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Abstract

Spacecraft autonomous relative navigation is an arduous and attrac-
tive problem for future space missions. In particular, autonomy is becoming
indispensable, allowing to cope with the inability to rely on commands from
ground control stations (due to communications latencies and black-outs),
but providing increased mission frequency, robustness, and reliability. In
this thesis, innovative techniques for relative state estimation in case of
uncooperative known and unknown objects, using cameras, are proposed.
Several mission scenarios are examined, considering the consequent ef-
fects on the architecture of the estimation technique, its robustness and
implementability. An innovative approach for vision-based relative state
estimation using a mono-camera is presented along with numerical and
experimental results. The novelty of this approach lies in the pose acquisi-
tion algorithm, based on a customized implementation of the RANSAC
algorithm which exploits the Principal Component Analysis (PCA) and
the knowledge of a simplified target model, and in the navigation filter,
exploiting a linear H-∞ Filter for the translational motion and an in-
novative 2nd Order Non-linear Filter on the Special Orthogonal group
(SO(3)) for the rotational part. Moreover, this work offers an extensive
comparative analysis between different filtering techniques for relative atti-
tude estimation. In the same framework, relative navigation in a cislunar
environment is analyzed, considering the case of a passively cooperative
target and a chaser equipped with stereo-camera. Then, a novel estimation
technique combining Radial Basis Function Neural Network (RBFNN) and
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an adaptive form of a Kalman Filter is presented and applied to relative
navigation scenarios. Finally, the problem of navigating, mapping and
planning around a small body (uncooperative unknown target) is tack-
led exploiting Partially Observable Markov Decision Process (POMDP).
All the different approaches and algorithms presented in this dissertation
provide satisfactory and promising results, representing possible answers
to the main challenges of vision-based proximity relative navigation with
uncooperative objects.
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CHAPTER1
Introduction

Watching a coast as it slips by the ship is like
thinking about an enigma. There it is before
you, smiling, frowning, inviting, grand, mean,
insipid, or savage, and always mute with an

air of whispering, "Come and find out"
Heart of Darkness (1899)

Joseph Conrad

Spacecraft navigation is the action of processing measurements to
determine the actual and probable future position and attitude of a ve-
hicle. Taking a cue from the analogy in [1], spacecraft navigation can
be compared to primordial ships navigation. In fact, once the ship left
the port, its location was very uncertain. The sailors could then exploit
some rudimentary sensors, such as the sextant or its ancestor the Jacob’s
staff, having a vague idea of the location of the home port and of the
destination to estimate their position. In modern spacecraft, the naviga-
tion task is essential and it is usually carried out by exploiting sensors,
dynamical models, powerful computers and ground support. With the
word navigation we refer to absolute spacecraft navigation, i.e. the problem



Chapter 1. Introduction

of localizing itself with respect to a known, inertial reference frame. In
this thesis, we are interested in relative navigation, i.e. the problem of
finding the relative location and attitude of two different space objects’
reference frames. Moreover, the necessity to significantly enhance the level
of autonomy of spacecraft to enable next-generation space missions has
been recently acknowledged by major institutions like NASA [2]. In fact,
autonomy allows to cope with the inability to rely on commands from
ground control stations (due to communications latencies and black-outs),
but it can also provide increased mission frequency, robustness, and relia-
bility [3], [4] . In this framework, this thesis investigates the problem of
autonomous relative navigation between an active satellite (chaser) and
another space object (target) orbiting in close-proximity. This activity
is of interest to a variety of applications, namely Formation Flying (FF)
[5], On-Orbit Servicing (O-OS) of functional satellites [6] or space station
[7] and Active Debris Removal (ADR) [8], [9]. Indeed, in such mission
scenarios, the on-board processing unit of the chaser must be able to
autonomously estimate its relative state ensuring both high accuracy and
update-rate, thus being able to satisfy control requirements and minimize
collision risks. During the last decades, few missions have tried to perform
autonomous operations in space. However, the interest of the main space
agencies towards a gradual automation of space missions is increasing be-
cause of its numerous advantages. The first mission involving autonomous
proximity operations in space was the Engineering Test Satellite ETS-7 in
1997 [10]. Autonomous rendezvous and docking was performed between
two unmanned spacecraft using laser, GPS and proximity sensors. In 2005,
NASA sponsored the DART (Demonstration for Autonomous Rendezvous
Technology) [11] mission to demonstrate automated spacecraft relative
navigation and rendezvous. However, this mission failed with an uninten-
tional collision between the two spacecraft. DARPA, in 2007, launched
the Orbital Express mission [12] aimed at developing an approach for au-
tonomous satellites servicing. The chaser spacecraft successfully performed
autonomous in-orbit refueling. Another important mission demonstrating
autonomous spacecraft proximity operations is PRISMA, launched in 2010
[13], [14]. During the mission, the chaser performed different maneuvers
and relative approaches around the target spacecraft, demonstrating the
possibility to use relative navigation techniques (i.e. GPS-based, RF or
vision-based) to enable future FF missions. Depending on the category
of target, different application scenario can be identified [15]. Table 1.1
reports different possible mission scenarios with the associated chaser and
target hardware for each case.
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Table 1.1: Relative Navigation Scenarios

Target category Chaser hardware Target
hardware

Mission
scenario

Actively
cooperative RF/GPS antennas RF/GPS

antennas FF, O-OS

Passively
cooperative

Relative sensors (e.g.
cameras, LIDAR)

Artificial
markers FF, O-OS

Uncooperative
known Relative sensors - ADR, O-OS

Uncooperative
unknown Relative sensors -

ADR,
Small-body
approach

In the actively cooperative target case, both chaser and target have the
knowledge of their own state with a certain degree of uncertainty and
they exchange information by means of a communication link. In this
case, the navigation performance is usually very high and this solution can
be applied to FF and O-OS scenarios in which high accuracy is required
[16]. In some cases, the target may also be cooperating in a passive way,
through artificial markers on the spacecraft body that can be detected
and tracked by the chaser spacecraft [7]. Also in this case, very accurate
navigation can be performed. When dealing with uncooperative targets,
the navigation performance inevitably degrades because of the lack of
information provided by the target spacecraft. For this scenario, passive
or active sensors have to be used along with advanced software techniques
to derive a relative state estimate. However, even a limited knowledge
of the target spacecraft geometry (e.g. CAD model) can significantly
improve the relative state estimation. Specific attention is also addressed
to the case of uncooperative targets which are particularly difficult to
approach. In fact, the lack of any a priori knowledge of the target body
and the high uncertainty on its motions make the relative navigation
problem particularly difficult to tackle. Consequently, advanced, ad-hoc,
technological and algorithmic solutions shall be envisaged. With regards to
the technological aspects, Electro-Optical (EO) sensors have been identified
as the best option for relative navigation purposes when close-proximity
maneuvers (e.g., rendezvous and docking) towards uncooperative targets
are required [15]. In particular, either active LIght Detection And Ranging
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(LIDAR) systems or passive monocular and stereo cameras can be used.
The selection of the navigation sensor must consider the resources available
on board in terms of mass, electrical and processing power, on one side, the
mission scenario and the costs to be sustained for design and development
of the satellite system, on the other side [17]. This thesis considers the use
of monocular and stereo cameras. Indeed, they provide advantages with
respect to LIDARs in terms of lower hardware complexity, cost, weight and
power consumption and because of the possibility to be simultaneously
used for supervised applications. It is worth underlying that monocular
cameras have much larger operational range, not limited by the size of
the platform with respect to the stereo approach but they cannot provide
depth information. However, the adoption of cameras shall involve the
identification of strategies to cope with their operational drawbacks, like
the sensitivity to adverse illumination conditions [18] (e.g., saturation under
direct Sun illumination, or absence of light during eclipse). The problem
of estimating the state of an uncooperative target using passive cameras
can be tackled by exploiting either a loosely-coupled or a tightly-coupled
relative navigation architecture. The tightly-coupled approach consists
in directly processing natural features (e.g., corners [19], edges [20], or
more complex descriptors [21], [22]), extracted from the acquired images,
within a filtering scheme (e.g., a Kalman Filter (KF)). Specifically, the
Line-of-Sight (LOS) or the 3D position vector of each feature shall be
included in the state vector [23], [24]. Consequently, the computational
effort increases with the number of detected features. Moreover, tightly-
coupled architectures are not robust in case of fast relative dynamics or if
the target has complex geometry, since the capability to adequately track
features can be compromised. This can happen also when approaching
spacecraft with moving parts (e.g. Geostationary Earth Orbit (GEO)
communication satellite). On the other hand, it is important to underline
that these approaches are the best option when dealing with uncooperative
unknown targets, for which also information on the inertia parameters can
be recovered [25], [26]. Instead, in the case when at least basic information
about the target geometry are available, loosely-coupled architectures are
typically preferred. This term is used to indicate the fact that the relative
navigation architecture is composed of two separate, consecutive blocks.
First, the pose determination block analyzes the acquired images to provide
an independent estimate of the target/chaser relative position and attitude.
Then, this pose estimate is used within the measurement equation of the
KF.
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1.1. Desired Attributes of a Navigation Filter

1.1 Desired Attributes of a Navigation Filter

This section contains an overview of the desirable attributes that a nav-
igation filter should have. The qualities outlined in this list have to be
taken into account while designing a navigation filter and they are strongly
dependent on the application scenario.

1.1.1 Dynamical Modeling

The choice of the model to describe the state dynamics is one of the most
important aspects when designing navigation filters. Analyzing a relative
navigation scenario, neglecting external disturbances and flexibility of the
spacecraft, the translational and the rotational dynamics are decoupled.
The translational dynamics can be described by nonlinear or simplified,
linearized models, in terms or relative position and velocity. Different levels
of model fidelity are available considering specific formulations. In Chap-
ter 3 the main relative translational models, adopting a classical cartesian
formulation are presented. In this work, only cartesian formulations are
considered but it is worth mentioning that formulations based on orbit
elements can be adopted and that they are usually more efficient. For
the rotational part, attitude is naturally expressed as a rotation matrix.
However, classical filtering techniques exploit vectorial parametrization
of rotation for the attitude representation, such as quaternions. This
parametrization allows to use familiar filters like Extended Kalman Filter
(EKF) but implies the non-uniqueness of the attitude representation. This
is a strong weakness of this particular representation because it lead to
the unwinding phenomenon [27] during the control phase. Using rotation
matrix is therefore beneficial but it implies a more complicated algebra
and filters. Another important aspect to consider while modeling the filter
dynamics is the addition of orbital perturbations. This clearly implies
an increase of the computational cost of the algorithm but it is necessary
for filters with low frequency update or long operational time, when the
perturbations effects become significant, like in the case of FF.

1.1.2 Robustness

A navigation filter must be robust to measurements and initialization
errors. This implies that an appropriate filter should converge to the
desired solution in a reasonable time and with an opportune accuracy,
also in the case of measurement noise levels different from the expected
ones. Moreover, it should be robust to uncertainty in the dynamical model,
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especially in the case of unknown or partially known targets. Finally, it
should be very robust to tuning settings for both measurement and process
covariance matrix.

1.1.3 Computational Cost

A suitable navigation filter for space application should be computationally
efficient and inexpensive. This is due to the fact that high frequencies can
be required but the computational power on-board is limited. A desired
attribute is certainly the recursiveness of the adopted filtering technique.
This allows to use only the last measurement instead of the past acquired
data (recursive filter vs. batch filter). Recursiveness should be preferably
preserved also when adaptation is required. Furthermore, it is desirable to
have a practical tuning process that should not be dependent on off-line
training or long processes.

1.2 Thesis Overview and Contributions

This work mostly focuses on the relative navigation techniques and possible
application scenarios. In particular, innovative techniques for relative state
estimation in case of uncooperative known and unknown objects, using
cameras, are proposed. Several mission scenarios are examined, considering
the consequent effects on the architecture of the estimation technique,
its robustness and implementability. Chapter 2 introduces the basics
concepts of estimation theory. In particular, some of the most common,
linear and nonlinear filtering strategies are presented. In Chapter 3 the
dynamical models used all along the thesis to describe the relative motion
between two spacecraft are detailed. In Chapter 4 the main topic of the
dissertation is discussed. An innovative approach for vision-based relative
state estimation using a mono-camera is described along with numerical
and experimental results. Chapter 5 offers an extensive comparison between
different filtering techniques for relative attitude estimation, underlying
benefits and drawbacks of each examined algorithm. In Chapter 6, relative
navigation in a cislunar environment is analyzed. In particular, the case
of a passively cooperative target is investigated, considering a chaser
equipped with stereo-camera. Chapter 7 presents a novel estimation
technique combining Radial Basis Function Neural Network (RBFNN) and
an adaptive form of KF. The resulting filter is then applied to a relative
navigation scenario. In Chapter 8, the problem of navigating, mapping
and planning around a small body (uncooperative unknown target) is
tackled. A potential solution for autonomous planning for mapping and
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navigation is proposed. In Chapter 9 some relevant remarks are emphasized
and possible future extension of this work are introduced. The indented
contribution of this this and the main innovative aspects are summarized
below:

• an original loosely-coupled architecture for relative navigation toward
a non-cooperative, known target, based on a single passive camera, is
proposed. Innovative aspects are relevant to both pose determination
algorithms and filtering scheme.

• an extensive numerical performance comparison of classical and re-
cent nonlinear filtering techniques for relative attitude estimation is
presented. The influence of the poor knowledge of the inertia matrix
in filters exploiting dynamical models is investigated.

• a navigation filter formulation for relative navigation in a cislunar
environment is introduced. Preliminary performance analyses are
carried out, underlying possible criticality.

• a novel estimation technique combining RBFNN and adaptive KF
techniques is proposed and tested in a realistic relative navigation
scenario.

• the problem of planning for mapping and navigation around small
bodies is tackled. An autonomous orbit selection method to maximize
the small body coverage is proposed, by developing formal definitions
of quantitative measures characterizing the accuracy of the small body
map.

1.3 Bibliographic Disclaimer

The research presented in this thesis is the result of my original work
and collaborations with others during my PhD. In particular, the work
introduced in Chapter 4 was partially carried out in collaboration with
the University of Naples in the framework of the project VINAG, funded
by the Italian Space Agency, aimed at developing a highly integrated unit
(including vision, inertial and GNSS systems) for autonomous absolute and
relative navigation of spacecraft. In Chapter 8, instead, the work carried
out during a 6-month period at the Jet Propulsion Laboratory is described.
Furthermore, most of the work and results presented in this dissertation
have already been published in different journal papers or presented at
conferences. A list of major publications is here provided.
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CHAPTER2

Filtering Techniques

[...] the first step to sanity is filtering. Filter
the information: extract for knowledge.

David’s Sling
Marc Stiegler

This chapter discusses the main alternatives when dealing with state
estimation problem. In general terms, the aim of filtering is to estimate a
state, at a certain time, given some measurements, exploiting dynamical
and observation models. Filters are a crucial and indispensable element for
spacecraft navigation. For this reason, they have to guarantee accuracy and
robustness while limiting the computational burden. A detailed description
of some of the most used filtering techniques is presented, underlying pros
and cons of each approach.



Chapter 2. Filtering Techniques

2.1 Linear Filters

2.1.1 Kalman Filter

The most widely used and known filtering technique is certainly the KF
[37], [38]. It takes its name from Rudolf E. Kálmán, a pioneer of modern
estimation theory. In this section, the standard form of discrete-time KF
is presented. Let’s consider a linear discrete-time system:

xk =Fk−1xk−1 + Gk−1uk−1 + wk−1

yk =Hkxk + vk
(2.1)

with xk being the state vector, uk the control input, wk and the vk
the process and measurement noise with associated covariance matrix
Qk and Rk; yk the measurement output. Fk, Gk and Hk are the state-
transition, model-input and observation model matrices respectively. Given
the estimate of the state x̂k−1, the best estimate is obtained by propagating
the state using the dynamical model:

x̂−k = Fk−1x̂+
k−1 + Gk−1uk−1. (2.2)

This is the state prediction step of the KF. Please note that the x̂+

represents the a posteriori estimate: the expected value of xk conditioned
on all the measurements up to time k. Instead, x̂− is the a priori estimate:
the expected value of xk conditioned on all the measurements up to time
k − 1. In a similar way, according to probability theory, the covariance of
a linear discrete-time system can be propagated as:

P−k = Fk−1P+
k−1FT

k−1 + Qk−1. (2.3)

This is the covariance prediction step of the KF. The next step is to derive
the correction step, according to the available measurements yk. Without
entering into the details of the derivation, the KF correction step is:

x̂+
k =x̂−k + Kk(yk −Hkx̂−k−1)

P+
k =(I−KkHk)P−k−1

(2.4)

with Kk being the KF gain matrix:

Kk = P−k HT
k (HkP−k HT

k + Rk)−1. (2.5)

It is worth underlying that there is not any assumption on the Gaussian
nature of process and measurements noise wk and vk. It results that the KF
is the optimal filter when the noise is Gaussian, zero-mean, uncorrelated and
white, but, it is still the best linear estimator if the Gaussian assumption
does not hold.
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2.1.2 H-∞ Filter

As previously discussed, for linear systems with process and measurement
noise represented by a zero-mean Gaussian distribution, the KF represents
the optimal estimator. In fact, if the standard deviations of the process and
measurement noise are known, the KF is the minimum variance estimator.
However, to satisfy these assumptions and to guarantee a good tuning of
the filter, the mean of wk and vk and their covariance Qk and Rk have
to be known. If these assumptions are not satisfied or if the tuning is
off-nominal, a filter that minimizes the worst-case estimation error rather
than the variance of the estimation error could outperform the KF. This
kind of filter is called H-∞ filter or also minimax filter. It minimizes the
∞-norm of the estimation error and it does not make any assumption about
the statistics of the process and measurement noise [39]. The formulation
of the H-∞ filter is very similar to the one of the KF. In fact, the prediction
step is performed in the same way (see Equation (2.2) and 2.3) but, instead,
a slightly difference is present in the correction equation:

x̂+
k =x̂−k + Kk(yk −Hkx̂−k−1)

P+
k =(I−KkHk)P−k−1,

(2.6)

where the filter gain Kk has not the same expression of the KF. In particular
Kk has to be chosen such that ‖Tew‖∞<

1
θ
, where Tew represents the

difference between the predicted and real state and θ is a tuning parameter.
For the H-∞ filter, the expression of the gain is:

Kk = P−k [I− θP−k + Hk
TRk

−1HkP−k ]−1Hk
TRk

−1. (2.7)
Please note that the performance of the H-∞ filter is sensitive to the
selection of the tuning parameter θ. However, this kind of filter is the
best option when dealing with very uncertain systems and time-varying
dynamics, offering a robust alternative to KF at the cost of slightly reduced
accuracy.

2.2 Nonlinear Filters

KF and H-∞ Filter are linear filters that can be used when the dynamics
underlying the investigated phenomenon is linear. However, linear systems
are only approximations of more complex nonlinear dynamics. Many
real applications involve systems that can be approximated with linear
dynamics but this is not always true. When the behavior of a system
cannot be described with a linear function, linear filters are no longer
adequate. In all these cases, nonlinear estimators have to be employed.
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2.2.1 Extended Kalman Filter

A common approach to nonlinear state estimation is to use a modified
version of the standard KF to cope with the nonlinearities in the equations
of the dynamics. This is the so-called EKF [40]. The idea behind the EKF
is straightforward. In practice, the nonlinear system is linearized around
the state estimate and the state estimate is obtained from the linearized
system. In this section the discrete-time EKF is presented. Let’s consider
the nonlinear model:

xk =fk−1(xk−1,uk−1,wk−1)
yk =hk(xk,vk)

(2.8)

with, as before, xk the state vector, uk the control input, wk and the vk
the process and measurement noise with associated covariance matrix Qk

and Rk, and yk the measurement output. fk and hk are the functions
describing the state dynamics and observation model. Performing local
linearization around the state estimate, the following algorithm is obtained:

x̂−k =fk−1(x̂+
k−1,uk−1, 0)

P−k =Fk−1P+
k−1FT

k−1 + Qk−1

Kk =P−k HT
k (HkP−k HT

k + Rk)−1

x̂+
k =x̂−k + Kk(yk − hk(x̂−k , 0))

P+
k =(I−KkHk)P−k

(2.9)

where
Fk−1 =∂fk−1

∂x

∣∣∣∣∣
x̂+

k−1

Hk−1 =∂hk−1

∂x

∣∣∣∣∣
x̂−

k

.

(2.10)

The main drawback of this kind of filter is that, relying on linearization
for state covariance and mean propagation, it is usually difficult to tune.
Moreover, it can also produce unreliable results for highly nonlinear systems
[39]. Higher order EKF can be formulated, retaining more terms in the
Taylor series expansion equation (2.10).

2.2.2 Unscented Kalman Filter

The main alternative to the EKF is the Unscented Kalman Filter (UKF)
[41]. This filter avoids the local linearization used by the EKF and it uses
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an unscented transformation to propagate the mean and covariance of the
state. Let’s consider a nonlinear system:

xk =f(xk−1,uk−1) + wk

yk =h(xk) + vk.
(2.11)

The update step is performed by considering 2n sigma points, where n is
the dimension of the state vector. The sigma points are selected according
to:

x̂(i)
k−1 =x̂+

k−1 + x̃(i) i = 1, ..., 2n

x̃(i) =
(√

nP+
k−1

)T
i

i = 1, ..., n

x̃(n+i) =−
(√

nP+
k−1

)T
i

i = 1, ..., n

(2.12)

and then propagated using the dynamical model:

x̂(i)
k = f(x̂(i)

k−1,uk). (2.13)

Then, we can combine the 2n vectors to obtain the a priori state estimate
and its covariance:

x̂−k = 1
2n

2n∑
i=1

x̂(i)
k

P−k = 1
2n

2n∑
i=1

(
x̂(i)
k − x̂−k

) (
x̂(i)
k − x̂−k

)T
+ Qk−1.

(2.14)

In a similar way, the correction step is performed. First other 2n sigma
points are selected based on the a priori estimate:

x̂(i)
k−1 =x̂−k + x̃(i) i = 1, ..., 2n

x̃(i) =
(√

nP−k
)T
i

i = 1, ..., n

x̃(n+i) =−
(√

nP−k
)T
i

i = 1, ..., n.

(2.15)

For a faster algorithm, the sigma points obtained before can be used for
this step but this will result in lower performance. At this point, the
observation model is used to predict the measurements:

ŷ(i)
k = h(x̂(i)

k ). (2.16)
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Finally, the predicted measurement covariance and the cross covariance
can be computed:

Py = 1
2n

2n∑
i=1

(
ŷ(i)
k − ŷ−k

) (
ŷ(i)
k − ŷ−k

)T
+ Rk−1

Pxy = 1
2n

2n∑
i=1

(
x̂(i)
k − x̂−k

) (
ŷ(i)
k − ŷ−k

)T
.

(2.17)

This lead to the a posteriori state estimate:

x̂+
k =x̂−k + Kk(yk − ŷk)

P+
k =P−k −KkPyKT

k

Kk =PxyP−1
y .

(2.18)

The presented formulation is valid under the assumption of additive noise.
If this assumption is not valid, a different formulation has to be derived
[39]. The UKF presents some advantages with respect to the EKF and
overcome its intrinsic limitations. In fact, the computation of Jacobians
is not required in this case. However, computing the propagation of 2n
sigma points can be computationally demanding in case of complex system
dynamics. An efficient formulation of the UKF has recently been proposed
in [42]

2.2.3 Particle Filter

Particle Filters (PFs) represent an alternative to EKF and UKF. They
were first introduced in 1993 [43] with the name of bootstrap filter. The
key idea underlying the particle filter is to approximate the filtering density
function as a weighted set of samples, also called particles. Its represen-
tation is fundamentally different from the one used in the KF, where a
specific functional form of the density function is assumed and the estimate
is then represented by the parameters, (the mean and the covariance)
parameterizing this density. In the PF the filtering density is represented
as a set of random samples approximately distributed according to this
density. As before, a generic nonlinear system can be described as:

xk =fk−1(xk−1,uk−1,wk−1)
yk =hk(xk,vk)

(2.19)

For PF the Bayesian approach to nonlinear state estimation is introduced.
The aim of this strategy is to compute or approximate the posterior
distribution of the state, given the observations. In particular, the Bayesian
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recursive solution to compute the posterior distribution (p(xk | y1:k)) of
the state, given past observation, is given by 2.20.

Initialization : p(x0 | Yk−1) = p(x0)

Prediction : p(xk | Yk−1) =
∫
p(xk | xk−1) p(xk−1 | Yk−1)dxk−1

Correction : p(xk | Yk) = p(yk | xk) p(xk | Yk−1)∫
p(yk | xk) p(xk | Yk−1)

(2.20)
with Yk = y1:k.
For a general case, there is not an explicit solution for this integral. However,
for a linear system with Gaussian noises, the classical KF recursive form
provides the solution for the presented Bayesian problem. For a generic
non linear system, with non-Gaussian noises, it is necessary to rely on
numerical approximations. PFs offer a tool to approximately solve the
recursion for a generic system. In particular, M random points (particles)
are generated at the beginning of the estimation, based on the initial
probability density function (pdf) of the state. In fact, it is reasonable to
approximate the pdf as sum of δ and in particular:

p(xk | Yk) ' p̂(xk | Yk) = 1
M

M∑
i=1

δ(xk − x̄k,i) (2.21)

where x̄k,i are the particles extracted from the true conditional density.
Therefore, the recursive algorithm can be derived as follows:

Initialization : p(x0) ' 1
M

M∑
i=1

δ(x0 − x̄0,i)

Estimation : p̂(xk−1 | Yk−1) ' 1
M

M∑
i=1

δ(xk−1 − x̄k−1,i)

Prediction : p(xk | Yk−1) ' 1
M

M∑
i=1

δ(xk − ¯̄xk,i)

Correction : p(xk | Yk) =
M∑
i=1

qi δ(xk − ¯̄xk,i)

(2.22)

where ¯̄xk,i = f(x̄k−1,i, w̄k−1,i), w̄k−1,i ∼ p(wk−1) and qi = p(yk | ¯̄xk,i)∑M
i=1 p(yk | ¯̄xk,i)

Note that the second set of points, ¯̄xk,i is extracted from the already de-
fined grid and the particles are propagated according to the non-linear
dynamic of the system. The term qi indicates the relative probability of
each particle and it can be seen as a weight. The sum of all the weights is
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equal to 1. However, if we do not perform resampling, the particle filter
would end to a set independent simulations, each with its own weight or
probability. Most likely, the so called sample depletion would occur. This
means that, not having any feedback from the observation, the results
would be to have all the weights tending to zero, except for one that will
be almost equal to 1. The high value of the weight does not mean that
the estimated state is close to the real one but just that one sequence in
the set of particles is more likely that the others. Resampling introduces
the feedback from the observation and guarantees that the good state
estimation does not disappear. Like the UKF, the PF method does not
rely on any local linearization technique and do not have any constraint
on the noise distribution. This flexibility can be very useful in several
applications in which the EKF does not perform well (highly non linear-
ities involved). However, all these advantages have a cost. In fact, the
bottleneck of the PF is its computational load [44]. If we think at the EKF,
only one function evaluation of f(xk,wk) and h(xk,vk) is required at each
time step (note that if the Jacobian is not analytically available, more than
one evaluation of these functions is needed). Per contra, M evaluations are
needed with particle filter. This can become very demanding in systems
with highly non-linear and complicated dynamics and sampling with an
high number of particles. This is one of the reasons why PF has never
been practically implemented on any spacecraft. Summarizing, the PF
overcomes the intrinsic limitations of the EKF but the computational cost
is much higher.

2.2.4 Minimum Energy Filter

Minimum Energy Filter (MEF) is a particular estimator in which dynamics
and measurement noises are modeled deterministically. This is different
from stochastic filtering techniques, i.e. KF, for which the noise in the
dynamical propagation and observation model are assumed to be stochastic
white-noise. In general, MEF can be seen as a generalization of the least
square methods. Mortensen [45] firstly proposed to apply this method to
filtering. His MEF formulation coincides with a KF for linear systems but
it differs when dealing with nonlinear ones. In these cases, a MEF approach
can outperform standard nonlinear KF techniques without significantly
increasing the computational effort. The author has chosen not to present
any particular formulation of MEF in this introductory section because
of the complex mathematical derivation. A more detailed description of
MEFs for attitude estimation, formulated on the Lie group, are presented
in Chapters 4 and 5.
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CHAPTER3

Spacecraft Relative Dynamics

All the effects of nature are only the
mathematical consequences of a small number

of immutable laws.
Théorie des probabilités (1847)

Pierre-Simon Laplace

The outcome of any state estimation technique strongly depends on
the choice of the dynamical model describing the evolution of the state.
The choice of the proper dynamical model is always a trade-off between
accuracy and computational cost. In the particular case of the estimation of
spacecraft relative pose, it is necessary to adopt the appropriate dynamical
model depending on the considered application. In this chapter, the main
dynamical models for the description of the relative translational and
rotational motion between two spacecraft are described.
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3.1 Coordinate Systems

In this section, the coordinate systems used in the following descriptions
are introduced.

3.1.1 Earth-centered Coordinate Systems

Two spacecraft orbiting the Earth are considered, a chaser and a target
respectively. The reference frames used in this formulation are: an Earth-
centered, inertial reference frame, I as in Fig.3.1, a local-vertical, local-
horizontal (LVLH) reference frame fixed to the chaser spacecraft center
of mass, C with x̂ being a unit vector directed radially outward, ẑ normal
to the spacecraft orbital plane, and ŷ completes the triad; a Cartesian
body-fixed reference frame attached to the target spacecraft center of mass,
T .

Figure 3.1: Co-moving LVLH frame [46].

