, since it is the comment of only one person, namely the head
of the electricians and manager director of BVC;

2. There are hidden dynamics not captured by the model and not emerged from the local surveys,
other than the distance from the grid, which prevents a fraction of the population from
obtaining the electrical connection.

Since the final objective of the model is not to understand the barriers to household connections, this
inconsistency between experts’ opinion and model output does not weak significantly the confidence
in the model.

8.2.3. Surprising and interesting parameter values

In this sub-section, some of the optimised values of the parameters are reported and discussed in Table
26. All the calibrated values are reported in Table A 7 in the Appendix D. The calibrated values are the
results of an iterative optimisation process. Indeed, the deterministic Powell algorithm does not
prevent the possibility to find local minima, which are numerically sound, but not coherent with the
reality, although this issue has been partially prevented for some parameters by the definition of precise
search-space. Again, this set of values does not pretend to represent exactly the actual value of the
parameters, since other combinations of value would fit in a similar way. Rather, they represent the
starting point for analysing the uncertainty of the model (see the next sub-section 8.3), assessing the
ability of the model in describing an observed historical behaviour, uncovering hidden dynamics and
model flaws, determining the prevalent and weak dynamics, and finally obtaining a set of values that
could be used as a reliable starting point for the application of the model to further case studies.
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Table 26.

Reporting and discussion of the values of the calibrating parameters.

N° | Parameter Search- Calibrating Relevant comments
space value
1) | awareness effect HI HHs [7/Week] [0.000029 - 1] | 0.976000 h lativels hish val flect the fact that dlectrici , wed
2) | awarencss cffect IGAs [1/ Weck] [0.000029 - 1] | 1 These relatively high values reflect the fact that electricity access is not perceived as an
innovation by people.
3) awareness effect LI HHs [7/Week] [0.000029 - 1] | 0.021341
Electricity has a relevant impact on local market productivity, especially due to the
4 BETA —el [ [0-1] 0-897 electriﬁcztion of EE-reliant Ié)AS (e.g. Mills). i »er :
14) | BffectOfHomeElectricity -] [0-0.1] 0.0003 As suggested by ‘th.e teachers in qundo pr.imary schO(.)l,,electric%ty at horpe is not as much
relevant as electricity at school for improving the pupils’ educational attainment.
This low value confirms what stated by the experts regarding this parameter: electricity is
25) | Electricity-Income elasticity HHs /-] [-1-0] -0.09 very cheap for households, and they do not change significantly their consumption patterns
based on changes in the electricity price.
39) | fr increase of market expenditures /-] >0 0.90 ’IFGhZ fractional .increase in the market expenditures is almost proportional to the increase in
s connection
45) | fraction of external source of LI income /-] [0 -0.05] 0.00 LI people are also the ones with no social networks outside the village.
49) | fraction of initial HI HHs to be connected /-/ [0-1] 0.83 The initial HI HHs ate the ones already willing to be connected.
It confirms that market productivity is inelastic respect to primary education attainments —
53) | GAMMA - edu /- [0-0.1] 0.002 viz. changes in the primary educational levels do not impact significantly on the market
productivity.
h . . . Electricity does not significantly impact on the burden of housework; indeed, the local
50) ousework reduction given by electricity [0-1.3] 0.1 women who confitmed a reduction in the housework confirmed that it was due to the
[Hour/ Day] S
electrical rice cooker, a technology that very few people can afford.
78) | internal migration effect /-] >1 1.004 This value indicatf{s that the practice Qf moYing the house close to the electrified area is
not common, despite one expert mentioned it.
84) | Max time for night housework /Hour/ Day] [0 - 4] 0.6 Households do not dedicate much time for night housework.
85) | Max time for night working /Hour/ Day] [0 - 4] 3 It confirms that night time for working is largely exploited by IGAs connected to electricity.
This value suggests that when people plan to ask for a loan, they consider all their income
87) | maximum fraction of income for debt repayment /-/ | [0 - 1] 1 for payback the loan. This is also suggested by the manager of the micro-credit, who
indicated that when people obtained the loan, they want to pay it back as soon as possible.
102) | THETA - capacity building elasticity /- [0-1] 0.03 The effect of capacity building is not so high as expected.
110) | Time to perceive decrease in operating hours /Week] | 21 241015 Ir};lz Zi;ﬁifj?gffgﬂ; i(r)esgﬁstl}ti?; ézggfiigigﬁiesf ent at work, secking to use all the
111) | Time to perceive electricity benefits /IVeek] >1 1 People are already awate of the benefits of electricity, as expected.
112) | Time to perceive increase in operating hours /Week] | =1 07 Contrary to parameter 110), if available, people are very willing to use all their time available

for working and trying to sell their goods and services.




8.3. Markov Chain Monte Carlo (MCMC) for payoff sensitivity

According to Rahmandad et al. (Rahmandad et al. 2015), Markov-chain Monte-Carlo (MCMC) is an
approach to explore the appropriateness of the calibration of a model, and to assess potential good
proxies of the confidence bounds of calibrated parameters. It was here employed since it allows to
characterize a payoff distribution without making any assumption on its mathematical properties (van
Ravenzwaaij et al. 2018). MCMC is a sequential process based on the Metropolis-Hastings criterion
(Hastings 1970). Given the initial set of values 6° of the parameters (e.g. the calibrated values found
before), the Markov Chain first starts with the Monte-Carlo practice for sampling a new proposal set
of parameter values 6’ from a generic proposal symmetric distribution. According to the Bayes theorem
valid for a generic set of parameters 6 (Eq. (48)), the MCMC accepts/rejects each new proposal set of
parameter values 0’ by evaluating its p(@’| D) (i.e. the posterior distribution given the dataset D) by just
relying on its prior distribution p(@’) (i.e. the uniformly distributed priors in the search space of each
parameter set before during the calibration) and its likelihood function p(D|6’) specified by the
specified payoft model (Eq.(46) is exactly the formulation of a log likelihood).

PO D)oc p(D|6)- p(O) (43)

Autocortelation of the residuals can bias the results of the MCMC and the confidence bounds on the
parameters. Indeed, autocorrelation could make the payoff function (Eq.(46)) the incorrect log
likelihood, since it assumes independence of the residuals. Fig. 48 reports the residuals evaluated on
the 4 payoff functions employed in the calibration, and the related Durbin-Watson test used for
assessing the autocorrelation (Durbin and Watson 1950, 1951).

Metered connected HHs residuals Metered connected IGAs residuals
10 3 -
.‘ 2
0 « 1 !
L o=
-10 1 *
. ) i
DW= 0.45 DW= 0.34
20 -3
0 200 400 600 0 200 400 600
Time (Week) Time (Week)
Metered HHs electricity demand residuals Metered IGAs electricity demand residuals
2000 2000 y
1000 ! —
1000 .- . . .
- 0
0. am -
-1000 -
-1000
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DW= 1.65 - . DW= 1.30
-2000 : 3000
0 200 400 600 0 200 400 600
Time (Week) Time (Week)

Fig. 48. Residuals and Durbin-Watson test for the variables used for defining the payoff.

According to (Field 2013), as a very conservative rule of thumb, values less than 1 or greater than 3 of
the DW test definitely confirm that the residuals are affected by autocorrelation. This information,
together with the plot of the residuals, was considered sufficient for considering just the residuals of
Metered connected IGAs and Metered connected HHs as clearly autocorrelated. It is worth nothing that also
the graph of the residuals of the Mezered HH electricity demand suggests an initial sign of autocorrelation,
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due to the inability of the model to estimate properly the household demand in the first weeks of the
simulations (as seen in Table 24 in the statistics applied to calibration results). Given these results, the
payoff sensitivity is here carried out by relying just on the payoff evaluated on the Metered IGAs electricity
demand and Metered HHS electricity demand variables, whose calibration is not affected by significant levels
of autocorrelation. This modelling decision avoids implementing the MCMC on the potentially biased
likelihood surfaces specified by the payoff function of the Metered connected IGAs and Metered connected
HHs, since the related residuals are clearly affected by autocorrelations. Moreover, this choice does
not prevent the definition of the confidence bounds on all the calibrating parameters, since also the
parameters more related to Metered connected IGAs and Metered connected HHs have a direct or indirect
impact on the Metered 1GAs electricity demand and Metered HHs electricity demand. On the contrary, this
choice should give more large confidence bounds and more preventive estimations of them.

For the sake of transparency and replicability, the main MCMC settings implemented in Vensim DSS
® are listed in Table 27.

Table 27. MCMC options set in Vensim DSS ®.

Setting Value Explanation
:MCLIMIT 20000 The maximum number of iterations to perform
:MCBURNIN 500 The number of iterations, which identifies the burn-in or convergence

period, to allow the chain to converge towards the “right” values of
the parameters. Since the MCMC is implemented after the Powell
calibration, the burn-in is set very short since it is potentially superfluous

:MCNCHAINS 2 Number of Markov Chains to run per parameter

:MCINITMETHOD Hybrid It represents a hybrid strategy for initializing each chain, through which
a random direction is chosen. Then, the move in such direction is
scaled iteratively by half or doubled until the largest possible move with
a reasonable chance of acceptance (at least 5%) is found.

The MCMC process returns the list of all the accepted points (i.e. the accepted set of 6 =
{61, 0;, ..., 0153} values of the parameters). The confidence bounds of each parameter were evaluated
at 90% of confidence by considering the 0.05 and 0.95 percentiles of the list of all the accepted points
0 = {6,,6,, ..., 6,,3}. Complete results are reported in Appendix E.
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Chapter

Testing and exploring the model

Je pense, done Je suis | Cogito, ergo sum
(Descartes 1637)

Truth — which is much too complicated to allow anything but approximations
(von Neumann 1947)

No matter how powerful computers become, modelers will always face tradeoffs between the size and
complexity of a model and the ability to understand its bebavior, carry out sensitivity analysis, and
test policies

(Rahmandad and Sterman 2008)

This chapter reports the main insights from model testing and use, by assessing the
main fundamental dynamics, variables, and exogenous policies that characterise the
model, as stated in the Objective 2. After the discussion of some aspects related to
the concept of model validation in the SD theotry, direct structure tests are performed to
check the coherence between the mode structure with the existing empirical and
theoretical knowledge about the actual structure of the analysed system. Stucture-
oriented bebaviour tests are then implemented for assessing the most relevant dynamics,
and for discussing the results of the model when its inputs take on different values,
until the extreme ones and as if the model were tested for different contexts than
Ikondo. Policy testing are performed for exploring model behaviour when subjected to
different polices and exogenous decision-making processes, in order to perform a
kind of what-if analysis on the model outcome, derive some useful insights on the
polices implemented by CEFA, and propose potential improvements. Further tests
are implemented for evaluating the importance and the impact of electricity access
on some socio-economic dynamics, and the reverse feedback. Finally, the sensitivity
analysis is performed to test the robustness of the conclusions that can be derived
from the main model output on varying the assumptions over a plausible range of
uncertainty.
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9.1. Formal aspects of testing and validation

9.1.1. All models are wrong

“A model is a simplification, an abstraction, a selection, because our models are inevitably incomplete, incorrect — wrong
(Sterman 2002 pg. 525).” These are the words used by John Sterman in his very famous Jay Wright
Forrester Prize Lecture in 2002 for discussing the complexity of model testing within the systems
science. In the past, this consideration that models are obvious simplifications of the real world allowed
the social science community to overcome the classical logical positivism theory of knowledge, which
asserted that a statement is cognitively meaningful only if it is verifiable through empirical observation
(Barlas and Carpenter 1990). System thinking theory supports the opposite thesis: testing a model just
for “proving” that it is “right” — e.g. by focusing just on the statistical fitting of historical data — limits
the utility and credibility of a model. Indeed, .../ because all models are wrong, we reject the notion that models
can be validated in the dictionary definition sense of ‘establishing truthfulness’, instead focusing on creating models that
are useful, on the process of testing, on the ongoing comparison of the model against all data of all types, and on the
continual iteration between experiments with the virtual world of the model and experiments in the real world (Sterman
2002 pg. 521, 525)”.

Of course, this concept must not be misunderstood. Being aware that verification and validation are
formally impossible must not lead to discount the role of statistical parameter estimation, or to
consider qualitative insights more important than numerical reliability, or to neglect to assess model
behaviour against historical data. On the contrary, muddled model formulations, and erroneous and
biased conclusions must be prevented by rigorously defining constructs, performing appropriate
measurements, and relying on robust statistical and stochastic tools. Using again Sterman’s words,
“/...] ignoring numerical data or failing to use statistical tools when appropriate is sloppy and
Iazy. In my experience, many who avoid the proper use of numerical data do so not because they believe it is the best way
to help people learn or solve important problems but becanse they don’t want to take the time or don’t have the skills to
do it. No excuse.”

9.1.2. The nature of “validity”

Since SD belongs to the class of causal models, its paradigms are naturally interdisciplinary. Model
equations are indeed often derived by “conversation with people” (Meadows 1980; Barlas and
Carpenter 1990), and using just empirical — in the classical sense — and data-driven approaches to
model validation cannot be enough to build confidence in a model. This is the reason why the SD-
theory puts emphasis on the role of soft-variables and extends the concept of “empirical” validation
information beyond the mere numerical statistics. Using Forrester’s definition, validation is therefore
the “process of establishing confidence in the soundness and nsefulness of a model (Forrester and Senge 1980) pg.
210)”, and not a process of “acceptance/rejection” based on the output behaviour. This process can
be carried out through formal tests — by comparing a model to the empirical reality — and it requires
proper documentation and chances of replicability. Moreover, the SD-theory highlights the “relative”
nature of validation: confidence in the usefulness of a model can be established only in relation with
its specific purpose(s).

9.1.3. Tests for improving confidence in a model

The SD-based literature offers a wide variety of tests aimed at building confidence in a model
(Forrester and Senge 1980; Hellman 1982; Sterman 1984, 2000; Barlas 1996; Qudrat-Ullah and Seong
2010; Bala et al. 2017). This thesis relies on the outline proposed by Barlas (Barlas 1996). According
to Barlas, the final goal of SD models — being “white-box (or “theory-like”) models — is not just to
reproduce or predict a given dynamic behaviour, but also to explain the endogenous and exogenous
reasons that generate such behaviour. This is the reason why assessing the validity of a SD model must
start with tests for evaluating the appropriateness of the its internal structure, and not just the output
behaviour. Thus, the logical order of validation proposed by Batlas is the following:
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—  Direct structure tests: they involve direct comparisons with the existing empirical (viz. directly
obtained) and theoretical (viz. generalized from the literature) knowledge about the actual
structure of the analysed system. These tests do not involve simulation.

—  Structure-oriented behaviour tests: they involve simulation, in order to generate certain behaviours
and compare them with observed behaviour of the real system. These tests are performed by
exploring model behaviour and output according to different situations and contexts respect
to the Ikondo case study.

—  Behaviour pattern tests: they aim at measuring the accuracy of a model in reproducing the
behaviour patterns of the real system. This test was performed in sub-section 8.2 after the
calibration.

Each one of the three stages of model validation includes different type of tests, thoroughly described
by Sterman (Sterman 2000). Barlas’ outline is a guideline for establishing confidence in a model though
recursive model revisions, and not just a single sequential process. This excludes the type of binary
reject/not reject decision at the end of model testing, as typically done in purely correlational black-
box models, which rely mainly on the statistical significance testing for assessing the validity of a model.
Moreover, not all the tests are necessary for building confidence in a model.

In the present study, the testing and validation phase was approached following its feedback and
recursive nature. Just for the sake of clarity and transparency, it is here reported as a sequence of the
main tests carried out during the model building process.

9.2. Direct structure tests

In this study, 4 different direct structure tests are performed to build confidence in the structure of the
model (Table 28).

Table 28. Direct structure tests performed.

Test Purpose (from (Sterman 2000)) How it is performed
1. Boundary To guarantee that the boundaries — Theoretically: the literature review and the causal
Adequacy of the model include the diagrams of Chapter 6 report a broad view of all
fundamental endogenous concepts the endogenous dynamics of the nexus between
and key-variables. electricity demand and development.

— Empirically: the interviews in Ikondo-Matembwe
to the experts and the local people allowed to
simplify and modify the causal loops for the
Tkondo energy context and find the most
important endogenous dynamics (e.g. exclusion
of heath dimension, simplification of the
education dimension).

2. Structure To confirm that: Since the information needed for comparing the
structure of a model with the real system is very
qualitative, the tests for structure confirmation
cannot rely simply on sets of numerical data.

Assessment .
(1) the model structure is

consistent with relevant
descriptive knowledge of the
system; (1) Theoretically: by formulating consolidated
dynamics that might occur also in rural
contexts (e.g. innovation diffusion process for
electricity connection based on awareness and
(3) the model conforms to basic social contagion effects).

physical laws such as

conservation laws;

(2) the level of aggregation is
appropriate;

Empirically: by confirming and modifying such

dynamics during the interviews in Ikondo-

(4) the decision rules capture the Matembwe to the experts (e.g. the inclusion of
behaviour of the actors in the the financial aspect and willingness to pay in
system. the diffusion process).
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(2) Theoretically: CASE 3 confirmed that
aggregating agents causes a huge
simplification in diffusion process. On the
other hand, lack of specific competences,
information and data on social structures
would have undermined the significance and
interpretation of the results.

Empirically: Local surveys suggest the
appropriateness of the main levels of
aggregation, e.g. the subdivision of HI/LI
population, and notEE/EE-reliant IGAs (“I
conld work without electricity” said the owner of a
phone-kiosk, while “E/ectricity is everything”
stated the owner of a local carpentry). The
outliers (as extraordinarily rich businessmen
or beggars) represent a very small fraction of
the population.

(3) Unphysical and unexpected model flaws are
carefully checked by model inspection. In
patticular, MIN/MAX functions are
introduced where variables, especially levels,
have upper/lower limits.

(4) Theoretically: studying decision rules that might
occur also in rural contexts (e.g. market
supply-demand dynamics that drives the
creation of new IGAs).

Empirically: confirming and modifying such
rules during the interviews in Ikondo-
Matembwe to the experts (e.g. the inclusion of
IGAs that start just by imitation).

3. Dimensional To check that the right- and left- Inspection of every equations, by relying also to
Consistency  hand sides of each equation are the Units check tool of Vensim DSS ®.
dimensionally consistent, without
the use of ad-hoc dummy
parameters with no physical

meaning.
4. Parameter To guarantee that constant The calibration process, together with the
Assessment  parameters are consistent with the  definition of the search-space, and the MCMC
knowledge of the system, both method are used to assess parameter values, check

conceptually (i.e. they have real world  their values with the knowledge of the local
counterparts) and numerically (i.e. context, and estimate their accuracy.
with enough accuracy).

9.3. Integration error

This test aims at assessing the sensitivity of the model to the choice of the time step 7 or numerical
integration error. A robust model should not be sensitive to change to them.

9.3.1. Time-step 4t

For testing the appropriateness of the time step, the “cutting-in-half” test was conducted. It consists
in selecting a first-tentative time step Az, simulating the model with a A% obtained by cutting the time-
step in half and the checking if the results change substantially. If not, A# is appropriate; otherwise,
the iteration continues with Az. According to the rule of thumb suggested by Sterman (Sterman 2000),
the time step of first tentative was taken equal to one-fourth (viz. 0.25) the size of the smallest time
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Chapter 9 Testing and exploring the model

constant of the model (viz. 1 week). To check if the results are sensitive to changes in the time-step,
the values of the 4 main variables used for defining the payoff were analysed at the final time of the
simulations. In particular, the iterative “cutting-in-half” procedure was conducted until the fulfilment
of the condition on the At-error term § expressed in Eq. (49) in Table 29. The first iteration confirmed
the appropriateness of the time-step Az equal to 0.25 (Table 29).

Table 29. Ar-error term for the main 4 output variables of the model.

Variable '3
o — Metered IGAs 2.6%
. @ 1=FINAL4/) <£0 49 Partial IGAs electricity demand 1.2%
¢= XY FINAL . =% “9) Total connected HH;s 0.9%
Partial HHs electricity demand 3.1%

9.3.2. Integration error

For testing the appropriateness of the integration method, it was checked that varying the method did
not cause substantially changes in the simulation results if compared to the Euler method.

The method compared to Euler is the classical Runge-Kutta, generally referred to a “RK4”, with fixed
and automatically adjust increments. Differently from the Euler integration, which assumes that the
derivates (i.e. rate) are constant through the finite time-step Az, the RK4 method allows to compute a
more accurate integration. The numerical approximation of the integral at time #+d?is determined by
the value of the level at time # plus a weighted average of four increments, where each increment is the
product of the time-step Az a weight coefficient »;, and an intermediate evaluation £; of the derivate

“rate”) (Eq. (50)).
t+dt 4
Y, = jx-d;=x+m-(z%-@j (50)
3

i=1
The weight of RK4 with fixed increment is given a priori by the so-called Buzcher tablean (Butcher 1963).

