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And as we wind on down the road
Our shadows taller than our soul
There walks a lady we all know
Who shines white light and wants to show
How everything still turns to gold
And if you listen very hard
The tune will come to you at last
When all are one and one is all
To be a rock and not to roll
And she’s buying the stairway to heaven.

— Jimmy Page, Robert Plant
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Abstract

Future science and exploration missions will exploit cislunar environment as
effective outpost to advance technology readiness in view of human presence
beyond Earth. These ambitious space programmes entail modular large space
infrastructures to be available in non-Keplerian orbits, to run manned and robotic
activities in Moon vicinity. As ISS operations teach, in space outposts ask for
complex logistic, which leans on rendezvous and docking/undocking capabilities
between space segments, and embrace different engineering disciplines. So far,
no mission performed autonomous and accurate proximity operations but in
LEO. Conversely, several flown missions were operational on non-Keplerian
orbits, exploiting the increased knowledge about n-body dynamics modelling
for trajectory design. However, existing studies deeply investigating the 6 DOF
absolute and relative dynamics in non-Keplerian orbits are somewhat missing;
this area of investigation is now mandatory to support the cislunar infrastructure
design and implementation, assessing and addressing practical solutions for
guidance and control strategies, which shall be applicable to reliably manage
proximity operations of the lunar gateway.

The dissertation, starting from the well-known restricted n-body problem formu-
lation, presents analyses and results obtained by adding a coupled orbit-attitude
dynamical model and the effects due to the large structure flexibility. The
cislunar environment is accurately modelled, assessing the fidelity of various
modelling approaches. Thus, the most relevant perturbing phenomena, such as
the Solar Radiation Pressure and the Sun’s gravity, are included in the Earth-
Moon system model as well. A multi-body approach is preferred to represent
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possible configurations of the large and flexible cislunar structure: interconnected
simple structural elements - such as beams, rods or lumped masses linked by
springs - build up the space segment.

The 6 DOF dynamical models are implemented to analyse absolute and relative
dynamics in cislunar space. Moreover, efficient 6 DOF absolute and relative
guidance and control methods are presented. In particular, single and dual-spin
stabilisation are compared and the results are carefully analysed to highlight
an attitude control strategy that is less resource consuming. Analogously,
relative guidance and control functions are implemented for non Keplerian orbits
proximity operations. Furthermore, additional guidance and control functions
able to deal with flexible space systems are presented; classical control methods
are deeply investigated, together with a preliminary assessment of a wave-based
attitude control technique.

The outcomes of the research work presented in this dissertation are intended
to highlight relevant results and drivers for cislunar outposts design, with the
purpose to better leverage the coupled 6 DOF natural dynamics in computing
effective and efficient trajectories, while addressing functional and performance
requirements. On board resource limitations and mission reliability are high-
lighted in the analyses. Different case studies for large space structures in selected
non-Keplerian orbits in the Earth-Moon system are discussed, to point out some
relevant conclusions for the potential implementation of such a mission.
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CHAPTER1
Introduction

It is contrary to reason to say that there is
a vacuum or a space in which there is
absolutely nothing.

— René Descartes

During the last decade of the twentieth century humanity posed the bases for
prolonged human habitation in space. In fact, the International Space Station
(ISS) program achieved marvellous objectives in Low-Earth orbit and allowed to
better understand the effects of spaceflight on human body. In the meantime,
robotic exploration of Solar System made huge leaps forward as well; many
planets and numerous celestial objects were explored as never before. At present
time, space exploration goals are increasingly ambitious and, in few years from
now, manned and unmanned space missions will cooperate to bring mankind
further and further away from its cradle.

The path to follow has been already outlined by the International Space Ex-
ploration Group (ISECG) in the global space exploration roadmap [1], which
foresees a series of intermediate steps and progressive achievements to support



Chapter 1. Introduction

future space exploration programmes. Indeed, this fascinating and ambitious
plan is based on the sustainability of the entire network of systems and operations
to accomplish the established goals, which would not be possible without a solid
support of preliminary missions and new technologies development.

One of the milestone of the ISECG roadmap is considered to be a modular and
extended space system in deep-space, to run robotic activities in preparation of a
safe and reliable operational habitat for humans to come. The specifications for
this space system and its ideal staging location still have to be defined. Although,
as a matter of fact, cislunar space is receiving a lot of attention from international
space community, thanks to its peculiar dynamical environment. A space station
in lunar vicinity is the current proposed solution to have a permanent human
outpost in deep-space.

As ISS operations teach, in-space outposts ask for complex logistic, which
leans on rendezvous (RDV) and docking/berthing capabilities between space
segments and embrace different engineering disciplines. However, despite the
available knowledge about proximity operations in low Earth orbit (LEO), the
development of this kind of missions in cislunar space asks for new design
methods. Recent studies are proposing different Keplerian and non-Keplerian
orbit options to operate a space system in lunar vicinity, but orbits that exist
only in the Restricted Three-body Problem (R3BP) seem the most promising
ones [2]. For example, orbits about one of the collinear libration points, such
as Earth-Moon Lagrangian point (EML) Halo orbits, have continuous line of
sight coverage for communications and their Earth accessibility with existing
transportation systems is good. Also other R3BP orbit types have appealing
properties, such as the excellent orbit stability of Distant Retrograde Orbits
(DROs) or the satisfactory ease of access from the Moon of Near Rectilinear
Halo Orbits (NRHOs). In general, the non-Keplerian dynamics is able to boost
and support the design of innovative space systems and infrastructures.

The feasibility of the whole project is strongly dependent from the improvements
in new trajectory design and Guidance Navigation and Control (GNC) techniques
that have to leverage Restricted n-body Problem (RnBP) dynamics, coupled
orbit-attitude equations of motion, appropriate structural models and efficient
control techniques. These enhanced methods are especially needed when dealing
with a large and flexible space structure, such as a space station in the vicinity
of the Moon.

1.1 Historical Heritage

Celestial phenomena intrigued humanity since the beginning of our presence on
the Earth. Thousands of years ago, ancient astronomers started formulating
the law of the stars, etymological meaning of Astronomy, looking at the sky
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1.1. Historical Heritage

and trying to fit what they were seeing in empirical laws. Nevertheless, modern
work on celestial motion began with Nicolaus Copernicus, who published De
Revolutionibus orbium coelestium in 1543 [3], and continued with the fundamental
astronomical observations made by, among the others, Galileo Galilei at the end
of the 16th century [4]. In 1609, the german mathematician and astronomer
Johannes Kepler postulated that the motion of celestial bodies evolves on conic
orbits, as described in his laws of planetary motion published in Astronomia
Nova [5]. At that time, the predictions made with the modern heliocentric
model were by far superior than the forecasts made with the older geocentric
Ptolemaic model in terms of accuracy and simplicity. However, modern astronomy
had to wait more than 50 years to mathematically confirm all the previous
models and intuitions, when Sir Isaac Newton, recognised as one of the most
influential scientists of all time, formulated the universal theory of gravitation in
its Philosophiae Naturalis Principia Matematica in 1687 [6]. Finally, celestial
mechanics had a solid mathematical foundation and the motion of planets was
related to geometrical arguments and physical laws.

The outcomes of Newton’s theory allowed to explain the motion of natural
celestial bodies with great accuracy, but few minor corrections were still necessary.
In fact, the dynamical model used by both Kepler and Newton in their researches
contemplated for only one main attractor at a time, consequently named two-body
problem or Keplerian model. In the following centuries, the scientific community
was interested in finding the complete description of motion under the influence
of more than two bodies. Newton itself considered the gravitational presence
of the Sun (third body) in the attempt of correcting the errors of the two-body
model. Nevertheless, if more than two main bodies are considered, the general
analytical description of the motion is not available anymore.

Particular equilibrium solutions in the Three-Body problem were found at the end
of the 18th century by the italian mathematician Giuseppe Lodovico Lagrangia,
in Essai sur le Problème des Trois Corps [7], and by the Swiss physicist Leonhard
Euler. The former proved the existence of constrained analytical equilibrium
solutions in the general three-body problem, when the three bodies compose an
equilateral triangle or collinear formation. The latter introduced for the first time
the idea of a synodic, or rotating, coordinate frame to formulate the Restricted
Three-body problem, which assumes a particle moving under the gravitational
attraction of two massive bodies without influencing their motion. In the
following years, several mathematicians, physicists and astronomers continued to
develop analytical theories to study problems of increasing complexity. Different
techniques were developed to analyse some peculiarities of the motion in an
arbitrarily complicated gravitational field, but a global analytical solution was
never found. In 1836 Jacobi discovered the integral of motion associated to the
R3BP. Few years later, in 1878, the physical meaning of the Jacobi integral
was given by Hill, who introduced the concept of Zero Velocity Curves (ZVC).

3
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These curves are associated to the energy of the particle, through the Jacobi
constant, and they bound the feasible motion within the three-body system.
In those years, the mathematical formulation of the R3BP was clearly defined
and the research focus was intended to find solutions associated to this problem.
However, the complexity of such chaotic dynamical system, required a different
approach coming from the contribution of Jules Henri Poincaré. In Les Méthodes
Nouvelles de la Mécanique Céleste [8], Poincaré showed that infinite periodic
solutions exist in the R3BP and that the only integral of motion is the one
founded by Jacobi. Furthermore, he understood that periodic solutions are the
only way to made accessible the problem of the three bodies.

The most remarkable achievements about periodic orbits in R3BP were available
in the 20th century. First, thanks to the works of Moulton [9] and Szebehely
[10]. Then, thanks to the advent of numerical computing, which provided a
greater capability in analysing complex dynamical systems. A great milestone
in the R3BP studies was posed in 1970 by Farquhar [11], who highlighted three-
dimensional periodic motions in the vicinity of collinear Lagrangian points: the
Halo orbits. In the followings, more comprehensive works came from Farquhar
and Kamel [12], Breakwell and Brown [13], Howell [14, 15], Howell and Breakwell
[16], Richardson [17] and Hénon [18]. They developed new methods to compute
different families of R3BP orbits, both around libration points and primaries.
They extended the investigation to different values of mass ratio of the primaries
and they also formulated analytical methods to find initial guesses for periodic
orbit solutions.

First investigations about attitude dynamics in the restricted three-body problem
assumed the spacecraft as artificially maintained close to the equilibrium points
and only the stability of the motion was considered by Kane [19] and Robinson
[20] in the 70s of the last century. Afterwards, Euler parameters were introduced
to study the rotational dynamics of a single body located at one of the Lagrangian
point by Abad [21]. More recently, Brucker [22], Peláez [23] and Wong [24]
focused their attention on the attitude dynamics of a spacecraft in the vicinity
of equilibrium points, using Poincarè maps, Lagrangian formulation and linear
approximations of non-Keplerian orbits. In the second decade of the 21st century,
the coupling between orbital and attitude motion was investigated by Guzzetti
providing different families of orbit-attitude solutions in R3BP [25, 26, 27, 28].
Exploratory results about stability of attitude dynamics in non-Keplerian orbits
was presented by Meng in the same years [29].

Studies about flexible structures in non-Keplerian orbits are quite recent. A
method developed by Knutson in 2012 allows to investigate the full three-
dimensional coupled motion for a generic multi-body spacecraft in the Earth-
Moon system [30, 31]. Therefore, it would allow to model flexibility effects
in R3BP orbits. In addition, preliminary investigations about this topic, with
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simple flexible elements, were conducted by Guzzetti [32]. Still, large flexible
spacecraft were studied in classical Keplerian orbits since the 1970 with the works
of Ho [33] and Modi [34, 35, 36], among the others. In 1987, Kane proposed a
new method to study the dynamics of flexible structure undergoing large overall
motions [37]. Further developments of this method, by Yoo [38] and Invernizzi
[39], simplified the procedure of formulating the derivation of the equations of
motion and assessed the validity of linear approaches. In 2018, a convenient
formulation able to effectively manage the control of a flexible spacecraft was
proposed by Liu [40].

Researches dedicated to relative motion and rendezvous problem in cislunar
space exist since the beginning of the Apollo Program, because of the concern
over the loss of communications with the spacecraft as they went behind the
Moon. Lunar Halo orbit relay satellites were proposed. Hence, the need to
approach such target positions was felt. In 1971, Gerding formulated rendezvous
equations in the vicinity of the second libration point of the Earth-Moon system
[41]. Then, the study of proximity operations control in R3BP was applied to
formation flying by Gurfil [42], Marchand [43] and Héritier [44]. In 2015, possible
rendezvous strategies were proposed, with a target on a EML2 Halo orbit, by
different authors [45, 46, 47]. More investigations about dynamical models and
GNC strategies to support the design of rendezvous operations in non-Keplerian
orbits were presented by Mand [48] and Bucci [49, 50].

1.2 The Research Problem

From previous literature studies, most of the existing solutions to deal with
non-Keplerian environment are founded on dynamical models based on point-
mass dynamics, which is sometimes not sufficient to carry out accurate analysis
when a large space system, such as the cislunar space station, is considered.
Indeed, when the attitude dynamics is coupled with the orbital motion in a
non-Keplerian environment, the rotational behaviour of the interested body may
have extremely complex evolutions. Nevertheless, under the chaotic appearance
that is typical when more than one massive body is considered, there could be
regular dynamical structures that may be exploited to design space missions,
leveraging also the attitude dynamics to satisfy very complicated system and
operational requirements.

Similarly, the knowledge about spacecraft relative dynamics and about rendezvous
and docking/berthing in space is mainly developed in Keplerian orbits. Thus,
it is not always suitable to address problems set in cislunar space. Actually,
relative RnBP dynamics is quite different from the classical one considered to
design RDV missions in LEO. Accordingly, the GNC design is largely affected
by this unique dynamical environment. Non-Keplerian relative dynamics has
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remarkable characteristics that can be exploited to design natural approaching
or departure trajectories from a certain position on a libration point orbit (LPO).
Furthermore, 6 degrees of freedom (DOF) relative dynamics is mandatory to
deal with large cislunar infrastructures, because of their non negligible attitude
dynamics, and it has been hardly addressed by previous studies.

An additional important aspect, rarely considered in previous researches, is the
influence between the space structure flexibility and the orbital and attitude dy-
namics in non-Keplerian orbits. In fact, having in mind the structural properties
of a ISS-like space structure, it is reasonable to investigate if it is possible to
assume rigid body dynamics while modelling such kind of large space system.
The information gathered from these analyses can be applied to highlight the
validity range in assuming rigid body motion and to select the best GNC design
capable to handle large flexible structures during RDV operations. In these
regards, the verification of true closed loop stability or effective actuation of
a control system designed for a large and flexible space structure in complex
dynamical environments is fundamental.

Therefore, there is a legitimised reason to better understand the coupled interac-
tions between orbital, attitude and flexible dynamics in non-Keplerian dynamical
environments. In particular, this is relevant to design and shape the GNC
functions able to deal with a space station in lunar vicinity.

1.3 Dissertation Overview

This research work focuses on analyses, methods, techniques and tools for
studying absolute and relative orbit-attitude dynamics in cislunar environment,
with the purpose to handle the guidance, navigation and control problem for
rendezvous and proximity operations with large and flexible space systems in
the Earth-Moon system.

Particular attention is dedicated to naturally periodic non-Keplerian orbit-
attitude solutions. For example, naturally periodic motion could enable coarse
pointing operational modes for data acquisition or communications without
a relevant control action. Moreover, an important improvement in pointing
accuracy or rendezvous and docking safety could be obtained knowing the
natural attitude evolution of a spacecraft in complex dynamical environments.
Yet in addition, control authority on attitude stability could be desired to increase
the design freedom, the pointing capabilities and the rendezvous possibilities.
The knowledge of non-Keplerian relative dynamics and the ability to compute
natural or controlled 6DOF transfer trajectories is highlighted and is applied
to RDV problems. In fact, this research is aimed also to analyse possible
rendezvous missions, defining practical strategies that can be exploited to deal
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with the assembly and the operations of the cislunar space station. GNC design
is addressed considering both passive and active control methods, while example
scenarios are discussed to apply the developed tools. The investigation is always
supported by the analyses about the most appropriate dynamical model to
investigate extended space systems in cislunar environment. Circular Restricted
Three-body Problem (CR3BP) is compared with higher fidelity representation,
such as Bicircular Four-body Problem (BC4BP) or Ephemeris Restricted n-
body Problem (FERnBP). Linearised models can be helpful to design GNC
functions, but their validity range is defined considering the characteristics
of the operational environment. Analogously, perturbing effects, such as the
second order deviations in the main gravitational attraction due to the finite
extension of the spacecraft, or the solar radiation pressure (SRP), should be
applied understanding their relevance and their effects on the system under
investigation in this research. The flexibility effects on the large spacecraft
dynamics are taken into account. Different structural models are compared and
the capabilities of the multi-body approach are exploited to efficiently represent
the system. Distributed parameters and lumped parameters models are applied
to simulate internal forces, such as the fluid sloshing and the structural flexibility.
Their influence on natural and on controlled motion is discussed. The GNC
functions are designed in order to take care of these oscillatory phenomena and
the obtained performances are verified with respect to example applications.

The work presented in this dissertation is organised as follows.

Chapter 2 deals with the background knowledge and recalls mathematical formu-
lations of non-Keplerian dynamical models under study, both for absolute and
relative dynamics. The formulation used to model the main perturbing effects
related to the cislunar environment, such as the SRP, the n-body gravity and the
variation in the gravitational attraction due to the finite dimension of the small
body, is recalled. Flexible dynamics and fluid sloshing models are presented and
discussed in this chapter as well.

Chapter 3 discusses absolute dynamics results in the Earth-Moon system. A
multiple shooting algorithm is described and it is used to find solutions that are
periodic in both the orbital and attitude states. Moreover, a method to generate
initial guesses for periodic orbit-attitude solutions is presented. Attitude spin
stabilisation methods are introduced and applied on reference periodic motions.
Then, the stability properties of different orbit-attitude dynamics are critically
analysed and relevant implications for operations are highlighted. Natural
6DOF dynamics associated with invariant orbit-attitude manifolds is presented,
analysed and exploited to find relevant proximity trajectories.

Chapter 4 presents an analysis on relative dynamics in the Earth-Moon system.
6DOF guidance and control functions are discussed, starting from energy optimal
rendezvous trajectories and getting to GNC operational functions. Natural
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dynamics is considered also in this chapter, to underline the fruitful effects
of the coupled 6DOF relative dynamics approach adopted for non-Keplerian
environment design. In this chapter, the main families of non-Keplerian orbits
are considered and discussed, but greater attention is dedicated to libration
point Halo orbits, both with regular amplitude (Halo) or with large amplitude
(NRHO), because of their applicative relevance with regards to the cislunar space
station program.

Chapter 5 is dedicated to the problem of rendezvous with a large space infras-
tructure in non-Keplerian orbits. Functional and operational requirements are
outlined, considering example rendezvous strategies. The proximity operations
are categorised with respect to the distance from the target, and the GNC design
is differentiated between far range and close range rendezvous, with particular
attention to the safety of the latter. Cislunar environment characteristics are
highlighted and exploited to enhance the relative trajectory design.

Chapter 6 considers the interactions between orbit-attitude and flexible dynamics.
The effects of the flexibility coupling on the natural dynamics are discussed and
the validity range in assuming rigid body motion is identified. Furthermore,
Guidance and Control (GC) functions able to deal with flexible space systems
are presented. Classical control methods (e.g. proportional integral derivative
(PID) control) are thoroughly considered together with a preliminary assessment
of an alternative control technique: wave-based (WB) control.

Final remarks, together with a possible roadmap for future research and devel-
opment, are drawn in chapter 7.
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CHAPTER2
Background

If I have seen further, it is by standing on
the shoulders of Giants.

— Isaac Newton

Keplerian two-body model is still used to preliminarily study the motion
of an artificial body in space, thanks to its simple mathematical formulation
and its proven closed form solution. Nonetheless, modern astrodynamics often
search for feasible solutions in complex non-Keplerian systems, with the purpose
to enhance the capabilities of the trajectory design or to increase the accuracy
of the dynamical models predictions. The most investigated dynamical systems
are those set in the framework of CR3BP and Elliptic Restricted Three-Body
Problem (ER3BP). In the CR3BP the main attractors move on circular orbits
around their common barycentre, while the ER3BP is a generalisation of the
circular problem for the case of elliptical orbits for the main bodies. These
models allows to predict, with higher accuracy than Keplerian ones, the motion
of observable celestial bodies (e.g. the motion of the Moon in the Sun-Earth
system). CR3BP and ER3BP are valuable models for preliminary analysis of
non-Keplerian orbits. Nevertheless, for certain applications, the very peculiar
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regime of the Earth-Moon system requires that the true non-linear motions of the
two primaries are taken into account, since their periodic and secular variations
are not negligible in dictating the force field that maintains the periodicity
of specific LPOs. In these cases, an Ephemeris Restricted n-body Problem
(FERnBP) modelling approach can be applied.

Furthermore, the presence of the Sun plays a non-negligible role, in terms of
both 4th body gravity and solar radiation pressure. For example, the periodic
oscillations of NRHOs due to the Sun’s gravitational pull are missed out in a
CR3BP or ER3BP model. The dynamics in cislunar space can be also set within
a Restricted Four-body Problem (R4BP) model. When the circular simplification
is accepted, the cislunar space is idealised and modelled as a classical Bicircular
Four-body Problem (BC4BP), where the orbits of the Earth and the Moon about
their common centre of mass are assumed to be circular, and the centre of mass
of the Earth-Moon system is assumed to revolve around the centre of mass of
the Earth-Moon-Sun system in a circular, coplanar motion. When maximum
modelling accuracy is sought, an ephemeris model can be considered: the position
of Earth, Moon and Sun are obtained from numerical ephemerides. In this last
case, the cislunar space is accurately modelled as a Ephemeris Restricted Four-
body Problem (FER4BP), sub-product of FERnBP, neglecting just the minor
perturbing effects.

A complete understanding of the suitable dynamical model is necessary to
properly handle and design regular and controlled motions near Lagrangian
points. This capability represents a step forward into the space mission design
era: it opens to a complete new variety of solutions, able to meet complex
space mission objectives and to promote innovative ideas for future mission
opportunities.

In this chapter, the background knowledge needed to approach the present
research work is recalled. The equations of motion of 6DOF absolute and
relative dynamics related to the cislunar space are here formulated and discussed,
including the perturbative effects influencing the dynamical environment. Finally,
flexible dynamics and fluid sloshing models are presented.

2.1 Gravitational Field

The dynamics of a generic massive body B, in motion between two points in
space, is influenced by the interaction with the surrounding gravitational field,
which creates a force on the body itself. The work done by this force upon B
is the same for any physically possible path between the two points, thus the
gravitational field is said to be a conservative field.
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From vector analysis, a necessary and sufficient condition that this work be
independent from the physical path taken by the particle is that the force per
unit mass, g, be the gradient of a scalar function of position, r:

g = −∇V (r), (2.1)

where V is called the gravitational potential [58]. ∇ represents the three-
dimensional gradient operator, whose Cartesian form is î ∂∂x + ĵ ∂∂y + k̂ ∂

∂z .

The Newton’s law is the generally used gravitational model to describe the force
field due to any massive body. It states that any pair of particle masses attracts
each other with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them.
So, according to this law, the gravitational potential due to a point mass m is:

V = −Gm
r
, (2.2)

where G is the gravitational constant and r = ‖r‖ is the distance of the body
B from the mass m. Note that symbols in bold font represent vectors, while
the scalars are indicated in normal font. If the same symbol is used in bold and
normal font, the former is the vector and the latter is its norm.

2.2 Cislunar Space Dynamics

Cislunar space dynamics can be described exploiting restricted three-body prob-
lem modelling approach, which considers the body B, with mass mB, and two
other masses, m1 and m2, assuming mB � m1,m2 and m2 < m1. m1 and m2

are denoted as primaries, and are assumed to be in motion about their common
centre of mass. Within the restricted problem assumption, the motion of mB

does not affect the trajectories of the primaries. The equations of motion of B
in cislunar space are conveniently expressed in a rotating reference frame, S,
which is called synodic frame and is shown in figure 2.1. It is centred at the
centre of mass of the system, O; the first axis, x̂, is aligned with the vector
from m1 to m2; the third axis, ẑ, is in the direction of the angular velocity of
S, ωS = ωS ẑ; ŷ completes the right-handed triad. At time t = 0, the rotating
frame S is aligned to the inertial frame I, which is centred in O and is defined
by the axes X̂, Ŷ and Ẑ. Note that the hat symbol (i.e. ˆ) represents versors.

The dynamics equations of B can be derived starting from a Lagrangian formu-
lation. The Lagrangian function is defined as:

L = T − V, (2.3)

where T is the kinetic energy and V is the generalised potential. The body B is
now assumed to be a rigid body.
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Figure 2.1: Orbit-attitude Absolute Dynamics (Synodic and Inertial Reference
Frames).

The kinetic energy T of a rigid body can be expressed as the kinetic energy of
the translational motion of the centre of mass plus the kinetic energy of the
rotational motion around the centre of mass:

T =
1

2
mB ṙB · ṙB +

1

2
ω · IB · ω, (2.4)

where ṙB is the velocity of B, ω is the angular velocity of the body relative to
the S frame and IB is the inertia tensor about the centre of mass, OB.

The generalised potential V is related with the gravitational forces, with the
perturbing forces and with the inertia forces, since the synodic frame S is a
non-inertial reference frame rotating with the two primaries. It can be expressed
as the sum of the ordinary gravitational potential, Vg = Vg1 + Vg2 , the gener-
alised potential of the inertia forces, Vi, and the generalised potential of the
perturbations, Vp.
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The gravitational action exerted by the i-th spherical primary on the rigid body
mB, can be derived from:

Vgi = −GmimB

rBi
+
Gmi

2 r3
Bi

[3(r̂Bi · IB · r̂Bi)− tr(IB)] , (2.5)

where rBi and r̂Bi are respectively magnitude and direction of rBi : position
vector of mB with respect to the i-th primary. Equation (2.5) is an expansion
up to the second order of the gravitational potential generated by a spherical
attractor on a small extended body [59].

The generalised potential of the inertia forces, needed to write the equations of
motion in S, can be expressed as:

Vi =
mB

2
rB · [ωS × (ωS × rB) + 2ωS × ṙB]− 1

2
ωS · IB · (ωS + 2ω). (2.6)

At this point, combining equations (2.4) to (2.6) into equation (2.3), it is possible
to derive the equations of motion of the body B in cislunar space as:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Fj , (2.7)

where qj with j = 1, . . . , 6 are the generalised coordinates, associated with the
orbit and attitude states, while Fj are the generalised forces due to different
perturbing contributions. Remembering from the classical mechanics theory,
a generalised force, Fj , can be obtained from a generalised potential function
G(Pj , Ṗj) as:

Fj =
d

dt

(
∂G
∂Ṗ

)
− ∂G
∂P j

, (2.8)

where Pj is a generalised coordinate and Ṗj is the associated derivative.

The generalised potential of the perturbations, Vp, and the related generalised
forces, are not explicitly defined here, but the effects of the perturbations will
be discussed in section 2.3.1.

2.3 Absolute Orbit-Attitude Equations of Motion

Absolute orbit-attitude equations of motion are conveniently derived exploiting
the Circular Restricted Three-Body Problem modelling approach. In this case,
the three-body system can be univocally defined by the mass parameter,

µ =
m2

m1 +m2
, (2.9)
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the magnitude of the costant angular velocity of S,

ωS =

√
G(m1 +m2)

r3
12

, (2.10)

and the distance between the two primaries r12. The equations of motion
are usually normalised such that r12, ωS and the total mass of the system,
mT = m1 + m2, are unitary in non-dimensional units. In this dissertation,
these units are indicated with the symbol [nd]. As a consequence, after the
normalisation, the universal constant of gravitation is G = 1, the period of
m1 and m2 in their orbits about their centre of mass is T = 2π and the
time derivatives are taken with respect to the non-dimensional time τ = ωSt:
◦̇ = d ◦ /dτ . The location of m1 along x̂ is −µ, whereas m2 is located at 1− µ.
In the Earth-Moon system the parameters to normalise the equations of motion
are r12 = 384 400 km, mT = 6.04× 1024 kg and T = 2π/ωS = 27.28 d.

The body mB is extended, three-dimensional and, in this section, is assumed to
be rigid. Hence, it has six degrees of freedom: the position of its centre of mass in
S, which is easily described by the position vector rB , and the orientation of the
body reference frame B with respect to I or S. To define the orientation of one
frame with respect to another, three parameters are the minimal set required, but
in this model the instantaneous orientation of B is more conveniently described
using the four-dimensional quaternion vector, also known as Euler parameters
[60], as will be discussed in the following. The body-fixed frame B is centred at
the centre of mass of mB, OB, and it is aligned with the body principal inertia
directions, b̂1, b̂2 and b̂3.

To simplify the present formulation, the orbital equations of motion of the body
mB can be written from equation (2.7) assuming circular motion of the primaries,
(i.e. CR3BP), plus the contribution of the Solar Radiation Pressure, the fourth-
body gravity of the Sun and the variation in the gravitational attraction due
to the finite dimension of B, expressed with the second order term of the force
exerted on a finite dimension body by a particle (i.e. second order term of the
expansion in equation (2.5)). The resulting equations are written in normalised
scalar form as:

fx =


ẋ = vx

ẏ = vx

ż = vz

(2.11)
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fv =


v̇x = x+ 2vy − (1−µ)(x+µ)

r3B1

− µ(x−1+µ)
r3B2

+ aSRPx + a4thx + a1x + a2x

v̇y = y − 2vx − (1−µ)y
r3B1

− µy
r3B2

+ aSRPy + a4thy + a1y + a2y

v̇z = − (1−µ)z
r3B1

− µz
r3B2

+ aSRPz + a4thz + a1z + a2z ,

(2.12)
where x, y and z are the Cartesian coordinates of OB expressed in terms of the
synodic reference frame; vx, vy and vz are the velocity components of the body
mB in S. The distances between the centre of mass of mB and the two primaries
are respectively rB1 =

√
(x+ µ)2 + y2 + z2 and rB2 =

√
(x− 1 + µ)2 + y2 + z2,

as can be easily noted from figure 2.1.

In the case the Elliptic Restricted Three-Body Problem (ER3BP) is considered,
the primaries (i.e. Earth and Moon) are assumed to move on ellipses, with
constant eccentricity, around the barycentre of the system. The equations of
motion in the rotating frame are written considering that ωS = ωS(t) is now
time dependent, with ω̇S 6= 0. In the synodic frame, the primaries are no longer
in fixed positions, but they are oscillating along the x̂ axis. The instantaneous
distance between the two primaries is now solution of the two-body problem
between them:

r12(t) =
1− e2

S

1 + eS cos (νS(t))
, (2.13)

where eS is the eccentricity and νS(t) is the true anomaly, function of time,
describing the motion of the Earth-Moon system. Unlike CR3BP, this system
depends on time and, thus, is not autonomous anymore. The equations of
motion can be normalised considering both the rotation and the pulsation of
the primaries along x̂. With this normalisation approach, equation (2.12) is
formally valid also in the ER3BP but is expressed in a rotating-pulsating reference
frame, S̃. ER3BP is based on the three-body environment and the assumed
Keplerian elliptic motion of the primaries is only an approximation to the true
motions with additional celestial bodies. Therefore, it is meaningless to extended
the elliptic problem to four-body or n-body models.

As highlighted in the beginning of this chapter, the effects of the Sun cannot
always be neglected in cislunar space and a R4BP approach can be more suitable
than a R3BP. BC4BP can be applied to simplify the model formulation and
FER4BP to achieve an high modelling accuracy. The hierarchy of dynamical
models is therefore unmistakable [61]: highest accuracy for simulations and,
for example, GNC design validation require full ephemeris restricted n-body
models, while preliminary analyses and analytical investigations require the
simple circular restricted three-body problem. In the middle, a great variety of
astrodynamical models that can be useful to separately focus different physical
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Chapter 2. Background

phenomena, like the eccentricity of the Earth-Moon system with ER3BP or the
presence of the Sun with BC4BP.

The attitude dynamics of mB allows to represent the orientation of the body
reference frame B with respect to a different frame. In the present model, the
equations of rotational motion are written with respect to the inertial frame,
I, and the orientation of B with respect to S is computed with a simple frame
transformation. The quaternion vector is used as attitude parameter and is
denoted as:

q = [q1, q2, q3, q4]T, (2.14)

The components of the quaternion vector must satisfy the constraint:

q2
1 + q2

2 + q2
3 + q2

4 = 1; (2.15)

therefore, just the first three components, [q1, q2, q3]T, which identify the Euler
axis of rotation, have to be defined to have a complete set of initial conditions.
The fourth component, q4, which gives information about the Euler angle, is
automatically defined by the constraint in equation (2.15). The sign ambiguity
that exist when q4 is obtained from the quaternion constraint can be solved
giving an initial condition for the sign of q4 and enforcing the sign continuity
during the numerical integration. The attitude parameters relate two reference
frame and in this dissertation they are indicated as C•D, where C and D are
two generic reference frames and • is a generic attitude parameter. For example,
the notation IqB means that the quaternion relates the frame B with respect
to the frame I. Quaternions have been used as attitude parameters because
they have no singularity condition and just three components are sufficient to
define the attitude of mB, thanks to equation (2.15). Moreover, the analysis of
the quaternion subspace allows to highlight certain features of the considered
dynamical system, as will be discussed in chapter 3.

