
i
i

“output” — 2019/1/14 — 22:34 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONICS, INFORMATION, AND BIOENGINEERING

DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY

PERCEPTION AS BEHAVIOUR INDUCING MECHANISM:
A REINFORCEMENT LEARNING PERSPECTIVE

Doctoral Dissertation of:
Mirza Ramicic

Supervisor:
Prof. Andrea Bonarini

Tutor:
Prof. Francesco Amigoni

The Chair of the Doctoral Program:
Prof. Andrea Bonarini

Year 2018 – Cycle XXX

i
i

“output” — 2019/1/14 — 22:34 — page 2 — #2 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 1 — #3 i
i

i
i

i
i

A great thanks to Professor Bonarini for an amazing journey this PhD has been.
Thank you for trusting me with your bow tie ./ It has been an honour.

To my parents. To my uncle Feruh who passed away during the writing of this work.
You always believed in me.

I appreciate the help from Professor Dusan Starcevic and Professor Tim Miller
taking the time to review the work and provide feedback on how it could be

improved.

i
i

“output” — 2019/1/14 — 22:34 — page 2 — #4 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page I — #5 i
i

i
i

i
i

Abstract

Rapid advancement of machine learning makes it possible to consider large amounts
of data to learn from. Learning agents may get data ranging on real intervals di-
rectly from the environment they interact with, in a process that is usually time-
expensive. To improve learning and manage these data, approximated models and
memory mechanisms are adopted. In most of the implementations of reinforcement
learning facing this type of data, approximation is obtained by neural networks and
the process of drawing information from data is mediated by a short-term mem-
ory that stores the previous experiences for additional re-learning, to speed-up the
learning process, mimicking what is done by people. In this work, a multitude of
techniques are presented, each of them concerned not just with data collected by the
agent, but with how the feedback from its environment is encoded and managed by
the learning mechanism trough a mediating replay memory structure. This opens up
a possibility of implementing different replay memory architectures forming differ-
ent modes of agent’s artificial perception. The techniques presented in this work try
to exploit the influence that an artificial perception brings on the learning process.
Their application ranges from improving performance to inducing behavioral char-
acteristics of learning agents.

Reinforcement learning agents can use artificial perception in order to support the
emergence of personality traits commonly found in humans. Experimental results
show that different personality traits help the agent adapt and thrive in different vari-
ations of the environment. Two novel algorithms are presented; one models the main
personality dimension of Introversion-Extraversion in a multi-agent social environ-
ment while the other is concerned with the emergence of the dimension of Openness
to Experience.

Reinforcement learning agents are able to evolve their artificial perception over gen-
erations in order to be more efficient in receiving the feedback from the environment.
Experimental results show that the novel algorithm is capable of evolving the state
of artificial perception not only to improve performance but also change the overall

I

i
i

“output” — 2019/1/14 — 22:34 — page II — #6 i
i

i
i

i
i

agents behavior and prevent oversaturation of replay memory.

Reinforcement learning agents can make use of the artificial perception to improve
the overall perfomance of learning with two novel algorithms. Experimental results
show that both context augmented machine learning algorithm and a novel sampling
criteria based on Shannon’s entropy can outperform the standard uniform sampling
and improved sampling based on the temporal difference error prioritization.

Reinforcement learning agents can benefit from artificial perception in order to learn
temporally extended complex actions. A novel approach is presented.

II

i
i

“output” — 2019/1/14 — 22:34 — page III — #7 i
i

i
i

i
i

Summary

The introduction presented in chapter 1 provides a motivational basis for the general
theme of this work and outlines in short the underlying principles of the main mech-
anism that this work focuses on: reinforcement learning.
Chapter 2 introduces the main meta-algorithm of Artificial Perception on which most
of the algorithms presented in this work are based by first presenting its inspiration
and origins in biological mechanisms.
The mechanism of cognitive filter is used in chapter 3 to model the human person-
ality traits by modifying the agent’s perception dynamics, specifically openness to
experience in section 3.1 and the main axis of personality extraversion in section 3.2.
The same dynamics of perception is artificially evolved using genetic algorithm as
presented in chapter 4 in order to provide the agents with the better adaptation to
their environment.
Chapter 5 extends the use of cognitive filter beyond modeling the behavioral char-
acteristics and, instead, presents a novel sampling dynamics and a novel sampling
criterion that combined with the algorithm improve the convergence rate of the main
reinforcement learning algorithm.
Chapter 6 focuses on making use of the replay memory component from the cogni-
tive filter in order to enable efficient learning of the complex hierarchical actions that
span across multiple learning steps by providing a delayed reinforcement.
The discussion of the implications of this work as well as the general overview of the
presented material is found in chapter 7.

III

i
i

“output” — 2019/1/14 — 22:34 — page IV — #8 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page V — #9 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 The curse of dimensionality part I: Information overload 2
1.2 The Perception Paradox . 2
1.3 The need for selection . 3

1.3.1 The Protective layer . 4
1.3.2 An Autistic Robot . 5

1.4 The curse of dimensionality part II: Approximation 6
1.4.1 Starting simple . 6
1.4.2 Temporal Difference . 9
1.4.3 Scaling Up . 10
1.4.4 Beyond the Perceptron . 11

2 The Perception Model 15
2.1 Origins . 15
2.2 Adaptation Through Artificial Perception 17

2.2.1 Introduction . 17
2.2.2 Related Work . 18
2.2.3 Model Architecture and Learning Algorithm 18
2.2.4 Experimental setup . 19
2.2.5 Experimental Results . 20
2.2.6 Discussion . 21
2.2.7 Conclusions . 22

3 Character Matters 27
3.1 Modeling Openness to Experience 29

3.1.1 Model Architecture and Learning Algorithm 29
3.1.2 Experimental setup . 33
3.1.3 Experimental results . 36
3.1.4 Discussion . 40

3.2 Modeling Extraversion . 42

V

i
i

“output” — 2019/1/14 — 22:34 — page VI — #10 i
i

i
i

i
i

Contents

3.2.1 Cognitively Inspired Architectures 42
3.2.2 Model Architecture and Learning Algorithm 42
3.2.3 Experimental setup . 42
3.2.4 Experimental results . 44
3.2.5 Discussion . 47

3.3 Related Work . 47
3.3.1 Prioritized sampling and replay 47

3.4 Conclusions . 48

4 Evolution 55
4.1 Perception as Attention Focusing Mechanism: An Evolutionary Per-

spective . 56
4.1.1 Model Architecture and Learning Algorithm 56
4.1.2 Experimental Setup . 59
4.1.3 Experimental Results . 60
4.1.4 Discussion . 62

4.2 Related Work . 64
4.2.1 Artificial attention as a behavior inducing mechanism 64
4.2.2 Evolutionary Adaptive Approaches 64

4.3 Conclusion . 65

5 The Performance 69
5.1 Context Augmented Reinforcement Learning 69

5.1.1 Introduction . 69
5.1.2 Related Work . 70
5.1.3 Model Architecture and Learning Algorithm 70
5.1.4 Experimental Setup . 71
5.1.5 Experimental Results . 72
5.1.6 Discussion . 73

5.2 Entropy-based Prioritization . 76
5.2.1 State space entropy prioritization 76
5.2.2 Experimental setup . 78
5.2.3 Experimental results . 79
5.2.4 Limitations . 81

5.3 Conclusion . 81

6 Temporally Extended Actions 85
6.1 Delayed Memory Reward . 85

6.1.1 Theoretical Background . 86
6.1.2 Delayed Memory Reward Hierarchical Learning 87
6.1.3 Experimental setup . 88
6.1.4 Experimental results . 89

6.2 Conclusion . 89

7 Conclusion 93

Acronyms 99

VI

i
i

“output” — 2019/1/14 — 22:34 — page VII — #11 i
i

i
i

i
i

Contents

Bibliography 100

VII

i
i

“output” — 2019/1/14 — 22:34 — page VIII — #12 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 1 — #13 i
i

i
i

i
i

CHAPTER1
Introduction

Machine learning has established itself as one of the important technologies with a
wide application domain that is still about to reach its golden age of expansion. Re-
infocement learning or RL as a branch of machine learning doesn’t depend on the
human expert training information since it generates the all of the required infor-
mation from the consequences of its decisions that are a product of its interaction
with immediate environment. This gives reinforcement learning an advantage over
the problems where is difficult to obtain a reliable expert training. There are al-
ready interesting areas on applications and industrial products that rely on RL. It
has been used to design first reinforcement learning DRAM controller that could
outperform speed of process executions of the state-of-the-art ones by taking into ac-
count of long-term consequences of task scheduling [28]. Researchers from Google
DeepMind played 49 different Atari 2600 games using a RL approach called Deep
Q-learning or DQL [39, 40] and were able to perform beyond human playing level
on a good number of games. A year later, another project was presented by the same
team called AplhaGo [55], a combination of deep convolutional neural networks,
reinforcement learning, supervised learning and Monte Carlo tree search achieved
amazing results by winning over professional players in the complex game of Go.
In the process of reinforcement learning [59] , agents perform a sequence of inter-
actions with their immediate environment defined over a Markov Decision Process
or MDP [59]. During this process the agent constantly receives a specific feedback
from its environment in the form of a scalar reward that provides the information
used in creating a policy π. A policy is a function that maps the perceived state of the
environment that the agent is currently sensing to the Value of each action available
to the agent. Value functions in Temporal Difference or TD based learning [62] can
be viewed as higher order rewards or their predictor as they represent an estimate of

1

i
i

“output” — 2019/1/14 — 22:34 — page 2 — #14 i
i

i
i

i
i

Chapter 1. Introduction

the amount of expected reward in the future after that state is visited and the specific
action was performed. Creating and maintaining policy is the goal of the reinforce-
ment learning, which is used to determine the agent’s behavior or, more precisely,
which action will potentially yield a better sequence of rewards in the future given
the current state of the agent. We call as optimal policy π∗ the policy that maximizes
the reward in the long run: it provides an agent with optimal behavior based on the
state of its environment.

1.1 The curse of dimensionality part I: Information overload

If we look at this learning approach in a broader sense, it consists in a constant pro-
cess of reducing uncertainty, or entropy, of the set of possible actions that the agent
is able to perform in each given state, as perceived from the environment, in order to
maximize its reward in the long run. At the very beginning of the learning activity,
the probabilities of selecting actions as given by their state-action pair values can be
set as similar, because the agent has not learned the proper action for the state, yet.
This corresponds to a high uncertainty of the agent’s belief about its environment.
As the agent proceeds in the learning process, the estimated values for the actions
become more differentiated from each other, the probabilities shift towards the pre-
ferred actions and the uncertainty or entropy of the agent’s belief about its environ-
ment decreases. This process effectively compresses the high amount of information
received from its constant interaction with environment into a much higher density
representation of values of the possible actions. The compressibility of the informa-
tion decreases with the increase of state space dimensionality or amount of variables
that the agent perceives to interpret the environment it is acting. In a typical learning
episode, an agent performs hundreds of thousands of transitions, each described by
a starting state st, ending state st+1 a reward received and an action taken which,
when it is facing a high dimensional state space, drastically increases the amount of
information it needs to compress into the value function. While the state space di-
mension increases with the advancement of new approaches, the amount of actions
that are available to the agents in most cases is, for practical reasons, very low in
comparison. Often, we expect an agent to navigate a 2D space by taking 4 primitive
actions: left,right,down,right. This brings to an inefficiency of trying to compress
ever growing amount of data received from the environment with a constantly lim-
ited dictionary that is encoding a great deal of information into a low number of
possible actions.

1.2 The Perception Paradox

We have seen that the reinforcement learning process can be viewed as a compres-
sion of information received by a multitude of agent’s experiences into a limited set
of functions that govern its behavior for the purpose of better adaptation to the envi-
ronment. This implies also that if an agent has to improve its adaptation, it needs to
extract as much useful information as possible from its environment in the form of
transitions. This is achievable by designing an optimal state space able to encompass
all relevant characteristics of the environment, and also by motivating the agent into

2

i
i

“output” — 2019/1/14 — 22:34 — page 3 — #15 i
i

i
i

i
i

1.3. The need for selection

transitioning to more "interesting" states by additionally rewarding the transitions
that potentially carry more informational content. This brings us to a paradoxical sit-
uation in which a well designed agent is information hungry about its environment,
but it is also limited when it comes to effectively compress this information into its
value function. With the promise of better function approximation techniques used
by recent developments, agents are able to perceive and adapt to an increasingly
complex environments by increasing the dimensionality of their state space. This
is especially evident in the use of DQL approaches, which, for instance, are able to
play Atari games where the state space representation is including every pixel of the
viewport [39] . Despite this growth in the amount of information perceived from the
environment, the agents are still faced with a small action space, which also accounts
to a few atomic actions in Atari games.
Similiarly to the above mentioned computational solution, the evolutionary devel-
opment of a human brain was followed by its ability to perceive and elaborate an
increasing amount of external stimuli from its immediate environment. However, no
matter how much the brain processing power increased, its ability to process these
sensory data still remained very much limited [16] . Contrasting this limitation, the
same paradoxical need for the information is present in the brain’s constant need for
external stimuli. The preference for novel experiences is also found in the devel-
oping human brain, as babies not only prefer, but are driven to focus attention on
situations that include novelty and surprise [6, 27, 63] in order to acquire the needed
stimulation. The brain during this phase of the development depends so much on
the entropy of its perceived environment that if the brain of a newborn is sensory
deprived of its much important stimuli, it will not develop. Like the computational
approach of reinforcement learning, it needs to be constantly surprised in order to
develop. However, recent discoveries in neuro-plasticity also show that the fully de-
veloped brain is not that static as previously thought, since it is constantly changed
and shaped by perceived information, or the lack of it. As the information flows in,
the neural pathways that get stimulated make new connections and grow, and the
ones that are not stimulated will shrink over time. The brain is being modeled by in-
formation that is perceiving and this modification affects its further perception. This
hunger for information is so evident that the most of our insights in the workings
of this complex organ comes from the studies that examine what happens when the
person is deprived of it. For example, if a person had lost its ability to see, the part
of the brain in which the visual information is processed will shrink and some other
competing sense, such as hearing, will expand over this area making new connections
between neurons [21]. Along with the sensory deprivation, too much activation of
one specific brain area can influence its growth. This is the case, for example, when
we try to learn how to master a musical instrument: the part of the brain in charge
of processing notes significantly expands to cope with the overflow of this specific
information.

1.3 The need for selection

At the current stage of development our brains are bombed with millions of bits of
information each second, but we are able to consciously process only about 126 bits

3

i
i

“output” — 2019/1/14 — 22:34 — page 4 — #16 i
i

i
i

i
i

Chapter 1. Introduction

over that time interval [16]. The existence of this cognitive bottleneck brought the
need for another mechanism, capable of focusing, at each time, on the subset of in-
formation actually useful for the cognitive process. This cognitive filter that protects
us from the sensory overload caused by perceiving millions of bits every second is
called attention [16, 23]. The studies using FMRI confirmed that this filtering pro-
cess is happening on the level of neurons. In one of the studies [33], monkeys have
been shown a green circle followed by green circle accompanied by a red one. What
is interesting is that the activity in the visual cortex was exactly the same when the
green circle is shown besides a red one as when the green circle was displayed on its
own. This effect is called biased competition as it seems that the similar type of neu-
rons compete with each other for the specific stimuli that can provide an activation.
This also means that the amount of perceived, competing information determines the
amount of attention needed.
There are two kinds of selective attention that the human brain is capable of per-
forming. One is controlled attention and its mechanisms are active when we want to
consciously force our attention to an object; the other one is stimulus-driven attention
when our brain is focusing on a surprising event in our environment. Both of them
evolved separately in different parts of the brain in order to improve our chances of
survival. First type of attention helped us hunt for sources of food with the ability to
focus on the pray while the second one protected us from predators by shifting the
attention towards potential source of danger.

1.3.1 The Protective layer

A major role in this filter is played by a system named working memory or WM,
which acts as a buffer between our perception and its conscious processing [3]. The
working memory consists of a temporary memory storage along with specialized
mechanisms for replaying its contents. This seemingly simple mechanism is essen-
tial for many mental tasks such as controlling the attention to solve logical tasks. It
also relies on the central or executive attention that is in charge of regulating its active
contents therefore providing a specific memory-related context for the higher order
cognitive processing [22]. By now, a growing number of psychological and neuro-
science studies have confirmed that the working memory is selective when it comes
to storing stimuli: sensory stimuli that are important to the goal show enhanced ac-
tivity while the other irrelevant stimuli are suppressed [18, 20, 26]. This buffer not
only serves as a protective barrier against sensory overload, but provides a cognitive
context by holding on to the memories that are supportive of our current goal. This
is especially important from the standpoint of reinforcement learning in which the
behaviour is fully goal-oriented and could benefit from this type of selective directed
behavior.
Along with the types of experiences stored, the WM capacity can greatly affect the
higher cognitive processes or our ability to solve problems [22]; the higher the capac-
ity the more context we have for reasoning and solving demanding tasks. As we can
see from the simplified illustration Figure 1.1 the capacity is not everything when it
comes to perception. Cognitive bandwidth also referred as breadth of attention [31]
signifies how much different sensory information can a person focus at a given time,

4

i
i

“output” — 2019/1/14 — 22:34 — page 5 — #17 i
i

i
i

i
i

1.3. The need for selection

it can be viewed also as a bandwidth of a channel from perception to the working
memory.

Figure 1.1: Simplified model of the WM ability of mediating perception by its capacity and breadth
of attention

In fact, machine learning algorithms are now more than ever taking inspiration
from the physiology of human brain that is especially evident in approximation tech-
niques of Deep Q-learning or DQL [39] and its replay memory mechanism which is
functionally related to the concept of working memory found in humans. Similarly,
in modern approaches to DQN the stream of experiences are not directly propagated
to the learning mechanism in order to create a TD error that is used to update the
Artificial Neural Network ANN function approximator. Instead, they are mediated
by a specific mechanism called Experience Replay [36,39] that is used to store some
of the experiences in a sliding window memory in order to make it possible for an
agent to learn from its past experiences.

1.3.2 An Autistic Robot

When faced with sensory overload due to the lack of mediating cognitive filter that
working memory provides in humans, the presented oversimplified model of rein-
forcement learning certainly would not exhibit complex pathological behaviors, but
its learning or compression abilities will be affected by an increased level of com-
peting, redundant and inadequate information that is receiving from its environment.
As the learning progresses, the function approximator used to predict the value of the
state-action pairs Q(s, a) = fθ(s, a) is constantly changed by shifting its coefficients
in order to determine the optimal action. The experiences that agent perceives vary
according to their ability to convey information to the approximator or they related-
ness to a specific goal that the agents is trying to perform. Because of this constantly
shifting dynamics of the approximator an agent that is being equally exposed to expe-
riences in in risk of constantly unlearning the effects of important experiences from
the exposure to noisy experiences that are not likely to influence learning as much.
The signal formed by the important experiences that is crucial for our approxima-

5

i
i

“output” — 2019/1/14 — 22:34 — page 6 — #18 i
i

i
i

i
i

Chapter 1. Introduction

tion is being lost in the noise of the cognitive stream.Due to the training algorithm
based on gradient descent in order to theoretically achieve the correct approximation
at each learning iteration our function approximator should be trained on all of the
dataset or in our case the cumulative experience history up to that point. This being
highly inefficient, we instead sample a small batch of experiences from our replay
memory for the re-training which should be our representative sample of the whole
experience set. This also accounts for sensory overload because each experience is
considered of an equal value for the approximator and therefore the re-training of the
more important experiences will be less effective at the cost of noise that is created
by revisiting less important transitions. The inability to separate the important infor-
mation from the sensory overload of our perception can lead to serious problems in
humans. Due to the overwhelming complexity of human brains most of our insights
come from the situations where some specific part of it is damaged or malfunction-
ing. This is how we identify which area of the brain is essential for processing which
type of activity by identifying which higher-order complex brain function is reduced
or lost by the lack of the missing part.
One of these situations appears when a combination of genetic predispositions and
certain toxic events in the early embryonic development form a series of hypersen-
sitive neural circuits in the brain that can later affect its functional connectivity, and
lead to the most common symptoms of autism. Recent studies [24] show that the
main drive for autistic behaviours is the social and sensory over stimulation which
can lead to difficulties in development. Brains affected with autism are hypersensitive
and prefer predictable, well-structured and safe stimulations from environment be-
cause of their innate inability to process high amounts of information that is provided
by their perception. In other words, people with autism have difficulty sorting out im-
portant information from the noise of the less important stimuli. Since the ability to
prioritize on the information is affected, people with this condition often tend to iso-
late themselves from the massive sensory overload, by seeking relief in environments
that can provide them with sensory deprivation. The bias towards lower entropy en-
vironments that are not able to provide enough information for development destroys
the subject’s ability to learn and feel, and leaves them disconnected from the reality
of ever changing social and sensory environment of their daily life. The inability to
process the sensory perception in autism is often attributed to a specific condition
of Sensory Processing Disorder or SPD introduced by sensory integration theory in
early Eighties [2]. This condition accounts for the difficulty in discriminating sen-
sation and the feeling of being overwhelmed with the sensory stimulation. Some
patients with SPD respond normally when only one sensory modality is presented,
but when two or more stimuli types are presented, as in normal daily life they are not
able to provide an appropriate response.

1.4 The curse of dimensionality part II: Approximation

1.4.1 Starting simple

One of the simplest environments that we can define over MDP is the so-called grid-
world shown in Figure 1.2. It consists of a rectangular grid in which every cell

6

i
i

“output” — 2019/1/14 — 22:34 — page 7 — #19 i
i

i
i

i
i

1.4. The curse of dimensionality part II: Approximation

}

Figure 1.2: A simple Gridworld showing the possible states and set of available actions

represents either a single state defined as a transitioning one, shown in white, or a
terminal state represented by a star. The action space is consisting of four atomic ac-
tions that move the agents deterministically into the adjacent cells as a consequence
of each transition. In the terminal state the agent is rewarded by a scalar value of
r = −1. As we have seen before, the goal of the learning process is the creation of
a policy π which maps the current state to a probability of selecting an action that
would take the agent to a next state. More precisely, we seek out a specific policy
called optimal policy that will achieve a maximum reward over the long run. To help
us determine the optimal policy we can calculate value functions v for the possible
states. These value functions represent an estimation on how good is the given state
or how much return in the form of reward we can expect from being in that specific
state and following the policy π.

To obtain an optimal policy we follow two Dynamic Programming or DP algo-
rithms. The first one enables the system to obtain the values for each state by multiple
iterations of Equation 1.1 over all states summing up the values all of the possible
actions that lead the agent to the next states. This process is called iterative policy
evaluation and as we can see from Algorithm 1 it requires tedious computation in
which the value for each state is updated in multiple sweeps using Equation 1.1 until
the value of the state is reaching a stability.

vπ(st) =
∑
at

π(at|st)
∑
st+1,rt

p(st+1, r|st, at) [rt + γvπ(st+1)] (1.1)

The starting point of this algorithm is shown in Figure 1.3 which initializes the
value of the states to equal 0.0 and defines an equiprobable random policy that
doesn’t favour any action and this represents the situation with the maximum un-
predictability or entropy.

After three sweeps of Algorithm 1 we can see on the left grid of Figure 1.4 that
the value functions are differentiating from each other and the agent has learned to
value of some states more than others. All that is left is the process of updating the
policy π to represent an optimal policy π∗ w.r.t the new values for the states using the

7

i
i

“output” — 2019/1/14 — 22:34 — page 8 — #20 i
i

i
i

i
i

Chapter 1. Introduction

Algorithm 1 Iterative Policy Evaluation

Input π, the policy to be evaluated
Initialize and array v(st) = 0 for all st ∈ S+

repeat
∆← 0

for each st ∈ S do
b← v(st)

v(st)←
∑

at
π(at|st)

∑
st+1,rt

p(st+1, r|st, at) [rt + γv(st+1)]

∆← max(∆, |b− v(st)|)
end for

until ∆ < Θ (small positive number)

★

★

★

★

Figure 1.3: A random policy π w.r.t value of the states

8

i
i

“output” — 2019/1/14 — 22:34 — page 9 — #21 i
i

i
i

i
i

1.4. The curse of dimensionality part II: Approximation

other part of the process which is policy improvement. Since the optimal policy π∗

is the policy that will bring the most reward in the long run it is simply the one that
is value-function-greedy in its choice of actions. So, it is possible to perform policy
improvement by selecting actions that lead to highest values of the next states and we
can see the final result in the right part of Figure 1.4 that shows the optimal policy
taking into the consideration the value functions calculated on the left.