In case of automatically adjust increment, the latter is evaluated and computed during each integration
step based on the integration error!3.

As done previously, the values of the 4 main variables used for defining the payoff were analysed at
the final time of the simulations, checking the error term respect to the Euler method. Table 30
confirms that the model is not highly sensitive to changes of the integration method, with variations
within acceptable margins of error of around 5%.

Table 30. dr-error term for the main 4 output variables of the model.

Variable ¢

RK4-Auto RK4-fixed
Metered IGAs 5.2% 5.3%
Partial IGAs electricity demand 4.2% 4.1%
Total connected HHs 1.9% 1.9%
Partial HHs electricity demand 3.6% 3.6%

9.4. Behaviours and policies testing: exploring the model for
different contexts

9.41. Behaviour sensitivity: assessing fundamental dynamics

The behaviour sensitivity test is useful for determining those parameters to which the model is highly
sensitive (Barlas 1996). It contributes to build confidence in the model by checking that also the real

BMore details available on the RK method employed in Vensim are available in the software help
(https:/ /www.vensim.com/documentation/index. html?rungekutta.htm).
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system would exhibit similar high sensitivity to the corresponding parameters. The test was conducted
empirically, by evaluating how sensitive was the Powell optimisation payoff respect to the univariate
variation of each parameter. In particular, for each parameter at time, it was calculated the variation
necessary to cause a change of 20%, 15%, 10% and 5% in the payoff. The numbers of parameters
causing those changes in the payoff through variations lower than the 20%, 15%, 10%, and 5%
thresholds are tracked in Fig. 49.
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Fig. 49. Number of critical parameters on varying the changes tested on the payoff.

As expected, the number of critical parameters gradually decreases by moving towards higher payoff
changes, viz. the higher is the desired payoff change, the lower is the number of parameters that, one
at a time, generate such payoff change. Also, given a certain payoff change, the number of critical
parameters decreases by reducing the variation threshold, viz. the lower is the variation of the
parameters, the lower will be their impact on the payoff change.

The most critical parameters are the ones on the right-side of the figure in the dashed citcle, viz. the
parameters that cause a change of 20%, 15%, 10%, and 5% on the payoff by varying less than 5%. For
checking that the real system would exhibit similar high sensitivity to the corresponding parameters,
the analysis was performed on the two extremes, viz. the 17 and 9 parameters that cause a change of
5% and 20% on the payoff, respectively.

The 9 critical parameters that cause a change of 20% in the payoff with a variation of less than 5% are
definitely the most critical in the whole model. Table 31 discusses the weight of the same parameters
in the real world, confirming their importance.

Table 31. Parameters that cause a change of 20% in the payoff with a variation of less than 5% in their values.

Parameter Variation14 Discussion

Initial number of IGAs -4.0% / +4.4%  This parameter is a proxy of the initial economic level of
the village. For Ikondo, it corresponded to 1-2 IGAs.

Local experts associate the electrification of Ikondo-
Matembwe to the “economic boom” of the two
communities. This expression directly implies that
different initial wealth conditions would have led to
different socio-economic dynamics and evolution
patterns of electricity use.

14 Where just one value is reported is because the opposite value reached the boundaries of the search space.
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Initial external market demand

fr change in external food
expenditures

fr change in external market
demand

-3.3% / +3.1%
-4.9% / + 4.2%

-1.8% / + 1.6%

These 3 parameters indicate the quality and entity of the
commercial trading in Ikondo for both food, and non-
food goods and services. Both the literature (Lanjouw
and Lanjouw 2001; Haggblade et al. 2010) and local
surveys suggest the critical importance of trading in rural
economies. Interviews to the experts suggest that before
electrification «there was nothing in Ikondo, just poor
subsistence farmers», while now there is a significant
trading that positively affects LI and HI HHs.

The Food and Agriculture Organization (FAO) (Tracey-
White 2003), in the chapter “Identifying the need for
rural markets”, confirms the benefits for local
communities in having formal operating markets for
enhancing potential trades both inside and outside the
villages. Indeed, it mentions the poor quality of roads
and low level of attraction of external consumers as
potential threats of local markets.

Initial available operation time

-3.8% / +4.2%

This parameter is a proxy of the initial productivity level
of the village. For Ikondo, it corresponded to few hours
of working during the daylight hours.

The main benefit that local owners of the IGAs associate
to the electrification of Ikondo-Matembwe is the
extension of the working time.

This directly implies a that different initial working time
would have led to different socio-economic dynamics
and electricity use evolution patterns. This is evident by
observing not-electrified village of Kitole, closed to
Tkondo. Compared to the initial condition of Ikondo, in
the village there are more IGAs, but most of them have
at least a solar panel, and they all mention “extended
working hours” as the first main benefit of electricity.

Initial fr income for food
expenditures LI

-5.0% / +4.8%

Farming activities represent the main source of income
for the majority of people. Changes in people’s
expenditures for agricultural products have indeed two
important feedbacks on the dynamics behind the
electricity use:

— wvariations on the income of LI HHs, which
represent the majority of the total HHs, and
therefore on their possibility and willingness to
connect to electricity and consume it;

— variations on the income spent in the local market
from both LI and HI HHs, with consequent
changes in the HI revenues, and therefore on HI
HHs* possibility to connect to electricity and
consume it.

Reference factor productivity

-3.6% / + 4.0%

Productivity and the concept of “marginal product” are
fundamental aspects in micro-economics. The concept
is directly related to the dynamics of demand/supply of
the market, which is valid also for rural areas (Ayenew et
al. 2010).

Increasing or decreasing the productivity of IGAs would
cause a change in the local market competition, and
therefore on the number of IGAs. Indeed, the
component of the payoff that is most sensible to
variation of this parameter is the number of connected
1GAs (Metered connected IGAs).
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fraction of feasible HHs
market supply

-47% [/ +41%

This parameter takes into account a fundamental
dynamics cited by all the experts interviewed: the more
market demand is locally satisfied, the less are the
household expenditures, and the greater would be the
consumer purchasing power of people. Electrification in
Ikondo led to the creation of new business, allowing
people to locally purchase goods and services, without
the need to spend more time and money for going
outside Ikondo.

The importance of this dynamics is highlighted also by

Shackleton et al. (Shackleton et al. 2009) in a remote
rural area of South Africa.

Initial Population

-2.4% / 2.3%

Population has a ditect and indirect impact on the
electricity use, and therefore on the calibration payoff:

—  Direct: the more people there are, the higher will be
the number of HH connections and the total
electrical consumption, and vice versa;

—  Indirect: the initial population determines the initial
fraction of unsatisfied market demand, that is the
variable at the basis of the IGAs formation
mechanism (sub-section 7.2.1). Therefore, the
higher the population will be, the higher would be
the market supply, and the potentially connected
IGAs, and vice versa.

In addition to these 9 parameters, Table 32 lists the other 9 parameters that cause a change of 5% in
the payoff with a variation of less than 5%.

Table 32. Parameters that cause a change of 5% in the payoff with a variation of less than 5% in their value.

Parameter

Variation!5

Discussion

fr income for education
expenditures HI

24% / +2.6%

The manager director of the electric utility MVC
cleatly stated that households, especially the HI ones,
take much care of the education of their children, and
they spend a large fraction of their income for it.
Since they are HI HHs, a change of this fraction
would directly cause a sensible change in the market
expenditures, and therefore on the dynamics affecting
the local economy.

Initial fr income for food
expenditures HI

-3.8% / +4.0%

as for Initial fr income for food expenditures LI

Initial external agricultural
expenditures

-3.7% / +3.6%

As discussed for the market of goods and services,
this parameter indicates the quality and entity of the
commercial trading in Ikondo for agricultural
products. Both the literature (Delgado 1995; Tracey-
White 2003; K. Gadhok 2016a, 2016b), and local
surveys highlight the critical importance of
agricultural trading in rural economies.

price to cost factor

-2.5% / +2.6%

Price and production costs are fundamental aspects
in micro-economics. They are directly related with the
dynamics of demand/supply of the market, and they
are valid also for rural areas (Ayenew et al. 2016).
Increasing or decreasing the price of local goods and
services would cause a change in the total local
market revenues, and therefore on the affordability of
HI HHs, and their demand on the local market.

15 Where just one value is reported is because the opposite value reached the boundaries of the search space.
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fr change in internal IGAs
supply

-3.6% / +3.5%

max fr of internal IGAs supply -2.5% / +2.3%

The supply-chain for local IGAs is a critical issue. The
owner of a carpentry stated that he buys most of the
raw material outside because of lower prices, and due
to economies of scale. These parameters represent a
proxy of the diversification of the local market, which
is an important factor for rural market development
(Alobo Loison 2015).

internal migration effect

+ 4.1%

This parameter impacts directly on the number of
connected HHs, which is also a variable with a high
weight on the payoff.

fr of potentially affordable IGAs
connections

-3.6% / +3.6%

This parameter impacts directly on the number of
connected IGAs, which is also the variable with the
highest weight on the payoff.
Moreover, it indirectly impacts on the IGAs
productivity and the working hours, and therefore on
the local economy structure.

9.4.2.

Exploring model output for different and extreme conditions

This test aims at discussing the results of the model when its inputs take on different values, until the
extreme ones. This test was performed on its 17 more sensible parameters, evaluating the response of
the model by varying such parameters ceferis paribus within a feasible physical interval. It was verified
that the model response is in line with the expectations's. When the lower/upper bounds could not be
physically defined, the model was stressed to the lowest/highest possible value, until the occutrence
of dynamics not considered in the model boundaries (e.g. no more only-agricultural reliant LI HHs).
For most of the sensible parameters, the model behaviour is discussed also by displaying some of the
most meaningful outputs of the model by varying the related sensible parameter by -20%, -10%, +10%,
+20% respect to the calibrated value, as if the model were tested for different contexts than Ikondo.
The figures represent a kind of graphical representations of the RESPONSEs-bullets discussed for
each extreme value of the parameters (see Table 33).

16Where not otherwise specified, the consideration of the model’s response is respect to the calibrated simulation.
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Table 33. Tests on the most sensible parameters.

Extreme conditions and graphical exploration of model output for different contexts

Parameter
Initial external market MIN: 0 MAX: tested
demand / fr change in MEANING: simulation of a closed economy MEANING: simulation of a market with high trading level.

RESPONSE: very high economic progress; higher number of IGAs; average
income of the village increases for both the HI HHs LI HHs; higher number of

connections and electricity demand.

ternal market d d . . . .
?ﬁi;?exij;; ag:ir(;lﬁilurzfl RESPONSE: low economic progtess; average income of the village remains very

. low; very low connections and electricity use.
expenditures

IGAs Total connected HHs
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These results confirm that the closer a local economy is, the lower would be the impact of electrification. This indicates the importance of supporting electtification
with complementary activities for improving the accessibility of isolated villages (e.g. improvement of roads and communications).
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fr change in external food
expenditures

MIN: 0 MAX: tested
MEANING: simulation of a closed agricultural economy MEANING: simulation of a market with high trading level.

RESPONSE: slower economic progress, income of the LI HHs remains very RESPONSE: very high economic progress, higher number of IGAs, average
low; income of HI HHs increases very little; number of IGAs is 50% lower; HHs  income of the village increases for both the LI HHs and the HI HHs. Higher
and IGAs connections reduced by 50%, with >50% reduction of electricity —number of connections and electricity demand.

demand.

External food expenditures HI Income
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These results confirm that changes in the agricultural livelihood and dynamics largely impact on the electrification output. This suggests that agricultural activities
play an important role also after electrification and the creation of new business. For example, CEFA experts stated that in the village of Bomalang’ombe, close to
Ikondo, many farmers abandoned agricultural activities after the creation of new IGAs, limiting the overall benefits of electrification on the local community, creating
disparities and too much dependence on electricity quality and reliability. Moreover, this indicates that implementing awareness campaigns intended to improve
farming productivity for attracting external consumers is definitively a win-win strategy.
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Reference factor
productivity

MIN: tested

MEANING: simulation of a market with very high competition. Local IGAs are
able to satisfy a very little fraction of the market demand.

RESPONSE: very high number of IGAs formation; little decrease in the HI
income, due to market competition; little increase of LI income, since there are
more rich people that spend more in food; sensible increase in the connected
IGAs and IGAs electricity demand. Very little change in the number of connected
HHs and residential electricity demand.

MAX: tested

MEANING: simulation of a market with no competition. The existing IGAs are
able to satisfy alone the market demand.

RESPONSE: no formation of new IGAs; HI income of the very few IGAs is
very high, due to the absence of market competition; little decrease of LI income,
since the new households caused by the increase in the population are all farmers,
enforcing the vicious circle of poverty; large reduction of electricity connections
and demand.
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These results suggest that in contexts characterised by an already high level and quality of labour, electricity use benefits less people and businesses, increasing
inequality. To avoid this, these results suggest that providing access to electricity in such contexts should be supported by complementary activities aimed at innovating
the local production, increasing the market competition on new goods and services. Moreover, this result points out a potential limit of the supply-demand model
due to the perfect mixing hypothesis of SD. In this formulation, there is no diversification between businesses, since all of them satisfy the market demand equally
and operate under “perfect competition” rules. A further disaggregation based on people’s ranking of priorities — e.g. essential goods vs luxury goods — can be a
solution for achieving more realistic results, but the larger is the disaggregation, the more appropriate would be the transition towards ABMs.
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fraction of feasible HHs
market supply

MIN: tested
MEANING: simulation of a market able to satisfy 0% of the local HHs demand.

RESPONSE: very low number of IGAs formation, which satisfies just the
supply-chain of other IGAs and the external demand. HI income remains
unchanged respect to the initial condition; little increase of LI income respect to
initial condition, since there are more IGAs (and therefore HI HHs) respect to
the initial condition; lower IGAs and HHs connections and demand.

MAX: 1

MEANING: simulation of a market able to satisfy 100% of the local HHs
demand.

RESPONSE: higher number of IGAs formation; little increase in the HI income,
due to a higher market demand but also a higher market competition; increase of
LI income, since there are more rich people that spend more in food; increase in
the connected IGAs and IGAs electricity demand. Lower proportional increase
in the number of connected HHs and residential electricity demand.
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These results highlight that a local context which could potentially have the resources for satisfying all the local market demand is very suitable for introducing access
to electricity. On the contrary, a very isolated village with no resources would not develop just with access to electrification, but it needs complementary activities for

obtaining enough productivity inputs and resources.
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Initial Population

MIN: 1/3 of the calibrated value
MEANING: simulation of a smaller community.

RESPONSE: very low number of IGAs formation, cause by the backlog effect
of the initial “perceived” needed new IGAs. This backlog causes the set-up of
too many IGAs, which create a too high delayed market competition and then a
delayed decrease in HI Income. In turn, this causes a delayed decrease in the LI
Income. Much lower IGAs and HHs connections and demand.

Total residential monthly electricity demand

MAX: equal to the carrying capacity

MEANING: simulation of a larger community.

RESPONSE: higher number of IGAs formation due to initial higher unsatisfied
market demand; little increase in the HI income and LI income, due to a higher
internal and external market demand; increase in the connected IGAs and IGAs
electricity demand. Lower proportional increase in the number of connected HHs
and residential electricity demand.

Total productive monthly electricity demand
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These results suggest that, ceteris paribus, more populated villages can gain more from access to electricity. This could have an important policy implication: in
unelectrified areas, electrification programmes should start from the biggest communities.

fr income for education
expenditures HI

MIN: tested
MEANING: less expenditures for education and more for market

RESPONSE: higher number of IGAs formation; increase in the HI income, due
to higher market demand (HI HHs spends more for market goods and services);
increase of LI income, since there ate more rich people that spend more in food;
increase in the connected IGAs and IGAs electricity demand. Lower proportional
increase in the number of connected HHs and residential electricity demand.

MIN: — 1
MEANING: HI HHs spend almost all their income in education.

RESPONSE: very low number of IGAs formation, which satisfy just the supply-
chain of other IGAs, the external demand, and the LI demand,; little increase in
HI income respect to the initial condition; little increase of LI income respect to
initial condition, since there are more IGAs (and therefore HI HHs) respect to
the initial condition; lower IGAs and HHs connections and demand.
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Initial number of IGAs

MAX: tested (~1)
MEANING: simulation of almost absence of initial IGAs
RESPONSE: higher number of IGAs formation due to initial higher unsatisfied
market demand; increase in both HI income and LI income, due to a higher
internal and external market demand; increase in both connected IGAs /HHs
and IGAs/HHs electricity demand.
IGAs
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ds)

MIN: tested
MEANING: simulation of initial IGAs able to satisfy the local demand.

RESPONSE: very low IGAs formation due to population increase. HI and LI
average incomes remain almost constant. Lower number of connected IGAs

/HHs and lower IGAs/HHs electticity demand.
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These results suggest that contexts characterised by an already high number of IGAs, ceteris paribus, experience less proportional benefits from electrification,
especially because the trend of market development is smoother, attracting less external market demand. The results explain also the so-called “economic boom” of
Tkondo-Matembwe villages, wetre people were all subsistence farmers before electrification. Moreover, as for Reference market productivity, this result points out a
potential limit of the supply-demand model due to the perfect mixing hypothesis of SD. In this formulation, there is no diversification between businesses, since all
of them satisfy the market demand equally and operate under “perfect competition” rules. A further disaggregation based on people’s ranking of priorities — e.g.

essential goods vs luxury goods.
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Initial fr income for food
expenditures HI

MIN: tested
MEANING: less HI expenditures for food and more for market.

RESPONSE: higher number of IGAs formation; increase in the HI income, due
to higher market demand (HI HHs spends more for market goods and services);
increase of LI income: although the fraction of HI expenditures for food is lower,
since the HI income is higher and there are more HI HHs, the HI expenditures
for food are higher in the absolute term, albeit slightly; increase in the connected

IGAs and IGAs electricity demand. Lower proportional increase
of connected HHs and residential electricity demand.
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These results indicate that in contexts where people live just on

MAX: — 1

MEANING: HI HHs spend almost all their income in food

RESPONSE: very low number of IGAs formation, which satisfy just the supply-
chain of other IGAs, the external demand, and the LI demand; HI income
reaches the almost the same level of the calibrated simulation, since the lower
demand is balanced by a lower number of IGAs; LI income reaches the almost
the same level of the calibrated simulation since more fraction of HI income spent
for food, but with lower HI Income; much lower IGAs connections and demand;
lower HHs demand, and little decrease in HH connections.

in the number
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subsistence farming, electricity use alone cannot boost sustainable development. In such contexts,

electrification programmes should therefore be supported by activities and awareness campaign aimed at diversifying people’s basket of goods and services.
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Initial available operation
time

MIN: tested

MEANING: initial low time spent for working

RESPONSE: higher number of IGAs formation (due to lower production per
IGA); little decrease in the HI income, due to market competition; little increase
of LI income, since there are more rich people that spend more in food; sensible
increase in the connected IGAs and IGAs electricity demand. Little change in the
number of connected HHs and residential electricity demand.

MAX: 168 (vig. 24x7)

MEANING: HI HHs spend all their time for working

RESPONSE: formation of very few IGAs (i.e. 6); HI income of the very few
IGAs is very high, due to the absence of market competition; LI income remains
equal to its initial value, since the new houscholds caused by the increase in the
population are all farmers, enforcing the vicious circle of poverty; large reduction
of electricity connections and demand.
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This test provides useful insights concerning contexts characterised by very high inequality and disparity between different socio-economic classes. Where the entire
demand is satisfied by very few market suppliers, electricity use has a very low impact on local development. Therefore, electrification programmes must first try to
reduce inequality by socio-economic complementary initiative. A further disaggregation of IGAs based on people’s ranking of priorities — e.g. essential goods vs
luxury goods — and removing the “perfect competition” market rules would probably reduce the impact of this parameter on the payoff.
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Initial fr income for food
expenditures LI

MIN: tested
MEANING: less LI expenditures for food and more for market.

RESPONSE: higher number of IGAs formation; increase in the HI income, due
to higher market demand (HI HHs spends more for market goods and services);
increase of LI income: although the fraction of LI expenditures for food is lower,
since the LI and HI income is higher and there are more HI HHs, the total
expenditures for food are higher in the absolute term; increase in the connected
IGAs and IGAs electricity demand. Lower proportional increase in the number
of connected HHs and residential electricity demand.

MAX: — 1
MEANING: LI HHs spend almost all their income in food

RESPONSE: low number of IGAs formation, which satisfy just the supply-chain
of other IGAs, the external demand, and the HI demand; HI income reaches
almost the same level of the calibrated simulation, since the lower demand is
balanced by a lower number of IGAs; LI income reaches the same level of the
calibrated simulation and more quickly since more money are spent for food;
much lower IGAs connections and demand; little increase of HHs connections
and electricity demand, since LI income increases more rapidly.

price to cost factor

MIN: =1
MEANING: no mark-up for IGAs

RESPONSE: low number of IGAs formation, which are set-up just for covering
the local market demand; LI income is lower because there are fewer rich people
and with lower income; HI income is lower than LI income, since the only source
of income for HI HHs is now agriculture, but with a lower productivity respect
to LI HHs; lower IGAs and HHs connections and demand.