3.1.2 Moon-Earth Coordinate Systems

In a cislunar environment, instead, according to [47], the relative dynamics
between two bodies of masses mT and mC , target and chaser respectively,
can be expressed in the inertial reference frame ICl, as in Figure 3.2, cen-
tered at the center of mass O of the primaries mE (Earth) and mM (Moon),
and defined by the versors X̂, Ŷ and Ẑ. Analogously to Section 3.1.1,
Cartesian body-fixed reference frames centered in the chaser and target
center of mass can be defined CCl and TCl of versors ĉ1, ĉ2 and ĉ3, t̂1, t̂2
and t̂3 respectively.
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Figure 3.2: Cislunar Relative Dynamics Reference Frames [47]

3.2 Relative Translational Dynamics - Earth

In this section, different alternatives to describe the relative translational
motion between two spacecraft orbiting the Earth are presented.

3.2.1 Nonlinear Dynamic Model of Unperturbed Relative Motion

In the most general case, the relative motion in unperturbed orbits can
be described by a set of nonlinear differential equations, without any
restrictive assumptions or linearization. In particular, the translational
dynamics of the target with respect to the chaser, expressed in the chaser
frame C, can be written as:

δẍ− 2ḟCδẏ − f̈Cδy − ḟ 2
Cδx = µ(rC + δx)

[(rC + δx)2 + δy2 + δz2] 3
2

+ µ

r2
C

δÿ + 2ḟCδẋ+ f̈Cδx− ḟ 2
Cδy = µδy

[(rC + δx)2 + δy2 + δz2] 3
2

δz̈ = µδz

[(rC + δx)2 + δy2 + δz2] 3
2

(3.1)
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with ḟC and f̈C being the chaser orbital angular velocity and acceleration
respectively.

3.2.2 Clohessy-Wiltshire Equations

The most common set of equations to describe the relative dynamics
between two spacecraft are the well-known Clohessy-Wiltshire[48]. They
hold for nearly circular orbits, small target-chaser distance compared to
the orbit radius, and spherical Earth. For a full derivation, the author
suggests to refer to [46]. With reference to Figure 3.1, the chaser spacecraft
is in a reference orbit at a distance r0 from the attractor. If the target
is in close proximity of the chaser, the orbital radius can be expressed as
r = r0 + δr. The equation of motion of the target spacecraft is:

r̈ = −µ r
r3 (3.2)

where µ is the gravitational constant of the orbital motion. With some
mathematical manipulations, the Hill’s equations can be obtained:

δẍ− 3n2δx− 2nδẏ =0
δÿ + 2nδẋ =0
δz̈ − n2δz =0

(3.3)

where n = 2π
T

is the orbital mean motion.

3.2.3 Yamanaka-Ankersen Model

In 2002, Yamanaka and Ankersen [49] proposed a state transition matrix for
relative motion on an arbitrary elliptical orbit. This convenient formulation
is very useful when dealing with filtering equations. However, at periapsis
it can lose accuracy due to the high speed. The details of the derivation
can be found in [49]. In this section, only the implemented state transition
matrix is presented. The propagation in time of the relative position and
velocity can be expressed as:


δxt

δyt

δẋt

δẏt

 =


0 −s −c −(2− 3esJ)
1 −c(1 + 1/ρ) s(1 + 1/ρ) 3ρ2J

0 −s′ −c′ 3e(s′J + s/ρ2)
0 2s 2c− e 3(1− 2esJ)


θ


δx̃0

δỹ0

δ ˙̃x0

δ ˙̃y0

 (3.4)
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with
δx̃0

δỹ0

δ ˙̃x0

δ ˙̃y0

 = 1
1− e2


0 3s(1/ρ+ e2/ρ2) −s(1 + 1/ρ) 2e− c

1− e2 3es(1/ρ+ 1/ρ2) −es(1 + 1/ρ) −ec+ 2
0 1− e2 − 3ρ ρ2 −es
0 −3(c/ρ+ e) c(1 + 1/ρ) + e −s


θ0


δx0

δy0

δẋ0

δẏ0

 .
(3.5)

And for the out-of-plane component:
[
δzt

δżt

]
= 1
ρθ−θ0

[
c s

−s c

]
θ−θ0

[
δz0

δẋ0

]
, (3.6)

where
ρ = 1 + e cos(θ)
s = ρ sin θ
c = ρ cos θ
s′ = cos θ + e cos 2θ
c′ =− (sin θ + e sin 2θ)
J = k2(t− t0)
k2 =h/p2

(3.7)

with θ, true anomaly that can be computed using Kepler’s equation, p the
semilatus rectum and |θ meaning evaluated at the true anomaly θ at the
current step.

3.2.4 Nonlinear Dynamic Model of J2-Perturbed Relative Motion

If we want to consider orbital perturbation due to Earth oblateness, we have
to adopt the nonlinear dynamical model for J2-perturbed relative orbit,
derived in [50]. Hereby, the fundamental equations are solely reported; for
a thorough derivation, please refer to [50]. With reference to Figure 3.1,
the relative dynamics in the chaser reference frame C can be written as:

δẍ = 2δẏωz − δx(n2
j − ω2

z) + δyαz − δzωxωz − (ζj − ζ)sisθ − r(n2
j − n2) + ax

δÿ =− 2δẋωz + 2δzωx − δxαz − δy(n2
j − ω2

z − ω2
x) + δzαx − (ζj − ζ)sicθ + ay

δz̈ =− 2δẏωx − δxωxωz − δyαx − δz(n2
j − ω2

x)− (ζj − ζ)ci + αz
(3.8)
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where the contributing terms are:

n2 = µ

r3
0

+ kJ2

r5
0
− 5kJ2s

2
i s

2
θ

r5

n2
j = µ

r3 + kJ2

r5 −
5kJ2r

2
JZ

r7

rJZ = (r0 + δx)sisθ + δysicθ + δzci

kJ2 = 3J2µR
2
e

2
ωx = −kJ2s2isθ

hr3
0

ωz = h

r2
0

αx = ω̇x = kJ2s2icθ
r5

0
+ 3ṙ0kJ2s2isθ

r4
0h

− 8k2
J2s

3
i cis

2
θcθ

r6h2

αz = ω̇z = −2hṙ0

r3
0
− kJ2s

2
i s2θ

r5
0

ζ = 2kJ2sisθ
r4

ζj = 2kJ2rJZ
r5

(3.9)

in which h is the orbital angular momentum, J2 is the zonal harmonic
coefficient (1.0826 · 10−3 for Earth), Re is the Earth radius. The space-
craft relative motion is, therefore, described by 11 first-order differential
equations, namely (δx, δy, δz, δẋ, δẏ, δż) and (r, ṙ, h, i, θ).

3.3 Relative Translational Dynamics - Moon/Earth

In the Earth-Moon space, a different model has to be adopted, considering
the different gravitational effects that are involved. In particular, the
absolute orbit dynamics is expressed using rT and rC , the position vectors
of the centers of mass of the bodies mT and mC respectively. The relative
translational dynamics in such environment can be obtained from the
absolute dynamics expressed in the frame ICl [47]. The relative transla-
tional dynamics is immediately available from the definition of the relative
position vector, δr:

x ≡ δr = rT − rC , (3.10)
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expressed in the inertial reference frame. Differentiating the expression of
the relative position vector twice in time we obtain:

ẍ = r̈T − r̈C , (3.11)

where r̈C and r̈T are the absolute acceleration vectors of chaser and target
and they can be expressed as [47]:

r̈C = − µE
r3
CE

rCE
− µM
r3
CM

rCM
+ aCS

+ aCSRP
, (3.12)

r̈T = − µE
r3
TE

rTE
− µM
r3
TM

rTM
+ aTS

+ aTSRP
, (3.13)

where µE = GmE and µM = GmM are the dimensional mass parameters.
The terms aCS

, aTS
and aCSRP

aTSRP
are the perturbing accelerations in

cislunar space acting on the spacecraft due to the gravitational presence
of the Sun and due to the solar radiation pressure (SRP). In this work,
we considered an ephemeris model. In practice, the position of Earth,
Moon and Sun are extracted from numerical ephemerides contained in the
SPICE Toolkit by NASA/JPL. A simpler alternative is represented by the
Circular Restricted Three Body Problem (CR3BP) model [51] to describe
the motion of spacecraft, with negligible mass, under the gravitational
attraction of two primaries, with masses mT and mC . This model is a
valuable alternative for preliminary analyses but it neglects some effect
that may be relevant for some orbits (e.g. Near Rectilinear Halo Orbit
(NRHO), [52]). The CR3BP is not considered in this work because it does
not provide generally valid approximations of the relative dynamics in the
Earth-Moon space [53].

Linearized Model For computational and implementation reasons, it can
be useful to have a linear model describing the relative dynamics. Consid-
ering the equation 3.11, a linearization can be performed by assuming the
relative distance between chaser and target to be small compared to the
distance between the chaser and the primaries: ‖x‖ � rCE

and ‖x‖ � rCM
.

In this case, performing a first order expansion of Equation (3.11) we obtain
[53], [54]:

ẋ
ẍ

 ≈ [ 0 I3×3

Ξ(t) 0

] [
x
ẋ

]
+
[

0
I3×3

]
(δaS + δaSRP ) , (3.14)
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where Ξ(t) is a matrix depending on the known absolute orbital state of
the chaser:

Ξ(t) =−
(
µE
r3
CE

+ µM
r3
CM

)
I3×3 + 3 µE

r3
CE

[
r̂CE

r̂T
CE

]
+ 3 µM

r3
CM

[
r̂CM

r̂T
CM

]
.

(3.15)

The effects of the discussed perturbations aS and aSRP are treated as
additive perturbative terms also in the linearized dynamic model.

3.4 Relative Rotational Dynamics and Kinematics

In this section, the models describing the rotational motion of the target
relative to the chaser are illustrated. Please note that the rotational dynam-
ics and kinematics are described by the same set of equations in both Earth
or cislunar environment. The only difference are the perturbations acting
on the system. For simplicity, the notation of the Earth reference frames is
used in this section. To parametrize the relative attitude, a rotation matrix
RCT which performs the transformation from the target body fixed frame
T to the chaser body fixed frame C is considered. The components of this
matrix are combinations of relative quaternions q0, q1, q2, q3. Knowing
the rotation matrix RCT , the relative angular velocity in both target and
chaser frames can be calculated.

ω|C = RCTωT |T − ωC |C. (3.16)

Combining the Euler equations for both chaser and target, the relative
rotational dynamics can be expressed as [55]:

ICω̇ =ICRCT I−1
T [NT −RT

CT (ω|C + ωC |C)× ITRT
CT (ω|C + ωC |C)]

−ICωC |C × ω|C − [NC − ωC |C × ICωC |C].
(3.17)

Where NT and NC are the external torques on the target and chaser.
In the previous expressions, the symbol a|N indicates that the quantity
’a’ is evaluated in the N frame, on the other hand, (db

dt )|
M indicates the

derivative of the quantity ’b’ in the M frame. Using the same quaternion
parametrization, the relative attitude kinematics can be described by:

q̇ = 1
2Qω|T (3.18)

with
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Q(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0.


In some cases, however, it is more convenient to express the relative attitude
kinematics in terms of rotation matrix, without using any additional
parametrization:

ṘCT (t) = RCT (ω(t)×), RCT (0) = RCT 0, (3.19)

where RCT (t) ∈ SO(3) is the relative rotation matrix expressed in the
chaser frame, ω is the relative angular velocity expressed in the chaser
frame and the lower index operator (.)× represents the skew-symmetric
matrix.
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CHAPTER4
Vision-based Relative Navigation around an

Uncooperative-known Space Object

I roamed the infinite sky, and soared the ideal
world, and floated through the firmament.
But here I am, prisoner of measurement.

Song of Humanity
Kahlil Gibran

In this chapter the problem of navigating around an uncooperative-known
space object is analyzed. This scenario is the most attractive among the
ones presented in Table 1.1, In fact, it can be applied to O-OS and ADR
missions and, in such cases, at least basic information about target geome-
try is assumed to be available and can be exploited within the developed
relative navigation architecture. Under such condition, loosely-coupled
architectures are typically preferred. Therefore, in this work, a loosely-
coupled architecture for relative navigation based on monocular images as
well as on the knowledge of a simplified target model is presented. Specifi-
cally, original contributions are provided with respect to the state of the art
in terms of both pose determination and filtering solutions. With regards
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to the pose determination block, several monocular techniques have been re-
cently proposed [15], and their performance has been tested using synthetic
data [56], real images from past missions [57], [58] or experimental tests
[59], [60]. These studies have shown that main open challenges are related
to the pose initialization, i.e., the initial estimation of the pose parameters
carried out when no prior information is available about the target pose
[15]. Specifically, the necessity to limit the computational load as well as to
enhance robustness against variability of pose conditions has been identified.
To this aim, two different strategies for pose determination are presented in
this chapter. The Strategy A is based on a customized implementation of
the RANdom SAmple Consensus (RANSAC) algorithm which exploits the
Principal Component Analysis (PCA) and the knowledge of a simplified
target model. Furthermore, pose tracking, i.e., the problem of updating
the pose parameters based on new measurements, is carried out exploiting
the SoftPOSIT algorithm [61]. The main innovative aspects of the strategy
are in the target pose acquisition and in the kinematic filter, on the Lie
group, used for relative attitude estimation. The algorithm implemented
for Strategy B works detecting salient features from the incoming images,
i.e. ORB descriptors [22]; among these, the ones corresponding to the
uncooperative object are matched to an already available on-board map.
In this way, a set of 3D to 2D correspondences is obtained. The set of
correspondences is then used to solve the so-called Perspective-n-Point
problem (PnP) [62], which gives as result a first estimate of the relative
pose between the two spacecraft. Motion only Bundle Adjustment (BA)
[63], is then applied for pose optimization. The main contribution of this
second strategy is to proposed a feature-based method for relative pose
estimation of an object in space. The presented Strategy A and B have
different level of maturity. The first one was developed in collaboration
with the University of Naples in the framework of the VINAG project [33].
Strategy B instead, was developed entirely, more recently, at Politecnico di
Milano, Aerospace Science and Technology Department (DAER) and it is
still under intense improvement. Despite the selected strategy, once a pose
estimate is available, this measurement is typically filtered to improve the
state estimation. The EKF is the standard approach for space applications.
This solution has been used also for several relative navigation techniques
with different sensors architectures [25], [64]–[66]. Two different strategies
exist for relative navigation filters architectures. Specifically, a single filter
for both translation and rotation can be exploited or the dynamics can be
decoupled. The first approach is necessary when the measurements are
a combination of relative translational position and angular velocity [25],
[66] (i.e. measurements are directly the feature points in a tightly-coupled
configuration). However, due to the nonlinear nature of the rotational
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dynamics, the choice of the filter is limited to sub-optimal nonlinear ap-
proaches such as EKF or UKF. This implies a higher computational time
(with respect to linear filters) and a degradation of the performance with
non-nominal tuning and non-Gaussian measurement noise. Instead, if the
measurements are directly the relative position and relative attitude, the
two filters can be decoupled. In our case, the nature of the problem and
the classical limited duration of proximity operations suggest to decouple
the relative translational and rotational dynamics by neglecting external
disturbances and spacecraft flexibility. Another important point to under-
line is that, typically, the determination of the relative position is usually
more robust with respect to relative attitude estimation [15], which is more
prone to errors and ambiguities. For this reason, a decoupled strategy in
which the translational and rotational filters work independently, guaran-
tees the control of the proximity phase also in the case of poor relative
attitude estimation. The proposed architecture exploits a linear H-∞
Filter for the translational motion and a 2nd Order Non-linear Filter on the
Special Orthogonal group (SO(3)) for the rotational part. The H-∞ Filter
guarantees robustness by minimizing the ∞-norm of the estimation error
and it does not make any assumptions about the statistics of the process
and measurement noise [39]. The implemented 2nd Order Non-linear Filter
is based on a novel formulation on the SO(3). This choice is justified by
the fact that filters exploiting a dynamics directly expressed on the SO(3)
have shown better performance than filters designed using other attitude
parameterizations [67]–[69].

4.1 Monocular Relative Navigation Architecture

The architecture proposed for relative navigation of a chaser satellite with
respect to an uncooperative target is presented in the block diagram in
Figure 4.1.

This architecture is loosely-coupled since it is composed of two separate
blocks. The pose estimator processes the images acquired by a monocular
camera to compute the target/chaser position and attitude parameters,
which are then used as input for the navigation filter. The pose estimator
exploits a simplified model of the target which is built off-line thanks to
the knowledge of the target geometry or optical properties (e.g., a CAD
model or feature points descriptors). The navigation filter is also divided
in two components responsible of the relative rotational and translational
dynamics, respectively. A link between the two blocks is ensured in the
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Figure 4.1: Relative Navigation Architecture: Block Diagram

case of Strategy A by the fact that the updated target pose provided by
the filter is used to initialize the tracking function of the pose estimator.

4.2 Pose Estimator

In this section, the two adopted strategies for vision-based pose estimation
are presented and detailed.

4.2.1 Pose Estimation Algorithm - Strategy A

The output of this block, i.e., the target/chaser pose, is parameterized
by a rotation matrix (RCT ) which represents the attitude of the Target
Reference Frame (T ) with respect to the Chaser body Reference Frame
(C), and a position vector (t) directed from C to T (expressed in C). Both
the acquisition and tracking functions of the pose estimator are entrusted
to feature-based algorithms. Specifically, they allow estimating RCT and t
by trying to optimize the matches between natural features extracted from
the acquired images, and the target model. In this work, the attention
is focused on point features, such as corners (which can be detected us-
ing standard image processing algorithms [19]). Consequently, the target
model, generated off-line (i.e., on ground before mission starts) from the
knowledge of the target geometry, will be a dataset of M 3D landmarks,
i.e., the position vectors of the real corners of the target in T (generally
speaking the landmarks can be 3D points of the target object which are
more likely to be identified by image processing algorithms). Clearly, a
critical issue for both acquisition and tracking is the identification of correct
correspondences between the extracted feature points (p) and the model’s
landmarks (P ). Indeed, the problems of image-model matching and pose
estimation are coupled and can be solved using iterative approaches. As

30



4.2. Pose Estimator

regards the tracking step, the evolution of the pose parameters is followed
by implementing the SoftPOSIT algorithm [61]. Specifically, the rela-
tive position and attitude parameters are determined by optimizing in a
least-squares sense, a cost-function that is derived following the POSIT
(Pose from Orthography and Scaling with Iterations) approach [70]. This
method returns the pose by approximating the true perspective projection
with a scaled orthographic projection but requires the assignment between
image and model corners to be known. Therefore, a correspondence matrix
is considered as an additional decisional variable, and it is built itera-
tively through Softassign-based routines [71]. As long as the optimization
proceeds, the correspondence matrix tends to a zero-one matrix which
univocally discriminates image-model associations, while the relative pose
is refined to correct the initial assumption of scaled projection. SoftPOSIT
requires an initial guess, which is set as the solution computed at the
acquisition step. Hence, an original approach has been developed to derive
the initial relative state of the target. In fact, PCA has never been used
in the context of spacecraft relative navigation. The coupled problem of
feature-matching and pose-estimation is entrusted to a Hypothesize-and-
Test approach. First, a set of image-model correspondences (typically
indicated as consensus set, S) is selected. These matches are used to com-
pute a tentative pose solving the Perspective-n-Point (PnP) problem [62].
The size of the initial consensus set (n) is determined by the selected PnP
solver. The estimated values of t and RCT are then used to project all the
3D landmarks on the focal plane (thus generating a virtual image). At this
point, the re-projected feature points are compared to the ones detected in
the original image to try to obtain an enlarged consensus set (S∗). If the
hypothesized correspondences are not confirmed, the procedure shall be
restarted selecting a new initial consensus set. On the other hand, if the
number of matched feature points reaches a limit value (nlim), the matching
process is ended, and the pose parameters are refined based on the matches
in S∗. The proposed Hypothesize-and-Test approach, summarized by the
pseudo-code in Algorithm 1, is now analyzed step by step.

First, image acquisition and processing are carried out to extract a set of
Np 2D feature points (Step 0). Then, S must be generated assigning at
least n matches between the Np 2D feature points and theM 3D landmarks
(Step 1). To this aim, a RANSAC-based approach [62] aided by PCA [72]
is applied. Indeed, the purely random nature of RANSAC-based image-
model matching strategy is not efficient and may produce an unacceptable
runtime. So, the proposed method consists in building S considering only
a subset (T ) of the M 3D landmarks, i.e. those belonging to spacecraft
components which are clearly separated with respect to the target center
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Algorithm 1 Hypothesize-and-Test approach
1: Step 0: Image acquisition and processing
2: Corner Detection
3: Step 1: Hypothesize
4: Select the initial consensus set S (size(S) = n < nlim)
5: Step 2: Test
6: Compute t and RT C (PnP solver)
7: Corner re-projection
8: Check correspondences
9: if correspondences=1 (correct initial matches) then

10: Creation of S∗
11: else
12: Go back to Step 1
13: end if
14: Step 3: Pose refinement
15: if size S∗ < nlim then
16: Go back to Step 2
17: else
18: Compute t and RCT (PnP solver)
19: end if
20: Step 4: Runtime check
21: Evaluate runtime
22: if runtime ≥ tlim then
23: Start again from Step 0
24: end if
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of mass (e.g., solar arrays, telescopes, antennas), and the corresponding
2D feature points in the image. The elements of T are selected off-line,
depending on the target geometry. On the other hand, the corresponding
2D feature points are identified exploiting information obtained applying
the PCA. Indeed, if the target is fully visible in the camera Field of
View (FOV) (this condition will always occur at the beginning of the
close-proximity maneuver, when pose acquisition is required), the target
appendices (not moving, such as, solar panels) are very likely to be imaged
far from the target centroid on the focal plane. This method requires the
principaldirections of the target to be as different as possible from one
another. PCA is a technique used to analyze multidimensional datasets.
Specifically, it allows determining their principal directions by analyzing
eigenvectors and eigenvalues of the associated covariance matrix. For
instance, if Np feature points are extracted in the image, the covariance
matrix (Q) can be computed as follows:

Q = 1
Np


Np∑
i=1

(ui − uc)2
Np∑
i=1

(ui − uc)(vi − vc)
Np∑
i=1

(ui − uc)(vi − vc)
Np∑
i=1

(vi − vc)2

 (4.1)

where (ui, vi) and (uc vc) are the focal-plane coordinates of the ith extracted
feature point and image centroid, respectively. The eigenvectors of Q
identify two directions on the image plane (d1 and d2). Hence, the
extracted 2D feature points can be classified in two datasets (B1 and B2)
depending on their distances from the PCA axes (D1 and D2), computed
as follows:

D1,2 = |d1 · pi| i = 1, ..., Np
D2,1 = |d2 · pi|

(4.2)

Specifically, B1 and B2 are defined as:

B1 = {pi : D1,i > Dth}, B2 = {pi : D2,i > Dth} (4.3)

where Dth is a distance-threshold on the image plane. It is defined as
the mean Euclidean distance of the features from the image centroid. An
example of the results of the off-line classification of the 3D landmarks,
and PCA-driven on-line classifications of the feature points is shown in
Figure 4.2.
At this point, S is generated by randomly selecting n matches between T
and B, where B (i) is the random choice between B1 and B2 if both the
subsets contain more than n elements, (ii) coincides with B1 if B2 contains
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Figure 4.2: Off-line feature point classification for the simplified target model (right).
PCA-driver feature point classification for a simulated image (left). The target is

the XMM-satellite.

less than n elements, or (iii) coincides with B2 if B1 contains less than n
elements. Clearly, if both B1 and B2 contain less than n feature points,
it is highly probable that the camera is observing the target from a not
favorable point of view (i.e., the principal directions of the target are not
clearly imaged on the focal plane). If this occurs, the algorithm shall return
to Step 0. This choice allows increasing the robustness of the proposed
acquisition strategy since not favorable observation geometries (which
are likely to produce wrong matches, and, consequently, inaccurate pose
estimates) are discarded. As soon as the initial consensus set is created,
a tentative value for the pose parameters is evaluated and the assumed
correspondences are verified to try enlarging S (Step 2). Concerning
the PnP solver, the Efficient Perspective-n-Points (EPnP) method [73]
has been selected, since it provides a closed-form solution based on a
minimum of n = 4 image-model matches. For this reason, the EPnP solver
is highly efficient (which is important when several runs are requested as
in RANSAC-based iterative approaches [56]). This pose estimate is then
used to verify the image-model correspondences. First, the 3D feature
points are re-projected on the focal plane (pr), using the classical equation
of the perspective projection:

pr = KI(RCTP + t) (4.4)

where KI is intrinsic camera calibration matrix. Then, a feature-matching
algorithm is applied to verify the correspondences and, if possible, enlarge
the consensus set. Specifically, each of the re-projected feature points is
associated to the closest image feature according to the Euclidean metric.
Hence, the obtained (p,pr) couples are declared as confirmed matches if
their Euclidean distance is below a threshold (Dm). The value of Dm is
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computed dynamically as the minimum detectable distance between two
different bi-dimensional feature points. Indeed, it is reasonable to define
this acceptance threshold according to the separation between the satellites:
the farther the target from the camera, the smaller the distance between
extracted feature points and the harder the image-model association. On
the other hand, if the acquisition scenario is assumed to be same, the
closer the target, the higher the separation among the extracted feature
points, hence the Dm value. If one of the elements of S is not declared
as a confirmed match, a new initial consensus set must be generated.
Instead, if additional matches are confirmed, they are added to S thus
creating S∗. This process is iterated until the size of S∗ is lower than
an acceptance threshold (nlim), selected as the closest integer to 0.6Np.
This means that the iteration process is ended when 60% of the detected
feature points are associated to the target model (this value has to be
tuned beforehand to guarantee successful pose acquisition). As soon
as this condition is satisfied, the pose solution is refined exploiting the
optimized EPnP routine (Efficient Gauss Newton Optimization) proposed
in [73]. Finally, a check on the algorithm runtime is carried out (Step
4). Specifically, if it exceeds a threshold (tlim), typically of the order of
a few seconds, the acquisition process is restarted acquiring a new image.
This latter functionality is necessary to avoid that the target/chaser pose
evolves too quickly during the runtime (which can occur if the relative
rotational dynamics is particularly fast). Indeed, if the run-time threshold is
exceeded, the initial pose solution could fall outside the field of convergence
of the subsequent tracking algorithm. Once the initial pose is derived, as
previously explained, the SoftPOSIT algorithm is run to track its evolution
in time.

4.2.2 Pose Estimation Algorithm - Strategy B

The second proposed pose estimation technique, implements a Visual
Odometry like routine [74], [75] and works detecting the target object
features from the incoming images, given by the mono-camera; these are
then matched to an already available on-board map (constituted by a mesh
of 3D points, each one correlated to a descriptor) and, in this way, a set of
3D to 2D correspondences is built. From the set of correspondences the
PnP problem is built and solved within a RANSAC routine in order to
delete incoming outliers (wrong match between target image and on-board
map) and obtain a first estimate of the relative pose. BA, an optimization
technique widely diffused in computer vision [63], is then applied on the
map and on the 2D features (which constitute the measurements) in order
to optimize the obtained pose. The on-board 3D sparse map of the target
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object is built on-ground with a dedicated algorithm, by correlations of a
3D model of the target uncooperative object with descriptors extracted
from multiple images.

Features detection Features are salient points that can be localized on
each image coming from the camera, and different algorithms for their
detection exist [21], [22], [76], [77]. Features detection is a fundamental
step in the routine of the proposed algorithm because it allows to build the
correspondences with the available target spacecraft map that are then used
to retrieve the relative motion. In fact, the accuracy of the pose estimation
depends on the precision of the matching and, therefore, on the robustness
of the extracted features (i.e. noise free and repeatably observable in
multiple images). In a general in-orbit relative chaser-target spacecraft
trajectory, modest scale variations between different frames along with
multiple rotations are expected; moreover, different light conditions will
be met moving along the orbit. This is a quite challenging scenario for
any computer vision algorithm. The extracted features, to be robust, have
to be invariant to each of these parameters. Furthermore, computational
cost has to be considered and has to be as low as possible for real-time
hardware implementation. Considering these requirements, ORB detector
[22] has been selected to be exploited by the tracking algorithm. ORB is a
feature detector and fast binary descriptor based on BRIEF [78] and FAST
[77] whose features are extremely fast to compute, have good invariance
to viewpoint, scale and are resilient to different light conditions, as also
proven by its implementation on many state of the art computer vision
algorithm [79]. At the current developed stage ORB detector has been
implemented in the algorithm to work building an 8−Level gray scale
pyramid with a scale factor of 1.2 for each incoming image. An upper
bound of 300 features along with their descriptors is set to be extracted
to guarantee a low computational cost. Figure 4.3 shows an example
of extracted features on an image of the NASA/ESA SOHO (Solar and
Heliospheric Observatory) satellite. Green markers show features location
along with their pyramid level.
Routine enhancement with background subtraction methods and selective
surface detection will be carefully evaluated in the future both in terms of
performances of the tracking algorithm and computational costs in order
to prevent key-points detection from the background and extract a higher
number of features on the spacecraft body, avoiding unnecessary zones.