Figure 1.4: An optimal policy π∗ w.r.t value of the states

1.4.2 Temporal Difference

One of the disadvantages of DP methods is that they require a model of an envi-
ronment, in other words we need to know the probabilities of landing in a next
states st+1 by performing an action at on current state st which we can see from
the p(st+1, r|st, at) part of Equation 1.1. Temporal difference or TD approaches on
the other hand don’t require any knowledge of the model as they update the esti-
mates based on the previous learned estimates without waiting for the final outcome.
This bootstraping method is shown in Equation 1.2 as the value function for the state
v(st) is shifted by a small amount α in the direction of TD error which is represented
by a difference of our target expectation for the value after the transition which is
rt+γv(st+1) and our previous estimate of the value function given by v(st). Our tar-
get value for the update is defined by Bellman equations which defines the expected
value of the state to be an immediate reward received rt plus the value of the next
state v(st+1) discounted by parameter γ.

v(st)← v(st) + α [rt + γv(st+1)− v(st)] (1.2)

Taking it a step further Q-learning is a off-policy approach approximating q values
instead of value functions. Similar to value functions q values take state-actions pairs
instead of states only and determine how good is to be in the state st and perform an
action at. In this way, the target value for the q(s, a) becomes immediate reward
received plus the discounted q value of the expected next state and the action that
maximizes it. Expectation value is crucial to the learning process as it can tell us

9

i
i

“output” — 2019/1/14 — 22:34 — page 10 — #22 i
i

i
i

i
i

Chapter 1. Introduction

Algorithm 2 Q-learning: and off-policy TD algorithm

Initialize q(s, a) for each combination, and q(terminal − state, ·) = 0

repeat
Initialize S
repeat

Choose an action a using a policy derived from q (usually ε-greedy)
Take action a and observe reward r and the next state st+1

q(s, a)← q(s, a) + α [r + γmaxa q(st+1, a)− q(s, a)]

until S is terminal
until Final episode is reached

how wrong we were in the previous estimate of the q value. This difference between
our previous estimation and our expectation is called temporal difference or TD error
and is indicative of how far the system is wrong with the current estimate of the
value of the state-action pair. Knowing this error, It is possible to perform the main
learning loop outlined in Algorithm 2 by updating the predictions for the state-action
pairs making them closer to the expectation.

q(s, a) = E
[
rt + γmax

at
q(st+1, at)|s, a

]
(1.3)

1.4.3 Scaling Up

The techniques for solving learning problems using iterative updates of DP have their
limitations when faced with high dimensional or continuous state spaces because of
the need to memorize a table of the value functions for all of the states and action
combinations. This becomes infeasible if our state input is for example grayscale
values of every pixel of atari game; although not continuous, the gray scale values
representing a single pixel are integers ranging from 0 to 255 and this leads to an
enormous number of possible states.
To cope with this we borrow a method commonly used in supervised learning which
uses a function to approximate the value function based on the state and action val-
ues on its input. The simplest form of the approximation function is to represent
a value of state-action pairs by a weighted linear combination of the state features
like in Equation 1.4 where wn represents a weight and fn represents the n-th feature
of the state input. This represents the simplest model of an artificial neuron called
perceptron which was introduced by Rosenblatt as early as 1957. The basic idea is
simple, a weight signifies how much, and in which direction the corresponding state
feature influences our approximated q, and tweaking those weights enables the sys-
tem to improve the approximation or representation of the input. All of the weights
are updated according to Equation 1.5 by similarly nudging it towards the TD error
in the proportion of its feature value fi(s, a).

q(s, a) = w1f1(s, a) + w2f2(s, a) + ...+ wnfn(sa) (1.4)

10

i
i

“output” — 2019/1/14 — 22:34 — page 11 — #23 i
i

i
i

i
i

1.4. The curse of dimensionality part II: Approximation

If we were to use temporal difference method, we would simply look up the state-
action pair in our table and nudge it by α in the direction of the TD error in order
to update our belief about the value and perform learning. However, when using
a function approximator like the simple linear combination of weighted features,
learning consists of updating its weights in order to better represent q value at the
output.

wi ← wi + α

[
rt + γmax

at
q(st+1, at)− q(s, a)

]
fi(s, a) (1.5)

The basic principle is to minimize the total error defined in Equation 1.7 as the
square difference between target value or observation after transition i given by y =
rt + γmaxat q(st+1, at) and our prediction ŷ = q(s, a).

error =
∑
i

(yi − ŷi)2 =
∑
i

(yi −
∑
k

wkfk(xi))
2 (1.6)

To find out how we can minimize the received error on just one point xwe can take
a derivative with respect to some specific weight wm as shown in Equation 1.7. From
this we can infer that if we want to minimize the error function we should change
the weights in the direction away from the derivative of the error function w.r.t the
weight wm which corresponds to the learning update already defined in Equation 1.5.

∂error(w)

∂wm
= −

(
y −

∑
k

wkfk(x)

)
fm(x) (1.7)

1.4.4 Beyond the Perceptron

In order to form an artificial neural network or ANN a non-linearity can be intro-
duced in the linear representation of perceptron given in Equation 1.4; the easiest
way to do this is to apply a simple non-linear function on top of it like Rectified
Linear Unit or ReLU shown in Equation 1.8. This is called activation function.

ReLU(x) = max(x, 0) (1.8)

A neuron is defined in Equation 1.9 as the function that takes some vector on the
input and returns its non-linear activation function defined over the linear combina-
tion of weighted input vector.

f(x1, x2, ...xn) = max(0, w1x1 + w2x2 + ...+ wnxn) (1.9)

A simple neural network architecture is shown in Figure 1.5, it consists of three
fully connected layers, one of which represent the input of two variables x1 and x2,
which do not perform any calculation. We can apply a different activation func-
tion to the last neuron such as non-linear sigmoid for example. The final result is a
complex, non linear function that is parametrized by a set of weights Θ as shown in
Equation 1.10.

f(x1, x2) = Sigmoid
(
w3

1ReLU(w1
1x1 +w1

2x2) +w3
2ReLU(w2

1x1 +w2
2x2)

)
(1.10)

11

i
i

“output” — 2019/1/14 — 22:34 — page 12 — #24 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.5: A simple example of an artificial neural network

In order to train the network to approximate our new observation for q value given
by Bellman equation given by y = rt + γv(st+1) and make our prediction ŷ closer
to the real y, a parameter update on Θ is performed so that it will minimize the loss
function L(Θ) shown in Equation 1.11.

L(Θ) =
1

m

m∑
i=1

(yi − ŷi)2 (1.11)

∇Θi
Li(Θi) = (yi −Q(s, a; Θi))∇Θi

Q(s, a; Θi), (1.12)

where yi = r+γmaxat+1 Q(st+1, at+1; Θi−1) is in fact the Bellman equation defining
the target value.

Equation 1.12 formally represents the full update using Stochastic Gradient De-
scent or SGD for approximating q(s, a,Θ) = q∗(s, a). A SGD represents a method
for solving a minimization problem by updating the parameter vector Θ consisting
of weights w. In order to find out how will an update on a specific weight parameter
wi influence the change in the loss function L, it is possible to consider its derivative
with respect to that parameter like in Equation 1.13.

∆L ≈ ∂
∂L

∂wi
∆wi (1.13)

We would like to minimize the loss function L, so the weight wi can be modified
in the direction that is opposite of the derivative by a small number α called learning
rate.

wi = wi − α∂
L

∂wi
(1.14)

This method is called gradient descent because we move away from the gradient
which is the vector of partial derivatives which is pointing to the maximum increase
of the function. Gradient elements are the derivatives with respect to the weights as
shown in Equation 1.15. (

∂f(Θt)

∂Θt,1

,
∂f(Θt)

∂Θt,2

, ...,
∂f(Θt)

∂Θt,n

)
(1.15)

An intuitive approach to use a neural network as approximator for the Q function
in reinforcement learning would be to use a neural network that takes state s and

12

i
i

“output” — 2019/1/14 — 22:34 — page 13 — #25 i
i

i
i

i
i

1.4. The curse of dimensionality part II: Approximation

action a as the input and predicts q(s, a), but due to usually small amount of actions
it would be, in fact, better to predict the q values for all available actions as shown
in Figure 1.6. The improved architecture shown on the right will make it possible to
get all possible q values for the given state in one forward pass of the approximator;
these q values can be used to predict the next action using ε-greedy policy and the
part of y target value taking the discounted maxat q(st+1, at).

Figure 1.6: Comparison between different ways to approximate q(s, a)

As we can see from Algorithm 3 the learner is iteratively performing the transition
in the form of a tuple (st, at, rt, st+1) and updates our q value approximator. This rep-
resents a main learning loop shown in part (b) of the model outlined in Figure 1.7. It
also showcases a mechanism of experience replay that is the focus of our discussion.

Algorithm 3 Q-learning with function approximation

Initialize replay memory D with capacity N and sampling rate S
Initialize action-value function q with random weights
for episode = 1, M do

for t = 1, T do
With probability ε select a random action at
otherwise select at = arg maxa q

∗(st, a; Θ)

Execute action at, observe reward rt and state st+1

if i mod S = 0 then
Store transition (st, at, rt, st+1) in D

end if
Sample random batch of transitions (st, at, rt, st+1) from D

set yi =

ri, terminal si+1

ri + γmaxa′ q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

13

i
i

“output” — 2019/1/14 — 22:34 — page 14 — #26 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.7: General learning model architecture of q-learning with function approximation: (a)
Replay memory stores the last N experiences in a sliding window buffer for later replay; (b) Main
learning loop consists of: 1) the transition in which the agent performs an action, receives an
immediate reward rt, while transitioning to a next state st+1; 2) performing an update on main
function approximator ANN (d) by performing a gradient descent on the loss function shown in
Equation 1.12; 3) shifting the states for the next iteration in which the st becomes our st+1; 4)
forwarding the current state through a function approximator in order to find out the best action
at candidate based on its q value for ε-greedy policy; (d) A block implementing q-value function
approximator detailed in Figure 2.2 taking the starting state st on the input and predicting q-
values for each of the available actions on its output; (c) Raw stream of the experiences that are
perceived representing unfiltered cognition of an agent.

14

i
i

“output” — 2019/1/14 — 22:34 — page 15 — #27 i
i

i
i

i
i

CHAPTER2
The Perception Model

2.1 Origins

The main idea of active learning is that a learner is not bound just to process the data
that it perceives in order to update its knowledge about the environment, but it is also
capable of choosing the data from which to learn, therefore achieving greater effi-
ciency in learning with fewer training data. This opens an possibility for the learning
agent to not only control data processing, but also data perception from the environ-
ment in order to achieve different outcomes. The main hypothesis presented here is
that the agent’s learning process is not shaped only by the data, but also by the way
they are perceived, and then used, much like the perception process in humans can
greatly affect the structure of the brain, given its important property of neuroplastic-
ity.
Advances in Artificial Intelligence have sparked the interest in developing systems
that perform, learn, and think similarly to human beings. Furthermore, modern ma-
chine learning algorithms are now more than ever taking inspiration from the phys-
iology of human brain, as it is particularly evident in approximation techniques of
Deep Q-learning and its replay memory mechanism, which is functionally related to
the hippocampus, a center for memories in the mammalian brain. Similarly, in mod-
ern approaches to DQL, the stream of experiences are not directly propagated to the
learning mechanism in order to create Temporal Difference (TD) error that is used
to update the Artificial Neural Network (ANN) function approximator. Instead, they
are mediated by a specific mechanism, called Experience Replay [36, 39], which we
can see in Figure 1.7 that is used to store some of the past experiences in a sliding
window memory in order to make it possible for an agent to learn by replaying them,
without the need of accumulating further direct experience, a particularly time con-

15

i
i

“output” — 2019/1/14 — 22:34 — page 16 — #28 i
i

i
i

i
i

Chapter 2. The Perception Model

suming process. This reinforcement learning mechanism is functionally similar to
what happens in mammalian hippocampus, which is deemed to store the most valu-
able experiences during periods of activity, in order to be able to learn from them
while the person is sleeping or relaxing [34].
Recent discoveries in neurosciences and cognitive sciences [34] show that the human
neocortex is not a slave to the stream of the experiences from the environment, and
that the hippocampus is goal-depending and biased in replaying stored experience
for re-learning. We exploit this specific property of the hippocampal memory mech-
anism in order to create an analogue structure called Cognitive Filter. This filter
structure will act as a mediator between the agent’s raw sequential stream of expe-
riences and its replay memory by selectively choosing the memories that are stored
using memory prioritization [50].
Since the introduction of the replay memory mechanism in Deep Q-Learning or
DQL [39] many works have been aimed at further improving the efficiency of learn-
ing by focusing, or giving priority, to certain types of experiences over others, both
in sampling and replay. One of the first successful approaches [50] used stochastic
prioritizing on the experiences stored in replay memory with high Temporal Differ-
ence (TD) error under the assumption that high TD error of experience transition
would make the training faster because of its higher deviation from the current ap-
proximated q-value for the state-action pair.
Another approach [64] further argued that uniform sampling performed by [50] may
suffer from loss of potentially valuable transitions with higher TD error especially in
the beginning of the learning process when the transitions with rewards are mainly
the ones that account for high TD error levels. Instead of uniform sampling, their
approach was to sample all the transitions into two separate memory replay buffers:
one containing the transitions with the immediate reward, and the other the rest of
the transitions. Stochastically sampling from the two memory buffers with different
priorities allowed them to reach a learning speed higher than in [50].
The influence of focusing on the transitions that will increase the speed of conver-
gence to the optimal policy π∗ is significant and scales well to all types of problems,
but if we want to explore the possibility of allowing the attention focus change the
behavioral characteristics of a learning agent, we need to adopt a more biologically
inspired point of view. Focusing attention is an expensive process for humans, as it
requires spending a certain amount of psychic energy, since our brain tries to filter
out the noise from the narrow signal that is the focal point. Our brains try to conserve
as much of the psychic energy as they can while there’s no specific need to spend it.
The perception as an attention focusing mechanism relies on this principle. When
we are in a state of hunger for example, we will tend to focus our attention on the
specific sources of food in our environment, much more than when are in a specific
homeostasis and our needs are satisfied. We can thus consider attention as a function
of an agent’s state, or mood, that is driven by a specific hierarchically extended or
higher goal.

16

i
i

“output” — 2019/1/14 — 22:34 — page 17 — #29 i
i

i
i

i
i

2.2. Adaptation Through Artificial Perception

2.2 Adaptation Through Artificial Perception

2.2.1 Introduction

Reinforcement learning is a process aimed at reducing uncertainty about which ac-
tions an agent is required to take at each time step in order to better adapt to its
environment. This process of adaptation is driven by a specific feedback the agent
receives from the environment, usually provided by a reinforcement function rang-
ing on some signals from the environment. The main goal of the agent is to create a
mapping from its sensed state to the probability of selecting an action that would rep-
resent the best choice to maximize the received reinforcement in the long run. This
probability distribution is called an optimal policy π∗ and it is a result of an iterative
update of the previous policies π over the learning process.

Given that we may have multiple optimal policies π∗ all of them achieving optimal
behavior in different ways, through selecting different actions,it might be possible to
influence the agent behavior by further narrowing the action selection, whilst still
keeping it focused on the main goal of maximizing the reinforcement. This work ex-
ploits this possibility by modifying the agent’s behavioral characteristics by changing
the way the agent perceives the feedback it receives from its immediate environment;
this creates an additional secondary drive that augments the main one given by the
reinforcement function itself. The perception itself is not represented by the data
collected by the agent but as the way the feedback from its immediate environment
is encoded and managed by the learning mechanism. Influencing the way that the
data is encoded we can modify the dynamics of the agent’s perception and further
influence its behavioral characteristics. Due to the increase in state space dimension,
modern approaches to reinforcement learning rely on a function approximator, such
as artificial neural networks, to approximate the state-action values. The proposed
approach takes an advantage of the dynamics of the stochastic gradient descent al-
gorithm which is used to perform the learning update on the weights of the artificial
neural network at each time step in order to better approximate the values. An agent
learns from a sequential stream of experiences and after each perception it updates its
belief about the optimal state-action value Q∗(s, a) by performing a gradient descent
on the parameters or weights of neural network Θ in order to minimize the square er-
ror of the previous estimate and the expected value of Q for the perceived state s and
the taken action a. For the accurate approximation a gradient descent should be per-
formed on every dataset point and, in our case, this means computing an algorithm
not just on the current experience, but on the whole history of experiences the agent
perceived so far, which is computationally impractical for most implementations. To
alleviate this approximation problem a minibatch stochastic gradient descent [36] is
used which instead of re-learning from all of the experiences selects a batch of few
random experiences from a sliding window buffer of experiences called replay mem-
ory and re-learns from this batch at each time step. The dynamics of determining
which experiences to store and replay using minibatch approach form the basis for
the implementation of the artificial perception mechanism that represents the focal
point of this work.
A reinforcement learning mechanism becomes concerned not only with the infor-

17

i
i

“output” — 2019/1/14 — 22:34 — page 18 — #30 i
i

i
i

i
i

Chapter 2. The Perception Model

mation that its environment provides, but also with the way this information is per-
ceived and this perception factor becomes the additional secondary drive that could
further reduce the agent’s uncertainty during the learning process. The process of a
secondary drive driven by the perception mechanism allows for a further and more
subtle modification of an agent’s behavior without interfering with the primary re-
ward maximization behavior. Similarly in humans we see different dispositions to a
range of behaviors that alter they way they achieve their primary goals. These dispo-
sitions are known as emotional states and they are a product of the different physical
characteristics of human brains altering the chemical compositions that govern our
behavior. For example, extroverted and introverted individuals can achieve the same
primary goal of enjoying, but in a different way; the first will most probably engage
in social activity, while the latter will prefer to stay home, away from people. This
section proposes an algorithm to manage perception able to model agents with a spe-
cific set of emotional states, similar to human ones, that will enable them to better
adapt and thrive in environments with different or changing characteristics.

2.2.2 Related Work

A work by Rumbel et al. [49] provides a good introduction and review of the work
that dealt with the emergence of emotional states in artificial learning agent’s.
One of the first approaches in modeling emotion in reinforcement learning is pre-
sented in work by Gadanho and Hallam [25] implementing a bottom-up model with
four basic emotions of sadness, happiness, fear and anger that are induced by a com-
bination of feelings and a simple artificial hormone system. Instead of providing a
secondary drive goal as outlined in the approach presented here, the main role of the
emotions in this work is the decomposition of the main drive into more basic parts
which can be activated by emotions and thus become more manageable separately.
In the work by Ahn et al. [1] the emotions are induced by their components of valence
and arousal, which, similarly to our approach, takes into account the cognition flow
of the agent’s experience stream. The valence component takes into consideration
the history of previous experience to calculate the anticipation of the reward, and it is
positive when a choice is expected to give a reward that is higher than expected, and
negative if that is not the case. The arousal component increases with the cognitive
uncertainty associated with the decision.

2.2.3 Model Architecture and Learning Algorithm

An agent performs a transition in the environment by moving from state st to next
state st+1 using action at and experiencing a scalar reward rt in the process. These
observed values contain enough information to perform an iteration of a learning
process by updating our previous belief about the value Q(s, a) of the state-action
pair. This update is performed at (d) block of Figure 1.7 as a part of the main learning
loop (b) and it consists of updating the weights vector Θ of artificial neural network
detailed in Figure 1.6 making our approximation ofQ a step closer to the target value
as given by Equation 1.3. The process creates an experience stream of sequential
transitions the agent has experienced from the beginning of the learning process.
Each of these experiences carries a potential for re-learning that would be lost if

18

i
i

“output” — 2019/1/14 — 22:34 — page 19 — #31 i
i

i
i

i
i

2.2. Adaptation Through Artificial Perception

they are discarded after the initial update; so, instead, they are recycled through a
perceptive buffer called replay memory. Due to the limited capacity of the memory
buffer this form of perception, just like in humans, should be able to be selective
over types of experiences that are being sampled. This type of a "reality filter" is
able to influence how does the agent gather information from its environment and
further interacts with it to reach its goal. The premise of this approach is that the
contents of the replay memory that represents a subset of the experience stream form
the perceptive layer that is able to provide a secondary drive that in turn influences the
agent’s behaviour. The idea of perception being a filter of experiences that protects
the agent from oversaturation is implemented through stochastic sampling shown in
the artificial perception box included in block (f) of Figure 2.1. As we can see
from Algorithm 4 the artificial perception block is implemented as a probability of
sampling the transition P (i) into replay memory structure D.

Algorithm 4 Q-learning with artificial perception block

Initialize replay memory D with capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

for t = 1, T do
With probability ε select a random action at
otherwise select at = arg maxaQ

∗(st, a; Θ)

Execute action at, observe reward rt and state st+1

Store transition (st, at, rt, st+1) in D according to the probability P (i)

Sample random batch of transitions (st, at, rt, st+1) from D

set yi =

ri, terminal si+1

ri + γmaxa′ Q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

2.2.4 Experimental setup

Environment

To evaluate our model we have applied in Algorithm 4 in a relatively complex envi-
ronment called Waterworld, from the ReinforceJs framework [30].
The environment consists of food pieces that are generated as they are consumed,
with a random position and velocity vector. They move freely in the environment.
There are two types of food: good and bad. We have performed different sets of
experiments, exploring the effect of different amounts of food. In the first one, the
number of bad and good food pieces in the environment are the same, namely 25 of
each type. In the second one, the proportion of good and bad food is brought to 2:1
and 1:2. In the third one, the amount of food generated is two pieces for each of the
two types of food.

19

i
i

“output” — 2019/1/14 — 22:34 — page 20 — #32 i
i

i
i

i
i

Chapter 2. The Perception Model

The agents aim at discovering an optimal policy that would allow them to eat
(touch) the most good food pieces, while avoiding as much as possible the bad ones.
The reinforcement is, respectively, +1 for the good, and -1 for the bad food sources
that the agent can reach. The environment contains equal amounts of good and bad
food pieces and the ratio is kept constant by regenerating the consumed piece of food.
The agent perception includes 30 directional sensors, each of which can detect 5 con-
tinuous variables: distance and speed in x and y direction of the different perceived
objects that include good food, bad food, and distance to wall or the boundaries.
This, with an agent’s own speed components in x and y direction accounts for a quite
high dimensional state space of 152 continuous variables.
Approximation of Q(s, a; Θ) ≈ Q∗(s, a) is done using an ANN with one hidden
fully connected layer of 100 neurons which are producing as output the Q values of
all five actions available to the agent: up, down, left, right, stay. The learning rate of
an approximator α is set to a low value (0.05) and the capacity of the replay memory
buffer was 5000 elements. The value of ε was set to 0.2 at the beginning and adjusted
to 0.1 at the mid-point of the learning to exploit more of the learned behavior. The
discount factor γ is set to 0.9.

Perception Dynamics

In order to see how does the artificial perception component contribute to behav-
ioral characteristics and adaptation, a total of six emotional states are outlined in
Table 2.1 each of them corresponding to a different perception dynamics given by
their experience sampling strategy. The sampling strategies are inducing dynamics
by modifying two dimensions of the experience stream: the type of the transition
given by the reward obtained and the amount of transitions sampled which is illus-
trated in Table 2.2. The rows of the table are showing the transition type which is
good if the reinforcement is positive, bad if it’s negative and random if the agent’s
doesn’t care about the reinforcement. A low or high amount of each type of experi-
ence can be sampled according to what reported on the columns of Table 2.2. This
gives us a total of six combinations of perception dynamics; each one corresponding
to an agent’s emotional disposition.

2.2.5 Experimental Results

Experiments compared the adaptation ability of six agent types implementing dif-
ferent perception dynamics or sampling strategies in three variations of environment
ranging from hostile to benevolent. The adaptability of each agent was measured
by a total cumulative reinforcement received, or how well it performed in the given
environment.
Normal environment which contained equal amounts of positive and negative rein-
forcement sources showed a divergence in agents score implementing different per-
ception dynamics as we can see from Figure 2.3. We can also notice that in this type
of balanced environment the conservative sampling strategy of the provident agent
type proved to be most fruitful to adaptation, while the optimistic happy agent was
the worst. Agents with cautious and greedy attitude performed slightly better than
the conservative one, but random sampling strategy of sad one still underperformed

20

i
i

“output” — 2019/1/14 — 22:34 — page 21 — #33 i
i

i
i

i
i

2.2. Adaptation Through Artificial Perception

Table 2.1: Mapping of agent’s emotional states and sampling strategies.