The fundamental rules of attitude kinematics allow the propagation the rotational
motion from the attitude dynamics. In fact, it is possible to evaluate the time
rate of change of the quaternion vector from the body angular velocity as:

fq =



q̇1 = 1
2(ω1q4 − ω2q3 + ω3q2)

q̇2 = 1
2(ω1q3 + ω2q4 − ω3q1)

q̇3 = 1
2(−ω1q2 + ω2q1 + ω3q4)

q̇4 = −1
2(ω1q1 + ω2q2 + ω3q3),

(2.16)

where ω1, ω2 and ω3 are components of the angular velocity of the body relative
to I and expressed in the body-fixed reference frame B, IωB; q1, q2, q3 and q4

are the quaternion components of IqB.
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2.3. Absolute Orbit-Attitude Equations of Motion

The angular velocity can be obtained integrating the equations for the rotational
dynamics: the Euler equations of motion. Euler equations includes the gravity
torques exerted by the two primaries, which can be computed as the fourth-
body gravity torque with equation (2.23) on page 23. Moreover, the angular
accelerations due to the Solar Radiation Pressure and to the gravity gradient
of the fourth-body, Sun, are included in the model. They are obtained from
the related torques described before and normalised for the CR3BP formulation.
The resulting Euler dynamical equations for the attitude dynamics are expressed
as:

fω =



ω̇1 = I3−I2
I1

(
3(1−µ)
r5B1

l2l3 + 3µ
r5B2

h2h3 − ω2ω3

)
+ αSRP1 + α4th1

ω̇2 = I1−I3
I2

(
3(1−µ)
r5B1

l1l3 + 3µ
r5B2

h1h3 − ω1ω3

)
+ αSRP2 + α4th2

ω̇3 = I2−I1
I3

(
3(1−µ)
r5B1

l1l2 + 3µ
r5B2

h1h2 − ω1ω2

)
+ αSRP3 + α4th3 ,

(2.17)

where li are the direction cosines in the reference B of the unit position vector
from m1 to mB , r̂B1 ; hi are those related with r̂B2 ; αSRP1,2,3 and α4th1,2,3 are the
components of the angular accelerations introduced before, respectively due to
the SRP and to the presence of the Sun. I1, I2 and I3 are the principal moments
of inertia of mB, IB.

For a classical spacecraft, the contribution of solar radiation torque and fourth-
body gravity gradient torque is few orders of magnitude smaller than the gravity
gradient torques generated by the two primaries. However, their effect should
not be neglected to run accurate simulations, especially when dealing with long
propagation of large space structures in lunar vicinity. For example, considering
a spacecraft with mass and size of the ISS in a typical L1 orbit, the Earth
and the Moon generate a gravity gradient torque respectively in the order of
10−4 Nm and 10−3 Nm, while the fourth-body effect is around 10−6 Nm. For
what concern the solar radiation pressure, the magnitude of the torque depends
also on the dimensions and the geometry of the spacecraft itself, but, again, for
a ISS-like structure, the magnitude of this perturbing term is also in the order
of 10−6 Nm.

Equations (2.11), (2.12), (2.16) and (2.17) complete the whole set of coupled
equations of motion that is needed to describe the orbit-attitude dynamics of a
rigid body in a restricted n-body problem environment plus the Solar Radiation
Pressure. Moreover, including the second order term of the force exerted on
the finite dimension body by a point-mass, the model is not limited to small
rigid bodies and it can be applied to any kind of spacecraft in the Earth-Moon
system. The complete set of non-linear differential equations is denoted as
f = {fx, fv, fq, fω}.
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Chapter 2. Background

2.3.1 Perturbations

The variation in the gravitational attraction due to the finite dimension of the
body, which is represented by the additional terms a1x , a1y and a1z for the first
primary m1, and by a2x , a2y and a2z for the second primary m2, is due to the
fact that the resultant gravity force on a particle and on an extended body are
different. When a large space structure is taken into account, the gravitational
attraction is also dependent from the relative orientation of mB with respect to
each primary. In fact, from equation (2.5), the force exerted on the extended
body by the i-th primary is computed as a series expansion up to the second
order:

Γi ' −∇Vgi = −GmimB

r2
Bi

(r̂Bi + G2i) . (2.18)

The full series expansion will be composed by an infinite number of terms, Gji ,
of j-th degree in ρ/rBi : ρ is the distance of a generic point of mB with respect to
the centre of mass, OB , and r̂Bi is the unit vector directed from the i-th primary
towards OB. The series expansion in equation (2.18) is valid and converges
for a body that is small compared to the distance from the primary, such that
ρ/rBi � 1. Obviously, the first element in the bracket is the usual point-mass
contribution and it is already included in the nominal unperturbed equations,
which are written in the first rows of each right-hand side of equation (2.12).
Therefore, the variation in the gravitational attraction due to the finite dimension
of the body is computed from G2i :

G2i = 1
mBr

2
Bi

{
3
2 [tr(IB)− 5r̂Bi · IB · r̂Bi ] r̂Bi + 3IB · r̂Bi

}
. (2.19)

This equation is computed at each integration step, knowing the position and
the orientation of the body mB with respect to each primary. In particular, the
attitude dynamics is needed to find the direction cosines of the body reference
frame B relative to a frame Ai, which has the first axis aligned as r̂Bi and the
other two axes form a right-handed orthogonal coordinate frame: the second
and third axis of Ai are chosen to be mutually perpendicular and orthogonal
to r̂Bi and to ẑ. In general, G2i is not parallel to r̂Bi and the resultant gravity
force does not align with the vector from the primary to the body centre of
mass. The acceleration term that is representing this variation can be obtained
from equation (2.19) and equation (2.18), normalised for the applicable RnBP
modelling approach formulation and inserted in equation (2.12) through a1x,y,z

and a2x,y,z , respectively valid for the first and the second primary. It important
to note that these terms are not particularly relevant for realistic bodies when
compared to other perturbing phenomena, such as the SRP or the Sun’s gravity.
For example, for a ISS-like spacecraft orbiting around L1, their contribution
is 4 to 5 orders of magnitude smaller than the one determined by the other
perturbations.
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2.3. Absolute Orbit-Attitude Equations of Motion

The presence of the Sun is another important aspect that should be considered,
especially when an accurate model to propagate the motion at a significant
distance from any primary gravitational attractor is sought. In this model,
the Sun can be included both with its gravitational effect and its radiation
contribution. In these regards, the model is maintained within the Earth-Moon
synodic frame but the position of the Sun is computed in the inertial frame
I and then rotated in S, exploiting the bicircular approximation (BC4BP)
or an ephemeris model (FER4BP). In the latter model, however, the circular
approximation is not considered to be significant anymore and the ephemerides
of Earth and Moon are also considered: the cislunar space is accurately modelled
neglecting just the minor perturbing effects. The ephemerides are obtained
exploiting the SPICE Toolkit by NASA / JPL. The frame I is used to express the
equations of motion in the FER4BP: I is centred in the Earth-Moon barycentre,
O, as previously introduced, and it is assumed to be parallel to the Ecliptic
and equinox at date J2000 (EJ2000) reference. When the positions of the
primary bodies and of the Sun are known in I or S, the solar radiation pressure
contribution and the fourth-body gravitational effect can be easily evaluated.
These perturbations are modelled as typically done in astrodynamics literature
[62, 63].

The solar radiation pressure is an expression for the interaction between incoming
photons from the Sun and a surface that is invested by such a flux. The radiation
can interact with a generic body by reflection or absorption, and since it carries
momentum and energy, this interaction generates a pressure that perturbs the
dynamics. The average pressure due to radiation can be computed using:

PSRP =
ΛSRP
c

, (2.20)

where c = 299 792 458 m/s is the speed of light, and ΛSRP is the flux density of
solar radiation at the distance of the body from the Sun. It can be computed
with an inverse square law, knowing the flux of solar radiation at a certain
location in Space. For example, in the Earth-Moon system ΛSRP ' 1350 W/m2.
The fraction of radiation associated that can be absorbed, specularly reflected
and reflected with diffusion is expressed by a coefficient of absorption, ca, diffuse
reflection, cd, and specular reflection, cr. The coefficients must sum to unity,
ca + cd + cr = 1, and in this work they are assumed to have the typical values
for the materials used in the space system. The force that is generated by the
solar radiation pressure interaction can be computed using the expression for
the radiation pressure on a flat surface; no approximation is made in addition to
the one of discretising the real body with a series of flat surfaces, and the self-
shadowing effect can be taken into account with simple geometrical considerations
[64, 65]. For the i-th body planar surface of area Ai, the solar radiation force

21



Chapter 2. Background

can be expressed as:

ΓSRPi = −AiPSRP
[
(1− cr )̂s + 2

(
cr cos(αi) +

1

3
cd

)
n̂i

]
cos(αi)Sh, (2.21)

where ŝ and n̂i are, respectively, the Body-Sun direction and the surface normal
direction in the body-fixed frame. The angle α is the angle between the Body-Sun
and the normal to the surface directions, and cos(α) can only assume positive
values since, if n̂i · ŝ is negative, the surface is in shadow and is not illuminated by
the Sun. This can be mathematically expressed with cos(αi)Sh = max(0, cos(αi)).
Equation (2.21) is obtained assuming that the absorbed radiation acts in the
Body-Sun direction, the specularly reflected radiation acts in the normal to the
surface direction and the diffuse radiation acts in both directions. The whole
solar radiation force can be computed summing up equation (2.21) for each face
that is included in the model. The resulting acceleration is normalised for the
CR3BP formulation and inserted in equation (2.12) through aSRPx,y,z . Similarly,
for what concern rotational motion, the solar radiation torque can be obtained
knowing the centroid of each planar face and its position vector, rAiB , with
respect to the centre of mass, OB. In fact, the torque contribution of each face
is directly computed as the moment produced by ΓSRPi about, OB. The net
solar radiation torque, TSRP , is the summation over all the planar faces and the
related angular acceleration, αSRP , is normalised and inserted in the attitude
equation (2.17).

The fourth-body gravitational effect is determined by the presence of the Sun,
while the gravitational forces of all the other planets are neglected in this model.
The dynamics of mB is influenced by the gravitational attraction of the two
primaries, which are revolving around their centre of mass, as described by
the first part of equation (2.12) written in the synodic frame. However, it is
currently assumed that the whole Earth-Moon system is influenced by the gravity
of the Sun and O is revolving according to the Bicircular or to the Ephemeris
model around the centre of mass of the Solar System. In order to simplify the
description of the overall motion, the S frame is used anyhow; when the position
of the Sun is gathered from the ephemerides in I, it is subsequently rotated
in S, where the Earth and Moon have fixed positions and the Sun is rotating
clockwise around the barycentre of the Earth-Moon system. Note that, in the
circular approximation, the assumed motion do not satisfy Newton’s equations
but previous works showed that, in some regions of phase space, BC4BP gives the
same qualitative behaviour as the real system [66]. The fourth-body gravitational
force can be computed as:

ΓS = −GmSmB

(
r̂BS
r2
BS

− r̂OS
r2
OS

)
, (2.22)

where mS is the mass of the Sun, r̂BS and rBS are respectively direction and
magnitude of the vector from the Sun to the centre of mass of the body, OB , while
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2.4. Relative Orbit-Attitude Equations of Motion

r̂OS and rOS are those related with the vector from the Sun to the barycentre of
the Earth-Moon system, O. The previous equation is composed by two terms:
the first one models the effect of the Sun on the spacecraft, while the second
one models the effect of the fourth-body on the Earth-Moon system. The latter
is needed because the frame I is not really inertial, having its origin at the
barycentre of Earth and Moon. The acceleration on mB can be directly obtained
from equation (2.22) and, after the normalisation for the CR3BP formulation,
it can be inserted in equation (2.12) through a4thx,y,z . Particular attention is
paid to numerical difficulties that might arise in computing equation (2.22),
as typically discussed in the fundamental astrodynamics literature. For what
concern rotational dynamics, also the gravitational effect of the Sun is not
uniform and determines a gravity gradient torque on a non-symmetric body. The
effect of the gravity gradient on the rotational dynamics of mB can be expressed
in the body-fixed frame, B, as:

TS =
3GmS

r3
BS

(I3 − I2)cS2cS3

(I1 − I3)cS1cS3

(I2 − I1)cS1cS2

 , (2.23)

where cS1 , cS2 and cS3 are the direction cosines of the Sun-Body direction, r̂BS , in
principal inertia axes. The resulting angular acceleration, α4th, is inserted, after
the normalisation, in the attitude equations of motion that will be examined next.
Again, as already discussed in section 2.3, the gravity gradient torque of the Sun
is in general few orders of magnitude smaller than the gravity gradient torques
generated by the two primaries, but it is here reported for sake of completeness.

2.4 Relative Orbit-Attitude Equations of Motion

The relative orbit-attitude dynamical model in cislunar space is based on the
absolute dynamics discussed in the previous section. The relative dynamics
between two bodies of generic masses mT and mC , shown in figure 2.2, is
conveniently expressed in the inertial reference frame I. For analogy with
absolute dynamics analyses, certain results can be also expressed in the rotating
synodic reference frame, S.

The absolute orbit-attitude dynamics of the extended and three-dimensional
bodies mT , target, and mC , chaser, is modelled as in section 2.3 and is applied to
two different bodies. Hence, the absolute orbit-attitude dynamics is parametrised
using the positions of the centres of mass of the bodies mT and mC , described
by the position vectors rT and rC , and the four-dimensional quaternion unit
vectors, qT and qC , which relates the body frames BT and BC with respect to
the inertial frame I. The body-fixed frames BT and BC are centred at the centre
of mass of the two bodies and are aligned with their principal inertia directions.
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Figure 2.2: Orbit-attitude Relative Dynamics.

The relative translational dynamics is immediately available from the definition
of the relative position vector, x, expressed in the frame I:

x ≡ δr = rC − rT , (2.24)

which, in the inertial reference frame, can be straightforwardly differentiated in
time obtaining:

ẍ = r̈C − r̈T , (2.25)

where r̈C and r̈T are the absolute acceleration vectors of chaser and target (i.e.
the reference), available from the absolute dynamics equations. For readers’
convenience, from equation (2.12), the absolute dynamics of the target is reported
here in the frame I and in dimensional form :

r̈T = − µE
r3
TE

rTE −
µM
r3
TM

rTM + aT4th + aTSRP , (2.26)

where the subscript 1 of the larger primary has been substituted with E (i.e.
Earth) and the subscript 2 of the smaller primary with M (i.e. Moon). µE =
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GmE and µM = GmM are the dimensional mass parameters. The terms aT4th
and aTSRP are the perturbing accelerations vectors due to the gravitational
presence of the Sun and due to the SRP. They are, as already remarked, the
most relevant perturbations to be considered for the dynamics on Earth-Moon
libration point orbits, since they have a noticeable effect also in a short time scale
for relative dynamics. In these regards, orbital eccentricity and orbital inclination
of the primaries (i.e. FERnBP), solar gravitation and solar radiation pressure
shall be taken into account, while second order of the gravitational potential
generated by a spherical attractor on an extended body can be neglected, as will
be highlighted in chapter 4.

The relative attitude dynamics requires more attention with respect to the
translational one. In fact, it describes the rotational motion of the chaser relative
to the target frame, or the other way around; in both cases, the relative attitude
dynamics is expressed with respect to a non-inertial reference frame. First of all,
a relative quaternion from BT to BC has to be defined as:

δq = qC × q−1
T =

χ(qT )qC

qT
TqC

 . (2.27)

The matrix χ(qT ) is a 3× 4 matrix defined as:

χ(qT ) =
[
qT4I3×3 − [qT123×] − qT123

]
, (2.28)

where qT123 = [qT1 , qT2 , qT3 ]T is the column vector part and qT4 is the scalar part
of the target quaternion qT ; I3×3 is the 3 × 3 identity matrix; [qT123×] is the
3× 3 skew-symmetric cross-product matrix, defined for a generic column vector,
u = [u1, u2, u3]T, as:

[u×] =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (2.29)

The rotation matrix R, which transform a vector from the target reference frame,
BT , to the chaser reference frame, BC , can be expressed in terms of the relative
quaternion δq as:

R(δq) =

δq
2
1 − δq2

2 − δq2
3 + δq2

4 2(δq1δq2 − δq3δq4) 2(δq1δq3 + δq2δq4)

2(δq1δq2 + δq3δq4) −δq2
1 + δq2

2 − δq2
3 + δq2

4 2(δq2δq3 − δq1δq4)

2(δq1δq3 − δq2δq4) 2(δq2δq3 + δq1δq4) −δq2
1 − δq2

2 + δq2
3 + δq2

4

.
(2.30)

At this point, the relative angular velocity can be defined with respect to I as:

δωI = ωIC − ωIT = AI BC (ωBCC −RωBTT ), (2.31)
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where AI BC = AT
BCI

is the attitude matrix from the chaser frame BC to the
inertial frame I. Note that chaser and target angular velocities ωIC and ωIT
are expressed in the inertial frame, while ωBCC and ωBTT are expressed in the
body-fixed frames. Consequently, the relative angular velocity in BC is simply:

δωBC = ωBCC −RωBTT . (2.32)

Finally, it is possible to express the relative attitude motion of the chaser with
respect to the target, deriving the dynamics in the body-fixed frame BC , as:

δω̇BC = I−1
C

{
− [δωBC×]ICδωBC − [δωBC×]ICRωBTT

+ IC [δωBC×]RωBTT − [RωBTT ×]ICδωBC + nC

−R
[
(RTICR− IT )I−1

T (nT − [ωBTT ×]ITωBTT )

+ [ωBTT ×](RTICR− IT )ωBTT

]
−R nT

}
,

(2.33)

where IC and IT are the inertia tensors of chaser and target in principal axes; nC
and nT are the external torque vectors acting on the rigid bodies, respectively
expressed in BC and BT [67]. It is worth remembering that, the relevant external
torques in cislunar space are: the gravity gradient torques of Earth and Moon,
and the solar radiation pressure torque. Furthermore, in this work, also the
gravity gradient torque of the Sun can be taken into account as an external
torque perturbation.

From the relative attitude dynamics, which allows to compute the time evolu-
tion of the relative angular rates, the derivation of the attitude kinematics is
immediate. In fact, the kinematic equation for the relative quaternion is:

δq̇ =
1

2
Ω(δωBC )δq, (2.34)

where all the used variables are function of time and the matrix Ω is a 4 × 4
skew-symmetric matrix defined as:

Ω(ω) =

[
−[ω×] ω

−ωT 0

]
. (2.35)

Knowing the relative orbit-attitude dynamics between target and chaser and
assuming to have available the absolute orbit-attitude dynamics of the target (i.e.
the reference), it is possible to have a complete understanding of both absolute
and relative orbit-attitude dynamics involving two bodies in cislunar space.

For practical operational applications, both absolute (in equations (2.12) and (2.17))
and relative (in equations (2.25) and (2.33)) orbit-attitude dynamics can be
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2.4. Relative Orbit-Attitude Equations of Motion

propagated in-time with on-board software. In particular, the aforementioned
dynamics is useful to increase the navigation accuracy with filters to better esti-
mate the states available from sensors measurements. An example of navigation
implementation is briefly discussed considering a chaser spacecraft equipped with
sensors able to measure its relative state with respect to the target: a navigation
filter, exploiting the developed relative orbit-attitude dynamics in non-Keplerian
orbits, is applied to improve the accuracy of relative navigation, enabling the
guidance functions to work in relative frames and compute the best trajectories
for rendezvous and docking between the two spacecraft. For what concern abso-
lute navigation, it should be supported by ground-tracking (e.g. DSN), or, in
order to have full on-board autonomy, alternative navigation techniques should
be exploited (e.g. liaison navigation). However, when one of the two spacecraft
have accurate information about its absolute and relative states, the estimation
of the absolute state of the other spacecraft is straightforward from the relations
available.

Guidance and control functions, similarly to what has been discussed for the
navigation functions, require the dynamics equations to be implemented. In this
research work, 6DOF relative GNC functions to perform rendezvous and docking
in cislunar non-Keplerian orbits are discussed and, thus, equation (2.25) and
equation (2.33) are of interest. These are exploited to compute the reference
trajectories connecting chaser and target. Then, the control profile is needed in
order to have the chaser moving on the desired rendezvous path. This work is
not considering the control actuation and, hence, the discussion about 6DOF
guidance and control is concluded when the nominal control acceleration profiles
are available. In fact, the output of the control functions is a vector of linear
accelerations in inertial frame I and a vector of angular accelerations in chaser
body-fixed frame BC . These control acceleration vectors, respectively aC and αC ,
are summed to the chaser absolute orbit-attitude dynamics. As a consequence,
considering the formulation of equations (2.25) and (2.33), the controlled relative
orbit-attitude dynamics equation are:

¨̃x = ẍ + aC , (2.36)

δ ˙̃ωBC = δω̇BC +αC . (2.37)

2.4.1 Linearised relative dynamics

Guidance and control functions can be developed exploiting linear techniques
and, in general, a linear formulation of the dynamics can be helpful. Therefore,
to set up the framework for linear control design, a linearisation of the relative
dynamics about the target (i.e. reference) spacecraft state can be performed.
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Translational relative dynamics can be linearised assuming the relative distance
between chaser and target to be small compared to the distance between the
target and the primaries: ‖x‖ � rTE and ‖x‖ � rTM . In this way, a first order
expansion of equation (2.25) is possible obtaining [68]:[

ẋ

ẍ

]
≈

[
0 I3×3

Ξ(t) 0

][
x

ẋ

]
, (2.38)

where Ξ(t) is a term dependent from the position of the target spacecraft. Hence,
it is a term depending, as a function of time, on the known absolute orbital state
of the target:

Ξ(t) =−

(
µE
r3
TE

+
µM
r3
TM

)
I3×3 + 3

µE
r3
TE

[
r̂TE r̂

T
TE

]
+ 3

µM
r3
TM

[
r̂TM r̂

T
TM

]
,

(2.39)

where the result of a first order expansion linearisation is evident. Note that
the relative perturbation terms due to the Sun’s gravity and to the SRP are
negligible in the linearisation process, compared to the gravity field of the
primaries. Even if their linearisation is straightforward, these effects are treated
as perturbations also in the linearised dynamic model, in order to avoid an
eccessive computational burden. Equation (2.39) can be easily adapted to
work with the circular restricted model or with the ephemeris model, since the
differences stay only in the definition of the position vectors of the primaries:
as sinusoidal circle functions or as numerical ephemerides. Analogously, the
modification from dimensional units to normalised non-dimensional ones is
immediate. As a last comment, equation (2.38) and equation (2.39) can be
modified also to be formulated in synodic non-inertial reference frame: the
matrix Ξ(t) requires only to be rotated from I to S, while the linear system in
equation (2.38) has to take into account the non-inertial terms due to centrifugal
and Coriolis effects. When the control is applied, considering also the relative
perturbations, the linear dynamics equations become:[

˙̃x

¨̃x

]
≈

[
0 I3×3

Ξ(t) 0

][
x̃

˙̃x

]
+

[
0

I3×3

]
aC

+

[
0

I3×3

]
(δaS + δaSRP ) ,

(2.40)

where δaS and δaSRP are respectively the differential gravitational perturbation
of the Sun and the differential perturbation due to solar pressure.

The relative attitude dynamics can be linearised similarly to translation motion.
However, in this case, the assumptions is to have small attitude errors (i.e.
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δq ≈ [0, 0, 0, 1]T) and small angular rates (i.e. ωC ≈ 0 and ωT ≈ 0). The
first assumption allows to approximate the rotation matrix from BT to BC as
R ≈ I3×3, while the second assumption allows to neglect the cross angular rate
terms as second order effects. Then, equation (2.37) becomes in the frame BC :

δ ˙̃ωBC ≈ I−1
C

{
nC − nT −

[
IC − IT

]
I−1
T nT

}
+αC , (2.41)

which obviously reduces to

δ ˙̃ωBC ≈ I−1
C nC − I−1

T nT +αC , (2.42)

where the external torque vectors are computed considering all the aforemen-
tioned external contributions within the assumptions of the linearised model.
Accordingly, the linearised attitude kinematics becomes:

δq̇ ≈ 1

2

[
δωBC

≈
≡BT

0

]
. (2.43)

Note that with these assumptions the target and chaser body frames, BC and
BT , are approximately equivalent.

2.5 Flexible Dynamics

Flexible dynamics models are necessary further steps to understand the coupled
orbital, attitude and flexible dynamics in non-Keplerian dynamical environments.
These models are needed to represent flexible elements within the space systems,
which are dynamically coupled to the rigid body motion described in the previous
sections. The main reason is to highlight possible interactions between orbit-
attitude dynamics and flexible dynamics. In fact, orbital and rotational motion
of the cislunar space station may be perturbed by the natural vibrations of the
flexible structure or, inversely, the frequencies associated to the non-Keplerian
dynamics may be an issue with respect to possible resonances of the flexible
system.

Moreover, additional internal perturbations sources can be modelled, like the
fluid sloshing. As a matter of fact, large spacecraft in cislunar space require
a substantial mass of fuel to perform orbit corrections for prolonged times
and to execute trajectory transfers. When the fuel tanks are only partially
filled and under roto-translational accelerations, large quantities of fuel move
uncontrollably inside the tanks and generate sloshing perturbations, which are
extremely dangerous for attitude stability [63, 62].

The structural mode equations for the flexible elements and the sloshing modes
can be expressed in a canonical form of second order dynamics, with known
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eigenfrequencies and damping coefficients. Thus, the flexibility modelling tech-
niques described in this section can be applied to both vibrational modes. The
developed flexibility coupling terms allow to augment the dynamics equations of
rigid-body motion with structural and sloshing model dynamics.

2.5.1 Flexible Elements Models

The flexible elements models within the extended body mB are based on simple
and generic structural elements: flexible beams, lumped masses, springs, dampers
and, eventually, flexible plates. In this way, it is possible to further extend the
space system to more complex configurations, with a Multi-Body technique [69].

Flexible structural elements are included in the model with a Lumped Masses
Model (LMM), or with a Lumped Parameters Model (LPM) or with a Distributed
Parameters Model (DPM). In the first case, lumped masses are connected to a
rigid structure with a massless spring; in a way to have an equivalent spring-mass
system, able to represent a pseudo-mode of vibration [70]. In the second technique
rigid elements are interconnected with lumped stiffness or damping parameters
in order to compose a more complex flexible multi-body system. Lastly, with
DPM the flexible elements are represented by approximate finite-dimensional
models of the flexible structures [71].

Considering LMM, the spring-mass systems are attached to the rigid body in
arbitrary points at a fixed distance from OB. Their motion is excited from
the dynamics of B itself. Their effect is inserted in the equations of motion
through ΓLMM and TLMM , in fact the spring generates a force on the rod and
therefore a torque with respect to centre of mass of the rigid body. Each i-th
spring-mass system, represented in figure 2.3, is located at a distance li from the
barycentre of B, and it is defined by a pseudo-modal mass m̃i and an equivalent
stiffness k̃i. All the modal masses are scaled to 1, and each pseudo-mode is
entirely represented through k̃i. From the natural frequency of each mode of the
structure, ω̃i, the stiffness can be computed as:

k̃i = ω̃2
i m̃i. (2.44)

The motion of the spring-mass systems can be constrained to be orthogonal to
certain surface, in order to simulate only bending modes or axial modes. The
elongation of the spring, with respect to the linking point, is z̃i. The acceleration
of the linking point is ¨̃yi, and it can be easily computed knowing the dynamics
of the body mB. Also in this case, the equations of motion can be normalised
with same process that has been described for the rigid body dynamics, even if,
to avoid numerical problems, the normalisation is differently scaled according to
the typical dimensions of the flexible dynamics. For each spring mass system it
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Figure 2.3: Lumped Masses Model (LMM).

is possible to write:
m̃i(¨̃zi + ¨̃yi) + k̃iz̃i = 0. (2.45)

The force exerted on B is directly available from equation (2.45), while the
associate torque, with respect to the centre of mass OB , by a single spring-mass
system is:

TLMMi = lib̂1 × k̃iz̃i. (2.46)

The LMM is particularly useful to model the sloshing dynamics, in particular,
when dampers are inserted in the spring-mass systems.

The more complex flexible models, LPM and DPM, are founded on the pioneering
work of Kane, who studied the dynamics of flexible structure undergoing large
overall motions [37]. In fact, a non-linear strain measure and a change of
coordinates allow to automatically include numerous motion-induced effects,
such as centrifugal stiffening or vibrations induced by Coriolis force, which are
usually neglected by the canonical structural techniques based on linear Cartesian
modelling approaches. A quadratic form of the strain energy helps to obtain an
accurate model, which produces exact simulations and can be easily implemented
for numerical computation through a Rayleigh-Ritz method to approximate the
involved variables. The theoretical foundation of the developed model has been
gathered from the work of Yoo [38] and Invernizzi [39].

The lumped parameters model, LPM, produces less precise results than DPM, but
is less expensive in terms of computational load and allows an easier and faster
investigation of space structures composed by many simple elements. In fact,
LPM is developed exploiting a multi-body formulation that, with reference to
figure 2.4, is based on rigid rods, lumped masses, springs and dampers to represent
the inertia and flexibility properties of a given extended flexible body. In this
research work, an algorithm has been developed by the author to automatically
write the analytical equations of motion of the system, once the list of the various
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Figure 2.4: Lumped Parameters Model (LPM).

elementary structural components and the mutual connection between them
have been specified. The different elements are assembled exploiting rotation
matrices between the local coordinate systems of each part of the structure
and satisfying the imposed constraints. The resulting dynamic equations are
obtained with a Lagrangian approach, starting from the Lagrangian function
of the multi-body system. Practically, equation (2.7) is formulated taking into
account the kinetic energy related with the flexible deformations:

T =
1

2
mB ṙB · ṙB +

1

2
ω · IB · ω

+
1

2

nflex∑
i=1

∫
flexi

u̇i · u̇i dmflexi +
1

2

nLMM∑
i=1

m̃i
˙̃zi · ˙̃zi.

(2.47)

where nflex is the number of flexible elements, nLMM is the number of lumped
masses and u̇i is the velocity of the differential flexible element, dmflexi . Similarly,
also the potential energy associated to the deformable structures is taken into
account to compute the Lagrangian function:

Vflexi =
1

2
ζi ·Kflexi · ζi, (2.48)

VLMMi =
1

2
k̃i z̃i · z̃i, (2.49)

where ζi represents the generalised coordinates associated with the vibration
degrees of freedom, modelled in the LPM or in the DPM, and Kflexi is the
modal stiffness matrix of the i-th deformable element.

DPM is able to model generic flexible structures attached to the centre of mass
of the body mB under the effects of the coupled orbit-attitude dynamics in
cislunar space, displayed in figure 2.5 for the simple case of the cantilever beam.
This model allows further extensions: different beams or plates may be attached
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Figure 2.5: Distributed Parameters Model (DPM).

to the same rigid body within the same modelling techniques. All the non-linear
strain terms due to the large motion of the flexible structure are retained, while
the inertia forces are linearised to obtain the final equations of motion for the
present modelling method, which can also be referred as foreshortening approach.
The distributed parameters technique can be exploited as a reference for the less
refined but effective LPM, as will be discussed in chapter 6.

2.5.2 Sloshing Models

The motion of liquids, such as fuel, in partially filled tanks must be taken into
account in a spacecraft model, in particular with manoeuvres that excite the
lateral motion of the fluid. The effect of the liquid on the spacecraft can be
replaced by a linear mechanical model. In fact, it is assumed that the sloshing
is linear: both a pendulum model and a spring-mass model are equivalent in
representing the linear sloshing phenomena. The spring-mass model does not
require the use of kinematic constraints, leaving the equations of motion of
the different bodies to be independent; the reason because this latter model is
preferred in this research.