Features matching with 3D-model Features matching with the 3D-model
of the target spacecraft represents the most delicate and challenging step of
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Figure 4.3: Example Image with ORB Features Extracted

the algorithm and consists in building a set of correspondences between the
detected 2D features in the current frame and the points of the available
target spacecraft 3D map, given their descriptors. This step is crucial
because only a good number of correct matches with few outliers allows
good performance of the motion estimation step. Moreover, matching with
this kind of images is intrinsically complicated due to the uniformity of the
texture of the satellite surfaces and the challenging light and orientation
conditions constantly changing between each frame. In order to be robust,
matching is performed with a symmetry double ratio test. Hamming dis-
tance is exploited as linearity measure between ORB descriptors extracted
in the image and descriptors of the 3D-model. Hamming distance can be
computed very efficiently between corresponding binary descriptor strings
and makes the process very fast. For each descriptor from the frame
features, the matcher finds the two closest descriptors (in order of score)
in the 3D-model by trying one by one and, then, it makes the same inverse
process for the 3D-model descriptors. Once the two set of matches is
obtained, a ratio test according to [21] is applied: the distance between the
closest descriptor and the second-closest descriptor on each set is compared;
correct matches need to have the closest descriptor significantly closer than
the closest incorrect match to achieve reliable matching. Only matches
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with a distance ratio lower than a fixed threshold are therefore retained.
Ratios between 0.7 and 0.8 ensure the best performances. A symmetry test
is in the end performed: only correspondent features matched in both the
sets are considered. This is an heuristic way to immediately discard clear
outliers and retain only good matches.

Motion estimation with PnP The 2D features from frame to 3D-model
correspondences obtained from the features matching step are used to solve
the PnP problem. The EPnP algorithm [73] is exploited by the tracking
algorithm at this step. It is an efficient solution to the problem, being
non-iterative and applicable for both planar and non-planar 3D clouds
configurations. Given the set of 2D-3D correspondences, the algorithm
retrieves the unknown orientation and translation of the camera as the
Euclidean motion which aligns both sets of coordinates.

Motion only Bundle Adjustment Motion estimation by itself may not
give a sufficient accuracy in trajectory reconstruction. Uncertainty in
extracted features location due to noise, presence of outliers between the
2D-3D correspondences and uncertainty in the 3D-model all result in
a pose estimation from the EPnP algorithm which drifts from the true
trajectory. BA [63] is therefore implemented to counteract these effects
and to correct the trajectory estimation. BA is a widely diffused technique
in computer vision and it is designed to optimize camera pose minimizing
the re-projection error of the 3D points on the 2D image plane, taking
as constraint the scene geometry. g2o, a library specifically developed for
pose graph optimization, is exploited as tool for the BA implementation in
the tracking algorithm. Pose graph is a way of formulating Simultaneous
Localitazion And Mapping (SLAM) problem in robotics. Specifically, the
nodes of the graph represent map points and poses of the robot in time
and the edges represent constraints between the poses (measurements).
Once such a graph is constructed, BA is applied to find a configuration
of the nodes which is maximally consistent with the measurements. At
the current stage, this approach has been implemented for the tracking
algorithm in a simplified ’Motion only BA’ version: at the end of each
motion estimation step, retrieved camera pose and matched 3D-model
points, seen from the current frame, are set as vertices of the graph, while
observed features, representing the measurements, define the edges. The
obtained graph is optimized keeping fixed the map points and improving
the camera pose estimation only.
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Target spacecraft 3D-Model The map construction represents a critical
step for the good functioning of the system. At the current stage the
map-construction algorithm is under heavy development and is based
on Structure From Motion (SfM) concepts merged with informations
already obtainable from a CAD model of the target satellite. Being the
final objective to have a 3D sparse map of precisely triangulated points,
correlated with significant descriptors, the following procedure is exploited:
first, a set of high quality images of the target body is acquired. ORB
features and descriptors are extracted from each image. Given an available
mesh of the target, this is manually matched and projected on the images to
retrieve target pose in the image with respect to the mesh reference frame.
Given this pose, triangulation of the extracted features is possible, with
the mesh also exploited together with the Möller-Trumbore intersection
algorithm to compute the 3D coordinates of the features. This procedure
works only for planar surfaces, therefore needs to be performed iteratively
for each target satellite surface, with one image per surface theoretically
sufficient. This means that only few views, covering the whole satellite, are
needed. At the end of the process, the list of 3D features with correlated
descriptors is stored in a file which is easily accessible by the tracking
algorithm.

4.3 Navigation Filter

In this section, the navigation filter used to process the measurements
available from the pose determination block is described. The output of
the tracking algorithm is the relative position vector between the target
and chaser center of mass and the relative rotation matrix between the
target and the chaser spacecraft. These quantities are fed to the navigation
filter. As already mentioned, the translational and rotational dynamics
are treated separately. Hence, the adopted filtering strategy exploits two
separated filters, one for the relative translation and another for the relative
rotation.

4.3.1 Translation Filter

In this subsection, the H-∞ Filter adopted for the translational motion
estimation is presented. The choice of such filter is driven by the fact
that, dealing with optical measurement, the assumptions of the KF are
usually not satisfied. Moreover, both process and measurement noise are
usually time-varying, depending on the position of the spacecraft and on
the illumination conditions respectively. All these considerations lead to
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a robust approach rather than an optimal one. The formulation of the
H-∞ Filter is presented in Section 2.1.2. The possibility to use a linear
filtering is justified by the fact that the relative translational dynamics can
be described by a set of linear equations. The relative translational motion
between two objects in space can be described in different ways as detailed
in Chapter 3. The most general approach, exploiting nonlinear differential
equations implies the use of nonlinear filtering techniques, such as the EKF.
In the following, the Yamanaka and Ankersen model [49] is considered. Such
a linearized formulation accounts for arbitrary elliptical orbits and leads to
a state transition matrix that is advantageous when implementing filtering
techniques. In fact, an expression for the Fk matrix of Equation (2.2) is
directly derived. The details of the implementation can be found in [49].
The choice of adopting a linearized model, without considering any external
disturbances if justified by the limited duration of proximity operations for
the selected scenario. In this case, the difference between the nonlinear and
linearized model is not very significant. Furthermore, the adopted model
can be used also for elliptical orbits and, therefore, it does not limit the
applicability of the proposed approach. Finally, the linearized formulation
allows to limit the computational cost of the overall filtering algorithm by
preserving accuracy and robustness.

4.3.2 Rotation Filter

For the rotation part, a second-order minimum energy filter on the Lie
group is implemented. A filter derived directly on the rotation matrix is
used, despite the more complicated formulation. This is done to avoid
the non-uniqueness of the classical quaternion attitude parametrization
and the undesired unwinding phenomenon [27] as underlined in Chapter 1.
Minimum energy filtering was introduced by Mortensen [45], and has
been specialized to attitude estimation on the Special Orthogonal Group
SO(3) by Zamani et al. [80]. In [81], the authors showed that such
minimum energy filter on SO(3), thanks to the Lie group structure of SO(3),
outperforms the industry standard Multiplicative Extended Kalman Filter
(MEKF) for absolute attitude estimation. A further development of the
presented minimum energy filter on SO(3) was introduced by Saccon et al
[82]. They present an explicit formula for a second-order optimal nonlinear
filter. A slightly different formulation of the second-order minimum energy
filter is hereby proposed. First, the filter in [82] is adapted to relative
state estimation. Despite the kinematic equations do not change in a
relative framework, the dynamics must include both the target and chaser
contributions. In our formulation the derivative of the angular acceleration
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is forced to zero to avoid the explicit dependence on the inertia matrix
of the target spacecraft. This is somehow similar to what it is usually
done for α-β-γ filters [39]. Despite the possibility of achieving slightly
worse performance that the one provided by the filter scheme in [82], the
proposed formulation is more promising due to its capability to deal also
with unknown or partially unknown objects. In particular, the rotational
dynamics exploited by the filter is:

ṘCT = RCT (ω(t))× , (4.5)
ω̇= Bδ. (4.6)

with (RCT ,ω) ∈ SO(3)× R3, ω representing the relative angular velocity
and B ∈ R3x3 indicating a coefficient matrix that allows for different
weightings of the components of the unknown process noise δ.
Equations (4.5) and (4.6) are directly expressed in relative terms and in
the chaser frame C, without an explicit dependence on the inertia matrix
of the target spacecraft. The formulation of the proposed relative filter is
summarized in Table 4.1.

4.4 Simulation Environment and Results - Strategy A

In this section, the numerical simulation environment to validate the
proposed relative navigation algorithm is described. The measurement
generation process is illustrated and the simulation scenarios are presented.
Finally, an overview of the results for different orbital conditions, target
spacecraft and noise level is provided.

4.4.1 Numerical Simulation Environment Description

The proposed relative navigation architecture is preliminarily validated
through numerical simulations, carried out in MATLAB environment.
In particular, the relative translational and rotational orbital dynamics
between two spacecraft are reproduced by using nonlinear dynamical models
that are detailed in Chapter 3, in particular Equations (3.1) and (3.17).
An unperturbed, unforced motion is considered mainly because of the short
duration of vision-based relative proximity operations and of the limited
chaser-target separation. Moreover, the two spacecraft are assumed to
do not perform any maneuver during the simulation. This is a common
assumption for the validation of similar vision-based relative navigation
algorithms [25], [66], [83]. The generated relative trajectory is used as
a reference to evaluate the relative navigation algorithm performance,
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Table 4.1: The 2nd Order Minimum Energy Filter on SO(3)

Initialization:
R̂CT (t0) = R̂CT 0, ω̂(t0) = ω̂0, K(t0) = K0,

Filtering:
˙̂
RCT = R̂CT

(
ω̂(t) +K11r

R +K12r
ω
)
×,

˙̂ω= K21r
R +K22r

ω,

K̇(t) = −αK+AK+KAT −KEK+BR−1BT −WK−KW T ,

where

rt =
[
rR

rω

]
=
[
−u1(r̂1 × r1)− u2(r̂2 × r2)

0

]
,

ui = b2

d2
i

,

r̂i = R̂T
CT r̄i, ri = R̂T

CT r̄i + diε,

A =
[
−ω̂× I

0 0

]
,

E =
[∑2

i=1 ui
(
(r̂i)× (ri)× + (ri)× (r̂i)×

)
/2 0

0 0

]
,

BR−1BT =
[

03×3 0

0 BR−1BT

]

W =
[ 1

2
(
K11r

R +K12r
ω
)
× 0

0 0

]
.
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but also to provide input measurements to the pose determination block
(as detailed in section 4.4.1.1). It is worth underlying that the ground-
truth and the dynamics implemented in the filters are distinct to generate
representative results.

4.4.1.1 Measurement Generation

In order to preliminary assess the performance of the proposed approaches
for monocular pose determination, simulated sets of 2D point features (e.g.,
corners) are generated. At this step of the process, image processing is
not considered. Specifically, 3D landmarks composing the target model
are projected on the image according to the true relative attitude and
position parameters. Hence, the position of each detected feature point
on the image plane is modified to account for potential errors introduced
by the image processing. Specifically, a Gaussian white noise is added
to the pixel coordinates of each point feature (whose standard deviation
(σpix) is expressed in terms of a certain number of pixel). Moreover, a
number of outliers (nout) is randomly located in the region of the image
plane occupied by the target (according to a uniform distribution) to take
into account either false alarms from the image processing algorithms or
potential deviation of the simplified model from the actual target geometry.
A camera with a resolution of 400 x 400 and a focal length equal to
f = 7mm is used.

4.4.2 Simulation Scenario

In this section, the scenarios considered to validate the proposed algorithm,
are presented, both in terms of target and orbit characteristics.

4.4.2.1 Target

XMM-Newton The first selected target is the ESA X-ray space observa-
tory, XMM-Newton. This is an example of very large spacecraft for which
servicing or removal operations may be necessary. The inertia matrix of
the object has been computed considering available information about its
size, shape and weight [84], [85], and assuming a simplified geometry (i.e.,
the real geometry of the target is modeled as a combination of elementary
volume elements, such as cuboids, cones, cylinders etc.), and uniform mass
distribution. Clearly, the estimated values do not represent with high
accuracy the real inertia of the two considered targets. This is due to the
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Figure 4.4: Targets Point Cloud and Reference Frame

lack of information about spacecraft components available in the open
literature. The resulting inertia matrix:

IXMM =


7052 −820 −3991
−820 129129 0
−3991 0 131196

 kgm2 (4.7)

is computed considering the body fixed reference frame as in Figure 4.4a.

Hispasat The second target is one of the satellites of the Hispasat family.
It represents the next generation of SmallGEO platforms for telecommuni-
cation. This lower mass class of telecom satellites is the ideal target for
future on-orbit servicing missions. Similarly to XMM, the inertia matrix is
computed by exploiting the information in [86], and assuming the reference
frame as in Figure 4.4b:

Ihispa =


6396 0 −46

0 3703 0
−46 0 5918

 kgm2 (4.8)

4.4.2.2 Orbital Scenario

Absolute Orbital Parameters Testing the filter and its dynamics over
different possible absolute orbits is important to verify its robustness. For
this reason, three different orbital regimes are considered: Low Earth
Orbit (LEO), Highly Elliptical Orbit (HEO) and GEO. These alternatives
represent the most important classes of Earth orbits with a variety of
altitudes and eccentricities. Three real satellites are considered, Envisat
(LEO), XMM (HEO), Hispasat (GEO). The associated classic orbital
parameters are reported in Table 4.2.
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Table 4.2: Scenarios Orbital Parameters
LEO HEO GEO

a [km] 7143.1 66931.6 42164.1
e [-] 1.4·10−4 0.808 1.1·10−4

i [deg] 98.2 69.9 0.005
ω [deg] 85.9 96 41.6
Ω [deg] 79.2 352.5 274.9

Relative Motion Relative translational trajectories and rotational motion
are defined depending on the absolute reference orbit of the chaser space-
craft and on the relative angular velocity. Five different scenarios are
considered, as summarized in Table 4.3.

Table 4.3: Cases Definition

Case 1
LEO Low

Case 2
LEO High

Case 3
LEO Mix

Case 4
HEO

Case 5
GEO

Chaser Orbit LEO LEO LEO HEO GEO
Target XMM XMM XMM XMM Hispasat
ρ0 [m] [0 30 0] [0 30 0] [0 30 0] [0 30 0] [0 40 0]
ρ̇0 [m/s] [0 1 0]·10−4 [0 1 0]·10−4 [0 1 0]·10−4 [3 -1 0]·10−3 [0 -1 0]·10−4

ωt0|T [deg/s] [0.1 0 0] [1 0 0] [0.5 -0.3 0.2] [0.1 0 0] [0.1 0 0]

where ρ0 and ρ̇0 are the initial relative position and translational velocity
expressed in the chaser frame C and ωt0|T is the initial target angular
velocity expressed in the target reference frame T . These quantities are the
initial conditions for Equations (3.8) and (3.17). For sake of completeness,
it is worth noting that no control is assumed on the chaser spacecraft
orientation and that it is always aligned with its LVLH reference frame.
This entails that the relative translational velocity has to be kept very small
in order to avoid a rapid drift of the target spacecraft. For this reason, the
initial conditions for all the different cases are not representative of any
particular operative scenario but they are selected to guarantee a limited
evolution of the relative position, in a leader-follower configuration, for the
complete duration of the simulation. Different cases of relative angular
velocity are considered to test its effect on performance of the proposed
architecture.

4.4.2.3 Noise Level

As previously explained in section 4.4.1.1, the noise is added while gen-
erating the simulated images according to a Gaussian distribution with
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standard deviation equal to σpix. An additional source of error is repre-
sented by the presence of nout outliers. Another relevant feature concerns
the precise determination of the chaser true anomaly, that is used to prop-
agate the relative translational dynamics equations (see Equation (3.1)).
In real applications, this value is computed by means of the spacecraft
position and velocity coming from the absolute navigation filter. In litera-
ture, similar works [25], [66], [83] neglect the possible noise associated to
this quantity. However, a noisy fluctuation of the chaser true anomaly can
strongly affect the filter robustness and stability. For this reason, the true
anomaly of the chaser spacecraft is corrupted by noise in this work. In
particular, the associated noise level is described by a Gaussian distribution
with standard deviation respectively σpos = 10−2km and σvel = 10−4km/s.

4.4.3 Results

In this section, the results of the algorithm validation are presented. As in
Figure 4.1, the pose estimator is divided in two blocks: Acquisition and
Tracking. First, an analysis of the Acquisition process is carried out. In
particular, the robustness to different relative angular velocities is tested.
This analysis is critical since the speed of the relative rotational motion
strongly affects the performance during Acquisition Algorithm 1. With
this study, statistical quantities of the acquired pose and acquisition time
are obtained (i.e. mean and standard deviation of the distribution). These
statistical parameters are then used to generate random initial conditions
to test the overall architecture proposed in this manuscript (including
the pose tracking algorithm and the filtering techniques) over a relatively
long time interval. Before presenting the results, the definitions of the
estimation errors, used for performance assessment, are introduced.
The relative position error is defined as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (4.9)

where x̂, ŷ, ẑ are the position components estimates. Similarly, the relative
attitude error is computed as in [87]:

eR = arccos
(

1− tr(I−RCT i
T R̂CT i)

2

)
(4.10)

with R̂CT being the estimated rotation matrix.

Acquisition Results The content of this section is focused on the perfor-
mance achievable by the proposed acquisition algorithm. A deep analysis
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Figure 4.5: Acquired Position Error

of the Acquisition process is presented in this paragraph. A statistical
analysis of the results obtained over 100 runs is performed considering
three scenarios: Case 1 - LEO Low, Case 2 - LEO High, Case 3 - LEO
Mix (see Section 4.4.2.2). For each of the analyzed cases, the noise level
associated to the result of the image processing step is simulated as a
Gaussian white noise on the location of the detected point features with
standard deviation σpix = 1 as in [58]. As for the number of outliers, it is
fixed to nout = 1. The algorithm is run (according to Algorithm 1) until
the initial acquisition of the pose parameters is declared. Its performance is
evaluated in terms of pose estimation error processing time. In this regard,
it is worth outlining that the value of the elapsed time is not intended as
an absolute measurement of the algorithm computational efficiency (since
the simulations are run in MATLAB environment). However, the results
can help to assess the effect on the processing burden of the increase in
the target/chaser relative rotational dynamics. Figures 4.5 to 4.7 show
the position, rotation error and runtime at the end of the Acquisition.
Figures 4.5 and 4.6 show that a difference in the initial relative angular
velocity does not drastically affect the error in the acquired pose. In fact,
despite the error of Case 3 is often higher than in the other two cases, the
order of magnitude is comparable. This is expected since the algorithm
processes one image at the time during the acquisition step. However, a
significant difference is present in Figure 4.7. In fact, as expected, a higher
relative angular velocity implies a difficulty in the acquisition convergence
and, therefore, a higher time to complete the acquisition. This is certainly
an aspect to consider while approaching fast-spinning objects.

47



Chapter 4. Vision-based Relative Navigation around an Uncooperative-known
Space Object

0 20 40 60 80 100

# acquisition

0

1

2

3

4

5

6

[d
eg

]
Case 1 - LEO Low
Case 2 - LEO High
Case 3 - LEO Mix

Figure 4.6: Acquired Attitude Error

0 20 40 60 80 100

# acquisition

0

100

200

300

400

500

600

700

[s
]

Case 1 - LEO Low
Case 2 - LEO High
Case 3 - LEO Mix

Figure 4.7: Time to Complete the Acquisition

48



4.4. Simulation Environment and Results - Strategy A

For a more quantitative description of the results, the main statistics of
the obtained distributions are reported in Table 4.4.

Table 4.4: Acquisition Statistical Results
Case 1

LEO Low
Case 2

LEO High
Case 3

LEO Mix
eρ - Mean [m] 0.2196 0.1747 0.3767
eρ - STD [m] 0.1879 0.1314 0.3003
eR - Mean [deg] 0.9502 1.007 1.474
eR - STD [deg] 0.5939 0.692 0.9339
Time - Mean [s] 91.48 206.6 44.97
Time - STD [s] 54.02 160.7 32.91

It is worth underlying that similar results are obtained also considering
the Hispasat target geometry.

Tracking and Filter Results The statistics in Table 4.4, obtained with
the Acquisition analysis, are used to generate the random input for the
Tracking and subsequently the filtering step. Please note that for Case
4 - HEO and Case 5 - GEO the statistics of the Case 1 - LEO are used,
having the three cases the same initial relative angular velocity.
The first presented analysis wants to show the beneficial effect of having
a filter downstream of the vision-based pose determination algorithm. In
Figures 4.8 and 4.9 the relative position and attitude estimation errors
of the Tracking process only are shown, together with the results from
the approach combining filter and monocular navigation. The presented
simulation is run on the Case 1 - LEO Low scenario with a noise of σpix = 2
and nout = 1. In this case, a 1Hz frame rate is considered.
The filter benefits are especially evident for the position error. In fact,
the estimation error with the filter in the loop is reduced by more than
one order of magnitude in Figure 4.8. In Figure 4.9, the improvement
is still evident but less remarkable. Indeed, the overall estimation error
is reduced by roughly the 20%. In Figures 4.8 and 4.9 a fluctuation in
the estimation error is observed. This effect can be due to the relative
rotational dynamics that causes a change in the observation conditions of
the target. Periodically, the camera observes the target from an unfavorable
point of view; this affects the accuracy of the pose determination and,
consequently, of the navigation filter estimates. The robustness of the
proposed approach is further proved by means of a statistical analysis. A
set of 50 runs, considering the first 30 minutes, are performed for all the five
different test scenarios. It is worth underlying that, for each simulation, the
initial conditions of the tracking are randomly selected from the statistics
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Figure 4.10: Average Relative Position Error eρ

derived from the analysis on the Acquisition step. Moreover, the noise
associated to the point features extracted from the simulated images is
randomly picked from a zero-mean Gaussian distribution with standard
deviation of σpix = 2. A number of outliers of nout = 1 is used. Figure 4.10
shows mean relative position and attitude errors, computed according to
Equations (4.9) and (4.10) and averaged for each time step over the 50
runs for the three different LEO cases.

As expected, a higher relative angular velocity implies a higher error and a
slower convergence, for both the LEO Mix and LEO High cases, visible in
Figure 4.11. This is justified by the fact that the Tracking process is more
problematic while experiencing higher angular velocity. Moreover, recalling
Equation (4.6), the rotational filter is built assuming the relative angular
acceleration equal zero and considering only white noise components. This
particular formulation strongly affects the attitude estimation in the case
of higher relative angular velocities. Concerning the relative position
error, the first three LEO cases converge to almost the same value with a
slightly different convergence time. This is in line with the expected results
being the translational motion equal in all the three cases. The different
convergence rate is due to the coupling between the rotation matrix and
position vector while solving the SoftPOSIT optimization. For a more
quantitative analysis, in Table 4.5 the steady state RMSE for all the cases,
considering the last 1000 seconds, are reported.

Table 4.5: Tracking & Filter RMSE Results
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RMSE - Position [m] RMSE - Attitude [deg]
Case 1 - LEO Low 0.0109 0.3259
Case 2 - LEO High 0.0225 1.0834
Case 3 - LEO Mix 0.0269 0.7205
Case 4 - HEO 0.0673 0.6711
Case 5 - GEO 0.0264 0.4183

The Case 4 - HEO is substantially different from the previous ones. In
fact, the high value of the chaser orbit eccentricity implies a higher error
between the linearized relative dynamics equations, used in the filter, and
the reality. This is evidently remarkable from Table 4.5 where the error of
the HEO case is much higher with respect to all the others. However, this
does not have any strong influence in the relative attitude estimate error
that is comparable to the other test cases. Finally, despite the different
target, the GEO case RMSEs are very similar to LEO cases.

Noise Sensitivity Analysis In order to evaluate the robustness of the pro-
posed method, a sensitivity analysis over σpix is performed. The orbital
scenario of Case 1 is propagated for 1800 seconds with a noise standard
deviation ranging from 2 to 6 pixels. The tuning of the filter is kept equal
for all the different test cases. Given the estimation error in time for the
different simulations, the RMSE from 50 seconds to the end is computed
and the change in the steady state error is thus evaluated. Table 4.6
reports the RMSE for different noise levels, for both relative position and
attitude estimation errors.
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Table 4.6: RMSE for Different Noise Levels
σpix RMSE - Position [m] RMSE - Attitude [deg]
2 0.0312 0.4221
3 0.0599 0.6671
4 0.0735 0.9430
5 0.11 1.1323
6 0.1455 1.4902

As expected, the errors increase as long as the noise level increases. However,
both the positional and angular accuracy are acceptable even considering
very high levels in the measurement noise (in reference [58] the maximum
value considered for σpix for numerical simulation is equal to 3 pixels).

Outliers Sensitivity Analysis A similar sensitivity analysis is also carried
out to evaluate robustness against increased number of outliers. Also in
this case the simulations are run on the Case 1 scenario with fixed initial
conditions and variable number of outliers nout. The noise level is kept at
σpix = 2. Analogously, the RMSE is computed from 50 seconds to the end
of the simulation. Table 4.6 reports the RMSE for different numbers of
outliers, for both relative position and attitude estimation errors.

Table 4.7: RMSE for Different Number of Outliers
nout RMSE - Position [m] RMSE - Attitude [deg]
1 0.0312 0.4221
2 0.0341 0.4314
3 0.0363 0.4371
4 0.0444 0.4479
5 0.0479 0.4648

Table 4.7 shows that despite a very slow increase in the estimation errors,
the proposed algorithm is able to cope also with a relatively large number of
outliers (it works also if the outliers are the 10% of the extracted features).

4.4.4 Preliminary Experimental Validation

The pose estimation technique described in Section 4.2 was also validated
through a preliminary experimental campaign.
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4.4.4.1 Experimental Facility

The algorithm was validated at the new experimental facility dedicated
to vision-based autonomous GNC algorithm at Politecnico di Milano,
Aerospace Science and Technology Department (DAER) [32]. The system
is composed by a 7-DoF robotic arm with a navigation camera mounted
on the tip, reproducing the two spacecraft relative dynamics. A realistic
satellite mock-up is used as target. Controlled, realistic lighting condition
is reproduced by using a dedicated illumination system.

Robotic arm The robotic arm represents the most important element of
the facility. In fact, it allows to properly simulate the relative motion
between two spacecraft for different mission scenarios. A 7-DoF Mitsubishi
PA10-7c is used: it is servo-actuated and sensorized with brush-less re-
solvers. The robot operative envelope has 1m radius approximately and
allows for spacecraft motion simulation under different scaled trajectories.

Navigation camera A PointGrey Chameleon-3 is adopted as navigation
camera for the facility. Its characteristics are shown in Table 4.8.

Table 4.8: Navigation Camera Technical Specification

Technical specification
Resolution 1280x1024
Frame rate 149
megapixels 1.3
Chroma color/gray-scale
ADC 10 Bit
Sensor format 1/2
Focal length 6 mm
Field of view 43.5 o

Illumination system Ensuring the proper illumination and environmental
conditions is a fundamental task to obtain realistic images. To this aim, a
dedicated dark room has been built around the facility exploiting black
curtains and dark floor cover which prevent from light reflection. A proper
lighting is used to simulate the Sun illumination: a dedicated LED array
with narrow beam angle and 5700K light temperature is exploited.

Satellite mock-up A scaled satellite mock-up has been realized at PoliMI-
DAER premises for in-orbit relative navigation around uncooperative target
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simulations. The model of the Solar and Heliospheric Observatory (SOHO)
spacecraft was 3D printed at PoliMI-DAER Laboratory. A spray-plaster
of a gray color was applied twice on the model and we sanded it down
with sandpaper with different grit size. A spray acrylic black paint, usually
used for modeling, was applied twice on the surface to reproduce the black
surface of the spacecraft. The details were adjusted by a thin brush. Gold
aluminum foils were used to reproduce the classical thermal protection of
spacecraft, made of Multi-Layer Insulation (MLI). Finally, we used some
leftover of real spacecraft solar cells from Azurespace. The final spacecraft
mock-up is shown in Figure 4.12.

Figure 4.12: Satellite Mock-up

4.4.4.2 Experimental Test

The test was conducted by imposing a controlled motion to the robotic
arm and keeping the spacecraft mock-up anchored to a fixed support.
An approach trajectory was imposed to the arm with also a rotational
component. Some snapshots of the simulated trajectory are reported in
Figure 4.13.

4.4.4.3 Experimental Test Results

The acquired images were processed off-line by the proposed pose determi-
nation algorithm and a pose estimate was produced. It is worth underlying
that the filter was not inserted in the loop and only the vision-based
algorithms (acquisition and processing) were tested. In order to evaluate
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Figure 4.13: Acquired Images Sequence Example

the accuracy of the proposed approach, a ground truth of the actual pose
was necessary. This quantity was extracted at each time step of the simu-
lation by enforcing, by hand, the known correspondences between the 3D
feature points of the model and the 2D points on the camera plane. This
step has some intrinsic, unavoidable errors. For this reason, an accurate
calibration of the facility is currently ongoing. For the acquired trajectory
we evaluated the relative position for each axis and attitude errors as in
Equation (4.10). The results of the preliminary experimental validation
are shown in Figures 4.14 and 4.15.
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Figure 4.14: Relative Position Error
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Figure 4.15: Relative Attitude Error

Please note that the position error reported in Figure 4.14 is not scaled.
Considering the relative distance between the mock-up and the arm tip,
this error has to be scaled by a factor of roughly 30 (if we consider the
orbital scenarios taken into account for the numerical validation and
the true relative distance between the robotic arm and the target mock-
up). However, the magnified error is in line with what we expected from
numerical simulation, working with the pose determination algorithm only.