Emotion
state

Strategy

happy There is something good in any experience. It selects a lot of experiences, ran-
domly.

sad There is always something bad in new things. It selects randomly few experiences.

fearful It is afraid to get bad things. It selects a good number of negative experiences, so
to learn to avoid them.

greedy Always get as much as possible. It selects a lot of good experiences, discarding
the bad ones.

cautious It aims for good, but it tends to be conservative. It selects few good experiences.

provident This is ready to face problems, also conservative. It selects few negative experi-
ences to learn from them.

Table 2.2: Agent emotional state types represented as combinations of two sampling dimensions with
columns representing the quantity of sampled transitions and rows represent the type.

amount/ type few many

good cautious greedy

bad provident fearful

random sad happy

when compared to the second best fearful strategy.
Hostile environment showcased in Figure 2.4 which was mostly populated with neg-
ative reinforcement (ratio good/bad food is 1:2) shows even more divergence of the
agent types than the normal one. This harsh environment have proved to be best
faced by the agents that adapted a fearful strategy allowing them to thrive and per-
form far more than the other types. The conservative strategies of provident agents
also showed adaptability scoring second best followed by an ultra-optimistic happy
one. The strategies that haven’t adapted to this kind of environment were the one’s
that focused on the positive experiences such as cautious and greedy and the conser-
vative random approach of sad agent.
Figure 2.5 compares the performance in a benevolent environment containing more
positive than negative reinforcement (ratio 2:1). This environment variation was
faced in a similar way by all of the perception dynamics, except the optimistic happy
agent that underperformed despite the high availability of the positive food sources.

2.2.6 Discussion

Looking at the all-round performance across the environment variations it seems
that conservative, cautious strategies like provident and fearful perform best when it
comes to adaptation. The fearful approach to perception seems to give a good consis-
tent performance in all of the experiments in the setup, suggesting that the negative
experiences cognitively play a more important role than the positive ones in the pro-
cess of learning. Even in environments that are scarce in positive reinforcement like

21

i
i

“output” — 2019/1/14 — 22:34 — page 22 — #34 i
i

i
i

i
i

Chapter 2. The Perception Model

the hostile one, focusing on the negative experience still gives a performance that is
equal or better than the other sampling strategies. Not surprisingly, the fearful agent
performs the best in an environment that is hostile by focusing on avoidance rather
than exploration but interestingly provides an effective strategy also for the environ-
ments that are by nature more supportive.
The sampling strategy implemented through provident agent’s narrower selection of
negative experiences is insightful of the nature of perception itself. Its superior per-
formance in the baseline, well balanced Normal environment gives us a clue about
the fact that perception is inherently highly selective of experiences and that it can
be best represented as a filter with respect to the environment. Acting as a mediator
of agent’s cognition it can protect its cognitive gateway of limited capacity, the re-
play memory, from being oversaturated with experiences. The oversaturation having
a negative effect on the learning process can be seen in the low performance of the
happy strategy across all of the environment variations. The “happy” selection of a
lot of random experiences oversaturates the replay memory quickly and this has a
great effect on the agent’s performance.
Cautious and greedy strategies of focusing on the good experiences proved to be
a good approach in the Normal environment, where they outperformed the random
ones of happy and sad, but due to the lack of positive reinforcement in hostile world
they lacked in the performance.
Overall the agents that focused their perception on the positive experiences showed
a more exploratory behavior, while the ones that focused on the negative were more
conservative and static.

2.2.7 Conclusions

We presented a model of artificial perception capable of modifying the way an agent
processes information from its environment during learning. The perception layer
creates additional possibility for influencing the agent’s behavior which can be used
as a secondary goal oriented drive. Using this technique, an agent is able to better
adapt to learning in a specific environment only by changing the dynamics of its per-
ception without modifying its reinforcement function.
Looking beyond the adaptation artificial perception creates a contextual filtering
buffer between the agent’s cognition and the learning algorithm, possibly providing
more efficient data exploitation from the environment and preventing the mechanism
of replay memory to be oversaturated and ineffective.

Table 2.3: Agent sampling strategies probability values used in experiments.

amount/ type few many

good p(.05) or (if(r=1) and p(.5)) p(.05) or (if(r=1) and p(1))

bad p(.05) or (if(r=-1) and p(.5)) p(.05) or (if(r=-1) and p(1))

random p(.15) p(.5)

22

i
i

“output” — 2019/1/14 — 22:34 — page 23 — #35 i
i

i
i

i
i

2.2. Adaptation Through Artificial Perception

Figure 2.1: General learning model architecture including attention focus block: (a) Replay memory
stores the last N experiences in a sliding window buffer for later replay; (b) Main learning loop
consists of: 1) the transition in which the agent performs an action, receives an immediate reward
rt, while transitioning to a next state st+1; 2) performing an update on main function approxima-
tor ANN (d) by backpropagating the TD error as a gradient of the at output; 3) shifting the states
for the next iteration in which the st becomes our st+1; 4) forwarding the current state through
a function approximator in order to find out the best action at candidate based on its Q value for
ε-greedy policy; (d) A block implementing Q-value function approximator detailed in Figure 2.2
taking the starting state st on the input and predicting Q-values for each of the available actions
on its output; (c) Raw stream of the experiences that are perceived representing unfiltered cogni-
tion of an agent; (f) Artificial perception block implemented as a function that determines whether
ith transition will be sampled into replay memory taking the sampling probability as a parameter

23

i
i

“output” — 2019/1/14 — 22:34 — page 24 — #36 i
i

i
i

i
i

Chapter 2. The Perception Model

Figure 2.2: Main function approximator ANN implemented in the (d) block of Figure 2.1: it receives
a 152-dimensional state as its input and approximates it to Q values of each 5 possible actions
available to an agent at its output, therefore providing an approximation for Q(s, a) pairs.

0

500

1000

0 20 40 60

Training Steps (e^3)

A
ve

ra
ge

 S
co

re
 (

to
ta

l r
ei

nf
or

ce
m

en
t)

 o
f A

ge
nt

s
in

 N
or

m
al

 E
nv

iro
nm

en
t

Agent Type

CAUTIOUS

FEARFUL

GREEDY

HAPPY

PROVIDENT

SAD

Figure 2.3: Average score or total reinforcement received over 50 trials with agents with different
perception dynamics in Normal environment type during first 60.000 learning steps.

−400

−300

−200

−100

0

0 20 40 60

Training Steps (e^3)

A
ve

ra
ge

 S
co

re
 (

to
ta

l r
ei

nf
or

ce
m

en
t)

 o
f A

ge
nt

s
in

 H
os

til
e

E
nv

iro
nm

en
t

Agent Type

CAUTIOUS

FEARFUL

GREEDY

HAPPY

PROVIDENT

SAD

Figure 2.4: Average score or total reinforcement received over 50 trials with agents with different
perception dynamics in Hostile environment type during first 60.000 learning steps.

24

i
i

“output” — 2019/1/14 — 22:34 — page 25 — #37 i
i

i
i

i
i

2.2. Adaptation Through Artificial Perception

0

1000

2000

3000

0 20 40 60

Training Steps (e^3)

A
ve

ra
ge

 S
co

re
 (

to
ta

l r
ei

nf
or

ce
m

en
t)

 o
f A

ge
nt

s
in

 B
en

ev
ol

en
t E

nv
iro

nm
en

t

Agent Type

CAUTIOUS

FEARFUL

GREEDY

HAPPY

PROVIDENT

SAD

Figure 2.5: Average score or total reinforcement received over 50 trials with agents with different
perception dynamics in Benevolent environment type during first 60.000 learning steps.

25

i
i

“output” — 2019/1/14 — 22:34 — page 26 — #38 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 27 — #39 i
i

i
i

i
i

CHAPTER3
Character Matters

Human individuals differ in their emotional, attitudinal, experiential and motivational
styles. Personality psychology helps us to better understand the scope and the mul-
titude of these variations using a central principle called trait. A trait is a single
continuum over which individuals differ and each of them can be interpreted as a
continuous variable. The main idea behind this simplification is the possibility of de-
scribing some possible drivers for the complex generation of human behaviors with
a finite number of discrete types, or traits, which levels vary from human to human.
In our machine learning model, we would use the term continuous valued feature
instead of trait to denote the same concept. Measuring the traits is not a straightfor-
ward, direct process. Instead, we infer the level of the trait by observing whether the
individual is consistently inclined towards a type of behavior over time.
Throughout the history, many theory candidates for the traits have been offered, but
at the beginning of the Eighties of the last century, many researchers from many dif-
ferent backgrounds agreed that there are five basic factors, or personality dimensions,
found in natural language, theoretically based questionnaires, in self-reports and in
ratings [19, 38]. The proposed five factor model organizes the personality traits in
five dimensions, reported in Table 3.1, each of them associated to a set of Adjec-
tives and Scales. The Adjective column contains a list of items defining the factor
in a study of 280 men and women during an assessment weekend at the Institute of
Personality Assessment and Research [29]. Similarly, from the Scales column we
can see Revised Neuroticism Extraversion Openness, or NEO, inventory facet scales
from self reports of 1536 adult men and women [15].
Recent discoveries brought forward by advancement of neural imaging techniques
such as fMRI made evident that the five basic personality traits have physiological
origin in the structure of an individual’s brain. It allowed us to detect that the areas

27

i
i

“output” — 2019/1/14 — 22:34 — page 28 — #40 i
i

i
i

i
i

Chapter 3. Character Matters

for controlling emotional responses vary in size, shape, baseline activity and more
important activation intensity among individuals with different traits. The correla-
tion between the activation of brain regions and the personality traits has been most
evident in personality dimensions of Neuroticism, Extraversion and to a lesser ex-
tent Conscientiousness. The brains of individuals with different personality traits are
actually differently hardwired and this physiological differences lead to the varia-
tion found in the higher-level order psychological functions that in terms shape the
behavioral response [42]. The reason why people react differently when faced with
the same situation lies in the different activation threshold of the actual physical re-
gions of the brain that together contribute to the emergence of varying behaviors.
This chapter shows how the differences in the psychological mechanism of attention
can lead to reinforcement learning agents responding differently to the situations, or
states and this can lead to an overall behavioral changes commonly found withing the
different personalty dispositions without modifying the main reinforcement function.

Table 3.1: Adjectives and Questionnaire scales defining the Five Factors Model [38]

Name Number Adjectives Scales

Extraversion (E) I

Active
Assertive
Energetic

Enthusiastic

Warmth
Gregariousness
Assertiveness

Activity

Agreeableaness (A) II

Appreciative
Forgiving
Generous

Kind

Trust
Straightforwardness

Altruism
Compliance

Conscientiousness (C) III

Efficient
Organized
Planfull
Reliable

Competence
Order

Dutifulness
Achievement Striving

Neuroticism (N) IV

Anxious
Self-pitying

Tense
Touchy

Anxiety
Hostility

Depression
Self-Consciousness

Openness (0) V

Artistic
Curious

Imaginative
Insightful

Fantasy
Aestetics
Feelings
Actions

We make use of the insights about the way a mammalian brain processes informa-
tion by modifying the underlying mechanisms of Reinforcement Learning (RL) ac-
cordingly, in order to mimic the differences in brains that may account for emergence
of different personality types in humans. As a reference model of human personality
traits we take one of the most widely accepted frameworks, the Five Factor Model or
FMM, which organizes personality traits in terms of five basic dimensions: Extrover-

28

i
i

“output” — 2019/1/14 — 22:34 — page 29 — #41 i
i

i
i

i
i

3.1. Modeling Openness to Experience

sion, Agreeableness, Conscientiousness, Neuroticism, and Openness to Experience.

3.1 Modeling Openness to Experience

In the work we present in this section, we focus only on the facet possibly most re-
lated to human cognition: Openness to Experience or OTE. Individuals that score
higher in the Openness to Experience scale have greater permeability of conscious-
ness and perceptive cognition, are more curious and insightful about their surround-
ings and more motivated to seek variety and experience.
As a core part of the Cognitive Filter structure, we implement a novel prioritization
criteria that is using specific properties of agent’s sensed state space called Informa-
tion Gain, or IG, given by relative Shannon’s entropy of the two transitioning states
st and st+1. Agents that are more Open to Experience will favor the experience tran-
sition that lead to the increasing of the relative entropy between two states, while
agents that are low on the scale will favor the transitions that reduce it. This ap-
proach differs from the prioritization techniques found in [50,64] in the sense that its
sampling criteria takes into account important properties of the agents sensed space
during the transition instead of the TD error that a specific transition yields.
We present results of experiments where this relatively simple selection mechanism
of experiences to be replayed can evolve agents showing different personality traits,
more or less suited to learn and perform in different types of environments.

3.1.1 Model Architecture and Learning Algorithm

In this section, we present the structure of the learning model we are proposing,
whose schema is reported in Figure 3.1.
In section (a) of Figure 3.1, we can see the main learning loop, which represents the
core of our Q-learning mechanism. It performs the transition from state st to state
st+1 taking an action at and possibly receiving an immediate reward rt. The whole
transition is defined by a tuple vector (st, at, rt, st+1) .
Once the action is performed and the reward is obtained, an agent performs the learn-
ing process on a single transition (st, at, rt, st+1) by generating its new estimate of
the Q-value for being in a state st and taking an action at. This process performs
a forward pass on the approximator (b) with st on input, after which we select the
predicted Q-value on the output at. After this, the states are shifted so our old st+1

becomes the new st and the agent is ready for the next iteration. TD error represents
the discrepancy between the previous estimate and the expected target Q-value after
the transition, which is given by Equation 1.3, considering its received reinforcement
value rt and the discounted maximum Q-value of the next state st+1. The learning
process consists in the update of the estimate for Q∗(s, a) produced by the function
approximator by performing an SGD on the weights Θ in order to minimize the loss
function L(Θ), which, in this case, is represented by a squared TD error.

29

i
i

“output” — 2019/1/14 — 22:34 — page 30 — #42 i
i

i
i

i
i

Chapter 3. Character Matters

st

Figure 3.1: Architecture of the proposed model, showing the role of the cognitive filter block compo-
nent.

Since the nature of the learning loop (a) is sequential, we may risk to produce
highly temporally correlated transitions that could not satisfy the assumptions of
most gradient descent-based, non-linear function approximators, like ANN [39].
Some of the transitions after each learning iteration are stored into sliding-window
memory shown in section (e) of Figure 3.1. From the mechanism of replay memory
the past transitions can later be replayed allowing the agent to re-learn from its previ-
ous experiences. This solves the temporal-correlation problem and it also guarantees
a more stable training of the approximator.

Cognitive filter

Element (c) from Figure 3.1 represents the sequential stream of experiences pro-
duced by the learning loop. It would be highly inefficient to sample the whole stream
into the replay memory (a), especially because some of the transitions may be more
valuable than others [48, 64]. Instead of sampling the whole stream of experiences,
we introduce a mechanism called Cognitive Filter, shown in section (d) of Figure 3.1.
This is in charge of selecting the elements that are stored for replay. It consists of
two main parts, governed by two different selection criteria. The first one is simple:
it selects all the transitions with a non-zero reward that will give rise to the highest
TD error, especially at the beginning of the learning process [64]. The rest of the
transitions are then evaluated by our newly introduced, cognitively inspired, Variety

30

i
i

“output” — 2019/1/14 — 22:34 — page 31 — #43 i
i

i
i

i
i

3.1. Modeling Openness to Experience

of Experience Index or VEI criterion, which takes into account the properties of the
agent’s transitioning states. The introduced criterion (VEI) represents the tendency
of the agent to gain variety in experience. We define it as a difference of Variety of
Experience between the starting state st and the state that an agent has transitioned
to, st+1.

Quantifying the Variety of Experience of the states

In order to quantify the possible information gain that a state space vector can carry,
we have adopted Shannon’s entropy as a measure of diversity, also called Shannon’s
index. The state space vector is represented by a number M of variables that are
continuous and normalized in [0..1]. In order to measure the entropy, each of the M
state space variables are discretized into N bins, calculated by Equation 3.1, where
pi is the frequency of values belonging to the ith bin.

H(st) = −
N∑
i=1

pilog2pi (3.1)

Learning Algorithm

Previous prioritization algorithms [64] used a stochastic sampling method in order to
make the learning faster and more efficient, which falls between uniform sampling
and greedy sampling based on the TD error.
In our approach, instead of focusing on the TD error, we introduce a prioritization
based on the Variety of Experience Index (VEI) criterion, able to model the be-
havioural characteristics of learning agents. As we can see from Equation 3.2, VEI
criterion represents the difference between the entropy of the two states involved in a
transition: st+1 and st; it is defined as a relative entropy or Kullback-Leibler distance
between the posterior and prior state. This implies that, when an agent is transition-
ing from a lower entropy state to a higher entropy state, the VEI is positive, while if
the transition is reducing the entropy between states its VEI is negative.

V EI = H(st+1)−H(st) (3.2)

We can now define two types of behaviorally modified agents, depending on the
fact that their prioritization criteria respectively focus on positive or negative ex-
tremes of the VEI parameter. The positive values of VEI correspond to the agent
that is high on the Openness to Experience scale, because it is preferentially using
to replay, and thus to learn from, transitions that bring it towards the more "interest-
ing" states, the ones that may provide a higher information potential; this makes it
behave more curiously. The agent that lies on the low end of the Openness to Ex-
perience scale is doing the VEI prioritization in the opposite way: it tends to focus
on experiences with negative, smaller values of the parameter, so it tends to be more
conservative and less curious.

Instead of greedy sampling on V EI values, which may make the system prone
to over-fitting because of lack of diversity [50], we define a stochastic prioritization
based on the Variety of Experience Index V EI where the probability of sampling

31

i
i

“output” — 2019/1/14 — 22:34 — page 32 — #44 i
i

i
i

i
i

Chapter 3. Character Matters

the P (i) transition from the sliding window experience memory D is determined by
Equation 3.3.

P (i) =
V EIβi∑j=size(E)

j=1 V EIβj
(3.3)

In this case,V EI represents the priority of the transition and the parameter β,
ranging on [0..1], determines how much this prioritization is used; in the uniform
case, β = 0.

To alleviate the selection of a value for β, which would need to be tweaked for
the specific application, we introduce a more general prioritization technique based
on the descriptive statistical property of quartiles that can be used in a broader sense
with no additional adjustments.
In order to sample basing on the V EI criterion, instead than on the stochastic ap-
proach given by Equation 3.3, we use a descriptive statistic approach that consid-
ers quantiles, in particular, in the experiments reported in this paper, the first and
third quartiles (respectively referred to as V EIQ1 and V EIQ3) of the V EI values of
agent’s experiences stored in a sliding window memory E of capacity n.

Algorithm 5 selectively stores the transitions after each update step based on V EI
criterion. The criterion is used to determine the transitions that have the Variety of
Experience Index V EI contained in the specific quartiles of the sample depending
on the type of the agent. In our experiments, the agent with higher Openness to
Experience will sample the transitions with V EI higher than the third quartile, or
Q3, of the n latest samples from E, given by V EIi > V EIQ3. In contrast, the agent
that is low on the Openness to Experience scale will sample the transitions lower
then the first quartile determined by the conditional V EIi < V EIQ1.
After each transition a random batch of the so-selected transitions is selected from
the replay memory D where samples were stored, in order to perform additional
training on the approximator.

32

i
i

“output” — 2019/1/14 — 22:34 — page 33 — #45 i
i

i
i

i
i

3.1. Modeling Openness to Experience

Algorithm 5 Deep Q-learning with cognitive filter block component

Initialize replay memory D with capacity N and V EI experience memory E
Initialize action-value function Q with random weights and agent type OTEa = (LOW,HIGH)

for episode = 1, M do
for t = 1, T do

With probability ε select a random action at
otherwise select at = arg maxaQ

∗(st, a; Θ)

Execute action at, observe reward rt and state st+1

Calculate the transition value V EIi based on Equation 3.2 and add it to the sliding window
V EI memory E
if OTEa = LOW then

Identify V EIQ1

if V EI < V EIQ1 then
Store transition (st, at, rt, st+1) in D

end if
end if
if OTEa = HIGH then

Identify V EIQ3

if V EI > V EIQ3 then
Store transition (st, at, rt, st+1) in D

end if
end if
Sample random batch of transitions (st, at, rt, st+1) from D

set yi =

ri, terminal si+1

ri + γmaxa′ Q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

3.1.2 Experimental setup

To evaluate our model we have applied in Algorithm 5 on two relatively complex
and different environments, selected among the ones used in the machine learning
community. The first one is representative of a high dimensional state space with
sparse reward feedback called Waterworld, from ReinforceJs framework [30], while
the second is a more realistic setup with a more evenly distributed reinforcement
feedback called LunarLander-v2 from OpenAI Gym framework [10].
In the experiments, we have compared two types of prioritized sampling algorithms
with two different prioritization criteria, OTELOW and OTEHIGH , associated to
agents that are on the lower and higher end of Openness to Experience axis, respec-
tively. We have performed two different batches of 50 independent learning trials, for
each agent type, OTELOW andOTEHIGH , and we show the results as the arithmetic
mean of the scores over the 50 trials.

33

i
i

“output” — 2019/1/14 — 22:34 — page 34 — #46 i
i

i
i

i
i

Chapter 3. Character Matters

Waterworld Environment

The Waterworld environment consists of food pieces that are generated as they are
consumed, with a random position and velocity vector. They move freely in the envi-
ronment. There are two types of food: good and bad. The agents aim at discovering
an optimal policy that would allow them to eat (touch) the most good food pieces,
while avoiding as much as possible the bad ones. The reinforcement is, respectively,
+1 for the good, and -1 for the bad food sources that the agent can reach. The envi-
ronment contains always the same amount of good and bad food pieces: their ratio
is kept constant by regenerating the consumed piece of food. We have performed
different sets of experiments, exploring the effect of different amounts of food. In
the first one, the number of bad and good food pieces in the environment are the
same, namely 25 of each type, giving an average density of 1.78% of the maximum
possible amount.In the second one, split in two sub-experiments, the proportion of
good and bad food was brought respectively to 2:1 and 1:2, while keeping the same
density. In the third one, the amount of food generated was two pieces for each of
the two types of food, thus providing a quite sparse reward.
The agent perception consists of 30 directional sensors, each of which can detect 5
continuous variables: distance and speed in x and y directions of the closer perceived
object, together with its identification as good food, bad food, and distance to wall
or the boundaries. This, together with an agent’s own speed components in x and y
direction accounts for a quite high dimensional state space of 152 continuous vari-
ables.
Approximation of Q(s, a; Θ) ≈ Q∗(s, a) is done using an ANN with one hidden
fully connected layer of 100 neurons which are producing as output the Q values of
all five actions available to the agent: up, down, left, right, stay. The learning rate
of an approximator α was set to a low 0.05 and the capacity of the replay memory
buffer was 5000. The value of ε was set to 0.2 at the beginning and adjusted to 0.1
at the mid-point of the learning process to exploit more of the learned behavior. The
discount factor γ was set to 0.9.

Variety of Experience criterion comparisons

In order to evaluate how does Variety of Experience Index of the transition V EI
relate to the behavioural characteristics of the Openness to Experience personality
trait we are comparing transition examples from Waterworld environment on the two
extremes of this parameter, which correspond to the prioritization focus of the two
agent types: OTELOW and OTEHIGH , respectively with low and high Openness to
Experience. In Figure 3.2 and Figure 3.3, each of the detected objects and agents are
depicted, together with their speed vector, which represents the composition of their
x and y speed components as described in the state space.
Figure 3.2 shows some of the transitions with a low (negative) value of V EI used as
the prioritization criterion for the type of agent associated with low level of Openness
to Experience or OTELOW . This type of agents favor the transitions which have
entropy values of the starting state st higher than that of the end state st+1. This is
evident in the behaviours shown in Figures 3.2a and 3.2b, where we can see that the
agent has the tendency to move away from the experience that is represented by the

34

i
i

“output” — 2019/1/14 — 22:34 — page 35 — #47 i
i

i
i

i
i

3.1. Modeling Openness to Experience

moving food clusters.