Thus, the Liquid Sloshing Model (LSM) dynamics has been analytically derived
applying the Lumped Masses Model (LMM) assumptions. However, the parame-
ters of the mass-spring-damper slosh model have to be tuned properly in order
to correctly represent a real liquid sloshing in the spacecraft tanks. The correct
parameters to be used have been retrieved from available literature studies and
models [72, 73]. In table 2.1, the definition and the formulation of the parameters
to set-up the sloshing model are reported for a cylindrical tank with diameter
d and height h, in [m], filled with a liquid of density ρliq, in [kg/m3]. The
acceleration influencing the sloshing dynamics, g, is the dynamically-induced
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Table 2.1: Slosh Model Parameters for a Cylindrical Tank.

Definition Symbol Value Units

Geometric Coefficient σ 1.841 [−]
Damping Ratio ε 0.05 [−]

Tank Acceleration g f(rB,q, fv, fω) [ms−2]

Liquid Mass mliq
π
4d

2hρliq [kg]

Sloshing Mass m1 mliq

[
d tanh(2σ h

d )
σ(σ2−1)h

]
[kg]

Rigidly Attached Mass m0 mliq −m1 [kg]

Sloshing Mass Position h1
h
2 −

d
2σ tanh

(
2σ hd

)
[m]

Rigidly Attached Mass Position h0
mliq
m0

[
h
2 −

d2

8h

]
− m1

m0
h1 [m]

Stiffness Coefficient kξ = kη mliq
2g

(σ2−1)h
tanh2

(
2σ hd

)
[kgs−2]

Damping Coefficient cξ = cη 2m1ε
√

kξ=kη
m1

[kgs−1]

acceleration acting along the axis of the tank; for practical applications, it can
be selected to be equal to the average gravitational acceleration along the orbital
motion.

2.5.3 Flexible Equations of Motion

Flexibility coupling with orbit-attitude dynamics can be derived from the La-
grangian formulation in equation (2.7). Nevertheless, the most relevant interac-
tion between flexible and rigid body dynamics is mainly on rotational motion.
In fact, the vibrational dynamics evolving from flexible elements and internal
fuel sloshing interferes strongly with the attitude dynamics, and it can reduce
the achievable performances of the attitude control system (ACS).

The absolute attitude dynamics equations in equation (2.17) can be reformulated
to include flexibility effects. For example, assuming to have a spacecraft with
two solar panels modelled with LPMs, as in figure 2.4, and an internal fluid
sloshing represented by two LMM mass-spring-damper systems, as in figure 2.6,
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Figure 2.6: Liquid Sloshing Model (LSM).

the kinetic energy in equation (2.47) is:

T =
1

2
ω · IBf · ω +

1

2
(ω + ωW ) · IW · (ω + ωW )

+
1

2
ṗ ·MP · ṗ + ω · P · ṗ +

1

2
ṡ ·MS · ṡ + ω · S · ṡ,

(2.50)

where p = [θ1, ψ1, θ2, ψ2]T represents the generalised coordinates associated with
the vibration degrees of freedom of the solar panels, θi and ψi with i = 1, 2, and
s = [ξ, η]T represents the generalised sloshing coordinates, ξ and η. The axial
deformation of the flexible appendages is ignored with respect to the bending
ones, assuming δu = 0, and the rigid part of the solar panels is not considered:
uD = 0. Moreover, the sloshing is assumed to be constrained on the b̂1 − b̂2

plane and the panels are aligned along the b̂1-axis.

The matrix IBf includes the slosh mass moment of inertia and the flexible
appendages moments of inertia in the non-deformed configuration, plus the
elastic displacement contribution to the moments and products of inertia:

IBf = IB + IP1 (θ1(t), ψ1(t)) + IP2 (θ2(t), ψ2(t)) + IS (ξ(t), η(t)) . (2.51)

It should be noted that the rigidly attached slosh mass, m0, is accounted inside
the moment of inertia associated with the liquid sloshing, IS , which is is divided
in a constant term, ISm0

, and in a variable term, ISm1
(ξ(t), η(t)).
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The matrix MP is the modal mass matrix of the solar panels and the matrix MS

is the generalised mass matrix of the slosh:

MP =


mP1u

2
L1

0 0 0

0 mP1u
2
L1

cos2 (θ1(t)) 0 0

0 0 mP2u
2
L2

0

0 0 0 mP2u
2
L2

cos2 (θ2(t))

 , (2.52)

MS =

[
m1 0

0 m1

]
, (2.53)

where uL1 = uL2 are the lengths of the solar panels, mP1 = mP2 their masses in
the LPM and m1 is the oscillating mass in the slosh model.

The matrix P denotes the coupling coefficient matrix between the attitude motion
and the vibration of the two panels:

P =
[
P1 P2

]
, (2.54)

where

Pi = mPiu
2
Li

− sin (ψi(t)) cos (ψi(t)) cos (θi(t)) sin (θi(t))

cos (ψi(t)) sin (ψi(t)) cos (θi(t)) sin (θi(t))

0 cos2 (θi(t))

 , (2.55)

with i = 1, 2.

The matrix S denotes the coupling coefficient matrix between the attitude motion
and the sloshing mass motion:

S =

 0 −h1

h1 0

−η(t) ξ(t)

 , (2.56)

where h1 is the sloshing arm with respect to the centre of mass, OB.

The flexible dynamical model includes the presence of reaction wheels as actuators.
The matrix IW is the reaction wheels inertia matrix and the angular velocity
of the wheels ωW is relative to the angular velocity of mB, ω. In this research
work, the mounting configuration of the wheels is neglected and it is assumed to
have one wheel aligned with each principal inertia axis.

This model formulation with DPM, LPM and LMM allows further extensions
and different beams or plates may be attached to the same rigid body with minor
modifications. Moreover, the exploitation of lumped models produces acceptable
results with a lower computational load. The potential energy associated to the
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deformable elements is computed from equations (2.48) and (2.49) according
to the used flexible model formulation, as will be explained in the following
of this section. The dynamical environment is represented in terms of all the
external forces and perturbations, including the gravity gradients of the two
primaries, which are included in the final equations of motion. The resulting
dynamic equations are obtained with the aforementioned Lagrangian approach
for quasi-coordinates, ω and ωW , and for flexible coordinates, p and s:

d

dt

(
∂L
∂ω

)
+ [ω×]

∂L
∂ω

= Tenv, (2.57)

d

dt

(
∂L
∂ωW

)
+ [ωW×]

∂L
∂ωW

= TW , (2.58)

d

dt

(
∂L
∂ṗ

)
− ∂L
∂p

= 0, (2.59)

d

dt

(
∂L
∂ṡ

)
− ∂L
∂s

= 0, (2.60)

where Tenv is the external environmental torque and TW is the torque applied
to reaction wheels (i.e. the control torque).

The fully coupled equations of attitude-flexible motion are:

IBf · ω̇+P · p̈ + S · s̈ + IW · (ω̇ + ω̇W ) =

+ Tenv − ω ×
[
IBf · ω + IW · (ω + ωW ) + P · ṗ + S · ṡ

]
− İBf · ω − Ṗ · ṗ− Ṡ · ṡ,

(2.61)

MP · p̈+PT · ω̇ + CP · ṗ + KP · p =

− ṀP · ṗ− ṖT · ω̇

+
1

2
ω ·

∂IBf
∂p
· ω +

1

2
ṗ · ∂MP

∂p
· ṗ + ω · ∂P

∂p
· ṗ,

(2.62)

MS · s̈+ST · ω̇ + CS · ṡ + KS · s =

− ṠT · ω̇ +
1

2
ω ·

∂IBf
∂s
· ω + ω · ∂S

∂s
· ṡ,

(2.63)

IW ·
(
ω̇ + ω̇W

)
= TW . (2.64)

The matrices CP , KP , CS and KS are diagonal and, respectively, the damping
and the stiffness matrices of the solar panels and of the fluid sloshing. The solar
panels parameters such as mass, rigidity and damping are determined assuming a
desired natural frequency of the vibration modes. The damping ratio is selected
from typical damping coefficients values for flexible spacecraft appendages. For
what concern the sloshing parameters, they are obtained from the models present
in literature and discussed in section 2.5.2.
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2.5.3.1 Linearised Flexible Dynamics

Linearised dynamics can be helpful during the design of guidance and control
functions dealing with the attitude-flexible motion. Even if non-linear control
of space systems with liquid sloshing and flexible appendages can be designed
exploiting Lyapunov stability theory or other non-linear methods, the typical
vibrational motion is small compared to the orbit-attitude one. Therefore,
second order small quantities in equations (2.61) to (2.64) can be neglected for
linearisation, allowing the development of GC functions exploiting linear control
techniques.

A variable substitution method is exploited to linearise sloshing and flexible
motions around their equilibrium conditions [40]:

γ = ṗ + M−1
P PT · ω (2.65)

ϕ = ṡ + M−1
S ST · ω. (2.66)

Thus, the linearised version of the attitude-flexible equations motion in equa-
tions (2.61) to (2.64) is expressed as:

ω̇ = I−1
Bl

{
Tenv −TW − ω ×

[
IBl · ω + IW · (ω + ωW ) + P · γ + S ·ϕ

]
+ PM−1

P

[
KP · p + CP · γ −CPM−1

P PT · ω
]

+ SM−1
S

[
KS · s + CS ·ϕ−CSM−1

S ST · ω
]}
,

(2.67)

ṗ = γ −M−1
P PT · ω, (2.68)

γ̇ = −M−1
P

[
KP · p + CP · γ −CPM−1

P PT · ω
]
, (2.69)

ṡ = ϕ−M−1
S ST · ω, (2.70)

ϕ̇ = −M−1
S

[
KS · s + CS ·ϕ−CSM−1

S ST · ω
]
, (2.71)

with

IBl = IBf − P ·M−1
P · P

T − S ·M−1
S · S

T. (2.72)

The validation of the linear model in equations (2.67) to (2.71) has been carried
out comparing its result with respect to the full non-linear model in equa-
tions (2.61) to (2.64). The linear model loses some of the cross-coupling between
slosh and flexible appendages. Moreover, it tends to smooth the flexible-sloshing
behaviour, but it is very reliable in the attitude output. The validation results
are presented in chapter 6.
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CHAPTER3
Absolute Dynamics

There are no eternal facts, as there are no
absolute truths.

— Friedrich Nietzsche

Absolute dynamics for large space structures in cislunar space is influenced
by the n-body dynamical environment introduced in chapter 2. In particular, the
orbit-attitude coupling is relevant to understand the complete 6DOF dynamics
and exploit design techniques able to leverage the fully coupled motion of
spacecraft, in order to achieve enhanced mission performances.

In this chapter, the absolute orbit-attitude dynamics in cislunar space is investi-
gated with the purpose to highlight periodic motions that can be exploited to
naturally stage large space structures in lunar vicinity, with lower difficulties
and improved operational capabilities. In these regards, the complete space
of orbit-attitude solutions is analysed and a brief survey of different orbital
families is reported. The results obtained with different modelling approaches
(e.g. CR3BP, ER3BP, FER4BP) are shown. Moreover, attitude stabilisation
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methods (i.e. single and dual-spin stabilisation) are presented, compared and
discussed.

Natural dynamics existing in the n-body dynamical environments is remarkably
relevant to compute natural proximity operations trajectories and to understand
the feasibility of efficient low-cost control methods for rendezvous missions. This
part of the dissertation is also dedicated to discuss the methods to compute
natural 6DOF trajectories, and the available results are critically analysed having
in mind possible applications.

3.1 Orbit-Attitude Periodic Motion

The equations of motion presented in chapter 2 do not have an analytical
solution space, as it is generally true for the dynamics propagated in a CR3BP
environment. Therefore, equations (2.11), (2.12), (2.16) and (2.17) have to be
numerically integrated to analyse the motion evolution of mB. However, the
solutions are extremely sensitive to the set of initial conditions and a numerical
targeting algorithm is needed, if one wants to highlight a particular behaviour or
obtain a certain final condition. A very common method to find specific solutions
in non-Keplerian environments is employed in this research, following the idea
introduced in the last decades of the twentieth century and presented also in
the work of Guzzetti [25, 27]. In fact, a multiple shooting scheme, together
with a multi-variable Newton-Raphson solver, is exploited to find orbit-attitude
periodic solutions.

3.1.1 Differential Correction Method

The idea of this numerical method is founded on the possibility to propagate
the dynamics in the vicinity of reference solution. In fact, considering a generic
non-linear set of equations of motion and a reference solution, x̄, it is possible to
perturb the reference initial state vector, x̄0, by a small quantity, δx0. Then, the
linear evaluation for the behaviour of the variation, δx = x(x̄0 +δx0, t)− x̄(x̄0, t),
relative to the reference motion can be obtained using the Jacobian of the
original non-linear system, J(t) = ∂f

∂x , where the state vector is composed by:
x = [x; y; z; vx; vy; vz; q1; q2; q3;w1;w2;w3]. Note that only three components of
the quaternion have to be defined to completely define the system f . In fact, the
first-order variational equation can be written as:

δẋ = J(t)δx. (3.1)
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At this point, the effect of variations in the initial state on δx can expressed in a
linear sense as:

δx =

(
∂x

∂x0

)
δx0. (3.2)

The linear differential relationship between initial and final state, ∂x
∂x0

, which
is known as State Transition Matrix (STM) and is denoted as Φ(t, t0), can be
related to a first-order differential equation governing its evolution. In fact, from
equations (3.1) and (3.2) after some manipulations, it is possible to write:

Φ̇(t, t0) = J(t)Φ(t, t0), (3.3)

where the elements of the matrix Φ(t, t0) represent the partial derivatives of
the state, x, at time t with respect to the initial state, x0, at time t0 that are
integrated simultaneously with the equations of motion to produce the STM
at any time along the integrated trajectory relative to a reference solution.
Obviously, a variation in the initial state vector can only influence itself if the
equations are not integrated and just evaluated at t = t0. Hence, the initial
condition for the STM in equation (3.3), is the identity matrix:

Φ(t0, t0) = I. (3.4)

In order to integrate equation (3.3), the time-variant Jacobian of the system
must be computed. It contains the partial derivatives of the system f with
respect to the state vector x:

J(t) =



∂fx
∂xB

∂fx
∂vB

∂fx
∂IqBB

∂fx
∂IωBB

∂fv
∂xB

∂fv
∂vB

∂fv
∂IqBB

∂fv
∂IωBB

∂fq
∂xB

∂fq
∂vB

∂fq
∂IqBB

∂fq
∂IωBB

∂fω
∂xB

∂fω
∂vB

∂fω
∂IqBB

∂fω
∂IωBB


, (3.5)

where xB , vB , IqBB and IωBB are the elements of the state vector x, respectively
related with the orbital position, the orbital velocity, the attitude parameters
and the angular velocity of the body mB . It must be noted that for the coupled
orbit-attitude dynamics without perturbations ∂fx

∂xB
, ∂fx
∂IqBB

, ∂fx
∂IωBB

, ∂fv
∂IqBB

, ∂fv
∂IωBB

,
∂fq
∂xB

, ∂fq
∂vB

and ∂fω
∂vB

are equal to null matrices. However, when the previously
introduced perturbations are included, the orbital motion is directly influenced
by the orientation of the body and the partial ∂fv

∂IqBB
is not equal to zero anymore.

The coupled orbit-attitude motion is described by 13 equations of motion con-
tained in the system f . Still, having in mind the constraint equation (2.15), only
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12 equations are actually independent, because one of the kinematic relations
in equation (2.16) is not necessary to completely describe the dynamics of the
system: the fourth component of the quaternion vector can be derived from
the Euler parameters constraint. Anyway, the modification of the system of
differential equations f is not practical and it is maintained as described in
section 2.3, but the Jacobian and the STM are reduced to a 12 by 12 matrix,
relating only the independent variables. This is done expressing the partials of
the Jacobian relative to the quaternions as:

dfi
dqj

(q1, q2, q3, q4(q1, q2, q3)) =
∂fi
∂qj
− qj
q4

∂fi
∂q4

, (3.6)

which can be derived from the variational expression of equation (2.15). There-
fore, considering the 13 equations of motion and the 12× 12 linear differential
relationships between initial and final state, there are 157 differential equations
to be integrated in order to find orbit-attitude periodic solutions.

The Jacobian in equation (3.5) has been derived analytically for the coupled
orbit-attitude dynamics with the CR3BP or BC4BP modelling approaches. The
analytical expression of the partials has been obtained also for the variation in
the gravitational attraction due to the finite dimension of the body. The effort
in deriving such analytical expressions is justified by a relevant reduction in
the computational cost of the algorithms that exploits that matrix. When the
ephemeris models are used, the terms in the Jacobian are instead computed
numerically. In practice, when terms related with non-analytic formulations
are included, the State Transition Matrix is numerically obtained applying a
small perturbation with respect to a reference initial condition, then the finite
difference between the reference and the perturbed final state is available and
the terms in the matrix can be numerically computed. This operation is done
for each partial and the complete STM is finally assembled, even though it is
not the real State Transition Matrix but just a numerical approximation. To
assess the accuracy of this numerical STM, the result is continuously matched
with the analytical STM for circular approximations.

With the availability of the State Transition Matrix, an algorithm able to find
periodic solutions in both the orbital and attitude state can be implemented. In
fact, it is possible to obtain a periodic motion in the rotating reference frame by
iteratively correcting a reference path, but a good initial guess is needed. In this
work, the targeting scheme is based on a multiple shooting strategy, which is very
common in modern astrodynamics for the computation of periodic orbits. The
idea is to find a solution that is continuous between the final and initial states in
both the translational and rotational components, which is a typical two-point
boundary value problem. However, the presented approach solves many Initial
Value Problems where the different initial states are iteratively corrected, with a
Newton approach, until the constraints at given patch points are satisfied, within
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a certain tolerance. In practice, the trajectory is discretised in N patch points,
which are associated with N−1 arcs. In the orbit-attitude coupled problem, each
i-th patch point is the 12-dimensional state vector, xi = [xBi ; vBi ;

I qBBi ;
I ωBBi ].

The first and last patch points are respectively the initial and final conditions.
Each arc has the same time of flight, Ta, and therefore the complete solution
has time of flight Tt = (N − 1)Ta.

The problem has a free variables vector that includes the state vector in each
patch point, plus the time of flight of a single arc:

ν = [x1; . . . ; xi; . . . ; xN ;Ta]. (3.7)

Hence the dimension of the problem is n = 12N + 1 and the free variables
vector has to be corrected to satisfy a set of mB given constraints, collected in
the vector µ. The periodic solution is identified as a set of ν̄ that satisfies the
constraint equations:

µ(ν̄) = [µ1(ν̄); . . . ;µm(ν̄)] = 0. (3.8)

This is done expanding the constraint function µ about an initial guess ν0 in a
Taylor series to the first order:

µ(ν) ' µ(ν0) + Jµ(ν0)(ν − ν0), (3.9)

where Jµ is the Jacobian of the constraint function with respect to the free
variables ν. Equation (3.9) is set equal to zero and iteratively solved for ν̄.

Usually there are more free variables than constraint equations and so a minimum
norm solution is exploited to produce the updated free variables vector. In fact,
at the k-th iteration, the new solution is found as:

νk+1 = νk − Jµ(νk)
T
[
Jµ(νk)Jµ(νk)

T
]−1

µ(νk). (3.10)

This equation is recursively applied to update the free variables vector. When
the equation (3.8) is solved within a certain numerical tolerance, the algorithm
is stopped and the current solution νk is the desired periodic solution ν̄.

In this research, the constraint vector µ is strongly related with the desired
coupled orbit-attitude behaviour. The multiple shooting algorithm iteratively
finds a solution that is periodic in both attitude and orbital state, has internal
continuity at patch points between the different arcs and is sufficiently close
to the desired initial guess. The periodicity is sought in the rotating synodic
reference, but note that the attitude dynamics is expressed in the inertial frame.
Hence, the quaternion IqB has to be transformed in the synodic reference, SqB ,
prior to enforce periodicity. There is no need to transform the angular velocity
of the body mB in the synodic reference, because the difference between the
angular velocity measured in the inertial frame and in the rotating one is just a
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constant offset, which is not an issue for what concern periodicity: the periodicity
constraints for the angular velocity can be expressed in both rotating and inertial
frames. The orbital states do not need any addition modification since they
are already expressed in S. Moreover, only 5 translational states have to be
periodic; the remaining one is implicitly continuous because of the existence of
an integral of motion, which is known as Jacobi constant. The presented coupled
orbit-attitude dynamical model preserves this constant and the whole algorithm
is continuously assessed checking its value. One additional constraint is needed
to fix a coordinate in the trajectory and phase all the orbits of a given family.
Therefore, the constraint vector which is used in the algorithm is:

µ(ν) =



(x1)Ta − x2

...
(xN−1)Ta − xN

xN − x1

zN − z1

vxN − vx1
vyN − vy1
vzN − vz1

y1

SqBBN −
S qBB1

IωBBN −
I ωBB1



, (3.11)

where the continuity at patch points, the periodicity of 5 orbital states, the
phasing of the family and the periodicity of attitude states are respectively listed.
The result is a total of m = 12N constraint equations composing the vector µ,
which has to be nulled to find a periodic orbit-attitude solution.

3.1.2 Continuation Method

The differential corrector method, presented in section 3.1.1, is used to obtain a
single periodic solution corresponding to an individual trajectory, which satisfies
a particular problem defined via the constraint equations in equation (3.8), such
as periodic orbit-attitude LPOs discussed in this dissertation. Once a converged
solution is found, it can be used to generate a dynamical family of other periodic
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orbits, which are useful to explore the whole subspace of solutions existing in
the interested dynamical environment.

The techniques available to obtain families of periodic motions are typically
named numerical continuation methods. These continuation processes are needed
to create new initial guesses, which can be obtained just modifying one parameter
to the existing periodic solution or expanding in the direction of the null space of
a reference Jacobian matrix, Jµ(ν̄). Both methods are well-known continuation
schemes; the former is called single-parameter continuation, while the latter is
the pseudo-arclength continuation, which is used in this research.

The pseudo-arclength continuation scheme is intended to continue a family of
periodic orbit-attitude motions in the direction tangent to their exact nonlinear
variations along the space of solutions [74]. The tangential direction is evaluated
from the null space of the Jacobian matrix of the last converged solution, ν̄:

κ = ker(Jµ(ν̄)). (3.12)

The tangential direction, κ, has the same dimensions of the free variable of
the problem, ν. Thus, the new member of the family, ν∗, is shifted along
κ from the last reference solution, ν̄, with an arclength step size ds. This
condition is obtained appending an additional equation to the constraint vector
equation (3.11), defining an augmented constraint function:

µ∗ (ν∗) =

[
µ (ν∗)

(ν∗ − ν̄) · κ− ds

]
. (3.13)

The derivative of µ∗ (ν∗) yields to an augmented Jacobian matrix:

Jµ∗ =

[
Jµ

κT

]
(3.14)

The new member of the family is obtained via simple iterative update process:

ν∗k+1 = ν∗k − Jµ∗(ν∗k)−1µ∗(ν∗k) (3.15)

The advantage of the pseudo-arclength continuation with respect to the single-
parameter continuation is that it does not require a previous knowledge of
the user about the family evolution. This strategy is reasonably robust and
exploits a continuation parameter which is neutral with respect to the problem
definition. Moreover, it generally avoids possible jumps to other families during
the continuation process.

3.1.3 Initial Guess Generation

The search for periodic solutions needs an initial guess that is sufficiently close
to the desired motion. Existing literature presents several methods able to
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provide approximation of the desired coupled dynamics, but many of them tries
to find the geometry of the spacecraft that makes periodic a certain set of initial
conditions. In this research a different method has been developed: starting
from a given mass distribution of the body and, therefore, fixing its inertia
parameters, the initial guess is generated with two distinct global optimisation
techniques, which are applied one after the other. In this way, it is possible
to find a certain periodic orbit-attitude solution for a given mass distribution,
instead of studying which is the body that can have a periodic motion on given
orbit-attitude dynamics. Moreover, this method is faster and less demanding
in computational resources than a standard search of periodic behaviours in
a Poincarè map, requiring typically less than 1 min on a standard personal
computer. The mass distribution of the body can be mathematically defined
from the moments of inertia of the spacecraft or a combination of them. In this
research, the ratio between the maximum moment of inertia and the minimum
one is used.

The developed method begins with the definition of the inertia properties of the
body, then the family and the period of the non-Keplerian orbit is introduced to
identify the initial conditions for periodic orbital dynamics. At this point, the
algorithm asks for the angular rate and the initial orientation of the attitude
dynamics; these values do not have to generate a periodic motion, but they
bind the inspection in a certain region of the attitude subspace. This step is
fundamental to drive the algorithm in the desired direction and a bit of knowledge
of the considered dynamical environment is necessary in order to have a fast
convergence of the method. Next, the search for the initial guess is started, first
with a genetic algorithm that optimises the orbit-attitude initial conditions, then
a pattern search algorithm refines the output of the genetic optimisation. The
goal of the two optimisation techniques is to reduce the sum of the difference in
all the orbit-attitude states, x, at the starting point and after one period: the
periodicity error. The search for the initial guess is stopped when the periodicity
error is below a given tolerance, which is low enough to allow the convergence of
the multiple shooting Newton-Raphson solver.

The variables of the genetic algorithm are the 6 initial attitude states, while
the initial orbital states are fixed and related to a given periodic orbit. The
population is composed by 150 individuals, and it is initially generated with
uniform distribution around a given initial guess. This user defined starting
point, together with the bounds for the variables, confines the search space within
the attitude subspace. Between two consecutive generations 5 best individuals
are maintained and the crossover fraction of the remaining individuals is 70%.
The maximum number of allowed generations is 175 and the stopping criteria
are met when the periodicity error goes below 5× 10−2 nd. Then, a pattern
search algorithm is started from the best solution found by the genetic algorithm,
which has only to be refined. In fact, the tolerances for the search are very tight
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and the feasible poll points remains in the vicinity of the output of the previous
optimisation step. This further optimisation step usually reduces the periodicity
error between 1× 10−2 nd and 1× 10−3 nd, allowing a very fast convergence of
the multiple shooting algorithm. On a 2.5 GHz quad core processor that runs
the optimisation algorithms in parallel, the initial guess is usually found in about
20 s, if good starting point and bounds are provided. The search needs few
minutes in the worst conditions, which are caused by highly sensitive orbital
families (e.g. NRHO) and random starting point without bounds. Then, on the
same processor, the multiple shooting algorithm usually runs in about 10 s to
reduce the periodicity error down to 1× 10−10 nd.

The developed method is based on global optimisation techniques to search for
an initial guess with heuristic strategies. The focus has not been directed on
a particular optimisation technique and the genetic algorithm has just proven
to work well. No comparison with other heuristic optimisation techniques has
been carried out. In the same way, the refinement step accomplished by the
pattern search method has just resulted in a faster convergence of the Newton-
Raphson correction scheme. Further investigations might be of interest to
compare different optimisation methods in order to find the best ones in terms
of computational speed and quality of the initial guess.

In figure 3.1 an initial guess is confronted with the relative periodic orbit-attitude
solution for an example Halo orbit. From the picture, it is possible to understand
that the initial guess solution must be very close to the periodic one, in order to
have a good and fast convergence of the algorithm. Moreover, focusing on the
coupled orbit-attitude periodic dynamics, it is evident that the passage close to
the Moon generates a relevant angular acceleration, which is obviously due to
the intense gravity gradient action exerted by the second primary on the body
mB. The orbit reported in figure 3.1a is a L1 Halo with period of 10.5 d; the
distribution of mass for mB is the one of a disk-like body with ratio between
the maximum moment of inertia (Imax) and the minimum one (Imin) equal to
1.5. The initial conditions for the genetic algorithm are set to find an initial
guess close to a simple spin dynamics around the body axis b̂3, with the body
reference frame and the inertial frame aligned at t = 0. The obtained initial
guess is shown in figures 3.1a, 3.1c and 3.1e, while the periodic solution, output
of the multiple shooting Newton-Raphson correction algorithm, is reported in
figures 3.1b, 3.1d and 3.1f. The quaternions are shown as computed in the
rotating synodic reference and, in order to simplify the notation, the quaternion
SqB has been denoted as qr in the plots. From figure 3.1d, it is possible to
see that in the reported dynamics, the body mB is just librating and performs
no overall rotation in S. The results shown in figure 3.1 have been obtained
in a CR3BP model without the additional perturbing terms in the dynamical
model. In table 3.1 the numerical values of the quaternion shown in figure 3.1d
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Figure 3.1: Initial guess and periodic orbit-attitude dynamics. (EML1 Halo
Orbit: Tt = 10.5 d - Imax/Imin = 1.5).

are reported for t = 0, t = Tt/2 and t = Tt, in order to accurately asses the
periodicity of the solution and the fulfilment of the constraint equation (2.15).

48



3.1. Orbit-Attitude Periodic Motion

Table 3.1: Numerical Values of Periodic Orbit-Attitude Dynamics Quaternions.
(cf. figure 3.1d).

qr

t = 0 [+0.000197,−0.020475,−0.009622,+0.999744]
t = Tt/2 [−0.000797,+0.061167,−0.009594,+0.998081]
t = Tt [+0.000197,−0.020475,−0.009622,+0.999744]

3.1.4 Periodic Solutions

Many other periodic solutions, for any kind of planar and spatial family of
orbits in the n-body environment, were generated exploiting the presented
multiple-shooting algorithm applied to the coupled orbit-attitude model.

Figure 3.2 shows the family of periodic orbit-attitude dynamics in L1 Halo
Orbits generated from the periodic solution in figure 3.1. The pseudo-arclength
continuation develops the Halo family decreasing the distance of the orbits from
the Moon, looking at figure 3.2a from the dark blue lines to the yellow one. The
continuation would have been possible in the other direction changing the sign
of the step size, ds. The reduced distance with respect to the moon is associated
to a shorter orbital period and to a larger gravity gradient acceleration due to
the close perilune passage, as evident in figures 3.2b and 3.2c going from darker
to lighter colours. The quaternion subspace in figure 3.2d is representative of
the attitude motion associated with the family without overall rotation during
the orbital period (i.e. librating attitude motion).

Figure 3.3 shows different periodic orbit-attitude dynamics in L1 Lyapunov
Orbits, which were found to be remarkably sensitive to out-of-plane perturbations.
In fact, the perturbations due to the Sun have been neglected and the orbit-
attitude motion has been constrained on the x-y plane. The investigations
performed for Sun-perturbed Lyapunov orbits, within the employed ephemeris
model, determined that an orbit-attitude control action is necessary in real
applications. However, the presented naturally periodic solutions reports three
dissimilar rotational motions for a disk-like spacecraft, with moment of inertia
ratio equal to 5. They are related to Lyapunov Orbits with period equal to
12.1 d, 14.1 d and 18.88 d. The attitude dynamics analysed in the quaternion
subspace allows to point out and uniquely characterise the various dynamical
families, which have different behaviours according to the orbital period and,
therefore, the energy of the orbit. These results can be explained, as already
highlighted by Guzzetti [26], considering the dynamical bifurcations and the
changes in the stability of the motion along the family. With respect to the
previous studies, the presence of the second order term of the gravity exerted
on a finite dimension body barely modifies the results of the current research
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Figure 3.2: Family of Halo orbit-attitude periodic dynamics. (EML1 Halo
Orbits: Imax/Imin = 1.5).

work, as evident in figure 3.4. In fact, analysing the results for a spacecraft with
different sizes (e.g. from 0m to 100m), the differences in the periodic attitude are
minimal, as expected from the magnitude of the related acceleration discussed
in section 2.3.1.

The previous results identify a strong connection between the size of the orbit
and the associated periodic attitude motion, which is quite typical for this class
of problems. Looking at the differences between the three different attitude
families in figures 3.3b to 3.3d, it is evident that for a certain energy level
of a specific orbital motion there exists a single family of attitude solutions
associated to a set of inertia properties. In fact, in the vicinity of each orbit
shown in figure 3.3a, the allowed periodic rotational solutions share similar
dynamical properties, such as the stability level or the quaternion subspace
shape. Obviously, a minor change in the orbit would result in a small variation in
the rotational motion. However, if the energy gap between two similar orbits is
large enough to move across a bifurcation point, the attitude dynamics could have
the features of distinct dynamical families. This example is representative of the
coupling between orbital and attitude dynamics in non-Keplerian environment,
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Figure 3.3: Family of Lyapunov orbit-attitude periodic dynamics - Quaternion
subspace, components 1 and 2. (EML1 Lyapunov Orbits: Tt1 ' 12 d,

Tt2 ' 14 d and Tt3 ' 19 d - Imax/Imin = 5).
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Figure 3.4: Effect of second order term of the gravity exerted on a finite
dimension body. (cf. EML1 Lyapunov Orbits: Tt = 13.8 d in figure 3.3c).

but further investigation is warranted to understand the weight of this dynamical
pairing.