4.5 Simulation Environment and Results - Strategy B

Strategy B involves an algorithm that has been recently developed. For this
reason, only a preliminary numerical validation is presented in this thesis.
Similarly to Strategy A, a reference scenario is defined. A Medium Earth
Orbit (MEO) orbit is selected for the chaser spacecraft with an eccentricity
of 0.17 and semi-major axis of 8790 km. The relative reference dynamic
is simulated, as for Strategy A, directly integrating the nonlinear equa-
tions for the relative motion without considering any orbital perturbation
(Equation (3.1)). The assumed initial conditions are:

ρ0 = [50, 0, 0] m;
ρ̇0 = [0,−0.1, 0] m/s; (4.11)

expressed in the local-vertical, local-horizontal (LVLH) reference frame
fixed to the chaser spacecraft center of mass C. This initial conditions
have been chosen to have an in-plane elliptical motion of one spacecraft
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with respect to the other. This trajectory can be representative of a
monitoring or close approach phase. Also in this case the non perfect
absolute state determination of the chaser spacecraft is taken into account.
For the relative dynamics, a torque-free tumbling motion is imposed to the
simulated target spacecraft. The motion is simulated as done for Strategy
A (Equation (3.17)), imposing the following initial conditions: ω0 =
[0.5,−0.2, 0.3]deg/s. The target spacecraft is modeled with a simple shape
taking as reference the NASA Suomi-NPP satellite. A set of 38 uniform
distributed points is considered and constitutes the 3D-model used by the
tracking algorithm. The set of images to be provided to the navigation
algorithm is instead obtained as explained in Section 4.4.1.1. To take
into account for the uncertainty in features detection that arise due to
the presence of noise for an application on real images, a value of the
noise extracted from a Gaussian distribution with σpix = 2 is added to
the 2D features location. Figure 4.16 shows the true 3D built model
of the spacecraft along with the selected features, both with zero noise.
Figure 4.17 shows instead a short sequence of the generated extracted

Figure 4.16: 3D Spacecraft Model

features, from which it is possible to observe a portion of the spacecraft
tumbling motion.
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Figure 4.17: Simulated Target Spacecraft Measurements

4.5.1 Results

In this section, the results of the pose determination algorithm and of
the overall relative state determination are presented. The estimation
errors are computed as in Equations (4.9) and (4.10). The results of the
translational H-∞ Filter are presented in this paragraph along with the pose
determination results. In particular, the estimation errors corresponding to
the σpix = 2 noise case with measurement frequency of 1 Hz are considered.
Figure 4.18 shows the estimation error of the position.

0 1000 2000 3000 4000 5000 6000 7000 8000

[sec]

0

0.5

1

1.5

2

2.5

[m
]

Figure 4.18: Relative Position Error
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The advantage of having a filter downstream of the image processing is
evident also with Strategy B. The overall position error is strongly reduced
and it always stays beyond 0.4 m. Similarly to what has been done for
the translational filter, the results of the rotational filter are be presented.
Figure 4.19 show the rotation filtering results. Once again the filter
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Figure 4.19: Relative Attitude Error

has improved quite significantly the measurements from the vision-based
tracking, The overall rotation error is always beyond 0.1 deg. Strategy
B shows more promising results if compared to the numerical analysis
of Strategy A. However, the implementability of such approach presents
some challenges. In particular, the construction of the target spacecraft
3D model, with the associated descriptors, is complicated; especially if it
has to take into account possible variation of the illumination conditions
experienced by the target spacecraft. In this sense, Strategy A offers
a simpler and more robust alternative, relying only on the geometry of
the target spacecraft during the pose initialization. On the other hand,
Strategy B could potentially be more accurate and independent of the
geometry of the spacecraft, at the cost of increased complexity.
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CHAPTER5
Comparison of Filtering Techniques For

Relative Attitude Estimation of Uncooperative
Space Objects

In theory, there is no difference between
theory and practice. But, in practice, there is.

Jan L. A. van de Snepscheut

The development of a peculiar filtering technique for relative attitude
estimation, introduced in Chapter 4, has entailed an extensive comparative
analysis with classical filters. In this chapter we review and compare the
conventional and novel methods for attitude estimation, and tailor these
formulations to the problem of uncooperative attitude estimation. Absolute
attitude estimation has been extensively studied in the past decades and
several algorithms have been proposed [88], [89]. These techniques usually
rely on accurate measurements of angular rate and line of sight vector. How-
ever, the accessibility of these measurements is not guaranteed when trying
to estimate the relative state of an uncooperative object, especially in space.
The main difference between absolute and relative attitude estimation is
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that, when dealing with uncooperative objects, measurements of the target
angular velocity cannot be provided to the chaser. In fact, classical sensors
exploited for relative proximity operations, such as lidar or cameras, do
not provide reliable information of the angular velocity of the target body.
In principle, only a rough estimate of the target angular velocity can be
obtained by using optical-flow techniques. Moreover, the measurements
update frequency is usually lower due to the image-processing compu-
tational time. This lack of information inevitably affects the accuracy
of the estimates and, therefore, some alternative filtering formulations
have to be adopted. This chapter offers a comparison of different filtering
techniques for relative state estimation. We start by introducing different
filtering formulations, then, these alternatives are tested and compared
considering a representative simulation scenario. Starting from the case in
which reliable measurements of the angular velocity are available, several
cases are analyzed and discussed. Convergence, steady-state error and
robustness are considered as performance indexes.

5.1 Filtering Algorithms

In this section we present all the filters that have been implemented for
the comparison.

5.1.1 Multiplicative Extended Kalman Filter (MEKF)

The common form of the Multiplicative Extended Kalman Filter (MEKF),
utilizing the unit quaternion parametrization for the global attitude, is
outlined in this subsection. It is worth noting that the MEKF commonly
relies on a linear measurement update based on Euler angles hence limiting
the covariance matrix to 3× 3.
The measured relative angular velocity ω̃ approximates the true relative
angular velocity ω in (Equation (3.17)) up to a process disturbance Bw as

ω = ω̃ +Bw, (5.1)

where w is a zero-mean Gaussian noise process with covariance given by

E
(
w(t)w(τ)T

)
= Q(t)δ(t− τ).

For the case of uncooperative attitude estimation, please note that ω
and q represent the relative angular velocity and the relative quaternion
expressed in the chaser frame. It is important to underline that, since the
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propagation (Equation (5.1)) is based only on the attitude kinematics, this
formulation holds if expressed in any generic reference frame.
For the case of uncooperative attitude estimation, ω̃ is unavailable and
therefore ω is assumed to be a random process defined solely by Bw .
Hence (Equation (5.1)) becomes

ω = Bw. (5.2)

This seems to be a reasonable assumption if no prior information about the
angular velocities of the target object and chaser spacecraft is available.
The vector measurements, typically output of a star camera, approximate
the line of sight up to a noise process Dv. The measurement equation is
thus given, as in [89], by

y = h(q) + Dv; h(q) =
[

A(q)r1

A(q)r2

]
(5.3)

where h(q) is the concatenated vector of the noise-free vector measurements,
A is the relative Direction Cosine Matrix (DCM), r1 and r2 are two
mutually perpendicular directions and v is a vector of zero-mean Gaussian
noise processes with covariance given by

E
(
v(t)v(τ)T

)
= R(t)δ(t− τ).

Please notice that although all other filters directly utilize the attitude
measurement provided by the vision system on-board the chaser, standard
MEKF formulation uses the line of sight measurements. Therefore, in this
work, the vector measurements for the MEKF are obtained by projecting
the measured attitude matrix on two mutually orthogonal unit vectors,
and then fed to the MEKF, since the main motivation of the analysis is to
compare the geometric filters with the usual form of the MEKF.
The Kalman filtering problem can be cast into minimization of the cost
function,

J = 1
2E

[∥∥∥ξT (q(t))q̂(t)
∥∥∥2
]
, (5.4)

where the term ξT (q(t))q̂(t) represents the error between estimated and
true quaternions. To solve the optimal filtering problem, the cost J is
to be optimized subject to the dynamic constraints (Equations (3.18)
and (5.3)). The optimization problem admits an analytical solution for the
special case of linear systems. Therefore, assuming the linear propagation
for the covariance matrix, one can obtain the filtering equation together
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Table 5.1: Multiplicative Extended Kalman Filter (MEKF)

Initialization:
q̂(t0) = q̂0, P(t0) = P0,

Prediction:

˙̂q =
{

1
2ξ(q̂)ω̂ with ω measurement,

0 without ω measurement,

Ṗ(t) = F(t)P(t) + P(t)FT (t) + BQBT

F(t) =
{
−ω̂(t)× with ω measurement

0 without ω measurement

B = I3×3, Q = σ2
wI3×3

Correction:

Kk = P−k HT
k

[
HkP−k HT

k + R
]−1

R = σ2
vI3×3

P+
k = [I−KkHk(q̂−k )]P−k

Pk(+) = [I−KkHk] Pk(−) [I−KkHk]T + KkRKT
k

h(q̂−k ) =
[

A(q̂−k )r1

A(q̂−k )r2

]

q̂+
k = q̂−k + 1

2Ξ(q̂−k )Kk

[
yk − h(q̂−k )

]

with the matrix differential equation (Riccati equation) for the covariance
propagation, as well as the expression for the filter gain. The complete
MEKF formulation for the kinematic system defined by Equation (3.18)
and the line of sight measurements (Equation (5.3)), is given in Table 5.1,
see, e.g., [89], [90].

The Hk(q̂−k ) term in Table 5.1 is the linearization of h(q) based on the esti-
mated attitude and the reference directions (of the target object measured
in chaser frame). Therefore, Hk(q̂−k ) is calculated as

Hk(q̂−k ) =

[
A(q̂−k )r1

]
×[

A(q̂−k )r2
]
×

 ,
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where the estimated relative attitude, i.e., the relative DCM, is constructed
based on the estimated quaternions as

A(q) = ‖q‖−2
(
(q2

4 − ‖%‖
2)I3 + 2%%T − 2q4%×

)
.

The attitude measurement typically provided by the vision based solutions
is a rotation matrix and it can be right-multiplied by two mutually per-
pendicular reference directions (namely, r1 and r2) to provide two line
of sight (vector) measurements, consistent with Equation (5.3). These
vector measurements can then be fused with the relative attitude estimates
using the optimal gain, as outlined in Table 5.1. It is to be pointed out
that the assumption made in Equation (5.2) results in trivialization of
the attitude prediction step, i.e., attitude prediction is switched off and
only the correction step is responsible for tracking the noisy output, see
Table 5.1.

5.1.2 Minimum Energy Filter on SO(3)

The formulation of the minimum energy filter on SO(3) is based on the
perturbed kinematic model:

ṘCT (t) = RCT (ω̃(t)× + gδ(t)), RCT (0) = RCT 0, (5.5)
where RCT (t) ∈ SO(3) is the relative rotation matrix expressed in the
chaser frame, and gδ(t) ∈ so(3) is the process disturbance. Since the
measured relative angular velocity ω̃ is not available in an uncooperative
attitude estimation setup, ṘCT (t) will be assumed to be driven only by
gδ(t). The measurement Y(t) ∈ SO(3), which is again a relative rotation
matrix expressed in the chaser frame, is typically obtained through a
vision-based solution. The measurement Y(t) can be modeled as

Y(t) = RCT (t)ε(t), (5.6)
where ε(t) ∈ SO(3) is the measurement error. The minimum-energy fil-
tering approach aims at obtaining a state estimate R̂CT by minimizing a
cost function J at each time step t, given the actual measurements (Equa-
tion (5.6)). To obtain the state estimate R̂CT , one seeks a combination of
the unknowns (i.e., the initial state RCT 0 and the process and measure-
ment disturbances δ0, ε0) that is compatible with the actual measurements
(Equation (5.6)) and system model (Equation (3.19)). The resulting cost
function is:

J = 1
4trace

[
(RCT 0 − I)T K−1

0 (RCT 0 − I)
]

+
∫ T

0

(1
2trace

[
δT (τ)δ(τ)

]
+ 1

4trace
[
(ε(τ)− I)T (ε(τ)− I)

])
dτ, (5.7)
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Table 5.2: The Minimum Energy Filter on SO(3)

Initialization:
R̂CT (t0) = R̂CT 0, K(t0) = K0,

Filtering:

˙̂RCT =

R̂CT (ω̂(t)× − Pa(KYT R̂CT )) with ω measurement,

−R̂CT Pa(KYT R̂CT ) without ω measurement,

K̇(t) = 1
2Q−K(YT R̂CT +R̂T

CTY)K+K(t)ω̂(t)×−ω̂(t)×K(t),

Pa(X) = 1
2(X−XT ).

where K0 is a symmetric positive definite matrix. If the signals associated
with a given hypothesis minimize the cost over all possible choices of
unknown signals, then the hypothesis is termed optimal. The value of the
associated state trajectory is considered as the optimal (minimum-energy)
state estimate at time T . As it is evident from the cost function, the new
measurements arriving at every sample time may yield a different optimal
trajectory of the state R∗CT (t) thus making the problem infinite dimensional.
Using Mortensen’s approach [45], the optimal filtering problem is broken
into a recursive filtering equation and a gain update equation. A second-
order minimum energy filter for attitude estimation has been provided in
[91]. The optimality gap between the full order minimum energy filter
and its second-order approximation is small and an analytical upper-
bound on this gap has been provided in [92]. Alternatively, in [91], [93]
the upper bound on the optimality gap W(t), has also been calculated
using a candidate Lyapunov function, and rearranging the terms after
differentiating it along the trajectories of the system. The relationship
between the cost J incurred by the second-order approximation of minimum
energy filter, the optimal cost J∗ of the optimal minimum energy filter,
and the upper bound W(t) on the optimality gap, is given by:

J − J∗ = J − 1
4

∫ T

0
trace

[(
YTRCT − I

)T (
YTRCT − I

)]
dτ ≤W(t).

(5.8)

For the system described by Equation (3.19), the second-order minimum
energy filter is given in Table 5.2, see [91], [93] for details.
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5.1.3 Attitude Observer on SO(3)

The attitude observer on SO(3) consists in the same filtering equation
as that of a minimum energy filter, given in Table 5.2. The gain of the
observer, instead of evolving as a solution of the Riccati equation as for the
minimum energy filter, is set to a constant matrix which can be found in a
number of ways. In the present case it was observed that a favorable trade-
off between convergence and steady-state performance can be obtained
if the observer gain is set equal to the steady-state gain matrix of the
minimum energy filter. It is noted that although the fixed-gain observer is
not an optimal estimator, it is free from the instabilities which may arise
from the numerical integration of the Riccati equation in an optimal or
near-optimal filter.

5.1.4 2nd Order Minimum Energy Filter

A further development of the presented minimum energy filter on SO(3) was
introduced by Saccon et al [82]. In the cited paper an explicit formula for a
second-order optimal nonlinear filter on general Lie groups was developed.
As an example, the authors develop a second-order filter on SO(3) which
depends on the choice of affine connection which encodes the nonlinear
geometry of the state space. When the symmetric Cartan-Shouten (0)-
connection is chosen, the filter has the familiar form of a gradient estimator
along with a perturbed Riccati-type matrix differential equation which
describes the evolution of the filter gain. The second-order minimum
energy filter [82] is based on the choice of an affine connection, and it is not
straightforward to extend the proposed filter to relative attitude dynamics,
except for the special case of non-rotating chaser spacecraft, i.e.,

ω̇ = RCT I−1
t [−ωt|T × Itωt|T ] + Bδ. (5.9)

Since the chaser spacecraft cannot always be expected to be non-rotating
in real applications, this assumption of a non-rotating chaser spacecraft
limits the practical use of this formulation of second-order minimum energy
filter for a generic relative attitude estimation problem. To generalize this
method to the case of an arbitrarily rotating chaser spacecraft, a different
affine connection has to be developed by incorporating the relative attitude
dynamics (Equation (3.18)) and that will result into a slightly different
filtering formulation. The measurements are assumed to be the noisy line
of sight vectors ri, as:

ri = RT
CT r̄i + diε, (5.10)

where ε is the measurement noise vector and di is the scaling factor.
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Table 5.3: The 2nd Order Minimum Energy Filter on SO(3)

Initialization:
R̂CT (t0) = R̂CT 0, ω̂(t0) = ω̂0, K(t0) = K0,

Filtering:
˙̂RCT = R̂CT

(
ω̂(t) +K11r

R +K12r
ω
)
× ,

˙̂ω = I−1
t

(
(Itω̂)× ω̂ + τ

)
+K21r

R +K22r
ω,

K̇(t) = −αK + AK + KAT −KEK + BR−1BT −WK−KWT ,

where [
rR

rω

]
=
[
−u1(r̂1 × r1)− u2(r̂2 × r2)

0

]
,

ui = b2

d2
i

,

r̂i = R̂T
CT r̄i, ri = R̂T

CT r̄i + diε,

A =
[
−ω̂× I

0 RCT I−1
t [(Itω̂)− ω̂×It]

]
,

E =
[∑2

i=1 ui
(
(r̂i)× (ri)× + (ri)× (r̂i)×

)
/2 0

0 0

]
,

BR−1BT =
[

0 0

0 BR−1BT

]

W =
[ 1

2
(
K11r

R +K12r
ω
)
× 0

0 0

]
.
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The complete formulation of the second-order filter on SO(3) for Equa-
tion (5.9) and the symmetric Cartan-Shouten (0)-connection is provided
in Table 5.3.

5.1.5 2nd Order Minimum Energy Filter without Dynamics

As highlighted in Section 5.1.4, the use of an affine connection in estimating
the angular velocity limits the applicability of a second-order minimum
energy filter for generic relative attitude estimation problems beyond the
special case of a non-rotating chaser spacecraft. Furthermore, for the
cases of uncooperative objects in space (e.g., derelict satellites, space
debris), the inertia matrix of the target is usually uncertain. Therefore, a
different formulation of the second-order minimum energy filter is presented
in Section 4.3.2. In fact, a simplification to the filter proposed in [82] is
introduced without considering the dynamics of the system. Equations (4.5)
and (4.6) are directly expressed in relative terms and in the chaser frame,
not relying on the dynamics equation. It is worth underlying that this
formulation does not require the knowledge of the inertia matrix. This
is very important when the inertia matrix of the body is uncertain or
completely unknown, as in the case of derelict satellites or asteroids. The
formulation of the kinematic second-order filter (i.e., without the dynamics
terms) is summarized in Table 4.1.

5.2 Simulation Scenarios and Results

Since the objective of this study is to compare the performance of the
filtering algorithms described above for relative attitude estimation of unco-
operative space objects, a torque-free tumbling motion has been simulated
for the target spacecraft. In particular, the relative rotational motion has
been simulated according to Equation (3.17). In our simulation cases, we
assumed, for simplicity, that the chaser spacecraft is not rotating and there-
fore ωc = [0 0 0]T , for which Equation (3.17) reduces to Equation (5.9).
The angular velocity of the target depends on the simulation case and it is
reported in Table 5.4.
The motion has been simulated using the Euler equation for rigid body,
using the inertia matrix of the Envisat spacecraft [94] as

I =


16979.74 0 0

0 124801.21 0
0 0 129180.25

 kgm2. (5.11)
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The measurements are generated at 10 Hz (similarly to [95]) transforming
the relative rotation matrix to Euler angles and adding noise to each of
the three angles according to a normal distribution with zero mean and
a standard deviation of 6 · 10−2 rad. This noise level is representative
of commonly used vision-based attitude determination techniques [57].
Moreover, for a more complete comparison, the MEKF and the minimum
energy filter are also tested for the hypothetical case when angular velocity
measurements of the target body are also available. The process noise for
this hypothetical case, which reflects the mismatch between measured and
actual angular velocity, was modeled according to a normal distribution
with zero mean and a standard deviation of 1 · 10−3 rad/s. It is worth
emphasizing that this measurement is not available when dealing with
uncooperative objects unless the target body is cooperative and its gyro
measurements are accessible from the chaser spacecraft. Since all the
filters being considered assume different process and measurement models,
all of these filters are individually tuned for a good trade-off between
convergence, steady-state performance and robustness. The MEKF, with
and without angular velocity measurement, is tuned with Q = (1 ·10−3)2I3,
R = (1 · 10−3)2I3 and Q = (6 · 10−2)2I3, R = (1 · 10−3)2I3, respectively.
The minimum energy filter with angular velocity measurement is tuned
with Q = (1 · 10−3/6 · 10−2)2I3, while for the case without angular velocity
measurement we set Q = 3I3. The observer gain is fixed equal to the steady-
state values of the gain of the minimum energy filter, i.e., Kobserver ≡ 2.1I3.
Finally, we take BR−1BT = 5 · 10−2I3, ui = 6 · 10−2 and α = 1 · 10−3 for
the second-order minimum energy filter, while BR−1BT = 1 · 10−2I3 is
used for the second-order minimum energy filter without the dynamics.
It is to be reminded that these tuning settings are not claimed to be the
best possible settings, rather these settings were found to offer reasonable
trade-off between convergence/stability and the steady-state performance.
By testing and comparing the filters in various off-design conditions, we
make an attempt to decouple the effects of tuning parameters on the
performance of the filters. We are interested in studying the estimation
errors, especially their sensitivity to the variations in measurement noise
intensity, initial conditions, and angular velocities of the non-cooperative
object in space. Therefore, we consider the cases outlined in Table 5.4,
which are used for trajectory generation. The filters, however, are not
”aware” of the configurations of any test case and are used with the nominal
tuning. To cope with initial estimation errors all the first order filters are
initialized with

K0 = 5I3,
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Table 5.4: Considered Simulation Cases

Cases Number
of Runs

Initial Estimation
Error (deg)

Measurement
Noise Std.
(deg)

Object’s
Angular
Velocity
(deg/s)

Moment of
Inertia

A1 100 φ, θ, ψ ∈
[−28.6,+28.6] σ = 3.4

 1
0.1
0.3

 I

A2 100 φ, θ, ψ ∈
[−28.6,+28.6] σ = 3.4

 5
0.1
0.3

 I

B1 100

 10
−10
10

 σ ∼
WN(3.4, 0.3×

3.4)

 1
0.1
0.3

 I

B2 100

 10
−10
10

 σ ∼
WN(3.4, 0.3×

3.4)

 5
0.1
0.3

 I

C1 100 φ, θ, ψ ∈
[−28.6,+28.6]

σ ∼
WN(3.4, 0.3×

3.4)

 1
0.1
0.3

 I

C2 100 φ, θ, ψ ∈
[−28.6,+28.6]

σ ∼
WN(3.4, 0.3×

3.4)

 5
0.1
0.3

 I

D 100 φ, θ, ψ ∈
[−28.6,+28.6]

σ ∼
WN(3.4, 0.3×

3.4)

 5
0.1
0.3

 I ∈
[I−0.45I,I+

0.45I]

while the second-order filters are initialized with

K0 =
[
42.5I3 03×3

03×3 0.909I3

]
.

All the filters in this study are run with an update rate of 10 Hz.

The cases A1 and A2 are designed to investigate the effect of variations
in initial estimation error and in angular velocity of the uncooperative
space object. For A1 and A2, the measurements of the true trajectory
were simulated with a constant zero-mean measurement noise of standard
deviation 6 · 10−2 rad (or 3.4 deg) added to the samples of true trajectory
(for each Euler angle), and the initial attitude was constructed from a
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set of Euler angles each of which were uniformly drawn from
[
−0.5,+0.5

]
rad (or

[
−28.6,+28.6

]
deg). A1 and A2 were simulated with the nominal

angular velocity ω1 (i.e., equal to that of Envisat) and ω2, respectively,
given by:

ω1 =


1

0.1
0.3

 deg/s, ω2 =


5

0.1
0.3

 deg/s. (5.12)

Both A1 and A2 are run 100 times, using fixed inertia matrix which equals
that of Envisat (Equation (5.11)).

For cases B1 and B2, the initial conditions are fixed to
[
10 −10 10

]T
deg,

and the initial angular velocity is ω1 and ω2, respectively. The standard
deviation of actual measurement noise which is used in the measurement
generation is set to be a random variable. The random variable has a
mean equal to the nominal standard deviation σ, and a standard deviation
30% of the nominal standard deviation. Both cases are run 100 times each,
but the filters are unaware of the actual measurement noise and therefore
are still tuned for the nominal standard deviation. The inertia matrix is
kept fixed to the value given in Equation (5.11) in these simulations and is
assumed to be perfectly known.

The cases C1 and C2 are run for 100 times each, and combine the uncertain
initial conditions from cases A1 and A2, with the uncertain measurement
noise properties from B1 and B2. The inertia matrix is still assumed to be
fixed (i.e., Envisat inertia matrix in these cases) and perfectly known a
priori.

Finally the case D is run for 100 times, with all the same parameters as
that of C2 but with the uncertain inertia matrix this time. The diagonal
terms of the inertia matrix are now assumed to be uniformly drawn from a
set of [−45,+45] % of their nominal values. This has been done to evaluate
how an inaccurate knowledge of the inertia properties of the body affects
the estimation.

5.2.1 Single Run (Case C2)

To visualize the convergence and steady-state performance of various
filters, results from a single run (under simulation parameters of case
C2) are reported in Figure 5.1 and Figure 5.2. The metric adopted for
the estimation error is the axis-angle representation which yields a scalar
measure of distance between two reference frames.
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Figure 5.1: Single Run Estimation Errors - Convergence
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Figure 5.2: Single Run Estimation Errors - Steady-State
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Figure 5.1 depicts the convergence properties of estimation errors of all
the filters under a single run, and therefore only initial 40 seconds are
shown. Both variants of MEKF (i.e., with and without angular velocity
measurement) are the quickest to converge. This stems from the fact that
measurement update step in the MEKF (Table 5.1, see also [89], [90]) is
based on first order approximation of quaternion update and therefore
the measurement step is linear. The minimum energy filter is slower to
converge than the MEKF, due to a fully nonlinear geometric measurement
update. The minimum energy filter and the SO(3) observer are still quicker
to converge as compared to the second-order minimum energy filters, while
the minimum energy filter with angular velocity measurement is the slowest
to converge. The second-order filters are prone to convergence problems if
initialized with a large estimation error, which stems from the fact that
second-order filters estimate not only the attitude but also the angular
velocity. If initialized with large estimation error, during the convergence
the second-order filters build up an angular velocity in the direction of
convergence and this creates undesired oscillations after the filter has
reached steady-state. To circumvent this problem, the angular velocity
of second-order filters is not updated for initial 5.5 seconds, and hence
the angular velocity is only estimated after 5.5 seconds when the initial
transients have vanished. This transient time of 5.5 was chosen because
it provided a reasonable trade-off between speed of convergence and the
steady-state error.

The slow convergence of the minimum energy filter in comparison to MEKF
is in contradiction to [81], but the possible explanation could be that the
MEKF adopted in [81] is not the usual MEKF we have considered in this
analysis, see e.g., [89], [90]. The MEKF used in [81] contains the same
nonlinear measurement update equation as the minimum energy filter, and
differs from the minimum energy filter only in its gain update equation.

The steady-state performance of the filters, in a single run, is shown in
Figure 5.2. The MEKF turns out to be the worst performer at steady-state,
which only slightly improves the measurements. Since the minimum energy
filter and the observer designed on SO(3) are equivalent at steady-state,
we see that their estimation errors are identical at steady-state. The
second-order minimum energy filter (without dynamics) performs better
than the minimum energy filter but worse than the second-order minimum
energy filter, whose performance nears the performance of the MEKF
(with angular measurement) and the minimum energy filter (with angular
measurement).
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Figure 5.3: Average Estimation Errors - Case A1

5.2.2 Cases A1, A2 [Random Initial Conditions, Known Measure-
ment Noise]

As outlined in Table 5.4, the cases A1 and A2 are designed to investigate
the effect of variations in initial estimation error and in angular velocity
of the uncooperative space object. The estimation errors are averaged
over 100 Monte-Carlo runs, and presented in Figure 5.3 and Figure 5.4
for case A1 and Case A2, respectively. A more quantitative measure of
filters performance in transient (i.e., initial 60 seconds) and steady-state
(i.e., 60-200 seconds) is the Root Mean Squared (RMS) estimation error
which is reported in Table 5.5, for both cases.

For the case A1, it is evident from Figure 5.3 and Table 5.5 that both
variants of MEKF are quickest to converge, in comparison with all other
filters. The observer on SO(3) and the minimum energy filter also exhibit
good convergence properties, while the second-order minimum energy
filters are slower than the minimum energy filter. The minimum energy
filter with angular velocity measurements is the slowest to reach its steady-
state error. At the steady-state, the second-order minimum energy filter
exhibits the best performance, after the filters which utilize the angular
velocity measurements. The second-order minimum energy filter without
the dynamics terms containing inertia matrix is slightly worse than the
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Figure 5.4: Average Estimation Errors - Case A2

Table 5.5: RMSE (deg): Cases A1 and A2

Filters Transient Error Steady-State Error
Case A1 Case A2 Case A1 Case A2

MEKF
(with ω measurement) 1.29 1.19 0.34 0.33
Minimum energy filter
(with ω measurement) 2.59 2.57 0.28 0.56

MEKF 2.71 2.97 2.52 2.83
Minimum energy filter 2.88 3.35 2.08 2.76
Observer on SO(3) 3.90 4.19 2.06 2.77

2nd order Minimum energy filter 3.37 4.63 0.99 1.15
2nd order Minimum energy filter

(with dynamics) 3.35 5.09 0.61 0.78
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the second-order minimum energy filter, but it is free from the need of
accurate absolute attitude estimates as well as from the need to have any
idea about the moment of inertia matrix of the target. The minimum
energy filter is further significantly worse, but is quite better than the
MEKF which is the worst at steady-state. The observer on SO(3) also
performs better than MEKF and its steady-state performance is almost
identical to the minimum energy filter.

For the case A2, we note from Figure 5.4 and Table 5.5 that the performance
of almost all the filters deteriorates when tracking the attitude of a body
rotating at a higher angular velocity. However, the performance of MEKF,
with and without the angular velocity measurement, is less affected and we
conjecture that this characteristic of the MEKF also owes its existence to
the linear measurement update step. The convergence properties of all the
filters are similar to case A1, except second-order filters which take quite
longer to converge in this case. At the steady-state, second-order filters are
still the best performers which tend to achieve the estimation errors closer
to filters operating on the angular velocity measurement. The minimum
energy filter and the observer on SO(3) perform slightly better than the
MEKF, but their filter is significantly worse than the second-order filters.