MAX: — ©
MEANING: very large mark-up for IGAs

RESPONSE: decrease in market demand due to unaffordable prices of goods
and services (just HI and external demand); lower number of IGAs (i.e. 6); HI
income tends to an extremely high level; LI income grows a lot since the food
expenditures of the HI HHs are extremely high; connections and demand of
IGAs decrease; connections and demand of HHs increase enormously.

fr change in internal IGAs
supply / max fr of
internal IGAs supply

MIN: 0
MEANING: the supply chain of IGAs is all outside the village

RESPONSE: lower IGAs formation; lower growth of HI and LI Income; lower
connections and electricity use

Total market demand

MAX: tested
MEANING: the supply chain of IGAs is all local

RESPONSE: very high economic progress; higher number of IGAs; average
income of the village increases for both the HI HHs and LI HHs; higher number
of connections and electricity demand.

Total monthly electricity demand
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This output confirms that the diversification of local IGAs is an important determinant of local development. In contexts characterised by very low skills, electricity
does not create expected benefits. Electricity use should therefore not just support an increase of the quantity of local business, but also the type and the quality. This
suggests that electrification must be supported by effort devoted to increase people’s skills in delivering new services and products.
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fr of potentially
affordable IGAs

connections

MIN: 0
MEANING: unelectrified IGAs

RESPONSE: no formation of new IGAs; almost null HI and LI income increase;
null IGAs connections and demand; much lower HHs connections and demand,
since the fraction of richer HI HHs is almost null.

MAX: 1
MEANING: all the IGAs can potentially afford the connections;

RESPONSE: more IGAs can work during the evening, increasing their
productivity. This generates an increase in the competition, decreasing the IGAs
formation by little. HI income increases because there are less IGAs for the same
market demand. LI income decreases by little, due to less rich people spending
on food.

internal migration effect

MIN: 1
MEANING: no immigration effects
RESPONSE: no sensible changes respect to the calibrated model.

MAX: — ©
MEANING: all the HHs can potentially afford the connections;

RESPONSE: all the households get connected in the simulation hotizon. Since
there are more people who must pay for electricity, the total demand for market
goods and services is reduced, with a decrease in the total IGAs. Moreover, HHs
increase their time available during evening more quickly; this causes a more rapid
creation of IGAs and therefore a more rapid reduction of the gap between
unsolved market demand and market supply. This causes a reduction in the
backlog of IGAs to set-up and therefore a reduction in the total IGAs, again.

This suggests that a slow rate of residential access to electricity is more
sustainable, since it allows people to diversify their basket of goods and services.




9.4.3. Policy testing

These tests aim at exploring model behaviour when subjected to different polices and exogenous
decision-making processes. The final goal is to perform a kind of what-if analysis and derive some useful
insights on the polices implemented by CEFA and potential improvements. In some cases, performing
such tests required some changes in the model structure, which are described in detail in the next

paragraphs.
Micro-credit

The effect of micro-credit is here assessed by exploring the following two scenarios:

i. absence of micro-credit;
i.  total access to microcredit (all people used micro-credit to set-up a business).
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Fig. 50. Effect of micro-credit on some of the main outputs.

These results indicate that access to micro-credit had a significant impact on the socio-economic
development of the local community and the consumption of electricity. In case of no access to micro-
credit, the number of businesses, the average income of the village, and the number of people that get
access to electricity is reduced by half, since people have fewer financial resources to use. All these
effects cause a significant lower total electricity demand. On the other hand, these outputs suggest also
that a partial access to micro-credit, as in the calibrated case-study, does not lead to significantly
different results respect to the case of complete access to micro-credit. Rather, looking at the first two
figures on the top-side of Fig. 50, it seems that the case of complete access to micro-credit leads to an
initial phase of oscillations in the number of IGAs. This can be explained by considering that with
more access to micro-credit, more people can afford the setting-up of a new business, speeding-up the
process of financing, and causing a continuous overshooting and undershooting dynamics that slowly
gets damper and then stabilises (Fig. 51). This dynamics — the SD-based literature explains it through
the famous Beer Distribution Game (Sterman 2000) — is caused by the fact that the decision of setting-up
a new IGA is based just on the actual existing number of IGAs and the perceived needed ones,
neglecting the work-in-progress IGAs in the supply chain (i.e. IGAs to be financed, and IGAs already
financed to be set-up). In addition to this, by increasing the access to micro-credit, the time-delay
between the corrective action (viz. financing new IGAs) in response to the perceived gap between the
desired and actual number of IGAs is reduced, leading to more evident and frequent oscillations.

158



Chapter 9 Testing and exploring the model
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Fig. 51. Clear overshooting and undershooting dynamics of the Financed IGAs variable.

Cost of electricity and social responsibility

Almost all the interviewed people in Ikondo-Matembwe indicated the electricity cost set by the local
utility MVC to be very affordable. The effect of the electricity price is here assessed by exploring the
following two scenatios:

i increasing the variable electricity cost by 5 after 1 year, by keeping constant the fraction of
revenues that the MVC reinvests within the local community (viz. with social responsibility
case);

il. increasing the variable electricity cost by 5 after 1 year, by setting the fraction of revenues
that the MVC reinvests within the local community equal to O (viz. without social responsibility
case).

The outputs in Fig. 52 confirm that increasing the electricity cost, obviously, decreases the financial
availability of HHs for goods and services, especially the LI HHs. In case of social responsibility from
the utility, this does not impact on the socio-economic development of the village, while it causes a
decrease in the total community electricity demand, especially for the EE-reliant IGAs. Indeed,
according to the model output, the electricity expenditures with the current electricity tariff
implemented by the MVC represent around 10% of their profit. Instead, HHs are used to pay a lot for
traditional sources of energy (e.g. kerosene, candles, paraffine), and their electricity demand elasticity
is indeed very low. Moreover, the expenditures for electricity with the current electricity tariffs
implemented by the MVC represent around 1-2% of their total income, that is a very small fraction.
In the case of absence of social responsibility, increasing the electricity cost impacts also on the number
of IGAs and the average income, due to a decrease in the HHs market demand. These results suggest
that increasing the cost of electricity does not alter the socio-economic structure of local communities
if a reinvestment of the utility revenues within the local community is guaranteed. This is an interesting
result, especially useful when exogenous or endogenous events require an increase of the electricity
tariff. On the other hand, any increment is followed by a significant decrease of electricity use, which
must be considered in the planning phase of the electricity system, in order to avoid shocks in the tariff
values, especially for the EE-reliant businesses.
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3000

2000

1000

0 200 400 600
Time (Week)

—— HIGH COSTOF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
------- HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'

IGAs
200

2000

=
Time (Week)
——— HIGH COST OF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
rrrrrrr HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'
Total residential monthly electricity demand

6000
2 4000
E
%

Time (Week)

—— HIGH COSTOF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
------- HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'

Fraction of market expenditures LI

02

Dmnl

0 200 400 600
Time (Week)

—— HIGH COSTOF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
------- HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'

Final/initial income ratio
20

Dmnl

Time (Week)
——— HIGH COST OF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
rrrrrrr HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'
Total productive monthly electricity demand
6000

4000

2000

Hour*kWattMonth

0 200 400 600
Time (Week)

—— HIGH COSTOF ELECTRICITY_WITHOUT SOCIAL RESPONSIBILITY
------- HIGH COST OF ELECTRICITY_WITH SOCIAL RESPONSIBILITY
— — 'CALIBRATED'

Fig. 52. Effect of electricity cost on some of the main outputs.

Electricity reliability

Electricity reliability is one of the most important factors to consider for implementing sustainable
electricity plans in rural communities, as emerged by the literature on the electricity-development nexus
(Chapter 5), and stated by Hartvigsson et al. (Hartvigsson et al. 2015, 2018a; Hartvigsson 2018).

In the case of Ikondo, the local surveys and data confirmed the high quality of the electricity service
delivered to people. For this reason, the reliability parameter was introduced in the model as an
exogenous measure of “unavailability” of the service, which has a feedback just on the actual time of
electricity use (Eq. (38)). In order to consider the impact of electricity reliability on people willingness
to have access to and consume electricity, the model has been modified by adding a new variable,
namely “customet’s response” to electricity quality, which multiplies the following variables:

1. Potential IGAs to be connected and Potential HHs to be connected, since people are less willing to be
connected for a weak electricity service;

i.  Total HHs electricity demand and Total 1GAs electricity demand, since people are less willing to
consume and pay for an unreliable electricity supply;

ui.  Electricity availability effect, which represents the propensity of people in investing in a new IGA
given the availability of electricity.

. increase of market expenditures, which represents the grade of innovation and improvements of
market goods and services thanks to electrification.

According to Hartvigsson et al. (Hartvigsson et al. 2018a), the variable can be expressed by a logistic
function, which depends on the reliability of electricity:
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The parameter £ influences the steepness of the logistic function (Fig. 53, left-side) — viz. the higher
it is, the more unexpected would be the response of the customer around a certain crucial value of
reliability). The parameter E/ Reliability is the crucial value of the sigmoid's midpoint — viz. where the
variable customer’s response is reduced to 50% of its maximum (Fig. 53, right-side).
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Fig. 53. Logistic function of customer’s response variable by varying k.and keeping EI Reliabilityy = 0.3 (left-
side), and by varying EIl Reliabilityy and keeping k. = 30.

To test the effect of customer’s response to changes in the power reliability, the model behaviour is
explored by decreasing the El Reliability by 0.01%, 0.05%, and 0.1% per time step. The parameters
k. and E/L Reliabilityy are set equal to 25 and 31 in accordance with the mean values taken from
(Hartvigsson et al. 2018a).
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Fig. 54. Effect of electricity reliability on some of the main outputs.

As expected, decreasing the quality of the electricity service, electricity connections and use are lower
respect to the calibrated case. In some cases, the consumption even starts decreasing after a certain
point (Fig. 54). The assumption here is that people do not disconnect, even for low levels of reliability,
since the fixed component of the tariff to pay every month is very low; otherwise, the impact would
be even worse, causing a high rate of disconnections, as demonstrated also by Hartvigsson et al.
(Hartvigsson et al. 2018a). This result confirms the need to introduce the concept of reliability and/or
consumer satisfaction in the traditional “binary” metrics — viz. access ot not access to electricity — usually
employed for tracking the global progress in providing universal electricity access. Indeed, using just
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the initial number of connections as an indicator for electrification programs can cause low reliability
and unaffordable electricity prices, due to the underestimation of the affordability- and reliability-
related complexities.

9.4.4. Testing further socio-economic dynamics

These tests aim at evaluating the importance and the impact of electricity access on some socio-
economic dynamics, and the reverse feedback. This contributes to assess further dynamics of the
electricity -development nexus and to initiate the process of model simplification.

Electricity-education

Based on the calibrated results and in accordance with (Kanagawa and Nakata 2008), Fig. 55 confirms
that electricity allows to achieve non-negligible improvements in the educational attainment of local
children in primary school, especially as a result of lighting at school — the step of Fig. 55 as indicated
by surveys at Kanikelele’s school.

I educational improvements
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Dimnl

0.1

0 200 400 600
Time (Week)
Fig. 55. Educational improvements in Ikondo.
On the contrary, formal education seems to have a negligible impact on electricity use: the total
electricity consumption at the final time is just 4.4% lower. This result confirms what emerged from
the interviews to the locals, who often mentioned the primary education as the least important factor
for both opening a business and improving the productivity.

Electricity-use of time

As emerged from the survey, almost all the interviewed people mentioned the time available during
the evening hours as an important effect of electricity use. The simulations (Fig. 56) indicate that the
evening hours are employed especially for productive purposes, rather than farming. Moreover, the
trend of the gperation time curve starts decreasing at a certain point. This is caused by the change in the
electricity connection tatiff in 2006, which created a fractional decrease in the IGAs connection rate,
without affecting the rate of IGAs formation. The trend keeps increasing again as the number of IGAs
starts reaching the plateau.

0.1
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Time (Week)

——  change in farming time : 'CALIBRATED'
——————— change in operation time : 'CALIBRATED'
Fig. 56. Effect of electricity use on time available for working and farming [% of change].

The feedback on the economic dynamics and the electricity demand is displayed in Fig. 57. Removing
the feedback of the time-variable has a non-negligible impact on the number of IGAs and HI Income.
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In particular, the number of IGAs increases, since the local market demand cannot be satisfied in the
evening and more IGAs are needed for increasing the daily production. This is in line with the literature
which does not report an increase of businesses as a result of night lighting. On the contrary, the
decrease in the HI Income is in line with the local surveys, that suggested an increase in the sales and
revenues as a result of the evening working. Fig. 57 confirms also that from an aggregated point of
view, the feedback of time freed-up by electricity use on the community demand is negligible (i.e.
demand 3% higher at the end of the time horizon). On the other hand, focusing just on the IGAs
demand, the disaggregated feedback generates an increase of 11% in the electricity use, since there are
more IGAs.
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Fig. 57. Feedback of time on some of the main outputs.

Electricity-market improvements

This test aims at assessing the effect of electricity use on the local market demand for new local
products with higher quality, and the feedback on electricity use. The same behaviour is generated by
investigating the effect of price reduction due to market expansion because of electrification. The
results show that neglecting these dynamics would significantly bias the estimation of the final
community electricity demand. This confirms again an important lesson to consider when measuring
the impact of electrification actions: the level of isolation of a village and the proximity to other
electrified areas are fundamental conditions to take into account. In villages well connected with other
electrified areas, the relative impact of electrification would be considerably lower, since such villages
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are benefited from a spill-over of the surrounding areas. This is evident also from the surveys in the
unelectrified village of Kitole, close to Matembwe and Ikondo, who is characterised by a higher welfare

level respect to Ikondo before electrification.
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Fig. 58. Feedback of market improvements on some of the main outputs.

9.5. Sensitivity Analysis

This test aims at assessing the robustness of the conclusions that can be derived from the main model
output on varying the assumptions over a plausible range of uncertainty. In this work, the presence of

164



Chapter 9 Testing and exploring the model

potential sensitivity to parametric assumptions was assessed by simulating the model with multiple
numerical values of its parameters.

Two decision rules for sensitivity analysis had to be addressed, namely:

—  Number of parameters to test. The analysis was performed by varying the 17 most sensible
parameters found in sub-section 9.3. For the sake of comparison, the sensitivity analysis was
performed also by testing all the parameters in a second step.

—  Sensitivity range. The uncertainty bounds evaluated in sub-section 8.3 were employed. In
order to avoid being overconfident in the uncertainty bounds, according to Sterman (Sterman
2000), the range used for the sensitivity was at least twice as wide as the statistical uncertainty
bounds.

—  Number of simulations. Performing a comprehensive sensitivity analysis by testing all the
combinations of possible values within the sensitivity ranges is not feasible. E.g., considering
to sample 100 values for each single parameter and test all the combinations between the 17
most sensible ones, the number of simulations to test would be 100!7. Motreover, since some
parameters are totally independent in the real world, testing all the combinations could lead
to unrealistic values. The same consideration applies in case of testing all the combinations
between just the minimum and maximum values of the chosen parameters. An alternative
could be performing a wnivariate sensitivity by testing 100 samples for each parameter per time,
and then sum-up the effect. Also in this case, this would not be an appropriate choice for
testing the sensitivity in SD models that are significantly nonlinear in most of the cases.
Therefore, it was decided to perform 20°000 near-random multivariate simulations through a
Latin hypercube method, in order to explore the combined effect of varying the parameters at
the same time.

—  Sampling method. The 20’000 simulations were performed by using a near-random sampling
based on the Latin hypercube method, in order to be sure to sample the entire sensitivity range
of each parameters. It is an approach introduced in 1979 by McKay et al. (McKay et al. 1979).
Simply, given the 20’000 samples to perform, the method divides the cumulative density
function of each parameter’s distribution — it is uniform in the case of this study — in 20’000
equal intervals; for each one of the 17 parameters, given a and & the extremes of the uniform

s-1):a sb
L), , ] Then, all
20'000 ~ 20'000.

the samples made on the chosen parameters are randomly combined in a 17-dimensional pairs.
This method is a refinement of the complete random Monte-Carlo simulation, since it should
guarantee that the sampling from each parameter’s distribution covers the actual entire
variability.

distribution, the sample s=7,...,20°000 is selected from the interval [

Fig. 59 reportts the results obtained by performing the sensitivity analysis on the Tozal community electricity
demand obtained, which represent the electricity demand of the entire community, viz. IGAs plus HHs.
The sensitivity was performed both on the 17 most sensible parameters and compared with the same
analysis performed on all the calibration parameters. The plotted values are limited to a confidence
bound equal to 90% represented by the red areas in the graph, meaning that 5% of the simulations are
cut-off from the top and the bottom of the areas. The other coloured areas represent the 80% (in
orange) and 60% (in yellow) confidence bounds. The comparison between the two results (Table 34)
confirms that testing also the combinations between all the other less sensible parameters is not
particularly useful, since the results do not significantly differ.

The results clearly show that the model is highly sensitive to the uncertain parameters in the long-run.
On the other hand, this variability is reflected also by data, which are very scattered. On the contrary,
the uncertainty bars are tight in the short-run, and they are not able to capture the variability of the
data. Given the general objective of the model, viz. projecting long-term electricity demand to support
local electricity plans, these results can suggest a potential practical use of the model for designing
sustainable power systems in further applications. As reproduced in Fig. 60, the model could be used
for making projections of electricity demand for the initial 3-4 years, and then supporting the design
of the initial size of an off-gtid microgrid able to satisfy the worse/highest (i.e. the upper red) demand
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curve. This would overestimate the actual mean demand, but it also would ensure to cover potential
peaks and power fluctuations and, in the meantime, gather data for assessing the trend of the demand

curve.
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Fig. 59. Sensitivity results tested on the Total community electricity demand obtained by varying the 17 most
sensible parameters (top-side), and all the parameters (bottom-side).

Table 34. Deviations between the two sensitivity analyses evaluated on the confidence bounds at the final time of
the simulations (percentages referred to the analysis performed on the 17 parameters).
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Fig. 60. Sensitivity cont’d.
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Chapter 1 O

Soft-linking demand and optimisation
models

If your hate conld be turned into electricity, it wonld light np the whole world.
(Nikola Tesla)

We need to bring sustainable energy to every corner of the globe
(Ban Ki-moon 2011)

This chapter addresses the Objective 3. It reports and discusses the modelling effort
in soft-linking demand, load, and energy optimisation models for more appropriate
electrification planning procedures. To derive stochastic long-term load profiles, the
LoadProGen tool model is modified and improved in order to simulate and aggregate
a number of daily profiles in line with the duration of the desired scenario and the
projections obtained with the SD model. The integration with the Po/iNRG energy
model is implemented in order to optimise the size of the energy supply technologies
through a heuristic procedure under a number of constraints and inputs (e.g. the
long-term electric load profiles, the availability of renewable resources, and the
fraction of admissible unmet load). A Hydro-batteries is considered, in order to
investigate what would have been a potential optimal capacity to install for supplying
the projected electricity demand of Ikondo from 2005 to the end of 2017. The same
optimisation is implemented by considering a PV-batteries system for the planning
of the first 3 years of the horizon, given the flexible nature of solar systems and the
low variability in the electricity demand in the first years. In order to highlight the
benefits and challenges of the soft-linked procedure, the results are compared with
the traditional approaches and hypothesis commonly adopted in the literature to
assess and introduce electricity demand in rural electricity planning processes.

167



10.1. Generation of stochastic long-term load profiles

Sub-section 2.1 and 2.5 confirmed that both short- and long-term variabilities have a significant impact
on the planning of off-grid systems. Based on the sensitivity analysis performed in the previous
Chapter, 5 representative projections and the related simulation parameters were selected (Fig. 61),
namely:

- the CALIBRATED projections;
- the following 4 percentiles: 70%, 80%, 90%, 95%.

For these 5 scenarios, long-term load profiles were generated by developing a soft-link with a stochastic
load profile generator.
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Fig. 61. SD simulations used for generating long-term load profiles.
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10.1.1. Li/fetime-load profiles generator

In line with CASE 7 and CASE 2, the software LoadProGen developed by Mandelli et al. (Mandelli et
al. 2016d) and implemented in MATLAB® represents an appropriate tool for estimating load profiles
characterised by a high level of uncertainty. The software has the following features (Mandelli et al.
2016e):
- input data (see Table 35) can be easily collected by means of local surveys or assumed by
practical experience on similar context conditions;

- the load profile formulation is based on a bottom-up approach, since it relies on the real
features of each electric appliance within a specific type of user class;

- it defines the behaviour of the appliances and the power peak value correlating the number of
users with their declared usages of each appliance;

- the procedure is based on a stochastic process; it takes into consideration uncertainties by
formulating different realistic profiles according to the given the input data.