(a) V EI = −0, 1528 (b) V EI = −0, 2083

Figure 3.2: Transition examples in Waterworld environment with V EI values lower than the average.
The agent is represented by the blue circle, from where the sensing directions depart, food is
represented by green circles (good food), or red circles (bad food), together with their speed
vectors.

On the higher (positive) end of the V EI spectrum (OTEHIGH), we can see from
Figures 3.3a and 3.3b the behavior of the agent, which has a tendency to move toward
the experience since the entropy values of the end state, st+1, are higher than those
of the previous one, st.

(a) V EI = 0, 2872 (b) V EI = 0, 3064

Figure 3.3: Transition examples with agents having V EI values considerably higher then the aver-
age. It is possible to notice how the agent tends to go towards food.

35

i
i

“output” — 2019/1/14 — 22:34 — page 36 — #48 i
i

i
i

i
i

Chapter 3. Character Matters

Lunar Lander Environment

In this environment, a craft is attempting to land on a designated landing area defined
over an rugged lunar terrain by firing three of its thrusters as depicted in Figure 3.4.
The craft has four discrete actions at its disposal: do nothing, fire main thruster, fire
left orientation thruster and fire right orientation thruster.
In contrast to the Waterworld environment the Lunar Lander is an episodic task; an
episode ends if a craft crashes or comes to rest receiving an additional reward of
-100 and +100 respectively. The continuous reinforcement received is proportional
to how close the craft is to the zero speed and inversely proportional to the distance
from the landing area. Firing main thruster results in -0.3 additional reinforcement
each frame but the fuel available to the craft is infinite. Each leg contact with the
ground is rewarded with +10.

Figure 3.4: A single rendered frame from Lunar Lander environment depicting a craft firing its
thrusters in order to land on the designated area marked by two yellow flags.

3.1.3 Experimental results

In this section, present the experimental results for the experiments done in the two
environments.

Waterwold Environment

In the Waterworld environment, we have performed different experiments to evaluate
the performance of the two types of agents in the different environmental conditions
mentioned in subsubsection 3.1.2.

Negative vs. Positive reinforcement

In this first set of trials, we wanted to compare the possibility to collect positive and
negative reinforcement of the two agent types, given respectively by the amount of
good and bad food collected. Figure 3.5 shows the comparison between the results

36

i
i

“output” — 2019/1/14 — 22:34 — page 37 — #49 i
i

i
i

i
i

3.1. Modeling Openness to Experience

0

500

1000

1500

2000

2500

0 100 200 300 400
Training Steps (e^3)

Ba
d

Fo
od

 P
oi

nt
s

Sc
or

ed

Agent Type
OTE_HIGH
OTE_LOW

(a) Total number of bad food pieces collected cor-
responding to the cumulative negative rein-
forcement received.

0

1000

2000

3000

0 100 200 300 400
Training Steps (e^3)

G
oo

d
Fo

od
 P

oi
nt

s
Sc

or
ed

Agent Type
OTE_HIGH
OTE_LOW

(b) Total number of good food pieces collected
corresponding to the cumulative positive rein-
forcement received.

0

500

1000

1500

0 100 200 300 400
Training Steps (e^3)

O
ve

ra
ll

Sc
or

e
in

 N
or

m
al

 E
nv

iro
nm

en
t

Agent Type
OTE_HIGH
OTE_LOW

(c) Total scores, i.e., sum of positive and negative
reinforcement received.

Figure 3.5: Comparison between cumulative rewards obtained the first 400.000 learning steps, re-
spectively, by OTEHIGH and OTELOW agents for bad (3.5a) and good (3.5b) food sources, in
the Waterworld environment. The plots report the average of the values over 50 trials, In these and
the following plots, the standard deviation of the plotted values over the 50 trials is also plotted,
in gray, around the average lines. Scaling varies for each plot in order to make differences more
evident.

obtained by the two different prioritization criteria applied to the Waterworld exper-
imental setup.

We can see that the two agent types have developed different behaviours from
the total scores shown in Figure 3.5a for bad food pieces and in Figure 3.5b for the
good ones. Agents that are high on the Openness to Experience scale, marked as
OTEHIGH , score more on both good and bad food points, thus demonstrating the
behaviour characteristics of taking more risk due to the tendency of moving towards
areas where it is possible to accumulate more experience, in this case, food pieces.
Agents that are lower in Openness to Experience OTELOW behave differently from
their counterparts, by scoring much lower values of bad food sources but also lower
values of good food sources, so they behave in a more cautious way. The personal-
ity trait of lower Openness to Experience gives them advantage in this setup as their
overall score (i.e., the difference between the number of good food pieces collected,
and the number of bad food pieces) is higher than that of the agents that are condi-
tioned higher on the trait as we can see from Figure 3.5c.
Mean standard deviations for the batch of trials whose rewards are reported in Fig-
ures 3.5a and 3.5b are presented in Table 3.2, in order to give a better feeling of the

37

i
i

“output” — 2019/1/14 — 22:34 — page 38 — #50 i
i

i
i

i
i

Chapter 3. Character Matters

Table 3.2: Average standard deviation σ values for experimental results shown in Figure 3.5

OTELOW OTEHIGH

Bad food sources 10,674 10,796
Good food sources 14,751 13,325

0

1000

2000

0 100 200 300 400
Training Steps (e^3)

To
ta

l S
co

re
 in

 H
os

til
e

En
vi

ro
nm

en
t

Agent Type
OTE_HIGH
OTE_LOW

(a) Cumulative, total reinforcement received in Hostile
environment.

0

2000

4000

6000

0 100 200 300 400
Training Steps (e^3)

To
ta

l S
co

re
 in

 B
en

ev
ol

en
t E

nv
iro

nm
en

t

Agent Type
OTE_HIGH
OTE_LOW

(b) Cumulative, total reinforcement received in Benevo-
lent environment.

Figure 3.6: Comparison between total cumulative reinforcements, obtained in the first 400.000 learn-
ing steps in two variations of environment, respectively by OTEHIGH and OTELOW agents,
averaged over 50 learning trials of the Waterworld environments. Scaling varies for each plot in
order to make differences more evident.

variability that was found in the trials, since it may be difficult to appreciate it from
the gray shades in the plots.

Adaptation to different environments

To study the suitability of the behaviors developed by agents with different traits to
different environments, we have performed trials on two extreme variations of the
Balanced environment used for the first experiment, reported in subsubsection 3.1.3.
While the Balanced environment was characterized by an even distribution of posi-
tive and negative reinforcement, on one end of the extreme we have a Hostile environ-
ment which contains 2:1 ratio of bad to good food pieces, and on the other extreme
a Benevolent environment in which the distribution of food is the inverse in favor
of good pieces. Here, we are focusing on the agent’s overall performance, which is
defined as the cumulative reinforcement received over the trial, both negative, corre-
sponding to the number of bad food pieces consumed, and positive, corresponding to
the consumed good ones. We take these results as an indicator for the adaptability of
an agent to a specific type of environment.
The overall performance of different types of agents, OTELOW and OTEHIGH , is
compared in both environment variations and outlined in Figure 3.6; the correspond-
ing standard deviation values are reported in Table 3.3.

From Figure 3.6a we can see that the cautious nature of the OTELOW agent has
shown a significant degree of adaptability to the Hostile type of environment, which
is evident by the difference of 25.2% of the mean total score compared to curious
OTEHIGH .

On the other side, considering the overall performance of the different agent types

38

i
i

“output” — 2019/1/14 — 22:34 — page 39 — #51 i
i

i
i

i
i

3.1. Modeling Openness to Experience

Table 3.3: Average standard deviation σ of values of total, cumulative reinforcement obtained in 50
trials in Hostile and Benevolent environments, whose trend is shown in Figure 3.6.

OTELOW OTEHIGH

Hostile environment 30,834 26,936
Benevolent environment 23,495 27,076

0

50

100

150

200

0 100 200 300 400
Training Steps (e^3)

To
ta

l S
co

re
 in

 E
nv

iro
nm

en
t w

ith
 S

ca
rc

e
Fo

od

Agent Type
OTE_HIGH
OTE_LOW

Figure 3.7: Comparison between total, cumulative scores (sum of positive and negative reinforce-
ment), obtained respectively by OTEHIGH and OTELOW agents in the first 400.000 learning
steps, averaged over 40 learning trials in the Waterworld environment with Scarce Food.

in the Benevolent environment, we can see in Figure 3.6b that this type of environ-
ment gave a curiosity oriented OTEHIGH agent a difference of 7.1% of the mean
total score over the cautious OTELOW type.

Environment with Scarce Reinforcement

One of the common obstacles in reinforcement learning is the scarcity of reinforce-
ment: in many cases the agent doesn’t receive enough feedback from its environment,
in the form of reward, in order to converge to its optimal policy in an acceptable
time. We have tested the adaptability of the two agent types in a variation of the
environment that provides a significantly lower amount of food than the Balanced
one. This environment consists of only four food sources: two of them provide
a negative reinforcement (bad food), while the other two give a positive reinforce-
ment (good food). Scarce reinforcement also meant that the agents had to adopt a
more exploratory approach in order to maximize their cumulative reward in the long
run. Figure 3.7 shows the comparison of overall performance for the OTELOW and
OTEHIGH agent types, given by the cumulative reinforcement received in the scarce
food environment. The corresponding standard deviation values are reported in Ta-
ble 3.4. These results show that the agents having an OTEHIGH trait, given their
curious nature, performed better and shown more ability to adapt to an environment
with scarce reinforcement then OTELOW type of agents.

Table 3.4: Average standard deviation σ of values of total reinforcement in environment with scarce
food, whose trend is shown in Figure 3.7.

OTELOW OTEHIGH

Environment with scarce food 4,0191 5,6944

39

i
i

“output” — 2019/1/14 — 22:34 — page 40 — #52 i
i

i
i

i
i

Chapter 3. Character Matters

Lunar Lander Environment

Total of 20 trials for each of the OTE types were performed over first 32 episodes
in a more realistic Lunar Lander environment with the same learning parameters and
memory capacity as the previous ones. Experimental results plotted in Figure 3.8
indicate that the agent characterized by a cautious nature of OTELOW allowed for
an overall better adaptation than the more curious OTEHIGH , which had some ad-
vantage only at the beginning of the learning process.

−200

−100

0

100

0 10 20 30
Episode

O
ve

ra
ll

Sc
or

e
in

 L
un

ar
 L

an
de

r E
nv

iro
nm

en
t

Agent Type
OTE_HIGH
OTE_LOW

Figure 3.8: Comparison between total, cumulative scores (sum of positive and negative rein-
forcement), obtained respectively by OTEHIGH and OTELOW agents in the first 32 learning
episodes, averaged over 20 learning trials in the Lunar Lander environment

3.1.4 Discussion

Experiments were performed on different variations of the Balanced environment, to
investigate about the possibility for an agent to gain a better performance by showcas-
ing a specific, behaviorally conditioned strategy for each environment type. Results
obtained from these experiments show that our algorithm is capable of conditioning
a better adaptation strategy to common scenarios we encounter in machine learn-
ing, which include environment variations with different distributions of positive and
negative reinforcement seen in subsubsection 3.1.3 and environment variation with
reduced amount of available reinforcement, as reported in subsubsection 3.1.3. Our
Balanced environment provided an initial baseline benchmark since it contained an
even distribution of positive and negative reinforcement in a good amount. Results
reported in subsubsection 3.1.3 show that this environment seems to support more the
cautious nature of an agent that is low in Openness to Experience trait (OTELOW),
which seems to develop a behavior that relies more on avoiding the bad food pieces,
rather then aiming at collecting the good ones. On the other side of the Openness
to Experience spectrum, the OTEHIGH trait seems to drive the agent to focus on
getting the most of food, either good or bad.

As it appears from the results in the environments with a different food generation
rate, the curious OTEHIGH agent thrived better in an environment providing twice
the amount of positive reinforcement, while the cautious tactics of OTELOW took
advantage of the environment that contained more bad than good food sources giving
it a far better performance (a difference of 25.2%) than that obtained by the other
type.

40

i
i

“output” — 2019/1/14 — 22:34 — page 41 — #53 i
i

i
i

i
i

3.1. Modeling Openness to Experience

We can see another significant difference of performance in the environment with
scarce reinforcement, as reported in subsubsection 3.1.3. Here the agent that is high
on the Openness to Experience scale outperformed the low one by a total 26.3%. Cu-
rious OTEHIGH agent seemed to take more risk in this scenario by actively seeking
out the food instead than being primarily focused on avoiding negative food like the
OTELOW , and this proved to be the best behavior for this environment.
The risk taking strategy proved to be a disadvantage in a Lunar Lander environment,
which enables different dynamics, and, instead, supported the more conservative ap-
proach of agents that are on the low scale of the Openness to Experience. Although
OTEHIGH was able to gain an early advantage during the first episodes by explor-
ing the state space more efficiently, the OTELOW strategy proved to be a better one
overall by cautiously reducing the amount of engine firing which was expensive in
negative reinforcement.

41

i
i

“output” — 2019/1/14 — 22:34 — page 42 — #54 i
i

i
i

i
i

Chapter 3. Character Matters

3.2 Modeling Extraversion

3.2.1 Cognitively Inspired Architectures

Studies have showed that human cognitive processes utilized during the interaction
with the environment are mediated by a memory buffer called working memory [3].
The working memory keeps a temporary storage of the perceived information needed
to perform a complex cognitive task: it acts as a connecting mechanism between
perception and long term memory.
Experiments have identified that the differences between individuals in the capacity
of working memory [22] and the breadth of attention generally influence the way
they are focusing their attention and creative abilities [31]. The term “breadth of
attention”, in this context, refers to a sort of cognitive bandwidth, i.e., the number
and scope of stimuli that one is attending at a time.
Extroverted individuals tend to have an attention broader than the introverted ones,
which, in turn, tend to focus their attention to a narrower subset of stimuli in order to
reduce the cognitive load of having a higher basal arousal level [23, 35].

3.2.2 Model Architecture and Learning Algorithm

Using only uniform sampling as a way to store experiences in the replay memory
proved to have limitations such as that some of the valuable experiences might never
be replayed [64]. Breadth of Attention-based replay memory keeps the uniform sam-
pling and extends it by additionally sampling the experiences that emerged from a
specific type of interaction. For the purpose of mapping the transition to a specific,
goal-oriented interaction, we extend the experience description tuple with a transi-
tion type indicator or ct et = (st, at, rt, ct, st+1).
The modified replay memory uniform sampling algorithm that we propose, in addi-
tion to sampling every Sth sample, samples the experiences that match the subset of
transition types, called F (for focus of attention), as shown in Algorithm 6.
Primary contrubution of this algorithm is twofold. The first one is goal focusing,
which enables the agent to exibit a secondary goal, one that does not necessarily
match the reinforcement function; this may lead to a more complex and dynamic
behavioral pattern. The second contribution is the possibility to simulate the differ-
ences between Extraverted and Introverted personality types evident in the breadth
of the attention, by altering the maximum amount of stimuli that is collected into re-
play memory buffer at each given time. We define Breadth of Attention Sampling or
BAS as a type of Cognitive Filter that is able to modify the scope of F and therefore
modeling the agents with different behavioral characteristics in both goal- and trait-
oriented way, thus making them more adapted to learn in different environments.

3.2.3 Experimental setup

To evaluate the proposed model we have adopted a learning environment that consists
of moving good/bad food pieces and multiple agents as described in Section 2.2.4.
As a function approximator we are using a neural network to approximateQ(s, a; Θ) ≈
Q∗(s, a). To reduce the computational complexity of having multiple forward passes

42

i
i

“output” — 2019/1/14 — 22:34 — page 43 — #55 i
i

i
i

i
i

3.2. Modeling Extraversion

Algorithm 6 Q-learning with Breadth of Attention Sampling

Initialize replay memory D with capacity N and sampling frequency S
Initialize and set transition types index C = {c1, c2, ..., cn} and attention focus index F ⊂ C
Initialize action-value function Q with random weights
for episode = 1, M do

Initialize sequence s1 = {x1} and pre-processed sequenced φ1 = φ(s1)

for t = 1, T do
With probability ε select a random action at
otherwise select at = maxaQ

∗(φ(st), a; Θ)

Execute action at, observe reward rt type of transition tt and image xt+1

Set st+1 = st,at,xt+1 and pre-process φt+1 = φ(st+1)

if i mod S = 0 then
Store transition (φt, at, rt, ct, φt+1) in D

end if
for each f in F do

if ct = f then
Store transition (φt, at, rt, ct, φt+1) in D

end if
end for each
Sample random batch of transitions (φj , aj , rj , φj+1) from D

set yi =

rj , terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; Θ), non terminal

Perform a gradient descent step on (yj −Q(φj , aj ; Θ))2 according to Equation 1.12
end for

end for

43

i
i

“output” — 2019/1/14 — 22:34 — page 44 — #56 i
i

i
i

i
i

Chapter 3. Character Matters

each time, we want to find an action that maximizes the state-action functionQ(s, a);
the network takes the state vector s as an input and predicts Q(s, a) for each possible
action.
We have adopted the original Q-learning update with a learning rate α set to a low
value (0.05) because of the nature of the approximator, and discount factor γ = 0.9.
The default capacity of the replay memory buffer D included 9000 experiences.
For comparison with our proposed algorithm, we performed reference experiments
where we uniformly sampled experiences every 7th transition. With regards to our
experimental environment this sampling frequency provided a balance between the
transitions that were sampled uniformly and the ones that were sampled on the basis
of attention focus.

We also performed experiments in a multi-agent setting. The multi-agent envi-
ronment differed from the single-agent one in size and amount of food generated to
accommodate up to 7 agents learning simultaneously. Agents in a multi-agent envi-
ronment had a possibility of social interaction by sharing food with other agents in
proximity, as detected by their sensors. If a single agent consumed a positive food
piece it shared the full reinforcement reward of +1 to each of the agents found within
its range.

3.2.4 Experimental results

In the experiments, we have compared three types of agents implementing different
types of focus of BAS, with the baseline uniform sampling already proposed in liter-
ature, under three different configurations of the environment. The transitions were
given a focus type only if they resulted in an interaction, i.e., either a food piece had
been consumed or an agent had been perceived. To differentiate between the interac-
tions, we have defined three focus types inC = {consume-good, consume-bad, social}.
If the transition resulted in a consumption of good food, it was labeled as consume-
good, if bad food was consumed it was labeled as consume-bad, and if it resulted in
either sharing or receiving food through social interaction it was labeled as social.
Table 3.5 shows which agent personality type is associated with which subset of
C.We call this subset Attention focus F as it represents the set of type labels on which
Algorithm 6 additionally focuses while sampling from the stream of experiences. For
instance, the Introverted - Cautious agent focuses on consuming good food, i.e., it
samples experiences labeled as consume-good. Analogously for the others.

Efficiency comparison

In this section we evaluate the efficiency of agents with different configurations of
BAS with respect to the ability to consume good food pieces and avoid the bad ones
in the environment with an equal distribution of good and bad food pieces. The aim
is to compare the behavioral differences of the agents and their effect on the perfor-
mance by two different criteria: ability to avoid the bad pieces of food and the ability
to consume the good ones.
In a multi-agent setting, agents with the ability to communicate had the possibility
of choosing whether to engage more in social communication, which may provide
an indirect reinforcement, or focus more on the exploration of the environment in

44

i
i

“output” — 2019/1/14 — 22:34 — page 45 — #57 i
i

i
i

i
i

3.2. Modeling Extraversion

Table 3.5: Personality types and attention focus

Single Agent Environment
Agent personality type Attention focus (F)
Introverted - Cautious consume-good
Introverted - Brave consume-bad
Extroverted consume-good, consume-bad
Baseline -
Multi Agent Environment
Agent personality type Attention focus (F)
Introverted - Social social
Introverted - Explore consume-good, consume-bad
Extroverted social, consume-good, consume-bad
Baseline -

search for more direct reinforcement. Experimental results have shown that agents
prioritizing on the transitions that led to social contact can modify their behaviour,
making them more inclined to social experiences, while agents that focused on the
transitions that are related to exploration showed tendency to stay away from other
agents. These two types of agents are used to model the two extremes in the main
five factor personality dimension of Extraversion; on the higher end of the scale there
is the agent type that gravitates more towards social interaction and, similarly, on the
low scale we have the more selfish, explorative agent type. In Figure 3.9 we com-
pare these criteria for each type of agent as a ratio between generated and consumed
food pieces. Figure 3.9a shows the average results of 10 experiments done under the
same settings for each of the defined agent type, while Figure 3.9b depicts analogous
results averaged over 7 agents of the same type interacting in a multi-agent environ-
ment.
From Figure 3.9 we can notice that the efficiency of the agents differs depending
of the agent type in both single and multi-agent environment. Introverted-Cautious
agent type showed to be the most efficient in avoiding bad food sources followed by
Extroverted type, while Introverted-Brave outperformed every other type in consum-
ing good food sources. From these results, it seems that focusing on a given aspect
pushes to efficiently develop a policy that takes better into account that aspect. We
can also notice that BAS agents generally perform better than the non-focused ones.

Performance in different environmental conditions

The intention was to explore how can differences in agent personality type impact on
the performance under different environmental conditions.

We wanted to answer the question: Can some personality type be more capable
than others to learn in a specific environment?
We have modified the equal ratio between the generated good and bad food pieces
for the purpose of creating more hostile or more benevolent environment. Benevolent
environment generated 2/3 of good food pieces and 1/3 of bad, while the hostile en-
vironment had a distribution of 2/3 bad food pieces and only 1/3 good. Results from
single agent simulation as depicted in Figure 3.10 show that the Extroverted agent
was performing best in both normal and hostile environments, while Introverted-

45

i
i

“output” — 2019/1/14 — 22:34 — page 46 — #58 i
i

i
i

i
i

Chapter 3. Character Matters

Figure 3.9: Differences in ratio between generated and consumed food sources amounts, between
BAS focus variations over first 300K learning steps.

0 50 100 150 200 250 300

1.
0

1.
5

2.
0

2.
5

3.
0

TRAINING STEPS (e^3)

F
O

O
D

 G
E

N
E

R
AT

E
D

 /
C

O
N

S
U

M
E

D
I−BRAVE
I−CAUTIOUS
EXTRAVERTED
BASELINE
BAD FOOD
GOOD FOOD

(a) Single agent environment

0 50 100 150 200

5
6

7
8

9
10

TRAINING STEPS (e^3)

F
O

O
D

 G
E

N
E

R
AT

E
D

 /
C

O
N

S
U

M
E

D

I−SOCIAL
I−EXPLORE
EXTRAVERTED
BASELINE
BAD FOOD
GOOD FOOD

(b) Multi-agent environment with food sharing

Brave type better adapted to the environment that contained more good food. It
seems that the broader attention span of the Extroverted agent gave it an advantage
in the environments that contained higher amount of bad food points. Focusing on
both positive and negative experiences allowed the Extroverted agent to learn a pol-
icy that was equally efficient in avoiding the bad food points as it was in consuming
the positive ones.
Figure 3.11 shows the results from a simulation that included 7 agents interacting by
sharing food sources, each of them learning separately. For the normal environment
configuration Introverted-Social and Extroverted types were best performing proba-
bly because their social focus allowed them to make better use of the available good
food points by sharing. Introverted-Explore type outperformed others in a hostile
environment mostly because its narrow focusing on the food points rather than social
interaction allowed it to be more efficient in avoiding the bad food points.

Implicit vs. explicit goal directed behavior

In the next batch of experiments, we wanted to compare the difference between goal-
oriented behavior that is modulated implicitly by BAS and the behavior that was
explicitly influenced by different reinforcement values. Two additional “baseline”
agent types were defined that used only uniform sampling replay memory and dif-

46

i
i

“output” — 2019/1/14 — 22:34 — page 47 — #59 i
i

i
i

i
i

3.3. Related Work

fered only in their reinforcement functions. Baseline social agent was given dou-
ble value of reinforcement for making a social contact relative to the food, while
the baseline exploratory type had double reinforcement for food consumption. In
Figure 3.12, we can see the difference in performance between attention-based ap-
proaches of modeling social and exploratory behaviors (I-SOCIAL,I-EXPLORE)
and the baseline ones (BASE-SOCIAL,BASE-EXPLORE). It is evident that in the
hostile environment the BAS exploring agent is better suited to learn faster to avoid
bad food, while in the other situations the performance of the different agents is
comparable, which means that, at least for these experiments, attention-based replay
memory gives the agents the possibility to successfully face different environments,
without requiring any special design of the reinforcement function. In particular, in
at least one combination, the BAS agents where even able to perform better than the
one with modified reinforcement function.