An additional family of very important and useful planar orbits is the DRO family.
DRO are remarkably stable in the long-term and can be reached at a reasonable
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Figure 3.5: Family of DRO orbit-attitude periodic dynamics. (EM DRO:
Tt ' 15 d - Imax/Imin = 2.5).

cost. For these reasons, they may be exploited for many interesting applications
around the Moon. An example of DRO family is reported in figure 3.5 for a
rod like mass distribution with ratio between maximum and minimum inertia
moments equal to 2.5.

The different elements of the family share the same orbit, which has a period of
14 d, but they differ for the number of overall rotations of mB in the synodic
frame. In fact, the attitude dynamics in figure 3.6b shows 2 overall clockwise
rotations in S, while figure 3.6c and figure 3.6d perform just one rotation per
orbital period, respectively clockwise and counterclockwise. A particular scenario
is represented by figure 3.6a, where the body is not spinning in S, but it is
just librating about the equilibrium condition. Numerous periodic solutions of
a single dynamical family with diverse spinning conditions open to a wide set
of operational opportunities. In fact, the distinct attitude alternatives allow
to exploit a single orbit, which may be constrained from several requirements
coming from the mission design, for various operational phases. For example,
the librating solution could facilitate the telecommunication subsystem, while
the fast spinning one can be exploited to reduce the attitude station-keeping
effort, since a spinning platform behaves better, with respect to the librating
configuration, in terms of perturbations counteracting.

3.2 Optimal Staging Location for a Cislunar Space Station: NRHO

As already discussed in chapter 1, LPOs seem the most promising staging
locations for a cislunar space station [2]. In particular, EML NRHOs have the
most interesting properties for such an application, thanks to their continuous
line of sight coverage for communications and the good Earth accessibility with
existing transportation systems. Moreover, they guarantee significant ease of
access from the Moon surface. The NRHO family derives as a section of the
Halo family [16]; as the orbits get closer to the Moon, their shape tends to
elongate, hence the name of the sub-family. They are classified in North and
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Figure 3.6: Family of DRO orbit-attitude periodic dynamics, different spinning
velocities - Quaternions with respect to time. (EM DRO: Tt = 14 d -

Imax/Imin = 2.5).

South NRHOs, according to the position of the apolune with respect to the Moon
surface. Note that, being the orbits non-Keplerian, the definition of apolune
does not correspond to the classic Keplerian one. International literature vastly
adopts, nevertheless, such term, to define the point farthest from the Moon.
This nomenclature is selected for this dissertation as well; conversely, the already
mentioned perilune denotes the point closest to the Moon at every revolution.

NRHOs belongs to the collinear Lagrangian points L1 or L2. L1 NRHOs are
obtained through continuation of the L1 Halo family, approaching the Moon,

Table 3.2: NRHO Families Characterization.

L1 Family L2 Family

Orbit Period [d] 7.8− 8.5 6− 7.5
Perilune Altitude [km] 10− 2500 10− 3000
Apolune Altitude [km] 84000− 95000 66000− 75000
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Figure 3.7: Family of NRHO orbit-attitude periodic dynamics. (EML1 NRHO:
Imax/Imin = 1.5).

while L2 NRHOs are obviously obtained from L2 Halo orbits. A peculiar
behaviour is observed on the orbital period trend: as the L1 family approaches
the Moon, from the Lagrangian point, the period decreases, reaches a value of
about 7.8 d, and then increases again. This is not observed in the L2 family, whose
period decreases roughly linearly getting closer to the Moon. This aspect offers
some advantages in trajectory definition and operational scheduling, providing
a rough correlation between orbit period, amplitude, and energy. Table 3.2
summarises the most important features of the NRHO family.

An example family of periodic orbit-attitude solutions is shown in figure 3.7
for a NRHO. In this case, the period of the orbit is around 8.5 d and the mass
distribution is the same that has been used to generate the Halos of figures 3.1
and 3.2. This case is particularly representative for all the NRHO, since it
shows the huge angular acceleration that exists during the passage very close to
the Moon. Here, the gravity gradient influence of the second primary, already
noted for the Halo periodic solution, is extremely emphasised and determines
this typical behaviour for NRHOs, which may pose problems for the structural
integrity of a spacecraft orbiting in this class of orbits. A real extended space
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structure may experience difficulties in bearing the abrupt angular velocity
variation shown in figure 3.7c. Moreover, the attitude stability for this kind of
periodic orbit-attitude dynamics is poor and particular counter-measurements
must be applied, as will be discussed in section 3.5.

From figure 3.7, it is evident the strong relations between NRHO and normal
Halo orbits: they belong to the same dynamical family, even if the dynamics
on the NRHOs is peculiar because of the extremely low perilune passage. As
already noted, the orbit-attitude motion experiences a very fast dynamics at the
NRHO’s perilune, with a large acceleration and successive deceleration. Such
passage may be interpreted as a quasi-gravity assist with the Moon. From the
inertial point of view, this perilune passage exploits the gravity of the Moon to
produce the correct curvature, in order to continuously follow the primary body
in the inertial space. Hence, NRHOs have a large difference in velocities and
accelerations between perilune and apolune.

Any orbit-attitude family is dependent by the inertia properties of the considered
spacecraft; the periodic solutions are extremely sensitive to the changes in the
inertia moments, and the attitude dynamics stability is also dependent on the
shape of the orbiting body. For example, a rod-like spacecraft is more sensitive
to perturbations and initial errors with respect to a disk-like one, and this is
particularly true on NRHOs. In general, a given set of orbit-attitude initial
conditions is valid only for a particular inertia tensor, which can be parametrised
by certain relations between the values of the inertia moments. In this research
work, the ratio between the maximum moment of inertia and the minimum one
is often used. However, an additional inertia parameter can be defined as:

K3 =
I2 − I1

I3
, (3.16)

which defines the shape of the body with respect to b̂3. A value of K3 close to
zero indicates a body that is axis-symmetric about b̂3, while other values stand
for a preferential elongation along b̂1 or b̂2.

The correlation between attitude initial conditions and inertia properties of the
spacecraft are dependent from the orbit-attitude families, and they are helpful
to understand the particular dynamical environment and to have parametrised
information about possible operative applications. For instance, the attitude
initial conditions for different K3 ratios are mapped as a function of the orbital
period for L2 South NRHOs, in figure 3.8. Note that, the associated initial
conditions for North NRHOs can be obtained changing the sign to the initial
values of z and ω1: zSouth(t0) = −zNorth(t0) and ω1South(t0) = −ω1North(t0).
From this and other similar maps, the periodic orbit-attitude dynamics related
to a certain spacecraft is available. This knowledge can be exploited to link
different natural periodic motions for changing inertia properties of the orbiting
body. In the case of the cislunar space station, the inertia ratios are expected to
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Figure 3.8: Map of attitude initial Conditions, ω1 and ω3, as a function of the
orbital period, Tt, and the inertia ratio, K3 on EML2 South NRHO Families.

change during the on-orbit assembly. Assuming to maintain a fixed orbit (i.e.
fixed orbital period Tt), the angular velocities of the station have to be modified
as indicated in figures 3.8a and 3.8b to maintain the periodic motion with a
different K3 value.

In this thesis, the NRHOs will be extensively exploited as application scenario
for analyses about the cislunar space station. However, from the absolute orbit-
attitude dynamics discussed in this chapter, a first outcome about this family of
non-Keplerian orbits is available. In fact, perilune passage in NRHOs poses many
difficulties from the dynamical point of view, because of the fast orbit-attitude
dynamics, the badly conditioned numerical problem and the weak stability for
attitude and relative motion. These last two issues will be deeply investigated in
the followings of this dissertation. Furthermore, the risk of structural instability
in the extended space structures is not negligible. Therefore, NRHO’s perilune
is not convenient for proximity operations, such as rendezvous and docking
manoeuvres, and NRHO’s apolune is the safe region where complex operations
shall take place.

3.3 Comparison of Selected Modelling Approaches

Dynamics in cislunar space can be analysed using different modelling formulations,
which can be compared to understand the level of accuracy of the used models.
Circular approximations, like CR3BP or BC4BP, can be compared to more
refined models, like the elliptic three-body problem or the full ephemeris one.
This analysis is needed to understand the range of validity for the given modelling
approaches while studying the absolute orbit-attitude dynamics in lunar vicinity.
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For sure, the analytical insight that is possible thanks to the CR3BP is a
valuable tool for preliminary analyses of the dynamical environment and for
initial assessment of the operational trajectories. However, the GNC functions
and the refined design of the operations shall consider the real environment to
get to the required accuracy while carrying out proximity operations.

In particular, NRHO dynamics is strongly dependent on the cislunar four-body
environment, influenced by the gravitational attraction of the Earth, the Moon
and the Sun, and the non-inertial terms due to the motion of the Earth and
the Moon around their common barycentre and around the Sun. Moreover, the
very peculiar regime of NRHOs, requires that the true non-circular motion of
the Earth and the Moon is taken into account, since their relative eccentricity is
not negligible in dictating the force field that maintains the periodicity of the
non-Keplerian orbit. Furthermore, the gravity of the Sun plays a non- negligible
role as well; in fact, the periodic oscillations of the NRHO due to the Sun’s
gravitational pull are missed out in a CR3BP model. These oscillations are in
the order of ∼ 5− 10 deg in inertial frame, corresponding to an absolute error of
∼ 6000km at the apolune.

Elliptic model is based on the three-body environment and the assumed Keplerian
elliptic motion of the primaries is not theoretically compatible with the presence
of additional celestial bodies. Therefore, it is meaningless to extend the elliptic
problem to 4-body or n-body models, and this limitation lead to inaccuracies
in describing the motion on NRHOs. Moreover, ER3BP assumes the two
main bodies to have a constant eccentricity; in reality, the orbit of the Moon
itself is subject to perturbations, and its eccentricity varies between 0.04 and
0.09. Using a constant eccentricity model results in an absolute error of about
∼ 11000km. In addition, ER3BP equations are analytically more complex than
the Full Ephemeris ones. In fact, the latter are set in an inertial reference frame
without the need to have a time varying variable transformation (i.e. rotating-
pulsating frame of ER3BP). The dynamics equations are straightforward: only
the Newtonian gravitational terms have to be computed having the positions of
the n celestial bodies. Table 3.3 summarises the results with different modelling
approaches, highlighting the gradual increase in fidelity, but underlining the

Table 3.3: Absolute Dynamics Error in the Coordinate of the NRHO Apolune
with respect to FER4BP.

Model Absolute error [km] Relative error [%]

CR3BP 30000 40
ER3BP 11000 15
FER3BP 6000 8
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Figure 3.9: Comparison of selected modelling approaches on EML2 South
NRHO, Tt = 7d.

importance of the full ephemeris four-body model in order to grasp the peculiar
NRHO dynamics. In figure 3.9 an EML2 South NRHO with period Tt = 7d is
shown when computed with 3 different modelling approaches. In this dissertation,
ER3BP is typically not used, CR3BP is exploited for all the analytical discussions
and FER4BP is used in GNC problems and operative applications.

The comparisons between different modelling approaches are possible also with
other orbital families. In figure 3.10 a single DRO, with period Tt ' 24d, is
simulated in CR3BP and in FER4BP. The the remarkable stability of this
particular periodic orbit-attitude motion is evident: the dynamics is simulated
for almost 5 periods, and also the attitude motion remains bounded despite the
non-perfect resonance with the Sun. This would have not been possible with
other dynamical families, which suffer of a low attitude dynamics stability and
require an exact periodicity of the complete 6DOF motion with respect to the
environment. For practical applications, it is not always possible to exploit a
complete periodic orbit-attitude state. In fact, it might be necessary to orbit a
FER4BP NRHO, without the constraints imposed by the attitude periodicity
with the Moon’s gravity gradient and with the Sun effects. For this reason,
there is a well-founded necessity to implement attitude control strategies and to
look for stable attitude motions over periodic orbits in perturbed non-Keplerian
environments.

3.4 Attitude Control Strategies

Naturally periodic orbit-attitude motions in cislunar environment do exist and,
in some case, they are also remarkably stable (i.e. DRO in figure 3.10). However,
again, an attitude control strategy can be desired to be actuated on-board of an
extended space structure in lunar vicinity for a series of reasons. For instance,
there might be the need to increase the stability of a certain configurations, or
to manoeuvre the spacecraft or even to bring the system in unstable conditions
with the purpose to excite some natural dynamics able to drive large slewing
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Figure 3.10: Comparison of selected modelling approaches on DRO, Tt ' 24d.

manoeuvres. The constraint that should be enforced while designing the attitude
control system imposes a strong limitation in active consumption of resources
while controlling the dynamics. In fact, the cislunar space station will be operative
for a long time, with limited supplies and conservative power budget, relatively
to its dimensions and its tasks to be accomplished. For these reasons, this section
focus its attention on single-spin or dual-spin attitude control techniques, which
are more precisely referred to as attitude stabilisation techniques. Indeed, the
stabilisation action with spinning spacecraft or with constant speed momentum
wheels is remarkably efficient in terms of energy consumption.

Spin stabilisation techniques are based on the gyroscopic effect of the angular
momentum stored within the body mB. In single-spin stabilisation method,
the whole spacecraft is spinning and the rotating mass of the spacecraft acts as
attitude stabilising system. While, dual-spin stabilisation methods are based
on momentum wheels that are able to store an important amount of angular
momentum, needed to stabilise the system. Nevertheless, they can have a
different rotation speed with respect to the main body and, thus, there is one
additional degree of freedom that can be exploited while designing the mission
operations. Furthermore, momentum wheels can be easily controlled in spinning
rate or direction, and this feature opens to the possibility of attitude manoeuvres
and enhanced control capabilities.

The additional stored angular momentum, which is eventually due to the presence
of momentum wheels, affects the dynamic of the system as if the internal angular
momentum were:

h = IBωBB + hW , (3.17)

where the inertia tensor of the spacecraft, IB, takes into account the moments
of inertia of the momentum wheels, and hW is the angular momentum of the
momentum wheels expressed relative to the body reference frame. Assuming the
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presence of three different momentum storage devices, aligned with the principal
axes of the body mB, the angular momentum of the wheels is:

hW = [I1Wω1W , I2Wω2W , I3Wω3W ]T, (3.18)

where I1W , I2W , I3W are the moments of inertia of the rotors respectively aligned
with b̂1, b̂2 and b̂3; ω1W , ω2W and ω3W are the relative angular velocities of
three momentum wheels with respect to the body frame.

Therefore, equation (2.17) has to be modified with the additional terms due
to the presence of the rotating momentum wheels that can be evaluated as
described in classic literature about rigid body dynamics:

ηW = ωBB × hW =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 I1Wω1W

I2Wω2W

I3Wω3W .

 (3.19)

The three components, η1W , η2W and η3W of the vector ηW are then respectively
divided by the moments of inertia of the body mB . The resulting terms η1W /I1,
η2W /I2 and η3W /I3 are successively subtracted from the right-hand side of
equation (2.17). In this section, the momentum wheels are assumed to be
operated with constant spinning rate and axis and, thus, no additional term,
such as derivative of the angular momentum of the rotors ḣW has to be included
in the present model. Moreover, the additional equations of motion for the
momentum wheels in f are trivial, being:

ω̇iW = 0←→ ωiW = const, with i = 1, 2, 3. (3.20)

It must be noted that the differential correction scheme described in section 3.1.1
should be slightly modified. In fact, the Jacobian of the system now contains the
terms due to the presence of the momentum wheels. Hence, the State Transition
Matrix is a bit different from the basic coupled orbit-attitude dynamical model.
On the contrary, the constraint vector is unmodified because the periodicity is
not sought in the dynamics of the momentum wheels.

Single-spin attitude stabilisation can be analysed with this model, just consid-
ering the momentum wheels as non-rotating devices or as zero inertia rotors
(e.g. ωiW = 0 or IiW = 0 with i = 1, 2, 3).

3.4.1 Single-spin Attitude Stabilisation

The single-spin attitude stabilisation is a very simple and effective technique to
increase the stability of the rotational motion. Even though the details about
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Figure 3.11: Reference EML1 NRHO: TNRHO = 2.07 nd = 8.98 d,
AzMax = 0.195 nd = 7.49× 104 km.

attitude stability will be discussed later, the general characteristics of single-spin
periodic dynamics are introduced in this section.

Periodic orbit-attitude motion in cislunar environment has to satisfy periodicity
constraints in both orbital and attitude variables and, moreover, the attitude
evolution should be compatible and periodic with the gravity gradient torques
due to the presence of the primaries and with all the perturbing forces. In
fact, the effects of the gravitational attraction on the rotational motion strongly
characterises the periodic dynamics. This is true in particular for non-Keplerian
orbits with a low perilune altitude with respect to the lunar surface, such as large
amplitude Lyapunov orbits, elongated Halo orbits or NRHOs. The latter are
among the ones with the lowest perilune passage and, therefore, experience the
largest gravity gradient torque that determines a relevant angular acceleration
on the extended body, which is a source of instability for the attitude dynamics.
For this reason, a NRHO around the Earth-Moon L1 point (EML1) is used
as a reference orbit to analyse the features of single-spin attitude stabilisation.
Details about the reference NRHO are reported in figure 3.11.

Several attitude periodic motions are possible on the same orbit, but only few
examples are shown here to highlight the general features of the stabilised orbit-
attitude periodic motions. The reference dynamics is the one that is not spin
stabilised, being just librating around the equilibrium position. As can be seen
in figure 3.12, the body mB performs zero overall rotations in synodic frame
(figure 3.12b) and the librational motion is due to the gravity gradient torque of
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Figure 3.12: Periodic librating (0-spin) attitude dynamics on the reference
EML1 NRHO (figure 3.11): K3 = 0.2.

the primaries. The presented solution has been obtained for a body with inertia
parameter K3 = 0.2. In figure 3.12a, the noticeable angular acceleration at the
perilune passage is evident in the middle of the simulation. In that point, the
spacecraft must be correctly oriented in order to remain stable on the naturally
periodic motion, otherwise the large gravity gradient torque, different from the
nominal one, generates the unstable dynamics. Moreover, since the spacecraft
has not stored angular momentum, a fast departure from the reference condition
is likely to happen. The angular velocity reported in the figures is evaluated with
respect to the inertial reference frame, and the component along ẑ has an offset
of 1 in non-dimensional units because of the rotational motion of the synodic
frame with respect to the inertial one. Thus, a velocity component ωIz = 1 nd
in inertial frame is equivalent to ωSz = 0 nd in synodic frame.

The single-spin dynamics on the reference EML1 NRHO are shown in figure 3.13.
These all have similar features because of the attitude that is initialised as in the
reference librating solution and the inertia parameter of the body is K3 = 0.2.
The only difference is the spinning rate around b̂3 that, in the first case in
figure 3.13a, allows one overall rotation along one orbit, while in the other two
simulations in figures 3.13c and 3.13e determines, respectively, two and three
overall rotations in one orbital period. The angular accelerations due to the
gravity gradient of the Moon is evident also in these situations, but the effect is
weaker if compared to the global magnitude of the angular velocity. Furthermore,
the increasing stored angular momentum makes the spinning body less influenced
by external perturbations and the resulting attitude dynamics more stable and
stiff. The increase in attitude stability will be formally discussed in section 3.5
but, from a general overview of the attitude evolution for increasing spinning
rates, presented in figure 3.13, it is evident how the attitude dynamics is less
affected by the gravity gradient torque at perilune. On the other hand, such a
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Figure 3.13: Periodic single-spin attitude dynamics on the reference EML1
NRHO (figure 3.11): K3 = 0.2.
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spinning condition, may be problematic in terms of operations and other mission
constraints. For example, telecommunications or docking activities may be more
complex in the case the cislunar station is rotating with large angular rate.

Single-spinning attitude stabilisation solutions are available also for other orbital
families. For instance, single-spin attitude solutions on DROs are shown in
figure 3.6 but, the large stability of DROs also in the librating solution, together
with the very small gravity gradient torque generated by the primaries, makes
them not so interesting in terms of attitude control. Nevertheless, if enhanced
stability properties or different operational requirements are sought along DROs,
single-spin stabilisation is possible and periodic spinning solutions are easily
available.

3.4.2 Dual-spin Attitude Stabilisation

The operational constraints imposed by the single-spinning attitude stabilisation
methods can be easily overcome with a separate angular momentum storage
device, which can be spun at a different angular rates with respect to the main
body. Thus, there is one additional degree of freedom that can be exploited
to stabilise the attitude dynamics without inserting additional operational con-
straints. In this section, the spinning momentum wheels mounted on the body
mB are used at a constant spinning rate. The increased angular momentum of
the whole space system is the foundation for the dual-spin attitude stabilisation
technique.

The periodic solutions shown in figure 3.14 refer to three distinct angular rates
of the spinning momentum wheel, leading to as many dual-spin attitude periodic
dynamics. They have been initialised on the reference EML1 NRHO, starting
from the librating attitude solution in figure 3.12 and considering a body with
inertia parameter K3 = 0.2. Hence, they all share comparable characteristics
in order to correlate the two attitude stabilisation methods. In the analysed
dual-spin solutions there is only one spinning momentum wheel, which is the
one along the principal inertia axis b̂3. In this way, there is a direct connection
between the single-spin and the dual-spin with spinning direction along the
same body axis. Furthermore, an increased angular momentum along b̂3 is the
one that is needed to make possible and stabilise the attitude dynamics for the
given orbit and initial orientation. The momentum wheel has moment of inertia
I3W = I3

100 .

The three proposed periodic solutions differ for the spinning rate of the mo-
mentum wheel. In the first case, figure 3.14a, the wheel is slowly spinning
with ω3W = 500 nd and the stabilisation effect is not so evident, except for the
additional rotational motion around b̂2 due to the gyroscopic coupling. The
dual-spin behaviour starts to be more evident with an higher angular velocity
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Figure 3.14: Periodic dual-spin attitude dynamics on the reference EML1
NRHO (figure 3.11): K3 = 0.2.
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of the momentum wheel in figure 3.14c. In this case, the increased angular
momentum makes the system more stiff and the gyroscopic coupling frequency is
high, with fast oscillations around the rotation axis of the body. The effect due
to the large gravity gradient of the Moon is mitigated and the attitude is stable
in its pulsating evolution. However, a great improvement in attitude stabilisation
is obtained further increasing the spinning rate of the momentum wheel. In
figure 3.14e the momentum wheel is spinning at a fast rate, ω3W = 50 000 nd,
and the attitude dynamics is greatly stabilised with limited angular acceleration
at the perilune. With dual-spin attitude stabilisation is therefore possible to
stabilise the attitude, limiting the effect of the gravity gradient torque, with
the body that is no more rotating in the Synodic reference frame. In fact,
comparing figure 3.14f and figure 3.13f, a spinning momentum wheel allows to
greatly increase the performance of the attitude dynamics, while maintaining
the cislunar station just librating around an equilibrium condition. Thus, no
additional mission constraints are imposed and the space system can be operated
more easily with respect to the case in which the whole spacecraft is rotating
with large angular rate. Moreover, the proposed stabilisation can be practically
implemented since the ω3W = 50 000 nd corresponds in dimensional units to
ω3W = 0.133 rad/s = 1.27 RPM.

3.5 Attitude Stability

At this point, the necessity to introduce a precise definition of attitude stability
is needed. In fact, assuming the body on its operational orbit with imposed
attitude dynamics in order to achieve a coupled periodic motion, it is interest-
ing to quantify the dynamical properties of the orbit-attitude motion. Many
consideration are possible on the coupled stability, as well as the mutations of
the dynamical behaviour along a family of orbit-attitude periodic solution (e.g.
bifurcations in the dynamical structure of the family of periodic solutions).

The considerations presented in this section are based on some outcomes of the
Floquet theory, similarly to what has been already done by other authors in
previous orbit-attitude and restricted three-body problem literature [26, 29] .
In particular, the first consideration is based on the fact that solutions in the
vicinity of a periodic reference are linearly approximated by the modes of the
monodromy matrix (i.e. the state transition matrix over one period). These
linear modes allow to investigate the linear stability properties along the periodic
solution.

For a periodic orbit in the orbit-attitude system f , the monodromy matrix M
of a periodic orbit-attitude LPO is defined as the State Transition Matrix after
a full period Tt.

M = Φ(Tt + t0, t0). (3.21)
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Figure 3.15: Stability index for single-spin attitude stabilisation solutions. (cf.
figure 3.13).

In order to focus the analysis on the attitude stability, only the attitude part
of the monodromy matrix, MAttitude, is taken into account (i.e. the submatrix
where only attitude variables are involved):

MAttitude =

[
Mqq Mqω

Mωq Mωω

]
. (3.22)

It should be noted that the monodromy matrix shall be transformed into the
synodic rotating frame, even though the state variables are expressed with respect
to the inertial frame I. In fact, The periodicity of the attitude states is seen in
the quaternion of the body respect to the rotating frame, and the monodromy
matrix has to be written in S in order to catch the actual eigenstructure around
the orbit-attitude LPO seen from a rotating observer.

Linear attitude modes are therefore associated to the eigenstructure of MS
Attitude,

which is composed by 6 eigenvalues λAttitudei . Those with magnitude less than one
are related to linear stable modes, while those with magnitude greater than one
correspond to linear unstable modes. Attitude eigenvalues with ‖λAttitudei‖ = 1
are paired to marginally stable modes. As a consequence, if ‖λAttitudei‖ ≤ 1 for
any i, the periodic attitude solution is stable (or marginally stable) in the linear
approximation. On the contrary, if at least one ‖λAttitudei‖ > 1, the periodic
solution is unstable.

Furthermore, according to what has been already introduced by Guzzetti [27], a
stability index, σ, can be defined in order to simplify the stability analyses. In
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particular, this quantity is defined as:

σ =
1

2

(
λAttitudeMax

+
1

λAttitudeMax

)
, (3.23)

where λAttitudeMax
= max ‖λAttitudei‖ is the magnitude of the dominant eigen-

value. According to this definition, σ = 1 is associated to marginally stable
attitude dynamics, while σ > 1 represent unstable attitude solution and a larger
stability index can be related to a faster departure from the periodic motion.
Stable dynamics are associated to λAttitudeMax

< 1.

Analysing for example the stability index for different single-spin attitude so-
lutions, reported in figure 3.15, it is evident the stability improvement due to
the spinning stabilisation methods. Indeed, the stability index, which is equal
to 6.81 for the librating solution, approaches the value 1 for all the spinning
dynamics. Small deviations towards instability are possible, looking for example
at the 3−spin periodic motion, but σ is always very close to 1, meaning that the
spinning solution departs from the periodic motion slowly.

The same analysis is possible for dual-spin attitude stabilisation. In fact, similarly
to the figure for single-spin dynamics, the attitude stability increases for an
increasing stored angular momentum due to the presence of a faster wheel.
However, the progressive evolution of σ along a family of periodic solutions with
different angular rates of the momentum wheel is more interesting for dual-spin
dynamics.

For instance, figure 3.16 reports the stability index and the magnitude of attitude
eigenvalues for different dual-spin solutions, ω3W ∈ [−250, 300 nd], on a reference
EML1 Halo orbit, whose details are reported in the caption of figure 3.16. From
figure 3.16a is evident the general increase in stability (i.e. σ decreases) for
increasing angular rate of the wheel. Moreover, the evolution of the magnitude
of λAttitudei , in figure 3.16b, highlights the presence of distinct bifurcation points.
These points are associated with a change in the eigenstructure of the periodic
solution, as evident in figure 3.16b for ω3W ' −175 nd, where a saddle point
appears in place of two eigenvalues on the unit circle that disappears.

This fact opens to the possibility to facilitate the manoeuvres between different
periodic attitude families by varying the amount of stored angular momentum
in the wheel. In practice, when the system is at a bifurcation point, a small
perturbation in the direction of the desired bifurcating family could enable a
variation in the attitude motion. However, it should be noted that the stability
properties of the bifurcating solution may be not satisfactory and, thus, the
system may be naturally inclined towards the most stable dynamics. In this
perspective, the bifurcation points should be just exploited to begin a desired
manoeuvre, which has to be correctly driven in order to acquire a precise
periodic attitude motion. Furthermore, having in mind again that the cislunar
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(b) Magnitude of eigenvalues, ‖λAttitudei‖.

Figure 3.16: Dual-spin stability analysis for attitude family on reference EML1
Halo orbit: THalo = 2.30 nd = 9.98 d, AzMax = 0.18 nd = 6.9× 104 km,

K3 = 0.2 and ω3W ∈ [−250, 300 nd].

space station will be assembled on-orbit, through many docking and undocking
operations with massive modules, the inertia parameters of the system can vary
in time. Hence, bifurcating solutions may be exploited in order to connect two
stable periodic attitude dynamics associated with the different inertia properties
of the modular space station.
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An additional analysis on the considered framework is possible looking at the
stability properties of another dynamical family. Figure 3.17 shows stability
index and the magnitude of attitude eigenvalues for several dual-spin solutions,
ω3W ∈ [−300, 300 nd], on a reference DRO defined in the caption. Distant
retrograde orbits are highly stable planar trajectories around both the collinear
points L1 and L2, associated to smooth and stable periodic attitude solutions.
In general, the whole orbit-attitude dynamics on DROs is remarkably stable, as
ca be also understood looking at the stability index in figure 3.17a, especially in
comparison with the stability analysis for the Halo presented in figure 3.16.

In this case, the unstable solution may be of interest with the purpose to excite
some natural dynamics able to drive large attitude manoeuvres or fast slewing
operations. In fact, when an unstable mode exists it can be excited in order
to move the system along a natural trajectory that evolves towards a desired
final condition. Dual-spin stabilisation is effective also in this situation, where
the space system is orbiting along a DRO with librating rotational motion in
synodic reference frame. The angular velocity of the body mB associated with
this particular attitude dynamics is, in inertial frame, ω3 = 1 nd. Hence, a
counter-spinning wheel able to cancel the stored angular momentum of the
system can decrease the stability level of the whole system. In figure 3.17a, the
largest stability index (i.e. the highest instability) is at ω3W = −237 nd, because
the inertia of the rotors is I3W = IW

237 . For this particular spinning rate of the
momentum wheel, the system has internal angular momentum along b̂3 equal to
zero and, therefore, null gyroscopic stiffness. The resulting motion is not stable
and the presence of unstable modes can be exploited for the aforementioned
operative applications. The existing instability for slow spinning momentum
wheel, ω3W ∈ (0, 110 nd] is due to the cross-coupling between the stored angular
momentum along b̂3 and the attitude dynamics around b̂1 and b̂2. Indeed,
the slow spinning wheel is not sufficient to spin stabilise the system, but the
cross-coupling makes the dynamics sensitive to perturbations perpendicular to
the xy−plane and, thus, slightly unstable.

3.6 Attitude Control for a Cislunar Space Station

The analyses presented in section 3.5 provides general results that can be
exploited to drive the design of modular and extended space structures in
cislunar environment, such as the cislunar space station. The size of this kind
of space system imposes a strong consideration about the attitude dynamics
and its stability. Many dedicated analyses can be carried out with this purpose,
having in mind that the main driver while designing such a complex mission is
related to a maximum reduction of the maintenance and station-keeping costs.
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(b) Magnitude of eigenvalues, ‖λAttitudei‖.

Figure 3.17: Dual-spin stability analysis for attitude family on reference DRO:
TDRO = 3.37 nd = 14.63 d, K3 = 0.2 and ω3W ∈ [−300, 300 nd].

Moreover, the progressive on-orbit assembly of the modular structure must be
carefully planned in order to minimise risks and costs.

A first analysis is possible looking at a family of orbit-attitude periodic solutions
with dual-spin attitude stabilisation, presented in figure 3.18. In this case a family
of EML2 Halo orbits is generated starting from a periodic solution with orbital
period THalo1 = 3.35 nd, maximum ẑ elongation AzMax1

= 0.083 nd, angular
rate and moment of inertia of the spinning wheel respectively ω3W = 100 nd
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Figure 3.18: Periodic orbit-attitude family on EML2 Halo orbits with dual-spin
attitude stabilisation: THalo1 = 3.35 nd = 14.57 d,

AzMax1
= 0.083 nd = 3.18× 104 km, K3 = 0.2 and ω3W ∈ [−100, 100 nd].

and I3W = I3
100 . The family is continued decreasing the spinning rate ω3W

down to −100 nd. At the beginning of the family, the orbit closest to the
Moon, associated with the darker line in figure 3.18a, and the dual-spin attitude
stabilisation determine the convergence of the periodic solution with a fast
quaternion dynamics influenced by the gravity gradient torque, associated to
the sharp corner and the double inner loop in the quaternion subspace (darkest
line in figure 3.18b). Decreasing the spinning stabilisation, the convergence to a
periodic solution is possible at a greater distance from the moon. The related
attitude dynamics is influenced by a lower gyroscopic stiffness and a weaker
gravity gradient torque, resulting in larger and smoother loop in figure 3.18b.
When the family reaches the point of momentum wheel with ω3W = −100 nd
and, thus, a null gyroscopic stiffness, the converged periodic solution is at the
largest distance from the Moon, where the librating attitude dynamics of the
overall system is less affected by the gravity gradient.