Table 35. Input data required by LoadProGen (from (Mandelli et al. 2016e)).

j type of electrical appliances (e.g. light, mobile chatger, radio, TV)
uc specific user class (e.g. household, school, stand shop, clinics)
Ny number of users within class #c

N_appjuc number of appliances j within class #¢

P nominal power rate [W] of appliance j within class #¢
hjuc overall time each appliance / within class # is on during a day [min]: functioning time
WEj,uc period(s) during the day when each appliance 7 within class # can be on:

functioning windows
djuc functioning cycle [min], i.e. minimum continuous functioning time once appliance j# is on
Rh . % random variation of functioning time appliance j,#c
Rwjuc % random variation of functioning window appliance j,#
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The software adopts a stochastic approach, computing a different daily load profile each time it runs.
It starts computing the total daily electric need within each user class g, the possible theoretical
maximum power peak, and the time when the peak may occur. Based on an empirical correlation
existing between the amount of users within each user class (#,.), the load factor (fi,.) and the
coincidence factor (fc.), the software computes the reference value of the power peak for the
considered user class. The reference value of the power peak for each user class is employed to
compute the class’s daily load profiles: firstly, the software defines the functioning of each appliance /
by randomly sampling the switching on times within the relative functioning windows wy,;.; secondly,
it aggregates the functioning of the single appliances to compute the daily load profile and the resulting
power peak for the considered user class; thirdly, the software implements an iterative process, which
makes the resulting power peak converge towards the reference power peak, assuming a tolerance
defined by the designer. LoadProGen repeats the previous steps for each user class in order to compute
the total daily load profile. Each run of the software generates one daily load profile, constituted by a
series of x values, each one representing the load (W) over a time-step that can be 1 second, 1 minute,
15 minutes, or 1 hour.

In its original version, LoadProGen allows the user to perform an arbitrary number of daily load profiles.
In the framework of this thesis, the software was modified in order to simulate long-term scenarios of
electricity loads: in its new modified version, the tool generates a number of daily profiles in line with
the duration of the desired scenario, and it automatically aggregates them. The aggregation was
formulated in the original code by adding an external routine, which runs IoadProGen as many times
as the number of the N days (viz. the planning horizon) of the desired scenario and according to a
calendar-file, which associates each day of the scenario to a specific input data file. One input data file
can represent one single day — in this way the number of input data files is equal to the number of days
of the scenario — or a “cluster” of £; days (e.g. a season) — in this way the number of input files is equal
to the number of such “clusters” of the scenario. This new version of the software is called Lifetimse-

LoadProGen (Fig. 62).

I\ ’ ) \ ‘. |
[ l [
Cluster 1 Cluster 2 Cluster N
run LoadProGen £, tumes mn LoadProGen (&, — &) times run LoadProGen (&, &, ,) times
Data_input C1 ‘ Data_input (2 Data_input CN

Fig. 62. Operation of Lifetime-LoadProGen.

10.1.2. Soft-linking SD and load models

The SD model was soft-linked with the L#fetime-I.oadProGen tool by using the values of 38 output
variables from the SD model, and converting them in the correct vatiables to use in the input data files
for the software. The computer modelling environment used was MATLAB ®. The variables were
grouped in Fig. 63, and soft-linked with the corresponding variables to use in the software.
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Fig. 63. Outline of the soft-link between SD and load models.

The first soft-link was used to determine the number of potential user classes between households,
based on the type and number of appliances. For each appliance, the SD model provides simulated
time-series of the ownership level for the two income groups (Fig. 64). The soft-link evaluates the total
integer number of appliances to allocate for each time-step by multiplying these diffusion curves times
the curves of HI and LI HHs connections — previously rounded to the nearest integer for each time-
step. The soft-link then assigns the appliances among the connected households according to a random

distribution, obtaining the Ngyp, o vatiables. All the combinations obtained with such random
allocation provide the types and number of the HHs user classes ucyys, and the number of users in

each one (nuc,HHs)'

03

Appliances/Househol ds

0 200 400 600

Time (Week)

potential HI TVs :'CALIBRATED'
------- potential LI TVs : 'CALIBRATED'

Fig. 64. Diffusion curve for the appliance TV.
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The other variables related to the operation time of the appliances were soft-linked with the software
just by converting the units of measurement:

—  Functioning time for HI | 11 [appliance] converted from [hour/week] in h; ¢ yys [minutes/day];
—  Time for not EE- | EE- reliant IGAs converted from [hour/week] in hj ¢ 1645 [minutes/day].

‘The Connected not-EE-reliant IGAs and Connected EE-reliant IGAs time-series are rounded to the nearest
integer for each time-step, giving the number of IGAs (11, ¢4s) for the 2 IGAs user classes (ucgys)-

Since the calibrated model confirms that the working days are lower than 7, i.e. 6.43, this information
was included in the soft-link by defining both week and weekend days in the calendar file. During the

weekend days, the working time is shorter, i.e. (7 — 6.43)-100 = 57% shorter.

10.1.3. Results

The soft-link was applied on the 5 selected scenarios reported above in Fig. 61. In order to be
consistent with the SD model, the long-term load profiles were simulated along the same 13-years
horizon. Each year of the horizon was divided in 4 time-clusters (or seasons) of around 91 days each,
for a total of 13x4 clusters. Each cluster was defined by 1 input file, obtained by applying the soft-link
to the values of the above-mentioned 38 SD output variables in correspondence to the day in the
middle of the time cluster. E.g. the 15t of March is the representative day for all the days from the 1+
of January to the 30" of April. The time-step of all the 13x365 daily load profiles was 15-minutes. In
order to compare the results with the traditional approach commonly adopt in the literature for
planning the capacity of off-grid microgrids, a further long-term load scenario was developed with the
same hypotheses considered in CASE 7 for the prefeasibility study of Ninga SHPP commissioned by
CEFA: the estimated number of connections promptly realizable is around 50% of the households,
and 100% for the businesses (viz. 2 in 2005), with assumptions on the load factors of the electric
appliances.

Load profiles of 5 representative days and the one obtained with the traditional approach are displayed
in Fig. 65. The 5 profiles cleatly reflect the positive trend of growth of the electricity demand. The
difference between year X and XIII does not emerge anymore, since the demand in those years
assumes almost the same level (see next Fig. 67). Moreover, the following considerations can be
derived:

1. The consumptions of IGAs, especially the EE-reliant ones, clearly determine the peak and reach
the higher levels;

2. The household consumption determines the area of the base level of the demand, as visible in
the morning and evening hours. It increases with the years, due to the growth in the residential
connections.

3. With time comes clearer load shapes: a first peak in the morning, due to both starting household
and IGAs activities; a little decrease during the day, since farmers are mainly busy in the land,
and the only load is consumed by the IGAs; the highest peak in the evening, due to both the
evening household activities at home and the IGAs operations.

4. Two pitfalls emerge in the use of the traditional approach: regarding the short-term variability
of the load, the approach overestimates the effective functioning time (Z.e. load factor) of the
working machines (e.g. Mills); regarding the long-term, the hypothesis that 50% of the
population gets immediately connected overestimates considerably the base load.

Fig. 66 reports the comparison of two load profiles of a representative week and weekend day. As
expected, the weekend days are characterised by lower electricity consumptions, due to less IGAs
production.
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Since data regarding the actual load profiles are not available, the validation of the shape of the curve
is not possible. In particular, the most critical parameters are the ones regarding the installed power
and the operation time of the EE-reliant and notEE-reliant IGAs. These parameters come from the
calibration done on the SD model by using the available data on the monthly energy consumed by
IGAs. Sdill, the calibrated values of installed power and operation time represent just one of the
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potential combinations of values that can fit with the available monthly energy data. On the other
hand, the lack of data would prevent any other way for estimating of the right combination of power
and operation time. If data will be available in the future, a possible way for drawing more accurate
load profile would be using Lifetime-1oadProGen for calibrating the right combination of power and
operation time of IGAs, as follows:

i

1i.

Total electricity demand [kWh/Month] Total electricity demand [kWh/Month]

Total electricity demand [kWh/Month]

consumed by the two types of IGAs;

In the SD model, specifying and calibrating a more general parameter representing the energy

Running Lifetime-1oadProGen with multiple combination of installed power and operation

time coherent with the calibrated value of energy found at the step before;

the error between data and load simulations.

1. The only possible test done for assessing the reliability of the results of Lifetime-LoadProGen
was on the monthly values of energy simulated with the software. All the simulated profiles
were therefore used a-posteriori to calculate the total electricity curves demand for the 5
scenarios, and then compared with the demand curves obtained with SD (Fig. 67).
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Fig. 67. Long-term load profiles for the selected scenarios, and comparison with the SD output.
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The results confirm the ability of the Lifetime-1.oadProGen to replicate the SD model behaviour.
Moreover, two interesting considerations are worth to be done:

1. The Lifetime-LoadProGen curves are subjected to more variability, as a result of the stochasticity
nature of the software, which generates different daily curves at each run, and due to the
randomness adopted to set the different user classes generated with the first soft-link. The
latter overcomes the perfect-mixing hypothesis adopted in the SD model to represent just two
HHs classes: the HI and LI

2. Despite being more variable, the curves generated with the load model are still not able to
capture all the variability of the actual data, suggesting the need to move towards ABM
approaches for achieving more precise cutves.

10.2. Optimisation model for energy system planning

10.2.1. The Poli.NRG tool

The review of the energy planning case studies in Chapter 3 highlighted the availability of a number of
different mathematical approaches, and related tools, for planning off-grid systems. In this work,
Poli NRG software was employed given the possibility to add arbitrary long-term profiles in the
optimisation process. The tool was developed in MATLAB® by the Electrical Power System Group
of Politecnico di Milano, and referenced in (Mandelli et al. 2016¢, 2017; Brivio et al. 2017). The tool is
based on a numerical and heuristic optimisation, and the objective is to minimise the cost function
(viz. the Net Present Cost (NPC)) by modifying the size of the supply technologies under a number
of constraints (e.g. the availability of renewable resources, an imposed electricity load). In its original
form, the software was released for planning photovoltaic (PV) systems with solar panels and batteries.
In the framework of this thesis, the software was modified and adapted also for considering hydro
power sources in order to investigate what would have been a potential optimal off-grid capacity to
install for supply the projected electricity demand of Ikondo from 2005 to the end of 2017. The
acronym “NRG” in the name of the software stands for Network Robust Design. The term “Robust”
refers to the capability of the software to consider these two constraints of the design process:

L. Variability of the yearly electric load. The software allows the user to give in input multiple probably
electric load curves for a same year.

2. Growth of the energy demand. The software can consider different arbitrary scenarios of growth of
energy demand over time.

Components modelling

The main equations that define the PV system, the battery bank and the inverter are reported (Brivio
et al. 2017). The energy generated by the PV-system in each time step is:

G, (£
Ep (&)= {PT/;@ S —T—() "Msos (52)
T,STC

The term P17, represents the installed power of the PV capacity [kW]; fpr-is the derating factor; 7pos
is the balance of system efficiency; G(#) is the solar radiation incident on the PV array in the current
time step [kW/m?], while Z}l;ym is the incident radiation at standard test conditions [1 kW /m?].

In the case of hydro generation, the energy generated by the Hydro-system in each time step is:
Hy d.fz'ze : CP}]]{{ (/%> : 77};;':{ gf C‘F‘b]d <1

. (53)
Hy dfi:{b’ : 77/gyd ZJ[ CI:/;yd =1

E@yd (&)= {

The term Hydg, represents the installed power of the hydro turbine [kW]; 7,4 the hydro turbine
efficiency; CFju(k) is the capacity factor of the system in relation to the availability of the hydro
resource, specifically:
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CIT‘/? g = /]Wf (/é) c(cfmw N (54)
) ( ) = gmw

/ Hyd

Where 4, is the effective available head [#] at time-step £, and Oy, is the available and exploitable

flow rate [m3/s] at time-step &, while (' Qi) ipa_ is the minimum combination of flow rate and
available head needed to produce a power output at least equal to Hydi.

The battery bank is modelled as an ideal storage system, which includes information on the minimum
State of Chatge (SOCwin), the powet-to-energy tatio (P/E )y to consider the maximum power
output of the battery bank as regards the rated capacity, and the charge-discharge efficiency. The
lifetime of the battery bank is computed by considering the expected average cycles to failure in
accordance with the imposed depth of discharge reached.

Finally, since the system architecture is based on an AC-bus, the inverter for the PV is defined
according to the maxim capacity of the PV system, and considering the inverter efficiency.

Dispatching strategies
All the energy produced by the hydro is exploited by the load, otherwise stored.
Optimization

For each time step £ (i.e. 15-minutes) of the load and the CFj,,, the optimizer computes the balance
between the energy Eji(k)/Epi(k) produced by the tutbine/PV panels and the load demand LC(#).
The difference (divided by the inverter efficiency in case of PV) is the amount of energy that flows
through the battery bank. On the contrary, a discharge from the battery to the load occurs if the
difference between the energy produced and the load demand is negative. The energy which flows
through and from the battery determines the state of charge of the storage, which is updated at each
time-step 4, and which is subjected to the SOCwin and the (P/E )y, constraints. The ratio between
the energy that is supplied to the load and the actual load demand at each £ gives the Loss of Load
Probability (LLP), which represents the fraction of unmet load in each time-step.

The optimisation process follows an imperialistic competitive algorithm, which starts with the
definition of a searching space of all the potential technological solutions — i.e. the ranges of hydro/PV
power and battery capacity to be investigated — and continues with an iterative process that
progressively explores the searching space and calculates the value of the Net Present Cost (NPC) (Eq.
(55)) and Levelized Cost Of Electricity (LCOE) (Eq. (56)) for all the discrete solutions that satisfy a
certain long-term energy demand and the constraint set by the user on the LLP, i.e. the maximum
acceptable LLP. Finally, the algorithm stops once the final solution (viz. the final configuration of
energy pant) with the lowest NPC is found. In case of multiple lifetime load profiles, the optimizer
repeats the same process for all of them, and then identifies an area of solutions by computing the
weighted average of all the obtained optimum points.

G Inv(y) + OBM(y)
S 14y
re (l + V)LT NPC
1 I ’ LT
(1+r)" - (1-LLP)- Y LC(k)
%=1
where y=7,..., LT represents each year of the plant lifetime LT, Ins(y) is the yearly investment and

replacement costs of the components of the system, O&M(y) represents the operation and
maintenance yearly costs, and (7 + 7)7 is the discount factor.

NPC = (55)

LCOE =

(56)

10.2.2. Power system configuration

The configuration scheme of the Hydro-batteries system is displayed in Fig. 68, while the details of
the technological components considered in the simulation set-up are resumed in Table 306.
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Fig. 68. Configuration scheme of the energy system.

Table 36. Economic and technological details of the system components (from (Kenfack et al. 2009; Hafez and
Bhattacharya 2012; Brivio et al. 2017; IRENA 2017)).

Capital cost Other information
Hydro turbine 3600 [$/kW] Nhyd = 75%
Battery bank 290 [$/kWh]!7 Lead-Acid 6V — 1156 Ah

- Ratio powet/energy = 0.50 [kW/kWh]

- Minimum SOC = 40%

- Max years before replacement = 8 [years|

- Charge and discharge efficiency, including the
inverter efficiency = 85% and 90%

- Max cycles before replacement = 1500

The same optimisation was implemented for a PV-batteries system for the planning of the first 3 years
of the horizon, given the flexible nature of solar systems, rather than hydro, and the low variability in
the electricity demand in the first years (Technical details in Fig. 70, Table 37).

“ ! ’
= INVERTER
LOAD SOLAR PV
BIDIRECTIONAL BATTERY BANK
CONVERTER

Fig. 69. Configuration scheme of the energy system.

17 Including the bidirectional converter.
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Table 37. Economic and technological details of the system components (from (IRENA 2016, 2017; Brivio et al.

2017)).
Capital cost Other information
PV system 1800 [$/kW] nBos = 85%
ferr=2%/ytr
Inverter 1000 [$/kW] 7im = 90%
Battery bank 290 [$/kWh]'7 Lead-Acid 6V — 1156 Ah

- Ratio power/energy = 0.50 [kW/kWh]

- Minimum SOC = 40%

- Max years before replacement = 8 [years|

- Charge and discharge efficiency, including the
inverter efficiency = 85% and 90%

- Max cycles before replacement = 1500

10.2.3. Resource assessment and other simulation set-up

Data on the hydroelectric resource were obtained by CEFA reports. The data on the daily flow rate of
the Kiepa river were derived from the analysis of direct observation from 1993 to 2015 and resumed

in Fig. 70.

13.00 9.00
12.00
11.00 8.00

10.00
7.00

798
747
6.72
598
. 6.00 562 5.77
5 o 5.22
e ——— - ol
. 77 N — 400 408 45
27 — 400 I I

S T T B T S T T B T A T G L - T o 3.00 I
) F M A M G L A S o N D

Day of the month
—] =t M A =] = ] m—f =5 () =—N ——D] Day of the month

Flow rate [m3/s]
Flow rate [m3/s)

Fig. 70. Daily flow rate (left-column) and average daily flow rate at monthly basis (right-column) of Kiepa river
obtained by analysis on direct measurement from 1993 to 2015.

For calculating the capacity factor, the minimum available hydroelectric power that can be potentially
produced by exploiting all the available hydraulic head 4., of 18 m during the year is calculated with

Eq.(57).

Pﬂrz‘n available = nm/ ' bnef Poaer g ’ erz'ﬁer 1 MIN (5 7)

whete 70 = 0.75, Owaeer 1s the density of water [1000 kg/m?], g is the acceleration due to gravity [9.81

m/s? and O . | is the lowest flow rate during the year. The value of the minimum available
rwvert A\[IN

hydroelectric power for the Kiepa river results to be around 460 kW, largely higher than the most
optimistic long-term projection of the load curve (viz. the 95-percentile) (Fig. 71). Therefore, the
Capacity Factor was set equal to 1 along all the simulation horizon.
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Fig. 71. Projected long-term electricity load for Ikondo.

For the solar resource, data on global irradiation on tilted surface were collected from the
Renewables.Ninja database's, an open web platform for simulating the houtly power output from PV
panels located anywhere in the world, based on (Pfenninger and Staffell 2016; Staffell and Pfenninger
2016). Daily examples of the solar capacity factor for all the 12 months of the year are represented in
Fig. 72. The tilt of the panel was set equal to 16°, according to (Idowu et al. 2013) and tested on
Renewables.Ninja database.
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Fig. 72. Solar profiles for 12 days of the year.

The remaining techno-economic parameters set in the software are resumed in Table 38.

Table 38. Further inputs of Poli. NRG.

Value Unit

Economics

O&M cost for the overall plant 100 €/kWhyd

Installation cost as % of investment cost of Hydro / PV 20 %

capacity+Battery bank+Inverter

Project lifetime (LT) 301? year

Rate of interest 16 %
Reliability

Loss of Load Probability (LLP) 220 %

10.2.4. Results and Discussion

For the hydro case, PoliNRG was used with the 5 projections of long-term electricity load profiles
derived in the previous sub-section, plus the profile computed with the traditional approach. For the

18 https:/ /www.tenewables.ninja/

19 The project lifetime is set equal to 30 years. The value is necessary for the calculation of the NPC and the depreciation. Tt
does not affect the optimisation horizon, which is equal to the size of the long-term load profile, viz. 13 years.

20 Set equal to 1 minus the calibrated value of the E/Reliability of the SD model.
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solar case, just the 3 initial years of the same load profiles were used. The results are compared by
focusing on the investment cost NPC [§], the installed power of the hydro turbine Hyd, [kW], the
battery size BESS [kWh], and the cost of electricity LCOE [$/kWh)]. The differences in percentage are
calculated respect to the “CALIBRATED” scenario.
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Fig. 73. Main results for the hydro (left-side) and the PV (right-side) case.

Fig. 73 confirms that the long-term variation of the electricity load impacts considerably the size of
the optimal hydro solution. The total hydro and battery capacities installed in the most preventive
scenario (z.e. 95-percentile of the load) differ by 57% and 20% respect to the calibrated scenario. Such
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results have direct economic implications, as clearly visible in the figure representing the NPC. In the
case of PV, instead, the results confirm that the differences between the 5 scenarios is not highly
significant, reflecting the low variability of the data and the SD model in the first 3-4 years of the
simulation horizon.

