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Abstract

The present research project focuses on mathematical models and numerical methods

for the simulation of Organic Thin-Film Transistors (OTFTs), which are Field-Effect

Transistors (FETs) produced by depositing thin films of an organic semiconductor layer

over a non-conducting substrate, such as glass, and are being adopted in the develop-

ment of technological products such as flexible displays, integrated circuits, sensors,

memories and e-paper.

The discovery of electrical conduction properties of a class of organic materials rep-

resents a potential breakthrough opening the way to a plethora of highly innovative

products taking advantage of the peculiar properties of such semiconductors, including

the ability of being produced at a low cost and deposited on flexible substrates and

bio-compatibility.

The disordered morphology and energetic structure of organic semiconductor ma-

terials warrants for the development of suitable mathematical models and numerical

methods for dealing with the peculiar properties of charge transport in OTFTs. Fur-

thermore, the typically extreme form-factors of such devices constitute a challenge for

numerical simulations which demands for an efficient implementation based on ad-

vanced High Performance Computing (HPC) techniques.

We develop a hierarchy of mathematical models based on Partial Differential Equa-

tions (PDEs) to describe charge transport in OTFTs. The basis of such model hierarchy

is the well known Drift-Diffusion (DD) system of equations suitably adapted and ex-

tended in order to account for physical phenomena, such as energy barrier lowering

and charge injection at metal-semiconductor interfaces, and state-of-the-art constitutive

relations that are representative of the molecular disorder of organic semiconductor

materials. A particular attention has been devoted to ensure that the presented models

provide a consistent representation of the simulated system under equilibrium, tran-

sient and time harmonic regimes of operation. The models are firstly presented in a

one-dimensional framework to derive a computationally efficient parameter estimation

procedure used to characterize relevant physical properties of such materials. Then

they are extended to 2D and 3D geometries in order to account in a more natural

way for a set of inherently multi-dimensional phenomena such as the non-planarity of

semiconductor-insulator interfaces due to the solution processing of the materials, par-
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asitic capacitances due to coupling between metal layers, the bending of energy bands

at the semiconductor-substrate interface away from contacts and the contact resistance

due to current-crowding effects.

Robust numerical methods are required to simulate the above described models.

We propose a one-dimensional numerical formulation based on a modification of the

Scharfetter-Gummel discretization scheme that is thermodynamically consistent even in

those caseswhere the classical Einstein relation between themobility and the diffusivity

coefficient does not hold. Then the formulation is extended to meshes of quadtrees (2D)

and octrees (3D), that are hierarchical, non-conforming Cartesian grids, by developing

a strictly monotone discretization scheme that guarantees non-negative and oscillation-

free solutions for problems with steep boundary and interior layers. To increase the

accuracy of the numerical scheme we construct difference formulas that enable to re-

cover higher order approximations of the solution gradient and the solution itself: the

recovered gradient and solution are exploited to build proper a posteriori error estimators

to drive a metric-based mesh adaptation procedure. The advantages of the proposed

approach in terms of efficiency with respect to a standard solve-mark-refine technique

are discussed. Finally, the properties of a set of robust linearization methods are in-

vestigated, with a special focus on those preserving the positivity of density variables

throughout the simulation algorithm.

From an implementation perspective, recent progresses in data structures and algo-

rithms for creating, hierarchically refining, balancing and partitioning meshes of quad-

and oct-trees has brought this class of grids to the forefront of the research interests

in the HPC community as a key tool for attaining extreme scalability. Achieving this

goal drives the development of an efficient, parallel, scalable code. The implementation

strategies followed in our code will be examined and motivated.

The formulation of state-of-the-art physical models and their interpretation was led

with the support of Prof. DarioNatali of theDepartment of Electronics, Information and

Bioengineering (DEIB), while the derivation of the discretization scheme on quadtrees

and the definition of the mesh adaptation algorithms were developed in collaboration

with Prof. Simona Perotto of the Department of Mathematics of Politecnico di Milano.

We also acknowledge researchers from the Center of Nano Science and Technology of

the Italian Institute of Technology (IIT) for collecting and providing experimental mea-

surements used to validate the mathematical models presented.

Keywords: organic thin-film transistor; organic semiconductors; charge transport;

Schottkybarrier; charge injection; Einstein relation; drift-diffusion; Scharfetter-Gummel;

hpc; scalability; quadtree; mesh adaptation
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Sommario

Il presente progetto di ricerca ha come oggetto di studio modelli matematici e metodi

numerici per la simulazione di Transistor Organici a Film Sottile (OTFT), che sono

transistor a effetto di campo prodotti depositando pellicole sottili di un semiconduttore

organico su un sottostrato composto da materiale isolante, ad esempio il vetro, e che

vengono adottati nello sviluppo di prodotti tecnologici come display flessibili, circuiti

integrati, sensori, memorie e carta elettronica.

La scoperta di proprietà di conduttività elettrica in una classe di materiali organici in

anni recenti ha rappresentato un importante passo verso lo sviluppo di prodotti alta-

mente innovativi che beneficiano di peculiarità di tali semiconduttori come la possibilità

di essere prodotti a basso costo, deposti su supporti flessibili e la loro biocompatibilità.

La morfologia disordinata e la struttura energetica di semiconduttori organici giusti-

fica lo sviluppo di modelli matematici e metodi numerici che opportunamente tengano

conto delle proprietà fisiche del trasporto di carica negli OTFT. Inoltre, i rapporti di

forma tipicamente estremi di tali dispositivi costituiscono una sfida computazionale

per le simulazioni numeriche, esigendo dunque un’implementazione efficiente basata

su tecniche avanzate di High Performance Computing (HPC).

Verrà presentata una gerarchia di modelli matematici a derivate parziali per de-

scrivere il trasporto di carica negli OTFT. Tali modelli si basano sul sistema Drift-

Diffusion (DD), propriamente adattato ed esteso al fine di tener conto di fenomeni fisici,

tra cui l’abbassamento di barriera e l’iniezione di carica in corrispondenza di inter-

facce metallo-semiconduttore, e relazioni costitutive corrispondenti allo stato dell’arte

che sono rappresentativi del disordine molecolare tipico dei semiconduttori organici.

Un’attenzione particolare è stata rivolta a garantire che i modelli presentati forniscano

una rappresentazione consistente del sistema simulato nei diversi regimi di funziona-

mento di equilibrio, transitorio e in frequenza. I modelli saranno dapprima presentati

in un contesto monodimensionale per derivare un algoritmo di stima di parametri com-

putazionalmente efficiente, usato per caratterizzare proprietà fisiche rilevanti di tali ma-

teriali. Successivamente verranno estesi a geometrie 2D e 3D per tener conto in maniera

più naturale di alcuni fenomeni intrinsecamente multidimensionali come la non pla-

narità delle interfacce semiconduttore-isolante causata da difetti dovuti al processo pro-

duttivo, contributi parassitici di capacità dovuti all’accoppiamento tra strati metallici,
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la curvatura delle bande energetiche in corrispondenza di interfacce semiconduttore-

sottostrato e la resistenza di contatto dovuta a effetti di current-crowding.

Metodi numerici robusti sono necessari per simulare i modelli sopra descritti. Verrà

proposta una formulazione numerica monodimensionale basata su una modifica dello

schema di discretizzazione di Scharfetter-Gummel che è termodinamicamente consis-

tente anche in quei sistemi fisici in cui la relazione di Einstein tra i coefficienti di mobilità

e diffusività non sia soddisfatta. Quindi la formulazione è estesa a mesh di quadtree

(2D) e octree (3D), ossia griglie cartesiane gerarchiche non conformi, sviluppando uno

schema di discretizzazione strettamente monotono che garantisca soluzioni non nega-

tive e prive di oscillazioni numeriche per problemi con strati limite di bordo o interni.

Per aumentare l’accuratezza dello schema numerico vengono presentate formule alle

differenze che permettono di ricostruire approssimazioni di ordine più elevato per il

gradiente della soluzione e della soluzione numerica stessa: il gradiente e la soluzione

ricostruiti sono impiegati per definire opportuni stimatori a posterioridell’errore a partire
dai quali calcolare una metrica che guidi l’adattazione della griglia di calcolo. Verranno

discussi i vantaggi, in termini di efficienza, dell’approccioproposto rispetto auna tecnica

standard di solve-mark-refine. Infine, le proprietà di alcuni metodi di linearizzazione

robusti, in particolare di quelli che permettono di preservare la positività di densità

fisiche durante lo schema di risoluzione, verranno analizzate.

Dal punto di vista dell’implementazione, recenti progressi nelle strutture dati e negli

algoritmi per creare, raffinare gerarchicamente, bilanciare e partizionare mesh di quad-

e oct-tree ha portato questa classe di griglie al vertice degli interessi di ricerca della

comunità HPC come strumento per raggiungere estrema scalabilità. Tale obiettivo

giustifica l’implementazione di un codice efficiente, parallelo e scalabile. Le strategie

implementative seguite in fase di sviluppo saranno esaminate e motivate.

La formulazione di modelli fisici corrispondenti allo stato dell’arte e la loro inter-

pretazione è stata condotta con il supporto del Prof. Dario Natali del Dipartimento di

Elettronica, Informazione e Bioingegneria (DEIB), mentre la derivazione dello schema

di discretizzazione su griglie di quadtree e la definizione degli algoritmi di adattazione

di griglia sono state sviluppate in collaborazione con la Prof.ssa Simona Perotto del

Dipartimento di Matematica del Politecnico di Milano. Un sentito ringraziamento è

rivolto ai ricercatori del Centro per le Nanoscienze e Tecnologia dell’Istituto Italiano

di Tecnologia (IIT) per aver raccolto e fornito le misure sperimentali utilizzate nella

validazione dei modelli matematici presentati.

Parole chiave: transistor organici a film sottile; semiconduttori organici; trasporto

di carica; barriera Schottky; iniezione di carica; relazione di Einstein; drift-diffusion;

Scharfetter-Gummel; hpc; scalabilità; quadtree; adattazione di mesh
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Introduction





1. Synopsis

This thesis is devoted to presenting mathematical models and numerical methods for

the simulation of a class of organic electronic devices, specifically OTFTs.

Part I of this document is intended to describe the engineering applications that

warrant for a mathematical investigation of organic semiconductors. The factors that

motivate research in this field are presented in chapter 2, together with the possibilities

of application of this kind of technology in lighting, photovoltaics, the production of

flexible displays andother electronic components such asmemories, batteries, . . . OTFTs

in particular will be the specific subject of chapter 3, giving a portrait of what makes

them a key component for electronic circuits.

Part II contains thederivation of thephysicalmodels and the constitutive relations that

describe charge transport in the devices under consideration, and the corresponding

mathematical formulation. In particular, chapter 4 describes the physical phenomena

behind charge transport in organic semiconductors, pointing out the differences with

respect to classical silicon-based technologies. Relying on the DD equations, chapter 5

will present accurate models of the physics of energy barrier lowering and charge

injection at metal-semiconductor interfaces and state-of-the-art constitutive relations

that are representative of the molecular disorder of organic semiconductor materials, as

discussed in [Afr+17]. Another original contribution of this research project is contained

in chapter 6, that presents a hierarchy of mathematical formulations that have been

shown to provide a consistent representation of the considered physical systems under

thermal equilibrium, transient and time harmonic regimes of operation. TheDD system

has been coupled with an additional algebraic equation, derived in section 6.1.1, that is

needed inorder toprovide consistencewith the thermodynamic limit at thediscrete level

for arbitrary constitutive relations for the Density of States (DOS). Such mathematical

formulation is the topic of [AFN19].

Thedisorderedmorphology and energetic structure of organic semiconductor devices

warrants for the development of suitable numericalmethods, subject of part III. Further-

more, the typically extreme form-factors of such devices and the high level of accuracy

required for ameaningful comparison of simulation results to experimental data consti-

tute a challengewhichdemands for an efficient implementation based on advancedHPC

techniques. An adaptive time-advancing scheme is derived in chapter 7, while the prop-
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1. Synopsis

erties of a set of robust linearization methods are investigated in chapter 8. Chapter 9

describes, in a one-dimensional framework, the derivation and the numerical properties

of the Scharfetter-Gummel discretization method, an automatic upwind scheme satis-

fying a discrete maximum principle that makes it positivity-preserving, as required by

the constraint of a non-negative electron density. Following the formulation anticipated

in section 6.1.1, a modification of the Scharfetter-Gummel scheme for arbitrary DOS

shapes that don’t necessarily match with the classical Einstein relation, is also proved

to be thermodynamically consistent. Furthermore, 2D and 3D simulations are required

in order to account in a more natural way for a set of inherently multi-dimensional

phenomena, such as the non-planarity of semiconductor-insulator interfaces due to

the solution processing of the materials, parasitic capacitances due to coupling between

metal layers, the bending of energy bands at the semiconductor-substrate interface away

from contacts and the contact resistance due to current-crowding effects. This motivates

the extension, proposed in chapter 10, of the above-described discretization scheme to

meshes of quad-trees (2D) and oct-trees (3D), that are hierarchical, non-conforming

Cartesian grids, by developing a strictly monotone discretization scheme that guaran-

tees non-negative and oscillation-free solutions for problems with steep boundary and

interior layers. To increase the accuracy of the numerical scheme we also derive a new

recoverymetric-basedmesh adaptation procedure for quadtreemeshes. The theoretical

and numerical results obtained are the main subject of [AFP19]. The goal of achieving

extreme scalability drives the development of an efficient, parallel, scalable code. The

implementation strategies followed will be examined and motivated.

Results of numerical simulations of both theoretical and application-motivated test

cases are discussed in part IV. In chapter 11 the mesh adaptation algorithm is tested

on linear stationary Advection-Diffusion-Reaction (ADR) problems and on a time-

dependent system with a propagating front. A scalability result is also shown. Results

of the application of the thermodynamic consistent discrete formulation to the solution

of a propagating charge packet problem in semiconductors characterized by different

DOS shapes are presented in chapter 12. In chapter 13 the models and the methods

described are applied in a one-dimensional framework to derive a computationally effi-

cient parameter estimation procedure used to characterize relevant physical properties

of organic materials. The procedure relies on comparing simulation results to experi-

mental data and has been tested on two benchmark organic semiconductors, providing

a very satisfactory fit that proves the effectiveness of the procedure and the physical

meaningfulness of the values extracted. Results of stationary and transient 2D simu-

lations of OTFTs are presented in chapters 14 and 15, respectively. Finally, chapter 16

concludes the discussion and presents some possible extensions of the work presented

in this document.
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2. Organic electronics
Organic semiconductors are outstanding candidates for becoming thematerial platform

for the development of large area, low cost, flexible electronics . Since they can be

processed from solution, they can be formulated as functional inks and deposited by

means of printing techniques adapted fromgraphical arts (ink-jet, screen printing, spray

coating, flexography to cite but a few) .

Several factors have motivated a continuous research in organic semiconductor tech-

nologies, such as easy and low cost fabrication of large area circuits, mechanical flexibil-

ity, high transparency and bio-compatibility [CN15]. The molecular nature of organic

materials allows sub-micron structures to be created at a low cost using soft-lithography,

self-assembly or printing techniques instead of expensive conventional optical lithogra-

phy used for inorganic (often silicon-based) devices [Kat14; Ben+14]. Moreover, organic

sensors and transistors can be produced without the need of heavy metals or other

harmful materials, thus guaranteeing bio-compatibility and the possibility to implant

them in biological tissues. Ultimately, since they don’t need to be processed at high

temperatures, sensible substrates such as plastic or textiles can be exploited for the

fabrication.

However, when drawing comparisons between plastic and silicon circuitry one must

be aware that the two systems are deeply different and their behavior and performances

do not necessarily match. Amajor drawback of organic devices is a lower charge carrier

mobility, i.e. the ability of charged particles to move in response to an electric field,

due to weak intermolecular interactions in the solid state. Their electronic performance

has been constantly improving over the past years, as shown in fig. 2.1, leading to

devices which compare well to, or even outperform, those based on amorphous silicon.

Therefore, organic materials should not be expected to replace silicon as the favored

basis for electronic circuits, but to enable research for new and emerging applications.

An important trend is that key industry sectors are implementing a variety of products

based on organic and printed electronics. In particular, a strong engagement and

product introduction is seen in the automotive, consumer electronics, packaging and

medical/pharmaceutical sectors.

New possibilities of this kind of technology can be grouped into five clusters [OEA]:

1. lighting (Organic Light-Emitting Diodes (OLEDs));
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2. Organic electronics

Figure 2.1.: Recent mobility trend for a class of organic semiconductors. Source:

[Zho+14].

2. light-harvesting (photovoltaics);

3. flexible displays;

4. electronics and components (memories, batteries, . . . );

5. integrated smart systems (smart objects, sensors and smart textiles).

2.1. Lighting

OLED-based lighting is seen as the most promising approach for future lighting due

to superior efficiency, flexibility, and high durability. Moreover, devices like white

emitting OLEDs for general lighting, monochrome OLED lamps for automotive or

signage applications, are growing in importance. The market is expected to grow

steadily, especially if some key challenges, such as continued lowering of production

costs, are met.

2.2. Photovoltaics

Organic Photovoltaics (OPV) is an recent energy technology. OPV devices typically

consist of a semi-transparent substrate and a photo-absorbing organic layer. They can

be made on flexible substrates, thus enabling power sources to be suitable for many
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2.3. Flexible displays

emerging applications, such as wearable and mobile devices. The production of this

kind of devices guarantees a much shorter payback time than inorganic technology,

although efficiency and lifetime are still under improvement.

2.3. Flexible displays

Flexible displays are an extension of flat panel displays that successfully replaced

cathode-ray tubes for use in computers and televisions and made the existence of

laptops, tablets, e-readers, smartphones possible. Flexible organic-based displays can

dispensewith some key issues of current flat ones, such as the presence of breakable and

heavy glass and the inability to be bent or used with different form factors. The market

is starting to demonstrate a variety of flexible displays, from mobile phone to watches,

and it is growing to lead into wider availability of flexible consumer electronics.

2.4. Electronics and components

Electronics and components include, for example, printed memories and flexible bat-

teries.

Printed memories are needed for information storage. Micro-circuits printed on labels

can hold product information such as lot codes, serial numbers, expiration dates and

geographic codes, which can keep counterfeiters at bay.

Flexible batteries are of central importance in solving the issue of power supply in

gaming as well as in mobile and wellness devices, besides being employed in smart
packaging applications.
Active (such as transistors, diodes, logic circuits and display elements) and passive
(resistors, capacitors, inductors, tubes) components can also be printed.

An area that was recently interested by intense research activity is that of transparent
conductive films, to be used in optical devices, photovoltaics, electromagnetic shielding

and for touch sensors in mobile devices.

2.5. Integrated smart systems

Smart objects bring multiple functionalities to perform complex tasks without the need

for external hardware; integrated smart systems are being used in the development of

sensors and smart textiles.
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2. Organic electronics

Sensors allow to detect information from the surroundings. Organic-based force sen-

sors, for example, have found use as part of touch screen displays in consumer devices,

but also in health care and automotive applications. More specifically, photodetectors

are gaining importance in the market of logistics, environmental monitoring, and med-

ical imaging.

Smart textiles are able to alter their properties in response to external stimuli; these

functionalities are being embedded, for example, into clothing. Organic and printed

electronics opens new possibilities in health monitoring with enhanced comfort for the

wearer; the ability to process and transmit data makes wearable electronics a reality.
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3. Organic Thin-Film Transistors (OTFTs)

Organic electronics is moving ahead on its journey towards reality: the continuous

progress made in the field of organic semiconductors has achieved important goals

such as relatively high charge carrier mobility, thus offering ample opportunities for

organic-based printed integrated circuits [MN15].

FETs are nowadays the basis for all electronic circuits and processors. The ability

to create transistors from organic materials raises exciting possibilities for low cost

electronics. In particular OTFTs, which are FETs made by depositing thin films of an

organic semiconductor layer over a non-conducting substrate (such as glass), are being

adopted in the development of products such as backplanes of flexible displays and

circuits for sensor applications.

Research onorganic FETs over thepast 25 years has contributedgreatly to the scientific

understanding of the fundamental charge transport physics of conjugated polymer and

small-molecule organic semiconductors [Sir14]. These materials provide unique real-

izations of systems where transport is intermediate between conventional low-mobility

transport in amorphous glasses and high-mobility transport in crystalline materials.

3.1. Mechanism of operation

A FET is a three-terminal component where the current flow between the source and
the drain contacts is controlled by the voltage applied to the gate terminal (see fig. 3.1)

[Ben+14]. It can be used as a single component to amplify a current or combined with

other transistors into an integrated circuit.