A similar family of orbit-attitude periodic dynamics can be obtained fixing the
angular rate of the momentum wheel at a constant value and continuing the
family along the inertia parameters of the system. Therefore, a certain periodic
attitude motion, for a modular station with changing inertia properties, can be
maintained by varying the attitude stabilisation level. Otherwise, for constant
attitude stabilisation effort and different inertia parameters, the periodic motion
can be achieved on a distinct orbit-attitude periodic solution.

The increased operational capabilities when attitude stabilisation techniques are
exploited on extended and modular cislunar spacecraft are evident in figure 3.19,
where a spacecraft with K3 < 0 is considered. According to classical attitude
stability analyses [29], pitch motion is stable only for positive inertia parameter
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Figure 3.19: Periodic orbit-attitude solutions on EML2 South NRHO with
K3 < 0: TS−NRHO = 1.77 nd = 7.68 d,

AzMax = −0.192 nd = −7.41× 104 km, K3 = −0.2.

K3. In fact, for the currently analysed case with K3 = −0.2 , the resulting
periodic motion in figure 3.19a is extremely unstable with stability index, σ,
equal to 21.5. Thus, an attitude stabilisation method is fundamental in order to
correctly operate the given space system in a EML2 South NRHO with period
TS−NRHO = 1.77 nd and maximum ẑ elongation AzMax = −0.192 nd. The
performance of single-spin and dual-spin attitude stabilisation techniques are
compared in figures 3.19b and 3.19c, with details in the relative captions. Both
solutions are effective in stabilising the spacecraft, determining a stability index
respectively equal to σsingle = 1.02 for single-spin and σdual = 2.16 for dual-spin.
The stabilised attitude evolution is completely transformed and the resulting
dynamics has some analogies with the previously presented solution for a body
with K3 = 0.2. Therefore, for a modular space station that is progressively
assembled, the situation in which a large attitude instability arises can be
managed through a proper selection of the attitude stabilisation parameters.

3.6.1 Artificial Gravity Generator

One of the main goals of the space station in cislunar environment will be
achieved when astronauts from all over the world will have the possibility to
stay for prolonged time in deep space. This accomplishment will be fundamental
to perform complex operations and activities in the vicinity of the Moon and
towards the interplanetary space. However, despite the advances obtained with
the experience of the International Space Station, the possibility to have living
conditions similar to those on Earth is extremely important.

In this section, spin stabilisation methods are applied to generate an artificial
gravity field. In principle, this is possible considering both single-spin and
dual-spin attitude stabilisation methods. Nevertheless, in the second case the
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(a) 1-spin periodic solution. (b) 1/6 g single-spin periodic solution.

Figure 3.20: Artificial gravity generator with single-spin dynamics.

station architecture is more complex because there would be the need of large
rotors capable to host astronauts inside or, in alternative, the station should be
subdivided in a rotating and a non-rotating side. For this reason, the simpler
idea to spin the whole space station is here considered.

Assuming a space station with spinning radius r = 25 m the angular rates to
obtain artificial gravity levels of practical interest for future space missions
are reported in table 3.4. Even to obtain 1/6 g, approximately equal to the
gravitational acceleration on the surface of the Moon, the station has to spin at
2.44 rpm = 0.256rad/s equal to 9.59× 104 in CR3BP normalised units.

Looking at figure 3.20, where an example case is considered, the slow spinning
solution for an extended spacecraft with K3 = 0.4 in a EML2 NRHO with
period T = 7.5 [nd] is compared with a fast single-spin solution able to generate
an artificial gravity level of 1/6 g. The fast spinning rate determines a great
attitude stability. In fact, the noticeable angular acceleration at the perilune
passage, which is evident in the middle of the simulation in figure 3.20a, is
negligible for the gravity generation solution in figure figure 3.20b. Moreover, the
increasing stored angular momentum makes the spinning body less influenced by
external perturbations and the resulting attitude dynamics more stable and stiff.
Obviously, the same conclusion is valid also for larger artificial gravity levels.

Table 3.4: Spinning Rates to Achieve Relevant Artificial Gravity Levels.

Artificial Gravity Level [g] Spinning Rate [rpm]

1 5.98
4/5 5.35
1/3 3.45
1/6 2.44
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Thus, the possibility to create a non-negligible gravitational acceleration inside
the space station is important for the life-support capabilities of the cislunar
mission, but is helpful as well in terms of the dynamical characteristics of the
orbit-attitude motion.

3.7 Natural 6DOF Dynamics

Rendezvous and proximity operations in space involves a spacecraft already in
an operational orbit, which is commonly called target, and a spacecraft that is
approaching to it, chaser. The different phases of a generic rendezvous consist
of a series of orbital manoeuvres and controlled trajectories, which have to
progressively bring the chaser into the vicinity of the target. They will be
defined and addressed with more attention in chapter 5. Anyhow, the absolute
n-body dynamics offers interesting recommendation for the design of rendezvous
trajectories in lunar vicinity. In fact, since the cislunar station will be assembled
by means of many automated rendezvous activities and will rely on a complex
infrastructure of automated transfer vehicles, it is fundamental to find an efficient,
autonomous and reliable method to move several objects back and forth from the
station. The natural dynamics existing in n-body environments are suitable for
this scope: as a matter of fact, stable and unstable manifolds ensure affordable
and robust approaching and departure trajectories from most periodic orbits in
cislunar space, which are favourable locations to keep and operate the proposed
space station.

The attitude constraints imposed by the rendezvous with a large space structure
naturally evolving on periodic orbit-attitude dynamics are an additional aspect to
be managed in the currently considered scenario. In fact, the large space station
will be rotating according to an imposed attitude dynamics that will be selected
to satisfy certain requirements related to long-term stability, telecommunications
and much-more. Coupled orbit-attitude dynamics in cislunar space allows to
investigate orbit-attitude manifolds. They exist in the space of states associated
with orbital and rotational dynamics and can be considered an extension of
the usual invariant manifolds existing in the CR3BP. Natural orbit-attitude
trajectories can be exploited to easily guide and control the chaser that is
approaching or departing from the operational orbit of the target. The advantage
of exploiting manifolds to design rendezvous operations is related to the fact that
since they are associated to natural dynamics, they require negligible control
action. It should be noted that the manifolds are invariant only in autonomous
systems, like CR3BP. In FERnBP, or other non-autonomous systems, manifolds
are no more invariant. Nevertheless, they can be computed exploiting the
initial guesses obtained from the approximated autonomous models. Hence, the
method to compute invariant orbit-attitude methods is of general interest for
this research, regardless the selected modelling approach.

75



Chapter 3. Absolute Dynamics

3.7.1 Floquet’s Theory for Periodic Orbits

Orbit-attitude manifolds are obtained similarly to the classical orbital CR3BP
manifolds. According to Floquet’s theory, they are strictly linked to the eigenval-
ues λi of the Monodromy matrix, M, in equation (3.21). Considering the system
of orbit-attitude differential equations, f , the dynamical flow φt(x) = φ(x, t) is
the flow driven by f and passing through a generic point x. A periodic orbit, Γ,
of period Tt, can be defined as:

Γ : x = γ(t) = φt(x0) with 0 ≤ t ≤ Tt, (3.24)

meaning that any point of the orbit can be determined from the initial point
x0 and the time t. The latter is the time needed to reach x, on the periodic
orbit, through the flow φt starting from the point x0. The linearization of the
non-linear system f about Γ is defined by the non-autonomous linear system in
the first-order variational equation (3.1) and by the STM, Φ(t), which represents
the linear mapping of the variational evolution about a reference flow φt.

For a periodic orbit, the Floquet’s Theorem says that, for any time t > t0, any
fundamental solution matrix of the system f can be expressed as:

Φ(t) = Q(t) eBtQ−1(t0), (3.25)

where Q(t) is a non-singular differentiable matrix with period Tt, and B is a
constant matrix. Furthermore, if Φ(t0) = I then also Q(t0) = I. It follows that
after a full period Q(Tt) = I and, as a consequence, the definition of monodromy
matrix is obtained as:

M = Φ(Tt) = eB Tt . (3.26)

Therefore, the eigenvalues λi of the monodromy matrix M are directly related
to the eigenvalues εi of the matrix B:

‖λi‖ = eεiTt . (3.27)

The eigenvalues εi are called characteristic exponents of the periodic orbit Γ,
while the eigenvalues λi are called characteristic multipliers of Γ. Let now apply
the following transformation of coordinate to the variational state vector:

y = Q−1(t)δx, (3.28)

which reduces equation (3.1) to an autonomous linear system with constant
coefficients:

ẏ = By. (3.29)

The knowledge of eigenvalues and eigenvectors of the matrix B allows to diago-
nalise the system (3.29), as well as the fundamental relation (3.25):

Φ(t) = E(t) eDtE−1(t0), (3.30)
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where D is a constant matrix which diagonal components corresponds to the εi
eigenvalues of B. The matrix E(t) is called Floquet’s Modal matrix and is non-
singular, differentiable and with period Tt. The columns ei of the matrix E(t)
represents a six-dimensional, non-orthogonal basis to describe the linear system
in equation (3.1) and are defined as Floquet’s modes. The columns of E(t0)
are constituted from the real and the imaginary part of the eigenvectors of the
monodromy matrix. Equation (3.30) shows that the characteristic exponents εi
describe the rate of departure from the neighbourhood of the orbit Γ, qualitatively
proportional to an exponential function. Therefore, the monodromy matrix is so
important for non-linear system analysis because it gives access to the stability
information of the orbit via its eigenvalues. Moreover, the eigenvectors of the
monodromy matrix allow to decompose the relative motion in the vicinity of the
orbit Γ(t) through the Floquet’s modes.

3.7.2 Orbit-attitude Manifolds

Let consider the periodic orbit Γ in the non-linear system f . If the set of the
characteristic exponents has at least one eigenvalue εi with negative real part,
then there exists a neighbourhood Nδ of the orbit Γ such that

S(Γ) = {γx ∈ Nδ(Γ) | ∆(φt(γx),Γ)→ 0 as t→∞ and φt(γx) ∈ Nδ(Γ) for t ≥ t0}.
(3.31)

The stable manifold S(Γ) of the orbit Γ describe an nS-dimensional space which
is positively invariant under the flow φt, where nS is equal to the number of
stable eigenvalues εi.
If the set of the characteristic exponents has at least one eigenvalue εi with
positive real part, then there exists a neighbourhood Nδ of the orbit Γ such that

U(Γ) = {γx ∈ Nδ(Γ) | ∆(φt(γx),Γ)→ 0 as t→ −∞ and φt(γx) ∈ Nδ(Γ) for t ≤ t0}.
(3.32)

The unstable manifold U(Γ) of the orbit Γ describe a nU -dimensional space
which is negatively invariant under the flow φt, where nU is equal to the number
of unstable eigenvalues εi.

The motion along trajectories on the flows belonging to stable or unstable
manifolds is synchronised with the motion along the corresponding orbit Γ
through a given asymptotic phase at t0. Moreover, the stable and the unstable
manifolds intersect transversally the orbit Γ. The local stable manifold S(Γ) and
the local unstable manifold U(Γ) can be exploited to generate the corresponding
global stable manifold WS(Γ) and the global unstable manifold WU (Γ). The
global stable and unstable manifolds are defined respectively as

WS(Γ) =
⋃
t≤t0

φt(γx) with γx ∈ S(Γ), (3.33)
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WU (Γ) =
⋃
t≥t0

φt(γx) with γx ∈ U(Γ). (3.34)

The local invariant manifolds are directly linked to the subspace of the mon-
odromy matrix M = Φ(Tt). In fact, according to the stable manifold theorem
for periodic orbit [75], the local stable and unstable manifolds WS(Γ) and
WU (Γ) are tangent to the corresponding stable and the unstable subspaces
ES(Γ) and EU (Γ). Therefore, the eigenvectors of the monodromy matrix allows
to numerically approximate the local stable and unstable manifolds. Then, the
global stable and unstable manifolds can be numerically propagated as shown in
equations (3.33) and (3.34). Finally, considering again the periodic orbit Γ in
the system γf of dimension n, with nS characteristic exponents with negative
real part and nU characteristic exponents with positive real part. There will
be nC = n − nS − nU characteristic exponents with zero real part. Then, a
nC-dimensional centre manifold of the periodic orbit WC(Γ) exists.

The eigenvalues and the eigenvectors of the monodromy matrix are related to the
characteristic exponents that measure the rate of departure from the reference
orbit given an initial small perturbation, allowing to numerically approximate
the local stable, unstable and centre invariant manifolds. Hence, the knowledge
of the eigenstructure of the monodromy matrix allows to determine the local
geometry of the state space around the periodic orbit (i.e. the behaviour of
trajectories in the neighbourhood of the periodic orbit). Looking at the case of
coupled orbit-attitude dynamics, the monodromy matrix can be subdivided in 4
sub-monodromy matrices as:

M =

[
MOrb MOrbAtt

MAttOrb MAtt

]
, (3.35)

where each sub-matrix is a 6 × 6 block: MOrb is referred to orbital dynamics
{fx, fv} and orbital state xOrb; MAttOrb to attitude dynamics {fq, fω} and orbital
state xOrb; MAtt to attitude dynamics {fq, fω} and attitude state xAtt. Without
additional perturbations, such as Solar Radiation Pressure or second order
deviations in the main gravitational attraction due to the finite extension of
the spacecraft, there is no cross-coupling between attitude states and orbital
dynamics and, thus, MOrbAtt = 0. Since this effect is small compared to the
other cross-coupling directions, the assumption that led to have the upper right
block of the matrix equal to zero is acceptable in the vast majority of the
applications. It should be noted that the upper and lower diagonal 6× 6 sub-
matrices refer separately to the orbit dynamics and to the attitude dynamics. The
eigenstructure of the sub-matrices of M can be associated with the de-coupled
orbit and attitude manifolds as well.

The algorithm to find and propagate manifolds trajectories works as usual in
classical CR3BP. Several fixed points along the periodic orbit-attitude dynamics
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(a) x-y view. (b) (b) x-z view.

Figure 3.21: Orbit-attitude manifold from Halo orbit: orbital dynamics (blue is
stable - red is unstable).

(a) Stable (b) Unstable

Figure 3.22: Orbit-attitude manifold from Halo orbit: attitude dynamics

are selected and the monodromy matrices associated to any of these points
are computed. When stable and unstable eigenvectors are obtained from the
eigenstructure of each matrix M, the state vectors at the selected fixed points
are slightly perturbed in direction of the stable or unstable eigenvectors. The
perturbed state at each selected fixed point is the initial condition for the
trajectory along stable and unstable manifolds. Then, stable manifold trajectories
are generated using reverse-time integration, while unstable manifold trajectories
are obtained by employing forward-time integration. It must be noted that in
orbit-attitude dynamics the eigenvectors have dimension 12: 6 associated to
the orbit state xOrb and 6 to the attitude state xAtt. The full state vector of
each selected point has to be expressed in synodic reference to perturb along
the stable or unstable directions. The attitude part is then converted in inertial
reference I for integration, since equations (2.16) and (2.17) are developed in
this frame.

79



Chapter 3. Absolute Dynamics

Figure 3.21 shows the orbital dynamics associated with the orbit-attitude man-
ifolds of an Halo orbit. In this case, it has been considered an EML1 Halo
orbit with period T = 2.38 [nd]. The spacecraft is just librating in S (i.e. no
spinning motion in synodic reference). The inertia parameter of the spacecraft
is K3 = 0.2. The orbit-attitude manifolds result in a slightly different set of
trajectories with respect to usual CR3BP Halo manifolds, with slow departing
and approaching trajectories. Stable (blue) and unstable (red) trajectories must
be considered together with the coupled attitude dynamics associated to the
orbit-attitude manifolds. In figures 3.22a and 3.22b the quaternion manifold
trajectories are reported respectively approaching and departing from the pe-
riodic quaternion evolution along the orbit. The single manifold trajectory is
remarkably influenced from the starting point. For example, a closer perilune
passage, during the manifold trajectory, determines a sudden variation of the ro-
tational motion because of the stronger Moon’s gravity gradient torque (e.g. the
unstable attitude trajectories diverging for t ' 4 [nd] in figure 3.22b). Therefore,
a careful planning of approaching and departing orbit-attitude trajectories, while
proximity operations are carried out, is needed to achieve the desired mission
objectives. Eventual spinning attitude stabilisation would allow a precise tuning
and control of the attitude dynamics along natural rendezvous trajectories.

3.8 Natural 6DOF Trajectories for a Cislunar Space Station

Rendezvous trajectories that are possible exploiting manifolds subspace are
interesting because they allow a natural and efficient system of transportation.
Departing and approaching trajectories are easily obtained, but they still have to
be carefully analysed in order to design and optimise the GNC during proximity
operations with a large space structure in cislunar space.

One application example is the possibility to depart from a parking orbit that
guarantees an easy access to the Moon surface, like the L1 North NRHO reported
in figure 3.23. The orbit has a period equal to T = 2.1 [nd] and the spacecraft
is again librating in the synodic frame, S, with dual-spin attitude stabilisation.
The momentum wheel is rotating around the body axis b̂3 with wheel moment of
inertia I3W = I3

100 . The inertia parameter of the spacecraft is K3 = I2−I1
I3

= 0.2.

The departing trajectories begin at the perilune, which in general is not a good
point to start a manoeuvre, because of the large gravity gradient acceleration
due to the Moon that can be an issue for the attitude dynamics of the spacecraft
along its motion. However, it has been here reported to show the influence
of different dual-spinning conditions on the natural dynamics of the system.
In fact, as reported in figure 3.24, for various angular rates of the momentum
wheel the attitude manifold is different, as evident from the related attitude
trajectories here analysed. This means that, for the same orbit manifold, it is
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Figure 3.24: Departing trajectory from NRHO: attitude dynamics.

possible to obtain many coupled attitude manifolds according to the attitude
stabilisation level. Obviously, this is because of the assumption to neglect the
coupling between attitude states and orbital dynamics. Nevertheless, again, the
orbit to attitude coupling direction has proven to be not negligible with respect
to the attitude to orbit cross-coupling.

Looking at the attitude departing trajectories in figure 3.24, the trajectories have
a fast departure from the periodic motion. However, when the final approaching
part of the rendezvous operations is considered, the requirements might change
with respect to the undocking and departure phase. In fact, there might be
interest in having a trajectory that slowly approaches the rendezvous point
and, thus, to the cislunar station. The velocity associated with the manifold
departure or approach to the periodic orbit can be associated to the stability
level of the periodic motion. With this in mind, the dual-spin method can be
effectively used to increase the stability of the attitude dynamics and have a
slow departure or approach to the nominal trajectory. In figure 3.25, the NRHO
described before is used to analyse an approaching phase, with the rendezvous
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Figure 3.25: Attitude dynamics approaching the periodic motion.

assumed to occur at perilune. The momentum wheel is now assumed in a fast
spinning mode and the stability level is higher with respect to the previous
case. Indeed, the stable manifold trajectory now approaches the perilune very
smoothly, allowing a safe and natural proximity phase before docking. It is here
reminded that low perilune in NRHO is not a safe place to carry out rendezvous
and close proximity operations. However, this example is intended to show
the enhanced capabilities that are possible exploiting natural orbit-attitude
rendezvous trajectories together with attitude stabilisation devices.

Completely different analyses are possible considering DRO. Distant retrograde
orbits are characterised by remarkably stable orbit-attitude dynamics. Stable
or unstable manifolds do not exist in these cases. For example, looking at
figure 3.26, perturbations applied to orbit just result in a slightly perturbed
dynamics in the vicinity of the DRO, without any stable or unstable behaviour.
The DRO here considered has a period T = 3.37 [nd] and the simulated dynamics
is without additional stored angular momentum (i.e. spinning wheel is not
rotating). The same considerations are possible also looking at the coupled
attitude dynamics in figure 3.27. In fact, both the stable (t > 3.37 [nd]) and
unstable (t < 0 [nd]) attitude trajectories remain very close to the nominal
periodic motion (0 [nd] < t < 3.37 [nd]). This is true for spacecraft not suffering
the typical pitch instability related to gravity gradient (i.e. K3 > 0 as discussed
in section 3.6). Nevertheless, when a different configuration of the space station is
considered, the pitch instability associated to negative inertia ratio (i.e. K3 < 0)
makes the attitude dynamics unstable and the manifold trajectories, both stable
and unstable, depart from the nominal periodic motion. This condition is of
interest when a natural rendezvous with a DRO is sought in terms of attitude
dynamics. It must be remarked that unstable attitude motions can be obtained
also with a stable inertia configuration (K3 > 0), but in that case the momentum
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Figure 3.27: Attitude dynamics in the vicinity of DRO

wheel has to be counter-spun in order to cancel any gyroscopic stiffness of the
space station, as discussed in section 3.5.
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CHAPTER4
Relative Dynamics

Everything is relative; and only that is
absolute.

— Auguste Comte

Relative dynamics for large space structures in cislunar space is derived
from the absolute orbit-attitude dynamics discussed and applied in chapter 3,
obtaining the relative equations of motion described in section 2.4. The free
relative motion between two spacecraft is here noticeably different from the one
it is experienced in Keplerian orbits, as described for instance in the Clohessy-
Wiltshire equations for circular orbits [76]. An extensive knowledge about coupled
6DOF relative dynamics in non-Keplerian orbits is therefore fundamental to
design GNC functions capable to handle the rendezvous problem in cislunar
space.

In this chapter, the relative orbit-attitude dynamics in cislunar space is investi-
gated with the purpose to highlight natural motions that can be associated with
particular operational capabilities. Then, 6DOF guidance and control functions
are discussed, starting from energy optimal relative trajectories and getting to a
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Figure 4.1: Circular restricted (CR3BP) and ephemeris (FER4BP) models
comparison in relative dynamics modelling on NRHOs. (Results are

normalised with respect to the maximum difference in the relative CR3BP
acceleration).

control parametrisation that is useful to implement functional and operational
requirements in the proximity trajectories.

Moreover, given the interest for practical applications, the present investigation is
started with the assessment of the accuracy level of different modelling approaches
(e.g. CR3BP, ER3BP, FER4BP) in dealing with the relative orbit-attitude non-
Keplerian dynamics.

4.1 Comparison of Selected Modelling Approaches

Circular restricted and other approximated models are valuable for preliminary
analysis of non-Keplerian orbits. Nevertheless, the very peculiar regime of the
Earth-Moon system is strongly dependent from the true motion of Earth and
Moon, since their orbital eccentricity is not negligible in dictating the force field
that maintains the periodicity of non-Keplerian orbits. In particular, for what
concern relative dynamics, even in the short period, the ephemeris four-body
model is the model to correctly represent the peculiar regime of relative motion
in cislunar space.

For example, when a Near Rectilinear Halo Orbit is considered, in figure 4.1,
the error between circular restricted model and ephemeris model is particularly
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Figure 4.2: Elliptic restricted (ER3BP) and ephemeris (FER4BP) models
comparison in relative dynamics modelling on NRHOs. (Results are

normalised with respect to the maximum difference in the relative CR3BP
acceleration, cf. figure 4.1).

relevant whenever the distance of the target from the Moon is above a certain
value: at the apolune of the example orbit, the error in the relative acceleration
is 30% in magnitude and 20◦ in direction. On the contrary, at the perilune of the
orbit there is a little deviation, because the close vicinity to the Moon makes all
the effects not considered in the circular model of minor importance with respect
to the gravitational pull of the Moon, which is well represented in both models.
A NRHO has been chosen to perform this comparison because it spans a wide
range of distances from the Moon, it is non-planar and it is of great interest for
practical applications, as already discussed in this research work and in literature
[2]. Hence, this family of non-Keplerian orbits is in the focus for the analyses
presented in this section, because of their applicative relevance. Moreover, they
allow to highlight several peculiarities of relative dynamics in the Earth-Moon
system, and the outcomes here discussed can be easily extended to the other
families of cislunar orbits.

The same error comparison can be carried out for the Elliptic Restricted Three-
body Problem (ER3BP). In figure 4.2 the error between elliptic restricted and
ephemeris models is reported normalised with respect to the maximum error in
the CR3BP model, shown in figure 4.1. Note that the error with the ER3BP
is, at the apolune, about the 80% of the error obtained with the CR3BP; in
general, the qualitative behavior is the same in the two models, but the scale of
the magnitude is different.
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Figure 4.3: Relative dynamics comparison from apolune or perilune of NRHO:
‖x(t0)‖ = 1 km and T = 2 d.

The relative dynamics in CR3BP or ER3BP approximates with low accuracy the
full ephemerides 4-body model relative dynamics, in particular at the NRHO
apolune (i.e. selected location for the RDV operations). The comparison results
are shown in figure 4.3a starting the relative dynamics simulation at the apolune
and in figure 4.3b starting at the perilune of the NRHO. The relative motion is
initialised at close distance between target and chaser (e.g. ‖x(t0)‖ = 1 km). At
the perilune, the relative dynamics in CR3BP and ER3BP approximates with
sufficient accuracy just the trend of the full ephemerides model, but then the
three motions diverge, and the modelling error is in the order of ∼ 100 m. At
the apolune, the three models are strongly in disagreement from the beginning
and even in the short period the CR3BP and ER3BP relative dynamics are not
valid. Moreover, the differences between CR3BP and ER3BP are more evident
at the apolune, even if the two models are quite in accordance, but with great
error with respect to the full ephemerides 4-body model (e.g ∼ 500 m). In fact,
at the apolune the effects of Earth-Moon eccentricity and of the Sun have a less
negligible influence on the relative dynamics compared to the perilune, where
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the gravity of the Moon gets the lead in dictating the force field. In table 4.1 the
relative dynamics errors with respect to the full ephemeris model are reported
for a simulation time T = 2 d.

This proves that, although the ER3BP introduces an improvement with respect to
the CR3BP, both are nevertheless unsuitable to generally represent the dynamics
in cislunar space, in particular when NRHOs are considered. The weak points
of CR3BP and ER3BP, in terms of environment representations, analysed for
absolute dynamics in section 3.3 and for relative dynamics in the present section,
may be summarised as follows:

� Zero or constant eccentricity of the primaries, which does not correctly
represent the Earth-Moon system, where the relative eccentricity is not
small and has non-negligible variations in time;

� Lack of the Sun gravity, which is proved in literature to have a significant
effect on NRHOs [50, 77].

The addition of the Sun in the ER3BP would overcome this last point with a
preliminary approximation of the Earth-Moon eccentricity, but the great increase
in complexity of the dynamical equations favours a full ephemeris model, with
the gravities of the Earth, the Moon and the Sun.

The approximated models (e.g. CR3BP, ER3BP, BC4BP) do not provide
generally valid approximations of the relative dynamics in the Earth-Moon
system and their validity should be assessed for each particular case that is
analysed. Therefore, they are not considered in the followings of this dissertation.
The model that provides the best results to investigate the relative dynamics in
cislunar space is the ephemeris four-body model with perturbations.

4.1.1 Validity of Linearised Relative Dynamics

The relative dynamics in cislunar space can be linearised about the orbital
motion of the target. In fact, the assumptions behind the linearised translational
equations of motions are very simple and it is easy to check if they are satisfied.
However, those associated with linearised relative attitude dynamics are very

Table 4.1: Relative Dynamics Error with respect to FER4BP. (cf. figure 4.3).

Model Orbital Position Absolute error [m] Relative error [%]

CR3BP Perilune 650 20.6
ER3BP Perilune 640 20.3
CR3BP Apolune 470 45.9
ER3BP Apolune 410 40.1
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linearised with update time 1 d (red). Example orbit EML1 Halo,

‖x‖ ∼ 1 km and t0 at perilune.

strict and it is very difficult to respect them during operational scenarios or, even
during simple simulated settings. They are useful for certain applications like, for
instance, stability studies and linear control analyses. Anyhow, linearised relative
attitude dynamics will not be employed in the following applications discussed
in this dissertation. On the contrary, linearised relative translational dynamics
is valid whenever the relative distance between chaser and target is small when
compared to the distance between target and primaries. This condition is likely
to be satisfied at all times during typical rendezvous operations. In fact, when
the relative distance, ‖x‖, is below 102−103 km, depending on the target orbital
state, the linearised equations (2.38) and (2.40) are valid [50].

Therefore, the linearised dynamics is valid to approximate relative trajectories
during rendezvous phases and it can be used to propagate the relative dynamics,
updating the relative state vector with a certain frequency. In figure 4.4 the
relative dynamics with ‖x‖ ∼ 1 km is simulated for an orbital period, Tt, along
an example L1 Halo orbit, comparing the full non-linear dynamics with the
linearised one; the simulation is started at the perilune of the orbit and the
relative state is updated every day. The ephemeris positions of Earth, Moon and
Sun are used to run the models.

Figure 4.5 shows the error trend in synodic reference frame. The update time of
the linearised model to maintain the error with respect to the full dynamics below
10 cm is of ∼ 3 h at apolune and ∼ 40 s at the perilune of the reference orbit.
The acceptable duration of propagation time depends on GNC requirements. In
the region close to the apolune (i.e. t ∼ 0 h), the divergence is mainly along the

90



4.2. Natural Relative 6DOF Dynamics

0 20 40 60 80 100

-150

-100

-50

0

50

100

150

X

Y

Z

Figure 4.5: Linearisation error trend in synodic reference frame to meet error
requirement below 10 cm. Example orbit EML2 NRHO, ‖x‖ ∼ 102 km and

t0 at apolune.

x-axis, meaning that linearised model mainly fails in representing the curvature
of the NRHO. Close to the perilune (i.e. t ∼ 100 h), the error is mainly in
the direction towards the Moon. The linearisation error is now due mainly to
the gravity modelling inaccuracies. From this example, it is evident that the
propagation error has an evolution trend that is dependent on the point along the
orbit: at the apolune (i.e. rTM ∼ 104 km) the linearised model gives acceptable
results for a longer time with respect to the perilune (i.e. rTM ∼ 103 km). At
the apolune, the assumption to have the relative distance much smaller than
the distance of the target from the primaries is definitely valid, with greater
tolerance with respect to the perilune.

The linearised full ephemerides relative dynamics is thus valid to compute
trajectories in GNC algorithms, assuming to have the relative distance between
the two spacecraft below 100 km and to update the relative state vector with a
certain frequency, according to the operational requirements.

4.2 Natural Relative 6DOF Dynamics

Natural dynamics in cislunar space, under the influence of the non-Keplerian
environment, is of great interest because of the dynamical properties that can
be exploited to execute relative transfers and rendezvous trajectories with an
extremely limited control cost. The study of natural dynamics (i.e. invariant
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Figure 4.6: Natural approaching 6DOF relative dynamics on an EML1 Halo
orbit.

manifolds fo CR3BP) in the three-body environments is very well known from
many literature studies: as a matter of fact, stable and unstable manifolds ensure
affordable and robust approaching and departure trajectories from most periodic
orbits in cislunar space.

In the applications discussed here, the interest is directed towards 6DOF natural
dynamics. According to what has been discussed in section 3.8, the coupled orbit-
attitude dynamics in cislunar-space allows to compute orbit-attitude manifolds.
They are of particular interest in the relative dynamics during a rendezvous
phase. In fact, the natural orbit-attitude trajectories can be exploited to easily
guide the chaser during its approach to the operational orbit of the target.

This research work considers the possibility to connect controlled trajectories
with a final natural drift rendezvous path. In figure 4.6 is shown the 6DOF
relative dynamics on a stable manifold approaching the orbit-attitude state of
the target in vicinity of the apolune region of a EML1 Halo Orbit. Figure 4.6a
shows the classical manifold trajectories approaching to the target orbit. The
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Figure 4.7: Natural approaching 6DOF relative dynamics on an EML1 NRHO.

relative dynamics is of great interest: the relative trajectories in figure 4.6b
have a spiral motion toward the target that naturally bring the chaser at close
distance from the matching point (∼ 1 km). A final controlled 6DOF motion
can complete the proximity operation. This is done for safety reasons (i.e. avoid
natural trajectories up to zero relative distance), and because natural trajectories
in FER4BP are just an approximation of CR3BP invariant manifolds. Hence,
the real natural dynamics is not perfectly matching up to the end with the stable
manifolds trajectory.