5.2.3 Cases B1,B2 [Known Initial Conditions, Uncertain Measure-
ment Noise]

The cases B1 and B2 are mainly selected to probe the sensitivity of filters’
performance under random variations in the measurement noise intensity.
The standard deviation of actual measurement noise is assumed to be a
random variable in this case. This random variable has a mean equal to
the nominal standard deviation σ, and a standard deviation equal to 30%
of the nominal standard deviation. Both cases are run 100 times each, but
the filters are unaware of the actual measurement noise and therefore are
used with the nominal tuning.

The estimation errors averaged over 100 Monte-Carlo runs are provided
in Figure 5.5 and Figure 5.6 , for case B1 and B2, respectively. Table 5.6
contains the Mean Square Error (MSE) of different filters for a direct
comparison. The results are mainly consistent with the results presented
in the previous section. The MEKF is the quickest to converge but the
worst performer at the steady-state, although with a much lower margin
for the case B2. The observer is slower than the minimum energy filter in
terms of convergence but, as can be expected, its performance is almost
indistinguishable from the minimum energy filter at the steady-state. The
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Figure 5.5: Average Estimation Errors - Case B1
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Figure 5.6: Average Estimation Errors - Case B2
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Table 5.6: RMSE (deg): Cases B1 and B2

Filters Transient Error Steady-State Error
Case B1 Case B2 Case B1 Case B2

MEKF
(with ω measurement) 0.70 0.72 0.33 0.33
Minimum energy filter
(with ω measurement) 1.63 1.75 0.28 0.57

MEKF 2.53 2.83 2.49 2.79
Minimum energy filter 2.35 2.95 2.05 2.73
Observer on SO(3) 2.80 3.31 2.04 2.74

2nd order Minimum energy filter 2.23 3.74 0.97 1.14
2nd order Minimum energy filter

(with dynamics) 2.21 4.33 0.59 0.78

minimum energy filter is faster to converge as compared to the second-order
minimum energy filters, but at the expense of considerable degradation in
performance at the steady-state. The second-order minimum energy filter
without dynamics remarkably improves the performance in comparison
with the minimum energy filter, and the second-order minimum energy
filter slightly improves it further close to the order of filters which utilize
angular velocity measurement. The convergence of second-order filters
is, however, worse than the minimum energy filter and they are prone to
oscillations if initialized with a large estimation error especially for the
higher angular velocity case (i.e., case B2).

Furthermore, we also notice the same trends of degradation in steady-state
performance in higher angular velocity case, and the performance of the
MEKF suffers the least also in this case.

5.2.4 Cases C1, C2 [Random Initial Conditions, Uncertain Mea-
surement Noise]

The case C1 and C2 combine the uncertain initial conditions from Case
A1 and A2, with the uncertain measurement noise properties from B1 and
B2. The inertia matrix is still assumed to be fixed and perfectly known.
The estimation errors averaged over 100 Monte-Carlo runs are presented
in Figure 5.7 and Figure 5.8 , for case C1 and D2, respectively. While the
MSE achieved of different filters are illustrated in Table 5.7.
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Figure 5.7: Average Estimation Errors - Case C1
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Figure 5.8: Average Estimation Errors - Case C2
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Table 5.7: RMSE (deg): Cases C1 and C2

Filters Transient Error Steady-State Error
Case C1 Case C2 Case C1 Case C2

MEKF
(with ω measurement) 1.31 1.21 0.33 0.35
Minimum energy filter
(with ω measurement) 2.58 2.64 0.27 0.55

MEKF 2.67 3.03 2.47 2.91
Minimum energy filter 2.86 3.41 2.04 2.82
Observer on SO(3) 3.85 4.26 2.03 2.83

2nd order Minimum energy filter 3.37 4.65 0.96 1.18
2nd order Minimum energy filter

(with dynamics) 3.36 5.10 0.59 0.80

The MEKF is the fastest to converge, to be followed by the observer on
SO(3) and the minimum energy filter. The second-order minimum energy
filters are slowest to converge, especially in the higher angular velocity
case. The minimum energy filter with angular velocity measurement is
the slowest to converge, due to the fully nonlinear measurement update.
The steady-state properties of the observer on SO(3) and the minimum
energy filter are much better than the MEKF in the case C1, but only
slightly better in the case C2. The second-order minimum energy filter,
as in previous test cases, tends to approach the performance of filters
utilizing the angular velocity measurement but it requires the knowledge
of the inertia matrix as well as the reliable absolute attitude estimates.
The steady-state performance of the second-order minimum energy filter
without the dynamics term is very close to the performance of the second-
order minimum energy filter in both cases, but with the added advantage
that it does not require any knowledge about the inertia matrix or the
absolute attitude of the chaser spacecraft.

5.2.5 Case D [Random Initial Conditions, Uncertain Measurement
Noise, Uncertain Inertia of the Target]

Finally with the parameters of case D, simulations are run for 100 times
where we take the same parameters as that of C2 but with the uncertain
inertia matrix this time. The diagonal terms of the Inertia matrix are
assumed to be uniformly drawn from a set of [−45,+45] % of their nominal
values.
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Figure 5.9: Average Estimation Errors - Case D

Table 5.8: RMSE (deg): Case D

Filters Transient Error Steady-State Error
MEKF

(with ω measurement) 1.22 0.35
Minimum energy filter
(with ω measurement) 2.60 0.55

MEKF 3.02 2.88
Minimum energy filter 3.39 2.80
Observer on SO(3) 4.26 2.81

2nd order Minimum energy filter 4.70 1.18
2nd order Minimum energy filter
(with dynamics, uncertain inertia

matrix) 5.21 1.28
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The Figure 5.9 and Table 5.8 contain the results of case D. Since it is exactly
the same case as C2 except for the uncertain variations in the inertia matrix,
the results are similar to the ones presented in the previous subsection,
except for the second-order minimum energy filter which depends on the
inertia matrix. With this large uncertainty in the inertia matrix, which is
not unusual for uncooperative objects in the space, the performance of the
second-order minimum energy filter slightly degrades to a level comparable
to the performance of the second-order minimum energy filter without
dynamics.
The results in this case suggest that the usage of a second-order minimum
energy filter without dynamics term may actually yield better performance
than the standard second-order minimum energy filter, both during tran-
sients and at the steady-state, when the accurate knowledge of inertia
matrix of the target object and the absolute attitude estimates of the
chaser spacecraft are not available.

5.3 Remarks

In this chapter, the results of a simulation campaign, performed evaluating
the performance of each filter under different sources of uncertainty, are
presented. Even if the results change, depending on the simulation case, a
general trend can be observed. In fact, it turns out that for this applica-
tion, although MEKF is the quickest to converge, it loses its edge at the
steady-state and has inferior performance to the minimum energy filters or
even to an observer at SO(3). The observer on SO(3) has an additional
advantage of posing much less computational burden. There is also an
added benefit that an observer is not prone to the numerical instabilities
which may arise from the numerical integration of Riccati equation. It is
to be noted that although the second-order minimum energy filters offer
the best performance, the minimum energy filter provides improved perfor-
mance as compared to MEKF and is significantly simpler in modeling and
implementation than the second-order minimum energy filter. For a more
demanding application, the second-order minimum energy filter without
dynamics has been proposed in this thesis and seems to be the best option,
since it requires neither an estimate of the absolute attitude nor any knowl-
edge of the inertia matrix. Although the second-order minimum energy
filter is the best performer at the steady-state, it may be outperformed by
the second-order minimum energy filter without dynamics, when accurate
estimates of the target’s inertia matrix and absolute attitude of the chaser
spacecraft are not available. This leads to the conclusion that for high
image acquisition rate a kinematic filter outperforms a reduced-dynamics
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filter. This is generally not true, instead, for sparse measurements and
known dynamics. It should also be pointed out that during the extensive
sensitivity analysis of the filter performance with varying update rates, the
performance of the minimum energy filter was found to be improving with
the increase in update rate of the filter.
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CHAPTER6
Vision-based Relative Navigation for

Non-Keplerian Orbits

[...] to myself I seem to have been only like a
boy playing on the seashore, and diverting
myself in now and then finding a smoother

pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered

before me.
Sir Isaac Newton

This chapter deals with the estimation of relative pose of a passively
cooperative space object, in a non-Keplerian environment. Earth-Moon
space is very attractive for future space missions as possible outpost to
enable human presence beyond Earth [96]. In particular, the idea is to
place modular large space infrastructures in non-Keplerian orbits, precisely
in the Moon proximity. This ambitious concept will require accurate
autonomous guidance, navigation and control algorithms to enable safe
close proximity operations and docking. This work wants to investigate the
possibility to navigate in such environment, in the vicinity of a passively
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cooperative target, exploiting precise relative dynamical models. Relative
navigation approaches in cislunar space have been proposed in the past
[97], [98]. However, these studies focus their attention on the relative
navigation between two actively cooperative spacecraft, using crosslink
range measurements, without any Earth-based tracking. Moreover, they
consider the navigation of a two-spacecraft constellation with one spacecraft
in a halo orbit and the other in lunar orbit. In this work, a vision-based
close approach with a passively cooperative space object is considered,
but the proposed navigation algorithm can be easily extended to different
navigation sensors. To the author’s knowledge, no previous works exists
considering this kind of application scenario in a Earth-Moon environment.
This chapter presents the detailed formulation of the proposed navigation
algorithm and its numerical validation considering a representative scenario.
Statistical analysis are performed to verify the robustness of the algorithm.

6.1 Mathematical Formulation

6.1.1 Assumptions and Notation

The inspector spacecraft is defined as chaser and the other spacecraft is
the target. The only available data are provided by two cameras placed on
the chaser and by markers located on the target. In principle, a known
pattern of markers can provide closed-form solution of the P-n-P problem.
However, the architecture with a stereo camera, allows us to easily adapt
the algorithm and extend it to approaches around unknown objects. The
chaser is assumed to collect and track N known feature points on the target.
The adopted reference frames for both target and chaser are introduced in
Section 3.1.2.

6.1.2 Filter Architecture

The proposed architecture for relative navigation of a chaser satellite
with respect to a passively cooperative target is summarized in the block
diagram in Figure 6.1.
This architecture is tightly-coupled. In fact, the measurements are directly
processed by the navigation filter. The filter processes the features extracted
by the two cameras to compute the relative target/chaser position and
attitude. In the observation model of the camera, the knowledge of feature
points on the target is assumed. Since the observation model depends on
both position and attitude of the target spacecraft, the navigation filter
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Figure 6.1: Relative Navigation Architecture: Block Diagram

has to be coupled and non-linear. The state vector of the filter is defined
as:

x = [ρT0 , ρ̇T0 , qT , ωT ]T (6.1)
being ρ0 and ρ̇0 the relative position and translational velocity between
the spacecraft centers of mass, q the relative quaternion and ω the relative
angular velocity.

6.1.3 Dynamical Model

The state dynamics inside the filter is assumed to evolve according to
the models presented in Section 3.3 for the translational motion and
Section 3.4 for the rotational dynamics. In particular, for the relative
translational dynamics, the linearized model, as in Equation (3.14) but
without considering the perturbations, is adopted. This is done to strongly
limit the computational burden of the navigation filter. In fact, adopting
this formulation, an analytical expression of the Jacobian is available. Also
for the rotational dynamics, the equations presented in Section 3.4 are
used assuming a perturbation-free motion.

6.1.4 Observation Model

A simple pinhole camera model [99] has been used as camera model. It
assumes that all the light rays travel through an infinitely small hole and
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are projected onto an image frame. No lenses are used to focus the light
and, therefore, distortion is not considered. Using prospective geometry
rules, it is possible to mathematically describe the relationship between the
3D coordinates of a generic point and the 2D coordinates of its projection
onto the image plane of the camera.

Figure 6.2: Pinhole Camera Model

Looking at Figure 6.2, a derivation of how the coordinates of the point
x = [u,v] in the image plane, depend on the coordinates of X = [X,Y,Z]
is provided. Exploiting a simple rule of similar triangles, the following
expressions are obtained:

• u = f
X

Z

• v = f
Y

Z

Assuming the chaser body-fixed reference frame CCl aligned with the left
camera center of projection, and to have a stereo rig composed by two
cameras with focal length f and separated by a given baseline b, the
following expressions are derived:

uL(i) = f
xi
yi

(6.2)

vL(i) = f
zi
yi

(6.3)

where uL(i) and vL(i) are the coordinates in the image plane of the left
camera, with ρi = [xi, yi, zi] being a generic feature point in the chaser
frame CCl. Similarly, for the right camera:

uR(i) = f
xi + b

yi
(6.4)

88



6.2. Simulation Environment and Results

vR(i) = f
zi
yi

(6.5)

Finally, we can also define lL = [uL, vL] and lR = [uR, vR]. Given this
camera model, at each time step, the discrete measurement vector provided
by the cameras is:

zi = [lLi, lRi] (6.6)
Please, keep in mind that zi is function of the state being ρi = ρ0 +
RCT (qi)Pi.

6.1.5 Estimation Procedure

The assumed observation model is nonlinear. For this reason, it is necessary
to adopt a nonlinear filtering technique. The more common techniques,
i.e. EKF and UKF were taken into account. One of the main drivers for
navigation filters is their computational cost. As already briefly discussed
before, adopting a linear dynamical model to describe the translational
motion, allow us to have an analytical expression for the translational part
of Jacobian. This is extremely important and computational cost-effective
in real-time implementations. In fact, using an EKF, only one run of
the dynamical model is necessary at each time step, strongly limiting
the computational burden. For this reason, we adopted the linearized
dynamical model within an EKF instead of an UKF. In fact, for the latter
filter, the state dynamics have to be propagated at each time step for 2n
sigma points, where n is the number of states (n = 13 in this case).
Knowing the process (Equations (3.14), (3.17) and (3.18)) and measurement
(6.6) equations and using the EKF equations presented in Section 2.2.1,
the relative pose can be estimated.

6.2 Simulation Environment and Results

Also for this application, the simulation environment to numerically validate
the proposed relative navigation algorithm is presented. In particular, the
measurement generation process is described along with the simulation
scenarios. Finally, a sensitivity analysis campaign is presented.

6.2.1 Numerical Simulation Environment Description

The proposed relative navigation architecture is preliminarily validated
through numerical simulations, carried out in MATLAB environment.
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The relative translational dynamics between the two spacecraft is repro-
duced by integrating the full nonlinear equations presented in Section 3.3,
including perturbations effect. For the relative rotational dynamics, equa-
tions introduced in Section 3.4 are used considering, also in this case,
the perturbations acting on the spacecraft. Using the complete models,
a relative trajectory is generated and used as reference to evaluate the
relative navigation algorithm performance.

6.2.1.1 Measurement Generation

In order to evaluate the performance of the proposed navigation filter,
simulated sets of 2D point features are generated. Specifically, N 3D
feature points are randomly generated on the target according to a uniform
distribution along each of the three axes, considering the target dimensions.
The evolution of these points in the chaser reference frame CCl is then
computed according to the true relative position and attitude. Hence, the
3D position of each detected feature point is projected on the image plane
of the right and left camera. The obtained 2D coordinates are modified
to account for potential errors introduced by the image processing. Also
in this case, a Gaussian white noise is added to the pixel coordinates of
each point feature (whose standard deviation (σpix) is expressed in terms
of a certain number of pixel). In this work we assumed to have a camera
similar to the one of the Prisma mission [100]. In particular, the focal
length is assumed equal to f = 30mm and a camera resolution of 2048 x
2048.

6.2.2 Simulation Scenario

In this section, the scenarios considered for the algorithm numerical valida-
tion are presented. The relative orbital trajectory and the feature points
generation are discussed.

6.2.2.1 Feature Points

A set ofM feature points on the target spacecraft are assumed to be known.
These points can be representative of LEDs or visual markers placed on
the target spacecraft. This set of points is extracted uniformly at each
simulation to test the filter robustness for random configurations of feature
points. For the numerical validation, we assumed to extract uniformly
the feature points considering the following boundaries bx = [−1.2; 1.2],
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by = [−2; 2], bz = [−1.2; 1.2], having a symmetric target and the target
body-fixed reference frame centered in the geometric center of the satellite.

6.2.2.2 Orbital Scenario

The filter is tested considering relative orbits in a cislunar space. In
particular, the target is assumed to orbit in a L1 NRHO while the relative
initial conditions are selected in order to have a quasi-bounded motion of the
chaser with respect to the target. The corresponding relative translational
state initial conditions are:

ρ0 =[24.57;−26.04;−34.90]m
ρ̇0 =[−7.6 · 10−6;−2.8 · 10−4; 4.3 · 10−4]m/s
q0 =[0; 0; 0; 1]
ω0 =[1.2;−1.3; 2]deg/s

(6.7)

where ρ0 and ρ̇0 are the initial relative position and translational velocity
expressed in the inertial frame ICl, q0 is the initial relative quaternion and
ω0 is the initial relative angular velocity expressed in the chaser reference
frame CCl.

6.2.3 Results

In this section, the performance of the algorithm are evaluated. The
definitions of the estimation errors are equal to the ones used for the
Keplerian case but they are recalled for sake of clarity. The relative
position error is defined as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (6.8)

where x̂, ŷ, ẑ are the position components estimates.
And the relative attitude error is computed as:

eθ = 2 cos−1(qe0) (6.9)

where in our notation, qe0 is the scalar part of the error quaternion qe =
q⊗ q̂−1.

Nominal Scenario For the nominal scenario, we run a statistical analysis of
50 runs. The initial conditions are extracted from a Gaussian distribution
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Figure 6.3: Average Relative Position Error - Non-Keplerian Nominal Scenario

with mean equal to the true state and covariance given by the initial state
covariance matrix P. The initial state covariance matrix P is selected as:

P =


σρ

2 0 0 0
0 σρ̇

2 0 0
0 0 σq

2 0
0 0 0 σω

2

 (6.10)

with:
• σρ2 = [1, 1, 1] m
• σρ̇2 = [1, 1, 1] · 10−1 m/s

• σq2 = [1, 1, 1, 1] · 10−5

• σω2 = [1, 1, 1] · 10−1 deg/s

The filter is run at 1Hz with a noise associated to the feature extraction of
σpix = 1. In this first simulation, a set of 25 feature points is considered.
The simulation time is set to the first 1 hour, enough to evaluate the steady
state performance of the algorithm. Figures 6.3 and 6.4 show mean relative
position and attitude errors, averaged for each time step over the 50 runs.
Figures 6.3 and 6.4 show a fast convergence of the filter and acceptable
errors if considering close approach or monitoring scenarios. In particular,
the error in the estimation of the relative position is lower than 0.1m and
the relative attitude error is always lower than 0.2◦ at steady-state.
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Figure 6.4: Average Relative Attitude Error - Non-Keplerian Nominal Scenario

Noise Sensitivity Analysis Also for this scenario, the robustness of the
proposed algorithm over the noise value is analyzed. A sensitivity analysis
over σpix is performed. The nominal scenario is propagated for 3600 seconds
with a noise standard deviation ranging from 0.5 to 2.5 pixels. The initial
conditions and the tuning of the filter are kept constant for all the different
test cases. The results of such analysis are shown in Figures 6.5 and 6.6.
As expected, both relative position and attitude errors increase with
increasing noise level. Also in the most pessimistic considered case, the
filter is able to correctly estimate the relative spacecraft pose.

Number of Feature Points Sensitivity Analysis Another important aspect
to take into account is the number of considered feature points. In this
sensitivity analysis we run the nominal scenario with fixed initial conditions
and tuning, varying the number of known feature points. In particular,
we considered a number of feature points M swinging from 10 to 30. The
noise level is kept at σpix = 1. Analogously, the trends of the different
estimation errors are reported in Figures 6.7 and 6.8.
These plots show how, increasing the number of feature points, the estimate
of both relative position and attitude improves. However, for the presented
simulation, considering more than 25 feature points, the benefit of adding
more features is reduced and, therefore, it may only represent an additional,
ineffective computational cost.
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Figure 6.5: Average Relative Position Error - Noise Sensitivity Analysis
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Figure 6.6: Average Relative Attitude Error - Noise Sensitivity Analysis
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Figure 6.7: Average Relative Position Error - Feature Points Sensitivity Analysis
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Figure 6.8: Average Relative Attitude Error - Feature Points Sensitivity Analysis
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CHAPTER7
Radial Basis Function Neural Network -

Adaptive Extended Kalman Filter

Don’t waste any neurons on what doesn’t
work. Devote those neurons to new ideas that

better explain the data.
Wonder and Skepticism (1995)

Carl Sagan

Current navigation algorithms rely on the accurate knowledge of the
system dynamics. In particular, we already discussed the importance of
proper dynamical modeling in Section 1.1.1. Adopting a precise dynamical
model is not always possible; this is desirable whenever spacecraft orbiting
the Earth are considered, where the environment can be accurately modeled
to a great extent. Nevertheless, when dealing with relative approach with
unknown bodies or interplanetary missions, the modeling of the system
dynamics yields inevitable unmodeled uncertainties. This is mainly due to
partial knowledge of the operative scenario, e.g. orbital disturbances acting
on the target spacecraft. Furthermore, the growing interest towards micro-
platforms, both for Earth and interplanetary missions, has significantly
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reduced the spacecraft available computational power; hence, very sophisti-
cated models cannot be anymore handled on-board. Such limitation leads
to a degradation of performance of the Guidance Navigation & Control
(GNC) subsystem [4]. In this framework, on one hand, the dynamical
model employed in the on-board algorithms needs to be simplified, on
the other hand, the accuracy of such model significantly deteriorates the
GNC performance [4], due to the absence of nonlinear terms as well as
disturbances. The Artificial Neural Networks (ANNs) are a powerful tool to
bridge this gap. ANNs are becoming increasingly important when dealing
with uncertain processes. In particular, their approximation capability of
unknown functions can be employed to reconstruct system nonlinearities
as well as unmodeled environmental disturbances. The advantage of esti-
mating such uncertainties benefits the whole GNC process chain. In this
framework, Gurfil et al. [101] presented a nonlinear adaptive neural control
method applicable to deep space formation flying. Bae and Kim [102] de-
veloped a neural network aided sliding mode control scheme for spacecraft
formation flying. Recently Zhou [103] proposed a neural-network based
reconfiguration control for spacecraft formation in obstacle environments.
Finally, in recent past, some strategies on pose estimation using ANN
has been proposed by Sharma [104]. Traditionally, the ANNs are solely
employed for disturbance estimation, yet the aim of the navigation filter
is to estimate the system state. In past years, there have been attempts
to couple ANNs with EKF. In particular, the most common approach
is to employ EKFs to train the ANNs [105]. In this configuration, the
state of the KF is augmented with the ANN weights. For a large net-
work this can be a problem, being the computational effort burdensome.
Furthermore, the resulting coupled structure cannot provide an estimate
of the uncertainties, unless the disturbance vector is added to the state
vector and estimated as a constant parameter. An alternative solution
is to use the estimated disturbance term, output of the ANN, directly
in the dynamical propagation of the filter [106]. In this way, instead of
the state vector, the dynamics of the EKF is augmented by an ANN that
captures the unmodeled dynamics. The ANN learns online the function
describing the disturbance, i.e. the mismatch between the measurement
and the a-priori guess given by the model selected for the EKF. However,
in this case, the augmented dynamical model accuracy changes in time
and therefore, its covariance matrix has to be adapted at each step to
capture this variation. In the past years, few solutions have been proposed
to derive an efficient formulation for neural network aided filters. Gao et al.
[107] derived a RBFNN - KF to improve the estimation accuracy for seam
tracking during high-power fiber laser welding. They proposed a coupled
formulation where the RBFNN is used to compensate for the model and
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Figure 7.1: Proposed Architecture for the RBFNN-AEKF

noise uncertainties. However, they do not consider any online adaptation
of the filter covariances. Similarly, Stubberud et al. [106] developed a
neuro-observer based on an EKF and a multilayer feed-forward neural
network. Their formulation involves two coupled KFs, one to estimate
the state and the other to tune the neural network. Other authors also
proposed neural network for system identification based on offline training
[108], [109]. Recently Harl et al. [110] developed a reduced-order modified
state observer for uncertainties estimation in nonlinear systems. They also
applied the proposed technique to estimate the uncertain disturbances
caused by J2 perturbation around the Earth. Also in this case, the gain of
the observer is user-selected and there is not any kind of adaptation depend-
ing on the experienced scenario. In this chapter, we propose and describe a
Radial Basis Function Neural Network aided Adaptive Extended Kalman
Filter (RBFNN-AEKF) for state and disturbance estimation. RBFNN are
selected for their simple structure and suitability for fast online training
[111]. The neural network estimates the unmodeled terms which are fed
to the EKF as an additional term to the state and covariance prediction
step. Finally, a recursive form of the adaptive EKF is employed to limit
the overall computational cost.

7.1 Algorithm Architecture

The filter architecture is sketched in Figure 7.1. The neural network
estimates the disturbances acting on the system, which are then added
to the prediction step of the filter. The innovation term is used to carry
out the adaptivity task. Whereas, the residual term, taking into account
the estimation state at step k, is fed into the online learning algorithm of
the network’s weights. Each block of the Radial Basis Function Neural
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Figure 7.2: Architecture of the RBF neural network. The input, hidden, and output
layers have n, m, and j neurons, respectively. Φi(x) denotes the nonlinearity at the

hidden node i.

Network Adaptive Extended Kalman Filter (RBFNN-AEKF) is detailed
in the following subsections.

7.1.1 RBFNN

The RBFNN is a popular network typology, which has the capability of
universal approximation [111] [112]. Due to its simple structure and much
quicker learning process, it stands out compared to the classic Multi-Layer
Perceptron (MLP), especially for function approximation applications [111].
The RBFNN is a three-layer feedforward network, as seen in Figure 7.2.
The RBFNN does not need multiple layers to obtain nonlinear behaviour,
as in MLP, given that the Gaussian neurons inherently implements a
nonlinear function. Hence, the lightest network has been chosen, consisting
of one input layer, one hidden and one output layer. The hidden layer
performs a nonlinear mapping of the input, whereas, the output layer is a
linear combination of the nonlinear hidden neurons transformed into the
resultant output space.

7.1.1.1 Neural Network Structure

A RBFNN is used to estimate the unmodeled disturbances, as well as the
nonlinearities present in the system dynamics. The generic layout of the
network is sketched in Figure 7.2. The network has a 3-layers structure,
comprising an input, output and hidden layer. For the sake of derivation
we call x ∈ Rn the input vector. It is hereby remarked that the vector x
is employed to derive the network structure: in the following sections the
distinction between state vector and estimated state will be described and
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treated accordingly. Similarly to the input vector, Φ ∈ Rm is the hidden
layer vector and i the associated index, d ∈ Rj is the output vector and l
the associated index. In this derivation we assume that n ≡ j. Essentially,
the hidden layer evaluates a set of m radial basis functions Φ : Rn → R,
where n is the number of states, which are chosen as centered-Gaussian
expression:

Φi(x) = e−η(||x−ci||)2 (7.1)
for i = 1 : m, where m is the number of neurons and ci is the randomly
selected center for neuron i. The output of the neural network hidden
layer, namely the radial functions evaluation, is normalized:

Φnorm(x) = Φ(x)∑m
i=1 Φi(x) (7.2)

The classic RBF network presents an inherent localized characteristic;
whereas, the normalized RBF network exhibits good generalization proper-
ties, which decreases the curse of dimensionality that occurs with classic
RBFNN [111]. In the following derivation, the output vector of the hidden
layer is simply called Φ(x) without the subscript norm for the sake of
simplicity. For a generic input x ∈ Rn, the components of the output
vector d ∈ Rj of the network is:

dl(x) =
m∑
i=1

wilΦi(x) (7.3)

In a compact form, the output of the network can be expressed as:

d(x) = WTΦ(x) (7.4)

where W = [wil] for i = 1, ...,m and l = 1, ..., j is the trained weight
matrix and Φ(x) = [Φ1(x) Φ2(x) · · · Φm(x)]T is the vector containing the
output of the radial basis functions, evaluated at the current system state.

