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SUMMARY

Compressible flows in the neighbourhood of the vapour-liquid saturation curve and critical point
are found in many technical applications, including hybrid rocket engines, power cycles, natural
gas extraction and pharmaceutical processes. Operating at such high densities entails phenomena
that have no counterpart in the dilute, ideal-gas regime which is often assumed in the theory of
gasdynamics. Examples are: the increase of the speed of sound in adiabatic expansions, the increase
of the Mach number across oblique shock waves and its reduction along isentropic expansions,
the admissibility of rarefaction shocks, the reflection of oblique shocks as Prandtl-Meyer fans. At
the basis of these gasdynamic effects is the peculiar thermodynamic behaviour of the substance
which cannot be properly modelled, neither quantitatively nor qualitatively, using the ideal gas law.
To emphasise their non-ideal thermodynamic nature, effects such as those mentioned above are
referred to as non-ideal effects.

Progress in the field of Non-Ideal Compressible Fluid Dynamics (NICFD)—the branch of
fluid mechanics devoted to the study of compressible flows whose behaviour deviates from that
predicted by the ideal-gas model—will enable the improvement of existing industrial processes
and machinery exploiting substances close to their critical point, as well as support the design of
new ones. The contribution to NICFD given by the study documented herein is related to steady
supersonic flows and in particular to those developing in confined geometries. In this context, a
fundamental research question motivates the investigation: What are the physically admissible
flow configurations in the non-ideal regime and how do they differ from those arising in ideal-gas
flows? Also, what are the necessary conditions to observe a specific configuration, i.e. how is the
flow field linked to the properties of the substance and the boundary conditions? These are key
aspects in technical applications involving non-ideal supersonic flows and questions that this work
will address.

To achieve the research goal, a thorough theoretical analysis of steady supersonic flows in the
non-ideal gasdynamic context is performed. Efforts concentrate on three main complementary
areas: flows in converging-diverging nozzles, flows around compressive/rarefactive ramps, shock
reflections and interactions. These are elementary building blocks of general internal supersonic
flows. A fully non-linear analysis is carried out to complement and extend previous studies relying
on asymptotic expansion theory or numerics. The converging-diverging nozzle is the prototype
of a variable area duct, the flow past ramps exemplifies the abrupt deflection of a supersonic
stream (of course important for external flows as well), performed, e.g., though a shock wave
which will be reflected by an opposing wall or interact with another incident shock. It is assumed
that thermoviscous effects can be neglected and thus that the flow can be fully described by the
Euler equations coupled with the Rankine-Hugoniot relations at points of jump discontinuity.
On the other hand, an arbitrary equation of state of the fluid is allowed. In particular, the usual
constraints of classical gasdynamics on the curvature of the isentropes in the pressure–density or
pressure–specific volume plane, which ultimately determines the qualitative evolution of the flow,
are dropped.

Flows in converging-diverging nozzle are studied using the quasi-one-dimensional approxima-
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tion. A novel analytical approach sheds light on the connection between a general adiabatic flow
field and the underlying local isentropic-flow features, including their qualitative change across
shock waves. Isentropic flows are first classified to ease the construction and inspection of shocked
flows, which are computed by means of shock-fitting techniques. The idea of functioning regime
is introduced to analyse the response of the system to variations in the outlet pressure at fixed
stagnation conditions at the nozzle inlet, i.e. fixed reservoir conditions, assuming the nozzle to be
connected to an upstream reservoir. Extending previous results available in the scientific literature,
ten different functioning regimes are singled out which include the ideal-gas-like scenario and
nine non-ideal configurations. Key features of the non-ideal functioning regimes are the inclusion
of rarefaction shocks to achieve arbitrarily large Mach numbers and the possibility of up to three
shocks in nozzles with subsonic outflow. Then, the transition between the different classes of flow
is investigated and ultimately a thermodynamic map of the reservoir conditions resulting in each
functioning regime is produced. This map enables the identification of the thermodynamic region
of interest for the observation of non-ideal nozzle flows.

To investigate supersonic flows past ramps, a general theory of oblique waves, i.e. waves
generating a deflection of the supersonic stream, is developed. The analysis of oblique waves is
performed by resorting to the concept of wave curves. The wave curve is the set of downstream
states connected to a given upstream state by means of an oblique wave. Inspection of the
wave curve structure for different upstream states reveals that, in addition to the conventional
configuration consisting of compression oblique shocks and expansion Prandtl-Meyer fans, non-
ideal configurations exist which include rarefaction shocks, compression fans and composite
waves (combinations of shocks and fans). The connection between the upstream state and the
configuration of the wave curve is explained and depicted through the use of thermodynamic maps.
Further research in the context of oblique waves concerns oblique shocks featuring a non-ideal
increase of the Mach number, which are systematically examined providing necessary conditions
for their occurrence, and the extension of the typical shock angle–deflection angle diagram of
oblique shocks with an additional half-plane corresponding to Prandtl-Meyer fans.

Then, the developed theory of oblique waves is applied to the investigation of shock reflections
and interactions in non-ideal gasdynamics. The attention is placed on the neighbourhood of the
singularity point where oblique waves intersect. Thanks to non-ideal effects such as the Mach
number increase across shock waves, rarefaction shocks, compression fans and composite waves,
the classical picture of shock reflections and interaction is enriched with new flow patterns. An
overview of the most relevant configurations is given.

Finally, a realistic application where non-ideal supersonic flows occur is considered, namely
the expansion in the turbine of an Organic Rankine Cycle (ORC) power plant. Focusing on
supersonic stator vanes, firstly the flow is forced into a converging-diverging channel and then,
at the trailing edge of each blade, oblique waves are generated due to the rotation imposed by
the finite thickness of the trailing edge or to accommodate post-expansion or compression. The
oblique waves generated on the pressure side of the blade propagate towards the suction side
of the neighbouring blade and undergo a reflection when they impinge on the blade wall. The
influence of non-ideal effects on the blade design and on the off-design performance is studied
by means of numerical simulations. Advantages and disadvantages of operating in the non-ideal
gasdynamic regime are discussed for a few specific examples, nonetheless providing more general
considerations.
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Chapter 1. Introduction

1.1 Non-Ideal Compressible Fluid Dynamics
In the continuum-mechanical description of fluids, the general laws of conservation of mass,
momentum and energy must be supplemented with constitutive relations characterizing the material
properties of the fluid. For both constituents in this description, the level of approximation that
is considered satisfactory dictates the choice of a model. For example, in many applications the
effects of viscosity, heat conduction, chemical reactions, relaxation, etc. can often be neglected,
thus resulting in simpler governing equations. Alongside, the selection of a suitable constitutive
model is crucial, inasmuch as dynamical evolution of a fluid is largely influenced by its material
properties. This issue is addressed here in the context of compressible fluid dynamics, namely the
branch of fluid mechanics devoted to the study of fluid flows in the compressible regime.

Compressible fluid dynamics makes extensive use of the ideal-gas model (see, e.g. Hayes,
1958; Zucrow & Hoffman, 1976; Landau & Lifshitz, 1987; Thompson, 1988; Anderson, 2010),
which is undeniably the simplest but nonetheless powerful, thanks to the capability of providing
closed-form expressions in many occasions. For most applications involving dilute-gas flows, the
ideal-gas model is reasonably accurate, both qualitatively and quantitatively. However, a significant
departure from ideal-gas behaviour is observed when approaching the vapour-liquid saturation
curve and critical point (see for example the generalised compressibility chart, e.g. in Callen 1985),
i.e. when intermolecular attractive forces come into play, as first noticed by van der Waals (1873).
In this (broad) range of thermodynamic conditions, the predictions of the ideal-gas model can be
not only quantitatively, but also qualitatively, inaccurate (see, e.g., Menikoff & Plohr, 1989). It is
in this context that Non-Ideal Compressible Fluid Dynamics (NICFD) is established as a branch of
fluid mechanics studying the motion of compressible fluids not obeying ideal-gas thermodynamics.
That is, the term non-ideal does not refer to dissipative mechanisms such as internal friction or heat
conduction or to chemical reactions; rather it indicates the occurrence of phenomena that cannot
be captured or predicted if the ideal-gas model is used to describe the substance.

NICFD encompasses fluid flows in the two-phase (vapour-liquid) region and in what is often
referred to as the dense-gas region, by contrast with the dilute-gas region where the ideal-gas
model is accurate. The boundary between ideal and non-ideal compressible fluid dynamics can be
formalized by introducing the thermodynamic quantity Γ, known as the fundamental derivative of
gasdynamics (Thompson, 1971), which is given by

Γ =
33

2c2

(
∂2P
∂32

)
s

= 1 +
c
3

(
∂c
∂P

)
s

, (1.1)

where P is the pressure, 3 the specific volume, s the specific entropy and c =
√

(∂P/∂ρ)s is the
speed of sound, in which ρ = 1/3 is the density. The fundamental derivative is a non-dimensional
measure of the curvature of isentropes in the (P,3)–plane or, equivalently, of the sound speed
variation with pressure along an isentropic transformation. The fundamental derivative is so called
because of its paramount role in delineating the dynamic behaviour of compressible flows in diverse
areas, including shock-wave theory (Bethe, 1942; Weyl, 1949; Zel’dovich, 1946; Thompson &
Lambrakis, 1973; Cramer & Sen, 1986, 1987; Cramer, 1989b; Cramer & Crickenberger, 1991;
Kluwick, 2001; Zamfirescu et al., 2008; Guardone et al., 2010; Nannan et al., 2016; Alferez &
Touber, 2017; Vimercati et al., 2018a), waves propagation in unsteady flows (Wendroff, 1972a,b;
Cramer & Kluwick, 1984; Cramer et al., 1986; Menikoff & Plohr, 1989; Brown & Argrow,
1997; Guardone, 2007), steady duct flows (Chandrasekar & Prasad, 1991; Schnerr & Leidner,
1991; Cramer & Best, 1991; Cramer & Fry, 1993; Kluwick, 1993; Cramer et al., 1994; Kluwick,
2004; Cramer, 2006; Guardone & Vimercati, 2016), two-dimensional steady flows (Cramer &
Crickenberger, 1992; Cramer & Tarkenton, 1992; Monaco et al., 1997; Cinnella & Congedo, 2007;
Cinnella, 2008; Kluwick & Cox, 2018a; Vimercati et al., 2018b).
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1.1. Non-Ideal Compressible Fluid Dynamics

From these studies, a classification of different gasdynamic regimes emerges, which is based
on the possible values of the fundamental derivative during the flow evolution:

0

1

IdealNon-ideal

ClassicalNon-classical

Polytropic
ideal gasNon-ideal classical

Γ

If the flow evolves through a sequence of thermodynamic states featuring Γ > 1, one speaks of
ideal gasdynamic regime, since the usual behaviour of ideal gases is recovered. Indeed, for a
polytropic ideal gas, equation (1.1) reduces to Γ = (γ + 1)/2 > 1, where γ > 1 is the ratio of the
specific heats, which is constant under the polytropic assumption. By contrast, flows developing
through states which possibly exhibit Γ < 1 are said to evolve in the non-ideal gasdynamic
regime. Related phenomena of interest include, e.g., the decrease of the speed of sound in unsteady
rarefaction fans (Thompson, 1971), the decrease of the flow Mach number in steady supersonic
flows in nozzles (Cramer & Best, 1991) and around rarefactive ramps (Cramer & Crickenberger,
1992), the increase of the Mach number across oblique shock waves (Vimercati et al., 2018a)
and so-called non-classical gasdynamic phenomena, such as expansion shock waves (Thompson
& Lambrakis, 1973), composite waves and split waves (Menikoff & Plohr, 1989), which are
possible provided that Γ < 0. A further distinction can be therefore devised: in the following,
we will refer to non-classical gasdynamic regime if the flow states are such that the fundamental
derivative is possibly negative, and to classical gasdynamic regime otherwise. The overlapping
region 0 < Γ < 1 between the above classifications is referred to as non-ideal classical gasdynamic
regime.

State-of-the-art thermodynamic models (e.g. Colonna et al., 2012; Lemmon et al., 2013)
predict that Γ < 1 in the vapour-liquid equilibrium (VLE) region neighbouring the critical point,
see figure 1.1 where three exemplary fluids are considered. In particular, a negative-Γ region is
predicted to exist in the near-critical vapour-liquid equilibrium region (Nannan et al., 2013). The
behaviour in the single-phase vapour region, instead, depends on the molecular complexity of
the fluid. In simple fluids such as carbon dioxide, Γ > 1 outside the two-phase region, see figure
1.1(a). In fluids characterized by moderate molecular complexity, such as toluene (figure 1.1(b)), a
region 0 < Γ < 1 occurs close to the dew line. Fluids composed of sufficiently complex molecules
are predicted to exhibit a negative-Γ region in the vapour phase close to the dew line. This is
named BZT region, after scientists Bethe, Zel’dovich and Thompson who pioneered non-classical
gasdynamics in single-phase vapours, and fluids that are predicted to exhibit this region are referred
to as BZT fluids. An example of such fluid is D6 (dodecamethylcyclohexasiloxane, C12H36O6Si6),
see figure 1.1(c).

Non-ideal flows are encountered in a variety of aerospace and industrial applications. Fluids
in the vicinity of the vapour-liquid saturation curve can be adopted as oxidizers in hybrid rocket
motors (e.g. N2O) and can be exploited for surface cooling to reduce ablation and degradation of
nozzle performance (Sutton & Biblarz, 2016; Guardone, 2011). Operation in the vicinity of the
vapour-liquid saturation curve allows an increase of the heat transfer rates at a relatively constant
fluid temperature and pressure, thanks to the contribution of the latent heat of vaporization. Gases
made of complex molecules can be used in supersonic wind tunnels instead of air to achieve higher
Reynolds numbers, which can be varied almost independently from the Mach number (Sagnier &
Vérant, 1998).
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Figure 1.1. Fundamental derivative of gasdynamics for selected fluids modelled using reference EoS from
the REFPROP library (Lemmon et al., 2013).1

Organic Rankine Cycle (ORC) plants exploit organic compounds, e.g. hydrocarbons or
siloxanes typically characterised by high molecular complexity, as working fluids instead of water
(see, e.g., Angelino et al., 1991; Colonna et al., 2015; Macchi & Astolfi, 2016). The use of organic
substances allows for higher cycle efficiencies, if compared to conventional steam cycles, when
the temperature of the energy source is moderate or low, e.g. waste heat from industrial processes,
geothermal reservoir, biomass combustion and concentrated solar radiation. Reduced complexity
and maintenance, reduced costs and scalability are further advantages (see also Tchanche et al.,
2013, 2014). The expansion through the initial stages of ORC turbines typically occurs in the
non-ideal regime, close to the vapour-liquid saturation curve and critical point. The combination
of the large heat capacity of complex organic fluids and the thermodynamic conditions typical of
ORC expanders results in low values of the speed of sound and, in turn, high values of the flow
Mach number even modest flow velocities (especially in the initial stages due to the larger pressure
ratio). High supersonic flows may result in large losses and mechanical stresses due to shock wave
formation in the channel or at the trailing-edge of the blades (Denton & Xu, 1989; Mee et al.,
1990). Further non-ideal effects seem to exacerbate the problem (Wheeler & Ong, 2013; Galiana
et al., 2016; Vimercati et al., 2017), at least for the non-BZT fluids that are currently employed as
working fluids in ORCs. With working fluids of the BZT class, certain non-classical phenomena
can in principle be exploited to improve the expander performances (Kluwick, 1994; Cramer &
Park, 1999; Brown & Argrow, 2000).

Supercritical carbon dioxide cycles operate close to the critical point (see, e.g. Feher, 1968).
Recent studies (Rinaldi et al., 2015) indicates the possibility of expansion in the near-critical two-
phase region, where non-classical phenomena are theoretically admissible. Other areas to which
NICFD is relevant include refrigeration and heat pump systems (e.g. Bartosiewicz et al., 2006;
Zamfirescu & Dincer, 2009), oil and gas industry (e.g. Jassim et al., 2008) and pharmaceutical
industry (e.g. Helfgen et al., 2003).

Driven by the growing interest of the industrial and scientific community, NICFD is a very
active research field, as recent advancements and ongoing efforts, embracing theory, numerics
and experiments, demonstrate. The theoretical side is undoubtedly the most developed; efforts

1In the very close proximity of the critical point, the analytical models of the REFPROP library might be inaccurate
since they do not include scaling laws accounting for the non-analyticity of the Helmholtz free energy at the critical point
(see, e.g., Levelt-Sengers, 1970). Nevertheless, the sign and the qualitative behaviour of Γ in that region is correctly
predicted, see Nannan et al. (2013).

4



1.2. Research motivation and objectives

in this direction brought to a fairly good degree of knowledge of the thermodynamic modelling
and phenomenological features of non-ideal flows, see Kluwick (2017) for a concise review. If
compared to the well-established theory of ideal-gas flows, the understanding of non-ideal (and
especially non-classical) flows is at a more basic level, as recent studies on fundamentals of
NICFD confirm (see, .e.g, Nannan et al., 2016; Kluwick & Cox, 2018a; Vimercati et al., 2018a,b).
Nowadays the community can rely on a number computational tools capable of dealing with
and accurately treat non-ideal flows. Notable examples are FlowMesh (Guardone & Vigevano,
2002; Guardone, 2007; Re et al., 2017, 2018; Re & Guardone, 2018), zFlow (Colonna & Silva,
2003; Colonna & Rebay, 2004) and the recent suite SU2 (Palacios et al., 2013; Vitale et al., 2015;
Gori et al., 2015), which is an open-source platform for solving multi-physics PDE problems
and PDE-constrained optimization problems, and it is becoming the tool of choice in NICFD
simulations and design (see also Gori et al., 2017b; Pini et al., 2017). Developing reliable CFD
softwares is of great important to facilitate the comprehension and the prediction of non-ideal
flows.

The experimental aspect is the most unexplored in NICFD, due to the difficulties in measuring
high-temperature and high-pressure flows close to condensation or the thermal stability limit of the
working fluid. To fill this gap, a number of research efforts are currently being performed. The list
of experimental facilities dedicated to the investigation of NICFD flows includes: the Ludwieg-type
shock tube FAST (Flexible Asymmetric Shock Tube, see Colonna et al., 2008a; Mathijssen et al.,
2015), the supersonic blow-down wind tunnel TROVA (Test Rig for Organic VApours, see Spinelli
et al., 2010, 2013; Guardone et al., 2013) at Politecnico di Milano and the supersonic closed-circuit
wind tunnel ORCHID (Organic Rankine Cycle Hybrid Integrated Device, see Head et al., 2016)
at Delft University of Technology, the ORC Ludwieg tube of University of Cambridge (Galiana
et al., 2016), the micro-ORC test rig of Lappeenranta University of Technology (Uusitalo et al.,
2017; Turunen-Saaresti et al., 2017), the closed-loop wind tunnel CLOWT (Closed Loop Organic
Wind Tunnel, Reinker et al., 2017) at Münster University of Applied Sciences. Special reference
needs to be made to experiments of non-classical gasdynamics.

No experimental evidence of non-classical behaviour is available to date. A first attempt was
carried out by Borisov et al. (1983) who claimed they measured a rarefaction shock wave in
trifluorochloromethane, but the result were adversely interpreted at a later stage (Cramer & Sen,
1986; Kutateladze et al., 1987; Thompson, 1991; Fergason et al., 2003), who pointed towards
critical-point phenomena and two-phase effects. The experiments devised by Fergason et al. (2003)
and Guardone (2007) failed due to thermal decomposition of the working fluid. Although no clear
proof of the existence of non-classical gasdynamic phenomena has been given yet, a promising
experimental program is underway at the FAST facility, close to and inside the expected BZT
region of dodecamethylcyclohexasiloxane (Mathijssen, 2017).

1.2 Research motivation and objectives

In spite of the considerable theoretical efforts of the last few decades, to date, theoretical knowledge
of non-ideal compressible flows is still far from being complete and its progress represents a
great challenge for the scientific community. Partially understood problems and open questions
in NICFD include, among others, the characterization of multi-dimensional shock waves, the
response and stability of shock waves to perturbations, the admissibility of shock reflection patterns
and interactions. These are all examples of problems which have been completely or mostly solved,
or which simply have no counterpart, in the theory of ideal-gas flows. Advancements in the theory
of non-ideal compressible flows will have a beneficial impact on the above-mentioned industrial
applications, not only directly, e.g. by driving ORC turbomachinery devices to higher efficiencies,
but also indirectly by supporting numerical and experimental activity with improvements in current
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Figure 1.2. Computed Mach number distribution
in the first-stage stator of an ORC turbine. Flow
from left to right. Three characteristic flow re-
gions are identified: expansion through a converging-
diverging nozzle (A), generation of oblique shocks
at the trailing edge (B), shock reflection on the blade
wall (C). Details on the numerical simulation are
given in §6.

A

B C

methods and development of new ones (e.g. aimed at answering the long-lasting question of the
existence of non-classical phenomena) and in the interpretation of results.

The objective of this work is to investigate the effects of non-ideal thermodynamics on the
general features of steady supersonic flows of single phase vapours or gases (the non-classical
regime is thus treated in the vapour region of BZT fluids). To this end, original research is presented
which covers the theories of (a) steady-state flows in converging-diverging nozzles, (b) flows around
compressive/rarefactive ramps, (c) shock reflections and interactions. The purpose of the nozzle
flow analysis is to determine the possible functioning regimes in the non-ideal gasdynamic context
and the link between the functioning regimes and the flow stagnation conditions at the nozzle
inlet (i.e. the reservoir conditions, if the nozzle is assumed to be connected to a reservoir). The
study of the ramp problem is aimed at understanding oblique waves in supersonic flows, i.e. waves
which can produce the deflection of a steady supersonic stream. On the basis of specific non-ideal
effects, several types of oblique waves are identified and, again, a link is established between the
type of wave and the unperturbed state of the fluid. The characterization of oblique waves lays the
ground work for the analysis of shock reflections and interactions in non-ideal flows. The primary
contribution of this document to the theory of NICFD is thus a classification of relevant phenomena
occurring in steady supersonic flows in the non-ideal regime (both classical and non-classical) and
the identification of the connection between the predicted phenomenon and the flow conditions.

Understanding the precise conditions under which non-ideal and non-classical phenomena can
possibly occur is important for at least two reasons. Firstly, from the point of view of practical
applications, it constitutes valuable knowledge at the design stage, where the ability to anticipate
potential advantages/disadvantages associated with a particular operating condition is crucial. A
second reason is connected with the constant endeavour to observe experimentally the non-classical
phenomena that theory predicts, first and foremost the rarefaction shock. As noted by Kluwick &
Cox (2018a), steady flow conditions offer an interesting and promising alternative to the previous
attempts (all based on shock-tube techniques) of acquiring experimental evidence of non-classical
behaviour. In this perspective, knowing how various parameters of interest influence the flow
field is extremely useful for the selection of experimental conditions suitable for the purpose.
Remarkably, despite the theoretical predictions always depend on the EoS used to model the fluid,
the analytical framework delineated in this work is of general nature and delivers conclusions that
are independent of the specific choice of the EoS, from the qualitative point of view. As such, the
concepts developed here are suitable to future improvements of thermodynamic modelling and at
the same time provide a solid basis for further advancements in gasdynamics.

The theories of nozzle flows, oblique waves, shock reflections and shock interactions have
direct practical application. In the specific context of non-ideal flows, a prominent example is
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represented by ORC turbines, where the subjects of the present study are all key elements of the
flow field, as shown in figure 1.2. The flow is expanded from stagnation up to supersonic speed
through a converging diverging nozzle (region A). At the trailing edge of the blade, shock waves
are formed due to the rotation imposed by its finite thickness or to accomplish post-expansion
(region B). The oblique shock generated on the pressure side propagates towards the suction
side of the neighbouring blade and is reflected at the wall (region C). These different aspects of
compressible flow will be individually examined and then considered collectively in a realistic
ORC application.

1.3 Outline of the thesis
The thesis is structured as follows.

Chapter 2 outlines the theoretical background of compressible flows, in particular with respect
to shock waves, which are discussed in a general perspective appropriate for non-ideal and non-
classical gasdynamics.

Chapter 3 deals with steady flows expanding from a reservoir through a converging-diverging
nozzle. Firstly, isentropic flows are examined. Isentropic-flow analysis allows one to anticipate and
explain, to a certain degree, the exact solutions of the nozzle flow which possibly includes shock
waves. The concept of functioning regime is introduced to analyse the response of the system
to variations in the downstream boundary condition (outlet pressure). According to the reservoir
conditions, several non-ideal functioning regimes are singled out. The connection between the
reservoir conditions and the functioning regime is explained and depicted through the use of
thermodynamic maps.

Chapter 4 reports an extensive analysis of the properties of oblique waves in steady supersonic
flows. The first part is focused on non-ideal oblique shocks in classical gasdynamics. Non-ideal
oblique shocks increase the flow Mach number and thus might have important implications for
practical applications. The necessary conditions for the formation of non-ideal oblique shocks are
examined for several fluids of industrial interest. The second part of the chapter deals with the
admissible wave configurations in non-classical gasdynamics. Wave curves consisting of states
connected to a given initial state (the uniform state upstream of the ramp) by an oblique wave are
constructed. The link between the wave curve and the upstream state is clarified and depicted in a
thermodynamic map.

Chapter 5 deals with shock reflections and interactions in non-ideal steady flows. Following the
same lines as chapter 4, in the first part the classical theory is enriched by taking into account
the potential non-ideal increase of the Mach number across oblique shock waves. Subsequently,
moving from the theory of non-classical oblique waves established in the previous chapter, shock-
reflection and shock-interaction patterns in non-classical gasdynamics are examined.

Chapter 6 presents the study of non-ideal steady flows in ORC turbine cascades featuring hex-
amethyldisiloxane (MM) as the working fluid. This application case embraces each of the basic
phenomena analysed in the thesis and is particularly relevant in view of the recent tendency
towards higher pressures and temperatures at the turbine inlet (e.g. supercritical ORC). In the
context of supersonic nozzle cascades, the influence of non-ideal effects on the optimal blade
shape and its off-design behaviour is investigated by means of numerical simulations. Advantages
and disadvantages of operating in the non-ideal gasdynamic regime are discussed for a number of
specific examples, nonetheless providing more general considerations.

Chapter 7 summarizes conclusions and recommendations for future research activities.
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CHAPTER2
STEADY COMPRESSIBLE FLOW

This chapter recalls the equations that govern steady compressible flows under the assumption
that effects such as viscosity, heat conduction, chemical reactions and relaxation can be neglected.
The general description of the fluid motion is provided by the integral conservation laws of
mass, momentum and energy. For a local description of the flow field, the smoothness of the
conservative variables must be taken into account. Thus, in regions where the variables are
continuously differentiable, the flow is locally described by the Euler equations, while at points
of jump discontinuity by the Rankine-Hugoniot relations. The salient features of smooth flows
and shock waves are discussed to prepare the ground for the original analysis presented in the
subsequent chapters.
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Chapter 2. Steady compressible flow

2.1 Conservation laws

This section introduces the integral form of the conservation laws, specialized to the case of
steady and single-phase flow in which thermoviscous, body-forces and non-equilibrium effects are
negligible or are not the focus of attention. Let us consider a volume V in the domain of the fluid
with boundary ∂V . The principle of conservation of mass, momentum and energy are written as∫

∂V
ρu · n = 0, (2.1)

∫
∂V

ρu u · n = −

∫
∂V

P n, (2.2)

∫
∂V

ρet u · n = −

∫
∂V

P u · n, (2.3)

where u is the fluid velocity, et = e + u2/2 is the specific total energy, in which e is the specific
internal energy and u = ‖u‖ is the velocity magnitude and n is the outward-pointing unit vector
normal to the surface ∂V . These integral relations must be satisfied for each volume V of fluid.

2.2 Euler equations

If the variables appearing in the integrals of equations (2.1)-(2.3) are continuously differentiable,
the surface integrals can be transformed into volume integrals and Gauss’s theorem can be applied
obtaining the well-known Euler equations, reported here in so-called quasi-linear form:

u · ∇ρ + ρ∇ · u = 0, (2.4)

(u · ∇)u +
∇P
ρ

= 0, (2.5)

u · ∇e +
P
ρ
∇ · u = 0. (2.6)

The above equations can be recast in a more enlightening form involving the specific entropy s
and specific total enthalpy ht = h + u2/2, where h is the specific enthalpy. This reads

∇ht − T∇s = u × ∇ × u, (2.7)

u · ∇s = 0, (2.8)

u · ∇ht = 0, (2.9)

where T is the temperature. Thus, in smooth flows (i) the fluid particles maintain their entropy and
total enthalpy unaltered and (ii) rotational motion (∇ × u , 0) generates either entropy or total
enthalpy non-uniformities (unless the velocity and vorticity vectors are parallel).

2.3 Shock wave and contact discontinuities

The integral equations (2.1)-(2.3) admit discontinuous solutions as well. These discontinuities are
the limit of thin layers, carrying an abrupt variation of the fluid properties, for vanishing viscosity
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and thermal conductivity (see, e.g., Zel’dovich, 1946; Landau & Lifshitz, 1987). At each point on
a surface of discontinuity, the laws of conservation of mass, momentum and energy, namely the
well-known Rankine-Hugoniot relations, locally assume the form

[ρun] = 0, (2.10)
[Pn + ρunu] = 0, (2.11)

[ρunht ] = 0, (2.12)

where [·] denotes the jump across the discontinuity, n is the unit vector normal to the surface of
discontinuity and un = u · n is the normal component of the velocity. Note that the above relations
hold not only for a steady flow, but also for the unsteady case if the reference frame is locally
attached to the discontinuity.

Two different types of discontinuity can be distinguished based on the value of the mass
flux m = ρun across the discontinuous front. Discontinuities having m = 0 are called contact
discontinuities. Of course, ρ , 0 so that un = 0 on both sides of a contact discontinuity. Moreover,
projection of (2.11) onto the normal direction gives [P] = 0 across a contact surface. A contact
discontinuity can thus sustain jumps in density, entropy or any other thermodynamic quantity
except the pressure and jumps in the tangential velocity ut = u − unn. Contact discontinuities
presenting a purely thermodynamic jump (at constant pressure) are referred to as entropy waves,
while those featuring different tangential velocities across the front but equal thermodynamic states
are called vorticity waves or slip lines.

Shock waves are discontinuities through which there is flow of matter (m , 0). Thus, we can
distinguish a pre-shock state where fluid particles enter the shock and a post-shock state where the
fluid leaves the shock, as shown figure 2.1. In other words, if the shock-attached coordinate system
is chosen such that un > 0, the post-shock state lies on the side pointed by the normal n and the
pre-shock state on the opposite side. Hereinafter, when referring to shock waves, the pre-shock
and post-shock states will be indicated as states A and B, respectively, and [·] = ()B − ()A.

The energy balance across the shock reduces to [ht ] = 0, thus the total enthalpy is conserved
across the shock. In addition, by projecting (2.11) onto the normal direction and tangent plane,
one obtains

[P + ρu2
n] = 0, (2.13)

[ut ] = 0, (2.14)

so that a shock front of arbitrary shape can be locally studied by examining the properties of normal
shocks to which a parallel velocity field is superposed. After straightforward manipulations, the
energy and normal momentum balance equations are recast in the well-known form

[h] − 1
2 [P](3A + 3B) = 0, (2.15)

[P] + m2[3] = 0. (2.16)

Equation (2.15), known as the Hugoniot relation, determines the set (Hugoniot locus) of thermo-
dynamic states that can be connected by a shock wave. In the (P,3)–plane, the Hugoniot locus is
commonly referred to as the shock adiabat, while the straight line connecting the pre-shock and
post-shock states, defined by relation (2.16), is known as the Rayleigh line.

2.3.1 Shock admissibility criteria
In the case of shock waves, the Rankine-Hugoniot relations must be complemented with suitable
admissibility criteria in order to rule out unphysical solutions. The second law of thermodynamics
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Figure 2.1. Qualitative illustration of the local shock front. States A and B represent the pre-shock and
post-shock states, respectively. For ease of representation, the shock-attached reference frame is such that the
plane spanned by unit vectors n and t contains the fluid velocity u. The angles βs and Θ are the shock angle
and flow deviation angle, respectively, both computed with respect to the pre-shock flow direction.

requires that the entropy does not decrease across the shock, namely

[s] > 0. (2.17)

Further admissibility conditions stem from mechanical stability requirements. In order that the
shock front be stable against one-dimensional perturbations of the normal flow, the well-known
speed-ordering relation

MnB 6 1 6 MnA, (2.18)

must be satisfied along the shock front, where Mn = un/c denotes the normal Mach number
(Lax, 1957). The conditions for stability with respect to multidimensional perturbations can be
conveniently related to geometric properties of the shock adiabat and Rayleigh line, namely as
bounds on their relative slope Π ,

Π = m2
/

d
d3

PH(3; PA,3A)
�����3=3B

, (2.19)

where PH(3; PA,3A), PB = PH(3B; PA,3A) is the functional form of the relationship between the
post-shock pressure and the post-shock specific volume for given PA and 3A, as defined by equation
(2.15). D’yakov (1954) and Erpenbeck (1962) showed that the shock front is stable against ripple
perturbations if and only if

−1 6 Π 6 1 + 2MnB. (2.20)

The stability range (2.20) was further restricted by Kontorovich (1958) to

−1 6 Π 6
1 − M2

nB(1 + 3A/3B)

1 − M2
nB[3]/3B

, (2.21)

by noting that in the interval

1 − M2
nB(1 + 3A/3B)

1 − M2
nB[3]/3B

< Π < 1 + 2MnB (2.22)

the shock front is only neutrally stable against transverse perturbations and can spontaneously emit
acoustic waves (see also Fowles, 1981). Gardner (1963) and Erpenbeck (1963) also pointed out
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that violating the second inequality in (2.20) leads to non-uniqueness of solutions of the Riemann
problem. Despite conditions (2.20) and (2.21) derive from linear stability analysis of planar shocks,
it turns out that an arbitrarily curved shock front is uniformly stable provided (2.21) is satisfied
locally at each point of the front (Majda, 1983). Yet, for some cases, the above conditions may
not be sufficient to rule out unphysical solutions of the Rankine-Hugoniot relations. Further and
more selective criteria may solve the problem of defining the admissible shocks. For non-convex
shock adiabats, requiring that the shock wave admits a one-dimensional thermoviscous profile
allows to rule out inadmissible shocks that are not detected by the above conditions. It must be
noticed, however, that there is no general theory for defining appropriate admissibility conditions
that applies to arbitrary equations of state (Menikoff & Plohr, 1989; Kluwick, 2001).

2.3.2 Properties of the shock curve
The locus of the states that can be connected to a given initial state A constitutes a shock curve.
Choosing a parametrization for the shock curve that is valid both in the classical and non-classical
gasdynamic regime and for the most general equations of state might be a difficult task. In the
following we restrict our attention to shock curves that satisfy condition

2 +
[3]
3B

GB > 0, (2.23)

where G = 3(∂P/∂e)3 is the Grüneisen coefficient, which has the same sign of the coefficient of
thermal expansion. The above relation is satisfied in the limit of weak shocks, but may be violated,
e.g., for finite-strength compression shocks if G is sufficiently large. As a matter of fact, the choice
of limiting the discussion to shock waves satisfying relation (2.23) is motivated by the fact that this
is the typical behaviour of the shock curves for most real fluids below the dissociation (ionization)
threshold, regardless of anomalies due to negative nonlinearities Γ < 0 or phase transitions (see,
e.g., Landau & Lifshitz, 1987; Cramer, 1989b; Menikoff & Plohr, 1989; Kluwick, 2001). As a
result of our assumption, the post-shock specific volume parametrizes the shock curve, see below.
If G > 0 and thus the substance expands upon isobaric heating, which is true in most situations
of interest (with the notable exception of water near freezing), equality in (2.23) determines the
maximum density increase across compression shock waves.

We now report the variation of relevant quantities along the shock curve of a given state A, as a
function of the downstream specific volume. To establish notation, the functional dependence of a
given quantity X evaluated on the shock curve of the initial state A is denoted as XH(3; A), being
A a triplet of the form A = (PA,3A,uA) describing the complete thermodynamic and kinematic
initial state. Any other equivalent triplet can be obtained by simple manipulation. Of course,
XB = XH(3B; A). Note also that if X is a purely thermodynamic quantity, then it will depend on the
pre-shock thermodynamic state only (e.g. PA, 3A), thanks to equation (2.15). When there is no risk
of confusion, the notation will be simplified using dXB/d3B as a shorthand for dXH(3; A)/d3���3=3B .

First of all, the pressure variation is considered, which determines the local structure of the
shock adiabat:

dPB

d3B
= −

PB

3B
*
,

c2
B

PB3B
−

[P]
2PB

GB+
-

(
1 +

[3]
23B

GB

)−1

. (2.24)

By requiring that relation (2.23) is satisfied, the slope dPB/d3B is finite and PB is a single valued
function of 3B; therefore the Hugoniot locus can be parametrized using the post-shock specific
volume. If G > 0, the quantity in (2.23) approaches zero for a finite value of 3B, thus defining a
vertical asymptote for which the pressure goes to positive infinity. Since all real materials satisfy
the condition G 6 2c2/P3 introduced by Smith (1979), see also Menikoff & Plohr (1989), the first
bracketed term in (2.24) is positive. Thus, under the assumption that relation (2.23) holds, the slope
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of the shock adiabat is always negative (this implies that the Hugoniot locus can be parametrised
also by the post-shock pressure). An equivalent form of equation (2.24) is the following

dPB

d3B
=

[P]
[3]

+
c2

B

32
B

(
M2

nB − 1
) (

1 +
[3]
23B

GB

)−1

, (2.25)

see Cramer (1989b), in which the post-shock normal Mach number explicitly appears (this will be
particularly useful when interpreting the admissibility criteria in a graphical way). At post-shock
states such that MnB = 1 (for which the shock is termed post-sonic, from the nomenclature of
one-dimensional flows), the shock adiabat has the same slope of the Rayleigh line. From the above
equation, it is easy to obtain an expression for the variation of the squared mass flux m2 = −[P]/[3]
(corresponding to the slope of the Rayleigh line changed of sign) along the shock curve:

dm2

d3B
=

1
[3]

c2
B

32
B

(
1 − M2

nB

) (
1 +

[3]
23B

GB

)−1

, (2.26)

showing that the mass flux and the slope of the Rayleigh line have local extrema at points MnB = 1.
The entropy variation along the Hugoniot locus can be written as

dsB

d3B
=

c2
B

TB

[3]
32

B

(
1 − M2

nB

) (
2 +

[3]
3B

GB

)−1

, (2.27)

which also vanishes if MnB = 1. In the above expression, the terms [3] and
(
1 − M2

nB

)
both vanish

as 3B approaches 3A. Thus, not only dsB/d3B vanishes as 3B approaches 3A, but also the second
derivative d2sB/d32

B. In this respect, we report the celebrated result

[s] = −
ΓAc2

A

6TA3
3
A

[3]3 + O([3]4), [3]→ 0 (2.28)

first derived by (Duhem, 1909) and independently by (Bethe, 1942). Equation (2.28) expresses
the well-known fact that the slope and curvature of the shock adiabat at PA, 3A equal those
of the isentrope passing through this point. Using equation (2.27), relations for the internal
energy and temperature variations can be obtained from the fundamental thermodynamic identities
de = Tds − pd3 and from dT = T/c3ds − GT/3d3:

deB

d3B
= c2

B
[3]
32

B

(
1 − M2

nB

) (
2 +

[3]
3B

GB

)−1

− PB (2.29)

and
dTB

d3B
=

c2
B

c3B

[3]
32

B

(
1 − M2

nB

) (
2 +

[3]
3B

GB

)−1

−
GBTB

3B
. (2.30)

In the same way, the variation of the speed of sound along the shock curve is computed from
dc = (1 − Γ)c/3d3 + KT/cds and reads

dcB

d3B
=

cB

3B
(1 − ΓB) −KB

[P]
cB

*
,

1
M2

nB

− 1+
-

(
2 +

[3]
3B

GB

)−1

, (2.31)

which involves both the fundamental derivative of gasdynamics and the dimensionless isochoric
derivative of the speed of sound with the entropy K = (c/T )(∂c/∂s)3 .
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Next, we consider post-shock kinematic quantities, specifically the post-shock velocity mag-
nitude uB and the shock angle βs ∈ [sin−1(1/MA), π/2], computed with respect to the pre-shock
flow direction (unA = uA sin βs). Recall that the pre-shock kinematic state is fixed by assumption,
thus the variation of post-shock quantities corresponds to a change in the shock angle. These
derivatives along the shock curve are

duB

d3B
=

uB

3B




1 +

(
1 +

3A

3B

)
*
,

1
M2

nB

− 1+
-

(
2 +

[3]
3B

GB

)−1


(2.32)

and
dβs
d3B

= tan βs
1 − M2

nB

M2
nB[3]

(
2 +

[3]
3B

GB

)−1

, (2.33)

as given in Gori et al. (2017a).
Finally, by combining the variation of the post-shock velocity (2.32) and speed of sound (2.31),

an expression for the Mach number variation is obtained as

dMB

d3B
= −

MB

3B




JB +
[3]
3B

(
1 − M2

nB

) *
,
KB +

1 + GB

M2
B

+
-

(
2 +

[3]
3B

GB

)−1

, (2.34)

in which
J = 1 − Γ −

1
M2 (2.35)

corresponds to the non-dimensional isentropic derivative of the Mach number with the density at
constant total enthalpy, see equation (3.6).

We now report relevant results concerning the type of shocks that are admissible in the classical
and non-classical gasdynamic regimes. In classical gasdynamics, an important result is the Bethe-
Weyl theorem (Bethe, 1942; Weyl, 1949), which states that if Γ > 0 throughout the thermodynamic
domain of interest, the Hugoniot locus is parametrized by the post-shock entropy and satisfies




[3] < 0 and MnB < 1, if [s] > 0,
[3] > 0 and MnB > 1, if [s] < 0.

(2.36)

The impossibility of sonic points MnB = 1 also implies that the mass flux is monotonic and
therefore can parametrize the shock curve. Because the shock adiabat is convex near the initial
state if Γ > 0 (equation 2.28), MnA > 1 (MnA < 1) on the compression (rarefaction) side of the
shock curve. Therefore, in classical gasdynamics compressive shock waves only satisfy the entropy
inequality and the speed ordering relation (and also possess a thermoviscous profile, see §2.3.4).

This, instead, is not always the case in non-classical gasdynamics, as is it seen from equation
(2.28) when ΓA < 0. Non-classical shock adiabats are typically non-convex and characterized by
entropy extrema, where the Rayleigh line is tangent to the shock adiabat. A useful result, in this
respect, is

TB
d2sB

d32
B

������MnB=1

= −
[3]
2

d2PB

d32
B

������MnB=1

= −ΓBc2
B

[3]
33

B

(
1 +

[3]
23B

GB

)−1

, (2.37)

which follows from differentiation of equations (2.25) and (2.27) and by noting that

dM2
nB

d3B

������MnB=1

= 2
ΓB

3B
, (2.38)
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Chapter 2. Steady compressible flow

which is obtained by evaluating relation (2.34) at a post-shock sonic state. Thus, since sonic points
are local extrema in entropy, the sign of Γ alternates at successive sonic points and the curvature
of the shock adiabat and the local isentrope have the same sign. The admissibility conditions, in
non-classical gasdynamics, are most conveniently interpreted in a graphical way, as shown in the
following section.

2.3.3 Graphical interpretation of the admissibility criteria
The entropy condition (2.17), the speed ordering relation (2.18) and the further requirement of
the existence of a thermoviscous profile can be checked graphically in the (P,3)–plane. Note
that condition (2.20) is always satisfied within our assumptions, since the slope of the shock
adiabat is always negative, and therefore the shocks considered here are not unstable to transverse
perturbations. It is still possible, however, that the conditions for acoustic emission (2.22) are
satisfied. This situation cannot be detected from graphical analysis, thus admissible/non-admissible
shocks presented in the following are understood with reference to the other criteria.

Application of the fundamental identity Tds = de + Pd3 across the shock wave gives∫ sB

sA

Tds = [e] +

∫ PB

PA

Pd3 = −
PB + PA

2
[3] +

∫ PB

PA

Pd3, (2.39)

where we used the equivalent form [e] − [3](PB + PA)/2 = 0 of relation (2.15). Thus, according
to the above relation, for an entropy increasing shock wave, the area between 3A and 3B under
the shock adiabat must be larger than that under the Rayleigh line. Thanks to relation (2.25), the
stability requirement (2.18) can be graphically read as differences in the slope of the shock adiabat
and Rayleigh line, namely

d
d3

PH(3; A)
�����3=3B
6

[P]
[3]
6

d
d3

PH(3; A)
�����3=3A

, (2.40)

where the extended notation is used for better clarity. This means that, for a shock wave satisfying
the speed ordering relation, (i) the absolute value of the slope shock adiabat, evaluated in the
pre-shock state, is less than or at most equal to the absolute value of the slope of the Rayleigh line
and (ii) the absolute value of the slope shock adiabat, evaluated in the post-shock state, is greater
than or at most equal to the absolute value of the slope of the Rayleigh line. Equality on one side
of relation (2.40) implies that the shock wave has unitary normal Mach number on that side. If
MnB = 1 (post-sonic shock), the Rayleigh line is tangent to the shock adiabat at the post-shock
state (equality between the first two terms in 2.40); if MnA = 1 (pre-sonic shock), the Rayleigh line
is tangent to the shock adiabat at the pre-shock state (equality between the last two terms in 2.40);
if MnA = 1 = MnB (double-sonic shock), the Rayleigh line is tangent to the shock adiabat both at
the pre-shock and post-shock states (equalities in 2.40). Moreover, the further requirement that the
shock wave admits a thermoviscous profile associated with the normal flow translates graphically
into the requirement that the Rayleigh line does not cut the shock adiabat in interior points (see
§2.3.4 below).

On the basis of these observations, the admissibility of compression/rarefaction shocks has a
simple graphical interpretation: for an admissible compression shock, the Rayleigh line must be
located completely above the shock adiabat; for an admissible rarefaction shock, the Rayleigh line
must be located completely below the shock adiabat. Exemplary shock waves in the (P,3)–plane
are sketched in figure 2.2. For shock adiabats that do not cross the negative-Γ region, only ordinary
(non-sonic) compression shocks are admissible (e.g., shock A1-B1).

Two non-classical shock adiabats are reported, which cross the Γ < 0 region, but are centred
on states featuring Γ > 0. The shock adiabat centred on state A2 crosses the negative-Γ region
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2.3. Shock wave and contact discontinuities

A1

A2

A3

B1

B2

B3
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B7

B9
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P

v

 < 0

B6

B8

Figure 2.2. Qualitative illustration of shock adiabats (thick lines) crossing the region Γ < 0. The non-
admissible portion of the shock adiabat is represented by the dashed line. Rayleigh lines in red. The curvature
of the shock adiabats is intentionally exaggerated for explanatory purposes.

in its compression branch. Shock A2-B2 is an admissible shock. By increasing the mass flux
(i.e. steepening the Rayleigh line), the situation arises in which three intersections between the
Rayleigh line and the shock adiabat occur, namely points B3, B4, B5. Of these points, only B3
represents an admissible post-shock state. The others are cases in which the shock does not admit
a thermoviscous structure (shock A2-B4 also violates the speed ordering relation). The Rayleigh
line corresponding to the post-sonic shock A2-B6 and to the non-sonic shock A2-B7 delimits the
range in which multiple intersections are possible. A further increase in the mass flux produces
ordinary non-sonic shocks such as A2-B8.

The shock adiabat centred on state A3 crosses the negative-Γ region in its rarefaction branch
and encompasses rarefaction shocks. In the branch from point A3 to point B9, the speed ordering
relation is not satisfied because MnA < 1. Thus, the rarefaction-shock of smallest intensity from
A3 is the pre-sonic shock A3-B9. By increasing the mass flux, the condition is created in which
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Chapter 2. Steady compressible flow

two intersections between the Rayleigh line and the shock adiabat occur (points B10, B11). Of
these intersections, only B10 corresponds to an admissible rarefaction shock. Shock A3-B11 instead
violates the speed ordering relation and does not possess a thermoviscous profile. For rarefaction
shocks there exists a maximum pressure jump for which the shock becomes post-sonic, see shock
A3-B12. Any further increase in the mass flux yields no intersections on the rarefaction branch.
For other examples of non-classical shock adiabats (including the case where the pre-shock state is
selected in the region Γ < 0), the reader is referred to Kluwick (2001).

2.3.4 Remarks on the shock structure

The idealised picture of shock waves given in the preceding section is a result of ignoring thermo-
viscous effects and relaxation processes in the gas (such as the retarded energy transfer between
various molecular degrees of freedom), which have in the statistical non-equilibrium a common
basis. Accounting for these aspects allows to determine the structure of the transition layer that a
shock wave in reality is.1

As discussed by Stupochenko et al. (1967), two opposing situations can be distinguished by
comparing the characteristic macroscopic length L (in this case, the thickness of the transition layer)
with the largest characteristic length l for the relaxation processes occurring in the fluid (defined
as those of establishing thermodynamic equilibrium). Usually, the characteristic lengths for
translational and rotational relaxation (excitation of molecular degrees of freedom) are comparable
with the mean-free path l0, while vibrational relaxation might be much slower and thus associated
with larger characteristic lengths (especially for the complex molecules composing candidates
BZT fluids). The establishment of chemical and ionization equilibrium is even slower.

If L � l, the equilibrium thermoviscous shock structure obtained by adding viscosity and
thermal conductivity to equations (2.4)-(2.6) is appropriate. The resulting picture is that of a
continuous transition between the pre-shock and post-shock states (Taylor, 1910). The limit of this
description is in fact the requirement that the gradients of the flow variables are sufficiently small.
This condition is evidently satisfied for weak shocks, but for strong shocks the situation is quite
different.