The metallic gate, the insulator layer and the bulk semiconductor act in effect as a ca-

pacitor,with thegate formingoneplate, the insulator acting as adielectric spacer, and the

semiconductor forming the other plate: this is called a Metal-Insulator-Semiconductor

(MIS) capacitor. Therefore, when applying a bias across the plates, opposite and equal

charges accumulate at the insulator-semiconductor interface. This capacitive effect de-

termines the charge density in the channel (the region between the source and drain

electrodes where charge carriers actually flow); when applying a higher bias than a

threshold gate voltage VT the conductivity becomes substantial and the device turns
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3. Organic Thin-Film Transistors (OTFTs)

Figure 3.1.: Schematic of a thin film transistor (side view and top view). Source:

[Mad+15].

on. Then the motion of charge carriers from source to drain through the semiconductor

layer takes place on applying a suitable drain-to-source potential VDS [KKN14].

3.2. Applications and perspectives

OTFTs are extremely useful in applications such as flexible integrated circuits, sensors,

organic memories, e-paper and Radio-Frequency Identification (RFID) tags; moreover,

they have turned out to be promising backplane drivers inOLED-based flexible displays

(see figs. 3.2 and 3.3) [KKN14]. Recent advancements in organic material fabrication

techniques direct the researchers to make use of flexible substrates, such as paper,

plastic, glass and fiber, for low cost and light weight flexible applications.

OTFTs find also extensive applications in organic inverters and ring oscillators. Few

recent examples of use are described in the following subsections [KKN14].

RFID tags

A potentially emerging area for OTFTs is Radio-Frequency Identification of an object.

Organic RFIDs are useful in different kind of applications, such as electronic product

coding/labeling, supply chain management, medical science, toll bridges and iden-

tification of inventory in retail shops. Developments in low temperature fabrication

techniques for organic materials encourage to make use of them in RFID tags instead of

their silicon-based counterparts which are almost three orders more expensive.
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3.2. Applications and perspectives

Figure 3.2.: Photographs of A) flexible electrophoretic displays; B) plastic-printed mi-

croprocessors. Source: [Sir14].
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3. Organic Thin-Film Transistors (OTFTs)

Figure 3.3.: Pixel circuits for active matrix OLEDs. The letter T denotes OTFTs. Source:

[Sir14].

Organic DNA sensors

OTFTs are promising for application in flexible Deoxyribonucleic Acid (DNA) sensors

due to their quick response time. This can enable the deployment of DNA micro-array

techniques for disposable diagnosis toolkits. These sensors are often used to detect

and quantify the nucleic acids for forensic analysis and pharmacogenomic research, by

transforming a chemical binding event into electrical signals that can be easilymeasured

and analyzed.
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Part II.

Physics of organic semiconductors
and mathematical models





4. Charge transport

As anticipated in the introduction, while physical mechanisms governing charge trans-

port in organic semiconductors are inherently different from those in well known crys-

talline inorganic materials such as, e.g., silicon, the mathematical models used to sim-

ulate such phenomena are strongly correlated. For this reason, it is common practice

to introduce the physical bases of charge transport in inorganic semiconductors (sec-

tion 4.1) in order to mark the differences with respect to organic ones (section 4.2).

4.1. Inorganic semiconductors

Atoms in ordered inorganic semiconductors (such as silicon) are kept together by co-

valent bonds which originate a perfectly regular, crystalline solid. Typically inorganic

semiconductors are built from elements in group IV of the periodic table (Si, Ge, . . . ),

possibly compounded with elements belonging to group III or V (GeAs, InAs, InP,

. . . ). In such systems electronic states are clearly defined and give rise to an energy-band
structure: charge carriers are confined to a number of bands of admissible energy levels

(valence band and conduction band), separate by an energy gap consisting of forbidden

energy levels (see fig. 4.1).

Charge carriers in the transport bands are said to be delocalized as their wave functions

are spread across more than one atom and hence particles occupying such states can

be located anywhere in the whole crystal. Occasionally their motion is hampered by

scatteringphenomenadue to imperfections in the crystalline structure such as dopants or

phonons, generated by vibrational motions of the lattice. In a wave-only view, carriers

are plane waves propagating in a periodic potential generated by atomic nuclei and

charges occupying inner energetic levels in the periodic lattice.

As a consequence of the band transport described above, a crystalline semiconductor

can be approximated as a charged rarefied gas, where particles are free to move; hence

typical transportmodels can be deduced from the Boltzmann Transport Equation (BTE):

∂f

∂t
+

dx

dt
· ∇xf +

dp

dt
· ∇pf � 0,
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4. Charge transport

Figure 4.1.: Valence and conduction bands in different materials. Source: [Hec11].

where f � f(x,p, t) denotes the distribution function of a generic charge carrier in

the seven-dimensional space of spatial coordinates (x), momentum (p) and time (t).

The classical DD model is the zero-order moment in the hierarchical expansion of

Boltzmann’s equation [Jer96; MRS90; AR99; AR00].

The amount of available free charge carriers in inorganic semiconductors may be

artificially tuned by introducing dopant impurities (see section 4.3), which are easily

ionized by thermal excitation even at room temperature.

4.2. Organic semiconductors: energetic disorder

Unlike inorganic semiconductors, an organic semiconducting material is a molecular

solid whose molecules are kept together by van der Waals’ interactions acting between

permanent and induceddipoles and are relativelyweak compared to covalent bonds. As

a result, organic semiconductors have an up to 80% lower relative dielectric permittivity,

therefore Coulomb interactions between charges are stronger. Weak intermolecular

interactions and common production techniques of organic semiconductor materials

often lead to high levels of topological and energetic disorder [CB12]; these systems can

be distinguished into the amorphous and semi-crystalline categories [Kax03]:

• in amorphous solids there is no long-range order of any type, even though the

local arrangement of atoms has a certain degree of regularity;

• quasi-crystals show certain symmetries such as rotations, reflections or an un-
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4.2. Organic semiconductors: energetic disorder

Figure 4.2.: Localization and delocalization of energetic states. Source: photonicswiki.

derlying regular pattern, but they are not compatible with a three-dimensional

periodicity; these crystalline regions attain nano- to micro-metric dimensions.

Each molecule is characterized by the Highest Occupied Molecular Orbital (HOMO)

and Lowest Unoccupied Molecular Orbital (LUMO) (called the frontier orbitals): current
conduction occurs when excited charges jump from a frontier orbital (which is the

LUMO for electrons and HOMO for holes) to the same frontier orbital of an adjacent

molecule.

In contrast to ordered crystalline semiconductors (withwell-defined energy structures

consisting of bands and gaps), the energy spectrum of a disordered material can be

treated as quasi-continuum [Wei+06]. Instead of bands and gaps one can distinguish

between extended and localized states
1
(see fig. 4.2), where, according to the definition

given in [And78] by P.W. Anderson (Nobel Prize in Physics, 1977), a charge carrier wave

function is respectively spread over the whole volume or localized to a restricted region.

Localized sites can be interpreted as segments of a conjugated polymer chain and are

responsible for the flow of charge, as charge carriers spend most of their time localized

in a precise energetic state on a molecule.

Charge transport occurs by means of a hopping mechanism (see fig. 4.3), which is a

phonon-assisted and thermally activated quantum tunneling effect (where a particle

tunnels through an energetic barrier that would not be possible to overcome classically)
from one site to another neighboring site. This is why in organic materials hopping

events are promoted by high temperatures (which allow for higher molecular vibration

amplitude), while in inorganic semiconductors themobility decreaseswith temperature.

1
In a mathematical formalism, a quantum state is a vector in an Hilbert space over a complex field. It is

often referred to as a wave function [Gri05b], which encodes all the information about positions and

momenta of a system of particles.
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4. Charge transport

Usually, the conductivity σ is found to be thermally activated as:

σ(T ) � σ0 exp
(
−Eact
kBT

)
,

where σ0 is the (theoretical) maximum conductivity

[
fm−1

]
, kB the Boltzmann constant[

J · K−1
]
, T the temperature [K] and Eact the activation energy [J].

Many hopping models are based on the solution of aMaster equation [Wei+06], which

consists of a discrete balance of hopping probabilities from each site to neighboring

ones and will be described in more details in section 5.1.

4.3. Doping

Doping, i.e. introducing charged impurities into a pure (intrinsic) lattice, led to the

breakthrough of conventional semiconductor technologies; it granted the possibility

to control the flow of charge carriers, giving rise to the design of p − n junctions, the

building blocks of most electronic devices. Furthermore, doping may be used to enhance

device performances by adjusting the conductivity and the position of the Fermi level.

Organic semiconductors can be doped by adding electron acceptors or donors, but

doping techniques are still under study. Because of theweak van derWaals’ interactions

between molecules, organic materials are less sensitive to impurities and structural

defects than crystalline semiconductors but, because of stronger Coulomb interactions

between charges, dopant concentrations have to be considerably higher for organic

materials, thus affecting the molecular assembly, the morphology, and the electronic

properties of the film (mobility, energy levels distribution, . . . ).

Doping can be described as a two-step process:

1. the dopant is ionized, transferring an electron (hole) to the host material and

leaving a hole (electron) on the dopant; the ionization energy corresponds to the

difference between the HOMO level and the vacuum energy level;

2. the electron (hole) has to dissociate against the Coulomb attraction of the hole

(electron) left on the dopant.

The second step is harder to achieve in the case of organic semiconductors because of

their lower relative permittivity.

Two major drawbacks of doping organic semiconductors are the instability of the

dopant concentration, which is usually not constant in time, and the difficulty to control

the doping level inside the device, because of a lower doping efficiency (defined as
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4.3. Doping
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(a) Band transport. In a crystal (the straight line) charge

carriers are delocalized. Lattice vibrations disrupt

the symmetry, thus limiting the carriers mobility.

bc bc
bc

bc

bcbcbc

bc
bc

(b) Hopping transport. Carriers are localized due to

defects or disorder, so the lattice vibrations are es-

sential for a carrier tomove fromone site to another.

Figure 4.3.: Charge transport in inorganic and organic semiconductors. Source: [PS99].
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4. Charge transport

the ratio of the density of free charge carriers to the density of dopants) due to the

molecular disorder. This is why these materials are often used as intrinsic and charges

are preferred to be injected through metal electric contacts.
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5. Physical models

5.1. Discrete modeling: the master equation

By considering the semiconductor as a system of localized quantum states (that may or

may not be occupied by charged particles), the general transport equation describing the

balance of hopping events between a state i and a state j is theMaster equation [Mei+06]:

dpi

dt
+Wijpi(1 − pj) −Wjipj(1 − pi) � 0, ∀i, j, (5.1)

and its stationary limit

Wijpi(1 − pj) −Wjipj(1 − pi) � 0, ∀i, j,
where

pi is the time-averaged probability of occupation of the state i by a charge;

Wij is the transition rate for hopping from site i to site j.

The penalty terms (1 − pi) and
(
1 − pj

)
account for Pauli’s exclusion principle by

prescribing that only one charge carrier can occupy a site. By assuming that hopping of

carriers from site to site occur by means of a thermally assisted tunneling process, the

coefficientsWij can be expressed by theMiller-Abrahams model [MA60]:

Wij �

{
ν0 exp

(
−2$Rij − Ej−EikBT

)
, Ej ≥ Ei,

ν0 exp
(
−2$Rij

)
, Ej < Ei,

(5.2)

where

kB is the Boltzmann constant

[
J · K−1

]
;

T is the temperature [K];
ν0 is the attempt-to-escape frequency rate;

Rij �
��Rj − Ri�� is the distance between site i and site j [m];

$ is the inverse localization length of the states considered

[
m
−1]

;

Ei is the energy of site i [J].
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5. Physical models

Equation (5.1) can be solved by drawing the on-site energies Ei randomly from a given

distribution representing the Density of States (further details about the choice of this

function will be given in section 5.4). The equilibrium distribution of charges according

to eq. (5.1) is usually computed by means of a Monte Carlo method by simulating the

evolution of an initial population until equilibrium is reached [SBS81; Bäs93; Bou+09].

Once the solution has been computed, the mobility coefficient µ
[
m

2
V
−1
s
−1]

related to

a generic charge carrier is given by (see [Bou+09])

µ �

1

N

∑
i,j

Wijpi(1 − pj)Rij,E

|E| , (5.3)

where

N � nV is the total number of charge carriers, V being the total volume and n

the average of the occupation probabilities pi over V ;

E is an applied electric field

[
V ·m−1

]
;

Rij,E is the distance between site i and site j along the direction of E [m].

The numerator of eq. (5.3) can be interpreted as the velocity of the particles. Taking

the limit of themaster equation as the dimension of the space of energetic states becomes

continuum leads to the DD model.

5.2. Continuum modeling: the Drift-Diffusion system

A continuum model can be derived by assuming the distribution of charges in the

material to be a function of a continuum spatial variable. The electromagnetic fields

inside the device can be modeled through Maxwell’s equations:



∇ ·D � ρ,

∇ × E +
∂B

∂t
� 0,

∇ · B � 0,

∇ ×H − ∂D
∂t

� J,

(5.4a)

(5.4b)

(5.4c)

(5.4d)
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5.2. Continuum modeling: the Drift-Diffusion system

where

E the electric field

[
V ·m−1

]
;

D the electric displacement field

[
C ·m−2

]
;

ρ the volume charge density

[
C ·m−3

]
;

B the magnetic induction field

[
N ·A−1m−1

]
;

H the auxiliary magnetic field

[
A ·m−1

]
;

J the electric current density (per unit area)

[
A ·m−2

]
.

In the effective homogeneous medium approach we assume that the material is a linear,

isotropic, homogeneous medium, provided that suitable effective values are used for

the material coefficients. In such case, the constitutive relationD � εE, ε � ε0εr holds,

ε0 being the vacuum permittivity

[
C · V−1m−1

]
and εr the material relative permittivity.

5.2.1. Poisson’s equation

From (5.4c) it is possible to introduce a vector potential, i.e. a vector field A such that

∇ ×A � B.

The gauge freedom allows to write a vector potential in the formA + ∇φ [Jac99] where φ

is an arbitrary function, as ∇ × ∇φ � 0 ∀φ.
We assume basic regularity hypotheses for the functions considered and the domain

(so that derivatives can be interchanged); hence, by inserting last equation into (5.4b)

we get

∇ ×
(
E +

∂A

∂t

)
� 0⇒ E +

∂A

∂t
� −∇ϕ

for a proper function ϕ called the electrostatic potential.
After a multiplication by ε the equation becomes

D + ε
∂A

∂t
� −ε∇ϕ.

Applying now the operator divergence and interchanging time and space derivatives:

∇ ·D + ε
∂

∂t
(∇ ·A) � −∇ · (ε∇ϕ) ,

which, through (5.4a), gives:

ε
∂

∂t
(∇ ·A) + ∇ · (ε∇ϕ) � −ρ.
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5. Physical models

We choose the arbitrary function φ so that the Lorenz gauge condition is satisfied, namely

ε
∂

∂t
(∇ ·A) � − 1

c2
∂ϕ

∂t
,

c being the vacuum velocity of electromagnetic waves. The electrostatic potential ϕ is

then the solution to the wave equation

1

c2
∂2ϕ

∂t2
− ∇ · (ε∇ϕ) � ρ.

c is usually much greater than the characteristic propagation velocities in the device

considered (for example the mean velocity of a charge carrier); in other words, we

are assuming that the length of the highest frequency electromagnetic wave is much

greater than a characteristic length of the device, i.e. there is no substantial propagation.

Therefore, the first term is negligible compared to the others and a Poisson equation for

the electrostatic potential ϕ is obtained [Mar86]:

−∇ · (ε∇ϕ) � ρ.

In the following we will assume that the device domain Ω is composed by a semicon-

ductor region Ωsemic and an insulator region Ωins such that Ωsemic ∪Ωins � Ω. Hence the

following expressions hold:

ε �

{
εsemic, in Ωsemic,

εins, in Ωins,

and

ρ �

{−q (n − p +ND) , in Ωsemic,

0, in Ωins.

Here n and p
[
m
−3]

are the charge carrier (electron and hole respectively) volume

densities and ND
[
m
−3]

is the net dopant concentration (ND < 0 denotes an n-type

doping and ND > 0 a p-type one).

Finally, the Poisson equation becomes

−∇ · (ε∇ϕ) � −q(n − p +ND), in Ω. (5.5)
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5.2. Continuum modeling: the Drift-Diffusion system

5.2.2. Model assumptions

Hereinafter, we will assume the following hypotheses [Mad+15]:

• the semiconductor is intrinsic, i.e. the dopant concentrationND is zero, as it is very

often the case in organic semiconductors; hence the total charge density becomes

ρ �

{−q (n − p) , in Ωsemic,

0, in Ωins;

• thermal generation effects are negligible (energy gaps are sufficiently large);

• leakage currents are negligible in the insulator region Ωins;

• the semiconductor is unipolar, i.e. the device operation is based predominantly

on the use of majority charge carriers; we will consider n-type devices, i.e.
p ≈ 0 (p-type devices can be treated analogously), and will neglect genera-

tion/recombination phenomena. From these assumptions we get the simplified

expression

ρ � −qn. (5.6)

Since techniques for establishing stable doping in organic semiconductors are still

under study, bipolar devices have been given less attention in the literature; moreover,

the device architecture of FETs is simple and requires only one type of charge carrier

[KB15].

5.2.3. Continuity equation

Onemore equation can be deduced by a basic conservation principle in order to describe

the evolution of n.

The conservation of the total number of particles, when generation/recombination

phenomena do not occur, is expressed by the following equation:

∂n

∂t
+ ∇ · fn � 0, in Ωsemic, (5.7)

where fn is the electron flux density

[
m
−2
s
−1]

. We define the total electron current

density

[
A ·m−2

]
as

Jn � −qfn.
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5. Physical models

By linearizing the electron distribution functions around equilibrium, the following

constitutive relation for the current density can be derived [Sel12]:

Jn � qµnn∇ϕn, (5.8)

where µn denotes the electron mobility respectively

[
m

2
V
−1
s
−1]

and ϕn is the electro-
chemical potential [V], accounting for both electrical and chemical interactions between

charges. At equilibrium the electrochemical potential is spatially constant, while in the

non-equilibrium case it is a function of the position.

The total number of charge carriers at a given energy can be estimated by means of

statistical mechanicsmodels. Let ELUMO and EHOMO be the energy levels corresponding

to the molecular orbitals LUMO and HOMO respectively, and let g(E) the DOS func-

tion; the quantity g(E)dE represents the density of available quantum states (per unit

volume) that may have energy within an infinitesimal range dE of energies centered at

E. The total amount of charge carriers per unit volume is thus expressed as the sum

over all the admissible energies of the DOS function weighted on the probability of

occupation fD of an energy state:

n �

∫
+∞

−∞
g (E − ELUMO) · fD (E − EF) dE, (5.9)

where the function fD(E) denotes the occupation probability of the state having energy

E and EF denotes the Fermi level, a quantity related to the electrochemical potential.

For a population of fermions, i.e. a system of many particles obeying the Pauli exclusion

principle
1
, the occupation probability is given by the Fermi-Dirac statistics, which is the

statistical distribution identified through the density function

fD(E) �
1

1 + exp

(
E
kBT

) .
The Fermi-Dirac statistics represents, according to Pauli’s exclusion principle (fD(E) <
1 ∀E), the average number of electrons occupying the state having energy E.

We define the Fermi level EF [J] as the thermodynamic work required to add one

electron to a fermion system [Kit08]. An understanding of how it relates to the electronic

structure is essential to describe the physics of a solid-state system. The Fermi level does

not necessarily correspond to an actual energy level (for example, in an insulator the

1
Pauli’s exclusion principle states that the same quantum state cannot be occupied simultaneously by two

identical fermions.
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5.3. Generalized Einstein relation

Fermi level lies in the band gap and is not populated by charges). By definition, the

Fermi level is such that

fD (EF) �
1

2

,

which means that an electron or a hole has a 50% probability to occupy the energy

level EF. Equation (5.9) rigorously holds for a system at thermal equilibrium, where

EF is a constant. In a system out of equilibrium we can assume a generalized version

of eq. (5.9) to hold, by allowing the Fermi level EF to depend on spatial coordinates; it

turns out that the resultant force acting on a particle is proportional to the gradient of

such quasi-Fermi energy.
Without loss of generality, we can choose an energetic reference level such that both

ELUMO and EF are related to the electrostatic and the quasi-Fermi potential by the

following affine relations

ELUMO � −qϕ,
EF � −qϕn.

(5.10)

so that the constitutive relation (5.9) becomes

n �

∫
+∞

−∞
g (E + qϕ) · fD

(
E + qϕn

)
dE. (5.11)

At high energies, i.e. when E � kBT + EF, then the Fermi-Dirac distribution can be

approximated as:

fD (E) ≈ exp

(
−E − EF
kBT

)
, (5.12)

which is called the Maxwell-Boltzmann statistics. Carrier densities usually involved

in typical organic semiconductor devices are such that the Fermi level lies inside a

region where the DOS function is not negligible; therefore the Maxwell-Boltzmann

approximation can not be used except for a narrow range of energy values.