For both the optimisations, the results change more significantly respect to the output obtained with
the traditional case. Especially in the 3-years optimisation of the PV systems, the sizing process based
on the traditional case leads to completely different results, due to a huge oversizing. This has practical
implications especially on the LCOE: the cost obtained with the traditional approach is considerably
lower than the others, since the energy consumed is higher and there is no stochasticity in the load and
no fluctuating power peaks. This has practical implications on the business model, since tariffs based
on lower expectations of LCOE than the actual ones could reveal as unsustainable, jeopardizing the
return on the investment, and therefore the quality of maintenance and the long-term success of the
project (as also found by Hartvigsson et al. (Hartvigsson et al. 2015, 2018a)). This result points out an
important consideration and a potential use of the SD model: based on the policy testing performed
on it, increasing the cost of electricity would cause a decrease in the total electricity demand, especially
by local IGAs; the combination of the SD output and the result of the optimisation would allow to
define an appropriate tariff scheme and payment strategy, in order to guarantee an affordable service
to people and a margin of profit for the utility. E.g., in this case of Ikondo, the tariffs set by the local
utility are lower than the LCOE found in the two hydro and PV cases, since the investment cost was
covered through national or international grants, and the tariff set based on the cost of operation and
maintenance. This allowed to achieve higher levels of willingness to pay by people. Particulatly in the
case of PV, the LCOE values are particulatly higher due to the fact that the solar irradiation is not
particularly economic convenient to exploit in that part of Tanzania.

In the end, the results allow to point out two important conclusions and policy implications on the
practicality and use of the SD simulations:

- entire horizon-long (long-term): despite the results being much more reliable respect to the traditional
approach for assessing long-term load profiles, planning the system capacity with simulations
along the entire planning horizon (as in the hydro case) is riskier, given the higher variability of
the SD model output in the long-term that is reflected also in the results of the optimisation.
On the other hand, in case of high financial availability (e.g. grants) able to cover the initial
investment, the optimisation based on the 95-percentile is the most robust design scenario. This
points out that the “long-term” use of the SD model integrated with the load and energy models
is more useful for policy testing and for a preliminary planning of the future investments, as
well as for investigating the long-term dynamics of the electricity-development nexus.

- [first years-long (short-term): the sizing process based on initial 3-4 years (as in the PV case) of the
simulated energy demand is more robust to variations and uncertainty of the SD model;
therefore, sizing the plant based on the 95-percentile projections allows to cover almost all the
load variability without increasing considerably the investment cost respect to the calibrated
case. This strategy can be useful in case of low financial availability and no external grants, which
requires a precise tariff definition for guaranteeing an acceptable return on the investment.
Nevertheless, also in this case the long-term simulations along all the planning horizon can be
useful to assess estimations of how the demand can evolve, test polices, and start planning the
further investments. This is of course more suitable in case of more modular power
technologies, as PV and Wind, rather than hydro. This points out that the “short-term” use of
the integrated model is especially useful for the energy optimisation process.

Finally, these final considerations set a starting point for further modelling work focused on robust
and stochastic optimisation, in order to overcome the limitations of the scenarios-based approach
adopted here in the two electricity planning processes.
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Chapter 1 1

Conclusions and future work

The scientist is not a person who gives the right answers, he is one who asks the right questions
(Claude Lévi-Strauss, 1964)

The electric light did not come from the continnous improvement of candles
(Oren Harari)

This chapter provides a summary of the thesis contributions, implications, strengths
and weaknesses of the work, and it discusses the potential future works and research
activities.

181



11.1. Relevance and contributions

Around the world, around 1 billion people do not have sustainable access to electricity. This is
considered a limiting factor to the socio-economic development of rural communities in developing
countries. During the last decades, international donors, organizations, NGOs, universities, energy
planners, practitioners, and private companies have been investing a lot of resources in programmes
and projects that aim at improving rural people’s socio-economic conditions through access to energy.
Despite these investments, the scientific literature reports only fragmentary and sometimes
controversial results regarding the impacts of energy programmes, and most of the times the causes
are attributable to the inappropriate planning of the off-grid power system capacities. In this context,
wrong projections and assessments of the long-term electricity demand contribute to the over- and
under-sizing of electricity systems and related infrastructures, especially in off-grid areas. This is caused
by a limited knowledge and modelling of the long-term impact of electricity access on local socio-
economic development and the consequent feedback on electricity demand. Moreover, the scientific
investigation of this topic is rarely coupled with the research on off-grid rural electricity planning,
leading to an insufficient attention to “long-term aspects” in the traditional practices, models and
methods for rural electrification. In this framework, the lack of models and approaches for
investigating and understanding the determinants of rural electricity demand, making long-term reliable
projections, and integrating the insights within planning methodologies represent an informational and
research gap that the present thesis tried to fill.

The main findings of this thesis are presented in terms of discussions relating to the three objectives
and associated research questions (Q) presented in sub-section 7.2: Ain and Motivation of the research.

Objective 1: To investigate and discuss the challenge of electricity demand assessment and
modelling for rural electrification.

Q 1.1: How does electricity demand impact on the planning solution of off-grid systems?

In “Chapter 2 - Relevance of electricity demand in rural electricity planning”, the relevance of
electricity demand in rural electricity planning was highlighted and clearly stated by reporting
literature examples and case-studies. In order to put more emphasis on the importance of short-
and long-term electricity evaluation within the planning endeavour, two original case studies were
carried out. The first case confirmed that the appropriate assessment and modelling of short-term
determinants of electricity demand can lead to considerably different results in terms of both load
profile and energy consumption respect to the traditional approaches to electricity load
forecasting. The second case tested the inclusion of socio-economic aspects in modelling long-
term electricity demand and it demonstrated that the output of energy planning process is highly
dependent on the long-term aspects of electricity demand. With these two case studies, it was
therefore found and demonstrated that shorz- and long-term assessments are both essential and critical
aspects to carry ont when designing rural mini-grid. Within the scientific community committed in
addressing electricity access-related challenges, this finding will contribute to raise awareness on
the criticality of electricity load assessment in rural electrification planning. These results advocate
therefore more research effort for the investigation of appropriate rural electricity demand
models.

Q 1.2: How does the current literature on rural electrification tackle the analysis and evaluation of electricity
demand?

In “Chapter 3 - Review of energy planning case studies and demand models”, a comprehensive
literature review on long-term rural energy planning was provided. 85 studies were classified in
accordance with their type (planning horizon, energy carrier, decision criteria mathematical
models, and energy uses) and with the methodology they employ to forecast the evolution of the
energy demand, if any. A first synthesis of strengths and weaknesses, and fields of applicability of
the approaches used so far were provided, as well as the main modelling insights that can be
derived from their applications in order to improve current practices in rural energy planning.
This implied zhe establishment of a set of potential new literature gaps in the field of rural energy modelling and
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electrification that open new research opportunities (e.g. multi-objectives optimisation techniques, strengthening the
research on thermal energy access, assessment of production uses of energy). From the review, another
fundamental finding that emerged is that most of the rural energy planning literature neglects the aspect of
long-term evaluation of electricity demand. Indeed, few studies assume a dynamic demand over the years
and most of them forecast its evolution through arbitrary trends and scenarios. For the first time
in this research field, this critical drawback and shortcoming of the current practices for rural
electrification is stated and highlighted. These findings imply also that current software and
models for optimising rural power systems should now align their infrastructures, algorithms, and
new releases to include the long-term characterisation of electricity demand.

The chapter provided also an original discussion on the main potential multifaceted aspects and
dimensions that affect the evolutions of electricity demand in rural contexts, highlighting the link
between the rural electricity demand and the socio-economic development that electricity use can
bring in a local context. This led to another important finding: electricity demand evolution and rural
socio-economic development are somehow linked, which represented the basis for the further in-depth
analysis of the electricity-development nexus.

Q 1.3: Which are the complexities bebind the evolution of rural electricity demand?

“Chapter 4 - Electricity demand and socio-economic complexities” allowed to answer to this
research question by offering an important contribution in the rural electrification field: a
comprehensive analysis, through causal loop diagrams, of all the dynamic complexities related to
the impact of electricity access and consumption on rural socio-economic development, and vice
versa. The results confirmed that the energy-development nexus is complex to an extent that it
can be usefully described as a ‘complex system’, where all the following dimensions are
endogenously interconnected between each other and with electricity demand: income generating
activities, market production and revenues, household’s economy, local health and population,
education, and habits and social networks. This contfirmed that #he evolution of rural electricity demand
can be excplained by endogenons dynamics. From a qualitative point of view, the analysis gave insights
also about the reasons why electricity access does not always bring development. This has an
important research implication in the field of rural energy modelling, since it finally confirms the
need to overcome traditional top-down and/or regression-based models for analysing the nexus
between electricity use and rural development. It also emphasized the important role of some
complementary activities and infrastructural preconditions to couple with access to energy
programmes in order to achieve long-term rural development. E.g. good roads and
telecommunication systems, capacity building activities, financial support for school equipment.

Q 1.4: From a modelling point of view, which can be the potential way forward for assessing the evolution of rural
electricity demand?

“Chapter 5 - Modelling insights for dealing with complexities” set an important step for building
upon the quantitative modelling of the endogenous complexities behind the electricity
development nexus. Two simulation approaches for modelling complex systems were
investigated, namely system dynamics (SD) and agent-based modelling (ABM), in an ad-hoc
speculative case study regarding the diffusion of electricity connections in a fictious rural setting.
As first original contribution, ABM and SD were compared by simulating a more complex and
realistic diffusion process than the classical Bass model, viz. the splitting of the population
between “influential” and “imitators”. The obtained results indicated that zodelling social interactions
is adpisable in order to improve the accuracy of electricity demand projections and the design of mini-grids, since
different structures of social networks can lead to unexpected scenarios of electricity demand
growth. Such understanding may be pivotal for local electricity utilities, which manage off-grid
systems in very remote contexts characterised by deeply-rooted social structures and beliefs,
especially when they make their investment plans, and define the electricity tariffs for guaranteeing
a positive return on the investment. In terms of research implications, this chapter would
contribute also to the same effort of other researchers to propose improvements and solutions
to the hypothesis of “perfect-mixing” and homogeneity assumed by SD within stocks and flows.
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The obtained results suggest also that ABMs are not suitable for comprebensively characterizing the
electricity-development nexus, given the scarce availability of data, the required knowledge of specific
social-science competences for the definition of the social structures, and questionable
applicability to different contexts. This led to the selection of SD due to the high uncertainty,
strong non-linear phenomena, time-adjustments of technology perceptions, time delays, and
feedbacks characterising the issue of rural electricity demand, as well as the possibility to derive
modelling insights by relying on less data.

Objective 2: To assess and model the fundamental dynamics, variables, and exogenous
policies that characterise the electricity-development nexus and determine the evolution of
electricity demand.
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Q 2.1: How 1o formulate the dynamics behind electricity-development nexus and generate reasonable long-term
projections of electricity demand in rural areas?

System dynamics was used to build a simulation model in order to answer to this research
question. In “Chapter 6 — Model Conceptualisation and introduction to the Ikondo case”, the
first step of the SD-based modelling process is reported. It consisted in the conceptualisation of
the model, which considered the problem(s) and purpose(s) definition, the identification of the
model boundary and key variables, and the graphical representation the feedback loops of the
system. This phase was carried out based on a real case-study used as reference and for going
further in the next stages of the modelling process, i.e. a hydroelectric-based electrification
programme implemented in the rural community of lkondo, Tanzania, in 2005 by the Italian
NGO named CEFA. Considered a “successful case of rural electrification” by locals,
practitioners, and academics, an important element of originality and contribution of this chapter
was the improved characterisation of the electricity-development nexus and the main
determinants of the electricity demand based on a real case. In “Chapter 7 — Formulation of the
simulation model”, the mathematical structure and the decision rules of the model were specified.
Three elements of originality can be recognised. First, the formulation of quantitative and bottom-
up white-box (i.e. causal-descriptive) relations that characterise the electricity-development nexus
through 11 sub-models. Second, the formulation of a model able to simulate long-term
projections of rural electricity consumptions. Third, despite its formulation is based on a specific
case-study (which is a limitation), the model reflects, represents, and assesses many of the
dynamics typical of rural areas of developing counttries, setting a novel modelling reference for
further investigations on this research topic. These 3 elements together allow to enhance the
research on the rural energy demand and the energy-development nexus, providing the first step
in the research and modelling work committed to develop more general, flexible, and
customizable energy demand models. In “Chapter 8 — Model calibration”, the model behaviour
was compared to the available data, by relying on appropriate statistical measures that confirmed
the ability of the model to replicate the observed historical behaviour of the system. Also, the
calibration contributed to highlight the presence of further determinants of the rural electricity
demand that did not emerge from the analysis of electricity-development nexus but worth to be
further investigated: intra-season variabilities, due to the dependency of people financial
availability on the harvesting period, and daily load variability, due to the unpredictability of
people’s habits and use of electricity within the 24 hours. Then, the calibration process confirmed
the appropriateness of system dynamics in modelling the complexities behind the evolution of
rural electricity demand. Still, it also revealed the need to investigate further modelling techniques
to improve and/or overcome the SD hypothesis of petfect-mixing which caused a mismatch
between data and model output in the first time-steps of the simulations. Finally, as last element
of originality, the calibration and the use of Monte Carlo Markov Chain allowed to derive
quantitatively modelling insights on some presumed dynamics and their impact on the electricity-
development nexus. E.g. the relatively high values of awareness ¢ffect in the diffusion process of
electrical connections revealed that electricity access is not perceived as an innovation by people.
These three chapters together led to the following important finding: #he modelling process based on
system dynamics offers a comprebensive modelling framework for quantitatively assessing, simulating, and exploring
the dynamics behind the evolution of rural electricity demand.



Chapter 11 Conclusions and future work

Q 2.2: Why do not we see the same outcome in terms of electricity evolution patterns and rural development every
time we bring electricity?

In “Chapter 9 — Testing and exploring the model”, the model is tested and explored in order to
derive insights about its structure and to increase the knowledge of the electricity-development
nexus and the dynamics behind the evolution of rural electricity demand. As a novelty, the most
critical and fundamental dynamics and parameters were assessed: it was found that zhe dynamics
and initial conditions related to market operation, farming trading, population, and housebolds’ economy are the
most_fundamental determinants of the electricity-development nexus. E.g. varying the level of trade of the
agricultural products can affect considerably the total electricity demand, indicating that changes
in the local agticultural livelihood and dynamics largely impact on the electrification output, and
that agricultural activities play an important role in the creation of new business also after
electrification. This implies that future electrification programmes can stand on these results for
identifying the most critical aspects to deal with in order to guarantee the long-term sustainability
of energy access projects (e.g. to implement awareness campaign for the productive use of
electricity for agricultural purposes). Moreover, the interrelation between further socio-economic
dynamics and electricity demand was tested. E.g. formal education seemed to be highly affected
by electricity availability, but it has a negligible feedback on electricity use, while the effect of
electricity use on market improvements, and the related feedback, resulted to be highly
interdependent dynamics. This can have two implications: (1) from the research point of view,
the process of model simplification can start from these findings for identifying the negligible
dynamics; (2) potential use of the model for the definition of appropriate indicators and
thresholds for updating the traditional monitoring and evaluation frameworks commonly used
for assessing energy access projects.

The role of exogenous policies was also tested, finding that access to micro-credit, ensuring affordable
electricity tariff and higher power reliability are critical and essential actions to gnarantee for enbancing and
maximising the socio-economic impact of electricity use on rural communities. This allowed to set good
practices, minimal prerequisites, and complementary activities that should be included in every
electrification project, with potential implications on the current frameworks adopted by
international organisations and donors for defining and financing energy access programmes.

Objective 3: To integrate demand, load, and energy optimisation models in a more
comprehensive electricity planning procedure.

Q 3.1: Does the inclusion of short- and long-term electricity demand lead to a more appropriate power capacity
Planning of mini-grids and tariff definition mechanisms?

“‘Chapter 10 — Soft-linking demand and optimisation models” reports the modelling effort to
integrate SD with a stochastic load and an energy optimisation model for supporting the planning
of off-grid power systems. In the first part, the integration with the load model allowed to
introduce short-term uncertainties in long-term demand dynamics. It is found that infroducing short-
term variabilities into long-term electricity demand projections allows to define power peaks and base consumptions
more accurately. E.g. the consumptions of businesses, especially the most reliant on electricity,
clearly determine the peak and reach the higher levels. This remarks that neglecting the electrical
consumption of potential new business when planning mini-grid capacities — that is often a
current practice in rural electrification — leads to inaccurate and unteliable load profiles
estimations; in turn, this can determine an erroneous sizing of the battery system. These findings
offer an important contribution towards the employment of the multi-year energy optimisation
as a standard for off-grid electricity planning.

The integration of the SD and the load models into a heuristic optimisation energy model
provided a new modelling framework for assessing optimal energy planning strategies: the “long-
term” use of the integrated model can be more useful for long-term policy testing and for
preliminary planning processes of future investments, as well as for investigating the long-term
dynamics of the electricity-development nexus. The “short-term” (viz. by means of a step-by-step
progressive optimisation) use can be instead more useful for the energy sizing process. These
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conclusions are strictly related to the type of optimisation employed in this thesis (viz. a heuristic
optimisation). This led to the following finding and implication: Stochastic or Robust multi-year
optimisation methods are needed to appropriately size off-grid mini-grids in the long-run.

11.2. Strengths and weakness

In the relatively new research field on energy access, many issues are still unsolved, and the
investigation of potential solutions is currently involving multidisciplinaty and exploratory research
approaches. In this framework, this thesis tries to set a starting point for the research work on energy
demand models for rural settings, and it is meant to contribute to the same effort of other researchers
focused on this issue. It needed the investigation and study of different disciplines, and the analysis
and applications of the related principles and methods to tackle the multifaceted complexities of rural
electrification. This is of course one of the most important strengths of the work, since electricity
access-related issues are too often approached through limiting monodisciplinary methods and
techniques.

A general strength of the approach followed to pursue the first objective can be recognised in the
comprehensive and critical review of the literature, which allowed to identify the research gaps to fill,
the problems to tackle, and potential methods to use. Whilst the literature review was particularly
useful for conceptualising the electricity-development nexus and obtaining comprehensive causal loop
diagrams, this practice hides also a potential weakness: (i) the neglecting of some other important
dynamics that other methods (e.g. group modelling) would have identified, and (if) the lack of spatial
specifications and insights (e.g. the electricity-development nexus in rural Africa is characterised by
different dynamics respect to the South-American one).

As for the second objective, the main strengths are related to the adoption of system dynamics as
modelling approach by accurately following the main steps of the modelling process, from the
conceptualisation to the testing and validation phase. At the same time, the main weakness is related
to the use of a specific case-study for building the model. Of course, this confirmed some of the
dynamics identified in the review of the electricity-development nexus, but at the same time it lacks
immediate applicability to different contexts. On the other hand, the testing phase allowed to
quantitatively assess the fundamental dynamics that characterise the evolution of electricity demand,
paving the way for simplifying and generalising the model. Another potential weakness is related to
the system dynamics hypothesis of perfect mixing within the stocks representing the population, the
income generating activities, and their attributes. This hypothesis allowed of course a simple and
meaningful representation of all the dynamics identified in the review of the electricity-development
nexus, but at the same time it was responsible of some inaccurate correspondences between data and
model outputs. The calibration with available time-series of data is another strength, which confirmed
the ability of the model to replicate the observed historical behaviour of the system and uncover model
flaws and hidden dynamics. It allowed also to identify a reasonable set of parameters’ values most
consistent with the relevant the knowledge of the system, but further time-series should have been
needed for inferring more significant considerations on the calibrated values of the parameters. This
highlights the urgency of increasing efforts and resources devoted to collect, store, and share open
data for enhancing the research on rural electrification.

Finally, the integration of the long-term electricity demand simulation model, the load profile
generator, and the heuristic energy optimisation model offers a new comprehensive modelling
framework for carrying out reliable rural electrification plans. At the same time, the use of different
proprietary software, which can hardly be hard-linked, is a current weakness.

11.3. Future works

The discussion above leaves some open questions and room for some further improvements in the
future, which are here discussed. First, besides the SD model seems fitting the data with good statistical
accuracy, it is not able to capture the short-term variability of the data, suggesting the presence of
hidden dynamics, intrinsic random variabilities dependent to human behaviour. This suggests the
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possibility to explore the integration with ABMs and methods to deal with data uncertainties and
variability (e.g. Kalman filtering). Second, the behaviour sensitivity highlights that just 17 parameters
appear as critical. Future steps of the research would consider the simplification of the model in order
to focus just on the fundamental dynamics and make it simpler and more immediate to use, as well as
more flexible for its use in different contexts. This should also overcome the dependency of the
structure to the initial conditions, and open research activities intended to extend the model to different
larger scales. Third, the optimisation is still based on a scenario- and mono-objective-oriented
approach, while different approaches based on multi-objectives stochastic and robust optimisation
could potentially provide more useful, more comprehensive, and clearer policy indications. Last but
not least, the extension of the model to the thermal energy carrier is advised, since another main
challenge of energy access in developing countries is the planning of sustainable energy for cooking
and thermal needs.
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Adopters [pecple]

Appendices

Appendix A — SD and ABM cont’d

This appendix reports other two comparison cases between SD and ABM. The diffusion mechanism
here refers always to the diffusion of electrical connections in a rural community of N = 1000 people,
which has received potential access to electricity at time # = (. The simulation horizon has been set
equal to T' = 240 months, that is 20 years, which roughly corresponds to the lifetime of a typical off-
grid microgrid composed by photovoltaic panels and batteries.