When the spatial dishomogeneity grows, the state of the fluid may change so rapidly to cause
significant disturbances to the statistical equilibrium. Using the concept of statistical mechanics, it
is found that sufficiently strong shock waves are characterised by a thin leading layer in which a
sharp transition occurs over distances of the order of l0. In this layer, the assumption of continuum
is no longer valid, thus showing that in the case of sufficiently strong shock waves, consideration
of thermoviscous processes does not eliminate the necessity of introducing geometric discontinuity
surfaces.2 When l � l0 (e.g. in moderately or complex fluids due to vibrational relaxation) the
thin leading layer in strong shocks is followed by a relaxation zone of width l which ultimately
determines the thickness of the shock. Since l � l0, the relaxation region can be studied under the
continuum model, but of course local thermodynamic equilibrium cannot be assumed.

Turning now to the case of shocks of relatively small amplitude, which are those of main
interest in the following, relevant results are reported concerning the shock structure obtained, as
previously mentioned, from the Navier-Stokes equations. Assuming one-dimensional steady flow,
the balance equations of mass, momentum and energy can be recast, after integration along the

1If the characteristic lengths of the considered phenomena are large, compared with the thickness of the transition layer,
the shock structure can be disregarded and thus the approximation of the shock as a geometric discontinuity surface is
justified.

2The same order of magnitude for the width of the leading transitional layer of a strong shock can be estimated
accidentally from considerations pertaining macroscopic, equilibrium fluid dynamics.
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2.3. Shock wave and contact discontinuities

streamwise direction x, as

ρu = m = const, (2.41)

m
(

4
3
µ + ζ

)
d3
dx

= F3 (3,T ) ≡ P − Pi + m2 (3 − 3i ) , (2.42)

k
m

dT
dx

= FT (3,T ) ≡ e − ei −
1
2

m2
(
3

2 − 32
i

)
+

(
Pi + m2

3i

)
(3 − 3i ) , (2.43)

where µ > 0 is the shear viscosity, ζ > 0 the volume viscosity, k > 0 the thermal conductivity and
subscript i refers to either the pre-shock state (i = A) or post-shock state (i = B). The boundary
conditions for the shock layer are

(3,T ) → (3A,TA) as x → −∞ (2.44)
(3,T ) → (3B,TB) as x → ∞ (2.45)

and imply that
F3 (3i ,Ti ) = 0, FT (3i ,Ti ) = 0. (2.46)

Inserting the above condition into relations (2.41)-(2.43) yields the Rankine-Hugoniot relations for
a stationary normal shock. The states satisfying (2.46) are singular points of the autonomous system
(2.42)-(2.43). The analysis of these points was first performed by Weyl (1949) and subsequently
extended by Gilbarg (1951), Liu (1976), Pego (1986), Menikoff & Plohr (1989), Cramer (1989b)
and Cramer (1991). Here we simply report the final, important result: (i) a subsonic critical point
is a saddle point while a supersonic critical point is a repulsive node and (ii) there exist trajectories
connecting neighbouring critical points, but no solution connecting non-neighbouring ones. It
follows that the Rayleigh line of shocks having a thermoviscous structure must not cut the shock
adiabat in intermediate points. This is clearly satisfied if the fundamental derivative is strictly
positive, since the Rayleigh line intersects the shock adiabat in two points only (see for example
Landau & Lifshitz, 1987). Conversely, if the shock adiabat crosses a negative-Γ region, multiple
intersections are possible, as shown in figure 2.2. The non-uniqueness can be resolved by requiring
that the shock possess a thermoviscous profile. This criterion is more stringent than the entropy
inequality and speed ordering relation, which in fact are not sufficient to rule out shocks such as
A2-B5 in figure 2.2.

In the classical case of fluids with positive Γ, properties such as density, pressure, temperature,
velocity and Mach number vary monotonically through the shock layer, while the entropy features
a local maximum and then decreases to the post-shock value (see, e.g, Zel’dovich & Raizer,
1968; Thompson & Lambrakis, 1973). The transitional layer of shock waves in the non-classical
gasdynamic regime was examined by Cramer & Crickenberger (1991), who presented numerical
solutions of equations (2.41)-(2.43). Specifically, the investigation concentrated on compression
shocks taking the fluid across the negative-Γ region and on rarefaction shocks. Following Kluwick
(2001), the main results of the analysis of Cramer & Crickenberger (1991) are as follows:

• Compression shock waves that are slightly stronger (i.e. higher pressure jump) than the
limiting shock whose Rayleigh line touches the shock adiabat in an intermediate point
where Γ < 0 (e.g. case A2-B7 in figure 2.2) exhibit a sort of double layer structure. The
density distribution features three inflexion points, rather than a single one, and the entropy
distribution develops a second local maximum. The result is a significantly thick shock
layer3. Increasing the shock strength, at fixed pre-shock state, causes the additional inflexion

3Note the obvious arbitrariness of the concept of thickness of the transition layer, as the length over which the change in
the state can be regarded as completed, taking into account the asymptotic nature of this process. For example, Thompson &
Lambrakis (1973) use the criterion of 98.7% of the overall speed change across the shock wave to determine its thickness.
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Chapter 2. Steady compressible flow

points in the density and the local maximum in the entropy to disappear, along with a rapid
decrease in the shock thickness.

• In contrast with the case of compression shocks, rarefaction shocks feature a local minimum
of the entropy. Over most of the shock layer s < sA, while the ultimate entropy increase is
realised in the final stage of the transition to the post-shock state.

• At fixed pre-shock state, the thickness of rarefaction shocks first decreases with increas-
ing shock strength and then decreases when the maximum strength (post-sonic shock) is
approached.

• The transition from supersonic to subsonic flow might be non-monotonic. Extrema in
the Mach number are found near Γ = 0 points. For compression and rarefaction shocks
that bridge the negative-Γ region, both a local minimum and a local maximum of the
Mach number develop in the shock layer. In the case of compression shocks, the local
minimum is encountered first (moving from the pre-shock towards the post-shock state).
The local maximum might be be supersonic, i.e. such shocks may exhibit an internal layer
of supersonic flow. For rarefaction shocks, the ordering of the Mach number extrema
is reversed and thus there exist regions where the Mach larger is larger/smaller than the
pre-shock/post-shock value.

Also of interest is the estimate of the shock thickness ∆ that is obtained for weak shocks (in
the limit of vanishing shock strength) sufficiently far from the Γ = 0 curve that relation (2.28) is
valid and effects related to Γ changing its sign can be neglected. The estimate for ∆, see Kluwick
(2001) and Thompson & Lambrakis (1973) for an equivalent formula, is

∆ ∝ *
,

4
3
µA + ζA + kA

TAGA

c2
A

+
-

6cA

ΓA[P]
, (2.47)

showing that the thickness of weak shocks increases with a reduction in the shock strength or
in the fundamental derivative. It is also seen that in the limit of vanishing viscosity and thermal
conductivity, the shock thickness is zero, as expected.
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CHAPTER3
NON-IDEAL FLOWS IN

CONVERGING-DIVERGING
NOZZLES

The present chapter describes the computation of exact solutions for the steady flow of single-phase
fluids expanding from a reservoir into a stationary ambient state with constant pressure through a
conventional converging-diverging nozzle. The fluids considered are molecularly complex fluids
in the non-ideal, possibly non-classical, gasdynamic regime. A novel analytical approach is
introduced which makes it possible to elucidate the connection between a general adiabatic
flow field and the underlying local isentropic-flow features, including their possible qualitative
alterations in passing through shock waves. The global layout of the flow configurations produced
by a monotonic decrease in the ambient pressure, namely the functioning regime, is examined for
each possible reservoir conditions resulting in single-phase flows. Flow conditions determining
the transition between the different classes of flow are investigated and each functioning regime is
associated with the corresponding thermodynamic region of reservoir states. The discussion is
carried out using the simple polytropic van der Waals model; the main findings are then confirmed
by accurate thermodynamic models applied to fluids of practical interest.
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Chapter 3. Non-ideal flows in converging-diverging nozzles

3.1 Introduction and theoretical background

Nozzle flows play a central role in many applications, from rocket engines to turbines, and are
also used extensively as test cases in the development and comparison of numerical schemes. The
theory of nozzle flows of ideal gases is well-established and exploited in many applications that
involve gases operating in dilute conditions. Here the focus is on the properties of nozzle flows in
the non-ideal, possibly non-classical, gasdynamic regime.

Previous studies on non-ideal nozzle flows are as follows. Thompson (1971) first investigated
the role of Γ in accelerating flows through a sonic throat, demonstrating that an anti-throat is
required to accelerate to supersonic speed if Γ < 0. Cramer & Best (1991) examined steady
isentropic flows of fluids in the dense-gas regime, focusing on the relation between the Mach
number and the density. The main result is that the Mach number no longer increases monotonically
with decreasing density if Γ < 1. In addition, if Γ < 0, the number of sonic points may increase
from one only to three. Steady quasi-one-dimensional flows containing multiple sonic points were
investigated also by Chandrasekar & Prasad (1991) and Kluwick (1993) in the context of transonic
flows. Their work pointed out the existence of unconventional shocks, namely expansion and
sonic shocks, in the neighbourhood of the throat of a converging-diverging nozzle. Moreover,
these authors provided examples of stagnation conditions at the nozzle inlet (viz. reservoir
states, if the nozzle is assumed to be connected to a reservoir) not allowing for shock-free flows
expanding to arbitrarily large Mach numbers. The reference work of Cramer & Fry (1993) shed
further light on the admissible flows of BZT fluids in a conventional converging-diverging nozzle.
Solutions accounting for the entropy rise across shock waves were produced for the first time, by
employing a shock fitting technique based on a sixth-order Runge-Kutta scheme. Two types of
non-classical nozzle flows were introduced, in addition to the classical case (e.g. nozzle flows
qualitatively similar to those of ideal gases). In a complete expansion from rest to arbitrarily large
exit Mach numbers, Type-1 flows include a rarefaction shock in the diverging section of the nozzle.
Conversely, in Type-2 nozzle flows a rarefaction shock is observed in the converging section of the
nozzle.

The present research is aimed at complementing the theoretical framework delineated in the
above-mentioned studies. The main focus is on the possible flow configurations that occur in a
conventional converging-diverging nozzle connected to a reservoir with fixed thermodynamic state.
The layout of the exact solutions produced by monotonically decreasing values of the ambient
pressure determines the so-called functioning regime. As many as 10 functioning regimes are
singled out: one of these is possible only if 0 < Γ < 1, 8 of these are possible only if Γ < 0
(which also include the two classes of flow introduced by Cramer & Fry 1993, whose findings are
confirmed by the present analysis), while the remaining one is the standard functioning regime of
ideal gasdynamics Γ > 1. The leading goal of this study is to investigate the connection between
reservoir conditions and functioning regimes. To this end, the precise conditions leading to the
transition between different functioning regimes are determined.

The present chapter is organized as follows. Section 3.2 describes the mathematical formulation
of the steady nozzle flow problem. In §3.3, nozzle flows in the non-ideal classical regime are
discussed. In this framework, the main concepts of the novel analytical approach are introduced
and applied to the computation of exact solutions, the identification of functioning regimes and the
computation of the thermodynamic map of the reservoir conditions resulting in each functioning
regime. On this basis, extension to the non-classical gasdynamic regime is presented in §3.4.
Concluding remarks are given in §3.5.
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3.2. Formulation

3.2 Formulation

In the present study, the flow is assumed steady, inviscid, non-heat-conducting, non-reacting and
single-phase. The quasi-one-dimensional approximation is used to model the fluid flow through the
nozzle (see, e.g., Thompson, 1988). The quasi-one-dimensional governing equations for smooth,
i.e. shock-free, flows are the algebraic equations enforcing the conservation of mass, of total
enthalpy and entropy, namely

ρuA(x) = const, (3.1)
ht = const, (3.2)
s = const, (3.3)

where A(x) is the known cross-sectional area distribution along the axial coordinate x. The
variables appearing in (3.1)-(3.3) should be regarded as averaged values over the cross section.
Discontinuous solutions including shock waves are accounted for by means of the Rankine-
Hugoniot jump relations discussed in §2.3. Because the flow is quasi-one-dimensional, only
normal shocks needs to be considered.

In the following, we consider a converging-diverging nozzle x ∈ [−1,1] described by a fifth-
order polynomial, whose coefficients are computed to set the inlet area A(−1) = 1.2, the throat
area A(0) = 1 and an exit area A(1) = 1.5, and by imposing that the inlet, the throat and the exit
stations are stationary points of the area distribution. The resulting law is

A(x) = −0.225x5 − 0.35x4 + 0.375x3 + 0.7x2 + 1, x ∈ [−1,1] (3.4)

and is sketched in figure 3.1. The above area distribution is chosen as an example for plotting
purposes. In fact, the results presented in the following are qualitatively independent from the
actual geometry, provided that the nozzle is a converging-diverging duct.

In order to complete the problem, a suitable thermodynamic model of the fluid must be specified.
For explanatory purposes, nozzle flows are first illustrated using the polytropic van der Waals model
(see van der Waals 1873 and Appendix A), which predicts the correct qualitative behaviour in the
thermodynamic region of interest in this work, as shown for instance by Thompson & Lambrakis
(1973), Kluwick (2001), Guardone et al. (2004), Guardone & Argrow (2005). For van der Waals
fluids, the topology of Γ depends exclusively on the dimensionless isochoric specific heat c3/R,
where c3 is the isochoric specific heat and R is the gas constant. In the single-phase vapour or
gas region, Γ > 1 if c3/R . 3.78, Γ > 1, a region 0 < Γ < 1 exists if 3.78 . c3/R . 16.66
while the BZT region Γ < 0 exists provided c3/R & 16.66, see Colonna & Guardone (2006).
Subsequently, the predictions of the simple van der Waals model are verified against those of
accurate multi-parameter models from the REFPROP library.

3.3 Classical nozzle flows

The general framework for the inspection of non-ideal nozzle flows is established in this section
devoted to the classical gasdynamic regime. Many of the concepts familiar to nozzle flows of ideal
gases are reviewed and extended to the non-ideal context. Functioning regimes and their exact
solutions described in §3.3.3 are conveniently anticipated and explained through the isentropic
flow model of §3.3.1. The link between the functioning regime and the reservoir conditions is
investigated in §3.3.4.
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Figure 3.1. Cross-sectional area distribution considered in this work.

3.3.1 Isentropic flow
According to the governing equations of quasi-one-dimensional steady flows, the mass flow rate
ṁ = ρuA(x) and the total enthalpy ht are uniform both in shock-free and in shocked flows.
The entropy s, on the other hand, is piecewise uniform with finite jumps occurring across shock
waves. It follows that the general features of quasi-1D steady nozzle flows can be explained in a
comprehensive manner by examining the isentropic flows with constant total enthalpy.

We start by commenting on the relation between the Mach number

M = u/c =
√

2(ht − h)/c (3.5)

and the density in non-ideal compressible flows. Following Thompson (1971) and Cramer &
Best (1991), the first derivative of the Mach number with respect to the density is recast in
non-dimensional form as

J =
ρ

M
dM
dρ

= 1 − Γ −
1

M2 . (3.6)

In flows of fluids having Γ > 1, the Mach number always decreases upon isentropic compression.
Conversely, if Γ < 1, the Mach number can possibly increase with density. The variation of the
Mach number along exemplary non-ideal isentropic flows is sketched in figure 3.2(a), where the
van der Waals model with c3/R = 15 is used. The current model specification allows for the
existence of region 0 < Γ < 1 in the vapour phase and is used throughout this section to illustrate
qualitative aspects. The (M, ρ)–diagram of figure 3.2(a) is generated for a fixed value of the total
enthalpy. Thus, each curve corresponds to a different entropy value along the same isenthalpic line
h = ht .

Isentropes in figure 3.2(a) intersect the vapour-liquid phase boundary along curve labelled
Msat. A wide portion of the saturated vapour boundary of the fluid considered is retrograde (see
Thompson et al., 1986; Menikoff & Plohr, 1989), meaning that isentropes cross the phase boundary
from the mixed towards the pure phase, in the direction of decreasing density.1 We limit the present
analysis to single-phase flows, i.e. to the subset of isentropes not crossing the saturated phase
boundaries. Two-phase effects, as well as critical-point phenomena which affect near-to-critical
isentropes are outside the scope of this work.

The stationary points of the Mach number form the locus J = 0, whose general shape can be
explained by analysing the evolution of Γ along isentropes featuring Γ < 1 (see, e.g., Bethe, 1942;

1All isentropes eventually enter the two-phase region crossing a non-retrograde saturated phase boundary. The ultimate
intersection with the non-retrograde portion of the saturated vapour boundary typically occurs at extremely low density
values, compared to those characterizing the thermodynamic region of interest in this work, that it is reasonable to assume
that isentropes cross saturation boundaries only if s < s3le, where s3le denotes the isentrope tangent to the vapour dome.
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Figure 3.2. Variation of (a) Mach number and (b) mass flux function with the density along exemplary
isentropes, as computed from the polytropic van der Waals model with c3/R = 15. Variables have been
made dimensionless using critical-point quantities (subscript c). The total enthalpy is constant, ht =

h(1.0700Pc ,3c ).

Zel’dovich, 1946; Thompson & Lambrakis, 1973). On these isentropes, Γ − 1 has two zeros with
a local minimum in between, where Λ = ρ (∂Γ/∂ρ)s vanishes. We differentiate (3.6) to obtain,
after evaluation at J = 0,

d2 M
dρ2

����J=0
= −

M
ρ2 Λ. (3.7)

Thus, stationary points of the Mach number located at higher densities (Λ > 0) and at lower
densities (Λ < 0) of the Λ = 0 locus are local maxima and minima, respectively.

It is evident from figure 3.2(a) that isentropes corresponding to sufficiently large stagnation
densities must cross the J > 0 region. This is consistent with the fact that J > 0 if the region
Γ < 1 is crossed at large values of the Mach number. We restrict the discussion to those curves that
represent a single-phase expansion from stagnation conditions to vacuum. In this case, isentropes
entering the J > 0 region exhibit both a local minimum and a local maximum of the Mach number.
Since Γ > 0 in the single-phase vapour region of the van der Waals fluid considered here, the
J = 0 locus is confined in the supersonic region M > 1. Thus, only supersonic flows will have
extrema in the Mach number. Among the other things, this means that only one sonic point occurs
along an isentropic expansion with constant total enthalpy. By decreasing the stagnation density,
the two stationary points eventually merge in a stationary inflection point. If the stagnation density
is further decreased, the Mach number ultimately becomes a monotone decreasing function of the
density.

Next, we consider the variation of the mass flux function

j = ρu = ρ
√

2(ht − h) (3.8)

with the density, in isentropic flows with constant total enthalpy. To determine whether j increases
or decreases with ρ, the above relation is differentiated to obtain

1
c

d j
dρ

=
M2 − 1

M
. (3.9)

Thus, the mass flux function increases (decreases) upon supersonic (subsonic) isentropic compres-
sion and sonic points are extrema. To determine the type of extrema, we differentiate (3.9) and
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Figure 3.3. Phase plane illustrating
density distributions for classical flows in
converging-diverging nozzle, for different
values of the mass flow rate. The value ρs
denotes the sonic density.

 
a

b

c
s

make use of relation (3.6), obtaining

ρ

c
d2 j
dρ2

����M=1
= −2Γ, (3.10)

which shows that a sonic point is a local maximum, minimum or stationary inflection point of
the mass flux if Γ is positive, negative or null at that point, respectively. A similar analysis was
performed by Kluwick (1993, 2004), albeit in the context of small perturbations in transonic flows.
Figure 3.2(b) illustrates exemplary mass flux functions corresponding to different entropy values
chosen along the isenthalpic locus h = ht .

Strictly related to the flux function is the phase plane, i.e. the contour plot of the mass flow
rate

ṁ = j (ρ; s,ht ) A(x) (3.11)

in the (ρ, x)-diagram, for fixed entropy and total enthalpy. In the phase plane it is possible to
predict the possible isentropic flows in a nozzle of given geometry, and, to a certain extent, it can
anticipate the occurrence of non-isentropic flows. It is well-known that the density distribution in
quasi-1D flows with constant entropy and total enthalpy satisfies the differential relation

1
ρ

dρ
dx

=
M2

1 − M2

A′

A
, (3.12)

see Courant & Friedrichs (1948), and thus a subsonic flow expands upon area contraction and is
compressed otherwise, while a supersonic flow is compressed upon area contraction and expanded
otherwise. In the classical gasdynamic regime, phase planes are saddle shaped, as shown in figure
3.3. The value of the mass flow rate given by

ṁc = max
ρ

j (ρ; s,ht ) min
x

A(x), (3.13)

corresponds to the saddle point and it is referred to as critical mass flow rate. In the present case
ṁc = j (ρs ; s,ht ) Atr, where Atr is the throat area and ρs denotes the density value at the sonic
point. Given that we are interested in the expansion from a reservoir, we will naturally focus on
subsonic inlet conditions. Curves such as a in figure 3.3 display ṁ < ṁc and result in strictly
subsonic flows. The curve labelled b in figure 3.3 corresponds to ṁ = ṁc . Subsonic-supersonic
transition is possible, as well as completely subsonic flow with sonic throat. Along curves such as
curve c, which display ṁ > ṁc , sonic conditions occur upstream of the throat and the flow cannot
be continued beyond this point. These trajectories have no physical relevance in steady isentropic
flows discharging from a still reservoir.
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Isentropic
pattern

Number of
sonic points J��M<1 J��M>1

max
ρ

j

S I 1 J < 0 J < 0 ρs

S NI 1 J < 0 J ≶ 0 ρs

Table 3.1. Description of isentropic patterns for non-ideal classical nozzle flows.
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Figure 3.4. Variation of (a) Mach number and (b) mass flux function with the density for an exemplary
transitional isentropic flow, computed from the polytropic van der Waals model with c3/R = 15. The total
enthalpy is constant and equal to the value used in the computation of figure 3.2.

3.3.2 Isentropic patterns
In order to examine piece-wise isentropic flows and determining functioning regimes in nozzles, it
is useful to introduce the concept of isentropic pattern, in the following denoted with the symbol
S , as a way of classifying isentropic nozzle flows. In the classical gasdynamic regimes, two
different isentropic patterns can be identified as follows. We regard any isentropic flow as ideal (i.e.
ideal-gas like), and we denote the corresponding ideal isentropic pattern as S I, if the Mach number
monotonically increases with decreasing density in a complete expansion from stagnation. Such
flows will of course exhibit a single sonic point. The monotonicity of the Mach number may break
down in the supersonic regime of flows evolving under non-ideal conditions, namely 0 < Γ < 1.
The corresponding non-ideal pattern is denoted as S NI. The outcome of this classification is
summarized in table 3.1

The transition between isentropic patterns S NI and S I is marked by the limiting isentrope
which exhibits a stationary inflection point in the Mach number distribution, as shown in figure
3.4. Thus, the isentrope corresponding to the transitional pattern S NI/S I is tangent to the J = 0
curve at its minimum value of the Mach number, i.e. where J = 0 and Λ = 0 simultaneously, see
equations (3.6) and (3.7).

By varying the total enthalpy and gathering the stagnation state corresponding to the transitional
isentropic patterns, the thermodynamic map of figure 3.5 is ultimately obtained. This map allows
one to determine the isentropic pattern resulting from a given pair of stagnation conditions. Due to
the assumption of considering single-phase flows, the thermodynamic region of interest is bounded
from below by the isentrope s3le tangent to the saturation curve. If s3le < s < sτ,1, where sτ,1
denotes the isentrope tangent to the locus Γ = 1, both S I and S NI can occur depending on the
stagnation state. Consistently with the observed layout in figure 3.2, isentropic pattern S NI occurs
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Figure 3.5. Thermodynamic map of stagnation states associated with each isentropic pattern, as computed
from the van der Waals polytropic model with c3/R = 15. Curves labelled s = s3le and s = sτ,1 represent the
isentropes tangent to the vapour-liquid saturation curve and to the Γ = 1 locus, respectively.

for sufficiently large stagnation densities. If Γ > 1 everywhere along the reference isentrope, e.g.
for s > sτ,1, the Mach number is a monotone decreasing function of the density and pattern S I

only can take place.
The identification of the different types of isentropic flow behaviour is essential prior to the

construction of general solutions to nozzle flows, which possibly include shock waves. Indeed,
smooth branches of any quasi-1D flow can be associated locally with an isentropic pattern. The
entropy jump across shock waves results in a shift of the associated isentropic curve and can
possibly result in the qualitative modification of the flow behaviour, i.e. in a transition of the
isentropic pattern. The second law of thermodynamics dictates the direction in which this process
can possibly occur. To show this, we first note that(

∂ρ

∂s

)
h

= −
ρT (1 + G)

c2 < 0, (3.14)

where G = 3(∂P/∂e)3 is the Grüneisen parameter, which we assume to be positive here throughout.
Menikoff & Plohr (1989) discussed the assumption of G > 0 for real materials, which is implied
by a positive value of the coefficient of thermal expansion, a condition fulfilled by most fluids of
interest (with the relevant exception of water at 0 ◦C and 1 bar, see Bethe 1942). Equation (3.14)
implies that the stagnation density decreases with increasing entropy at constant total enthalpy.
Therefore, with reference to figure 3.4(a), transitions of the isentropic pattern occur in the direction
of increasing entropy as follows:

S NI → S I. (3.15)

Thus, in classical gasdynamics, the occurrence of shock waves can possibly drive the flow field to
ideal-gas like behaviour; on the contrary, the opposite situation is not possible, i.e. an isentropic
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flow having the qualitative features of ideal flows cannot turn into one presenting the non-ideal,
non-monotonic Mach number profile.

3.3.3 Functioning regimes

We now derive exact solutions for steady flows in a converging-diverging nozzle, which is regarded
as a discharging device between a reservoir and a stationary atmosphere. Thus, we will naturally
focus on subsonic flow conditions at the nozzle inlet. The boundary condition in our problem are
the reservoir conditions, i.e. a couple of thermodynamic variables describing the reservoir state,
and the ambient pressure Pa in the downstream environment (which will be, in general, different
from the pressure Pe observed at the exit section of the nozzle).

Specifically, the dependence of the flow field on Pa , or similarly on the ambient to reservoir
pressure ratio ε = Pa/Pr , is examined for given reservoir conditions. When the range 0 <
ε 6 1 is spanned, a specific sequence of solutions is observed, which together delineate the
functioning regime, referred to as R in the following. Remarkably, each functioning regime
can be represented by relatively few special solutions of the nozzle flow: the limiting solutions
and selected intermediate solutions. A particular flow field is a limiting solution of the nozzle
problem if an arbitrary small variation of the ambient pressure produces modifications to its
qualitative structure, that is, limiting solutions are isolated solutions of the boundary value problem.
Correspondingly, a set of limiting values of the ambient pressure is defined; each pressure value is
associated with a limiting flow. On the contrary, an intermediate solution remains qualitatively
unaltered under arbitrary small variations of the ambient pressure. Intermediate solutions are
observed whenever the ambient pressure lies between two consecutive limiting ambient pressures.
Generally speaking, the qualitative structure of a solution is characterized, among the others, by
the presence of a sonic throat and by the existence and the possible sequence of shock waves. This
will be made clear in the subsequent discussion.

3.3.3.1 Computation of exact solutions

The mass balance equation recast in the form

j (ρ; s,ht ) A(x) − ṁ = 0 (3.16)

provides an implicit definition of the density distribution ρ(x; s,ht , ṁ) in smooth regions of the
flow field, which will be coupled with the application of the Rankine-Hugoniot relations (2.10)-
(2.12) across shock waves, if any are present. For a general, non-ideal thermodynamic model,
equations (2.10)-(2.12) and (3.16) are non-linear equations which can be solved using standard
root-finding algorithms, up to arbitrary accuracy. Equation (3.16) will yield at least two different
roots if ṁ < ṁc , one subsonic and one supersonic. Smooth transition from subsonic to supersonic
flow can be attained only at the throat of the nozzle (if M = 1 and A′(x) , 0, the slope of the
density distribution goes to infinity, see relation (3.12) and figure 3.3). Non-smooth supersonic to
subsonic transition is of course possible across a shock wave.

In order to compute the roots of equation (3.16), three parameters need to be specified, namely
the entropy, the total enthalpy and the mass flow rate. Of these parameters, only the total enthalpy
is known a priori, since from governing equations it is uniform throughout the nozzle and equal
to the reservoir enthalpy. The entropy, which changes across the nozzle only if shock waves are
present, and the mass flow rate depend also on the value of the ambient pressure. The complex
connection between the boundary conditions, the entropy and the mass flow rate is clarified with a
practical example in the following section.
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Figure 3.6. Exemplary limiting ( ) and intermediate ( ) flows of type R I, computed from the van
der Waals polytropic model with c3/R = 15. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions. Reservoir conditions: Pr = 10Pc , 3r = 103c .

3.3.3.2 Functioning regimeR I

The layout of the possible flow configurations produced by S I reservoir conditions corresponds to
the textbook case of an ideal gas with constant specific heats (see, e.g., Thompson, 1988) and is
denoted here as R I. The main results are reported here for reference and are extended to a general,
non-ideal thermodynamic description of the fluid. Limiting and intermediate flows are reported in
figure 3.6. Flows of type R I(1) are completely subsonic and are characterized by increasing mass
flow rate with decreasing ambient pressure. Limiting solution R I(1-2) determines the so-called
chocking condition, because the throat is sonic and a further decrease of the ambient pressure has
no influence on the mass flow rate. Let ṁmax denote the maximum mass flow rate dischargeable by
the nozzle and ṁs the mass flow rate in the choked condition; then

ṁmax = ṁs = ṁc (sr ,ht ), (3.17)

where the critical mass flow rate ṁc is defined by (3.13) and sr is the reservoir entropy. If ε < ε1-2,
where ε1-2 is the pressure ratio corresponding to limiting solution R I(1-2), the flow is choked and
subsonic to supersonic transition occurs at the throat.

Pressure ratios slightly lower than ε1-2 cannot be attained in isentropic flows, as the phase plane
analysis suggests. Matching with the imposed downstream boundary condition can be realised
by inserting a shock wave in the diverging section of the nozzle, as in intermediate flows of type
R I(2). It can be shown that the entropy jump across the shock wave increases with decreasing
ambient pressure. To this end, inserting ρ = ρ(s,P) into the mass balance equation, we obtain an
implicit definition of s(P; ṁ,ht , A). By evaluating this relation on the exit section, with ṁ = ṁmax,
A = Ae and ht fixed, we have

dse
dPe

=
M2

e − 1
ρeTe (M2

eGe + 1)
. (3.18)

Note that if the outflow is subsonic, as it is the case for solutions of type R I(2), then Pe = Pa and
dse/dPe = dse/dPa in the corresponding range of ε. In addition, by combining the jump relations
and the differential relations for quasi-1D flows, the following relation between the shock wave
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Figure 3.7. Exemplary limiting ( ) and intermediate ( ) flows of type RNI, computed from the van
der Waals polytropic model with c3/R = 15. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions. Reservoir conditions: Pr = 1.6Pc , 3r = 0.73c .

location xs and the entropy sB downstream of a shock wave is obtained:

dxs

dsB
=

A
A′

ρATB

[P]
*
,

1
M2

B

+
[3]
23B

BB+
-


*
,

1
M2

B

− 1+
-

3B

3A
+

1
2



−1

. (3.19)

Given that MB < 1, the last two terms in the above expression are positive (ordinary shock adiabats
satisfy 23B + [3]GB > 0, see §2.3.2). Hence, a compression shock in the diverging section of the
nozzle moves downstream with increasing post-shock entropy, which, in turn, corresponds to
decreasing values of the ambient pressure, as shown by (3.18) together with se = sB and Pe = Pa .
Ultimately, the shock wave reaches the exit section, see limiting flow R I(2-3). Flows of type
R I(3) are completely isentropic expansion with supersonic exit conditions. If ε , ε3, where ε3
corresponds to the exit pressure of solution R I(3), in which the nozzle is said to be adapted, an
over-expanded jet (ε > ε3) or an under-expanded jet (ε < ε3) develops outside of the nozzle.

3.3.3.3 Functioning regimeRNI

A distinguished functioning regime, termed RNI, stems from reservoir conditions associated with
isentropic pattern S NI, owing to the non-monotonic evolution of the Mach number in supersonic
flows. Limiting solution RNI(3) exhibits this feature, as shown in figure 3.7. Extrema in the Mach
number may also occur in the supersonic expansion of solutions of type RNI(2), provided that the
shock wave is located sufficiently downstream the throat. On the other hand, the layout and the
general properties of the density distributions and of the Mach solutions of type RNI(1) and RNI(3)
is as described above for the case R I. Note that transition S NI → S I can possibly occur across
the shock wave of flow RNI(2). However, no change in the qualitative structure of the solution is
detected, as patterns S NI and S I present similar features in subsonic flows.

3.3.4 Thermodynamic map of functioning regimes
With the same approach used to compute the map of the stagnation states associated with each
isentropic pattern, a thermodynamic map of the reservoir states leading to each functioning regime
has been generated and is shown in figure 3.8. The present map allows one to determine the
functioning regime resulting from a given pair of stagnation conditions, and it should be compared
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Figure 3.8. Thermodynamic map of reservoir states associated with each functioning regime, as computed
from the van der Waals polytropic model with c3/R = 15. Curves labelled s = s3le and s = sτ,1 represent the
isentropes tangent to the vapour-liquid saturation curve and to the Γ = 1 locus, respectively.

with the map of the isentropic patterns in figure 3.5. Since there exists a one-to-one correspondence
between functioning regime R I and reservoir states featuring isentropic pattern S I, as well as
between functioning regime RNI and reservoir states featuring isentropic pattern S NI, the map of the
functioning regimes in classical gasdynamics is formally identical to that of the isentropic patterns.
Thus, under the assumption of considering single-phase flows, regime RNI can be observed only
from reservoir states along isentropes s3le < s < sτ,1 and having sufficiently large density, i.e.
larger than those corresponding to the transitional line S NI/S I.

3.3.4.1 Results of accurate models for selected substances

The polytropic van der Waals model has been used to illustrate nozzle flows of single-phase
fluids in the non-ideal classical gasdynamic regime. From a qualitative standpoint, the current
theoretical framework does not depend on the specific choice of the thermodynamic model. The
existence of the non-ideal functioning regime RNI, in addition to the ideal-gas-like regime R I,
is indeed found to result from the increase of the speed of sound along isentropic expansions,
i.e. to the existence of a Γ < 1 region in the vapour phase. Thus, different thermodynamic
models predicting Γ < 1 in the vapour phase will generate qualitatively similar maps of the
functioning regimes. To support this claim, the simple van der Waals model is here abandoned
in favour of more complex multi-parameter equations of state of the well-established library
REFPROP (Lemmon et al., 2013). These modern thermodynamic models allow computations
of all relevant thermodynamic properties (except in the very close proximity of the critical point,
where analytical models notoriously fail) with the accuracy required for design and analysis of
advanced technical applications. The selected fluids to demonstrate the general validity of the
theoretical framework delineated using the van der Waals model are MDM (octamethyltrisiloxane,
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Figure 3.9. Thermodynamic map of reservoir states associated with each functioning regime, as computed
from reference thermodynamic model of MDM (REFPROP library). See figure 3.8 for full caption.

C8H24O2Si3), modelled with the EoS of Thol et al. (2017) and toluene (C7H8), modelled with the
EoS of Lemmon & Span (2006). These are multiparameter models in the Span-Wagner functional
form (see Appendix A). The thermodynamic maps of the functioning regimes for MDM (figure
3.9) and toluene (figure 3.10) show excellent qualitative agreement with the picture given by the
simple van der Waals model.

3.4 Non-classical nozzle flows

In this section, steady nozzle flows of BZT fluids are examined by adopting the analytical approach
introduced in the previous section. The focus is on the non-classical gasdynamic regime, where
the present approach is best suited and reveals its full capability. The discussion follows the same
lines as the previous section. Firstly, the main properties of isentropic flows are investigated in
§3.4.1 and non-classical isentropic patterns are singled out. Functioning regimes are presented in
§3.4.3 and the related thermodynamic maps in §3.4.4.

3.4.1 Isentropic flow

The analysis presented here is intended to show the peculiarities associated with thermodynamic
states featuring Γ < 0. To this end, the qualitative description of the flow will be performed
using the polytropic van der Waals model of an exemplary BZT fluid with dimensionless isochoric
specific heat equal to c3/R = 50.

Figures 3.11(a) and 3.11(b) show the distribution of the Mach number and mass flux function,
respectively, along exemplary isentropes crossing the negative-Γ domain. As before, the analysis
presented here is based on the assumption of fixed total enthalpy, i.e. the stagnation states in figure
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Figure 3.10. Thermodynamic map of reservoir states associated with each functioning regime, as computed
from reference thermodynamic model of Toluene (REFPROP library). See figure 3.8 for full caption.

3.11(a) correspond to different entropy values on the same isenthalpic line h = ht . With reference
to figure 3.11(a), the main difference with respect to the classical gasdynamic regime is that the
J = 0 locus now extends to the subsonic region M < 1. Focusing on curves in the single-phase
region during a full expansion from stagnation conditions to vacuum, we note that isentropes
corresponding to sufficiently large stagnation densities cross the J > 0 region, thus exhibiting
extrema in the Mach number. If the local maximum occurs at sufficiently high Mach numbers, the
flow remains supersonic upon further expansion. On the other hand, if the local maximum is only
slightly supersonic, the flow becomes subsonic inside the J > 0 region. As a result, the selected
isentrope exhibits three sonic points. By decreasing the stagnation density, the two stationary
become subsonic and eventually merge in a stationary inflection point. If the stagnation density is
further decreased, the Mach number ultimately becomes a monotone decreasing function of the
density.

Phase plane representative of the different types of non-classical isentropic flows are sketched
in figure 3.12. Isentropes containing a single sonic point generate saddle-shaped phase planes, as
shown see figure 3.12(a). This layout is qualitatively identical to one previously described for
classical nozzle flows; we’ll thus omit the description of the related curves. The non-classical
flows we are mainly interested in are those associated to isentropes including three sonic points.
Phase planes related to such isentropes exhibit two saddle points with a local minimum in between.
Given the following ordering for the sonic values of the density,

ρs3 < ρs2 < ρs1 , (3.20)

two different categories of phase plane can be distinguished depending on the sonic density
associated with the critical mass flow rate.

The case ṁc = j (ρs3 ; s,ht ) Atr, with ṁc defined by equation (3.13), is depicted in figure
3.12(b). Note that this corresponds to having the sonic density ρs3 at the global maximum of
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Figure 3.11. Variation of (a) Mach number and (b) mass flux function with the density along exemplary
isentropes, as computed from the polytropic van der Waals model with c3/R = 50. The total enthalpy is
constant, ht = h(1.0182Pc ,3c ).

the associated mass flux function. We follow Cramer & Fry (1993) in referring to this kind of
non-classical phase plane as Type-2 phase plane. Focusing on trajectories with subsonic inlet
conditions, we not that in figure 3.12(b), in addition to the possible cases presented in figure 3.3(a),
there exist curves connecting the inlet and exit sections in which sonic conditions are encountered
either upstream or downstream of the throat. For example, if ṁ = j (ρs1 ; s,ht )Atr, curve labelled
b is generated which corresponds to a flow that is sonic both at the throat (ρ = ρs1 ) and in the
diverging section (ρ = ρs2 ). However, at ρ = ρs2 the slope dρ/dx goes to infinity (see equation
3.12) and the trajectory has a turning point. Therefore, the flow cannot be continued isentropically
beyond this sonic point. Curves labelled c (ṁ < ṁc ) and d (ṁ = ṁc ) also include multiple sonic
points and, such as case b, these paths cannot be accomplished in a steady-state isentropic flow.

Figure 3.12(c) describes the case ṁc = j (ρs1 ; s,ht ) Atr, which is referred to as Type-1 phase
plane in accordance with the nomenclature proposed by Cramer & Fry (1993). In this case, sonic
density ρs1 corresponds to the global maximum of the associated mass flux function. Significant
trajectories with subsonic inlet are those of type a (ṁ < ṁc ) and b (ṁ = ṁc ). The latter cannot be
continued beyond sonic point ρs2 , which occurs downstream of the throat.

3.4.2 Isentropic patterns

In view of the different types of isentropic flow observed in the non-classical gasdynamic regime
of BZT fluids, we propose a classification of isentropic flows into five different isentropic patterns,
as detailed in table 3.2. In addition to the ideal pattern S I and the non-ideal pattern S NI, attainable
also in the classical gasdynamic regime, three different non-classical isentropic patterns can be
distinguished. Firstly, if Γ becomes negative, the Mach number may increase with increasing
density also in the subsonic regime. Pattern S NC

3 refers to isentropes having a single sonic point and
featuring J > 0 for in subsonic flow. Following Cramer & Fry (1993), isentropic flows including
three sonic point are classified according to the layout of the related phase plane. We formally
define patterns of type S NC

2 as those exhibiting a phase plane qualitatively similar to that of figure
3.12(b), i.e. when the critical mass flow rate is attained with ρs3 at the throat. Isentropic pattern
S NC

1 is associated to the phase plane of figure 3.12(c), for which the critical mass flow rate is
attained with ρs1 at the throat.

Transitional isentropic patterns in the (M, ρ)–diagram and in the ( j, ρ)–diagram are depicted
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Figure 3.12. Phase planes for selected isentropes featuring (a) one sonic points and (b), (c) three sonic
points along an isentropic expansion with constant total enthalpy. Dashed segments denote sonic values of the
density, ordered as ρs3 < ρs2 < ρs1 . If one sonic point only is present, it is specified as ρs . (b) Sonic density
ρs3 is the global maximum of the related mass flux function. (c) Sonic density ρs1 is the global maximum of
the related mass flux function.

Isentropic
pattern

Number of
sonic points J��M<1 J��M>1

max
ρ

j

S I 1 J < 0 J < 0 ρs

S NI 1 J < 0 J ≶ 0 ρs

S NC
3 1 J ≶ 0 J < 0 ρs

S NC
2 3 J ≶ 0 J ≶ 0 ρs3

S NC
1 3 J ≶ 0 J ≶ 0 ρs1

Table 3.2. Description of isentropic patterns for non-ideal, possibly non-classical nozzle flows. In the
presence of multiple sonic points, the corresponding densities are ordered as ρs3 < ρs2 < ρs1 . If one sonic
point only is present, it is specified as ρs .

in figures 3.13(a) and 3.13(b), respectively. These figures are computed for a constant value of
the total enthalpy (the same used in the computation of figure 3.11). The limiting flows S NI/S NC

1
and S NC

2 /S NC
3 are distinguished based on the presence of non-simple sonic points, at which M = 1

and J = 0 simultaneously, i.e. the Mach number profile is locally tangent to the sonic line. These
transitional patterns thus include two distinct sonic points. In the limiting curve for S NI/S NC

1
transition the non-simple sonic point is the low-density sonic point, while in the transitional curve
S NC

2 /S NC
3 the non-simple sonic point is the high-density sonic point. For stagnation densities

included between the values associated with transitions S NI/S NC
1 and S NC

2 /S NC
3 , three sonic point

occur. For a particular value of the stagnation density, the mass flux function exhibits two global
maxima, i.e. ρs3 c(ρs3 , s) = ρs1 c(ρs1 , s); this condition identifies transition S NC

1 /S NC
2 . Finally, the

limiting curve for S NC
3 /S I transition exhibits a stationary inflection point in the Mach number

distribution, i.e. it intersects the locus J = 0 at its minimum (J = 0 and Λ = 0 simultaneously).
By varying the total enthalpy and gathering the stagnation state corresponding to the transitional

isentropic patterns, the thermodynamic map of figure 3.14 is ultimately obtained. The value of the
total enthalpy that was used for the computation of figures 3.11 and 3.13 is such that all different
isentropic patterns possibly arise.

If s3le < s < sτ,0, where sτ,0 denotes the isentrope tangent to the locus Γ = 0, each class of
isentropic flow can be observed depending on the stagnation state. In the direction of increasing
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Figure 3.13. Variation of (a) Mach number and (b) mass flux function with density for transitional
isentropic flows, computed from the polytropic van der Waals model with c3/R = 50. The total enthalpy is
constant and equal to the value employed in the computation of figure 3.11.

density, patterns S I, S NC
3 , S NC

2 , S NC
1 , S NI are encountered. With increasing values of s, the

region of stagnation states leading to non-classical isentropic patterns shrink and the corresponding
transitional curves ultimately coincide in a single thermodynamic state when s = sτ,0. Similarly
to the classical gasdynamic case, along isentropes featuring 0 < Γ < 1, the Mach number may
exhibit a non-monotone profile in the supersonic regime. Accordingly, either S NI or S I is possible
depending on the stagnation state. Note that the transitional curves S NI/S I for isentropes featuring
0 < Γ < 1 and S NC

3 /S I for isentropes featuring Γ < 0 are constructed in the same way and form a
single continuous locus, which comprises the stagnation states associated with stationary inflection
points in the Mach number distribution. The inflection point is subsonic for transition S NC

3 /S I and
supersonic for transition S NI/S I. If Γ > 1 everywhere along the reference isentrope, the Mach
number is a monotone decreasing function of the density and pattern S I only can take place.

Application of the second law of thermodynamic together with relation (3.14) shows the
direction in which transitions of the isentropic patterns can possibly occur:

S NI → S NC
1 → S NC

2 → S NC
3 → S I. (3.21)

Evidently, the transition does not necessarily occur between two adjacent isentropic patterns (e.g.
S NI →S NC

2 or S NC
3 →S I are admissible transitions). One of the most relevant consequences of

the entropy rise across a shock wave is the possible change in the number of sonic points, for the
phase planes featuring one only and three sonic points are topologically different. The number of
sonic points may either decrease (following, e.g., a transition S NC

1 →S NC
3 ), or increase (e.g. S NI

→ S NC
2 ). In addition, from previous investigations it was inferred that non-classical flow fields

are associated to reservoir conditions of type S NC
1 and S NC

2 . The present analysis suggests that
non-classical flow configurations are expected also from reservoir conditions featuring a single
sonic point, namely S NI, because of the possible transition S NI →S NC

1 or S NI →S NC
2 . The latter

claim is confirmed in the following section.

3.4.3 Functioning regimes
The analytical approach introduced in §3.3.3 to compute exact solutions of classical nozzle flows
is extended in this section, where we describe functioning regimes for single-phase flows of
BZT fluids in converging-diverging nozzles. It is anticipated here, to the understanding of the
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following treatment, that starting from five different isentropic patterns associated to the reservoir
conditions, as many as ten different functioning regimes have been singled out. These can be
grouped in the six classes reported in table 3.3. Two classical functioning regimes are introduced,
namely the ideal regime R I and the non-ideal regime RNI, correspond to those illustrated in
§3.3.3. Reservoir conditions featuring pattern S NC

3 produce the non-classical regime RNC
3 , which

features non-monotonic Mach number expansion in the subsonic regime, in both the converging
and diverging sections. Two classes of functioning regimes, namely RNC

1 and RNC
2 , are associated

with reservoir conditions of type S NC
1 and S NC

2 . In these flows, expansion to arbitrarily large exit
Mach numbers requires that a rarefaction shock is formed. The distinction between regimes RNC

1
and RNC

2 is based on the location of this rarefaction shock, downstream of the throat in expanding
flows of type RNC

1 and upstream of the throat section in RNC
2 expansions. A further grouping is also

outlined, namely sub-classes a,b and c of regimes RNC
1 and RNC

2 , which are defined according to the
mechanism of formation of split shocks. Finally, it is shown that non-classical functioning regime
RNC

0 is produced by reservoir conditions of type S NI, which are characterised by the occurrence of
a single sonic point.

Functioning regimes will be discussed in the order of increasing number of possible transition
of the isentropic pattern (see the ordering in 3.21), starting from S I reservoir conditions, where no
transition can take place, up to S NI reservoir conditions, from where all transitions are possible.

3.4.3.1 Functioning regimeR I

Limiting and intermediate flows of type R I are reported in figure 3.15, which is qualitative identical
to its counterpart in classical gasdynamics (figure 3.6). For the description of each solution, the
reader is referred to §3.3.3. In spite of the possibility that the expansion partially takes place within
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Isentropic pattern of the
reservoir conditions Possible functioning regimes

S I R I

S NC
3 RNC

3

S NC
2 RNC

2 , RNC
1

S NC
1 RNC

1

S NI RNI, RNC
0

Table 3.3. Summary of the functioning regimes in a converging-diverging nozzle produced by different
isentropic patterns of the reservoir conditions.
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Figure 3.15. Exemplary limiting ( ) and intermediate ( ) flows of type R I, computed from the van
der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions. Reservoir conditions: Pr = 10Pc , 3r = 103c .

the negative-Γ region, reservoir conditions of type S I result in functioning regime R I, because no
isentropic-pattern transition is allowed from S I. Thus, at most one shock wave can occur within
the nozzle (in the diverging section) and the isentropic flow upstream and downstream of the shock
is of type S I. An ideal-gas-like situation is recovered, which is classified as R I.

3.4.3.2 Functioning regimeRNC
3

If the reservoir conditions correspond to isentropic pattern S NC
3 , the Mach number does not increase

monotonically through a subsonic expansion. The associated functioning regime is denoted as
RNC

3 . This is our first example of non-classical regime, since the Mach number decrease/increase
in subsonic expansions/compressions requires that Γ < 0. Limiting and intermediate flows of
regime RNC

3 are sketched in figure 3.16. The layout and the general properties of the solutions is as
described for regime R I, except for a pronounced subsonic peak in the Mach number. This appears
as a steeper expansion or compression in the density solutions. In addition, contrary to the ideal
case, in flows of type RNC

3 (2) the Mach number may also increase downstream of the shock wave
in the divergent section. If, however, transition S NI

2 → S I occurs in passing through the shock
wave, the Mach number will necessary decrease up to the exit section, as in the exemplary solution
RNC

3 (2) reported in figure 3.16.
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Figure 3.16. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
3 , computed from the

van der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b)
Mach number solutions. Reservoir conditions: Pr = 1.1427Pc , Pr = 1.1427Pc .

3.4.3.3 Functioning regimeRNC
2

The nozzle flows of central interest in non-classical gasdynamic are those where the isentropic
pattern of the reservoir conditions exhibits three sonic points. In this section we discuss regimes
of type RNC

2 , which can originate from reservoir conditions of type S NC
2 , see Table 3.3. Three

possible configurations are admissible and detailed in §3.4.3.5: RNC
2a, RNC

2b and RNC
2c . Here, regime

RNC
2a, corresponding to Type-2 flows of Cramer & Fry (1993), is presented to describe common

features to the functioning regimes for the RNC
2 class.