5.3. Generalized Einstein relation

We define a chemical potential φ as

φ � ϕ −ϕn. (5.13)

The definition above is compatible with [Mad95], while other authors [AM88] use

swapped definitions for chemical and electrochemical potentials. From eq. (5.11), after
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5. Physical models

a change of variables, the electron density can be represented as a function of the

chemical potential, i.e. n � n(φ). Therefore its spatial gradient is computed as

∇n �
∂n

∂φ
(∇ϕ − ∇ϕn) .

By substituting this expression into eq. (5.8) we get

Jn � −qµnn∇ϕ + qDn∇n, (5.14)

which corresponds to the familiar drift-diffusion constitutive relation for the electron

current density; here we have introduced the electron diffusion coefficient

[
m

2
s
−1]

Dn � µn
n
∂n
∂φ

. (5.15)

Equation (5.15) provides a generalization, valid for an arbitrary DOS shape, of the

relation discovered by Einstein and Smoluchowski in their analysis on the Brownian

motion [ES99].

It can be easily shown that the classical Einstein relation can be deduced as a particular

case of eq. (5.15) through an appropriate choice for the function g(E). For example, let

us consider the typical DOS function for an inorganic semiconductor

g(E − Ec) ∝
√
E − Ec · 1{E>Ec},

where the proportionality is intended up to a multiplicative constant, 1 denotes the

indicator function and Ec is the energy of the bottom of the conduction band (analogous

to the ELUMO in an organic semiconductor), and the zero-disorder limit for an organic

semiconductor:

g(E − ELUMO) ∝ δ(E − ELUMO),
where δ(E − ELUMO) denotes the Dirac delta centered at ELUMO. Under the Maxwell-

Boltzmann approximation (5.12) in both cases we get

n(φ) ∝ exp

(
φ

Vth

)
�⇒ ∂n

∂φ
�

1

Vth

n �⇒ Dn � µnVth,

where Vth �
kBT
q

is the thermal voltage.
In the following we will denote by gD(n) the diffusion enhancement factor represent-

ing the deviation from the classical Einstein relation:

gD(n(φ)) �
1

Vth

n
∂n
∂φ

, (5.16)

50



5.4. Constitutive relations for the Density of States

so that

Dn � µnVthgD(n(φ)). (5.17)

5.4. Constitutive relations for the Density of States

In the literature there is no definitive consensus as to the best choice for the shape of the

DOS function g in eq. (5.11) for organic materials [Mad+15]. We assume it to belong to a

family of given functions parametrized by a single parameter (DOS width, later denoted
by σ) corresponding to the degree of molecular disorder of the semiconductor material.

Several models have been proposed, including

1. a single symmetric Gaussian [FT09; Poe+13; Mar+09];

2. a linear combination of symmetric Gaussians [Kwo+12];

3. an exponential [VW11; Riv+11; RE11];

4. an asymmetric Gaussian [TM11];

5. a combination of a Gaussian and an exponential [Vri+13a; Cho+14];

6. others [VW09; Hul+04; Bar14].

However, the ansatz based on a single Gaussian is motivated by the physical plau-

sibility in the case of organic materials [Wei+06] and will be adopted in the following.

The corresponding DOS function is

g(E) � N0√
2πσ

exp

(
− E

2

2σ2

)
,

where N0 is the total number of available states (per unit volume)

[
m
−3]

and σ the

disorder parameter [J], corresponding to the standard deviation of the Gaussian.

Thus eq. (5.11) becomes

n �
N0√
2πσ

∫
+∞

−∞
exp

(
−(E − ELUMO)2

2σ2

)
1

1 + exp

(
E−EF
kBT

) dE. (5.18)

We aim at rewriting eq. (5.18) in order to exploit a Gaussian quadrature formula for

efficiently computing the integrals in numerical simulations.

Through the substitution

η �
E − ELUMO√

2σ
(5.19)
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5. Physical models

eq. (5.18) becomes

n(φ) � N(φ) � N0√
π

∫
+∞

−∞
e−η

2

(
1 + exp

(√
2ση − qφ
kBT

))−1
dη, (5.20)

where φ is the chemical potential introduced in section 5.3.

We also compute the functional derivatives of eq. (5.18) with respect to the electric

potential ϕ and the chemical potential φ (of order 1 and 2), used in the application of a

linearization scheme such as Newton’s method. From eq. (5.18) we compute

∂n

∂ϕ
(ϕ) � N0√

2πσ

∫
+∞

−∞
exp

(
−(E + qϕ)2

2σ2

)
1

1 + exp

(
E−EF
kBT

) · −2(E + qϕ)q
2σ2

dE,

which, through eq. (5.19), becomes

∂n

∂ϕ
(ϕ) � −N0q

σ

√
2

π

∫
+∞

−∞
ηe−η

2

(
1 + exp

(√
2ση − qφ(ϕ)

kBT

))−1
dη. (5.21)

Similarly, from eq. (5.20) we get

∂n

∂φ
(φ) � N0

Vth

√
π

∫
+∞

−∞
e−η

2

exp

(√
2ση−qφ
kBT

)
(
1 + exp

(√
2ση−qφ
kBT

))
2

dη (5.22)

and

∂2n

∂φ2

(φ) � N0

Vth

2
√
π

∫
+∞

−∞
e−η

2

exp

(√
2ση−qφ
kBT

)
(
1 + exp

(√
2ση−qφ
kBT

))
2

©­­«
2 exp

(√
2ση−qφ
kBT

)
1 + exp

(√
2ση−qφ
kBT

) − 1ª®®¬ dη.

(5.23)

Ageneralization of the above introducedGaussiandistribution to a class of parametric

DOS shapes will be presented in the results discussed in chapter 12.
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5.5. EGDM mobility model

5.5. EGDM mobility model

In [Coe+05; VC08] is presented the Extended Gaussian Disorder Model (EGDM), which

is valid for a single Gaussian DOS and proceeds on the assumption that on-site energies

Ei in eq. (5.2) are Gaussian-distributed and have no spatial correlation. For materials

where the energies are spatially correlated Bouhassoune et al. presented in [Bou+09] a

modification of this model known as the Extended Correlated DisorderModel (ECDM).

Both approaches determine the mobility (eq. (5.3)) starting from a numerical solution

of the Master equation (5.1). For the EGDM the mobility has been shown to depend on:

1. the temperature T ;

2. the charge carrier density n;

3. the component of the electric field in the direction of the motion of charge carriers

E‖ � E · Jn.

More specifically, it was found that only at high voltages and low temperatures the

dependence on the field plays a role.

The complete EGDMmodel for the electronmobility coefficient reads [Coe+05; VC08]

µn(T ,n,E‖) � µ0,n(T ) · g1(n, T ) · g2(E‖ , T ), (5.24)

where

µ0,n(T ) � µ̄0,n exp

(
−c0

(
σ

kBT

)
2

)
g1(n) �

N0

n
exp

[
−(ϕ −ϕn)(n)

Vth

+
1

2

(
σ

kBT

)
2

]
,

g2(E‖) � exp

0.44
[(

σ

kBT

)
3/2
− 2.2

] 
√√√√
1 + 0.8 min

{
qE‖

N
1/3
0
σ
, 2

}
2

− 1

 ,

where

c0 is a dimensionless parameter;

µ̄0,n is the low-field and low-charge-density mobility

[
m

2
V
−1
s
−1]

.

This functional dependence leads to excellent agreement between calculated andmea-

sured Current-Voltage (IV) characteristics [Bou+09]. By a slight abuse of notation, we
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will later refer to the function µ0,n(T ) as the low-field and low-charge-density mobility.

The functions g1,g2 are called enhancement factors.
The value of (ϕ − ϕn)(n) in the expression for g1 can be computed by numerically

inverting the relation (5.11), for example through a lookup table containing values of

n(ϕ − ϕn) and g1(ϕ − ϕn) predetermined at a given set of values of (ϕ − ϕn): once

constructed, g1(n) is given by interpolating the lookup table over the solution n of the

DD equations.

The DOS width σ parameter and µ0,n strongly affect the dynamics of the DD system

because of the EGDM. However, it is often unfeasible to determine their value exper-

imentally, which is why a parameter estimation problem has to be solved in order to

completely close the DD system [Afr+17].

The EGDM model introduces further non-linearities into the DD system [Kna+10]

because of the functional dependence of µn on the system variables n and ϕ, thus

affecting the overall efficiency of non-linear iteration strategies. Therefore, standard

solution schemes have to be properly adapted and generalized for taking into account

the peculiar physical models of organic semiconductors.

In chapter 13 a numerical technique to address the identification of the σ and µ0,n
parameters will be presented.

5.6. Boundary conditions

5.6.1. Modeling charge injection

As charge carriers can not normally be introduced into organic semiconductor devices

bydopingwith ionized impurities, as seen in section 4.3, usually all charges contributing

to conduction originate from injection phenomena at metal-semiconductor interfaces

[Tun14]. For this reason it is crucial, in order to correctly model current conduction in

such devices, to be able to accurately describe charge injection. This problem mainly

consists of a precise estimate of the value of the so-called Schottky barrier, i.e. the energy
barrier that carriers have to overcome in order to flow from the metal to the semicon-

ductor or vice-versa.

Out of thermal equilibrium, the electrical current flowing across the interface between

a metal and a semiconductor is influenced by a discontinuity on the energy scale of the

electronic states responsible for conduction in the two materials. Delocalized electronic

states around the Fermi level are responsible for the electrical conduction in the metal,

but these states are not coupled to any delocalized electronic state in the semiconductor,

depending on the doping type: in n-type semiconductors the electrons near the LUMO

are primarily responsible for electrical conduction and they are at an energy −qΦB
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5.6. Boundary conditions

(where ΦB is the equivalent potential barrier) above the Fermi level. This energy offset

is known as the Schottky barrier height and is such that the flow of electrons from the

semiconductor to the metal is easier than the conduction in the opposite direction. The

potential barrier can be expressed as

ΦB � −Wf − Ea
q

, (5.25)

Wf being the metal work function, i.e. the minimum thermodynamic work needed to

remove an electron from a solid to the vacuum immediately outside the solid surface,

and Ea the semiconductor electron affinity, i.e. the minimum thermodynamic work

needed to remove an electron from its LUMO level to the vacuum level.

Scott andMalliaras [SM99] also considered amechanism of (thermionic) charge injec-

tion frommetals into organic semiconductors, which plays an important role in devices

such as OLEDs, where metal electrodes inject charge carriers into the opposite sides of

the emissive organic layer, organic photoconductors (used in laser printers and photo-

copiers), where the photogenerated charge has to be extracted from the polymer film,

and OTFTs too. Here the effect of the image potential (induced by charges in the metal)

on injected carriers is modeled as a recombination activated from aCoulomb interaction

through an hopping process. This means that, depending on the outward electric field

at the metal-semiconductor interface E � ∇ϕ ·ν, where ν is the inward unit normal, the

effective energy barrier can be larger or smaller than the nominal oneΦB, and the devia-

tion is modeled through a coefficient
˜Φ(E) such that the effective barrier isΦB+Vth

˜Φ(E).
Following the description in [BRG03], the coefficient

˜Φ can be mathematically modeled

as

˜Φ �

{ √
f, if f ≥ 0 (carrier injection),

f/4, if f < 0 (carrier extraction),

where f � qErc/(kBT) is the reduced electric field and rc � q
2/(4πεkBT) the Coulomb

radius.

Following [Afr+17; BRG03], charge injection phenomena are taken into account by

imposing the following boundary condition on a contact Γi ∈ Csemic:

Jn · ν + qS(E)
(
neq(E) − n

)
� 0, on Γi ∈ Csemic, (5.26)

where Csemic ⊆ ∂Ω is the set of boundary faces connected to any contact, ν the inward

unit normal and neq(E) � N
(
ΦB + Vth

˜Φ(E)
)
is the equilibrium density value corre-

sponding to the field E, computed through the DOS integral (5.20). The field-dependent
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5. Physical models

recombination velocity S in the injection regime (f ≥ 0) is given by

S(f) �
4πε(kBT)2µ0,n

q
3

(
1

γ2(f) − f
)
, γ(f) � f−1 + f− 1

2 − f−1
(
1 + 2f

1

2

) 1

2

,

while S(f) � S(0) � 1

2
in the carrier extraction regime (f < 0).

A boundary condition consistent with (5.26) and imposed on the Poisson equation

will be described in section 6.1.2.

5.6.2. External control circuit

We suppose that the device contacts are connected to an external control circuit. The

circuit’s evolution can be described by the Modified Nodal Analysis (MNA) equation

obtained from theKirchhoff’s circuit laws and the constitutive relations for the electronic

components connected to the circuit [Alì+03; ABG05]. It can be expressed in the form

A ˙F +C(F) + rI � 0, (5.27)

where F is the state vector, containing the circuit variables (such as voltages, magnetic

fluxes, currents, total charges, . . . ), I the vector of the inward contact currents and r an

incidence matrix, describing the connections among contacts and circuit pins. For the

sake of simplicity, a linear model is assumed for C, such that C(F) � BF + s. A and B

are proper matrices and s is a source term. In particular we choose that the state vector

F contains the contact voltages, that are imposed equal to the quasi-Fermi potential ϕn
at each electric contact.

5.7. Computation of contact currents

The vector of currents I in eq. (5.27) is computed using the residuemethod [GS06], based

on the property of local conservation [Hug+00] which holds for discretization schemes

derived from the Galërkin method (such as finite elements and finite volumes).

Let C � Csemic ∪ Cins ⊆ ∂Ω be the set of boundary faces connected to any device

contact lying on the semiconductor or the insulator region, respectively. The total

current density at the i-th contact Γi ∈ C is the sum of two contributions, namely the

displacement and the conduction current:

Ii �

∫
Γi

∂ (D · ν)
∂t

+

∫
Γi

Jn · ν, (5.28)

where D � −ε∇ϕ is the electric displacement field

[
C ·m−2

]
and ν the inward unit

normal.
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5.7. Computation of contact currents

5.7.0.1. Displacement current

Assuming for the sake of simplicity that homogeneous conditions are imposed on

Dirichlet boundary ΓD (otherwise a standard lifting procedure can be applied), the

variational formulation of the Poisson equation (5.5) reads

∀t ∈ [0, T ] find ϕ(t) ∈ V such that∫
Ω

ε∇ϕ · ∇γ +

∫
∂Ω

ε∇ϕ · νγ +

∫
Ω

qnγ � 0, ∀γ ∈ V ,

where V �
{
v ∈ H1(Ω) : v|ΓD � 0

}
.

Since the Galërkin method is locally conservative [Hug+00], we can choose γ among

the basis functions associated with the degrees of freedom lying on Γi [GS06], so that

−
∫
Γi

ε∇ϕ · ν �

∑
k

(∫
Ω

ε∇ϕ · ∇γk +
∫
Ω

qnγk

)
,

where the summation loop over all the basis functions γk ∈ H1(Ω) such that γk(xj) �
δjk, ∀xj ∈ Γi.
Therefore, the displacement current density can be computed as∫

Γi

∂ (D · ν)
∂t

�

∑
k

(∫
Ω

ε∇∂ϕ
∂t
· ∇γk +

∫
Ω

q

∂n

∂t
γk

)
.

We remark that the k-th term of the summation can be numerically computed as the

multiplication of the k-th row of the resulting stiffness and mass matrices (obtained by

the discrete formulation before imposing the boundary conditions) by the discrete state

vectors associated with
∂ϕ
∂t and

∂n
∂t .

5.7.0.2. Conduction current

Following an analogous derivation than the one in the previous section, the variational

formulation of the continuity equation eq. (5.7) reads

∀t ∈ [0, T ] find n(t) ∈ H1(Ω) such that∫
Ω

∂n

∂t
γ +

1

q

∫
Ω

Jn · ∇γ +
1

q

∫
∂Ω

(Jn · νγ) � 0, ∀γ ∈ H1(Ω).

Rearranging the terms enables to compute the conduction current density as∫
Γi

Jn · ν �

∑
k

(∫
Ω

∂n

∂t
γk +

1

q

∫
Ω

Jn · ∇γk
)
.
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Again, the volume integrals appearing in this last expression can be numerically

computed starting from the discrete formulation of the problem.
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6. A consistent hierarchy of mathematical
models

6.1. Transient regime

6.1.1. Thermodynamic consistency equation

As will be discussed in more detail in chapter 9, in order to allow for a better numerical

treatment it is convenient to reformulate the DD equations (5.5) and (5.7) by introducing

an additional unknown that has the physical dimensions of an electric potential and

accounts for the deviation from the classical Einstein relation.

A motivation for the derivation presented below, that descends directly from the

pioneering work of [VDM73], is also given in [AFN19].

The derivation of this relation comes from observing that the discretization method

used, namely the Scharfetter-Gummel scheme, relies on rewriting the continuity equa-

tion in terms of Slotboom variables:

n � ρ exp

(
ϕ −ϕn
Vth

)
, (6.1)

for a proper function ρ, which corresponds to aMaxwell-Boltzmann-like relation.
For more general statistical distributions, like the one presented in eq. (5.20), n is

related to ϕ and ϕn through a general constitutive law of the form

n � N (ϕ −ϕn) � N0 · ˆN (ϕ −ϕn) , (6.2)

whereN0 is the total volume density of available energetic states. In general, consistency

between the discretization scheme and such a constitutive law is desirable. However,

the Scharfetter-Gummel scheme does not satisfy this requirement per se. Several ap-

proaches in this direction, that are valid only for specific density distributions such as

approximations of the Fermi-Dirac statistics, have been proposed: they make use of a

proper average of the diffusion coefficient over the mesh cells or on the solution of local

non-linear boundary-value problems [KG13; Kop+14; Kop+15].
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6. A consistent hierarchy of mathematical models

For general distribution functions it is not possible to find simple fixed point equations

for the unknown current [Far+18]. For this reason physically motivated approximate

fluxes are usually employed. The so-called modified Scharfetter-Gummel methods,

namely those based on diffusion enhanced schemes, preserve the Scharfetter-Gummel

structure and remain thermodynamically consistent.

We will propose hereafter an approach that, following the spirit of [VDM73], solves

the issue of having a consistent discrete model and that is valid for a generic DOS

function.

In order to make eqs. (6.1) and (6.2) consistent, we introduce an additional potential

ψ (later referred to as consistency potential or enhancement potential) by imposing

n � N0 exp

(
ϕ −ϕn +ψ

Vth

)
, (6.3)

following the choice ρ � N0 exp (ψ/Vth). The consistency potential ψ has been intro-

duced and chosen such to convey all the information provided by the DOS function N
into the Scharfetter-Gummel relation (6.1).

Applying the gradient operator to the previous relation yields

∇n �
n

Vth

∇ (ϕ −ϕn +ψ) ,

which reads

n∇ϕn � −Vth∇n + n∇ (ϕ +ψ) ,

so that the current density (5.8) becomes

Jn � qµnn∇ϕn � −qVthµn

(
∇n − n∇

(
ϕ +ψ

Vth

))
. (6.4)

In this expression the diffusion and the mobility coefficients are related through a

Maxwell-Boltzmann-like relation and the drift term takes into account the additional

contribution given by the potential ψ. The thermodynamical consistence of this formu-

lation will be proved in theorem 9.1. We also remark that this approach, compared to

the ones in [Fuh15; Pat+18], is more effective from a computational point of view since

equation (6.3) for the enhancement potential ψ is local and its discretization results in

diagonal blocks.

60



6.2. Thermal equilibrium regime

6.1.2. Complete Drift-Diffusion system

−∇ · (ε∇ϕ) + qn � 0, in Ω,

∂n

∂t
− 1

q

∇ · Jn � 0, in Ωsemic,

n −N
(
Vth log

(
n

N0

)
−ψ

)
� 0, in Ωsemic,

A ˙F +C(F) + rI � 0,

Ii −
∫
Γi

∂ (D · ν)
∂t

−
∫
Γi

Jn · ν � 0, ∀Γi ∈ C,

(6.5)

where C � Csemic ∪ Cins ⊆ ∂Ω is the set of boundary faces connected to any device

contact lying on the semiconductor or the insulator region, respectively.

Let Fi the circuit state variable representing the electric potential at the contact Γi.

Then the Drift-Diffusion system is coupled with the following boundary conditions:

ϕ − Fi −
(
Vth log

(
n

N0

)
−ψ

)
� 0, on Γi ∈ Csemic,

ϕ − Fi � 0, on Γi ∈ Cins,
∇ϕ · ν � 0, on ∂Ω \ C,

Jn · ν + qS(E)
(
neq − n

)
� 0, on Γi ∈ Csemic,

Jn · ν � 0, on ∂Ωsemic \ Csemic,

(6.6)

where

neq � N
(
ΦB + Vth

˜Φ(E)
)
.