3.2.5 Discussion

Experimental results show that BAS can either outperform state of the art approaches
on at least some of the environment variations, or have a similar performance. The
BAS approach makes thus possible to define the focus of attention for an agent and
have it performing well in different environments, without the need of re-designing
the reinforcement function.
Being able to select the focal experiences by different criteria opens a lot of possi-
bilities for modeling a stream of replay experiences that can potentially give rise to
complex behavioral patterns.

3.3 Related Work

3.3.1 Prioritized sampling and replay

Since the introduction of the replay memory mechanism in DQL [39] many works
were aimed at improving the efficiency of learning by focusing or giving priority to
certain types of experiences over others, both in sampling and replay. One of the first
successful approaches [50] used stochastic prioritizing on the experiences stored in
replay memory with high Temporal Difference (TD) error under the assumption that
high TD error of experience transition would make the training faster because of its
higher deviation from the current approximated Q-value for the state.
Another approach [64] further argued that uniform sampling performed by [50] suf-
fers from loss of potentially valuable transitions with higher TD error especially in
the beginning of the learning process when the transitions with rewards are mainly
the ones that account for high TD error levels. Instead of uniform sampling, their
approach was to sample all the transitions into two separate memory replay buffers:
one containing the transitions with the immediate reward, and the other the rest of
the transitions. Stochastically sampling from the two memory buffers with different
priorities allowed them to reach a learning speed higher than in [50].

47

i
i

“output” — 2019/1/14 — 22:34 — page 48 — #60 i
i

i
i

i
i

Chapter 3. Character Matters

Modeling curiosity

First works about modeling the agent’s drive towards more interesting situations ap-
peared in the early Nineties of last century, with the reinforcement learning frame-
work of artificial curiosity [52–54, 58], one of which implementations that are based
on prior-posterior entropy [58] is important from the standpoint of our approach. This
implementation generates an additional intrinsic reward that is proportional to the
predictor informational gain measured by the relative entropy, or Kullback-Leibler
divergence, between the learning predictor subjective probability distributions be-
fore and after new observations.
Mostly inspired by the psychology of optimal experience or flow [17], arguing that
human beings are intrinsically motivated to seek out situations that are just above
their skill level therefore satisfying their drive for curiosity, a meta-framework called
Intelligent Adaptive Curiosity was proposed in [43]. This approach relies on the se-
lection of the actions from which the agent expects the maximal learning potential.
Some of the lower-level frameworks as [5] take a more bottom-up approach and are
as well inspired by the flow theory [17], focusing on the fact that it demands to an
agent to gravitate towards an equilibrium between its skills and the goal demands.
This proposal relies on calculating the novelty of the experience as an order of devi-
ation from the average sensorimotor behavior so far learned by the model.
One the most low level frameworks is presented in [32], an approach that behav-
iorally modifies the agent by changing its exploration rate in order to better adapt
to the new conditions. The exploration rate parameter is influenced directly by the
vigilance, i.e. the degree of effort to make a decision, which is estimated by a low
level predictor.

3.4 Conclusions

This chapter shows how altering the information processing mechanism of selective
attention may lead to behavioral differences that are consistent with the human per-
sonality traits found in the widely accepted Big Five index. The interest in modeling
the traits found in human beings sprang from their evolutionary basis of providing
the needed variety of dispositions when forming a group of individuals [42] that, as
combined together, elicit a fitness function that transcends the individual ones. For
example, there may not be an evolutionary fitness associated with an individual with
a high level of neuroticism, but, as a component integrated into the group of individu-
als, it achieves its purpose of supporting the fitness of the whole group. This concept
that in human communities the whole is more than a sum of its parts can be supported
using agents that are modeled along the personality axis of openness to experience
showcased in the first part of chapter 3. On one end of the openness to experience
spectrum we have an agent with a cautious disposition that tends to focus attention
to the experiences that are leading away from potential information and this accounts
for its behavior to be more calm and reserved by not being intrinsically motivated for
exploration. Its more lively counterpart on the other extreme of the trait will behave
in the opposite way, being brave in actively searching for the information gain that
would lead it to more interesting, new and unpredictable states while exhibiting much

48

i
i

“output” — 2019/1/14 — 22:34 — page 49 — #61 i
i

i
i

i
i

3.4. Conclusions

more aggressive and dynamic motion around its environment. This brings us to the
well known trade-off found in reinforcement learning of exploitation to exploration
ratio. Sometimes we would like to behave like the "shy" cautious agent type in ex-
ploiting the more familiar states that we are more certain will bring us more reward in
the long run, and sometimes we would like to be like the "brave" one motivated to try
out new situations that haven’t been fully explored thus it doesn’t know whether they
are beneficial or not; they have to be visited in order to find out their values. This,
conventionally is most often done by adopting an ε-greedy approach that basically
chooses a random action instead of an action selected by policy π every ε times in
order to promote exploration of the unexplored states. However, if we are faced with
a multi-agent implementation an alternative made possible by agents with modeled
openness to experience is to use a mixed population with a ratio of ε of brave explo-
rative agents combined with the 1− ε of the cautious ones in order to bring us closer
to the desired collective behavior. This allows us to define exploration-exploitation
properties of the learning process in a much more dynamic and subtle way than using
simple ε-greedy tactics, with the combined dynamics of the explorative extreme side
working along the exploitative cautions one. It also alleviates the need for adjustment
of ε parameter over time because both types of agent are actually converging to their
optimal policies π∗ just in different ways.
The concept of application of traits in modeling the collective behavior is taken fur-
ther in section 3.2 where we apply the same concept of cognitive filter to a more
complex multi-agent setting in order to elicit both goal-oriented and trait-oriented
behaviors. The potential for dynamic behaviors arises from the two equally reward-
ing ways of getting food represented by a positive reinforcement value: one directly
collects reward by aiming at food, and the other interacts with other agents that share
their collected food. The first, induced behavioral change is the goal-oriented one,
by focusing artificial attention on either experiences that resulted in collecting food
on its own by exploring, or focusing on the ones that resulted in getting food from
another agent. The first disposition is introversion and the latter extroversion. Both
types of agents, the extraverted social exploiter and the introverted explorer are mo-
tivated by their primary drive of collecting good food while avoiding the bad one,
as given by their reinforcement function, but their behavior as a group is affected
by the secondary, more subtle drive of goal-orientation influenced by their attention
preference.

A good evolutionary example of the type separation in a group is the ant colony,
where every ant is exhibiting a main drive of hunger and self-sustainability only to
be able to perform another specialized function that benefits the whole colony. The
example proposed in the previous sections is closer to the situation of a human group
than to that of an ant colony as the separations of individual types is not crisp just
like the human personality traits are not; however, their dynamics are noticeable in
the collective sense. The need of this secondary personality diversity can possibly be
evolutionary justified by looking at the two extreme compositions of the presented
multi-agent environment. If we had a population consisting entirely of the social ex-
ploiters we would soon be faced with the lack of the food to share among the agents
and if we had an explorers only population we wouldn’t use all of the collected food
in the best way by not being generous about it. It can be said that there exists a ratio

49

i
i

“output” — 2019/1/14 — 22:34 — page 50 — #62 i
i

i
i

i
i

Chapter 3. Character Matters

of the two types being combined in a specific multi-agent setting that would function
as both individually and collectively optimal, by making a better use of the available
food resources.
In this chapter, two novel approaches were presented that enable agents to learn be-
haviors corresponding to different personality traits just by favoring specific types
of experiences when sampling them into the replay memory. From the reported ex-
periments showcased in both section 3.1 and section 3.2 emerges that this technique
seems to be an efficient way of developing a specific personality trait in a learning
agent without modifying any other property of the algorithm, or reinforcement func-
tion, but only selecting the experiences to be replayed according to a formal model
that mimics the concept of attitude. The novelty of these approaches mainly consists
in the use of the replay memory in a biologically inspired, goal-oriented approach,
showing that the way an agent selects experiences to be used for the main massive
learning activity can influence the development of a personality trait.
From the reinforcement learning perspective, this type of biologically inspired mod-
ification of the selection of the experiences to be replayed opens the path to the
development of agents that could be more or less effective in different types of envi-
ronments, both in learning and in the quality of the obtained behavior, eventually pro-
viding a bio-inspired dimension to consider to better adapt anytime learning agents
to dynamic environments.

50

i
i

“output” — 2019/1/14 — 22:34 — page 51 — #63 i
i

i
i

i
i

3.4. Conclusions

Figure 3.10: Differences in average score/reward between agents with BAS focus variations, learning
in a single agent environment over first 300K learning steps.

0 50 100 150 200 250 300

0
20

0
60

0
10

00

TRAINING STEPS (e^3)

S
C

O
R

E

I−BRAVE
I−CAUTIOUS
EXTRAVERTED
BASELINE

(a) Normal environment: even number of good and bad food sources

0 50 100 150 200 250 300

−
70

0
−

40
0

−
10

0

TRAINING STEPS (e^3)

S
C

O
R

E

I−BRAVE
I−CAUTIOUS
EXTRAVERTED
BASELINE

(b) Hostile enviroment: bad food sources 66.66%, good food sources 33.33%

0 50 100 150 200 250 300

0
10

00
20

00
30

00

TRAINING STEPS (e^3)

S
C

O
R

E

I−BRAVE
I−CAUTIOUS
EXTRAVERTED
BASELINE

(c) Benevolent environment: bad food sources 33.33%, good food sources 66.66%

51

i
i

“output” — 2019/1/14 — 22:34 — page 52 — #64 i
i

i
i

i
i

Chapter 3. Character Matters

Figure 3.11: Differences in average score/reward between agents with BAS focus variations learning
in a multi-agent environment over first 300K learning steps.

0 50 100 150 200

0
50

10
0

15
0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
EXTRAVERTED
BASELINE

(a) Normal environment: even number of good and bad food sources

0 50 100 150 200

−
20

0
−

10
0

0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
EXTRAVERTED
BASELINE

(b) Hostile environment: Bad food points 66.66%, good food sources 33.33%

0 50 100 150 200

0
10

0
30

0
50

0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
EXTRAVERTED
BASELINE

(c) Benevolent environment: Bad food points 33.33%, good food sources 66.66%

52

i
i

“output” — 2019/1/14 — 22:34 — page 53 — #65 i
i

i
i

i
i

3.4. Conclusions

Figure 3.12: Differences in average score/reward of agents with behaviour modulated by BAS focus
types (I-SOCIAL,I-EXPLORE) and behaviours induced by implicit modification of the reinforce-
ment function (BASE-SOCIAL,BASE-EXPLORE).

0 50 100 150 200

0
50

10
0

15
0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
BASE−SOCIAL
BASE−EXPLORE

(a) Normal environment: even number of good and bad food sources

0 50 100 150 200

−
20

0
−

10
0

0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
BASE−SOCIAL
BASE−EXPLORE

(b) Hostile environment: Bad food sources 66.66%, good food sources 33.33%

0 50 100 150 200

0
20

0
40

0
60

0

TRAINING STEPS (e^3)

S
C

O
R

E

I−SOCIAL
I−EXPLORE
B−SOCIAL
B−EXPLORE

(c) Benevolent environment: Bad food sources 33.33%, good food sources 66.66%

53

i
i

“output” — 2019/1/14 — 22:34 — page 54 — #66 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 55 — #67 i
i

i
i

i
i

CHAPTER4
Evolution

As the human being is the product of an adaptive evolutionary mechanism that spans
over million of years, so are the psychological mechanisms that shape its behav-
ior [14]. The lack of the insight of the science about the evolutionary basis for our
behaviors is partly due to the expectation that the inherent complexity of human
brains obscures the adaptive patterns of the underlying behaviors, and partly to the
fear that is impossible to explain something with a tool that has the same complex-
ity This being said, many have dismissed the search for the evolutionary origin of
behaviors on the basis of them showing a great amount of complexity and variety
among human communities and social constructs. However, we can argue that this
complexity emerges from our nature of evolving in groups instead of individuals; like
primates, we rely on the group interaction for resources and protection, so our indi-
vidual fitness functions are often represented by adaptation of the whole group [14].
Regardless of being evaluated as a single or in a group setting, the behavioral vari-
ations found in humans are a product of an adaptation to the environment aimed at
guaranteeing the survival of the group, which, in turn, is expected to guarantee the
survival of its individual member. This need for variation can also account for emer-
gence of meta-variations in the population that are discussed in the previous chapter:
the personality traits. The personality dispositions may not be directly affecting the
individual’s chances of adaptation, or its fitness function, but their variations dis-
tributed through the group of individuals will support the fitness of the group. Since
these low-level physical structures in the brain are a direct product of our genetic
markup and complex psychological mechanisms are actually built around them and
shaped by our evolutionary adaptation, they are a good representation of the forces
that have created them. Since the brain is a large information processing mechanism,
the best way to understand the functioning of proximate mechanisms is to look at the

55

i
i

“output” — 2019/1/14 — 22:34 — page 56 — #68 i
i

i
i

i
i

Chapter 4. Evolution

way they process information by focusing on its cognitive level. This informational
centered approach is good from a standpoint of evolutionary adaptation because, in
order to elicit a specific behavior, a living being needs to gain information and more
importantly process it in order to make mental models that inform other parts that are
responsible for behavior about how to act. It is argued that for the purpose of eliciting
behaviors animals have evolved Darwinian algorithms capable of forming adaptively
meaningful frames [11–13] that are capable of focusing attention and bringing for-
ward procedural knowledge that can lead to higher order psychological functions.
For these reasons it is suggested by [14] that "the evolutionary function of the brain
is to process information in ways that lead to adaptive behavior". In this chapter,
a biologically inspired artificial mechanism of perception is proposed which is able
to evolve its characteristics in terms of processing and filtering information that can
lead to emergence of adaptive behavior found in humans. This also represents an
experiment in exploring how we can generate complex behavioral patterns by evolv-
ing a simple cognitive filtering of the information that is coming from the agents
environment.

4.1 Perception as Attention Focusing Mechanism: An Evolutionary
Perspective

We present a computational model of attention that includes the mechanisms for se-
lectively storing experiences from the agent’s cognitive stream into its replay mem-
ory, therefore providing a goal-related context buffer from which the past experi-
ences can be sampled for re-learning. Furthermore, we explore how it is possible
for an artificial agent to evolve this attention mechanism over generations so that it
would make it possible to learn more efficiently by selectively focusing on experi-
ences more valuable than others. As a focusing mechanism we are using an artificial
neural network, which receives as input the characterizing parameters of the transi-
tion between states and produces as output a crisp decision about whether to sample
the transition into the replay memory, or to discard it. After multiple trials over 100
generations, we have found that the focusing mechanism becomes more selective;
this is consistent with the concept of attention, and the replay memory contents get
permeated with transitions that are high in the values of curiosity indicative parame-
ter informational gain [44]. Evolutionary motivated, higher level goal superseded the
primary reinforcement-based one making the agent to adopt a new long-term strat-
egy of intrinsic curiosity, while exhibiting a behavioral change of being more brave
or aggressive towards acquiring new sources of stimuli in the given environment.

4.1.1 Model Architecture and Learning Algorithm

In this section, the structure of the learning model we are proposing is presented in
its two main parts: evaluation and evolution.
The first part, shown in Figure 4.1, represents the main evaluation reinforcement
model, where the proposed attention focus block plays a primary role. The main part
of this block is the ANN function approximator (f), whose evolutionary process is
shown in Figure 4.2.

56

i
i

“output” — 2019/1/14 — 22:34 — page 57 — #69 i
i

i
i

i
i

4.1. Perception as Attention Focusing Mechanism: An Evolutionary Perspective

st

Figure 4.1: General learning model architecture including attention focus block: (a) Replay memory;
(b) Main learning loop; (d) A block implementing main Q-value function approximator neural
network ; (c) Raw stream of the experiences; (f) ANN function approximator as a part of attention
focus block

The main part of the learning algorithm is the learning loop, represented as the (b)
section in Figure 4.1, where the agent actually takes an action a that brings it from
state st to the next state st+1, which is also providing an immediate reinforcement
rt. The actual learning part of the loop is supported by a main function approximator
ANN shown in (d) block of Figure 4.1, which performs a backpropagation update
at each learning step in order to provide a better approximation of the Q values of
the state-action pairs. This ANN takes a multi-dimensional state on its input and
provides the estimated Q values for each possible action available for the agent as its
output layer. Since the target value for Q(s, a) is given by the Bellman equation, it
is possible to calculate it, taking into account the immediate reinforcement and the
discountedQ value of the next state, and to compare it with the current estimate of the
function approximator ANN in order to figure out how wrong it was with respect to
what obtained by the last transition. This difference, also known as TD error provides
enough information to update the new estimation of Q(s, a). A backpropagation is
performed on the approximator with the state st on the input layer and the gradient
on the at output is set to TD error while all other gradients on the action outputs are
set to 0. After the update, the transition is actuated so that st becomes st+1 and the
loop restarts.
The learning loop process provides the raw sequential experience stream marked as
(c) in Figure 4.1 from which it is possible to sample some of the experiences into

57

i
i

“output” — 2019/1/14 — 22:34 — page 58 — #70 i
i

i
i

i
i

Chapter 4. Evolution

a buffer structure called replay memory (a), which stores the experience transitions
from which the agent can selectively learn. In this proposal, this process is mediated
by the attention focus block, including another ANN function approximator (f) able
to predict whether or not it is the case to sample the specific transition in the replay
memory, depending on its properties provided in input. The properties forwarded
through the ANN encompass the predictive power, given by its TD error, along with
its information potential factors such as the Shannon’s entropy of the state st and
the information gain potential of the transition given by Kullback-Leibler difference
between state st+1 and st.

+

Figure 4.2: Schema of the evolution of the Attention Filter

The evolution of the proposed attention focus block is obtained by a Genetic Al-
gorithm or GA, where the members of the population encode the information about
the weights of the ANN approximator (f), used to control the sampling dynamics of
the attention focus block structure. The starting point for the algorithm is a random
population, and each configuration of parameters for an attention focus block dives
learning for an agent operating in the environment. Each agent performs a learning
process mediated by its genetically altered attention in an environment that provides
both positive and negative reinforcement. Over a given number of learning steps,
we may observe that agents learn to gravitate towards positive and to avoid negative
reinforcement sources. The total reward collected at the end of a trial represents the
agent’s score, which is indicative of its adaptability to the specific environment.
After the evaluation phase, the agents are ranked by the total reinforcement they
received, which is taken as their respective fitness. The mating phase starts by se-
lecting the individuals with the higher fitness that are going to be the base for the
next population. The selected genotypes undergo the genetic operations of crossover
and mutation. In crossover, two parent genotypes randomly combine their genetic
information to produce an offspring. Then, mutation randomly modifies the genetic

58

i
i

“output” — 2019/1/14 — 22:34 — page 59 — #71 i
i

i
i

i
i

4.1. Perception as Attention Focusing Mechanism: An Evolutionary Perspective

material. The resulting genotypes produced by these two operations join to form a
new evolved generation from which the process of evaluation can start again.

4.1.2 Experimental Setup

The proposed approach was tested in different environments. Here are presented
the results obtained in two environments, derived from some of the environments
used in literature, namely Waterworld [30], and LunarLander-v2 from OpenAI Gym
framework [10]. In both cases we have a complex and continuous state spaces which
can support their diversity.

Waterworld Environment

In the first example the agents operate in an environment inspired by the Waterworld
setting already mentioned in Section 2.2.4 and showcased in [30].
The Q value function approximator ANN (marked as (d) in Figure 4.1 is imple-
mented as three layers: the input layer consists of 152 nodes fully connected to an
inner layer of 100 nodes, that is in turn connected with an output layer of 5 nodes (the
possible actions) and trained using a learning rate α = 0.005. It is able to approxi-
mate the 152 dimensions of state on the input to theQ values of 5 actions available to
the agent. In the genetic algorithm adapting the approximator ANN, the genes were
modified with a heuristically determined probability of 0.25 and the modification
was implemented as the addition of a number between−0.1 and 0.1 to the respective
parameter value. The evaluation trial lasted 160,000 steps. Reinforcement learning
expectation is computed with a discount rate γ = 0.9, and ε−greedy policy is used
with the starting ε = 0.2, then adjusted to 0.1 at the mid-point of the trial, after 80.000
steps for a better convergence towards the end. Replay memory buffer capacity was
set to 3000 experience transitions. A population of 4 agents was evolved and after
each evaluation the best performing two were selected for crossover and mutation.
The new population was made from a multiple mating of the two best performing
agents.

Lunar Lander Environment

The second set of experiments was performed in a more realistic setup, such as
LunarLander-v2 from OpenAI Gym framework [10]. The goal is to land a craft in
a designated landing place indicated by two flags while countering the gravity pull
using three thrusters: main, left and right orientations. While Waterworld is repre-
sentative of tasks with continuous variables and sparse, random reinforcement, Lunar
Lander is representative of rocket trajectory optimization which is a classic topic in
area of optimal control featuring a more dispersed and constant reinforcement feed-
back. An episode concludes when a lander crashes or comes to a rest, in which case
it receives additional -100 or +100 of reinforcement respectively. Additional rein-
forcement is provided, inversely proportional to the craft distance from the landing
area and deviation from zero speed; it comes in the range of +100 to +140. Firing
main thruster results in a -0.3 reinforcement while each leg contact with a ground is
rewarded by +10. The craft has an unlimited amount of fuel at its disposal and can
also land outside the designated area.

59

i
i

“output” — 2019/1/14 — 22:34 — page 60 — #72 i
i

i
i

i
i

Chapter 4. Evolution

State space is 8-dimensional and consists of 4 continuous variables sensing the x
position of the craft, its y position relative to the land area, craft’s angle and its an-
gular velocity along with 2 boolean variables indicating a land contact for each of
the craft’s leg. Four discrete actions are available to the craft: do nothing, fire main
engine, fire left orientation engine, fire right orientation engine.
Reinforcement learning parameters were set to be the same as in previous batch of
experiments along with an adjustment of ε. Elitism was implemented allowing two
best scoring agents to propagate their genotypes unchanged into the next generation
while the other 8 phenotypes of the next generation were generated by crossover of
genotypes selected with a probability proportional to their respective scores. Mu-
tation rate was also 0.25 and again performed by adding a number between −0.1
and +0.1 to the parameter value and attention filter block ANN architecture is the
same as in previous batches with an exception of a hidden layer containing 6 neurons
which slightly increased the variety of genotypes.

4.1.3 Experimental Results

The experiments performed on both environments, Waterworld and Lunar Lander,
were compared using three settings. A genetic algorithm evolutionary implemen-
tation of the proposed attention focus block sampling, or GA-AFBS, was compared
with a non-evolutionary case R-AFBS of generations consisting of randomly selected
weight parameters, and a baseline NO-AFBS in which agents used no AFBS filtering
and sampled every experienced transition into the replay memory buffer.

Waterworld Environment

A total of 6 trials were performed in the Waterworld environment, each of them
evolved a 100 generations of attention focus block phenotypes evaluated by rein-
forcement learning phases for 160, 000 learning steps.
In Figure 4.3 we can observe the evolution of the number of experiences sampled
by the attention focus block over 100 generations. Experimental data show that the
attention focus block evolved in the direction of being more selective about the sam-
pled experiences, from inefficiently taking almost 88% of the raw experience stream
in the replay memory at the beginning, to a much more selective selection of 12%
experiences at the 100th generation, which represents a great difference with respect
to the random R-AFBS percentage which was constantly kept around 40%.

