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Abstract

In today’s age, green transportation remains one of the most important top-
ics of research. The main goal is to promote vehicle technologies and driv-
ing styles which are energy efficient and environment friendly. In this the-
sis, the main focus is on the Energy Efficient Train Control (EETC) or eco-
driving strategies of railways. For this purpose, two main research paths
have been explored. The first research direction is associated with a single
train control problem, where the control problem is to find the best driv-
ing strategy for the train to go from one stop to another, given an optimal
timetable. EETC strategies can be either fully automated (ATO) or serve as
an advisory system to the driver (DAS) for the purpose of assisting drivers
in following an energy efficient driving style. For this purpose, three control
strategies using Model Predictive Control (MPC) have been presented. In
the first two strategies, shrinking horizon techniques have been combined
with input parametrization approaches to reduce the computational burden
of the control problem and to realize the nonlinear integer programming
control problem which arises in the DAS scenario, while the third strategy
is based on switching MPC with receding horizon. All the strategies have
been tested on the official simulation tool CITHEL of our industrial partner
Alstom, and the obtained results in comparison with the existing techniques
have proven to be more energy efficient. The second research direction falls
under the paradigm of collaborative eco-drive control strategies, involving
multiple trains belonging to a substation network. The main aim is to use
the energy regenerated by the braking trains through collaboration among
the trains connected and active in the network. In this case, three strategies
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to decide the collaborative law have been presented along with the exten-
sions from the single train control strategies presented in the first part of
the thesis. For the design of collaborative laws, techniques such as man-
ual supervision, substation modeling and dissension based adaptive laws
with concept similar to Markov chains have been used. The strategies have
been validated with simulation examples. Finally, comparisons of energy
efficiency with and without collaboration have been presented, which show
the advantage of using the developed collaborated laws as compared to no
collaboration.
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CHAPTER1
Introduction

1.1 Motivation and Objectives

The risk of global warming threatening to destroy our planet is continuously
increasing. Global warming is a consequence of the Green House Effect,
which in turns results from an increase in the release of heat trapping gases
known as the green house gases (GHGs). GHGs consist of water vapor,
carbon dioxide (CO2), methane, nitrous oxide, and ozone and have always
been present in the earth’s atmosphere. They are essentially important in or-
der to maintain the earth’s temperature due to their tendency to absorb and
trap heat and hence support life. Without these gases, the average tempera-
ture of earth’s surface would be about -18◦C (0 ◦F), rather than the present
average of 15 ◦C (59 ◦F). Human activities since the beginning of the in-
dustrial revolution (around 1750) have produced a 40% increase in the at-
mospheric concentration of CO2, from 280 ppm (parts per million) in 1750
to 406 ppm in early 2017. This increase has occurred despite the uptake of
more than half of the emissions by various natural “sinks” involved in the
carbon cycle. The vast majority of anthropogenic carbon dioxide emissions
(i.e., emissions produced by human activities) come from combustion of
fossil fuels, principally coal, oil, and natural gas, with comparatively mod-
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Chapter 1. Introduction

est additional contributions coming from deforestation, changes in land use,
soil erosion, and agriculture. Presently, the level of these gases are alarm-
ingly higher than have been in the last 650,000 years [2]. The result is a
constant increase in the earth’s temperature, which in turn has resulted in
melting glaciers, increased sea levels, dying cloud forests and scrambling
wildlife. If the greenhouse gas emissions continue at their present rate,
earth’s surface temperature could exceed historical values as early as 2047,
with potentially harmful effects on ecosystems, biodiversity and the liveli-
hoods of people worldwide. Recent estimates also suggest that at current
emission rates, the earth’s temperature could pass a threshold of 2◦C global
warming, which the United Nations Intergovernmental Panel on Climate
Change (IPCC) designated as the upper limit to avoid dangerous global
warming by 2036.

On the other hand, in the recent past, electropollution or electromag-
netic pollution has been a source of open discussion and has been referred
to as 21st century catastrophe [40]. It usually refers to the introduction
of biologically toxic electrical frequencies into the earth’s environment by
electromagnetic frequencies (EMFs). These radiations have been shown to
cause serious health issues ranging from diabetes to cancer. Some scien-
tists believe it to be a greater threat than global warming, as Robert Becker,
nominated twice for the nobel price said, “The greatest polluting element
in the earth’s environment is the proliferation of electromagnetic fields. I
consider that to be a far greater threat on a global scale than warming, or the
increase of chemical elements in the environment.” An expert in electro-
magnetic pollution, Camilla Rees has been working continuously to bring
awareness about this issue and has been quoted as saying, “This is a species
issue. There is early evidence there may be a link between EMF exposures
and autism. We know radiation is affecting our DNA and jeopardizing the
health of future generations. There is research from many countries now
showing dramatic decline in sperm count from exposure to cell phone radi-
ation. I really don’t think it’s possible, when you know the disturbing truth,
to stop caring, to stop wanting to support life.”

Though in general, transportation remains one of the major contributers
of CO2 emissions and hence global warming, railway remains by far the
most efficient means of transportation from the point of view of energy
consumption and therefore a strategic sector in today’s society. Keeping
in mind the present risks and dangers associated with global warming, the
European Union (EU) has set up certain restrictions to deal with it. For
railway sector, these targets are set together by the International Union of
Railways (UIC) and Community of European Railway and Infrastructure

2



1.1. Motivation and Objectives

Figure 1.1: Loss of natural habitat of animals as an effect of global warming: A polar
bear stands sentinel on Rudolf Island in Russias Franz Josef Land archipelago, where
the perennial ice is melting, National Geographic.

Companies (CER). Their short term target is to decrease the CO2 emissions
by 30 % over the period from 1990 to 2020, while the long term goal is to
firstly further decrease these emissions by 50 % towards the end of 2030
and secondly to decrease the overall energy consumption of railways by
30% towards the end of 2030 as compared to 1990 [1].

In order to fulfill these goals, a lot of European railway companies have
started research on opportunities to decrease energy consumption in order
to be sustainable and more profitable in the future. The proposed methods
differ on the basis of certain factors. Some of these methods are operator
based, which at time requires upgrade in the vehicle technology, while oth-
ers are control based. For example, in order to reduce energy, an operator
can deploy rolling stock that is more energy efficient by using more energy
efficient engines or streamlining. Also, the operator may work to better
match the capacities of the trains with the demand, so that fewer seats are
moved around and/or deploy measures concerning heating, cooling, light-
ning, etc. of parked trains during night in order to save energy. On the
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other hand, the control based methods are mostly focused on development
of techniques aimed at reducing fuel consumption and emissions which are
affected by the behavior of the driver, without necessarily upgrading the ve-
hicle technology. In the literature, they are commonly referred to as Energy
Efficient Train Control (EETC) or eco-driving strategies. In other words,
given the timetable, a train is driven with the least amount of traction en-
ergy. The timetable may be constructed in such a way that it allows EETC
most effectively, resulting in Energy Efficient Train Timetabling (EETT).
In case of electrical trains, which can regenerate energy during braking, the
control based techniques need to be further enhanced to be able to use this
regenerated energy effectively.

For this thesis, the main focus is to investigate two main research ques-
tions for electrical trains as also required by our industrial partner Alstom.

1. Firstly, given an optimal timetable, what is the best driving strategy
for the train to go from stop A to stop B? This research question falls
under the paradigm of EETC or eco-driving techniques.

2. Secondly, in case of available regenerative energy in a network substa-
tion consisting of more than one train, what is the best way to use this
regenerated energy for overall networked energy minimization? Can
the trains connected to the same substation collaborate with each other
and share this regenerated energy among themselves? This research
question falls under the paradigm of collaborative EETC or collabo-
rative eco-driving techniques.

1.2 Proposed Approach

The system dynamics of a single train involved in the EETC are stud-
ied. Two main models have been used for the developed control strate-
gies, which will be presented. The control strategies developed are based
on Model Predictive Control (MPC). Robustness analysis in case of dis-
turbances/uncertainties on the system model have also been carried out.
Then these strategies are extended to include regenerative braking and en-
ergy sharing among trains connected to the same substation network. For
this purpose, specifically new control strategies are proposed, where the en-
ergy regenerated by the braking train is exploited effectively by other trains
which are connected to the same substation network.

4



1.3. Thesis Outline

1.3 Thesis Outline

The thesis is divided into four main parts. The first part contains Chapter
1, which explains the motivation behind this work and the main research
questions which have been explored in this thesis.

The second part of thesis consists of five chapters, providing answers to
the first research question, that is the EETC problem of a single train. While
Chapter 2 provides a historical overview of the single train EETC problem
along with a review of the previous control strategies developed in the lit-
erature to deal with it and finally our motivation behind the application of
MPC to deal with this problem, Chapter 3 provides preliminaries needed
to better explain the EETC problem. Finally, Chapter 4, Chapter 5 and
Chapter 6 present the different system models and the associated control
strategies developed in this thesis work. Each chapter concludes with sim-
ulations tested on real train data kindly provided by our industrial partner
Alstom.

The third part of this thesis explores the second research question, which
is based on developing strategies involving a substation network consisting
of more than one train. The main reason, which gives significance to this
research question is the case of electrical trains. For these trains, there is
a possibility of energy regeneration when they brake, resulting in a portion
of the braking energy being regenerated rather than being completely lost
to the environment. This makes electrical trains among the most efficient
trains from the point of view of energy consumption. This part consists of
two chapters. Chapter 7 provides a historical perspective on the first use of
regeneration energy and a review of the different strategies developed to ef-
fectively use this regenerated energy along with two developed supervisor
control strategies via collaboration among trains connected to the same sub-
station, while Chapter 8 presents another collaborative strategy developed
using Dissension strategy based on Markov chains.

The final part of this thesis consist of Chapter 9, where we present some
concluding remarks on the work presented in this thesis.
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CHAPTER2
Historical Perspective: Single Train EETC

Problem

Historically speaking, the research on EETC/ eco-driving started as early as
1968 in Japan [47] and has ever since been an interesting topic in the litera-
ture. As already mentioned in Chapter 1, it usually refers to the application
of techniques aimed at reducing energy consumption and carbon emissions
effected by the driver behavior/ driving style, without necessarily upgrad-
ing the vehicle technology. These techniques can be categorized into two
main branches: The Driver Advisary Systems (DAS) and the Automatic
Train Operation (ATO). DAS are developed to advice the train drivers on
the driving strategy to implement for energy efficient operation, while in
ATO the energy efficient operation is completely automated with the driver
being removed from the loop.

The earliest solutions involving EETC have been developed by the ap-
plication of the Pontryagin’s Maximum Principle (PMP), as in general,
the EETC problems fall under the category of optimal control problems
(OCPs). The next sections will describe in detail the basic train control
problem along with its system dynamics, constraints, the earliest solutions
present in the literature and a general review of the techniques developed
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Chapter 2. Historical Perspective: Single Train EETC Problem

till date as a solution to the EETC problem.

2.1 Basic Optimal Train Control Problem

This section will describe in detail the basic train OCP starting from its sys-
tem dynamics, the constraints the train is subjected to, performance index to
reduce the energy consumption, the need to represent the train model with
respect to space (distance) and finally the solutions previously presented
to solve this problem. The basic OCP solved through EETC is based on
selecting the optimal driving style for the train to go from one station to
another within a given allowable time, such that energy is minimized.

2.1.1 Basic Train Model

In continuous time domain representation, the simplified model of a single
train can be presented as a differential motion equation, described as

M
dv

dt
= FT (v, u(t))− FB(v, u(t))− FR(v, s) (2.1)

where

Table 2.1: Train Parameter Symbols and their Definitions

M total mass of the train;
v velocity of the train;
FT traction force;
FB braking force;
FR resistance force;
u input handle of the train.
s space(distance) of the train.

The resistance force FR is given as a combination of frictional effects
due to velocity, described by the Davis equation [20], and the frictional
effects due to slopes and radius of the track, i.e.,

FR(v, s) = Rv(v) +Rg(s)

Rv(v) = A+Bv + Cv2

Rg(s) = Ms

(
g tan(α(s)) +

λt
rc(s)

) (2.2)
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2.1. Basic Optimal Train Control Problem

Table 2.2: Train Resistance Parameter Symbols and their Definitions

Rv frictional forces due to velocity;
A, B, C Davis equation parameters;
Rg frictional forces due to slope of the track and gravity;
Ms static mass of the train;
rc radius of the curve of the track;
α slope of the track;
λt train dependent parameter;
g acceleration due to gravity.

Remark 2.1.1. Notice that the resistance force is hardly known in prac-
tice and only nominal values of Davis parameters are known in advance.
Hence, identification of the adherence status of the railways is an impor-
tant issue for braking and traction performances. Recent contribution can
be found in [16]. In the following, these parameters are considered to be
known. Also, since the considered EETC problem is in between two stops,
as such the mass M of the train is considered constant in the train models
used throughout this work.

As for the traction and braking forces, they are functions of the handle
and velocity (see Fig. 2.1) and for a particular value of the velocity, their
models can be captured by the following formulas

FT =FTmax(v)u(t) (2.3)
FB =FBmax(v)u(t) , (2.4)

with FTmax and FBmax being the maximum allowable traction and braking
forces, respectively.

Furthermore, the train is subject to velocity constraints (which are func-
tions of the space s) and maximum allowable journey time. For s ∈ [0, sf ],
where sf is the final point of the track, the space dependent velocity con-
straints are given by

0 ≤ v(s) ≤ vmax(s) , (2.5)

with vmax(s) being the maximum allowed velocity value at space s. Fur-
thermore, the journey time limits are described as:

T (sf ) ≤ tf . (2.6)

Note that, the velocity constraints (2.5) and the slopes and radius (see (2.2))
are functions of space. Hence, in order to account for these constraints and
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Chapter 2. Historical Perspective: Single Train EETC Problem

Figure 2.1: Maximum traction (black line) and braking (gray line) forces as functions of
velocity. The force characteristics of one of the trains used in the simulations with real
data provided by Alstom.

dynamics, another way is to represent the train model with respect to space
rather than time. The representation of the train model in space domain is
given as

dv

ds
=
FT (v, u(s))− FB(v, u(s))− FR(v, s)

Mv
. (2.7)

Remark 2.1.2. The input handle u ∈ [1, −1] represents the normalized
allowed traction (positive) and braking (negative) force, that the train can
use at a particular time instant. Since this work focuses on electrical trains,
the input handle is continuous and can assume any value belonging to the
above mentioned finite interval. Also, with a slight abuse of notation, the
same notations have been used throughout the thesis to denote the system
dynamics of the models with respect to time and space.

2.1.2 Optimal Train Control Problem in Time Domain

Having defined the basic train model and the constraints the train operation
is subjected to, the basic OCP involving the EETC essentially consists of
minimizing the energy consumption of the train used in traction. In the lit-
erature, the time domain model (2.1) has been reformulated a bit differently
by normalizing the right hand side of the equation with the mass M of the
train and introducing some new variables. The first variable h(t), which is
the input and also the optimization variable is given by h(t) = FT−FB

M
. The
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2.1. Basic Optimal Train Control Problem

second variable r(v) = FR
M

represents the normalized resistance force, orig-
inally given by (2.2). The input h(t) is constrained by the maximum and
minimum forces such that h(t) ∈ H = [−hmin, hmax(v(t))] for t ∈ [0, tf ],
where hmax(v) =

FTmax (v)

M
> 0 and hmin(v) =

FBmax (v)

M
< 0. Finally, the

performance index is given by the energy consumption, which is the work
done by the traction power P (t) = FT (t)v(t) over time and can be further
simplified as

∫ tf
0
h+(t)v(t)dt such that h+(t) = max(h(t), 0). Mathemati-

cally, it can be expressed as:

J = min
h

∫ tf

0

h+(t)v(t)dt

subject to
ṡ(t) = v(t)

v̇(t) = h(t)− r(v(t))

s(0) = 0, s(tf ) = sf , v(0) = 0, v(tf ) = 0

v(t) ≥ 0, h ∈ [−hmin, hmax(v(t))]

(2.8)

where s(t) is the distance traveled over time. The variables (s, v) are the
state variables and h is the control variable.

Remark 2.1.3. For OCP (2.8), certain simplifications were made due to
the modeling in time domain. Firstly, it was assumed that the resistance
component Rg due to the gradients and curvature was zero, such that only
the resistance component Rv due to the velocity of the train was considered
(see (2.2)). Secondly, the velocity limits (2.5), which are a function of dis-
tance were not considered, as can be observed from the OCP (2.8). Finally,
it was also assumed that hmin =

FBmax

M
< 0, such that the braking force

does not depend on the velocity.

Pontryagin’s Maximum Principle for Time Domain OCP

The Pontryagin’s Maximum Principle [63] states that the optimal control
state trajectory x̂, optimal control ĥ, and the corresponding Lagrange mul-
tiplier vector λ̂ must maximize the Hamiltonian H so that:

H(x̂(t), ĥ(t), λ̂(t), t) ≥ H(x̂(t), h, λ̂(t), t), ∀h ∈ H, t ∈ [0, T ] (2.9)

where the Hamiltonian H associated with the maximum principle is de-
fined for all t ∈ [0, T ] by:

11
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H(x(t), h(t),λ(t), t) = L(x(t), h(t)) + λT (t)f(x(t), h(t)). (2.10)

The notation ·T will denote the matrix transpose operator throughout
this work. The constraints on the system dynamics can be adjoined to the
Lagrangian L by introducing time-varying Lagrange multiplier vector λ,
whose elements are called the co-states of the system.

If we analyze the OCP (2.8), it can be noted that it has a standard form
of the OCPs for which the necessary conditions are given by the PMP. In
particular, it minimizes an objective function min

h

∫ T
0
L(s, v, h)dt, where

T = tf and L(s, v, h) = h+(t)v(t) subject to the system dynamics de-
scribed by the ordinary differential equations (ODE) ṡ(t) = f1(s, v, h)
and v̇(t) = f2(s, v, h) with boundary conditions on s and v and path con-
straints gi(s, v, h) ≥ 0, i = 1, . . . , n. The Lagrange multiplier is given by
λ = [φ, λ]T , whereas f1(s, v, h) = v(t), f2(s, v, h) = h(t) − r(v(t)) and
x(t) = [s(t), v(t)]T .

The control is also upper and lower bounded depending on the maximum
and minimum available force to the train. The general Hamiltonian can be
given by:

H(s, v, φ, λ, h) = −L(s, v, h) + φf1(s, v, h) + λf2(s, v, h) (2.11)

without the boundary conditions and the augmented Hamiltonian (or
Lagrangian) is given by

H̃(s, v, φ, λ, µ, h) = H(s, v, φ, λ, h) +
n∑
i=1

µigi(s, v, h) (2.12)

where (φ, λ) are the co-state (or adjoint) variables which satisfy the differ-
ential equations

φ̇(t) = −δH̃
δs

(s, v, φ, λ, µ, h) and λ̇(t) = −δH̃
δv

(s, v, φ, λ, µ, h) (2.13)

with respect to the additional path constraints gi(s, v, h) ≥ 0, where
µi are Lagrange multipliers satisfying the complementary slackness condi-
tions µi ≥ 0 and µigi(x, v, h) = 0. Moreover, the Karush-Kuhn-Tucker
(KKT) necessary condition δH̃

δh
= 0 must be satisfied by the optimal solu-

tion.
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2.1. Basic Optimal Train Control Problem

Figure 2.2: Graphical representation of optimal driving regimes for energy efficient driv-
ing on flat track as function of time with switching points at t1, t2 and t3 where time is
in minutes (min).

According to PMP, the candidate optimal control variable ĥ should be
selected from the admissible control variables that maximize the augmented
Hamiltonian H̃ and the candidate optimal control is given by:

ĥ = arg max
h∈H

H̃(ŝ(t), v̂(t), φ̂(t), λ̂(t), h) (2.14)

where (ŝ, v̂) and (φ̂, λ̂) are the state and the co-state trajectories associ-
ated to the control trajectory ĥ.