7.1.1.2 Online Learning Algorithm

The environmental perturbations, nonlinearities and unmodeled uncertain-
ties need to be estimated online. Hence, an online learning algorithm,
which drives the update of the weights, is required. The weights update law
is derived to guarantee the stability of the feedback system. In the following
mathematical derivation we make use of the universal approximation theo-
rem for neural networks that guarantees the existence of a set of weights
W that approximates a function with a bounded arbitrary approximation
error [111]. Such weights are unknown, hence the algorithm is designed to
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obtain an estimate Ŵ of the ideal weights. The neural network learning
algorithm relies on the estimation error dynamics, targeting convergence
and stability of the estimated weights matrix Ŵ and the error e. The
symbol (̂·) is used to refer to estimated quantities.
To derive the error dynamics, let us assume the actual system dynamics is
described by the following set of nonlinear differential equations:

ẋ = f(x) + dext (7.5)

where dext is the external disturbance term. The actual system dynamics
can be rewritten as the following equation, assuming to isolate all the
nonlinear terms into d(x) : Rn → Rj, j ≡ n, which is the vector-valued
function equivalent to the RBFNN output vector:

ẋ = A · x + d(x) (7.6)

where the term d(x) captures all the nonlinearities together with the
disturbances external to the system, namely d(x) = f(x)−Ax+dext. The
expression of the continuous single-step KF is written as, see Section 7.1.2:

˙̂x = A · x̂ + d̂(x̂) + KkH(x− x̂) (7.7)

where d̂ is estimated using the radial-basis function neural network, Kk is
the time-varying gain matrix of the KF and H is the observation matrix.
Consider that the continuous form is employed for the sake of derivation,
indeed the learning rule is then discretized for the actual implementation.
The error dynamics can be derived as:

e = x− x̂ (7.8)

ė = ẋ− ˙̂x = d(x)− d̂(x̂) + (A−KkH)e (7.9)
Invoking the universal approximation theorem for neural networks [111],
we can assume there exists an ideal approximation of the disturbance term
d(x):

d(x) = WTΦ(x) + ε (7.10)
where ε is a bounded arbitrary approximation error. Consequently, the
error in estimation can be written as:

d(x)− d̂(x̂) = WTΦ(x) + ε− ŴTΦ(x̂) (7.11)

by adding and subtracting the term W ·Φ(x̂) and performing few mathe-
matical manipulations, Equation (7.11) can be expressed as:

d̃ = W̃TΦ(x̂) + ε′ (7.12)
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where d̃ = d− d̂, W̃ = W−Ŵ and the bounded term ε′ = ε+W · [Φ(x)−
Φ(x̂)]. The aim of the learning rule is to drive the dynamics error to zero,
as well as forcing the weights to converge to the ideal ones. Namely:

e→ 0, W̃→ [0]

Similarly to [110], introducing the following scalar Lyapunov function for
the feedback system, including the network weights and the estimation
error, the weights update rule ˙̂W is derived to guarantee the stability of
the system:

V = 1
2tr(ξW̃

TW̃) + η

2eTe (7.13)

where tr(·) is the trace operator, ξ, η > 0 are user-defined coefficients.
Recalling Equations (7.9) and (7.12), the derivative of the Lyapunov
function can be written as:

V̇ = tr(ξW̃T ˙̃W) + ηeT ė

= tr(ξW̃T ˙̃W) + ηeT (W̃TΦ(x̂) + ε′ + (A−KkH)e)

= tr(ξW̃T ˙̃W) + ηeTW̃TΦ(x̂) + ηeT ε′ + ηeT (A−KkH)e

= tr(ξW̃T ˙̃W + ηW̃TΦ(x̂)eT ) + ηeT ε′ + ηeT (A−KkH)e

= tr(W̃T (ξ ˙̃W + ηΦ(x̂)eT )) + ηeT ε′ + ηeT (A−KkH)e < 0 (7.14)

Recalling that ˙̃W = − ˙̂W, the expression for the weights update rule
that guarantees stability and convergence of the feedback system to ideal
weights and state is:

˙̂W = η

ξ
Φ(x̂)eT (7.15)

Indeed, by inserting Equation (7.15) into Equation (7.14), the expression
for the derivative of the Lyapunov function reduces to the stability of
the error estimation of the EKF. In the case of linear systems, the term
(A −KkH) grants asymptotic stability of the KF if A is reachable and
H is observable. In the case of nonlinear systems, this is not always true.
However, it has been proved [113] that the estimation error of an EKF is
exponentially bounded if:
• A is nonsingular for every k ≥ 0;
• there exist real constants p1, p2 > 0 such that p1 · I ≤ Pk ≤ p2 · I,
where Pk is the state covariance matrix;
• the initial estimation error satisfies ||x̂0 − x0|| ≤ ε and the covariance
matrices are bounded

where x̂0 and x0 are the estimated and true state vector at the initial step.
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7.1.2 Adaptive Extended Kalman Filter

The EKF is one of the most common approach for nonlinear state estimation
and the standard approach for relative navigation filters [25]. Let’s consider
the system and measurement models:

xk = f(xk−1,uk−1) + wk−1 (7.16)

zk = h(xk) + vk (7.17)

with x being the state vector, u the control input, w and v measurement
and process noise, described by zero-mean white noise uncorrelated dis-
tributions with covariance matrices Q and R respectively. The standard
EKF formulation is given in Section 2.2.1. In the proposed filter, however,
the dynamical model includes the nonlinear contribution of the RBFNN
d(x). This term directly affects the state estimation and, moreover, it
implies an adaptive online tuning of the EKF. In fact, the accuracy of
the known dynamical model plus the estimated disturbance term is very
difficult to be established a-priori and, furthermore, it is likely to be time-
varying. Although this aspect is often neglected [107], an online tuning of
the process covariance matrix Q is fundamental to ensure filter accuracy
and robustness. The formulation of the RBFNN-AEKF is given by:

x̂−k =f(x̂+
k−1,uk−1)+d(x̂−k−1,uk−1) (7.18)

P−k = F̃k−1P+
k−1F̃T

k−1 + Qk−1 (7.19)

Kk = P−k HT
k (HkP−k HT

k + Rk)−1 (7.20)

P+
k = (I−KkHk)P−k (7.21)

x̂+
k = x̂−k + Kk(zk−h(x̂−k )) (7.22)

with
F̃ = ∂f

∂x
+ ∂d

∂x
; H = ∂h

∂x
(7.23)

and
Qk = αQk−1 + (1− α)(Kkδkδ

T
k KT

k ) (7.24)

where α is a forgetting factor and δk = zk−h(x̂−k ) is the filter innovation.
The adaptation of Q is performed according to Equation (7.24) as in [114]
to limit the computational effort. Please note that the adaptive formulation
guarantees that, even in the unfortunate event when the neural network
produces a completely wrong estimates of the disturbances, the filter, at
least, follows the available measurements.
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7.2 Application to Spacecraft Relative Navigation

In this section, we introduce one of the possible applications of the pro-
posed RBFNN-AEKF. The relative navigation between two spacecraft
orbiting the Earth is considered for a dual motivation: it is a well-known
scenario, hence sophisticated model can be employed to simulate the re-
ality to evaluate the filter performances; also, there are many available
dynamical models with increasing levels of accuracy that can be used for
comparison. It is worth remarking that this is not the only application
nor the most appealing one, since more uncommon scenarios are expected
to emphasize the benefit of the proposed filter, such as interplanetary
mission or non-keplerian orbits. Hereby, the different dynamical models
for filter propagation are presented as well as the filter alternatives used
for comparison.

7.2.1 Tested Filters

In this subsection, we present the filters used for the comparison. Besides
the new filter proposed in this chapter RBFNN-AEKF, other filters will
be tested under the same simulation scenario:
• a state observer based on the formulation in [110];
• a standard, non-adaptive EKF aided with a RBFNN;
• an EKF exploiting a more accurate, nonlinear dynamical model.

7.2.1.1 Observer

The dynamics of the relative motion between the spacecraft is recon-
structed using a modified full-state observer [110]. In the same fashion as
Section 7.1.1, the state observer can be constructed as follows [115]:

˙̂x = Acw · x̂ + d̂(x̂) + Kh(z− x̂) (7.25)
where Acw is the linear time invariant matrix of the Clohessy-Wiltshire
dynamics presented in Section 3.2.2, d̂ is estimated using the radial-basis
function neural network in Section 7.1.1, Kh is the user-defined observer
gain matrix.

7.2.1.2 RBFNN-EKF

This filter is a standard EKF aided with RBFNN as presented in Section 7.1.
The only difference with respect to the proposed RBFNN-AEKF is that the
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value of the process covariance Q is fixed in time. It is worth underlying
that this can be a very weak point because it is hard to a-priori establish
the accuracy of the RBFNN-based disturbance estimation, especially for
very uncertain dynamics. The RBFNN-EKF formulation is based on
Equations (7.18) to (7.22).

7.2.1.3 EKF - nonlinear

The last filter that we want to test is an EKF with a different dynamical
model. There is not any coupling with the neural network but the used
dynamical model is nonlinear and accounting for J2 perturbations. In
particular, a standard EKF is employed (Equations (7.18) to (7.22)) where
the evolution of the state vector is described by the nonlinear model
introduced in Section 3.2.1.

7.3 Scenarios & Results

In this section, the numerical simulation environment to evaluate the
filter performance is described. First, the selected scenario is presented.
Subsequently, the capability of disturbance reconstruction of the RBFNN-
AEKF is tested. Then, the filters presented in Section 7.2.1 are compared
using a realistic orbital environment. At this point, the definition of
measurement noise levels and filters tuning are introduced. Finally, the
same simulation is performed using off-nominal conditions to test the
robustness of the navigation filters.

7.3.1 Orbital Scenario

The reference relative orbital motion is generated considering two spacecraft
with the same initial orbital parameters except for the true anomaly. In
particular, Table 7.1 reports the chaser and target initial orbital parameters
along with the cross-sectional area, important for disturbances evaluation.

Table 7.1: Chaser-Target Orbital Parameters
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Chaser Target
a [km] 8143.1 8143.1
e [-] 1.4·10−1 1.4·10−1

i [◦] 98.2 98.2
ω [◦] 85.9 85.9
Ω [◦] 79.2 79.2
θ [◦] 0 1·10−4

Asp [m2] 1.2 0.2
These orbital parameters result in the following relative initial conditions:

ρ0 = [−0.0017, −12.2042, 4.7 · 10−4] m (7.26)

ρ̇0 = [−0.0017, 3.9 · 10−6, −5.6 · 10−10] m/s (7.27)
Please note that the reference orbits are eccentric and that the cross
sectional areas are different, resulting in a strongly different perturbation
effect. The presented scenario has been selected as representative of a
leader-follower formation, separated along the orbit by a difference in the
true anomaly.

7.3.2 Disturbance Reconstruction

The RBFNN disturbance approximation capability is assessed through
the simulation of the scenario presented in Section 7.3.1. In order to
have a quantitative disturbance term, which can be compared to the
ANN estimation, the actual relative motion is propagated using the J2-
perturbed relative motion in Section 3.2.1. Instead, the filter exploits a
simple Clohessy-Wiltshire linearized model described in Section 3.2.2. The
normalized ANN consists of 60 hidden neurons with Gaussian-basis radial
functions; the function centers are generated randomly. The number of
neurons has been selected by trading-off the reconstruction accuracy and
the computational time. In such framework, the disturbances that need to
be estimated are caused by the following elements:
• J2 zonal gravity perturbation
• e 6= 0, elliptical orbits;

together with the nonlinearities neglected in the derivation in Section 3.2.2.
Using the J2-perturbed nonlinear model in Section 3.2.1, the disturbance
term is explicit in the form of d = [dx dy dz]T acceleration term. The
reference orbit is a LEO, which is incidentally assumed to be the orbit of
the target spacecraft. Table 4.2 reports the orbital parameters of the two
spacecraft. The estimation of the disturbance acceleration term converges
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Figure 7.3: Estimation of the disturbance acceleration term for LEO reference orbit.
From left to right: dx, dy and dz.

after a transient time of nearly 350 s: this represents the main learning
process of the randomly initialized network. Figure 7.3 shows the learning
curve of the network during the early phase of the orbital motion. The
disturbance acceleration components are shown in Figure 7.4. Despite the
measurement noise, the estimation yields a RMSE reported in Table 7.2.

Table 7.2: RMSE of the Disturbance Estimation Term - LEO Orbit
Value

σx [m
s2 ] 7.2 · 10−7

σy [m
s2 ] 7.6 · 10−7

σz [ms2 ] 5.9 · 10−7

7.3.3 Relative Navigation - Nominal Case

An accurate orbital simulator is used to test the filters in a realistic
environment. In fact, the relative motion between target and chaser
is obtained by integrating separately the chaser and the target orbital
dynamics considering the perturbations acting on each spacecraft. In
particular, the model considers irregularities in the gravitational potential
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Figure 7.4: Estimation of the disturbance acceleration term for LEO reference orbit.
From left to right: dx, dy and dz.

due to non-spherical distribution of Earth’s mass, the presence of the
Moon and the Sun as third and fourth bodies, the effect of the SRP
and the atmospheric drag. The adopted Earth gravitational model is
the EGM96 with harmonics up to the third degree and order. On the
other hand, the atmospheric drag force is computed by using the Jacchia
Reference Atmosphere model. The normalized neural network consists
of 60 hidden neurons with Gaussian-basis radial functions; the function
centers are generated randomly. This reference orbits are also used to
generate relative measurements by adding a fictitious noise, representative
of realistic sensors uncertainty. In particular, the noise level associated
to relative position and velocity measurement respectively, is described
by a Gaussian distribution with standard deviation σpos = 10−2m and
σvel = 10−4m/s. It is important to remark that the orbits are eccentric and
the cross sectional areas of the two spacecraft are significantly different,
yielding a strong differential perturbation effect. The estimation errors,
used for performance assessment, are recalled. The relative position error
is defined as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (7.28)
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Figure 7.5: Relative Position Error

where x̂, ŷ, ẑ are the position components estimates. Similarly, the relative
velocity error is:

eρ̇ =
√

(ẋi − ˆ̇xi)2 + (ẏi − ˆ̇yi)2 + (żi − ˆ̇zi)2 (7.29)

with ˆ̇x, ˆ̇y, ˆ̇z are the velocity components estimates.
The measurement covariance matrix R for all the filters is tuned according
to the imposed measurement noise level. The same process covariance
matrix Q is used for the RBFNN-AEKF and RBFNN-EKF and, for the
nonlinear EKF, it is properly selected to guarantee the best steady state
error performance. Similarly, the observer gain Kh is tuned to guarantee
the minimum steady state error. A statistical analysis of the filters has
been performed over 100 runs for the described scenario. The filters run
with a frequency of 1Hz and the simulation duration is set to three chaser
orbits to appreciate the disturbances effect. Figures 7.5 and 7.6 show the
relative position and velocity error averaged over 100 runs. For a more
quantitative analysis of the results, the RMSE starting from time step
300 are computed and reported in Table 7.3 to evaluate the steady state
performance of the filters.
Figures 7.5 and 7.6 show the beneficial effect of the filters compared to the
measurements error. The RBFNN-AEKF and the EKF-nonlinear show
a similar behavior for the relative position error (Figure 7.5) and, as in
Table 7.3, they outperform the other alternatives. On the other hand, for
what concerns the velocity estimation, the Observer, with this tuning, has
better performance than the other filters. Despite these small differences,
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Figure 7.6: Relative Velocity Error

the compared filters show similar performance and the order of magnitude
of the RMSE, reported in Table 7.3 is the same.

Table 7.3: Filters RMSE Results
RMSE - Position [m] RMSE - Velocity [m/s]

Observer 0.0079 2.39·10−5

RBFNN - AEKF 0.0063 4.49·10−5

RBFNN - EKF 0.0074 4.03·10−5

EKF - nonlinear 0.0064 3.92·10−5

7.3.4 Relative Navigation - Non-nominal Case

A proper tuning of the filter, however, is difficult to achieve when the
process dynamics is not well known and time-varying. Moreover, it is very
hard to a-priori determine the accuracy in the estimation that the RBFNN
can achieve for that particular case. For this reason, we tested all the filters
with off-nominal conditions. In particular, for each simulation, the value
of Q and Kh were randomly selected according to a uniform distribution
centered in the nominal value and spanning two order of magnitudes. This
can be a very high uncertainty value for some applications, but we wanted
to show how the tuning strongly affects the filter performance. Table 7.4
shows the relative position and velocity RMSE computed over 100 runs.

Table 7.4: Filters RMSE Results - Non-Nominal
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RMSE - Position [m] RMSE - Velocity [m/s]
Observer 0.0149 5.98·10−5

RBFNN - AEKF 0.0064 4.79·10−5

RBFNN - EKF 0.0090 9.34·10−5

EKF - nonlinear 0.0110 9.55·10−5

It is possible to appreciate how the estimation error of the RBFNN-AEKF
is very similar to the nominal case. This is an evidence of high robustness
of the proposed solution. On the contrary, all the other filters are badly
affected from the wrong selection of Q or Kh respectively.
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CHAPTER8
Autonomous Navigation & Mapping of Small

Bodies

We need the tonic of wildness...At the same
time that we are earnest to explore and learn

all things, we require that all things be
mysterious and unexplorable, that land and

sea be indefinitely wild, unsurveyed and
unfathomed by us because unfathomable. We

can never have enough of nature.
Walden: Or, Life in the Woods (1854)

Henry David Thoreau

This chapter deals with the approach to an uncooperative unknown space
object. We discuss the challenges in adopting an autonomous approach for
missions designed to operate in proximity and map the surface of unknown
objects (e.g., asteroids or comets). Nowadays, dealing with such challenging
environment with high levels of uncertainty requires human intervention
across different phases of the mission. In particular, the current state-of-
the-art techniques heavily rely on human intervention in the first part of
the proximity operations phase (Figures 8.1 and 8.3). Moreover, for an
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Figure 8.1: Classical Small-Body Mission Architecture

Figure 8.2: Futuristic Small-Body Mission Architecture

adequate mapping and acquisition of scientific data, proper maneuvers
have to be designed. Currently, trained analysts play a crucial role in this
process by designing trajectories and assisting the mapping of small bodies.
This human-in-the-loop process is both time consuming and limits the
application of the methods to many future missions, e.g., sending multiple
spacecraft to explore several small bodies simultaneously, see Figure 8.2.
The aim of the work presented in this chapter is to take a step toward full
spacecraft autonomy. In particular, we focus on the orbit selection process
to enhance mapping accuracy and coverage of small bodies.

Following the literature in robotic autonomy, this work is most related to
literature on Active SLAM [116]. The general problem is to localize the
spacecraft with respect to the small body and plan the best trajectory
that would improve the mapping of the small body. In this chapter we will
focus on a reduced version of the Active SLAM problem. In particular,
we will present a path planning algorithm that maximizes the information
gain in mapping accuracy. The main goal of this work is to enable the
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spacecraft to autonomously take actions to improve the knowledge of the
environment (i.e., small body shape).

The most common techniques for small body mapping are Stereophotogram-
metry (SPG)[117] and Stereophotoclinometry (SPC) [118]. In this chapter,
we focus on the SPC approach, and aim to build an autonomous orbit
selection framework to enhance the SPC performance. The main idea of
SPC is to build small digital topography and albedo maps (L-map) from
images of the same area under different illumination conditions. Once a
map is acquired, the rendered visual appearance of the map is predicted
and compared to actual images. Then, the center of the map (landmark)
and the spacecraft pose can be estimated by iteratively minimizing the
difference between expected map appearance and actual image. Existing
small body mapping techniques (e.g., [118], [117], [119]) require human
supervision and they are typically decoupled from the trajectory design
process. Regarding the localization methods for space applications, one
the most common methods is the AutoNav approach [120], which uses a
batch filter, where data are stored on-board, edited, and then input to the
filter. Other example localization systems include landmark-based filtering
techniques using EKF [121], higher order Additive Divided difference sigma
points Filter [122], UKF [123] and PF [124]. However, the problem of
joint estimation and autonomous decision making (i.e., active SLAM) is
a much less explored area in the space literature. Most related work to
active SLAM is focused on landing application (e.g., [125]). On the other
hand, active SLAM has received a lot of attention in robotics community.
Feder et al. [116] propose an algorithm to determine the optimal action
to maximize the next step information gain given the current knowledge
of the map. Bourgault [126] improved [116] by including a global term in
the utility function that takes into account, for each possible action, the
reduction of the uncertainty of the map, represented by an occupancy grid.
More recent works have proposed belief space path planner with minimum
uncertainty by utilizing filters and pose graph representations [127], [128],
[129]. In this work, we propose a framework for simultaneous mapping
and planning around small bodies. Due to the high complexity of the
environment and continuous solution space, the exact problem formulation
is computationally intractable. In this work, we propose an approach to
reduce the problem to a computationally tractable one. In particular, we
propose an algorithm that enables the spacecraft to autonomously and
adaptively select the best orbit, given a reduced set of possible future
orbits. We incorporate the mapping accuracy as the driver for the opti-
mization process. We start by deriving formal quantitative measures that
characterize the accuracy of the small body map, and use these measures
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Figure 8.3: Operations Timeline

in an optimization process to compute the next best orbit that maximally
contributes to the map enhancement. The highlights and contributions
of the proposed method can be summarized as: (i) Developing formal
definitions of quantitative measures that characterize the accuracy of the
small body map. (ii) Proposing an autonomous orbit selection method
to maximize the small body coverage. The proposed approach take an
step toward enhancing the autonomy capabilities of the spacecraft during
proximity operations with a small body. It also reduces the human effort
during trajectory planning and mapping phases.

8.1 Mission Architecture

A mission to a small body can be divided into a few main operational phases
based on the distance to the body (see Figure 8.4). In particular, after the
deep space phase, the spacecraft arrives at the body. From previous and
future missions (i.e., Rosetta, OSIRIS-REx), the arrival phase starts when
the ratio between the distance and the object’s maximum dimension (also
referred to as the "interest ratio") becomes larger than 25. The exact value
of this threshold depends on the mission and it is slightly different for any
mission/body. After arrival, an initial characterization phase starts. For
this stage, the interest ratio is about 14-18. The main objective of the
characterization phase is to identify landmarks on the small body surface
and estimate their position to determine the rotation state of the body
and construct an initial shape model. For each part of the body surface,
several images need to be taken to construct an accurate map.
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Table 8.1: OSIRIS Camera Specifications

Field of view 12◦(y) x 12◦(x)
Detector size (pixels) 2048 x 2048
Focal length 140 mm

Figure 8.4 shows the operational sequence and phases for the Rosetta
mission, as an example. In the Rosetta mission, in the characterization
phase images were acquired every hour, and during the initial days of the
characterization phase, a first set of landmarks were manually identified by
the operators. The next phase is the global mapping phase (where interest
ratio is roughly between 4 and 7). At this stage, initial estimates of the
gravity potential and rotational state of the body, landmark positions and
shape and topological model are being enhanced and refined. Finally a
close observation orbit (interest ratio is roughly 2-3) is needed for the
selection of possible landing sites.

Figure 8.4: Rosetta Operational Phases

The relative distance and the dimensions of the small body can be not
perfectly known during these phases. However, the projection of the object
on the camera plane, measured in pixel, can be a good indicator of the
corresponding phase. Figure 8.5, reports the size of the object maximum
dimension on the sensor in pixel, in the different phases of the Rosetta
mission. A simplified 2D analysis has been carried out. The plot is obtained
considering the OSIRIS wide angle camera used in the Rosetta mission
and a constant 2D object projection of 4km in its maximum dimension.
The OSIRIS cam specifications are reported in Table 8.1.

Mission scenario & Assumptions Traditionally, the deep space trajectory
and the arrival at the comet are designed on the ground before the launch.
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Figure 8.5: Small Body Dimension

However, for future missions, with more complex, uncertain, and far bodies,
autonomy is crucial in the mission success. In particular, automating the
characterization phase can significantly help with reducing the human
intervention and enabling complex future missions. Thus, in this work,
we will mainly focus on the characterization and global mapping phases.
At this phase, there exists a very rough estimate of the body shape and
rotational state. This information is resulted from the arrival phase and
pre-launch calculations based on light-curve analysis (see Figure 8.3).

8.2 Planning Under Uncertainty

This work is concerned with the problem of autonomous mapping with
planning around small bodies. This is an instance of the general problem
of planning under motion, sensing, and map uncertainty, also known as
active SLAM [116]. In its most general form, active SLAM can be cast as
a Partially Observable Markov Decision Process (POMDP) problem [130]
[131] [132].
POMDP is one of the most principled ways of modeling the process of
sequential decision making under uncertainty. To describe an abstract
POMDP problem, let us denote the system state, action, and observation
at the k-th time-step by xk, uk, zk, respectively. Let xk+1 = f(xk, uk, wk)
and zk = h(xk, vk) denote the system dynamics and measurement models,
where wk ∼ pw(·|xk) and vk ∼ pv(·|xk) denote the state-dependent process
and observation noise. Due to the observation noise, the best one can
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infer about the system state is a probability distribution over all possible
states, referred to as belief bk = p(xk|z0:k). Belief space (i.e., the set of all
beliefs) is denoted by B. Belief is typically evolved using a recursive filter
denoted by τ as bk+1 = τ(bk, uk, zk+1). The control policy π in a partially
observable setting is a mapping from belief space to the action space, i.e.,
uk = π(bk). Defining the one-step reward of taking action u at belief b by
R(b, u), we can formally define the T-step POMDP problem as:

π∗0:T = arg max
Π0:T

E
T∑
k=0
R(bk, πk(bk)) (8.1)

Π is the space of all possible policies. Often, in solving POMDPs, in
order to reduce complexity, the set of admissible policies Π is reduced to
a simpler subset over which the optimization can be carried out. In the
next section, we will describe concrete realization of these terms and the
POMDP problem associated with the small body mapping. Then, we aim
to approximate and solve this problem to compute a policy for spacecraft
motion.

8.3 Small Body Mapping and Spacecraft Localization

In this section, we briefly review the mapping and state estimation around
small bodies and discuss how its elements correspond to the abstract
POMDP problem described in Section 8.2.

8.3.1 System definition

In the small body mapping and planning problem, the overall system state
xk is represented by the spacecraft state and the map state xk = (sk,mk),
where sk = (ρk, ρ̇k) ∈ R6 being the spacecraft position and translational
velocity relative to the body. mk represents the state of the map of the body.
In this work, we assume that the spacecraft is always pointing towards the
center of the small body, thus, we do not include the spacecraft attitude
in the state definition.

8.3.2 Map representation

In this work, we rely on the SPC technique [118] for mapping. SPC is
the main method utilized in small body missions to generate the digital
topography/albedo map of the body from multiple images. In SPC, the
small body surface map m is represented by a set of maplets with their
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associated digital topology and albedo. In this work, we only work with the
topology and not albedo. Formally, the map m is then defined as a mesh
with n facets, i.e.,m = (f 1, f 2, · · · , fn). The i-th facet f i = (vi1, vi2, vi3, n̂i)
is a triangle characterized by three vertices vi1, vi2, and vi3. n̂i denotes
the normal vector of the facet, which (is a dependent variable and) can be
computed based on the three vertices.

8.3.3 System Belief

Since the spacecraft observations zk (i.e., images) are noisy, one can only
create a probability distribution function (pdf) over all possible system
states. We refer to this pdf as the joint belief over the spacecraft state and
the map state, denoted by bx = p(x|z0:k, u0:k).

8.3.4 Joint State Estimation

Typically, the joint belief is evolved recursively using a filter. We represent
the recursive update of the belief under filter τ as

bxk+1 = τ(bxk, uk, zk+1) (8.2)

where, uk is the control command sent to the spacecraft and zk is the
observation (image) received from spacecraft cameras. For this joint state
estimation, we follow some common framework in space missions. In
particular, we rely on AutoNav [120] for the spacecraft state estimation,
and SPC [118], for the map estimation and update. The AutoNav uses
a batch filter, where data are stored, edited, and then input to the filter.
The details of AutoNav and SPC are beyond the scope of this thesis. The
reader is encouraged to see [120] and [118] for further details.

8.4 Autonomous Planning for Small Body Mapping

Leveraging small body mapping and spacecraft localization from Section 8.3,
in this section, we discuss the problem of trajectory planning around small
bodies for efficient mapping. Planning in an environment that is strongly
perturbed, unknown and subject to very complicated dynamics, as the one
around a small body, is noticeably different from the classical deterministic
planning problems. A wrong choice of an action, due to unmodeled
dynamics or unknown environment, could suddenly cause a collision with
the body or generate an escape trajectory. In its most general form the
problem is a POMDP (Equation (8.1)), whose solution is computationally
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intractable. To reduce the problem to a computationally tractable one,
we start by approximating the policy space Π in Equation (8.1) with a
smaller set Π̄, as described below.

Reduced policy space

The primitive spacecraft actions u ∈ U are thruster commands, and hence
the full policy π : B → U is a mapping from the joint belief space to
the thruster commands u = π(b). However, planning in the continuous
space U of low-level thruster commands is a challenge. Thus, in this
work, we first reduced the command space to Ū, which includes a set
of desirable orbits to choose from. In other words, instead of selecting a
low-level thruster command, we select a target orbit and rely on an existing
controller to generate thrust commands that take us to the target orbit.
We refer to thruster commands as actions and refer to orbit commands
as macro-actions (since each macro-action is composed of a sequence of
low-level actions). In the following, we discuss how each macro-action is
parametrized.

Trajectory definition A spacecraft trajectory can be defined in several
different ways. Following the classical planning formulation, we define the
trajectory via a time-stamped sequence of spacecraft state and actions.

T = (s(t), u(t)) (8.3)

Orbit parameters An orbit is a certain trajectory, which can be parametrized
in different ways. We represent the orbit with the following parameters:

ω = (s0, tω, tz) ∈ Ω (8.4)
where, s0 is the initial state (position and velocity) of the spacecraft at the
beginning of the orbit. tω ∈ R≥0 represents how long the spacecraft need
to stay on the orbit ω. Vector tz ∈ Rη

≥0 is the sequence of image acquisition
time along the orbit. Variable η ∈ N, dictated by the mission constraints,
is the upper limit on the number of images that can be taken during time
tω. Set Ω is the space of all possible ω, which is the reduced action space,
i.e., Ū = Ω. Please note that to recover T from ω it is necessary to rely on
a dynamical model of the motion of the spacecraft that takes into account
also the gravity field of the small body.

Reduced Policy Consequently, the reduced policy is defined as:
π̄ : B→ Ω, ω = π̄(b) (8.5)
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Π̄ os the set of all possible π̄. To compute the best policy, we first define
the reward and value functions.

One-orbit reward Similar to the one-step reward, we define one-orbit
reward R̄(bk, ωk) for macro-actions. The reward R̄ represents the gain in
map accuracy for a given orbit, and will be discussed in-depth in Section 8.5.