Figure 4.4 shows how the evolutionary model influenced the performance of the
agents given by their total score, or total reinforcement received over the evalua-
tion phase. An approach that used evolving phenotypes of attention focus block
(GA-AFBS) greatly outperformed the no filter one (NO-AFBS) by over 400% and a
random parametrization (R-AFBS) by more than 200%, and came to a stable point in
about 75 generations.
Figure 4.5 shows the sampling preference of the approaches in terms of types of
transitions as determined by average informational gain values of the sampled expe-
riences in the replay memory. We can see that the genetically supported evolution of
GA-AFBS evolved a high tendency to sample the experiences with positive values of
the informational gain property in contrast with the no filter NO-AFBS, whose aver-

60

i
i

“output” — 2019/1/14 — 22:34 — page 61 — #73 i
i

i
i

i
i

4.1. Perception as Attention Focusing Mechanism: An Evolutionary Perspective

0

25

50

75

100

0 25 50 75 100
Generation

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 T

ot
al

 S
am

pl
ed

 T
ra

ns
iti

on
s

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.3: Average total sampling percentage in the Waterworld environment of the genetic al-
gorithm supported evolution of the attention focus block (GA-AFBS) compared with a non-
evolutionary sampling implemented as a random attention filter neural network (R-AFBS) and
a baseline approach without any cognitive filter (NO-AFBS), over the first 100 generations of 6
trials (solid lines) and the respective variance (gray areas).

age accumulated to 0 as it preferred the experiences with both positive and negative
values in the same proportion. The evolutionary approach settled to a 0.1 average
informational gain which gave rise to a more curious agents than a random R-AFBS
one, which was rather consistent with an average of 0.25 throughout the generations.

Lunar Lander Environment

Evaluation phase in Lunar Lander environment in GA-AFBS consisted of a genera-
tion of 10 agents competing with each other based on the average reward received
over 60 consecutive learning episodes.
Changes in sampling preferences can be seen from Figure 4.6, where the proposed
evolutionary approach GA-AFBS evolved again to be more restrictive to select expe-
riences for replay memory. Although not as selective as Waterworld, in the Lunar
Lander environment GA-AFBS resulted in a more conservative 25% sampling per-
centage which is a significant change compared to the expected 50% average sam-
pling of the random network R-AFBS.
Figure 4.7 shows the amount of improvement that GA-AFBS brought to the more
realistic Lunar Lander environment. We can see that GA-AFBS took about 12 gen-
erations to outperform the baseline NO-AFBS by 150% and provide a 125% increase
over the random R-AFBS.
We can also notice that GA-AFBS evolved a preference for sampling experiences that
manifest a higher value of the starting state entropy H(st) outlined by the Figure 4.8
and a high preference for experiences with lower informational gain level IG which
can be seen from Figure 4.9.

61

i
i

“output” — 2019/1/14 — 22:34 — page 62 — #74 i
i

i
i

i
i

Chapter 4. Evolution

0

100

200

300

0 25 50 75 100
Generation

A
ve

ra
ge

 S
co

re
 o

f A
ge

nt
s

in
 E

va
lu

at
io

n
P

ha
se

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.4: Average fitness (total reinforcement) received in Waterworld environment by the proposed
genetic algorithm supported evolution of the attention focus block GA-AFBS sampling, compared
with a non-evolutionary sampling implemented as random attention filter neural network R-AFBS,
and a baseline approach without any cognitive filter NO-AFBS over first 100 generations of 6
trials.

4.1.4 Discussion

Informational Gain parameter as a measure of Curiosity

Informational gain or IG parameter is defined as Kullback-Leibler difference or rel-
ative entropy between posterior state st+1 and anterior one st, as we can see from
Equation 4.1. It is especially important for a discussion about the emergence of
intrinsically motivated evolved behavioral traits of agents in the AFBS sampling
method. It can provide an insight about the agent preference to move towards a
state of higher informational content which is indicative of intrinsic curiosity if it is
positive, or, on the other end of the spectrum, negative values are indicating a more
cautious move in which the agent is moving away from the state of high informa-
tional potential.

IG = H(st+1)−H(st) (4.1)

Implications

From Figure 4.3 and Figure 4.6, we can conclude that the evolutionary approach
of GA-AFBS can reduce the cognitive load on the agent induced by a highly satu-
rated, high-dimensional state space, by selecting more interesting experiences that
are stored for learning in the replay memory. Besides evolving an optimal cognitive
load for each of the considered environments of 12% for the Waterworld and 25%
for the more realistic Lunar Lander, this approach also improved the selection of ex-
periences that are more valuable for machine learning as evident from Figure 4.4 and
Figure 4.7, which show a significant improvement of the total reinforcement received
in both environments. The fact that the different optimal sampling percentages were
evolved in adaptation to the environments bring us to a conclusion that the different
environments present a varying level of cognitive load for the learning agent. The
more chaotic nature of the Waterworld gave rise to more interesting, information sat-

62

i
i

“output” — 2019/1/14 — 22:34 — page 63 — #75 i
i

i
i

i
i

4.1. Perception as Attention Focusing Mechanism: An Evolutionary Perspective

−0.1

0.0

0.1

0.2

0 25 50 75 100
Generation

A
ve

ra
ge

 In
fo

rm
at

io
na

l G
ai

n
of

 S
am

pl
ed

 T
ra

ns
iti

on
s

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.5: Average values of informational gain parameter of experiences contained in work-
ing memory at the end of evaluation in Waterworld environment for the proposed genetic algo-
rithm supported evolution of attention focus block GA-AFBS sampling, compared with a non-
evolutionary sampling implemented as random attention filter neural network R-AFBS and a base-
line approach without any cognitive filter NO-AFBS over first 100 generations of 6 trials.

urated transitions, which resulted in a more selective perception compared to the not
so saturated one in Lunar Lander environment.
Some behavioral characteristics such as curiosity were intrinsically evolved to better
adapt to the specific dynamics of the environment. From Figure 4.5 we can see that
in the Waterworld environment curiosity or positive IG was evolved as an adaptation
trait that arose from the need of an agent to be more engaged in the environment
with a scarce reward and more focused in finding transitions that lead to situations
expected to provide positive reinforcement.
Contrary to the scarce reinforcement feedback of the Waterworld environment, Lunar
Lander provided a totally different and more dynamic reward mechanism which in-
cluded constant adjustment of the reinforcement function based on the agent’s state.
Confronted with the dynamics of the Lunar Lander environment, GA-AFBS evolved
a trait of being cautious given its preference for the transitions with negative IG as
shown in Figure 4.9. Also interesting to note is that the evolved perception mech-
anism in Lunar Lander displayed a preference for the transitions that have a higher
entropy of the starting state, as can be see in Figure 4.8, which possibly contained
more informational potential for learning, but at the same time cautiously preferred
low entropy of the next state st+1 given by the negative IG displayed in Figure 4.9.
From displayed results it is possible to notice that an evolved artificial perception
using the proposed GA-AFBS algorithm was able to alter the behavioural character-
istics of the agents by producing agents with specific traits or tactics that provide a
better adaptation to a specific environment without the need to alter the reinforcement
function.

63

i
i

“output” — 2019/1/14 — 22:34 — page 64 — #76 i
i

i
i

i
i

Chapter 4. Evolution

0

25

50

75

100

0 25 50 75 100
Generation

A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 T

ot
al

 S
am

pl
ed

 T
ra

ns
iti

on
s

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.6: Average total sampling percentage in Lunar Lander environment for the proposed ge-
netic algorithm supported evolution of attention focus block GA-AFBS sampling, compared with
a non-evolutionary sampling implemented as random attention filter neural network R-AFBS and
a baseline approach without any cognitive filter NO-AFBS over first 100 generations of 6 trials.

4.2 Related Work

4.2.1 Artificial attention as a behavior inducing mechanism

The idea that selective focusing of the memories that enter working-term memory
analogue of replay memory can behaviorally influence the artificial learning agents
was explored in [47]. In this work, a computational model of main personality trait
axis including introversion-extroversion dichotomy was presented. The model was
based only on changing the dynamics of the attention span of the replay memory,
which was shown to be different between introverted and extroverted individuals, as
the latter exhibited a broader attention span [22]. The two types of agents were tested
in different variations of the environment respectively providing positive and nega-
tive reinforcement ratios. Normal environment provided an equal amount of positive
and negative reinforcement and represented the baseline for the experiment. Hostile
environment provided more negative reinforcement, while the benevolent one pro-
vided more positive reinforcement. Curiosity-driven, extroverted agents performed
better in a benevolent type of environment while the cautious, introverted ones man-
aged to learn better in the hostile environment.
Attention based working memory approach was used also in [48] which proposed a
selective focusing of the experiences based on their informational potential or Shan-
non’s entropy of the perceived state space. Although the aim of this approach was
primarily to increase the learning performance of the agents, compared to an uni-
form sampling baseline the entropy-based sampling also seemed to have induced an
intrinsically motivated exploration that became an important part of their tactics to
increase the overall performance.

4.2.2 Evolutionary Adaptive Approaches

In [45] basic emotions such as fear were evolved as motivational drives involved in
adaptation of learning agents to their immediate environment. At each generation,

64

i
i

“output” — 2019/1/14 — 22:34 — page 65 — #77 i
i

i
i

i
i

4.3. Conclusion

−250

−200

−150

−100

0 25 50 75 100
Generation

A
ve

ra
ge

 S
co

re
 o

f A
ge

nt
s

in
 E

va
lu

at
io

n
P

ha
se

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.7: Average fitness or total reinforcement received in Lunar Lander environment for the pro-
posed genetic algorithm supported evolution of attention focus block GA-AFBS sampling, com-
pared with a non-evolutionary sampling implemented as random attention filter neural network
R-AFBS and a baseline approach without any cognitive filter NO-AFBS over first 100 generations
of 6 trials.

a new population of virtual agents was tested, each of them evolving a neural net-
work that mapped its input, which included time, good and bad sensation neurons,
and visual perception, to its output that was used to focus on the visual stimuli and
select the agent’s actions. Over time, the selection of agents based on elitism w.r.t.
the ability to adapt to the environment gave rise to a specific drive of being cautious
or fearful as a survival strategy.
Another evolutionary perspective is presented in [56] in which the reward functions
of the agents are evolved taken in consideration their fitness. This forms an idea of
optimal reward function that builds upon the basic reward function in order to max-
imize the expected fitness over distribution of environments. The presented experi-
ments support the notion of emergence of intrinsic reward for specific actions such as
playing and manipulating objects in their immediate environment that are not meet-
ing any primary need of the agent. [51] introduced a combination of evolution and
machine learning allowing the agents to intrinsically evolve a basic reinforcer for
atomic building-block skills in the childhood learning phase, which are later used in
the adulthood phase.

4.3 Conclusion

As the machine learning mechanisms evolve, we are now aware that along the ad-
vancement of the learning algorithms focused on how to use data received from the
environment in a most efficient manner to support learning, we also need to be con-
cerned about the way those data are perceived in the first place. In spite of being
vastly unexplored, a good source of inspiration for new computational and evolution-
ary approaches of perception is a computational organ that is a product of a million
of years of evolution: the human brain. In chapter 4 we tried to exploit the insights
received by the areas of psychology and neuroscience, which describe the higher or-
der complex functions that our brain is using in order to make its perception more
efficient. Since these functions were developed in humans by an evolutionary pro-

65

i
i

“output” — 2019/1/14 — 22:34 — page 66 — #78 i
i

i
i

i
i

Chapter 4. Evolution

1.1

1.2

1.3

1.4

0 25 50 75 100
Generation

A
ve

ra
ge

 E
nt

ro
py

 o
f S

ta
rt

in
g

S
ta

te
 in

 S
am

pl
ed

 T
ra

ns
.

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.8: Average values of entropy of the starting state of experiences contained in working mem-
ory at the end of evaluation in Lunar Lander environment for the proposed genetic algorithm sup-
ported evolution of attention focus block GA-AFBS sampling, compared with a non-evolutionary
sampling implemented as random attention filter neural network R-AFBS and a baseline approach
without any cognitive filter NO-AFBS over first 100 generations of 6 trials.

cess of natural selection, it seemed that a similar process in a computational sense
would also do the work.
Nature doesn’t like to reinvent things, instead the basis of the primordial functional
mechanisms is found in all of the complex organisms up to date in the primal bulk of
the genetic material. Evolution is all about keeping what works and building upon it
and this is the reason we share a great deal of genome with a simple organism such as
fruit fly and our brains are built upon features found in reptiles only and those primal
parts can still take control over the higher order neocortex if we are found in a danger-
ous situation. Different species have developed perception mechanisms with varying
complexity and scope in order to better adapt to the different environments but they
all share the same primordial building block. For example, the fish that have adapted
to living in a hostile environment of deep oceans without any light have adapted their
perception mechanism to rely almost solely on tactile and olfactory domains while
most of them still have now obsolete functional visual system reminiscent of their
common evolutionary base. In the approach presented in chapter 4 an evolutionary
algorithm was used in order to adapt the basic functional artificial mechanism of per-
ception called attention filter block to a specific learning environment. In this way
the artificially evolved mechanism took a role of a primitive perception that enhanced
and supported the agents learning process. It is interesting that over the generations
the mechanism took a "protective" stance towards the working memory of a limited
capacity by gradually reducing the cognitive load to a more manageable 1

10
of the

sensory input. The environment dynamics required that for an agent to be more effi-
cient in acquiring food it needed to explore and move in an aggressive way and this
affected the algorithm to evolve a more curious agents by favoring experiences that
lead to an increase of information potential in a sensed state.
Evolution of the artificial perception proved to be an important part of a long-term
adaptation that is able to optimize a short-term adaptation algorithm of the reinforce-
ment learning itself. In this way, it is possible to achieve both types of adaptations by

66

i
i

“output” — 2019/1/14 — 22:34 — page 67 — #79 i
i

i
i

i
i

4.3. Conclusion

−0.1

0.0

0.1

0 25 50 75 100
Generation

A
ve

ra
ge

 In
fo

rm
at

io
na

l G
ai

n
of

 S
am

pl
ed

 T
ra

ns
iti

on
s

sampling

GA−AFBS

NO−AFBS

R−AFBS

Figure 4.9: Average values of informational gain parameter of experiences contained in working
memory at the end of evaluation in Lunar Lander environment for the proposed genetic algo-
rithm supported evolution of attention focus block GA-AFBS sampling, compared with a non-
evolutionary sampling implemented as random attention filter neural network R-AFBS and a base-
line approach without any cognitive filter NO-AFBS over first 100 generations of 6 trials.

having an artificial agent learn how to perceive the environment and use that experi-
ence in order to perform a more efficient final adaptation in terms of maximization
of an expected reward. Although oversimplified compared to the human brain, the
proposed approach was able to develop an applicable filtering mechanism able to
reduce the cognitive load and to induce an intrinsic behavior, therefore simulating
the arising of the process of attention just by changing the dynamics of experience
sampling.

67

i
i

“output” — 2019/1/14 — 22:34 — page 68 — #80 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 69 — #81 i
i

i
i

i
i

CHAPTER5
The Performance

The application of the mechanism of replay memory is not limited to eliminating
problems with highly time-correlated samples that gradient descent approximators
don’t prefer; from previous chapters we have seen that it can be used in order to be-
haviorally modify the learning process. In this chapter, the dynamics of replay mem-
ory structure is changed in order to improve the overall performance of the learning
agents. The first part of the chapter takes a biologically inspired approach while the
second focuses on improving the criteria for prioritization.

5.1 Context Augmented Reinforcement Learning

5.1.1 Introduction

Studies concerning human and animal memory storage and retrieval as a part of a ba-
sic cognitive information processing show that the context in which a specific mem-
ory is retrieved highly influences its perception and expression [61]. Furthermore,
it has been evident that the contextual retrieval nature of the memory is very much
similar to the learning process [57]. This nature of processing memories is evident in
our everyday life; we are more likely to remember the person if the person appears
again in the same environment in which we first met that individual as opposed to
a totally new, out of context, location. Context, in this case a location act as a sort
of amplifier for the similar and connected memories thus supporting their retrieval.
Contextual memory retrieval dynamics can be found in complex human declarative
memory and also in a more simple form of animal learning known as classical con-
ditioning [7, 8].
Similiary to the biological organisms some online reinforcement agents use the mem-

69

i
i

“output” — 2019/1/14 — 22:34 — page 70 — #82 i
i

i
i

i
i

Chapter 5. The Performance

ory of the past experiences which can be replayed in order to support the learning
process [36,39,40]. These learning mechanisms benefit from a replay memory struc-
ture which is efficient in optimizing the stochastic gradient descent or SGD algorithm
used in training the artificial neural network approximator which represents the core
of the reinforcement learning mechanism. The approach presented here further ex-
ploits the biological learning mechanisms such as contextual memory retrieval in
order to increase the efficiency of the learning process in function approximated re-
inforcement learning. Instead of using a single memory replay buffer and treating
all experiences equally, Context Augmented Reinforcement Learning or CARL intro-
duces a finite number of contextual replay memory buffers, each of which holds the
experiences corresponding to its specific context. In order to achieve this, each ex-
perience of an agent is clustered into the same amount of dimensions or classes as
the number of contextual memory buffers based on their similarity. The more that
experience belongs to a specific class the more are the chances of it being sampled
into the contextual memory buffer corresponding to this class. The main principle
of the context augmenting algorithm is found in replay of the clustered memories;
each experience is supported or augmented by replaying the past experiences from
its corresponding memory replay memory buffers instead of a random out of context
replay used in [36, 39, 40]. Experimental results show that CARL shows an improve-
ment in learning performance over the standard q-learning with uniform sampling
and q-learning with improved prioritized sampling based on temporal difference er-
ror [50].

5.1.2 Related Work

In the approach presented by Shaul et al. [50] the replay memory mechanism was
improved by prioritizing on the experiences with higher temporal-difference error.
These experiences are potentially more valuable for the training of the approximator
in a way that they carry more surprise over the predictions than other.

5.1.3 Model Architecture and Learning Algorithm

The main part of the learning mechanism represents the learning loop outlined in
section (b) of Figure 5.1. Here the agent iteratively performs an interaction within
its environment and uses the newly obtained experience to update its belief about the
best action to take depending on the state of its surroundings. During the transition
stage, an agent performs an action at which transitions the agent from the starting st
state to the next st+1 while receiving the immediate feedback from its environment
in the form of a scalar reward rt. These parameters form a tuple et = (st, at, rt, st+1)
which fully determines a transition and contains every information we need to per-
form a learning step. After an agent has transitioned and we have gained the parame-
ters of the tuple we can use Equation 1.3 in order to calculate our expected value for
the state-action pairs Q(st, at). The update is performed in section (d) of the learn-
ing loop by adjusting the weights of the approximator neural network using SGD in
such a way that we can minimize the squared error or difference between our newly
calculated expected Q-value and our current estimate of it. After a learning update
the states are shifted and a new iteration of the learning loop is performed. This loop

70

i
i

“output” — 2019/1/14 — 22:34 — page 71 — #83 i
i

i
i

i
i

5.1. Context Augmented Reinforcement Learning

creates a stream of experiences (c) represented by a sequence of transition tuples et.
In the base approach of Q-learning those experiences are sampled in a sliding win-
dow replay memory buffer from which a number of them are selected at random to be
reused after each iteration in order to perform an additional training on approximator
neural network. With CARL approach instead of having one replay memory buffer
we have a M amount of contextual replay memory buffers shown in section (a) of
Figure 5.1, each of which is corresponding to one of theM classes of the experiences
coming from experience stream. Before storing each experience is being clustered
intoM dimensions using an unsupervised learning method in order to determine into
which contextual replay memory it will be sampled. To determine the classes of the
experiences an autoencoder neural network shown in (f) is used to predict the state
st part of an experience from the same st on the input. The autoencoder performs
a reduction of the dimension of the perceived state space from its original size to
M dimensions or classes using a bottleneck hidden layer in the middle consisting
out of M fully connected neurons. The process similarly performs SGD in order to
make the weights of a neural network a better predictor of itself by minimizing the
difference between the predicted and the actual state given by the experience. The
M dimensions or classes are effectively encoded in the M neuron layer and in order
to find the classes of a single experience we forward the state st through the network
and obtain a vector of the M activations of the bottleneck layer (C1, C2, ..., CM).
We define the probability of the experience being sampled into and consequently re-
played from the i-th contextual replay memory or CRMi as the class or the activation
of the i-th layer of autoencoder bottleneck layer as defined in Equation 5.1.

P (CRMi) = Ci (5.1)

The more the experience belongs to a specific class the more the probability it will
be sampled into and replayed from the CRM of that class. Algorithm 7 showcases
the details about the process of context augmentation in a way that each experience is
supported or augmented by the experiences that are similar by replaying experiences
from the contextual buffers that are determined by the classes the experience belongs
to.

5.1.4 Experimental Setup

Environment

The agents performed a learning process in an Waterworld environment that is part
of ReinforceJS machine learning framework [30]. The environment is described in
Section 2.2.4.
Approximation of Q(s, a; Θ) ≈ Q∗(s, a) is done using an ANN with one hidden
fully connected layer of 100 neurons which are producing as output the Q values of
all five actions available to the agent: up, down, left, right, stay at the output given
the state space of 152 dimensions on the input. The learning rate of an approximator
α is set to a low 0.05 and the capacity of the each contextual replay memory buffers
N was 1000. The value of ε was set to 0.2 at the beginning and adjusted to 0.1 at
the mid-point of the learning to exploit more of the learned behavior. The discount
factor γ is set to 0.9.

71

i
i

“output” — 2019/1/14 — 22:34 — page 72 — #84 i
i

i
i

i
i

Chapter 5. The Performance

Algorithm 7 Q-learning with Contextual Augmentation

Initialize M instances of replay memory D of capacity N
Initialize and pre-train autoencoder neural network A with M neurons in the middle layer
Initialize action-value function Q with random weights
for episode = 1, E do

for t = 1, T do
With probability ε select a random action at
otherwise select at = arg maxaQ

∗(st, a; Θ)

Execute action at, observe reward rt and state st+1

Train A by backpropagating st with same st on the input
Forward st through A and obtain a M-dimensional vector of activation values from neurons
on the middle layer (C1, C2 ... CM)
for i = 1, M do

Store transition (st, at, rt, st+1) in i-th replay memory Di according to the probability of
the i-th activation P (Ci)

Sample random batch of transitions (st, at, rt, st+1) from i-th replay memoryDi according
to the probability of the i-th activation P (Ci)

end for

set yi =

ri, terminal si+1

ri + γmaxa′ Q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

Unsupervised learning

Autoencoder neural network was able to cluster the 152 dimensional states into
M = 6 dimensional array using architecture of three hidden layers. The input and
output layers were implemented using 152 neurons capable of handling the high-
dimensional state array on both sides. The hidden part consisted of a bottleneck
middle layer containing M = 6 neurons surrounded by two additional fully con-
nected layers implemented with 100 neurons each, able to smooth out the transition
from high to low dimensional space. Each of the output activations of the bottleneck
layer was paired with a M = 6 CRM buffers. The learning rate of the autoencoder
was set to a higher α = 1 because of a different nature of the approximation.

5.1.5 Experimental Results

Experiments compared the average performance of the agents using three differ-
ent types of memory replay sampling in 50 learning trials consisting of 180 learn-
ing steps each. Figure 5.2 compares the baseline q-learning with uniform memory
sampling and replay USQ with enhanced sampling method of TD-error prioritiza-
tion TDQ and the novel approach of context augmented reinforcement learning or

72

i
i

“output” — 2019/1/14 — 22:34 — page 73 — #85 i
i

i
i

i
i

5.1. Context Augmented Reinforcement Learning

CARL. The CARL sampling method shows superior performance over the base-
line uniform sampling and it even outperforms the optimized sampling based on the
TD-error prioritization.

5.1.6 Discussion

The presented approach tries to bridge the gap between biological and artificial sys-
tems by implementing a biologically inspired technique of grouping and replaying
the similar memories together in order to increase the learning potential of experi-
ences. Like the discussed contextual memory retrieval an artificial learning agent
is able to support and amplify the effect that an experience brings to the learning
process by grouping it with past memories that correspond to the same context. In
this way the replay memory structure acts as a secondary drive that alters the agent’s
cognition by supporting the current experiences which in terms improves its overall
performance.