Inspection of figure 3.17 reveals that flows such as RNC
2a(2), that include a single compression

shock in the diverging section of nozzle, exist for a very limited range of ambient pressures. This
shock, owing to the non-monotone dependence of the Mach number on the density, ultimately
has sonic upstream state (ρ = ρs2 ), see limiting solution RNC

2a(2-3), and cannot exist further
downstream. Shocks with upstream sonic state are referred to as pre-sonic shocks.

If the ambient pressure is slightly reduced below ε = ε2-3, the entropy rise needed to match the
outlet boundary condition is carried by a double-shock configuration, in which the leading wave is
a rarefaction shock and the trailing wave is a pre-sonic compression shock. The trailing shock is
formed because the flow downstream of the rarefaction shock becomes sonic when ρ = ρs2 in the
local isentropic pattern, which remains of type S NC

2 (i.e., no transition occurs across the leading
shock). Intermediate flows of type RNC

2a(2) and RNC
2a(3) are sonic at the throat (sonic condition ρs1 ).

Therefore, the nozzle is choked in the corresponding range of ambient pressures, with a constant
value of the mass flow rate denoted as ṁs1 . The simultaneous shift upstream of the rarefaction
shock and downstream of the pre-sonic compression shock, in accordance with relation (3.19),
allows to satisfy the overall increasing entropy jump in a chocked flow as the ambient pressure is
decreased, see relation (3.18). Eventually, the leading shock wave has sonic upstream state and it
is located exactly at the throat section, see limiting solution RNC

2a(3-4).
A rarefaction shock with sonic upstream state can also exist ahead of the throat. If ε4-5 < ε <

ε3-4, the mass flow rate increases with decreasing ambient pressure and sonic condition ρs1 occurs
upstream of the throat. Trajectories such as RNC

2a(4) can be continued provided a sonic rarefaction
shock is inserted at the sonic point. Notably, this shock has the same upstream and downstream
states as the leading shock in limiting flow RNC

2a(3-4), though it occurs in a different location within
the nozzle. Downstream of the rarefaction shock, the flow expands up to the throat because of the
converging area. Flows of type RNC

2a(4) are subsonic at the throat and therefore the pressure and
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Figure 3.17. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
2a, computed from the van

der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions; (c) enlargement of (b) including only flows from 2 to 4; (d) enlargement of (b) including
only flows from 4 to 7. Reservoir conditions: Pr = 1.1300Pc , 3r = 0.77103c .

density increase in the diverging section of the nozzle. Because the local isentropic pattern is S NC
2 ,

a pre-sonic compression shock must be inserted to continue the flow beyond sonic point ρs2 (this
shock is identical to that of limiting solution RNC

2a(3-4)). The mass flow rate can be increased by
decreasing ε until M = 1 at the throat, whereby the sonic condition corresponds to the low-density
sonic point ρs3 in the isentrope downstream of the rarefaction shock. This condition determines
limiting flow RNC

2a(4-5), in which the pre-sonic rarefaction shock is in its rearmost position. Let st
denote the entropy value downstream of the limiting rarefaction shock wave and let ṁs2 be the
mass flow rate corresponding to ε = ε4-5. Then

ṁmax = ṁs2 = ṁc (st ,ht ) < ṁc (sr ,ht ), (3.22)

where for the last inequality we used(
∂j
∂s

)
ρ,ht

= −
ρ2T

j
(1 + G), (3.23)

which gives in turn (∂ṁc/∂s)ht < 0 and from the admissibility requirement st > sr . It follows that
there exist two different choking conditions in functioning regime RNC

2a, namely ε3-4 < ε < ε1-2
(ṁ = ṁs1 ) and ε < ε4-5 (ṁ = ṁs2 ).

43



Chapter 3. Non-ideal flows in converging-diverging nozzles

Flows RNC
2a(5) or RNC

2a(6) admit ordinary compression shock waves in the diverging section
of the nozzle. If the shock wave occurs sufficiently close to the throat section, such as in case
RNC

2a(5), the resultant subsonic compression eventually attains a sonic point and a further shock,
with sonic upstream state, must be formed to continue the flow. This is in contrast with the shock
configurations observed in the classical functioning regimes, where it is always possible to connect
two states (the downstream one having larger entropy) by means of a single compression shock
wave, without the need for an intermediate isentropic compression. Following Kluwick (1993)
and Cramer & Fry (1993), we will refer to this double compression-shock configuration as a split
shock, owing to the similarity with the shock-splitting phenomenon in unsteady flows2 (see Cramer,
1989b, 1991). According to relation (3.19), if the leading compression shock moves downstream
the corresponding entropy jump increases. Indeed, a reduction of the ambient pressure results in a
stronger leading shock and in a weaker terminating shock. Ultimately, the entropy rise across the
first compression shock is such that, in the downstream flow, the isentropic pattern corresponds to
the transitional type S NC

2 /S NC
3 . Thus, in the limiting flow RNC

2a(5-6) the trailing sonic shock wave
has vanishing strength.

If ε < ε5-6, a single non-sonic compression shock occurs, because the entropy jump generates
either transition S NC

2 → S NC
3 or transition S NC

2 → S I. Hence, if a compression shock forms
sufficiently far downstream of the throat, the post-shock isentrope no longer contains the additional
sonic point required for the existence of the sonic compression shock. As in previous regimes,
with decreasing ambient pressure the shock wave moves downstream in the diverging section of
the nozzle and eventually attains the exit section in limiting flow RNC

2a(6-7). If ε < ε6-7, no shock
waves exist downstream of the throat and the outflow is supersonic. The major difference with
respect to flows evolving along isentropes including a single sonic point is that full expansion to
arbitrarily large Mach numbers cannot be achieved isentropically, yet a pre-sonic rarefaction shock
is required to occur upstream of the throat.

3.4.3.4 Functioning regimeRNC
1

Regimes of class RNC
1 , which includes regimes RNC

1a, RNC
1b and RNC

1c described in §3.4.3.5, can
originate from reservoir conditions of type S NC

1 or S NC
2 , see Table 3.3. Regime RNC

1a in figure
3.18, which corresponds to Type-1 flows of Cramer & Fry (1993), is now presented to outline all
common features to regimes of type RNC

1 .
With reference to figure 3.18, flows RNC

1a(1), RNC
1a(2) and RNC

1a(3) are qualitatively similar to flows
RNC

2a(1), RNC
2a(2) and RNC

2a(3), respectively, discussed in the previous section. However, differently
from flows of type RNC

2a(3), the rarefaction shock of intermediate flows RNC
1a(3) becomes sonic on

the downstream side (post-sonic shock) when ε = ε3-4. Rarefaction shocks cannot exist ahead
of this limiting sonic shock. Thus, in contrast to RNC

2a flows, functioning regime RNC
1a exhibits a

unique sonic condition at the throat, corresponding to the high-density sonic point ρs1, and in turn
a unique chocking condition. Accordingly,

ṁmax = ṁs = ṁc (sr ,ht ), (3.24)

where ṁs is the mass flow rate discharged when ε < ε1-2.

2Care must be taken. The shock splitting in single-phase gases described by Cramer (1989b) refers to the phenomenon
by which an initial compression discontinuity which is inadmissible (see, e.g., case A2-B5 in figure 2.2) will split, as time
evolves, in two weaker shocks with a smooth compression fan in between. In fact, the essence of this shock splitting
is the formation of a composite wave. A truly split shock, according to Menikoff & Plohr (1989), is characterized by a
constant state in between. A similar configuration requires that the speed of sound is discontinuous in the middle state,
i.e. isentropes in the (P, 3)–plane must have a kink in their slope (e.g. at a saturation boundary). To maintain continuity
with the previous studies on non-classical nozzle flows, the nomenclature of Cramer & Fry (1993) is used and the analogy
between the double compression-shock configuration in the nozzle and unsteady shock splitting is meant in the sense of
Cramer (1989b).
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Figure 3.18. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
1a, computed from the van

der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions; (c) enlargement of (b) including only flows from 2 to 4; (d) enlargement of (b) including
only flows from 4 to 6. Reservoir conditions: Pr = 1.1453Pc , 3r = 0.76003c .

If ε < ε3-4, the flow expands downstream of the limiting rarefaction shock and two different
shock configurations are possible, similarly to functioning regime RNC

2a. Compression waves in the
neighbourhood of the limiting rarefaction shock occur in the form of a split shock, see intermediate
flow RNC

1a(4). The split-shock configuration ultimately vanishes because of the disintegration of the
sonic compression shock, as a result of the shift in the isentrope across the leading compression
shock. If ε5-6 < ε < ε4-5, a single non-sonic shock is formed downstream of the limiting
rarefaction shock, as the entropy rise across the trailing shock is such that the post-shock isentrope
no longer contains multiple sonic points (i.e. transition to isentropic pattern S NC

3 or S I occurs).
Finally, flows such as RNC

1a(6), expanding to arbitrarily low densities and arbitrarily large Mach
numbers, are realizable provided that a rarefaction shock with sonic downstream state is inserted
in the diverging section of the nozzle.

Non-classical functioning regimes RNC
1a and RNC

2a are in fact the Type-1 and Type-2 flows
introduced by Cramer & Fry (1993), respectively. In the following section we show that a further
classification can be formulated according to the mechanism by which the split shock turns into
the single-shock configuration.
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Figure 3.19. Contours of ht in the (Ψ, ρ)-diagram, corresponding to the exemplary isentrope s =

s(1.0923Pc ,3c ), as computed from the van der Waals polytropic model with c3/R = 50. The range of
densities coincides with the interval where j∗ is defined, i.e. where a post-sonic compression shock can
possibly originate. Two additional curves are plotted: the sonic locus M = 1 and the sonic shock disintegration
(SD) locus, gathering the pre-shock states corresponding to a shock wave with downstream isentropic pattern
S NC

2 /S NC
3 . The SD locus intersects the sonic locus at point P2. The curve passing through point P2

corresponds to the transitional isentropic pattern S NC
2 /S NC

3 . On the other hand, the curve passing through
point P1 (M = 1 andΨ = 0) corresponds to the transitional isentropic pattern S NI/S NC

1 .

3.4.3.5 On the split-shock formation: sub-classesRNC
a , RNC

b and RNC
c

In order to investigate the different scenarios for the split-shock formation and eventual disintegra-
tion, it is instructive to examine the quantity

Ψ = j (ρ; s,ht ) − j∗(ρ; s), (3.25)

where j∗ is the mass flux corresponding to a post-sonic compression shock. The parameterΨ is
related to the difference between the slope − j2 of the Rayleigh line of a shock wave with total
enthalpy ht and the slope − j∗

2
of the Rayleigh line of a post-sonic compression shock, both centred

on the thermodynamic state identified by ρ and s. Note that j∗ and in turnΨ are defined only
if a post-sonic compression shock can originate from the given pre-shock state. If a post-sonic
compression shock centred on a given pre-shock state exists and is admissible, then it is unique. To
show this, we notice that the sign of Γ alternates at successive sonic points along the shock adiabat
(see §2.3.2) and that the thermodynamic state in the sonic side of an admissible compression shock
exhibits3 Γ < 0 (see Menikoff & Plohr, 1989; Kluwick, 2001). According to the topology of Γ in
the single-phase gases (Γ changing sign at most twice along isentropes, Γ > 0 asymptotically for
infinitely-large and infinitely-small pressures), only one such sonic point is compatible with the
topology of Γ, thus completing the proof.

Figure 3.19 shows exemplary contours of ht in the (Ψ, ρ)-plane of a given isentrope. In
this diagram, the abscissa spans the range of densities where a post-sonic compression shock
is admissible. Two relevant curves are plotted, namely the sonic locus and the sonic-shock
disintegration (SD) locus. States located on the left-hand side (lower densities) of the sonic locus
represent supersonic, and therefore candidate pre-shock states of admissible shock waves. By

3The first sonic point along the shock adiabat is a local maximum in the post-shock entropy. It follows from equation
(2.37) that Γ < 0 at the first sonic point on the compression branch of the shock adiabat.
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Figure 3.20. Qualitative chart illustrating compression waves that bridge the negative-Γ region: HA and
HS shock adiabats from points A and S, respectively; RA and RS Rayleigh lines; IB isentrope. CaseΨ < 0,
ρA > ρSD: split-shock composed of shock A-B, isentropic compression along IB up to sonic point S and
sonic shock S-C. CaseΨ < 0, ρA < ρSD: shock A-B followed by isentropic compression along IB . Case
Ψ = 0: the Rayleigh line RA of shock A-C is tangent to the shock adiabat HA at the intermediate sonic step
S; this shock can be seen as a unique non-sonic shock or as the composition of post-sonic shock A-S and
pre-sonic shock S-C. CaseΨ > 0: single shock A-B; the Rayleigh line RA bridges the concave-down region
of HA.

combining equation (3.19) with the well-known differential relations for quasi-1D isentropic flows,
it is easy to show that the entropy jump increases with decreasing density of the candidate pre-shock
state, provided that the shock wave is compressive. Ultimately, when the pre-shock state occurs on
the SD locus, the post-shock isentropic pattern corresponds to the transitional type S NC

2 /S NC
3 .

To aid understanding of the following analysis, the possible compression-waves configurations
in the thermodynamic region of interest in this work have been sketched in the (P,3)-plane, see
figure 3.20. Here ρA denotes the density at the selected pre-shock state A and ρSD represents
the density corresponding to the intersection betweenΨ (ρ; s,ht ) and the SD locus. Split shocks
occur ifΨ < 0 and ρA > ρSD: along the isentropic compression resulting from shock A-B, sonic
point S is encountered and a further shock wave is required to continue the flow. Note that state S
is necessarily embedded in the region Γ < 0, for the curvatures of the shock adiabat and of the
isentrope have the same sign in the (P,3)-plane at a sonic point (see, e.g., Menikoff & Plohr, 1989).

There exist two different mechanisms by which the split shock turns into an ordinary non-sonic
shock. In the first case, the transition takes place when state A crosses the SD locus and the sonic
shock disintegrates. As a result, ifΨ < 0 and ρA < ρSD, sonic point S is no longer encountered
in the isentropic compression downstream of shock A-B. The split-shock/single-shock transition
is also accomplished whenΨ changes sign. AsΨ goes to zero from below, a weaker isentropic
compression and a stronger terminating shock are generated. WhenΨ = 0, state B and sonic
point S coincide, i.e. the intermediate isentropic compression vanishes. In this case, the leading
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Figure 3.21. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
2b, computed from the

van der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b)
Mach number solutions. Reservoir conditions: Pr = 1.2824Pc , 3r = 0.78633c .
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Figure 3.22. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
1c , computed from the

van der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b)
Mach number solutions. Reservoir conditions: Pr = 1.2102Pc , 3r = 0.75423c .

shock A-B and the trailing shock S-C merge into the single large-amplitude shock A-C. IfΨ > 0
an ordinary shock occurs, because the Rayleigh line completely bridges, without touching, the
region where the shock adiabat HA is concave down (inflection points of the shock adiabat nearly
coincide with the intersections between the shock adiabat and the Γ = 0 locus, see for instance
Kluwick 2001).

We now examine the different configuration reported in figure 3.19. Curves such as a display
Ψ < 0; the split-shock configuration is formed and eventually vanishes when the pre-shock state
crosses the SD locus. We refer to functioning regimes featuring this kind of split-shock/single-
shock transition as the sub-class RNC

a , which includes regimes RNC
1a and RNC

2a described above. Curve
labelled b in figure 3.19 exhibits a zero at which dΨ/dρ < 0. In this case, by decreasing the
pre-shock density, the two compression shocks in the split-shock configuration merge into a single
large-amplitude shock. We refer to functioning regimes featuring this kind of split-shock/single-
shock transition as the sub-class RNC

b (RNC
1b and RNC

2b). Figure 3.21 reports the layout of limiting and
intermediate flows corresponding the the exemplary case RNC

2b. The limiting flow corresponding to
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Figure 3.23. Exemplary limiting ( ) and intermediate ( ) flows of type RNI, computed from the van
der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b) Mach
number solutions. Reservoir conditions: Pr = 1.7355Pc , 3r = 0.65323c .

the overlapping of the compression shocks is RNC
2b(5-6). It is noticeable that the split-shock/single-

shock transition of RNC
b regimes is qualitatively similar to the transition predicted by the isentropic

theory, i.e. if we were to neglect the entropy rise across shock waves (see Kluwick, 1993; Cramer
& Fry, 1993).

In addition to RNC
a and RNC

b sub-classes, we introduce the sub-class RNC
c (RNC

1c and RNC
2c) of the

functioning regimes in which a double split-shock/single-shock transition occurs. This is expected
when the stagnation conditions are such thatΨ has two zeros, as it is the case in curves of type c
in figure 3.19. The layout of the limiting and intermediate flows for the exemplary case RNC

1c is
sketched in figure 3.22. When the high-density zero ofΨ (dΨ/dρ < 0) is encountered, the two
compression shocks merge, see limiting flow RNC

1c(4-5). The reverse process occurs in limiting
solution RNC

1c(5-6), because the pre-shock density corresponds to the low-density zero ofΨ , where
dΨ/dρ > 0. By further decreasing the pre-shock density, the split shock ultimately vanishes as in
RNC

a regimes, i.e. the sonic shock disintegrates.

3.4.3.6 Functioning regimeRNI

If the reservoir conditions correspond to pattern S NI, the Mach number is non-monotone along
supersonic branches of isentropic expansions. In the non-classical gasdynamic regime, the layout
of the possible flows corresponding to reservoir conditions of type S NI depends on the possible
shock-induced transitions of the isentropic pattern. First of all, we note that rarefaction shocks
cannot occur in these flows or other functioning regimes produced by reservoir conditions featuring
a unique sonic point. This is easily seen by analysing the related mass flux functions or phase
planes. However, compression waves near the negative-Γ region may occur either as ordinary
non-sonic shocks or in the form of split shocks, according to the slope of the Rayleigh line. The
same argument concerning the (Ψ, ρ)-diagram could be repeated for this type of nozzle flows. The
functioning regime arising from reservoir conditions of type S NI and corresponding to the case
Ψ > 0, which implies that compression shocks occurring in the diverging section of the nozzle are
ordinary non-sonic shocks, is denoted as RNI. In other words, the possible shock-induced transition
of the isentropic pattern do not determine any limiting solutions, so that the layout of limiting and
intermediate flows is as shown in figure 3.23, which presents the same qualitative features of its
counterpart in classical gasdynamics (figure 3.7). For the description of each solution, the reader is
referred to §3.3.3.
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Figure 3.24. Exemplary limiting ( ) and intermediate ( ) flows of type RNC
0 , computed from the

van der Waals polytropic model with c3/R = 50. (a) Density solutions, scaled to reservoir density ρr ; (b)
Mach number solutions. Reservoir conditions: Pr = 1.2315Pc , 3r = 0.72873c .

3.4.3.7 Functioning regimeRNC
0

Past investigations of non-classical nozzle flows (Cramer & Fry, 1993; Kluwick, 1993), mostly
based on the simplifying assumption of isentropic flow, i.e. neglecting the entropy rise and the
resultant shift in the isentropes across shock waves, might lead to the conclusion that non-classical
nozzle flows develop exclusively from reservoir states featuring three sonic points.

To conclude we therefore present one additional non-classical functioning regime, named
RNC

0 , which develops from reservoir states associated to the isentropic pattern S NI. Following
previous discussion, shocks that bridge the negative-Γ region are expected to split if the isentropic
pattern downstream of a generic non-sonic shock exhibits three sonic points and the post-shock
state lies between sonic points ρs3 and ρs2. In this case, the resultant subsonic compression
eventually encounters sonic point ρs2 and a further shock is required. The layout of limiting and
intermediate flows of the type RNC

0 is depicted in figure 3.24. The splitting mechanism in limiting
solution RNC

0 (2-3) is the same occurring in regimes of type RNC
c when the low-density zero ofΨ

(dΨ/dρ < 0) is crossed. Similarly to regimes of type RNC
a , a decrease in ambient pressure results

in a weaker sonic shock, which ultimately vanishes when ε = ε3-4.

3.4.4 Thermodynamic map of functioning regimes
In this section, we formalize the connection between the functioning regimes and the reservoir
conditions (or stagnation condition at the nozzle inlet), which was anticipated in §3.4.3. Figure
3.25 illustrates the thermodynamic map of the reservoir states leading to each functioning regime
described in the previous section.

In the region s > sτ,0, the scenario is formally identical to that observed in §3.3.4 for the
classical gasdynamic regime. For reservoir conditions along these isentropes, the possible func-
tioning regimes are R I and RNI, which differ in terms of Mach number behaviour, inherited by the
reservoir isentropic pattern. Thus, the transition between these functioning regimes corresponds to
the transition between the associated isentropic patterns of the reservoir conditions.

In the region s3le < s < sτ,0, the situation is quite different. Each functioning regime can
possibly occur from reservoir conditions along these isentropes. Similarly to case RNI/R I, a set of
transitional curves for functioning regimes coincides with its isentropic pattern counterpart. These
transitions include RNC

3 /R I, RNC
2 /RNC

3 , RNI/RNC
1b and RNC

0 /RNC
1c . Transition RNC

3 /R I corresponds to
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Figure 3.25. Thermodynamic map of reservoir states associated with each functioning regime, computed
from the van der Waals polytropic model with c3/R = 50. Curves labelled s = s3le and s = sτ,0 represent the
isentropes tangent to the vapour-liquid saturation curve and to the Γ = 0 locus, respectively.

S NC
3 /S I because a one-to-one correspondence between the functioning regime and the isentropic

pattern of the reservoir conditions exist between RNC
3 and S NC

3 and between R I and S I. Functioning
regimes of classes RNC

1 and RNC
2 require that the reservoir isentropic pattern includes three sonic

points. Therefore, the transition between these flows and those including a single sonic point in
the reservoir isentropic pattern is realised when the reservoir conditions exhibit either transitional
pattern S NC

2 /S NC
3 or S NI/S NC

1 . In the first case, transition RNC
2 /RNC

3 occurs; the second case
corresponds to transitions RNI/RNC

1b and RNC
0 /RNC

1c .
The remaining transitions are related to some specific non-isentropic features of the flow. We

first consider the transition between functioning regimes of classes RNC
1 and RNC

2 . Flows expanding
from reservoir conditions corresponding to three sonic points must include a rarefaction shock
in order to attain arbitrarily large exit Mach numbers. In the case of RNC

2 flows, the rarefaction
shock is a pre-sonic shock located in the converging section of the nozzle. In flows of type RNC

1 ,
the rarefaction shock is a post-sonic shock located in the diverging section of the nozzle. The
transitional regime between these two classes exhibits a double-sonic shock, i.e. a shock which has
both pre-shock and post-shock sonic states (see Thompson & Lambrakis, 1973; Kluwick, 2001;
Zamfirescu et al., 2008), exactly located at the throat section. In this respect, the transitional locus
RNC

1 /RNC
2 gathers all such reservoir states from which a double-sonic shock may possibly occur. It

is seen in figure 3.25 that curves RNC
1 /RNC

2 and S NC
1 /S NC

2 are not coincident. As a consequence,
reservoir states corresponding to S NC

2 pattern may in fact result in functioning regimes of the RNC
1

class. Admittedly, the latter condition occurs in a very limited range of pressure and density values;
nonetheless it is a further evidence of the fact that isentropic analysis alone is not sufficient for
the correct prediction of such non-classical flows. Two additional transitional loci are sketched in
figure 3.25. One is the curve associated with transition RNC

c /RNC
a , which requires that a shock wave

featuringΨ = 0 and dΨ/dρ = 0 is formed, see figure 3.26(a), namely this shock has downstream
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sonic state and it is also a stationary point ofΨ . The last transitional curve involves RNC
2b / RNC

2a,
RNC

2b / RNC
2c , RNC

1b / RNC
1c and RNI/ RNC

0 . These transitions all have in common the occurrence of a
post-sonic compression shock featuring Γ = 0 at the post-shock state, which is verified ifΨ = 0 at
the lower endpoint of the density interval whereΨ is defined, see figures 3.26(b-d) for exemplary
cases.

3.4.4.1 Influence of the molecular complexity

The analysis presented in this section and in the following one addresses an open question in the
investigation of Guardone & Vimercati (2016), regarding the general validity of the conclusions
drawn using a specific van der Waals fluid (with c3/R = 50, the same used here to illustrate
non-classical functioning regimes).

Different van der Waals fluids are considered to study the influence of the molecular complexity
on the layout of the thermodynamic map of the functioning regimes in non-classical gasdynamics.
Figure 3.27 illustrates the maps of different polytropic van der Waals fluids, for selected values
of the molecular complexity. The only parameter which characterizes the molecular complexity
in polytropic van der Waals fluids is the dimensionless isochoric specific heat c3/R. The higher
the value of c3/R, the higher the molecular complexity of the fluid (Colonna & Guardone, 2006).
The extension of the region associated with thermodynamic conditions leading to non-classical
functioning regimes increases with increasing molecular complexity, as does the negative-Γ region.
Most importantly, however, the layout of the map of the functioning regimes depends on the level
of molecular complexity. At large values of c3/R, no qualitative difference is found with the map
defined in the previous section for c3/R = 50. For c3/R = 35, the same layout is maintained,
though the size of region associated with regime RNC

0 is comparatively smaller. In the exemplary
case c3/R = 25, regime RNC

0 is no longer possible. By further decreasing the molecular complexity,
the situation is obtained in which regimes of type RNC

c disappear along with regime RNC
1a, as shown

in figure 3.27 for c3/R = 20.
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Figure 3.27. Thermodynamic maps of reservoir states associated with each functioning regime, computed
from different polytropic van der Waals fluids. See figure 3.25 for full caption.

The differences in the observed layout of the maps are somewhat related to the shock-splitting
phenomenon, which is indeed responsible for the existence of regime RNC

0 and for the distinction
between classes RNC

a , RNC
b and RNC

c . Therefore, from this analysis a strong connection appears to
exist between the molecular complexity of the polytropic van der Waals fluid and the mechanism
of shock splitting.

3.4.4.2 Results of accurate models for selected substances

The simple van der Waals model used in the previous sections is abandoned here in favour of more
accurate thermodynamic models. Since the size of the negative-Γ region and related non-classical
effects are strongly dependent on the thermodynamic model employed (Guardone et al., 2004),
and considering also the influence of the map on the molecular complexity suggested by the van
der Waals model, here we consider several thermodynamic models capable of taking into account
BZT effects. The relevant relations for the considered thermodynamic models are given in the
Appendix A.

Figure 3.28 shows the thermodynamic map of the functioning regimes for fluid PP10 (per-
fluoroperhydrofluorene, C13F22), modelled using the Martin-Hou thermodynamic model (Martin
& Hou, 1955; Martin et al., 1959) implemented in the library FluidProp (Colonna et al., 2012).
With this fluid and model specifications, the layout of the map is qualitatively similar to obtained
from the polytropic van der Waals gas with c3/R = 25. Next, we consider the improved Peng-
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Figure 3.28. Thermodynamic map of reservoir states associated with each functioning regime, computed
from Martin-Hou thermodynamic model of PP10 (FluidProp library). See figure 3.25 for full caption.

Robinson Stryiek-Vera thermodynamic model (iPRSV, Van der Stelt et al., 2012) of fluid D6
(dodecamethylcyclohexasiloxane, C12H36O6Si6), implemented in FluidProp. The thermodynamic
map of the functioning regimes for this fluid is reported in figure 3.29 and shows similarities
with the map obtained from the polytropic van der Waals model with c3/R = 20, even though
for D6 regime RNC

1a is still possible. Finally, figure 3.30 shows the thermodynamic map of the
functioning regimes for fluid MD4M (tetradecamethylhexasiloxane, C14H42O5Si6), modelled using
the reference thermodynamic model in Span-Wagner form of (Thol et al., 2018), implemented in
the REFPROP library. The map of MD4M is similar to that of PP10 and of the van der Waals fluid
with c3/R = 25.

If the parameter c3/R is used to classify the different layouts of the thermodynamic map of
the functioning regimes, then qualitative agreement between the predictions of van der Waals
model and those from more accurate models, such as those adopted in this section, is actually not
found. In fact, c3,∞(Tc )/R = 78.4 for PP10, c3,∞(Tc )/R = 102.5 for D6 and c3,∞(Tc )/R = 117.2
for MD4M, where c3,∞(T ) is the ideal-gas isochoric heat capacity. This discrepancy reflects the
known drawback that the polytropic van der Waals model overpredicts the minimum value of Γ
and the size of the Γ < 0 region, if compared to accurate thermodynamic models, as discussed for
example by Cramer (1989a) and Guardone & Argrow (2005).

A better matching is instead obtained if Γmin, the minimum value of the fundamental derivative
in the vapour region, is used as the comparison criterion. For the polytropic van der Waals model,
it is found that Γmin = −1.50,−0.91,−0.45,−0.19 for c3/R = 50,35,25,20, respectively, while
Γmin = −0.30 for PP10, Γmin = −0.22 for D6 and Γmin = −0.37 for MD4M.
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Figure 3.29. Thermodynamic map of reservoir states associated with each functioning regime, computed
from iPRSV thermodynamic model of D6 (FluidProp library). See figure 3.25 for full caption.
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Figure 3.30. Thermodynamic map of reservoir states associated with each functioning regime, computed
from reference thermodynamic model of MD4M (REFPROP library). See figure 3.25 for full caption.
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Chapter 3. Non-ideal flows in converging-diverging nozzles

3.5 Concluding remarks

Steady flows of single-phase fluids in a converging-diverging nozzle were investigated within the
quasi-one-dimensional approximation.

Isentropic flow analysis provided the starting point and a solid base for the study of more
general piece-wise isentropic flows including shock waves. To this end, isentropic patterns were
introduced to recognize and classify specific isentropic flow properties. Fluids of moderate
molecular complexity in their non-ideal gasdynamic regime are found to exhibit non-monotone
evolution of the Mach number in supersonic flows. If the molecular complexity is large enough
to generate a thermodynamic region where Γ is negative, as many as three sonic points possibly
occur along isentropic expansions in the non-classical gasdynamic regime. Isentropic analysis
resulted in the definition of two isentropic patterns (S I, S NI) in the classical gasdynamic regime
and five isentropic patterns (S I, S NI, S NC

1 , S NC
2 , S NC

3 ) in the non-classical gasdynamic regime.
Exact flows were computed by solving an implicit equation for the density distribution along

smooth isentropic branches of the solutions and by connecting these with the Rankine-Hugoniot
jump relations. The central point in this study is the classification of nozzle flows according the
layout of the exact solutions associated with expansions from a reservoir with fixed thermodynamic
state into a stationary atmosphere. Starting from reservoir conditions corresponding to the five
different isentropic patterns, as many as ten different functioning regimes were identified: the ideal
functioning regime R I which reflects the ideal-gas scenario, the non-ideal functioning regime
RNI and the non-classical regimes RNC

3 , RNC
2a, RNC

2b, RNC
2c , RNC

1a, RNC
1b, RNC

1c , RNC
0 . Key features of

non-classical flows are the presence of rarefaction shocks, of shock waves that are sonic either
on the upstream or downstream side and of compression shocks splitting in two distinct entities
(split-shock configuration).

A thermodynamic map of the reservoir conditions resulting in each functioning regime was
produced, in order to identify the thermodynamic region of interest for the observation of non-ideal
nozzle flows. The complexity of the map is due to the occurrence of shock-induced transitions
of the isentropic pattern. It was shown that these transitions, in order to occur in the direction
of increasing entropy, must follow a specific sequence. Notably, admissible transitions of the
isentropic pattern may either increase or decrease the number of sonic points, leading to significant
modification of the flow behaviour. As an example, reservoir states in the region associated with
isentropic pattern S NI can generate a non-classical split-shock configuration (functioning regime
RNC

0 ), although the phase plane corresponding to reservoir conditions is of the classical type (one
sonic point).

Classical and non-classical nozzle flows were illustrated with the simple polytropic van der
Waals model (with c3/R = 15 and c3/R = 50, respectively). By considering different levels
of molecular complexity, it was found that each of the above-mentioned functioning regimes
can be observed in van der Waals fluids with sufficiently large c3/R values (and in turn large
negative values of Γmin), while some non-classical functioning regimes may in fact disappear if
the molecular complexity is reduced (of course only the classical regimes R I and RNI are possible
if Γmin > 0). This discrepancy was traced back to the a different response of the flow to the
shock-splitting phenomenon, as the molecular complexity of the van der Waals fluid is varied.
Addressing an open question by Guardone & Vimercati (2016), the predictions of the simple
van der Waals model were verified against accurate thermodynamic models of selected fluids
(including state-of-the-art multi-parameters models). Comparison between the different fluids
considered indicates that good qualitative agreement, in terms of layout of the thermodynamic
map of the functioning regimes, is found between fluids with similar values of Γmin.

Non-classical nozzle flows represent a challenge not only for theory, but also for numerics. In
Appendix D, non-classical nozzle flows are computed using finite volume methods, specifically
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Roe-type upwind schemes. Numerical experiments show difficulties connected with the numerical
representation of sonic shocks: either an incorrect steady-state transonic expansion neighbouring
the sonic shock is computed or the discrete steady state is not attained. Lack of convergence is
due to numerical unbalancing of the flux difference and source term integral across the transonic
expansion which occurs in the close proximity of sonic shocks approaching their steady-state
position. An improved method is proposed which is able to produce the desired steady-state
balance and allows for substantial improvement in the resolution of sonic shocks.

Some comments concerning the presented results are as follows:

(i) A necessary condition for the existence of regime RNI in fluids with a retrograde saturated
vapour boundary is that sτ,1 > s3le. It appears that most retrograde fluids satisfy sτ,1 > s3le.
To the best of the author’s knowledge, retrograde fluids for which sτ,1 < s3le are not available.
A necessary condition for the existence of non-classical functioning regimes is that sτ,0 > s3le.
However, sτ,0 < s3le if the negative-Γ region is sufficiently small or equivalently |Γmin | � 1.
This is the case, for example, of polytropic van der Waals gases with molecular complexity
c3/R slightly larger than the limiting value c3/R ≈ 16.66 for the existence of the BZT region.

(ii) Extension of the above discussion to the single-phase portions of isentropes s < s3le requires
that the crossing of the phase boundary be taken into account. We suggest an approach for
future investigation of this problem, in which the procedure described above is partially
applicable. Specifically, it applies to reservoir states for which the extrema in the Mach
number, along the associated isentropic expansion, occur in the single-phase region before (i.e.
at larger densities) crossing the phase boundary. A further transitional criterion is required
for the cases where J > 0 in crossing the saturation curve. This additional criterion could be
defined by looking for the intersections between the J = 0 locus and the saturation curve
(for a given value of the total enthalpy as in figure 3.2). We observe that the thermodynamic
region associated with non-ideal regimes is located at supercritical densities and pressures.
It is therefore likely that expansion from a reservoir state located on the saturated vapour
boundary, or on its right-hand side in the (P,3)–plane, will be associated with regime R I.

(iii) There exist fluids with non-retrograde phase boundaries but possessing a Γ < 1 region; an
example is sulfur hexafluoride (as predicted by the reference thermodynamic model from
REFPROP). The suggested approach in remark (ii) can be applied to this class of fluids.

(iv) The computed reservoir conditions leading to non-ideal and non-classical functioning regimes
lie in a range of pressures and temperatures corresponding to supercritical fluid conditions.
For molecularly complex fluid (especially for candidates BZT fluids), thermal stability is
a major issue (see Calderazzi & Colonna, 1997; Colonna & Silva, 2003; Colonna et al.,
2007; Pasetti et al., 2014). In a future attempt to observe non-classical nozzle flows, an
experimental setup realizing an adiabatic blow-down process might be impracticable due to
the high temperatures required in the reservoir. In order to avoid thermal decomposition, a
potential alternative would be to insert, between the reservoir and the nozzle, a converging
duct where the fluid can be heated gradually while expanding, thus increasing the stagnation
enthalpy. In this way, it is possible in principle to keep the static temperature below the
thermal decomposition limit, although care must be exerted in avoiding stagnation points.
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CHAPTER4
OBLIQUE WAVES IN NON-IDEAL
STEADY SUPERSONIC FLOWS

The present chapter covers the theory of oblique waves in steady supersonic flows of single-
phase fluids in the non-ideal gasdynamic regime, with reference to the canonical problem of
two-dimensional flow past compressive/rarefactive ramps. Oblique waves in classical gasdynamics
are either compressive oblique shocks or rarefactive Prandtl-Meyer fans. Of particular interest in
non-ideal compressible flows is the possibility of realising oblique shocks that increase the flow
Mach number. These special shock waves, named non-ideal oblique shocks, are systematically
studied and their admissibility, in terms of pre-shock thermodynamic conditions and Mach number,
is also determined. Moreover, a unified description of classical oblique waves is presented to extend
the validity of the common shock angle-deflection angle diagram for oblique shocks into the realm
of isentropic expansions. In the non-classical gasdynamic regime of BZT fluids, where isentropes
and shock adiabats are non-convex in the pressure-specific volume diagram, four additional wave
configurations may possibly occur; these are composite waves in which a Prandtl-Meyer fan is
adjacent up to two oblique shock waves. Wave curves consisting of states connected to a given
initial state (namely, the uniform state upstream of the ramp) by an oblique wave are constructed.
In addition to the classical case, as many as six non-classical wave curve configurations are
singled out. The necessary conditions leading to each type of wave curves are analysed and a map
of the upstream states leading to each configuration is determined.
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Chapter 4. Oblique waves in non-ideal steady supersonic flows

4.1 Introduction and theoretical background

In the supersonic ramp problem, a supersonic uniform stream is deflected onto a sharp corner
by means of oblique waves. The term "oblique" reflects the distinguishing geometrical property
of the wave of being oblique with respect to the local flow direction. The steady-state solution
configurations of the ramp problem are fundamental in gasdynamics, as they provide both global
and local structures in diverse flow fields: supersonic intakes and discharges, turbine flows, steady
regular and Mach reflections, two-dimensional Riemann problems, just to mention a few.

Oblique waves originating at the corner of a ramp/wedge exposed to a supersonic stream
exhibit no length scale provided that the ramp angle does not exceed a so-called detachment angle
which depends on the upstream state. In this case, it is possible to study oblique waves moving
from the one-dimensional Riemann problem, as suggested by Menikoff & Plohr (1989). If a
scale-invariant solution of the Euler equations is sought, a set of ordinary differential equations is
obtained which produces three distinct waves families, for both two-dimensional steady supersonic
flows and unsteady one-dimensional flows (see, e.g., Godlewski & Raviart, 2013). One wave
family is linearly degenerate (in two dimensions with a multiplicity of two) and corresponds to
contact discontinuities, while the other two families are non-degenerate (except at isolated points
in non-classical flows) and are associated with acoustic and shock waves. Oblique shocks in two
dimensions satisfy the one-dimensional Rankine-Hugoniot relations in the direction normal to the
shock front. Smooth solutions consist of wave fans, spreading either in the two-dimensional space
or in one dimension as time progresses. Thus, unsteady normal shocks translate into steady oblique
shocks and unsteady wave fans become Prandtl-Mayer waves. The qualitative equivalence between
these wave patterns is key to extend the tools and concept developed for the one-dimensional
Riemann problem to the study of oblique waves in steady supersonic flows. Following the same
line of Menikoff & Plohr (1989), in this chapter the analysis of the ramp problem is traced back to
the construction of steady two-dimensional wave curves, which consist of all the states connected
to a given supersonic upstream state by means of an oblique wave. Similarities and differences
with the wave curves of the one-dimensional Riemann problem are discussed.

In the classical theory of gasdynamics, a compressive ramp can produce two types of oblique
wave — the weak and the strong oblique shock configurations — provided the wedge angle doesn’t
exceed the detachment angle, whereas a rarefactive ramp gives rise to a centred Prandtl-Meyer
fan (see, e.g., Thompson, 1988). In dilute-gas flows to which the theory of perfect gases can be
reasonably applied, the variation of the thermodynamic and kinematic quantities across the shock
wave is determined by the Mach number of the flow ahead of the shock, relative to the shock front
itself. If instead the thermodynamic states of the fluid cannot be accurately described by means of
the perfect-gas model, a more or less noticeable dependence on the pre-shock thermodynamic state,
say the values of the pre-shock temperature and pressure, is also observed. Similar considerations
apply to Prandtl-Meyer waves, for which the Mach number of the upstream state entirely determines
the properties of the wave.

Depending on the upstream state, in the non-ideal gasdynamic regime a number of atypical
effects can be observed in oblique waves. Of particular interest in practical applications is the
variation of the flow Mach number across the wave. Cramer & Crickenberger (1992) demonstrated
that the Mach number can possibly decrease, rather than increase as in the dilute-gas limit, across
Prandtl-Meyer waves. More recently, the oblique-shock counterpart of this phenomenon has been
documented by Gori et al. (2017a). In their investigation, Gori et al. (2017a) reported conditions
under which oblique shocks in van der Waals gases increase the Mach number and named this
peculiar kind of oblique shocks as non-ideal oblique shocks (in contrast to oblique shocks in
the ideal gasdynamic regime where the Mach number is always smaller in the post-shock state
than in the pre-shock state). The non-ideal increase of the flow Mach number across oblique
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shocks is definitely relevant to applications where oblique shock waves are either intentionally
formed (e.g. engine intake ramps) or a by-product of the supersonic flow expansion (e.g. fish-tail
shocks in turbine nozzle vanes, over/under-expanded jet from a nozzle exit). In this chapter, a step
towards the precise characterization of non-ideal oblique shocks is performed. Specifically, the
conditions leading to the formation of non-ideal oblique shocks in single-phase fluids are examined.
A convenient procedure is detailed which allows to determine the existence domain, in terms of
pre-shock state properties, of non-ideal oblique shock waves. Results are then presented using
accurate state-of-the-art thermodynamic models for several fluids of practical interest.

An additional theme that the present chapter deals with, in the context of classical gasdynamics,
is related to the geometrical properties of oblique waves. These are typically embedded in the
shock angle–deflection angle diagram for oblique shocks, while the geometrical information
regarding the fan configuration is retrieved by the Prandtl-Meyer function. It is remarkable that
the geometrical properties of oblique waves can be seen under a unifying perspective. To this end,
the shock angle–deflection angle diagram is extended into the realm of Prandtl-Meyer waves by
defining an equivalent-fan angle. Guided by the bisector rule for oblique shocks, which states that
in the isentropic approximation the shock angle equals the average between the pre-shock and
the post-shock characteristic slope (Kluwick 1971 for ideal gases, extension below to non-ideal
gases), the choice of the simple arithmetic mean between the two extreme angles of the fan is
shown to yield the desired matching with the oblique shock curve. Results are presented for both
perfect gases, for which the newly introduced diagram depends exclusively on the value of the
upstream flow Mach number, and for non-ideal gases modelled using accurate thermodynamic
models, where a marked dependence on the upstream thermodynamic state is also observed and
discussed.

In the theory of non-classical gasdynamics, the steady supersonic flow past solid wedges was
only partially examined in the scientific literature. In his pioneering work, Thompson (1971)
studied the formation of the two elementary wave configurations in the ramp problem for negative-
Γ fluids: the oblique rarefaction shock and the compressive Prandtl-Meyer fan, which represent the
non-classical counterparts of the classical compression shock and rarefaction fan. Although oblique
waves were not explicitly dealt with, Menikoff & Plohr (1989) suggested the important analogy
with the one-dimensional Riemann problem (for an arbitrary equation of state, thus including
BZT behaviour) mentioned above. Recently, the ramp problem for BZT fluids was investigated
by Kluwick & Cox (2018a) in the transonic approximation, with the further assumption that
|Γ | � 1, namely in the vicinity of the transition line Γ = 0. In this framework, the parameter
space determining the solution configuration includes the wedge angle, the upstream Mach number,
the upstream fundamental derivative and its isentropic derivative with respect to the density. The
authors showed that, through the scaling originally introduced by Cramer & Tarkenton (1992),
the parameter space can be reduced to dimension two. Five different ranges of these similarities
parameters were identified, which correspond to qualitative different flow scenarios. The resulting
picture is considerably rich, due to the possibility of observing, in addition to inverted gasdynamic
behaviour (viz. rarefaction oblique shocks and compression Prandtl-Meyer fans), also composite
waves configurations, in which a Prandtl-Meyer fan is adjacent to an oblique shock wave.

In order to put the following analysis in the correct perspective, it is important to note that the
flow past ramps/wedges is a particular case of the more general gasdynamic problem of the abrupt
turning of a supersonic stream, which is accomplished by scale-invariant oblique waves. The
ramp problem is considered here as an exemplifying gasdynamic problem, arguably the simplest,
to which the theoretical framework established below can possibly apply. It is simple because
it involves one single oblique wave. More complex problems (e.g., wave interactions) can be
addressed building on the concepts developed for the ramp problem.

In the present chapter, oblique waves in the non-classical gasdynamic regime of BZT fluids are
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systematically investigated by identifying each possible wave-curve configuration. The proposed
analytical approach — undertaken here in a fully non-linear perspective, differently from the
asymptotic theory developed by Kluwick & Cox (2018a) — leads to the identification of seven
different wave-curve types, six of which are of purely non-classical type. The latter cases all include
branches where the solution of the ramp problem consists of a composite wave (e.g. combination
of Prandtl-Meyer fan and oblique shock). As the wave-curve configuration is determined by the
properties of the uniform supersonic state upstream of the wedge, the corresponding parameter
space (e.g. the upstream pressure, density and Mach number) is explored. Eventually, the necessary
conditions for the occurrence of each of the identified wave-curve types are singled out and a
map of the upstream states leading the different configurations is delineated. The van der Waals
model of a BZT fluid is used for explanatory purposes, but results are confirmed by accurate
thermodynamic models.

The structure of this chapter is as follows. In §4.2, the mathematical description of the fluid
flow is recalled for the special case of two-dimensional steady scale-invariant flows that are
compatible with a prescribed supersonic conditions at upstream infinity. The elementary waves
that can possibly occur in these flows are defined. In §4.3, we describe how the established
concepts for the one-dimensional Riemann problem can be suitably translated into the present
two-dimensional steady context, thus leading to the definition of the wave curves for the ramp
problem. The construction of these curves from one-parameter families of elementary waves is
treated. Sections 4.4 and 4.5 present the results for classical and non-classical gasdynamic regime,
respectively. In §4.4, the focus is on non-ideal oblique shocks and on the unified description of
oblique waves, while in §4.5 is primarily aimed at classifying non-classical oblique waves and the
related wave curves. Section 4.7 presents the concluding remarks.

4.2 Formulation
We restrict our attention to the steady two-dimensional flow equations that model equilibrium
fluid dynamics in the limit of vanishing viscosity and heat conductivity, namely the steady two-
dimensional Euler equations (see 2.2) reported here in conservative form for a cartesian (x, y)
coordinate system as

∂

∂x
Fx (q) +

∂

∂y
Fy (q) = 0 (4.1)

where the unknown vector of conservative variables q(x, y) is

q = (ρ, ρux , ρuy , ρet )T (4.2)

in which ux and uy are the velocity x-component and y-component, respectively, and the fluxes
Fx and Fy are given by

Fx (q) = (ρux , ρu2
x + P, ρuxuy , ρhtux )T , (4.3)

Fy (q) = (ρuy , ρuxuy , ρu2
y + P, ρhtuy )T , (4.4)

where the pressure is computed, e.g., from the equation of state P(e, ρ) = P(q4−(q2
2+q2

3 )/(2q1),q1)
and similarly for other thermodynamic quantities encountered in the following (being qi , i =

1, . . . ,4 the i-th element of q).
The steady two-dimensional Euler equations are classified as elliptic, parabolic or hyperbolic

depending on the value of the flow Mach number (see, e.g., Godlewski & Raviart, 2013). System
(4.1) is of the elliptic type if M < 1 and of the parabolic type if M = 1. If M > 1, system (4.1)
is hyperbolic in every direction (i.e. timelike direction) that is not perpendicular to characteristic
lines (Dafermos, 2010).
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Figure 4.1. Sketch of centred fan of left-running waves over a rarefactive corner. Subscripts A and B denote
the states upstream and downstream of the fan, respectively.

We consider, with reference to the ramp problem, a solid boundary described by the the
equations

y = 0, x 6 0, (4.5)
y = (tanΘ) x, x > 0, (4.6)

where Θ is the ramp angle. The corner of the ramp is thus located at x = 0, y = 0. Along the solid
wall, slip boundary condition is enforced. A uniform flow state is prescribed at infinite upstream
x = −∞, which is aligned with the wall (uy = 0) and supersonic.

In this study, scale-invariant solutions of the steady supersonic ramp problem are examined.
These are functions of the form q(x, y) = 4(y/x) that satisfy the integral form of the conservation
law associated with (4.1) in the domain (circular sector) delimited by the solid wall, along with
the boundary conditions imposed on the wall itself and at upstream infinity. On physical grounds,
we shall also limit ourself to consider scale-invariant solutions that are piecewise C1. Introducing
ξ = y/x, this means that 4(ξ) is continuously differentiable except for a finite number of points
at which 4 has a jump discontinuity or is continuous but not differentiable. As a consequence,
we examine solutions that are constant along rays emanating from the corner of the ramp; in the
solution flow field, a finite number of rays, carrying jump discontinuities in 4 or its gradient,
separate circular sectors where 4 is continuously differentiable. In the following, the building
blocks for the construction of scale-invariant solutions of the steady supersonic ramp problem
are described. These are the continuously differentiable simple waves, the discontinuous waves
(shocks and contacts) and the composite waves, which are combination of the previous ones.