Case 1

In the first case, the classical Bass model from a SD perspective and the equivalent agent-based discrete
models with the RND, BA and SC networks were simulated. 5 scenarios were created by varying the
average degree (£, of the network (i.e. the “contact rate” ¢ for the Bass model) — 4, 6, 8, 10 and 12.
The time-invariant tendency to adopt p was set equal to 0.002 and the social contagion term ¢ was
represented as the product between the average degree of the network £,,and a specific term, namely
“adoption fraction” 7 introduced by Sterman (Sterman 2000), equals to 0.02. In the ABM case, the
diffusion mechanism is simulated by updating the states of each node s who, at each time step # has a
certain probability to become an adopter based on the state of the neighbours:

probj (f)zp-l-z'-ﬂA J‘(t) (58)

with 7.4.#) the number of neighbours of node s that are adopters at time # In ABM
mechanisms, the fraction of the adopters compared to the total population F(?) is given by the
sum of all the agents (/3. nodes) who are marked as adopters at time # Initially none of the
nodes is adopter, thus F(#)=0.

Results for £, equals to 4, 8 and 12 are plotted in Fig A. 1.
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Fig A. 1. Diffusion curves for Case 1: results for k,,,~4, 8 and 12.

From the figures, it clearly emerges that a decrease in £,y of the network (v7z. the “contact rate” )
stretches out the diffusion curves, since people have less contacts and share less information. All the
curves show the same trend, that is the S-curve typical of the classical continuous diffusion models.
The comparisons between the min and max time interval needed by the agent-based stochastic curves
to reach 50% and 95% of diffusion, and the values of the SD model are reported in Table A 1 — the
values in the brackets represent the difference with respect to the SD model.
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Table A 1. Results of Case 1.

50 % 95%
Scenario k=4 min max min max
RND 51 (+4) 60 (+13) 117 (+35) 132 (+50)
BA 41 (-5) 51 (4 95 (+13) 111 (+29)
SC 49 (+2) 61 (+14) 129 (+47) 159 (+77)
SD 47 82
Scenario k=6 min max min max
RND 36 (+1) 46 (+11) 70 (+11) 81 (+22)
BA 29 (-6) 38 (3) 63 (+4) 74 (+15)
SC 36 (+1) 42 (+7) 91 (+32) 107 (+48)
SD 35 59
Scenario k=8 min max min max
RND 29 (+1) 37 (+9) 51 (+5) 60 (+14)
BA 23 (-5) 32 (+4) 48 (+2) 59 (+13)
SC 25 (-3) 34 (+6) 68 (+22) 86 (+40)
SD 28 46
Scenario kuz=10 min max min max
RND 24 (0) 32 (+8) 41 (+3) 48 (+10)
BA 20 (-4) 27 (+3) 41 (+3) 48 (+10)
SC 20 (-4 31 (+7) 54 (+16) 67 (+29)
SD 24 38
Scenario kayz=12 min max min max
RND 22 (+1) 28 (+7) 36 (+3) 41 (+8)
BA 17 (-4) 23 (+2) 34 (+1) 39 (+6)
SC 19 (-2) 27 (+6) 46 (+13) 57 (+24)
SD 21 33

The results reflect the trend visible from the plots of Fig A. 1. The agent-based curves are almost all
“shifted” on the right, ze. the diffusion process takes longer to complete, apart from the initial stage
of the BA and SC process, that reach the 50% of adoption from 2 to 6 months before the SD model.
Once approaching to the end of the process, all the agent-based min and max curves reach 95% of
adoption respectively from 1 to 47 months, and from 6 to 77 months later. In particular, the SC
processes tend to the 100%-plateau later than the other process.

Case 2

In the second case, based on the experience of the author in the access to energy-related research,
some hypotheses that may fit with the contexts under study were introduced: in rural areas, the effect
of advertising is supposed to be minimal, especially where people lack electricity and consequently TV,
radios, mobile phones, ¢#. As a consequence, p was set equal to 0.0. To allow the diffusion mechanism
to start and spread, and to solve the start-up problem, it was considered to “seed” some initial adopters
(z.e. a portion Ay of the N agents) at time # = 0. Such initial adopters were not randomly selected among
the N agents, but they were selected starting from people (7.e. households) in the rural community with
the highest degree. The hypothesis here is that to enhance the diffusion of electricity use in rural
electrification programmes, a best practice is providing the most connected users with initial electrical
appliances for free, hoping to trigger a positive dynamic of word of mouth in the whole community.
Obviously, in the SD model, where the homogeneity and perfect mixing hypothesis stands, such
modelling choice simply consists in “filling” the stock of adopters with an initial portion 4pof N. 6
scenarios were developed: for £, equals to 4 and 8, the initial portion of adopters Ay was set equals
to 1, 5 and 10% of N. As per the previous case, adoption fraction 7 is equal to 0.02.

Results for £,,equals to 4 and A= 1%, 5%, 10% of NN are plotted in Fig A. 2.
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From the figures, it emerges that, obviously, an increase of Ay tends to compress the curves to the left,

since more initial adopters contribute to the diffusion process from the beginning at time 0.

The second

result, as expected, is that the ABM processes nose up in the first months, while they slowly approach
the plateau at the end. The initial rapid increase is because the “seeded” nodes are those with the
highest degrees: they therefore facilitate the initial process of diffusion, attracting more neighbours
through the mechanism of word of mouth. While approaching to the saturation, the lacking potential

adopters are the ones with the lowest degrees, who are the hardest agents to attract.

The comparisons between the min and max time interval needed by the agent-based stochastic curves
to reach 50% and 95% of diffusion, and the values of the SD model are reported in Table A 2 — the

values in the brackets represent the difference with respect to the Bass model.

Table A 2. Results of Case 2.

50% 95%
Scenario kay,=4, Ag=1 min max: min max
RND 54 (-4) 68 (+10) 136 (+41) 161 (+66)
BA 34 (-24) 40 (-18) 92 (-3) 105 (+10)
SC 48 (-10) 69 (+11) 146 (+51) 241 (+146)
SD 58 95
Scenario kayz=4, A¢=5 min max min max
RND 36 (-2) 42 (+4) 113 (+38) 140 (+65)
BA 24 (-14) 29 (-9) 82 (+7) 96 (+21)
SC 37(1) 45 (+7) 133 (+58) 211 (+136)
SD 38 75
Scenario kayz=4, Ag=10 min max min max
RND 26 (-2) 31 (+3) 98 (+33) 129 (+64)
BA 20 (-8) 24 (-4) 74 (+9) 86 (+21)
SC 26 (-2) 33 (+5) 123 (+58) 168 (+103)
SD 28 65
Scenario k=8, Ag=1 min max min max:
RND 28 (-2) 32 (+2) 51 (+3) 58 (+10)
BA 17 (-13) 20 (-10) 42 (-6) 47 (-1)
SC 22 (-8) 26 (-4) 63 (+15) 76 (+28)
SD 30 48
Scenario kay,=8, A¢=5 min max min max
RND 17 (-2) 20 (+1) 41 (+3) 47 (+9)
BA 13 (-6) 15 (-4) 38 (0) 46 (+8)
SC 15(-4) 18 (-1) 56 (+18) 76 (+38)
SD 19 38
Scenario kay=8, Ag=10 min max min max
RND 13 (-2) 15 (0) 37 (+4) 42 (+9)
BA 11 (-4) 13 (-2) 35 (+2) 43 (+10)
SC 13 (-2) 16 (+1) 54 (+21) 70 (+37)
SD 15 33

The results reflect the trend visible from the diffusion cutves described above. In the first months, the
process on BA network reaches 50% of adoption always from 24 to 2 months before the SD model,
depending on Ay. Few stochastic SC and RND simulation processes reach 50% of adoption before —
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from 10 to 1 months before —, since 50% is reached few months later on average, from 1 to 11 months
at most. Once approaching to the end of the process, BA simulations approach the saturation before
the Bass model only in the case with £,,=8, 1y=1%. RND and SC min and max curves reach 95% of
adoption later respectively from 9 to 66 months, and from 28 to 146 months later. In particular, the
process on SC network tends to the 100%-plateau later than the other processes, sometimes more
than 10 years later.

In many simulations, the agent-based processes do not reach 100% of adoption, and the relative
portion of population is numerically relevant for some RND and SC simulations with £.,=4, as
resumed in Table A 3. The adoption is sometimes uncompleted in RND processes because the
networks present some isolated nodes, from 11 to 26, that can never become adopters as long as the
term p is set equal to 0. On the contrary, since the process of SC network formation does not allow
the presence of isolated nodes, the lacking adoption by some agents is due to the too short simulation
horizon. With the aim to develop a sustainable energy business plan, this information would be pivotal
for a local utility that must be able to project how many people would connect to the grid in the useful
life of an off-grid electricity plant.

Table A 3. Percentage of maximum adoption at =241 months for SC and RND processes at k,,,~4.

max adoption

Ao=1% Ao=5% Ao=10%

RND  97.1-98.3 97.2-98.5 97.0-98.5
SC  91.3-99.5 97.1-99.5 98.4-99.9
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Appendix B — Formulation of further sub-models

Agricultural revenues

Ikondo, as many sub-Saharan African villages, has an economy based on agriculture. Almost the
totality of the households has their own land for self-consumption or even subsistence, local trade, or
even wholesales outside the village. The total market potential of agricultural products — viz. the
agricultural market turnover — is modelled as the sum of all the local expenditures for food for both
HI and LI HHs, excluding the self-consumption — interviewed people tent to consider the farming
costs (e.g. fertilizers, seeds, instruments) in their expenditures for food —, and the external demand.
The external demand increased after electrification through a 1st-order positive feedback: electricity
triggered the development of local market of good and services, attracting more external consumers
who started purchasing also local food products (Eq. (59)).

Food expenditures(t) = Income(t) - Fr income for food(t)- (1— fr of food expenditures referred to farming costs)
_[ d(External food expenditures(t))
Excternal food expenditures(z)

= Ifbaﬂge in external food expenditures(t) - dt

change in food expenditures(t) = fr change in external food expenditures - weekly trend of market supply(?)
(59)

The fr of food excpenditures referred to farming costs is a calibration parameter, which considers the fact that
local people, when interviewed, were used to include their farming costs and reinvestments in the
“food expenditures” item. This formulation is based on the hypothesis that the reinvestments in
farming activities entails an income outflow for specialised material (etc. fertilisers, machines, seeds)
bought outside the village. The sum between the Food expenditures of all the HI and LI HHs and the
External food expenditures gives the Total agricultural market turnover. A variable which represents the
inequality in farming productivity between HI and LI HHs is introduced in order to allocate the
agricultural market potential to each class of households — viz. the more productive a farmer is, the
larger will be his share of Total agricultural market tnurnover. According to local surveys and the literature,
the farm productivity emerged to depend on 3 main input factors:

1. Financial resonrces. The locals manifested a high propensity to invest their savings in the farming
activity. The more they can earn, the more they reinvest in their land;

2. Edncation. An increased knowledge and improved educational level, supported by access to
school, practical information through access to electricity and media, and capacity building,
helped in increasing people’s farming productivity, as confirmed by (Alene and Manyong
2007) and (Pudasaini 1983) in Nigeria and Nepal, respectively;

3. Time. Available time, especially night time at home lighted by electricity, is used by households
for shelling, cleaning, and preparing their products. LI HHs, in particular, showed this
behaviour, while HI HHs use their free-time for managing their IGA.

As for the productivity of the local market, the model relies on a Cobb-Douglas formulation for
modelling the farming productivity (Fig A. 3). The latter is time-dependent, since local farming
houscholds need time to adapt their faming habits, creating a 1s-order delay between any change in
the above-mentioned factors and the related impact on their productivity. The Eq. (60) below shows
the mathematical formulation of the farming productivity for HI HHs.
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Fig A. 3. Stock-and-flow diagrams for the HI and LI farming productivity.

j A(HI farming productivity(t)) j 7
change HI farming productivity(t)

t

Potential HI farming productivity(t) — HI farming productivity(?)
Time to adapt farming productivity
Potential HI farming productivity(t) = Apyy 10, () - HI capital effect on farming(t)- I education effect(t) (60)

change HI farming productivity(t) =

AL farming (t) = Reference HI farming productivity - (1+ S-capacity building elasticity)

HI Income(?) jg'ﬁming income

HI capital effect on farming(t) =
pital el Jarmingfl) (Iﬂiz‘z’d/ HI Income

With Reference HI farming productivity a calibration parameter representing a proxy of the initial farming
productivity. For LI HHs, the formulation of the LI farming productivity is exactly the same, apart from
an additional term, namely LI free-time effect on farming productivity, in the Potential LI farming productivity,
which represents the increase in free-time used for farming activities as production input in the Cobb-
Douglas formulation (Eq. (61)).

Available farming tine(t)

Initial available farning time

Q-farming time
j (61)

LI free-time effect on farming productivity(t) = (

The farming inequality is then the ratio between the LI farming productivity and the sum between LI farming
productivity and HI farming productivity. A value equal to 0.5 of the inequality means identical productivity
between LI and HI HHs. The allocation of the Total agricultural market turnover weighted on the
inequality variable and on the number of the HI and LI households gives the share of income from
farming activities for HI and LI HHs (Eq. (62)).

LI farming productivity(?)
HI farming productivity(t)+ 11 farming productivity(z)

Jarming inequality(t) =

(71— farming iﬂeqﬂa/z'gy(zj) - Total agricultural market turnover(?)
LI housebholds(t) - farming inequality(t) + HI housebolds - (7 — farming z'mq%a/@(f))

62)

HI farming income =

[Jarming inequality(t) - Total agricultural market turnover(t)
LI households(t) - farming inequality(t) + HI housebolds - (7 — Jarming z'ﬂeqﬂa/@(f))

LI farming income =

Population

System dynamics offers two main different approaches for modelling population dynamics:

194



Appendices

A, “Lump-sum” model. Population is formulated just through one stock, representing all the
individuals, and flows indicating the demographic processes of reproduction, migration and
mortality.

B. Disaggregated model. Population has a n”-order material delay formulation, viz. a cohort-flow-
based structure or “aging chain”, where each cohort represents the dynamics of one age or
size or sex class — e.g. (Sutrisno and Handel 2012).

The choice of the more appropriate approach depends of course of the objective of the model, the
level of structural detail that is worth to be investigating and the data availability. In this work, the lack
of disaggregate data prevented the use of a cohort-based model, in favour of a more effective and
meaningful “lump-sum” model. Local interviews with the experts confirmed that Ikondo experienced
a significant population growth after electrification, especially due to external migration. The very few
aggregate data found in the grey literature and provided by CEFA confirm the positive population
trend emerged during the qualitative interviews, although it is not quantitively possible to attribute
such increase of the population to electrification.

Table A 4. Ikondo Population DATA.

Year Population Reference Ikondo Population DATA
o ) 4011
2002 3446 (Tanzania National Bureau 4000 39.’9 .
of Statistics 2011) 3900
-:v:- 3800
2012 3959 (Tanzania National Bureau & 70
of Statistics et al. 2013) 3600
3500 3446
2016 4011 2016 CEFA’s survey o L ¢

2000 2002 2004 2006 2008 2010 2012 2014 20016 2018

Year

The trend of data seems growing with a greater derivative between 2002 and 2012, then slowly
increasing between 2012 and 2016. This is the typical trend of such systems initially dominated by
positive feedback (viz. the more people there are, the higher net birth rate will be), which eventually
approaches the equilibrium given by the carrying capacity of its environment (e.g.
food/space/resource constrains) (Sterman 2000). The resulted behaviour of systems driven by such
dynamics is called S-shaped growth, and the /logistic model is one of the most common model used to

represent it (Eq.(63)).

j d(Population(t)) _ Idt

| change in population() ©3)

. . Population(z)
change in population(t) =| 1—

- Population(t) - maximum fr population growth
Population Carrying capacity )

Where the variable change in population is a net value, which considers the difference between the birth
rate, death rate, inflow and outflow migration. The maximum fr population growth is a calibration
parameter and represents the fractional growth rate when the population is very small. Fig A. 4
confirms the appropriateness of the /ogistic formulation for modelling Tkondo’s population. It reports
the results of a single simulation of the Population sub-model with manually-calibrated values of
maximum fr population growth, Population Carrying capacity, and Initial population at 2005 equal to 0.004
[1/Week], 4052 [People], and 3670 [People], respectively.
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Fig A. 4. Simulation of the Population sub-model with aggregate data taken from Table A 4. X-axis=0 is the first
week of 2005, viz. the Initial Time of the simulation model.

The dynamics of the population determines the dynamics of household growth. Since the type of
household (LI or HI) is an “attribute” of the population stock, a coflows-based structure is used to
model the households’ dynamics. Coflows represent a useful modelling tool in the SD theory, which
allows to model the attributes of a particular item (population in this case) that flow through a stock-
and-flow system (Fig A. 5).

Population carrying
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\k .
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Fig A. 5. Population — Households coflow.
LI households(t) = Initial 1.I HH:+I(HH: downgrade(t)~+increase in LI HHs(t) — HHs upgrade(?)) - dt
t

Initial Population
Household size(t, )
bankruptey rate of 1IGAs(2)

I1GAs per HH
change in total population(t)
Household size(t)
setting-up of new IGAs(¢)
IGAs per HH
HI housebolds(t) = Initial HI HH;+J( HHs upgrade(t) — HHs downgmde(f)) -dt
t

Initial 1.1 HHs = — Initial HI HHss

HHs downgrade(t) =

increase in LI HHs(2) = (64)

HHs upgrade(t) =

1GAs(t, )
IGAs per HH

Initial 1.1 HHs =
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The Household size variable is a time-dependent look-up table, which lineatly interpolates values from
the grey literature reported in Table A 5.

Table A 5. Ikondo Household size DATA.

Year Household size Reference

2002 4.6 Value set equal to the 2012 value. Since the value of household size
did not change for the Njombe [According to (Tanzania National
Bureau of Statistics 2011) and (Mkupete 2010)]

2012 4.6 (Tanzania National Bureau of Statistics et al. 2013)

2016 4.9 2016 CEFA’s survey

Time savings

According to the literature review on the electricity-development nexus, the conceptualisation of the
model, and the local surveys, electricity had a significant impact on people’s available time and habits.
In turn, available time had a feedback on both working and farming time. In particular, two factors
increased households’ available operation time:

o [ jghting the business place, which allows HI households to continue their income generating
activities during the evening dark hours;

o [ jghting at home, which allows both LI and HI women to delay their housework in the evening
and dedicate more daily hours for farming and conducting the IGA. Moreover, electrical
lighting and electrical appliances allow also to decrease time for housework (e.g. electrical rice-
cooker was found to reduce cooking time). For LI HHs, lighting at home allows them to
continue some farming activities in the evening.

Summing-up these effects, the Available operation time and the Available farming time for both HI and LI
HHs are obtained. The Eq. (65)-(66) below show the mathematical formulation of the housework time
freed-up by electricity and the total available farming time for LI HHs, respectively. The dynamics of
Available farming time follows the dynamics of a 1s-order negative feedback, since people, especially in
rural contexts, have not always the perception of free-time as a resource, causing a delay, represented
through the Time to perceive potentially free time for farming variable, in perceiving the available time for
farming.

Weekly fiee-time = Night time for LI housework(t) + Saved LI housework time(2)) - working days in a week
Night time for LI housework(t) = J‘tz'me—f@’z‘ of LI housework(t) - dt

¢

time-shift of LI housework(t) = Max time for night housework - Trend in LI connections(?)
Saved LI honsework time(t) = J.dm"mxe in LI housework time(?) - dt (65)

t

decrease in LI houseworfk time(t) = Trend in LI connections(t) - housework time reduction given by electricity
V, (fr of connected 1.1 HHs(2))
t

"

Trend in LI connections(t) =

The Masx time for night housework is a limit given by the people’s sleeping time (usually at 23:00-24:00 on
average), while the housework time reduction given by electricity represents the daily housework hours saved
by the use of electricity appliances and light. The fr of connected I.I HHj is the fraction of LI households
connected to electricity respect all the LI households (see the sub-section before)
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Available farming time(t) B 1

= dt
| Potential available farming time(t) — Available farming time(t) — Time to perceive more time for farming ",

Available night farming time(t) = Max: time for night farming - fr of connected 1.I HH(2)

Where the Max time for night farming is a limit given by the people’s sleeping time.

housework reduction o)
given by electricity’
N Time to perceive more time
\ for farming ~
. X u | Saved LI housework Kine da i h . .
ES o time working days in a N|, change in available
decrease in ,LI J }\-cck 3 o ¥ farming time
housework time . S - »
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f \ / e \
t A T T /
\ LY A . //
\ /
AN Weekly LI free-time . / /
A / Available farming time
<Trend in LI ‘ 4/ & -
connections= / Potential available
g / farming time - - A
/ S « & v Initial available farming time
r’ / / . P
i e / — //./
\ / | —_—
\
o A o | Night time for LI \\
- s = housework N .
time-shift of L1 /_.,-»"" Available night =
housework Va farming time N
7/ ™
N\ fr of connected LI / Max time for night
/ . NP HHs> i farmi
. <Max time for night y Arming
El Reliability= o e
- housework>

“working days in a
week>

Fig A. 6. Stock-and-flow diagram for the Available farming time.