During the proximity operations, the natural trajectory can be approached
with an active control, which is driving the chaser up to the matching points
(i.e. black dots in figure 4.6b), at a distance of (∼ 50 km) from the target.
Then, the rendezvous manoeuvre can be completed with a gentle close-loop
control over the natural rendezvous trajectory. This is needed just to correct
eventual navigation errors, perturbations and injection inaccuracies. However,
the most interesting result is reported in figure 4.6d: the attitude dynamics
over an orbital manifold is matched with the one of the target (note that this
is true both for unstable and stable manifolds). In practice, orbit manifolds
have no relative attitude component: the chaser can be controlled to have a zero
relative attitude with respect to the target at the matching point. Then, it will
naturally have an absolute attitude dynamics that is continuously matching the
target attitude motion up to the docking point, when the two spacecraft will be
correctly oriented, naturally. For this reason, as will be discussed in section 4.3.1,
simple final relative attitude boundary conditions (e.g. zero relative attitude
states at tf ) are relevant also for practical applications.

In figure 4.7 the 6DOF relative dynamics approaching to EML1 NRHO is
reported. The trajectories are considered for different target positions, starting
from a relative distance of 200 m, and are tuned to arrive in close proximity of
the target in ∼ 20 d. As expected, the NRHOs show analogies with the classical
Halo orbits, as evident comparing figure 4.7a with figure 4.6b and figure 4.7b
with figure 4.6c. In fact, in both cases the approaching trajectories are spiraling
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Figure 4.8: Natural approaching 6DOF relative dynamics on an EML1
Lyapunov orbit.

toward the target with sharp variations in relative distance at the perilune of the
orbit. Obviously, this fact is extremely emphasised for the NRHO, where also
the spiral motion is more complex, with faster lobes when the two spacecraft
are close to the Moon. Therefore, it is important to remark that, for NRHOs, a
meaningful discussion about proximity operations is possible if the rendezvous
point is far from the perilune of the orbit, being in a region close to the apolune
of the orbit. In fact, at the perilune of a NRHO, the large gravity of the Moon
creates a strong perturbations on the relative dynamics. This effect can be
understood looking at figure 4.6c, where steep variations in the relative distance
are associated to the perilune passage. Also in this case, a natural dynamics
with no relative attitude component exists and the proximity operations can
be designed with zero relative attitude at the beginning of the approaching
trajectory.

A different condition can be discussed considering planar Lyapunov orbits, as
in figure 4.8. Similar discussions to those previously carried out for relative
natural dynamics in Halo orbits and NRHOs are possible also in this case.
However, the peculiarities of this non-Keplerian family are related to the planarity
of the absolute motion, reflected also in the approaching natural dynamics.
Furthermore, the large distance from the primaries guarantees very smooth
trajectories. The zero relative attitude, in figure 4.8c, highlights again a general
outcome for relative natural dynamics in cislunar space: the excitation of orbital
manifolds in 6DOF relative non-Keplerian dynamics guarantees no attitude
component along the approaching or departing natural dynamics.

A last remark about cislunar natural dynamics is possible considering the central
manifold, which is associated with neither approaching nor departing trajectories.
In fact, centre subspace characterises the dynamics hovering about a point in
non-Keplerian environment. With more details, the hovering motion can exist
on the same orbit or on a trajectories remaining always in close vicinity to
the original one. In the first case, shown in figure 4.9 for a EML1 Halo orbit,
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Figure 4.9: Natural periodic trajectories on EML1 Halo orbit.

the chaser position has just an offset in time on the same orbit, resulting in
almost circular relative trajectories. The different sizes of the trajectories in
figure 4.9 are related to the variation of the central manifold components along
the orbit. In the second case, shown in figure 4.10 for the same orbit, the
relative motion is set on a proper central manifolds, resulting in a real hovering
three-dimensional dynamics, whose shape is connected to the absolute dynamics
on the originating orbit. Similarly to stable and unstable dynamics, central
subspace can be designed to have zero relative attitude components by exciting
only the orbit part of the 6DOF manifolds. In particular, the natural motion in
figures 4.9 and 4.10 is associated to null relative attitude dynamics.

The features of stable, unstable and central manifolds can be exploited during the
design of proximity operations to satisfy functional and operational requirements.
These concepts will be extensively addressed and explained in chapter 5.

4.3 Relative Orbit-attitude Guidance and Control Design

Relative orbit-attitude guidance and control (GC) design shall be based on full
non-linear relative dynamics equations (2.36) and (2.37). However, a first insight
about the possibilities to control the relative dynamics between two spacecraft in
non-Keplerian orbits is available exploiting the linearised translational dynamics
together with the full rotational dynamics; they are implemented with the
ephemeris four-body model with perturbations.
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Figure 4.10: Natural central trajectories on EML1 Halo orbit.

4.3.1 Energy optimal 6DOF guidance and control

The requirements for the sustainability of the entire network of systems and
operations to realise the forthcoming space programmes in cislunar space and
beyond impose a certain attention while analysing and designing the elements
that will compose the whole mission scenario. For this reason, this research
work starts investigating the relative GC functions to be operated in cislunar
space under the framework of energy optimal applications. Obviously, other
alternatives are equally valid, like, for example, time optimal or sub-optimal
robust solutions. Analogously, different optimality criterions can be foreseen
during the design of guidance and control functions or, additional operational
and functional requirements can force the design out of the classical optimal
control concepts. Hints about possible operational implementations of rendezvous
functions will be discussed in chapter 5.

Anyhow, an energy optimal control design is here discussed. In fact, the optimal
rendezvous problem can be solved because the absolute dynamics of the chaser
is controlled by a control variable,

u =
[

aCx
aCxmax

,
aCy

aCymax
,

aCz
aCzmax

,
αC1

αC1max
,

αC2
αC2max

,
αC3

αC3max

]T
, (4.1)

which is representative of the 6DOF normalised control accelerations, respec-
tively defined in the inertial frame and in the chaser body-fixed frame. Both are
expressed in cartesian coordinates, as the relative equations of motion in equa-
tions (2.37) and (2.40). For sake of simplicity, it is assumed that aCimax = 1 ms−2
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and αCjmax = 1 rads−2, for i = x, y, z and j = 1, 2, 3. All six controls are
bounded: −1 ≤ u ≤ 1.

The analysis starts solving the optimal rendezvous problem with a constrained
indirect optimisation.

4.3.1.1 Objective Function

The objective function is written according to Lagrange’s problem formulation:

J =

∫ tf

t0

L dt, (4.2)

where t0 and tf are respectively the initial and final time of the rendezvous phase,
while L is the Lagrangian of the problem, whose analytical expression depends
on the particular optimisation problem to be solved. Again, in this work the
minimum energy problem (i.e. minimum quadratic control) is addressed. Hence,
the Lagrangian function is:

L =
1

2
(u · u) , (4.3)

where u is the 6DOF control variable.

4.3.1.2 Boundary Conditions

The boundary conditions of the problem are defined in a way that the overall
optimal rendezvous problem would be as simple as possible. However, these
boundary conditions are effective to have a well posed problem. The target and
chaser initial states and, thus, the relative state at t = t0 are fully assigned:

x(t0) = [x0, y0, z0]T , (4.4)

ẋ(t0) = [vx0 , vy0 , vz0 ]T , (4.5)

δq(t0) = [δq10 , δq20 , δq30 , δq40 ]T , (4.6)

δωBC (t0) =
[
δωBC10

, δωBC20
, δωBC30

]T
. (4.7)

At final time t = tf the rendezvous has to be completed. The relative state is,
accordingly:

x(tf ) = [0, 0, 0]T , (4.8)

ẋ(tf ) = [0, 0, 0]T , (4.9)

δq(tf ) = [0, 0, 0, 1]T , (4.10)

δωBC (tf ) = [0, 0, 0]T . (4.11)
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All the boundary conditions are direct for a total of 26 direct explicit boundary
conditions. In this section, the state variables are always related with the control
variable.

Further investigations about attitude rendezvous boundary conditions are dis-
cussed in chapter 5; in particular, the possibility to have different attitude
boundary conditions is addressed. However, as evident from section 4.2, relative
attitude states equal to zero at final time is of importance also for practical appli-
cations that take into account natural dynamics. Finally, it should be noted that,
in real cases, the position vector of the docking points with respect to the centres
of mass is not zero. In these situations, docking-enabling conditions should be
defined taking into account the coupled orbit-attitude relative dynamics: the
boundary conditions at t = tf are coupled with all the six degrees of freedom.

4.3.1.3 Hamiltonian Function

The general formulation for the Hamiltonian of the system with the state
vector v = [xT ẋT δqT δωBC T]T, the control vector u, the costate vector
λ = [λT

x λ
T
ẋ λ

T
δq λ

T
δωBC

]T and the Lagrangian L, associated with the objective
function in equation (4.2), is:

H(v,u,λ) = L+ λ · [ẋT ẍT δq̇T δω̇BC T]T

= L+ λT
x ẋ + λT

ẋ

(
Ξ(t)x + δaS + δaSRP + aC

)
+ λT

δq

(1

2
Ω(δωBC )δq

)
+ λT

δωBC

(
I−1
C

{
− [δωBC×]ICδωBC − [δωBC×]ICRωBTT

+ IC [δωBC×]RωBTT − [RωBTT ×]ICδωBC + nC

−R
[
(RTICR− IT )I−1

T (nT − [ωBTT ×]ITωBTT )

+ [ωBTT ×](RTICR− IT )ωBTT

]
−R nT

}
+αC

)
.

(4.12)

The part of the Hamiltonian that depends on the controls, u, is:

H∗(u,λ) =
1

2
(u · u) + λT

ẋaC + λT
δωBC

αC , (4.13)

where the physical dimensions are uniformed because of the costate dimensions
definition (i.e. normalised non-dimensional Hamiltonian function, according to
the control variable expression in equation (4.1)).
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4.3.1.4 Optimal Control Problem

Optimal control problem solved through indirect methods, which are based on
the calculus of variation, requires a strong analytical effort to derive all the
necessary quantities for the solution of the problem itself.

The costate dynamics adjoint equations are obtained as:

λ̇ = −
(
∂H

∂v

)
. (4.14)

It can be noted how the costates dynamics is intimately related to the state
dynamics and the results are obviously dependent from the formulation of the
relative dynamics itself. For example, the dynamics of the costates associated
with translational dynamics result to be linear because of the linear dependance
from x and ẋ in the relative dynamics, equation (2.40). Thus, when the Hamil-
tonian is differentiated with respect to these state variables the dependance from
the state itself is lost: the translational costates evolution is just a function of
the translational costates themselves and of the target (i.e. reference) trajectory
in time. This is not the case for the costates related with the rotational motion,
which is formulated through non-linear equations. Here, the attitude states
are directly influencing the rotational costates dynamics that, in general, is
non-linear.

For what concern the control equations for the minimum energy problem (in
equation (4.3)), the 6 controls enters the Hamiltonian quadratically and, therefore,
the optimal control results to be linearly dependent from the costates. In
particular, control equations can be derived from:(

∂H

∂u

)
=

(
∂H∗

∂u

)
= 0. (4.15)

The result of the previous equations states that the control actions have a
magnitude defined by the magnitude of the costates associated with the velocities
and a direction parallel and opposite to it:

u = [−λT
ẋ ,−λT

δωBC
] with ‖u‖ < umax. (4.16)

4.3.1.5 Optimality and Transversality Conditions

The solution of the optimal control problem requires additional constraints with
respect to the boundary conditions on the state at t = t0 and t = tf . In fact,
the number of variables involved is definitely increased.

Optimality conditions, given the complete set of 26 direct boundary conditions
on the initial and finale states, results in trivial conditions. In fact, the terms
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dx(t0) and dx(tf ) are zero, and the costates at initial time, λ(t0), and at final
time, λ(tf ), are free.

Transversality conditions, which are additional necessary conditions for opti-
mality, are dependent only from the Hamiltonian, given again the complete
set of 26 direct boundary conditions on the initial and final states. The initial
Hamiltonian, H(t0), is free because t0 is assigned. On the contrary, the final
time tf is not assigned, because it is unknown: in the considered rendezvous
problem, the time of flight (TOF) is free. Hence, the transversality condition at
the final time states H(tf )dtf = 0, constraining the Hamiltonian evaluated at tf
as:

H(tf ) = 0. (4.17)

4.3.1.6 Numerical implementation

The numerical implementation of the optimal control problem is based on a
Matlab code. A finite difference code based on collocation (three-stage Lobatto
IIIa formula) integrated into Matlab is applied to solve the two-points boundary
value problem (TPBVP) associated with the indirect methods for the optimal
control.

The initial guess for the costates is chosen as a set of zeros in the minimum
energy problem. The differential equations are integrated with a variable-step,
variable-order (VSVO) Adams-Bashforth-Moulton solver.

To solve the optimal control problem with a free final time exploiting this
numerical implementation, the final time must be included as an unknown
parameter. This is accomplished by non-dimensionalising the time variable as:

τ =
t

tf
→ d

dτ
= tf

d

dt
with τ ∈ [0, 1]. (4.18)

4.3.1.7 Example Optimal Control Results

An example result about the optimal control 6DOF rendezvous is shown, to prove
the capabilities of the developed method, in figures 4.11 and 4.12. Initial relative
states are random, while the target is moving with the periodic orbit-attitude
dynamics close the apolune of a EML1 NRHO. The control output is reported
in terms of forces and torques in figures 4.11c and 4.12c. The chaser has a mass
mC ∼ 103 kg and the inertia moments IC ∼ 104 kgm2. The control action, as
expected, is large only at departure point and arrival point: consequently, the
required control energy is minimised. Note that, the control force is linear in
time, while the control torque has an evident non-linear trend. The relative
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Figure 4.11: Optimal control for 6DOF relative dynamics: translational
dynamics. TOF: tf = 2 h. Initial relative states random.

velocities in figures 4.11b and 4.12b are extremely small and to minimise the
control effort the required time is long.

The algorithm provides an optimal solutions of the problem, in terms of quadratic
control effort, but it requires quite few analyses to select a good initial guess
for the costates. In particular, that is necessary when the initial relative states
are complex and the rendezvous trajectories are not straightforward. For simple
rendezvous scenarios, as the one discussed in this section, a vectors of zeros
works decently as initial guess for the costates.

4.3.2 Direct Transcription of the Rendezvous Problem

Indirect methods rely on analytical relations and the conditions for optimality
require the solution of a two-point boundary value problem. It is well known
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Figure 4.12: Optimal control for 6DOF relative dynamics: rotational dynamics.
TOF: tf = 2 h. Initial relative states random.

that indirect methods ensures rapid convergence of good starting guesses, but
most of the difficulties are related to the high sensitivity to the initial costates.
As previously noted, it is difficult and time consuming to select a good initial
guess for the costates. Their lack of physical meaning makes also difficult to
have insights about their behaviour, in order to understand which could be a
possibile good initial guess from previously converged solutions. In particular,
these difficulties arise when a solution in the full non-linear relative dynamics is
sought.

For the applications investigated in this research work, a more robust method
is needed: the optimal rendezvous problem is now solved with direct methods,
parametrising only the control variable and converting the optimal control prob-
lem into a non-linear programming (NLP) problem, with a direct transcription
process. Direct methods requires often a large computation effort but they are
usually robust and can accommodate path constraints.
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The solution of a generic non-linear programming problem is a vector of n
variables, p, that minimises a scalar objective function:

min
p

F (p), (4.19)

subject to m equality or inequality constraints:

bl ≤ c(p) ≤ bu, (4.20)

and bounds:
pl ≤ p ≤ pu. (4.21)

The equality constraints are obtained imposing bl = bu.

With direct methods, the differential dynamic constraints of the indirect optimal
rendezvous problem are converted into a set of algebraic constraints.

4.3.2.1 Control Parametrisation

From the results available, which have been discussed in section 4.3.1, it is
possible to select a parametrisation for the control variable that is as close as
possible from the available solution of the optimal rendezvous problem solved with
indirect methods: linear control for the translational dynamics and polynomial
control for the rotational dynamics.

However, now the 6DOF dynamic is fully non-linear and the solution for a general
rendezvous problem has to be found. For this reason, more flexibility in the
control variable parametrisation is sought, without discretising the rendezvous
path in multiple arches connected by patch points, and without increasing too
much the complexity of the control actions. Different parametrisation possibilities
have been analysed, but the best results have been obtained with polynomials and
Fourier series representations. Fourier series are known to have good convergence
properties and polynomials are simple and effective, especially considering the
optimal control available from indirect optimisation methods.

Practically, polynomials up to the third degree and Fourier series up to the
fourth order are used. The limitations in the degree of the expansions are
imposed to limit the number of involved parameters, thus, the dimension n
of the NLP problem. These possible parametrisation options proved to have
acceptable convergence properties and allowed to find a solution for the general
rendezvous problem. As example, the control parametrisation with a second
degree polynomial for the translational control and a with a fourth order Fourier
series for the rotation control results in:

aC(t) = a0 + a1

(
t

tref

)
+ a2

(
t

tref

)2

, (4.22)
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αC(t) =
α0

2
+

4∑
k=1

[
αk cos

(
kτ

t

tref

)
+βk sin

(
kτ

t

tref

)]
, (4.23)

where ai, αi, βi and τ are 3 × 1 parameters vectors defined, respectively, in
the reference frames I and BC . The physical dimensions of these parameters
are defined according to the physical quantity they are parametrising. These
parameters compose the vector of unknown variables, p =

[
aT
i ,α

T
i ,β

T
i , τ

T, tf
]T,

to be found solving the problem in equation (4.19). The reference time, tref , is
needed to non-dimensionalise the time, t, in the parametrised control functions.
The choice of a reference time equal to the rendezvous TOF has proved to work
well.

The dimension n of the NLP associated to the energy optimal rendezvous problem
depends from the selected parametrisation of the control functions aC(t) and
αC(t). For example, in the case the selected parametrisation is the one shown
in equations (4.22) and (4.23), the vector p has a dimensions of 40: 9 are the
parameters for aC(t), 30 are the parameters for αC(t) and 1 parameter is the
rendezvous TOF: tf . Again, note that the selection of tref = tf allows a smooth
convergence of the control parametrisation.

The constraints in equation (4.20) are obtained from numerical integration of
the controlled rendezvous dynamics. In fact, given a generic vector p̄ the relative
dynamics has a certain evolution; the relative states at the end of the particular
rendezvous simulations have to satisfy the imposed boundary conditions at the
final time in equations (4.8) to (4.11). For example, the boundary conditions on
the relative position is enforced as:

x|p̄(t̄f ) = [0, 0, 0]T , (4.24)

where x|p̄ is the relative position state, output of the relative dynamics, in
equation (2.36), with ac|p̄(t).

The bounds in equation (4.21) are imposed to respect the physical meanings of
the parameters. For example, the bounds on tf are:

0 ≤ tf ≤ tfMax
, (4.25)

where tfMax
is the imposed time limit to complete the rendezvous. The bounds

on the remaining parameters are selected in order to have ‖u(t)‖ < umax for any
t0 ≤ t ≤ tf .

The optimality in terms of minimum energy control (i.e. minimum quadratic) is
achieved defining the scalar objective function in equation (4.19) as:

F (p̄) =
1

2

∫
t̄
u|Tp̄(t) u|p̄(t) dt, (4.26)
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where t̄ is the rendezvous time from t0 to t̄f . The integral is computed nu-
merically, from the control parametrisation functions, knowing just the value
of p̄. Therefore, the computation of the objective function is extremely fast.
Equation (4.26) is the analogous, in the direct transcription of the optimal
rendezvous problem, to equation (4.2), in the Lagrange’s formulation of the
optimal control problem.

4.3.2.2 Numerical Implementation

The numerical implementation of the optimal control problem is based on a
Matlab code. A constrained minimisation algorithm that is integrated into
Matlab is applied to solve the non-linear programming problem associated with
the direct transcription of the optimal control. The algorithm exploits sequential
quadratic programming (SQP) method to solve the rendezvous.

The initial guess for the parameters in the vector p is random, normally dis-
tributed within the bounds for the parameters. The initial guess for the ren-
dezvous TOF is given according to the desired order of magnitude for tf . The
differential equations are integrated with a VSVO Adams-Bashforth-Moulton
solver. The numerical evaluation of the objective function is performed with a
trapezoidal numerical integration algorithm over a vector equally spaced in time
from t0 to tf .

4.3.2.3 Example Direct Transcription Results

An example result about the direct transcription control for 6DOF rendezvous
is shown, to prove the capabilities of the developed method, in figures 4.13
and 4.14. Initial relative states are random, while the target is moving with
the periodic orbit-attitude dynamics close the apolune of a EML1 NRHO. The
control output is reported in terms of forces and torques in figures 4.11c and 4.12c.
The chaser inertia properties are the same of the previous example about optimal
control. The control has been parametrised according to the example functions in
equations (4.22) and (4.23). Again, the control action is larger at departure point
and arrival point: consequently, the required control energy is minimised. Note
that, the control force is almost linear in time, despite it has been parametrised
through a quadratic function. In fact, in this case, the minimisation algorithm
reduces almost to zero the parameters a2, related with the second order term.
This result is expected and prove the correct convergence to a solution close to
the one that could have been available with the indirect optimal control method.
Note that since the close relative distance of the chaser with respect to the target,
the differences between linear and non-linear translational dynamics are limited.
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Figure 4.13: Direct transcription control for 6DOF relative dynamics:
translational dynamics. TOF: tf = 0.8 h. Initial relative states random.

The control torque is evidently exploiting the parametrisation capabilities of the
Fourier series. The attitude control torque has a regular behaviour, which is
again almost linear to minimise the quadratic objective function. The Fourier
series parametrisation of the attitude control requires little more time to converge,
but it is usually providing better results in terms of control cost. In fact, from
the analyses carried out, a simpler polynomial parametrisation for αC is quick to
converge but provides worse solution in terms of cost. Typically, the difference
resulted to be in the order of 10 − 20%. For what concern, the translational
control parametrisation, aC , there have been no advantages in using the Fourier
parametrisation. Thus, the quadratic function discussed in this section proved its
effectiveness and efficiency for the direct transcription of the optimal translation
rendezvous problem in cislunar space.

The algorithm is highly robust and converges quite easily, except for situations
where the requested TOF for the rendezvous is out of the control capabilities

106



4.3. Relative Orbit-attitude Guidance and Control Design

0 0.2 0.4 0.6 0.8

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Relative quaternion.

0 0.2 0.4 0.6 0.8

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

(b) Relative angular velocity.

0 0.2 0.4 0.6 0.8
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

t_1

t_2

t_3

(c) Control torque. Chaser inertia
moments: IC ∼ 104 kgm2.

Figure 4.14: Direct transcription control for 6DOF relative dynamics:
rotational dynamics. TOF: tf = 0.8 h. Initial relative states random.

(e.g. too short) or extremely long. In fact, the NLP solver has the authority
to change tf but, in general, the solution stays in proximity of the given initial
guess for the TOF. The reason can be sought in the fact that changing the TOF
creates a large discontinuities in the value of the objective function and the SQP
algorithm avoid to continue the minimisation in that direction. An evidence, of
the algorithm robustness is given in figure 4.15, where it is shown the relative
trajectory associated with the initial guess in the control parametrisation of the
example case reported in figures 4.13 and 4.14. Obviously, the initial guess does
not solve the rendezvous problem and the final relative state is not the desired
one.

The relative attitude dynamics control has good convergence properties if the
constraints on the final relative quaternion is not enforced in vectorial form, but
in scalar form. Therefore, the boundary condition on the final relative quaternion
is expressed as:

δq2
4(tf )− 1 = 0. (4.27)
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Figure 4.15: Relative trajectory for the initial guess, p̄0, of control
parametrisation. Note that it does not solve the rendezvous problem.

As a final remark, the direct transcription is capable to solve also very complex
and long rendezvous problems. They are not very useful for practical application,
but they can be of interest to test the performances of the developed method.
An example scenario is shown in figure 4.16, where an extremely long and cost
effective rendezvous scenario on a L1 Halo orbit is simulated. The control
optimality is guaranteed from its linear evolution, analogous to the one available
from the indirect methods. However, the direct method provided the solution in
a very short time and without any analytical effort.
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CHAPTER5
Rendezvous

Somebody said . . . when you come to
within three miles, you’ve rendezvoused.
If anybody thinks they’ve pulled a
rendezvous off at three miles, have fun!

— Wally Schirra

Rendezvous in space involves a spacecraft already in a operational orbit,
which is commonly called target, and a spacecraft that is approaching to it,
chaser. The different phases of a generic rendezvous mission have been extensively
studied in the past, since the development of the programs Vostok and Gemini.
They consist of a series of orbital manoeuvres and controlled trajectories, which
have to progressively bring the chaser into the vicinity of the target [78].

This chapter is dedicated to the problem of rendezvous in non-Keplerian Cislunar
orbits, exploiting the coupled 6DOF relative dynamics, guidance and control
discussed in chapter 4. Rendezvous mission examples are presented and discussed,
applying the theoretical findings presented in the previous chapters. Functional
and performance GNC requirements are highlighted, together with the numerical
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quantities characterising rendezvous operations in such an environment. All the
different rendezvous phases are considered: from the phasing, passing through
the far-range transfer, up to the close-range trajectories and the final approach.

5.1 Rendezvous Definition

The rendezvous between two spacecraft on Earth orbits within the framework of
the restricted two-body problem, is nowadays well studied and tested, thanks
to the experience of the ISS. However, this delicate phase is strongly supported
by the direct control of the astronauts. The technology to support completely
automated rendezvous operations has not yet reached a high level of maturity.
Moreover, if the autonomous rendezvous operations have to be conducted in lunar
vicinity, the studies are even more preliminary and not completely developed.
Furthermore, as already said, studies in literature about rendezvous in non-
Keplerian orbits were always limited to point-mass spacecraft.

Possible rendezvous strategies with a large space structure in cislunar space
have been recently proposed by different authors [45, 46, 47]. Two operative
examples involving relevant families of operational orbits are presented in this
chapter, in accordance with the existing feasibility studies about the cislunar
space station. The automated transfer vehicles (i.e. chaser) will have to reach
the cislunar space station (i.e. target) from different locations, such as the Earth,
the Moon or a different non-Keplerian orbit, within a reasonable time and cost.
Therefore, a preliminary analysis involves the design of a trajectory connecting
the departure point with the desired rendezvous location.

Rendezvous operations that are presented in this work are composed by different
phase:

� Starting Phase: the chaser and the target are staged in orbits characterised
by different set of orbital parameters. In particular, the target is orbiting
in its operational orbit and the chaser is on a loitering trajectory, waiting
to start rendezvous operations;

� Departure: the chaser is injected in the transfer trajectory with a first
manoeuvre at t0;

� Transfer Phase: the chaser performs a series of manoeuvres to arrive in
the far-range rendezvous region (i.e. ‖x‖ ∼ 102 − 103 km). The details of
this phase are dependent from the selected transfer strategy;

� Approach Phase: the chaser arrives in the far-range rendezvous region and
acquires an holding point position, before the beginning of the close-range
proximity operations. The relative distance between chaser and target is
maintained within safety standards and requirements;
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� Closing phase: the chaser is injected in the approaching trajectory to
arrive in the close-range rendezvous region (i.e. ‖x‖ ∼ 1− 101 km). The
characteristics of the approaching trajectories depend on the selected
proximity operations plan (e.g. the number of holding points is a design
variable). This phase starts after the chaser has entered in the field of view
of the target;

� Final approach: a series of manoeuvres progressively reduces the relative
distance between the two spacecraft. The orientation of the chaser is
maintained aligned with the target, which is rotating in its operational
orbit;

� Mating phase: a final continuous manoeuvre is performed to reduce to
zero the relative distance between the two spacecraft and brings the chaser
at the mating point, before the final contact (i.e. docking or berthing).

5.2 Cislunar Rendezvous Operations

The methods and techniques applied to the cislunar rendezvous problem, dis-
cussed in this chapter, are capable to solve the 6DOF guidance and control
problem. They have been developed having in mind practical applications and
operations. From the results presented in chapter 4, it is evident how much is
important to take into account the coupled 6DOF relative dynamics for non-
Keplerian GNC design. Furthermore, practical operations and realistic mission
scenarios have to consider many other aspects, such as safety of the manoeuvres,
navigation performances and system constraints, among the others.

5.2.1 LLO to NRHO Rendezvous

The first operative example of proximity operations in cislunar space assume
the target in motion on a L2 South NRHO, with an orbital period of ∼ 7 d, an
apolune distance from the lunar surface of ∼ 7× 104 km and a perilune distance
of ∼ 4× 103 km. The departure point for the chaser is on a low Lunar orbit
(LLO). The target is moving with an orbit-attitude periodic motion as described
in chapter 3. This peculiar target orbit-attitude dynamics is characterised by
large difference in orbit-attitude velocities between perilune and apolune, and
symmetry with respect to the x̂ − ẑ plane. This orbit has been selected as
settings for this example rendezvous scenario because of the applicative relevance
of NRHOs. In fact, as already said, an eventual space station in cislunar space
will be probably staged on a NRHO. This selection can be explained because
NRHOs are, among other advantageous characteristics, always visible from Earth
and they have long visibility windows over lunar south pole [2].
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Figure 5.1: Transfer from LLO to HP1, with intermediate NRHO. Phasing leg
duration ∼ 1.5 d.

The rendezvous operations, to go from a circular low Lunar orbit with radius
100 km up to the docking conditions with the target, are characterised by the
following requirements:

� Final rendezvous and docking shall be performed in proximity of the
apolune of the selected NRHO (±50◦ of mean anomaly);

� The overall rendezvous trajectory shall be optimised to minimise the total
control energy;

� The rendezvous trajectory shall pass through designed holding points,
HPi;

� Passive safety shall be ensured at all time: the holding points HPi shall
lie on the central or unstable manifold of the NRHOs. This allows, in case
of misfiring or no firing at all, to remain at bounded distance from the
target, without getting in closer proximity, on the central manifold; or
to drift away, minimising the risk of any possible risk of collision, on the
unstable manifold. In order to have subsequent opportunities to perform
the transfer, slow natural dynamics shall be selected. Note that, since the
manifolds of the FER4BP NRHO change in time, the rendezvous analysis
is strictly coupled with the phasing trajectory analysis [79];

� Active safety collision avoidance manoeuvre shall be designed as backwards
rendezvous trajectories;
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Figure 5.2: Relative dynamics in far-range rendezvous from HP1 to HP2.
Expressed in LVLH relative to the target.

� The last holding point HPn is set on the border of the keep-out-sphere
(KOS) with radius of 1 km;

� The docking alignment path point shall lie on the negative R-bar direction,
at ∼ 100 m from the target;

� The navigation cameras and the docking port shall be mounted with
an angular offset of 90◦ in chaser body frame. Hence, the rendezvous
trajectory has to perform a proper rotation: to align the docking port
at t = tf and to maintain the target in the camera field of view. This
rotation is performed between the last holding point, HPn, passage and
the docking alignment path point.

Table 5.1: Transfer from LLO to HP1 Parameters.

Transfer Phase tLeg [d] ∆v [m/s]

LLO Loitering 1 0
Departure Leg 3.03 621
Phasing Leg 1.38 0
Transfer Leg 4.34 53
HP1 Arrival Leg 6.95 0

Total 16.7 674
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In figure 5.1 is shown the transfer of the chaser from a LLO to the first holding
point, HP1, considering absolute FER4BP dynamics. The phases represented
in this picture have been obtained according to the research work of Bucci [80].
After a loitering period on the LLO, the chaser is injected in the departure leg,
connected to the phasing trajectory, which in the example application has a
duration of ∼ 1.5 d. Then, in the transfer phase, intermediate transfer orbits are
exploited to arrive at far-range rendezvous distance: ‖x‖HP1

= 102 km. First,
the proper transfer leg is used to reduce the relative distance between the two
spacecraft. Then, the HP1 arrival leg is necessary to reach the desired holding
point (i.e. approach phase). Trajectory legs are separated by impulsive leg
injection manoeuvres, which are reported, together with the leg durations, in
table 5.1. Indirect transfer, with phasing and more transfer legs, is longer than a
direct ascent trajectory. Nevertheless, intermediate transfer orbits are necessary
in order to have a time window to perform trajectory correction manoeuvres
and orbit/attitude determination.

After orbit transfer, the chaser arrives at HP1, situated 102km away from
the target in the negative along-track direction. At this point, the proximity
operations are begun and, since their operative implementation purpose, they
are represented in the target centred relative Local Vertical Local Horizontal
(LVLH) frame, as defined in figure 5.12, and with absolute Euler XY Z−angles
with respect to the inertial frame I. The first holding point lies on the central
manifold of the NRHO, as per rendezvous design requirements. The consequences
of this selection are discussed in section 5.2.1.1.