6.2. Thermal equilibrium regime

In the thermal equilibrium regime the following relation holds:

Jn � 0,

which implies that ∇ϕn � 0, i.e. the quasi-Fermi potential ϕn is constant and can be

arbitrarily chosen such that

ϕn � 0.

Under this assumption eq. (6.2) becomes

n � N (ϕ)
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6. A consistent hierarchy of mathematical models

while eq. (6.3) can be rewritten as

n � N0 exp

(
ϕ +ψ

Vth

)
�⇒ ψ � Vth log

(
n

N0

)
−ϕ,

Finally, the boundary conditions become:

ϕ − F � 0, on Γins,

ϕ − F −
(
Vth log

(
n

N0

)
−ψ

)
� 0, on Γsemic,

Jn · ν � 0, on
¯Ωins ∩ ¯Ωsemic,

n � neq, on Γsemic.

Two possible equilibrium models for the electric potential can be chosen in order

to guarantee consistence with the transient model and to provide consistent boundary

conditions, namely

−∇ · (ε∇ϕ) + n � 0, in Ω,

n � N (ϕ) , in Ωsemic,

ψ −
(
Vth log

(
n

N0

)
−ϕ

)
� 0, in Ωsemic,

ϕ − F � 0, on Γins,

ϕ − F −
(
Vth log

(
n

N0

)
−ψ

)
� 0, on Γsemic,

which has a Dirichlet-type boundary condition on Γsemic, or
−∇ · (ε∇ϕ) + n � 0, in Ω,

n � N (ϕ) , in Ωsemic,

ϕ − F � 0, on Γins,

ϕ − F −
(
ΦB + Vth

˜Φ (∇ϕ)
)
� 0, on Γsemic,

(6.7)

which can be solved at a cheaper computational effort, since it does not require to com-

pute the enhancement potential ψ, but is characterized by a Robin boundary condition

on Γsemic that hampers the symmetry of the resulting linear system.

In the implementation of the numerical code for equilibrium simulations we adopted

the latter model, in what follows referred to as Non-Linear Poisson (NLP) equation, as it

consists only of a PDE for the electric potentialϕ coupled to a set of non-linear algebraic

constraints.

62



6.3. Time-harmonic regime

6.3. Time-harmonic regime

In engineering applications, it is often required to simulate the behavior of a device

controlled by an input signal which is periodic in time. Such mode of operation is

usually referred to as the Alternating Current (AC) regime. In this regime a possibly

large stationary bias is usually applied, and then perturbed by an additional time-

harmonic signal, small enough that the resulting response of the devicemay bemodeled

as linear. Let us for example assume that a generic contact Γi ∈ C, for example the gate

contact, is connected to a sinusoidal voltage generator of the form

Fi(t) � ¯V + V0 sin (ω0t) , (6.8)

centered at a given voltage
¯V and with amplitude V0 and angular frequency ω0 over a

timespan [tmin, tmax].
While it is possible, and indeed common, to simulate this regime of operation by solv-

ing the DD system imposing eq. (6.8) as a general time-dependent boundary condition

on Γi through the control circuit equation, as described in section 6.3.1, it is convenient

to exploit the quasi-linear device behavior and to perform the simulation directly in the

frequency domain as discussed in section 6.3.2. In both cases the computation of the

device equivalent capacitance follows from the assumption that the simulated current Ii
flowing through the generator Fi is equivalent to the one flowing through a parallel RC

circuit with resistance Rp, capacitance Cp and voltage generator Fi, as shown in fig. 6.1.

6.3.1. Simulating the transient DD system

If the contact controlled by the sinusoidal signal is an insulator gate contact while other

contacts are kept grounded, the device behavior is essentially that of a voltage con-

trolled capacitor with capacitanceCp, depending on the bias voltage and the frequency,

connected in parallel to a bias-dependent resistance Rp, as shown in fig. 6.1.

The total current flowing through the equivalent circuit is

Ii �
V0

Rp
sin(ω0t) + V0ω0Cp cos(ω0t),

which yields

Rp �
V0

c1
, Cp �

c2

V0ω0

,
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Fi

Ii

Cp Rp

Figure 6.1.: Equivalent parallel RC circuit.

where

c1 �

∫ tmax

tmin

Ii(t) sin(ω0t)dt∫ tmax

tmin

sin(ω0t)2 dt
, c2 �

∫ tmax

tmin

Ii(t) cos(ω0t)dt∫ tmax

tmin

cos(ω0t)2 dt
.

Then the equivalent capacitanceCp is easily computed once the numerical simulation

has provided the current Ii(t).
If the dielectric permittivity εins of an insulator, as is the case of materials of relevant

application, is modeled as a frequency-dependent parameter, the DD system has to be

complemented by a differential equation for the dipole moment pj of the j-th molecule

in order to describe the evolution of ε in the time domain [Gri05a]:

p̈j + γjṗj +$
2

jpj � −
q
2E

m
,

where m is the mass of the electron, γj,$j are material-dependent constants and E is

the electric field acting on the molecule. In an isotropic medium the relation between

pj and ε is expressed by

Nmol

N
mol∑
j�1

pj � (ε − ε0)E

where Nmol is the total number of molecules.
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6.3. Time-harmonic regime

6.3.2. Analysis in the frequency domain

The approach presented in the previous section is not computationally efficient, since

estimating the device equivalent capacitance and resistance Cp and Rp at different

frequencies requires to repeat the complete transient simulation for all the needed

values ofω0. Here we present an alternative approach based on a Fourier analysis.

The aim is to linearize the system around the equilibrium point Fi � ¯V , i.e. the point
the sinusoidal voltage is centered at. Let ū � [ϕ̄, n̄, ¯ψ, ¯F, ¯I]T be the equilibrium solution

to the DD system (6.5) with boundary conditions (6.6) such that Fi � ¯V on Γi. Then this

equilibrium solution is such that:

∂ū

∂t
� 0, ¯I � 0.

In order to derive the linearized system, we assume that the state solution obtained

by perturbing the boundary condition on Γi by an increment δFi � δ ¯V � V0 sin (ω0t) is
ū + δu. Then the solution increment δu � [δϕ, δn, δψ, δF, δI]T satisfies the following

system:

−∇ · (ε∇δϕ) + qδn � 0, in Ω,

∂ (δn)
∂t
− 1

q

∇ · δJn � 0, in Ωsemic,

δn +
∂N

∂ (ϕ −ϕn)

(
Vth log

(
n̄

N0

)
− ¯ψ

)
·
(
Vth

n̄
δn + δψ

)
� 0, in Ωsemic,

A ˙δF + BδF + rδI � −s̄δ ¯V ,

δIi −
∫
Γi

∂ (δD · ν)
∂t

−
∫
Γi

δJn · ν � 0, ∀Γi ∈ C,

(6.9)

where δJn and δD denote the functional differentials of Jn andD, respectively, at ū in

the direction δu, with proper homogeneous boundary conditions. The linearization of

the circuit equation has been performed by expliciting the dependence on
¯V :

C(F) � BF + ŝ + s̄ ¯V ,

where s̄ � s/ ¯V . The quantity ŝ � s − s̄ ¯V does not depend on
¯V .

After applying an arbitrary discretization scheme and remarking that δ ¯V � δFi,

system (6.9) can be rewritten in compact algebraic form as

M ˙U + JU � −fδFi, (6.10)
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where U is the state solution vector of the degrees of freedom corresponding to the

discretization scheme adopted, M is a mass matrix multiplying the time-derivative

terms, J the spatial Jacobian matrix. The right-hand side is the residual of the perturbed

circuit equation, where f is a vector whose j-th component is 1 if j is the global degree

of freedom of the circuit variable Fi and 0 otherwise.

Computing symbolically the Fourier transform of eq. (6.10) at a generic frequency ω

provides

ωM ˆU + J ˆU � −fδ̂Fi,
where the hat denotes the Fourier transformed vector at ω and  is the imaginary unit.

This latter expression can be rewritten as

ˆU � −
(
(M + J)−1 f

)
δ̂Fi,

The transfer function between the perturbation of the applied voltage δ̂Fi and the

perturbation of the corresponding current δ̂Ii in the frequency domain is

δ̂Ii

δ̂Fi
(ω) � −

(
(M + J)−1 f

)
· i, (6.11)

where i is a vector whose j-th component is 1 if j is the global degree of freedom of the

circuit current Ii and 0 otherwise.

Since this expressionwas derived froma linearmodel, we can assume that the transfer

function eq. (6.11) is equivalent to the one of the parallelRC circuit in fig. 6.1 by imposing

the equality

δ̂Ii

δ̂Fi
(ω) � 1

Rp
+ ωCp,

to obtain, after simple algebraic steps, the equivalent resistance and capacitance

Rp �

√
1 + tan (]T )2

|T | , Cp �
tan (]T )
ω0Rp

, (6.12)

where |T | and ]T denote the modulus and the argument, respectively, of the com-

plex number T �
δ̂Ii

δ̂Fi
(ω0), i.e. the numerical transfer function evaluated at the actual

frequencyω0.
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Part III.

Numerical methods





7. Introduction

In this partwe aim to solve themathematicalmodels presented in chapter 6. Inparticular

we consider

• the transient DD system (6.5), which is a non-linear system of an elliptic equation

coupled with a parabolic one;

• the equilibrium Non-Linear Poisson equation (6.7), which is an elliptic PDE;

• the time-harmonic system (6.9), consisting of a linear system of an elliptic equation

and a parabolic one.

All the previous equations are coupled with a set of algebraic constraints. The key

ingredients that form a numerical scheme for the solution of such systems are

• the time semi-discretization;

• the linearization of non-linear problems;

• the discretization scheme.

Section 7.1 will be devoted to present an implicit time-advancing scheme used for the

semi-discretization of the time derivatives appearing in the above mentioned models.

The scheme is derived for general Ordinary Differential Equations (ODEs) and makes

use of an adaptive time step and a linear extrapolation for the non-linear initial guess at

each time step. The application of such algorithm to systems of ODEs is proved to keep

the global truncation error below a prescribed tolerance; however, there’s empirical

proof of its effectiveness also in those cases, like the ones we are dealing with, where

the differential equations are coupled with algebraic constraints.

Standard linearization methods can be categorized as staggered, i.e. those decoupling
the equations, ormonolithic, where the system is solved fully coupled, often bymeans of

a Newton method. In this work we focus on the latter class: unlike staggered methods,

monolithic ones can be developed and implemented in a problem-independent fashion

and are proved to provide fast convergence to the solution. However, the convergence is

usually only local and such schemes don’t guarantee in general that box-type constraints
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are satisfied. A survey of variants to the standard Newton method is presented in

chapter 8. Such variants are developed with the aim either to extend the convergence

region or to enforce box-type constraints on specific state variables. The actual algorithm

employed in our code is a semi-empirical combination of many ingredients presented

in chapter 8 and can be described as a projected modified quasi-Newton method with

line-search globalization.

Finally, a thermodynamic consistent modification of the Scharfetter-Gummel dis-

cretization scheme will be presented in chapter 9 in a one-dimensional framework and

then extended to two- (three-)dimensional geometries of quad- (oct-)trees in chapter 10.

A recovery metric-based mesh adaptation algorithm will be derived to improve the

overall accuracy of the solution strategy adopted.

7.1. Time semi-discretization and time step selection

In this section we present the adaptive scheme used for the time discretization of the

problems described in part II. Consider a general ordinary differential equation over

the a time interval [t0, T ]written in the following form:{
u′ � f(t,u),

u(t0) � u0.
(7.1)

The well-known and widely adopted backward Euler method consists of approxi-

mating the solution u of (7.1) with a sequence {un}n such that:

un+1 � un +∆nt · f(tn+1,un+1),

with un � u(tn) and∆nt � tn+1 − tn.
This scheme is implicit and absolutely stable [But16]. However, its order of conver-

gence is 1, which means that, assuming a constant time step ∆t, the L∞-norm of the

error between the real and the numerical solution is

| |u − uex | |∞ . C∆t, (7.2)

for a proper constant C.

Therefore a small time step has to be adopted in order to get a high accuracy, that can

result in an unfeasible computational cost when trying nonlinear problems. This moti-

vates the derivation of a time adaptation strategy, that makes use of a local extrapolation

method to estimate the error at each time step in order to compute the maximum ∆nt
allowed to guarantee the prescribed accuracy. The proposed method is again of order

1, but with a smaller convergence constant C.
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7.1.1. Truncation error

Given an arbitrary approximation ûn+1 of u at tn+1, the local truncation error τn+1 is

defined as the difference between the exact and the numerical solution at the current

step, namely τn+1 � ûn+1 − un+1.
We now prove that the difference between two suitable approximations u0

n+1
and

un+1 of u(tn+1) at each time step is a good estimate of the local truncation error.

Let now

u0n+1 � ûn +∆nt û
′
n (7.3)

and

un+1 � ûn +∆nt · f(tn+1, ûn+1).
A Taylor expansion around tn+1 provides

ûn+1 � û(tn+1) � û(tn +∆nt) ≈ ûn +∆ntû
′
n + C (∆nt)2 .

Then the difference between the two approximations yields

u0n+1 − un+1 � ûn +∆nt û
′
n − un+1

� ûn+1 − C (∆nt)2 − un+1
� τn+1 − C (∆nt)2 ,

which is an estimate of the local truncation error of û as desired.

7.1.2. Time adaptation

Ideally, the approximation ûn+1 used to derive the error estimate would be chosen to

be consistent with eq. (7.1). Since in most cases the exact solution is not available, one

way to set ûn+1 is to assume that it comes from one step of the forward Euler method:

ûn+1 �
un − un−1
∆n−1t

,

so that eq. (7.3) becomes the following extrapolation of the last two numerical approxi-

mations:

u0n+1 � un +∆nt
un − un−1
∆n−1t

.

With this choice, the difference between u0
n+1
− un+1 is not of same order as τn+1

anymore. However, it can still be used to drive the time adaptation procedure listed in

algorithm 1.
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Let tol be a user-specified tolerance and let λmin, λmax two user-defined

parameters;

Set t � t0,∆t ∈ �+
, n � 0;

while t < T do
if t +∆t > T then

∆t � T − t;
end
t � t +∆t;
if n �� 0 then

u0
n+1

� u0;

else
u0
n+1

� un +∆nt
un−un−1
∆n−1t

;

end
Solve un+1 � un +∆t f(tn+1,un+1).;
Compute err � | |u0

n+1
− un+1 | |;

if err < tol then
n � n + 1;

∆n−1t � ∆nt;

∆nt � ∆n−1t ·min

{
λmax,max

{
λmin, λ ·

√
tol

err

}}
;

else
t � t −∆nt;
∆nt �

∆nt
2

;

end
end

Algorithm 1: Time adaptation procedure.
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We remark that the time step∆t is automatically computed at each step based on the

information provided by the ratio
tol

err
, that is an indicator of how large large (small) the

error is compared to the user-specified tolerance tol. The smaller the error, the bigger is

the predicted maximum time step length allowed. Control parameters as λ, λmin, λmin

are used to slow down or fasten variations in the time step length. Following the

description in [HNW87], we set λ �
√
0.38.

For ODEs the above procedure may be shown to keep the global truncation error

within the prescribed tolerance, as shown in the next example. Consider the problem

u′(t) � 10 cos(t) − 3u(t), (7.4)

having exact solution uex(t) � sin(t) + 3 cos(t).
Algorithm 1 was run with different values of tol. The L∞-error obtained and the

values of tol with respect to N are displayed in fig. 7.1, which shows order 1 for the

error and order 2 for tol as expected.

The advantage of using the adaptive time step compared to the classical backward

Euler method, as mentioned above, consists of having a smaller constant C in eq. (7.2).

The comparison of the two methods is summarized in fig. 7.2: in order to get a com-

parable error the time adaptation procedure requires about 18% fewer iterations than

backward Euler’s scheme.
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Figure 7.1.: Convergence orders of the time adaptation procedure.

Figure 7.2.: Number of iterations for the backward Euler and the time adaptation

scheme.
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The purpose of the present chapter is to address the main aspects of theory of Newton’s

method and its variants used to linearize nonlinear problems.

The standard Newton method for nonlinear problems will be presented, focusing

on the relevance of choosing a proper the initial guess to satisfy the local convergence

property. Then the description will be extended to some of the most common quasi-
Newton methods, a class of schemes where the Jacobian is approximated, and to inexact
Newton ones where the linear step is solved inexactly, for examples Newton-Krylov

methods based on the GeneralizedMinimal Residual (GMRES). Finally we will present

some globalization techniques, with a focus on the line search approach. Further

discussions on the methods described below can be found in [Deu11; Cǎt05].

8.1. Newton’s method

Consider a general nonlinear problem

F(x) � 0, x ∈ �n,

where F : �n → �n is continuously differentiable.

Newton’s method is an iterative method consisting of computing the sequence {xk}k
such that

xk+1 � xk − F′(xk)−1F(xk), (8.1)

starting from an initial guess x0.

In the following we will refer to the set of assumptions and definitions, supposed to

hold in all of the theorems presented below, namely:

• F(x) � 0 has a unique solution x∗;

• F′(x) : Ω→ �n is Lipschitz continuous;

• F′(x∗) is non singular.

Let x∗ ∈ �n. Then a sequence {xk}k ⊂ �n is said to be
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• q-linearly convergent if there exists a constant C ∈ (0, 1) and an integer m such

that for all k ≥ m
| |xk+1 − x∗ | | ≤ C| |xk − x∗ | |;

• q-superlinearly convergent if there exists a sequence {Ck}k convergent to 0 such

that

| |xk+1 − x∗ | | ≤ Ck | |xk − x∗ | |;

• convergent of q-order p (p > 1) if there exists a constant C and an integerm > 0

such that for all k ≥ m

| |xk+1 − x∗ | | ≤ C| |xk − x∗ | |p.

Theorem 8.1 (Local convergence). There exists a δ > 0 such that, given an initial guess
x0 : ‖x0 − x∗‖ < δ, the Newton iterates given by (8.1) converge q-quadratically to x∗, that is
| |ek+1 | | ≤ C| |ek | |2 for some C > 0, where ek � xk − x∗.

Since the initial guess has to be chosen close enough to the exact solution, then the

convergence is only local. A common stopping criterion is based on the relative residual

| |F(xk)| |/| |F(x0)| |, that is a good indicator of the error when F′(x∗) is well conditioned:

Theorem 8.2. There exists a δ > 0 such that, given xk : ‖xk − x∗‖ < δ:

| |ek | |
4 | |e0 | | k (F′(x∗))

≤ ||F(xk)| || |F(x0)| |
≤ 4 k (F′(x∗)) | |ek | |

| |e0 | |
,

where k (F′(x∗)) � ‖F′(x∗)‖ ·



F′(x∗)−1


 is the conditioning number of F′(x∗).

Another possible stopping criterion relies on the step length

sk+1 � xk+1 − xk � −F′(xk)−1F(xk),

so to accept an iterate xk+1 as a good approximation of the solution when | |sk+1 | |
is sufficiently small. However, it is often too computationally expensive to evaluate

the Jacobian F′(x) at each step or even unneeded, especially when the iterate is still

inaccurate and far from the exact solution. This motivates the investigation of variants

of the Newton method, subject of the next section.
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8.2. Variants of Newton’s method

This section concerns with different possible approximations of (F′)−1. First of all,

assume that F+ε and F′+∆ are used instead of F and F′ respectively. Then the following

result holds.

Theorem 8.3. There exist K > 0, δ > 0 and δ1 > 0 such that, given xk : ‖xk − x∗‖ < δ and
| |∆(xk)| | < δ1, then

xk+1 � xk − (F′(xk) +∆(xk))−1 (F(xk) + ε(xk))

is well defined (i.e. F′(xk) +∆(xk) is non-singular) and satisfies

| |ek+1 | | � K
(
| |ek | |2 + | |∆(xn)| | · | |ek | | + | |ε(xk)| |

)
.

In general, quadratic convergence is lost.

8.2.1. Quasi-Newton methods

In quasi-Newtonmethods an approximation of F′(x)−1 is used instead of the exact value

[DM77]. This enables to save computational costs at the price of a slower convergence.

Moreover, this can be the only viable solution when the exact Jacobian is unavailable

or too expensive to be computed at each iteration. A class of quasi-Newton methods is

described in the following subsections.

8.2.1.1. Chord method or Modified Newton method

The modified Newton iteration is given by

xk+1 � xk − F′(x0)−1F(xk).

The convergence of the chord iteration is q-linear. Indeed, this comes from theorem 8.3,

remarking that ε(xk) � 0 and | |∆(xk)| | � O(||e0 | |). The Jacobian could also be evaluated

at any of the previous iterations and not necessarily at x0.