The same dynamics and formulation stand also for the Avazlable operation time. The only difference is
that the Available night operation time is not calculated based on the fraction of connected I.I HHs, but on
the fraction of the connected IGAs that are available and willing to work on the night (Eq. (67)).

Available night operation time(t) = Max: time for night working - fr of connected-IGAs working at night(t) - EI Reliability(t)
[ of connected-1GAs working at night(t) = fr of connected IGAs(2) - Night-working feasibility

Where the Night-working feasibility is a calibration parameter showing the fraction of IGAs willing and
potentially available to work in the evening.

Education

In accordance with the electricity-development nexus, access to electricity impacted also on the
educational level in Ikondo area. Based on the causal loop diagrams drawn in the conceptualisation
phase, the dynamics behind electricity use and education is represented through two main variables
used as proxy of the local educational attainment: the Ne# intake in primary school and the Primary
completion. Huisman and Smits (Huisman and Smits 2009) rely on a multilevel /ogistic regression model
to describe the main independent variables explain the primary enrolment rate in 30 developing
countries. In their study, they find that the odds of being enrolled in primary school is between 27%
to 42% higher for 8-11 years old children with a father employed in a “upper-non-farm” activity than
children with fathers relying on farming activities. Based on this information, the trend of HI HHs —
formulated through a discrete backward difference along the time-unit t,, = 1 week —is used as a proxy
of the improvement in the employment status of local households, in order to formulate the increase
in Net intake in primary variable (Eq. (68)).
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Net intake primary(t) = Initial intake primary + J.flmﬂge in net intake primary(t) - dt
'

V, (Fraction of HI HHs)
change in net intake primary(t) = EffectOfFatherOccupationOnPrimaryEnrollment - — (68)
?

u

HI Households

Fraction of HI HHs = :
Population

For the Primary completion, the interviews at the Kanikelele’s school confirmed that electricity at school
and at home contributed to increase the completion rate already a year after gaining access to (Eq.(69)
). In particular, they attributed an increase of 34% to electricity at school, which is modelled through
a STEP function (viz. a discontinuity at /=71 year).

J- d(Primary completion(t)) J- @

| change in completion(t)

change in completion(t) = change in completion due to el. at school(t) + change in completion due 1o el. at home(t)

change in completion due to el. at school(t) = Electricity at school - EffectOfS choolE lectricity - Primary completion rate(t)
1 i TIME =1 year 69

Electricity at school = 4 J ©)
0 elsewhere

change in completion due 1o el. at home(t) = EffectOfHomeE lectricity - Trend in HH connections(t)

v, (Total connected HH )

I3

"

Trend in HH connections(t) =

Where the EffectOfSchoo/Electricity and EffectOfHomeElectricity are calibration parameters. For both the
integrals in Eq.(68) and Eq.(69), the integrated variables cannot grow to infinity, but they are limited
to 100%, obviously.
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Appendix C — Search space for calibrating parameters

Table A 6 Search-space definition.

NO

Parameter

Search-space

Reason/Source

D

awareness effect HI HHs

[1/Week]

[0.000029 - 1]

LB: minimum value found in (Sterman 2000; Massiani and Gohs 2015)
and Van den Bulte’s comprehensive review on Bass model utilisation in
the innovation diffusion-based literature (Van Den Bulte 2002). Values
converted in [1/Week] unit of measurement.

UB: 1 is the maximum feasible value in a diffusion process, meaning
complete awareness of the innovation product (Ze. the connection to
electricity). Setting the UB to 1 is suggested by local interview carried out
in 2016 and 2017 in the non-electrified villages of Ninga, Lole,
Mahongole, and Kitole, where almost all the people expressed their
willingness and wish to have electricity in the villages.

2)

awareness effect IGAs

[1/Week]

[0.000029 - 1]

As 1)

3)

awareness effect LI HHs

[1/Week]

[0.000029 - 1]

As 1)

4

BETA - el

[-]

[0-1]

L.B: minimum feasible value for the effect of electrification of local IGAs
on the total factor productivity of the local market.

UB: the increase in the electrification rate of local IGAs and the increase
in the total factor productivity of the local market are linearly
proportional.

5)

diffusion rate DECODERSs

[Appliances/$/Week]

[0.0028 - 0.0084]

Bounds calculated based on the surveys carried out in 2016 and 2017 to
electrified households in the villages of Nyombo, Kidegembye, Ukalawa,
Tkondo. Given the appliance type 7, the total surveyed households N
who own 7; devices of type 7, and WeekExp the weekly expenditures of
the surveyed houscholds, the average diffusion rate is calculated as
follow:

1<
NE"

— £=1 (70)

RN
— ) WeekExp,
NG

diffusion rate; =

Values are checked to have the same order of magnitude of the values
of diffusion rate obtained by (Hartvigsson et al. 2018a) for a Tanzanian
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village in the Njombe area. The I.LB/UB are calculated from the value
obtained with the equation (70) changed by +50%, tespectively. The
week expenditures reported by the surveyed people have been used as a
proxy for their income, as suggested by the literature (Alene and
Manyong 2007; van Ruijven et al. 2011).

6) | diffusion rate IRONs [Appliances/$/Week] [0.0080 - 0.0308] As 5)
7) | diffusion rate LIGHT's [Appliances/$/Week] [0.2171 - 0.6960] | As 5)
8) | diffusion rate PHONE CHARGERs [Appliances/$/Week] [0.0605 - 0.2245] | As 5)
9) | diffusion rate STEREOs [Appliances/$/Week] [0.0237 - 0.0814] | As 5)
10) | diffusion rate TVs [Appliances/$/Week] [0.0118 - 0.0730] | As 5)
L.B/UB from CEFA’s database on the number of IGAs connected to
11) | Duration of phase I for HHs [Week] [61.5 — 66.0] the mini-grid. They represent the two months over the discontinuity
visible in the data of Fig. 44-bottom.
L.B/UB from CEFA’s database on the number of IGAs connected to
12) | Duration of phase I for IGAs [Week] [105.25 — 109.50] | the mini-grid. They represent the two months over the discontinuity
visible in the data of Fig. 45-bottom.
LB/UB from (Huisman and Smits 2009) who find that the odds of being
. . enrolled in primary school is between 27% to 42% higher for 8-11 years
13) | BffectOffatherOccupationOnPrimaryEnroliment | |- [0.27 - 0.42] old childreri3 with z father employed in a “upper—non—%arm” activityythan
children with fathers relying on farming activities.
LB: minimum feasible value meaning no effect of domestic lighting on
14) | EffectOfHomeElectricity [] [0-0.1] pupils’ school performance.
UB: set by the modeller.
The interviews at the Kanikelele’s school in 2018 attributed an increase
15) | EffectOfSchoolElectricity [] [0.272 - 0.408] of 34% to electric lighting at school. LB/ UB are calculated from 34%
changed by £20%, respectively.
Interviews to the manager directors of the local utility MVC confirmed
16) | El Reliability [ [0.9583 - 0.9995] that the duration of grid blackouts varied from even 60 minutes every

day before the grid extension implemented in 2016 to 5 minutes every
week after 2016.
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17) | Electrical power of Decoders [Watt/Appliances] >4 LB: Set by the modeller.
18) | Electrical power of Iron [Watt/Appliances] [960 - 1440] Value of 1.2 kW set by the modeller plus £20%.
19) | Electrical power of Lights [Watt/Appliances] >5 Set by the modeller, considering a LED bulb of 5W as minimum.
20) | Electrical power of Phone charger [Watt/ Appliances] [2.856 — 4.284] _Si_eztolz/y the modeller, considering a typical charger of 3.IV/0.7TA=3.57W
— 0.
21) | Electrical power of Stereos [Watt/Appliances] >8 As 17)
22) | Electrical power of TVs [Watt/Appliances] >64 As 17)
LB: minimum feasible value for the elasticity of IGAs electricity use
I L oot : L respect to changes in the fee.
23) | Blectricity-Fee clasticity for EE-reliant IGAs ¥ [1-0] UB: maximum feasible value for the elasticity of IGAs electricity use
respect to changes in the fee.
24) | Electricity-Fee elasticity for notEE-reliant IGAs | [-] [-1-0] As 23)
LB: minimum feasible value for the elasticity of HHs electricity use
I - . L respect to changes in the electricity cost and income.
25) | Blectricity-Income elasticity HHs H [1-0] UB: maximum feasible value for the elasticity of HHs electricity use
respect to changes in the electricity cost and income.
LB: changes in farming income does not impact on the farming
) . : ) productivity.
26) | EPSILON - farming income ¥ [0-1] UB: changes in the farming income cause a proportional change in the
farming productivity.
LB: changes in HI income does not impact on the market productivity.
27) | EPSILON - IGAs income [] [0-1] UB: changes in the HI income cause a proportional change in the market
productivity.
LB: minimum value meaning local prices are equal to the costs that
28) | external/local prices factor [-] [1-3] households experience for buying the same goods out of Ikondo.

UB: set by the modeller.
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LB: minimum feasible value meaning no fixed components in the tariffs

29) | Fixed electricity fee in TZS before 2010 [TZS/(Week*Households)] | [0 - 345.2] for households.
UB: value of fixed component of the residential electricity fee in 2010.
30) | fr change in external food expenditures [-] [0-1] E%: Eiziﬁf;ea:;i}feﬁﬁ .
31) | fr change in external market demand [] [0-1] As 30)
32) | fr change in internal IGAs supply [-] [0-1] As 30)
33) | fr decrease in cost given by EE [] [0-1] As 30)
LB: minimum feasible value.
34) fr food expenditures referred to farming [ [0-0.5] UB: in the Housebold Budget Survey 2007 — Tanzania Mainland, the “food
investments ’ not-purchased” (considered as a proxy of the farming income reinvest
in the activity) is almost 50% of the total income spent for food items.
35) | fr income for education expenditures HI [] [0.01 - 0.4] LB/ UB set based on local interviews to the expetts.
36) | fr income for education expenditures LI [] g%)%l —value in As 35)
37) | fr income for medical expenditures HI [] [0.018 - 0.2] As 35)
38) | fr income for medical expenditures LI [-] [0.018 - 0.2] As 35)
39) | fr increase of market expenditures [] >0 LB: minimum feasible value.
40) | fr of operating time with electricity [] [0-1] As 30)
The local interview to the manager director of the micro-credit utility
41) | fr of people using microcredit [-] [0.32 - 0.48] SACCOS suggests that 40% of people use micro-credit loans for finance
a new business. The LB/ UB are set equal to this value plus +20%.
42) | fr of potentially affordable IGAs connections [] >0 As 39)
43 fraction of EE-reliant IGAs respect to connected 0.08 - 0.18 Set by the modeller considering the historical data of IGAs connections
) IGAs Ny [0.08 - 0.18] in Tkondo.
LB: minimum feasible value.
44) | fraction of external source of HI income [] [0-0.05] UB: set by the modeller since local surveys suggest that this fraction is
“very low”.
45) | fraction of external source of LI income [] [0 - 0.05] As 44)
Local interviews to the experts suggest that 30% of starting business
46) | fraction of failing IGAs [] [0.24 - 0.30] closed the activities after few months ot yeats. The LB/ UB are set equal
to this value plus £20%.
. . Local interviews to the experts suggest that 75% of goods and services
47) | fraction of feasible HHs market supply H [0:6-09] can be found locally. The iB/ UB %%e set equal to thiz;g value plus £20%.
Local interviews to the experts suggest that 50% of starting businesses
48) | fraction of IGAs that want to start by imitation [-] [0.4 - 0.6] are by imitation, without a proper market analysis. The LB/ UB ate set

equal to this value plus £20%.
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49)

fraction of initial HI HHs to be connected

As 30)

50)

fraction of initial LI HHs to be connected

As 30)

51)

fraction of revenues used by the utility for O&M

The local interview to the manager director of the local utility MVC
confirms that the MVC reinvests 50% of its revenues in local productive
and social activities. The LB/ UB ate set equal to this value plus £20%.

52)

fraction of sharing meter

[0.48 — 0.72]

Local interviews to the experts suggest that there are about 80 business
connected, some of them sharing the same meter. Since data confirmed
that there were 48 metered business until the end of December 2017
(one month before the survey), the average fraction of people sharing

the connection is 520.6. The I.B/UB are set equal to this value plus
+20%.

53)

GAMMA - edu

[0-0.1]

LB: minimum feasible value for the effect of change in education level
on the market productivity.

UB: set by the modeller since not all the local experts mention the school
education as a market productivity input.

54)

HH connection cost in phase 1

[$/Households]

[53.7 - 67.1]

L.B/UB based on the min/max values of electricity connections
obtained before the Duration of phase I for HHs (N° 11) indicated in
the surveys carried out in 2017 in the electrified households in the
villages of Tkondo

55)

HH connection cost in phase II

[$/Households]

[114 - 357.8]

LB/UB based on the min/max values of electricity connections
obtained after the Duration of phase I for HHs (N° 11) indicated in the
surveys carried out in 2017 to electrified households in the villages of
Tkondo and Ukalawa.

56)

housework reduction given by electricity

[Hout/Day]

[0-1.3]

LB: minimum feasible value indicating no electricity effect on
housework.
UB: value suggested during the interview to a local woman.

57)

IGA connection cost in phase I

[$/1GA]

[53.7 - 67.1]

As 54)

58)

IGA connection cost in phase II

[$/1GA]

[114 - 357.8]

As 55)

59)

IGAs per HH

[IGA/Households]

LB: minimum feasible value.
UB: set by the modeller.?!

60)

Initial available operation time

[Hout/Week]

LB: minimum feasible value.
UB: maximum value obtained by multiplying 12 potential working hours
of sunlight times 7 working days per week.

2The appropriateness of the bounds set by the modeller are checked a-posteriori by controlling that the calibrated value of the parameter does not corresponds exactly with the bound itself.
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Local surveys in the villages of Ikondo and Ukalawa suggest that 6 hours
per day is the daily farming time for agricultural activities for farmers

61) | Initial daily farming hours for LI HHs [Hout/Day] [4.8 - 7.2] without access to electricity (here used a proxy for the situation in
Tkondo before access to electricity). The LB/ UB are set equal to this
value plus £20%.

L.LB/UB: minimum and maximum values of the coincidence factors

62) | Initial EE-IGAs coincidence factor [-] [0.0176 — 0.1246] | derived from (Hartvigsson and Ahlgren 2018), who metered the daily
electricity loads Mills and Workshops from a Tanzanian Village.

63) | Initial external agricultural expenditures [$/(Week*Households)] >0 As 39)

64) | Initial external market demand [goods/ (Week*Households)] | >0 As 39)

65) | Initial fr income for food expenditures HI [-] [0-1] As 30)

66) | Initial fr income for food expenditures LI [] [0-1] As 30)

67) | Initial fr of HHs close to the grid [] [0-1] As 30)

68) | Initial fr of internal IGAs supply [-] [0-1] As 30)

Data from the World Bank?? indicates a net intake rate in primary school

69) | Initial net intake primary [] [0.5948- 0.8922] | of 74.35% in 2004 (year before the implementation of Ikondo power
plant). The LB/ UB ate set equal to this value plus £20%.

70) | Initial number of IGAs [IGA] [0-2] I(_le;3 mini@um value ipdi.cated by local i.ntervi.ews to the experts.

: maximum value indicated by local interviews to the experts.

71 | Initial Population [People] ~3446 Is_itlsltjl(zfglg;l%n of Ikondo in 2002 (Tanzania National Bureau of
LB: minimum value obtained with the surveys carried out in 2016 and
2017 to the electrified houscholds in the villages of Nyombo,

S Kidegembye, Ukalawa, Tkondo.

72) | Initial time to use Decoders [Hour/Week] [14-42] UB: r%laxirfllum value obtained with the surveys catried out in 2016 and
2017 to the electrified houscholds in the villages of Nyombo,
Kidegembye, Ukalawa, Ikondo.

73) | Initial time to use Irons [Hour/Week] [0.25 - 2] As 72)

74) | Initial time to use lights [Hour/Week] [7-91] As 72)

75) | Initial time to use Phone chargers [Houtr/Week] [3 - 49] As 72)

76) | Initial time to use Stereos [Hour/Week] [7-91] As 72)

77) | Initial time to use TVs [Hour/Week] [7 - 42] As 72)

78) | internal migration cffect [ > Electrification had a null (=1) and positive (>1) effect on the internal

migration

2https:/ /data.worldbank.org/indicator/SE.PRM.NINT.ZS?locations="TZ.
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79) | Investment for a new IGA [$/IGA] >0 As 39)
80) | k-time [-] [0-1] As 30)
81) | max fr of internal IGAs supply [-] [0-1] As 30)
82) | max increase of week expenditures [-] >0 As 39)
LB: minimum feasible value.
83) | Max time for night farming [Hout/Day] [0 - 4] UB: local surveys suggest that night activities can potentially last from
the sunset (6 pm — 7 pm) until 10-11 pm.
LB: minimum feasible value
84) | Max time for night housework [Hour/Day] [0 - 4] UB: local surveys suggest that night activities can potentially last from
the sunset (6 pm — 7 pm) until 10-11 pm..
85) | Max time for night working [Hour/Day] [0 - 4] As 83)
86) | maximun i population growth [1/Week] >0.000209 om0 0 e T e el
87) | maximum fraction of income for debt repayment | [-] [0-1] As 30)
The interviews to the experts suggest that about 50% of the connected
88) | Night-working feasibility [-] [0.4 - 0.6] local businesses stay open in the evening using electrical lighting. The
LB/ UB are set equal to this value plus £20%.
The interview to the manager director of the micro-credit SACCOS
suggest that loans are usually payback in few months and within 1 year.
89) | Payback [Week] [4.25 - 52] LB: one month (viz. % =4.25 weeks)
UB: one year (viz. X2 —5p weeks)
LB: more available time for farming does not change farming
L roductivity.
90) | PHI - farming time H [0-1] I[)JB: changte}; in the HI income cause a proportional change in the market
productivity.
91) | Population carrying capacity [People] >4011 LB: datum of Tkondo’s population in 2016
LB/ UB: minimum and maximum values from 2016 surveys to the IGAs
92) | Power EE-IGA [Watt/IGA] [36-329] in the villages of Nyombo and Kidegenbye, excluding Mills, Carpentries,
and Garages.
LB/ UB: minimum and maximum values from 2016 surveys to Mills,
93) | Power notEE-IGA [Watt/IGA] [2530-26113] Carpentries, Garages, and big shops in the electrified villages of Nyombo

and Kidegenbye.

94)

price to cost factor

[-]

[1-4]

LB: minimum feasible value meaning unitary mark-up (viz. prices equal
to the costs).