The closing phase is characterised by far-range rendezvous operations. These are
initiated with a transfer arch from HP1 to a second holding point, HP2, at the
border of the KOS: ‖x‖HP2

= 1 km. In figure 5.2 the far-range rendezvous arc
in the relative LVLH frame, target centred, is shown. The chaser approaches the
target from the negative V-bar, with a free drift motion in the 3-dimensional
LVLH space. This picture is relevant to understand the relative distance between
LAE and DSG during far range rendezvous phase. The HP2 holding point
selection is driven by the preferred strategy for passive safety: HP2 is set
on the NRHO unstable manifold ensuring that if the burn to stop at HP2 is
not performed, or misfired, the chaser will start to safely drift away from the
target. It is here remarked that if the close-range rendezvous phase is not
started immediately after the completion of the far-range rendezvous phase, an
active station keeping action must be performed to avoid the departure of the
chaser in the unstable manifold direction. The far-range rendezvous trajectory is
energy optimal, obtained applying the optimal guidance and control discussed in
section 4.3.1. Nevertheless, the point HP2 can be also approached with a slightly
controlled natural drift on the stable manifold, or with a classical impulsive
manoeuvres trajectory. In this phase, the attitude of the chaser is maintained
always aligned with the target in order to have the field of view (FOV) of the
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Figure 5.3: Close-range rendezvous trajectory from the holding point HP2,
(red diamond), to docking, (black dot). Alignment with the docking port

axis at a distance of ∼ 100 m (blue diamond).

sensors correctly oriented for navigation purposes. The required ∆v for the
far-range rendezvous is 2.68 m/s and the corresponding TOF is 20 h. This last
value is selected because the time of flight shall be long enough to allow state
determination and stabilisation of errors.

The close-range rendezvous phase is performed inside the KOS and is composed
by a series of manoeuvres capable to reduce the relative distance between
chaser and target (i.e. final approach phase). In the simulated application of
the developed guidance and control algorithms, the close-range rendezvous is
initiated after the holding point HP2 = HPn at the border of the KOS. The
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Figure 5.4: Attitude rendezvous trajectory from the holding point HP2.
Absolute attitude dynamics of the chaser, expressed in Euler XY Z−angles

with respect to the inertial frame I.

final docking approach is designed to occur from the negative R-bar direction to
bring the chaser at the docking port, as in figure 5.3a. The control trajectory
has been designed imposing the passage through a docking alignment path point
(blue diamond in figure 5.3a), in order to connect the holding point HP2 with
the imposed path constraints. In fact, in this example, the direct transcription
control moves the chaser away from HP2 and brings it progressively at the
docking alignment point: positioned at ∼ 100 m from the target, on the unstable
manifold approach corridor, mainly aligned with the R-bar direction. The forced
translation is maintained within a cone approach corridor defined by the NRHO
unstable manifold, again, for strong passive safety enforcement. In fact, in case
of problems in the control functions, the unstable manifold guarantees a drift
away from the target, but the time scale is slow enough to allow recovery of
the nominal operations. Then, from the docking alignment point to the final
rendezvous point, the control produces a straight trajectory along the R-bar
direction. The relative distance reduction during this last mating phase is very
slow, as in figure 5.3b, for safety reasons. The required ∆v to perform this
rendezvous phase is: ∆v ' 0.3 m/s with TOF of 4 h.

The 6DOF trajectories are computed along all the rendezvous phases. During
transfer and approach phase the chaser is spinning perpendicular to Sun direction
to fulfil power and attitude stability requirements. During far and close-range
rendezvous phases the chaser is target pointing, for relative navigation purposes.
Moreover, in the final approach phase, the chaser has to align its docking
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port with the one of the target. The guidance is computed in order to switch
from spinning attitude to target pointing to docking alignment, with attitude
manoeuvres that are performed in a way there is a smooth transient between the
attitude modes. In figure 5.4 the absolute attitude of the chaser is reported during
the final approach rendezvous phases. The chaser has to rotate of approximately
55◦ around one axis to align the docking port and to maintain the target in
the supposed camera field of view. In fact, while approaching from HP2, the
chaser is reducing its H-bar distance with respect to the target and a rotation is
necessary to maintain the desired alignment. After the docking alignment point,
the motion is almost only along R-bar and, therefore, the attitude dynamics
is almost coincident with the target nominal periodic attitude. The attitude
guidance profile is obtained with the developed direct transcription methods, to
minimise the required control energy. The simulation in figure 5.4 is initialised
from a random attitude state to verify the robustness of GC functions and, hence,
the control system first achieves the optimal attitude profile, then maintains the
chaser on the desired path.

An overall glimpse on the overall set of proximity operations is possible analysing
the rendezvous trajectories in absolute reference frame. In accordance with the
aforementioned requirements, the global rendezvous phase takes place in arc of
±50◦ degrees of mean anomaly around the apolune, setting thus a boundary for
the position of HP1. The far-range rendezvous - yellow line in figure 5.5 - starts
at HP1 before the NRHO apolune, purple circle in figure 5.5, and ends at HP2,
red circle. Figure 5.5 shows also the close-range trajectory between HP2 and the
docking point (docking alignment point is omitted in this figure for clarity). The
overall rendezvous from LLO to the target on NRHO require a ∆v ' 677 m/s

119



Chapter 5. Rendezvous

Figure 5.6: HP2 position in relative LVLH with holding point on the central
manifold of the NRHO and following free drift trajectory simulated for 2

NRHO periods.

and a TOF of 17.7 d. The numerical values of both quantities are mainly due to
the transfer phase.

5.2.1.1 Passive Safety

Passive safety shall be enforced at all times and, to satisfy this requirement,
the rendezvous trajectory has been designed exploiting the features of the
relative 6DOF dynamics in cislunar environment. This possibility is allowed
by the proposed direct transcription control, through a proper selection of the
constraints verified with the numerical simulation of the relative non-Keplerian
dynamics.

The holding point (i.e. HPi) settling on the central manifold entails that, if
the control function is not working and the rendezvous manoeuvres are not
performed, the chaser remains hovering around the target with a periodic motion.
In figure 5.6, the chaser is naturally hovering in proximity of the 1 km KOS,
with enough time to have the control system working back again. In this case,
weak passive safety is enforced at HP2.

Nevertheless, if strong passive safety is sought, as inside the KOS, the holding
point shall be set on the unstable manifold. In fact, in the example application,
HP2 is settled on the NRHO unstable manifold ensuring a safe drift away
from the target in case of failures, as in figure 5.7. Moreover, also the approach
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Figure 5.7: HP2 position in relative LVLH with holding point on the unstable
manifold of the NRHO and following free drift trajectory simulated for 2

NRHO periods.

corridor from HP2 to the the docking alignment point is designed on the unstable
manifold, which guarantees natural collision avoidance if a problem occurs.

5.2.1.2 Active Safety

Contingency operations can be managed exploiting active safety enforcement
and, in particular, Collision Avoidance Manoeuvres (CAMs) are planned for the
chaser to minimise the collision risk with the target when a problem occurs.
Collision avoidance manoeuvres are to be intended in addition to nominal passive
safety enforcement at all times of the rendezvous and docking operations. If a
non-nominal condition occurs, the chaser, after the CAM execution, is retreated
to a safe hold point.

The CAMs can be computed with the direct transcription control method, setting
a safe 6DOF relative state as a final boundary condition for the algorithm. The
CAMs can be designed from any point along the rendezvous trajectories to any
safe holding point. In figure 5.8, an example CAM trajectory is shown. The
TOF is imposed to be twice the nominal rendezvous time, in a way that no
large control action is required. Thus, assuming that the system is undergoing
non-nominal operations, in the worse case scenario, even a wrongly commanded
CAM manoeuvre can be recovered.
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Figure 5.8: Active safety: CAM manoeuvre from HP .

5.2.2 Halo to Halo Rendezvous

The second operative example of proximity operations in cislunar space involves
a target’s operational EML2 North Halo orbit with Az = 10 000 km in positive
direction. The chaser’s parking orbit is a different EML2 North Halo orbit with
Az = 8000 km. The rendezvous operations contain a natural heteroclinic transfer
between the two orbits on the same side of the Moon, with a connection point
on the orbital manifolds. According to the definition introduced by Koon [66],
this kind of rendezvous can be denoted as Halo Orbit Insertion (HOI), being
the chaser on a different Halo orbit when the sequence of manoeuvres is started.
The other type of rendezvous is called Stable Manifold Orbit Insertion (MOI),
because in that case, the chaser is travelling from the Earth, or the Moon, and
is directly inserted in the stable manifold of the operational orbit.

By assuming the cislunar space station on the selected EML2 Halo orbit, it is
reasonable to have the injection point of the stable manifold in the vicinity of
the Moon. In this way, it is possible to find many injection points that can be
easily reached from different operational scenarios: a LEO, a LLO, the Lunar
surface or a safe non-Keplerian parking orbit, similarly to the case discussed
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Figure 5.9: Operational and Parking Halo orbits in normalised S.

in this section. A vast literature addresses the problem of injection in natural
transfers, and many solutions were proposed to solve it. For example, in the
work of Bernelli [81], a spacecraft is injected on a stable manifold, which is
progressively converging to an operational non-Keplerian orbit, from the apogee
of an highly eccentric orbit reached from a low Earth orbit (LEO) or a LLO.

The Rendezvous phases discussed in the beginning of this chapter are detailed
for this example operational scenario as:

� Departure: the chaser is injected in an unstable manifold of the parking
orbit with a first manoeuvre, ∆v1.

� Transfer switching manoeuvre: the chaser is injected in the stable manifold
of the target operational orbit. The injection point is at the intersection
of the unstable and the stable manifolds. A second manoeuvre, ∆v2, is
needed.

� Approach phase: the chaser arrives in proximity of the target and, with a
third manoeuvre, ∆v3, is moved very close to the operational Halo orbit.

� Closing phase: a fourth manoeuvre, ∆v4, aligns the chaser with the docking
axis of the space station.

� Final approach: a series of manoeuvres, ∆v5 and ∆v51, progressively
reduces the relative distance between cargo and space station.

� Mating phase: a continuous manoeuvre, ∆v6, is performed to reduce to
zero the relative distance between the two spacecraft..

The transfer switching point is assumed to be in the vicinity of the Moon, in the
space between Earth and Moon: xSP < 1 − µ. This choice is motivated from
the willing to simulate a possible cyclic chaser that is continuously transferring
between the operational and the parking orbit; the passage between Earth and
Moon allows an easy encounter with a cargo coming from the Earth, the Moon
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(a) Sub-optimal connections. (b) Corrected sub-optimal connections.

Figure 5.10: Possible Heteroclinic connections for xSP < 1− µ.

or a Low Lunar orbit. The halo orbits considered in this work are shown in
figure 5.9, with data reported in table 5.2

First of all, it is important to find an heteroclinic connection between the two
Halo orbits: the transfer trajectory. In this work, it has been assumed that the
chaser and the target are approximately phased in their own orbits according to
the chosen transfer, i.e. the target needs the time of the transfer, ttransfer, to
move from its starting point to the ending point of the heteroclinic connection.
Such requirement can be always satisfied with a Phasing Phase to be conducted
before the Starting Phase of the rendezvous operations; moreover, the proximity
operations after the heteroclinic transfer are able to correct some errors in the
phasing of chaser and target.

The heteroclinic connection is individuated, computing the unstable manifold of
the parking orbit and the stable manifold of the operational orbit. Manifolds
can be computed from the eigenvectors of the Monodromy Matrix, M, which
is reminded to be the State Transition Matrix, Φ, evaluated after one orbital
period, Tt. The intersections of the two manifolds are analysed on a Poincarè
section and different sub-optimal solutions are located for xSP < 1− µ. Then,
a correction procedure is applied to all the sub-optimal solutions, in order to
exactly connect in position starting point, switching point and ending point. In
figure 5.10 the sub-optimal solutions are shown before and after the correction
procedure. Among the selected sub-optimal solution the best one is chosen as
the one with the smallest ∆vtransfer = ∆v1 + ∆v2 + ∆v3. This best sub-optimal
transfer is then optimised with an optimisation algorithm.

Table 5.2: Operational and Parking Halo Parameters.

Name Az [km] T [d] C [nd]

Operational Halo 10000 14.808 3.149
Parking Halo 8000 14.813 3.150
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Figure 5.11: Optimal transfer.

The transfer optimisation algorithm starts from the already mentioned sub-
optimal connection and slightly varies the state vector of the chaser at the
starting point, xStart = [xStart, yStart, zStart, vxStart , vyStart , vzStart ]

T. The start-
ing position, rBStart = [xStart, yStart, zStart], is constrained to lie on the Halo
orbit. Moreover, also the state vector at the switching point can be varied with
the constraint to preserve the continuity in position with the stable manifold of
the operational Halo orbit. The algorithm is based on a constrained multiple-
shooting corrector with a multi-variable Newton methods [82]. The optimum
solution is searched with a derivative-free method. The result of the transfer
optimisation algorithm is shown in figure 5.11, and the characteristics of the best
heteroclinic transfer are reported in table 5.3. From these data, the low-cost
transfer capabilities of invariant manifolds are evident, but the time of flight
during this connection can be somewhat too long for certain applications, e.g.
humans transportation or emergency cargos. However, this is only a limit for
transfers that have to pass between Earth and Moon; in fact, for xSP > 1− µ,
the typical time of transfer is in the order of few days.

After ∆v3 the relative distance between chaser and target is usually in the order
of few hundreds of kilometers; in the presented example |x| ' 150 km. In the
following phases, the dynamical tool performs more convenient analyses exploiting
a LVLH reference frame. The LVLH reference frame is centred at the barycentre
B of the target; ẑLV LH (R-bar) is always directed towards the Lagrangian point
associated to the studied Halo; ŷLV LH is opposite to the direction of the orbital
momentum vector; x̂LV LH (V-bar) completes the right-handed frame as shown
in figure 5.12.

When the chaser enters in view of the target along the R-Bar, ∆v4 is performed
to align the chaser with the docking axis of the space station. After this closing
phase manoeuvre, the chaser is maintained always aligned with the docking

Table 5.3: Optimal Transfer Parameters.

ttransfer [d] ∆v1 [m/s] ∆v2 [m/s] ∆v3 [m/s] ∆vtransfer [m/s]

26.14 5.49 152.29 0.51 158.29
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Figure 5.13: Proximity Operations in Synodic Frame.

axis of the target, within the field of view. During the final approach phase,
this alignment is checked at different interface points; the first is at a distance
of 200 km from the target, the second at 10 km and the third at 500 m. These
interface points are needed to break the rendezvous trajectory with some check-
and-go points, in order to have a more gradual and safe final approach.

The different phases after the transfer are computed and optimised with a
constrained optimisation algorithm. The cost of the manoeuvre at each interface
point and the difference in velocity between chaser and target at the end of the
arc, as a preliminary measure of the next ∆v, are the objective functions of an
optimisation algorithm. In this way, the rendezvous path is evaluated minimising
the cost of all the proximity manoeuvres. The constraint is used to reduce the
relative distance and maintain the alignment between chaser and target. Thus,
at each interfaces point the chaser reaches the desired location with a desired
attitude relative to the target. The velocity of the chaser is used as design
variable to connect the different interface points minimising the overall ∆v cost.
It has been assumed to control the dynamics with impulsive manoeuvres and,
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Figure 5.14: Proximity Operations in LVLH Frame, x-z view: Closing and
final approach phase.

-10 -5 0 5 10

XLV LH (km)

-8

-6

-4

-2

0

2

4

6

8

Z
L
V
L
H

(k
m
)

∆v51

Target

Target X-FOV

Target Z-FOV

Rendezvous traj.

Figure 5.15: Final approach in LVLH Frame, x-z view.

therefore, the actual design variable is not directly the velocity of the chaser,
but the instantaneous ∆v that are applied at the interface points in order to
control the chaser along the rendezvous trajectory with the minimum possible
cost. If the optimisation algorithm converges to a feasible solution, the result is a
trajectory that matches the final position vector of the target and minimises the
∆v cost. The initial guesses at each interface point are obtained randomly. The
linear programming optimisation algorithm chosen in this work is a particular
version of the barrier method [83, 84], belonging to the class of the so-called
interior point methods [85].

In figure 5.13 and figure 5.14 the proximity phases are shown in the synodic
and in the LVLH frame. Both frames are useful to analyse the rendezvous, but
the latter is more insightful when the distance between chaser and target is in
the order of few hundreds of kilometers. In figure 5.14, it can be noted how the
closing phase starts when the chaser enters in the field of view along the R-bar,
then the following phases are maintained within the field of view in direction of
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Figure 5.17: Relative distance during mating phase.

the docking axis. Moreover, in the same figure, the approach along the docking
axis direction is evident; the interface points follows the approach axis that is
changing in time because of the rotation of the space station.

In figure 5.15 is shown a more detailed view of the final approach phase, while
the mating phase can be analysed in figure 5.16. In the aforementioned pictures
the typical behaviour of relative motion in non-Keplerian orbits is confirmed:
the approaching trajectories are almost rectilinear and the carving feature of
LEO rendezvous trajectories is missing.

In figure 5.16, the interface point before ∆v6, 500 m from the target, is char-
acterised by an hold in the procedures. In fact, for safety reasons, the chaser
cannot enter in the Keep-Out sphere until the authority to proceed is obtained.
After the final approach, the mating phase begins.

Table 5.4: Proximity Operations Parameters.

tproximity [d] ∆v4 [m/s] ∆v5 [m/s] ∆v51 [m/s] ∆v6 [m/s] ∆vproximity [m/s]

3.36 1.27 3.41 2.52 0.44 7.64
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Figure 5.18: Relative velocity during mating phase as a function of relative
distance.

In this example application scenario, the control during the mating phase is
assumed to be continuous [11]. The final trajectory is here computed using a
linear-quadratic regulator (LQR) and the linearised model of relative dynamics
for the chaser, described in section 2.4. The relative distance between chaser
and centre of mass of the target is reported in figure 5.17, as a function of the
time of flight in the mating phase, which last for approximately 3 hours and
brings the chaser few meters away from the docking port. In figure 5.18, the
evolution of the relative velocity in this phase is presented as a function of the
target-chaser distance. In table 5.4, time of flight and ∆vs during the proximity
operations are reported. Hence, remembering the data in table 5.3, the analysed
rendezvous lasts for 29.5 d and requires a total ∆v of 165.93 m/s.

Even if the two example applications are different, it should be noted how the
current ∆v is remarkably lower than the one for the rendezvous operations dis-
cussed in section 5.2.1, because of the exploitation of natural manifold dynamics
in the Halo to Halo rendezvous. In the LLO to NRHO rendezvous, the transfer
is obtained connecting the different transfer arcs with impulsive manoeuvres,
resulting in a lower rendezvous efficiency.

5.2.3 NRHO to DRO Rendezvous

Rendezvous operations are influenced by several parameters and the set of possible
solutions is wide. Hence, this last section presents additional rendezvous transfers
between two non-Keplerian orbits, to better contextualise the rendezvous scenario
in cislunar space. The example application considers a spacecraft that has to
transfer between NRHOs and DROs.

The transfer phase begin at the perilune of the NRHO, when the chaser is
injected into the unstable NRHO orbit-attitude manifold. After a certain time
t1, a first impulsive manoeuvre is performed to target the trajectory towards
the DRO. A second impulsive manoeuvre is expected after an additional time
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Figure 5.19: NRHO to DRO rendezvous transfer: orbital dynamics.

t2, when the manifold intersects the operational DRO of the target. Hence, the
full transfer time is equal to t1 + t2 and it is not constrained. For these cases, a
multi-objective global optimisation method has been used in order to reduce the
sum of the two ∆ v and to target the manifold to intersect the DRO. As already
said, the times of the manoeuvres are completely free and the intersection point
on the DRO has been chosen to have y = 0.

One example rendezvous trajectory is reported in figure 5.19. The spacecraft,
after the injection in the unstable manifold trajectory, is dynamically driven
along a natural trajectory that brings it behind the Earth and comes back after
a retrograde revolution in the Earth-Moon system to the DRO. The time of
flight is remarkably long, in the order of 90 d.

An additional example rendezvous is shown in figure 5.20. The differences in
the trajectory are due to a different orbit-attitude manifold that is chosen to
begin the manoeuvre. In this case, the rendezvous trajectory is contained within
the DRO and the cost and time of the manoeuvres are obviously modified with
respect to the previous case. In particular, the TOF is ∼ 35 d.

In general, when dealing with large space structures, the design of cislunar
rendezvous transfers and proximity operations share commonalities and problems
between different orbital families. In fact, the considerations on the coupled orbit-
attitude dynamics are always similar. For example, the perilune passage shall be
carefully managed by choosing an appropriate attitude control system. Hence,
what is most important to consider in designing GNC functions for rendezvous
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Figure 5.20: Alternative NRHO to DRO rendezvous transfer: orbital dynamics.

with large space structures in cislunar space, is the interaction between orbital
and attitude dynamics.
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CHAPTER6
Flexible Dynamics

I would never work on flexible dynamics.

— Myself, a few years ago . . .

Flexible dynamics of space structures interacts with the orbit-attitude motion,
in particular when large space systems are considered. For this reason, this last
part of the dissertation is dedicated to analyse the interactions between orbit-
attitude and flexible dynamics. The rigid body dynamics assumption is discarded
and the body B is assumed to be flexible. The outcomes of this investigation may
be used to define the validity range in assuming rigid body motion while studying
the dynamics of a large space structure in complex dynamical environments.
Moreover, the acquired knowledge about orbit-attitude-flexible dynamics can
be exploited to design guidance and control functions able to deal with flexible
space systems.

This chapter discusses some analyses applied to flexible space structures in
cislunar space, exploiting the available flexible models introduced in section 2.5.
For instance, the distributed parameters model, based on the Ritz method, is
exploited to simulate the dynamics of a body undergoing large overall motions,
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comparing the obtained results with those available from the lumped parameters
models. Generally, the two approaches can be used together to assemble and
simulate complex flexible space structures, because they are developed utilising
a multi-body formulation.

The presented investigations are also aimed in analysing, designing and testing
the guidance and control (GC) functions for the attitude control of a spacecraft
in Moon orbits, subject to environmental perturbations, internal fluid sloshing
effects and flexibility coupling. As a matter of fact, the flexibility effects have a
relevant influence mainly on rotational motion. The resulting coupled vibrational-
attitude dynamics, with the inclusion of internal liquid sloshing, can reduce the
achievable performances of the ACS. For this reasons, classical and alternative
control methods are conscientiously applied in order to achieve a fully functional
set of GC functions, capable to avoid dangerous resonances and vibrational
excitation.

6.1 Comparison and Validation of Flexible Elements Models

The available flexible models require to be compared and validated for applicative
purposes. In fact, DPM is surely the most accurate way to represent the
vibrational dynamics, but it requires a high computational burden to be simulated.
Moreover, the modelled effects may be overabundant for the purposes of these
applications where, for example, the first natural modes are often sufficient to
estimate the influence of the flexible-attitude coupling. Notwithstanding, LPM
and LMM shall be accurately implemented and validated to acquire a confidence
level sufficient for the considered applications. In particular, it shall be verified
the correct representation of the main dynamical features.

The developed DPM is selected as a reference model to represent the dynamics
of flexible structures undergoing large overall displacements. Hence, it is the first
model to be validated according to the available literature results of Yoo [38]. The
result reported in figure 6.1 shows a three-dimensional spin-up motion of a 10 m
cantilever beam in free-space without any external force or torque. The beam is
attached to a rigid base, with an angle of 45deg with respect to the spinning axis
of the support, which undergoes a prescribed spin-up motion characterised by
the parameters stated in the caption of figure 6.1. Many simulation, in different
application scenarios, have been run and the available results are equivalent to
the literature ones.

Then, the developed LPM is compared with respect to the DPM, and the
behaviour of the simplified dynamics is reported as well in figure 6.1. The
LPM dynamical evolutions are always analogous to those available with the
more complex DPM, particularly for what concern the lowest vibrational modes,
which have more impact on the attitude dynamics and the associated control
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Figure 6.1: Lumped and Distributed Parameters Model Validation. (Cantilever
beam with lb = 10 m, mb = 12 kg and elastic modulus Eb = 71 GPa. Spin-up

motion: steady state angular speed Ωs = 3 rad/s and time constant
Ts = 15 s, as defined by Yoo [38]).

capabilities. Moreover, the time required to run the simulation in figure 6.1 is
tDPM ' 8 s for DPM and tLPM ' 3 s for LPM, on a 2.5 GHz quad core processor.
Thus, the analyses presented in this dissertation are conducted exploiting the
lumped models, unless otherwise specified. Precisely, the LPM is used to
simulate flexible appendages (e.g. solar panels, long beams), while the LMM is
applied for the sloshing models. In fact, there is no relevant computational cost
advantage of the LMM over LPM, but the accuracy of the last one is greater for
flexible structures. On the other hand, LMM is perfect to be implemented as an
equivalent mechanical sloshing model [72].

The developed flexible model described in section 2.5.3 is validated comparing its
results with those obtained using an industrially validated simulator, implemented
by the Spanish company Deimos Space S.L.U. [86], and referred in the dissertation
as Functional Engineering Simulator (FES). This simulator performs 6DOF
propagation of equations of motion. It includes, similarly to the coupled dynamics
described in this research work in section 2.5, a model of sloshing and a model
for flexible appendages (i.e. two solar panels). Furthermore, the perturbations
that are modelled in are:
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Figure 6.2: Flexible-attitude model compared to Deimos Space S.L.U. FES
simulator.
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Figure 6.3: Flexible-attitude linear model compared to full non-linear.

� Lunar Gravity Harmonics: LP75G;

� Sun and Earth four-body gravity, with gravity gradient;

� Solar Radiation Pressure: geometric model of spacecraft (S/C);

� Torque due to electric propulsion actuation.

The results in figure 6.2 show that the developed dynamics model produces valid
results: the developed flexible-attitude dynamics is capable to correctly simulate
all the relevant dynamical effects in cislunar space.

The validation of the flexible-attitude linear model, presented in section 2.5.3.1,
is carried out comparing its result with respect to the developed full non-linear
model, described in section 2.5.3. The validation results are presented in figure 6.3
and they confirm what already anticipated in chapter 2: the linear model loses
some of the cross-coupling between slosh and flexible appendages, and it tends
to smooth the flexible-sloshing dynamics. Nevertheless, it is very reliable in the
attitude output, as evident in figure 6.3a. Thus, it is a valuable tool to support
the design of GC functions for attitude control of large and flexible spacecraft
with internal liquid sloshing.
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Figure 6.4: Orbit-Attitude motion on Halo orbit with Az = 30 000 km.

6.2 Large Space Structures in Cislunar Environment

Research studies dealing with large space structures in cislunar space are of great
interest in the scientific community of today, as explained in the introductory
chapter of this dissertation. The present section presents some analyses that are
carried out to have some preliminary insights on this modern and broad area of
aerospace science.

Large space structures in cislunar space are subjected to non-Keplerian orbit-
attitude dynamics, since they are moving in the Earth-Moon system, and to
relevant flexible effects, because of their dimensions and of their low structural
rigidity. When the flexible multi-body equations of motion are available, both
for the distributed and the lumped parameters model, they are coupled with
the periodic orbit-attitude dynamics transformed in the inertial non-rotating
reference, and the orbit-attitude-flexible dynamics is propagated.

In figure 6.4 the attitude evolution of a large space structure is shown directly
on the orbital path. The orbit-attitude periodic dynamics is analogous to those
presented in chapter 3 for an EML2 Halo orbit, where the space station performs
one overall rotation in a single orbital period. An analysis about the flexibility
effects on four different periodic orbit-attitude dynamics of the same Halo family
is reported in figure 6.5 and figure 6.6. The motion is propagated on four
Halo orbits with diverse amplitude Az, in a way that the influence between the
orbital frequency and the structural frequency is highlighted. The LPM system
attached to the centre of mass of the body B has a first mode natural frequency
ωflex1 = 50 [nd]. The most elongated orbits have a particular influence on the
oscillations of the Euler angles, while more the orbit is close to planar motion
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more the variations are evident in ω3. This results can be explained considering
that in the limit of planar orbits all the torques are exerted along b̂3.

A different simulation is targeted to point out the influence of the natural
frequencies of the structure on the orbital motion. The difference in x, y and z
of the coupled flexible model with respect to the point-mass dynamics is shown
in figure 6.7. In this case, a unique trend does not exist among the different
components and the different Halo orbits. Each orbit has its peculiar frequency
in each spatial direction, and the influence on flexible systems with different
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Figure 6.7: Difference with respect to the point-mass dynamics.

natural frequency must be analysed isolating each single effect and coupling term.
However, the most important outcome from this analysis is that the flexible
effects on the orbit motion are practically negligible, confirming the fact that
vibrational dynamics is relevant mainly on the rotational motion. Hence, in the
followings, the flexible-attitude coupling is investigated with particular attention.

One additional example simulation result is shown in figure 6.8, where the tip
displacements of a distributed parameter beam (i.e. DPM) aligned with the
principal inertia axes of mB is plotted as a function of time. The coupled orbit-
attitude dynamics that is taken as input, is related with a periodic solution similar
to the one represented in figure 3.1 for a EML1 Halo orbit. The displacements u1,
u2 and u3 are labelled according to figure 2.5. Note that the displacements are
large when compared to real conditions, but they are due to the characteristics
of the selected beam, which are chosen to highlight the effects of flexibility.
In fact, the beam is 100 m long, it has a square cross-section and it has the
physical properties of a generic aerospace aluminium alloy (ρAl = 2800 kg/m3

and EAl = 71 GPa). The size of the cross-sectional area is derived imposing a
target first bending natural frequency in the order of the lowest frequency of
the International Space Station, approximately equal to 0.06 Hz. The flexible
dynamics is therefore characterised by a quasi-static deformation due to the

139



Chapter 6. Flexible Dynamics

0 2 4 6 8 10 12

t [d]

-25

-20

-15

-10

-5

0

5

10

15

20

25
u
i
[m

]
u1

u2

u3
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overall rotational motion, plus a superposition of the natural frequencies of the
flexible structure. In fact, the dynamics in figure 6.8 is composed by a slow
overall deformation and a fast sinusoidal oscillation with period of approximately
16 s, corresponding to the first bending natural frequency. The resulting flexible
behaviour is due to a complex interaction with the full orbit-attitude dynamics
in cislunar space.

The presented result is in agreement with other simulations that have been
performed: a strong coupling between orbit-attitude dynamics and flexible
dynamics seems to be not present. The flexibility properties of a space system
may be selected independently from the planned orbit-attitude evolution. In
fact, the dynamical response of the space structure is composed of a quasi-static
term plus a superposition of natural modes, since there is a huge separation
between typical lowest natural frequencies of real extended space systems and
the one related with the non-Keplerian dynamics. This conclusion is valid in
general also for other orbit-attitude periodic motions and extended structures
with different physical properties, geometry and dimensions, as long as the
natural frequencies of the extended structure stay well above the frequency
content of the overall motion, which is true, in general, for actually feasible space
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systems. This statement can be explained looking at the frequency content of a
periodic orbit-attitude dynamics; figure 6.9 shows a fast Fourier transform of the
angular acceleration along a Halo orbit. Similar results are obtained considering
various families of orbits and alternative dynamical quantities, such as the linear
acceleration or the angular velocity.

The mutual influence of orbit-attitude and flexible dynamics should not be
completely neglected, but seems to be reasonable to decouple the problem, at
least for the investigations about natural dynamics. On the contrary, when
the ACS is considered, the control bandwidth can overlap with certain natural
frequencies of the system. In these cases, the orbit-attitude-flexible coupling in
the dynamics shall not be neglected while designing GC functions, as discussed
in section 6.3.
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6.3 Flexible-attitude Guidance and Control Design

The purpose of the present section is to discuss the design of attitude guidance
and control algorithms able to deal with the flexible-attitude dynamics described
in sections 2.5.2 and 2.5.3. ACS design and development are carried out for
different attitude modes, assuming the spacecraft able to detumble and to follow
a reference attitude (i.e. pointing mode). An analysis of the intrinsic properties
(e.g. stability margins) is presented, together with the extrinsic verification of
the developed GC functions (e.g. one shot and Monte Carlo simulations).

The flexible-attitude guidance and control functions are designed, developed and
validated in a major application scenario in lunar vicinity: a Moon circular orbit
with radius 100 km. The ACS is based on reaction wheels, including saturation
and bias. The sensors performance models are:

� Sun vector determination, including bias and noise;

� Angular velocity measurements, including bias, noise and random walk;

� Attitude Determination, including bias and noise equivalent angle.

The spacecraft to be controlled has a mass of 200 kg and moments of inertia
in the order of ∼ 102 kgm2. The main sloshing frequency and the first natural
frequency of the flexible appendages are in the order of 0.1 Hz ' 0.63 rad/s.

Design and development of the flexible-attitude guidance and control subsystem
are characterised by the following requirements:

� ACS performances shall be assessed assuming uncertainties of the critical
parameters for sensors, actuators, spacecraft properties and environment;

� ACS shall be able to compensate for torques due to external and internal
forces;

� ACS shall be able to avoid flexibility excitation, managing the flexible-
attitude coupling;

� ACS shall work under the environmental perturbations characterising the
cislunar environment, with reference to the operational orbit;

� ACS shall analytically be proven stable. The linear dynamics and kine-
matics shall be used to verify that 6 dB (i.e. gain) and 30 deg (i.e. phase)
stability margins are respected.