4.2.1 Simple waves

The flow pattern corresponding to a non-trivial, continuously differentiable function 4(ξ) is called
a centred simple wave and in the physical plane it takes the form of a fan, commonly denoted as
Prandtl-Meyer fan, converging at a single point. An example of a Prandtl-Meyer fan is shown in
figure 4.1. At points where 4(ξ) is continuous and differentiable, equation (4.1) is equivalent to
the generalized eigenvalue problem(

Ay (4(ξ)) − ξAx (4(ξ))
)
4
′(ξ) = 0, (4.7)
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where Ax (q) = ∇qFx (q) and Ay (q) = ∇qFy (q) are the Jacobians of the fluxes (see appendix B).
It follows that either 4′(ξ) = 0 or

ξ = λk (4(ξ)), for some k ∈ {1, ...,4} (4.8)

and
4
′(ξ) = rk (4(ξ))/αk (4(ξ)), for some k ∈ {1, ...,4} , (4.9)

where λk and rk denote the k-th eigenvalue and right eigenvector, respectively, in the generalized
eigenvalue problem (4.7) and αk = ∇qλk (q) · rk (q) , 0 is the nonlinearity factor (see appendix
B). Note also that the ray marking the transition between a simple-wave region and a uniform flow
region is a point of jump discontinuity for 4′(ξ).

Since ξ = x/y is a real number, relation (4.8) implies that the eigenvalue λk is also real. It is
well-known (see, e.g., Thompson, 1988) that the characteristic equation of the eigenvalue problem
(4.7) always gives a real root λ = tan ϑ of multiplicity two, where ϑ = tan−1(uy/ux ) is the angle
formed by the particle path with the x-axis (positive if counter-clockwise), whereas the remaining
roots are real if and only if the flow is supersonic (M > 1). For supersonic flow, the eigenvalues of
the steady planar Euler equations can be written as

λ1 = tan(ϑ − µ), λ2,3 = tan ϑ, λ4 = tan(ϑ + µ), (4.10)

in which the angle µ = sin−1(1/M) is called the Mach angle. The characteristic curves, having
slope dy/dx = λk in the physical (x, y)–plane, are thus the particle paths and the curves that locally
form an angle ±µ with the particle paths. Because of this, the characteristics of the 1–field and
4–field (the k–field is the characteristic field associated with λk and rk ) are also referred to as
right-running and left-running acoustic waves, respectively. Equation (4.8) implies that the rays in
a centred simple wave correspond to characteristic lines.

Relation (4.9) asserts that the states within a centred simple wave all lie along an integral curve
of rk (q). However, in order that 4′(ξ) stays finite, the nonlinearity factor appearing in (4.9) must
not be zero. With a proper scaling of the eigenvectors, the nonlinearity factors read (appendix B)

α1,4 = Γ, α2,3 = 0, (4.11)

thus showing, together with relation (4.9), that continuously differentiable waves are not possible
in the 2–field and 3–field (which are linearly degenerate and give rise to contact discontinuities, see
§4.2.2) and in the 1–field and 4–field at degenerate points Γ = 0. In other words, centred simple
waves can only take place in the acoustic wave families (1–field or 4–field) if Γ , 0.

For each characteristic field of an n-dimensional system of conservation laws (in our case
n = 4) is defined a set of n − 1 Riemann invariants (Dafermos, 2010). A Riemann invariant of
the k-th field is a scalar-valued function that is constant along the integral curve of rk (q). The
Riemann invariants of the 1–field and 4–field are the triplets




s, ht , ϑ − ν (1–field),
s, ht , ϑ + ν (4–field),

(4.12)

where

ν = ν0 +

∫ u

u0

√
M2 − 1

du
u

= ν0 −

∫ P

P0

√
M2 − 1
ρu2 dP (4.13)

is the Prandtl-Meyer function, in which subscript 0 refers to a reference state (in fluids exhibiting
Γ < 1, the above forms of the Prandtl-Meyer function are valid at all velocities and pressures,
contrarily to the more common form parametrized using the Mach number, see Cramer & Crick-
enberger 1992). Therefore, the flow field within a centred simple wave has constant entropy and
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Figure 4.2. Sketch of left-running oblique shock over a compressive corner. Subscripts A and B indicate
the pre-shock and post-shock quantities, respectively; n and t are the unit vector normal and tangent to the
shock front, respectively, un = u · n is the normal velocity (n is selected such that un > 0) and ut = u · t is
the tangential velocity.

total enthalpy. By examining the eigenvectors r1 and r4 (see appendix B), it is readily seen that
P′(ξ) ≷ 0, u′(ξ) ≶ 0 and ϑ′(ξ) ≷ 0 if Γ ≷ 0 within left-running simple waves, while P′(ξ) ≶ 0,
u′(ξ) ≷ 0 and ϑ′(ξ) ≷ 0 if Γ ≷ 0 in right-running simple waves. Among the other things, these
inequalities imply that simple waves through states Γ > 0/Γ < 0 are rarefactive/compressive.

4.2.2 Shock waves
The turning of a supersonic stream can also be accomplished by means of shock waves. If 4 has a
jump discontinuity along the ray ξ, the balance laws of mass, momentum and energy assume the
form

[Fy − ξFx ] = 0, (4.14)

where [·] denotes the jump across the discontinuity. Equations (4.14) mirror the Rankine-Hugoniot
relations (2.10)-(2.12). As discussed in §2.3, the Rankine-Hugoniot relations include both contact
discontinuities and shock waves, which are distinguished according to the value of the mass flux
m = ρun across the discontinuity front.

The states that can be connected by means of contact discontinuities lie on the integral curves
of r2(q) and r3(q), see Godlewski & Raviart (2013). The corresponding Riemann invariants are




P, ϑ, s (2–field),
P, ϑ, u (3–field),

(4.15)

thus indicating that the discontinuous waves of the 2–field are vorticity waves (or slip lines, i.e.
jumps in the velocity magnitude at the same pressure, entropy and flow direction) and those of the
3–field are entropy waves (i.e. entropy jumps at constant pressure and velocity). Note that ϑ is
constant across contact discontinuities, which therefore cannot produce any flow deflection.

Shock waves are discontinuities in the acoustic wave families (1–field and 4–field) and thanks
to the conservation of the tangential velocity they can be represented as normal shocks to which
a uniform velocity field, parallel to the shock front, is superposed. An oblique produced by a
ramp is sketched in figure 4.2. It is easily checked that if the normal velocity decreases when the
shock front is crossed (from the mass and normal momentum relations, the shock is compressive),
the shock wave turns the flow towards the front itself; the opposite occurs if the normal velocity
increases (rarefaction shock). This means that [ϑ] ≷ 0 if [P] ≷ 0 for left-running shock waves
(4–field) and [ϑ] ≶ 0 if [P] ≷ 0 for right-running shocks (1–field).
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Figure 4.3. Sketch of left-running composite wave over a rarefactive corner: the rarefaction fan terminates
in a rarefaction shock. Subscripts A and B denote the states upstream and downstream of the composite wave,
respectively.

4.2.3 Composite waves

Following the loss of genuine nonlinearity due to crossing of the Γ = 0 locus, in addition to the
elementary waves described above, composite waves in which two or more elementary waves
propagate as a single entity can possibly occur (Menikoff & Plohr, 1989; Kluwick, 2001). Figure
4.3 illustrates an exemplary composite wave formed by a Prandtl-Meyer fan and a rarefaction
shock. In order that a composite wave exists, the propagation rays of its elementary waves must be
compatible, i.e. they must neither collide nor split. This rules out the case that composite waves be
formed by elementary waves of different families. Composite waves can be obtained by stitching
together simple waves and shock waves of a given acoustic wave family (of course, two or more
adjacent simple waves can be regarded as forming a single simple wave and two or more adjacent
discontinuities can be seen as a single discontinuity). In order that a shock wave is adjacent to a
simple waves fan, the shock must propagate on the same ray as the edge of the fan, which in turn
implies that Mn = 1 on the side of the shock wave neighbouring the fan (Cramer et al., 1986).
Thus, a composite wave includes at least one sonic shock (see §2.3.2).

From the arguments of sections 4.2.1 and 4.2.2 on the variation of the flow angle and the
pressure across simple waves and shock waves, it is readily obtained that both the flow angle and
the pressure are monotonic within a composite wave. It will be shown below that the topology
of Γ in typical BZT fluids imposes a constraint on the maximum number of simple wave fans or
shock waves that can possibly appear in a composite wave.

4.3 Wave curves

We now investigate the wave configurations that can possibly deliver the turning of an upstream
supersonic stream in a steady flow. Across entropy and shear waves there is neither mass flux
nor deviation of the particle paths, see the Riemann invariants (4.15). Therefore the uniform
supersonic flow can be turned only across acoustic or shock waves (or combination of these),
i.e. oblique waves with respect to the flow direction, thanks to their geometrical properties in the
physical plane. With reference to the ramp problem, we note that the presence of both left-running
and right-running waves emanating from the ramp corner is not compatible with the boundary
conditions imposed by the solid boundary, since the disturbance generated by the change in the
wall slope must propagate away from the wall itself. It is assumed here that the ramp angle Θ
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appearing in (4.5) coincides with the flow deviation across oblique waves, namely Θ = ϑB − ϑA,
where subscripts A and B indicate the upstream and downstream states, respectively (in our case,
ϑA = 0 as the upstream flow is aligned with the x–axis). Contrary configurations that do no satisfy
this requirement include contact discontinuities downstream of the oblique wave1; these cases are
not relevant to our purposes.

In terms of scale-invariant wave patterns, the two-dimensional steady supersonic flow involves
several analogies with the one-dimensional unsteady case. As is well-known (see, e.g., Godlewski
& Raviart, 2013), the unsteady one-dimensional Euler equations possess two acoustic characteristic
fields corresponding to left-facing and right-facing waves (propagating with speed u − c and u + c,
respectively), with a linearly degenerate field corresponding to contact discontinuities (propagating
with speed u) in between. In both two-dimensional steady supersonic flows and one-dimensional
unsteady flows, the acoustic fields have a similar structure thanks to the following facts. Smooth
wave patterns occur, in both cases, in the form of centred fans of acoustic waves. The nonlinearity
factor of the acoustic fields, in both cases, are proportional to Γ, which means that the breakdown
of simple waves coincides with the condition Γ = 0 both in two-dimensional steady supersonic
flows and in one-dimensional unsteady flows (in turn, this implies that the mechanism of formation
of composite waves is the same). Moreover, oblique shocks in two dimensions satisfy the one-
dimensional Rankine-Hugoniot relations in the direction normal to the shock front. Thus, steady
Prandtl-Meyer fans and oblique shocks are the counterparts of unsteady wave fans and normal
shocks, respectively. The correspondence between the elementary wave patterns makes it possible
to extend many of the concepts developed for the one-dimensional unsteady case to the steady
two-dimensional one. On the other hand, two differences between these frameworks are as follows.
In two-dimensional steady flows, scale-invariant waves can separate hyperbolic and elliptic regions
of the flow fields. This change can possibly occur across strong oblique shocks, which drive the
Mach number below unity. Secondly, in two-dimensional steady flows, there exists a maximum
pressure jump across shock waves, due to the fact that the total enthalpy is constant (cf. 4.12 and
2.12) along streamlines. In contrast, in one-dimensional unsteady flows, any value of the pressure
jump can be attained depending on the shock speed.

To formalise the similarity between one-dimensional unsteady flows and two-dimensional
steady flows, we introduce here the idea of wave curves for steady two-dimensional flows. In the
one-dimensional unsteady flows, the wave curve represents the set of states connected to a given
initial state by a scale-invariant wave of the left-facing or right-facing field (Menikoff & Plohr,
1989). In two-dimensional steady flows, the wave curve consists of all the states connected to
a given supersonic state by means of a steady scale-invariant planar wave of the left-running or
right-running field. Thus, the wave curve is made of branches corresponding to centred simple
waves, shock waves and composite waves. In the context of the supersonic ramp problem, the
wave curve computed from the state associated with the uniform supersonic stream embeds all the
scale-invariant waves that can possibly deliver the deflection imposed by the ramp.

Similarly to the one-dimensional case, the construction of wave curves can be simplified
by first considering the projection onto the thermodynamic variables; the kinematic quantities
are retrieved afterwards (this will prove particularly useful in the non-classical context). Three
important observations lay the groundwork for the following treatment:

(i) the projection of the set of states within a Prandtl-Meyer fan, onto the thermodynamic
variables, is a branch of the isentrope passing through the upstream thermodynamic state (cf.
the Riemann invariants 4.12). Given, e.g., the downstream pressure, all the thermodynamic
quantities downstream of the fan are readily determined. The kinematic quantities (e.g. uB
and ϑB) are computed by imposing the conservation of the total enthalpy ht and of the

1The solid ramp/wedge can be replaced by a slip line beyond which the fluid is at rest, without changing the overall
deflection of the supersonic stream produced by the oblique wave.
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Riemann invariant ϑ ∓ ν of opposite sign;

(ii) the projection of a shock curve (see §2.3.2), onto the thermodynamic variables, is a branch
of the Hugoniot locus passing through the upstream thermodynamic state (cf. equation 2.15).
Given, e.g., the downstream pressure, the downstream density is computed from (2.15) and,
from those, each downstream thermodynamic quantity and the mass flux m = (−[P]/[3])1/2.
The shock angle βs and flow deflection angle Θ (with respect to the upstream flow direction)
are computed from m = ρAuA sin βs and ρA tan βs = ρB tan(βs −Θ), respectively.

(iii) Prandtl-Meyer fans cannot be continued at states of linear degeneracy Γ = 0, because there
the characteristic lines fold. If a further pressure variation is imposed, this is accomplished
by means of a composite wave in which the fan terminates in a pre-sonic oblique shock
(Menikoff & Plohr, 1989). The shock-wave branch of the wave curve cannot be continued at
entropy extrema, where the Rayleigh line is tangent to the shock adiabat, because a further
variation in the post-shock pressure would lead to violation of the speed ordering relation
(2.18). The wave curve beyond an entropy extremum in the Hugoniot locus is continued as a
composite shock/fan wave. By collecting the states downstream of the composite wave, a
composite locus is obtained (see also Kluwick, 2001).

4.4 Classical oblique waves

The concepts outlined in the previous sections are specialised here to the case of molecularly
complex fluids in the non-ideal yet classical gasdynamic regime. Classical waves curves are
computed in §4.4.1 and peculiarities related to non-ideal thermodynamics are discussed. In
particular, the focus is on non-ideal oblique shocks allowing for a discontinuous increase of the
flow Mach number (§4.4.2). Also presented is a unified description of geometrical properties of
the wave pattern around compressive and rarefactive corner (§4.4.3).

4.4.1 Wave curves structure

Let us consider the structure of the wave curve projection onto the thermodynamic variables, say the
(P,3)–plane. Remarks (i) and (ii) in the previous section imply that for a given upstream state, the
projected wave curve is a subset of the one-dimensional unsteady counterpart. The kinematic state
of the upstream flow, through the value of the total enthalpy which remains constant throughout the
flow field and limits the maximum pressure jump across oblique shocks, determines endpoints of
the wave curve. This suggests that one can use the well-established results for the one-dimensional
unsteady case (replacing, of course, unsteady wave fans with Prandtl-Meyer waves and unsteady
normal shocks with steady oblique shocks) to determine the underlying structure of the wave curve
in the thermodynamic plane, namely the extended (i.e. drawn up to vacuum and infinite pressure)
wave curves. The upstream kinematic is then taken into account (in the following section) to
determine endpoints of the waves curves.

An exemplary wave curve is shown in figure 4.4(a) and is computed from the reference ther-
modynamic model (Span-Wagner EoS, see appendix A) of MDM (Thol et al., 2017) implemented
in REFPROP (Lemmon et al., 2013). Based on the arguments of §4.2.1 and §4.2.2, figure 4.4(a)
can be commented on as follows. The rarefaction branch of the extended wave curve through state
A is the isentrope containing A, associated with elementary Prandtl-Meyer waves connected to A.
On the other hand, the compressive branch of the wave curve coincides with the shock adiabat
centred on A, associated with oblique shock waves. The fact that Γ > 0 in classical gasdynamics
precludes the possibility that simple waves fold, the existence of entropy extrema along shock

70



4.4. Classical oblique waves

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

P/
P c

654321
v/vc

A

Gas phase
Γ = 1 

VLE 
region Saturation curve

(a) 1.8

1.6

1.4

1.2

1.0

0.8

0.6

P B
/P

A

3020100-10-20

MA = 1.1

1.2

1.5

1.4

1.3

(deg)£

(b)

Figure 4.4. Wave curves for MDM, computed from the reference thermodynamic model available in
REFPROP. Upstream thermodynamic conditions: PA = Pc , 3A = 23c . (a) Extended wave curve in the
pressure–specific volume diagram, attached to each branch is a sketch of the corresponding wave in the
physical plane, for an exemplary flow past a ramp; (b) left-running wave curves in the pressure–deflection
diagram for selected upstream Mach numbers. Wave configurations: shock, fan. Symbol • denotes
downstream sonic points (MB = 1).

adiabats and therefore the existence of composite waves2. It follows that the local structure on
both sides of the upstream thermodynamic state is maintained for arbitrary downstream pressure
changes.

A complementary description of the wave curve is obtained from common pressure–deflection
diagram, where the downstream pressure PB is plotted against the downstream deflection angle
Θ that the wave generates. The representation of the wave curve in these variables is necessary
connected with the kinematic quantities along the wave curves. Here it is possible to evaluate the
effect of the kinematic state of the upstream flow, in particular how this determines the endpoints
of the wave curve (which are associated with the maximum pressure jump across oblique shocks).
The upstream kinematic state is accounted for in terms of upstream Mach number MA. Without
loss of generality, only left-running wave curves are considered, as the right-running wave is just
the reflection, through the Θ = 0 axis, of the left-running counterpart. Figure 4.4(b) illustrates
selected (PB,Θ)–polars corresponding to the same upstream thermodynamic state of figure 4.4(a)
and different values of the upstream Mach number. The rarefaction branch (Prandtl-Meyer waves)
extends to vacuum conditions (eventually the saturated phase boundary is crossed), where the
deflection angle attains a finite limit value. The pressure rise along the compression branch is
limited by the normal shock wave (βs = 90◦,Θ = 0) from the upstream state. By increasing the
upstream Mach number, and therefore the total enthalpy of the stream, the maximum pressure
jump increases. As is well-known (see, e.g., Thompson, 1988), for a given Θ > 0 two oblique
shocks can possibly occur, which are named the weak and the strong (based on the pressure jump)
solutions.

The wave-curve configuration shown here using MDM is common to all single-phase fluids
in their classical gasdynamic regime. Nevertheless, important effects of practical interest are
associated with the variation of the flow Mach number across oblique waves in the non-ideal
regime. The flow field corresponding to a simple wave is isentropic with constant total enthalpy,
similarly to flows treated in §3.3.1. It follows that the variation of the flow Mach number with

2If Γ > 0, ξ is monotonic along integral curves of the acoustic fields because the related nonlinearity factor is always
positive, see equations (4.8) and (4.11). Sonic points and therefore entropy extrema along the shock adiabat are not allowed
from the Bethe-Weyl theorem, see relations (2.27) and (2.36).
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the density, within Prandtl-Meyer fans, is ruled by the quantity J defined by relation (3.6). Thus,
as first noticed by (Cramer & Crickenberger, 1992), in the non-ideal regime Γ < 1 it is possible
that the expansion around a corner decreases the Mach number of a supersonic stream, rather than
increasing it as is the case if Γ > 1. The non-ideal Mach number decrease in the simple wave is
then associated with J > 0. Interestingly, analogous considerations apply for the Mach number
variation across oblique shocks generated at compressive corners. Indeed, in the corresponding flow
field the total enthalpy is uniform and entropy jumps can be made arbitrary small by controlling
the shock strength through the ramp angle. This suggests that the flow Mach number may possibly
increase across oblique shocks of small amplitude with pre-shock state in the Γ < 1 region and
such that J > 0. Surprisingly enough, the discontinuous increase of the Mach number across
oblique shocks has not been studied in the scientific literature until the recent studies by Gori et al.
(2017a) and Vimercati et al. (2018a).

4.4.2 Non-ideal oblique shocks

Analysis of the isentropic limit of weak compression shock waves demonstrates that oblique shock
waves in which the post-shock Mach number is larger than the pre-shock Mach number, named
non-ideal oblique shocks, are admissible in the non-ideal regime Γ < 1 of substances characterized
by moderate molecular complexity. In this section, non-ideal oblique shocks of finite amplitude
are systematically analysed, clarifying the roles of the pre-shock thermodynamic state and Mach
number. In §4.4.2.1, specific properties of the shock curves are recalled and discussed in view of
their relevance to subsequent prove of existence of non-ideal oblique shocks in §4.4.2.2. Section
4.4.2.3 describes the computation of the existence domain, in terms of pre-shock thermodynamic
quantities and Mach number, leading to non-ideal oblique shocks. In §4.4.2.4, results for different
substances of practical interest are presented.

4.4.2.1 Properties of shock curves in classical gasdynamics

The Rankine-Hugoniot relations for planar flow involve 8 parameters: the 2 velocity components
(normal and tangent to the shocks) and 2 thermodynamic quantities (e.g., pressure and density),
for both the pre-shock and post-shock states. In these coordinates, the Rankine-Hugoniot relations
consist of 4 functional relations (the equation of the tangential velocity (2.14) reduces to a scalar
one), so that 4 remaining parameters are needed to parametrize the solution. The choice of this
set of parameters is typically based on the specific context. In many occasions, for instance, one
knows the evolution of the flow up to the point where a shock wave occurs. In this respect, it is
customary to specify the thermodynamic and kinematic state upstream of the shock, which together
correspond to a triplet such as, e.g., A = (PA,3A,uA) or A = (3A, sA,MAtA) with tA upstream
velocity unit vector. Any other equivalent triplet can be obtained by simple manipulation. Given
a triplet A, the Rankine-Hugoniot relations determine the state downstream of an oblique shock
from the considered pre-shock state, as a function of βs , the angle between the shock front and the
pre-shock flow direction (see figure 2.1). By analogy with one-dimensional unsteady flows (given
a pre-shock state, one obtains the post-shock state as a function of the shock speed), the resulting
locus is called the shock curve.

In the following, some properties of the shock curves of oblique shocks are recalled from
§2.3 and adapted to the present context. If Γ > 0, only compression shocks satisfy the law of
entropy increase (2.17) and the speed ordering relation (2.18), and therefore can be admissible.
The shock curve can be parametrized by any of the post-shock quantities 3B, PB, sB, or also by m
or βs ∈ [µA, π/2]. In particular, the βs-parametrization follows from monotonicity of βs with 3B
when condition (2.23) holds as we assume in this study.
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We therefore comment on the dependence of selected thermodynamic and kinematic quantities
of interest on the shock strength, which we conveniently identify with the shock angle βs . The
same notation of §2.3 will be used, namely a quantity X evaluated on the shock curve of the
pre-shock state A is denoted as XH(βs ; A); it follows that XB = XH(βsB; A) for the shock angle
βsB producing a particular post-shock state B. The shorthand dXB/dβs is used for the derivative
dXH(βs ; A)/dβs

���βs=βsB
.

With fixed pre-shock state A, combination of (2.32) and (2.33) gives
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which is always negative for compression shocks. A thermodynamic quantity of particular interest
in this work is the speed of sound, since it is directly related to the occurrence of non-ideal effects
across oblique shocks. The variation of the post-shock speed of sound along the shock curve is
given by
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which has been obtained by combing (2.31) and (2.33). Besides Γ, the above expression involves
the dimensionless isochoric derivative of the speed of sound with the entropy K = (c/T )(∂c/∂s)3 .
Assuming KB > 0 and that (2.23) is satisfied, the post-shock speed of sound increases with the
shock strength along the compression branch of the shock curve if ΓB > 1, but can possibly
decrease if ΓB < 1. Finally, we report the variation of the post-shock Mach number along the
shock curve, By combining the variations of the velocity magnitude and speed of sound (or directly
from relations 2.34 and 2.33), one obtains
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where J is defined in (2.35). Assuming that KB > 0, GB > −1 and (2.23) is satisfied, the post-
shock Mach number decreases with increasing shock angle along the compression branch of the
shock curve if JB < 0. If instead the values of the post-shock Mach number and fundamental
derivative are such that JB > 0, the post-shock Mach number can possibly increase.

4.4.2.2 Existence of non-ideal oblique shocks: isentropic limit of weak shocks

Within the context of classical gasdynamics, diverse qualitative differences can be found between
shock waves in the ideal-gas and non-ideal regime. Anomalies that are related to violation of
condition (2.23) and to fluid states exhibiting G < 0 or K < 0 are discussed by Menikoff & Plohr
(1989). Here we restrict attention to compressibility-related effects that are caused by fluid states
exhibiting 0 < Γ < 1, that are therefore not possible in the ideal-gas limit. The parameter Γ
directly controls the sound speed variation in isentropic processes as well as adiabatic, possibly
non-isentropic, processes (assuming K does not change its sign). For the case of oblique shock
waves, the well-known formulas for ideal gases (see, e.g., Thompson, 1988) indicate that the speed
of sound necessarily increases across the shock (a consequence of the temperature rise). On the
contrary, in the non-ideal gasdynamic regime, the speed of sound can possibly decrease following
the adiabatic compression across an oblique shock, as suggested by relation (4.17).

Because the flow velocity magnitude is required to decrease across a compressive shock
(the normal component decreases by mass conservation while the tangential one is conserved
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by momentum balance), the peculiar behaviour of the speed of sound ultimately determines
the variation of the Mach number across an oblique shock. In particular, we ask, Under which
conditions is it possible to realize a discontinuous increase in the Mach number? Thus, the question
is whether

M2
B = M2

nB + ‖ut ‖
2/c2

B > M2
nA + ‖ut ‖

2/c2
A = M2

A (4.19)

can be satisfied. The speed ordering condition (2.18) requires that the normal Mach number is
larger in the pre-shock state than in the post-shock state. On the contrary, no constraint is imposed
on the tangential Mach number ‖ut ‖/c, whose variation across the shock is inversely proportional
to the sound speed. It follows that whenever cB > cA, as in the ideal-gas limit, the Mach number
necessarily decreases across any admissible shock waves. If instead cB < cA, which is possible in
the non-ideal regime, the Mach number can either decrease or increase across an oblique shock; the
Mach number increase will occur if the sound speed decrease is sufficiently large that the increase
in the tangential Mach number compensates the necessary decrease in the normal Mach number.

Because the Mach number is a parameter of primary interest in many applications, the Mach
number increase across oblique shock waves is undoubtedly among the most significant shock-
related non-ideal effects. In this sense, hereinafter we will refer to oblique shock waves featuring
MB > MA as non-ideal oblique shock waves. The analysis of the weak shock limit | βs − µA | � 1
provides a condition of existence of non-ideal oblique shocks in terms of pre-shock quantities,
since Taylor series expansion of the post-shock Mach number in the neighbourhood of the acoustic
angle reads

[M]
MA

= 2
JA

ΓA

√
M2

A − 1 (βs − µA) + O((βs − µA)2), βs → µ+
A. (4.20)

For weak oblique shock waves in the above limit (for convenience, in the remainder of §4.5 we
refer to them as weak shocks simply, to not be confused with the more general definition of weak
shock given in §4.4.1, which includes also shocks of large amplitude), the sign of the Mach number
variation is related to the values of the pre-shock fundamental derivative ΓA and Mach number MA
only. If the combination of these values is such that JA > 0, the Mach number increases across a
weak oblique shock. It is readily seen that if ΓA < 1 non-ideal oblique shocks necessarily occur
when MA is sufficiently large. The role of the fundamental parameter J will be further clarified in
the following.

4.4.2.3 Existence domain of non-ideal oblique shocks

This section addresses the flow conditions, in terms of pre-shock thermodynamic quantities and
Mach number, resulting in the non-ideal Mach number increase across oblique shocks. The choice
of pre-shock Mach number as the parameter accounting for the kinematic state of the fluid ahead
of the shock waves is twofold. Firstly, it is the quantity that directly enters into the definition
of the parameter J, whose sign determines the direction of the Mach number variation across
weak oblique shocks. Secondly, in the perfect-gas limit, several quantities of interest such as
Θ (deflection angle of the flow across the shock, see figure 2.1), MB, PB/PA, [s], etc. (see, e.g.
Thompson, 1988), depend uniquely on MA and βs . This also legitimises the use of βs for the
shock-curve parametrization in the perspective of evaluating the differences between ideal-gas and
non-ideal regime.

After identifying the different scenarios for the observation of non-ideal oblique shocks, the
domain of pre-shock states that possibly lead to non-ideal oblique shocks is computed. The
mentioned domain includes all the pre-shock states for which MH(βs ; A) > MA for some values
of the shock angle. Results are given for each of the fluids listed in table 4.1.
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Name M (g mol−1) Tc (K) Pc (kPa) EoS Γmin

MDM 236.531 565.36 1437.5 Thol et al. (2017) 0.1646
MM 162.378 518.75 1939.0 Colonna et al. (2006) 0.3389
Octane 114.229 569.32 2497.0 Span & Wagner (2003b) 0.3625
Cyclopentane 70.1629 511.72 4571.2 Gedanitz et al. (2015) 0.6433
Toluene 92.1384 591.75 4126.3 Lemmon & Span (2006) 0.5637
Benzene 78.1118 562.02 4907.3 Thol et al. (2012) 0.6155
Sulfur Hexafluoride 146.055 318.78 3755.0 Guder & Wagner (2009) 0.8050
R245fa 134.048 427.16 3651.0 Lemmon & Span (2006) 0.7089

Table 4.1. Molecular weight M , critical temperature Tc , critical pressure Pc for selected substances. The
fluid properties are computed from the equation of state indicated in the fifth column of the table; Γmin is the
minimum value of the fundamental derivative in the vapour phase, as predicted by the EoS (Γmin occurs along
the vapour-liquid saturation curve). Properties and thermodynamic models are taken from the well-established
REFPROP library (Lemmon et al. 2013).

Influence of the pre-shock state

A parametric study is carried out to evaluate the dependence of MH(βs ; A) on the pre-shock state,
in the parameter space of pre-shock thermodynamic states and Mach number. To do this, we
consider the projection of the shock curve on the (MB, βs )–plane for exemplary pre-shock states
that allow to illustrate the different scenarios for the occurrence of non-ideal oblique shock waves.

The fluid employed here throughout for explanatory purposes is siloxane MDM (ocatmethyl-
trisiloxane, C8H2402Si3), which is modelled via the multi-parameter EoS reported in Table 4.1
together with relevant thermophysical properties of this and other substances considered in the
following. MDM exhibits Γmin < 1, where Γmin is the minimum value of the fundamental derivative
in the vapour phase, indicating that the selected fluid is endowed with a finite vapour-phase Γ < 1
region. Therefore, according to the arguments of the previous section, MDM is expected to allow
for the occurrence of non-ideal oblique shock waves, provided the pre-shock state is carefully
chosen. As for the other non-dimensional quantities that enter into the definition of the Mach
number variation (4.18), MDM exhibits G > 0 and K > 0 in the single phase vapour region to
which this discussion is restricted. Moreover, G is small enough that condition (2.23) is always
satisfied along shock curves originating from pre-shock thermodynamic states in the vapour region.

In contrast to the case of perfect gases, for which the post-shock to pre-shock ratios of most
quantities interest can be expressed as functions of the pre-shock normal Mach number only, the
full pre-shock state plays a major role in determining the properties of oblique shock waves for
arbitrary equations of state. In order to facilitate the following analysis, two parametric studies are
conducted. Firstly, a parametric analysis is carried out for a fixed pre-shock Mach number and for
different pre-shock thermodynamic states. Secondly, the pre-shock thermodynamic state is fixed
and the pre-shock Mach number is varied.

Figure 4.5 shows the variation of the post-shock Mach number with the shock angle for a fixed
pre-shock Mach number MA = 2 and different pre-shock thermodynamic states selected along the
same isentrope sA < sτ , where sτ denotes the isentrope tangent to the locus JA = 0. Under the
assumption that the pre-shock Mach number MA is fixed, the locus JA = 0 shown in figure 4.5
coincides with the Γ-isoline Γ = 1− 1/M2

A, see relation (3.6). The thermodynamic region between
the JA = 0 locus and the saturated vapour curve embeds all the possible pre-shock states exhibiting
JA > 0. Note that, according to (4.20), the function MH(β; A) corresponding to pre-shock
thermodynamic states having JA > 0 will exhibit positive initial slope, thus indicating that the flow
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Figure 4.5. Shock curves for MDM in the post-shock Mach number–shock angle plane (thermodynamic
properties from REFPROP). The pre-shock Mach number is fixed to MA = 2. The pre-shock thermodynamic
states are selected along the same isentrope sA = s(1.2743Pc,3c) < sτ , with sτ denoting the isentrope
tangent to the locus JA = 0 (corresponding to the Γ-isoline Γ = 1 − 1/M2

A). Marked configurations: 31 = 3c,
32 = 53c, 33 = 83c, 33 = 113c. The red portions of the shock curves correspond to neutral stability of the shock
front against transverse perturbations (acoustic emission). Also shown is the ideal gas limit (dash-dotted
curve) and the locus of the stationary points of MH(βs ; A) for pre-shock thermodynamic states along the
isentrope considered (dashed curve).

Mach number increases across weak oblique shock waves. Four pre-shock thermodynamic states
are now considered, as representative of the possible qualitative evolution of the post-shock Mach
number along the shock curve. The triplets corresponding to the marked configurations are given
by Ai = (P(sA,3i ),3i ,MAtA), i = 1, . . . ,4.

State A1 is considered first, which is located on the left-hand side (higher densities) of the
region JA > 0. As shown in figure 4.5, along the shock curve originating from state A1, the
post-shock Mach number monotonically decreases with increasing shock angle. Exemplary non-
monotonic Mach number variations are those corresponding to pre-shock states A2 and A3 in figure
4.5. State A2 is taken as representative of the Mach number evolution for pre-shock states featuring
JA > 0. Thus, for increasing shock angles starting from βs = µA, the post-shock Mach number
initially increases. As the magnitude of the tangential velocity decreases (i.e. with increasing shock
angle), MH(βs ; A2) reaches a local maximum and subsequently decreases towards the subsonic
values characterizing strong oblique shocks. For shock curves qualitatively similar to the present
case A2, there exists a shock angle value β̃s = β̃s (A), β̃s , µA, such that MH( β̃s ; A) = MA. It
must be noticed, however, that the computed shock curve exhibits a fairly large interval of shock
angles for which the conditions of spontaneous acoustic emission are satisfied, and thus the shock
front is neutrally stable.
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Figure 4.6. Shock curves for MDM in the post-shock Mach number–shock angle plane (thermodynamic
properties form REFPROP). The pre-shock thermodynamic state is fixed and corresponds to case 3 of figure
4.5, namely sA = s(1.2743Pc,3c), 3A = 83c. Each curve corresponds to a different pre-shock Mach number.
Marked configurations: M31 = 1.2, M32 = 1.9, M33 = 3. See figure 4.5 for full caption.

If the pre-shock state exhibits JA < 0, yet the thermodynamic state is selected in the close
proximity of the region JA > 0, as for case A3 in figure 4.5, the post-shock Mach number features
an interesting non-monotonic profile comprising two stationary points, with the local minimum
(maximum) occurring at MB < MA (MB > MA). Configurations qualitatively similar to A3 thus
exhibit two different shock angles β̃s1 = β̃s1(A) and β̃s2 = β̃s2(A), other than the acoustic
angle, such that MH( β̃s1; A) = MH( β̃s2; A) = MA; these angles delimit the βs–interval of Mach
number–increasing oblique shocks. It must be noticed, however, that a significantly larger portion
of the shock curve of case A3 (in particular, of the portion corresponding to non-ideal oblique
shocks) is predicted to satisfy the conditions for acoustic emission.

By increasing the pre-shock specific volume along the reference isentrope, the two stationary
points found in A3-like configurations occur at MB < MA and ultimately become coincident.
Therefore, any further increase in 3A is such that the post-shock Mach number monotonically
decreases with increasing shock angle. Not surprisingly, MH(βs ; A) profiles originating from
pre-shock thermodynamic states relatively close to the region JA > 0 can still exhibit a somewhat
anomalous, non-ideal curvature (due to the sound speed decrease) as shown in the exemplary case
A4 of figure 4.5.

Next, a complementary parametric study is presented, which is carried out by fixing the pre-
shock thermodynamic state and considering different pre-shock Mach numbers. Figure 4.6 shows
examples of variations of the post-shock Mach number with the shock angle obtained from the
same pre-shock thermodynamic state, which corresponds to case 3 of figure 4.5, and different
values of the pre-shock Mach number. Selected configurations are now detailed, as representative
of the shock curve dependence on the pre-shock Mach number. The triplets corresponding to
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the marked configurations are given by Ai = (P(sA,33),33,M3i tA), i = 1, . . . ,3. For sufficiently
low values of the pre-shock Mach number, MH(βs ; A) is monotonically decreasing (case A31).
By increasing the pre-shock Mach number, MH(βs ; A) eventually develops an inflection point;
any further increase leads to a non-monotonic configuration. As in the previous parametric study,
two different configurations can possibly occur. For pre-shock Mach numbers slightly larger
than the limiting value for the formation of an inflection point, the profile of post-shock Mach
number is qualitatively similar to that of case A32, which exhibits both a local minimum and a
local maximum. If the pre-shock Mach number is sufficiently large, instead, the initial slope of
MH(βs ; A) is necessarily positive (cf. equations3.6 and 4.20, with ΓA < 1), and the shock curve
becomes qualitatively similar to case A33. Again, acoustic emission is predicted to occur over
large portions of the shock curves.

Computing the existence domain

Based upon the results of the previous section, the flow conditions resulting in the non-ideal Mach
number increases across oblique shocks are collectively considered to single out each possible
pre-shock state, in terms of pre-shock thermodynamic quantities and Mach number, for which
MH(βs ; A) > MA for some values of the shock angle. The result is the definition of the domain
of existence of non-ideal oblique shocks in the parameter space of pre-shock thermodynamic states
and Mach number. For pre-shock states in this domain, there exists at least one value of the shock
angle leading to MB > MA.

A convenient procedure for the computation of the existence domain of non-ideal oblique
shocks is presented here. In order to reduce the complexity associated with the dependence of the
shock properties on each of the pre-shock variables, we consider a fixed pre-shock Mach number,
thus isolating the contribution of the pre-shock thermodynamic state. For a given pre-shock
Mach number MA, the proposed method consists in determining, for each value of the pre-shock
entropy, the limit values of the pre-shock pressure or density that bound the range where the shock
curve possibly exhibits MH(βs ; A) > MA for some values of the shock angle. These limiting
thermodynamic states define a locus delimiting the region in which the pre-shock thermodynamic
state must be selected (together with the given MA) in order to observe a non-ideal oblique shock.
As the pre-shock Mach number is varied, this procedure determines a one-parameter family of
thermodynamic regions embedding all the pre-shock states from which non-ideal oblique shock
can possibly occur.

The proposed approach is first illustrated for MDM and one value of MA and then it is applied
in the next section to the fluids listed in table 4.1 for different values of MA, confirming the general
validity and applicability of the concept outlined here.

In §4.4.2.2, the shock curves considered were entirely enclosed in the single-phase vapour
region. Here we consider also the cases in which the shock curves enter the two-phase region,
limiting the discussion to their single-phase vapour portion. The shock angle leading to post-shock
saturated conditions will be denoted by βs,sat = βs,sat(A). Crossing the liquid-vapour saturation
curve possibly occurs if a portion of the saturated vapour boundary is retrograde, which means
that certain isentropes (and in turn, some shock adiabats) cross the phase boundary from the
single towards the two-phase region, in the direction of increasing density. Siloxane fluid MDM is
one such case of fluid with retrograde behaviour. Note, in this respect, that substances featuring
Γ < 1 regions in the vapour phase typically have heat capacities large enough that a portion of the
saturated vapour boundary is retrograde (see Thompson et al., 1986).

With reference to the parametric studies carried out above, three different types of MH(βs ; A)
profiles were identified. These include the ideal-gas like (Mach–number decreasing) case and two
non-ideal cases (possibly Mach–number increasing); the latter were distinguished depending on the
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Figure 4.7. Illustration of the limit shock curves in the (MB, βs )–diagram. Solid squares: post-shock
saturated conditions; red line: acoustic emission is predicted to occur. The shock angle β̃s , µA indicates
that the Mach number is preserved across the shock, namely MH( β̃s ; A) = MA. (a) The limit curve exhibits
dMB/dβs = 0 at βs = β̃s ; (b) on the limit curve, the post-shock thermodynamic state associated to βs = β̃s
lies on saturated phase boundary; (c) transition from uniform to neutral stability occurs at βs = β̃s on the
limit curve.

positive/negative slope in the weak shock limit. For the ideal configuration, it can be noticed that
when the shock adiabat is entirely enclosed within the thermodynamic region Γ > 1 − 1/M2

A, the
function MH(βs ; A) is monotonically decreasing. This follows from the fact that MB < MA for
weak shocks, being JA < 0, and from ΓB > 1 − M2

A, which therefore gives JB < 0 along the shock
curve. Substituting this into relation (4.18) yields the monotonicity of the post-shock Mach number
with the shock angle (K > 0, G > 0 and relation 2.23 holds from earlier assumption). Examples
of shock adiabats that satisfy the aforementioned condition are those originating from pre-shock
states exhibiting sA > sτ or from pre-shock states sA < sτ that are either on the left-hand side
of the JA > 0 region (case A1 in figure 4.5) or entering the two-phase region at a point where
Γ > 1 − 1/M2

A.
On the other hand, shock curve originating from pre-shock states featuring JA > 0 necessarily

lead to MH(βs ; A) profiles embedding a non-ideal portion MB > MA. This range is of the type
βs ∈ [µA, β̃s], see case A2 in figure 4.5, or of the type βs ∈ [µA, βs,sat] if the shock curve enters
the two-phase region within the Mach number–increasing portion, that is MH(βs,sat; A) > MA.

Finally, it was shown that pre-shock states satisfying sA < sτ and JA < 0, yet in the close
proximity of the low-density zero of JA along the selected isentrope, possibly lead to MH(βs ; A)
functions of the non-ideal type. In this case, the interval of shock angles corresponding to
MB > MA is of the form βs ∈ [ β̃s1, β̃s2], see case A3 in figure 4.5, or of the form βs ∈ [ β̃s1, βs,sat]
if MH(βs,sat; A) > MA.

Following the above considerations, the upper and lower pre-shock density limits for non-ideal
post-shock Mach number profiles, along any given isentrope sA < sτ , can be determined as
follows:

(i) the upper pre-shock density limit is either the high-density zero of JA along the selected
isentrope or the saturation curve, if the selected isentrope enters the two-phase region and
JA > 0 at the saturated vapour boundary;

(ii) with reference to figure 4.7, the lower pre-shock density limit corresponds to the pre-shock
state leading either to the shock curve depicted in figure 4.7(a), which is characterized
by dMB/dβs = 0 at βs = β̃s (MB = MA), or to the shock curve in figure 4.7(b), where
the post-shock state corresponding to MB = MA occurs on the saturation curve, namely
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β̃s = βs,sat on the limit curve;

(iii) the conditions for acoustic emission may be satisfied within the complete non-ideal region
MB > MA of a shock curve, thus resulting in a narrower domain of pre-shock states for
non-ideal oblique shocks that are uniformly stable against multidimensional perturbations.
In the related limit shock curve, the transition from uniform to neutral stability occurs at
βs = β̃s (MB = MA), as shown in figure 4.7(c).

By varying the reference isentrope, the existence domain of non-ideal oblique shocks as computed
from the proposed procedure is shown in figure 4.8 for MA = 2. The newly defined thermodynamic
region is bounded by three different curves, which together define the so-called Pre-Shock Limit
Locus (PSLL). Firstly, the portion of PSLL between point AJ

V ,1, the high-density zero of J along
the VLE line, and point AJ

τ , for which the isentrope is tangent to the J = 0 locus, is indeed
coincident with the the J = 0 locus. The branch included between AJ

τ and AV
dM,0 represents

the locus of the limit pre-shock states resulting in shock curves featuring dMB/dβs = 0 when
MB = MA (figure 4.7(a)). At point AV

dM,0, the shock curve simultaneously exhibits dMB/dβs = 0
at βs = β̃s (MB = MA) and β̃s = βs,sat. The portion of the PSLL between point AV

dM,0 and
AJ
V ,2, the low-density zero of J along the VLE line, is obtained by collecting the limit pre-shock

states for which β̃s = βs,sat, that is, post-shock saturated conditions occur when MB = MA (figure
4.7(b)). Furthermore, the locus denoted as DKLL (D’yakov–Kontorovich Limit Locus) bounds
a relatively small region (on its right-hand side) of pre-shock states leading to shock curves in
which acoustic emission occurs over the entire βs-range associated with MH(βs ; A) > MA. For
pre-shock states in the right-hand side region of the DKLL, there do not exist uniformly stable
non-ideal oblique shocks.

In the next section, the procedure outlined above is applied to the different fluids listed in
table 4.1 to show its validity. Among the fluids considered, MDM, MM, octane, cyclopentane,
toluene, benzene and R245fa all exhibit retrograde vapour boundaries; sulfur hexafluoride only
exhibits non-retrograde vapour boundary. The procedure for the computation of the existence
domain of non-ideal oblique shocks in fluids having non-retrograde vapour boundaries is almost
identical to that described above. When the saturated vapour boundary is non-retrograde, the shock
curves centred on pre-shock states in the vapour phase cannot cross the two-phase region, thus
remaining single-phase. This implies that transitional shock curves of the type shown in figure
4.7(b) cannot occur. Therefore, with reference to the procedure outlined in the previous paragraph,
the lower pre-shock density limit, along any given isentrope crossing the JA > 0 locus, is either
the saturation curve or the pre-shock state leading to the transition depicted in figure 4.7(a).

4.4.2.4 Results for selected substances

The procedure described in the previous section for MDM and one particular value of MA is
applied here to the fluids listed in table 4.1 and the influence of MA is also evaluated. Similarly to
MDM, the other fluids considered here are modelled with state-of-the-art EoS of the Span-Wagner
type (appendix A). The Pre-Shock Limit Loci and the D’yakov–Kontorovich Limit Loci in the
selected fluids are reported, for different pre-shock Mach numbers, in figures 4.9(a-h). All the
substances considered are endowed with Γ < 1 thermodynamic region. Moreover, for each of these
fluids, K > 0, G > 0 and condition (2.23) is satisfied in the single-phase vapour region to which
the present discussion is restricted. The selected siloxanes (cases a-b), hydrocarbons (cases b- f )
and R234fa (case h) exhibit a retrograde portion of the saturated vapour boundary; accordingly,
the corresponding pre-shock limit curves are qualitatively similar to those obtained in the previous
section for MDM with MA = 2. On the other hand, sulfur hexafluoride (case g) exhibits a fairly
simpler configuration as a result of its saturated vapour boundary being non-retrograde. In this
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Figure 4.8. Pre-shock-state domain (shaded area) for non-ideal oblique shock waves in MDM with fixed
pre-shock Mach number MA = 2. Thermodynamic properties from REFPROP. The domain is bounded
by the Pre-Shock Limit Locus (PSLL, blue line) and by the vapour-liquid saturation curve. Points AJ

V ,1
and AJ

V ,2 indicate the high- and low-density intersection, respectively, of the JA = 0 locus with the VLE

line. The isentrope passing through AJ
τ is tangent to the JA = 0 locus. The shock curve centred on AV

dM,0
features dMB/dβs = 0 at βs = β̃s = βsat. From pre-shock states in the dark-shaded region (enlarged
area), uniformly stable non-ideal oblique shocks cannot occur. This region is bounded by the PSLL and the
D’yakov–Kontorovich Limit Locus (DKLL).

case, according to the nomenclature used in figure 4.8, the portion of PSLL on the right-hand
side of point AJ

τ (comprising pre-shock states for shock curves featuring dMB/dβs = 0 when
MB = MA) extends to a point on the VLE line.

It must be noticed that, among the configurations depicted in figures 4.9(a-h), only MDM, MM
and octane exhibit limit curves for acoustic emission (DKLL), possibly owing to the lower values
of Γmin and the larger extension of the region Γ < 1 with respect to the other fluids considered
here.

The influence of the pre-shock Mach number on the shape and extension of the pre-shock-state
region for non-ideal oblique shock waves, which can be appreciated from figures 4.9(a-h), can be
commented as follows. Firstly, there exists a minimum threshold of the pre-shock Mach number
MA,min = (1 − Γmin)−1/2, below which non-ideal oblique shocks cannot occur. This amounts
to requiring that Γ < 1 − 1/M2

A somewhere in the single-phase vapour region. The condition
Γ < 1 − 1/M2

A is necessary for the existence of non-ideal oblique shocks having pre-shock Mach
number MA. Indeed, assuming G > 0, K > 0 and that (2.23) holds, JB > 0 must be satisfied
somewhere along the shock curve in order that the post-shock Mach number is non-decreasing,
see equation (4.18). Unless JB > 0 holds in the acoustic limit (namely JA > 0 and MB > MA for
weak oblique shocks), JB > 0 must be satisfied when MB < MA. Both cases clearly imply that
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Figure 4.9. PSLL (blue line) and DKLL (red line) for different pre-shock Mach numbers, in each of the
substances listed in table 4.1. Thermodynamic properties from REFPROP.

Γ < 1 − 1/M2
A somewhere in the thermodynamic state space. With increasing values of the pre-

shock Mach number, the size of the pre-shock-state domain for non-ideal oblique shocks increases
(as the size of the JA > 0 region does), whereas its shape remains qualitatively unchanged. In this
respect, the size of Γ–isolines (and thus of J = 0 loci for fixed MA, which roughly coincides with
the newly defined thermodynamic domain) of most pure fluids increases with Γ (see, e.g., Colonna
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Figure 4.9 (Cont.). PSLL (blue line) and DKLL (red line) for different pre-shock Mach numbers, in each of
the substances listed in table 4.1. Thermodynamic properties from REFPROP.

et al., 2007, for siloxanes). More in general, the qualitative trend of the fundamental derivative in
the single-phase vapour region of all fluids having regions Γ < 1 agrees with the predictions of the
simple van der Waals model (see, e.g. Thompson & Lambrakis, 1973), which in turn are consistent
with the results obtained in the present section. The latter claim leads us expect that the present
findings are arguably valid for most single-phase fluids exhibiting Γ < 1 in the vapour region.