8.2.1.2. Shamanskii method

It consists of alternating of a Newton step with a sequence of chord steps and leads

to a class of high-order methods, i.e. methods that converge q-superlinearly with q-order
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larger that 2. The transition from xk to xk+1 is provided by

y1 � xk − F′(xk)−1F(xk),
yj+1 � yj − F′(xk)−1F(yj), for 1 ≤ j ≤ m − 1,
xk+1 � ym.

The cases m � 1 and m � ∞ degenerate in the classical and the modified Newton

method, respectively.

Theorem8.4. There existKS > 0 and δ > 0 such that, given an initial guessx0 : ‖x0 − x∗‖ < δ,
the Shamanskii iterates converge q-superlinearly to x∗ with q-orderm + 1 and

| |ek+1 | | ≤ KS | |ek | |m+1
,

for a proper constant KS.

The advantage of such a method is that high convergence orders can be reached with

few Jacobian evaluations.

8.2.1.3. Difference approximations

Another possibility consists of replacing F′(xk) with an approximation through n-
dimensional differences of the form(

F
′(k)
h

)
j
�

F
(
xk + h

(k)
j
ej

)
− F (xk)

h
(k)
j

, ∀k ≥ 0,

where ej is the j-th vector of the canonical basis of �n and h
(k)
j
> 0 are increments to

be suitably chosen at each k-th iteration.

Under the standard assumptions and given an initial guess close enough to x∗ then
the sequence

xk+1 � xk −
(
F
′(k)
h

)−1
F(xk) (8.2)

can be proved to converge linearly to x∗. Moreover, if there exists a positive constant

C such that maxj

���h(k)j ��� ≤ C| |xk − x∗ | | or, equivalently, if there exists a positive constant

c such that maxj

���h(k)j ��� ≤ c| |F(xk)| |, then the sequence (8.2) convergences quadratically.

We remark that choosing small h
(k)
j

can lead to large truncation errors.
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8.2.1.4. Broyden’s method

This is a generalization of the scalar secant method to vector problems. The method

demands that the current approximation Bk of F′(xk) satisfies the secant equation

Bk(xk − xk−1) � F(xk) − F(xk−1).

A wide variety of methods satisfying this relation have been designed to preserve

properties such as the sparsity or the symmetry of the Jacobian. The standard Broyden

method reads

xk+1 � xk − λkB−1k F(xk),
yk � F(xk+1) − F(xk),
sk � xk+1 − xk � λkdk,

Bk+1 � Bk +
(yk − Bksk)skT

skTsk
,

where λk is a non-constant step length.

In this case there is no guarantee that the approximate direction −λkB−1k F(xk) is a

descent direction for | |F| |. Assuming x0 and B0 are good approximations of x∗ and
F′(x∗), the convergence is q-superlinear [DM74]. So it is only local and, therefore, less

satisfactory than the one of other variants presented in this chapter.

For memory occupation reasons, it is often more advantageous to approximate the

Jacobian matrix instead of its inverse due to fill-in phenomena. This is typical especially

for nonlinear differential problems, where the Jacobian has a known sparsity pattern.

A variant of Broyden’s method applicable to this scenario is stated in [Sch70].

8.2.2. Inexact Newton method

Rather than approximating the Jacobian, one could solve the equation for the Newton

step approximately. An inexact Newton method uses as a step a vector s that satisfies

the inexact Newton condition

‖F′(xk)s + F(xk)‖ ≤ ηk | |F(xk)| |. (8.3)

The parameter ηk is called forcing term. At the very first Newton iterations, when the

numerical solution is still possibly inaccurate, choosing η too small may lead to oversolv-
ing the Newton equation. Therefore far from the solution, a less accurate approximation

of the Newton step may be both cheaper and more effective. So, the idea is to choose

a forcing term that becomes smaller when the iterations approach to the solution. The

following convergence result holds [EW94].
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8. Linearization

Theorem 8.5. There exist δ and η̄ such that, given an initial guess x0 : ‖x0 − x∗‖ < δ,
ηk ∈ [0, η̄], then the inexact Newton iterations

xk+1 � xk + sk

where
‖F′(xk)sk + F(xk)‖ ≤ ηk | |F(xk)| |,

converge q-linearly to x∗. Moreover,

• if ηk → 0, the convergence is q-superlinear, and

• if ηk ≤ Kη | |F(xk)| |p for some Kη > 0, the convergence is q-superlinear with q-order
p + 1.

The following possible choices for η are presented in [EW96].

Choice 1 Given η0 ∈ [0, 1), choose

ηk �
| |F(xk) − F(xk−1) − F′(xk−1)sk−1 | |

| |F(xk−1)| |
, (8.4)

or

ηk �
| | |F(xk)| | − ||F(xk−1) + F′(xk−1)sk−1 | | |

| |F(xk−1)| | |
, (8.5)

Note that ηk given by (8.4) and (8.5) directly reflects the match between F and

its local linear approximation at the previous step. The choice (8.5) may be more

convenient to evaluate than (8.4) in some circumstances. Since it is at least as small

as (8.4), local convergence will be at least as fast as with (8.4). One possible way to

obtain faster local convergence, while retaining the potential advantages of (8.4)

and (8.5), is to raise those expression to powers with exponent greater than one.

Choice 2 Given γ ∈ [0, 1], α ∈ (1, 2], and η0 ∈ [0, 1), choose

ηk � γ

(
| |F(xk)| |
| |F(xk−1)| |

)α
, (8.6)

This choice does not directly reflect the agreement between F and its local approx-

imated linear model. In practice, however, it can produce a little oversolving.
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8.2. Variants of Newton’s method

Experiments have shown that the forcing term may occasionally become too small

even far from the solution, especially the one computed as in eqs. (8.4) and (8.5). For

this reason it is convenient to include safeguards that are intended to prevent the forcing

term to become too small too soon [Kel03], for example

Choice 1 safeguard Replace ηk by ηk � max

{
ηk,η

1+
√
5

2

k−1

}
whenever η

1+
√
5

2

k−1 > 0.1.

Choice 2 safeguard Replace ηk by ηk � max

{
ηk,γη

α
k−1

}
whenever γηα

k−1 > 0.1.

Iterative methods for solving the equation for the Newton step would typically use

eq. (8.3) as a stopping criterion. In this case, the overall nonlinear solver is named after

the particular iterative method used for the linear equation, such as Newton-Jacobi,

Newton-SOR or Newton-Krylov. In the following we will refer to this last class of

methods.

8.2.2.1. Newton-Krylov methods

As said before, for each iteration of the inexact Newton method the resulting linear

equation has to be solved by means of an iterative method. Sometimes we refer to

this linear iteration as to an inner iteration. Similarly, the nonlinear step is often called

the outer iteration. Newton-Krylov methods, as the name suggests, rely on Krylov

subspace-based linear solvers [Kel03; BS90]. The solution d of a linear system Ad � b

is approximated with a sum of the form

dk � d0 +

k−1∑
j�0

γjA
jr0,

where r0 � b − Ad0 and d0 is the initial iterate. Since the goal is to approximate a

Newton step, a reasonable choice is to set d0 � 0 since there is no knowledge on prior

directions, which is however expected to be small. We express this in compact form as

dk ∈ Kk, where the k-th Krylov subspace isKk � span

{
r0,Ar0, . . . ,A

k−1r0
}
.

Many Newton-Krylov methods are available that differ in storage requirements,

costs of evaluating F and robustness. If A is symmetric and positive definite, the

Conjugate Gradient (CG) method has better storage and convergence properties than

other Newton-Krylov methods. Otherwise, two low-storage solvers, namely the Bi-

Conjugate Gradient STABilized (BiCGSTAB) and the Transpose-Free Quasi-Minimal

Residual (TFQMR) methods, can be used, but with the awareness of possible failure in

case a division by zero occurs.
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8. Linearization

Another option is the GMRES, that is not strictly a low-storage solver but guarantees

that, in case of non-convergence, stagnation occurs instead of a break down. The k-th

GMRES iterate is the solution of the linear least squares problem of minimizing

| |b −Adk | |2

over Kk. An important property is that GMRES accumulates the history of the linear

iteration as an orthonormal basis for the Krylov subspaces. Therefore, for large prob-

lems, it can exhaust the available memory. In such cases, there is GMRES(m), which

restarts the iteration when the size of Krylov space exceedsm vectors.

Sometimes the GMRES method, like other Krylov methods, is implemented in a

matrix-free form in which only matrix-vector products are needed, rather than storing

the matrix itself [KK04]. The algorithm description is provided, for example, in [SS86].

As a general rule, GMRES, like others Krylov methods, performs at its best if the

eigenvalues of A are grouped in few tight clusters.

8.3. Globalization

Globalization techniques are used to improve the likelihood of convergence from arbi-

trary initial guesses [BR81; CV17]. Most of such techniques can be classified into line
search and trust-regionmethods.

8.3.1. Line search

Often Newton’s method fails to reach convergence when the iterates are still far from

the solution due to a too large or too small step. The step length can be tuned through

an additional parameter λk such that the new iterate is updated on the search direction

dk as xk+1 � xk + λkdk. This technique is often referred to as damping.
One way to compute a damping parameter is to search over a set of admissible values

until the following condition is satisfied:

| |F(xk + λkdk)| | ≤ ||F(x)| |.

We call this method line search because the decrease of F(x) is searched along the line

segment

(xk, xk − dk).
Since the solution moves from the right to the left endpoint, this procedure is usually

called backtracking and is often used for guaranteeing non-negativity constraints for

density variables, so to prevent large steps that would make such variables negative.
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8.3. Globalization

Another possibility consists of imposing the stricter Armĳo rule

| |F(xk + λkdk)| | ≤ (1 − αλk)| |F(x)| |.

The reduction factor is often chosen as α �
1

2
. There exist different ways of determining

λk, such as

Constant reduction This consists of choosing a starting λ0 ∈ (0, 1) and then trying with

different values of the form λ � λm
0

by lettingmvaryuntil the condition is satisfied.

Polynomial line searches Choosing an optimal reduction factorwould increase the per-

formance of a constant reduction approach. The goal is to construct a polynomial

f(λ) � | |F(xk + λdk)| |2

starting from the prior information available about a number of inadmissible

values of λ. Then the optimal λ is determined as the minimizer of f.

8.3.2. Trust region

As seen above, the globalization of the convergence in Newton methods is about ensur-

ing that the new iterate reduces the norm of F, even through a constant less than 1, that is

| |F(xk+1)| | ≤ α| |F(xk)| |, with 0 < α ≤ 1. This is equivalent to stating that sk � xk + λkdk
is a descent direction.
Consider this minimization problem

min

x∈�N
f(x) � 1

2

F(x)TF(x).

A descent direction for f at the current approximation x is any vector p such that

∇f(x)Tp < 0. (8.7)

It is easy to show that, being ∇f(x)Tp � J(x)TF(x), with J(x) � F′(x), (8.7) is equivalent
to

F(x)T J(x)p < 0. (8.8)

For such a direction, there exists a certain λ0 > 0 such that f(x+ λp) < f(x), ∀λ ∈ (0, λ0].
If J(xk)sk � −F(xk) is solved by means of a direct method, so that sk is always a

descent direction since p � −J(x)−1F(x) satisfies eq. (8.8), which is not always the case

when approximating sk through an iterative method.
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8. Linearization

Let for simplicity F � F(x) and J � J(x), with s̄ an approximate solution of Js � −F.
Then we can write

FT Js̄ � −FTF − FT r̄
with r̄ � −F − Js̄; s̄ is a descent direction for f at x whenever

��FT r̄�� < FTF; in particular

the condition

| |r̄| | < | |F| |, (8.9)

implies that s̄ is a descent direction.

The effect of using a Krylov method to solve the Newton equations J(x)d � −F(x)
approximately is to take a step from x of the form x+s, where s is in the affine subspace

d0 + Km. If Vm � [v1, . . . , vm] is an orthonormal basis for Km and the initial guess

d0 � 0, then d � Vmy, for some y ∈ �m and the step can be expressed as x + Vmy. As

introduced above, the globalization strategy relies on finding a local minimum of the

real-valued function
1

2
F(x)TF(x). Thus, the problem consists of solving

min

y∈�m
f(x + Vmy). (8.10)

Letting g(y) � f(x + Vmy), we get

∇g(y) � (J(x + Vmy)Vm)TF(x + Vmy)

and

∇g(0) � (JVm)TF.
Using F+ JVmy as a linear model of F(x+ Vmy), implies that the quadratic model for g

is represented by

ĝ(y) � 1

2

| |F + JVmy| |2.

Letting Bm � (JVm)T JVm yields

ĝ(y) � 1

2

FTF + FT JVmy +
1

2

yTBmy (8.11)

whereBm is symmetric andpositive semidefinite and∇ĝ(0) � ∇g(0). If J is non-singular,
then Vm has orthonormal columns and Bm is strictly positive definite. The considered

trust regionmethod [BMM03] relies on solving the problem

min

| |y| |≤τ
ĝ(y), y ∈ �m, (8.12)
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8.3. Globalization

where τ is an estimate of the maximum length of a successful step to take from x and

measures the size of the region where the local quadratic model ĝ(y) closely agrees

with the function g(y). The following result, proved in [BS90], provides the solution to

eq. (8.12).

Theorem 8.6. Let ĝ(y) be defined by (8.11), and assume that J is non-singular. Then problem
(8.12) is solved by

ym(µ) � (Bm + µI)−1zm,

where zm � −∇ĝ(0), for the unique µ such that | |ym(µ)| | � τ unless | |ym(0)| | ≤ τ, in which
case ym(0) � B−1mzm is the solution. Furthermore, ∀µ ≥ 0, s(µ) � Vmym(µ) defines a descent
direction for f(x) � 1

2
F(x)TF(x) from x, as long as zm , 0.

In case | |ym(0)| | > τ, there is no value of µ such that | |ym(µ)| | � τ, so eq. (8.12)

has to be solved approximately. In [Pow70] the authors present a piecewise linear

approximation to the parametric curve ym(µ) and choose ŷm as the point lying on this

curve such that | |ŷm | | � τ. Letting xk+1 � xk + ˆd, where
ˆd � Vmŷm, if the iterate xk+1

satisfies the condition

f(x + ¯d) ≤ f(x) + α∇f(x)T ¯d,
with 0 < α < 1, then it is accepted; otherwise, a new value of the trust region size τ is

chosen, and the procedure is run again.
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9. Consistent one-dimensional discretization

We present here a one-dimensional discretization scheme for the DD equations which

is consistent with the thermodynamic equilibrium case, as anticipated in section 6.1.1.

The results presented hereafter are also discussed in [AFN19].

Accurate and stable numerical solution of the semiconductor equations requires spa-

tial discretization methods that employ upwinding techniques to deal with possibly

dominant advective phenomena [Boc11; BP11]. In this work we follow an approach

based on a finite volume method, particularly a Scharfetter-Gummel stabilized box

method [MW94; BCC98].

Given a spatial discretization grid {zi}ni�1 with n the number of mesh nodes, the box

method requires to construct a dual mesh, defined by the boxes [zi− 1

2

, zi+ 1

2

], where zi+ 1

2

is

the midpoint of the interval Ωi � [zi, zi+1], as shown in fig. 9.1; let hi � zi+1 − zi denote
the size of a box.

Since the Poisson and the continuity equations presented in chapter 6 both fall into

this category, we will focus on a general diffusion-advection-reaction problem:{
J′ + cu � 0,

J � −au′ + bu, (9.1)

where a,b, c are the diffusion, advection and reaction coefficients respectively.

Integrating eq. (9.1) over the box [zi− 1

2

, zi+ 1

2

] yields:

Ji+ 1

2

− Ji− 1

2

+

∫ z
i+ 1

2

z
i− 1

2

c(z)u(z)dz � 0, (9.2)

z

z1 znzi− 1

2

zi zi+ 1

2

zi+1

hi

Figure 9.1.: Mesh and dual mesh used for the discretization.
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9. Consistent one-dimensional discretization

We now approximate the flux J(z) and the coefficients a(z),b(z) to be constant over

each interval [zi, zi+1] (see [Sha99]), so that:

Ji+ 1

2

≈ −ai+ 1

2

u′ + bi+ 1

2

u,

where u is the solution to the following linear ordinary differential equation with

constant coefficients: 
−ai+ 1

2

u′′ + bi+ 1

2

u′ � 0, z ∈ [zi, zi+1],
u(zi) � ui,

u(zi+1) � ui+1,
(9.3)

which gives:

u(z) � A + B exp

(
λi+ 1

2

z
)
,

with:

A �

ui exp
(
λi+ 1

2

zi+1

)
− ui+1 exp

(
λi+ 1

2

zi

)
exp

(
λi+ 1

2

zi+1

)
− exp

(
λi+ 1

2

zi

) �

ui exp
(
λi+ 1

2

hi

)
− ui+1

exp

(
λi+ 1

2

hi

)
− 1

,

B �
ui+1 − ui

exp

(
λi+ 1

2

zi+1

)
− exp

(
λi+ 1

2

zi

) ,
λi+ 1

2

�

bi+ 1

2

ai+ 1

2

.

The quantity λi+ 1

2

h represents the local Péclet number multiplied by 2. Finally we

compute the approximate flux Ji+ 1

2

:

Ji+ 1

2

� −ai+ 1

2

u′ + bi+ 1

2

u � Abi+ 1

2

�

� bi+ 1

2

ui exp
(
λi+ 1

2

hi

)
− ui+1

exp

(
λi+ 1

2

hi

)
− 1

�

�

ai+ 1

2

h
λi+ 1

2

h
ui exp

(
λi+ 1

2

hi

)
− ui+1

exp

(
λi+ 1

2

hi

)
− 1

,
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which can be rewritten as

Ji+ 1

2

� −
ai+ 1

2

hi

[
ui+1B(λi+ 1

2

hi) − uiB(−λi+ 1

2

hi)
]
, (9.4)

where we denoted by B(q) � q
exp(q)−1 the Bernoulli function and exploited its property

B(−q) � eqB(q). The expression of Ji− 1

2

can be analogously derived by interchanging

[zi, zi+1]with [zi−1, zi]:

Ji− 1

2

� −
ai− 1

2

hi

[
uiB(λi− 1

2

hi) − ui−1B(−λi− 1

2

hi)
]
.

The expression (9.4) corresponds to the difference formula presented by Scharfetter

and Gummel in [SG69]. An interesting property of this scheme is that it automatically

adapts itself to all possible transport regimes: for example, if we assume b(z) � 0, i.e. no
advection (λ � 0), the formula reduces to

Ji+ 1

2

� −ai+ 1

2

ui+1 − ui
hi

,

which is a difference approximation of a purely diffusive flow. Conversely, if we assume

b(z) → +∞, i.e. advective phenomena are dominant (λ→ +∞), the formula degenerates

in:

Ji+ 1

2

� −
ai+ 1

2

hi

[
−ui · (λi+ 1

2

hi)
]
� bi+ 1

2

ui,

while, for b(z) → −∞:

Ji+ 1

2

� −
ai+ 1

2

hi

[
ui+1 · (−λi+ 1

2

hi)
]
� bi+ 1

2

ui+1;

these two expressions correspond to an upwind discretization of a purely advective

flow.

Finally, the reaction term is approximated using the midpoint quadrature rule:∫ z
i+ 1

2

z
i− 1

2

c(z)u(z)dz ≈ hi + hi+1
2

ciui. (9.5)

Expanding eq. (9.2) over all the boxes [zi− 1

2

, zi+ 1

2

] through the approximations (9.4)

and (9.5) finally leads to a linear system for the nodal unknowns {ui}ni�1.
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9. Consistent one-dimensional discretization

Theorem 9.1 (Thermodynamical consistence). The discrete formulation provided by the
Scharfetter-Gummel scheme (9.4) applied to the one-dimensional flux defined as in eq. (6.4) is
such that

ϕn � 0 �⇒ Jn � 0

at the discrete level.

Proof. The Scharfetter-Gummel discretization (9.4) applied to the continuity equation

provides the following numerical flux on a generic mesh interval Ωi:

−
Jn |Ωi
q

�

µn
��
Ωi

Vth

|Ωi |
[
B

(
∆i

(
ϕ+ψ
V
th

))
ni+1 − B

(
−∆i

(
ϕ+ψ
V
th

))
ni

]
, (9.6)

where

∆i(f) � fi+1 − fi � f (xi+1) − f (xi) .
Assume now that the density n is given by the consistency relation (6.3) evaluated at

the thermodynamical equilibrium – i.e. ϕn � 0:

ni � N0 exp

(
ϕi +ψi

Vth

)
.