Typical for an optimal train control problem is that the Hamiltonian is
(piecewise) linear in the control variable h, by which the optimal control
may not be uniquely defined from the necessary conditions on some non-
trivial interval. For the example problem, the Hamiltonian can be split
around h = 0. Taking the control constraints into account, the optimal
control is characterized as

ĥ =


hmax(v(t)) if λ(t) > v(t) (MA)
h ∈ [0, hmax] if λ(t) = v(t) (CR)
0 if 0 < λ(t) < v(t) (CO)
−hmin if λ(t) ≤ 0 (MB)

(2.15)
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Chapter 2. Historical Perspective: Single Train EETC Problem

Figure 2.3: Graphical representation of the optimal driving regimes for energy efficient
driving with switching points at s1, s2 and s3.

The optimal control is illustrated in Fig.2.2. The maximum control ĥ =

hmax implies maximum acceleration (MA), zero control ĥ = 0 implies
coasting (CO) i.e., rolling with the engine turned off, and the minimum
control ĥ = −hmin implies maximum braking (MB). The singular solution
defined by λ(t) = v(t) corresponds to speed-holding or cruising (CR),
i.e. driving at a constant optimal speed using partial tractive effort ĥ ∈
[0, hmax].

2.1.3 Optimal Train Control Problem in Space Domain

Referring to Remark 2.1.3, in order to deal with gradients, track curvature
and speed limits which are functions of distance, the model (2.7) was used
but with the same reformulation as in Subsection 2.1.2. This change of
coordinates was first proposed in [43, 64]. It should be noted here that now
resistance component Rg due to the gradients and curvature is no longer
considered zero.

14



2.1. Basic Optimal Train Control Problem

In space domain, energy consumption is the work done by the traction
power P (t) = FT (s) over space and can be written as:

J = min
h

∫ sf

0

h+(s)ds

subject to

ṫ(s) =
1

v(t)

v̇(s) =
h(s)− r(v(s))

v(s)

t(0) = 0, t(sf ) = tf , v(0) = 0, v(sf ) = 0

v(s) ≥ 0, v(s) ≤ vmax(s), h ∈ [−hmin, hmax(v(s))]

(2.16)

where t(s) is the travel time over the distance. The variables (t, v) are
the state variables and h is the control variable.

Remark 2.1.4. In general, h(t) 6= u(t) due to the reformulation presented
above. For the purpose of our work, we will use u(t) as our input to the
train and also our optimization variable. More details can be found in the
next chapter. The reformulation leading to OCPs (2.8) and (2.16), where
h(t) is the optimization variable has just been introduced to explain the
previous methods used in the literature.

Pontryagin’s Maximum Principle for Space Domain OCP

The necessary conditions, Hamiltonian, state and co-state equations are ex-
pressed in the same way as in Subsection 2.1.2. Then according to the PMP,
the candidate optimal control for varying gradients in space domain is given
by:

ĥ =



hmax(v(s)) if λ(s) > v(s) (MA)
h ∈ [0, hmax] if λ(s) = v(s) (CR1)
0 if 0 < λ(s) < v(s) (C0)
h ∈ [−hmin, 0] if λ(s) = 0 (CR2)
−hmin if λ(s) ≤ 0 (MB)

(2.17)

The speed profile in this case is shown in Fig. 2.3.
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2.2 Literature Review for a Single Train Problem

EETC problems can be classified on the basis of many considerations. One
way to classify them is based on the methodologies involved in solving
them. Based on this criteria, EETC problems have been solved using either
exact methods or heuristic methods. Another criteria is on the basis of
traction control. Usually, traction force model can be continuous or discrete
based on whether we are dealing with electric traction or diesel-electric
traction. The main difference lies in the presence of an on-board prime
mover. A prime mover is an engine that converts fuel to useful work. The
electric traction trains usually do not have any on-board prime mover and
hence rely on an external power station for power, while diesel-electric
traction trains have an on-board prime mover in the form of a diesel engine
or a gas turbine which acts as a power source for these kinds of trains. A
recent review can be found in [71]. The focus of our work is on exact
methods and electrical traction trains. In electrical trains, the force can
be considered as continuous. They were also the earliest problems to be
considered in the literature. The first study was carried out in Japan [47] in
1968. The model used was very similar to the one described in Section 2.1,
but in this case the resistance force was simplified to be simply the velocity
rather than a quadratic function of the velocity and track was considered to
be flat and straight, making the differential equations describing the model
behavior linear. The analytical expressions for the various regimes were
derived by using the PMP principle and include all four driving regimes on
level tracks:

1. Maximum acceleration (MA)
2. Cruising by partial traction force (CR)
3. Coasting (CO),
4. Maximum braking (MB),

as well as resulting optimal control rules. This work was further ex-
tended by including the resistance force due to velocity as a quadratic func-
tion of the velocity and also taking into account the resistance due to the
slopes and the curvature [74]. However, they then linearized the resistance
function and thus could derive analytical expressions for all driving regimes
using the PMP as well. As a result of the possible negative slopes partial
braking to maintain cruising was found to maintain cruising during descent,
and the driving regime consisted of:

1. Maximum acceleration (MA)
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2. Cruising by partial traction force (CR1)
3. Coasting (CO),
4. Cruising by partial braking force (CR2)
5. Maximum braking (MB),

It is significant to point out here that the approach in [74] was imple-
mented in the form of a computer aided train operation and formed the ba-
sis of the first DAS implemented in board computers of the Berlin S-Bahn
(suburban trains) in Germany at the beginning of the 1980s. However, in
this case the computations were made offline due to the limited computa-
tional power available at that time. This research was again revisited by [8],
where solutions were calculated backwards from the target station using
simulink. The algorithm numerically calculated the switching curves that
could be used to calculate the switching points in the optimal trajectory and
was applied in a DAS on the train driving simulator at Dresden University
of Technology (TU Dresden), and in real-time passenger operation of the
suburban railway line S1 in Dresden.

Around the same time, starting from 1982, train control research has also
been carried out actively by the University of South Australia (UniSA). The
research was initiated with the Ph.D thesis of Milroy on continuous train
control. Milroy’s research [57] was focused on urban railway transport
and he also applied the PMP principle to solve the optimal train control
problem. His research conclusions were based on the assumptions that the
track is flat with fixed speed limit and there are three driving regimes (see
Fig. 2.4) in the optimal driving strategy:

1. Maximum acceleration (MA)
2. Coasting (CO),
3. Maximum braking (MB),

However, in [44] it was mathematically proven based on the PMP that
the general optimal driving strategy for level track and a fixed speed limit
consists of four driving regimes including cruising, which confirmed the re-
sults provided before in [74]. All these ideas were implemented by UniSA
in a commercial system named Metromiser. The DAS part of the Metro-
miser advised the train driver when to coast and when to brake in order
to minimize energy consumption using light and sound indications. How-
ever, the Metromiser considered a constant effective gradient during coast-
ing and braking phases. The first successful runs with the system were
done on the (sub)urban trains in Adelaide (Australia) in 1984, and later
in Toronto (Canada), Melbourne (Australia). The achieved energy savings
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were more than 15% compared to the trains running without Metromiser,
and also punctuality increased. In case of suburban trains to which Metro-
miser was applied, the coasting phase was found out to be the most impor-
tant driving regime due to short stop distances [13, 43].

Figure 2.4: Graphical representation of optimal driving regimes for energy-efficient driv-
ing on flat track without cruising as function of time with switching points at t1 and
t2.

As the EETC research gained momentum, around 1990 Netherlands
Railways (NS, Nederlandse Spoorwegen) also started investigations in this
direction. The authors in [78] investigated the optimal driving strategy and
found the four optimal driving regimes by measurements and experience.
Results with the optimal driving strategy indicated energy savings of 10%
compared to the normal practice of train operation. The most important
results deduced from this research were that optimizing the cruising speed
and coasting distance were the most important factors in energy savings.
Another considerable work was published in [75], where the authors con-
sidered the EETC problem on level track with the simplifying assumption
that the maximum traction, braking and resistance forces are all constant,
which made it easier for them to derive the analytical expressions for all
driving schemes based on the PMP. This work was futher extended in [76],
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where maximum traction, braking and resistance forces were now consid-
ered as functions of speed although the exact functions were not given.
The developed algorithms were used on the Beijing Yizhuang metro line in
China in a timetabling algorithm.

Till now, all the strategies developed were with a time domain model.
Since, both the gradient, curvature and velocity limits are a function of dis-
tance, [43, 64] suggested a change of independent variable from time to
distance. This model was further used in [52], where the authors consid-
ered varying gradients and speed limits. The model, the resulting OCP and
Pontryagins principle has already been discussed in detail in Subsection
2.1.3. The same results as in (2.17) were derived in [52], where cruising
speed is split into partial power and partial braking. The use of the space
domain model was continued in [79], where the concept of steep track was
also introduced. A steep uphill section is a section in which the train has in-
sufficient power to maintain a cruising speed when climbing, while a steep
downhill section is a section where the train is increasing speed while coast-
ing. In [79], the author showed that the optimal control for a specific jour-
ney on a non-steep track is unique. This concept was further extended to
steep tracks in [45], where a new local minimization principle to calculate
the critical switching points on tracks with steep gradients was developed.
Furthermore, the authors in [7] proved that these critical switching points
are uniquely defined for each steep section of track and deduced that the
global optimal strategy is unique, while in [4], it was shown by means of
numerical examples that the optimal train control strategy indeed consists
of maximum power instead of partial power for acceleration. For more
of their work, see [6] [5]. In [69, 70], the authors also considered vary-
ing gradients and speed limits and derived the PMP optimality conditions
by developing a two-stage iterative algorithm based on Fibonacci search
and bisection method. Moreover, in [80], along with time and speed re-
strictions, also signaling constraints associated with safety requirements
are considered, when solving the EETC problem. The EETC problem in
this case was modeled as a multiple phase optimal control model.

Finally, MPC has also been applied in this context. In [9], they used
the space model and considered varying gradients and speed limits. The
optimization problem was solved as a tracking problem, where a reference
velocity was tracked and was similar to the previous MPC approaches ap-
plied to high speed train in [30, 88]. While in [30], the additional con-
tribution was in the form of parameter adaptation using an update strat-
egy in case of uncertainties in the parameter values caused by friction and
track features, in [88] a MPC based hierarchical integration architecture for
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real time scheduling and control was introduced. Similarly speed track-
ing MPC based controller to solve EETC problem has also been developed
in [51,53,73,83]. For example, in [53], Particle Swarm Optimization (PSO)
based MPC was used to track the reference velocity curve. In [11,46], fuzzy
predictive control has been used to solve the EETC problem. In [82], an on-
line cooperative energy efficient trajectory planning for multiple high speed
trains is designed, where MPC has been used at a local level. In [87], MPC
has also been applied to operational planning involving high speed trains.
The main aim was to manage real-time conflict, when disturbances occur
during high speed train operations to guarantee the safety and efficiency of
networked railway traffic. There were both EETC and EETT problems in-
volved but the focus was on solving EETT/ scheduling problem with EETC
solution activated only under certain circumstances. In [21, 21, 81], MPC
has been applied for solving conflicting, delays and scheduling problems
associated with EETT problems.

Although application of MPC to EETC problem has been investigated in
the literature, it has been mostly based on speed tracking. In the next chap-
ters, we will present MPC based strategies but usually different and novel
approaches. At last, we would like to mention that this thesis is an exten-
sion of a master thesis [34], where an EETC control strategy was proposed
using Genetic Algorithm and is being presently in use by Alstom.
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CHAPTER3
Preliminaries: Energy Efficient Train

Control (EETC) Strategies

The basic system dynamics of a single train along with the constraints that
it is subjected to have already been defined in Chapter 2 (see Subsection
2.1.1 for details). Also, due to the nature of traction, braking and resistance
forces (see (2.2) and Fig.2.1), the considered train model is nonlinear in
nature. Now, referring to Remark 2.1.2, this work focuses on electrical
trains for which the input handle u ∈ [1,−1], which represents the allowed
traction (positive) and braking (negative) force that the train can use at a
particular time instant, is continuous in nature. Having said that, in the
beginning of Chapter 2, it was mentioned that the EETC algorithms can be
classified into two categories, the DAS strategies and the ATO strategies.
These strategies and how they impact our optimization problem are better
explained in Section 3.1.

3.1 ATO and DAS Strategies

EETC algorithms can be either fully automated (ATO) or serve as an advi-
sory system to the driver (DAS). Mathematically, the choice of the strategy
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impacts the optimization problem involved , which is explained in the fol-
lowing subsections.

3.1.1 ATO Strategy

When the controller operates fully autonomously as an ATO strategy, i.e.
without a human driver in the loop, the whole interval can be used, i.e.
u ∈ [1,−1]. Since u is our input to the system and also our optimization
variable, hence in this case our optimization problem becomes a nonlinear
continuous problem.

3.1.2 DAS Strategy

On the other hand, in a DAS, i.e. when the control algorithm is developed
to assist a human driver with a suggested value of the input handle, only a
smaller set of possible values can be delivered by the controller, in order to
facilitate the human-machine interaction. In particular, in this scenario the
input constraints are further tightened according to four possible operating
modes prescribed by our industrial partner:

• Acceleration: in this mode, the input can take one of three allowed
values, i.e. u ∈ {0.5, 0.75, 1}.

• Coasting: this mode implies that the traction is zero, i.e u = 0.

• Cruising: in this mode, the train engages a cruise control system that
keeps a constant speed, i.e. u is computed by an inner control loop
in such a way that FT = FR for positive slopes and FB = FR for
negative slopes.

• Braking: in this mode the maximum braking force is used, i.e. u =
−1.

As a matter of fact, the modes above can be merged in just two: one with
a finite integer number of possible input values u ∈ {−1, 0, 0.5, 0.75, 1}
(which unites the Acceleration, Coasting and Braking modes), and one with
the cruise control engaged. From the above formulation, it is clear that
in the case of DAS, our optimization becomes a nonlinear mixed integer
programming problem.

The next three chapters will present the developed EETC strategies as
a part of this thesis. While Chapter 4 will present a strategy which can
act both as a ATO as well as a DAS system, Chapters 5 and 6 will present
strategies specifically developed as DAS strategies. All the strategies have
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been developed using MPC. In the scope of this work, both time domain and
space domain models have been used. In order to use both the time domain
model (2.1) and the space domain model (2.7) with MPC, it is important
to express them in state space. In all the three control strategies which
will be presented in the following chapters, the single train dynamics will
be essentially defined as a two state system with x(k) = [x1(k), x2(k)]T

being the states of the train. The state x2 will always represent the main
state of the train which is the train velocity, while the heuristic state x1

will either represent the train’s travel time if we are using space domain
model (2.7) or train’s distance if we are using time domain model (2.1).
In accordance with the strategy used, the models (2.1) and (2.7) will be
accordingly reformulated.
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CHAPTER4
Shrinking Horizon Move Blocking

Predictive Control Strategy

This chapter presents a nonlinear model predictive control approach as a so-
lution to the EETC problem and has been presented in [25]. Model Predic-
tive Control (MPC) is an optimization-based technique with broad success
in industry [65] thanks to its capability to deal with multivariable systems,
state and input constraints, and both tracking and economic objectives. Re-
search efforts of more than three decades result today in a mature theory for
linear systems [39], [14], and several directions are open for further inves-
tigation [55]. In this chapter along with its application to EETC problem,
new general results pertaining to MPC for nonlinear systems and problems
where a finite terminal time is imposed, at which the state has to reach a
given terminal set, are provided. The resulting MPC formulation features
a shrinking horizon rather than the most common receding one. More-
over, a move blocking strategy to reduce the computational burden of the
underlying optimization program is considered. The resulting control ap-
proach has been named Shrinking Horizon Move Blocking Predictive Con-
trol (SBPC), which consists of a nominal approach and two relaxed ones,
where state constraints are softened to retain recursive feasibility. The ex-
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isting works on move blocking strategies consider in fact either linear sys-
tems, see e.g. [35–38, 72, 77] or nonlinear systems with receding horizon
formulations [15, 50, 85].
The approach proposed has the flexibility of considering either a fully au-
tonomous scenario (ATO), where the input variable u (the total traction/brak-
ing force applied to the train) can take any value in a connected compact
set (see Subsection 3.1.1), or a driver assistance scenario (DAS), where the
predictive controller can suggest to the driver one out of a discrete set of
possible driving modes (see Subsection 3.1.2). In both scenarios, the un-
certainty derived from either system-model mismatch or control input dis-
cretization/misapplication by the human driver is considered. The uncer-
tainty is modeled as a bounded additive input disturbance, and theoretical
results regarding the guaranteed bound on constraint violation as a function
of the disturbance bound are presented.

4.1 Train Optimal Control Problem

Consider an electric train controlled by a digital control unit in discrete
time, with sampling period Ts (see for example Fig.4.1, depicting the one
considered in the simulations of Section 4.4). Let us denote with k ∈ Z
the discrete time variable with x(k) = [x1(k), x2(k)]T the state of the train,
where x1 is its position and x2 its speed, and with u(k) ∈ [−1, 1] a normal-
ized traction force, where u(k) = 1 corresponds to the maximum applicable
traction and u(k) = −1 to the maximum braking. The input u is the avail-
able control variable. The train has to move from one station with position
x1 = 0 to the next one, with position x1 = xf , in a prescribed time tf .
In state space modeling, the prescribed arrival position sf (see Subsection
2.1.1) and the maximum allowed velocity limit vmax(k) (see Eq. 2.5) have
been renamed as sf = xf and vmax(k) = x2(k) to link them to the states
they are representing. For a given pair of initial and final stations, the track
features (slopes, curvature) are known in advance. Thus, in nominal con-
ditions (i.e.with rated values of the train parameters, like its mass and the
specifications of the powertrain and braking systems), according to New-
ton’s laws and using the forward Euler discretization method, the equations
of motion of a reasonably accurate model of this system read:

x1(k + 1) = x1(k) + Tsx2(k)

x2(k + 1) = x2(k) + Ts

(
FT (x(k),u(k))−FB(x(k),u(k))−FR(x(k))

M

) (4.1)

The resistive force FR(x) is also nonlinear, and it is the sum of a first
term Rv(x2), accounting for resistance due to the velocity, and a second
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term Rg(x1), accounting for the effects of slopes and track curvature:

FR(x) = Rv(x2) +Rg(x1)

Rv(x2) = A+Bx2 + Cx2
2

Rg(x1) = Ms

(
g tan(α(x1)) +

λt
rc(x1)

) (4.2)

While Ms is the static mass of the train, i.e. the mass calculated with-
out taking into account the effective inertia of the rotating components, the
other parametric symbols have already been defined in Subsection 2.1.1
(see Tables 2.1 and 2.2 for more details). As already discussed in Subsec-
tion 2.1.1, besides the prescribed arrival time tf and position xf , there are
additional state constraints that must be satisfied. These pertain to the limit
on the maximum allowed velocity, x2(x1), which depends on the position
x1, since a different velocity limit is imposed for safety by the regulating
authority according to the track features at each position. Overall, by defin-
ing the terminal time step kf

.
= btf/Tsc (where b·c denotes the flooring

operation to the closest integer), the state constraints read:

x(0) = [0, 0]T

x(kf ) = [xf , 0]T

x2(k) ≥ 0, k = 0, . . . , kf
x2(k) ≤ x2(x1(k)), k = 0, . . . , kf

(4.3)

Figure 4.1: One of the Amsterdam metro trains considered in the simulation example of
this chapter.

The control objective is to maximize the energy efficiency of the train
while satisfying the constraints above. To translate this goal in mathemati-
cal terms, different possible cost functions can be considered. In our case,
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we consider the discretized integral of the absolute value of the traction
power over time (with a constant scaling factor T−1

s ):

J =

kf∑
k=0

|FT (x(k), u(k))x2(k)| . (4.4)

This choice tends to produce controllers that minimize the traction energy
injected into the system. The braking energy is not penalized, since in our
case there is no restriction to the use of the braking system, since we are
not considering regeneration for a single train EETC problem (see Chapter
7 for details). Finally, a further feature of this application is a relatively
small sampling time Ts with respect to the imposed overall time horizon tf ,
resulting in a rather large number of sampling periods in the interval [0, tf ],
typically from several hundreds to a few thousands.