Classical control methods (e.g. PID control) are used to have a fundamental de-
velopment of the described ACS. Moreover, they are also employed as a reference
comparison with respect to a wave-based (WB) attitude control algorithm [87].
In fact, such typology of simple but innovative control technique is especially
suitable for mechanical systems that are inherently flexible and, thus, difficult
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to be rapidly controlled, like a spacecraft with flexible parts and with internal
liquid sloshing [88].

6.3.1 Guidance Functions

The first section to implement the GC system is the set of guidance functions. In
particular, pointing mode guidance functions can be implemented independently
from the employed control method; separately from a possible target for the
guidance and a eventual tuning for the control. In fact, the guidance is based
on a classical tracking regulator implementation [89]: the attitude trajectory
follows a reference quaternion evolution, defining an error quaternion in time.
The error angular velocity is obtained computing a reference angular velocity
from the reference quaternion definition, in a way that guidance inconsistencies
are avoided. The proportional command is finally computed from the quaternion
vector part, multiplied by the modified sign of the scalar quaternion part (i.e.
never equal to zero, but positive for values ≥ 0 and negative for values < 0). In
this way, the shortest path to the reference is always commanded.

Detumbling and safe mode acquisition (i.e. Sun pointing) guidance is imple-
mented only with classical control methods. In this ACS mode, the guidance is
simply composed by a certain reference and target angular rate, followed by the
acquisition of the Sun direction. Therefore, detumbling guidance is practically a
PD control with respect to ‖ω‖ → ωref = 0, while the Sun acquisition guidance
is determined from the Rodrigues’ formula for the eigenaxis rotation between the
actual Sun direction and the desired one [90]. Sun acquisition sub-mode starts
when detumbling is considered finished: when the angular velocity is below a
certain threshold, ‖ω‖ ≤ ωtreshold. The switching logic is one-way activation,
detecting the first passage below the angular velocity threshold, without risk
of mode flickering due to sensor noise. The proportional command for Sun
acquisition is generated similarly to the pointing mode guidance, having the
error quaternion available from the Rodrigues’ rotation formula. The derivative
command is computed from the measured angular rates of the spacecraft, after
a proper low-pass filtering to reject noise. Note that also in this case, there is
no need of a target angular velocity: the target angular rate is zero and, thus,
during Sun acquisition, the angular rates behave has a good approximation of
the derivative command.

6.3.2 Classical Control Methods

Classical control is implemented as a consistent GC block feedback to the
flexible-attitude system dynamics. The development and design are carried out
with the linear dynamics in section 2.5.3.1 and Linear Time Invariant (LTI)
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Figure 6.10: Pole-Zero map of the closed-loop system. (Poles: ×, Zeros: ◦).

plant dynamics, applied to the control analysis of the Single-Input and Single-
Output (SISO)/Multiple-Input and Multiple-Output (MIMO) systems. Hence,
the control design is performed through linear analyses, exploiting a LTI plant
that is obtained linearising the system around a certain attitude equilibrium set
point, defined by an equilibrium angular rate, ωeq, as:

ω = ωeq + ω̂, (6.1)

where ω̂ are small rate perturbations around the equilibrium point. The full
linearisation provides a linear time invariant system in state space formulation
(e.g. A, B, C, D matrices). It should be reminded that this system is represen-
tative for the dynamics just around a single attitude equilibrium condition, with
angular rates small enough to stay within the kinematics linearisation limits.
Nevertheless, the output of the LTI plant is always validated by comparison with
the results available from non-linear dynamics, simulated at the linearisation
point.

Control actions are simply obtained with a PD logic from proportional and
derivative commands computed by the aforementioned guidance functions. The
integral action (i.e. I) is not inserted in the classical PD method, to avoid
stability issues (e.g. additional poles in the controller) and numerical problems
(e.g. integrator saturation): steady state error is assumed to be not a problem for
the considered cislunar applications. The flexibility management is performed by
filtering the whole control action with a band-stop filter (i.e. notch filter), which
rejects a band around the main sloshing frequency and the first natural frequency
of the flexible appendages. Higher natural flexible modes are considered to be
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Figure 6.11: Step response of the closed-loop system.

out of the controller bandwidth and, thus, are not included in the GC functions
implementation. The half-width of the rejection band in the band-stop filter is
selected to be 15% of the central stop frequency. The filter section closes the
GC sequence and, then, the control command is sent to the reaction wheels
for the actuation. The controller is discretised for linear analyses and control
implementation, with ACS frequency fACS = 1 Hz.

The initial values for the gains are obtained with the Ziegler-Nichols tuning
method, which assumes the system to behave as a second order closed-loop
model, with its natural frequency ω2nd and its damping factor ξ2nd. They are
applied in this high-order flexible-attitude system, because direct tuning methods
are missing. The natural frequency is selected to be equal to twenty times the
orbital frequency (i.e. ω2nd = 20ωLLO) and the damping coefficient is obtained
to satisfy the requirement on settling time, ts ≤ 200 s. In fact, for a second order
system, the settling time is approximately equal to:

ts ≈
4

ω2ndξ2nd
. (6.2)

Hence, the first initial guesses for the PD control gains are:

kPi = Iiω
2
2nd, (6.3)

kDi = Iiω2ndξ2nd, (6.4)

where Ii is the moment of inertia for each i-th principal axis. In figure 6.10 the
Pole-Zero Map of the closed-loop system is reported and, given the presence of
two dominant poles, the assumption to design the GC functions with a second
order system method is confirmed to be valid.

Obviously, there are some differences with respect to a true second order linear
system. Thus, the control tuning is verified also considering the output of the
linear analysis to achieve stability margins and settling time according to the
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Figure 6.12: Bode plot of the open-loop system.
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Figure 6.13: Bode plot of the external disturbance sensitivity function.

system requirements. The step response and the bode plot of the closed loop
system are reported in figure 6.11 and figure 6.12: performance requirements are
achieved on the three axes. In fact, the settling time is evident figure 6.11, with
a closed loop step response with ts lower than 200 s, in particular ts ' 175 s.
The stability margins are computed from the open loop system, which is stable
on the 3-axes with a phase margin of ∼ 61.5◦, ∼ 61.5◦ and ∼ 64.7◦ respectively
on b̂1, b̂2 and b̂3. The gain margin is infinite since the phase never crosses the
−180 axis. In figure 6.12, the effect of the filter to avoid flexibility coupling is
evident; looking at the deep attenuation in magnitude, around the main flexible
frequencies (i.e. ∼ 0.63 rad/s), due to the dedicated ACS implementation. Note
that b̂1-axis plant is never visible in the plots because it is identical to the
b̂2-axis one. Therefore, b̂1 plots are perfectly below b̂2 plots.
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Figure 6.14: Bode plot of the sensitivity function.

From the sensitivity function, in figure 6.14, and the external disturbance
sensitivity function, in figure 6.13, it was possible to check, respectively, the
capability of the system to reject internal noise and external perturbations. With
reference to the bode plot in figure 6.13, the high frequency external loads are
correctly attenuated and the constant external loads produce a steady state
error, due to the lack of integral control action, which is below 20 dB. Moreover,
as expected, in figure 6.14 high frequency internal noise is not amplified, while
steady state error in the sensor is attenuated, since the control is able to point
according to the knowledge from the sensors’ measurements.

MIMO results in figure 6.15 and figure 6.16 show that the system is stable also
controlled around a steady condition with coupling between the axis due to
spinning. The cross-talk between the axes is very limited and, consequently,
there is a correct attenuation in all the non-diagonal bode plots. The diagonal
bode plots, obviously, behave the same as the 3 SISO bode plots presented before
in figure 6.12.

At this point, the output of the linear analysis design is completed and verified.
But, when GC functions are applied to the full non-linear dynamics a gain tuning
refinement is required. In particular, the PD gains are proportionally increased
to reduce the steady state error, while maintaining stability and settling time
requirements enforced. As a consequence, the proportional gain is selected
according to the limit of the stability requirement (e.g. phase margin ∼ 30◦),
which results in kP ' 1. The derivative gain is scaled accordingly, resulting in
kD ' 50.
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Figure 6.15: Step response of the MIMO closed-loop system.
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Figure 6.16: Bode plot of the MIMO closed-loop system.

The first evaluation of GC functions performances is conducted by means of
numerical simulations without sensors noise and actuators errors. In figure 6.17
the angular velocity during detumbling and Sun acquisition mode is reported.
Detumbling is completed in around 5000 s, followed by the Sun acquisition phase,
which is very rapid. The flexibility excitement is not reflected in the dynamics,
because there is not a diverging evolution of flexibility modes. In figure 6.18, the
results of a pointing phase simulation are shown, from steady state null initial
conditions (e.g. ‖ω‖ = 0 and identity quaternion). The final target quaternion is
constant in time with value qref = [0.5, 0.5, 0.5, 0.5]T.. Steady state conditions
are reached in ∼ 500 s, with a settling time in the order of ∼ 200 s. The flexible
dynamics is not excited unstably and the pointing is correctly achieved. The
final resulting performances have the error rates and the error angles within the
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Figure 6.17: Angular velocity during detumbling and Sun acquisition mode.

imposed requirements. However, the actual verification of the ACS performances
is discussed in section 6.3.4 through FES Monte Carlo simulations.

6.3.3 Wave-based Control Method

Wave-based control is a control technique introduced at the end of the last
century, by O’Connor [87]. The flexibility and the fluid sloshing of the system
are modelled with a linear second order system, which is used as a sort of
model prediction to support the control functions. Even if a detailed model
of the flexible dynamics within the system is not needed. The control action
is then divided in two components: one travelling from the actuator into the
system, and the other going from the system through the actuator. Practically,
the actuator simultaneously launches mechanical waves into a system while it
absorbs returning waves. The control system is therefore able to absorb the
vibrations by means of destructive interference. The method has been applied
in literature to 1 DOF systems with interesting results and, recently, the control
technique has been extended to spacecraft in planar motion (e.g. 2 + 1 DOF)
with preliminary results [88]. The possibility to control 6 DOF spacecraft or,
namely, 3DOF coupled attitude, has not been tested yet and it is discussed in
this section.

The peculiarity of wave-based control is the combination of position control
and active vibration damping. As a matter of fact, the 1 DOF wave-based
control implementation begins from the development of the wave model to
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Figure 6.18: Pointing mode with classical PD control.

represent the vibrations of the system. Ideal second order linear models are used
(i.e. spring-mass-damper systems), through the associated approximating wave
models:

G0 =
ω2
G

s2 + ωGs+ ω2
G

with ωG =

√
2k0

m1
, (6.5)

H0 =
ω2
H

s2 + ωHs+ ω2
H

with ωH =

√
2k0

m0
, (6.6)

where G0 is the transfer function associated with the control output wave (i.e.
the control wave), and H0 is the transfer function associated with the returning
wave (i.e. the approximated response of the systems). The associated angular
frequencies (i.e ωG and ωH) should be tuned to have the desired behaviour of the
controlled system. Therefore, the tuning parameters are the associated physical
parameters k0, m0 and m1. They are indicated in the conceptual representation
of the wave-based control method, reported in figure 6.19, which shows the
actuation mass, m0, and spring, k0, attached to the mechanical system to be
controlled. Thus, the control action is generated by a hypothetical oscillating
mass, m0, which tries to create destructive interference on the returning wave,
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Figure 6.19: Wave-based control concept.

H0, by means of a control wave, G0. A reference actuation state, A0, is computed
in order to suppress vibrations, while commanding a certain position of the
system, A1. Hence, the control is actuated by the displacement of the fictitious
mass m0

In practice, the wave-based control launches a control wave equal to half of the
reference 1 DOF state and to the 1 DOF returning wave. The measured values
of the actual state and the commanded control are then used to evaluate the
returning wave component at the actuator as:

B0i = H0

(
qi − P0mCi

1− P0Q0

)
, (6.7)

where qi and mCi are, respectively, the measured 1 DOF attitude state and the
commanded 1 DOF control torque. P0 and Q0 are transfer functions defined as:

P0 =
G0

k0(1−G0)
, (6.8)

Q0 = k0(H0 − 1). (6.9)

The control is then actuated to match the returning wave component in equa-
tion (6.7) and, thereby, absorb it. When the absorbing is finished, the system
will have been displaced by the specified launch wave (i.e. 0.5qrefi +B0i), and it
will be at the reference state (i.e. 0.5qrefi +B0i − qi = 0).

The 3 DOF ACS is obtained by a combination of three 1 DOF wave-based controls
(i.e. 3 SISO systems). The development of a complete 3 DOF MIMO wave-
based control requires further developments, which lead to a more complicated
model-predictive wave-based control. However, this option is not considered in
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this research work. In fact, the wave-based control has been chosen because
of its simplicity and its robustness, without any prior knowledge of an exact
modelling of the flexible system under control. The 3 DOF MIMO wave-based
attitude control is considered to be out of the purpose of this investigation. The
main difficulties in dealing with MIMO wave-based method are due to the fact
that the attitude is fully coupled among the 3 axes, and to the fact that the
attitude representation (i.e. quaternions) has a complex non-linear formulation
to compute the errors with respect to a reference 3 DOF attitude state (i.e.
non-linear formulation for the control wave). The fully coupled dynamics and the
inherent non-linearities in the 3 DOF attitude control problems produce returning
waves that enter 3 separate actuators. However, each control component can be
absorbed only by the actuator that launched it into the system. In practice, it is
not possible to distinguish proper returning waves to be absorbed and spurious
returning waves coming from the coupling between different axes. The result is
a non-working control that converges to the wrong target position, with weak
stability properties.

The wave-based control method GC functions are designed with a preliminary
tuning process on the linear system, followed by a fine tuning to achieve the
desired performances on the full non-linear dynamics. The initial values for the
control parameters are obtained from the real system characteristics, translated
into the conceptual wave-based model, which is defined by k0, m0 and m1. It
is here reminded that the 3 SISO controllers and the lack of a non-linear wave
model to handle 3 DOF attitude reference state make the implemented control
algorithms to work well just in proximity of the reference target attitude (i.e.
small error angles and small angular velocities). Again, this limitation is imposed
by the difficulties to manage cross-coupling across the 3 body axes. Anyhow,
the results are deemed relevant to be discussed since it is anyway possible to
understand the capabilities of this control technique in damping out the sloshing
and the internal vibrations connected with the spacecraft coupled dynamics
during steady state pointing, which is relevant to achieve accurate control during
the final phases of rendezvous operations in cislunar space.

The developed wave-based control has the transfer function associated with the
control wave working in proximity to the main flexible frequencies: ωG ∼ 0.1 Hz
The returning wave is tuned to have enough control bandwidth; therefore, the
returning wave is tuned to have a frequency that is almost double to the control
wave: ωH ∼ 2ωG. These control frequencies are obtained setting the control
gain k0 to be close to the value of the proportional gain in the classical control
formulation: k0 ∼ 1. This is done to have similar stability properties and
analogous behaviour to the controller described in section 6.3.2. The equivalent
masses m0, m1 have been computed accordingly. The fine tuning of the gains
is carried out to avoid excessive overshooting. At the end the control gain is
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Figure 6.20: Pointing mode with wave-based control.

k0 = 0.6 and the returning wave frequency is lowered to ωH = 1.75ωG to reduce
the control oscillation before convergence.

A pointing mode simulation is reported in figure 6.20. It is initialised with
steady state initial conditions (e.g. ‖ω‖ = 0) and random error angles with
respect to the target final state in the order of ∼ 5◦. The final target quaternion
is imposed to be the identity quaternion, with null vector part. Steady state
conditions are reached in ∼ 200 s. The sloshing is not excited unstably and
the pointing is achieved correctly. The capabilities and performances of this
control technique are similar to those achievable with the PD control with notch
filter. The rejection of external disturbances is better than classical control
methods, and it is remarkable to note the different suppression of the sloshing
effect, comparing figure 6.18c and figure 6.20c: wave-based control creates a
controlled periodic oscillation which is suppressed by a destructive interference,
while the PD control does not generate any periodic oscillation, because of the
notch filter, and the only sloshing evolution is directly related to the control
acceleration damped by the PD action.
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Figure 6.21: Monte Carlo analysis: Detumbling mode (50 runs).

6.3.4 Numerical Verification

The verification of the ACS performances is conducted by means of multiple
Monte Carlo simulations, executed with the FES simulator. The Monte Carlo
dispersions are defined with respect to all the system parameters, from sensors
noise specifications, to actuation errors, passing through the physical character-
istics of the spacecraft (e.g. position of the centre of mass, moments of inertia,
area of surfaces). Notwithstanding, these engineering details are not discussed
further in this dissertation. In fact, the purpose of this section is to highlight the
global validity of the developed set of GC functions in real operations scenarios in
lunar vicinity. In particular, practical attitude modes are simulated considering,
for example, the problem of rendezvous from a LLO to NRHO. Let’s assume
that a flexible spacecraft, ascending from the lunar surface, is inserted into a
LLO with a large spinning motion. The first necessary attitude operation is the
detumbling, followed by a Sun acquisition attitude manoeuvre to orient the solar
panels and charge the batteries before the continuation of the rendezvous mission.
Then, let’s suppose that the set of proximity operations are continued with an
attitude trajectory similar to those discussed in chapters 4 and 5. In these cases,
the guidance is defined as a quaternion evolution in time, qref = q(t), and
the implemented attitude tracking regulator tries to follow the reference path.
Therefore, the aforementioned pointing mode can be simulated to verify the
ACS performances. In both case, the focus is on the flexible-attitude coupling
during controlled dynamics. The main verification point is to check the lack of
any unstable flexible excitation, leading to resonant vibrations.
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Figure 6.22: Monte Carlo analysis: Sun acquisition mode (50 runs).

In figure 6.21, the verification of detumbling and Sun acquisition GC functions
confirms that the developed ACS is able to detumble the spacecraft within 20 min.
Soon after detumbling the Sun acquisition mode is automatically and irreversibly
switched on. The Sun is acquired and pointed within specifications. In fact, in
figure 6.22, it is possible to see that the Sun is always correctly acquired along
−b̂3. There is no evidence of flexibility excitation and the average momentum
storage level in the reaction wheels is always contained below 5 Nms in all the
axes.

In figure 6.23 Monte Carlo simulations for pointing mode are shown. Maximum
steady state error in error angles is 1◦ (b̂1 and b̂2) and 0.5◦ (b̂3). Steady state
is achieved in ∼ 300 s and the slower behaviour, with respect to the original
design analyses, is due to Monte Carlo dispersion computed with the Deimos
Space S.L.U. FES simulator and to the fact that the tracking is performed
with respect to a quaternion trajectory in time. The lower pointing error in
b̂3 is due to the fact that the sloshing is acting mainly in the b̂1 − b̂2 plane,
while the effect of the flexible appendages has a weaker effect on the attitude
dynamics. The pointing errors is the order of ∼ 1◦ are due to friction torques in
the reaction wheels, which are assumed to be in the order of 10% of the maximum
actuation torque. However, again, the stability performances are here preferred
with respect to high disturbance rejection. In fact, the increase in the required
proportional gain is limited by the stability properties and the inclusion of an
integral action (i.e. PID control) is avoided for the previously discussed stability
reasons. One alternative solution to reduce steady state pointing error can be
sought in the inclusion of a control loop on the wheels management. In this
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(a) Angular Pointing Error

(b) Angular Rates Error

Figure 6.23: Monte Carlo analysis: Pointing mode (50 runs).

way, the friction of the wheels can be controlled in order to reduce the actuation
disturbances. Additional Monte Carlo simulations, with a 90% reduction in the
wheels disturbances, proved that in these cases maximum pointing errors are
always in the order of ∼ 0.1◦.
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Monte Carlo simulations performed with the FES simulator are applied to verify
classical control methods. The wave-based control has been verified by means of
several one-shot simulations, similar to the one in figure 6.20 using the flexible
non-linear dynamics discussed in section 2.5.3.1. The verification of flexible-
attitude guidance and control functions proved the fulfilment of the requirements
introduced in the beginning of this section.

As a matter of fact, the ACS is able to avoid flexibility excitation and to manage
the flexible-attitude coupling. Intrinsic properties analysis, such as stability
margins, settling time or sensitivity to noise and external disturbances, supported
the development of the ACS algorithms, extracting all intrinsic properties of the
system. The flexibility coupling is managed mainly exploiting the results of the
linear analyses carried out. Extrinsic verification with numerical simulations, in
both one shot and Monte Carlo runs, provides full insight in the operation of
the GC functions in the two example scenarios: detumbling and sun acquisition
mode and pointing mode. The numerical simulations in FES for classical control
methods are complete, considering all the real effects acting on a space system
in lunar vicinity. Numerical verification proved the validity of the whole set of
GC functions.

The on-board guidance and control for Detumbling and Sun Acquisition mission
phases is implemented and tested only with classical control methods, due to the
discussed limitation of the wave-based control. On the contrary, the controller
for pointing mode is implemented with two different structures: PD control
and wave-based control. Guidance profile generation and on-board control for
pointing mission phases are properly filtered to consider flexibility and sloshing
constraints, reducing possible tracking errors due to the internal vibrations.
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CHAPTER7
Conclusion

This is the end, beautiful friend
This is the end, my only friend
The end.

— Jim Morrison

This dissertation deals with 6DOF dynamics, guidance and control for large
space structures in cislunar space, analysing both absolute and relative motion.
The performed analyses and the set of developed tools and GC functions are
helpful to drive the design of a large space system in lunar vicinity, such as the
proposed cislunar space station. In particular, the research work presented in
this thesis is focused on possible rendezvous and proximity operations, defining
practical strategies that can be exploited to deal with the assembly and the
management of the cislunar space station.

This final chapter summarises the major findings and outcomes of this research
work, by recalling the performed investigations and their relevance when associ-
ated to practical mission applications. The elements of innovations with respect
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to existing knowledge and previous works in the field are highlighted. Moreover,
possible opportunities and suggestions for future works are finally discussed.

The presented results highlight the importance of the coupling between orbital
and attitude dynamics. The primary coupling is related to the effect of the
orbital dynamics on the associated naturally periodic rotational motion. In
the other way around, the influence of the attitude dynamics on the orbit has
a lower magnitude. In fact, the gravitational attraction deviation due to the
rotational motion is, for realistic bodies, 4 to 5 orders of magnitude smaller than
the one determined by the other perturbations. Therefore, the main coupling
from the attitude to the orbital dynamics is related to orientation-dependent
perturbations, like the SRP.

The best orbit to host a large space structures in the vicinity of the Moon,
together with the related coupled attitude dynamics, is not completely defined.
Then, despite the focus of the discussed analyses is on certain orbital families,
an important remark can be structured and applied to all the classes of non-
Keplerian orbits: when dealing with large space structures, there is an upmost
need to consider not only the orbital dynamics but also the rotational motion.
This necessity is not only related to the accuracy of the simulations, but also to
the fact that the study of coupled orbit-attitude dynamics gives an extensive
knowledge about the 6DOF space of solutions, which can be positively leveraged
to design future missions and operations. Furthermore, the flexibility of a large
space system should not be neglected, even if its influence seems to be not
strongly coupled with the natural dynamics. This is because, attitude dynamics
associated with particular operational activities and manoeuvres, or the presence
of an active control system, as the one discussed in section 6.3, can introduce
higher frequency phenomena that can interact with the flexibility of the space
system.

As a matter of fact, the main innovation aspect of this research work is related
with the extensive investigation about coupled orbit-attitude-flexible dynamics in
non-Keplerian cislunar environment, and its application to guidance and control
problems for absolute and relative dynamics. Moreover, particular attention is
dedicated to periodic non-Keplerian orbit-attitude solutions with applicative
relevance, such as NRHOs and DROs. They are currently considered as optimal
staging location for the future modular infrastructure in lunar proximity and,
thus, their complete characterisation, including natural and controlled 6DOF
absolute and relative dynamics, is interesting and innovative in the framework
of non-Keplerian dynamics research.

The orbit-attitude spin stabilised solutions presented in chapter 3 laid the
foundation for a simple and effective control of modular and extended space
structures in cislunar environment. The attitude stabilisation techniques help
the design of the considered space system, broadening the space of periodic
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orbit-attitude solutions that are stable enough to host an extended spacecraft
with minimum active control effort. Furthermore, spin stabilisation techniques
offer possibility to manage situations in which the inertia properties and the
configurations of the space system change in time. This is guaranteed by small
on-line adjustments to the attitude stabilisation parameters, which are extremely
efficient in terms of energy consumption. This aspect is extremely important for
a modular structure that is assembled on-orbit by means of many automated
operations. In fact, the attitude control technique should be as simple and
efficient as possible since, while designing this kind of space missions, the main
driver that must be followed is the minimisation of maintenance and station-
keeping costs. The attitude stabilisation methods presented in this dissertation,
with single-spinning spacecraft or constant speed spinning devices, showed a
positive and innovative result in this direction.

Natural dynamics existing in non-Keplerian environment is well known from
classical literature. Nevertheless, its 6DOF formulation and its application to
relative dynamics problems offer new results that are relevant in the framework
of applications to the cislunar space station. The design and optimisation of
a whole rendezvous mission can be particularly enhanced by the exploitation
of these orbit-attitude natural trajectories. They can be designed to have a
full connection of orbit and attitude states from the departure point to the
final rendezvous approach. Again, during the design of cislunar operation, the
main driver to be followed is the minimisation of transfer and control costs.
Thus, natural rendezvous trajectories are extremely beneficial in this direction.
Moreover, the attitude control design is integrated, and the attitude stabilisation
techniques allow to tune and stabilise the natural attitude motion with little
influences on the orbital motion. The proposed 6DOF natural and controlled
rendezvous design guarantees effective and efficient solutions for the design and
implementation of the considered space system.

Rendezvous control techniques presented and analysed in this dissertation are
based on a complete set of GC functions for transfer operations in the Earth-
Moon system. In these regards, the cislunar space station project is a perfect
application scenario for the developed methods and tools. In fact, this ambitious
space mission requires a careful planning of all the rendezvous operations and,
due to the dimensions of the space system itself, the attitude coupling is of
primary relevance; in particular, when considering relative dynamics. Extensive
knowledge of orbit-attitude relative dynamics in cislunar space is fundamental
to design proper GC functions and to exploit natural dynamics in helping the
rendezvous design process. Moreover, the analyses about relative dynamics
guidance and control further emphasise the importance in studying the fully
coupled orbit-attitude dynamics while designing the architecture to build and
operate a large and modular space structure in cislunar orbits. In particular, the
coupling with the structural flexibility is extremely important during controlled
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operations, because the structural dynamics of extended space infrastructures
could be excited by the active control system and, thus, it could generate
non-nominal situations during rendezvous phases. The examples of possible
rendezvous scenarios with very large and flexible spacecraft in cislunar space
addressed in this dissertation can be used to show the capabilities of the developed
analyses and design tools. Moreover, some reference parameters for typical
rendezvous missions are presented, and they can be exploited to assess the
feasibility of the entire network of missions and operations in lunar vicinity. In
particular, the exploitation of optimal energy controls and the application of
natural motions to satisfy operational requirements are presented to report which
are the design methods that can facilitate the implementation of such advanced
space systems. Furthermore, the coupled investigation gives the possibility to
set few preliminary system requirements. For example, NRHO’s perilune is not
convenient for proximity operations and delicate manoeuvres: NRHO’s apolune
is the safe region where complex operations shall take place.

The present research work provides also a detailed discussion about the fidelity
of cislunar dynamics modelling. In fact, the design of applied operations shall
rely on accurate simulation, in order to test the performances of the implemented
GNC functions. Actually, circular restricted and other approximated models (i.e.
ER3BP) are beneficial for preliminary analysis of non-Keplerian environment.
Still, the peculiarities of the Earth-Moon system are strongly dependent from the
true motion of Earth and Moon, since their orbital eccentricity is not negligible
in dictating the force field that maintains the periodicity of non-Keplerian orbits.
In addition, the gravitational attraction due to the Sun plays a non- negligible
role as well; in fact, the periodic oscillations of the cislunar orbits due to the
Sun’s pull are missed out in a CR3BP model. In particular, for what concern
relative dynamics, even in the short period, the ephemeris four-body model is
the model to correctly represent the peculiar regime of relative motion in cislunar
space. Relative GNC functions designed in a simplified model of the Earth-Moon
system are in general not valid for practical applications. This is particularly
true when high precision is sought, like during close-proximity operations.

The space structure flexibility is investigated as a last part of the dissertation. In
fact, analysing unforced motion in cislunar space, there is no a strong coupling
between orbit-attitude dynamics and flexible dynamics. As a consequence, the
structural dynamics of a space system may be investigated almost independently
from the planned orbit-attitude evolution, and the dynamical response of the
space structure is composed of a quasi-static term plus a superposition of natural
modes. This is due to the large separation between typical lowest natural
frequencies of real extended space systems and the ones related with the free
non-Keplerian dynamics. Therefore, even if the complete orbit-attitude-flexible
coupling should not be completely neglected, it is reasonable to decouple the
natural orbit-attitude dynamics from the flexible effects. Still, when an ACS is
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considered and the study is focused on forced dynamics, this assumption is not
valid anymore. Under these conditions, the forcing frequencies or the control
bandwidth can overlap the natural modes of the structures. Indeed, the higher
frequencies associated with an active control system can be more dangerous with
respect to possible resonances of the flexible system. Then, the GC functions
design shall consider the flexibility, avoiding possible vibration excitation. In
these regards, the vibrational dynamics is mainly relevant on the attitude motion,
since the flexible perturbations on the orbit motion are typically few order of
magnitudes lower than other perturbing forces. So, the implementation of GC
algorithms is conducted taking into account the flexible-attitude coupling. The
developed ACS exploiting classical PD control proved its validity in suppressing
vibrations resonance whilst the spacecraft is manoeuvred to acquire the desired
rotational state. Alternatively, the application of wave-based control is powerful
in containing internal vibrations and structural excitations, but the range of
applications is limited to pointing mode by cause of the difficulties in managing
coupled 3 DOF MIMO dynamics.

7.1 Future Works

The research work presented in this dissertation is obviously not all-encompassing
the vast topic of dynamics, guidance and control of large and flexible space
structures in cislunar space. For sure the present research can be extended and
generalized to include more mission scenarios and GNC design solutions. For
example, the coupling between orbital and attitude dynamics should be further
investigated. In particular, dedicated analyses are needed to highlight the effects
of perturbations in long term simulations. In the direction of the cislunar space
station program, this is needed to evaluate station-keeping cost and long-term
stability performances on the selected staging periodic orbit-attitude dynamics.

Moreover, varying in time configurations and different mechanical properties
of the extended space structure can have a strong effect on the coupled orbit-
attitude dynamics. For this reason, the study of the effect of changing mass
distribution on the periodic dynamics is important. As example, the sequence in
which a future space station will be assembled is of a maximum relevance. In that
case, the inertia moments will vary in time, as docking operations are performed
and independent modules are attached and detached from the main structure.
These operations will have to be carefully planned to avoid the departure from a
stable periodic dynamics or to minimise the station-keeping effort. Therefore,
the complete assembly sequence need to be designed and optimised. Such a
research work could begin exploiting the solid foundation of analyses and tools
presented and discussed in this dissertation.

163



Chapter 7. Conclusion

Further investigations are suggested also about spin stabilisation methods. In
particular, passive single or dual-spin attitude stabilisation methods, analysed in
section 3.4, can be integrated with the currently proposed active attitude control
system in section 6.3. As a consequence, the range of the proposed results can be
extended, and the investigation of an active control system with variable stored
angular momentum is of interest.

Finally, a methodical applications of the methods and the tools presented in
this dissertation for a complete survey of the cislunar space environment can
extend the range of selection for the nominal staging orbit. For example, an
orbit with a higher perilune altitude can be helpful to extend the available time
window to perform rendezvous operations. Moreover, further investigations on
the entire system configuration and on the assembly strategy may highlight some
additional drivers for the cislunar infrastructure design and implementation.

Even though the best orbit-attitude periodic motion and configuration of a
large space structure in the vicinity of the Moon is not completely defined, this
Ph.D. research is intended to underline some relevant and essential conclusions
in the field of dynamics, guidance and control of extended and flexible bodies in
cislunar environment. The presented investigations emphasises the importance
in studying the fully coupled orbit-attitude dynamics and in implementing GC
functions able to deal with the intrinsic flexibility of the system. The acquired
knowledge is applied to rendezvous and proximity operations, having in mind the
on-orbit assembly of a cislunar space station. However, it shall not be limited to
the current applications: future research endeavours will pursue for something
that is still unknown.

Research without research is, tautologically, pointless.
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