Then, replacing this expression into eq. (9.6), expanding and letting for the sake of

simplicity ϕ̃ � ϕ +ψ yields

Jn |Ωi ∝
ϕ̃i+1 − ϕ̃i

exp

(
ϕ̃i+1−ϕ̃i

V
th

)
− 1

exp

(
ϕ̃i+1

Vth

)
+

+
ϕ̃i+1 − ϕ̃i

exp

(
− ϕ̃i+1−ϕ̃i

V
th

)
− 1

exp

(
ϕ̃i

Vth

)
�

� (ϕ̃i+1 − ϕ̃i)


exp

(
ϕ̃i+1
V
th

)
exp

(
ϕ̃i+1−ϕ̃i

V
th

)
− 1

+

exp

(
ϕ̃i
V
th

)
exp

(
− ϕ̃i+1−ϕ̃i

V
th

)
− 1

 �

� (ϕ̃i+1 − ϕ̃i)


exp

(
ϕ̃i+1
V
th

)
exp

(
ϕ̃i+1−ϕ̃i

V
th

)
− 1
−

exp

(
ϕ̃i
V
th

)
exp

(
ϕ̃i+1−ϕ̃i

V
th

)
exp

(
ϕ̃i+1−ϕ̃i

V
th

)
− 1

 �

� 0.

�
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10. Two- and three-dimensional
discretization

In this chapter we present a discretization scheme for two- and three-dimensional

geometries. Our approach relies on the use of Cartesian quadtree/octree meshes, for

reasons that will be motivated and discussed in section 10.1. We allow for the mesh

to have non-conforming edges: the corresponding finite element formulation will be

discussed in section 10.2. The recovery-based estimator will be derived in section 10.3,

and a corresponding metric-based algorithm for mesh adaptation is also proposed in

section 10.4. Finally, the implementation strategies followed in the development of an

efficient, scalable numerical codewill be examined in section 10.5. The results presented

hereafter are also discussed in [AFP19].

10.1. Introduction

The term octree denotes a recursive tree structure where each node is either a leaf or has

eight children. Its two-dimensional equivalent is named quadtree, where nodes have four

children instead of eight [BWG11]. Octrees and quadtrees can be associatedwith 3D and

2D cubic domains, where tree nodes are called octants and quadrants, respectively, and

the root node corresponds to a cubic domain that is recursively subdivided according to

the tree structure. Weuse the term forest to describe a collection of such logical cubes that

are connected conformingly through faces, edges, or corners, each cube corresponding

to an independent tree. In the following we will only refer to forests of quadtrees, as

the discussion can be easily extended to three-dimensional geometrical domains.

Quadrants within a quadtree can be assigned a natural ordering by a traversal across

all leaves. By the equivalence of tree nodes and quadrants this one-dimensional se-

quence corresponds to a space-filling s-shaped curve in the geometric domain. A

parallel partition is created by dividing the curve into P segments with P being the

number of parallel processes. These concepts, whose graphical representation is shown

in fig. 10.1, can be extended to forests of quadtrees by connecting the space-filling curve

between quadtrees, thus generating a total ordering of all quadrants in the domain

[BWG11].
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(a) Geometrical mesh.
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7
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(b) Corresponding tree data structure.

Figure 10.1.: Geometrical mesh and its corresponding tree data structure. The red line

is the space-filling curve used to determine a unique global ordering of

all the quadrants in the domain. Different quadrant colors correspond to

different parallel processes.

The followingdefinitionswill clarify thenumerical procedurediscussed in thepresent

chapter.

Connectivity creation Create an equi-partitioned, uniformly and conformingly refined

forest.

Refinement Adaptively subdivide quadrants based on a refinement marker, once or

recursively. This means replacing, at each refinement step, a quadrant with four

children of equal size.

Coarsening Replace families of four child quadrants by their common parent quadrant

based on a coarsening marker, once or recursively.

Partitioning Redistribute the quadrants in parallel, according to a given target number

of quadrants per process or according to prescribed quadrant weights.

Balancing Ensure at most 2:1 size relations between neighboring quadrants by local

refinement where necessary. The process is illustrated in fig. 10.2.

Below we will only refer to balanced quadtrees, as required for the numerical appli-

cation described below and needed in order to ensure a balanced computational load

among different parallel units.
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10.2. Discrete formulation on quadtree/octree meshes

×

×

Figure 10.2.: Process of 2:1 quadtree balancing.

Following [BWG11], a quadrant is also said to be a

ghost to a local process if it is owned by another process but touches from the outside

the boundaries of current process;

mirror if it is a ghost to another process.

Once the quadrants have been assigned a rank-local and global index and have been

partitioned, another space-filling s-shaped curve connecting the mesh node is created,

in order to number and parallel distribute vertices, too. Each independent node is

assigned to one owner process by dividing such space-filling curve; then the nodes

are numbered globally in sequence of their owner processes. The numbering of a

node is canonicalized, i.e.when shared between multiple quadtrees it is assigned to the

lowest-numbered quadtree touching it. A node is marked as

owned by a process if it is assigned to it;

local if it is owned by a ghost quadrant and touches the boundary of current process;

non-local otherwise.

The owned nodes are also locally numbered with indices that are contiguous on the

local processor.

10.2. Discrete formulation on quadtree/octree meshes

Let Ω ⊂ �2
an open, bounded domain. We will henceforth assume Ω to be a Cartesian

rectangle, but the method described below can be trivially extended to any simply
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10. Two- and three-dimensional discretization

connected union of rectangles.

In the following we will refer to two classes of differential problems, namely reaction-

diffusion equations of the form:
−∇ · (ε∇u) + bu � f, in Ω,

u � g, on ΓD ⊆ ∂Ω,
∇u · ν � 0, on ∂Ω \ ΓD,

(10.1)

and advection-diffusion problems:
−∇ · (ε(∇u − βu)) � f, in Ω,

u � g, on ΓD ⊆ ∂Ω,
∇u · ν � 0, on ∂Ω \ ΓD,

(10.2)

with β such that β � ∇ψ and ∇ · β � 0for a proper potential ψ. We allow for the

coefficients ε, b, β and f to be discontinuous in Ω.
In the following sections we will present the numerical scheme adopted to discretize

such equations: first wewill introduce the case of Cartesian-productmeshes, i.e. quadri-
lateral grids whose vertices are the Cartesian product of one-dimensional partitions of

one-dimensional intervals, and thenwe generalize the discretization to non-conforming

quadtree meshes generated by refinement or coarsening procedures.

10.2.1. Discretization on Cartesian-product meshes

Let τh �
{
Ω(k)

}N
el

k�1
be a family of Cartesian partitions ofΩ, whereNel is the total number

of mesh elements, and let Ωh � ∪Nel

k�1
Ω(k) ⊆ Ω.

We adopt the finite element space consisting of continuous piecewise bi-linear poly-

nomials Q1

h
(τh), where

Qnh(τh) � Q
n,n
h
(τh),

Q
n,m
h
(τh) � {v ∈ C0

(
Ωh

)
: v|Ω(k) ∈ �n,m

(
Ω(k)

)
∀Ω(k) ∈ τh},

and

�m,n(A) � {p : A→ � : p(x,y) �
∑
i≤m
j≤n

aijx
iyj, ∀(x,y) ∈ A}.

In the following, for the sake of simplicity, wewill omit the dependence of these spaces

on the partition τh. Let now uh ∈ Q1

h
be the Galërkin approximation of the solution

100



10.2. Discrete formulation on quadtree/octree meshes

u of problem (10.1) or (10.2) and let X � {xi}Ni�1 be the set of the vertices defining the

partition τh. Then the functions {ϕi}Ni�1 ⊂ Q
1

h
such that

ϕi(xj) � δij, ∀xj ∈ X, (10.3)

where δij is the Kronecker delta, form a basis for Q1

h
:

Q1

h � span

(
{ϕi}Ni�1

)
.

Therefore the discrete solution uh ∈ Q1

h
can be expressed as a linear combination of

these basis functions through a set of coefficients {Ui}Ni�1 which represent the actual

unknowns:

uh(x) �
N∑
i�1

Uiϕi(x), ∀x ∈ Ωh.

Thenumerical schemeadopted todiscretize the class of problemsunder analysis relies

on the Finite-Volume Scharfetter-Gummel (FVSG) method proposed in [BCC98]. This

method was originally introduced by D. N. de G. Allen and R. V. Southwell in [GS55]

for one-dimensional geometries and then generalized to a two- and three-dimensional

setting by M. A. Zlámal in [Zlá86] for diffusion-convection equations and to self-adjoint

problems by P. A. Markowich and M. A. Zlámal in [MZ88].

The idea of themethod is the following: firstly we rewrite the equation in terms of the

Slotboom variables; then the resulting self-adjoint problem is discretized by means of a

primal-mixed method making use of the harmonic average of the diffusion coefficient

over the mesh edges; finally, the problem is rewritten in terms of the primal variables by

inverting the Slotboom relation so to prevent arithmetic overflow during computations.

Under these assumptionsmaximumprinciples can be proved to hold also in the discrete

setting (see [BMP89]).

The local matrix resulting from applying this procedure to the diffusion-advection

equation (10.2) associated with an element Ω(k), assuming the inverse lexicographical

local node numbering, is provided by
B−

12
+ B+

31
−B+

12
−B−

31
0

−B−
12

B+

12
+ B−

24
0 −B+

24

−B+

31
0 B+

43
+ B−

31
−B−

43

0 −B−
24

−B+

43
B−

43
+ B+

24

 ,
where

B+

ij �

`ijh
(k)
ij
(ε)B(ψi −ψj)
2|Ω(k) |

, B−ij �
`ijh

(k)
ij
(ε)B(ψj −ψi)
2|Ω(k) |

,
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10. Two- and three-dimensional discretization

`ij being the length of the edge joining vertices i and j, ψi the value of the advection

field ψ at node i, B(x) � x
ex−1 the Bernoulli function, h

(k)
ij
(f) � 1

|`ij |
∫
ij
f−1 the harmonic

mean operator over the edge ij.

10.2.2. Discretization on non-conforming meshes

Thequadtreedata structure enables to easilydealwithnon-conformingmesh refinement

and coarsening: the refinement operation consists in replacing an element with four

children of equal size, while coarsening occurs by removing four children and replacing

them with their parent.

Such procedures can lead to the presence of hanging nodes. In this setting the mesh

cannot be represented as a Cartesian-product set, and in such cases theQ1

h
space is not

well defined. Therefore the finite element formulationhas to be set in a different function

space, say
˜Q1

h
, obtained starting from Q1

h
and by imposing a set of constraints in order

to account for the presence of hanging nodes – which are not included as additional

degrees of freedom – and to preserve the partition of unity property. In particular

such constraints correspond to impose the continuity of the numerical solution across

non-conforming edges, i.e. the solution at a hanging node is the arithmetic mean of the

values at its parents. Let us analyze now more into details how to manage refinement

and coarsening of non-conforming meshes.

In the following we will denote by τ̃h the non-conforming mesh obtained by refining

(or coarsening) τh and by
˜X the set of vertices defining τ̃h.

Non-conforming mesh refinement When non-conformingly refining a mesh element,

as shown in fig. 10.3, an additional node (node 5 in the figure) has to be added to the

degrees of freedom.

Le now τ̄h the partition obtained by uniformly refining τh (i.e. the minimum-size

Cartesian-product mesh containing τ̃h). Let finally ϕ̄5 ∈ Q1

h
(τ̄h) be the basis function

associated with node 5 over the uniformly refined mesh.

Define now the following functions:

ϕ̃i � ϕi −
1

4

ϕ̄5, i ∈ 1 . . . 4,

and associate them with vertices 1, . . . , 4 of the element to be refined.

Let now Φ � {ϕ̃i}i � {{ϕi}i,1,...,4, {ϕ̃i}4i�1, ϕ̄5}. Then the new finite element space

over the non-conforming grid is defined as

˜Q1

h(τ̃h) � span (Φ) .
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1 2

3 4

τh

1 2

3 4
5

τ̃h

1 2

3 4
5

τ̄h

Figure 10.3.: Example of non-conforming mesh refinement. The blue node corresponds

to the newly added degree of freedom. The right mesh τ̄h is only used to

define the basis function ϕ̄5.

Please remark that this is a linear subspace of Q1

h
(τh) and that the basis functions

ϕ̃i ∈ Φ satisfy the partition of unity property∑
i

ϕ̃i(x) � 1, ∀x ∈ Ωh, (10.4)

as well as the Lagrangian property

ϕ̃i(xj) � δij, ∀xj ∈ ˜X. (10.5)

Non-conforming mesh coarsening With reference to fig. 10.4, the degrees of freedom

associated with the nodes 5, . . . , 9 have to be removed since nodes 5, . . . , 8 become

hanging and 9 is no longer a mesh node.

Define now the following functions:

ϕ̃i � ϕi +
1

4

ϕ9 +
1

2

∑
j∈Ni

ϕj, i ∈ 1 . . . 4,

where Ni is the set of hanging nodes sharing an edge with node i, and associate them

with vertices 1, . . . , 4 of the element to be coarsened.

Let now Φ � {ϕ̃i}i � {{ϕi}i,1,...,9, {ϕ̃i}4i�1}. Then the new finite element space over

the non-conforming grid is defined as

˜Q1

h(τ̃h) � span (Φ) .

Again, this is a linear subspace of Q1

h
(τh) and the functions ϕ̃i ∈ Φ satisfy the

partition of unity and the Lagrangian property (10.4) and (10.5) respectively.

103



10. Two- and three-dimensional discretization

1 2

3 4

5 6

7

8

9

τh

1 2

3 4

τ̃h

Figure 10.4.: Example of non-conforming mesh coarsening. The red nodes correspond

to the removed degrees of freedom.

The formulation illustrated above in the case of non-conformingmeshes is equivalent

to assembling the local matrices using the non-modified Q1

h
basis functions on each

mesh element; the resulting system is then extended through a set of equations that

constrain the solution at each hanging node to be the arithmetic mean of the solution at

its two parent vertices. Finally the constraints are eliminated by static condensation.

10.3. Recovery-based estimator

In this section we present the recovery techniques that will enable us to derive the error

estimator driving the automatic mesh adaptation procedure.

We extend the results in [Mai+06] for triangular grids to quadtree meshes. In partic-

ular, given a finite element solution uh ∈ ˜Q1

h
and its gradient σh � ∇uh ∈ Q0,1

h
×Q1,0

h
,

we first derive a formula to recover an enriched gradient σ∗
h
� ∇∗uh ∈

(
˜Q1

h

)
2

, which is

then used to recover an enriched solution u∗
h
∈ Q2

h
which is piecewise bi-quadratic.

10.3.1. Gradient recovery

In order to compute the recovered gradient, we adopt an averaging technique. Consider

a patch centered at an internal node (xi,yj) ∈ Ωh as shown in fig. 10.5a.

Let {sx,i}Ns,x

i�1
and {sy,j}Ns,y

j�1
be the sets of the mesh edges oriented along the x and

y axis, respectively. and let hx,i � xi − xi−1,hy,j � yj − yj−1 denote the lengths of the
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(xi−1,yj)

sx,i sx,i+1

(xi+1,yj)

(xi,yj−1)

sy,j

(xi,yj)

sy,j+1

(xi,yj+1)

(a) Internal node.

(xi−1,yj)

sx,i sx,i+1

(xi+1,yj)(xi,yj)

sy,j+1

(xi,yj+1)

sy,j+2

(xi,yj+2)

(b) Node on the bottom boundary.

Figure 10.5.: Patch considered to compute the recovered gradient at amesh node (xi,yj).

generic edges [xi−1, xi] and [yj−1,yj].
Since the solution uh is bi-linear, the gradient components can be associated with

the degrees of freedom of the Nédélec finite element space (see [Néd80]), and can be

computed exactly by using the following finite difference formulas:

σh(sx,i) �
uh(xi,yj) − uh(xi−1,yj)

hx,i
e1,

σh(sy,j) �
uh(xi,yj) − uh(xi,yj−1)

hy,j
e2,

(10.6)

where ek is the k-th vector of the canonical basis of �2
.

Then, following [Mai+06], we compute the recovered gradient at (xi,yj) by averaging

these values with weights given by the reciprocal edge lengths, being:

σ∗h(xi,yj) �
1

1

hx,i
+

1

hx,i+1

(
σh(sx,i)
hx,i

+
σh(sx,i+1)
hx,i+1

)
+

1

1

hy,j
+

1

hy,j+1

(
σh(sy,j)
hy,j

+
σh(sy,j+1)
hy,j+1

)
.

(10.7)

If (xi,yj) is a node on the boundary or along an internal interface, the patch considered
to compute the recovered gradient becomes unilateral. An example is shown in fig. 10.5b,
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10. Two- and three-dimensional discretization

where the formula adopted considers a unilateral patch along the y direction, (xi,yj)
being a node along the bottom boundary, so that it turns out that

σ∗h(xi,yj) �
1

1

hx,i
+

1

hx,i+1

(
σh(sx,i)
hx,i

+
σh(sx,i+1)
hx,i+1

)
+

1

1

hy,j+1
+

1

hy,j+2

[
σh(sy,j+1)

(
1

hy,j+1
+

1

2hy,j+2

)
−
σh(sy,j+2)
hy,j+2

]
.

(10.8)

Once the recovered values at each degree of freedom are computed, we are able to

globally define a recovered gradient σ∗
h
∈ ˜Q1

h
. Notice that the presence of hanging

nodes does not alter the procedure, since the formula only employs the tangential

component of the gradient at each mesh edge, which is continuous also in the case of

non-conforming edges.

From the procedure illustrated above the following result can be proved.

Proposition 10.1. Let Ω ⊂ �2 be an open, bounded domain and let τh �
{
Ω(k)

}
k
be a

quadtree partition of Ω. Let u ∈ �2,2(Ω) be a bi-quadratic polynomial. Then the recovery
procedure (10.7)-(10.8) applied to the bi-linear interpolant Π1

h
u ∈ ˜Q1

h
(τh) of u exactly recovers

the gradient σ � ∇u at the partition vertices.

Proof. Consider the patch shown in figure 10.5a. We aim to prove that σ∗
h
(xi,yj) �

σ(xi,yj) for any internal node (xi,yj), since they are a piecewise linear and a linear

function, respectively.

We proceed component-wise. Since u is a bi-quadratic polynomial, the following

relations hold for the x component σx of the exact gradient:

σx(sx,i) �
Π1

h
u(xi,yj) − Π1

h
u(xi−1,yj)

hx,i
,

σx(sx,i+1) �
Π1

h
u(xi+1,yj) − Π1

h
u(xi,yj)

hx,i+1
,

σx(xi,yj) �
1

1

hx,i
+

1

hx,i+1

(
σx(sx,i)
hx,i

+
σx(sx,i+1)
hx,i+1

)
,

(10.9)

where the last equality follows from the linearity of σ.

On the other hand, applying the procedure (10.7) to compute the x component σ∗
h,x

of the recovered gradient of Π1

h
u yields

σ∗h,x(xi,yj) �
1

1

hx,i
+

1

hx,i+1

(
σh,x(sx,i)
hx,i

+
σh,x(sx,i+1)
hx,i+1

)
, (10.10)
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10.3. Recovery-based estimator

which, by using (10.6) and (10.9), provides σx(xi,yj) � σ∗h,x(xi,yj).
The same procedure can be repeated for the y component of the gradient and for

boundary nodes, so we conclude the desired equality for each mesh vertex (xi,yj). �

In particular, it holds that σ∗
h
(sx,i) � σ(sx,i) ∀i (and similarly for the vertical edges

sy,j), so we deduce that on each mesh edge the tangential component of the recovered

gradient σ∗
h
is an exact representation of the tangential component of σ.

From the previous proposition we can also expect that, the recovered gradient is

super-convergent with respect to the mesh size h � mink

(
diam

(
Ω(k)

) )
, in particular

σ∗h − σ

L2(Ωh) � O (

h2
)
.

Analogous properties of super-convergence have been proved in [Wey18] for the

gradient approximation provided by the Shortley–Weller method.

10.3.2. Solution recovery

In this sectionwe present a procedure that enables, starting from the recovered gradient

σ∗
h
, to recover an enriched solution u∗

h
∈ Q2

h
(τh).

This space is identified by 9 degrees of freedom for each mesh element, as numbered

in fig. 10.6a.

Denoting by uh,i � uh(xi) the value of uh at the mesh node xi and setting the

recovered solution at the vertices of Ω(k) as u∗
h,i
|Ω(k) � uh,i, i � 1, . . . , 4, the procedure

consists of properly integrating σ∗
h
in order to compute the values of u∗

h
at the degrees

of freedom 5, . . . , 9, additional with respect to the
˜Q1

h
space.

Denoting by

u
(1)
5

� uh,1 +
1

|y5 − y1 |

∫y5

y1

σ∗h,y dy,

u
(2)
5

� uh,3 −
1

|y3 − y5 |

∫y3

y5

σ∗h,y dy,

(10.11)

we assign the value

u∗h,5

���
Ω(k)

�
u
(1)
5

+ u
(2)
5

2

(10.12)

to node 5. Notice that the gradient recovery procedure does not guarantee that σ∗
h

represents a conservative vector field, so the two line integrals in (10.11) could differ

from each other as they depend on the integration path.
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Ω(k)

1 2

3 4

5 6

7

8

9

(a) Local numbering of the de-

grees of freedom associated

with the Q2

h
space on the

quadtree mesh elementΩ(k) ∈
τh.