4.1.1 Problem Abstraction

The control problem described above can be cast in a rather standard form:

min
u

kf∑
k=0

`(x(k), u(k)) (4.5a)

subject to
x(k + 1) = f(x(k), u(k)) (4.5b)
u(k) ∈ U, k = 0, . . . , kf − 1 (4.5c)
x(k) ∈ X, k = 1, . . . , kf (4.5d)

x(0) = x0 (4.5e)
x(kf ) ∈ Xf (4.5f)

where x ∈ X ⊂ Rn is the system state, x0 is the initial condition, u ∈
U ⊂ Rm is the input, f(x, u) : X× U→ X is a known nonlinear mapping
representing the discrete-time system dynamics, and `(x, u) : X× U → R
is a stage cost function defined by the designer according to the control
objective. The symbol u = {u(0), . . . , u(kf − 1)} ∈ Rmkf represents the
sequence of current and future control moves to be applied to the plant.
The sets X ⊂ X and U ⊂ U represent the state and input constraints, and
the set Xf ⊂ X the terminal state constraints, which include a terminal
equality constraint as a special case. Furthermore, X and U is assumed to
be compact, as well as the terminal constraint set Xf .
We recall that a continuous function a : R+ → R+ is a K-function (a ∈
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K) if it is strictly increasing and a(0) = 0. Throughout this chapter, we
consider the following lipchitz continuity assumption on the system model
f .

Assumption 1. The function f enjoys the following lipchitz continuity prop-
erties:

‖f(x1, u)− f(x2, u)‖ ≤ ax (‖x1 − x2‖) , ∀x1, x2 ∈ X, u ∈ U
‖f(x, u1)− f(x, u2)‖ ≤ au (‖u1 − u2‖) , ∀u1, u2 ∈ U, x ∈ X (4.6)

where ax, au ∈ K.

In (4.6) and in the remainder of this thesis, any vector norm ‖ · ‖ can be
considered. Assumption (1) is reasonable in most real-world applications,
and it holds in the railway application considered here.
The nonlinear program (4.5) is a Finite Horizon Optimal Control Problem
(FHOCP). In the literature, many different solutions to solve this kind of a
problem can be found, depending on the actual form of the system dynam-
ics and constraints. One approach is to compute a (typically local) optimal
sequence of inputs u∗ and to apply it in open loop. This might be conve-
nient when little uncertainty is present and the system is open-loop stable,
which is seldom the case. A much more robust approach is to resort to a
feedback control policy u(k) = κ(x(k)). However, to derive explicitly such
a feedback policy in closed form is generally not computationally tractable,
due to the presence of system nonlinearities and constraints. A common
way to derive implicitly a feedback controller is to adopt a receding hori-
zon strategy, where the input sequence is re-optimized at each sampling
time k and only the first element of such a sequence, u∗(k), is applied to
the plant. Then, the feedback controller is implicitly defined by the solu-
tion of a FHOCP at each k, where the current measured (or estimated) state
x(k) is used as initial condition. This approach is well-known as Nonlinear
Model Predictive Control (NMPC), and is adopted here as well, however
with two particular differences with respect to the standard formulation:

• First, since in our problem the terminal time kf is fixed, the resulting
strategy features a shrinking horizon rather than a receding one. In-
deed, here the goal is to make the state converge to the terminal set in
the required finite time, and not asymptotically as usually guaranteed
by a receding horizon strategy;

• Second, we adopt a move-blocking strategy (see e.g. [15]) to reduce
the computational burden required by the feedback controller. This is
motivated by the train application, featuring values of kf of the order
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Figure 4.2: SBPC scheme with L = 20 and kf = 60. As an example, possible courses
of predicted inputs at time k = 0 (‘◦’), k = 10 (‘+’), and k = 20 (‘∗’) are depicted.
It can be noted that for k = 20 the number of decision variables reduces from 3 to
N(20) = 2, and that as k increases, the number of blocked moves in the first block
decreases.

of several hundreds to thousands. The corresponding number of deci-
sion variables, combined with the system nonlinearity, often results in
a prohibitive computational complexity when all the predicted control
moves are free optimization variables.

The next section presents the optimal control problem to be solved at each
time step in SBPC, followed by a pseudo-algorithm that realizes this control
approach and by a proof of convergence in nominal conditions.

4.2 Shrinking Horizon Blocking Predictive Control (SBPC)

We consider a move blocking strategy, where the control input is held con-
stant for a certain time interval. Let us denote with L the maximum num-
ber of blocked control moves in each interval within the prediction horizon.
Moreover, we consider that each interval contains exactlyL blocked moves,
except possibly the first one, which can contain a number between 1 and L
of blocked input vectors. In this way, for a given value of k ∈ [0, kf − 1],
the number N(k) of intervals (i.e. of different blocked input vector values
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to be optimized) is equal to (see Fig. 4.2 for a graphical representation):

N(k) =

⌈
kf − k
L

⌉
, (4.7)

where d.e denotes the ceiling operation to the closest integer. Let us de-
note with vN(k) = {v(1), . . . , v(N(k))} ∈ RmN(k), where v(·) ∈ U, the
sequence of free input values to be optimized, i.e. the values that are held
constant within each interval of the blocked input sequence (see Fig. 4.2)
and with u(j|k) the input vector at time k+j predicted at time k. Then, with
the described blocking strategy, at each k the values of u(j|k) are computed
as:

u(j|k) = g(vN(k), j, k)
.
= v

(⌊
j + k −

⌊
k
L

⌋
L

L

⌋
+ 1

)
(4.8)

Finally, let us denote with x(j|k), j = 0, ..., kf − k the state vectors pre-
dicted at time k + j starting from the one at time k. At each time k ∈
[0, kf − 1], we formulate the following FHOCP:

min
vN(k)

kf−k∑
j=0

`(x(j|k), u(j|k)) (4.9a)

subject to
u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1 (4.9b)

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1 (4.9c)
u(j|k) ∈ U, j = 0, . . . , kf − k − 1 (4.9d)
x(j|k) ∈ X, j = 1, . . . , kf − k (4.9e)

x(0|k) = x(k) (4.9f)
x(kf − k|k) ∈ Xf (4.9g)

We denote with v∗N(k) = {v∗(1), . . . , v∗(N(k))} a solution (in general only
locally optimal) of (4.9). Moreover, we denote with x∗(k) and u∗(k) the
corresponding predicted sequences of state and input vectors:

x∗(k) = {x∗(0|k), . . . , x∗(kf − k|k)} (4.10a)
u∗(k) = {u∗(0|k), . . . , u∗(kf − 1− k|k)} (4.10b)
where
x∗(0|k) = x(k) (4.10c)

x∗(j + 1|k) = f(x∗(j|k), u∗(j|k)) (4.10d)
u∗(j|k) = g(v∗N(k), j, k) (4.10e)
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The SBPC strategy is obtained by recursively solving (4.9), as described by
the following pseudo-algorithm.

Algorithm 1 Nominal SBPC Strategy

1. At sampling instant k, measure the state x(k) and solve the FHOCP (4.9). Let v∗N(k)

be the computed solution;

2. Apply to the plant the first element of the sequence v∗N(k), i.e. the control vector
u(k) = u∗(0|k) = v∗(1);

3. Repeat the procedure from 1) at the next sampling period.

Algorithm 1 defines the following feedback control law:

u(k) = µ(x(k)) := u∗(0|k), (4.11)

and the resulting model of the closed-loop system is:

x(k + 1) = f(x(k), µ(x(k)) (4.12)

Remark 4.2.1. In the approach described so far, the number N(k) of pre-
dicted inputs to be optimized decreases from N(1) =

⌈
kf
L

⌉
to N(kf − 1) =

1, see Fig. 4.2. Another approach that can be used with little modifica-
tions is to keep a constant value of N = N(1), and to reduce the number
of blocked input values in each interval as k increases, up until the value
k = kf − N(1) is reached, after which each predicted input vector is a
free variable and their number shrinks at each k. This second strategy has
the advantage to retain more degrees of freedom in the optimization as time
approaches its final value.

We conclude this section with a proposition on the recursive feasibility
of (4.9) and convergence of the state of (4.12) to the terminal set.

Proposition 4.2.1. Assume that the FHOCP (4.9) is feasible at time k = 0.
Then, the FHOCP (4.9) is recursively feasible at all k = 1, . . . , kf − 1 and
the state of the closed loop system (4.12) converges to the terminal set Xf

at time kf .

Proof. Recursive feasibility is established by construction, since at
any time k + 1 one can build a feasible sequence vN(k+1) either by tak-
ing vN(k+1) = v∗N(k), if N(k + 1) = N(k), or by taking vN(k+1) =

{v∗(2), . . . , v∗(N(k))} (i.e. the tail of v∗N(k)), if N(k + 1) = N(k) − 1.

32



4.3. Relaxed SBPC Approaches: Algorithms and Properties

Convergence to the terminal set is then achieved by considering that con-
straint (4.9g) is feasible at time k = kf − 1. �

Remark 4.2.2. So far, we have disregarded any mismatch between the
model f(x, u) and the real plant, like the presence of model uncertainty
and external disturbances. For this reason, we termed the SBPC approach
of Algorithm 1 the “nominal” one. In the next section, we introduce a
model of uncertainty, whose form is motivated again by the railway appli-
cation and two possible variations of Algorithm 1 to deal with it, along with
their guaranteed convergence properties. We term these variations the “re-
laxed” approaches, since they involve the use of suitable soft (i.e. relaxed)
constraints to guarantee recursive feasibility.

Remark 4.2.3. Convergence to Xf does not necessarily imply forward in-
variance of such a set under the described control scheme (which is by the
way not well defined for k > kf ). The capability to keep the state within
the terminal set depends on how such a set is defined (e.g. it holds when
Xf contains equilibrium points for the model f(x, u)) and in general it is
not required by the considered problem setup. This automatically implies
that we do not have to assume the existence of any terminal control law
as usually done in standard NMPC formulations. On the other hand, in
our motivating application the terminal set Xf actually corresponds to an
equilibrium point (namely with zero speed, and position equal to the ar-
rival station, see (4.3)), thus in this case nominal forward invariance is
guaranteed for k > kf .

4.3 Relaxed SBPC Approaches: Algorithms and Properties

Following Remark 4.2.2, to model the system uncertainty and disturbances
we consider an additive term d(k) acting on the input vector, i.e.:

ũ(k) = u(k) + d(k) (4.13)

where ũ(k) is the disturbance-corrupted input provided to the plant. This
model represents well all cases where plant uncertainty and exogenous dis-
turbances can be translated into an effect similar to the control input (the
so-called matched uncertainty). For example, in our train model (4.1) with
straightforward manipulations, Eq.(4.13) can describe uncertainty in the
train mass, drivetrain specs, track slope and curvature, as well as the dis-
cretization of u∗(0|k) and/or misapplication by the human operator in a
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driver assistance scenario (see Subsection 3.1.2).
We consider the following assumption on d:

Assumption 2. The disturbance term d belongs to a compact set D ⊂ Rm

such that:
‖d‖ ≤ d, ∀d ∈ D (4.14)

where d ∈ (0,+∞).

This assumption holds in many practical cases and in the considered
train application as well. We indicate the perturbed state trajectory due to
the presence of d as:

x̃(k + 1) = f(x̃(k), ũ(k)), k = 0, . . . , kf (4.15)

where x̃(0) = x(0). Now, referring to Proposition 4.2.1, the conver-
gence guarantees achieved in the nominal case are a direct consequence of
the recursive feasibility property, which can be easily lost in presence of the
disturbance d, due to the deviation of perturbed trajectory from the nominal
one. As commonly done in standard NMPC, to retain recursive feasibility,
we therefore soften the constraints in the FHOCP. However, in general the
use of soft constraints does not guarantee that, in closed-loop operation, the
operational constraints are satisfied, or even that the constraint violation is
uniformly decreasing as the worst-case disturbance bound d gets smaller.
For simplicity and to be more specific, from now on let us restrict our anal-
ysis to the terminal state constraint in (4.5f), i.e. x(kf ) ∈ Xf . We do so
without loss of generality, since the results and approaches below can be
extended to any state constraint in the control problem. On the other hand,
in our railway application the terminal state constraint is the most impor-
tant one from the viewpoint of system performance. The other constraints
(velocity limits) are always enforced for safety by modulating traction or
by braking. Let us denote the distance between a point x and a set X as:

∆(x,X) = min
y∈X
‖x− y‖. (4.16)

Then, we want to derive a modified SBPC strategy with softened termi-
nal state constraint (to ensure recursive feasibility) that guarantees a prop-
erty of the following form in closed loop:

∆(x̃(kf ), Xf ) ≤ β(d), β ∈ K. (4.17)

That is, the distance between the terminal state and the terminal constraint
is bounded by a value that decreases strictly to zero as d → 0. In order to
obtain this property, we propose a relaxed SBPC approach using a two-step
constraint softening procedure, described next.
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4.3.1 Two-step Relaxed SBPC Strategy

At each time k we consider a strategy consisting of two optimization prob-
lems to be solved in sequence:

a) we compute the best (i.e. smallest) achievable distance between the
terminal state and the terminal set, starting from the current perturbed
state x̃(k):

γ(k) = min
vN(k),γ

γ (4.18a)

subject to

u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1 (4.18b)

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1 (4.18c)

u(j|k) ∈ U, j = 0, . . . , kf − k − 1 (4.18d)

x(j|k) ∈ X, j = 1, . . . , kf − k (4.18e)

x(0|k) = x̃(k) (4.18f)

∆(x(kf − k|k), Xf ) ≤ γ (4.18g)

b) we optimize the input sequence using the original cost function, and softening the
terminal constraint by γ(k):

min
vN(k)

kf−k∑
j=0

`(x(j|k), u(j|k)) (4.19a)

subject to

u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1 (4.19b)

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1 (4.19c)

u(j|k) ∈ U, j = 0, . . . , kf − k − 1 (4.19d)

x(j|k) ∈ X, j = 1, . . . , kf − k (4.19e)

x(0|k) = x̃(k) (4.19f)

∆(x(kf − k|k), Xf ) ≤ γ(k) (4.19g)

By construction, both problems are always feasible (with the caveat that
state constraints are considered to be always feasible, as discussed above,
otherwise the softening shall be applied to these constraints as well). We
denote with vrN(k), x

r(k) and ur(k) the optimized sequences of decision
variables, state and inputs resulting from the solution of (4.19). The se-
quences xr(k) and ur(k) are computed as:
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xr(k) = {xr(0|k), . . . , xr(kf − k|k)} (4.20a)
ur(k) = {ur(0|k), . . . , ur(kf − 1− k|k)} (4.20b)
where
xr(0|k) = x̃(k) (4.20c)

xr(j + 1|k) = f(xr(j|k), ur(j|k)) (4.20d)
ur(j|k) = g(vrN(k), j, k) (4.20e)

Finally, we note that the disturbance is not explicitly considered in prob-
lems (4.18)-(4.19), which still employ the nominal model for the predic-
tions.
The resulting relaxed SBPC strategy is implemented by the following pseudo-
algorithm.

Algorithm 2 Two-stage Relaxed SBPC Strategy

1. At sampling instant k, measure the state x̃(k) and solve in sequence the optimization
problems (4.18)-(4.19). Let vrN(k) be the computed solution;

2. Apply to the plant the first element of the sequence vrN(k), i.e. the control vector
u(k) = ur(0|k) = vr(1);

3. Repeat the procedure from (1) at the next sampling period.

Algorithm 2 defines the following feedback control law:

u(k) = µr(x̃(k)) := ur(0|k), (4.21)

and the resulting closed-loop dynamics are given by:

x̃(k + 1) = f(x̃(k), µr(x̃(k)) + d(k)). (4.22)

The next result shows that the closed-loop system (4.22) enjoys a uniformly
bounded accuracy property of the form (4.17), provided that the relaxed
SBPC problem (4.19) is feasible at k = 0.

Theorem 4.3.1. Let Assumptions 1 and 2 hold and let the FHOCP (4.19)
be feasible at time k = 0. Then, the terminal state x̃(kf ) of system (4.22)
enjoys property (4.17) with

∆(x̃(kf ), Xf ) ≤ β(d) =

kf−1∑
k=0

βkf−k−1(d) (4.23)
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where

β0(d) = au(d)
βk(d) = au(d) + ax(βk−1(d)), k = 1, . . . , kf − 1

(4.24)

Proof. The proof is by induction. Start at k = 0 and consider the relaxed
optimized sequences xr(k), ur(k) obtained by solving problem (4.19). We
first evaluate the worst-case perturbation induced by the disturbance with
respect to the open-loop state trajectory xr(k). For a sequence of distur-
bances d(k), k = 0, . . . , kf , the corresponding open-loop input and state
trajectories are:

ũ(k) = ur(k) + d(k), j = 0, . . . , kf − k − 1
x̃(0|k) = xr(0|k)
x̃(k + 1) = f(x̃(k), ũ(k)), k = 1, . . . , kf

(4.25)

From (4.6) we have:

‖x̃(1)− xr(1|0)‖ = ‖f(x̃(0), ũ(0))− f(x(0), ur(0|0))‖ ≤
au (‖ũ(0)− ur(0|0)‖) ≤ au

(
d
)

= β0

(
d
)

Consider now the perturbation 2-steps ahead:

‖x̃(2)− xr(2|0)‖ =
‖f(x̃(1), ũ(1))− f(xr(1|0), ur(1|0))‖ =
‖f(x̃(1), ũ(1))− f(x̃(1), ur(1|0))+
f(x̃(1), ur(1|0))− f(xr(1|0), ur(1|0))‖ ≤
au
(
d
)

+ ax (‖x̃(1)− xr(1|0)‖) ≤
au
(
d
)

+ ax
(
β0

(
d
))

= β1

(
d
)
.

By iterating up until the second last time step we obtain:

‖x̃(kf )− xr(kf |0)‖ ≤ βkf−1

(
d
)
, (4.26)

where βkf−1 ∈ K since it is given by compositions and summations of
class-K functions. Since the FHOCP (4.19) is feasible, we have xr(kf |0) ∈
Xf and thus:

∆(x̃(kf ), Xf ) ≤ ‖x̃(kf )− xr(kf |0)‖+ ∆(xr(kf |0), Xf )
≤ βkf−1(d).

(4.27)

Now consider k = 1 and the FHOCP (4.18). If the optimizer is initialized
with blocked control moves vN(1) such that the tail of the previous optimal
sequence ur(0) is applied to the system, the corresponding minimum γ in
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(4.18) results to be upper bounded by βkf−1(d), in virtue of (4.27). The
optimal value γ(k) is therefore not larger than this bound as well:

γ(1) ≤ βkf−1(d). (4.28)

Now take the optimal sequences xr(1) and ur(1) computed by solving the
FHOCP (4.19). By applying the same reasoning as we did for k = 0, we
have (compare with (4.26)):

‖x̃(kf )− xr(kf |1)‖ ≤ βkf−2(d). (4.29)

Moreover, equation (4.28) implies that the solution of (4.19) satisfies the
following inequality:

∆(xr(kf |1), Xf ) ≤ γ(k). (4.30)

From (4.28)-(4.30) we have:

∆(x̃(kf ), Xf ) ≤ ‖x̃(kf )− xr(kf |1)‖+ ∆(xr(kf |1), Xf ) ≤

βkf−2(d) + βkf−1(d) =
1∑

k=0

βkf−k−1(d).