4.4.3 Unified description of classical oblique waves
Due to their peculiar nature, in the scientific literature oblique shocks and rarefaction fans are
often dealt with separately and therefore it is difficult to identify possible similarities between the
diagrams depicting these two different phenomena. It is well-known that if the flow deflection is
small and likewise is the pressure jump, the entropy jump across shock waves is negligible, see
equation (2.28). In this isentropic limit, the link between oblique shocks and rarefaction fans can
be appreciated from the diagrams reporting the value of a thermodynamic quantity downstream
of the wave as a function of the deflection angle, for the shock and the fan branches smoothly
match, as shown in figure 4.4(b). However, the geometrical properties of the wave pattern around
compressive and rarefactive corners have always been treated separately. On one side, the (βs ,Θ)–
diagram for oblique shock waves provides the slope of an oblique shock βs as a function of the
deflection angle Θ. On the other side, the geometrical information regarding the fan configuration
is retrieved by the Prandtl-Meyer function (4.13). In this section, an extension of the common
(βs ,Θ)–diagram for oblique shock waves to rarefaction fans is presented, which exemplifies the
fundamental similarity between shock and fan waves in the isentropic limit.

The geometrical properties of the oblique shock waves and of the flow through it are commonly
presented in the form of diagrams reporting the oblique shocks angle as a function of the flow
deflection angle, namely the (βs ,Θ)–diagrams, for a number of upstream flow conditions. For
the general features of the (βs ,Θ)–diagram, see, e.g., (Thompson, 1988). For a given deflection
angle, up to the detachment value Θd , two solutions can possibly occur, namely the weak and
strong oblique shocks. Therefore, the multivalued function βs (Θ; A), in which the dependence
on the upstream state is again indicated using the parameter vector A, is composed by the two
branches β4s (Θ; A) and βss (Θ; A) representing the weak and the strong oblique shock solutions,
respectively. Each of these branches is obtained by inverting the relation Θ = Θ(βs ; A), implicitly
defined by system (2.10)-(2.12), in the appropriate range of shock angles, namely in the interval
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Figure 4.10. Centered fan for streaming flow over a rarefactive corner. Graphical illustration of the
equivalent-fan angle β f , defined in equation (4.21) as the average between the characteristic slopes at the
beginning and at the end of the fan.

βs ∈ [µA, βs,d] for the weak shock branch and in βs ∈ [βs,d, π/2] for the strong shock branch,
where βs,d is the shock angle corresponding to the detachment condition.

In the following, a corresponding half-plane for rarefaction waves is constructed. The possi-
bility of describing also the rarefaction half-plane would allow for an easier, more versatile and
complete diagram than existing ones. To this purpose, we need to define a symmetry between the
two governing relations. Thus, an angle β f which is the counterpart of the βs angle of oblique
shocks, must be introduced for the rarefaction fan. Similarly to the case of oblique shocks, the
angle β f indicates the direction of the fan with respect to the upstream flow.

The natural choice for β f , justified below by resorting to the bisector rule, is to average the
leading characteristic slope ±µA and the terminating characteristic slope Θ ± µB, both computed
with respect to the upstream flow direction (see figure 4.10), namely

β f =
Θ ± (µA + µB)

2
, (4.21)

where the plus/minus sign holds for oblique shocks and rarefaction fans in the left-running/right-
running characteristic field, respectively. It is therefore possible to draw a rarefaction fan branch
starting at (0,±µA) up to the limit condition associated with vacuum. We define a generalized wave
angle βg , representing either the oblique shock angle or the equivalent fan angle, by introducing
the piecewise defined function

βg (Θ; A) =



βs (Θ; A), if ±Θ > 0,
β f (Θ; A), if ±Θ 6 0,

(4.22)

whose graph provides the extended (βg ,Θ)–diagram of left-running/right-running waves around a
corner, for a given upstream state (note that the right-running wave curve is simply obtained by
180◦ rotation of the corresponding left-wave curve). As pointed out previously, the shock portion
βs (Θ; A) is multivalued and comprises the branches β4s (Θ; A) and βss (Θ; A) of weak and strong
oblique shocks, respectively.

The definition (4.21) of the equivalent-fan angle allows to smoothly match (to first order in Θ)
the weak oblique shock branch with the newly defined rarefaction fan branch. Indeed, it is shown
in appendix C, the piecewise function (4.22) is continuously differentiable at Θ = 0, where

dβ f
dΘ

�����Θ=0
=
ΓA

2
M2

A

M2
A − 1

=
dβ4s
dΘ

�����Θ=0
, (4.23)
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Figure 4.11. Extended (βg ,Θ)–diagram for (a) left-running and (b) right-running oblique shock waves and
rarefaction fans in perfect gas methane. Each curve corresponds to a different upstream Mach number. The
limit curve (dashed) is obtained for MA = ∞ on the shock branch and for downstream vacuum conditions on
the rarefactive branch. Also shown is the locus (dotted line) of the maximum deviation angles that the fluid
can sustain across an attached oblique shock.

The C1 continuity of the function defined by (4.22) can be conveniently interpreted in view
of the bisector rule for oblique shock waves (see Kluwick (1971) and §C.1), which states that in
the isentropic shock limit (Θ → 0 and [3]→ 0) the shock angle equals the average between the
pre-shock and the post-shock characteristic slopes. In passing through the Θ = 0 axis from the
rarefactive to the compressive side, the characteristics delimiting the rarefaction fan fold, thus
forming an oblique shock wave. Accounting for the bisector rule, a symmetry is established
between the roles of the characteristic waves in the upstream and downstream states and the
corresponding “average” wave (either the equivalent fan wave or the shock wave). Condition
(4.23) implies that, as Θ → 0, the rate at which the characteristic lines delimiting the Pradtl-Meyer
fan shrink equals the rate at which the pre-shock and post-shock characteristic lines unfold. The
C2 continuity is instead demonstrated to be not guaranteed in appendix C.

The unified description of supersonic flows around compressive and rarefactive corners, embod-
ied in the complete (βg ,Θ)–diagram for both positive and negative deflection angles, is illustrated
in figure 4.11(a)-(b) for methane under the perfect-gas assumption (γ = 1.32). Here, the left and
right figures correspond to left-running and right-running waves, respectively. As is well-known,
for perfect gases both βs and β f are independent of the pre-shock thermodynamic state, leaving
the upstream Mach number as the only parameter in the βg–Θ relation. In other words, for a
perfect gas, the βg–Θ–MA representation is independent from the upstream thermodynamic state
and therefore it is unique. The dashed curves in figure 4.11(a)-(b) represent the limiting cases for
both compression and rarefaction waves. In the shock portion, this is obtained for an infinitely
large pre-shock Mach number, while, in the rarefaction branch, the limiting curve is the locus of
the downstream states corresponding to vacuum conditions.

In contrast with the perfect-gas case, the βg–Θ relation, as computed via any non-ideal equation
of state, depends on the choice of the upstream state, as this influences both the shock and the
rarefaction curves. Exemplary (βg ,Θ)–diagrams for gases in non-ideal thermodynamic conditions
are shown in figure 4.12(a)-(b) for left-running waves in methane. The fluid is now modelled via the
state-of-the-art equation of state described in Setzmann & Wagner (1991) available in REFPROP.
In figure 4.12(a), the upstream thermodynamic state is fixed to PA = 0.4Pc , ρA = 0.1ρc ; each
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Figure 4.12. Extended (βg ,Θ)–diagram for oblique shock waves and rarefaction fans in gaseous methane,
computed from REFPROP. (a) The upstream thermodynamic state is fixed to PA = 0.4Pc , ρA = 0.1ρc ;
each curve corresponds to a different upstream Mach number. (b) The upstream Mach number is fixed to
MA = 2.5; each curve corresponds to a different density along the same isentrope sA = s(0.4Pc ,0.1ρc ).
For both figures, the rarefaction-fan branch is drawn up to the deviation angle corresponding to downstream
saturated conditions (dashed curve). Also shown is the locus (dotted line) of the maximum deviation angles
that the fluid can sustain across an attached oblique shock.

curve thus correspond to a different value of the upstream Mach number. For each case reported,
the rarefaction branch extends to the downstream state where condensation occurs (dashed line).
On the other hand, in figure 4.12(a), the upstream Mach number is fixed to MA = 2.5 and
each curve corresponds to a different upstream density value chosen along the same isentrope
sA = s(0.4Pc ,0.1ρc ). Because the upstream entropy is the same, the rarefaction portions are
nearly coincident. It can be noticed that the shock curve is significantly influenced by the value of
the pre-shock density. In particular, the maximum deflection angle that the flow can sustain across
an attached oblique shock wave is seen to decrease with increasing pre-shock density.

Ease and versatility of the complete (βg ,Θ)–diagram is shown in this section for a typical
steady supersonic flow in two dimensions, namely the textbook case of flow past a symmetric
diamond-shaped airfoil. Such a case owes both oblique shocks and rarefaction fans for either
left- and right-running waves, respectively for the suction and pressure sides. This exemplary
configuration is shown in figure 4.13; the fluid considered is, again, methane (EoS from REFPROP).
The diamond airfoil has a 10◦ half angle and it is put into a uniform supersonic freestream at an
angle of attack of 15◦. The freestream conditions are P1 = 0.4Pc , ρ1 = 0.1ρc , M1 = 2.5. On the
suction surface, the flow is expanded across two rarefaction fans and finally compressed across an
oblique shock to match the downstream pressure and flow direction at the slip line emerging from
the trailing edge. On the pressure side the flow is initially compressed and subsequently expanded.
For each of the wave patterns on the diamond airfoil (except, of course, the contact surface at the
trailing edge), the βg–Θ curves obtained from the corresponding upstream state is plotted in figure
4.13, where each wave is also marked. The fluid properties in the different uniform regions around
the airfoil are reported in table 4.2, together with the flow deviation angles and the wave angles at
each corner.
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4.5. Non-classical oblique waves

Flow
region P/Pc ρ/ρc M

Θi−1, i
(deg)

βg, i−1, i
(deg)

1 0.4 0.1 2.5 / /

2 0.29 0.078 2.70 -5 20.15
3 0.062 0.024 3.67 20 8.78
4 0.39 0.083 2.12 26.4 40.45
5 1.56 0.26 1.45 -25 -48.94
6 0.57 0.12 2.12 20 -25.87
7 0.39 0.092 2.35 6.4 -23.45

Table 4.2. Fluid properties in each of the uniform states around the diamond-shaped airfoil of figure
4.13, together with the wave angles. Thermodynamic properties from REFPROP. The quantities Θi−1, i and
βg, i−1, i are the flow deflection angle and the wave angle in passing from state i − 1 to state i, respectively, as
computed with respect to the upstream flow direction.
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Figure 4.13. βg–Θ curves for steady flow of gaseous methane past a diamond-shaped airfoil. The
freestream conditions are P1 = 0.4Pc , ρ1 = 0.1ρc , M1 = 2.5. The left and right axis are for left-running and
right-running waves, respectively. For each of the states upstream of an oblique shock or rarefaction fan, the
corresponding βg–Θ curve is drawn and the wave configuration due to flow deflection is marked. Note that
the Θ and βg angles refer to the flow direction upstream of each wave pattern. The rarefaction-fan branch is
drawn up to the deviation angle corresponding to downstream saturated conditions.

4.5 Non-classical oblique waves

Non-ideal thermodynamic properties offer a remarkable degree of freedom by which the ex-
pansion/compression of a supersonic stream at a corner can be accomplished. This degree of
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freedom emerges in the non-classical gasdynamic regime of BZT fluids, which is analysed in the
present section with the aim of identifying non-classical wave curves. In this context, the two-step
procedure described in §4.3 for the computation of the wave curves proves to be particularly
advantageous. The structure of the wave curves is analysed by first considering their projection in
a thermodynamic plane (§4.5.1) and secondly those on common polar diagrams (§4.5.2). Section
4.6 presents the computation of the map of the upstream states that are associated to each type of
wave curve.

4.5.1 Wave curves in the thermodynamic plane
In order to illustrate the different types of wave curves in a typical BZT fluid, the polytropic van
der Waals model (appendix A) of a molecularly complex fluid is considered (the non-dimensional
isochoric specific heat is set to c3/R = 57.69). Five thermodynamic states Ai = (P(sA,3i ),3i ),
i = 1, . . . ,5, are chosen along the same isentrope sA crossing the negative-Γ region while remaining
in the single-phase, as shown in figure 4.14(a). The corresponding extended wave curves in the
(P,3)–plane are shown in figure 4.14(b)-( f ). These are now detailed.

Case 1 – figure 4.14(b). Thermodynamic state A1 is located on the right-hand side of the
negative-Γ region. Thus, the rarefaction branch of the extended wave curve through A1 is the
isentrope containing A1, associated with elementary Prandtl-Meyer waves connected to A1. On
the other hand, the compressive branch of the wave curve coincides with the shock adiabat centred
on A1, associated with oblique shock waves. Note that, despite the shock adiabat crosses the
negative-Γ region and it is non-convex, no entropy extrema occur. Graphically, this means the
Rayleigh line (straight line connecting the pre-shock and post-shock states) is never tangent to the
shock adiabat at the post-shock state. The same wave curve configuration (compression shock and
rarefaction fan branches) is observed whenever the isentrope passing through the upstream state is
convex (see, e.g., Kluwick, 2001).

Case 2 – figure 4.14(c). Similarly to case 1, thermodynamic state A2 is on the right-hand side
of the negative-Γ region. The rarefaction branch of the wave curve, therefore, is as in the previous
case. On the contrary, the compression branch is significantly different. The wave curve is still,
for moderate pressure rises, the locus of the oblique shocks connected to A2. In contrast to case
1, however, there there exist a downstream pressure (point S+) for which the entropy along the
shock adiabat reaches a local maximum (i.e. the Rayleigh line is tangent to the shock adiabat at
S+); shock A2-S+ is indeed a post-sonic compression shock. As mentioned in §4.3, the wave curve
is continued along the isentrope passing through S+, for a composite oblique shock/Prandtl-Meyer
fan combination. The fan in the composite wave cannot be continued beyond point I, where the
isentrope through S+ intersect the Γ = 0 locus, for the characteristic lines would fold. Beyond point
S+, the wave curve is continued by inserting a pre-sonic oblique shock adjacent to the fan. Thus,
the corresponding wave configuration is a composite of the type oblique shock/Prandtl-Meyer
fan/oblique shock. With increasing downstream pressure, the terminating shock becomes stronger
and the wave fan weaker. Ultimately, at point S− the fan disappears; shock A2-S− can be seen as
the composition of the post-sonic shock A2-S+ and the pre-sonic shock S+-S−. For downstream
pressures larger than the value at point S−, a single oblique shock configuration is recovered.

Case 3 – figure 4.14(d). If the upstream thermodynamic state is selected in the negative-Γ
region, such as point A3, the rarefaction branch of the wave curve is the shock adiabat centred on
the initial state (rarefaction oblique shock waves), up to the point S+ where a post-sonic rarefaction
shock occurs. Beyond this point, the wave curve is continued along the isentrope through S+, for
a composite oblique shock/Prandtl-Meyer fan combination. On the other hand, the compression
branch of the wave curve is initially the isentrope through A3 (compression Prandtl-Meyer waves),
up to the point I where this isentrope intersects the Γ = 0 locus. The wave curve is continued by
inserting a pre-sonic shock adjacent to the fan, for a Prandt-Meyer fan/oblique shock composite
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Figure 4.14. Extended wave curves in the pressure–specific volume diagram computed from the polytropic
van der Waals model with c3/R = 57.69. (a) The selected upstream states, chosen along an isentrope crossing
the negative-Γ region (shaded area). (b)-( f ) Extended wave curve for each upstream state. Wave configu-
rations: shock, shock/fan, shock/fan/shock, fan, fan/shock, fan/shock/fan.
Point S+: downstream state of post-sonic oblique shock; point S−: downstream state of pre-sonic oblique
shock; point S: downstream state of double-sonic oblique shock; point I: intersection between the local
isentrope and Γ = 0 locus. Attached to each branch is a sketch of the corresponding wave in the physical
plane, for an exemplary flow past a ramp.
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configuration in the physical plane. With increasing downstream pressure, the terminating oblique
shock becomes stronger and the wave fan weaker; downstream pressures beyond point S−, at which
a pre-sonic compression shock occurs, are accomplished by a single oblique shock configuration.

Case 4 – figure 4.14(e). State A4 lies on the left-hand side of the negative-Γ region. Therefore,
the compression branch of the wave curve through state A4 is the shock adiabat centred on A4.
The rarefaction branch is initially the isentrope through state P4, up to the point where the Γ = 0
locus is encountered. The wave curve is continued by inserting a pre-sonic shock adjacent to
the fan. For the downstream pressure corresponding to point S− (pre-sonic rarefaction shock
A4-S−), the Prandtl-Meyer fan disappears and a single oblique shock occurs. By decreasing the
downstream pressure, the post-shock normal Mach number decreases and at point S+ it is equal to
unity (post-sonic oblique shock A4-S+). Smaller downstream pressures are achieved by means of a
composite oblique shock/Prandtl-Meyer fan combination, for the wave curve beyond point S+ is
indeed the isentrope through S+.

Case 5 – figure 4.14( f ). The wave curve configuration is the same as in case 4, except
that for the downstream pressure corresponding to point S, a composite fan/double-sonic shock
configuration is observed (see also Zamfirescu et al., 2008). The wave curve of point A5 is
continued, beyond point S, along the isentrope through S. The associated wave in the physical
plane is the composite fan/shock/fan configuration.

4.5.2 Polar representation of the wave curves
Moving from the identification of the different types of extended wave curves in the space of
thermodynamic variables, in this section we describe the wave curves in the common pressure–
deflection diagram, thus enabling the effect of the kinematic state of the upstream flow to be
considered. Consistent with the study of classical wave curves in §4.4.1, the upstream kinematic
state is accounted for in terms of upstream Mach number MA. In order to analyse the possible
configurations of the wave curves along with the influence of MA, we select the same upstream
thermodynamic states considered in the previous section and we draw the wave curve projection in
the (PB,Θ)–diagram for different values of MA, as shown in figure 4.15. Left-running wave curves
are considered; the right-running wave is obtained by reflection of the left-running counterpart
through the Θ = 0 axis.

Case 1 – figure 4.15(b). On a qualitative basis, this is the classical case described in §4.4.1.
Case 2 – figure 4.15(c). While the rarefaction branch is qualitatively similar to case 1, there

exists a limit value of the upstream Mach number, M tr
A , marking the transition between two

qualitatively different compression-branch configurations. If 1 < MA < M tr
A , the ordinary shock

polar, similar to case 1, occurs. For MA > M tr
A , along the compressive branch of the wave curve

the following sequence is encountered, in the direction of increasing downstream pressure: oblique
shock, oblique shock/Prandtl-Meyer fan, oblique shock/Prandtl-Meyer fan/oblique shock, oblique
shock. The transitional wave curve is distinguished because the normal shock delimiting the
first shock branch exhibits the sonic downstream state MnB = MB = 1, namely the post-shock
thermodynamic state coincides with point S+ in figure 4.14(c). By enforcing the Rankine-Hugoniot
relations for a normal shock wave, the transitional Mach number is therefore computed as

M tr
A =

1
ρAcA

√
PS+ − PA

3A − 3S+

, (4.24)

where PS+ and 3S+ are the pressure and specific volume, respectively, at point S+. For upstream
Mach numbers slightly larger than the transitional value, Θ exhibits three stationary points along
the wave curve (two local maxima with a minimum in between). Thus, up to four different wave
configurations can provide the same flow deflection.
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Figure 4.15. Left-running wave curves in the pressure–deflection diagram computed from the polytropic
van der Waals model with c3/R = 57.69. (a) The selected thermodynamic upstream states, chosen along
an isentrope crossing the negative-Γ region (shaded area). (b)-( f ) Wave curve for each upstream thermo-
dynamic state and different upstream Mach numbers. For each case, the downstream pressure PB is scaled
using the corresponding upstream pressure PA. Wave configurations: shock, shock/fan,
shock/fan/shock, fan, fan/shock, fan/shock/fan. Symbol • denotes downstream sonic points
(MB = 1).
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Case 3 – figure 4.15(d). A single qualitative configuration is observed for the compression
side of the wave curve, which is composed by three branches: Prandtl-Meyer fan, Prandtl-Meyer
fan/oblique shock, oblique shock (increasing downstream pressure). Two qualitatively different
configurations are possible for the rarefaction branch, based on the value of the upstream Mach
number. As in the previous case, a threshold Mach number M tr

A exists, such that the ordinary shock
polar (though for rarefaction shocks) occurs if MA < M tr

A . Note that, for MA < M tr
A , the largest

pressure drop is attained across the normal rarefaction shock from the upstream state, i.e. the
rarefaction branch does not extend to vacuum. The transitional curve is again determined by the
occurrence of a post-sonic normal shock wave (downstream thermodynamic state S+ in figure
4.14(d)). Therefore, formula (4.24) applies for the computation of M tr

A .
Case 4 – figure 4.15(e). The compression branch is the classical polar of oblique shocks. Two

qualitatively different configurations of the rarefaction branch can possibly occur, again depending
on MA. If MA < M tr

A , the configurations are, in the direction of decreasing downstream pressure:
Prandtl-Meyer fan, Prandtl-Meyer fan/oblique shock, oblique shock. If MA > M tr

A , the wave curve
extends to vacuum via an additional oblique shock/Prandtl-Meyer fan configuration. Similarly to
cases 2 and 3, the transitional wave curve is distinguished by the occurrence of a post-sonic normal
shock wave (downstream thermodynamic state S+ in figure 4.14(e)), so that M tr

A is again computed
from relation (4.24).

Case 5 – figure 4.15( f ). For case 5 a single wave curve configuration is possible. The
compression branch comprises the ordinary shock polar. For decreasing downstream pressures, the
rarefaction branch consists of: Prandtl-Meyer fan, Prandtl-Meyer fan/oblique shock, Prandtl-Meyer
fan/oblique shock/Prandtl-Meyer fan.

4.6 Upstream-state map of the wave-curve types

Having described the different configurations for the compression and rarefaction branches of the
waves curves for steady, two-dimensional and supersonic (possibly mixed supersonic/subsonic
across strong oblique shocks) flows, we can now investigate the necessary conditions that the
upstream state must satisfy in order to produce a specific wave-curve configuration. Ultimately,
the purpose of this section is to determine a map of the upstream states leading to the different
types of wave curve identified in the previous section.

For future convenience, the wave curve types are classified according to their qualitative
structure, as shown in table 4.3. Seven different wave-curve configurations are singled out, which
include the classical configuration C and six different non-classical configurations Ni , i = 1, . . . ,6.
The classical wave curve C is the one depicted in figure 4.15(b) and in figure 4.15(c) for MA < M tr

A;
N1 is found in 4.15(c) if MA > M tr

A; N2 and N3 occur in figure 4.15(d) for MA < M tr
A and

MA > M tr
A , respectively; N4 and N5 in figure 4.15(e) for MA < M tr

A and MA > M tr
A , respectively;

finally N6 is the configuration shown in figure 4.15( f ).
In order to reduce the complexity associated with the dependence of the wave curves on three

upstream quantities (two thermodynamic quantities, e.g. PA, 3A and a kinematic or mixed one, e.g.
MA), we first consider upstream thermodynamic states along exemplary isentropes, as shown in
figure 4.16, and we analyse the conditions that determine the transition between different wave
curve configurations.

Isentrope a in figure 4.16 is representative of the scenario observed for convex isentropes. As
such, only classical wave curves can originate from upstream thermodynamic states along these
curves and any given upstream Mach number MA > 1.

Isentrope b is the same used for the parametric studies of the previous sections. It is representa-
tive of the scenario arising from isentropes that cross the negative-Γ region while remaining in
the single-phase. At sufficiently low upstream pressure, only the classical configuration shown in

92



4.6. Upstream-state map of the wave-curve types

Wave-curve type Compression branch Rarefaction branch

C S F
N1 S–SF–SFS–S F
N2 F–FS–S S
N3 F–FS–S S–SF
N4 S F–FS–S
N5 S F–FS–S–SF
N6 S F–FS–FSF

Table 4.3. Classification of the wave curves. S: oblique shock; F: Prandtl-Meyer fan; SF: composite oblique
shock/Prandtl-Meyer fan; SFS: composite oblique shock/Prandtl-Meyer fan/oblique shock; FS: composite
Prandtl-Meyer fan/oblique shock; FSF: composite Prandtl-Meyer fan/oblique shock/Prandtl-Meyer fan. In the
compression branch, the configurations encountered are listed in the order of increasing downstream pressure,
while in the rarefaction branch they are in the order of decreasing downstream pressure.

figure 4.14(b) and 4.15(b) can occur. By increasing the pressure along the selected isentrope, point
PSmax is encountered at which the wave curve first includes a post-sonic compression shock. It
can be shown (Menikoff & Plohr, 1989) that the post-sonic compression shock arising from PSmax
exhibits ΓB = 0. Also, it is the post-sonic compression shock of largest intensity (e.g., pressure
or entropy jump) among those originating from the selected isentrope. For pressures included
between PSmax and I′

b
(low-density intersection with the Γ = 0 locus), the extended wave curve

in the thermodynamic plane is qualitatively similar to that of figure 4.14(c). As shown in §4.5.2,
two different types of wave curve (C and N1) can occur based on the value of the upstream Mach
number. The threshold Mach number between these two configurations, as computed from relation
(4.24), is graphically highlighted in figure 4.16 using the colormap. For upstream states exhibiting
ΓA < 0, wave curves of type N2 or N3 can be observed. The same transitional criterion based on
MA applies and is again represented on the isentrope itself in figure 4.16. The branch of isentrope
b on the left-hand side of point I′′

b
(high-density intersection with the Γ = 0 locus), is two sections

by point DS, which denotes the occurrence of a double-sonic shock (Zamfirescu et al., 2008).
Between I′′

b
and DS, double-sonic shocks from upstream states along the chosen isentrope are not

possible. Therefore, configurations N2 or N3 can occur based on MA. Beyond point DS, the wave
curve is of type N6 only.

In the present discussion, we also consider the single-phase portions of isentropes crossing the
saturation curve. The case of isentropes crossing both the negative-Γ region and the saturation
curve is the one labelled c in figure 4.16. Non-classical configurations can possibly exist only in the
neighbourhood of point I′c . The branch C/N1, in this case, is bounded below by point PSsat, where
the post-sonic shock required for the existence of N1 configurations features post-shock saturated
conditions (namely, the post-shock thermodynamic state lies on the vapour-liquid saturation curve).
Finally, for isentropes such as case d in figure 4.16, which cross the phase boundary but do not
cross the negative-Γ region, only the classical wave curve configuration is predicted to occur.

By applying the above procedure to each possible isentrope, a map, in terms of thermodynamic
quantities and Mach number, of the upstream states leading to each wave curve configuration
is obtained, see figure 4.17. In the (P,3)–plane, the thermodynamic region associated with non-
classical wave curves is bounded above by the isentrope sτ,0 tangent to the Γ = 0 locus and by
the curve PSLmax. The latter is obtained by collecting all the upstream states PSmax leading to
post-sonic shocks of maximal intensity along a given pre-shock isentrope (as defined above). In
a similar fashion, the curve PSLsat is computed as the locus of thermodynamic states PSsat, for
each isentrope crossing both the negative-Γ region and the saturation curve. The PSLsat bounds
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Figure 4.16. Wave curve configurations for upstream thermodynamic states along selected isentropes,
as computed from the polytropic van der Waals model with c3/R = 57.69. The colormap indicates the
transitional upstream Mach number (cf. relation 4.24) for the branches where two different configurations are
possible.

from below the region for non-classical wave curves, along with the saturation curve itself and the
isentrope s3le tangent to the latter. The locus Γ = 0 marks the transition between the regions C/N1
and N2/N3 and between the regions N2/N3 and N4/N5. The DSL, which separates the regions
N4/N5 and N6, is obtained by collecting the pre-shock states of double sonic shocks (DS). The
DSL shown in figure 4.17 is indeed a portion of the Double-Sonic Locus defined by Zamfirescu
et al. (2008). Outside the above-described bounds, only classical wave curves can take place.

We assert that the present findings do not depend on the specific choice of the thermodynamic
model, insofar as they result from the existence of a finite negative-Γ region in the vapour phase.
To support this claim, the upstream-state map of the wave curves for fluid MD4M (tetradecamethyl-
hexasiloxane, C14H4205Si6), as computed from the state-of-the-art Span-Wagner EoS of Thol et al.
2018 (see also appendix A) available via the REFPROP library, is reported in figure 4.18 and
shows excellent qualitative agreement with the picture given by the simple van der Waals model.

4.7 Concluding remarks

The general properties of oblique waves in steady supersonic flows of single-phase fluids were
studied. The developed theoretical framework concentrates on compressive and rarefactive
ramps/wedges in both the classical and non-classical gasdynamic context, which are the building
blocks of more general planar supersonic flows. The supersonic ramp problem was described mov-
ing from the one-dimensional Riemann problem, thus allowing us to exploit most of the techniques
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Figure 4.17. Upstream-state map of the wave curves in the (P,3)–plane, as computed from the polytropic
van der Waals model with c3/R = 59.67. Superposed is the value of transitional upstream Mach number (cf.
relation 4.24) for the regions where two different configurations are possible.

developed for scale-invariant flow in one dimension. Accordingly, the concept of wave curve for
steady two-dimensional flow, which is the counterpart the wave curve in the one-dimensional
Riemann problem, was introduced. Within the present context, the wave curve consists of all the
states (in terms of thermodynamic and kinematic quantities) that can possibly be connected to a
given supersonic state by means of a steady, two-dimensional and scale-invariant wave. A two-step
procedure was adopted to compute the wave curve: the projection onto the thermodynamic vari-
ables was first considered, since it represents a subset of the unsteady one-dimensional counterpart,
and afterwards all the kinematic quantities were retrieved.

In the classical gasdynamic regime, the wave curve is composed of the well-known oblique-
shock branch (compressive side) and simple-wave or Prandtl-Meyer branch (rarefaction side).
Among the non-ideal effects pertaining to oblique waves, of particular importance is the discontin-
uous Mach number increase across oblique shocks (non-ideal oblique shocks) which, surprisingly,
has not been detailed in the scientific literature until recently. Non-ideal oblique shocks were
investigated here in the context of classical gasdynamics. The increase of the Mach number
results from the decrease of the speed of sound across the shock wave, which is possible in the
non-ideal gasdynamic regime of fluids characterized by moderate-to-high molecular complexity.
By examining oblique shocks in the (MB, βs )–plane, the different scenarios for the observation of
Mach number–increasing configurations were identified, pointing out the roles of the pre-shock
thermodynamic quantities and Mach number. Considerations of multi-dimensional shock sta-
bility, in terms of D’yakov–Kontorovich conditions for acoustic emission or neutral stability to
transverse perturbations of the shock front, were also given. In the parameter space associated to
the pre-shock state variables (thermodynamic quantities and Mach number), the flow conditions
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leading to the occurrence of non-ideal oblique shocks were singled out. As a result, a family
of thermodynamic regions, parametrized by the pre-shock Mach number MA, was introduced.
For a given value of MA, the newly defined regions embed all the pre-shock thermodynamic
states from which non-ideal oblique shocks can possibly occur. The computational procedure
for determining the admissibility domain of non-ideal oblique shocks was first illustrated using
siloxane MDM and subsequently applied to other fluids of practical interest, yielding consistent
results (state-of-the-art thermodynamic modelling for each fluid considered). Remarkably, for any
given MA, it is sufficient that Γ < 1 − 1/M2

A somewhere in the thermodynamic state space in order
to observe a non-ideal oblique shock. Therefore, the present findings apply to any fluid exhibiting
Γ < 1 in the single-phase vapour region.

A unified approach for the description of the geometrical properties of steady supersonic
corner flows in the classical gas dynamic context was presented, which applies to thermally and
calorically ideal gases as well as non-ideal fluids. The proposed method takes advantage of the
definition of an angle β f for Prandtl-Meyer fans, which is equivalent to the angle βs describing the
slope of oblique shocks with respect to the upstream flow direction. Using the newly defined fan
angle, the common shock angle–deflection angle diagram for oblique shock waves was extended
to deal with rarefaction waves. The fan angle was chosen to equal the average of the leading and
terminating characteristic slopes in the rarefaction fan. This choice was dictated by the analogy
between the role of the fan angle thus defined and that of the oblique shock angle in the isentropic
limit, whereby the bisector rule states that the oblique shock is the bisector of the characteristic
lines delimiting the folded fan. The interplay between the two angles discloses in the C1 continuity
of βg–Θ relation in passing through the no-deviation angle Θ = 0. Examples of the complete
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(βg ,Θ)–diagram were shown for the perfect-gas case, in which the graph itself is dependent on
the value of the upstream Mach number only, and for non-ideal gases, where a marked dependence
on the upstream thermodynamic state is also observed. The new diagram was finally applied to the
steady supersonic flow of a non-ideal gas past a diamond-shaped airfoil.

In the non-classical gasdynamic regime of BZT fluids, due to the possibly non-convex character
of isentropes and shock adiabats in the pressure–specific volume diagram, several oblique-wave
patterns are identified which are not admissible in the classical theory of gasdynamics: the
composite shock/fan, fan/shock, shock/fan/shock and fan/shock/fan combinations. Moreover, the
elementary oblique waves originating from thermodynamic states in the negative-Γ exhibit inverse
gasdynamic behaviour, namely oblique shocks carry an expansion while Prandtl-Meyer fans are
compressive. The different types of wave curves were illustrated my means of a parametric study
in the space of the upstream thermodynamic quantities (e.g., pressure and specific volume) and
Mach number, using the van der Waals gas model (with constant isochoric specific heat) of a
molecularly complex fluid. Seven different wave curve configurations were singled out, which
include the classical case (C) and six non-classical cases (N1, N2, N3, N4, N5, N6). The conditions
leading to the transition between the different types of wave curve were analysed. This led to the
definition of a map, in the parameter space of the thermodynamic quantities and Mach number,
of the upstream states leading to each type of wave curve. Most important, it was shown that the
domain of the thermodynamic states leading to wave curves of non-classical type is significantly
larger than the negative-Γ region in which inverse gasdynamic behaviour is expected to occur. As
the peculiar oblique-wave properties stem from the occurrence of a negative-Γ region in the vapour
phase, we expect that the results obtained from the simple van der Waals model apply to diverse
thermodynamic models of BZT fluids. The computation of the upstream-state map of the wave
curves using the state-of-the-art thermodynamic model of fluid MD4M corroborates this statement.

Remarks concerning the presented results are as follows:

(i) In contrast with the classical case, if the non-classical configuration N1 is generated, up
to four different wave patterns corresponding to the same ramp angle can possibly occur.
Moreover, for the non-classical configurations N2, N3, N4 and N5, the deviation angle does
not vary monotonically with the downstream pressure along the expansion branch, where up
to three different wave patterns can possibly occurs which correspond to the same ramp angle.
Among others, an important problem for further study is the stability of oblique waves in the
ramp configuration, which is required for the experimental observation of these non-classical
phenomena, see Kluwick & Cox (2018a) for a survey on this topic.

(ii) Violation of condition (2.21) has not been considered in the discussion of non-classical wave
curves, being the focus on the structure of wave curve itself. The occurrence of neutral
stability can be graphically recognized from the fact that relations (2.22) are satisfied if
the sonic point in the pressure-deflection diagram is at larger pressures then the maximum
turning angle; one such case is the oblique shock polar marked by MA = 1.5 in figure 4.15(b).
A more thorough investigation of this phenomena is left for future investigations.

(iii) As it has been noted by Kluwick & Cox (2018b), the experimental investigation of non-
classical phenomena under steady flow conditions overcomes some of the critical weaknesses
associated with shock-tube experiments (see Mathijssen et al., 2015), in particular the high
sensitivity of the flow to disturbances caused by opening devices. By contrast, the flow
conditions leading to steady-state non-classic effects correspond, in general, to larger total
enthalpies then those required in unsteady flows. As mentioned in §3, the thermal stability
of the working fluid may represent a limiting factor, especially if a blow-down facility
is employed. Care must also be exerted in avoiding that the channel (viz. test chamber)
undergoes chocking due to an excessive contraction of the cross section (for the case of
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incident compression shocks), which would lead to a detachment of the oblique shock from
the generating ramp.

In closing, we note that the current theoretical framework can be conveniently applied to the
study of shock reflections and shock interactions, to be addressed in the next chapter.
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CHAPTER5
SHOCK REFLECTIONS AND

INTERACTIONS IN NON-IDEAL
STEADY FLOWS

This chapter describes the theory for reconstructing the steady flow field in the vicinity of the
singularity point (node) formed by the intersection of oblique waves in shock-reflection and shock-
interaction patterns, with special emphasis on the non-ideal gasdynamic regime. In the classical
gasdynamic regime, a limited number of outcomes is expected due to the possibility of deviating a
supersonic stream by means of two types of oblique wave, the Prandtl-Meyer rarefaction fan and
the oblique compression shock wave. Nevertheless, the admissible patterns are commented in light
of the non-ideal increase of the Mach number across oblique shock waves. In the non-classical
gasdynamic regime of BZT fluids, the turning of a supersonic stream can be accomplished in a
variety of ways other than the conventional oblique shock and Prandtl-Meyer fan. Besides the
occurrence of inverted gasdynamic behaviour (rarefaction shocks and compression fans), four
additional wave configurations can exist which are of the composite type, namely combination of
shocks and fans propagating as a single entity. Consequently, the incoming and outgoing waves
at the node in shock reflections and shock interactions in BZT fluids may be non-classical waves.
The shock-reflection and shock-interaction theories pertaining classical gasdynamics are extended
and adapted to the non-classical framework by allowing outgoing waves to be any sort of oblique
wave, and the case of incoming rarefaction shocks is also discussed.
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5.1 Introduction and theoretical background

In confined supersonic flows, shock waves are most likely to interact with a solid boundary or other
shocks. These processes configure either a shock reflection or a shock-shock interaction, examples
of which are sketched in figure 5.1(a-c). Shock reflection and interactions are characterized by
the presence of a point of singularity called node, where two or more oblique waves intersect.
Shock reflections were first reported by Mach (1878), who discovered in his experiments two
types of reflection: a regular reflection and an irregular reflection later named after him (Mach
reflection). von Neumann (1943, 1945) recognized that the flow field in the neighbourhood of the
node consists of uniform states separated by shock waves and possibly by a slip line. On this basis,
von Neumann introduced the celebrated two-shock and three-shock theories that model regular and
Mach reflections, respectively. Experiments (Ben-Dor, 2007) suggested that a reflection pattern
similar to the Mach reflection persists in the range of parameters where no solutions should exist
according to the theories of von Neumann. This discrepancy has been termed the von Neumann
paradox. In the attempt to solve the von Neumann paradox, Colella & Henderson (1990) discovered
a non-standard solution of the three-shock theory and named it von Neumann reflection. It is only
at the end of the last century that the von Neumann paradox was successfully solved (Vasil’ev &
Kraiko, 1999), by discovering the existence of a fourth wave (wave fan) centred at the node with a
local supersonic zone downstream (as suggested long ago by Guderley 1962).

Two basic types of shock interactions can be recognized: the cross node (crossing of two
shocks propagating in opposite directions, see figure 5.1(b)) and the overtake node (overtake of
one shock by another moving in the same direction, see figure 5.1(c)). When the flow downstream
of the incident shocks is supersonic, a supersonic steady-state Riemann problem is established, in
which the data is provided by the states behind the incident waves (Glimm et al., 1985; Glimm &
Majda, 2012). Thus, three outgoing waves are expected at the node, namely two oblique waves
with a slip line in between. An outgoing oblique wave can disappear (degenerate node) for special
deflection angles of the incident shocks, or more commonly if the flow downstream of an incident
shock is subsonic.

A common feature between shock reflections and shock interactions is the scale-invariance of
the flow pattern in the neighbourhood of the node (uniform states separated by oblique waves and a
slip line). For this reason, the wave curves of oblique waves computed in the previous chapter play
a central role. Since the boundary conditions in shock reflection and interactions are expressed in
terms of flow deflection and pressure, it is advantageous to determine the possible outcomes with a
graphical analysis of the wave curve in the pressure-deflection diagram (see, e.g., Ben-Dor, 2007).

This chapter is aimed at extending the established framework of shock reflections and interac-
tions of ideal gases to the non-ideal domain. Two main topics are dealt with, in line with discussion
of chapter 4: the presence of non-ideal oblique shocks (§5.2) and the occurrence of non-classical
oblique waves which generate new configurations not possible in classical gasdynamics (§5.3).

Few preconditions concerning the present analysis are as follows. At the node, each wave can
be classified as incoming or outgoing. The definition of incoming/outgoing waves is based on the
tangential velocity along its front or each of its rays in the case of wave fan: if this points toward
the node, the wave is incoming, otherwise the wave is outgoing (Henderson & Menikoff, 1998).
This criterion for the orientation of oblique waves is illustrated in figure 5.1(d). On the ground
of the physical meaning of the wave interaction, configurations containing a total of more than
two incoming rays are disregarded. Contrary configurations are indeed geometrically irregular
(Sanderson, 2004), in the sense that a slight geometrical perturbation of one of the incoming rays
would break the single-node interaction pattern into multiple nodes. As an example, a node with
three incoming shocks, see figure 5.1(e), will split into a pair of regular nodes (each having two
incoming shocks) if one of the three shocks undergoes an arbitrary displacement of its front. This
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(d) (e)

(b)(a) (c)

(f)

Figure 5.1. Examples of (a) shock reflection, (b) cross node and (c) overtake node; (d) illustration of the
oblique wave orientation: an arrow pointing toward (away from) the node indicates an incoming (outgoing)
wave; (e),( f ) excluded configurations with more than two incoming rays. Thick lines denote shock waves,
thin lines denote simple waves and dash-dotted lines denote contact discontinuities.

requirement also excludes the case of incoming wave fans centred on the node itself (figure 5.1( f )).
The discussion is limited to the case of incident weak oblique shock waves, namely those

lying on the branch of the wave curve up to the first detachment point (for both compression and
rarefaction sides if these include oblique shocks). In the non-ideal gasdynamic regime, strong
oblique shocks having downstream supersonic states may also be constructed. Although not
explicitly dealt with, on occasions some remarks on the consequences of considering incident
strong shocks will be provided. The occurrence of such shocks is connected with the violation of
the uniform stability criterion (2.21) and the potential appearance of acoustic emission from shock
waves along the considered wave curve (Menikoff & Plohr, 1989). In this chapter, considerations of
multidimensional stability will be omitted, as the focus is primarily on the structure and mechanism
of the wave interaction (in other words, we do not take into account the multidimensional stability
analysis performed for non-ideal oblique shocks).

5.2 Classical shock reflections and interactions

The general concepts behind steady shock reflections and interactions in classical gasdynamics
are recalled to set the ground for the subsequent analysis of non-classical wave interactions. In
§5.2.1, regular shock reflections are studied by means of the two-shock theory of von Neumann.
When dealing with irregular reflections (§5.2.2), either the three-shock theory of von Neumann
or the four-wave model are needed. Classical shock interactions are reviewed in §5.2.3 for the
cross-node configuration and in §5.2.4 for the overtake-node configuration. The non-ideal effect of
primary interest in the following discussion is the non-ideal increase/decrease of the Mach number
across oblique shocks/Prandlt-Meyer fans, which has been detailed previously in §4.4.1 and §4.4.2.
Shock reflection and interactions are illustrated using the polytropic van der Waals model with
dimensionless isochoric specific heat set to c3/R = 15.
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Figure 5.2. Pressure–deflection diagram for the regular reflection in a polytropic van der Waals gas with
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of each oblique wave. Sketch of the reflection pattern: I incident shock, R reflected shock.

5.2.1 Regular reflection

When the angle between the shock front and the reflecting surface is small enough, a regular
reflection takes place. In a regular-reflection pattern, an incident oblique shock wave is reflected as a
wave of the opposite family. In classical gasdynamics, the incident shock is of course compressive;
likewise, the reflected wave is a compression shock producing an opposite flow deflection, with
respect to that of the incident shock, and therefore satisfying the boundary condition imposed by
the reflecting surface. This is the two-shock theory of von Neumann (1943).

The problem of regular shock reflection consists in determining the properties of the reflected
shock and its downstream state, once the incident shock (together with the flow states across itself)
and the geometry of the reflecting surface are known. Since we are dealing with the description
of the flow field near to the node where the reflection occurs, the incident shock, as well as the
reflected wave and the reflecting surface, are considered as straight.

As is well-known, the shock-reflection pattern can be determined from the analysis of the
pressure-deflection diagrams. An example is provided in figure 5.2 for the case of an incident
left-running shock. The left-running wave curve (incident) from state 0 is drawn from the origin
of the (PB,Θ)–plane, while the right-running wave curve (reflected) from state 1, which occurs
along the incident wave curve. The state 2 downstream of the reflected shock is found at the
intersection of the reflected wave curve and the Θ = 0 axis. Among the two possible intersections,
the high-pressure one yields a subsonic downstream state and is discarded because unstable to
small perturbations and thus it would not occur in a steady-state flow (Teshukov, 1989).

The upstream state 0 and the incident-shock angle are such that both shocks in the reflection
pattern are non-ideal oblique shocks. We expect this situation to occur whenever the incident shock
is non-ideal and sufficiently weak. A sequence of similar reflections would configure an almost
isentropic compression in the region of thermodynamic states associated with J > 0, leading to an
overall increase of the flow Mach number.
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5.2.2 Irregular reflection

If the strength of the incident shock is large enough, an irregular reflection takes place. This involves
the detachment of both the incident and reflected shock from the surface and the generation of
a third shock, which is the one actually colliding with the reflecting surface. The node where
the three shocks intersect is called the triple point. Henderson & Menikoff (1998) demonstrated
that for a convex EoS (thus, in the classical gasdynamic regime), a sequence of two shocks has a
lower entropy than a single shock to the same final pressure. This implies that a pure three-shock
configurations cannot exist, namely a contact discontinuity is required to sustain the entropy jump
generated by fluid particles crossing either one of the shocks in the three-shock pattern, or the
remaining two. More recently, Serre (2007) presented a proof if the impossibility of triple shock
structures that is based on kinematic arguments only, i.e. independently of any assumption on the
EoS.

In the reference textbook of Ben-Dor (2007), several irregular-reflection patterns are described
theoretically and verified against numerical simulations and experiments. In this work it is
hypothesized that irregular reflections can uniquely occur in the form of Mach reflections (see
below). However, recent studies (Defina et al., 2008; Ivanov et al., 2012; Vasil’ev, 2016) indicate
that additional irregular-reflection configurations can occur in steady flows, namely the von
Neumann reflection, the Guderley reflection and the Vasil’ev reflection. These are recalled in the
following sections.

5.2.2.1 Mach reflection

The Mach-reflection pattern in classical gasdynamics is schematically shown in figure 5.3. It
consists of three shock waves and one slip line, all meeting at the triple point. At this node, one
shock wave is incoming (the incident shock), while the reflected shock (pointing away from the
wall), the Mach stem (pointing towards the wall) and the slip line (between the reflected shock and
the Mach stem) are outgoing.

A Mach reflection involves subsonic flow downstream of the Mach stem, thus the complete
description of the flow field requires that the downstream boundary conditions are properly
accounted for. Nevertheless, if the interest is on the flow field in the close neighbourhood of
the triple point, the three-shock theory by von Neumann (1945) can be used to determine the
reflection pattern. In the three-shock theory, the incoming shock as well as the outgoing waves are
all considered straight (which is a fairly good approximation close to the node). Thus, the analysis
of the pressure-deflection diagram allows us to determine the properties of the outgoing waves,
once the incident-shock properties are known.

In figure 5.3, the left-running wave curve (incident) from state 0 is drawn from the origin,
while the left-running wave curve (reflected) from state 1, which occurs along the incident wave
curve. The pair of outgoing shocks, namely the reflected shock and the Mach stem, are determined
by imposing that their downstream pressures and flow directions (states 2 and 2’, respectively) are
equal, since they are separated by the outgoing slip line. The resulting value of the flow direction
is therefore the slope of the slip line.

In the present example, the reflected wave curve does not intersect the Θ = 0 axis, so that the
Mach reflection is indeed the only admissible reflection pattern. However, it is also possible that
the reflected wave curve intersects both the incident one (Mach reflection) and the Θ = 0 axis
(regular reflection). A dual solution is therefore possible; which solution should be preferred is still
a topic of debate (see, e.g., Ben-Dor, 2007). In experiments and numerical studies on quasi-steady
flows, hysteresis effects have been found to occur (Chpoun et al., 1995; Ivanov et al., 1995, 1998).
Thus, in the dual-solution domain, both the regular and the Mach reflections can be compatible
with the applied boundary conditions. Here we limit the description to cases in which a Mach
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Figure 5.3. Pressure–deflection diagram for the Mach reflection in a polytropic van der Waals gas with
c3/R = 15. Upstream state: s0 = s(0.74Pc ,2.53c ), 30 = 33c , M0 = 2. Sketch of the reflection pattern: I
incident shock, R reflected shock, M Mach stem, C contact discontinuity. Same conventions of figure 5.2.

reflection is admissible from the (PB,Θ)–diagram analysis (thus, even when this occurs in the
dual-solution domain).

In the Mach reflection depicted in figure 5.3, the incident shock produces an increase of the
Mach number. However, because of the large shock angles characterizing the reflected shock and
the Mach stem, it is unlikely that Mach reflections involve non-ideal oblique shocks other than
the incident one. We expect this to be true even if the incident shock angle is quite large, so that
the reflected shock is in fact relatively weak as we are reducing the difference in the pressure
jumps across the incident shock and the Mach stem. In doing so, state 1 would occur in the
neighbourhood of the sonic point along the incident shock polar. In this case, indeed, not only the
incident shock would be Mach number-decreasing, but the smaller Mach number upstream of the
reflected shock would lead to a narrow range of reflected shock angles in which the Mach number
can increase. Computations not shown here seem to confirm this claim.