Ω(1)

1 2

3 4

5 6

7

8

9
Ω(2)

(b) In order to recover a globally continuous solution u∗
h
, in

the presence of hanging nodes the recovered solution at

node 6 on Ω(2) is assigned equal to u∗
h,6

as computed on

Ω(1).

Figure 10.6.: Degrees of freedom for the solution recovery.

Similar formulas can be adopted for the midpoints 6, 7, 8, while the value at the

centroid of the element is computed as:

u∗h,9

���
Ω(k)

�
1

4

4∑
i�1

u
(i)
9
, (10.13)

where

u
(1)
9

� uh,5 +
1

|x9 − x5 |

∫ x9
x5

σ∗h,x dx,

u
(2)
9

� uh,6 −
1

|x6 − x9 |

∫ x6
x9

σ∗h,x dx,

u
(3)
9

� uh,7 +
1

|y9 − y7 |

∫y9

y7

σ∗h,y dy,

u
(4)
9

� uh,8 −
1

|y8 − y9 |

∫y8

y9

σ∗h,y dy.

(10.14)

The integrals in (10.11) and (10.14) can be exactly computed by the midpoint formula,

since the integrand function is linear.

In the presence of non-conforming edges, as shown in fig. 10.6b, the procedure for

recovering the solution at hanging nodes is modified as follows: instead of setting
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u∗
h,6
|Ω(2) � uh,6 � 1

2
(uh,2 + uh,4)we assign

u∗h,6

���
Ω(2)

� u∗h,6

���
Ω(1)

, (10.15)

i.e. the value recovered using the analogous of formula (10.12) applied to midpoint 6 of

element Ω(1). It is trivial to prove that this procedure provides a recovered solution u∗
h

that is continuous also across non-conforming edges.

An analogous result as in proposition 10.1 can be proved also for the recovered

solution:

Proposition 10.2. LetΩ ⊂ �2 be an open, bounded domain and let τh �
{
Ω(k)

}
k
be a quadtree

partition of Ω. Let u ∈ �2,2(Ω). Then the solution recovery procedure (10.12), (10.13), (10.15),
applied to the bi-linear interpolant Π1

h
u ∈ ˜Q1

h
(τh) of u exactly recovers the solution u at the

partition vertices.

Again from this result we can expect that the recovered solution converges with order

2 to the exact one, i.e. 

u∗h − u

L2(Ωh) � O (
h2

)
.

Other convergence results of numerical schemes for problems with interfaces on

Cartesian grids have been investigated in [Wey17] and [DIM17].

10.4. Mesh adaptation procedure

Once the recovered solutionu∗
h
has been computed, we can define a local error estimator

ηk at each mesh element Ω(k) as

ηk �


u∗h − uh

L2(Ω(k)) ,

and a global estimator η as:

η �

(∑
k

η2k

) 1

2

.

We now present two different strategies to generate a mesh able to follow the features

of the solution, starting from an initial uniform grid. In both cases the idea is to

guarantee the error equi-distribution across all the mesh elements together with a

prescribed accuracy on the L2(Ω)-norm, so that

η / tol,
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where tol is a user-defined tolerance. Hence it is desirable that the estimator locally

satisfies:

ηk /
tol√
Nel

, (10.16)

Nel being the mesh cardinality.

The stopping criterion for these strategies relies on fixing the maximum number of

iterations, that aims at minimizing the mesh size required to satisfy the prescribed

tolerance. This results in keeping the computational effort at a suitable level, as it may

become unacceptable – for example when applying iterative methods for non-linear

problems – for large meshes. Another possibility consists of monitoring the stagnation

of mesh elements, i.e. to determine if the relative difference of the cardinality of two

successive grids is smaller than a fixed threshold.

10.4.1. Marking-based adaptation

The first approach consists of a standard solve→estimate→mark→adapt iterative pro-

cedure. The whole procedure is itemized in algorithm 2, where the parameters δ1, δ2
are set equal to 1.5 and 0.5, respectively.

10.4.2. Metric-based adaptation

The second approach we follow is more sophisticated. It is a metric-driven procedure.

This means that we are able to predict the number of refinement or coarsening steps

required for each mesh element Ω(k) to satisfy the error equi-distribution and to ensure

the desired tolerance. First of all, we scale the local error estimator ηk in order to make

it independent on the mesh measure, at least asymptotically (i.e. , when the mesh is

sufficiently fine), thus lumping this information in a uniquemultiplicative constant. For

this purpose, we divide by a characteristic size of the element, for example h
(k)
x , the

length along the x-direction:

η̂k �
ηk

h
(k)
x

.

Now, we exploit the equi-distribution constraint (10.16) to predict the new size h
(k)
x,new

of each element, being:

η̂kh
(k)
x,new ≈

tol√
Nel

.
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10.4. Mesh adaptation procedure

Data: the input mesh; the user-defined tolerance tol; the maximum number of

iterations allowed imax;

initialize the iteration counter i � 0;

while i ≤ imax do
i � i + 1;

compute the numerical solution uh;

loop over the mesh elements:

for k � 1 to Nel do
compute the local estimator ηk;

if ηk ≥ δ1 tol√
N

el

then
mark Ω(k) for refinement;

else if ηk ≤ δ2 tol√
N

el

then
mark Ω(k) for coarsening;

end
end
refine and/or coarsen the mesh;

end
Algorithm 2: Marking-based adaptation.

These two relations yield

h
(k)
x,new

h
(k)
x

≈ tol

ηk
√
Nel

.

Finally recall that in the case of quadtrees h
(k)
x,new/h(k)x � 2

−`k
, so that the number of

refinement (or coarsening, if negative) steps `k required to reach the desired size h
(k)
x,new

can be computed as:

`k �

⌈
log

2

(
ηk
√
Nel

tol

)⌉
.

In order to better control the quality of the generated mesh, we introduced two

heuristic integer parameters, namely nref and ncoarsen that play an analogous role as

δ1, δ2 in the marking approach, so that we finally impose

`k �

{
max(0, `k − nref), if `k ≥ 0,

min(0, `k + ncoarsen), if `k < 0.

The metric-based adaptation procedure is itemized in algorithm 3. The advantage of
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Data: the input mesh; the user-defined tolerance tol; the maximum number of

iterations allowed imax;

initialize the iteration counter i � 0;

while i ≤ imax do
i � i + 1;

compute the numerical solution uh;

loop over the mesh elements:

for k � 1 to Nel do
compute the local estimator ηk;

compute the number of refinement/coarsening steps `k;

refine/coarsen Ω(k) `k times;

end
end

Algorithm 3:Metric-based adaptation.

such an approach is in the predictive feature, so that the final mesh can be obtained by

a lower number of iterations with respect to the marking strategy. We remark that the

choice of the initial mesh plays a role. Indeed, if it is very coarse, the procedure can lead

to overestimate `k at first steps, so that intermediate iterations can possibly generate an

over-refined mesh.

10.5. Implementation strategies

From an implementation perspective, recent progresses in data structures and algo-

rithms for creating, hierarchically refining, balancing and partitioning meshes of quad-

and oct-trees has brought this class of grids to the forefront of the research interests in

the HPC community as a key tool for attaining extreme scalability. Achieving this goal

drives the development of an efficient, parallel, scalable code.

Different libraries providing support to quadtree data structures are available, such

as p4est1, PABLO2 and Gerris3.

Given the availability of several libraries to create and manage octree meshes that are

currently under active development, we decided to develop a generic high-level C++
mesh interface that enables to decouple the PDE discretization scheme from the back-

1http://www.p4est.org/
2http://optimad.github.io/PABLO/
3http://gfs.sourceforge.net/

112

http://www.p4est.org/
http://optimad.github.io/PABLO/
http://gfs.sourceforge.net/


10.5. Implementation strategies

end meshing library. The first supported back-end in our implementation was chosen

to be p4est which has been preferred to other alternatives for its ability to work with

forests of octrees and for its impressive scalability, yet our design is intended to support

interfaces to other libraries in the future.

We have also considered integrating our algorithm into the general purpose finite

element library deal.II4, which uses p4est as the default mesh management engine.

Preliminary tests have shown, though, that the great generality of deal.II comes at

the cost of introducing a non-negligible amount of overhead that can be highly reduced

exploiting the features of the specific discretization algorithms described in sections 10.2

and 10.4.

10.5.1. bim++: a C++ interface to p4est

The provided implementation was integrated into the in-house bim++ library. In a first

instance, the interface to p4est has been implemented by defining a class quadrant_t
that provides methods to access the information of a quadrant, such as

• its local and global indices;

• the index of the tree it belongs to;

• the coordinates of its vertices;

• the rank-local and global indices of its vertices;

• whether a vertex is hanging and, if this is the case, the rank-local and global indices

of its parent vertices;

• the index of the edge that boundary nodes lay on.

The declaration of such methods is reported in listing 1.

1 /// C++ interface class to access properties of the
2 /// current quadrant.
3 class
4 quadrant_t
5 {
6 public:
7 /// Simple constructor needs at least a pointer

4https://www.dealii.org/
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8 /// to the container tmesh.
9 quadrant_t (tmesh * _tmesh,

10 p4est_topidx_t _tree,
11 p4est_quadrant_t * _quadrant);

12 /// Get the i-th coordinate of the j-th vertex.
13 double p (idx_t i, idx_t j);

14 /// Get the i-th coordinate of the centroid.
15 double centroid (idx_t i);

16 /// Get rank-local index of the i-th vertex, or global index for ghosts.
17 idx_t t (idx_t i);

18 /// Get global index of the i-th vertex
19 idx_t gt (idx_t i);

20 /// True if the i-th vertex is hanging.
21 bool is_hanging (idx_t i);

22 /// Return the rank-local (or global for ghosts)
23 /// ip-th parent for the in-th vertex.
24 int parent (idx_t ip, idx_t in);

25 /// Return the ip-th parent for the in-th vertex,
26 /// use global numbering.
27 int gparent (idx_t ip, idx_t in);

28 static const idx_t NOT_ON_BOUNDARY = P4EST_ROOT_LEN + 1;

29 /// Index of the edge of the current tree
30 /// on which the i-th vertex lies, return
31 /// NOT_ON_BOUNDARY if an interior vertex.
32 idx_t e (idx_t i);

33 /// Get an iterator to the first neighbor
34 /// of the current quadrant.
35 neighbor_iterator begin_neighbor_sweep ();
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36 /// Get a null quadrant iterator to signal end of the sweep.
37 neighbor_iterator end_neighbor_sweep ();

38 /// Return index of current quadrant across all
39 /// trees on current process.
40 p4est_locidx_t get_forest_quad_idx ();

41 /// Return index of current quadrant in current
42 /// tree on current process.
43 p4est_locidx_t get_tree_quad_idx ();

44 /// Return index of current quadrant across all
45 /// trees on all processes.
46 p4est_gloidx_t get_global_quad_idx ();

47 /// Return index of current tree.
48 p4est_locidx_t get_tree_idx ();

49 /// Update stored data.
50 void update (p4est_topidx_t tree,
51 p4est_quadrant_t * q);
52 };

Listing 1: Quadrant interface.

On topof the quadrant_twedeveloped adouble iterator interface that aims at looping

over both

• the local mesh, i.e. all the quadrants owned by current process in order to perform

operations such as computing local differential operators, etc.;

• the first face neighbors of current quadrant, as required by the gradient recovery

procedure.

They are implemented in the classes quadrant_iterator and neighbor_iterator,
whose interface is provided in listing 2. Methods to iterate over the first neighbors

are available in the quadrant_t class.
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1 /// Iterator to sweep through the quadrants of a tmesh.
2 /// This is essentially a decorator of quadrant_t *.
3 class
4 quadrant_iterator
5 {
6 public:
7 /// Get next quadrant.
8 void operator++ ();

9 /// Dereference.
10 quadrant_t& operator* ();

11 /// Operator -> to get access to the wrapped pointer.
12 quadrant_t * operator-> ();

13 /// Compare two quadrant_iterator objects.
14 bool operator== (const quadrant_iterator & other);

15 /// Default constructor.
16 quadrant_iterator (quadrant_t * _data);

17 /// Move to first forest quadrant.
18 void reset ();

19 protected:
20 quadrant_t * data;
21 };

22 /// Iterator to sweep through quadrants that are
23 /// neighbors of a quadrant.
24 class
25 neighbor_iterator : public quadrant_iterator
26 {
27 public:
28 /// Get next neighbor.
29 void operator++ ();

30 /// Default constructor.
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31 neighbor_iterator (quadrant_t * _data);
32 };

Listing 2: Quadrant and neighbor iterators.

Finally, a class to handle a whole mesh is defined, as implemented in listing 3. The

class tmesh basically contains methods to

• create a forest of quadtrees;

• load (save) a forest from (to) file;

• export nodal and quadrant-constant fields to a format that is convertible to a VTK5

unstructured grid file;

• set markers for mesh refinement and coarsening;

• set the metric-based marker defined in section 10.4 for mesh adaptation;

• actually perform mesh adaptation;

• compute the information about the owned quadrants;

• transmit the information about ghost and mirror quadrants among different pro-

cesses;

• iterate over the local mesh quadrants through the iterator interface;

• get the information about the local and global mesh properties.

1 class tmesh
2 {
3 public:
4 using idx_t = p4est_gloidx_t;

5 /// Default constructor, set all pointers to nullptr.
6 tmesh (MPI_Comm _comm);

7 /// Load a p4est and connectivity from a file.

5https://www.vtk.org/
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8 tmesh (const char * filename,
9 MPI_Comm _comm);

10 /// Save the p4est and connectivity to a file.
11 void save (const char * filename);

12 /// Load the p4est and connectivity from a file.
13 void load (const char * filename);

14 /// Export exploded mesh to a vtk file for visualization.
15 void vtk_export (const char * filename);

16 /// Export nodal field f to a octbin.gz file for visualization.
17 void octbin_export (const char * basename,
18 const distributed_vector & f);

19 /// Export quadrant field f to a octbin.gz file for visualization.
20 void octbin_export_quadrant (const char * filename,
21 const std::vector<double> & f);

22 /// Get an iterator to the first quadrant of the mesh.
23 quadrant_iterator begin_quadrant_sweep ();

24 /// Get a null quadrant iterator to signal end of the sweep.
25 quadrant_iterator end_quadrant_sweep ();

26 /// Mark quadrants for refinement based on fun.
27 void set_refine_marker (std::function<int (quadrant_iterator)> fun);

28 /// Mark quadrants for coarsening based on fun.
29 void set_coarsen_marker (std::function<int (quadrant_iterator)> fun);

30 /// Mark quadrants for refinement based on metrics.
31 void set_metrics_marker (std::function<double (quadrant_iterator)>,
32 double tol,
33 int max_depth,
34 int n_refine,
35 int n_coarsen);

118



10.5. Implementation strategies

36 /// Refine marked quadrants, balance the quadtree and
37 /// re-partition over the processors.
38 void refine (int recursive,
39 int partforcoarsen,
40 int balance);

41 /// Refine marked quadrants based on metrics.
42 void metrics_refine (idx_t max_elems);

43 /// Coarsen marked quadrants, balance the quadtree and
44 /// re-partition over the processors.
45 void coarsen (int recursive,
46 int partforcoarsen,
47 int balance);

48 /// Compute nodes numbering and quadrant neighbours.
49 void update ();

50 /// Send mirrors and receive ghosts from other ranks.
51 void update_mirrors_ghosts ();

52 /// Return number of nodes owned by local process.
53 idx_t num_owned_nodes ();

54 /// Return number of nodes of quadrants owned
55 /// or shared by local process.
56 idx_t num_local_nodes ();

57 /// Return total number of quadrants owned by all process.
58 idx_t num_global_nodes ();

59 /// Return number of quadrants owned by local process
60 /// across all trees.
61 idx_t num_local_quadrants ();

62 /// Return number of quadrants owned by all processes
63 /// across all trees.
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64 idx_t num_global_quadrants ();
65 };

Listing 3: Class tmesh.

10.5.2. Distributed vector

The additional class distributed_vector, in listing 4 has been implemented to reduce

the memory consumption deriving from the storage of nodal coefficient and state vec-

tors. For the specific numerical application it is required that each rank only stores

values corresponding to owned or local nodes, while non-local values can be discarded.

1 class
2 distributed_vector
3 {
4 public:

5 /// Access operator.
6 double & operator[] (int idx);

7 /// Determine ghost and mirror maps.
8 void remap ();
9 /// Communicate values among sharing processes.

10 void assemble ();

11 /// Get is.
12 int get_range_start () const;
13 /// Get ie.
14 int get_range_end () const;

15 /// Get global vector size.
16 int size ();

17 /// Resets all the non-owned maps.
18 void clear_non_owned ();

19 private:
20 int owned_count; ///< Number of owned entries.
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21 int is, ie; ///< Start and end indices.

22 /// Vector entries owned by the current rank.
23 std::vector<double> owned_data;

24 /// Vector entries touched by the current rank
25 /// that belong to another process.
26 std::map<int, double> non_owned_data;

27 /// Structure to hold data of ghost entries
28 /// in a format amenable for send/receive.
29 struct
30 ghosts_t
31 {
32 std::vector<int> prc_ptr, row_ind, rank_nnz;
33 std::vector<double> a;
34 } ghosts;

35 /// Copy data from non_local_data to ghosts.
36 void ghost_csr ();

37 /// Update ghosts.
38 void ghost_csr_update ();

39 /// Structure to hold data of mirror entries
40 /// in a format amenable for send/receive.
41 struct mirrors_t
42 {
43 std::vector<int> prc_ptr, row_ind, rank_nnz;
44 std::vector<double> a;
45 } mirrors;

46 /// Vector entries that are owned by rank i
47 /// are numbered between ranges[i]
48 /// and ranges[i+1].
49 std::vector<int> ranges;
50 };
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non owned owned

ghosts t mirrors t

6) copy 1) copy 4) fill 3) join

2) send/receive

5) send/receive

Figure 10.7.: Communication diagram for the parallel assembly of a distributed vector.

Listing 4: Class distributed_vector.

The distributed_vector class stores the values of owned nodes, that are numbered

with contiguous indices, in the std::vector owned_data, while non-owned local values

are stored in a std::map accessed with the global index of the non-owned node.

The data transfer procedure, diagrammed in fig. 10.7, can be summarized as follows:

1. ghosts_t is filled with the non_owned_data structure;

2. ghost indices and sent to other processes, that store them into mirrors_t;

3. mirror data are joined into the ones already in owned_data by a user-defined

operation, for example by summing the values corresponding to the same index;

4. mirrors_t is filled with the owned_data structure;

5. mirror data are sent to other processes, that store them into ghosts_t;

6. ghost data are copied into non_owned_data.

The two first steps are performed by the method remap (), while the others are taken

care of by assemble (). The structures ghosts_t and mirrors_t store their data in a

Compressed Sparse Row (CSR)-like format that is amenable for MPI communications:

rank_nnz contains the numbers of nonzero entries that the current rank shares with

each of the other processes;
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row_ind contains the corresponding shared indices;

a contains the corresponding shared values;

prc_ptr contains the cumulative sum of rank_nnz, used to identify the starting index

per rank in row_ind and a.

The usage of a distributed_vector is consequently straightforward, as the access

operator of a vector u enables to write expressions like u[i] that automatically detect

whether the index i corresponds to an owned or a non-local entry and accesses it either

from the owned vector or from the map accordingly.

A distributed sparse matrix class with an analogous interface has also been imple-

mented so that the matrix assembled from the discretization of a differential operator

can be parallel partitioned by splitting it into rows of owned nodes, depending on their

numbering and their owning process, augmented by the rows corresponding to local

non-owned indices.

10.5.3. Interpolation

Among the challenging tasks that show up when dealing with adaptive meshes is

to transmit a solution vector from one mesh to a new one obtained by refinement or

coarsening. This kind of procedure is of central relevance in iterative strategies for

non-linear or time-dependent problems, where the solution at the current step has to

be somehow reprocessed to perform the subsequent iterations. The nature of quadtree

meshes makes this operation straightforward, except for some implementation details

that will be provided hereafter.

The idea comes from the hierarchical structure of a quadtree mesh and consists of

defining an interpolation map at every quadrant. The map has exactly four entries, one

per vertex, constructed as follows: given v � 1, . . . , 4, if node v is non-hanging, then the

v-th map entry is the pair (iv, 1), where iv is the global index of the degree of freedom

associated with vertex v and 1 is the identity contribution; otherwise, if v is hanging,

then the v-th map entry is a couple of pairs (kv1 ,w1) and (kv2 ,w2), where kv1 ,kv2 are

the indices of the two parents of v and w1,w2 are the corresponding weight used to

preserve the partition of unity property (following the description in section 10.2.2 we

set w1 � w2 �
1

2
).