By applying recursively the same arguments, the bound (4.23) is obtained.
�
Theorem 4.3.1 indicates that the worst-case distance between the terminal
state and the terminal set is bounded by a value which is zero for d = 0 and
increases strictly with the disturbance bound. In the train application, this
means that, for example, the worst-case accuracy degradation in reaching
the terminal station due to a discretization of the input, as done in the driver
assistance mode, is proportional to the largest employed quantization inter-
val of the input handle. This result provides a theoretical justification to the
proposed two-step relaxed SBPC approach. The bound (4.23) is conserva-
tive, since it essentially results from the accumulation of worst-case pertur-
bations induced by the disturbance on the open-loop trajectories computed
at each k. As we show in our simulation results, in practice the result-
ing closed-loop performance are usually very close to those of the nominal
case, thanks to recursive optimization in the feedback control loop.
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4.3.2 Multi-objective Relaxed SBPC Strategy

As an alternative to the two-step approach described above, one can also
consider a multi-objective minimization:

min
vN(k),γ

kf−k∑
j=0

`(x(j|k), u(j|k)) + ωγ (4.31a)

subject to
u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1 (4.31b)

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1 (4.31c)
u(j|k) ∈ U, j = 0, . . . , kf − k − 1 (4.31d)
x(j|k) ∈ X, j = 1, . . . , kf − k (4.31e)

x(0|k) = x̃(k) (4.31f)
∆(x(kf − k|k), Xf ) ≤ γ (4.31g)

where ω is a positive weight on the scalar γ. Problem (4.31) can be solved
in Algorithm (2) in place of problems (4.18)-(4.19). In this case, the ad-
vantage is that a trade-off between constraint relaxation and performance
can be set by tuning ω. Regarding the guaranteed bounds on constraint vi-
olation, with arguments similar to those employed in [23] one can under a
continuity assumption on ` show that, at each k ∈ [0, kf − 1], for any ε > 0
there exists a finite value of ω such that the distance between the terminal
state and the terminal set is smaller than γ(kf − k − 1)(d) + ε. Thus, with
large-enough ω, one can recover the behavior obtained with the two-step
relaxed SBPC approach. The theoretical derivation is omitted for the sake
of brevity, as it is a rather minor extension of the results of [23].

4.4 Simulation Results

We tested the proposed strategies in realistic simulations with real train
data provided by Alstom for a section of the Amsterdam metro rail, in
particular the track between Rokin and Central Station. The results were
also verified on Alstom based train tool CITHEL, which is useful to get
a realistic idea of the energy expenditure by the developed SBPC strate-
gies. CITHEL is able to perform a combination of kinematic, electric and
thermal calculations all linked together, while considering realistic losses
incurred due to the electrical components of the train. The parametric val-
ues of the train used in the controller are (see (4.1)-(4.2)) M = 142403 kg,
Ms = 131403 kg, A = 3975.9 N, B = 24.36 Nsm−1 and C = 4.38 Nsm−2,
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while the maximum traction and braking forces allowed for this particu-
lar train are in the form of look up tables (see Fig. 4.3). These forces are
of the form FT (x(k), u(k)) = FTmax(x2(k))u(k), and FB(x(k), u(k)) =
FBmax(x2(k))u(k). The input variable is constrained in the set [−1, 1]. The
considered track has zero curvature, slopes as plotted in Fig.4.4, and ve-
locity limits reported in Fig. 4.7. The train has to reach the next station at
xf = 1106 m in tf = 76 s. The sampling time is Ts = 0.38 s, resulting in
kf = 200. The results have been obtained using Matlabr fmincon and
a laptop equipped with Intelr Core i7-6700Hq processor at 2.6 GHz and 8
GB of memory. All the functions were implemented in Matlabr.
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Figure 4.3: Maximum traction force FTmax
(dashed) and braking force FBmax

(dotted)
allowed for the train considered in the simulation.

Table 4.1: Comparison results with different values of L for nominal SBPC strategy

L Comp.Time per step (s) Max. Comp.Time per step (s) Comp. Time (s) ET (KWH) tf (s)

1 24.02 70.2 5285 5.8 76
Nominal 20 3.32 38.4727 731 5.9497 76

SBPC strategy 45 0.78 23.0440 172 10.3 76

Firstly, we present a comparison of the results obtained with and with-
out the use of move-blocking. The obtained input and velocity profiles for
different values of L in the nominal case have been presented in Fig. 4.5-
4.6 respectively. By fair comparisons, we show the computational advan-
tage obtained due to the use of move-blocking as compared to no blocking.
While without the use of move-blocking (see Table 4.1), the simulation
finishes in 5285 s, taking an average of 24.02 s and a maximum of 70.2 s
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Figure 4.4: Slopes of the Amsterdam metro track segment considered in the simulation.
The units of the slopes are in per mille.
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Figure 4.5: Simulation results. Input handle as a function of the train position obtained
with different values of L for nominal SBPC strategy: L = 1 (dotted line), L = 20
(dashed), L = 45 (dash-dot).

per optimization step, with the use of move-blocking techniques, it reduces
considerably (see Table 4.1). For example, when using move-blocking with
L = 20, in the nominal case the average computational time per optimiza-
tion step reduces to 3.32 s. Another observation is the effect of blocking
on the control performance. From Table 4.1, it is clear that with an in-
creased number of blocked control values, with for example L = 45, there
is a degradation in the performance and the traction energy consumption
ET increases considerably. Hence a trade-off between the two needs to be
maintained. In our case, this was achieved for L = 20.

Secondly, we compare a nominal situation, where Algorithm 1 is ap-
plied and no model uncertainty is present, with a case where we employ
Algorithm 2 (both the two-stage approach and the multi-objective optimiza-
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Figure 4.6: Simulation results. Velocity profiles as a function of the train position obtained
with different values of L in case of nominal SBPC strategies: L = 1 (dotted line),
L = 20 (dashed), L = 45 (dash-dot). Velocity limits are denoted with a solid line.

Table 4.2: Comparison results with different strategies tested in Alstom based tool
CITHEL

L ET (KWH) tf (s)

All-out solution - 13.19 73
Genetic algorithm based Eco-drive - 9.05 77

SBPC strategy 20 5.9497 78

tion variant) in presence of random parameter uncertainty (±10% of each
model parameter) and input variable discretization, considering a discrete
set of operating modes as described in SubSection 3.1.2(driver assistance
scenario). In particular, we compute the actual input as the nearest neigh-
bor, in the set {−1, 0, 0.5.0.75, 1}, to the one given by the SBPC strategy
in case when the train is not cruising. For the multi-objective approach, we
set ω = 3505 (see (4.31)).
The obtained velocity profiles are presented in Fig. 4.7. From the plots, it is
evident that in order to save energy, after accelerating to a certain velocity,
the train mostly coasts also taking advantage of the negative slopes. All
the velocity constraints are always satisfied. Regarding the obtained final
distance between the terminal state and the target one at t = tf , in the pres-
ence of uncertainty this is smaller than 1 m for both the 2-stage approach
and the multi-objective one. This result is perfectly compatible with the
desired performance in this application. Fig. 4.7 presents also the “all-out”
solution, which achieves the shortest arrival time compatible with all the
constraints. This corresponds to tf = 72 s.
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Figure 4.7: Simulation results. Velocity profiles as a function of the train position obtained
with different SBPC strategies: nominal (dotted line), two-step relaxed (dashed), multi-
objective (dash-dot). All these approaches share the same final time of tf = 76 s. The
“all-out” solution (tf = 72 s) is shown with a thick solid line, and velocity limits with
a thin solid line.
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Figure 4.8: Simulation results. Velocity profiles as a function of the train position ob-
tained with Alstom based CITHEL tool: genetic algorithm based eco-drive (dotted
line), SBPC strategy (dashed). All these approaches share the same final time of
tf = 76 s with L = 20 used in SBPC strategy. The “all-out” solution (tf = 73 s)
is shown with a thick solid line, and velocity limits with a thin solid line.

Finally, the results were tested on Alstom based tool CITHEL and also
compared with their existing eco-drive strategy based on Genetic algorithm.
The results are presented in Table.4.2 and the obtained velocity profiles in
Fig.4.8. Though, the SBPC strategies arrive with a delay of 2 s at the pre-
scribed station, the energy consumption is considerably lower as compared
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to the existing Genetic-algorithm based eco-drive approach. One reason
for this energy saving is due to the maximum use of coasting mode both
in the case of negative as well as zero slopes, resulting in increased energy
efficiency.

4.5 Conclusion

We proposed a predictive control approach to solve problems where a fi-
nite terminal time and corresponding state constraint set are imposed. The
approach features a shrinking horizon and exploits move blocking to re-
duce the computational burden. We derived convergence guarantees in both
nominal conditions and under uncertainty, and showcased the technique
in realistic simulations pertaining to a motivating industrial application in
train control. All the strategies were tested on official Alstom based tool
CITHEL and proved to provide better results in terms of energy efficiency
as compared to the existing benchmarks. Extensions of the approach to
more general input parameterizations are presented in Chapter 5.
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CHAPTER5

Shrinking Horizon Parametrized Predictive
Control Strategy

In this chapter, a new MPC approach for the efficient operation of trains
is presented (see [24]). This strategy has been developed specifically for
the case of DAS (see Subsection 3.1.2 for details), where the control input
(usually the traction/braking force applied to the train) is constrained to be-
long to a set of discrete values or operating modes, which would naturally
result in a mixed-integer nonlinear program to be solved at each sampling
instant. To cope with this problem, the formulation proposed features an in-
put parametrization strategy that yields a continuous optimization program.
Moreover, a shrinking horizon is adopted. The resulting approach has been
named Shrinking Horizon Parametrized Predictive Control (SPPC). As in
Chapter 4, both a nominal approach and two relaxed ones, where state con-
straints are softened to retain recursive feasibility in case of model uncer-
tainty are presented.
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5.1 Train Optimal Control Problem

Consider an electric train controlled by a digital control unit. In this strat-
egy, we consider space as the independent variable, while time will be one
of the system’s states. Thus, we denote with k ∈ Z the discrete space
variable, and with Ds the sampling distance, so that the actual distance
along the track at each sampling instant is equal to kDs. From the point
of view of practical implementation, we assume that the controller has a
high enough sampling rate, such that the discrete space instants can be met
with high accuracy. For example, with a train speed of about 100 ms−1,
a space discretization of 5 m, and a controller sampling rate of 1 kHz the
maximum space delay in actuating the input would be equal to 0.1 m. i.e.
2% of the sampling distance. We denote with x(k) = [x1(k), x2(k)]T the
state of the train, where x1 is its travel time and x2 the train speed, and with
u(k) ∈ [−1, 1] a normalized traction force, where u(k) = 1 corresponds to
the maximum applicable traction and u(k) = −1 to the maximum braking.
The input u is the available control variable. The input u is the available
control variable. The train has to move from one station at time x1 = 0 and
reach the next one at time x1 = xf , covering the corresponding distance
sf . In state space modeling , the prescribed arrival time tf (see Eq. 2.6)
and the maximum allowed velocity limit vmax(k) (see Eq. 2.5) have been
renamed as tf = xf and vmax(k) = x2(k) to link them to the states they are
representing. For a given pair of initial and final stations, the track features
(slopes, curvature) are known in advance. Thus, in nominal conditions (i.e.
with rated values of the train parameters, like its mass and the specifica-
tions of the powertrain and braking systems), according to Newton’s laws
and using the forward Euler discretization method, the equations of motion
of a reasonably accurate model of this system read:

x1(k + 1) = x1(k) + Ds
x2(k)

x2(k + 1) = x2(k) +Ds

(
FT (x(k),u(k))−FB(x(k),u(k))−FR(k,x(k))

Mx2(k)

) (5.1)

The resistive force FR(k, x) is also nonlinear, and it is the sum of a first
term Rv(x2), accounting for resistance due to the velocity, and a second
term Rg(k), accounting for the effects of slopes and track curvature:

FR(k, x) = Rv(x2) +Rg(k)

Rv(x2) = A+Bx2 + Cx2
2

Rg(k) = Ms

(
g tan(α(k)) +

λt
rc(k)

) (5.2)
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The parametric symbols have already been defined in Subsection 2.1.1 (
see Tables 2.1 and 2.2 for more details). As already discussed in Subsec-
tion 2.1.1, besides the prescribed arrival time xf and position sf , there are
additional state constraints that must be satisfied. These pertain to the limit
on the maximum allowed velocity, x2(k), which depends on the position k,
since a different velocity limit is imposed for safety by the regulating au-
thority according to the track features at each position. Overall, by defining
the terminal space step as kf

.
= bsf/Dsc (where b·c denotes the flooring

operation to the closest integer), the state constraints read:

x(0) = [0, 0]T

x(kf ) = [xf , 0]T

x2(k) ≥ 0, k = 0, . . . , kf
x2(k) ≤ x2(k), k = 0, . . . , kf

(5.3)

The control objective is to maximize the energy efficiency of the train
while satisfying the constraints above. To translate this goal in mathemati-
cal terms, different possible cost functions can be considered. In our case,
we consider the discretized integral of the absolute value of the traction
power over space (with a constant scaling factor D−1

s ):

J =

kf∑
k=0

|FT (x(k), u(k))| . (5.4)

This choice tends to produce controllers that minimize the traction en-
ergy injected into the system.

As already pointed out, the input variable is also constrained in the in-
terval u ∈ [−1, 1]. However, since this strategy has been specially designed
keeping in mind the DAS scenario, our input is further constrained to be-
long to only a smaller set of possible values which can be delivered by the
controller, in order to facilitate the human-machine interaction. In partic-
ular, in this scenario the input constraints are further tightened according
to four possible operating modes prescribed by our industrial partner i.e.
u ∈ {1, 0, uCR,−1}, where uCR identifies the cruising mode (see Sub-
section 3.1.2 for details). Finally, a further feature of this application is
a relatively small sampling space Ds with respect to the imposed overall
space horizon sf , resulting in a rather large number of sampling periods in
the interval [0, sf ], typically from several hundreds to a few thousands.
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5.1.1 Problem Abstraction

The control problem described above can be cast in a rather standard form:

min
u

kf∑
k=0

`(x(k), u(k)) (5.5a)

subject to
x(k + 1) = f(x(k), u(k)) (5.5b)
u(k) ∈ U, k = 0, . . . , kf − 1 (5.5c)
x(k) ∈ X, k = 1, . . . , kf (5.5d)

x(0) = x0 (5.5e)
x(kf ) ∈ Xf (5.5f)

where x ∈ X ⊂ Rn is the system state, x0 is the initial condition, u ∈
U ⊂ Rm is the input, f(x, u) : X× U→ X is a known nonlinear mapping
representing the system dynamics, and `(x, u) : X × U → R is a stage
cost function defined by the designer according to the control objective.
The symbol u = {u(0), . . . , u(kf − 1)} ∈ Rmkf represents the sequence
of current and future control moves to be applied to the plant. The sets
X ⊂ X and U ⊂ U represent the state and input constraints (including
the discrete set of allowed inputs or input modes as described above), and
the set Xf ⊂ X the terminal state constraints, which include a terminal
equality constraint as a special case. Furthermore, X and U is assumed to
be compact, as well as the terminal constraint set Xf .
We recall that a continuous function a : R+ → R+ is a K-function (a ∈
K) if it is strictly increasing and a(0) = 0. Throughout this chapter, we
consider the following continuity assumption on the system model f .

Assumption 3. The function f enjoys the following lipchitz continuity prop-
erties:
‖f(x1, u)− f(x2, u)‖ ≤ ax (‖x1 − x2‖) , ∀x1, x2 ∈ X, u ∈ U
‖f(x, u1)− f(x, u2)‖ ≤ au (‖u1 − u2‖) , ∀u1, u2 ∈ U, x ∈ X (5.6)

where ax, au ∈ K.

5.2 Nominal Shrinking Horizon Parametrized Predictive Con-
trol

To solve problem (5.5), we again resort to Nonlinear Model Predictive Con-
trol (NMPC), however with two particular differences with respect to the
standard formulation:
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• First, since in our problem the terminal space sf is fixed, the resulting
strategy features a shrinking horizon rather than a receding one. In-
deed, here the goal is to make the state converge to the terminal set in
the required finite time, and not asymptotically as usually guaranteed
by a receding horizon strategy;

• Second, we adopt an input-parametrization strategy (see e.g. [22]) to
reduce the computational burden required by the feedback controller
as well as to enforce the discrete constraints on the input while retain-
ing a continuous optimization program, instead of the mixed-integer
one that would result from direct optimization of the input.

5.2.1 Parametrization Setup

We adopt a parametrization of the control input that allows us to natu-
rally incorporate the presence of the discrete (switched) driving modes de-
scribed. The main idea is to first split the track (i.e. the whole prediction
horizon from 0 to kf ) into sectors. Then, in each sector, we pre-define a
switching sequence of the four driving modes, and we optimize over the
switching (space) instants of the sequence. In this way, we retain a continu-
ous vector of optimization variables, thus improving the computational effi-
ciency, while still providing the controller with enough degrees-of-freedom
to optimize the predicted system behavior. Specifically, we consider a num-
ber sn ∈ N of sectors, each one with length Γi, such that

sn∑
i=1

Γi = sf . (5.7)

The choice of sectors is carried out by considering characteristics such
as the presence of constant velocity limits and the resistance force due to
the slopes and track curvature Rg(k), which are known in advance, see Fig.
5.1 for an example. Regarding the switching sequence (“driving style”)
adopted in each sector, denoted with udi , we choose the following:

udi = { u(i,1), u(i,2), u(i,3), u(i,4) }
= { 1, uCR, 0, −1 }, ∀i ∈ [1, . . . , sn]

(5.8)

where u(i,`) is the input issued in the `−th phase of the i−th sector (with
` ∈ {1, 2, 3, 4}) and uCR identifies the cruising mode (see Subsection 3.1.2
for details), i.e. where the actual input u(k) is computed by a cruise con-
trol system in order to maintain a constant speed. The chosen switching
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Figure 5.1: Example of sector choice for a track with sf = 15 and sn= 7. Possible sectors
based on similar characteristics such as velocity limits and Rg values are depicted.

sequence is such that in each sector, theoretically, the controller can choose
to have a traction phase, a cruising one, a coasting one, and finally a brak-
ing phase. Thus, the maximum number of operating modes that can be
set in the whole optimization horizon is equal to 4 sn. As anticipated, our
optimization variables will be the switching instants, or more precisely the
duration of each phase within each switching sequence. We denote these
quantities with δs(i,`), such that:

0 ≤ δs(i,`) ≤ Γi
4∑
`=1

δs(i,`) = Γi.
(5.9)

As an example, values of (s(i,1), s(i,2), s(i,3), s(i,4)) equal to (0, 0,Γi, 0) cor-
respond to the train coasting throughout sector i, and so on.

Remark 5.2.1. The presented parametrization provides the controller with
enough degrees of freedom to choose a single mode or multiple modes of
operation in each sector, in order to compensate the presence of uncer-
tainty and to adapt to the track features and constraints. Additionally, the
constraint on prescribed arrival position needs to be satisfied: this is done
implicitly by imposing (5.9) for each sector, which implies (5.7).
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We are now in position to introduce the optimal control problem to be
solved at each time step in our shrinking horizon approach and the resulting
SPPC approach presented next.