5.2.2.2 von Neumann reflection

When the opposite-family reflected wave curve intersects neither the Θ = 0 axis nor the incident
wave curve (excluding of course the state ahead of the reflected wave), a solution within the
three-shock theory is still possible and it is known as the von Neumann reflection (Ben-Dor, 2007).
In a von Neumann reflection, see figure 5.4, the reflected shock is of the same family as the incident
shock (and of the Mach stem), therefore it is an incoming wave into the triple point (Viero et al.,
2013). In order that the local pattern at the node be compatible with the global flow, i.e. for the
further incoming shock to originate from the shock reflection, rather than from some specific
upstream boundary conditions (e.g. the same producing the incident shock) which is evidently
not the case here, the reflected shock must be a curved shock with a vertex (at which the front
is normal to the incoming flow) at some distance away from the triple point. From the vertex,
two curved shocks originate: an inner branch, of the same family as the incident shock, which is
oriented towards the triple point, and an outer branch, of the opposite family, directed away from it.
A similar configuration is physically admissible only if the flow downstream of the curved shock
is not supersonic (Vasil’ev et al., 2008; Ivanov et al., 2010).

In the close proximity of the node, the approximation of straight shocks is again reasonable
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and the three-shock theory can be applied, this time, however, considering shock waves of the
same family as the incident one. An exemplary pressure-deflection diagram corresponding to the
three-shock interaction in a von Neumann reflection is shown in figure 5.4.

Remarks similar to those given for the Mach reflection apply to the present case. Even though
the incident wave is a non-ideal oblique shock, the intersection between the incident and reflected
shock curves typically occurs on their strong shock branch (it being understood that the state
downstream of the reflected wave is subsonic or at most sonic). This suggests that von Neumann
reflection patterns that increase the Mach number are unlikely circumstances.

5.2.2.3 Vasil’ev and Guderley reflections

If the reflected wave curves (of both families) cross neither the Θ = 0 axis nor the incident wave
curve, the three-wave theory does not yield any solution. This particular situation is referred to
as the von Neumann paradox. In order to overcome the von Neumann paradox, Guderley (1962)
proposed a four-wave model which has recently been confirmed by theoretical, numerical and
experimental investigations (Vasil’ev & Kraiko, 1999; Tesdall & Hunter, 2002; Skews & Ashworth,
2005; Vasil’ev et al., 2008).

The structure of the four-wave reflection pattern is illustrated in figures 5.5 and 5.6. The
incident and reflected shocks, together with the Mach stem are all of the same wave family,
similarly to the von Neumann reflection. The slope of the reflected shock in the neighbourhood
of the node is such that its downstream flow is uniformly sonic (MB = 1 in region 2). Behind the
reflected shock, a fourth wave is generated, namely an outgoing expansion fan centred at the node
itself (recall that incoming wave fans are disallowed). Because the fan originates in a sonic flow,
the leading acoustic wave of the fan is normal to the flow direction in region 2. The fan terminates
when the same pressure and direction as those behind the stem are attained.

The possible reflection patterns under conditions corresponding to the von Neumann paradox
are the Vasil’ev reflection and the Guderley reflection. In the Vasil’ev reflection, see figure 5.5, the
flow behind the Mach stem is subsonic. On the contrary, in the Guderley reflection (figure 5.6)
the flow downstream of the Mach stem is still supersonic and it is further deflected towards the
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Figure 5.5. Pressure–deflection diagram for the Vasil’ev reflection in a polytropic van der Waals gas with
c3/R = 15. Upstream state: s0 = s(0.74Pc ,2.53c ), 30 = 1.753c , M0 = 1.5. Sketch of the reflection pattern: I
incident shock, R reflected shock, M Mach stem, F rarefaction fan, C contact discontinuity. Same conventions
of figure 5.2.

wall. The Mach stem embedded in a supersonic flow can be regarded as the incident shock in a
new reflection problem, thus generating an additional node with the same structure as the previous
one, as shown in figure 5.6. Under unsteady flow conditions, a cascade of four-wave nodes, joined
by tiny stems, is formed (Vasil’ev et al., 2008; Tesdall et al., 2015). Still it is unclear whether the
sequence is finite or infinite; in the latter case the cascade continues until the flow behind the last
stem is sonic. Conversely, in steady flows, both finite-cascade configurations (Vasil’ev, 2016) and
single-node configurations with a single, weakly curved Mach stem has been observed (Defina
et al., 2008).

With respect to the presence of non-ideal oblique shocks in the reflection pattern, we notice that
the conditions under which Vasil’ev or Guderley reflections can possibly develop are characterized
by the largest incident-shock deflections (in the proximity of the sonic point of the incident shock
polar) among the other types of reflection (see, e.g., the reflection domain computed by Vasil’ev
et al. 2008; Defina et al. 2008). As a result, we do not expect the possibility of non-ideal Mach
number variation across the waves involved in Vasil’ev or Guderley reflections.

5.2.3 Cross node

The collision point between two oblique shocks of opposite families is called a cross-node. If the
strength of the incident shocks is sufficiently small, the flow immediately downstream is supersonic.
Thus the interactions gives rise three outgoing waves, two oblique waves (shock or fan) separated
by a slip line. An outgoing oblique wave can disappear if a transition to subsonic conditions occurs
across one of the incident shocks (degenerate cross-node). It should be noted that, for a perfectly
symmetric incident-shock configuration, the outgoing wave pattern is also symmetric and the
jumps across the slip line vanish. It is evident that the flow configuration in each of the half planes
about the symmetry axis is identical to that of a regular reflection.

The cross-node flow pattern can of course be studied using the (P,Θ)–diagram analysis. A
typical cross-node configuration is shown in figure 5.7. The two incoming shocks produce as
many outgoing shocks with a contact discontinuity in between. By examining the shape of the
wave curves in the (P,Θ)–plane, it is clear that the collision of two weak oblique shocks in a
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cross node can generate outgoing oblique shocks only. Menikoff & Plohr (1989) observed that
an alternative scenario is possible if one of the incoming shock is a strong oblique shock with
supersonic downstream state: the strong shock is reflected as a rarefaction fan.

Non-ideal oblique shocks can be easily observed in cross-node configurations if the upstream
state is properly chosen. This is especially true for small-amplitude incident shocks, as in the
example of figure 5.7, which involves incoming and outgoing non-ideal oblique shocks.
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5.2.4 Overtake node
Two shocks of the same family meet generating an overtake node. This interaction produces a
transmitted shock of the same family as the incident ones, a slip line and a reflected wave of
the opposite family if the flow passing through both incoming shocks remains supersonic. The
reflected wave can be either a shock wave or a rarefaction fan (see also Glimm et al., 1985). These
two possibilities are shown in figures 5.8 and 5.9, respectively.

Examples of overtake node were already encountered in the previous sections as the Guderley
and Vasil’ev reflections are, in all respects, overtake nodes with an outgoing shock and an outgoing
fan separated by a slip line, whereas the von Neumann reflection pattern is a degenerate overtake-
node with a single outgoing shock in addition to the slip line.

With reference to figures 5.8 and 5.9, we notice that in general the reflected rarefaction wave
is generated for incident shocks of relatively large amplitude. This, in turn, is likely to preclude
the possibility of outgoing non-ideal oblique shocks in the overtake-node pattern (see figure 5.9).
Conversely, with incident shocks that are sufficiently weak and of the non-ideal type (as in the
exemplary configuration of figure 5.8), overtake nodes with outgoing non-ideal oblique shocks can
be obtained.

5.3 Non-classical shock reflections and interactions

Maintaining the same structure of the previous section, shock reflections and interactions in the
non-classical gasdynamic regime of BZT fluids are investigated using the polytropic van der Waals
model with dimensionless isochoric specific heat set to c3/R = 57.69. Several combinations of
incoming shocks and outgoing waves at a node are expected due to the fact that the incoming
shocks can be not only pressure-increasing but also pressure-decreasing, and that the outgoing
waves can be shocks, fans or composite waves, both compressive and expansive. In order to
account for the wider variety of outgoing waves, a two-wave theory and a three-wave theory —
non-classical counterparts of the two-shock and three-shock theories — are introduced. Moreover,
the four-wave model of the Guderley and Vasil’ev reflections is adapted to the non-classical context.
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Differently from the previous section, the focus here is on the structure of the shock reflection or
interaction, namely on the possible types of wave expected at the node.

5.3.1 Regular reflection

In a regular reflection, the reflected wave is required to produce a flow deflection which is opposite
in direction and equal in magnitude, with respect to that of the incident shock. From the arguments
of 4.5.2, it follows that the reflected wave is of the same compression/rarefaction type as the
incident shock. The aim of this section is to show that in the non-classical gasdynamic regime,
a number of regular-reflection configurations exist in which the reflected wave is not an oblique
shock, rather a wave fan or a composite wave. The two-wave theory presented below to model the
reflection of oblique shocks in non-classical gasdynamics can be regarded as an extension of the
classical two-shock theory.

A first example of the new scenarios is depicted in figure 5.10. According to the nomenclature
defined in table 4.3, the incident wave curve is of type N1. Here we focus on the first branch of
oblique shock waves (approximately up to 12◦). Various reflected wave curves are plotted; these
correspond to different incident-shock conditions which are now examined. For the oblique shocks
of smallest pressure jump, the reflected wave curve is qualitatively similar to the incident one, and
the Θ = 0 axis is crossed on the reflected oblique-shock branch (case a in figure 5.10). Thus, the
shock-reflection pattern is qualitatively similar to the classical one.

However, as the deflection angle of the incident shock is increased, the reflected wave curve
crosses the Θ = 0 axis at its composite shock/fan branch. This implies that the reflection of the
incident oblique shock is accomplished by a composite shock/fan wave, see case b of figure 5.10.
It is also possible, by further increasing the incident shock strength, that the flow deflection needed
to return the flow parallel to the wall is provided by a composite shock/fan/shock wave, see case c
in figure 5.10.

The reflected wave curve can also change its configuration. In figure 5.10, this transition occurs
for the largest values of the incident-shock strength, as the flow state downstream of the incident
shock lies within the negative-Γ region. Thus, the configuration of the compression branch of
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Figure 5.10. Pressure–deflection diagram for the regular reflection in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the reflection pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
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Figure 5.11. Pressure–deflection diagram for the regular reflection in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the reflection pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 2.33c , M0 = 1.5. Legend: shock, shock/fan, shock/fan/shock, fan, fan/shock,
• downstream sonic point.

the wave curve changes from the type N1 to N3. The reflected wave curves exhibiting the N3
configuration, however, cross the Θ = 0 in figure 5.10 at the oblique shock branch, thus resulting
in a classical oblique-shock reflection.

An additional example is shown in figure 5.11. In this case, patterns in which the incident
shock reflects as a compressive Prandtl-Meyer fan (case c) or as a composite fan/shock wave (case
d) are in fact observed.

In the non-classical gasdynamic regime of a BZT-fluid flow, rarefaction shock waves are also
admissible. Possible reflection patterns for an incident rarefaction shock are shown in figure
5.12. The incident wave curve is of the type N3. As previously noted for the case of incident
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Figure 5.12. Pressure–deflection diagram for the regular reflection in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the reflection pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
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compression shocks, the reflected wave curve can intersect the Θ = 0 axis at different branches,
in addition to change it’s qualitative configuration because of the pressure and entropy jump (at
constant total enthalpy). In figure 5.12, the incident rarefaction shock is seen to reflect as another
rarefaction shock (case a), as a rarefaction shock/fan composite waves (case b) or also as a pure
rarefaction fan (case c).

5.3.2 Irregular reflection
As in the classical gasdynamic regime, regular reflections in non-classical gasdynamic turn into
irregular reflections as the strength of the incident shock is increased. It is important to notice that
Serre’s proof of the impossibility of triple shock structures (Serre, 2007) is completely general
and thus applies to the non-classical framework. Irregular reflection patterns similar to those
encountered in §5.2.2 are investigated, with a special attention to the presence of wave fans or
composite waves whereby the classical theory predicts oblique shocks.

5.3.2.1 Mach reflection

In the following examples we show how the Mach-reflection pattern emerging in the classical
gasdynamic context can change due to the appearance of non-classical waves. In doing so we
introduce a three-wave theory, extension of the classical three-shock theory, to model Mach
reflections in the non-classical gasdynamic context.

Figure 5.13 shows selected Mach-reflection configurations in which the reflected wave is no
longer an oblique shock. Case a1 represents a Mach reflection in which the reflected wave is
a composite shock/fan/shock wave. Note that the (PB,Θ)–diagram of the present configuration
indicates a dual solution (a1 Mach reflection, a2 regular reflection). In case b of figure 5.13, a
shock/fan composite wave originates at the triple point in order to accomplish the incident-shock
reflection. A reflected fan/shock wave can also occur in a Mach reflection, as shown in figure 5.14.

On the basis of numerical evidence, it appears that Mach-reflection patterns are not possible
for incident rarefaction shocks, at least with the current thermodynamic model. Within the range
of the parameters corresponding to an incident rarefaction shock, the reflected wave curve is seen
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Figure 5.13. Pressure–deflection diagram for the Mach reflection in a polytropic van der Waals gas with
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Figure 5.14. Pressure–deflection diagram for the Mach reflection in a polytropic van der Waals gas with
c3/R = 57.69 and simplified sketches of the reflection pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 3.623c , M0 = 1.26. Legend: shock, shock/fan, shock/fan/shock, fan,
fan/shock, • downstream sonic point.

to either cross the Θ = 0 axis (as shown, e.g., in figure 5.12) or to not cross the incident wave curve
at all. The latter situation is sketched in figure 5.15 (left).

The lack of Mach-reflection configurations for incident rarefaction shocks is possibly connected
to the following fact. Let state 0 and state 1 indicate the flow states upstream and downstream of
the incident shock, respectively. The mass balance across the shock then reads

ρ0u0 sin βs = ρ1u1 sin(βs −Θ). (5.1)

The quantity ρ0u0 is the mass flux for an incident normal shock (point N0 in figure 5.15). The mass-
flux value ρ1u1, instead, is associated with the maximum pressure decrease along the reflected
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wave curve (namely, the normal shock from state 1, point N1). A compression shock deviates
the flow towards the front itself (| βs − Θ | < | βs |), whereas a rarefaction shock away from it
(| βs −Θ | > | βs |). Thus we obtain that ρ1u1 < ρ0u0 for an incident rarefaction shock.

Now consider the construction of figure 5.15 (right). The quantity ρu is strictly related to the
slope of the chord between the pre-shock and the post-shock states (which is given by −ρ2u2).
The shock adiabat from state 1, for 3 > 31, is located below the shock adiabat from state 0 (see
Kluwick, 2001). Combining these two results, we obtain that the pressure at point N1 is larger than
the pressure at N0. This condition is necessary, but not sufficient, for the non-existence of Mach
reflections of rarefaction shocks, for the pressure value at N1 should be larger than the pressure
at point 2, the strong oblique shock with the same flow deflection as point 1. Nevertheless, the
present finding explains the observed rarefaction-shock configurations in the polar diagram (in
clear contrast with compression waves) and may arguably suggest a possible mechanism by which
Mach reflections would not occur for incident rarefaction shocks.

5.3.2.2 von Neumann reflection

Our polar-diagram analysis suggests that von Neumann reflections of incident rarefaction shocks
do not occur (just like Mach reflections), as the incident and the reflected wave curves do not
intersect at all. In other words, together with the result of the previous section, triple-point patterns
with three rarefactions waves appear to be disallowed.

Limiting to incident compression shocks for which von Neumann reflections are possible, the
question can be raised if intersections between the incident and the reflected wave curves exist
such that reflected wave is not an oblique shock, as a result of non-classical phenomena. Our
numerical study indicates that this kind of non-classical von Neumann reflection does not occur.
Note, however, that even if a similar configuration would be mathematically admissible, it should
be disregarded for the following reason. In addition to being geometrically irregular (in the above
sense), the extra incoming wave, namely a pure wave fan or a composite wave, would imply
supersonic flow within or downstream of the wave itself, thus it would require the presence of a
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Figure 5.16. Pressure–deflection diagram for the Guderley reflection in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the reflection pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 1.13c , M0 = 1.15. Legend: shock, fan, fan/shock, • downstream sonic point.

suitable upstream boundary condition that can generate and maintain the wave, which is apparently
not the case here.

5.3.2.3 Vasil’ev and Guderley reflections

By the same arguments of the previous section, we exclude the case of incoming fans from our
discussion. It is possible, in principle, that the additional outgoing wave (F in figures 5.5 and
5.6) is not a pure fan, but rather a shock wave or a composite wave. However, after an extensive
research in the parameter space of the incident shock, non-classical Guderley or Vasil’ev reflection
patterns with outgoing composite waves were not found to occur.

It is remarkable that in the case of incident rarefaction shocks, the Guderley reflection appears
to be the only alternative to the regular reflection, see figure 5.16. Our analysis indicates that the
sonic points on the incident and reflected shock polars occur approximately at the same pressure,
so that the additional wave curve drawn from the sonic point of the reflected curve intersects the
incident curve along its supersonic branch, yielding a Guderley pattern. Note that each acoustic
wave involved in the flow pattern at the node of a rarefaction Guderley reflection carries an opposite
pressure jump with respect to its classical counterpart, namely each oblique shock is rarefactive
rather than compressive and the additional wave fan is compressive rather than rarefactive.

5.3.3 Cross node
Some of the most relevant configurations of non-degenerate cross nodes in the non-classical
gasdynamic regime are shown below. Figure 5.17 illustrates possible scenarios corresponding
to incident compression shocks. The “network” of wave curves shown in figure 5.17 is obtained
in the following way. First the left-running and right-running incident curves are drawn. For
each of these curves, at specified incident-shock conditions (e.g., deflection angles) we plot the
opposite-family wave curve from the corresponding downstream states. It is therefore possible to
analyse several cross-node patterns originating from a given upstream flow state.

We first note, by examining the general shape of the wave curves, that only compression waves
can be generated at the node with incident compression shocks (unless one of the incident shocks
is a strong shock with supersonic downstream state).
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Figure 5.17. Pressure–deflection diagram for the cross-node interaction in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the cross-node pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 4.03c , M0 = 1.5. Legend: shock, shock/fan, shock/fan/shock, fan, fan/shock,
• downstream sonic point.

Case a yields the qualitative pattern found in classical gasdynamics. Cases b and c are non-
classical examples in which the outgoing waves are composite waves of the same kind. This
occurs when the flow deflection (or the pressure jump) across the incident shocks is similar (in this
sense, the resulting pattern, on each side of the slip line, resembles that of a regular reflection with
similar incident-shock conditions). In a wide range of incident-shock conditions, the two outgoing
acoustic wave can be of different types. In case d, for instance, one oblique shock and one fan
are generated. Case e corresponds to a combination of compression fan and composite shock/fan
wave and finally, for case f , a fan/shock wave together with a shock/fan/shock wave are observed.

In the non-classical framework, it is also possible that a pair of oblique rarefaction shocks
interact forming a cross-node. Exemplary scenarios are shown in the example of figure 5.18. From
the polar-diagram analysis it appears that only rarefaction waves can be generated at the node
with incident rarefaction shocks. Configurations that are symmetrical, in terms of outgoing wave
types, are those labelled a, b and c; these correspond to couples of outgoing rarefaction shocks,
shock/fan waves and fans, respectively. Further possible configurations of the outgoing waves are
the rarefaction shock–shock/fan (d), the shock–fan (e) and the fan–shock/fan ( f ) combinations.

The last cross-node scenario is that of a compression shock interacting with a rarefaction
shock, see figure 5.19. By examining the shape of the wave curves, it is seen that the fluid
particles passing though the incident compression shock must successively go through a rarefaction
wave; the opposite holds if the incident rarefaction shock is crossed. With reference to figure
5.19, possible combinations of outgoing waves at the cross node are (each couple is of the form
rarefaction wave–compression wave): fan/shock–fan (a), shock–fan (b), fan/shock–shock/fan (c),
shock–shock/fan (d), fan/shock–shock (e), shock–shock ( f ).

5.3.4 Overtake node

In the classical gasdynamic context, an overtake-node formed by two incoming compression shocks
can give rise to either two outgoing shock waves or to an oblique shock and a Prandtl-Meyer fan.
In theory, in the non-classical framework many different outcomes can be expected, owing to the
comparatively higher degree of freedom in the choice of the incoming waves curves. In practice,
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Figure 5.18. Pressure–deflection diagram for the cross-node interaction in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the cross-node pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 1.13c , M0 = 1.5. Legend: shock, shock/fan, shock/fan/shock, fan, fan/shock,
• downstream sonic point.
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Figure 5.19. Pressure–deflection diagram for the cross-node interaction in a polytropic van der Waals gas
with c3/R = 57.69 and simplified sketches of the cross-node pattern. Upstream state: s0 = s(0.74Pc ,2.53c ),
30 = 1.13c , M0 = 1.5. Legend: shock, shock/fan, shock/fan/shock, fan, fan/shock,

fan/shock/fan, • downstream sonic point.

however, the requirement that the two incoming shocks are of the same wave family (in contrast to
the cross-node) is seen to significantly decrease the possible outgoing-wave patterns.

Our investigation in the parameter space of the upstream state (ahead of the forerunner shock)
and flow deflections across the two incoming shocks yielded the following combinations of
outgoing oblique waves: two oblique shocks (transmitted and reflected), a transmitted oblique
shock along with a reflected a Prandtl-Meyer fan, two Prandtl-Meyer fans (transmitted and
reflected). Apart from the latter configuration, the admissible scenarios (in term of wave structure,
without considering the pressure variation) coincide with the classical ones. Of course a new
feature is the possibility of considering rarefaction shocks in the overtake-node configuration.
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Figure 5.20. Pressure–deflection diagram for the overtake-node interaction in a polytropic van der
Waals gas with c3/R = 57.69 and simplified sketches of the overtake-node pattern. Upstream state: s0 =

s(0.74Pc ,2.53c ), 30 = 1.053c , M0 = 1.4. Legend: shock, shock/fan, shock/fan/shock,
fan, fan/shock, • downstream sonic point.

Figure 5.20 shows an exemplary pressure-deflection diagram corresponding to the overtake of two
rarefaction shocks. Case a features a transmitted rarefaction shock and a reflected compression
fan, whereas case b both outgoing oblique waves are rarefaction shocks. In this sense, the two
configurations just described are the opposite, in terms of pressure variation across the oblique
waves, of the classical overtake-node configurations.

The transmitted wave need not necessarily be of the same compression/rarefaction type as the
forerunner shock. This situation is depicted in figure 5.21, where a compression shock (forerunner)
overtakes a rarefaction shock. The overall deflection across the incident shocks is chosen such that
the outgoing waves are rarefaction fans.

We did not determine theoretically whether it is possible that two shocks overtake form-
ing an outgoing composite wave, but based on the polar-diagram analysis it appears that these
configurations are not possible.

5.4 Concluding remarks

Steady shock reflections and interactions in the non-ideal gasdynamic regime were investigated,
focusing on the inviscid flow pattern about the point of intersection of oblique waves. The local
solution in the neighbourhood of the node is constant along each ray emanating from the node
itself, namely it exhibits no length scale. In other words, about the node a set of uniform states
is separated by centred oblique waves or slip lines. The configurations analysed include all sort
of steady shock reflections (regular, Mach, von Neumann, Guderley, Vasil’ev) and two primary
shock-interaction patterns, namely the cross node and overtake node (both in their non-degenerate
form). The presented results complement, to a certain extent, the theoretical framework established
in §4 and together provide a more accurate description of confined flows, where oblique shocks
generated by ramps interact with each other or with an opposing solid wall.

Shock reflection and interactions in the classical and non-classical gasdynamic regime were
treated separately. In the classical case, for which the theory is well-established, the attention was
drawn to the occurrence of non-ideal oblique shocks in the reflection or interaction pattern. It
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Figure 5.21. Pressure–deflection diagram for the overtake-node interaction in a polytropic van der
Waals gas with c3/R = 57.69 and simplified sketches of the overtake-node pattern. Upstream state: s0 =

s(0.74Pc ,2.53c ), 30 = 23c , M0 = 1.5. Legend: shock, shock/fan, shock/fan/shock,
fan, fan/shock, • downstream sonic point.

was shown that flow fields that locally involve only non-ideal oblique shocks, and thus provide an
overall increase of the flow Mach number, are possible in the case of regular reflection, cross node
or overtake node. Other configurations seemed to preclude this possibility based on the fact that
they involve shock waves characterized by large flow deflections.

In the non-classical gasdynamic regime, the primary interest was on the structure of the
shock reflection or interaction at the node. The admissibility of pressure-decreasing shocks,
pressure-increasing Prandtl-Meyer fans and of composite waves (either compressive or rarefactive)
suggested the existence of a variety of wave-interaction patterns that has no counterpart in the
classical gasdynamic regime. An overview of the possible outcomes was given. For a wide range
of incident-shock conditions, the regular reflection of compression as well as rarefaction shocks
was shown to the achieved by means of reflected wave fans or composite waves. Similarly, in the
Mach reflection of compression shocks, the necessary matching of the pressure and flow direction
across the outgoing slip line may require a reflected composite wave. For example, conditions
were reported under which an oblique shock reflects as a centred fan or shock/fan wave (regular
reflection) or also as fan/shock or shock/fan/shock wave (both regular and Mach reflections).

In analogy with the two-shock and three-shock theories by von Neumann, the theories describ-
ing these non-classical flow patterns were named as two-wave and three-wave theories, respectively.
Four-wave patterns (Guderey or Vasil’ev reflections) were also considered, but in this case no
composite wave was found to occur, so that the non-classical theory is formally identical to the
classical one if one replaces compression waves with rarefaction waves and vice versa.

Our investigation pointed out an asymmetry between the reflection of compression and rarefac-
tion shocks (in contrast with the transonic theory, see recent results by Kluwick & Cox 2018b).
Firstly, it appears that Mach reflections are not possible when the incident shock is pressure-
decreasing. As a partial explanation of the observed configurations, it was demonstrated that
the pressure jump across two successive rarefaction shocks cannot exceed the pressure jump
corresponding to the normal rarefaction shock from the same initial state. The present suggestion
may be of help in the proof or disproof of the existence of Mach reflections for incident rarefac-
tion shocks. More in general, triple-point patterns containing three rarefaction waves were not
observed, as the reflected wave curves do not intersect the incident one in the pressure-deflection
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Figure 5.22. Pressure–deflection diagram for the Mach reflection in a polytropic van der Waals gas with
c3/R = 57.69. Upstream state: s0 = s(0.74Pc ,2.53c ), 30 = 3.53c , M0 = 1.221. Legend: shock,
shock/fan, shock/fan/shock, fan, • downstream sonic point.

plane (i.e., von Neumann reflections of rarefaction shocks are not possible as well). As a result,
four-wave reflections appear then to be the only alternative to the regular reflection of rarefaction
shocks. Numerical analysis indicates that only Guderley reflections occur as the sonic points on
the incident and reflected wave curves have approximately the same pressure. This contrasts with
the compression-shock case, where both Guderley and Vasil’ev reflections are possible. The flow
pattern in a rarefaction Guderley reflection is qualitatively similar to the one observed in ideal
gases, except that each wave carries an opposite pressure jump.

In the shock-interaction framework, a wide variety of non-classical cross-node patterns was
described, as representative of the possible scenarios for the interaction of a pair of compression
shocks, a pair of rarefaction shocks and one compression along with a rarefaction shock. For the
overtake-node configuration, our analysis revealed a restricted amount of possible patterns, none
of which include composite waves.

Some remarks concerning the presented results are as follows:

(i) this work is intended to provide an overview of the theory of shock reflections and interactions
in non-ideal flows, in particular on the modifications to the classical theory that follow from
the appearance of non-classical waves. This justifies the choice of presenting selected wave
patterns, rather than performing a rigorous analysis on each of the admissible configurations.

(ii) The outgoing-wave configurations presented in this work are a subset of those realizable
at a sharp trailing edge (e.g. of an airfoil or turbine blade) where two different supersonic
streams interact. When the thermodynamic and kinematic state of two streams can be inde-
pendently chosen, there is no constraint on the configuration of the outgoing waves. Thus, in
principle, every combination among the ten possible types of acoustic wave (compression or
rarefaction shock, fan, shock/fan and fan/shock, compression shock/fan/shock and rarefaction
fan/shock/fan) can be generated.

(iii) Results were obtained using the van der Waals model with non-dimensional isochoric specific
heat set to c3/R = 15 for the classical regime and to c3/R = 57.69 for the non-classical one.
The analysis of §4 confirms, on the one hand, that non-ideal oblique shocks may occur in
fluids exhibiting Γ < 1 following the same mechanism and, on the other hand, that fluids
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exhibiting a negative-Γ region in the vapour phase display the same qualitative behaviour in
terms of wave-curve configurations, regardless of the specific choice of the thermodynamic
model. Thus, we believe that the present findings have a more general validity and that
the same results, namely the same intersections of wave curves in the pressure-deflection
diagram, can be reproduced by diverse thermodynamic models (in particular reference EoS
in Span-Wagner form).

(iv) Wave curves in the (PB,Θ)–plane are bounded and non-monotonic, therefore they may have
multiple intersections or no intersection at all. In the context of shock reflections, the case of
no intersections between the incident and the reflected wave curves leads to Guderley/Vasil’ev
patterns, in which the reflected wave, in the neighbourhood of the node, is in fact an incoming
shock with sonic downstream state and an additional wave fan is present. The problem of
multiple intersections is well-known in classical gasdynamics and it is further amplified by
non-classical effects. If the wave curve branch is bounded and it intersects the Θ = 0 axis,
then at least two intersections are possible. A subsonic regular reflection is unstable to small
perturbations (Teshukov, 1989). However, it is possible that multiple supersonic intersections
occur, as the sonic point can occur at higher pressures than the detachment point (see, e.g.,
the incident wave curve in figure 5.13). Some of these patterns may not be admissible as the
reflected wave includes oblique shocks that would be unstable to transverse perturbations
of the their front (Fowles, 1981; Henderson & Menikoff, 1998). Another example of non-
uniqueness is when the wave curves intersect yielding both a regular reflection and a Mach
reflection (see, e.g., cases a1 and a2 in figure 5.13). In classical gasdynamics, experiments
indicate that hysteresis can occur in this dual-solution domain (see, e.g., Ivanov et al., 1995).
In the non-classical gasdynamic framework, because of the peculiar shape of the wave curves,
it is also possible to observe two distinguished Mach-intersections, as shown in figure 5.22.
The problem of multiple intersections may be resolved by considering the local stability of
the solution and the global boundary conditions.
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CHAPTER6
APPLICATION: FLOW THROUGH

ORC TURBINE VANES

This chapter presents a realistic application case of the theory of non-ideal supersonic flows
developed in this thesis. Turbine cascades of high-temperature Organic Rankine Cycle power
systems, which at present adopt moderately complex (non-BZT) working fluids, operate close to
the saturation curve and critical point, where it is possible that Γ < 1. Potential advantages and
drawbacks of turbine blades designed for operating conditions featuring a non-monotonic variation
of the Mach number through the expansion process and non-ideal oblique waves downstream of
the trailing edge are discussed. In contrast to ideal-gas flows, for a given pressure ratio across
the cascade, the flow field and the turbine performance are found to be highly dependent on the
thermodynamic state at the turbine inlet, in both design and off-design conditions. A potentially
advantageous design is proposed, which is characterised by stationary points of the Mach number
at the blade trailing edge, thus inducing a nearly uniform outlet Mach number distribution in the
stator-rotor gap with a low sensitivity to slight variations in the outlet pressure.
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supersonic turbine cascades. Submitted to: J. Fluid Mech.

123



Chapter 6. Application: flow through ORC turbine vanes

6.1 Introduction and theoretical background

In power system exploiting low-to-moderate temperature sources, the choice of complex organic
fluids allows for an optimal design of the turbine and a better match of temperature profiles
between the hot source and the corresponding cycle heating (Colonna et al., 2015; Macchi &
Astolfi, 2016; Meroni et al., 2018). At present, the majority of ORC plants feature cycles with
relatively mild maximum pressures and temperatures (subcritical cycles). In these conditions,
even if the expansion through the turbine may partly occur in the non-ideal gasdynamic regime,
non-ideal effects are, in fact, not observed (Hoffren et al., 2002; Persico, 2017). Due to the
combination of high expansion ratio and low enthalpy drop, ORC turbines are usually composed
by a few supersonic or transonic blade rows, with the first-stage nozzle cascade carrying the largest
pressure ratio and severe supersonic flow regime.

The typical flow field related to the expansion through the first stator of an ORC system is
shown in figure 6.1. The blade is characterized by a large leading-edge region that acts as a
converging section upstream of the section with minimum cross-sectional area (throat) and a
diverging section downstream of the throat. The curved shape of the rear suction side imposes
to the flow a significant unguided turning. The expansion corresponding to this turning process
results in a severe over-speed, which ultimately generates a compression wave on the rear suction
side of the blade, where the fish-tail shock originated at the trailing edge of the adjacent blade
impinges. The two compression waves coalesce in a single strong shock at almost half axial chord
downstream of the trailing edge generating a strong azimuthal pressure gradient, which results in
massive entropy production.

Several studies (Schuster et al., 2010; Lai et al., 2011) indicate that a potential gain in efficiency
may be achieved by employing high-temperature ORCs, in particular supercritical cycles. Within
this framework, the occurrence of non-ideal effects cannot be excluded. An example can be found
in the work of Colonna et al. (2008b), where some numerical simulations display a non-monotonic
Mach number in the blade channel. This result, however, was not commented in light of its
potential influence on the aerodynamic performance of the cascade. Whether non-ideal effects in
the expansion process can affect the turbine performance and design is still unclear.

The present study contributes to the understanding of non-ideal flows evolving in supersonic
nozzle cascades, by showing the role of non-ideal effects in the turbine performance and discussing
their design implications. To this end, exemplary flows of siloxane MM (hexamethyldisiloxane,
C6H18OSi2) in nozzle cascades are considered and compared. MM is a molecularly complex fluid
currently employed in ORC power plants (Colonna et al., 2015). The results are shown to be
of general validity and thus may be extended to most fluids relevant to ORC field. In the cases
analysed here, the nozzle operates in the non-ideal gasdynamic regime. However, depending on
the upstream stagnation conditions, two very different operating regimes can be established: one
mirrors the ideal-gas scenario and is obtained with relatively dilute conditions at the cascade inlet;
the other one, obtained for high-pressure inlet conditions, is characterised by non-ideal effects.
For both operating regimes, a parametric study in which the boundary conditions of the turbine
cascade are changed is performed with the aim of assessing the off-design behaviour.

The existence of two distinguished operating regimes of the nozzle cascade can be anticipated
from the theoretical studies presented in chapters §3-§5. We offer a brief summary of the main
results pertaining to expanding flows through a turbine cascade. These results are presented
here in the form of parametric studies covering the theories of quasi-one-dimensional flows and
oblique waves (Prandtl-Meyer waves and oblique shock waves); the thermodynamic location of
the selected states is illustrated in the (T, s) and (P,3) diagrams reported in figure 6.2. The fluid
considered throughout this chapter, namely the siloxane MM, is modelled using the state-of-the-art
multi-parameter equation of state formulated by Thol et al. (2016).
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(a) (b)

Figure 6.1. Pressure field (a) and Mach number field (b) for the expansion of fluid MM (thermodynamic
model from the REFPROP library) in a representative turbine cascade. The upstream stagnation pressure and
temperature are Pt

0 = 8 bar and T t
0 = 272 ◦C, respectively. The outlet static pressure is P1 = 1.08 bar. Details

on the numerical simulation in §6.2.1.
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Figure 6.2. Thermodynamic diagrams for MM (properties from the REFPROP library) showing the states
used in the parametric studies: � stagnation conditions for isentropic nozzle flows in figures 6.3(a) and 6.4(a);
 stagnation conditions for isentropic nozzle flows in figures 6.3(b) and 6.4(b); � upstream thermodynamic
state for Prandtl-Mayer waves of figure 6.5(a) and for oblique shock waves of figure 6.6(a); # upstream
thermodynamic state for Prandtl-Mayer waves of figure 6.5(b) and for oblique shock waves of figure 6.6(b).
Dotted lines (· · · ) represent different isobars (left figure) or isotherms (right figure). Dash-dotted lines (· − ·)
identify Γ = 1; shaded area Γ < 1.

Steady quasi-one-dimensional flow (see §3) is recalled as representative of the expansion
process through a variable-area duct (inviscid and with constant total enthalpy). Figure 6.3 shows
the distribution of the Mach number for different stagnation conditions chosen along the same
isobaric line, which is Pt = 0.5 Pc in figure 6.3(a) and Pt = 2 Pc in figure 6.3(b), where Pt is the
stagnation pressure and Pc is the critical pressure. Despite Γ < 1 at the selected stagnation states,
at relatively low stagnation pressures and high temperatures (figure 6.3(a)), most of the expansion
occurs in dilute-gas conditions. Thus, the distributions of the Mach number are qualitatively
identical and also quantitatively very similar to those computed form the ideal-gas model, which
depend on the pressure ratio P/Pt only. The ideal-gas limit curves hereafter are all obtained by
setting γ = cp,∞(Tc )/c3,∞(Tc ), where cp,∞ and c3,∞ are the specific heats in the ideal-gas limit
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Figure 6.3. Mach number distribution for quasi-one-dimensional flow of fluid MM with stagnation pressure
(a) Pt = 0.5 Pc and (b) Pt = 2 Pc ; each solid line corresponds to a different value of the stagnation
temperature T t (thermodynamic properties from REFPROP), while dotted lines are obtained from the
ideal-gas model of MM.

and Tc is the critical temperature. Using the nomenclature established in §3, the isentropic pattern
of each stagnation state in figure 6.3(a) is S I.

The effects of the non-ideal thermodynamic behaviour of the fluid can be appreciated by
selecting thermodynamic states in the proximity of the critical point or in the supercritical region.
The scenario observed in figure 6.3(b), representative of the flow evolution in the non-ideal
gasdynamic regime, involves not only a marked quantitative difference with respect to its ideal-
gas counterpart, but also important qualitative differences. At the selected stagnation pressure
(Pt = 2 Pc ), isentropic expansion from near-to-critical isentropes may exhibit extrema in the Mach
number, i.e. isentropic pattern S NI (see case T t = 1.05 Tc). For such high-density stagnation
states, a noticeable departure from the ideal-gas trend is observed also for isentropic expansions of
type S I.

Figure 6.4 reports the distribution of the area ratio A/A∗, where A∗ is the critical area (at which
M = 1), for different stagnation conditions chosen along the same isobaric lines as above, namely
Pt = 0.5 Pc in figure 6.4(a) and Pt = 2Pc in figure 6.4(b). In both cases, the distribution of the
area ratio is qualitatively similar to that of the ideal-gas limit. However, significant quantitative
differences are seen in the exemplary non-ideal case depicted in figure 6.4(b). As an example,
expansion from stagnation conditions up to A/A∗ = 2 corresponds to an expansion ratio β =

Pt/P = 2.76 from T t = 1.05 Tc and to β = 6.78 in the ideal-gas limit (T t → ∞ at fixed Pt ). This
should be compared to the case Pt = 0.5 Pc , for which the same area ratio A/A∗ = 2 corresponds
to β = 6.15 from T t = 1.05 Tc . An alternative interpretation is connected with the design of
the diverging portion of a nozzle aimed at realizing a given exit pressure ratio. The same exit
pressure ratio is attained with a considerably larger exit-to-throat area ratio if expanding from high
stagnation-pressure states, thus involving severe non-ideal gasdynamic effects.

Next, oblique waves are examined, as representative of the turning processes of a supersonic
stream that can possibly occur at the trailing-edge of the turbine blades and in the rear blade
section. Figure 6.5(a) reports the downstream Mach number against the flow deflection angle
ϑ across Prandtl-Meyer waves, computed for a fixed upstream pressure PA = 0.1 Pc and Mach
number MA = 2, and different values of the upstream temperature TA. At the selected upstream
states, ΓA = 0.96 ÷ 0.98. In this range, the impact of non-ideal conditions is small enough that
the actual features of Pradtl-Meyer waves are qualitatively similar to those computed from the
ideal-gas model, despite a slight quantitative difference is still observed. Note, also, that Prandtl-
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Figure 6.4. Area ratio distribution for quasi-one-dimensional flow of fluid MM with stagnation pressure (a)
Pt = 0.5 Pc and (b) Pt = 2 Pc ; each solid line corresponds to a different value of the stagnation temperature
T t (thermodynamic properties from REFPROP), while dotted lines are obtained from the ideal-gas model of
MM.
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Figure 6.5. Variation of the Mach number with the wave deflection angle across Prandtl-Meyer waves in
fluid MM with upstream Mach number MA = 2 and pressure (a) PA = 0.1 Pc and (b) PA = 0.8 Pc , each
solid line corresponds to a different value of the upstream temperature TA (thermodynamic properties from
REFPROP), while dotted lines are obtained from the ideal-gas model of MM.

Meyer waves are expansion waves and therefore the process drives the flow towards more dilute
thermodynamic conditions. The non-ideal turning of a supersonic stream across Prandtl-Meyer
waves is depicted in figure 6.5(b), which is obtained by setting the state upstream of the wave to
PA = 0.8 Pc and MA = 2, while different values of TA are considered. Remarkable quantitative
and qualitative differences can be observed, most importantly the possibility that the Mach number
decreases across the rarefaction wave, which is in contrast with the ideal-gas behaviour. For later
convenience, Prandtl-Meyer waves featuring a decrease of the Mach number are referred to as
non-ideal Prandtl-Meyer waves. As discussed in §4.4.1, the non-monotonic variation of the Mach
number within Prandtl-Meyer waves stems from thermodynamic states satisfying J > 0 during the
expansion (see also Cramer & Crickenberger 1992).

An analogous study is performed for oblique shock waves, see figure 6.6. Figures 6.6(a) and
6.6(b) are generated using the same upstream states of figures 6.5(a) and 6.5(b), respectively.
Although the compression across the shock may bring the flow towards more dense and therefore
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Figure 6.6. Variation of the Mach number with the wave deflection angle across oblique shock waves in
fluid MM with upstream Mach number MA = 2 and pressure (a) PA = 0.1 Pc and (b) PA = 0.8 Pc ; each
solid line corresponds to a different value of the upstream temperature TA (thermodynamic properties from
REFPROP), while dotted lines are obtained from the ideal-gas model of MM.

non-ideal thermodynamic conditions, at relatively low upstream pressures such as figure 6.6(a),
non-ideal effects are in fact not observed, except at the quantitative level and to a limited extent.
On the contrary, in figure 6.6(b) it is possible to observe shock curves encompassing non-ideal
oblique shocks (see §4.4.2) that feature an increase of the flow Mach number. This phenomenon
is the compression (and discontinuous) counterpart of the decrease of the Mach number in the
non-ideal Prandtl-Meyer waves depicted in figure 6.5(b).

In the subsequent section, numerical simulations of supersonic nozzle cascades are presented.
The core of the present chapter is the analysis presented in §6.2.4 and §6.2.5 for each operating
regime occurring in the nozzle cascade.

6.2 Gasdynamics of nozzle cascades in the non-ideal regime

In this section, the flow field within a linear nozzle cascade operating in the non-ideal gasdynamic
regime is examined by means of numerical simulations. The computational flow solver is described
in §6.2.1. The blade configurations used in this study are presented in §6.2.2 and the grid-
convergence assessment in §6.2.3. Expansion through states featuring Γ < 1 can possibly present
very different behaviours, according to the occurrence of diverse non-ideal effects. Three exemplary
operating conditions (each consisting of a design point and selected off-design cases) are presented
in §6.2.4 and §6.2.5 to illustrate the larger variability and diversity of the flow evolution offered by
the non-ideal thermodynamics.

6.2.1 Computational flow model

Numerical simulations are carried out with ANSYS-CFX 18.1®. Stagnation pressure and temper-
ature (Pt

0, T t
0 ) are set as inlet boundary conditions. Axial flow is prescribed at the inlet. At the

outlet, an average static pressure P1 is imposed. Local pressure differences of 5% are allowed at
the exit. Moreover, the outlet domain is placed at four axial chords downstream of the trailing
edge to avoid spurious pressure wave reflections. Since only blade-to-blade effects are of interest,
quasi-three-dimensional simulations are carried out by considering a straight stream-tube around
the midspan. The employed turbulence model is k − ω SST, whose boundary conditions are set
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as Turbulence Intensity (T I = 5% for all simulations) and eddy viscosity ratio (µt/µ = 100 for
all simulations). The cascade Reynolds number, Re = ρ1 u1 c/µ1, where ρ1, µ1 and u1 are the
massflow-averaged density, dynamic viscosity and velocity, respectively, evaluated at the blade
outlet and c is the blade chord, is high enough (Re = 107 ÷ 108 in all simulations) to assume
fully-turbulent boundary layer along the whole blade.

The implemented thermodynamic model is the Span-Wagner equation of state by Thol et al.
(2016). A Look-up-Table (LuT) approach is used to speed up the evaluation of the thermodynamic
properties (see, e.g., Pini et al., 2015). Thermodynamic tables are built by referring to the NIST
REFPROP® database (Lemmon et al., 2013), which also provides dedicated correlations for
transport properties (Meier et al., 2004; Perkins et al., 2013). High-resolution Total Variation
Diminishing (TVD) schemes (Barth & Jespersen, 1989) are employed in the discretization of both
flow and turbulence equations. A central difference scheme is instead adopted for the diffusive
flux.

Computations are performed on structured hexahedral meshes. A proper cell clustering near
blade walls is imposed to ensure y+ < 1, thus avoiding the introduction of wall functions in the
solution.

6.2.2 Blade configuration and operating conditions
The turbine cascades used in the following study result from an optimization procedure aimed
at minimizing the entropy production, starting from the baseline blade shown in figure 6.1. The
baseline blade geometry was initially conceived for a combined heat and power application,
featuring MDM as working fluid (Colonna et al., 2008b). As the shock pattern of figure 6.1 is
strongly influenced by the peculiar shape of the blade, several exercises of shape-optimization
were carried out in order to reduce as much as possible the intensity of the main compression
shock (Rodriguez-Fernandez & Persico, 2015; Vitale et al., 2017). However, the fish-tail shock is
unavoidable due to the finite thickness of the trailing edge, which should be preserved to avoid
issues in the blade manufacturing. The shape-optimization procedures proved to be successful in
dealing with such cascade, all methods leading to qualitatively similar optimal shapes. Indeed, all
optimal blades feature a higher curvature in the diverging channel and an almost straight profile
in the rear part of the blade. In this way, the main compression shock wave is almost eliminated,
adapting the nozzle cascade geometry to the expansion process on which the optimization is
performed.

The optimization procedure used in this work is based on a global surrogate strategy coupled
with evolutionary algorithms, augmented with an on-line training strategy of the surrogate model
to increase locally its reliability. In the present work, the same computational flow model is
employed both for the optimization and the following analyses. All optimizations were performed
using the in-house design tool FORMA, see Persico (2017). The optimization is performed for
three exemplary design conditions, namely I-DES, N̂-DES and Ň-DES, reported in table 6.1 and
depicted in the T–s diagram in figure 6.7.

The design case labelled I-DES recalls the same application, in terms of inlet and outlet
thermodynamic conditions of the nozzle cascade, examined by Colonna et al. (2008b), but using
MM as working fluid. The resulting optimal blade is qualitatively similar to the ones obtained with
MDM by Rodriguez-Fernandez & Persico (2015) and Vitale et al. (2017). In these thermodynamic
conditions, the flow evolution is similar to that of an ideal gas, thus the expansion inside the nozzle
depends almost only on the expansion ratio and on the ratio between specific heats γ, which slightly
differs between the two fluids. On this basis, I-DES and related off-design conditions I-OFF-i,
i =

{
β+, β−,T t

+,P
t
−

}
, are referred to as the ideal-like operating regime of the nozzle cascade.

Operating conditions N̂-DES and Ň-DES are chosen to highlight non-ideal effects on the flow
features arising in the proximity of the blade trailing edge, which are highly influential on the
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Case Label Pt
0 [bar] T t

0 [◦C] P1 [bar] β

I-DES 8.00 272 1.08 7.4
I-OFF-β+ 8.00 272 0.96 8.3
I-OFF-β− 8.00 272 1.20 6.7
I-OFF-T t

+ 8.00 292 1.08 7.4
I-OFF-Pt

− 7.00 272 0.95 7.4
N̂-DES 40.0 270 17.5 2.3
Ň-DES 40.0 270 12.5 3.2
N̂-OFF-β+ 40.0 270 15.0 2.7
Ň-OFF-β− 40.0 270 15.0 2.7
Ň-OFF-T t

+ 40.0 290 12.5 3.2
Ň-OFF-Pt

− 35.0 270 10.9 3.2

Table 6.1. Boundary conditions for the numerical simulations. Pt
0 and T t

0 are the upstream stagnation
pressure and temperature, respectively, P1 is the downstream static pressure and β = Pt

0/P1.
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Figure 6.7. Temperature–specific entropy diagram showing the expansion processes considered in the
present work. Thermodynamic properties from REFPROP. Dotted lines (· · · ) represent different isobars.
Dash-dotted lines (· − ·) identify Γ = 1.

overall cascade performance. Two peculiar operating conditions can be identified in which the
Mach number at the trailing edge is close to a local maximum (N̂-DES) or to a local minimum
(Ň-DES). For convenience, these operating conditions along with the related off-design cases
N̂-OFF-β+ and Ň-OFF-i, i =

{
β−,T t

+,P
t
−

}
, are referred to, in the following, as the non-ideal

operating regime of the nozzle cascade.
The blades optimized for I-DES, N̂-DES and Ň-DES are shown in figure 6.8. In the non-ideal

gasdynamic regime, relatively small expansion ratios can generate large outlet Mach numbers, due
to the low values of the speed of sound. As an example, operating condition N̂-DES features M ≈
1.8 at the nozzle exit with β = 2.3. Thus, converging-diverging shapes are mandatory to cope with
the supersonic expansion. The resulting geometries are consistent with the quasi-one-dimensional
theory. The selected design conditions are such that Ae/A∗ = 2.28 for I-DES, Ae/A∗ = 1.57 for
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Figure 6.8. Optimized nozzle cascades for I-DES ( ), N̂-DES ( ) and Ň-DES ( ). The
optimization is aimed at minimising the entropy production.
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Figure 6.9. Mesh refinements (a) employed in the grid-convergence assessment and corresponding Mach
number distributions (b) evaluated on a reference streamline. The assessment is performed with boundary
conditions Pt

0 = 40 bar, T t
0 = 270 ◦C and P1 = 12.5 bar, corresponding to the exemplary expansion process

of the non-ideal operating regime.