Value function Accordingly, the value function J̄ is defined as the running-
sum of all the rewards:

J̄(b0; π̄) =
T∑
k=0
R̄k(bk, π̄(bk)) =

T∑
k=0
R̄k(bk, ωk)

Reduced planning problem Optimizing over the reduced policy space, the
planning problem in Equation (8.1) is reduced to finding the optimal π̄∗
given a defined subset of possible orbits Ω:

π̄∗ = arg max
Π̄

J(b0; π̄) (8.6)

The block diagram in Figure 8.6 represents the autonomous planning
architecture.

Figure 8.6: Autonomous Planning Architecture. The visual representation shows how
the planner selects the best orbit based on the reward R̄.

8.5 Mapping accuracy

For a given orbit, we derive a quantitative measure to capture the informa-
tion gain in map accuracy. This measure will drive the planning framework.
We denote this measure (or reward) by R̄. The reward is a function of the
system belief bk and the selected orbit ωk, i.e, R̄(bk, ωk). The system belief
bk encodes the accuracy of map representation as well as the spacecraft
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state. ωk is the granularity of the decision variable. The reward over belief
can be written as:

R̄(bk, ωk) = ER̄x(xk, ωk), xk ∼ bk(x) (8.7)

where, R̄x(xk, ωk) is the information gain measure for a given state of
the system (i.e., map and spacecraft) xk. E[·] represents the expectation
operator.
Computing the exact value of the expectation in Equation (8.7) for a
general belief is computationally intractable. The expectation can be
approximated via a finite sum or via most likely state assumption:

R̄(bk, ωk) ≈
n∑
i=1
R̄x(x(i)

k , ωk), x
(i)
k ∼ bk (8.8)

R̄(bk, ωk) ≈R̄x(x̀k, ωk)=R̄x(arg max
x

bk(x), ωk) (8.9)

where, x(1)
k , · · · , x(n)

k are n samples drawn from the belief distribution, and
x̀k is the most likely state under bk.
The definition of the reward R̄x(xk, ωk) depends on the selected mapping
technique. While the framework can use different measures and mapping
methods, in this work, we focus on a measure that suits the SPC mapping
method. Translating all the SPC mapping performance indices into a
single quantitative measure is a challenge. Focusing on information gain
and coverage, the measure is derived from mapping requirements in terms
of emission, incidence, solar azimuth, and spacecraft azimuth angles. We
detail this derivation in the following paragraphs. We start by defining
some concepts for the photometry purposes.

Angles definition The definition of three angles is necessary to describe
the reflectance properties of a surface: incidence angle ι, emission angle e,
and phase angle φ. As it is seen in Figure 8.7, ι defines the angle between
Sun incidence and surface normal n̂. The emission angle e is the angle
between emission ray and surface normal. The phase angle φ is the angle
between the vector connecting the Sun to the center of the body and the
vector connecting the spacecraft to the center of the body. Moreover, solar
and spacecraft azimuth angles can be defined and they will be used as
indicators of the goodness of the mapping phase. The solar azimuth angle
(α) is the angle between local north and the projection of the vector from
the surface to the Sun onto the local surface. The spacecraft azimuth angle
(β) is the angle between local north and the projection of the vector from
the surface to the spacecraft onto the local surface.
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Figure 8.7: Angles Definition

Emission Angle Requirements In small body mapping, the core of the
algorithm is a least square solver. The variation in emission angle increases
the robustness of the solver since it minimizes the weighted sum of square-
residuals between the extracted (from real images) and predicted brightness
(with rendered images). In fact, the brightness of a point on the surface
is dependent on the emission and incidence angles. In particular, large
variation in emission angle is desirable because, in this case, the orbit offers
a great variety of observation geometry of the same portion of the body.
Beneficial conditions are achieved when images of each facet are taken at,
at least, 3 distinct emission angle bins in intervals 20-30◦, 30-40◦, 40-50◦,
and 50-60◦. Moreover, at least, one image should have an emission angle
less than 10◦. Mathematically, the above-mentioned requirements can be
translated into:

Sie,k = f ie,k + lie,k (8.10)

where: Function U(e, a, b) returns one if a ≤ e ≤ b and returns zero
otherwise. lie,k = U(eik, 0◦, 10◦).

Incidence Angle Requirements The incidence angle is an indicator of the
illumination condition of the body. In general, for SPC, the best condition
for incidence angle is when images are taken with an angle between 20◦and
60◦. The reason is that the small angles result in images with excessive
brightness that can saturate the image and large angles produce images
with excessive shadows and dark areas. Mathematically, the desired score
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is represented as:

Siι,k = U(ιik, 20◦, 60◦) (8.11)

Solar Azimuth Angle Requirements The solar azimuth angle is another
indicator of the variation of the illumination conditions. As previously
explained, for SPC, it is advantageous to have a great variety of illumination
levels. In other words, for a given orbit, it is desirable that the maximum
variation of the solar azimuth is greater than 120◦. This can be expressed
as:

Siα,k=U(|max(αik)−min(αik)|, 120◦, 360◦) (8.12)

Spacecraft Azimuth Angle Requirements On the contrary, the spacecraft
azimuth angle indicates how the spacecraft position changes with respect
to the small body. It is desirable to ensure robust image matching across
different views of the same facet. Therefore, we limit the maximum
variation in the viewing angle to 100◦. Therefore:

Siβ,k = U(|max(βik)−min(βik)|, 0◦, 100◦) (8.13)

Overall single-facet score function The overall score function for the i-th
facet is the combination of the previous contributions:

Sik = Sie,k + Siι,k + Siα,k + Siβ,k (8.14)

Total reward The score function defined in Equation (8.14) captures the
value of information in the observation. One needs to quantify how much
this information contributes to the map information. For example, if a
facet has been already observed many times in favorable angles, there will
be limited gain in observing it again. In general, the gain in map accuracy
for a facet depends on the previous observations from that facet. The
information stored in the i-th facet can be expressed as:

Bi
k =

T∑
k=0

Sik (8.15)

The contribution of the measured score Sik (of the i-th facet at the k-th
time step) is weighted by wik = ξ(|ξ + βL

i
k |)−1 where Lik = 1− e−ψKi

k is a
quantity, bounded between 0 and 1, representing the map accuracy. β, ξ
and ψ are tuning parameters. The trend of the weight, for different values
of the tuning parameter ξ, and for a fixed β = 500 is shown in Figure 8.8.
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Figure 8.8 confirms that the facets that have already been observed well
are not affected much by new observations, and the facets that are poorly
observed, are highly influenced by addition of the new information. Finally,
the reward function can be defined as the information gain at every time
step for every facet:

R̄k =
n∑
i=1

wikS
i
k (8.16)

and therefore, the corresponding planning problem is:

π̄∗ = arg max
Π̄

T∑
k=0
R̄k(xk, ωk) (8.17)

This results in selecting the orbit that maximizes the information gain of
the poorly observed regions increasing their map accuracy.
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Figure 8.8: Weight Function Trend

8.6 Results

In this section, we present numerical results of the proposed algorithm. In
our simulations, to create a high-fidelity model of the small body shape
and gravity, we rely on JPL’s Small Body Dynamics Toolkit (SBDT) [133]
and the Primitive Body Coverage and Geometry Evaluator (PB-CAGE)
library [134].
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Figure 8.9: Maximum Facet Score Evolution - Proposed Solution - OOS

For this simulation, we adopt a model of the comet CG67-P where its
surface is represented by a mesh with 1146 vertices and 2288 facets. For
a given orbit, we evaluate the reward, introduced in Section 8.4, for each
facet while taking into account the position of spacecraft, small body and
Sun. We evaluate the score for a set of circular orbits of radius 10km,
centered in the small body. Each orbit is characterized by a different
inclination angle, ranging from 0◦ to 170◦ with a delta-angle of 10◦.
We compare the proposed method for autonomous selection of optimal
orbit sequence (OOS) with two baseline approaches: fixed inclination orbit
sequence (FIOS), and random sequence of orbits (RSO). In the FIOS
baseline, user selects a suitable orbit at the beginning of the mapping and
the orbit does not change over time. In our simulation, we selected a polar
orbit for the FIOS case. In RSO, at each step, we pick a random orbit
from the set of candidate orbits.
The performance and comparison metric among these three different alter-
natives is the overall coverage score. A higher score is translated into a
better coverage, resulting in a better map. In fact, acquiring good images
is mandatory for the correct behavior of the SPC mapping algorithm. Bad
images can lead the process to diverge and, therefore, this implies a heavier
human effort. Designing a good trajectory is the first step to make the
mapping procedure easier and, in principle, automatic.
A sequence of three orbits is considered for each case. Figures 8.9 to 8.11
show the evolution in time of the maximum score for each facet.
The yellow areas represent the part of the surface that have an higher
coverage score after one orbit. As it can be seen in Figure 8.9, the OOS
guarantees an increase of the coverage score in time. In Figure 8.10, RSO
shows an overall lower score compared to OOS, with some poor areas.
Finally, in Figure 8.11, as expected, the coverage score for the FIOS case is
constant in time. To have a more quantitative idea of the results, Table 8.2
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Figure 8.10: Maximum Facet Score Evolution - RSO

Figure 8.11: Maximum Facet Score Evolution - FIOS

reports the total coverage score at the end of the third orbit. This value is
computed by summing the maximum score for each facet at the end of the
mapping phase.

Table 8.2: Total Coverage Score

Total Coverage Score
Proposed Solution - OOS 8956

RSO 7992
FIOS 6875

Moreover, Table 8.3 and Figure 8.12 report the number of facets with
global score <3 at the end of the mapping phase. This is an indication of
the number of poor covered regions at the end of the mapping phase.
Figure 8.12 shows how the selection of the optimal sequence offers a signif-
icant improvement in the global coverage of the body. Finally, Figure 8.13
shows the time evolution of the facets with score equal to 5, the ideal
condition in terms of coverage. According to the measures in Figure 8.13,
OOS supersedes other methods in the number of facets with maximum
score.
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Table 8.3: Poor Coverage Regions

Poor Score Facets
Proposed Solution - OOS 283

RSO 576
FIOS 867
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CHAPTER9
Conclusion

The important thing is to search, and not
whether you find something or not

Per Isabel (2015)
Antonio Tabucchi

This thesis offers a comprehensive study about relative navigation. In-
novative concepts and algorithms have been proposed for vision-based
relative navigation for approach to uncooperative space objects. Different
target classes and orbital scenarios are considered; pose determination and
filtering techniques, and planning strategies are developed and tested. In
particular, in Chapter 4 an original approach for relative navigation be-
tween two uncooperative but known spacecraft is presented. The proposed
algorithm relies on a loosely coupled approach, involving a vision-based
pose determination technique and a navigation filter. Two different strate-
gies are detailed and results with different level of maturity are presented.
The algorithm implemented for Strategy A involves two main steps, i.e.
pose acquisition and tracking. The acquisition phase is managed by an
innovative methodology conceived to compute the target initial state when
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no a-priori information is available about this satellite, except that con-
cerning its geometry. A RANSAC & PCA based procedure is proposed to
solve the 2D-3D feature matching problem. Hence, the spacecraft initial
pose is derived through the EPnP solver. Once the target state is acquired,
it is tracked over time by filtering the monocular pose determined through
SoftPOSIT. The navigation filter is conceived to have a decoupled structure.
A robust H-∞ filtering strategy is exploited for the translational motion.
On the other hand, an original formulation on Lie groups is developed
for relative attitude estimation. A numerical validation campaign and
performance assessment are carried considering different simulation sce-
narios. Representative target/chaser relative dynamics, target geometries
and vision-based measurement are reproduced. Simulation results show
the capability of the proposed pose acquisition algorithm to provide an
accurate initialization for the tracking step (position and attitude errors
lower than 0.5m and 2.5◦ in most of the cases). The sensitivity analysis
on the acquisition step highlights a dependence between relative angular
velocity and acquisition time. Specifically, higher relative angular velocities
imply longer time to initialize the pose parameters. Furthermore, the
pose tracking functionality and the navigation filter are validated through
statistical simulations, considering different orbital scenarios. Satisfactory
results are obtained for all the presented cases for both position and atti-
tude estimation. In fact, steady state relative position and attitude RMSE
are lower than 3cm (except in the HEO case) and 1◦ respectively. Finally,
sensitivity analyses are performed to demonstrate the algorithm robustness
against measurement noise and error sources. A preliminary experimental
validation campaign is also presented to test the image processing algo-
rithm considering realistic images. Exploiting the facility for vision-based
autonomous GNC validation at PoliMi-DAER, the algorithm is tested
under controlled, realistic illumination conditions and relative approach
trajectory. A representative mock-up is manufactured to reproduce the
optical properties of a real spacecraft. The results of the preliminary ex-
perimental validation campaign show that the image processing algorithm
is able to correctly perform pose acquisition and tracking even with real
images. The accuracy of the proposed algorithm with real images is in line
with the values obtained with simulated, numerical acquisitions. On the
other hand, Strategy B consists of an algorithm that works detecting ORB
descriptors in the incoming images. These descriptors are then matched
with an already available on-board map of the target satellite. In this way,
a set of 3D to 2D correspondences is obtained. The set of correspondences
is then used to solve the PnP problem to estimate the relative pose between
the two spacecraft. Finally, Motion only BA, is applied to optimize the
relative pose estimate. Preliminary numerical validation results, carried
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out on a realistic relative motion and target geometry, are satisfactory.
A deeper analysis is currently on-going to test the algorithm robustness,
also considering real images. Moreover, regarding the specific topic of
attitude estimation, in Chapter 5 a comparative analysis of different filter-
ing techniques for relative attitude estimation is presented. In particular,
their sensitivity to the variations in measurement noise intensity, initial
conditions, and angular velocities of the non-cooperative object in space
is tested. This analysis confirmed that the second-order minimum energy
filter without dynamics, proposed in this thesis, seems to be the best option
for relative attitude estimation dealing with partially-known space objects.
In fact, it requires neither an estimate of the absolute attitude nor any
knowledge of the inertia matrix. Although the second-order minimum
energy filter is the best performer at the steady-state, it may be outper-
formed by the second-order minimum energy filter without dynamics, when
accurate estimates of the target’s inertia matrix and absolute attitude
of the chaser spacecraft are not available. A slightly different scenario is
considered in Chapter 6. In this chapter the performance of a vision-based
relative navigation algorithm in cislunar space is investigated. A realis-
tic orbital scenario is adopted, considering a chaser equipped with two
cameras and a passively cooperative target. In particular, we assumed to
know the position of feature points on the target, representative of optical
markers. An EKF is developed, using a linearized, ephemeris-based model
to describe the relative translational dynamics and a classical combination
of the Euler equations for target and chaser for the rotational dynamics.
A proper observation model, considering a stereo camera, is adopted. A
preliminary numerical validation is presented and promising results are
obtained. In fact, assuming realistic noise values, position and attitude
errors are lower than 0.1m and 0.2◦ respectively, in the nominal case. The
algorithm robustness is also tested over different noise levels and number of
feature points. The presented analyses show that a vision-based approach
for relative navigation can be adopted for cislunar relative operations, if
moderate level of accuracy is needed. In Chapter 7 an original approach
for relative state estimation and uncertainties estimation is presented. The
proposed algorithm relies on a RBFNN coupled with an Adaptive Extended
Kalman Filter (AEKF). The proposed neural-network performs an on-line
estimation of the disturbances acting on the spacecraft, which are included
in the prediction step of the filter. The on-line learning algorithm exploits
the state estimation worked out by the filter itself to update the neural net-
work weights. Moreover, an innovation-based recursive filter architecture is
employed. Preliminary numerical validation, performance assessment and
comparison are carried considering a spacecraft relative navigation scenario.
Representative target/chaser relative dynamics are reproduced. Simulation
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results show the capability of the proposed solution to reconstruct the
dynamics of a spacecraft in elliptic orbits with the J2 perturbation in an
Earth orbit environment. Furthermore, the filter performance is compared
to more classical approaches and tested on realistic scenarios, through
statistical simulations. Finally, the robustness over very poor tuning of the
state covariance matrix is considered. Satisfactory results are obtained for
the proposed solution in all the presented cases and the sensitivity analysis
demonstrated the algorithm robustness in non-ideal situations. Chapter 7
has presented the application to a Earth-bounded motion. Nevertheless,
the proposed method finds applications, definitely more attractive, to those
environment which are not as characterized as Earth orbits, such as small
bodies, Non-Keplerian dynamics and, in general, proximity maneuvers
with uncooperative targets. Finally, in Chapter 8 the problem of navigat-
ing, mapping and planning around an uncooperative, unknown object is
presented. In this chapter, we introduce an algorithm for autonomous orbit
selection and adaptation around small bodies while mapping its surface.
Focusing on the SPC mapping method, we develop cost functions that
quantify the ’orbit goodness’ in the sense of map improvement. These
mapping accuracy measures are then used to guide the orbit selection
process. We rely on a reduced policy space where orbits are selected from a
representative family of common orbits around small bodies. Via numerical
simulations, we show that the optimal sequence of orbits, resulting from
the optimization process, offers a substantial improvement of the mapping
performance compared to the fixed orbit case. The proposed algorithm is
a step toward a higher level of autonomy and on-board trajectory planning
around small bodies and reduces the human involvement in this process.
Concluding, all the different approaches and algorithms presented in this
dissertation provide possible answers to the main challenges of vision-based
proximity relative navigation with uncooperative objects.

Future Work

The work presented in this dissertation can be further validated and
extended to different mission scenarios. In particular, the algorithm includ-
ing the Strategy A pose estimation and the navigation filter, presented in
Chapter 3, needs to be validated through a more extensive experimental
campaign. In the framework of the ASI-funded VINAG project, an experi-
mental test is scheduled to be performed by the end of 2018. During this
test, both pose determination algorithm and filters are planned to work in
real-time in a Hardware In the Loop (HIL) simulation. The algorithm will
run in real-time on the VINAG Central Unit, based on a Microsemi RTG4
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Flash FPGA. For a more detailed description of the hardware, please refer
to [31]. For Strategy B, instead, an extended numerical validation campaign
is currently on-going, along with the generation of the real 3D map of the
target satellite for a preliminary experimental validation campaign. The
algorithm presented in Chapter 6 has a different level of maturity and, even
if a similar experimental validation setup can be used also in this case, some
aspects still have to investigated numerically. In particular, the influence of
the position of the feature points and the rotational dynamics of the target
spacecraft has to be further examined. Different relative orbital scenarios
have to be considered and a validity domain defined depending on the
camera parameters. Moreover, for the RBFNN-AEKF described in Chap-
ter 7, future developments aim at implementing and testing a recurrent
structure for the neural network, which is expected to be significantly more
performing when secular disturbance terms become predominant. Finally,
the natural future step for the planning solution proposed in Chapter 8 is
to incorporate the small body gravity and high-fidelity orbital dynamics
into the formulation, considering also the observation time along the orbit.

135





Bibliography

Bibliography

[1] J. Miller, Planetary Spacecraft Navigation. Springer International Publishing,
2019. doi: 10.1007/978-3-319-78916-3.

[2] R Ambrose, I. Nesnas, F Chandler, B. Allen, T Fong, L Matthies, and R
Mueller, “NASA technology roadmaps: TA 4: Robotics and autonomous systems”,
Technical report, NASA, Tech. Rep., 2015.

[3] J. A. Starek, B. Açıkmeşe, I. A. Nesnas, and M. Pavone, “Spacecraft autonomy
challenges for next-generation space missions”, in Advances in Control System
Technology for Aerospace Applications, Springer, 2016, pp. 1–48. doi: 10.1007/
978-3-662-47694-9_1.

[4] G. Di Mauro, M. Lawn, and R. Bevilacqua, “Survey on Guidance Navigation
and Control Requirements for Spacecraft Formation-Flying Missions”, Journal
of Guidance, Control, and Dynamics, no. December 2017, pp. 1–22, 2017. doi:
10.2514/1.G002868.

[5] X. Wang, W. Qin, Y. Bai, and N. Cui, “A novel decentralized relative navigation
algorithm for spacecraft formation flying”, Aerospace Science and Technology,
vol. 48, pp. 28–36, 2016. doi: 10.1016/j.ast.2015.10.014.

[6] J. P. Alepuz, M. R. Emami, and J. Pomares, “Direct image-based visual servoing
of free-floating space manipulators”, Aerospace Science and Technology, vol. 55,
pp. 1–9, 2016. doi: 10.1016/j.ast.2016.05.012.

[7] D. Pinard, S. Reynaud, P. Delpy, and S. E. Strandmoe, “Accurate and au-
tonomous navigation for the ATV”, Aerospace Science and Technology, vol. 11,
no. 6, pp. 490–498, 2007. doi: 10.1016/j.ast.2007.02.009.

[8] L. Zhang, S. Zhang, H. Yang, H. Cai, and S. Qian, “Relative attitude and position
estimation for a tumbling spacecraft”, Aerospace Science and Technology, vol. 42,
pp. 97–105, 2015. doi: 10.1016/j.ast.2014.12.025.

[9] L. Felicetti and M. R. Emami, “Image-based attitude maneuvers for space debris
tracking”, Aerospace Science and Technology, vol. 76, pp. 58–71, 2018. doi:
10.1016/j.ast.2018.02.002.

137

https://doi.org/10.1007/978-3-319-78916-3
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.2514/1.G002868
https://doi.org/10.1016/j.ast.2015.10.014
https://doi.org/10.1016/j.ast.2016.05.012
https://doi.org/10.1016/j.ast.2007.02.009
https://doi.org/10.1016/j.ast.2014.12.025
https://doi.org/10.1016/j.ast.2018.02.002


Bibliography

[10] N. Inaba and M. Oda, “Autonomous satellite capture by a space robot: world
first on-orbit experiment on a Japanese robot satellite ETS-VII”, in Proceedings
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No.00CH37065), IEEE. doi: 10.
1109/robot.2000.844757.

[11] S Croomes, “Overview of the DART mishap investigation results”, NASA Report,
pp. 1–10, 2006.

[12] R. B. Friend, “Orbital Express program summary and mission overview”, in
Sensors and Systems for Space Applications II, R. T. Howard and P. Motaghedi,
Eds., SPIE, 2008. doi: 10.1117/12.783792.

[13] P. Bodin, R. Noteborn, R. Larsson, T. Karlsson, S. D’Amico, J. S. Ardaens, M.
Delpech, and J.-C. Berges, “The prisma formation flying demonstrator: Overview
and conclusions from the nominal mission”, Advances in the Astronautical Sci-
ences, vol. 144, no. 2012, pp. 441–460, 2012.

[14] S. D’Amico, J.-S. Ardaens, and R. Larsson, “Spaceborne Autonomous Formation
Flying Experiment on the PRISMA Mission”, in AIAA Guidance, Navigation,
and Control Conference, American Institute of Aeronautics and Astronautics,
2011. doi: 10.2514/6.2011-6232.

[15] R. Opromolla, G. Fasano, G. Rufino, and M. Grassi, “A review of cooperative
and uncooperative spacecraft pose determination techniques for close-proximity
operations”, Progress in Aerospace Sciences, vol. 93, pp. 53–72, 2017. doi:
10.1016/j.paerosci.2017.07.001.

[16] R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser, “Precise GRACE baseline
determination using GPS”, GPS Solutions, vol. 9, no. 1, pp. 21–31, 2005. doi:
10.1007/s10291-004-0123-5.

[17] X. Clerc and I. Retat, “Astrium vision on space debris removal”, in Proceeding of
the 63rd International Astronautical Congress (IAC 2012), Napoli, Italy, vol. 15,
2012.

[18] R. Volpe, G. B. Palmerini, and C. Circi, “Preliminary analysis of visual navigation
performance in close formation flying”, in Aerospace Conference, 2017 IEEE,
IEEE, 2017, pp. 1–12. doi: 10.1109/aero.2017.7943759.

[19] J. Shi and Tomasi, “Good features to track”, in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition CVPR-94, IEEE, IEEE Comput.
Soc. Press, 1994, pp. 593–600. doi: 10.1109/cvpr.1994.323794.

[20] J. Canny, “A computational approach to edge detection”, in Readings in Com-
puter Vision, Elsevier, 1987, pp. 184–203. doi: 10.1016/b978-0-08-051581-
6.50024-6.

[21] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, In-
ternational journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004. doi:
10.1023/b:visi.0000029664.99615.94.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alterna-
tive to SIFT or SURF”, in Computer Vision (ICCV), 2011 IEEE international
conference on, IEEE, 2011, pp. 2564–2571. doi: 10.1109/iccv.2011.6126544.

[23] S. Augenstein and S. M. Rock, “Improved frame-to-frame pose tracking during
vision-only SLAM/SFM with a tumbling target”, in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, IEEE, 2011, pp. 3131–3138.
doi: 10.1109/icra.2011.5980232.

[24] R. Volpe, M. Sabatini, and G. B. Palmerini, “Pose and Shape Reconstruction of
a Noncooperative Spacecraft Using Camera and Range Measurements”, Interna-

138

https://doi.org/10.1109/robot.2000.844757
https://doi.org/10.1109/robot.2000.844757
https://doi.org/10.1117/12.783792
https://doi.org/10.2514/6.2011-6232
https://doi.org/10.1016/j.paerosci.2017.07.001
https://doi.org/10.1007/s10291-004-0123-5
https://doi.org/10.1109/aero.2017.7943759
https://doi.org/10.1109/cvpr.1994.323794
https://doi.org/10.1016/b978-0-08-051581-6.50024-6
https://doi.org/10.1016/b978-0-08-051581-6.50024-6
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1109/iccv.2011.6126544
https://doi.org/10.1109/icra.2011.5980232


Bibliography

tional Journal of Aerospace Engineering, vol. 2017, 2017. doi: 10.1155/2017/
4535316.

[25] V. Pesce, M. Lavagna, and R. Bevilacqua, “Stereovision-based pose and inertia
estimation of unknown and uncooperative space objects”, Advances in Space
Research, vol. 59, no. 1, pp. 236–251, 2017. doi: 10.1016/j.asr.2016.10.002.

[26] J. Yuan, X. Hou, C. Sun, and Y. Cheng, “Fault-tolerant pose and inertial
parameters estimation of an uncooperative spacecraft based on dual vector
quaternions”, Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, 2018. doi: 10.1177/0954410017751766.

[27] N. Chaturvedi, A. K. Sanyal, N. H. McClamroch, et al., “Rigid-body attitude
control”, IEEE control systems magazine, vol. 31, no. 3, pp. 30–51, 2011. doi:
10.1109/mcs.2011.940459.

[28] V. Pesce, S. Silvestrini, and M. Lavagna, “Radial Basis Function Neural Network
aided Adaptive Extended Kalman Filter”, Journal of Guidance, Control and
Dynamics [under review], 2018.

[29] V. Pesce, M. F. Haydar, M. Lavagna, and M. Lovera, “Comparison of Filtering
Techniques For Relative Attitude Estimation of Uncooperative Space Objects”,
Aerospace Science and Technology, 2018. doi: 10.1016/j.ast.2018.10.031.

[30] V. Pesce, R. Opromolla, S. Sarno, M. Lavagna, and M. Grassi, “Autonomous Rel-
ative Navigation Around Uncooperative Spacecraft Based on a Single Camera”,
Aerospace Science and Technology [under review], 2018.

[31] V. Capuano, V. Pesce, R. Opromolla, G. Cuciniello, S. Sarno, G. Capuano, M.
Lavagna, M. Grassi, F. Corraro, P. Tabacco, et al., “A Highly Integrated Naviga-
tion Unit for On-Orbit Servicing Missions”, in 69th International Astronautical
Congress (IAC 2018), 2018, pp. 1–13.

[32] P. Lunghi, V. Pesce, L. Losi, and M. Lavagna, “Ground testing of vision-based
GNC systems by means of a new experimental facility”, in Proc. 69th Interna-
tional Astronautical Congress, 2018.

[33] V. Capuano, V. Pesce, R. Opromolla, S. Sarno, M. Lavagna, M. Grassi, F.
Corraro, G. Capuano, P. Tabacco, et al., “VINAG: A Highly integrated system
for autonomous on-board absolute and relative spacecraft navigation”, in Small
Satellites Systems and Services - The 4S Symposium, 2018.

[34] V. Pesce, A.-a. Agha-mohammadi, and M. Lavagna, “Autonomous navigation
& mapping of small bodies”, in 2018 IEEE Aerospace Conference, IEEE, 2018,
pp. 1–10. doi: 10.1109/aero.2018.8396797.

[35] V. Pesce, R. Opromolla, S. Sarno, M. Lavagna, and M. Grassi, “Vision-Based Pose
Estimation and Relative Navigation Around Uncooperative Space Objects”, in
10th International ESA Conference on Guidance, Navigation & Control Systems
(GNC 2017), 2017, pp. 1–16.

[36] V. Pesce, L. Losi, and M. Lavagna, “Vision-Based State Estimation of an
Uncooperative Space Object”, in 68th International Astronautical Congress (IAC
2017), International Astronautical Federation, IAF, 2017, pp. 7018–7026.

[37] R. E. Kalman, “A new approach to linear filtering and prediction problems”,
Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960. doi: 10.1115/1.
3662552.

[38] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory”, Journal of basic engineering, vol. 83, no. 1, pp. 95–108, 1961. doi:
10.1115/1.3658902.

139

https://doi.org/10.1155/2017/4535316
https://doi.org/10.1155/2017/4535316
https://doi.org/10.1016/j.asr.2016.10.002
https://doi.org/10.1177/0954410017751766
https://doi.org/10.1109/mcs.2011.940459
https://doi.org/10.1016/j.ast.2018.10.031
https://doi.org/10.1109/aero.2018.8396797
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3658902


Bibliography

[39] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear ap-
proaches. John Wiley & Sons, 2006. doi: 10.5860/choice.44-3334.