5.2.2 Shrinking Horizon Parametrized Predictive Control (SPPC)

We start by defining the optimization variables available at each step k. The
set of indexes identifying the current and future sectors, from the current
position kDs until the end of the track sf , is given by:

{i : i(k) + 1 ≤ i ≤ sn}, (5.10)

where

i(k)
.
=

 max
i≥1

i s.t.
i∑
i=1

Γi < kDs, if Γ1 < kDs

0, otherwise

Then, the number N(k) of free variables to be computed corresponds to
the number of remaining sectors, equal to (sn − i(k)), times the number
of modes in each sector, i.e. 4 in our case. Therefore, we have N(k) =
4(sn − i(k)). We denote the vector of optimization variables with

vN(k)
.
= {δs(i(k)+1,1), . . . , δs(i(k)+1,4), . . . , δs(sn,4)}T ∈ RN(k). (5.11)

Let us indicate with u(j|k) the input vector at each space sample k+ j pre-
dicted at step k. Considering the parametrization described in Subsection
5.2.1, we can define the function g(vN(k), j, k) that links, at each step k and
for each j = 0, . . . , kf − k − 1, the optimization variables vN(k) with the
predicted input u(j|k):

u(j|k) = g(vN(k), j, k)
.
= u(̂i(j,k),ˆ̀(vN(k),j,k)), (5.12)

where (compare with (5.8)):

î(j, k)
.
= min

i=1,...,sn

i

s.t.
i∑
i=1

Γi ≥ (k + j)Ds

and
ˆ̀(vN(k), j, k)

.
= min

`=1,...,4
`

s.t.
î(j,k)∑
i=1

Γi +
∑̀̀
=1

δs(̂i(j,k),`) ≥ (k + j)Ds.
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Note that the evaluation of (5.12) is very efficient, since it just amounts
to finding, for each space sample k + j, the indexes of the corresponding
sector and phase and then to apply the corresponding pre-defined driving
mode from (5.8). Finally, let us denote with x(j|k), j = 0, ..., kf − k the
state vectors predicted at space sample k + j starting from the one at step
k. At each step k ∈ [0, kf − 1], we formulate the following FHOCP:

min
vN(k)

kf−k∑
j=0

`(x(j|k), u(j|k)) (5.13a)

subject to
u(j|k) = g(v,vN(k), j, k), j = 0, . . . , kf − k − 1 (5.13b)

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1 (5.13c)
u(j|k) ∈ U, j = 0, . . . , kf − k − 1 (5.13d)
x(j|k) ∈ X, j = 1, . . . , kf − k (5.13e)

x(0|k) = x(k) (5.13f)
A(k)vN(k) ≤ b(k) (5.13g)
x(kf − k|k) ∈ Xf (5.13h)

Where the matrices A(k), b(k) in (5.13g) are built to enforce the con-
straints (5.9). We denote with v∗N(k) = {δs∗(i(k)+1,1), . . . , δs

∗
(sn,4)}T a so-

lution (in general only locally optimal) of (5.13). Moreover, we denote
with x∗(k) and u∗(k) the corresponding predicted sequences of state and
input vectors:

x∗(k) = {x∗(0|k), . . . , x∗(kf − k|k)} (5.14a)
u∗(k) = {u∗(0|k), . . . , u∗(kf − 1− k|k)} (5.14b)
where
x∗(0|k) = x(k) (5.14c)

x∗(j + 1|k) = f(x∗(j|k), u∗(j|k)) (5.14d)
u∗(j|k) = g(v∗N(k), j, k) (5.14e)

The SPPC strategy is obtained by recursively solving (5.13), as de-
scribed by the following pseudo-algorithm.
Algorithm 3 defines the following feedback control law:

u(k) = µ(x(k)) = u∗(0|k), (5.15)

and the resulting model of the closed-loop system is:

x(k + 1) = f(x(k), µ(x(k)) (5.16)
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Algorithm 3 Nominal SPPC Strategy

1. At sampling instant k, measure the state x(k) and solve the FHOCP (5.13). Let
v∗N(k) be the computed solution;

2. Apply to the plant the first element of the control sequence u∗(k), i.e. u(k) =
u∗(0|k) = g(v∗N(k), 0, k);

3. Repeat the procedure from 1) at the next sampling period.

We conclude this section with a Proposition on the recursive feasibility
of (5.13) and convergence of the state of (5.16) to the terminal set.

Proposition 5.2.1. Assume that the FHOCP (5.13) is feasible at space k =
0. Then, the FHOCP (5.13) is recursively feasible at all k = 1, . . . , kf − 1
and the state of the closed loop system (5.16) converges to the terminal set
Xf at space kf .

Proof. Recursive feasibility is established by construction, since at any step
k+1, one can build a feasible sequence vN(k+1) by taking either vN(k+1) =
v∗N(k) (if N(k + 1) = N(k)) or vN(k+1) = {δs∗(i(k+1)+1,1), . . . , δs

∗
(sn,4)}T

(if N(k + 1) < N(k), i.e. the values in v∗N(k) excluding its first four el-
ements). Convergence to the terminal set is then achieved by considering
that constraint (5.13h) is feasible at space k = kf − 1.

Remark 5.2.2. As in Chapter 4, the next section will consider the presence
of model uncertainty and external disturbances on the model f(x, u).

5.3 Relaxed SPPC Approach: Algorithm and Properties

To model uncertainty and disturbances, we consider an additive term d(k)
acting on the input vector, i.e.:

ũ(k) = u(k) + d(k) (5.17)

where ũ(k) is the disturbance-corrupted input provided to the plant. This
model represents well all cases where plant uncertainty and exogenous dis-
turbances can be translated into an effect similar to the control input (the
so-called matched uncertainty). For example, in our train model, Eq. (5.17)
can describe uncertainty in the train mass, drivetrain specs, track slope and
misapplication of the computed input by the human operator in a driver as-
sistance scenario .
We consider the following assumption on d:
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Assumption 4. The disturbance term d belongs to a compact set D ⊂ Rm

such that:
‖d‖ ≤ d, ∀d ∈ D (5.18)

where d ∈ (0,+∞). �

This assumption holds in many practical cases and in the considered
train application as well. We indicate the perturbed state trajectory due to
the presence of d as:

x̃(k + 1) = f(x̃(k), ũ(k)), k = 0, . . . , kf (5.19)

where x̃(0) = x(0). To retain recursive feasibility in presence of the dis-
turbance, we soften the constraints in the FHOCP. However, in general the
use of soft constraints does not guarantee that, in closed-loop operation, the
operational constraints are satisfied, or even that the constraint violation is
uniformly decreasing as the worst-case disturbance bound d gets smaller.
For simplicity and to be more specific, from now on let us restrict our anal-
ysis to the terminal state constraint in (5.5f), i.e. x(kf ) ∈ Xf . We do so
without loss of generality, since the results and approaches below can be
extended to any state constraint in the control problem. Moreover, in our
railway application the terminal state constraint is the most important one
from the viewpoint of system performance. The other constraints (velocity
limits) are always enforced for safety by modulating traction or by braking.
Let us denote the distance between a point x and a set X as:

∆(x,X) = min
y∈X
‖x− y‖. (5.20)

Then, we want to derive a modified SPPC strategy with softened termi-
nal state constraint (to ensure recursive feasibility) that guarantees a prop-
erty of the following form in closed loop:

∆(x̃(kf ), Xf ) ≤ β(d), β ∈ K. (5.21)

That is, the distance between the terminal state and the terminal constraint
is bounded by a value that decreases strictly to zero as d → 0. In order to
obtain this property, we propose a relaxed SPPC approach using a two-step
constraint softening procedure, described next.

5.3.1 Two-step Relaxed SPPC Strategy

At each step k we consider a strategy consisting of two optimization prob-
lems to be solved in sequence:
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a) we compute the best (i.e. smallest) achievable distance between the
terminal state and the terminal set, starting from the current perturbed
state x̃(k):

γ(k) = arg min
vN(k),γ(k)

γ(k)

subject to
u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1
u(j|k) ∈ U, j = 0, . . . , kf − k − 1
x(j|k) ∈ X, j = 1, . . . , kf − k

x(0|k) = x̃(k)
A(k)vN(k) ≤ b(k)

∆(x(kf − k|k), Xf ) ≤ γ(k)

(5.22)

b) we optimize the input sequence using the original cost function, and
softening the terminal constraint by γ(k):

min
vN(k)

kf−k∑
j=0

`(x(j|k), u(j|k))

subject to
u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1
u(j|k) ∈ U, j = 0, . . . , kf − k − 1
x(j|k) ∈ X, j = 1, . . . , kf − k

x(0|k) = x̃(k)
A(k)vN(k) ≤ b(k)

∆(x(kf − k|k), Xf ) ≤ γ(k)

(5.23)

By construction, both problems are always feasible (with the caveat that
state constraints are considered to be always feasible, as discussed above,
otherwise the softening shall be applied to these constraints as well). We
denote with vrN(k), x

r(k) and ur(k) the optimized sequences of decision
variables, state and inputs resulting from the solution of (5.23). The se-
quences xr(k) and ur(k) are computed as:
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xr(k) = {xr(0|k), . . . , xr(kf − k|k)} (5.24a)
ur(k) = {ur(0|k), . . . , ur(kf − 1− k|k)} (5.24b)
where
xr(0|k) = x̃(k) (5.24c)

xr(j + 1|k) = f(xr(j|k), ur(j|k)) (5.24d)
ur(j|k) = g(vrN(k), j, k) (5.24e)

The resulting relaxed SPPC strategy is implemented by the following
pseudo-algorithm.

Algorithm 4 Two-stage Relaxed SPPC Strategy

1. At sampling instant k, measure the state x̃(k) and solve in sequence the optimization
problems (5.22)-(5.23). Let vrN(k) be the computed solution;

2. Apply to the plant the control vector u(k) = ur(0|k) = g(vrN(k), 0, k);

3. Repeat the procedure from (1) at the next sampling period.

Algorithm 4 defines the following feedback control law:

u(k) = µr(x̃(k) = ur(0|k), (5.25)

and the resulting closed-loop dynamics are given by:

x̃(k + 1) = f(x̃(k), µr(x̃(k)) + d(k)). (5.26)

The next result shows that the closed-loop system (5.26) enjoys a uniformly
bounded accuracy property of the form (5.21), provided that the nominal
SPPC problem (5.13) is feasible at k = 0.

Theorem 5.3.1. Let Assumptions 3 and 4 hold and let the FHOCP (5.13)
be feasible at step k = 0. Then, the terminal state x̃(kf ) of system (5.26)
enjoys property (5.21) with

∆(x̃(kf ), Xf ) ≤ β(d) =

kf−1∑
k=0

βkf−k−1(d) (5.27)

where

β0(d) = au(d)
βk(d) = au(d) + ax(βk−1(d)), k = 1, . . . , kf − 1

(5.28)
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Proof. The proof is by induction. Start at k = 0 and consider the relaxed
optimized sequences xr(k), ur(k) obtained by solving problem (5.23). We
first evaluate the worst-case perturbation induced by the disturbance with
respect to the open-loop state trajectory xr(k). For a sequence of distur-
bances d(k), k = 0, . . . , kf , the corresponding open-loop input and state
trajectories are:

ũ(k) = ur(k) + d(k), j = 0, . . . , kf − k − 1
x̃(0|k) = xr(0|k)
x̃(k + 1) = f(x̃(k), ũ(k)), k = 1, . . . , kf

(5.29)

From (5.6) we have:

‖x̃(1)− xr(1|0)‖ = ‖f(x̃(0), ũ(0))− f(x(0), ur(0|0))‖ ≤
au (‖ũ(0)− ur(0|0)‖) ≤ au

(
d
)

= β0

(
d
)

Consider now the perturbation 2-steps ahead:

‖x̃(2)− xr(2|0)‖ =
‖f(x̃(1), ũ(1))− f(xr(1|0), ur(1|0))‖ =
‖f(x̃(1), ũ(1))− f(x̃(1), ur(1|0))+
f(x̃(1), ur(1|0))− f(xr(1|0), ur(1|0))‖ ≤
au
(
d
)

+ ax (‖x̃(1)− xr(1|0)‖) ≤
au
(
d
)

+ ax
(
β0

(
d
))

= β1

(
d
)
.

By iterating up until the second last time step we obtain:

‖x̃(kf )− xr(kf |0)‖ ≤ βkf−1

(
d
)
, (5.30)

where βkf−1 ∈ K since it is given by compositions and summations of
class-K functions. Since the FHOCP (5.23) is feasible, we have xr(kf |0) ∈
Xf and thus:

∆(x̃(kf ), Xf ) ≤ ‖x̃(kf )− xr(kf |0)‖+ ∆(xr(kf |0), Xf )
≤ βkf−1(d).

(5.31)

Now consider k = 1 and the FHOCP (5.22). If the optimizer is initial-
ized with parametrized control moves vN(1) such that the tail of the previous
optimal sequence ur(0) is applied to the system, the corresponding mini-
mum γ(k) in (5.22) results to be upper bounded by βkf−1(d), in virtue of
(5.31). The optimal value γ(k) is therefore not larger than this bound as
well:

γ(1) ≤ βkf−1(d). (5.32)
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Now take the optimal sequences xr(1) and ur(1) computed by solving the
FHOCP (5.23). By applying the same reasoning as we did for k = 0, we
have (compare with (5.30)):

‖x̃(kf )− xr(kf |1)‖ ≤ βkf−2(d). (5.33)

Moreover, equation (5.32) implies that the solution of (5.23) satisfies the
following inequality:

∆(xr(kf |1), Xf ) ≤ γ(k). (5.34)

From (5.32)-(5.34) we have:

∆(x̃(kf ), Xf ) ≤ ‖x̃(kf )− xr(kf |1)‖+ ∆(xr(kf |1), Xf ) ≤

βkf−2(d) + βkf−1(d) =
1∑

k=0

βkf−k−1(d).

By applying recursively the same arguments, the bound (5.27) is obtained.
�
Theorem 5.3.1 indicates that the worst-case distance between the terminal
state and the terminal set is bounded by a value which is zero for d = 0 and
increases strictly with the disturbance bound. In the considered railway ap-
plication this means that, for example, the worst-case accuracy degradation
in reaching the terminal station on time due to the changing mass of the
train which is a function of the passenger load, is proportional to the largest
difference between the nominal mass and its change due to the varying pas-
senger load. This result provides a theoretical justification to the proposed
two-step relaxed SPPC approach. The bound (5.27) is conservative, since
it essentially results from the accumulation of worst-case perturbations in-
duced by the disturbance on the open-loop trajectories computed at each k.
As we show in our simulation results, in practice the resulting closed-loop
performance are usually very close to those of the nominal case, thanks to
recursive optimization in the feedback control loop.
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5.3.2 Multi-objective Relaxed SPPC Strategy

As an alternative to the two-step approach described above, one can also
consider a multi-objective minimization:

min
vN(k),γ

kf−k∑
j=0

`(x(j|k), u(j|k)) + ωγ

subject to
u(j|k) = g(vN(k), j, k), j = 0, . . . , kf − k − 1

x(j + 1|k) = f(x(j|k), u(j|k)), j = 0, . . . , kf − k − 1
u(j|k) ∈ U, j = 0, . . . , kf − k − 1
x(j|k) ∈ X, j = 1, . . . , kf − k

x(0|k) = x̃(k)
A(k)vN(k) ≤ b(k)

∆(x(kf − k|k), Xf ) ≤ γ

(5.35)

where ω is a positive weight on the scalar γ. Problem (5.35) can be solved
in Algorithm (4) in place of problems (5.22)-(5.23). In this case, the advan-
tage is that a trade-off between constraint relaxation and performance can
be set by tuning ω. Regarding the guaranteed bounds on constraint viola-
tion, with arguments similar to those employed in [23] one can show that,
at each k ∈ [0, kf − 1], for any ε > 0 there exists a finite value of ω such
that the distance between the terminal state and the terminal set is smaller
than γ(kf − k − 1)(d) + ε. Thus, with large-enough ω, one can recover
the behavior obtained with the two-step relaxed SPPC approach. The the-
oretical derivation is omitted for the sake of brevity, as it is a rather minor
extension of the results of [23].

5.4 Simulation Results

We tested the proposed strategies in realistic simulations with real train
data provided by Alstom for a section of the Amsterdam metro rail, in par-
ticular the track between Rokin and Central Station. As in Chapter 4, the
results have also been verified on Alstom based train tool CITHEL, which
is useful to get a realistic idea of the energy expenditure by the developed
SPPC strategies. The parametric values of the train used in the controller
are (see (5.1)-(5.2)) M = 142403 kg, Ms = 131403 kg, A = 3975.9 N,
B = 24.36 Nsm−1 and C = 4.38 Nsm−2, while the maximum traction
and braking forces allowed for this particular train are in the form of look
up tables (see Fig. 5.2). These forces are of the form FT (x(k), u(k)) =
FTmax(x2(k))u(k), and FB(x(k), u(k)) = FBmax(x2(k))u(k). The input
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variable is constrained in the set [−1, 1]. The train has to reach the next
station at sf = 1106 m in xf = 76 s. The track is divided into sn = 15 sec-
tors. The employed sampling distance is Ds = 18.4 m. Again as in Chapter
4, the results have been obtained using Matlabr fmincon and a laptop
equipped with Intelr Core i7-6700Hq processor at 2.6 GHz and 8 GB of
memory. All the functions were implemented in Matlabr.The train has to
reach the next station at sf = 1106 m in xf = 76 s. The track is divided
into sn = 15 sectors. The employed sampling distance is Ds = 18.4 m.
The considered track has zero curvature, slopes as plotted in Fig. 5.3, and
velocity limits reported in Fig. 5.5.
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Figure 5.2: Maximum traction force FTmax (dashed) and braking force FBmax (dotted)
allowed for the train considered in the simulation.

We compare a nominal situation, where Algorithm 3 is applied and no
model uncertainty is present, with a case where we employ Algorithm 4
(with both the two-stage approach and the multi-objective optimization
variants) in presence of random parameter uncertainty (±10% of each model
parameter). For the multi-objective approach, we set ω = 160 (see (5.35)).
The obtained input and velocity profiles are presented in Fig.5.4 -5.5. From
the plots, it is evident that in order to save energy, after accelerating to a
certain velocity, the train mostly coasts or cruises taking advantage of the
slopes. All the velocity constraints are always satisfied and the input is
allowed to take on only one of the four allowed modes. Regarding the ob-
tained final time between the terminal state and the target one at k = kf ,
even in the presence of uncertainty the final time was respected for both the
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Figure 5.3: Slopes of the Amsterdam metro track segment considered in the simulation.
The unit of slope is in per mille.

2-stage approach and the multi-objective one. This result is perfectly com-
patible with the desired performance in this application. Fig. 5.5 presents
also the “all-out” solution, which achieves the shortest arrival time com-
patible with all the constraints. This corresponds to xf = 72.2 s. As for
the computational time, all the strategies require an average of 2 s per opti-
mization step.
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Figure 5.4: Simulation results. Input handle as a function of the train position obtained
with different SPPC strategies: nominal (dotted line), two-step relaxed (dashed), multi-
objective (dash-dot). The “all-out” handle is shown with a solid line

Finally, the results were tested on Alstom based tool CITHEL and also
compared with their existing eco-drive strategy based on Genetic algorithm.
The results are presented in Table.5.1 and the obtained velocity profiles in
Fig.5.6. Though, the SPPC strategies arrive with a delay of 2 s at the pre-
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Figure 5.5: Simulation results. Velocity profiles as a function of the train position obtained
with different SPPC strategies: nominal (dotted line), two-step relaxed (dashed), multi-
objective (dash-dot). All these approaches share the same final time of tf = 76 s. The
“all-out” solution (tf = 72.2 s) is shown with a thick solid line, and velocity limits
with a thin solid line.

scribed station, the traction energy consumption ET is considerably lower
as compared to the existing Genetic-algorithm based eco-drive approach,
which proves the efficiency of the developed SPPC strategies. A final com-
ment is in the observation of different accceleration rates obtained with
matlab and CITHEL simulations (see Fig. 5.5 - 5.6) for these strategies
and are a consequence of the different space samples used to obtain the
velocity profiles. Since, in SPPC strategy the samples are the optimization
variables, sometimes it can result in some error in the actual and simulated
acceleration rate, which can always be taken care of.
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Figure 5.6: Simulation results. Velocity profiles as a function of the train position ob-
tained with Alstom based CITHEL tool: genetic algorithm based eco-drive (dotted
line), SPPC strategy (dash-dot). All these approaches share the same final time of
tf = 76 s. The “all-out” solution (tf = 73 s) is shown with a thick solid line, and
velocity limits with a thin solid line.