N̂-DES and Ae/A∗ = 2.22 for Ň-DES, where Ae is the equivalent-nozzle exit area. Note that
the optimized blades for I-DES and Ň-DES are very similar, despite the significantly different
expansion ratios. On the other hand, the optimal blade for N̂-DES differs significantly from all the
others due to the much smaller exit-to-throat area ratio.

6.2.3 Grid assessment
Mesh sensitivity analysis is carried out by resorting to four different grid refinements, consisting
in 50k, 100k, 200k, 400k cells in the blade-to-blade plane, as shown in figure 6.9(a). Grid
convergence is assessed on operating condition Ň-DES, detailed in §6.2.2. To evaluate the grid
convergence, two criteria are considered. Firstly, the Mach number distribution along a reference
streamline (approximately following the centreline of the blade channel), as shown in figure 6.9(b),
is examined. No appreciable differences among the four meshes are detected. Secondly, we
consider the kinetic energy loss coefficient, defined as

ζS =
hout − hout,is

u2
out/2

, (6.1)

where hout and hout,is are the mass flow averaged specific enthalpy and the isentropic specific
enthalpy at the outlet of the domain, respectively, while u2

out/2 is the mass flow averaged kinetic
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(a) (b)

Figure 6.10. Pressure field (a) and Mach number field (b) for I-DES. The working fluid is MM.

energy at the outlet domain.
This coefficient accounts for all loss sources such as shock (and related shock-boundary layer

interaction), mixing and viscous losses, thus giving an overall indication of cascade performance.
The convergence of the kinetic loss coefficient towards the grid independent value allows establish-
ing the convergence of the flow field from the integral perspective. It is found that the relative error
with respect to the finest-grid value (ζS = 3.84%) is 0.32% for 50k cells, 0.20% for 100k cells and
0.03% for 200k cells. Therefore, grid convergence is achieved starting from the 200k mesh. For
a better flow field resolution, numerical results presented in the following sections are obtained
using the 400k mesh.

6.2.4 Ideal-like operating regime of nozzle cascades

We consider the converging-diverging nozzle optimized for the design condition I-DES. In addition
to the design condition, cascade performance is also analysed by considering four different off-
design expansions I-OFF-i, i =

{
β+, β−,T t

+,P
t
−

}
. Each of these processes is detailed in table 6.1

and shown graphically in the (T, s)–plane of figure 6.7. Note that the stagnation temperature values
used throughout this work lie within the thermal stability limit of the working fluid (Preissinger &
Bruggemann, 2016; Keulen et al., 2018).

Pressure and Mach number distributions for I-DES are reported in figure 6.10. The optimiza-
tion, performed in such conditions, generates a nozzle cascade which features a smooth expansion
process, characterized by a nearly uniform pressure field downstream of the cascade. A weak
fish-tail shock stems from the trailing edge. Quantitatively, the nozzle cascade exhibits a kinetic
energy loss coefficient ζS = 3.6%. This value is used as reference to quantify the impact of off-
design conditions on the blade performance within the ideal-like operating regime. Furthermore,
I-DES presents a massflow-averaged Mach number measured at half axial chord downstream of
the trailing edge (representing a plausible stator-rotor gap) equal to M05 = 1.95.

Off-design cases I-OFF-β+ and I-OFF-β− expand from the design superheated conditions to
lower and higher outlet pressures, respectively, with respect to the design one. These conditions
are very common in power systems due to the seasonal variation of ambient temperature, which
directly affects the temperature of condensation and hence the turbine outlet pressure.

I-OFF-β+ imposes to the flow an expansion characterized by a higher pressure ratio. In
the present study, the increased pressure ratio is derived by imposing a decrease of 20 ◦C of the
condensation temperature; the resulting change in the turbine pressure ratio was propagated to that
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Figure 6.11. The effect of variations in the outlet static pressure for the ideal-like operating regime. (a),
(b) pressure and Mach number fields for I-OFF-β+; (c), (d) pressure and Mach number fields for I-OFF-β−;
(e), ( f ) pressure and Mach number distributions along a reference streamline, approximately following the
centreline of the blade channel, see figure 6.9(b). The working fluid is MM.

of the first stator assuming that the turbine is composed by five stages, consistently with the latest
trend in the ORC field (Bini & Colombo, 2017), and that the distribution of the enthalpy drops
among each cascade remains unchanged. According to quasi-one-dimensional theory, in the blade

133



Chapter 6. Application: flow through ORC turbine vanes

channel the flow expands as in the design condition and a post-expansion is required to match the
lower outlet pressure. This behaviour can be qualitatively recognized in figures 6.11(a–b) and
6.11(e– f ). Most differences with respect to I-DES are visible in the Mach number distribution of
figures 6.11(b) and 6.11( f ), where a higher Mach number (M05 = 2.00) can be observed at the
outlet. The cascade loss coefficient (ζS = 3.5%) is comparable with the design value, consistently
with the fact that the post-expansion process is nearly isentropic.

The effect of a reduced pressure ratio is illustrated by case I-OFF-β−, shown in figures 6.11(c–
f ) and obtained by increasing the condensation temperature of 20 ◦C with the same approach used
above for I-OFF-β+ to compute the outlet pressure. The pressure distribution shown in figures
6.11(c) and 6.11(e) is strongly affected by the onset of a strong shock wave, especially where
the fish-tail shock reflects. As a consequence, cascade losses increase showing a net increment
of the kinetic energy loss coefficient to 7.50%. Moreover, the rotor will experience a higher
aerodynamic forcing induced by the presence of shock waves. Stronger shock waves lead to a
reduction of the Mach number downstream of the nozzle cascade (M05 = 1.76), as expected in
ideal-like conditions.

The following off-design cases I-OFF-T t
+ and I-OFF-Pt

− feature design pressure ratio, but the
fluid is expanded from different upstream stagnation temperatures and pressures, respectively, with
respect to I-DES. These conditions are representative of part-load control strategies of the ORC
power system.

I-OFF-T t
+ corresponds to an increase of the upstream stagnation temperature. In this case,

quasi-one-dimensional theory of ideal gases predicts no differences with respect to the design
flow evolution, as the expansion process is governed only by the expansion ratio and the specific
heats ratio, which remains fairly constant by increasing the inlet temperature of 20 ◦C. The flow
field distributions reported in figures 6.12(a–b) and 6.12(e– f ) confirm qualitatively this behaviour,
showing no appreciable differences with respect to the ones presented in figure 6.10 for the design
condition. Quantitatively, both the outlet Mach number (M05 = 1.95) and the kinetic energy loss
coefficient (ζS = 3.6%) are very close to the design values.

Finally, I-OFF-Pt
− features a lower upstream stagnation pressure. The outlet pressure is also

reduced to maintain the design pressure ratio. Similarly to I-DES and I-OFF-T t
+, the same pressure

ratio entails qualitatively similar flow fields, see figures 6.12(c– f ), and in turn analogous values of
the outlet Mach number (M05 = 1.95) and of the loss coefficient (ζS = 3.7%).

To sum up, we have reported the performance of a supersonic converging-diverging cascade op-
erating in the non-ideal gasdynamic regime (Γ < 1) but qualitatively showing ideal-gas behaviour.
In the ideal-like operating regime, four off-design conditions were analysed: (i) an increase of the
pressure ratio delivers a larger outlet Mach number without affecting cascade losses; (ii) reducing
the pressure ratio, the nozzle cascade features lower performance due to the onset of a strong shock
wave to match the higher outlet pressure; (iii) variation of the upstream stagnation state at the same
pressure ratio has practically no effect on the cascade performance.

6.2.5 Non-ideal operating regime of nozzle cascades

In order to investigate the performance of the representative nozzle cascades working in the non-
ideal operating regime, two different blades are considered, which are designed for expansions
N̂-DES and Ň-DES. Off-design behaviour is assessed on four cases labelled N̂-OFF-β+ and
Ň-OFF-i, i =

{
β−,T t

+,P
t
−

}
. Each of these cases is detailed in table 6.1 and the corresponding

expansion processes are reported in the (T, s)–plane of figure 6.7.
The present choice of the upstream stagnation state for both design conditions offers the

possibility to observe and examine effects associated with the non-ideal evolution of the Mach
number. According to quasi-one-dimensional theory, the isentropic expansion from Pt

0 = 40 bar
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Figure 6.12. The effect of variations in the upstream stagnation conditions for the ideal-like operating
regime. (a), (b) pressure and Mach number fields for I-OFF-T t

+; (c), (d) pressure and Mach number fields
for I-OFF-Pt

−; (e), ( f ) pressure and Mach number distributions along a reference streamline, approximately
following the centreline of the blade channel, see figure 6.9(b). The working fluid is MM.
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Figure 6.13. (a), (b) pressure and Mach number fields for N̂-DES; (c), (d) pressure and Mach number fields
for Ň-DES; (e), ( f ) pressure and Mach number distributions along a reference streamline, approximately
following the centreline of the blade channel, see figure 6.9(b). The working fluid is MM.

and T t
0 = 270 ◦C features a non-monotonic Mach number (see figure 6.3(b)) with a remarkable dif-

ference (∆M ≈ 0.26) between the two stationary points. Moreover, if J > 0 in the neighbourhood
of the trailing edge (i.e. the expansion through the blade channel end between the two extrema),
non-ideal Prandtl-Meyer fans and oblique shocks may occur. This scenario is clarified using two
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6.2. Gasdynamics of nozzle cascades in the non-ideal regime

specific examples in which the expansion through the blade channel ends near a stationary point
of the Mach number (local maximum for N̂-DES and local minimum for Ň-DES). Note that a
possible advantage deriving from this situation is the enhanced uniformity of the Mach number
distribution within the stator-rotor axial gap, due to the relatively low sensitivity of the Mach
number to perturbations in the outlet pressure (J ≈ 0).

Pressure and Mach number distributions for N̂-DES and Ň-DES are shown in figures 6.13(a-
f ). For both cases, a pattern of weak oblique waves occurs downstream of the trailing edge,
evidenced in the pressure contours. Inspection of figures 6.13(b) and 6.13( f ) reveals that N̂-DES
features non-ideal oblique waves, consistently with the small positive values of J in the trailing
edge region. For Ň-DES, see figures 6.13(d) and 6.13( f ), no appreciable variation of the Mach
number is observed across the oblique waves pattern, due to comparatively smaller values of
J (very close to zero). N̂-DES features an outlet Mach number M05 = 1.73. As the blade is
designed for a higher pressure ratio, the new optimal cascade features a lower outlet Mach number
(M05 = 1.51 for Ň-DES) as the local maximum of the Mach number moves within the blade
channel. Cascade performance, used in the following to assess the off-design behaviour, are equal
between the two design cases and amount to ζS = 3.9%.

N̂-OFF-β+ and Ň-OFF-β−, analogously to I-OFF-β+ and I-OFF-β−, respectively, aim at
determining the impact of different pressure ratios on the cascade performance, likewise computed
by decreasing/increasing the condensation temperature of 20 ◦C, with constant enthalpy drops
across each single cascade. The upstream stagnation conditions are instead kept constant. As the
nomenclatures suggests, the blades used in the off-design cases N̂-OFF-β+ and Ň-OFF-β− are
those optimized for N̂-DES and Ň-DES, respectively.

The larger pressure ratio in N̂-OFF-β+ is achieved by means of post-expansion, see figures
6.14(a–b) and 6.14(e– f ). The actual features of the Mach number field downstream of the trailing
edge differ significantly from those observed in the ideal-like operating regime. The Prandtl-Meyer
fan generated on the pressure side of the trailing edge, and subsequently reflected on the suction
side of the neighbouring blade, produces a non-ideal decrease of the Mach number. Past the trailing
edge, the matching of pressure and flow direction across the wake is accomplished by a non-ideal
oblique shock which increases the Mach number. The high amount of post-expansion can be further
appreciated from the waviness of the wake. Overall, the prevailing effects is the Mach number
decrease across the expansion waves downstream of the trailing edge, which ultimately results
in M05 = 1.62 (while M05 = 1.73 in the design condition N̂-DES). The kinetic loss coefficient
instead increases to ζS = 5.7%, as expected, due to onset of the relatively strong shock generated
at the trailing edge.

Configuration Ň-OFF-β−, which features a decreased pressure ratio, exhibits a reversed flow
pattern with respect to the N̂-OFF-β+downstream of the trailing edge, as shown in figure 6.14(c– f ).
To accommodate the higher outlet pressure, an oblique shock stems from the pressure side of the
trailing edge and is reflected on the suction side of the neighbouring blade, whereas a rarefaction fan
is generated on the opposite side of the trailing edge. For both waves, a non-ideal variation of the
Mach number is observed and the Mach number decreases across the Prandtl-Meyer expansion and
it increases across the oblique, non-ideal shock wave. The overall Mach number variation follows
the non-ideal character of the compression process, resulting in M05 = 1.57 (while M05 = 1.51
in Ň-DES). The stronger shock pattern in Ň-OFF-β− than in N̂-OFF-β+ is responsible for the
comparatively larger increase of the loss coefficient (ζS = 8.0%).

The situation depicted above with N̂-OFF-β+ and Ň-OFF-β− is opposed to the ideal-gas like
scenario. The non-ideal variation of the outlet Mach number with the outlet pressure might have
remarkable consequences on the operation of the entire turbine. As a matter of fact, the present
supersonic cascades are prototypes of first stators of ORC turbines. The nozzle is commonly
followed by a transonic rotor, whose operational characteristics and performance are crucially
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Figure 6.14. The effect of variations in the outlet static pressure for the non-ideal operating regime. (a), (b)
pressure and Mach number fields for N̂-OFF-β+; (c), (d) pressure and Mach number fields for Ň-OFF-β−;
(e), ( f ) pressure and Mach number distributions along a reference streamline, approximately following the
centreline of the blade channel, see figure 6.9(b). The working fluid is MM.

dependent on the flow regime (whether subsonic or supersonic) associated with the relative flow at
the inlet. The rotor-inlet flow is indeed proportional to the (absolute) Mach number at the outlet
of the stator, modulated by the rotational speed. Supersonic relative flow at the rotor inlet are
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detrimental for the turbine flexibility and performance mainly due to the so-called unique-incidence
phenomenon (Starken et al., 1984). Within this supersonic flow regime, the rotor leading edge
behaves as a bluff body, enabling the formation of a bow shock upstream of the leading edge. Both
the shock strength and its distance from the rotor leading edge are function of the inlet relative
Mach number and the leading edge radius. Under this condition the inlet flow angle is no longer a
free parameter but it is given by the bow-shock interaction among adjacent rotor cascades. It can
be proved that, for a given rotor geometry, a unique pattern of characteristic lines is feasible, thus
admitting a unique inlet flow angle (Starken, 1993). Therefore, the flow is chocked in the rotor
cascade and it is not possible to adjust the massflow by varying the upstream flow angle. Besides,
supersonic rotor cascades may present a complex pattern of shock waves and shock-boundary layer
interactions, which is likely to result in a lower stage efficiency as the Mach number at the rotor
inlet increases (Rinaldi et al., 2016). A proper design of the rotor cascade allows the mitigation
of the aforementioned phenomena (see, e.g., Bufi & Cinnella, 2018), even though such design
is valid only for a specific operating condition. From this point of view, operating conditions
similar to N̂-DES, i.e. tuned to obtain a local maximum of the Mach number near to the trailing
edge, are advantageous against the unique incidence phenomenon. Indeed, both an increase and a
decrease of the outlet pressure would reduce the outlet Mach number, thus increasing the safety
margin for unique incidence. On the contrary, for design conditions analogous to Ň-DES, a Mach
number increase is expected for whatever pressure-ratio variation. In particular, a non-ideal effect
that unexpectedly increases the stator-outlet/rotor-inlet Mach number for different pressure ratios
(e.g. Ň-DES → Ň-OFF-β−) might drive the rotor in unique-incidence condition, with severe
detrimental effects on the turbine operation and performance. Recall that in the ideal-like operating
regime a decrease/increase of the outlet pressure always increases/decreases the Mach number.

As anticipated in §6.1, the upstream stagnation quantities play a key role in the expansion
process for non-ideal flows. The last two examples Ň-OFF-T t

+ and Ň-OFF-Pt
− aim at demon-

strating the effect of a variation in the upstream stagnation conditions, at fixed pressure ratio. In
the same spirit as I-OFF-T t

+ and I-OFF-Pt
−, the stagnation temperature and pressure are varied

independently. The reference condition for this study is Ň-DES.
We first consider the impact of an increase of the upstream stagnation temperature on the

cascade performance (Ň-OFF-T t
+). The increase in the stagnation temperature is large enough

that the isentropic pattern changes from S NI to S I, thus the Mach number is monotonic in the
supersonic expansion in the divergent section of the blade channel, as shown in figures 6.15(b) and
6.15( f ). As a further consequence of the stagnation temperature increase, the adapted pressure
ratio (across the blade channel only) increases as well, see figure 6.4(b) for expansions with a
similar value of the stagnation pressure. In the present case, since the pressure ratio is fixed,
the increase of stagnation temperature triggers a strong shock wave downstream of the cascade
where the fish-tail reflects, see figures 6.15(a–b) and 6.15(e– f ). The kinetic energy loss coefficient
dramatically increases to ζs = 12.7%, resulting in more than three times the design loss coefficient
and the outlet Mach number decreases to M05 = 1.47. Non-ideal oblique shocks are not observed
in the present configuration because the shock adiabat centred on the thermodynamic state at the
trailing edge no longer contains the J > 0 region necessary for the Mach number increase1 (see
§4.4.2.3). Note that in case of ideal-like operating conditions, the cascade loss coefficient remains
nearly constant through an increase of the upstream stagnation temperature (I-DES → I-OFF-
T t

+), thus highlighting a severe distinction between the ideal and non-ideal operating conditions.
Considering that inherent fluctuations of the set-point temperature are unavoidable, such turbines
will most likely oscillate from strong shocks to shock-free conditions, compromising the stability,

1The fact that non-ideal oblique shocks are disallowed in Ň-OFF-T t
+ can also be deduced by noticing that the isentrope

associated with the upstream stagnation conditions of Ň-OFF-T t
+ no longer contains a J > 0 region. Thus, for each

pre-shock state A along the selected isentrope, the resulting shock adiabat is embedded in the thermodynamic region
Γ > 1 − 1/M2

A and the Mach number is monotonically decreasing along the shock curve.
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Figure 6.15. The effect of variations in the upstream stagnation conditions for the non-ideal operating
regime. (a), (b) pressure and Mach number fields for Ň-OFF-T t

+; (c), (d) pressure and Mach number fields
for Ň-OFF-Pt

−; (e), ( f ) pressure and Mach number distributions along a reference streamline, approximately
following the centreline of the blade channel, see figure 6.9(b). The working fluid is MM.

the performance and the mechanical integrity of the stage (especially from the fatigue standpoint).
Finally, Ň-OFF-Pt

− illustrates the consequences of a decrease in the upstream stagnation
pressure. The pressure and Mach number fields, see figures 6.15(c– f ), are qualitatively similar
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to the design ones. On a quantitative level, the Mach number peak in the blade channel and the
outlet Mach number (M05 = 1.45) are reduced and a stronger shock-wave pattern is generated
at the trailing edge, confirmed by the increase of the loss coefficient (ζs = 4.6%). Compared to
the variation in the upstream stagnation temperature (Ň-OFF-T t

+), the variation of the upstream
stagnation pressure affects the flow field and the cascade performance to a lower extent.

It is worth underlining that the flow-field dependence on the upstream stagnation quantities is
not limited to a specific thermodynamic range, differently from the non-monotonic variation of the
Mach number or the onset of oblique shocks featuring an increase of the Mach number.

6.3 Concluding remarks
Non-ideal flows of siloxane MM in converging-diverging nozzle cascades were investigated
numerically. Steady-state numerical solutions were obtained by employing a Navier-Stokes flow
solver, featuring k-ω SST turbulence model along with state-of-the-art thermodynamic treatment.
By examining representative design points along with selected off-design conditions, two opposite
scenarios were recognized within the non-ideal gasdynamic regime Γ < 1. In the range of
pressures approximately up to the critical pressure, the expansion process in the nozzle cascade
is qualitatively similar to that observed in the ideal-gas limit. In other words, despite the nozzle
expansion occurs in the non-ideal gasdynamic regime, non-ideal effects do not play a major role
and ideal-gas considerations can be applied in the design and performance analysis of the cascade.
Quantitative differences with respect to the dilute-gas flow field are arguably negligible at relatively
low pressures (e.g. 0.5Pc) and increase approaching the supercritical regime. Expansion from
supercritical conditions can instead exhibit strong non-ideal effects which determine a quantitative
and qualitative deviation from the flow features characterizing subcritical expansions.

The main implications for nozzle-cascade flows in their non-ideal operating regime are:

(i) a potentially advantageous design, involving stationary points of the Mach number in prox-
imity of the blade trailing edge, leads to a nearly uniform outlet Mach number distribution in
the stator-rotor axial gap with a low sensitivity to slight variations in the outlet pressure;

(ii) if the above-mentioned stationary point is the local maximum/minimum, a decrease/increase
in the outlet Mach number is observed with decreasing/increasing outlet pressure, achieved
by means of non-ideal Prandtl-Meyer waves/oblique shocks;

(iii) the cascade performance is highly sensitive to variations in the upstream stagnation pressure
and temperature, at constant pressure ratio. The present analysis suggests a larger influence
of stagnation temperature variations (e.g., ∆ζs = +8.8% with ∆T t

0 = +20◦C against ∆ζs =

+0.7% with ∆Pt
0 = −5 bar).

The present analysis shows that the performance of nozzle cascades operating in the non-
ideal gasdynamic regime may be strongly sensitive to departure from the design conditions.
This suggests that including multiple operating conditions at the design stage (robust design
optimization) might be crucial for the future development of turbomachinery for supercritical cycle
applications.

Numerical results were found to be consistent with the predictions of the quasi-one-dimensional
flow and oblique-wave theories, which are of general validity and mainly depend on the behaviour
of the fundamental derivative of gasdynamics. Therefore, we expect that the present findings can
be extended to most molecularly complex fluids featuring Γ < 1 in the single-phase vapour region.
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Chapter 7. Conclusions and outlook

7.1 Conclusions
The study documented in this thesis offers a comprehensive overview of phenomena arising in
steady supersonic flows. An arbitrary equation of state of the gas was allowed (subject to physical
constraints). Specifically, no assumption was made on the values of the fundamental derivative of
gasdynamics Γ and indeed substances exhibiting non-ideal thermodynamic behaviour for which
Γ < 1 (in contrast to the ideal-gas case, Γ = const > 1) were the focus of the research. In
single-phase gases to which the discussion was limited, states featuring Γ < 1 are found in
the neighbourhood of the saturation curve and critical point of molecularly complex fluids. In
this context, three main topics were addressed: (i) quasi-one-dimensional flows in converging-
diverging nozzles, (ii) two-dimensional oblique waves, (iii) shock reflections and interactions
in two-dimensions. These are fundamental features of the flow expanding in supersonic stator
cascades. Connected to this is the concluding application case where the flow through ORC turbine
vanes was examined in the NICFD framework. The general conclusions of the research topics in
this work are summarised in the following.

Steady flows in converging-diverging nozzles were investigated from a novel perspective which
clarifies the connection between a general adiabatic flow field and the underlying local isentropic-
flow features. This approach proved particularly useful in the computation of non-classical nozzle
flows where a variety of isentropic flows is possible and can be combined into piece-wise isentropic
flows (shocked flows) in several different ways. In order to enable the description of isentropic
flows, the concept of isentropic pattern was introduced. The isentropic pattern encompasses each
possible isentropic flow for a given stagnation state. Moving from the classification of isentropic
flows, exact flows possibly including shock waves were computed using a shock-fitting technique.
The layout of the exact solutions produced by monotonically decreasing values of the ambient
pressure, namely the functioning regime of the nozzle, was examined using the van der Waals gas
model. The following results were obtained:

• Two isentropic patterns (S I, S NI) were singled out in the classical gasdynamic regime and
five (S I, S NI, S NC

1 , S NC
2 , S NC

3 ) in the non-classical gasdynamic regime. With the exception
of S I, all the isentropic patterns feature a non-monotonic behaviour of the Mach number.
In particular, S NC

1 and S NC
2 exhibit three sonic points.

• Following the study of the transitional criteria among the different isentropic patterns identi-
fied, a thermodynamic map of the stagnation states leading to each isentropic pattern was
computed. Thermodynamic considerations and application of the second law of thermody-
namics determined the direction in which shock-induced transitions of the isentropic pattern
can occur.

• As many as ten functioning regimes were identified: the ideal-like regime R I, the non-ideal
classical regime RNI characterised by non-monotonic Mach number in supersonic flow and
the non-classical regimes RNC

3 , RNC
2a, RNC

2b, RNC
2c , RNC

1a, RNC
1b, RNC

1c , RNC
0 . Except for RNC

3 which
is distinguished for the non-monotonic Mach number in subsonic flow, the non-classical
functioning regimes feature one or more of rarefaction shocks, sonic shocks and compression
shocks splitting in two distinct entities (split-shock).

• In order to identify the thermodynamic region of interest for the observation of non-ideal
nozzle flows, a thermodynamic map of the reservoir conditions resulting in each functioning
regime was produced. The higher complexity of this map, compared to that associated
with the isentropic patterns, is due to the occurrence of shock-induced transitions of the
isentropic pattern. Reservoir states leading to non-ideal functioning regimes are found in
the supercritical thermodynamic region along isentropes crossing the Γ < 1 region (Γ < 0
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for non-classical functioning regimes). An important aspect to be considered in practical
applications is that at such high temperatures, fluids composed by complex molecules might
undergo thermal degradation.

• Each of the aforementioned functioning regimes can be observed with sufficiently large
c3/R values of the van der Waals gas, while some non-classical functioning regimes may
in fact disappear if the molecular complexity is reduced. The predictions of the simple
van der Waals model were verified against accurate thermodynamic models of selected
fluids. Comparison between the different fluids considered indicated that good qualitative
agreement, in terms of layout of the thermodynamic map of the functioning regimes, is
found between fluids with similar values of Γmin.

Scale-invariant oblique waves in steady supersonic flows were studied taking advantage of the
qualitative equivalence with one-dimensional unsteady flows. On this basis, curves of oblique
waves, which mirror the wave curves of the one-dimensional Riemann problem, were constructed.
This was done using a two-step procedure where the projection of the wave curve onto the
thermodynamic variables is first considered, and kinematic quantities are retrieved afterwards.
The wave curve analysis allowed to determine all the downstream states connected to a given
supersonic upstream state by means of oblique waves. In the classical gasdynamic regime, where
the wave curve structure is well-known, the research focused on the non-ideal effect of the Mach
number increase across oblique shocks (non-ideal oblique shocks). Moreover, a unified approach
for the description of the geometrical properties of classical oblique waves was presented. In
the non-classical gasdynamic regime, the attention was centred on the admissible wave curve
configurations, which were studied using the van der Waals gas model. The following results were
obtained:

• A detailed study of the necessary conditions for the occurrence of non-ideal oblique shocks
allowed to determine a family of thermodynamic regions, parametrised by the upstream
Mach number MA, in which the upstream thermodynamic state must be selected in order
to observe the discontinuous increase of the Mach number. The computational procedure
of these thermodynamic domains was applied to several fluids of practical interest using
accurate EoS, obtaining qualitatively similar results. For a given MA, the admissibility
region of non-ideal oblique shocks approximately coincides with the region Γ < 1 − 1/M2

A.

• The typical shock angle–deflection angle diagram of oblique shocks was extended with
an additional half-plane corresponding to Prandtl-Meyer fans, thanks to the definition of
an equivalent-fan angle. The choice of this angle as the average slope of the leading and
terminating Mach lines (guided by the bisector rule for oblique shocks) provided a smooth
matching between the oblique-shock branch and the newly defined rarefaction-fan branch.

• Six non-classical wave curves were singled out: N1, N2, N3, N4, N5, N6. Key feature of
these wave curves is the presence of inverted waves (rarefaction shocks and compression
fans) and composite waves.

• Analysis of the transitional conditions among the different wave curves led to the definition
of a map, in the parameter space of the thermodynamic quantities and Mach number, of the
upstream states leading to each type of wave curve. The thermodynamic region of upstream
states associated with non-classical wave curves extends approximately from the low-density
neighbourhood of the negative-Γ region up to infinite pressures along isentropes featuring
Γ < 0. As previously noticed for nozzle flows, from the practical point of view the high
stagnation temperatures associated with these flows, combined with the high molecular
complexity of the working fluid, may result in thermal stability issues.
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• The computation of the upstream-state map of the wave curves using accurate thermody-
namic models of fluid confirms the picture given by the van der Waals model.

The theory of oblique waves was applied to the investigation of shock reflections and interactions
in non-ideal gasdynamics, offering an overview of the most relevant configurations. This was
made possible by restricting the attention to the neighbourhood of the node where oblique waves
intersect generating a scale-invariant flow. The same approach used in the study of oblique wave
was adopted. In the classical gasdynamic regime, the research concentrated on the occurrence
of non-ideal oblique shocks in the reflection or interaction pattern. In the non-classical case,
the primary interest was on the structure of the shock reflection or interaction at the node. Due
to the possibility of outgoing fans or composite waves at the node, the classical two-shock and
three-shock theories of von Neumann were extended to the non-classical gasdynamic context. The
van der Waals gas model was used in this study as previous results confirm its accuracy from the
qualitative point of view. The following results were obtained:

• Flow fields that locally involve only non-ideal oblique shocks, and thus provide an overall
increase of the flow Mach number, were detected in the case of regular reflection, cross node
and overtake node. The large shock angles characterizing irregular reflections seemed to
preclude this possibility.

• It was shown that in a wide range of incident-shock parameters, compression shocks undergo
regular reflection generating a reflect fan or composite wave. The situation was quite different
for irregular reflections. Reflected composite waves were observed in the case of Mach
reflection, while non-classical waves were not encountered in the von Neumann, Guderley
and Vasil’ev reflections.

• Regular reflections in which a rarefaction shock reflects as a fan or composite wave were
observed. In contrast with the case of compression shocks, the study indicated that irregular
reflections occur uniquely in the form of Guderley patterns. While no clear proof of the
non-existence of other reflection mechanisms was given, arguments supporting this apparent
scenario were provided.

• Several combinations of outgoing waves at a cross node were detected. For each pair of
incident and reflected shocks, the configurations realizable in a regular reflection were
recovered.

• In the overtake node, two main differences were noticed between the classical and non-
classical configurations. On the one hand, non-classical overtake nodes were depicted in
which the oblique waves are similar to those found in the classical case, except for an
opposite pressure variation. On the other hand, it was shown that a compression shock
can overtake a rarefaction shock generating a transmitted fan (no counterpart in classical
gasdynamics).

Numerical simulations of non-ideal flows through supersonic stator vanes were performed, with
particular reference to ORC turbines. Working fluid MM (hexamethyldisiloxane) was considered,
which is classified as a non-BZT fluid by most modern thermodynamic models, as other fluids
currently used in ORC power systems. This study, conducted using the most recent and accurate
EoS for MM, addressed non-ideal but classical gasdynamic effects. Most flow features were
anticipated and explained through the use of simpler models for specific flow regions analysed in
the previous chapters, namely the quasi-one-dimensional flow, the generation of oblique shock
waves by an abrupt turning of a supersonic stream and the shock reflection at a wall. Shape
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optimization was applied to three operating conditions, one representing a subcritical, low turbine-
inlet pressure ORC system while the other two featuring a supercritical cycle with high-pressure
turbine inlet. The high-pressure cases involved stationary points of the Mach number in proximity
of the trailing edge. For each configuration, the off-design behaviour was explored by imposing
variations in the outlet pressure and in the inlet stagnation state. The following results were
obtained:

• Remarkable differences were found between the flow fields of the design conditions con-
sidered. The low-pressure case provided an ideal-gas-like scenario, as a minimal departure
from the corresponding ideal-gas flow could be noticed. On the contrary, the high-pressure
cases involved a non-monotonic evolution of the Mach number in the blade channel and
non-ideal oblique shocks and Prandtl-Meyer fans at the trailing edge.

• For the high-pressure operating conditions, the stationary point of the Mach number in
proximity of the trailing edge allowed for a nearly uniform outlet Mach number distribution
in the stator-rotor axial gap with a low sensitivity to slight variations in the outlet pressure.

• The response to variations in the outlet pressure, at fixed upstream stagnation state, was
found to largely depend on the operating condition. If a local minimum of the Mach number
occurs at the trailing edge, either a decrease or an increase in the outlet pressure can produce
an increase of the Mach number at the rotor intake. Detrimental effects on the turbine
flexibility and performances are possible due to the occurrence of the so-called unique
incidence phenomenon affecting the rotor. Operating conditions characterised by a local
maximum of the Mach number at the trailing edge exhibit the opposite behaviour, namely
the outlet Mach number can decrease with both increasing and decreasing outlet pressure,
thus improving the safety margin for unique incidence.

• In the high-pressure operating conditions, variations in the upstream stagnation temperature
at fixed upstream pressure and pressure ratio caused a dramatic loss increase (more than three
times the design loss) due to the formation of strong oblique shocks at the trailing edge. By
contrast, no significant increase of the loss was noticed in the ideal-gas-like configuration.

7.2 Outlook

The original research presented in this thesis contributes to better knowledge and understanding of
the theory of supersonic flows in the non-ideal gasdynamic regime. The practical implications of
this study are numerous and challenging. Besides confirming the need of accounting for non-ideal
effects in the design and analysis of aerodynamic devices operating with molecularly complex
vapours in thermodynamic states close to the vapour-liquid saturation curve and critical point, it
was clearly demonstrated that a wide variety of different phenomena is possible over a relatively
narrow range of thermodynamic states. This remarkable degree of freedom offers the opportunity
to exploit and control non-ideal effects with relatively small changes in the boundary conditions.
On the other hand, depending on the specific context, the enhanced sensitivity to the operating
conditions might represent a serious disadvantage.

This work will hopefully motivate further theoretical and experimental investigation. Importantly,
attention was paid to develop concepts and analytical tools of general validity. In this sense, it was
shown that the results and conclusions do not depend on the specific form of the EoS, except for
the presence of the Γ < 1 region in the vapour phase. As a matter of fact, the relevance of this
study extends beyond NICFD, arguably to all situations where locally non-convex isentropes in
the pressure–density or pressure–specific volume planes can be found (e.g., porous-media flows,
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supersonic reacting flows) and possibly outside the domain of fluid dynamics (generic hyperbolic
systems of conservation laws featuring non-convex characteristic fields, e.g. nonlinear elasticity).
Below, some perspectives, limitations and open questions of the presented analysis are discussed
to suggest the direction of future research.

In the immediate vicinity of the critical point, analytical models such as those used in this work
are qualitatively inaccurate and scaling laws, accounting for the non-analyticity of the Helmholtz
free energy at the critical point, should be used (see, e.g., Levelt-Sengers, 1970). The Γ < 1 region
predicted in molecularly complex vapours by analytical models may be partially overlapping with
the region where long-range critical fluctuations affect the thermodynamic properties of the fluid,
especially derivative properties such as Γ (Nannan et al., 2016). Although the reference models in
Span-Wagner form (used in this work to confirm the vdW predictions) are generally accurate even
quite close to the critical point, the potential influence of critical effects deserves more careful
examination.

Thermodynamic states exhibiting Γ < 1 are found also in the vapour-liquid equilibrium region,
even in fluids composed by simple molecules. In particular, Γ < 0 in the near-critical two-phase
region according to scaled fundamental EoS based on universal critical exponents (Nannan et al.,
2013). Some of the general considerations given above can be applied to the study of non-ideal
and non-classical effects. The new aspect, and main difference with the present treatment, is that
isentropes have a kink in their slope along the saturation curve. Among the others, this enables the
formation of split waves (Menikoff & Plohr, 1989). Extension of the present study to the two-phase
region would certainly provide a more complete picture of non-ideal steady supersonic flows, and
is of sure interest for applications such as supercritical CO2 power generation or refrigeration
systems.

Another important problem for further study is the non-uniqueness of solutions for ramp/wedge
flows subject to supersonic upstream conditions. The question is inherited from classical gasdy-
namics, where on a given compression ramp a weak and a strong shock (according to the pressure
jump) are possible with the same upstream state. The issue is not the possibility of observing the
strong solution locally, which in fact occurs in detached shock fronts, but rather if a straight strong
shock on a wedge is physically admissible and can be realised. Recent investigations (Kraiko
et al., 2014; Kluwick & Cox, 2018a) point to the crucial role of the global geometry and boundary
conditions at downstream infinity in determining the stability of the configuration and thus the
possibility of realising it. Evidently, the non-uniqueness cannot be resolved by local analysis or
isolated-shock stability arguments alone. In the non-classical context, the problem of multiple
solutions is further complicated because up to three stationary points of the deflection angle are
possible along the wave curve and by the presence of composite waves. Also of interest is the inves-
tigation of detached shocks and shock–boundary layer interaction in non-ideal flows. Development
in this area might be useful to gain further insights into non-classical shock reflections.

The study of shock interactions could be extended by including the diffraction of a shock though
a contact discontinuity. Among the others, this case is relevant for applications involving
over/underexpanded jets (e.g., rocket propulsion, fuel injection, rapid expansion of supercrit-
ical solutions) and for supersonic turbine flows where the shock waves generated at the trailing
edge interact with the wake, which might feature a shear layer (approximable as a slip line). Yet in
the context of turbine flows, future efforts should be aimed at assessing the impact of non-classical
effects on the blade design and performance when the working fluid is of the BZT class. The
dedicated literature is scarce and thus further studies (e.g. numerical simulations, on the lines of
those reported in this work) would be valuable in view of the possible use of more complex fluids
in ORC power plants.
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Lastly, some recommendations regarding the possibility that the non-classical effects described in
this work might be observed experimentally in steady-state flows. Apart from the non-monotonic
variation of the Mach number in subsonic expansions, these phenomena, in particular the long
sought rarefaction shock, necessitate supersonic or at least sonic flow conditions. The requirement
of steady supersonic flow in the neighbourhood of the BZT region implies higher stagnation
enthalpies and temperatures, if compared to those associated with non-classical unsteady flows (e.g.
shock tube experiments). High enthalpy implies high power required in the experimental facility,
which could be eventually limited using small test chambers (in turn, thicker boundary layers). The
values of the stagnation temperature might be close to the thermal stability limit of the substance,
at least those which are currently indicated as candidate BZT fluids (e.g. complex siloxanes
and perfluorocarbons). In this connection, advancements in the modelling and measurement of
thermal and caloric properties of molecularly complex fluids (including mixtures) in the general
neighbourhood of the critical point are of paramount importance.
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APPENDIXA
Thermodynamic modelling

In this Appendix, the thermodynamic models considered in this work are briefly described. As is
well-known, the equilibrium thermodynamic properties of a material are embodied in the relation

e = e(s,3) (A.1)

expressing the specific internal energy e of an equilibrium state as a function of the specific entropy
s > 0 and the specific volume 3 > 0, see Galgani & Scotti (1970). The above equation, known
as the fundamental relation in the energy representation, is obtained under the assumption of
single-constituent and simple thermodynamic system (Callen, 1985; Gyftopoulos & Beretta, 2005).
The fundamental relation (A.1) is monotonic with respect to the entropy, being the temperature

T =

(
∂e
∂s

)
3

(A.2)

non-negative. The energy fundamental relation can therefore be inverted to obtain the fundamental
relation in the entropy representation s = s(e,3). If the material is a fluid and thus it cannot sustain
tension, the pressure

P = −

(
∂e
∂3

)
s

(A.3)

is non-negative and thus the fundamental relation (A.1) is monotonic also with respect to the
specific volume. Moreover, thermodynamic stability requires that the fundamental relations in
the energy and entropy form are respectively convex and concave. This implies that the isochoric
specific heat

c3 = T
(
∂s
∂T

)
3

(A.4)

and the isentropic compressibility

Ks = −
1
3

(
∂3

∂P

)
s

(A.5)

are non-negative. Note that c2 = 3/Ks > 0.
Fundamental relations analogous to (A.1) are obtained through the Legendre transformation:

f (T,3) = inf
s

[e(s,3) − T s] specific Helmholtz free energy, (A.6a)

h(s,P) = inf
3

[e(s,3) + P3] specific enthalpy, (A.6b)

g(P,T ) = inf
s,3

[e(s,3) − T s + P3] specific Gibbs free energy. (A.6c)
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From the thermodynamic stability requirements it follows that: the fundamental relation in the
Helmholtz representation is convex in 3 and concave in T , the fundamental relation in the enthalpy
representation is convex in s and concave in P, the fundamental relation in the Gibbs representation
is concave.

The knowledge of two (compatible) equations of state (EoS) is equivalent to the knowledge of
a fundamental relation. In practical applications, the thermal and caloric EoS

P = P(T,3) and e = e(T,3), (A.7)

respectively, often represent the only available thermodynamic information on the system, because,
differently from the fundamental relations or other EoS, they can be easily obtained from direct
measurements on the system or from mathematical models based on physical reasoning. With
the knowledge of the thermal and caloric EoS, the relation s = s(T,3) is obtained from the Euler
relation of thermodynamics e = T s − P3 and together with e(T,3) the Helmholtz fundamental
relation is constructed. An even more convenient choice is to specify the thermal EoS together
with the ideal-gas isochoric specific heat

c3,∞(T ) = lim
3→∞

c3 (T,3), (A.8)

which can be used to construct the caloric EoS from

e(T,3) = e0 +

∫ T

T0

[
c3,∞(τ) − τ

∫ ∞

3

∂2P
∂T2 (τ,υ)dυ

]
dτ +

∫ 3

30

T2 ∂

∂T

(
P(T,υ)

T

)
dυ, (A.9)

where subscript 0 indicates an arbitrary reference state.
In the following, the thermodynamic models adopted in this work are described in terms

of thermal EoS, except for the Span-Wagner model which directly expresses the Helmholtz
fundamental relation.

Ideal gas model
The widely diffused ideal-gas model, appropriate in dilute gases, is obtained by assuming that
gases are composed of identical point-particles interacting with each other only through elastic
collisions. The ideal-gas thermal EoS reads

P(T,3) =
RT
3

(A.10)

where R = Ru/Mm is the specific gas constant, being Ru = 8.314 J mol−1 K−1 and Mm the
universal gas constant and the molecular mass, respectively. Since both derivatives of the thermal
EoS appearing in (A.9) are identically zero, the caloric EoS assumes the simple form

e(T ) = e0 +

∫ T

T0

c3,∞(τ)dτ. (A.11)

If constant specific heat c3 is also assumed, the internal energy depends linearly on temperature
and the model is called polytropic ideal gas model or perfect gas model.

van der Waals model
The van der Waals (vdW) model (van der Waals, 1873) is the simplest model capable of representing
in a qualitative way both liquid and vapour homogeneous states. In the vdW model, particles have
a finite volume and interact through elastic collisions, subject to weak long-range attractive forces
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and strong short-range repulsive forces. The validity of model can be extended to the two-phase
region by introducing a correction based on the Maxwell construction. The vdW thermal EoS is

P(T,3) =
RT
3 − b

−
a
32 , (A.12)

where the constants a and b can be expressed in terms of critical quantities (subscript c) as follows:

a =
27
64

R2T2
c

Pc
, b =

1
8

RTc

Pc
. (A.13)

Even in this case, the caloric EoS is particularly simple, namely

e(T,3) = e0 +

∫ T

T0

c3,∞(τ)dτ −
a
3
, (A.14)

as ∂2P/∂T2(T,3) = 0. The van der Waals model is often used in its polytropic form c3 = const,
which has the advantage that the reduced EoS

Pr (Tr ,3r ) =
8
3

Tr

3r − 1
−

3
32
r

, (A.15)

er (Tr ,3r ) =
8
3

c3
R

Tr −
3
3r
, (A.16)

(A.17)

where Pr = P/Pc , 3r = 3/3c , Tr = T/Tc and er = e/(Pc3c ), depend only on the value of the
dimensionless specific heat at constant volume c3/R.

Martin-Hou model
The Martin-Hou thermal EoS (Martin & Hou, 1955), later improved by Martin et al. (1959), reads

P(T,3) =
RT
3 − b

+

5∑
i=2

Qi (T )
(3 − b)i

, (A.18)

where b = 3c − εRTc/(15Pc ) for a substance-specific constant 3 < ε < 4 and the functions Qi are
given by

Qi (T ) = Ai + BiT + Cie−kTr , (A.19)

with k = 5.475 and substance-dependent coefficient Ai , Bi and Ci that can be expressed in terms
of critical-point coordinates and of the properties of one state along the saturation curve (Martin &
Hou, 1955).

Improved Peng-Robinson-Stryjek-Vera model
The improved Peng-Robinson-Stryjek-Vera (iPRSV) thermal Eos, devised by Van der Stelt et al.
(2012) to enhance the original EoS by (Peng & Robinson, 1976) and it’s modification by (Stryjek
& Vera, 1986), reads

P(T,3) =
RT
3 − b

−
a

32 + 23b − b2 , (A.20)

where

a =

(
0.457235

R2T2
c

Pc

)
ᾱ(Tr ) and b = 0.077796

RTc

Pc
. (A.21)
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The ᾱ-function is given by

ᾱ(Tr ) =
[
1 +

(
1 +

√
Tr

)
κ(Tr )

]2
, (A.22)

in which κ is defined by

κ(Tr ) = κ0 + κ1

{√
[A − D(Tr + B)]2 + E + A − D(Tr + B)

} √
Tr + C. (A.23)

In the expression of κ, κ0 = 0.378893 + 1.4897153ω− 0.17131848ω2 + 0.0196554ω3 is a function
of the acentric factor ω, κ1 is a substance-specific parameter which can be obtained by regressing
experimental data and the remaining constant coefficients read A = 1.1,B = 0.25,C = 0.2,D = 1.2
and E = 0.01.