L0T

UB: set by the modeller.23

95) | production cost without EE [8/goods] >0 As 39)
96) | Reference factor productivity [goods/IGA*Hour)] >0 As 39)
97) | Reference HI land productivity [-] >0 As 39)
98) | Reference LI land productivity [-] >0 As 39)
1.B/UB: minimum and maximum values found in Van den Bulte’s
. . comprehensive review on Bass model utilisation in the innovation
99) | social contagion HI [1/Week] [0.0029 - 0.0365] djffuiion—based literature (Van Den Bulte 2002). Values converted in
[1/Week] unit of measurement.
100y social contagion IGAs [1/Week] [0.0029 - 0.0365] | As 99)
101) social contagion LI [1/Week] [0.0029 - 0.0365] | As 99)
LB: minimum feasible value for the effect of informal education (viz.
. . - capacity building) on the market and farming productivities
102) THETA - capacity building elasticity ¥ [0-1] UI];: thtg increaseg) in the informal education a%:gvities and the increase in
the market and farming productivities are linearly proportional.
The interviews to the experts suggest that people take from “few weeks
up to 6 months for starting a business”.
103) Time for setting-up the IGA [Week] [1-206] 1.B: one week
3
UB: 6 months (viz. % -6 = 26 weeks)
LB: people can adjust their electricity consumption to changes in their
104) Time to adapt electricity use [Week] >4.05 income and electricit;fégje based on the frequency they receive the bill,
that is 1 month (viz. 5 Z = 4.25 weeks) in the case of Tkondo.
105) Time to adapt farming productivity [Week] =1 As 39)
106) Time to adapt market expenditures [Week] 21 As 39)
107) Time to adapt productivity [Week] =1 As 39)
108) Time to dismiss activity [Week] 21 As 39)
The interview to the manager director of the micro-credit SACCOS
109) Time to get the loan [Week] [0-2] confirms after the request, if the loan request is eligible, they receive the
loan in maximum 2 weeks.
110) Time to perceive decrease in operating hours [Week] >1 As 39)
111) Time to perceive electricity benefits [Week] >1 As 39)

2The appropriateness of the bounds set by the modeller are checked a-posteriori by controlling that the calibrated value of the parameter does not corresponds exactly with the bound itself.
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112) Time to perceive increase in operating hours [Week] >1 As 39)
113) Time to perceive market dynamics [Week] >1 As 39)
114) Time to perceive more time for farming [Week] >1 As 39)
115) Time to perceive more time for working [Week] >1 As 39)
116) Time to purchase appliances [Week] =1 As 39)
117) T-sigmoid [Hour/Week] >1 As 39)
Variable clectricity fee PRODUCTIVE in TZS L.B: minimum feasible value meaning free-of-charge electricity use for
118 before 2010 [TZS/(Watt*Hour)] [0-0.12] households.
UB: value of variable component of residential electricity fee in 2010.
. . . LB: minimum feasible value meaning no fixed components in the tariffs
119 zjff;iglg(;lgcmmy fee RESIDENTIALInTZS | 1175 ) Wate+Hour)] [0-0.07] for IGASs.
UB: value of variable component of productive electricity fee in 2010.
120) Willingness to pay for connection for IGAs [] [0-1] As 30)
Van Gevelt et al. (van Gevelt et al. 20106) find that the willingness-to-pay
121) Willingness to pay HI [] [0.048 — 0.072] for grid connection in a Rwanda village is 6% for high income
households. The LB/ UB ate set equal to this value plus £20%.
Van Gevelt et al. (van Gevelt et al. 2016) find that the willingness-to-pay
122) Willingness to pay LI [-] [0.128 — 0.192] for grid connection in a Rwanda village is 16% for low income
households. The LB/ UB are set equal to this value plus £20%.
Local surveys to CEFA’s people confirmed that people work at least 6
123) working days in a week [Day/Week] [6-7] full days per week, while Sunday working can be limited by religious

functions and leisure.

17 other constant parameters ate introduced in model. Their values are not calibrated since they represent physical limits and/or values, and actual values derived
from the local contexts (Table A 7).

Table A 7. Other not-calibrated parameters.

N° | Parameter Search-space Reason/Source
Calibrated manually, since it depends on the equilibrium of demand
1) | Initial HI income [$/ (Households*Week)] 21.45 and supply of goods/setvices and agticultural matkets. It is set equal
to the value of HI Income variable at /=7+.7.
Calibrated manually, since it depends on the equilibrium of demand
2) | Initial LI income [$/(Households*Week)] 1.635 and supply of goods/setvices and agticultural matkets. It is set equal
to the value of LI Income variable at /=7+.+
3) | max net intake rate primary school [] 1 Physical limit
4) | max primary school completion rate [] 1 As 3)




Interest applied to the loans granted by SACCOS, as confirmed by the

5) | Monthly fraction of interest N 0.02 manager director of the micro-credit utility.

6) | Number of CEFA's IGAs [IGA] 5 From CEFA’S database on electricity consumption: one carpentry and
one tailor shop connected on January 2007.
The saturation limit is the maximum potential occurrence of a specific
appliance.

L . For each type of appliance, it is set as the actual maximum occutrrence

7) | sataration limit DECODERs [Appliances/Houscholds] ! observed tggring tlfep surveys carried out in 2016 and 2017 to the
electrified households in the villages of Nyombo, Kidegembye,
Ukalawa, Tkondo.

8) | saturation limit IRONs [Appliances/Households] 2 As 7)

9) | saturation limit LIGHTSs [Appliances/Households] 15 As 7)

10) | saturation limit PHONE CHARGERs [Appliances/Households] 6 As 7)

11) | saturation limit STEREOs [Appliances/Households] 3 As 7)

12) | saturation limit TV [Appliances/Households] 3 As 7)

13) | Total access to electricity [-] 1 As 7)

14) | TZS to US$ [8/TZS] 0.000447 The TZS/US$ currency exchange on January 201824,

15) | Watt to kWatt [kWatt/Watt] 0.001 Conversion

16) | week [Week] 1 Parameter indicating a A/=7 week

17) | weeks in a month [Week] 4.25 Rounded off actual value

2Cutrrency exchange rates at https://www.xe.com.
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Appendix D — Calibrated parameters’ values

Table A 8. Reporting and discussion of the values of the calibrating parameters.

N° | Parameter Search-space S;l;l;ratmg Relevant comments
2 Z\\:]]Zizzzzz Zgzz: %;ISHS %88388;3 : H (1)'976000 Thes§ reilatively bigh Va}ues breﬂect tlhe fact that electricity access is not
3) | awareness effect LI HHs [0.000029 - 1] 0021341 | Perecived as aninnovation by peopie.
Electricity has a relevant impact on local market productivity, especially due
4 |BETA-el 0-1] 0897 to the elg:triﬁca'rion of EE—lr)eliant IGAs (e.g. Mlllfs) e ’
5) | diffusion rate DECODERSs [0.0028 - 0.0084] 0.0084.
6) | diffusion rate IRONs [0.0080 - 0.0308] 0.019898.
7) | diffusion rate LIGHTS [0.2171 - 0.6960] 0.336978.
8) | diffusion rate PHONE CHARGERs [0.0605 - 0.2245] 0.126054.
9) | diffusion rate STEREOs [0.0237 - 0.0814] 0.0437.
10) | diffusion rate TVs [0.0118 - 0.0730] 0.0318.
11) | Duration of phase I for HHs [61.5 — 66.0] 63.7
12) | Duration of phase I for IGAs [105.25 — 109.50] 109.5
13) | EffectOfFatherOccupationOnPrimaryEnrollment [0.270 - 0.420] 0.271
As suggested by the teachers in Ikondo primary school, electricity at home
14) | EffectOfHomeElectricity [0-0.1] 0.0003 is not as much relevant as electricity at school for improving the pupils’
educational attainment.
15) | EffectOfSchoolElectricity [0.272 - 0.408] 0.291
16) | El Reliability [0.9583 - 0.9995] 0.98
17) | Electrical power of Decoders >4 5.09765.
18) | Electrical power of Iron [960 - 1440] 1134.33.
19) | Electrical power of Lights >5 15
20) | Electrical power of Phone charger [2.856 — 4.284] 4.30194.
21) | Electrical power of Stereos >8 10.0005.
22) | Electrical power of TVs >64 80
23) | Blectricity-Fee clasticity for EE-reliant TGAs [1-0] 0.83 The use.of electricity for EE—IGAS is very se-nsitive to changes in the
prices, since they are characterised by a massive use of energy.
Also for notEE-IGAs, the use of electricity is sensitive to changes in the
24) | Electricity-Fee elasticity for notEE-reliant IGAs [-1-0] -0.69 prices. Indeed, since they do not totally depend on energy, saving money is

always considered a priority.
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This low value confirms what stated by the experts regarding this
parameter: electricity is very cheap for households, and they do not change

25) | Blectricity-Income elasticity HHs [1-0] 009 significantly their consumption patterns based on changes in the electricity
price.

26) | EPSILON - farming income [0-1] 0.07

27) | EPSILON - IGAs income [0-1] 0.05

28) | external/local prices factor [1-3] 2

29) | Fixed electricity fee in TZS before 2010 [0 - 345.2] 214.0

30) | fr change in external food expenditures [0-1] 0.43

31) | fr change in external market demand [0-1] 0.47

32) | fr change in internal IGAs supply [0-1] 0.11

33) | fr decrease in cost given by EE [0 - 1] 0.45

34) | fr food expenditures referred to farming investments [0 -0.5] 0.39

35) | frincome for education expenditures HI [0.01 - 0.4] 0.34

36) | frincome for education expenditures LI [0.01 — value in 35)] | 0.17

37) | fr income for medical expenditures HI [0.018 - 0.2] 0.06

38) | fr income for medical expenditures LI [0.018 - 0.2] 0.14

39) | fr increase of market expenditures ~0 0.90 The‘ frac‘rjonfil increase in the.market expenditures is almost proportional to
the increase in IGAs connection

40) | fr of operating time with electricity [0-1] 0.60

41) | fr of people using microcredit [0.32 - 0.48] 0.41

42) | fr of potentially affordable IGAs connections >0 0.82

43) | fraction of EE-reliant IGAs respect to connected IGAs [0.08 - 0.18] 0.13

44) | fraction of external source of HI income [0 - 0.05] 0.04

45) | fraction of external source of LI income [0 - 0.05] 0.00 LI people are also the ones with no connections outside the village.

46) | fraction of failing IGAs [0.24 - 0.36] 0.31

47) | fraction of feasible HHs market supply [0.60 - 0.90] 0.85

48) | fraction of IGAs that want to start by imitation [0.40 - 0.60] 0.46

49) | fraction of initial HI HHs to be connected [0-1] 0.83 The initial HI HHs are the ones already willing to be connected.

50) | fraction of initial LI HHs to be connected [0-1] 0.08

51) | fraction of revenues used by the utility for O&M [0.4 - 0.0] 0.53

52) | fraction of sharing meter [0.48 — 0.72] 0.60
It confirms that market productivity is inelastic respect to primary

53) | GAMMA - edu [0-0.1] 0.002 education attainments — viz. changes in the primary educational levels do
not impact significantly on the market productivity.

54) | HH connection cost in phase I [53.7 - 67.1] 57.5
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55) | HH connection cost in phase 11 [114 - 357.8] 194.1
Electricity does not significantly impact on the burden of housework;

56) | housework reduction given by clectricity [0-13] 01 inde§d, the local women who cqnﬁr@ed a reduction in the housework
admitted it was due to the electrical rice cooker, a technology that very few
people can afford.

57) | IGA connection cost in phase I [53.7 - 67.1] 54.1

58) | IGA connection cost in phase 1T [114 - 357.8] 324.0 The IGAs face very high connection costs.

59) | IGAs per HH [0 - ] 0.33

60) | Initial available operation time [1-84] 55

61) | Initial daily farming hours for LI HHs [4.8-7.2] 6.4

62) | Initial EE-IGAs coincidence factor [0.0176 — 0.1240] 0.0740

63) | Initial external agricultural expenditures >0 0.8577

64) | Initial external market demand >0 0.1547

65) | Initial fr income for food expenditures HI [0-1] 0.35

66) | Initial fr income for food expenditures LI [0-1] 0.04

67) | Initial fr of HHs close to the grid [0-1] 0.08

68) | Initial fr of internal IGAs supply [0-1] 0.0454

69) | Initial net intake primary [0.5948- 0.8922] 0.7674

70) | Initial number of IGAs [0-2] 1.83

71) | Initial Population >3446 3670

72) | Initial time to use Decoders [14 - 42] 25.16

73) | Initial time to use Irons [0.25 - 2] 0.57

74) | Initial time to use lights [7-91] 50.12

75) | Initial time to use Phone chargers [3 - 49] 3.98

76) | Initial time to use Stereos [7-91] 55.08

77) | Initial time to use TVs [7 - 42] 27.03

78) | internal migration effect >1 1.004 This Yalue indicgtes that the practice. of moving the hou§e clos.e to the
electrified area is not common, despite one expert mentioned it.

79) | Investment for a new IGA >0 1483

80) | k-time [0-1] 0.703

81) | max fr of internal IGAs supply [0-1] 0.615

82) | max increase of week expenditures >0 0.143

83) | Max time for night farming [0-4] 1.4

84) | Max time for night housework [0-4] 0.6 Households do not dedicate much time for night housework.

85) | Max time for night working 0-4] 3 It confirms that night time for working is largely exploited by IGAs with

the connections
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80) | maximum fr population growth >0.000209 0.004

This value suggests that when people plan to ask for a loan, they consider
. . . all their income for payback the loan. This is also suggested by the manager

87) | maximum fraction of income for debr repayment 0-1] ! of the micro-credit, I\j)v}}l]o indicated that when peopleg(%btainedythe loan, tﬁey
want to pay it back as soon as possible.

88) | Night-working feasibility [0.4 - 0.0] 0.56

89) | Payback [4.25 - 52] 48.9

90) | PHI - farming time [0-1] 0.1

91) | Population carrying capacity >4011 4052

92) | Power EE-IGA [2530-26113] 4598

93) | Power notEE-IGA [36-329] 65

94) | price to cost factor [1-4] 3.06

95) | production cost without EE >0 1.27

96) | Reference factor productivity >0 0.372

97) | Reference HI land productivity >0 0.63

98) | Reference LI land productivity >0 0.69

99) | social contagion HI [0.0029 - 0.0365] 0.0119

100) | social contagion IGAs [0.0029 - 0.0365] 0.0032

101) | social contagion LI [0.0029 - 0.0365] 0.0148

102) | THETA - capacity building elasticity [0-1] 0.03 The effect of capacity building is not so high as expected.

103) | Time for setting-up the IGA [1-206] 1.15

104) | Time to adapt electricity use >4.25 6.13

105) | Time to adapt farming productivity =1 10.8

1006) | Time to adapt market expenditures =1 98.3

107) | Time to adapt productivity =1 60.2

108) | Time to dismiss activity =1 1.2

109) | Time to get the loan [0-2] 0.8
This show that people is very hesitant in reducing time spent at work,

110) | Time to perceive decrease in operating hours =1 241015 seeking to use all the time available for trying to sell their goods and
services.

111) | Time to perceive electricity benefits =1 1 People are already aware of the benefits of electricity, as expected.

. .. . . On the contraty, if available, people are very willing to use all their time

112)] Time to perceive increase in operating hours =1 27 available for wgrking and tryifr)lg th) sell theirygoodsgand services.

113) | Time to perceive market dynamics =1 9.7

114) | Time to perceive more time for farming =1 5.5

115) | Time to perceive more time for working 1 21.6
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116) | Time to purchase appliances =1 1
117) | T-sigmoid =1 19.1
118) | Variable electricity fee PRODUCTIVE in TZS before 2010 [0-0.12] 0.10
119) | Variable electricity fee RESIDENTIAL in TZS before 2010 | [0 - 0.07] 0.07
120) | Willingness to pay for connection for IGAs [0-1] 0.022
121) | Willingness to pay HI [0.048 — 0.072] 0.055
122) | Willingness to pay LI [0.128 — 0.192] 0.130
123) | working days in a week [6-7] 6.43
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Appendix E — Parameters’ confidence bounds

Table 39. Parameters’ confidence bounds assessed through MCMC.

N° Parameter Confidence bounds
1) BETA-el 0.888 0.911
2)  GAMMA - edu 0.000 0.003
3) awareness effect IGAs 0.996 1.000
4)  awareness effect LI HHs 0.016 0.032
5) awareness effect HI HHs 0.957 0.982
6) fraction of initial HI HHs to be connected 0.817 0.839
7)  fraction of initial LI HHs to be connected 0.057 0.087
8) Time to perceive electricity benefits 1.000 1.008
9)  social contagion HI 0.011 0.012
10) social contagion IGAs 0.003 0.004
11) social contagion LI 0.014 0.015
12) production cost without EE 1.260 1.286
13) Time to perceive market dynamics 9.623 9.789
14) THETA - capacity building elasticity 0.017 0.039
15) Time to adapt productivity 59.660 61.027
16) Time to adapt market expenditures 97.326 99.070
17) Time to dismiss activity 1.199 1.222
18) maximum fraction of income for debt repayment 0.994 1.000
19) Max time for night farming 1.348 1.424
20) Time to perceive increase in operating hours 2.632 2.701
21) Time to perceive decrease in operating hours 238753.980  243402.630
22) Time to perceive more time for working 21.413 21.859
23) fraction of external source of HI income 0.040 0.041
24) fraction of external source of LI income 0.001 0.002
25) fr decrease in cost given by EE 0.433 0.463
20) fraction of revenues used by the utility for O&M 0.531 0.536
27) Initial number of IGAs 1.814 1.855
28) Payback 48.146 49.240
29) fr food expenditures referred to farming investments 0.391 0.401
30) frincome for education expenditures HI 0.341 0.348
31) frincome for education expenditures LI 0.164 0.172
32) frincome for medical expenditures HI 0.056 0.060
33) frincome for medical expenditures LI 0.135 0.139
34) IGA connection cost in phase II 321.488 325.480
35) IGA connection cost in phase I 53.902 54.209
36) HH connection cost in phase I 57.330 57.666
37) HH connection cost in phase II 190.250 196.594
38) Initial fr income for food expenditures HI 0.341 0.363
39) Initial fr income for food expenditures LI 0.629 0.651
40) Initial external agricultural expenditures 0.848 0.868
41) Initial external market demand 0.144 0.160
42) Max time for night housework 0.518 0.593
43) Initial available operation time 54.224 55.785
44) Time for setting-up the IGA 1.019 1.351
45) working days in a week 6.429 6.445
46) external/local prices factor 1.977 2.015
47) k-time 0.694 0.720
48) T-sigmoid 18.979 19.344
49) fraction of sharing meter 0.595 0.601
50) fr change in external food expenditures 0.424 0.439
51) fr change in external market demand 0.455 0.481
52) housework reduction given by electricity 0.082 0.112
53) Night-working feasibility 0.557 0.562
54) Max time for night working 3.101 3.209
55) Reference factor productivity 0.361 0.382
56) Time to get the loan 0.746 0.788
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57) Time to perceive more time for farming
58) Willingness to pay for connection for IGAs
59) Willingness to pay HI

60) Willingness to pay LI

61) price to cost factor

62) EPSILON - farming income

63) EPSILON - IGAs income

64) fraction of IGAs that want to start by imitation
65) PHI - farming time

66) Initial daily farming hours for LI HHs

67) Duration of phase I for HHs

68) Duration of phase I for IGAs

69) IGAs per HH

70) fr of people using Microcredit

71) Investment for a new IGA

72) fraction of failing IGAs

73) Reference HI land productivity

74) Reference LI land productivity

75) Time to adapt farming productivity

76) Initial fr of internal IGAs supply

77) fr change in internal IGAs supply

78) max fr of internal IGAs supply

79) fraction of feasible HHs market supply

80) Initial fr of HHs close to the grid

81) internal migration effect

82) fr of potentially affordable IGAs connections
83) EffectOfSchoolElectricity

84) EffectOfHomeElectricity

85) Initial net intake primary

86) EffectOfFatherOccupationOnPrimaryEnrollment
87) max increase of week expenditures

88) fr increase of market expenditures

89) El Reliability

90) Electricity-Fee elasticity for EE-reliant IGAs
91) Initial EE-IGAs coincidence factor

92) Power notEE-IGA

93) Power EE-IGA

94) fr of operating time with electricity

95) Electricity-Fee elasticity for notEE-reliant IGAs
96) fraction of EE-reliant IGAs respect to connected IGAs
97) Electricity-Income elasticity HHs

98) diffusion rate DECODERs

99) diffusion rate IRONs

100) diffusion rate LIGHTS

101) diffusion rate PHONE CHARGERs

102) diffusion rate STEREOs

103) diffusion rate TVs

104) Time to purchase appliances

105) Time to adapt electricity use

106) Initial time to use lights

107) Initial time to use Decoders

108) Initial time to use Irons

109) Initial time to use Phone chargers

110) Initial time to use Stereos

111) Initial time to use TVs

112) Electrical power of Decoders

113) Electrical power of Iron

114) Electrical power of Lights

115) Electrical power of Phone charger

116) Electrical power of Stereos

117) Electrical power of TVs

5.468
0.019
0.055
0.129
3.036
0.055
0.040
0.462
0.085
6.390
63.656
109.469
0.316
0.409
1470.303
0.306
0.621
0.683
10.751
0.035
0.100
0.607
0.846
0.075
1.000
0.805
0.289
0.000
0.764
0.270
0.130
0.883
0.979
-0.841
0.073
61.096
12130.983
0.588
-0.708
0.130
-0.097
0.008
0.020
0.332
0.125
0.043
0.031
1.000
6.042
48.902
24.902
0.554
3.977
54.206
26.609
5.037
1126.495
14.825
4.279
9.926
79.170

5.592
0.032
0.056
0.131
3.119
0.084
0.058
0.466
0.108
6.432
63.760
109.500
0.333
0.412
1498.328
0.308
0.638
0.704
10.940
0.055
0.124
0.627
0.853
0.085
1.015
0.827
0.292
0.001
0.771
0.272
0.157
0.904
0.980
-0.816
0.075
68.611
12604.870
0.014
-0.680
0.132
-0.081
0.008
0.020
0.343
0.128
0.045
0.033
1.005
6.193
50.887
25.646
0.586
4.001
55.964
27.316
5.132
1140.247
15.102
4.319
10.062
81.329
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118) Fixed electricity fee in TZS before 2010

119) Variable electricity fee RESIDENTIAL in TZS before 2010
120) Variable electricity fee PRODUCTIVE in TZS before 2010
121) Initial Population

122) Population carrying capacity

123) maximum fr population growth

210.501
0.069
0.103
3631.521
4015.843
0.000

217.681
0.070
0.106
3711.061
4086.792
0.016
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