73

i
i

“output” — 2019/1/14 — 22:34 — page 74 — #86 i
i

i
i

i
i

Chapter 5. The Performance

Figure 5.1: General learning model architecture including attention focus block: (a) Array of M
contextual replay memories, each of which stores the last N experiences of its own class in a slid-
ing window buffer for later replay; (b) Main learning loop consists of: 1) the transition in which
the agent performs an action, receives an immediate reward rt, while transitioning to a next state
st+1; 2) performing an update on main function approximator ANN (d) by backpropagating the
TD error as a gradient of the at output; 3) shifting the states for the next iteration in which the
st becomes our st+1; 4) forwarding the current state through a function approximator in order
to find out the best action at candidate based on its Q value for ε-greedy policy; (d) A block im-
plementing Q-value function approximator taking the starting state st on the input and predicting
Q-values for each of the available actions on its output; (c) Raw stream of the experiences that
are perceived representing unfiltered cognition of an agent; (f) Context augmented block imple-
mented as an autoencoder neural network performing unsupervised clustering of the experiences
into M dimensions or classes, each of which determines the probability of the selected experience
being sampled into and replayed from the corresponding contextual replay memory buffer

74

i
i

“output” — 2019/1/14 — 22:34 — page 75 — #87 i
i

i
i

i
i

5.1. Context Augmented Reinforcement Learning

1.0

1.5

2.0

2.5

0 50 100 150

Training Steps (e^3)

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
to

ta
l r

ei
nf

or
ce

m
en

t)
 o

f A
ge

nt
s

Agent Type

CARL

TDQ

USQ

Figure 5.2: Average score or total reinforcement received over 50 trials with agents with different
sampling dynamics during first 180.000 learning steps. Gray ribbon represents the standard devi-
ation of the samples.

75

i
i

“output” — 2019/1/14 — 22:34 — page 76 — #88 i
i

i
i

i
i

Chapter 5. The Performance

5.2 Entropy-based Prioritization

Since some transitions are more valuable for learning than others, especially in the
early stages, prioritizing on experience transitions was introduced in order to improve
the general performance of learning.
Successful approaches dealt with prioritized experience sampling [64] and experi-
ence replay [50], but their prioritization criterion was limited to one property of
the transition, TD error, which is mostly conditioned by the reinforcement that the
transition gave rise to. This inference was exploited by prioritized experience sam-
pling [64], which prioritized on a specific property of the transition that in general
yields higher absolute values of TD error: its immediate reward value being non-
zero.
In this work, we propose an additional criterion for prioritizing using Cognitive Filter
which takes into account the specific property of the sensed state space, measured by
Shannon’s entropy. We further show that prioritizing on transitions that include the
state with higher entropy values can additionally improve the performance in some
learning scenarios.

5.2.1 State space entropy prioritization

Going beyond TD error

An agent performs the learning process on a single transition (st, at, rt, st+1) by first
predicting its previous estimate of the Q-value for being in a state st and taking an
action at. This process performs a forward pass on the neural network approximator
with st on input, after which we select the predicted Q-value on the output at. TD
error represents the discrepancy between the previous estimate and the expected tar-
get Q-value after the transition which is given by its newly discovered reinforcement
value rt and the discounted maximum Q-value of the next state st+1. The learning
process represents an update on the estimate of the function approximator by using
backpropagation rule with perceived state space features st on the input and TD error
difference on the at output.
Previous prioritization approaches consider that the magnitude of TD error that a
specific transition generates can directly influence the speed of the learning process
given the nature of the learning update. Transitions with high magnitude of TD error
that are usually produced by non-zero reinforcement are especially valuable in the
early stages of learning because they carry more training information and thus can
make the learning process faster.
Because the backpropagation update takes into account not only the TD error at the
output, but a state space vector at the input, while performing a gradient descent we
can analogously postulate that the nature of the state space vector can also have an
effect on the learning process itself. Some of the state space vectors are potentially
carrying more training information and can be favored by prioritizing, in order to
improve the learning performance. For example: if an agent perceives a predictable
or simple environment during the transition, the state space vector will potentially
carry less information for training than when the transition is made in a dynamic and
highly unpredictable environment.

76

i
i

“output” — 2019/1/14 — 22:34 — page 77 — #89 i
i

i
i

i
i

5.2. Entropy-based Prioritization

We can thus say that the learning utility of the transition not only depends on the tran-
sition TD error, but also on the potential information that is carried by the perceived
state space vector.

Quantifying the unpredictability of the state space

In order to quantify the amount of uncertainty and possible information gain that
a state space vector can carry we have applied Shannon’s entropy as a measure of
diversity, also called Shannon’s index. The state space vector is represented by a
number M of variables that are in most cases continuous and normalized in

0..1

. In order to measure the entropy, each of the M state space variables are discretized
into N bins and calculated using Equation 5.2, where pi is the frequency of values
belonging to the ith bin.

H(st) = −
M∑
i=1

pilog2pi (5.2)

Model Architecture and Learning Algorithm

Previous prioritization algorithms [64] used a stochastic sampling method that falls
between uniform sampling and greedy sampling based on the TD error.
In our approach, we introduce an additional criterion based on the diversity of the
state space that can further prioritize on the uniform sampling part of the algorithm.
For the purpose of prioritizing we extend the experience description tuple with an
entropy value H(st) of the state space that is calculated using Equation 5.2, so that
our stored transition takes the form of et = (st, at, rt, H(st), st+1).
Instead of greedy sampling on H(st) values which can make the ‘system prone to
over-fitting because of the lack of diversity [50], we define a stochastic prioritiza-
tion based on the entropy criterion H(st) where the probability of sampling the P (i)
transition from the sliding window experience memory D is determined from Equa-
tion 5.3. H(st) in this case represents the priority of the transition and the β param-
eter determines how much prioritization is used; in the uniform case β = 0.

P (i) =
H(st)

β
i∑j=size(E)

j=1 H(st)
β
j

(5.3)

To alleviate the selection of the values for the β parameter, which would need to
be tweaked for the specific application, we introduce a more general prioritization
technique based on the descriptive statistical property of quartiles that can be used in
a broader sense with no additional adjustments.
In order to sample basing on the H(st) criterion, in Algorithm 8, instead of the
stochastic approach given by Equation 5.3 we use a descriptive statistic approach
which takes into account the upper interquartile mean of the data stream or the third
quartile value (Q3) of theHt values of agent’s experiences stored in a sliding window
memory E of capacity n. This is computed by Equation 5.4.

77

i
i

“output” — 2019/1/14 — 22:34 — page 78 — #90 i
i

i
i

i
i

Chapter 5. The Performance

H(st)Q3 =
3(n+ 1)

4
thH(st) (5.4)

Given this, we sample only the transitions with H(st) higher than the upper in-
terquartile mean H(st)Q3 of the entropy experience memory E as shown in Algo-
rithm 8.

Algorithm 8 selectively stores the transitions after each update step based on two
criteria. The first one is based on the TD error, and simply stores the transitions
that result in a reinforcement rt different from null. The second criterion stores
the transitions that have the entropy state space value H(st) higher than the upper
interquartile mean of the n latest entropy samples from E given by the H(st) >
H(st)Q3 conditional.
After each transition a random batch of the previous transitions is selected from the
replay memory D in order to perform additional training on the approximator.

Algorithm 8 Deep Q-learning with entropy-based prioritization

Initialize replay memory D with capacity N and entropy experience memory E
Initialize action-value function Q with random weights
for episode = 1, M do

for t = 1, T do
With probability ε select a random action at
otherwise select at = arg maxaQ

∗(st, a; Θ)

Execute action at, observe reward rt and state st+1

Calculate the entropy value H(st) of the state space based on Equation 5.2 and add it to the
sliding window memory E
if rt! = 0 then

Store transition (st, at, rt, H(st), st+1) in D
end if
Calculate upper interquartile mean H(st)Q3 of the last n samples from E using Equation 5.4
if H(st) > H(st)Q3 then

Store transition (st, at, rt, H(st), st+1) in D
end if
Sample random batch of transitions (st, at, rt, H(st), st+1) from D

set yi =

ri, terminal si+1

ri + γmaxa′ Q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

5.2.2 Experimental setup

To evaluate the proposed model we have adopted a learning environment that con-
sists of moving good/bad food pieces [30] as described in Section 2.2.4.

78

i
i

“output” — 2019/1/14 — 22:34 — page 79 — #91 i
i

i
i

i
i

5.2. Entropy-based Prioritization

The state space is continuous and intentionally high-dimensional for the purpose of
increasing the entropy and consequently the diversity of possible experience transi-
tions.
We have adopted the original Q-learning update formula with a learning rate α set
to a low value (0.05) because of the nature of the approximator, and discount fac-
tor γ = 0.9. The default capacity of the replay memory buffer D included 7000
experiences and the entropy experience memory capacity n was set to 500.

Entropy criterion comparisons

In order to evaluate how does entropy value of the state space vector H(st) relate
to the diversity of the agents’ perception and further to its learning potential we are
comparing state examples from the experimental setup grouped in low, medium and
high entropy levels. For the purpose of evaluation each of the detected objects is
depicted with its speed vector that represents the composition of its x and y speed
components as described in the state space.
Figure 5.3 showcases some of the low entropy states, ranging from H(st) 1.0 to 1.4.
The center circle represents the agent, the lines its 30 detectors, the other circles food
pieces. From Figure 5.3a we can see that if an agent is not perceiving any object the
entropy of the state vector has the lowest value of H(st) = 1, 0723. This represents
the transition having the least value for learning process even if the transition results
in a reinforcement reward that makes the TD error potentially high.
Figure 5.3 also shows that the H(st) rises with the number of perceived objects but
this is not always the case; both Figure 5.3c and Figure 5.3d have the same number
of objects in the range but in Figure 5.3d we see more differences in distance from
the objects and in their respective speed vectors, which account for higher diversity
and consequently higher entropy values.
Medium entropy states shown in Figure 5.4 confirm the previous observation, but
also include the food sources that are triggering more detectors because they are
closer to the agent and this results in even higher entropy values. The previous as-
sumption of the diversity in distance and speed vector is especially evident in the
entropy difference between the situations respectively depicted in Figure 5.4a and
Figure 5.4b.
Figure 5.5 shows the states with the highest entropy and diversity. We can notice
that these states involve a high number of objects with diverse distances and speed
vectors, which have greater potential for the learning process because they inherently
carry more information.

5.2.3 Experimental results

In the experiments, we have compared two types of prioritized sampling algorithms
with the baseline one, which uses only uniform sampling DQ-U. First prioritized
sampling algorithm DQ-TD combined uniform sampling and prioritization based on
the immediate reinforcement component of TD error value being non-zero, while the
DQ-ETD combined two criteria for prioritization: entropy of the state space vector
H(st) and the reinforcement value one.
Figure 5.6 shows the comparison between the three different algorithms applied to

79

i
i

“output” — 2019/1/14 — 22:34 — page 80 — #92 i
i

i
i

i
i

Chapter 5. The Performance

(a) H(st) = 1, 0723 (b) H(st) = 1, 1556

(c) H(st) = 1, 2035 (d) H(st) = 1, 3711

Figure 5.3: State spaces with low entropy

our experimental setup; First algorithm DQ-U represents the baseline as it utilizes
only uniform sampling, with no prioritization. Algorithm DQ-TD uses prioritization
based on reinforcement value only, while DQ-ETD combines the entropy and TD
error criteria based on the reinforcement value being non-zero as shown in 8.
From Figure 5.6 we can see that the DQ-ETD method outperforms both the baseline
DQ-U and DQ-TD method based on TD error prioritization only.
From these results, we can notice that adopting an additional prioritization criterion
based on the state space properties can significantly improve the efficiency of the
prioritization mechanism.

80

i
i

“output” — 2019/1/14 — 22:34 — page 81 — #93 i
i

i
i

i
i

5.3. Conclusion

(a) H(st) = 1, 4832 (b) H(st) = 1, 5589

(c) H(st) = 1, 6985 (d) H(st) = 1, 7895

Figure 5.4: State spaces with medium entropy

5.2.4 Limitations

Greedy sampling on the prioritization criteria in both DQ-TD and DQ-ETD intro-
duces a bias which is tolerable in the early stages of learning, but it may violate
the convergence guarantee of the Equation 1.3, and therefore may prevent the agent
to obtain an optimal policy π in the long run. For this reason, adjusted annealed
importance sampling [41] can be used to compensate for the bias.

5.3 Conclusion

A novel approach was presented to sample replay memory which includes a new
criterion for prioritization based on the entropy of the state space vector called DQ-
ETD. Experimental results have shown that DQ-ETD can outperform the prioritized

81

i
i

“output” — 2019/1/14 — 22:34 — page 82 — #94 i
i

i
i

i
i

Chapter 5. The Performance

(a) H(st) = 1, 8633 (b) H(st) = 1, 9608

(c) H(st) = 2, 0610 (d) H(st) = 2, 1244

Figure 5.5: State spaces with high entropy

sampling approaches based on the TD error component criterion only such as DQ-TD
in the early stages of the learning process.

82

i
i

“output” — 2019/1/14 — 22:34 — page 83 — #95 i
i

i
i

i
i

5.3. Conclusion

0 50 100 150 200

0
20

0
40

0
60

0

TRAINING STEPS (e^3)

AV
E

R
A

G
E

 R
E

W
A

R
D DQ−ETD

DQ−TD
BASELINE

Figure 5.6: Comparison between average reward values in 20 learning epochs respectively with
DQ-ETD, DQ-TD, and the baseline DQ-U, over first 200K learning steps

83

i
i

“output” — 2019/1/14 — 22:34 — page 84 — #96 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 85 — #97 i
i

i
i

i
i

CHAPTER6
Temporally Extended Actions

In the previous chapter we have seen that the selective sampling into replay mem-
ory using Cognitive Filter can be used to improve the speed of convergence of the
reinforcement learning algorithm. However, in this chapter the mechanism of replay
memory is exploited in a very different way making it possible to efficiently learn
temporally extended actions found in hierarchical learning.

6.1 Delayed Memory Reward

This work takes the advantage of the Replay Memory structure by introducing an
approach called Delayed Memory Reward or DMR that enables agents to learn the
preference for initiating temporally extended actions while performing interactions
with agents of different social dispositions. Since the outcome of interacting socially
with other agents can be beneficial or not depending on their dispositions the inter-
acting agent is able to learn to avoid or flock together with agents of specific social
dispositions. Delayed Memory Reward achieves the hierarchical learning by a pos-
teriori rewarding the specific primitive transitions stored in its memory. This enables
an agent to learn the preference for the temporally extended actions based on their
final outcomes simply by changing the reinforcement of the primitive stored transi-
tions that led to their instantiation.
We demonstrate the advantage of DRM method by evaluating it on a complex multi-
agent environment in which the agents perform Q-learning at different levels of tem-
poral abstractions while consuming the food sources directly by exploring or through
social interaction with other learning agents.

85

i
i

“output” — 2019/1/14 — 22:34 — page 86 — #98 i
i

i
i

i
i

Chapter 6. Temporally Extended Actions

6.1.1 Theoretical Background

Temporal abstractions

Defining complex actions that span across sequences of primitive ones is the main
idea behind Hierarchical Machine Learning approach [4]. For example, a temporally
extended action could be open the doors or go to the kitchen and the primitive ones
could be pull handle, push the door, go left, go right, go back, go forward. To per-
form a complex action an agent has to select the right sequence of primitive actions
that bring it to achieve the goal, e.g., the right combination of the primitive move-
ments in order to go to the kitchen.
Usually, an agent selects the primitive actions based on the learned policy π in order
to maximize the expected reinforcement return in the long run, but during a tem-
porally extended action it selects primitive ones based on a different policy πg that
could be, for example, the most efficient way to go to the kitchen.

MDPs and SMDPs

In order to introduce temporal abstractions as a minimal extension of the learning
framework we can build upon a theory of semi-Markov Decision Processes or SMDP
which represents a special kind of Markov Decision Process MDP adapted to model
continuous-time discrete-event systems [9, 37, 46].
Since temporally extended actions defined over SMDPs are treated as indivisible and
cannot be dissected into smaller, more elemental actions [60] introduced an Options
Framework in which the actions are defined over both SMDPs and more basic MDPs.
Figure 6.1a shows state trajectories of a simple MDP where state changes are defined
as discrete time steps over atomic actions while Figure 6.1b represents temporally ex-
tended state transitions of variable length defined over more complex SMDPs. We
can see that the temporally extended actions, shown in Figure 6.1c as arrows, are
defined over both MDP and SDMP, making it possible to represent complex actions
defined over variable time spans as a collection of a smaller discrete-time atomic ac-
tions defined in simple MDPs.
Temporally extended actions are not seen anymore as indivisible black-boxes but as
something that can be broken down into more elemental pieces and analyzed. More-
over, during the execution of a option time-extended action an agent can perform
learning steps on a lower MDP level and on a higher SMDP one.

In Options Framework [60] a temporally extended action is defined by three com-
ponents: a policy π : S × A → [0, 1], a termination condition β : S+ → [0, 1] and
an initiation set I ⊂ S.When an option is taken the actions are chosen according to
π until the option is terminated stochastically according to the probability β.
Executing a Markov option starts by selecting the next action at according to prob-
ability distribution π(st, ·). After this step the agent makes the transition to the next
state st+1 where the option either terminates with probability β(st+1) or continues
determining at+1 according to π(st+1, ·), and so on.

86

i
i

“output” — 2019/1/14 — 22:34 — page 87 — #99 i
i

i
i

i
i

6.1. Delayed Memory Reward

(a) MDP

(b) SMDP

(c) Options over MDP

Figure 6.1: State trajectories of discrete time steps MDPs compared with SMDPs and Temporally
extended actions defined over both MDPs and SMDPs.

6.1.2 Delayed Memory Reward Hierarchical Learning

Rewarding complex temporally extended actions proved to be a challenge since they
span across multiple primitive actions and their outcome is known only after its
termination. Most common techniques include a cumulative discounted reward of
primitive actions taken from the initiation to the termination step of the temporally
extended action [60].

Model Architecture and Learning Algorithm

We have approached the temporally extended actions in a different way, taking into
consideration only the primitive transition that instantiated it and whether the com-
plex goal was achieved at the termination condition. For example, if our action was
open the door, depending on the final outcome door opened or not (door open), we
can provide either positive or negative reinforcement to the instantiated transition.
Since the N latest primitive transitions are stored in the agent’s Replay Memory, we
can modify the reinforcement values of the specific instantiation transitions after the
termination state of the temporally extended actions, and thus enable the hierarchi-
cally higher reinforcement to propagate back to the primitive atomic transitions as
shown in Algorithm 9. For the purpose of identifying the primitive transition that in-
stantiated the complex action in the Replay Memory, we have modified the standard
transition tuple (st, at, rt, st+1) to include a unique identifier uid.
By default, an agent selects its next action that maximizes the state-action value
Q(s, a) until the initiation state of the temporally extended action. After it behaves
according to the complex action policy: primitive actions are selected according
to the probability distribution πg(st, ·). During the course of the complex action,
the agent still performs primitive learning steps according to the immediate rewards
rt. When a termination condition of the complex action is met and the outcome is
known, a complex action reward rg is determined and propagated back to the primi-
tive instantiation transition identified by uid.

87

i
i

“output” — 2019/1/14 — 22:34 — page 88 — #100 i
i

i
i

i
i

Chapter 6. Temporally Extended Actions

6.1.3 Experimental setup

To evaluate the proposed model we have created a multi-agent learning environment
that consists of multiple agents along with randomly moving good/bad food pieces,
based on the environment described in Section 2.2.4. Food pieces are generated
at a random position with random speed and direction, and move in a constrained
environment by bouncing on the walls. Agents move in the same environment and
should learn to touch (eat) good food pieces and to avoid bad food pieces either
directly or by initiating a social contact when they touch (communicate) with other
agents. Social contact also represents an initiation state for a temporally extended
social action with a termination condition of consuming the target food source shared
by the agent with whom the contact was made.

There are two classes of agents defined in the environment: good agents that upon
social contact share a good food source as a goal to the agent with which it commu-
nicated, and bad agents that share bad food, initiating a non beneficial temporally
extended action for the other agent.
We define rg used in Algorithm 9 as the outcome reinforcement of temporally ex-
tended action which is equal to the reinforcement of termination condition transi-
tion: the transition that results by consumption of the goal food source which can be
positive or negative depending on the disposition of the agent that initiated it.

The goal of each agent is to consume as much good food pieces as possible, while,
in turn, try to avoid the bad food sources using direct exploration or indirect complex
social contact action. After being consumed, new food pieces of the same type of
the consumed ones are re-generated with a random position, speed, and direction,
thus keeping the distribution of food constant. Agents receive reinforcement +1 for
consuming good food pieces and -1 for consuming bad ones.

The state space is continuous and intentionally high-dimensional for the purpose
of increasing the entropy and consequently the diversity of possible experience tran-
sitions. Each agent has 30 directional sensors and each of them can perceive 7 con-
tinuous variables: distance of sensed object (good food, bad food, good agent, bad
agent, wall), the first two of which have the two additional attributes: speed in x di-
rection and speed in y direction; this gives a total of 210 state inputs for each agent.
As a function approximator we adopt a deep neural network with two fully connected
hidden layers of 120 and 30 neurons, respectively, with weights Θ to approximate
Q(s, a; Θ) ≈ Q∗(s, a). To reduce the computational complexity of having multiple
forward steps each time, we want to find an action that maximizes the state-action
function arg maxaQ(s, a); the network takes the state vector s as an input and pre-
dicts Q(s, a) for each possible action.
We have adopted the original Q-learning update formula with a learning rate α set
to a low value (0.05) because of the nature of the approximator, and discount factor
γ = 0.9. The default capacity of the replay memory buffer D included 7000 expe-
riences. The experimental setup performed Q-learning in a multi-agent environment
consisting of 4 agents for each disposition (bad, good) learning simultaneously while
interacting with each other.

88

i
i

“output” — 2019/1/14 — 22:34 — page 89 — #101 i
i

i
i

i
i

6.2. Conclusion

6.1.4 Experimental results

In the experiments, we have compared two identical setups: one used Delayed Mem-
ory Reward method for learning temporal abstractions (DRM-Q) while the other one
(baseline) performed temporally extended actions without propagating rg value back
to the first transition. From Figure 6.2 and Figure 6.3, we can see that experiments
that used the Delayed Memory Reward technique gave better overall performance in
both agent disposition types, which is particularly evident in the average total score
of the good agent type shown in Figure 6.3.
Influence of the DRM method on the behavioral characteristics of different agent
types is more noticeable when we take into consideration the difference between
the social score which represents the cumulative reward that agent scored through
temporally extended action of social contact and exploration score which is the cu-
mulative reward of eating food pieces directly using the basic primitive actions.
Figure 6.4 shows that in the experiments that were using the DMR agents moved
from relying more on exploration after about 150K steps to heavily focusing on so-
cial, while they learned to gravitate to the agents of good disposition which provided
temporally extended actions with positive outcome. Agents with the good dispo-
sition also learned to take more temporally extended social action when DMR was
active, but in a more conservative amount compared to their bad counterparts since
they were the learning focus of both dispositions given their positive nature of the
social contact outcome.

0 50 100 150 200 250 300

0
20

40
60

80

TRAINING STEPS (e^3)

TO
TA

L
S

C
O

R
E

DRM−Q
BASELINE

Figure 6.2: Comparison between average total reward score of bad agent types in 50 learning epochs
of Q-learning with Delayed Memory Reward (DMR-Q), and the baseline without the DMR tech-
nique, over first 300K learning steps

6.2 Conclusion

An approach for learning temporal abstractions DMR-Q is presented that takes into
advantage the structure widely used in deep Q-learning called Replay Memory. Ex-
perimental results have shown that DMR-Q is effective in learning dispositions to-
wards temporally extended actions with different outcomes only by modifying the
reinforcement of the primitive transitions in agents Replay Memory.
An advantage of using DMR-Q is that it does not require re-defining or extending the
action and state spaces in order to accommodate the temporal abstractions since it
targets only the structure of a primitive action transitions.