Span-Wagner model
Span & Wagner (2003a,b) developed a class of multi-parameter model for non-polar and weakly
polar fluids that can potentially provide highly accurate thermodynamic properties for technical
applications. The thermodynamic model is expressed in terms of the Helmholtz energy in the
reduced form fr = f /RT as a function of the inverse reduced temperature σ = 1/Tr and reduced
density ρr = ρ/ρc . The function fr (σ, ρr ) is therefore a fundamental relation. The functional
form fr (σ, ρr ) comprises two terms, an ideal-gas contribution f ig

r (σ, ρr ) and a residual part
f r
r (σ, ρr ) which accounts for the influence of intermolecular forces. The ideal-gas Helmholtz

energy is obtained from

f ig
r (σ, ρr ) =

h0σ

RTc
−

s0

R
− 1 + ln

(
ρr
ρr,0

σ0

σ

)
−
σ

R

∫ σ

σ0

cp,∞
τ2 dτ +

1
R

∫ σ

σ0

cp,∞
τ

dτ, (A.24)

where cp,∞ is the ideal-gas isobaric specific heat defined analogously to (A.8), σ0 = Tc/T0 and
ρr,0 = ρ0/ρc are the inverse reduced temperature and the reduced density at a prescribed reference
state (subscript 0), h0 and s0 are the ideal-gas specific enthalpy and entropy, computed in that state.
The reduced residual Helmholtz energy for non-polar and weakly polar fluids reads

f r
r (σ, ρr ) = n1ρrσ

0.25 + n2ρrσ
1.125 + n3ρrσ

1.5

+ n4ρ
2
rσ

1.375 + n5ρ
3
rσ

0.25 + n6ρ
7
rσ

0.875

+ n7ρ
2
rσ

0.675e−ρr + n8ρ
5
rσ

1.75e−ρr + n9ρrσ
3.625e−ρ

2
r

+ n10ρ
4
rσ

3.625e−ρ
2
r + n11ρ

3
rσ

14.5e−ρ
3
r + n12ρ

4
rσ

12.0e−ρ
3
r ,

(A.25)

where ni , i = 1, . . . ,12 are substance-specific parameters, which result from fitting or extrapolation
of a set of experimental data.
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APPENDIXB
Eigenvalue problem for the steady 2D Euler

equations

The steady two-dimensional Euler equations (4.1) can be written in quasi-linear form as

Ax (q)
∂q
∂x

+ Ay (q)
∂q
∂y

= 0, (B.1)

for the unknown q(x, t) defined in (4.2). In the above equation, Ax (q) = ∇qFx (q) and Ay (q) =

∇qFy (q) are the Jacobians of the fluxes, namely

Ax (q) =

(
∂Fxi

∂qj
(q)

)
16i, j64

, (B.2)

Ay (q) =

(
∂Fyi

∂qj
(q)

)
16i, j64

, (B.3)

where Fxi and Fyi denote the i-th element of the fluxes Fx and Fy , respectively (see definition 4.3),
and qj is the j-th element of q. The generalized eigenvalue problem(

Ay (q) − λk (q)Ax (q)
)
rk (q) = 0, (B.4)

where λk and rk indicate the k-th eigenvalue and right eigenvector, respectively, is associated with
the hyperbolicity of (4.1) and with the notions of genuinely nonlinear or linearly degenerate char-
acteristic fields through the derived quantity αk (q) = ∇qλk (q) · rk (q), known as the nonlinearity
factor of the k-th field, where

∇qλk (q) =

(
∂λk
∂qi

(q)
)

16i64
, (B.5)

is the vector of partial derivatives of the k-th eigenvalue with respect to q. Genuine nonlinearity of
a characteristic field corresponds to αk (q) , 0 for all q, while linear degeneracy to αk (q) = 0 for
all q. Since the properties of the characteristic fields do not depend on the chosen conservative or
nonconservative form of the nonlinear hyperbolic system, a suitable change of variables may be
advantageous (Godlewski & Raviart, 2013). Using the map

(ρ, ρux , ρuy , ρe + ρu2/2) 7→ (P,u,ϑ, s), (B.6)
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Appendix B. Eigenvalue problem for the steady 2D Euler equations

where ϑ = tan−1(uy/ux ) is the angle formed by the particle path with the x-axis, the Jacobians in
the mapped variables can be written as (the same notation is maintained for simplicity)

Ax (q) =



u cos ϑ/c2 ρ cos ϑ −ρu sin ϑ u cos ϑ
(
∂ρ
∂s

)
P

1/ρ u cos2 ϑ −u2 cos ϑ sin ϑ 0

0 u cos ϑ sin ϑ u2 cos2 ϑ 0

0 0 0 u cos ϑ



(B.7)

and

Ay (q) =



u sin ϑ/c2 ρ sin ϑ ρu cos ϑ u sin ϑ
(
∂ρ
∂s

)
P

0 u cos ϑ sin ϑ −u2 sin2 ϑ 0

1/ρ u sin2 ϑ u2 cos ϑ sin ϑ 0

0 0 0 u sin ϑ



. (B.8)

For supersonic flows, namely if M > 1, the eigenvalue problem (B.4) gives the well-known
eigenvalues

λ1(q) = tan(ϑ − µ), λ2,3(q) = tan ϑ, λ4(q) = tan(ϑ + µ), (B.9)

and eigenvectors

r1(q) =

*....
,

−ρu2

u
√

M2 − 1
0

+////
-

, r2(q) =

*....
,

0
1
0
0

+////
-

, r3(q) =

*....
,

0
0
0
1

+////
-

, r4(q) =

*....
,

ρu2

−u
√

M2 − 1
0

+////
-

, (B.10)

in which the angle µ = sin−1(1/M), is the Mach angle. In the mapped variables, the partial
derivatives of the eigenvalues read

∇qλ1(q) =
1 + tan2(ϑ − µ)
√

M2 − 1

(
−
Γ − 1
ρc2 ,

1
u
,
√

M2 − 1,−
1
c

(
∂c
∂s

)
P

)
, (B.11)

∇qλ2,3(q) =
(
0,0,1 + tan2 ϑ,0

)
, (B.12)

∇qλ4(q) =
1 + tan2(ϑ + µ)
√

M2 − 1

(
Γ − 1
ρc2 ,−

1
u
,
√

M2 − 1,
1
c

(
∂c
∂s

)
P

)
, (B.13)

so that to the above eigenpairs correspond the nonlinearity factors

α1,4(q) = Γ, α2,3(q) = 0, (B.14)

where a proper rescaling of the eigenvectors is used to eliminate the multiplicative factor in (B.11)
and (B.13). Relations (B.14) reflect the role of the fundamental derivative of gasdynamics in
determining the nature of the 1–field and 4–field.
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APPENDIXC
C1 continuity of βg(Θ) atΘ = 0

The functions βs (Θ,A) and β f (Θ,A) graphed in the two halves of the unified (βg ,Θ)–plane and
joining along the vertical axis Θ = 0 are continuous up to first derivative with respect to Θ. Of
the two shock branches, only the weak shock branch β4s (Θ,A) will be considered as it is the one
adjacent to the rarefaction curve. Continuity up to first order is analytically demonstrated hereunder.
For simplicity, the case of left-running shocks and rarefaction fans is considered only; the same
results will hold for the right-running counterparts because of rotational symmetry between the
βg–Θ relations for left-running and right-running waves. The same notation of 2.3 will be used,
although the independent variable here is Θ rather than 3B. For ease of notation, the dependence
of the shock angle function and of the equivalent-fan angle on the upstream state will be omitted.
Firstly, it the deviation angle is zero, the oblique shock wave degenerates into an acoustic wave,
so that β4s |Θ=0 = µA; at the same time, β f |Θ=0 = µA, according to (4.21). Thus, the piecewise
function defined by (4.22) is continuous at the zero-deviation angle. In order to verify the C1

continuity at Θ = 0, the derivatives of the shock angle and its equivalent fan angle are compared.
To show this, we first combine the mass balance and tangential momentum balance equations

across the shock into
ρA tan βs = ρB tan(βs −Θ), (C.1)

and we take the derivative with respect to Θ, thus obtaining

dβ4s
dΘ

�����Θ=0
= −(1 + tan µA) *

,
ρA tan µA +

d3B
dβs

�����βs=µA

+
-

−1

, (C.2)

in which tan µA = (M2
A − 1)−1/2 and taking the limit [3]→ 0 in relation (2.33) gives

d3B
dβs

�����βs=µA

= −2

√
M2

A − 1

ρAΓA
. (C.3)

Upon substitution, one gets

dβ4s
dΘ

�����Θ=0
=
ΓA

2
M2

A

M2
A − 1

. (C.4)

For the equivalent-fan angle, the derivative of β f with respect to Θ is simply

dβ f
dΘ

=
1
2

(
1 +

dµB

dMB

dMB

dΘ

)
, (C.5)
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where dµB/dMB = −

(
MB

√
1 − M2

B

)−1
and, from the theory of characteristics (see, e.g., Thomp-

son, 1988),
dMB

dΘ
= −

MB(1 + (ΓB − 1)M2
B)√

M2
B − 1

. (C.6)

Substitution into equation (C.5) yields, after evaluation at Θ = 0,

dβ f
dΘ

�����Θ=0
=
ΓA

2
M2

A

M2
A − 1

, (C.7)

thus demonstrating, together with equation (C.4), the C1 continuity of the piecewise function
defined by (4.22) at the zero-deviation angle.

By further differentiation, it can be shown that C2 continuity is not satisfied at Θ = 0. The long
calculations leading to this result for a general equation of state are not presented here. We report,
as an example, the expression pertaining the perfect-gas case, which reads

d2 β4s

dΘ2

�����Θ=0
=

d2 β f

dΘ2

������Θ=0

+
(γ + 1)2

16
M4

A(M2
A − 2)

(M2
A − 1)5/2

. (C.8)

The above equation shows that for a perfect gas, unless MA =
√

2, a finite jump in the second
derivative exists in passing through the no-deviation condition.

C.1 Bisector rule for steady oblique shock waves

In the neighbourhood of the Θ = 0 axis, oblique shock waves are weak enough to be well
approximated by isentropic compressions. In this limit, the bisector rule states that the slope of an
oblique shock equals the average between the pre-shock and post-shock characteristic slopes. The
bisector rule, which was originally addressed by Kluwick (1971) for the case of perfect gases, is
extended here to non-ideal equations of state in the context of classical gasdynamics Γ > 0. For
simplicity, the case of left-running shocks and rarefaction fans is considered only. Using (C.4)
with ΓA , 0, the Taylor series expansion of the shock angle, in the neighbourhood of Θ = 0, reads

βs = sin−1(1/MA) +
ΓA

2
M2

A

M2
A − 1

Θ + O(Θ2), (C.9)

where sin−1(1/MA) = µA = βcA is the slope of the pre-shock characteristics lines with respect to
the pre-shock flow direction. In the post-shock state, the slope of the characteristics lines (again
with respect to the pre-shock flow direction) is

βcB = Θ + sin−1(1/MB), (C.10)

where the second term is expanded, in the neighbourhood of Θ = 0, as

sin−1(1/MB) = sin−1(1/MA) −
1

MA

√
M2

A − 1

dMB

dΘ

�����Θ=0
Θ + O(Θ2). (C.11)

Because of the isentropic limit, the Mach number derivative in the above expression has the same
form as in Prandtl-Meyer waves (C.6), namely

dMB

dΘ

�����Θ=0
= −

MA(1 + (ΓA − 1)M2
A)√

M2
A − 1

. (C.12)
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C.1. Bisector rule for steady oblique shock waves

Thus, the post-shock characteristic slope in the isentropic limit is given by

βcB = sin−1(1/MA) + ΓA
M2

A

M2
A − 1

Θ + O(Θ2), (C.13)

showing that, if oblique shock waves are weak enough that the isentropic approximation applies,
namely in the neighbourhood of Θ = 0,

(βcA + βcB)/2 = sin−1(1/MA) +
ΓA

2
M2

A

M2
A − 1

Θ + O(Θ2) = βs , (C.14)

that is, the shock angle is the bisector of the pre-shock and post-shock characteristic lines.
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APPENDIXD
Numerical simulations of quasi-1D nozzle

flows: capturing sonic shocks

Selected contents from:

Vimercati, D. & Guardone, A. 2018. On the numerical simulation of non-classical quasi-1D steady
nozzle flows: Capturing sonic shocks. Applied Mathematics and Computation, 319, 617-632.

In this Appendix, the numerical simulation of non-classical nozzle flows within the quasi-1D
approximation is considered. Often, the numerical simulation of conservation laws with source
terms, such as the quasi-1D Euler equations, is carried out using fractional step methods, in
which one alternates the solution of the associated homogeneous system of conservation laws
and the solution of a system of ordinary differential equations in which the source term is the
vector field. However, fractional step methods can easily fail if the solution is close to a steady
state, where the source term must exactly balance the flux gradient (LeVeque, 1998). In order
to overcome these difficulties, several unsplit procedures have been proposed (see, e.g., Roe,
1987; Bermudez & Vazquez, 1994; LeVeque, 1998; Bale et al., 2003; Caselles et al., 2009),
which mainly rely on upwinding techniques for both the flux gradient and the source term. Here,
we focus on numerical schemes that combine an approximate Riemann solver of the Roe type,
whose capability of simulating accurately nozzle flows is well assessed (Glaister, 1988; Liou
et al., 1990; Mottura et al., 1997; Guardone & Vigevano, 2002; Cinnella, 2006), with an upwind
treatment of the source term. In this respect, one of the main advantages of a Roe solver is the
capability, rooted in the so-called Property U, of capturing steady shocks exactly, thus making
this class of schemes particularly suitable for steady-state computations. The latter claim will be
confirmed by numerical experiments with an approximate Roe solver (so called because Property
U is not satisfied) adopting a simplified procedure for minimal implementation complexity and
computational costs.

Since Roe schemes are approximate Riemann solvers, they all must be complemented with a
suitable entropy fix in order to prevent the occurrence of entropy violating solutions whenever the
flux computed from the approximate solver differs from the exact one. If the steady state includes
shocks that are sonic either on the upstream or downstream side, there is possible that a transonic
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Appendix D. Numerical simulations of quasi-1D nozzle flows: capturing sonic shocks

expansion lies in the vicinity of these shocks during convergence to their final, steady-state
position. The interaction between the entropy fix and the underlying source term is well-known to
be crucial for the steady-state balancing. In this respect, standard corrections (e.g., the entropy
fix of Harten & Hyman, 1983) modify the characteristic speed only in the attempt to generate
sufficient numerical viscosity; a similar treatment, however, can easily lead to inaccuracies and
balancing issues, as the source term is not handled accordingly. The prototypical synchronous
entropy fix of van Leer et al. (1989), which operates simultaneously on the characteristic speed
and on the source term, is considered. This transonic correction was devised in order to break
down sonic glitches in the throat of choked nozzle flows, which are possibly generated by standard
entropy corrections. Our numerical experiments will show that the synchronous splitting can
efficiently enforce the numerical balance near sonic shocks and that the neighbouring transonic
expansion can be cancelled provided that the numerical dissipation is adjusted.

D.1 Governing equations

The quasi-1D Euler equations, can be written in the general form of a balance law for the vector
unknown q(x, t) as

∂q
∂t

+
∂

∂x
F (q) = ψ(q, x), (D.1)

where
q =

(
ρ, ρu, ρe + ρu2/2

)T
(D.2)

is the vector of balance variables density and

F (q) =
(
ρu, ρu2 + P, ρhtu

)T
(D.3)

is the flux function, where the pressure is expressed as function of the balance variables, for
instance, from the equation of state P(e, ρ) for the internal energy e = q3 − q2

2/(2q1) and the
density ρ = q1. Other thermodynamic quantities encountered in the following are obtained
likewise. Finally,

ψ(q, x) = −
A′(x)
A(x)

(
ρu, ρu2, ρhtu

)T
(D.4)

is the geometrical source term, where A(x) is the known cross-sectional area distribution along the
axial coordinate x. In order to account for discontinuous solutions, system (D.1) is replaced at the
discontinuity location by the Rankine-Hugoniot relation, written in a laboratory reference frame as

[F (q)] = us[q], (D.5)

where [·] indicates the jump between the post-shock and pre-shock states and us is speed of
propagation of the discontinuity. Relations (D.5) must be complemented by suitable admissibility
criteria that rule out unphysical shock waves, see 2.3.

The flux Jacobian A(q) =
(
∂Fi (q)/∂u j

)
16i, j63

takes the form

A(q) =



0 1 0
∂P
∂q1
− u2 ∂P

∂q2
+ 2u ∂P

∂q3

u
(
∂P
∂q1
− ht

)
ht + u ∂P

∂q2
u
(
1 + ∂P

∂q3

)


(D.6)
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where the partial derivatives of the pressure with respect to the conservative variables can be
written as

∂P
∂q1

=

(
∂P
∂ρ

)
e

−
1
ρ

(
e −

u2

2

) (
∂P
∂e

)
ρ

, (D.7)

∂P
∂q2

= −
u
ρ

(
∂P
∂e

)
ρ

, (D.8)

∂P
∂q3

=
1
ρ

(
∂P
∂e

)
ρ

. (D.9)

and gives real eigenvalues

λ1(q) = u − c, λ2(q) = u, λ3(q) = u + c. (D.10)

In single-phase thermodynamic regions, the speed of sound is strictly positive, so that (D.1)
constitutes a strictly hyperbolic system of balance laws. One can recognize the well-known
left-facing characteristic waves (dx/dt = u − c) and right-facing waves (u + c), separated by the
particle trajectories (see, e.g., Thompson, 1988). The nature of the characteristic fields (D.10) is
determined by the nonlinearity factors, defined analogously to the steady 2D case (Appendix B),
which read

α2(q) = 0, α1,3(q) = ∓Γ, (D.11)

While the second characteristic field is linearly degenerate, the first and third fields could exhibit
either genuine nonlinearity, if the flow fully evolves in the regime Γ > 0 or Γ < 0, or mixed
nonlinearity, if fluid states features both Γ > 0 and Γ 6 01. The scale-invariant flows (functions
of x/t) associated with the above characteristic fields can be: continuously differentiable simple
waves, shock waves or their combinations (composite waves) in the left-facing or right-facing wave
families and contact discontinuities in the degenerate field (Menikoff & Plohr, 1989). As discussed
in §4.3, the scale-invariant wave patterns in the (x, y)–plane for 2D steady supersonic flow and
in the (x, t)–plane for the present unsteady 1D case are qualitatively equivalent. In particular, the
wave curve consisting of states connected to a given initial state by a scale-invariant solution are
analogous to the extended wave curves computed in §4.4.1 and 4.5.1 (provided, of course, that
the spreading of simple-wave fans is interpreted in 1D as time progresses, rather than in 2D and
oblique shocks are replaced by unsteady normal shocks).

D.2 Upwind-differencing schemes for non-homogeneous hyperbolic systems

Let us define a uniform grid x j = x0 + j∆x, j = 1, . . . ,N , with cell interfaces x j±1/2 = x j ±∆x/2,
and let Q j (t) denote the numerical approximation to the cell average of q over the jth cell,
x ∈ [x j−1/2, x j+1/2]. We assume that the approximate solution of (D.1)-(D.5) is sought within the
computational domain x ∈ [x0, xN ] by solving a sequence of interface Riemann problems (Toro,
2013), with initial data given by the piecewise constant states Q j , of the form

∂q
∂t

+ Â j+1/2
∂q
∂x

= ∆xΨ j+1/2 δ(x − x j+1/2), (D.12)

where Â j+1/2 is an approximate Jacobian and the source term has been replaced by a delta of
amplitudeΨ j+1/2 located at the cell interface. This treatment of the source term, introduced by

1Non-classical shock waves may feature Γ > 0 both at the pre-shock and at the post-shock state, see Zamfirescu et al.
2008. This, however, requires that the corresponding shock adiabat bridges the thermodynamic region Γ < 0.
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Bale et al. (2003) in the context of wave-propagation methods for balance laws, leads naturally to
the following wave decomposition,

Â j+1/2(Q j+1 −Q j ) − ∆xΨ j+1/2 =
∑
k

βkj+1/2 rkj+1/2, (D.13)

where rk
j+1/2 is the k-th right eigenvector of the approximate Jacobian (the notation is slightly

different from that of §4 and Appendix B, here the index is displayed in the superscript for more
clarity). The associated waves of intensity βk

j+1/2 are thus distributed to the neighbouring cells
based on the sign of the corresponding eigenvalues. This procedure yields a semi-discrete scheme
of the form

Q′j = −
1
∆x

(
Fj+1/2 − Fj−1/2

)
+

1
2

(
Ψ j+1/2 +Ψ j−1/2

)
, (D.14)

where the numerical flux Fj+1/2 is given by

Fj+1/2 =
1
2

(
F (Q j ) + F (Q j+1)

)
−

1
2

∑
k

sgn(λkj+1/2) βkj+1/2 rkj+1/2, (D.15)

showing the upwind character of both the flux difference and the source term integral. In the
following sections are described the building blocks of our class of schemes, namely the choice of
the approximate Jacobian and the discretization of the source term along with the related entropy
conditions.

D.2.1 Roe linearization for non-ideal gases
One of the most popular and effective approximate Riemann solvers, based on a local linearization
of the original nonlinear system, is due to Roe (1981). The basic theory behind the Riemann solver
of Roe is here recalled; for a detailed review see, e.g., LeVeque (1992). Let ql and qr denote the
left and right states, respectively, in the Riemann problem for the hyperbolic system with flux
function F (q) and flux Jacobian A(q). A Roe linearization matrix is a constant-coefficient matrix
Â(ql ,qr ) satisfying the following properties, collectively referred to as Property U:

(i) Â(ql ,qr )(qr − ql ) = F (qr ) − F (ql ).

(ii) Â(ql ,qr ) is diagonalizable with real eigenvalues.

(iii) Â(ql ,qr ) → A(q) smoothly as ql ,qr → q.

The above conditions ensure, in the order specified, the conservation of the resulting algorithm,
the hyperbolicity of the linearized system and the consistency of the approximation. In addition,
in the special case where ql and qr are connected by a single discontinuity, conditions (i) and (ii)
guarantee that the approximate Riemann solution agrees with the exact Riemann solutions.

Once the Roe linearization matrix has been defined, the approximate Jacobian at x j+1/2 is
obtained by setting Â j+1/2 = Â(Q j ,Q j+1). Despite the explicit form of Â(ql ,qr ) depends on
the particular linearization procedure employed, it has been noticed (see Mottura et al., 1997;
Guardone & Vigevano, 2002) that two general classes of linearization techniques can be delineated.
The first one includes Roe matrices, termed in Jacobian form, that are obtained by evaluating the
flux Jacobian at a suitable intermediate state q̃(ql ,qr ), namely

Â(ql ,qr ) = A
(
q̃(ql ,qr )

)
. (D.16)

With such an approach, condition (ii) is automatically satisfied and (iii) reduces to q̃(ql ,qr ) → q
as ql ,qr → q. The intermediate state is obtained from condition (i), which is easily seen to yield
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a one-parameter family of solutions and thus requires that an additional constraint is specified.
For a perfect gas, the additional constraint is an identity if u and ht are chosen as the independent
variables. In this case, the renowned Roe averages

ũ =

√
ρlul +

√
ρrur

√
ρl +

√
ρr

and h̃t =

√
ρl ht

l
+
√
ρr ht

r
√
ρl +

√
ρr

,

are recovered. Roe linearizations in Jacobian form are rather uncommon for non-ideal fluids,
because of the complexity of the system of equations stemming from condition (i). A notable
example is the Roe linearization proposed by Guardone & Vigevano (2002), in which the supple-
mentary condition is selected in order to reduce significantly the complexity associated with the
definition of the intermediate state.

An alternative approach stems from the observation that, for a general non-ideal equation of
state, only the elements of the extended state

p =

(
u,ht ,

∂P
∂q1

,
∂P
∂q2

,
∂P
∂q3

)
(D.17)

explicitly appear into the definition (D.6) of the flux Jacobian (in the perfect-gas case, only u and
ht appear explicitly, owing to the first-degree homogeneity of the corresponding flux function).
The so-called linearizations in quasi-Jacobian form assume the Roe matrix to be of the form

Â(ql ,qr ) = A
(
p̃(ql ,qr )

)
, (D.18)

where each of the elements of the intermediate extended state p̃ is taken as independent unknown
of the linearization problem, i.e. the velocity, the total enthalpy and the partial derivatives of
the pressure which are no longer computed from some state q̃ (in which case the linearization
would indeed be in Jacobian form). The definition of the five parameters is usually carried out by
assuming the celebrated Roe averages for the velocity and total enthalpy along with relation

∂̃P
∂q1

= −ũ
∂̃P
∂q3

(D.19)

to enforce thermodynamic consistency. This procedure reduces the number of degrees of freedom
resulting from the imposition of condition (i) to one. Based on the choice of the remaining
parameter, many different methods have been derived that include most of the Roe linearizations
available in the scientific literature, such as those due to Abgrall (1991), Cox & Cinnella (1994),
Glaister (1988), Grossman & Walters (1989), Liou et al. (1990), Vinokur & Montagné (1990).
As pointed out by Toumi (1992), one possible drawback of linearizations in quasi-Jacobian form,
with respect to those in Jacobian form, is the lack of a compatible intermediate state, which may
lead to inconsistencies whenever the elements of the extended state are used to compute derived
thermodynamic quantities. In addition, this approach does not guarantee, in general, that conditions
(ii) and (iii) are fulfilled and further constraints could be required.

It has been noticed (see, e.g., Abgrall, 1991; Mottura et al., 1997), however, that none of
these formulations was proved to be clearly superior to the others, while, on the other hand,
the numerical efficiency is largely influenced by the complexity of a particular formulation. In
this respect, most difficulties in the computation of Â lie with condition (i) of Property U. This
ultimately led some researchers to adopt solvers which do not satisfy exactly condition (i), but only
in some approximate manner (thus, they are not formally Roe schemes and will be referred to as
approximate Roe solvers), still giving reasonably accurate results, see Masella et al. (1999), Buffard
et al. (2000), Cinnella (2006). These simplified procedures sacrifice some of the advantages of
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an exact (in the sense that Property U is satisfied exactly) linearization in order to minimize
implementation complexity and computational costs.

To the best of the authors’ knowledge, there does not exist any study of the performance of these
Roe-type linearizations when applied to the computation of steady nozzle flows of non-ideal gases,
that possibly include non-classical waves. Thus, numerical experiments will initially focus on the
assessment of selected linearization procedures. Three formulations will be tested as representative
of different linearization philosophies: the solvers of Guardone & Vigevano (2002) and of Vinokur
& Montagné (1990) as representative of the exact linearizations in Jacobian and quasi-Jacobian
form, respectively, and the simplified formulation of Cinnella (2006) as representative of the
approximated linearization procedures.

D.2.2 Source term discretization
The Roe schemes described above require that some sort of discretized form of the source term
Ψ j+1/2 is defined at cell edges. Note that, if the interface valuesΨ j+1/2 approximate the source
term to O(∆x2), then the resulting scheme (D.14)-(D.15) is second-order accurate in space (it is
easy to see that each flux difference and source term integral are centred on the same interval). In
this work, we use the simple average

Ψ j+1/2 =
1
2

(
ψ(Q j , x j ) + ψ(Q j+1, x j+1)

)
(D.20)

to discretize the source term, even though this choice will not yield a well-balanced scheme, i.e.
initial equilibrium values would not be preserved by the method. As discussed by LeVeque (2011),
a suitable average resulting in a well-balanced scheme can be conveniently defined for diverse
problems; these, unfortunately, do not include the quasi-1D Euler equations. However, in most
numerical experiments for which our scheme appropriately models the flow field (recognizing, for
instance, transonic expansion or non-classical composite waves), the residual of the solution is as
low as 10−10 and the scheme is found to be balanced almost to machine precision.

D.2.3 Sonic entropy correction

The upwind contribution to the interface flux along the k-th right eigenvector rk in (D.15) can be
written as

sgn(λk ) βk = |λk |αk − sgn(λk )zk∆x, (D.21)

where we have used Q j+1 − Q j =
∑

k α
krk andΨ j+1/2 =

∑
k zkrk (subscript j + 1/2 has been

dropped for brevity). If a transonic expansion occurs at the interface Riemann problem, namely
if the data are such that λkj < 0 < λk

j+1, the eigenvalue λk of the dissipation matrix can possibly
vanish, thus leading to the formation of entropy-violating shocks (with outgoing characteristics).
Popular transonic entropy fixes are those due to Harten (1983), Harten & Hyman (1983), LeVeque
(1992) or Kermani & Plett (2001), which rely on the model of a smooth transonic expansion wave
to generate a sufficient amount of numerical viscosity. These transonic fixes lead to redefine in
some way the characteristic speed near a sonic point; for instance, in the case of the Harten &
Hyman (1983) correction, |λk | is replaced by

|λk |∗HH =
1
2

*
,

(λk )2

δk
λ

+ δk
λ

+
-
, (D.22)

where δk
λ

= max(0,λk − λkj ,λ
k
j+1 − λ

k ) controls the band over which the entropy correction is
enforced. The above mentioned entropy corrections have been successfully employed to break
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Test Case Inlet Outlet
P/Pc ρ/ρc M P/Pc ρ/ρc M

TC1 1.3295 1.3056 0.4655 1.3210 1.2955 0.3832
TC2 1.0708 1.1964 0.4695 1.0707 1.1946 0.3778
TC3 0.1658 0.0083 0.6070 0.0468 0.0024 1.7000
TC4 1.0726 1.2000 0.4561 1.0847 1.2253 0.3314
TC5 1.0829 1.2223 0.4415 0.3206 0.1418 1.5178

Table D.1. Inlet (x = −1) and outlet (x = 1) boundary conditions for each of the test cases.

down entropy-violating shocks in both unsteady and steady-state problems governed by hyperbolic
conservation laws. However, direct application of any of these sonic fixes to systems incorporating
source term may lead to unsatisfactory results, especially when a steady-state solution is sought.
The most noticeable defect, as shown by van Leer et al. (1989), consists in a two-cell sonic plateau
placed at the throat of steady nozzle flows in choked conditions, where the transition from subsonic
to supersonic flow takes place. In the work of van Leer et al. (1989) a cure to this problem, known
as the entropy bypass, is proposed. The entropy bypass consists in the synchronous splitting of
the characteristic speed and of the source term near a sonic point. If a transonic rarefaction is
detected, namely if λkj < 0 < λk

j+1, the average values λ̄k = (λkj + λk
j+1)/2, z̄k = (zkj + zk

j+1)/2 and
the spreading δk

λ
= def (λk

j+1 − λ
k
j ), δkz = def (zk

j+1 − zkj ) for both the characteristic speed and the
source term can be recognized. These are used to compute the effective absolute value |λk |∗V L ,

|λk |∗VL =
(λ̄k )2

δk
λ

+
δk
λ

4
, (D.23)

which is used in place of |λk | and the effective source term zk∗,

zk∗ =
λ̄k

δk
λ

*
,
2z̄k − λ̄k

δkz

δk
λ

+
-

+
δkz
4
, (D.24)

which is used in place of sgn(λk )zk in (D.21). As pointed out by van Leer et al. (1989), adding a
suitable splitting of the source term to that of the characteristic speed, in the presence of transonic
expansions, allows to smoothly match the backward and forward facing parts of the fan while the
sonic point is approaching its final position in the throat (where the source term vanishes), thus
avoiding sonic plateaus in the steady-state solution. The above transonic flux formula contains a
free parameter def controlling the spreading of the expansion fan. In their numerical experiments,
van Leer et al. (1989) report that def = 2 ÷ 4 allows to reach the correct steady-state flow at a
sonic throat, starting from arbitrary initial conditions, whereas lower values of def would result in
the formation of a sonic plateau. The analysis of Goodman & LeVeque (1988) also indicates that
optimal robustness in handling a sonic throat is obtained with def = 4.

In the following numerical experiments, scheme (D.14)-(D.15) for the Jacobian, quasi-Jacobian
and simplified formulation of the Roe matrix will at first be tested along with different entropy
corrections. To the best of our knowledge, there has been no investigation on the effectiveness
of this class of schemes in steady-state computations of non-ideal, possibly non-classical, nozzle
flows. Next, the performance of the synchronous splitting of van Leer et al. (1989) will be studied,
with particular emphasis on the role of the artificial spreading of the expansion fan.
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D.3 Numerical results
In this section, the upwind schemes described above are applied to the solution of a set of steady
nozzle flows of BZT fluids, which are all modelled as van der Waals gases with c3/R = 50.
All computations refer to the converging-diverging geometry used in §3. A 400-cell uniform
computational grid is used throughout this work. The boundary conditions for the test cases
considered in the following are reported in Table D.1. Characteristic boundary treatment is used.
Solutions are marched in time with the forward Euler time stepping (we are not interested in
temporal accuracy). The CFL number is set to 0.8. The initial condition for each of the test cases
is a constant distribution of the mass flow rate and a linear distribution of pressure and density
matching the boundary conditions. No flux limiter will be used, insofar as scheme (D.14)-(D.15),
in which any of the above-mentioned Roe solvers is used along with treatment (D.20) for the source
term, will yield second-order accurate steady state solutions. Local time stepping is used to speed
up convergence to the steady state. The 2-norm of the time derivative of the numerical solution is
used as stopping criteria: when this residual is 10−10 times a reference residual (computed in the
initial stages of the time marching), the flow is considered steady. The exact solutions to which our
numerical results are compared, are computed using the technique described in §3.

D.3.1 Assessment of selected Roe solvers and entropy fixes
To begin with, the effect of one particular choice of the Roe solver and of the entropy correction is
discussed. The Roe formulations examined here are the exact solvers due to Vinokur & Montagné
(1990), Guardone & Vigevano (2002) and the approximate solver of Cinnella (2006). The shorthand
“VM”, “GV” and “CS”, respectively, will be used for the three solvers to be tested. At sonic points,
the entropy corrections of Harten & Hyman (1983), LeVeque (1992) and Kermani & Plett (2001)
are considered, to be referred to as “HH”, “LV” and “KP” corrections, respectively.

In our first test case, denoted as TC1, the inlet pressure and density are selected in the dense-gas
thermodynamic region at slightly supercritical conditions. The exit boundary data is such that the
steady-state solution features a subsonic to supersonic transition in the throat and a compression
shock wave in the diverging section. The computed Mach number distributions are shown in figures
D.1-D.3 along with the exact solutions; the corresponding convergence histories are reported in
figures D.11(a-c). Note that the scheme obtained with the CS solver and LV entropy fix failed to
converge; the Mach number distribution reported in figure D.2 is a snapshot extracted from the
limit cycle in which the computation is trapped. The considered Roe formulations exhibit similar
performances in smooth regions of the flow field: the solutions of the VM and GV solvers are
always superposed and CS performs only slightly different, owing to the fact that the latter satisfies
Property U to within O(‖qr −ql ‖2). However, none of the transonic entropy fix methods examined
here is able to produce a perfectly smooth transition in the throat of the nozzle (see enlargements
in figures D.1-D.3). Here, the closest agreement with the exact solutions is obtained with the KP
correction, owing to the larger band over which the correction is enforced and the correspondingly
larger artificial numerical viscosity introduced (see Kermani & Plett, 2001). The two-cell plateau
that is computed when the sonic point is approaching the throat also causes slow convergence
towards the steady state. This agrees with the analysis of van Leer et al. (1989). Regarding the
behaviour of the three solvers near discontinuities (see enlargements in figures D.1-D.3), the exact
solvers (VM and GV) are considerably more accurate than the simplified procedure. While the
VM and GV formulations produce sharp shock profiles, the CS solver introduces large oscillations
both upstream and downstream of the discontinuity. Presumably, this effect is a direct consequence
of the larger numerical viscosity introduced by the simplified procedure, which is not capable of
capturing steady shocks across a single cell interface and tends to smear the discontinuities across
multiple cells.

168



D.3. Numerical results

1.4

1.2

1.0

0.8

0.6

0.4

M

-1.0 -0.5 0.0 0.5 1.0
x

 Exact
 VM
 GV
 CS

(a)

1.02

1.00

0.98

0.96
-0.02 -0.01 0.00 0.01 0.02

x

(b)

1.2

1.0

0.8

0.6

0.4
0.700.680.660.640.620.60

x

(c)

Figure D.1. TC1-HH: comparison of the Mach number distributions obtained with the Roe solvers
evaluated and the entropy correction of Harten and Hyman on a non-ideal, yet classical, shocked nozzle
flow. (a) Complete flow field; (b) enlargement of the throat region; (c) enlargement of the shock wave in the
diverging section.
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Figure D.2. TC1-LV: same as Figure D.1 but with LeVeque’s entropy correction.

Next, a more challenging test case is considered. Boundary data for TC2 have been selected
to obtain three discontinuities within the nozzle, as shown in figures D.4-D.6. The first one is a
rarefaction shock with sonic upstream state, located upstream of the throat. The remaining ones
are compression shocks downstream of the throat: the second one is a classical shock, whereas the
third one is a non-classical shock with sonic upstream state. All the simulations carried out with
the HH and LV entropy corrections failed to converge, see the convergence histories in figures
D.11(d- f ); the Mach number distribution reported in figures D.4 and D.5 are snapshots extracted
from the limit cycle in which the computations ended. The analysis of the residual’s distribution
reveals that, using HH and LV fixes, balancing issues occur at cell interfaces neighbouring the
sonic shocks on the upstream side, where a transonic expansion is computed in time marching
from the initial distribution of the balance variables and prevents the solution from reaching a
steady state. On the contrary, no balancing issues occur using the KP fix; the larger bandwidth of
this correction guarantees a numerical steady state solution. Nevertheless, none of the considered
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Figure D.3. TC1-KP: same as Figure D.1 but with Kermani and Plett’s entropy correction.
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Figure D.4. TC2-HH: comparison of the Mach number distributions obtained with the Roe solvers evaluated
and the entropy correction of Harten and Hyman on a non-classical nozzle flow with three shock waves, two
of which have sonic upstream state. (a) Complete flow field; (b) and (c) enlargements of the sonic shocks.

Roe solvers and entropy fixes is accurate in the close proximity of sonic shocks (the KP fix, in this
respect, is the most inaccurate), nor in the throat section as already observed in the previous test
case.

Similarly to TC1, the exact solvers seem to perform better than the simplified solver. Moreover,
if the TC2 simulations are initialised using the exact steady-state solution, which does not include
transonic expansions near the sonic shocks, the method equipped with either VM or GV solvers
preserves the initial distribution without adding sonic points; on the other hand, the CS solver
produces a distribution similar to that reported in figures D.4-D.6 (without converging to a steady
state). The latter observation suggests that, for the exact solvers, the inaccuracies near sonic
shocks and the lack of convergence to the steady state can be eliminated or reduced by using more
sophisticated entropy corrections accounting for the presence of the background source term. In
contrast, the glitches exhibited by the simplified solver should be ascribed not only to the entropy
fix, but also to the solver itself, thus pointing again to the benefits (rooted in Property U) of a
sharp-shock representation.
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Figure D.5. TC2-LV: same as Figure D.4 but with LeVeque’s entropy correction.
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Figure D.6. TC2-KP: same as Figure D.4 but with Kermani and Plett’s entropy correction.
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Figure D.7. TC3: Mach number distributions obtained from the GV solver with equipped with the entropy
bypass on a smooth nozzle flow expanding from subsonic inlet conditions to supersonic exit conditions. (a)
Complete flow field; (b) enlargement of the throat section.
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D.3.2 The entropy bypass for capturing sonic shocks

The assessment of the different Roe solvers carried out in the previous section calls attention to
the superior performances of the exact solvers for steady-state calculations. In this respect, the
GV and VM solvers showed negligible differences in the numerical results. In the following,
we will examine the behaviour of an exact Roe solver in conjunction with entropy corrections
that are able to produce the desired steady state balance and accuracy near sonic shock waves.
Without loss of generality, the GV solver will be considered herein (calculations performed with
the VM solver, not shown here, show indeed minimal differences). The next series of numerical
experiments will take advantage of the transonic treatment of van Leer et al. (1989), referred to
by the authors themselves as the entropy bypass (“EB” in the following). The entropy bypass,
see relations (D.23)-(D.24), is based on a synchronous splitting of the characteristic speed and
source term integral near a sonic point. Such a joint treatment, devised in the context of classical
nozzle flows to fix sonic glitches in the throat of choked nozzle flows, can be successfully applied
to non-classical flows including sonic shocks, see below.

Before commenting on the possibility of obtaining accurate representation of sonic shocks,
we consider a smooth choked flow, indicated as TC3 in Table D.1, expanding from subsonic inlet
conditions to supersonic exit conditions. Thus, at the steady state, a transonic expansion is located
in the throat of the nozzle, which is precisely the situation for which the EB transonic formula was
originally formulated. The effectiveness of the simultaneous splitting of the characteristic speed
and the source term is shown in figure D.7. Our numerical results are consistent with the previous
findings: if the spreading parameter is sufficiently large, namely def = 2 according to the analysis
of van Leer et al. (1989), the sonic plateau is removed. On the contrary, the choices def = 0.5 and
def = 1 lead to the same inaccuracies observed in TC1 (though here the convergence to the steady
state was faster, see figure D.11(g)).

We turn now to a non-classical nozzle flow which represents, in a sense, the opposite scenario
of the previous test case and it is used here to evaluate the behaviour of the synchronous splitting
near sonic shocks. The flow field for TC4 includes two shock waves with sonic upstream states, but
no supersonic points. Numerical results obtained with different values of the spreading parameter
are shown in figure D.8 and the corresponding convergence histories are reported in figure D.11(h).
The computations performed with def = 0.5 and def = 1 converged to the steady state, suggesting
that the entropy bypass at sonic points can possibly balance transonic expansions even when these
are located far from the throat, namely, where the source term does not vanish. Most importantly,
the amplitude of the transonic expansion that is incorrectly computed during time marching can be
reduced by decreasing the value of the spreading parameter of the model fan. Eventually, using
def = 0.5 the transonic expansion is completely removed and the errors in the location of the sonic
shock is significantly reduced.

The effect of the parameter def on the spreading of the transonic fan can be explained as follows.
As the sonic shock approaches its steady-state position, the solution of the Riemann problem at the
corresponding cell interface will have, in general, the structure of a composite wave. In this regard,
the larger the spreading of the model expansion fan in the entropy correction formula, the larger
will be the smooth fan in the composite wave. Thus, with large values of def , the sonic shock will
be wrongly captured as a sequence of transonic expansion and non-sonic shock.

D.3.3 An improved formula

The present analysis allows us to clarify two important aspects related to the treatment of sonic
points in steady nozzle flows. Firstly, if the source term is not modified jointly with the characteris-
tic speed, large inaccuracies can be found either in the throat of choked flows and in proximity of
sonic shocks. In the latter condition, one also has to expect unbalancing problems that destroy the
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Figure D.8. TC4: Mach number distributions obtained from the GV solver with the entropy bypass on
a non-classical flow including two sonic shocks (both on the upstream side) but no supersonic points. (a)
Complete flow field; (b) and (c) enlargements of the leading and trailing sonic shocks, respectively.

convergence towards the steady state, unless a large band entropy fix, such as the KP one, is used.
The second relevant consideration is that the synchronous splitting can efficiently break down
sonic plateaus and provide steady-state balance even when a transonic rarefaction is computed in
the time advance. However, in order to meet these goals and, in particular, to improve resolution
of sonic shocks, the spreading of the transonic fan in the entropy correction should be specifically
adjusted. On the one hand, large values of def guarantee perfectly smooth subsonic to supersonic
expansions in the throat of choked flows; on the other hand, lower values of def allow to improve
the resolution of sonic shocks. The fact that, at the steady state, subsonic to supersonic transition
can take place only at the throat, while sonic shocks occur away from it (except for very special
boundary data marking the transition of functioning regimes RNC

1 /RNC
2 ), suggests that a possible

way to deal with non-classical steady nozzle flows is to adapt def to the the various regions of
the nozzle. The simplest approach, in this sense, would consist in selecting a small value of def
everywhere except in the nozzle throat, where a larger spreading parameter is triggered to provide
an appropriate amount of numerical dissipation in case a transonic expansion occurs at the steady
state.

This simple treatment of the sonic points is tested again on TC2, see figure D.9. Here we
have reported the numerical solutions obtained from the plain EB correction with def = 0.5 and
def = 2, whose inaccuracies have been previously discussed, and the numerical results of the mixed
approach, which is denoted as “improved”. The improved procedure is constructed by imposing
def = 0.5 everywhere except for few interfaces neighbouring the throat, where def = 2 is triggered.
Here, the empirical choice def = 0.5 for handling sonic shocks away from the throat is motivated
by the parametric study shown in figure D.8. On the other hand, the choice of the throat value
def = 2 is consistent with the analysis of van Leer et al. (1989) and with our numerical experiments
shown in figure D.7. The same procedure is applied to TC5, shown in figure D.10, which exhibits
a post-sonic shock in the diverging section of the nozzle. In both cases, the improved treatment
of transonic expansions makes it possible to combine the advantages of the choice def = 2 in the
sonic throat and the enhanced resolution of sonic shocks provided by def = 0.5. For both TC2 and
TC5, the improved method converges rapidly to the exact steady state, see figures D.11(i- j).

Admittedly, the simple modification described above can be unsatisfactory if the exact steady
state contains a sonic shock at the throat, which can possibly occur for special boundary data
marking the transition between functioning regimes RNC

1 and RNC
2 . A more robust and general
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Figure D.9. TC2-EB: comparison of the Mach number distributions obtained from the GV solver equipped
with the plain and improved entropy bypass. (a) Complete flow field; (b) enlargement of the leading sonic
shock; (c) enlargement of the throat region.
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Figure D.10. TC5: comparison of the Mach number distributions obtained from the GV solver equipped
with the plain and improved entropy bypass. The flow field features a shock with downstream sonic state in
the diverging section and a subsonic to supersonic transition in the throat of the nozzle. (a) Complete flow
field; (b) enlargement of the throat region; (c) enlargement of the sonic shock.

entropy correction would consist in adapting the spreading parameter only when a sonic or nearly
sonic shock is detected. This would require, in turn, the definition of a general procedure for
detecting sonic shocks. The design of such an enhanced treatment is left for future investigations.
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Figure D.11. Convergence history for each of the test cases.
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Appendix D. Numerical simulations of quasi-1D nozzle flows: capturing sonic shocks
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NOMENCLATURE

Acronyms/Abbreviations
BZT Bethe-Zel’dovich-Thompson
CFL Courant-Friedrichs-Lewy
CS Cinnella’s solver
D6 Dodecamethylcyclohexasiloxane
DKLL D’yakov-Kontorovich limit locus
DS Double-sonic shock
DLS Locus of DS points double-sonic locus
EB Entropy bypass
EoS Equation of state
GV Guardone and Vigevano (Roe solver)
HH Harten and Hyman (entropy fix)
iPRSV Improved Peng-Robinson-Stryjek-Vera
KP Kermani and Plett (entropy fix)
LuT Look up table
LV LeVeque (entropy fix)
MDM Octamethyltrisiloxane
MD4M Tetradecamethylhexasiloxane
MM Hexamethyldisiloxane
MH Martin-Hou
NICFD Non-ideal compressible-fluid dynamics
ORC Organic Rankine cycle
PP10 Perfluoroperhydrofluorene
PSmax Pre-shock state of maximum-intensity post-sonic shock
PSsat Pre-shock state of post-sonic shock with post-shock saturated conditions
PSLmax Locus of PSmax points
PSLsat Locus of PSsat points
PSLL Pre-shock limit locus
R245fa 1,1,1,3,3-Pentafluoropropane
Re Reynolds number
SD Sonic-shock disintegration
SW Span-Wagner
TI Turbulence intensity
TVD Total variation diminishing
vdW van der Waals
VL Van Leer et. al. (entropy fix)
VLE Vapour-liquid equilibrium
VM Vinokur and Montagné (Roe solver)
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Latin alphabet
a Parameter of the vdW and MH EoS
A Upstream or pre-shock state
A Triplet of independent variables describing the pre-shock state
A Nozzle cross-sectional area; parameter of the MH and iPRSV EoS
A∗ Critical cross-sectional area
AJ
τ Point of maximum entropy along JA = 0 locus

AV
dM,0 Pre-shock state for stationary post-shock Mach number on the VLE line

AJ
V ,1 High-density intersection between JA = 0 locus and VLE line

AJ
V ,2 Low-density intersection between JA = 0 locus and VLE line

A Flux Jacobian
Â Approximate Jacobian
b Parameter of the vDW, MH and iPRSV EoS
B Downstream or post-shock state
B Parameter of the MH and iPRSV EoS
c Speed of sound
cb Blade chord
cp,∞ Ideal-gas isobaric specific heat
c3 Specific heat at constant volume
c3,∞ Ideal-gas isochoric specific heat
C Parameter of the MH and iPRSV EoS
C Classical wave curve
C Contact discontinuity
def Fan-spreading parameter for entropy correction
D Parameter of the iPRSV EoS
e Specific internal energy
E Parameter of the iPRSV EoS
f Specific Helmholtz free energy
f ig
r Ideal-gas Helmholtz energy (SW EoS)

f r
r Residual Helmholtz energy (SW EoS)

F Flux of conservative or balance variables; numerical flux
F3 3-component of the vector field of the shock layer equations
FT T-component of the vector field of the shock layer equations
F Reflected rarefaction fan
g Specific Gibbs free energy
G Grüneisen coefficient
h Specific enthalpy
I intersection between the local isentrope and Γ = 0 locus
S Isentropic pattern
I Incident shock
j Mass flux function
J Dimensionless isentropic derivative of the M w.r.t. ρ at constant ht

k Thermal conductivity; Parameter of the MH EoS
Ks Isentropic compressibility
K Dimensionless isochoric derivative of c w.r.t. s
l Characteristic length of relaxation processes
l0 Mean-free path
L Characteristic macroscopic length
m Mass flux across discontinuity
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ṁ Mass flow rate
ṁc Critical mass flow rate
ṁs Mass flow rate for choked nozzle
ṁmax Maximum mass flow rate dischargeable by the nozzle
M Mach number
M tr

A Transitional upstream Mach number
Mm Molecular mass
M Mach stem
n Parameter of the SW EoS
n Normal unit vector
N Non-classical wave curve
p Extended state for quasi-Jacobian linerization
P Pressure
Pa Ambient pressure downstream of the nozzle
q Conservative variables or balance variables
Q Numerical approximation of the cell average of q; parameter of the MH EoS
r Right eigenvector
R Specific gas constant
Ru Universal gas constant
R Functioning regime
R Reflected shock
sτ Isentrope tangent to the J = 0 locus
sτ,1 Isentrope tangent to the Γ = 1 locus
sτ,0 Isentrope tangent to the Γ = 0 locus
s3le Isentrope tangent to the vapour-liquid saturation curve
S Downstream state of double-sonic oblique shock
S+ Downstream state of post-sonic oblique shock
S− Downstream state of pre-sonic oblique shock
T Temperature
T Transmitted shock
u Velocity vector
u Velocity magnitude
3 Specific volume
V Volume
4 Conservative variables (scale-invariant form)
x Streamwise coordinate (1D, Quasi-1D) or cartesian coordinate (2D)
y Cartesian coordinate
y+ Wall unit
z Wave component of approximate source term

Greek alphabet
α Nonlinearity factor; wave component of cell average difference
ᾱ Parameter of the iPRSV EoS
β Outlet pressure to upstream stagnation pressure ratio;

wave component of numerical flux difference and source term contribution
βc Characteristic line angle w.r.t upstream flow direction
β f Equivalent-fan angle w.r.t upstream flow direction
βg Generalized wave angle w.r.t upstream flow direction
βs Shock angle w.r.t pre-shock flow direction
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β4s Shock angle w.r.t pre-shock flow direction (weak oblique shock)
βss Shock angle w.r.t pre-shock flow direction (strong oblique shock)
βs,sat Shock angle leading to post-shock saturated conditions
β̃s Shock angle of Mach number–preserving oblique shock
γ Specific heats ratio
Γ Fundamental derivative of gasdynamics
Γmin Minimum value of Γ in the vapour region
δ Delta function
δλ Entropy correction band
∂V Volume surface
∆ Shock thickness
ε Ambient to reservoir pressure ratio
ε Parameter of the MH EoS
ζ Volume viscosity
ζS Kinetic energy loss coefficient
ϑ Flow direction angle
Θ Flow deflection angle across oblique waves or ramp/wedge angle
κ Parameter of the iPRSV EoS
κ0 Parameter of the iPRSV EoS
κ1 Parameter of the iPRSV EoS
λ Eigenvalue
Λ Dimensionless isentropic derivative of Γ w.r.t ρ
µ Mach angle; shear viscosity
µt Eddy viscosity
ν Prandtl-Meyer function
ξ Similarity variable (2D steady flow)
Π Relative slope Rayleigh line/shock adiabat
ρ Density
σ Inverse reduced temperature
ψ Source term
Ψ Relative mass flux function w.r.t post-sonic shock mass flux; approximate source term
ω Acentric factor

Superscripts
H Evaluation on the Hugoniot locus
t Total or stagnation thermodynamic state
∼ Roe average; Intermediate state for quasi-Jacobian linerization
− Average value between neighbouring cells
∗ Effective value for the entropy correction

Subscripts
0 Variable at a reference state; variable upstream of the turbine cascade
05 Variable at half axial chord downstream of the trailing edge
1 Variable downstream of the turbine cascade
A Upstream or pre-shock state
B Downstream or post-shock state
c Thermodynamic variable at the critical point
d Detachment condition
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e Variable at the nozzle exit section
j ± 1/2 Variable at the cell interface j/ j + 1
l Left state in the Riemann problem
n Normal component
out Mass flow averaged variable at the domain outlet
q Gradient w.r.t the q-variables
r Reservoir variable (nozzle flow); reduced thermodynamic variable;

right state in the Riemann problem
s Sonic point
S+ Variables at downstream state of post-sonic oblique shock
SD Variable at the sonic-shock disintegration locus
t Tangential component
tr Variables at the nozzle throat
x x-component; x-Jacobian
y y-component; y-Jacobian

Mathematical symbols
∇ Gradient
× Vector product
· Scalar product
O Big O

Other symbols
[] Jump across shock wave (from pre-shock to post-shock)
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