[40] J. Bellantoni and K. Dodge, “A square root formulation of the Kalman-Schmidt
filter.”, AIAA journal, vol. 5, no. 7, pp. 1309–1314, 1967. doi: 10.2514/6.1967-
90.

[41] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear
estimation”, in Adaptive Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000, Ieee, 2000, pp. 153–158.

[42] N. Stacey and S. D’Amico, “Autonomous Swarming for Simultaneous Naviga-
tion and Asteroid Characterization”, in AAS/AIAA Astrodynamics Specialist
Conference, 2018.

[43] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”, in IEE Proceedings F (Radar and Signal
Processing), IET, vol. 140, 1993, pp. 107–113. doi: 10.1049/ip-f-2.1993.0015.

[44] F. Gustafsson, “Particle filter theory and practice with positioning applications”,
IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53–82,
2010. doi: 10.1109/maes.2010.5546308.

[45] R. E. Mortensen, “Maximum-likelihood recursive nonlinear filtering”, Journal
of Optimization Theory and Applications, vol. 2, no. 6, pp. 386–394, 1968. doi:
10.1007/bf00925744.

[46] H. Curtis, Orbital Mechanics for Engineering Students. Elsevier, 2005. doi:
10.1016/c2011-0-69685-1.

[47] A. Colagrossi and M. Lavagna, “Preliminary results on the dynamics of large and
flexible space structures in Halo orbits”, Acta Astronautica, vol. 134, pp. 355–367,
2017. doi: 10.1016/j.actaastro.2017.02.020.

[48] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite
Rendezvous”, Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658,
1960. doi: 10.2514/8.8704.

[49] K. Yamanaka and F. Ankersen, “New state transition matrix for relative motion
on an arbitrary elliptical orbit”, Journal of guidance, control, and dynamics,
vol. 25, no. 1, pp. 60–66, 2002. doi: 10.2514/2.4875.

[50] D. Wang, B. Wu, and E. K. Poh, Satellite Formation Flying. 2017, vol. 87. doi:
10.1007/978-981-10-2383-5.

[51] V. Szebehely and F. T. Geyling, “Theory of Orbits: The Restricted Problem of
Three Bodies”, Journal of Applied Mechanics, vol. 35, no. 3, p. 624, 1968. doi:
10.1115/1.3601280.

[52] L Bucci, M Lavagna, R Jehn, et al., “Station Keeping Techniques for Near Recti-
linear Orbits in the Earth-Moon System”, in 10th International ESA Conference
on Guidance, Navigation & Control Systems (GNC 2017), 2017, pp. 1–14.

[53] A. Colagrossi and M. Lavagna, “Cislunar non-Keplerian orbits rendezvous and
docking: 6DOF Guidance and Control”, in Proc. 69th International Astronautical
Congress, 2018.

[54] R. J. Luquette, “Nonlinear control design techniques for precision formation
flying at lagrange points”, PhD thesis, 2006.

[55] S. Segal and P. Gurfil, “Effect of kinematic rotation-translation coupling on
relative spacecraft translational dynamics”, Journal of Guidance, Control, and
Dynamics, vol. 32, no. 3, pp. 1045–1050, 2009. doi: 10.2514/1.39320.

140

https://doi.org/10.5860/choice.44-3334
https://doi.org/10.2514/6.1967-90
https://doi.org/10.2514/6.1967-90
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1109/maes.2010.5546308
https://doi.org/10.1007/bf00925744
https://doi.org/10.1016/c2011-0-69685-1
https://doi.org/10.1016/j.actaastro.2017.02.020
https://doi.org/10.2514/8.8704
https://doi.org/10.2514/2.4875
https://doi.org/10.1007/978-981-10-2383-5
https://doi.org/10.1115/1.3601280
https://doi.org/10.2514/1.39320


Bibliography

[56] S. Sharma et al., “Comparative assessment of techniques for initial pose estima-
tion using monocular vision”, Acta Astronautica, vol. 123, pp. 435–445, 2016.
doi: 10.1016/j.actaastro.2015.12.032.

[57] S. D’Amico, M. Benn, and J. L. Jørgensen, “Pose estimation of an uncooperative
spacecraft from actual space imagery”, International Journal of Space Science
and Engineering 5, vol. 2, no. 2, pp. 171–189, 2014. doi: 10.1504/ijspacese.
2014.060600.

[58] S. Sharma, J. Ventura, and S. D’Amico, “Robust Model-Based Monocular Pose
Initialization for Noncooperative Spacecraft Rendezvous”, Journal of Spacecraft
and Rockets, pp. 1–16, 2018. doi: 10.2514/1.a34124.

[59] B. J. Naasz, R. D. Burns, S. Z. Queen, J. Van Eepoel, J. Hannah, and E. Skelton,
“The HST SM4 Relative Navigation Sensor System: Overview and Preliminary
Testing Results from the Flight Robotics Lab”, The Journal of the Astronautical
Sciences, vol. 57, no. 1-2, pp. 457–483, 2009. doi: 10.1007/bf03321512.

[60] J.-F. Shi, S. Ulrich, and S. Ruel, “Spacecraft Pose Estimation using Principal
Component Analysis and a Monocular Camera”, in AIAA Guidance, Navigation,
and Control Conference, 2017, p. 1034. doi: 10.2514/6.2017-1034.

[61] P. David, D. Dementhon, R. Duraiswami, and H. Samet, “SoftPOSIT: Simultane-
ous pose and correspondence determination”, International Journal of Computer
Vision, vol. 59, no. 3, pp. 259–284, 2004. doi: 10.1007/3-540-47977-5_46.

[62] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”,
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. doi: 10.1145/
358669.358692.

[63] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustment - a modern synthesis”, in Vision algorithms: theory and practice,
Springer, 1999, pp. 298–372. doi: 10.1007/3-540-44480-7_21.

[64] A. Rhodes, E. Kim, J. A. Christian, and T. Evans, “LIDAR-based relative navi-
gation of non-cooperative objects using point Cloud Descriptors”, in AIAA/AAS
Astrodynamics Specialist Conference, 2016, p. 5517. doi: 10.2514/6.2016-5517.

[65] M. D. Lichter and S. Dubowsky, “State, shape, and parameter estimation of
space objects from range images”, in Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, IEEE, vol. 3, pp. 2974–2979.
doi: 10.1109/robot.2004.1307513.

[66] S. Segal, A. Carmi, and P. Gurfil, “Stereovision-based estimation of relative
dynamics between noncooperative satellites: Theory and experiments”, IEEE
Transactions on Control Systems Technology, vol. 22, no. 2, pp. 568–584, 2014.
doi: 10.1109/tcst.2013.2255288.

[67] S. Berkane and A. Tayebi, “On the design of synergistic potential functions on
SO (3)”, in Decision and Control (CDC), 2015 IEEE 54th Annual Conference
on, IEEE, 2015, pp. 270–275. doi: 10.1109/cdc.2015.7402120.

[68] D Choukroun, H Weiss, I. Bar-Itzhack, and Y Oshman, “Direction cosine ma-
trix estimation from vector observations using a matrix Kalman filter”, IEEE
Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, 2010. doi:
10.1109/taes.2010.5417148.

[69] C. Lageman, J. Trumpf, and R. Mahony, “Gradient-like observers for invariant
dynamics on a Lie group”, IEEE Transactions on Automatic Control, vol. 55,
no. 2, pp. 367–377, 2010. doi: 10.1109/tac.2009.2034937.

141

https://doi.org/10.1016/j.actaastro.2015.12.032
https://doi.org/10.1504/ijspacese.2014.060600
https://doi.org/10.1504/ijspacese.2014.060600
https://doi.org/10.2514/1.a34124
https://doi.org/10.1007/bf03321512
https://doi.org/10.2514/6.2017-1034
https://doi.org/10.1007/3-540-47977-5_46
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1007/3-540-44480-7_21
https://doi.org/10.2514/6.2016-5517
https://doi.org/10.1109/robot.2004.1307513
https://doi.org/10.1109/tcst.2013.2255288
https://doi.org/10.1109/cdc.2015.7402120
https://doi.org/10.1109/taes.2010.5417148
https://doi.org/10.1109/tac.2009.2034937


Bibliography

[70] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code”,
International journal of computer vision, vol. 15, no. 1, pp. 123–141, 1995. doi:
10.1007/3-540-55426-2_38.

[71] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph
matching”, IEEE Transactions on pattern analysis and machine intelligence,
vol. 18, no. 4, pp. 377–388, 1996. doi: 10.1109/icnn.1996.549117.

[72] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis”, Chemo-
metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987. doi:
10.1007/0-387-22440-8_7.

[73] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution
to the PnP Problem”, International journal of computer vision, vol. 81, no. 2,
pp. 155–166, 2009. doi: 10.1007/s11263-008-0152-6.

[74] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial]”, Robotics &
Automation Magazine, IEEE, vol. 18, no. 4, pp. 80–92, 2011. doi: 10.1109/mra.
2011.943233.

[75] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part II: Matching, robust-
ness, optimization, and applications”, Robotics & Automation Magazine, IEEE,
vol. 19, no. 2, pp. 78–90, 2012. doi: 10.1109/mra.2012.2182810.

[76] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features”,
in Computer vision–ECCV 2006, Springer, 2006, pp. 404–417. doi: 10.1007/
11744023_32.

[77] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection”,
in Computer Vision–ECCV 2006, Springer, 2006, pp. 430–443. doi: 10.1007/
11744023_34.

[78] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust indepen-
dent elementary features”, Computer Vision–ECCV 2010, pp. 778–792, 2010.
doi: 10.1007/978-3-642-15561-1_56.

[79] R. Mur-Artal, J. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and
accurate monocular SLAM system”, Robotics, IEEE Transactions on, vol. 31,
no. 5, pp. 1147–1163, 2015. doi: 10.1109/tro.2015.2463671.

[80] M. Zamani, J. Trumpf, and R. Mahony, “Minimum-energy filtering for attitude
estimation”, IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2917–
2921, 2013. doi: 10.1109/tac.2013.2259092.

[81] M. Zamani, J. Trumpf, and R Mahony, “Nonlinear attitude filtering: a comparison
study”, arXiv preprint arXiv:1502.03990, 2015.

[82] A. Saccon, J. Trumpf, R. Mahony, and A. P. Aguiar, “Second-order-optimal
minimum-energy filters on lie groups”, IEEE Transactions on Automatic Control,
vol. 61, no. 10, pp. 2906–2919, 2016. doi: 10.1109/tac.2015.2506662.

[83] B. E. Tweddle and A. Saenz-Otero, “Relative computer vision-based navigation
for small inspection spacecraft”, Journal of Guidance, Control, and Dynamics,
vol. 38, no. 5, pp. 969–978, 2014. doi: 10.2514/6.2011-6296.

[84] H Barré, H Nye, and G Janin, “An overview of the XMM observatory system.”,
ESA Bulletin, vol. 100, pp. 15–20, 1999.

[85] K Van Katwijk, T Van Der Laan, and D Stramaccioni, “Mechanical and Thermal
Design of XMM”, ESA Bulletin, vol. 100, pp. 44–49, 1999.

[86] SpaceFlight101. (2017). Hispasat 30W-6, [Online]. Available: https://spaceflight101.
com/falcon-9-hispasat-30w-6/hispasat-30w-6/.

142

https://doi.org/10.1007/3-540-55426-2_38
https://doi.org/10.1109/icnn.1996.549117
https://doi.org/10.1007/0-387-22440-8_7
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.1109/mra.2011.943233
https://doi.org/10.1109/mra.2011.943233
https://doi.org/10.1109/mra.2012.2182810
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tac.2013.2259092
https://doi.org/10.1109/tac.2015.2506662
https://doi.org/10.2514/6.2011-6296
https://spaceflight101.com/falcon-9-hispasat-30w-6/hispasat-30w-6/
https://spaceflight101.com/falcon-9-hispasat-30w-6/hispasat-30w-6/


Bibliography

[87] F. L. Markley and D. Mortari, “Quaternion attitude estimation using vector
observations”, Journal of the Astronautical Sciences, vol. 48, no. 2, pp. 359–380,
2000.

[88] F. L. Markley, J. L. Crassidis, and Y. Cheng, “Nonlinear attitude filtering
methods”, in AIAA Guidance, Navigation, and Control Conference, 2005, pp. 15–
18. doi: 10.2514/6.2005-5927.

[89] F. L. Markley and J. L. Crassidis, Fundamentals of spacecraft attitude determi-
nation and control. Springer, 2014, vol. 33. doi: 10.1007/978-1-4939-0802-8.

[90] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. CRC
press, 2011. doi: 10.1201/b11154.

[91] M. Zamani, J. Trumpf, and R. Mahony, “Near-optimal deterministic filtering on
the rotation group”, IEEE Transactions on Automatic Control, vol. 56, no. 6,
pp. 1411–1414, 2011. doi: 10.1109/tac.2011.2109436.

[92] ——, “On the distance to optimality of the geometric approximate minimum-
energy attitude filter”, in American Control Conference (ACC), 2014, 2014,
pp. 4943–4948. doi: 10.1109/acc.2014.6858915.

[93] ——, “Near-optimal deterministic attitude filtering”, in 49th IEEE Conference
on Decision and Control (CDC), 2010, IEEE, 2010, pp. 6511–6516. doi: 10.
1109/cdc.2010.5717043.

[94] B. B. Virgili, S Lemmens, and H Krag, “Investigation on Envisat attitude
motion”, in e. Deorbit Workshop, 2014.

[95] F. Schnitzer, A. Sonnenburg, J. Klaus, and M. Sanchez Gestido, “Lessons-learned
from on-ground testing of image-based non-cooperative rendezvous navigation
with visible-spectrum and thermal infrared cameras”, in 10th International ESA
Conference on Guidance, Navigation & Control Systems (GNC 2017), 2017.

[96] J. C. Crusan, R. M. Smith, D. A. Craig, J. M. Caram, J. Guidi, M. Gates,
J. M. Krezel, and N. B. Herrmann, “Deep space gateway concept: Extending
human presence into cislunar space”, in 2018 IEEE Aerospace Conference, IEEE,
2018. doi: 10.1109/aero.2018.8396541.

[97] K. Hill, J. Parker, G. Born, and N. Demandante, “A Lunar L2 Navigation,
Communication, and Gravity Mission”, in AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, American Institute of Aeronautics and Astronautics,
2006. doi: 10.2514/6.2006-6662.

[98] P. Liu, X.-Y. Hou, J.-S. Tang, and L. Liu, “Application of two special orbits in the
orbit determination of lunar satellites”, Research in Astronomy and Astrophysics,
vol. 14, no. 10, pp. 1307–1328, 2014. doi: 10.1088/1674-4527/14/10/010.

[99] T. Svoboda, T. Pajdla, and V. Hlaváč, “Epipolar geometry for panoramic
cameras”, in European Conference on Computer Vision, Springer, 1998, pp. 218–
231.

[100] S. Persson, P. Bodin, E. Gill, J. Harr, and J. Jörgensen, “PRISMA–an au-
tonomous formation flying mission”, in ESA Small Satellite Systems and Services
Symposium (4S), Sardinia, Italy, 2006, pp. 25–29.

[101] P Gurfil, M Idan, and N. J. Kasdin, “Adaptive neural control of deep-space
formation flying”, Journal of Guidance Control and Dynamics, vol. 26, no. 3,
pp. 491–501, 2003. doi: 10.2514/2.5072.

[102] J. Bae and Y. Kim, “Adaptive controller design for spacecraft formation flying
using sliding mode controller and neural networks”, Journal of the Franklin
Institute, vol. 349, no. 2, pp. 578–603, 2012. doi: 10.1016/j.jfranklin.2011.
08.009.

143

https://doi.org/10.2514/6.2005-5927
https://doi.org/10.1007/978-1-4939-0802-8
https://doi.org/10.1201/b11154
https://doi.org/10.1109/tac.2011.2109436
https://doi.org/10.1109/acc.2014.6858915
https://doi.org/10.1109/cdc.2010.5717043
https://doi.org/10.1109/cdc.2010.5717043
https://doi.org/10.1109/aero.2018.8396541
https://doi.org/10.2514/6.2006-6662
https://doi.org/10.1088/1674-4527/14/10/010
https://doi.org/10.2514/2.5072
https://doi.org/10.1016/j.jfranklin.2011.08.009
https://doi.org/10.1016/j.jfranklin.2011.08.009


Bibliography

[103] N. Zhou, R. Chen, Y. Xia, J. Huang, and G. Wen, “Neural network-based
reconfiguration control for spacecraft formation in obstacle environments”, Inter-
national Journal of Robust and Nonlinear Control, vol. 28, no. 6, pp. 2442–2456,
2018. doi: 10.1002/rnc.4025.

[104] S. Sharma, C. Beierle, and S. D’Amico, “Pose estimation for non-cooperative
spacecraft rendezvous using convolutional neural networks”, in 2018 IEEE
Aerospace Conference, IEEE, 2018, pp. 1–12.

[105] D. Simon, “Training radial basis neural networks with the extended Kalman
filter”, Neurocomputing, vol. 48, no. 1-4, pp. 455–475, 2002. doi: 10.1016/s0925-
2312(01)00611-7.

[106] S. C. Stubberud, R. N. Lobbia, and M. Owen, “An adaptive extended Kalman
filter using artificial neural networks”, in Decision and Control, 1995., Proceedings
of the 34th IEEE Conference on, IEEE, vol. 2, 1995, pp. 1852–1856. doi: 10.
1109/cdc.1995.480611.

[107] X. Gao, X. Zhong, D. You, and S. Katayama, “Kalman Filtering Compensated
by Radial Basis Function Neural Network for Seam Tracking of Laser Welding”,
IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1916–1923,
2013. doi: 10.1109/tcst.2012.2219861.

[108] A Stubberud, H Wabgaonkar, and S Stubberud, “A neural-network-based system
identification technique”, in Decision and Control, 1991., Proceedings of the 30th
IEEE Conference on, IEEE, 1991, pp. 869–870. doi: 10.1109/cdc.1991.261441.

[109] J. Dah-Jing and J.-J. Chen, “Neural network aided adaptive Kalman filter for
GPS/INS navigation system design”, in Proc. 9th IFAC Workshop, 2011, pp. 1–7.

[110] N. Harl, K. Rajagopal, and S. N. Balakrishnan, “Neural Network Based Modified
State Observer for Orbit Uncertainty Estimation”, Journal of Guidance, Control,
and Dynamics, vol. 36, no. 4, pp. 1194–1209, 2013. doi: 10.2514/1.55711.

[111] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using Radial Basis Function Networks
for Function Approximation and Classification”, ISRN Applied Mathematics,
vol. 2012, no. March, pp. 1–34, 2012. doi: 10.5402/2012/324194.

[112] J. Park and I. W. Sandberg, “Universal Approximation Using Radial-Basis-
Function Networks”, Neural Computation, vol. 3, no. 2, pp. 246–257, 1991. doi:
10.1162/neco.1991.3.2.246.

[113] K. Reif and R. Unbehauen, “The extended Kalman filter as an exponential
observer for nonlinear systems”, IEEE Transactions on Signal processing, vol. 47,
no. 8, pp. 2324–2328, 1999.

[114] S. Akhlaghi, N. Zhou, and Z. Huang, “Adaptive adjustment of noise covariance
in Kalman filter for dynamic state estimation”, arXiv preprint arXiv:1702.00884,
2017. doi: 10.1109/pesgm.2017.8273755.

[115] R. Burns, Advanced control engineering. Elsevier, 2001. doi: 10.1515/9783110306637.
[116] H. J. S. Feder, J. J. Leonard, and C. M. Smith, “Adaptive mobile robot navigation

and mapping”, The International Journal of Robotics Research, vol. 18, no. 7,
pp. 650–668, 1999. doi: 10.1177/02783649922066484.

[117] F. Preusker, F Scholten, K.-D. Matz, T. Roatsch, K. Willner, S. Hviid, J Knollen-
berg, L Jorda, P. J. Gutiérrez, E. Kührt, et al., “Shape model, reference system
definition, and cartographic mapping standards for comet 67P/Churyumov-
Gerasimenko–Stereo-photogrammetric analysis of Rosetta/OSIRIS image data”,
Astronomy & Astrophysics, vol. 583, A33, 2015. doi: 10.1051/0004- 6361/
201526349.

144

https://doi.org/10.1002/rnc.4025
https://doi.org/10.1016/s0925-2312(01)00611-7
https://doi.org/10.1016/s0925-2312(01)00611-7
https://doi.org/10.1109/cdc.1995.480611
https://doi.org/10.1109/cdc.1995.480611
https://doi.org/10.1109/tcst.2012.2219861
https://doi.org/10.1109/cdc.1991.261441
https://doi.org/10.2514/1.55711
https://doi.org/10.5402/2012/324194
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1109/pesgm.2017.8273755
https://doi.org/10.1515/9783110306637
https://doi.org/10.1177/02783649922066484
https://doi.org/10.1051/0004-6361/201526349
https://doi.org/10.1051/0004-6361/201526349


Bibliography

[118] R. W. Gaskell, O. S. Barnouin-jha, D. J. Scheeres, A. S. Konopliv, T Mukai,
S Abe, J Saito, M Ishiguro, T Kubota, T Hashimoto, et al., “Characterizing and
navigating small bodies with imaging data”, Meteoritics & Planetary Science,
vol. 43, no. 6, pp. 1049–1061, 2008. doi: 10.1111/j.1945-5100.2008.tb00692.
x.

[119] C. Capanna, G. Gesquière, L. Jorda, P. Lamy, and D. Vibert, “Three-dimensional
reconstruction using multiresolution photoclinometry by deformation”, The
Visual Computer, vol. 29, no. 6-8, pp. 825–835, 2013. doi: 10.1007/s00371-
013-0821-5.

[120] S. Bhaskaran, J. E. Riedel, and S. P. Synnott, “Autonomous target tracking of
small bodies during flybys”, Pasadena, CA: Jet Propulsion Laboratory, National
Aeronautics and Space Administration, 2004., 2004.

[121] C. Olson, R. P. Russell, and S. Bhaskaran, “Spin State Estimation of Tumbling
Small Bodies”, The Journal of the Astronautical Sciences, vol. 63, no. 2, pp. 124–
157, 2016. doi: 10.1007/s40295-015-0080-y.

[122] C. Olson, “Sequential estimation methods for small body optical navigation”,
PhD thesis, 2016.

[123] H. Xiangyu, C. Hutao, and C. Pingyuan, “An autonomous optical navigation
and guidance for soft landing on asteroids”, Acta Astronautica, vol. 54, no. 10,
pp. 763–771, 2004. doi: 10.1016/j.actaastro.2003.09.001.

[124] C. Cocaud and T. Kubota, “Autonomous navigation near asteroids based on
visual SLAM”, in Proceedings of the 23rd International Symposium on Space
Flight Dynamics, Pasadena, California, 2012.

[125] S. Li, P. Cui, and H. Cui, “Autonomous navigation and guidance for landing on
asteroids”, Aerospace science and technology, vol. 10, no. 3, pp. 239–247, 2006.
doi: 10.1016/j.ast.2005.12.003.

[126] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F.
Durrant-Whyte, “Information based adaptive robotic exploration”, in Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, IEEE, vol. 1,
2002, pp. 540–545. doi: 10.1109/irds.2002.1041446.

[127] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “FIRM: Sampling-
based feedback motion-planning under motion uncertainty and imperfect mea-
surements”, The International Journal of Robotics Research, vol. 33, no. 2,
pp. 268–304, 2014. doi: 10.1177/0278364913501564.

[128] R. Valencia and J. Andrade-Cetto, “Active pose SLAM”, in Mapping, Planning
and Exploration with Pose SLAM, Springer, 2018, pp. 89–108. doi: 10.1007/978-
3-319-60603-3_5.

[129] H. Carrillo and J. A. Castellanos, “Navigation Under Uncertainty Based on Active
SLAM Concepts”, in Handling Uncertainty and Networked Structure in Robot
Control, Springer, 2015, pp. 209–235. doi: 10.1007/978-3-319-26327-4_9.

[130] K. J. Åström, “Optimal control of Markov processes with incomplete state
information”, Journal of Mathematical Analysis and Applications, vol. 10, no. 1,
pp. 174–205, 1965. doi: 10.1016/0022-247x(65)90154-x.

[131] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable
Markov processes over a finite horizon”, Operations research, vol. 21, no. 5,
pp. 1071–1088, 1973. doi: 10.1287/opre.21.5.1071.

[132] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains”, Artificial intelligence, vol. 101, no. 1,
pp. 99–134, 1998. doi: 10.1016/s0004-3702(98)00023-x.

145

https://doi.org/10.1111/j.1945-5100.2008.tb00692.x
https://doi.org/10.1111/j.1945-5100.2008.tb00692.x
https://doi.org/10.1007/s00371-013-0821-5
https://doi.org/10.1007/s00371-013-0821-5
https://doi.org/10.1007/s40295-015-0080-y
https://doi.org/10.1016/j.actaastro.2003.09.001
https://doi.org/10.1016/j.ast.2005.12.003
https://doi.org/10.1109/irds.2002.1041446
https://doi.org/10.1177/0278364913501564
https://doi.org/10.1007/978-3-319-60603-3_5
https://doi.org/10.1007/978-3-319-60603-3_5
https://doi.org/10.1007/978-3-319-26327-4_9
https://doi.org/10.1016/0022-247x(65)90154-x
https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1016/s0004-3702(98)00023-x


Bibliography

[133] S. B. Broschart, M. Abrahamson, S. Bhaskaran, E. G. Fahnestock, R. R. Karimi,
G. Lantoine, T. A. Pavlak, and L. Chappaz, “The small-body dynamics toolkit
and associated close-proximity navigation analysis tools at JPL”, in 2015 AAS
Guidance and Control Conference, Breckenridge, Colorado, 2015.

[134] T. A. Pavlak, S. B. Broschart, and G. Lantoine, “Quantifying mapping orbit
performance in the vicinity of primitive bodies”, 2015.

146



Colophon

This thesis was typeset with LATEX and BibTEX, using a typographical
look-and-feel created by Vincenzo Pesce. The style was inspired by D.A.
Dei Tos PhD_Dis and by J. Stevens, L. Fossati phdthesis styles.


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Desired Attributes of a Navigation Filter
	Dynamical Modeling 
	Robustness
	Computational Cost

	Thesis Overview and Contributions
	Bibliographic Disclaimer

	Filtering Techniques
	Linear Filters
	Kalman Filter
	H- Filter

	Nonlinear Filters
	Extended Kalman Filter
	Unscented Kalman Filter
	Particle Filter
	Minimum Energy Filter


	Spacecraft Relative Dynamics
	Coordinate Systems 
	Earth-centered Coordinate Systems 
	Moon-Earth Coordinate Systems 

	Relative Translational Dynamics - Earth
	Nonlinear Dynamic Model of Unperturbed Relative Motion
	Clohessy-Wiltshire Equations
	Yamanaka-Ankersen Model
	Nonlinear Dynamic Model of J2-Perturbed Relative Motion

	Relative Translational Dynamics - Moon/Earth 
	Relative Rotational Dynamics and Kinematics 

	Vision-based Relative Navigation around an Uncooperative-known Space Object
	Monocular Relative Navigation Architecture 
	Pose Estimator 
	Pose Estimation Algorithm - Strategy A
	Pose Estimation Algorithm - Strategy B

	Navigation Filter 
	Translation Filter
	Rotation Filter 

	Simulation Environment and Results - Strategy A 
	Numerical Simulation Environment Description
	Measurement Generation 

	Simulation Scenario
	Target
	Orbital Scenario 
	Noise Level

	Results 
	Preliminary Experimental Validation
	Experimental Facility
	Experimental Test
	Experimental Test Results


	Simulation Environment and Results - Strategy B 
	Results


	Comparison of Filtering Techniques For Relative Attitude Estimation of Uncooperative Space Objects
	Filtering Algorithms
	Multiplicative Extended Kalman Filter (MEKF)
	Minimum Energy Filter on SO(3)
	Attitude Observer on SO(3)
	2nd Order Minimum Energy Filter 
	2nd Order Minimum Energy Filter without Dynamics

	Simulation Scenarios and Results
	Single Run (Case C2)
	Cases A1, A2 [Random Initial Conditions, Known Measurement Noise]
	Cases B1,B2 [Known Initial Conditions, Uncertain Measurement Noise]
	Cases C1, C2 [Random Initial Conditions, Uncertain Measurement Noise]
	Case D [Random Initial Conditions, Uncertain Measurement Noise, Uncertain Inertia of the Target]

	Remarks

	Vision-based Relative Navigation for Non-Keplerian Orbits
	Mathematical Formulation
	Assumptions and Notation
	Filter Architecture
	Dynamical Model
	Observation Model
	Estimation Procedure

	Simulation Environment and Results 
	Numerical Simulation Environment Description
	Measurement Generation 

	Simulation Scenario
	Feature Points
	Orbital Scenario 

	Results 


	Radial Basis Function Neural Network - Adaptive Extended Kalman Filter
	Algorithm Architecture
	RBFNN
	Neural Network Structure
	Online Learning Algorithm

	Adaptive Extended Kalman Filter

	Application to Spacecraft Relative Navigation
	Tested Filters
	Observer
	RBFNN-EKF
	EKF - nonlinear


	Scenarios & Results
	Orbital Scenario
	Disturbance Reconstruction
	Relative Navigation - Nominal Case
	Relative Navigation - Non-nominal Case


	Autonomous Navigation & Mapping of Small Bodies
	Mission Architecture
	Planning Under Uncertainty
	Small Body Mapping and Spacecraft Localization
	System definition
	Map representation
	System Belief
	Joint State Estimation

	Autonomous Planning for Small Body Mapping
	Mapping accuracy
	Results

	Conclusion