Table 5.1: Comparison results with different strategies tested in Alstom based tool
CITHEL

ET (KWH) tf (s)

All-out solution 13.19 73
Genetic algorithm based Eco-drive 9.05 77

SPPC strategy 6.2553 78

5.5 Conclusion

We considered the problem of energy-efficient train operation, involving a
finite terminal position and corresponding state constraint, and a discrete
set of allowed input values or operating modes. To address this problem,
we proposed a MPC approach with a shrinking horizon and a particular
input parametrization, which allows one retain a continuous optimization
problem at each step. We derived convergence guarantees in both nominal
conditions and under uncertainty, and showcased the technique in realistic
simulations. Comparison of results in terms of energy consumption with
the existing benchmark by means of Alstom based tool CITHEL proves the
efficiency of the developed SPPC strategies.
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CHAPTER6
Receding Horizon Switched Predictive

Control Strategy

In this chapter, a switched NMPC strategy for the EETC problem is pre-
sented. This work has been presented in [26]. As explained in the previous
chapters, for energy efficient operation of railways, MPC is a suitable ap-
proach, thanks to its capability to deal with state and input constraints and
economic objectives, see e.g., [49, 54]. Like in Chapter 5, this strategy has
also been developed as a DAS strategy. Recalling the DAS strategy de-
scribed in Subsection 3.1.2, where the input u is actually constrained to
belong to a discrete set of modes, the train model can be considered as
switching in nature, and hence this was the main idea behind the develop-
ment of this scheme. On the other hand, while in Chapter 4 and Chapter 5,
the MPC strategies presented are based on shrinking horizon, this strategy
is based on receding horizon approach. The resulting control approach has
been named Receding Horizon Switched Predictive Control (RSPC) strat-
egy.
In general, a switched system is formed of family of subsystems together
with a switching signal, which specifies at each sampling instant, the active
subsystem dynamics. The aim of a general switched NMPC is to control
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this switching signal based on some criteria. Important results for stability
and stabilization of switched systems have been presented in [18, 31, 32],
while switched NMPC have been investigated in [19, 56]. More recently
in [58, 59, 86], important stabilization results for switched MPC have been
reported.
Now, consider a generic switched system of the following form

x(k + 1) = fσ(k)(x(k)) (6.1)

defined for all k ∈ N, where x(k) ∈ Rn is the state and σ(k) is the switch-
ing rule. The active model at the time instant k is selected by the integer
σ(k) ∈ {1, · · · , P}.

6.1 Switched Train Control Problem

Consider an electric train controlled by a digital control unit. In this strat-
egy, we consider space as the independent variable, while time will be one
of the system’s states. Thus, we denote with k ∈ Z the discrete space vari-
able, and withDs(k) the adaptive sampling distance which is space varying.
We denote with x(k) = [x1(k), x2(k)]T the state of the train, where x1 is
its travel time and x2 the train speed, and with u(k) ∈ [−1, 1] a normalized
traction force, where u(k) = 1 corresponds to the maximum applicable
traction and u(k) = −1 to the maximum braking. The input u is the avail-
able control variable. The train has to move from one station at time x1 = 0
and reach the next one at time x1 = xf , covering the corresponding distance
sf . In state space modeling, the prescribed arrival time tf (see Eq.(2.6)) and
the maximum allowed velocity limit vmax(k) (see Eq.(2.5)) have been re-
named as tf = xf and vmax(k) = x2(k) to link them to the states they are
representing. For a given pair of initial and final stations, the track features
(slopes, curvature) are known in advance. Thus, in nominal conditions (i.e.
with rated values of the train parameters, like its mass and the specifica-
tions of the powertrain and braking systems), according to Newton’s laws
and using the forward Euler discretization method, the equations of motion
of a reasonably accurate switched model of this system read:

x1(k + 1) = x1(k) + Ds(k)
x2(k)

x2(k + 1) = x2(k) +Ds(k)
(
FT (x(k),uσ(k)(k))−FB(x(k),uσ(k)(k))−FR(k,x(k)

Mx2(k)

)
(6.2)

The resistive force FR(k, x) is also nonlinear, and it is the sum of a first
term Rv(x2), accounting for resistance due to the velocity, and a second
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term Rg(k), accounting for the effects of slopes and track curvature:

FR(k, x) = Rv(x2) +Rg(k)

Rv(x2) = A+Bx2 + Cx2
2

Rg(k) = Ms

(
g tan(α(k)) +

λt
rc(k)

) (6.3)

The parametric symbols have already been defined in Subsection 2.1.1 (see
Tables 2.1 and 2.2 for more details). Making reference to the formulation in
Eq.(6.1), since the switching signal is externally updated and is a function
of space, system (6.2) is a space dependent switching system.

Remark 6.1.1. The model (6.2) has been rewritten in the form of (6.1),
where σ(k) ∈ {1 , . . . , 6} is the switching signal, such that uσ(k)(k) ∈
{−1, 0, 0.5, 0.75, 1, uCR} respectively, in terms of switching input handle,
where uCR identifies the cruising mode (see Subsection 3.1.2). For example,
σ(k) = 1 implies that u1(k) = −1 is chosen to be applied to the system
(6.2) at the sampling instant k.

As already discussed in Subsection 2.1.1, besides the prescribed arrival
time xf and position sf , there are additional state constraints that must be
satisfied. These pertain to the limits on the maximum allowed velocity,
x2(k), which depends on the position k, since a different velocity limit is
imposed for safety by the regulating authority according to the track fea-
tures at each position. Overall, by defining the terminal space step as kf ,
the state constraints read:

x(0) = [0, 0]T

x(kf ) = [xf , 0]T

x2(k) ≥ 0, k = 0, . . . , kf
x2(k) ≤ x2(k), k = 0, . . . , kf

(6.4)

The control objective is to maximize the energy efficiency of the train
while satisfying the constraints above, which translates mathematically to
minimizing the overall traction energy given by:

J =

kf∑
k=0

FT (x(k), uσ(k)(k)) (6.5)

This choice tends to produce controllers that minimize the traction en-
ergy injected into the system.
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6.1.1 Problem Abstraction

The control problem described above can be cast in a rather standard form:

min
χ

kf∑
k=0

`σ(k)(x(k), uσ(k)(k)) (6.6a)

subject to
x(k + 1) = fσ(k)(x(k), uσ(k)(k)) (6.6b)
uσ(k)(k) ∈ U, k = 0, . . . , kf − 1 (6.6c)

x(k) ∈ X, k = 1, . . . , kf (6.6d)
x(0) = x0 (6.6e)
x(kf ) ∈ Xf (6.6f)

where x ∈ X ⊂ Rn is the system state and x0 is the initial condition.
The symbol χ = [σ(0), . . . , σ(kf − 1)] represents the vector of switching
strategy to be applied to the plant. The sets X ⊂ X and U ⊂ U represent
the state and input constraints (including the discrete set of allowed inputs
or input modes as described above), and the set Xf ⊂ X the terminal state
constraints, which include a terminal equality constraint as a special case.
Furthermore,X is assumed to be compact, as well as the terminal constraint
set Xf .

6.2 Receding Horizon Switched Predictive Control (RSPC) Ap-
proach

To solve (6.6), a switched NMPC strategy with a receding horizon approach
(RSPC) is adopted. The main reason for this choice is that solving (6.6) can
be computationally very expensive when using a heuristic brute force ap-
proach, since there are no solvers available which can directly solve this
particular problem due to the non convex nature of the cost function and an
optimization problem which becomes a nonlinear mixed integer program-
ming problem due to the discretization of the control variable in the case of
a DAS strategy. Hence, the prediction horizon should be as short as pos-
sible. Also, due to the receding horizon approach explained in Subsection
6.2.1, the terminal constraint on time (see (6.4)) has been relaxed to be in-
cluded as a terminal cost. Finally, in order to deal with braking dynamics
which is very difficult to capture with receding horizon approach, a sep-
arate predictive braking approach in parallel which involves adapting the
samples so that the train stops at the arrival station is also included. The
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adaptive sampling is adopted not just for capturing braking dynamics but
also to capture the track characteristics such as the slopes and the curvature
which are a function of the space as well as the changing velocity limits.

6.2.1 Receding Horizon Setup

Consider the receding prediction horizon N . In order to maximize the trac-
tion energy efficiency of the train, at any sampling instant k, the cost func-
tion was chosen as:

Jχ(x) =
N−1∑
j=0

(1− γS)`σ(j|k)(x(j|k), uσ(j|k)(j|k)) + γSF (x(N |k)) (6.7)

with χ = [σ(0|k), . . . , σ(N − 1|k)]> being the predicted switching
control sequence. The terms

`σ(j|k)(x(j|k), uσ(j|k)(j|k)) =

(
FT (x(j|k), uσ(j|k)(j|k))− FR(x(j|k))

FTmax

)2

F (x(N |k)) =

(
x1(0|k) + Thorizon(k)− x1(N |k)

Thorizon(k)

)2

(6.8)
The cost function is chosen as a combination of the traction energy, the

energy losses due to resistance and horizon time error. In the cost function,
Thorizon is the horizon time. The reason for including losses due to the
resistance energy in the cost is to provide a solution which could exploit the
track characteristics when the train is descending, thus reducing the energy
losses and making use of the negative slopes to reduce energy consumption.

Remark 6.2.1. At each step k, the horizon time Thorizon(k) is the time
needed to cover the distance of that particular prediction horizon, given
the maximum allowed velocity limits, maximum allowed journey time and
the characteristics of the track. In order to compute Thorizon, a heuristic
approach is adopted.

6.2.2 RSPC Strategy

Let us denote with x(j|k), j = 0, ..., kf − k the state vectors predicted
at space sample k + j starting from the one at step k. At each step k ∈
[0, kf − 1], we formulate the following FHOCP:
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min
χ(k)

N−1∑
j=0

`σ(j|k)(x(j|k), uσ(j|k)(j|k)) + F (x(N |k)) (6.9a)

subject to
χ(k) = [σ(0|k), . . . , σ(N − 1|k)] (6.9b)

x(j + 1|k) = fσ(j|k)(x(j|k), uσ(j|k)(j|k)), j = 0, . . . , N − 1 (6.9c)
uσ(j|k)(j|k) ∈ U, j = 0, . . . , N − 1 (6.9d)

x(j|k) ∈ X, j = 1, . . . , N (6.9e)
x(0|k) = x(k) (6.9f)
x(N |k) ∈ Xf (6.9g)

We denote withχ∗(k) = [σ∗(0|k), . . . , σ∗(N−1|k)] the optimal switch-
ing strategy obtained by solving (6.9). Moreover, we denote with x∗(k) and
u∗(k) the corresponding predicted sequences of state and input vectors:

x∗(k) = {x∗(0|k), . . . , x∗(N |k)} (6.10a)
u∗χ∗(k)(k) = {u∗σ∗(0|k)(0|k), . . . , u∗σ∗(N−1|k)(N − 1|k)} (6.10b)

where
x∗(0|k) = x(k) (6.10c)

x∗(j + 1|k) = f(x∗(j|k), u∗σ∗(j|k)(j|k)) (6.10d)
(6.10e)

The RSPC strategy is obtained by recursively solving (6.9), as described
by the following pseudo-algorithm.

Algorithm 5 RSPC Strategy

1. At sampling instant k, measure the state x(k) and solve the FHOCP (6.9). Letχ∗(k)
be the computed switching strategy solution;

2. Apply to the plant the first element of the control sequence u∗
χ∗(k)(k).

3. Repeat the procedure from 1) at the next sampling period.

Algorithm 5 defines the following switching strategy

χ(k) = σ∗(0|k) (6.11)

which in turn defines the following feedback control law:

uσ(k)(k) = µ(x(k)) = u∗σ∗(0|k)(0|k), (6.12)
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and the resulting model of the closed-loop system is:

x(k + 1) = f(x(k), µ(x(k)) (6.13)

6.2.3 Adaptive RSPC Strategy

As mentioned in the beginning of this section, with a constant receding pre-
diction horizon, it is not always possible to capture the changing dynamics
of the track on which the train is running. Hence, a setup to suitably adapt
the sample length and as a consequence the prediction horizon length to the
changing dynamics is introduced in this section. The main idea is to first
split the track into sectors. Specifically, we consider a number sn ∈ N of
sectors as in Chapter 5, Subsection 5.2.1, each one with length Γi, such that

sn∑
i=1

Γi = sf . (6.14)
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Figure 6.1: Example of sector choice for a track with sf = 20 and sn= 5. Possible sectors
based on similar characteristics such as velocity limits and Rg values are depicted.
Also, as an example, graphical representations of the distances, Dp(k), DΓ(k) and
Db(k) are shown at the current step k.

The choice of sectors is carried out by considering characteristics such
as the presence of constant velocity limits and the resistance force due to the
slopes and track curvature Rg(k) throughout that particular sector, which
are known in advance, refer to Fig. 5.1 for an example.

At any step k, the braking distance Db(k) needed for the train to stop
based on the current velocity x2(k) can be calculated by the following equa-
tion:

0 = x2(k) +Db(k)
(
−FB(x(k),uσ(k)(k))−FR(k,x(k)

Mx2(k)

)
(6.15)

Also, at any step k, let the remaining distance to be covered by the train
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to reach the arrival station be denoted by Dp(k). For a graphical represen-
tation of Db(k) and Dp(k), refer to Fig. 8.1 for an example.

Finally, the resultant distance δD(k) can be calculated by

δD(k) = Dp(k)−Db(k). (6.16)

Let D be a constant parameter chosen as the sampling distance under nor-
mal conditions. At step k, let the remaining distance of the particular sector
that the train is in be denoted by DΓ(k). Again, refer to Fig. 8.1 for an ex-
ample. The adaptive RSPC strategy is obtained by the following algorithm.

Algorithm 6 Adaptive RSPC Algorithm

if δD(k) > 0 ∧ DΓ(k) ≥ ND then
Ds(k) = D,χ(k) = σ∗(0|k)

else if δD(k) > 0 ∧ DΓ(k) < ND then
Ds(k) = DΓ(k), χ(k) = σ∗(0|k)

else if δD(k) = 0 then
Ds(k) = DΓ(k), χ(k) = σ(k) = 1, i.e. u1(k) = −1.

end if

6.3 Results

We tested the proposed strategies in realistic simulations with real train data
provided by Alstom for a section of regional trains. The parametric values
of the train used in the controller are (see (6.2)-(6.3)) M = 267464 kg,
Ms = 255200 kg, A = 3597.6 N, B = 119.5 Nsm−1 and C = 6.97 Nsm−2,
while the maximum traction and braking forces allowed for this particular
train are in the form of look up tables (see Fig. 6.2). These forces are
of the form FT (x(k), u(k)) = FTmax(x2(k))u(k), and FB(x(k), u(k)) =
FBmax(x2(k))u(k). The input variable is constrained in the set [−1, 1].

The considered track has curvature and slopes as plotted in Fig. 6.3 and
Fig.6.4 , and velocity limits reported in Fig. 6.5.The train has to reach the
next station at sf = 808 m in xf = 80 s. The track is divided into sn = 8
sectors.

The simulation results presented have been obtained using CITHEL,
which is the official software developed by Alstom. The resulting veloc-
ity profiles using different approaches are shown in Fig. 6.5. We compare
strategies where Algorithm 6 is applied with the, “Eco-drive coasting” strat-
egy which is at present being used by Alstom.

The obtained velocity profiles are presented in Fig. 6.5. All the velocity
constraints are always satisfied. Regarding the obtained final time between
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Figure 6.2: Maximum traction force FTmax (dashed) and braking force FBmax (dotted)
allowed for the train considered in the simulation.
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Figure 6.3: Slopes of the Regional track segment considered in the simulation.

the terminal state and the target one at k = kf , in our case the train arrived
a bit early in xf = 77 s, which essentially depends on tuning of γS . This
result is perfectly compatible with the desired performance in this appli-
cation. Fig. 6.5 also presents the “all-out” solution, which achieves the
shortest arrival time compatible with all the constraints. This corresponds
to xf = 61 s. Table 6.1 provides a summary of obtained results. Analyz-
ing the results, it can be said that with better tuning of γS , adaptive RSPC
strategy is almost similar to the Eco-drive coasting solution, where the train
mostly coasts and arrives the station in a delay of 1 second. The adaptive
RSPC algorithm respects the final travel time at the expense of a bit more
energy since it arrives earlier but that mostly depends on tuning of γS and
can be made to arrive on time. In terms of computational time, the adaptive
RSPC outperforms the Eco-drive coasting solution by almost 10 times.
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Figure 6.4: Radius of Curvature of the Regional track segment considered in the simula-
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Figure 6.5: Simulation results. Velocity profiles as a function of the train position obtained
with different strategies: Adaptive RSPC (dotted line), Eco-drive Coasting (dash-dot).
The “all-out” solution (xf = 61 s) is shown with a dashed line, and velocity limits
with a solid line.

Table 6.1: Comparison of results obtained in terms of final arrival times and traction
energy ET with tests performed on CITHEL

xf (s) ET (KWH)

all-out 61 24.69
Eco-drive coasting strategy 81 12.58

Adaptive RSPC strategy 77 13.09

6.4 Conclusion

The purpose of this work was to provide a sub-optimal control solution to
predict the velocity profile of a railway vehicle by using adaptive RSPC
scheme. In the next chapter, this strategy will be further extended to a
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network of trains, where the trains will be allowed to exchange regenerated
braking energy available in the network.
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CHAPTER7
Collaborative Eco-Drive of Train Networks

via Predictive Control Strategies

Historically speaking, one of the earliest examples in railways, where re-
generative braking was introduced was the Baku-Tbilisi-Batumi railway
(Transcaucasus railway or Georgian railway) in the 1930s. Analyzing rail-
way energy consumption, more than 70 percent of the consumption corre-
sponds to traction requirements while the rest corresponds to non-traction
[41]. Hence, most of the new technologies are focused on reducing the
traction related energy consumption, for instance, adopting electrical trac-
tion systems, which are considered to be the most efficient traction systems
in the railway sector, due to their ability to regenerate and recover braking
energy which otherwise gets lost as heat into the environment.
Regenerative braking is an energy recovery mechanism that converts the
kinetic energy during braking into electricity, also known as regenerative
energy. The principle of regenerative energy usually involves a source Pan-
tograph, the traction motor/generator and the trains connected to the Pan-
tograph [84]. During regenerative braking, the traction motor acts as a
generator and restores part of the kinetic energy into electrical energy (see
Fig. 7.1 for details).
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Figure 7.1: Representational diagram explaining the normal electric traction, dynamic
braking and regenerative braking principle for an electrical train. This diagram has
been borrowed from [42]

Today, one of the most important research directions for energy efficient
operation of trains is based on developing techniques for efficient utilization
of this regeneration energy. Usually, the generated energy can either be fed
back to the Pantograph to be used instantaneously by other trains connected
to the Pantograph or stored on an energy storage device for later use. The
three most common energy storage devices known in the literature are bat-
teries, supercapacitors and flywheels, while other not so common devices
include superconductive energy storage and fuel cells. Application-wise,
the energy storage technologies used in railway industry can be divided
into two categories: on-board (OESS) and stationary (SESS) energy storage
systems. OESS are those installed inside the trains and can be used to store
the recovered energy of only one train, and hence the power and energy
capacity required is lower than SESSs. OSSs serve three main purposes on
board railway cars: energy consumption reduction, peak power reduction
and catenary-free operation. Catenary-free operation is a type of operation
in which a train with electric traction motor runs on a non-electrified line
using the energy from an energy storage device. These trains need storage
devices capable of not only providing a high peak for instance, but also
high energy capacity which is quite challenging and still very much open
to further investigation. SESS, on the other hand, when compared to an
on-board one, should have a higher energy capacity, while there is more
freedom regarding the sizing of the system. It should have both a high
power and energy capacity together with a long charge/discharge life cycle.
A recent review of the storage devices can be found in [33]. This stored
energy could be used in the next acceleration phase by the train. In [61],
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MPC was applied to reduce the overall cost of energy demanded from the
grid by considering factors influenced by energy storage devices and energy
exchange due to acceleration and deceleration of the trains connected to the
substation. While storing regenerative energy for later use can be good op-
tion, it requires huge changes in the present railway infrastructure and can
be economically quite demanding. Another direction to investigate is the
instantaneous use of this regenerated energy. Regenerated braking can or
cannot be directly incorporated into the EETC problem. With respect to the
incorporation in the EETC problem, it was first introduced in 1985 in [10],
where OCP (2.8) was reformulated to include regenerative braking. In par-
ticular, the reformulated objective problem is described below:

J = min
h

∫ tf

0

(h+(t)− ηh−(t))v(t)dt (7.1)

where the term ηh−v gives the braking energy regenerated by the train,
such that h−(t) = −min(h(t), 0) denotes the specific braking force (the
negative part of the control) and η ∈ [0, 1] is the recuperation coefficient
which determines the efficiency of the regenerative braking system, since
there is a limit on receptivity of the regenerative brakes [28]. In [17], a
predictive fuzzy-logic controller was particularly designed for DC railway
systems, where the aim was to minimize the energy demanded from the
grid by maximizing receptivity. In [10], further simplifications included in
the form of a level track. Finally, necessary conditions were derived by
PMP application, resulting in the following optimal control strategy

ĥ(t) =



hmax(v(t)) if λ(t) > v(t) (MA)
h ∈ [0, hmax] if λ(t) = v(t) (CR)
0 if ηv(t) < λ(t) < v(t) (C0)
h ∈ [−hmin, 0] if λ(t) = ηv(t) (RB)
−hmin if λ(t) < ηv(t) (MB)

(7.2)

where RB denotes regenerative braking. This strategy considered a time
domain model. Afterwards, in [48] the authors considered the EETC prob-
lem with regenerative braking with distance as the independent variable.
The reformulated cost function in space domain is given by:

J = min
h

∫ sf

0

(h+(s)− ηh−(s))ds (7.3)
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Substation Supervisor

Train 2Train 1

Train 3Train 4

γS2γS1

γS3γS4

Figure 7.2: Collaborative eco-drive architecture

They considered variable gradient and speed limits. However, rather
then the general states, time and velocity, they used time t(s) and total
energy E(s) = K(s) + P (s) as state variables, where K(s) is the kinetic
energy and P (s) is the potential energy at position s and formulated the op-
timal control problem accordingly. Finally, they derived the PMP necessary
conditions and also found the optimal control structure with five regimes in
space domain:

ĥ(s) =



hmax(K(s)) if λ(s) > K(s) (MA)
h ∈ [0, hmax] if λ(s) = K(s) (CR)
0 if ηK(s) < λ(s) < K(s) (C0)
h ∈ [−hmin, 0] if λ(s) = ηK(s) (RB)
−hmin if λ(s) < ηK(s) (MB)

(7.4)

Other contributions which incorporated regenerative braking into the
EETC problem can be found in [3, 12, 29, 66, 68] . In this thesis, regen-
erative braking can be easily incorporated by modifying the cost functions
in our developed strategies for the single train control presented in the pre-
vious chapters.