89

i
i

“output” — 2019/1/14 — 22:34 — page 90 — #102 i
i

i
i

i
i

Chapter 6. Temporally Extended Actions

0 50 100 150 200 250 300

0
5

10
15

TRAINING STEPS (e^3)

TO
TA

L
S

C
O

R
E

DRM−Q
BASELINE

Figure 6.3: Comparison between average total reward score of good agent types in 50 learning
epochs of Q-learning with Delayed Memory Reward (DMR-Q), and the baseline without the DMR
technique, over first 300K learning steps

0 50 100 150 200 250 300

−
15

−
10

−
5

0

TRAINING STEPS (e^3)

E
X

P
LO

R
AT

IO
N

 −
 S

O
C

IA
L

S
C

O
R

E

DRM−Q
BASELINE

Figure 6.4: Comparison between average difference of exploration and social rewards from bad
agent types in 50 learning epochs of Q-learning with Delayed Memory Reward (DMR-Q), and the
baseline without the DMR technique, over first 300K learning steps

0 50 100 150 200 250 300

0
20

40
60

80

TRAINING STEPS (e^3)

E
X

P
LO

R
AT

IO
N

 −
 S

O
C

IA
L

S
C

O
R

E

DRM−Q
BASELINE

Figure 6.5: Comparison between average difference of exploration and social rewards from good
agent types in 50 learning epochs of Q-learning with Delayed Memory Reward (DMR-Q), and the
baseline without the DMR technique, over first 300K learning steps

90

i
i

“output” — 2019/1/14 — 22:34 — page 91 — #103 i
i

i
i

i
i

6.2. Conclusion

Algorithm 9 Deep Q-learning with delayed-memory reward

Initialize replay memory D with capacity N. Complex action policy πg : S × A → [0, 1], a termi-
nation condition β : S+ → [0, 1] , initiation set I ⊂ S and goal flag Fg = false

Initialize action-value function Q with random weights
for episode = 1, M do

for t = 1, T do
if Fg = false then

With probability ε select a random action at
otherwise select at = arg maxaQ

∗(st, a; Θ)

else
Select at according to the probability distribution πg(st, ·)

end if
Execute action at, observe reward rt and state st+1

if s ∈ I then
Set Fg = true

Store Uid of the transition
end if
if Termination condition according to probability β then

Set rg according to the outcome
Set rt = rg of the transition from D where uid = Uid

Set Fg = false

end if
Store transition (st, at, rt, uid, st+1) in D
Sample random batch of transitions (st, at, rt, uid, st+1) from D

set yi =

ri, terminal si+1

ri + γmaxa′ Q(si+1, a
′; Θ), non terminal

Perform a gradient descent step on (yi −Q(si, ai; Θ))2 according to Equation 1.12
end for

end for

91

i
i

“output” — 2019/1/14 — 22:34 — page 92 — #104 i
i

i
i

i
i

i
i

“output” — 2019/1/14 — 22:34 — page 93 — #105 i
i

i
i

i
i

CHAPTER7
Conclusion

Environment is everything; we constantly remind ourselves of this fact when it comes
to designing reinforcement learning problems where the ultimate goal is to enable
an artificial agent to best adapt to its surrounding reality by learning to take better
choices over time. We are often so focused on this reality that we neglect the fact
that when we replace it with a finite amount of features that are either handcrafted
or extracted using some algorithm we are actually modeling a perception of reality.
This is also the case with the evolution shaping our brains in order to become a very
efficient information processing system by enabling us to internally model the un-
fathomable informational potential given by the entropy of the surrounding external
world. Each occurrence in nature has an almost unlimited informational potential,
the perception of it alone is determining with how much entropy will we perceive,
will the potential information received from it be highly compressed or more raw.
If we take for example a human being analyzing a car, there is a limited amount of
information one can notice, for example, the car is blue, it is a sports car, and it is
currently moving at a low speed. What if, we possessed an x-ray vision that would
allow us to see the inside of the car, the amount of information we can gather now is
higher; for example, we can notice the gas level in the tank, etc.. This would require
our brain to engage more mental processing power. And on an even more extreme
level, if we could perceive every atom of that car or more precisely the spin of its
electrons, every one of them would have an entropy of 1 bit (taking aside the quan-
tum effects), which would amount for an enormous amount of information our brain
would never be able to process given a simple car. To fight this potential information
overload the evolutionary process allowed us to develop perceptive mechanisms that
are able to process an event that had theoretically infinite potential for information
into a 1 bit of a single neuron firing in our brain in a perfect oversimplified case,

93

i
i

“output” — 2019/1/14 — 22:34 — page 94 — #106 i
i

i
i

i
i

Chapter 7. Conclusion

starting a complex activation procedure that would at the end produce some form of
behavior.
Our mental state, traits, mood, emotion that we are feeling affect the way we per-
ceive reality as they alter the way the information is processed in our brains. For
example, if we are in a state of hunger everything becomes a potential source of food
because our perception tends to focus its resources on the current goal of satisfying
its physiological needs. This cognitive process is so important that it actually gener-
ates information even if its not actually there, for example people depraved of food
and water hallucinating and seeing an oasis in the desert. The process of perception
is so crucial that for those people an oasis becomes part of their reality. The fact that
perception is affected by our mental state and its constantly changing how we per-
ceive the reality brings us to the main premise of this work: the perception modeling
in reinforcement learning can be seen as a more than a rigid one-time feature design,
but represented by a dynamic and state responsive mechanism that can by itself be
capable of eliciting behavioral changes during an agent learning process. Because the
agent actions depend solely on the information gained through its state representa-
tion, the dynamic processing of the information by a dynamic perceptual mechanism
is bound to alter the action selection in a way that is responsive to the logic of the
selection. This creates a secondary drive that complements the main meta-drive that
is driven by the sheer reinforcement. The learning process is still driven by the main
drive of maximizing its reinforcement reward in order to reach an optimal behavior,
but the way of getting to it is affected by the dynamic, subtle perception. This is
possible because the agent in any given time may have multiple options in terms of
actions that are each optimal to the main reinforcement drive so the final choice of
a specific action has the possibility of being driven by the perception layer instead.
The premise is that a simple difference of selecting information in the perception
layer of the agent can lead to an emergence of complex and multi-layered behavioral
patterns.
This simplicity is seen also in the mechanisms of our brain when our mental pro-
cessing energy is focused using a cognitive buffer called working memory, just by
permeating it with experiences that are the focal point. It is a key ingredient in con-
scious reasoning as it contains the "working material" or the objects that we use to
reason about and its capacity can determine the underlying difference in people’s
performance. The agent we considered, instead of reasoning, is performing a learn-
ing process, by iteratively updating the ANN function approximator using stochastic
gradient descent or SGD. In theory, the gradient descent should be at each iteration
performed on all of the agent experiences in order to ensure the best approximation,
but, since this is unpractical in most real world, huge state spaces, we use a SGD
which is an extreme case of gradient descent in which we perform an update on only
one data sample. Most algorithms use a mini batch gradient descent, which provides
a compromise between the two extremes by randomly selecting a certain amount of
the data samples from the dataset and using them to update the gradients. This is
exactly what happens in Q-learning, as presented in this work; the difference from
standard mini batch approach is that the samples are not selected randomly from the
whole dataset of experiences, but from a sliding window replay memory. This allows
us to dynamically re-train our approximator on the contents of selected samples from

94

i
i

“output” — 2019/1/14 — 22:34 — page 95 — #107 i
i

i
i

i
i

replay memory in order to achieve an artificial attention focusing mechanism that we
call cognitive filter. The attention process alters the way the approximator is trained
in a way to allow the focal memories to be better approximated at the expense of the
rest of the memory and lead us to modified behavior of an agent.
The experiments that were performed using cognitive filter presented in chapter 3,
chapter 4 and chapter 5 differed in the selection of criteria that in term modified
the sample probabilities and led to an emergence of a behavioral changing secondary
drivers. Experiments in chapter 3 were motivated by modeling some of the important
human personality traits found in FFM just by changing the perception of the agent
using cognitive filter mechanism. First experiment outlined in section 3.1 is using
a sampling criterion of information gain in order to create a secondary behavioral
drive that would represent the characteristics commonly associated with Openness to
Experience personality spectrum. Second experimental setup from the section 3.2 of
chapter 3 used the same mechanism of cognitive filter in a multi-agent social setting
and the sampling priorities were determined by the type of transition or whether it
resulted in a social or exploration reinforcement. The sampling also simulated the
difference in cognitive bandwidth that correlated with the main personality axis of
Extraversion-Introversion. Both experimental setups provided the results that have
confirmed that the secondary drive effects are noticeable in the way the agents per-
form in the environment. The effect of a change in the agents perception induced
complex behavioral patterns that significantly improved the adaptability to a varia-
tions in the environment. Some of the traits adapted better to a variation that con-
tained more negative reinforcement while others better adapted to the environment
with scarce reinforcement that contained less amount of both positive and negative
one. A social multi-agent sister where agents are able to communicate among each
other bring us to the opportunity of being able to model agents that are more socially
engaged and those that prefer to explore the environment without so much interac-
tion with others. By tweaking the ratio between the two types we can achieve the
intrinsic dynamics of a group social structure.
Experiments done with genetic algorithms performed in chapter 4 allowed us to
evolve a perception that was best adapted to a specific environment and this showed
us that the properly developed perception mechanism can greatly improve the effi-
ciency of learning while producing complex secondary behavioral drives that com-
plement the main one. Furthermore, there’s an opportunity to develop different
modes of perception that are adapted to a different variations of the environment
and then use them as the specific variation occurs, for example environment in day
and night mode. If we are found in an environment that is over-saturated with in-
formational content, chaotic and high in entropy such as our day mode an artificial
perception driven by cognitive filter mechanism is especially important when reduc-
ing the cognitive load by focusing on the experiences that matter and filtering out
the background noise. While in the night mode where there’s not much going on the
cognitive filter is not focused on filtering out noise but making use of the low sensory
input the best it can.
chapter 5 and chapter 6 instead of focusing on the behavioral aspect deal with the gen-
eral improvement of the reinforcement learning process. Experimental results from
chapter 5 show how can cognitive filter with addition of a new criterion based on the

95

i
i

“output” — 2019/1/14 — 22:34 — page 96 — #108 i
i

i
i

i
i

Chapter 7. Conclusion

entropy of the state improve the speed of convergence of the algorithm and chapter 6
shows us how can an algorithm make use of the mechanism of replay memory in
order to be able to learn complex actions that span across multiple learning steps.
The main contribution of this work is an underlying mechanism that is present across
the chapters; the novel approach of modeling artificial perception in reinforcement
learning by selectively filtering the agents raw cognitive stream. Experimental results
show us that this seemingly simple mechanism is able to make a great difference to
a reinforcement learning process by making it more dynamic and behaviorally com-
plex.

96

i
i

“output” — 2019/1/14 — 22:34 — page 97 — #109 i
i

i
i

i
i

List of Figures

1.1 Simplified model of the WM ability of mediating perception 5
1.2 A gridworld example . 7
1.3 A random policy π w.r.t value of the states 8
1.4 An optimal policy π∗ w.r.t value of the states 9
1.5 A simple example of an artificial neural network 12
1.6 Comparison between different ways to approximate q(s, a) 13
1.7 Architecture of q-learning with function approximation 14

2.1 Architecture of attention focus block 23
2.2 Function approximator in q-learning 24
2.3 Score in normal environment . 24
2.4 Score in hostile environment . 24
2.5 Score in benevolent environment . 25

3.1 Architecture of cognitive filter block 30
3.2 Transitions with low informational gain 35
3.3 Transitions with high informational gain 35
3.4 Lunar lander environment . 36
3.5 Reinforcement types in Waterworld environment 37
3.6 Total reinforcement in Waterworld environment 38
3.7 Total reinforcement in scarce Waterworld environment 39
3.8 Total reinforcement in Lunar lander environment 40
3.9 Ratio of generated and consumed food sources 46
3.10 Total reinforcement in single agent environment 51
3.11 Total reinforcement in multi-agent environment 52
3.12 Total reinforcement in a baseline experiment 53

4.1 Model architecture including attention focus block 57
4.2 Evolution of attention filter block 58
4.3 Sampling percentage in Waterworld environment 61
4.4 Total reinforcement in Waterworld environment 62

97

i
i

“output” — 2019/1/14 — 22:34 — page 98 — #110 i
i

i
i

i
i

List of Figures

4.5 Informational gain in Waterworld environment 63
4.6 Sampling percentage in Lunar lander environment 64
4.7 Total reinforcement in Lunar lander environment 65
4.8 Entropy of the starting state in Lunar lander environment 66
4.9 Informational gain in Lunar lander environment 67

5.1 Model architecture of context augmented machine learning 74
5.2 Total reinforcement . 75
5.3 State spaces with low entropy . 80
5.4 State spaces with medium entropy 81
5.5 State spaces with high entropy . 82
5.6 Total reinforcement . 83

6.1 MDP and SMDP . 87
6.2 Total reinforcement of bad agent types 89
6.3 Total reinforcement of good agent types 90
6.4 Exploration vs. social reinforcement of bad agent types 90
6.5 Exploration vs. social reinforcement of good agent types 90

98

i
i

“output” — 2019/1/14 — 22:34 — page 99 — #111 i
i

i
i

i
i

Acronyms

ANN Artificial Neural Network.

BAS Breadth of Attention Sampling.

CARL Context Augmented Reinforcement Learning.

DMR Delayed Memory Reward.

DP Dynamic Programming.

DQL Deep Q-learning.

DRAM Dynamic Random Access Memory.

FMM Five Factor Model.

FMRI Functional Magnetic Resonance Imaging.

GA Genetic Algorithm.

IG Informational Gain.

MDP Markov Decision Process.

NEO Neuroticism Extraversion Openness.

OTE Openness to Experience.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

SGD Stochastic Gradient Descent.

SMDP Semi-Markov Decision Process.

SPD Sensory Processing Disorder.

TD Temporal Difference.

99

i
i

“output” — 2019/1/14 — 22:34 — page 100 — #112 i
i

i
i

i
i

Acronyms

VEI Variety of Experience Index.

WM Working Memory.

100

i
i

“output” — 2019/1/14 — 22:34 — page 101 — #113 i
i

i
i

i
i

Bibliography

[1] Hyungil Ahn and Rosalind W Picard. Affective-cognitive learning and decision making: A motivational
reward framework for affective agents. In International Conference on Affective Computing and Intelligent
Interaction, pages 866–873. Springer, 2005.

[2] A Jean Ayres and Jeff Robbins. Sensory integration and the child: Understanding hidden sensory chal-
lenges. Western Psychological Services, 2005.

[3] Alan D Baddeley and Graham Hitch. Working memory. Psychology of learning and motivation, 8:47–89,
1974.

[4] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems, 13(4):341–379, 2003.

[5] Marwen Belkaid, Nicolas Cuperlier, and Philippe Gaussier. Emotional metacontrol of attention: Top-down
modulation of sensorimotor processes in a robotic visual search task. PloS one, 12(9):e0184960, 2017.

[6] Daniel E Berlyne. Conflict, arousal, and curiosity. 1960.

[7] Mark E Bouton. Context, time, and memory retrieval in the interference paradigms of pavlovian learning.
Psychological bulletin, 114(1):80, 1993.

[8] Mark E Bouton. Context, ambiguity, and classical conditioning. Current directions in psychological sci-
ence, 3(2):49–53, 1994.

[9] Steven J Bradtke and Michael O Duff. Reinforcement learning methods for continuous-time markov deci-
sion problems. In Advances in neural information processing systems, pages 393–400, 1995.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. Openai gym, 2016.

[11] L Cosmides. Deduction or darwinian algorithms? an explanation of the" elusive" content effect on the
wason selection task (evolution, sociobiology, logic, cooperation, modularity). 1987.

[12] Leda Cosmides. The logic of social exchange: Has natural selection shaped how humans reason? studies
with the wason selection task. Cognition, 31(3):187–276, 1989.

[13] Leda Cosmides and John Tooby. From evolution to behavior: Evolutionary psychology as the missing link.
1987.

[14] Leda Cosmides and John Tooby. From evolution to adaptations to behavior: Toward an integrated evolu-
tionary psychology. Ablex Publishing, 1995.

[15] Paul T Costa Jr, Robert R McCrae, and David A Dye. Facet scales for agreeableness and conscientiousness:
A revision of the neo personality inventory. Personality and individual Differences, 12(9):887–898, 1991.

[16] Mihaly Csikszentmihalyi. Flow: The psychology of optimal performance. NY: Cambridge UniversityPress,
40, 1990.

[17] Mihaly Csikszentmihalyi. Toward a psychology of optimal experience. In Flow and the foundations of
positive psychology, pages 209–226. Springer, 2014.

101

i
i

“output” — 2019/1/14 — 22:34 — page 102 — #114 i
i

i
i

i
i

Bibliography

[18] Jan W de Fockert, Geraint Rees, Christopher D Frith, and Nilli Lavie. The role of working memory in
visual selective attention. Science, 291(5509):1803–1806, 2001.

[19] John M Digman. Personality structure: Emergence of the five-factor model. Annual review of psychology,
41(1):417–440, 1990.

[20] Paul E Downing. Interactions between visual working memory and selective attention. Psychological
science, 11(6):467–473, 2000.

[21] Bogdan Draganski, Christian Gaser, Volker Busch, Gerhard Schuierer, Ulrich Bogdahn, and Arne May.
Neuroplasticity: changes in grey matter induced by training. Nature, 427(6972):311, 2004.

[22] Randall W Engle. Working memory capacity as executive attention. Current directions in psychological
science, 11(1):19–23, 2002.

[23] M. W. Eysenck. Attention and Arousal, Cognition and Performance. Springer, 1982.

[24] Mônica R Favre, Deborah La Mendola, Julie Meystre, Dimitri Christodoulou, Melissa J Cochrane, Henry
Markram, and Kamila Markram. Predictable enriched environment prevents development of hyper-
emotionality in the vpa rat model of autism. Frontiers in neuroscience, 9:127, 2015.

[25] Sandra Clara Gadanho and John Hallam. Exploring the role of emotions in autonomous robot learning. DAI
RESEARCH PAPER, 1998.

[26] Adam Gazzaley and Anna C Nobre. Top-down modulation: bridging selective attention and working mem-
ory. Trends in cognitive sciences, 16(2):129–135, 2012.

[27] Eleanor J Gibson. Exploratory behavior in the development of perceiving, acting, and the acquiring of
knowledge. Annual review of psychology, 39(1):1–42, 1988.

[28] Engin Ipek, Onur Mutlu, José F Martínez, and Rich Caruana. Self-optimizing memory controllers: A
reinforcement learning approach. In ACM SIGARCH Computer Architecture News, volume 36, pages 39–
50. IEEE Computer Society, 2008.

[29] OP John. Big five prototypes for the adjective check list using observer data. In OP John (Chair), The
Big Five: Historical perspective and current research. Symposium conducted at the annual meeting of the
Society for Multivariate Experimental Psychology, Honolulu, 1989.

[30] Andrej Karpathy. Reinforcejs framework. https://github.com/karpathy/reinforcejs,
2013. Accessed: 2018-09-06.

[31] Joseph Kasof. Creativity and breadth of attention. Creativity Research Journal, 10(4):303–315, 1997.

[32] Mehdi Khamassi, Stéphane Lallée, Pierre Enel, Emmanuel Procyk, and Peter F Dominey. Robot cognitive
control with a neurophysiologically inspired reinforcement learning model. Frontiers in neurorobotics, 5:1,
2011.

[33] Torkel Klingberg. The overflowing brain: Information overload and the limits of working memory. Oxford
University Press, 2009.

[34] Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent agents
need? complementary learning systems theory updated. Trends in Cognitive Sciences, 20(7):512–534,
2016.

[35] Matthew D Lieberman. Introversion and working memory: Central executive differences. Personality and
Individual Differences, 28(3):479–486, 2000.

[36] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, DTIC Document,
1993.

[37] Sridhar Mahadevan, Nicholas Marchalleck, Tapas K Das, and Abhijit Gosavi. Self-improving factory
simulation using continuous-time average-reward reinforcement learning. In MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages 202–210. MORGAN KAUFMANN PUB-
LISHERS, INC., 1997.

[38] Robert R McCrae and Oliver P John. An introduction to the five-factor model and its applications. Journal
of personality, 60(2):175–215, 1992.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

102

https://github.com/karpathy/reinforcejs

i
i

“output” — 2019/1/14 — 22:34 — page 103 — #115 i
i

i
i

i
i

Bibliography

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[41] Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

[42] Daniel Nettle. Personality: What makes you the way you are. Oxford University Press, 2009.

[43] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

[44] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:6, 2009.

[45] Daniela Pacella, Michela Ponticorvo, Onofrio Gigliotta, and Orazio Miglino. Basic emotions and adapta-
tion. a computational and evolutionary model. PLoS one, 12(11):e0187463, 2017.

[46] Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of machines. In Advances in
neural information processing systems, pages 1043–1049, 1998.

[47] Mirza Ramicic and Andrea Bonarini. Attention-based experience replay in deep q-learning. In Proceedings
of the 9th International Conference on Machine Learning and Computing, pages 476–481. ACM, 2017.

[48] Mirza Ramicic and Andrea Bonarini. Entropy-based prioritized sampling in deep q-learning. In Image,
Vision and Computing (ICIVC), 2017 2nd International Conference on, pages 1068–1072. IEEE, 2017.

[49] Timothy Rumbell, John Barnden, Susan Denham, and Thomas Wennekers. Emotions in autonomous agents:
comparative analysis of mechanisms and functions. Autonomous Agents and Multi-Agent Systems, 25(1):1–
45, 2012.

[50] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[51] Massimiliano Schembri, Marco Mirolli, and Gianluca Baldassarre. Evolution and learning in an intrinsi-
cally motivated reinforcement learning robot. In European Conference on Artificial Life, pages 294–303.
Springer, 2007.

[52] Jürgen Schmidhuber. Curious model-building control systems. In Neural Networks, 1991. 1991 IEEE
International Joint Conference on, pages 1458–1463. IEEE, 1991.

[53] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In Proc. of the international conference on simulation of adaptive behavior: From animals to
animats, pages 222–227, 1991.

[54] Jürgen Schmidhuber. What’s interesting? Istituto Dalle Molle Di Studi Sull’Intelligenza Artificiale, 1997.
Technical report IDSIA-35-97.

[55] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[56] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated reinforce-
ment learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Development,
2(2):70–82, 2010.

[57] Norman E Spear. Retrieval of memory in animals. Psychological Review, 80(3):163, 1973.

[58] Jan Storck, Sepp Hochreiter, and Jürgen Schmidhuber. Reinforcement driven information acquisition in
non-deterministic environments. In Proceedings of the international conference on artificial neural net-
works, Paris, volume 2, pages 159–164. Citeseer, 1995.

[59] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[60] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[61] Endel Tulving and Donald M Thomson. Encoding specificity and retrieval processes in episodic memory.
Psychological review, 80(5):352, 1973.

[62] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[63] Robert W White. Motivation reconsidered: The concept of competence. Psychological review, 66(5):297,
1959.

103

i
i

“output” — 2019/1/14 — 22:34 — page 104 — #116 i
i

i
i

i
i

Bibliography

[64] Jianwei Zhai, Quan Liu, Zongzhang Zhang, Shan Zhong, Haijun Zhu, Peng Zhang, and Cijia Sun. Deep
q-learning with prioritized sampling. In International Conference on Neural Information Processing, pages
13–22. Springer, 2016.

104

	Introduction
	The curse of dimensionality part I: Information overload
	The Perception Paradox
	The need for selection
	The Protective layer
	An Autistic Robot

	The curse of dimensionality part II: Approximation
	Starting simple
	Temporal Difference
	Scaling Up
	Beyond the Perceptron

	The Perception Model
	Origins
	Adaptation Through Artificial Perception
	 Introduction
	Related Work
	Model Architecture and Learning Algorithm
	Experimental setup
	Experimental Results
	Discussion
	Conclusions

	Character Matters
	Modeling Openness to Experience
	Model Architecture and Learning Algorithm
	Experimental setup
	 Experimental results
	Discussion

	Modeling Extraversion
	 Cognitively Inspired Architectures
	Model Architecture and Learning Algorithm
	Experimental setup
	 Experimental results
	Discussion

	Related Work
	Prioritized sampling and replay

	Conclusions

	Evolution
	Perception as Attention Focusing Mechanism: An Evolutionary Perspective
	Model Architecture and Learning Algorithm
	Experimental Setup
	Experimental Results
	Discussion

	Related Work
	Artificial attention as a behavior inducing mechanism
	Evolutionary Adaptive Approaches

	Conclusion

	The Performance
	Context Augmented Reinforcement Learning
	 Introduction
	Related Work
	Model Architecture and Learning Algorithm
	Experimental Setup
	Experimental Results
	Discussion

	Entropy-based Prioritization
	 State space entropy prioritization
	Experimental setup
	 Experimental results
	Limitations

	Conclusion

	Temporally Extended Actions
	Delayed Memory Reward
	Theoretical Background
	 Delayed Memory Reward Hierarchical Learning
	Experimental setup
	 Experimental results

	Conclusion

	Conclusion
	Acronyms
	Bibliography