After discussions with our industrial partner Alstom, for the second part
of this thesis, it was decided to focus on developing strategies to effec-
tively use this regenerated energy by collaboration among trains which de-
rive power from the same source and hence can share available regener-
ated energy among themselves. Besides the reduction in overall energy of

80



7.1. Adaptive RSPC Algorithm in a Networked Train Setup

the train network, one advantage of using the available regenerative energy
rather than demanding energy from the power source is the reduction of
losses incurred during energy transfer from the power source to the train
demanding energy for traction. Existing works mostly focus on optimizing
the train timetables, so as to synchronize the acceleration and deceleration
of trains as much as possible [60, 62, 67, 84].

Having in mind energy regeneration and a collaborative framework to
exploit the available regeneration energy, three strategies for effective use
of this regenerated energy will be presented in this and the following chap-
ter. It is important to note here that only the trains connected to the same
substation are able to share energy among themselves in any case. Consider
trains operating under the same substation and capable of communicating
with each other. Let us denote each train in the network with the subscript
i = 1, . . . ,M. In all the strategies presented hereafter, we assume the sce-
nario, where the trains connected to the same substation follow the same
track and run delayed in time one after the other by some seconds. Next in
this chapter, we present two collaborative strategies with extensions from
Chapter 4 and Chapter 6, where we introduce a supervisor (refer to Fig.
7.2 for an example), which according to a predefined state dependent trig-
gering rule, assigns the weights of the terms constituting the cost function.
The main difference between the strategies presented in this chapter and
the next is that in this case, the value of the weights are always predefined
while in the next chapter, a dissension strategy based adaptive law which is
conceptually similar to Markov chains is used to calculate the values of the
weights instantaneously. In the next section, we present an collaborative
strategy based on the assumption that the supervisor has fully knowledge
of the states of all the trains connected to the substation.

7.1 Adaptive RSPC Algorithm in a Networked Train Setup

Here we have extended the adaptive RSPC strategy described in Chapter 6
to include a network of trains connected to the same substation. This work
has been presented in [26]. The corresponding trains models are as in (6.2)
with the receding prediction horizon Ni. In the networked setup, the cost
function for the ith train is given by:

Jiχi (xi, kτ ) =

Ni−1∑
j=0

(1− γSi(kτ ))`iσi(ji|ki)(xi(ji|ki), uiσi(ji|ki)(ji|ki))

+γSi(kτ )Fi(xi(Ni|ki))

(7.5)
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with χi = [σi(0|ki), . . . , σi(Ni − 1|ki)]> being the predicted switching
control sequence of the ith train. The terms

`iσi(ji|ki)(xi(ji|ki),uiσi(ji|ki)(ji|ki))

=

(
FTi((xi(ji|ki), uiσi(ji|ki)(ji|ki))− FRi(xi(ji|ki))

FTimax

)2

Fi(xi(Ni|ki)) =

(
xi1(0|ki) + Tihorizon(ki)− xi1(Ni|ki)

Tihorizon(ki)

)2

(7.6)
Finally, for the ith train, at each step k, the applied switching strategy

χi(k) is chosen according to the adaptive RSPC strategy in Algorithm 6.

7.1.1 Supervisor

Assume that the supervisor has full knowledge of the current train states
associated with a specific substation and is capable of enforcing a triggering
rule in order to assign the weights γSi in the cost function (7.5). The aim of
the proposed approach is to make the trains cooperate in order to exploit the
regenerative braking energy when one or more of the trains of the network
are on time and in braking operation mode. This would allow other trains
to accelerate, if they need, while fulfilling the constraints.

Assume γSi , i = 1, . . . ,M can take two values {γ(1)
Si
, γ

(2)
Si
} such that

γ
(1)
Si

< γ
(2)
Si

. So, at the triggering instant kτ for the ith train, the triggering
rule is written as

γSj(kτ ) =

{
γ

(2)
Sj

if ui(kτ ) = −1 (Braking)
γ

(1)
Sj

otherwise
, ∀ j 6= i . (7.7)

This means that when the ith train is in braking, the other trains can exploit
its regenerative energy to accelerate if they need. This is done by increas-
ing the weight γSj on the time term of the cost function. Otherwise, all
the trains maintain the previous value, set according to the evaluation of a
Pareto graph between traction energy and journey time. For an illustrative
example, Figure 7.3 shows the case with γSi varying from γ

(1)
Si

= 0.71 and
γ

(2)
Si

= 0.9, corresponding to the minimum and maximum energy consump-
tion cases respectively, such that no handle oscillations are generated. The
graph is obtained for a track of 807 m. Table 7.1 shows the corresponding
values of the ith train in terms of journey time xfi , traction energy ETi and
braking energy EBi .
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Figure 7.3: Pareto graph between traction energy and journey time computed varying γSi
from γ

(1)
Si

= 0.71 to γ(2)
Si

= 0.9

0 500 1000 1500 2000 2500 3000

k (m)

-20

0

20

α
(k
)

0 500 1000 1500 2000 2500 3000

k (m)

0

1

2

r
c
(k
)
(m

)

×104

Figure 7.4: From the top:Slope profile over the considered track: Radius of the curves of
the considered track. The units are in meters.

Table 7.1: Values of journey time, traction and braking energy as a function of γSi

γSi xfi ETi (kWh) EBi (kWh)

0.71 324.8374 25.8686 -29.8699
0.75 315.7481 25.0872 -28.9236
0.83 287.5286 26.4371 -30.2063
0.87 277.0545 28.1431 -32.1269
0.9 269.921 29.5983 -33.6401
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Table 7.2: Results obtained with and without collaborative eco-drive

J1χ1
J2χ2

ET1 (kW h) ET2 (kW h) EB1 (kW h) EB2 (kW h) xf1 (s) xf2 (s)

Eco-Drive 2083.2 2083.2 24.6698 24.6698 -28.1692 -28.1692 300.1505 300.1505
Co-Eco-Drive 2083.2 2037.2 24.6698 25.7221 -28.1692 -29.3333 300.1505 296.7020

Remark 7.1.1. Note that, the triggering rule (7.7) is reasonable in practice
since if the train j is not on time, it can exploit the energy of train i to
accelerate. On the other hand, one can assume that the train j could decide
not to accept the regenerative energy and maintain its current weight γSj
for the cost function. �

7.1.2 Case Study

Here simulation results on a realistic scenario are presented. Simulations
have been carried out by considering two trains. The considered track has
three stops. In the considered scenario the consecutive trains run shifted in
time by 60 s. As discussed previously, assume that when the first train is
approaching the stop and needs to brake thus regenerating energy available
for sharing, the second delayed train, which could be either in acceleration
mode or in cruising mode can benefit from this energy rather than demand-
ing energy from the substation.

The two trains have identical parameters which are similar to the ones
used in Chapter 6 (see Section 6.3 for details). Furthermore, since we
are considering three stops instead of one, the considered track has cur-
vature and slopes as illustrated in Fig. 7.4. Fig. 7.5 shows the time evolu-
tion of the velocity vi for both the trains and the evolution of the weights
γSi , i = 1, 2 when the standalone eco-drive and the collaborative eco-drive
(co-eco-drive) methods are applied, respectively. As expected the supervi-
sor verifies the status of the trains. When the first train at about 80 s starts
to brake, the second train, which is in cruise mode, decides to accelerate,
by changing its weight value to 0.9, thus exploiting the braking energy of
the first one. After the first stop, assuming that there are no delays, the
same situation is repeated at time about 180 s and then at time about 300 s.
Table 7.2 shows the results obtained through the two strategies in terms of
final value of the cost function Jiχi , traction energy ETi , braking energy
EBi , and journey time xfi . Looking at the results, we can conclude that in
the case of collaboration, the value of the cost of the second train which
receives the regenerated braking energy is reduced, though the traction en-
ergy associated with this train increases. This is due to the fact that the
second train receives the regenerated energy from the first train and uses
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Figure 7.5: Time evolution of the velocity profiles vi, i = 1, 2 for both the considered
trains and the corresponding weights γSi of the cost function when the standalone
eco-drive approach (solid black line) and the collaborative eco-drive method (dashed
black line) are used
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Figure 7.6: Representational diagram of an equivalent DC electric circuit for substation
model of a train network. This diagram has been borrowed from [62]

it to accelerate and go faster. Looking at the final times, with the use of
regenerated braking energy of the first train, the second train was able to
arrive at the final stop faster, without asking any extra energy from the sub-
station, which proves the advantage of using collaboration among trains as
compared to no collaboration. Not only does collaboration help in saving
energy directly but also prevents losses as a result of the transfer of energy
from the substation to the train.

7.2 Multi-objective Relaxed SBPC Algorithm in a Networked
Train Setup

For this strategy, we firstly present a simple model of the substation, which
is essential to detect the regenerated energy in the substation network by
detection of voltage change at the train nodes connected to the substation.
In general, electrical trains can be classified as AC or DC based on their
power source. In the earliest cases, electrical trains were based on DC
power source, since AC was not well understood at that time, and insulation
for high voltage lines (since AC systems are based on high voltage and low
current) was not available. DC electric trains run at relatively low voltage
(600 to 3000 volts), hence requiring very high currents in order to transmit
sufficient power needed by the trains. So, they are not very feasible for
the purpose of long distance trains as transferring high currents over huge
distances can result in huge power losses. For the purpose of this thesis,
we consider DC electric trains, which travel essentially short distances and
hence current losses in the DC framework are not huge.
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Figure 7.7: Maximum substation traction current(solid line) and braking current (dotted)
allowed for trains considered in the simulation for a source traction voltage of 600
volts and source braking voltage of 685 volts.

7.2.1 Substation Model

Here, we introduce the electric model of the substation. In fact, as depicted
in Fig. 7.6, from electrical view point one can model all track as a sequence
of resistors connected to DC sources. Specifically, assume to have a resis-
tive grid and let Vs be the substation source voltage, which is constant (for
example 3000 volts in Italy), and let VTi and Ii be the train voltages in corre-
spondence of its position and train currents, respectively. Moreover, letting
Rs be the substation resistance, and R(si) be the value of the resistance
corresponding to the train position s, the algebraic model of the substation
is captured by:


VT1

VT2

...
VTM

 =


−Rs −R(s1) −Rs · · · −Rs

−Rs −Rs −R(s2) · · · −Rs

... −Rs

. . .
...

−Rs −Rs · · · −Rs −R(sM)



I1
I2
...
IM

+


1
1
...
1

Vs . (7.8)

The value of R(si) considered in the simulation is 25 milli-ohms per km
as provided by Alstom, while the corresponding currents as function of the
train velocities are depicted in Fig. 7.7. For the ith train with i > 1 and
the trains running consecutively delayed in time one after the other, when
VTi > VTi−1

, it means that regeneration is occurring. In this case, it means
that the ith train behavior is that of a current generator, with current having
opposite direction (see Fig. 7.1).

The strategy presented in this section is an extension of the SBPC strat-
egy considered in Chapter 4 applied to the networked case. Now consider
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the ith electric train in the network controlled by a digital control unit in
discrete time, with sampling period Tsi . The train control problem for the
ith train has already been presented in detail in Section 4.1 of Chapter 4.
For model of the ith train, refer to Eq. (4.1). In this case, since we want
to use the regenerated energy available in the substation network, we will
relax the terminal constraints on final space and include them as a terminal
cost as in Subsection 4.3.2. In the networked case, the cost function for the
ith train is given by:

Ji =

kfi−ki∑
ji=0

`(xi(ji|ki), ui(ji|ki)) + ωiγi (7.9)

where

`i(xi(ji|ki), ui(ji|ki)) =

kfi∑
ki=0

γSi(I) |FTi(xi(ki), ui(ki))x2i(ki)| .

γi = ∆(xi(kfi), Xfi)

(7.10)

where γSi(VTi) depends on the train node voltage VTi , with
VTi = [VT1 , VT2 . . . VTM ]′.

7.2.2 Supervisor

Now, we are in a position to exploit this signal as a triggering event to use
the available regenerated energy in the network (see the control scheme in
Fig. 7.2). In order to do this, we introduce the following strategy. Specifi-
cally, assuming two trains one can use a law of the following form

γSi =

{
1 VTi < VTi−1

0 otherwise
. (7.11)

7.2.3 Case Study

Here simulation results on a realistic scenario are presented for Amsterdam
metros. Simulations have been carried out by considering two trains. The
considered track has four stops. In the considered scenario the consecutive
trains run shifted in time by 120 s. The two trains have identical param-
eters which are similar to the ones used in Chapter 4(see Section 4.4 for
details). Furthermore, since we are considering four stops instead of one,
the considered track has slopes as illustrated in Fig. 7.8.
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Table 7.3: Performances when using the proposed SBPC with (w/) and without (w/o)
Collaborative strategy.

i Collaboration strategy Ji [-] ETi (KWH)

1
w/ 1.1924e+10 19.9

w/o 1.1924e+10 19.9

2
w/ 1.7605e+09 23

w/o 1.1924e+10 19.9
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Figure 7.8: Slope profile over the considered track. The unit is in per mille.

Fig. 7.9 shows the evolution of the velocity x2i with respect to space
for both the trains when collaboration is used. As expected, the substation
verifies the status of the trains. When the first train starts to brake, the
second train, decides to accelerate, by changing its weight value to 0, thus
exploiting the braking energy of the first one. Table. 7.3 gives an idea of the
performance, when collaboration is used as compared to no collaboration.
As expected, with collaboration the cost decreases, but the traction energy
of the second train which uses the regenerated energy of the first train to
accelerate increases. This again shows the advantage of collaboration over
no collaboration. Finally, Fig. 7.10 and Fig.7.11 show the time evolution
of the velocity profile of the two trains when collaborating and their weight
evolution respectively. When the first train brakes, the weight of the second
train goes to zero and it starts accelerating.
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Figure 7.9: Evolution of the velocity profiles xi2 , i = 1 (solid line), 2 (dashed) of trains
for track.
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Figure 7.10: Time evolution of the velocity profiles xi2 , i = 1 (solid line), 2 (dashed) of
trains for the entire track.
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Figure 7.11: Time evolution of the corresponding weights γSi of the trains i =
1 (solid line), 2 (dashed) due to collaboration.

90



CHAPTER8
Collaborative Eco-Drive of Train Networks
via Receding Horizon Switched Predictive

Control and Dissension Strategy

This chapter presents another strategy for the collaboration among trains,
which is based on Markov chains and has been presented in [27]. The
strategy is again an extension of the adaptive RSPC strategy developed in
Chapter 6 to the networked train system. In this case, an adaptive law simi-
lar to the concept of Markov chains is used in order for the trains which are
connected to the same network to share the regenerated energy available
in the network. A network consists of trains which are connected to the
same substation and hence are able to share the regenerated energy among
themselves. The main difference as compared to the adaptive RSPC strat-
egy is that here the RSPC strategy is used with a time domain model of the
train and the time samples are no longer changing but constant. Though,
in time domain, there is possibility of the system dynamics in the form
of slopes and curvature and also velocity limits to be overlooked, with a
small enough sampling time, we can almost always make sure that it does
not happen. Also, time domain modeling somehow makes it easier for the
supervisor implementation in the networked case.
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8.1 Switched Networked Train Control Problem

Consider a network N withM trains operating under the same substation
and capable of communicating with each other. Let us denote each train
in the network with the subscript i = 1, . . . ,M. Now consider the ith
electric train in the network controlled by a digital control unit in discrete
time, with sampling period Tsi . Let us denote with ki ∈ Z the discrete time
variable, with xi(ki) = [xi1(ki), xi2(ki)]

T the states of the ith train, where
xi1 is its position and xi2 its speed, and with ui(ki) ∈ [−1, 1] a normalized
traction force, where ui(ki) = 1 corresponds to the maximum applicable
traction and ui(ki) = −1 to the maximum braking. The input ui is the avail-
able control variable. The train has to move from one station with position
xi1 = 0 to the next one, with position xi1 = xfi , in a prescribed time tfi .
In state space modeling, the prescribed arrival position sfi (see Subsection
2.1.1) and the maximum allowed velocity limit vimax(ki) (see Eq. 2.5) have
been renamed as sfi = xfi and vimax(ki) = xi2(ki) to link them to the states
they are representing. For a given pair of initial and final stations, the track
features (slopes, curvature) are known in advance. Thus, in nominal con-
ditions (i.e.with rated values of the train parameters, like its mass and the
specifications of the powertrain and braking systems), according to New-
ton’s laws and using the forward Euler discretization method, the equations
of motion of a reasonably accurate switched model of this system read:

xi1(ki + 1) = xi1(ki) + Tsixi2(ki)

xi2(ki + 1) = xi2(ki) + Tsi

(
FTi ((xi(ki),uiσi(ki)

(ki))−FBi (xi(ki),uiσi(ki)
(ki))−FRi (xi(ki))

Mi

)
(8.1)

As before, the parametric symbols have already been defined in Subsec-
tion 2.1.1 (see Tables 2.1 and 2.2 for more details). Making reference to the
formulation in Eq.(6.1), since the switching signal is externally updated and
is a function of space, system (8.1) is a time dependent switching system.

Remark 8.1.1. For the ith train in the network, the model (8.1) has been
rewritten in the form of (6.1), where σi(ki) ∈ {1 , . . . , 6} is the switching
signal, such that uiσi(ki)(ki) ∈ {−1, 0, 0.5, 0.75, 1, uiCR} respectively, in
terms of switching input handle, where uiCR identifies the cruising mode
(see Subsection 3.1.2). For example, σi(ki) = 1 implies that ui1(ki) = −1
is chosen to be applied to the system (6.2) at the sampling instant ki.

As already discussed in Subsection 2.1.1, besides the prescribed arrival
time tfi and position xfi , there are additional state constraints that must
be satisfied. These pertain to the limit on the maximum allowed velocity,
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xi2(xi1(ki)), which depends on the position xi1 , since a different velocity
limit is imposed for safety by the regulating authority according to the track
features at each position. Overall, by defining the terminal time step kf

.
=

btf/Tsc (where b·c denotes the flooring operation to the closest integer),
the state constraints read:

xi(0) = [0, 0]T

xi(kfi) = [xfi , 0]T

xi2(ki) ≥ 0, ki = 0, . . . , kfi
xi2(ki) ≤ xi2(xi1(ki)), ki = 0, . . . , kfi

(8.2)

The control objective is to maximize the energy efficiency of the ith train
while satisfying the constraints above, which translates mathematically to
minimizing the overall traction energy of the ith train given by:

Ji =

kfi∑
ki=0

FTi(xi(ki), uiσi(ki)(ki))xi2(ki) (8.3)

8.1.1 Problem Abstraction

The control problem described above for the ith train can be cast in a rather
standard form:

min
χi

kfi∑
ki=0

`iσi(ki)(xi(ki), uiσi(ki)(ki)) (8.4a)

subject to
xi(ki + 1) = fiσi(ki)(xi(ki), uiσi(ki)(ki)) (8.4b)

uiσi(ki)(ki) ∈ Ui, ki = 0, . . . , kfi − 1 (8.4c)

xi(ki) ∈ Xi, ki = 1, . . . , kfi (8.4d)
xi(0) = xi0 (8.4e)
x(kfi) ∈ Xfi (8.4f)

where xi ∈ X ⊂ Rn is the system state and xi0 is the initial condition. The
symbol χi = [σi(0), . . . , σi(kfi − 1)] represents the vector of switching
strategy to be applied to the plant. The sets Xi ⊂ X and Ui ⊂ U represent
the state and input constraints (including the discrete set of allowed inputs
or input modes as described above), and the set Xfi ⊂ X the terminal
state constraints, which include a terminal equality constraint as a special
case. Furthermore, Xi is assumed to be compact, as well as the terminal
constraint set Xfi .
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8.2 Receding Horizon Switched Predictive Control (RSPC)
Approach in Time Domain

To solve (8.4) , a switched NMPC strategy with a receding horizon ap-
proach (RSPC) is adopted similar to the one in Chapter 6. The main differ-
ence with the RSPC strategy is that we are assuming constant time samples
Tsi , which makes it easier in the networked case for the supervisor strategy
to be implemented. Also, due to the receding horizon approach explained
in Subsection 8.2.1, the terminal constraint on time (see (8.2)) has been
relaxed to be included as a terminal cost. Finally, in order to deal with
braking dynamics which is very difficult to capture with receding horizon
approach, a separate predictive braking approach in parallel is introduced.

8.2.1 Receding Horizon in a Networked Train Setup

Again consider the ith train in the network and denote its receding predic-
tion horizon by Ni. In the networked setup, the cost function for the ith
train is given by:

Jiχi (xi) =

Ni−1∑
ji=0

γSi(ki)`iσi(ji|ki)(xi(ji|ki), uiσi(ji|ki)(ji|ki))

+ (1− γSi(ki))Fi(xi(Ni|ki))

(8.5)

with χi = [σi(0|ki), . . . , σi(Ni − 1|ki)]> being the predicted switching
control sequence of the ith train. The terms

`iσi(ji|ki)(xi(ji|ki),uiσi(ji|ki)(ji|ki))

=

(
FTi((xi(ji|ki), uiσi(ji|ki)(ji|ki))− FRi(xi(ji|ki))

FTimax

)2

Fi(xi(Ni|ki)) =

(
xi1(0|ki) + Sihorizon(ki)− xi1(Ni|ki)

Sihorizon(ki)

)2

(8.6)

Remark 8.2.1. At each step ki, the horizon distance Sihorizon(ki) is the dis-
tance that the ith train needs to cover in that particular prediction horizon
to be able to fulfill the final constraints on time, given the maximum allowed
velocity limits, maximum allowed journey time, the final distance and the
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characteristics of the track. In order to compute Sihorizon , a heuristic ap-
proach based on known information such as the final distance to the desti-
nation, the journey time and resistance force due to slopes and curvature is
adopted.

8.2.2 RSPC Strategy

For the ith train, let us denote with xi(ji|ki), ji = 0, ..., kfi − ki the state
vectors predicted at space sample ki+ ji starting from the one at step ki. At
each step ki ∈ [0, kfi − 1], we formulate the following FHOCP:

min
χi(k)

Ni−1∑
ji=0

`iσi(ji|ki)(xi(ji|ki), uiσi(ji|ki)(ji|ki)) + Fi(xi(Ni|ki)) (8.7a)

subject to

χi(k) = [σi(0|ki), . . . , σ(Ni − 1|ki)] (8.7b)

xi(ji + 1|ki) = fiσi(ji|ki)(xi(ji|ki), uiσi(ji|ki)(ji|ki)), ji = 0, . . . , Ni − 1 (8.7c)

uiσi(ji|ki)(ji|ki) ∈ Ui, ji = 0, . . . , Ni − 1 (8.7d)

xi(ji|ki) ∈ Xi, ji = 1, . . . , Ni (8.7e)

xi(0|ki) = xi(ki) (8.7f)

xi(Ni|ki) ∈ Xfi (8.7g)

We denote with χ∗i (ki) = [σ∗i (0|ki), . . . , σ∗i (Ni − 1|ki)] the optimal
switching strategy of the ith train obtained by solving (8.7) . Moreover, we
denote with x∗i (ki) and u∗iχ∗

i
(ki)

(ki) the corresponding predicted sequences
of state and input vectors:

x∗i (ki) = {x∗i (0|ki), . . . , x∗i (Ni|ki)} (8.8a)

u∗iχ∗
i
(ki)

(ki) = {u∗iσ∗
i
(0|ki)

(0|ki), . . . , u∗iσ∗
i
(Ni−1|ki)

(Ni − 1|ki)} (8.8b)

where

x∗i (0|ki) = xi(ki) (8.8c)

x∗i (ji + 1|ki) = fiσ∗
i
(ji|ki)

(x∗i (ji|ki), u∗iσ∗
i
(ji|ki)

(ji|ki)) (8.8d)
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The RSPC strategy is obtained by recursively solving (8.7), as described
by the following pseudo-algorithm.

Algorithm 7 RSPC Strategy

1. At sampling instant ki, measure the state xi(ki) and solve the FHOCP (6.9). Let
χ∗

i (ki) be the computed switching strategy solution;

2. Apply to the plant the first element of the control sequence u∗
iχ∗
i
(ki)

(ki).

3. Repeat the procedure from 1) at the next sampling period.

Algorithm 7 defines the following switching strategy

χi(ki) = σ∗i (0|ki) (8.9)

which in turn defines the following feedback control law:

uiσi(ki)(ki) = µi(xi(ki)) = u∗iσ∗
i
(0|ki)

(0|ki), (8.10)

and the resulting model of the closed-loop system is:

xi(ki + 1) = fiσ∗
i
(0|ki)

(xi(ki), µ(xi(ki)) (8.11)

Finally, for the ith train, at each step k, the applied switching strategy
χi(k) is chosen according to the adaptive RSPC strategy in Algorithm 8.

8.2.3 Adaptive RSPC Strategy

At any step ki, the braking time Tbi(ki) needed for the train to stop based
on the current velocity xi2(k) can be calculated by the following equation
with the input uiσi(ki)(ki)) = −1:

0 = xi2(ki) + Tbi(ki)

(
−FBi (xi(ki),uiσi(ki)

(ki))−FRi (xi(ki))
Mi

)
(8.12)

Also, at any step ki, let the remaining time left for the train to reach
the arrival station be denoted by Tpi(ki). For a graphical representation of
Tbi(ki) and Tpi(ki), refer to Fig. 8.1 for an example.

Finally, the resultant time δTi(ki) can be calculated by

δTi(ki) = Tpi(ki)− Tbi(ki). (8.13)

The adaptive RSPC strategy is obtained by the following algorithm.
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Figure 8.1: As an example, graphical representations of the prediction times for braking,
Tpi(ki) and Tbi(ki) are shown at the current step ki for the ith train.

Algorithm 8 Adaptive RSPC Algorithm

if δTi(ki) > 0 then
χi(k) = σ∗

i (0|ki)
else if δTi(ki) = 0 then
χi(ki) = σi(ki) = 1, i.e. ui1(ki) = −1.

end if

8.3 Dissension Strategy

The aim of the proposed dissension strategy is to make the trains of the
network cooperate in order to exploit the regenerative braking energy when
one or more of the trains are in braking operation mode. When braking is
detected in any of the trains, the non-braking trains are allowed to accel-
erate if they need, of course without constraint violation on the maximum
allowed velocity limits. The main idea underlying this strategy is to induce
this behavior though the tuning of the weights γSi associated with each
train i in the RSPC cost function (8.5) by the application of the dissension
strategy. The proposed control scheme is reported in Fig. 8.2.

Hereafter we assume that the state of the network is detected by a super-
visor or each train i has full knowledge of the actual state of the other ones.
The network N can be described through a directed graph G = (N , E),
where N = {1, . . . ,M} is the set of nodes (trains), E ⊆ N × N are
the edges associated to communication links such that (tt, tr) belongs to
E , if and only if the train tt transmits information to train tr and the ith
train can be considered as ith agent of the network. Moreover, let Nr =
{tr ∈ N : (tt, tr) ∈ E} be the set of receiving neighbors of agent i, while
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Figure 8.2: Collaborative eco-drive using dissension strategy architecture.

Nt = {tt ∈ N : (tr, tt) ∈ E} be the set of transmitting neighbors of agent
i. Moreover, the communication graph is symmetric and complete, i.e.,
Nt = Nr = N and Ni = N \ i, respectively. The notation S represents
the number of states of each agent such that p = 1, . . . ,S. For our case,
consider that each train i ∈ N of the substation can assume two possible
states, i.e., S = 2:

1. State 1: indicates the braking (B) operation mode;

2. State 2: all the other possible modes: Acceleration (AC), Cruising
(CR), Coasting (CO).

For the sake of clarity, the continuous-time domain is considered. Hav-
ing in mind a dissension behavior of the trains in the network, for the ith
train in the network, we define the following adaptive law in order to deter-
mine the weights γSi in (8.5), i.e.,

q̇i =
(
QT
i +ATi

)
qi (8.14)

where qi = [γSi , 1− γSi ]
T . The matrices Qi and Ai are Metzler matrices.

Matrix Qi satisfies the property 1TQi = 0, while the matrix Ai represents
the interaction dynamics of the agent i with the neighboring agents, such
that

almi(t) =
λp
M− 1

∑
κ∈Ni

Iκ (8.15)

Iκ =

{
1 p = 1, (i.e., B)
0 otherwise

(8.16)
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with λp being the influence strength intensity, while Iκ being an indicator
function equal to one when the κth train is braking, zero otherwise and

alli(t) = −
S∑

m=1,m 6=l

almi(t) (8.17)

Now, consider the overall networkN . Let Σ(t) ∈ SM be the state of the
network and q(t) = ⊗Mi=1qi(t) denote the distribution of Σ(t). The entries
of q(t) represent the condition at time t of a given configuration of the train
states in the network. The dynamics of q(t) obeys the differential equation

q̇(t) = QT
0 q(t) (8.18)

with

Q0 =
M∑
i=1

ISi−1 ⊗Qi ⊗ ISM−i . (8.19)

Given the interaction model (8.14) of the ith train, the whole dynamics
of the network is given by

q̇(t) = (QT
0 + AT0 )q(t) (8.20)

Model (8.20) describes the desired dissension behavior. That is, the
transition rate to state 2 (AC, CR, CO) undergoes an increase which is pro-
portional to the number of neighbors that are in state 1 (B). Since λ2 = 0,
trains cannot brake if the other ones are accelerating. Moreover, simultane-
ous state jumps are not allowed.

Remark 8.3.1. Note that, in principle the case λ2 > 0 could be possible. In
fact, if for some reason, the authority decided to force some delayed trains
to accelerate, it could exploit also the regenerative energy of trains which
are on time and accelerating, making them brake. Hence, with λ2 > 0, it is
possible for the transition rate to state 1 (B) to undergo an increase which
is proportional to the number of neighbors that are in state 2 (i.e., AC, CR,
CO).

Remark 8.3.2. Note that the proposed adaptive strategy resembles a con-
sensus algorithm characterized by time-homogeneous Markov stochastic
processes with infinitesimal generator Qi ∈ R2×2, the entries qlmi of which
represent the transition rates between SM states Pi(t), with Pi(t) ∈ S and
S = {1, 2}. By analogy, the weight γSi are the probability of being in state
1 (i.e., in braking mode) at time t. Precisely, one would have that

γSi = P {Pi(t) = 1} . (8.21)
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Analogously, the probability distribution would obey the differential equa-
tion (8.14) with entries of the Metzler matrix Ai such that

almi(t) =
λp
M− 1

∑
κ∈Ni

IPκ(t) (8.22)

IPκ(t) =

{
1 Pκ(t) = 1

0 otherwise
(8.23)

with λ1 > 0 and λ2 = 0. In this case, the model describes a dissension
behavior, that is the transition rate to state m undergo an increase which is
proportional to the number of neighbors that share opinion l.

8.4 Case Study

Consider a substation with three trains (M = 3). The matrix A0 for this
network topology is as follows:

−3λ1 λ1 λ1 0 λ1 0 0 0
0 −λ1 0 λ1

2
0 λ1

2
0 0

0 0 −λ1
λ1
2

0 0 λ1
2

0
0 0 0 −λ1 0 0 0 λ1

0 0 0 0 −λ1
λ1
2

λ1
2

0
0 0 0 0 0 −λ1 λ1 0
0 0 0 0 0 0 −λ1 λ1

0 0 0 0 0 0 0 0


.

Note that, for instance the first row represents the transition starting from
Σ(t) = [1 1 1]T , that is when all the trains are in braking and only one
train at that time is allowed to accelerate if the others are braking. Con-
versely, the last row is zero because it corresponds to transitions starting
from Σ(t) = [2 2 2]T , that is they are in acceleration, cruising or coasting
mode. Analogously, the bottom left 4× 4 block is also zero.

The trains used in the simulations have exactly the same parameters,
which are similar to the train used in the simulations of Chapter 6. Simu-
lations have been carried out by considering three trains (N = 3), with the
total track having 20 stops. The route has a total length of 22.4 km. The pa-
rameters of the entire track, which are curve radius and slopes are shown in
Fig. 8.3. Furthermore, in the considered scenario the consecutive trains run
shifted in time by 48 s and 80 s, respectively with respect to the first one.
The sampling time is Ts =0.4 s and the initial weights for each train are
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Figure 8.3: From the top:slope profile of the considered track in per mille with respect to
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Figure 8.4: Evolution of the velocity profiles xi2 , i = 1 (solid line), 2 (dashed), 3 (dotted)
of trains for the entire track.
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Figure 8.5: From the top: time evolution of the velocity profiles xi2 , i =
1 (solid line), 2 (dashed), 3 (dotted) of trains over time; time evolution of the handle
ui, i = 1 (solid line), 2 (dashed), 3 (dotted); time evolution of the weights γSi , i =
1 (solid line), 2 (dashed), 3 (dotted) of the cost function (8.5).
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Table 8.1: Performances when using the proposed RSPC with (w/) and without (w/o)
Dissension strategy.

i Dissension strategy Ji [-] ETi (KWH) EBi (KWH)

1
w/ 50572 545.46 401.54
w/o 50610 511.29 372.22

2
w/ 37455 581.82 415.13
w/o 44886 503.58 349.26

3
w/ 43126 557.93 397.42
w/o 47971 500.09 349.26

chosen as γSi = 0.5 being the first entry of the Frobenius left eigenvector
associated with Qi (i = 1, 2, 3).

Fig. 8.4 shows the evolution of the train speed over all the track. It
can be observed that the velocity limits are always fulfilled and sometimes
trains behave in different way depending on the weights γSi used in the cost
function. More specifically, the effect of the Dissension strategy can be bet-
ter appreciated in Fig. 8.5, where for the sake of clarity only the first four
stops (5 km) are illustrated. Fig. 8.5, in fact, reports the time evolution of
the velocity xi2 for all the trains, the corresponding inputs uiσi and weights
γSi , i = 1, 2, 3. As expected, after 48 s the second train (dashed line) starts
to run and analogously the third train (dotted line) after 80 s. While initially
all the profiles are identical, the effect of Dissension strategy is visible at
70.8 s when the second train is induced to accelerate by virtue of the brak-
ing energy provided by the first train (solid line). The same situation occurs
at the time instant 115.2 s when the second train starts to brake and the third
one accelerates. At the time 214 s the first train instead accelerates thanks
to the braking energy provided by the second one. In correspondence of
these events the values of γSi of the braking trains decrease from 0.5 to 0.3.
Note also that γSi is reset equal to 0.5 after each stop. Numerical results for
the performances in terms of value of the cost function (Ji), traction energy
(ETi) and braking energy (EBi), both expressed in KWH, are reported in
Table 8.1. It can be observed that the values of the cost function are re-
duced for all the trains when the proposed RSPC with Dissension strategy
is adopted. As a consequence of this mechanism, the traction energy of
all the trains is higher with respect to the case without collaboration. This
is because the braking energy shared among the trains is exploited. On
the other hand, higher braking energy is required. Then, by virtue of this
strategy, trains do not need to require energy from the grid, thus avoiding
possible losses and achieving a better grid utilization.
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8.5 Conclusion

This chapter considered the problem of energy efficient train operation with
eco-drive in a collaborative way. To address this problem, an optimal con-
trol solution to predict the velocity profile of a train by using switching
RSPC algorithm in a collaborative fashion was proposed. For the purpose,
a Dissension strategy was introduced to manage all the trains governed by
the same substation and tune the RSPC law in order to use the braking en-
ergy, while taking into account constraints on velocity and journey times.
Results show that the proposed RSPC is able to minimize the traction en-
ergy, which depends on the input handle and on the characteristics of the
track while fulfilling all the constraints. Moreover, the Dissension strategy
allows trains to effectively use the regenerated energy which is available in
the substation when braking occurs.
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CHAPTER9
Conclusions

This thesis explored the problem of energy efficient control of railways.
The main goal was to develop driving styles which are energy efficient and
environment friendly. Moving from the current state of art, two main re-
search directions were explored. The first research direction was associated
with a single train control problem, where the control problem was to find
the best driving strategy for the train to go from one stop to another, given
an optimal timetable. As mentioned, EETC strategies can be either fully au-
tomated (ATO) or serve as an advisory system to the driver (DAS) for the
purpose of assisting drivers in following an energy efficient driving style.
For this purpose, three control strategies using Model Predictive Control
(MPC) were presented. In the first two strategies, shrinking horizon tech-
niques were combined with input parametrization approaches to reduce the
computational burden of the control problem and to realize the nonlinear
integer programming control problem which arises in the DAS scenario,
while the third strategy was based on switching MPC with receding hori-
zon. All the strategies were tested on the official simulation tool CITHEL
of our industrial partner Alstom, and the obtained results in comparison
with the existing techniques were proven to be more energy efficient.

The second research direction, which falls under the paradigm of col-
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laborative eco-drive control strategies, involved multiple trains belonging
to a substation network. The main aim was to use the energy regenerated
by the braking trains through collaboration among the trains connected and
active in the network. In this case, three strategies to decide the collabo-
rative law were presented along with the extensions from the single train
control strategies presented in the first part of the thesis. For the design of
collaborative laws, techniques such as manual supervision, substation mod-
eling and dissension based adaptive laws with concept similar to Markov
chains were used. The strategies were validated with simulation examples.
Finally, comparisons of energy efficiency with and without collaboration
were presented in each case, which showed the advantage of using the de-
veloped collaborated laws as compared to no collaboration.
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