Once constructed, the map can easily be converted to a 4-by-4 interpolation matrix,

noticing that due to the 2:1 balancing the set

{
iv,kv1 ,kv2

}
v�1,...,4

has always exactly four

elements, that can be associated to the matrix columns.
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Ω(1) 1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

Ω(2) 2 4 5 6

2 1 0 0 0

5 0 0 1 0

*
1

2

1

2
0 0

6 0 0 0 1

Ω(4) 2 4 6 9

*
1

2

1

2
0 0

6 0 0 1 0

4 0 1 0 0

* 0
1

2
0

1

2

Table 10.1.: Example interpolation matrices for the mesh shown in fig. 10.8.

p4est enables to associate a void * pointer, called user_data, to each quadrant and

to provide a callback function to replace such a data structure during refinement or

coarsening steps. The user_data that we assigned to the mesh quadrants is of class

data_t, whose declaration is provided in listing 5. It contains, besides an integer to

determine the number of refinement or coarsening steps to be performed, two data

members that correspond to the 4-by-4 interpolation coefficient matrix, computed as

described above, and the array of the associated interpolation indices {iv}v�1,...,4.

1 /// Struct for p4est user_data.
2 struct data_t
3 {
4 /// Number of refinement (coarsening, if negative) steps to be performed.
5 int refine_count;

6 /// Interpolation indices, i.e. the indices
7 /// associated to interp_coeff columns.
8 std::array<tmesh::idx_t, 4> interp_idx;

9 /// Interpolation coefficients at the four vertices.
10 std::array<std::array<double, 4>, 4> interp_coeff;
11 };

Listing 5: Data structure for p4est user_data.

Table 10.1 shows the interpolation matrices associated with some of the elements of

the example mesh in fig. 10.8.

If, during the adaptation procedure, a generic element Ω(k) is marked for refine-

ment, the interpolation matrices of its i-th children quadrant Ω
(k)
i

, i � 1, . . . , 4 can be

computed by multiplying the interpolation matrixMΩ(k) of its parent quadrant by the
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Ω(1)

Ω(2) Ω(3)

Ω(4) Ω(5)

Ω(6) Ω(7)

1 2

3 4

5

6

7

8

9

10 11 12

Figure 10.8.: Example mesh used to clarify the building of interpolation matrices.

corresponding local interpolation matrixM
Ω
(k)
i

, defined as follows:

M
Ω
(k)
1

�

©­­­«
1 0 0 0

1

2

1

2
0 0

1

2
0

1

2
0

1

4

1

4

1

4

1

4

ª®®®¬ , M
Ω
(k)
2

�

©­­­«
1

2

1

2
0 0

0 1 0 0

1

4

1

4

1

4

1

4

0
1

2
0

1

2
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M

Ω
(k)
3

�

©­­­«
1

2
0

1

2
0

1

4

1

4

1

4

1

4

0 0 1 0

0 0
1

2

1

2

ª®®®¬ , M
Ω
(k)
4

�

©­­­«
1

4

1

4

1

4

1

4

0
1

2
0

1

2

0 0
1

2

1

2

0 0 0 1

ª®®®¬ ,
where we assumed the four children to be numbered following the above-mentioned

s-ordering).

Conversely, if four children are marked for coarsening then the interpolation matrix

of their parent quadrant is assembled by simply joining the identity entry – i.e. the one
equal to 1 with its corresponding index – of the i-th row ofM

Ω
(k)
i

for i � 1, . . . , 4. Notice

that such identity entries always exist due to the tree balancing. In the example of

fig. 10.8, if quadrants

{
Ω(k)

}
k�2,...,5

were marked for coarsening, their parent quadrant
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would replace their interpolation matrices with:

©­­­«
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

ª®®®¬ ,
whose columns are associated with nodes 2, 4, 7, 9, respectively. Therefore the provided

replace callback function brings refine_count closer to zero by one unit and replaces

the user_data through one of the two former algorithms, depending on whether the

element is being refined or four children coarsened.

The metric-driven approach often consists of multiple refinement or coarsening steps

performed simultaneously. This procedure can be easily extended to this case by prop-

erlymultiplying different interpolationmatrices, each one associatedwith a single step.
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Part IV.

Numerical results





11. Adaptation test cases

Here we present some numerical results obtained by the application of the mesh adap-

tation algorithm described in chapter 10 to a class of linear ADR problems. Elliptic

problems with boundary or interior layers will be discussed in section 11.1. Weak

scaling results are presented in section 11.2. A parabolic test case with a solution

characterized by propagating front is finally presented in section 11.3.

11.1. Quadtree adaptation for linear ADR problems

In the following sections we will describe diffusion-reaction examples with boundary

layers, with coefficient discontinuities and a diffusion-advection problem with an inter-

nal layer and discontinuous boundary conditions, respectively. The test cases presented

are taken from [AFP19].

11.1.1. Diffusion-reaction examples with multiple layers

11.1.1.1. Example with two boundary layers

The first test case we analyze is a diffusion-reaction equation with constant coefficients

over the unit square Ω � Ωh � (0, 1)2, whose solution has two boundary layers along

the top and right sides. Here ε � 10
−4
, r � 1 and f,g are such that the problem has exact

solution

uex(x,y) �
(
1 − sinh(x/

√
ε)

sinh(1/
√
ε)

) (
1 − sinh(y/

√
ε)

sinh(1/
√
ε)

)
.

The numerical solution and the meshes obtained with the adaptation procedure

using the marking-based and the metric-based techniques are shown in figs. 11.1 to 11.3

respectively. The metric-based adaptation provides a mesh that is refined in a thinner

boundary region with respect to the marking approach.

Figure 11.4 shows the convergence of the L2-norm and H1
-seminorm of the error

associatedwith both the discrete solutionuh and the recovered solutionu∗
h
as a function

of the mesh size h. The results are as expected, providing convergence with order 1

for the numerical gradient and 2 for the numerical solution and the recovered gradient
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11. Adaptation test cases

Figure 11.1.: Problem 11.1.1.1. Numerical solution.

and solution. A comparison between the adaptive and uniform adaptation strategies

is also drawn, proving that the benefits of the adaptive procedure become evident in

particular when the number of dofs increases. The effectivity index

ξ �
η

‖uex − uh‖L2(Ωh)
,

associated with the error estimator η has also been computed at each adaptation step.

The resulting plot is shown in fig. 11.5, together with the histogram of the element sizes

estimated by the metrics: both figures clearly show that, despite the 2:1 balancing, the

resulting mesh is uniform if evaluated through the error estimator, as most elements

have the same (small) size and the effectivity index stagnates asymptotically to a value

of about 0.8, meaning that the estimator is underestimating the error of the same factor.

11.1.1.2. Example with two boundary layers and a corner layer

Herewe study a test proposed in [FO09]. It has the form of problem (10.1), with ε � 2
−15

,

b(x,y) � 1 + x2y2/1000, f(x,y) � 1 + 2xy/1000 and the following boundary conditions:

u(x,y) �


1, on {x � 0} ∪ {y � 0},
1 − y2, on {x � 1},
1 − x2, on {y � 1}.

The meshes obtained during the adaptation procedure using the marking-based and

the metric-based techniques are shown in figs. 11.6 and 11.7 respectively.

134



11.1. Quadtree adaptation for linear ADR problems

(a) Initial mesh. (b) Mesh at adaptation step 4.

(c) Mesh at adaptation step 6. (d) Mesh at adaptation step 9.

Figure 11.2.: Problem 11.1.1.1. Marking-based adaptation.

135



11. Adaptation test cases

(a) Mesh at adaptation step 1. (b) Mesh at adaptation step 3.

Figure 11.3.: Problem 11.1.1.1. Metric-based adaptation.
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(b) Comparison of adaptive mesh strategy

vs. uniform refinement: the plot shows

the error ‖u − uh‖L2(Ωh) as a function

of the number of degrees of freedom.

Figure 11.4.: Problem 11.1.1.1. Numerical errors and comparison of adaptive vs. uni-

form refinement.
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11.1. Quadtree adaptation for linear ADR problems
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Figure 11.5.: Problem 11.1.1.1. Effectivity index and metrics histogram.

We aim to remark in particular that the metric-based approach is more effective, as it

requires 2 adaptation steps to determine amesh that is comparable, in size and thickness

of the captured layers, to the one obtained by 6 iterations of the marking procedure.

Moreover, the first steps of the marking approach lead to over-refine the mesh, before

starting to coarsen those elements far from the layers that do not provide a significant

contribution to the overall error.

11.1.2. Diffusion-reaction examples with discontinuous coefficients

11.1.2.1. Coefficient discontinuous across a Cartesian direction

The first test case deals with a linear diffusion-reaction problem firstly proposed in

[FO10], characterized by piecewise discontinuous diffusion and reaction coefficients

and a strictly one-dimensional dynamics.

Consider problem (10.1) defined over the unit square Ω � Ωh � (0, 1)2. Denoting by
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11. Adaptation test cases

(a) Mesh at adaptation step 1. (b) Mesh at adaptation step 2.

(c) Mesh at adaptation step 4. (d) Mesh at adaptation step 6.

Figure 11.6.: Problem 11.1.1.2. Marking-based adaptation.
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11.1. Quadtree adaptation for linear ADR problems

(a) Mesh at adaptation step 1. (b) Mesh at adaptation step 2.

Figure 11.7.: Problem 11.1.1.2. Metric-based adaptation.

Ω1 � {(x,y) ∈ Ω : y ≤ 0.5} and Ω2 � Ω \ Ω1, the coefficients are given by

ε �

{
ε1 � 5 · 10−5, in Ω1,

ε2 � 10
−1
, in Ω2,

b �

{
1, in Ω1,

0, in Ω2,

f �

{
1, in Ω1,

ε2, in Ω2.

The boundary conditions are

u �

{
1, on {y � 0},
0, on {y � 1}.

The exact solution is given by

uex(x,y) �
{
1 + 2c1 sinh(y/

√
ε1), in Ω1,

−0.5(y − 1)(y + 2c2), in Ω2,

with

c1 � −
7ε2

8

√
ε1 cosh(0.5/

√
ε1) + 16ε2 sinh(0.5/

√
ε1)

,

c2 �
7

√
ε1 cosh(0.5/

√
ε1)

4

√
ε1 cosh(0.5/

√
ε1) + 8ε2 sinh(0.5/

√
ε1)

.
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11. Adaptation test cases

Figure 11.8.: Problem 11.1.2.1. Numerical solution.

The numerical solution and the meshes obtained using the adaptation procedure us-

ing the marking-based and the metric-based techniques are shown in figs. 11.8 to 11.10

respectively. Again, the metric-based approach is faster andmore effective in determin-

ing the discontinuity interface as compared to marking algorithm.

Figure 11.11 shows the convergence of the L2-norm andH1
-seminorm of the error as-

sociated with both the discrete solution uh and the recovered solution u∗
h
as a function

of the mesh size h. A comparison between the adaptive and uniform adaptation strate-

gies is also drawn. The same remarks as for fig. 11.4 essentially hold. The effectivity

index ξ and the histogram of the element sized estimated by the metrics are shown in

fig. 11.12.

11.1.2.2. Coefficient discontinuous across a circular interface

Another test case is taken from [RBI18] and is very demanding for Cartesian grids,

since the diffusion coefficient here is discontinuous across a circular interface. Let

G � {(x − 0.5)2 + (y − 0.5)2 ≥ R2}, where R � 0.25, and let S � [0, 1]2 \ G. The equation
to be solved is of type (10.1) with

ε �

{
εG � 1, in G,

εS � 100, in S,
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11.1. Quadtree adaptation for linear ADR problems

(a) Initial mesh. (b) Mesh at adaptation step 3.

(c) Mesh at adaptation step 5. (d) Mesh at adaptation step 9.

Figure 11.9.: Problem 11.1.2.1. Marking-based adaptation.
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11. Adaptation test cases

(a) Mesh at adaptation step 1. (b) Mesh at adaptation step 3.

Figure 11.10.: Problem 11.1.2.1. Metric-based adaptation.
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(b) Comparison of adaptive mesh strategy
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Figure 11.11.: Problem 11.1.2.1. Numerical errors and comparison of adaptive vs. uni-

form refinement.
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11.1. Quadtree adaptation for linear ADR problems
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Figure 11.12.: Problem 11.1.2.1. Effectivity index and metrics histogram.

b � 0 and f � 1, whose exact solution is

uex(x,y) �


1

8

− 1

4εG

(
(x − 0.5)2 + (y − 0.5)2

)
, in G,

1

8

− 1

4εS

(
(x − 0.5)2 + (y − 0.5)2

)
− R

2

4

(
1 − 1

εS

)
, in S,

By imposing a tolerance of 10
−4

for the error estimator, we ended up with a final

mesh with maximum level of refinement equal to 10, as shown in fig. 11.13. The

results obtained in terms of L2-error are summarized in table 11.1. As compared to Ref.

[RBI18], for a given maximum level of refinement and mesh cardinality allowed, the

error provided using our method is significantly smaller. Indeed, the mesh generated

by our adaptation procedure is uniformly refined with level 10 in the whole region G,

which suggests that not only the interface contributes to the overall error, but also those

regions – possibly far from the interface – where the solution is apparently smooth,

due to the error propagation. An estimator-driven approach is able to capture this

information independently on the geometrical setting. This is an advantagewith respect

to geometry-based methods for mesh adaptation, as the one presented in [RBI18], that
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11. Adaptation test cases

(a) Final mesh. (b) Zoom at the interface, colored based on

the refinement level.

Figure 11.13.: Problem 11.1.2.2. Resulting adapted mesh.

can provide a more locally-refined mesh at geometrical interfaces but is not able to

capture the error distribution across all the mesh elements.

11.1.3. Diffusion-advection example with constant advection coefficient skew
w.r.t. Cartesian axes

Here we study a test proposed in [BH82]. It has the form of problem (10.2) onΩ � (0, 1)2
with ε � 10

−6
, β � [cos(ϑ), sin(ϑ)]T/ε, f � 0. The boundary conditions are imposed as

Step n. of nodes hmin L2-error

0 81 0.176777 2.82441 · 10−3
1 289 0.0883883 6.82165 · 10−4
2 1033 0.0441942 1.83441 · 10−4
3 3829 0.0220971 5.33397 · 10−5
4 14245 0.0110485 3.05214 · 10−5
5 55149 0.00552427 1.16476 · 10−5
6 215321 0.00276214 4.59463 · 10−6
7 853511 0.00138107 2.98502 · 10−6

Table 11.1.: Mesh cardinality, hmin and L2-error during the refinement procedure.
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11.1. Quadtree adaptation for linear ADR problems
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(a) Geometrical setting.

(b) Numerical solution.

Figure 11.14.: Problem 11.1.3. Geometrical setting and numerical solution.
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11. Adaptation test cases

shown in fig. 11.14a, i.e.

u(x,y) �
{
1, on Γ � {x � 0, 0 ≤ y ≤ 0.2} ∪ {y � 0},
0, on ∂Ω \ Γ .

The numerical solution and themeshes obtainedwith the adaptation procedure using

the metric-based techniques are shown in figs. 11.14 and 11.15 respectively.

We also compare the results with those in [Sch+12], relying on a gradient-based

adaptation: first, the authors compute the integral average of the solution gradient at

each mesh element:

γk �
‖∇uh‖L2(Ω(k))��Ω(k)�� . (11.1)

Then, the elements aremarked for adaptation or coarsening depending on the following

conditions:

γk ≥
c1

Nel

N
el∑

k�1

γk, γk ≤
c2

Nel

N
el∑

k�1

γk,

respectively, where c1, c2 are empirically set tuning parameters. The results obtained

through this procedure are shown in fig. 11.16. The mesh obtained is fully comparable

with the one in fig. 11.15, which is remarkable taking into account that the estimator

based on eq. (11.1) is specifically set to detect steep gradients.

Finally the histogram of the element sizes estimated by the metrics in fig. 11.17 shows

a distribution that is concentrated at a specific value, so that most elements have a small

size and are distributed in a very narrow region of the domain corresponding to the

boundary discontinuities and the boundary and interior layers.

11.2. Weak scaling test

The performance of the numerical code implemented in bim++ was tested on a Poisson

equation with a discontinuous diffusion coefficient. The unit square is firstly meshed

and then hierarchically refined based on an a priori criterion, namely marking those

quadrants intersecting a specified arbitrary set of segments corresponding to the coef-

ficient discontinuities. Then the resulting linear system is assembled and solved using

the parallel sparse linear solver MUMPS1.
The time needed for creating, refining the mesh, assembling the discrete operators

and assigning the boundary conditions was computed for different runs of the same

1http://mumps.enseeiht.fr/
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11.3. Time-dependent quadtree adaptation

(a) Mesh at adaptation step 2. (b) Mesh at adaptation step 4.

Figure 11.15.: Problem 11.1.3. Metric-based adaptation.

problem with varying numbers of processors. Then, the speedup associated with the

weak scaling for n Central Processing Units (CPUs) was determined as

s(n) � time(1 CPU)
time(n CPUs) .

The resulting speedup, compared to the desirable linear one, is shown in fig. 11.18,

confirming that attaining an extremely scalable user-friendly software is possible if

using proper data structures and algorithms, as enabled by quadtrees, together with

advanced HPC techniques relying on low-level calls for parallel communication.

11.3. Time-dependent quadtree adaptation

The adaptation procedure described in section 10.4 was applied to a time-dependent

framework to simulate the following problem, consisting of a diffusion-advection equa-

tion for a solute concentration n in a parallel plate flow [FDS09], coupled with a

Poisson equation describing the potential ϕ corresponding to the advection field to

recall the same structure as the DD system. The equations, solved in the rectangle
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11. Adaptation test cases

(a) Initial mesh. (b) Mesh at adaptation step 4.

(c) Mesh at adaptation step 6. (d) Mesh at adaptation step 10.

Figure 11.16.: Problem 11.1.3. Gradient-based adaptation.
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11.3. Time-dependent quadtree adaptation
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Figure 11.17.: Problem 11.1.3. Histogram of the element size h
(k)
x estimated by the

metrics.

Ω � (−5, 30) × (0, 0.1) and over the timespan (0, 4], read
−∇ · (∇ϕ) � 0,

∂n

∂t
− ∇ · (∇n − n∇ϕ) � 0,

(11.2)

with initial datum given by 
ϕ(x, 0) � 5(x1 + 5) − 20x2,

n(x, 0) � 1

2

exp

(
−
x2
1

2

)
,

so that the advection field is ∇ϕ (x, t) � [5,−20]T .
The problem was solved following the same time, space discretization and lineariza-

tion strategies presented in part III and the mesh was adapted at the beginning of every

time step according to the extrapolated initial guess.

The initial guess and mesh are shown in fig. 11.19, while the propagating wave and

the corresponding adapted meshes across the simulated timespan are displayed in
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Figure 11.18.: Problem 11.2. Actual vs. theoretical speedup.
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11.3. Time-dependent quadtree adaptation

(a) Initial guess n at time t � 0. (b) Initial mesh at time t � 0.

Figure 11.19.: Problem 11.3. Initial guess n and mesh.

fig. 11.20: the adaptation procedure is able to generate meshes that automatically follow

the propagating front and detect error-prone regions so that, given a desired accuracy,

the overall computational costs are reduced with respect to the uniform mesh case.
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11. Adaptation test cases

(a) Solution n at time t � 1.25. (b) Adapted mesh at time t � 1.25.

(c) Solution n at time t � 2.5. (d) Adapted mesh at time t � 2.5.

(e) Solution n at time t � 4. (f) Adapted mesh at time t � 4.

Figure 11.20.: Problem 11.3. Solution n and adapted meshes computed at different time

steps.
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12. Consistent formulation

In this chapterwe present the results of the application of the thermodynamic consistent

discrete formulation presented in section 6.1.1 to the solution of a DD-like system to the

propagation of charge packets in semiconductor characterized by different DOS shapes.

We aim at solving the following equations:



−∇ · (ε∇ϕ) + qn � 0, in Ω,

∂n

∂t
− 1

q

∇ · Jn � 0, in Ω,

Jn � qµnn∇ϕn � −qVthµn

(
∇n − n∇

(
ϕ +ψ

Vth

))
,

n −N
(
Vth log

(
n

N0

)
−ψ

)
� 0, in Ω,

(12.1)

over a rectangular domain Ω for different choices for the DOS functionN .

We focus on DOS shapes, parametrized on α and σ, that are a generalization of the

Gaussian case described in section 5.4:

n �
N0

Kσ

∫∞
−∞

exp

(
−

����E − ELUMO

Λ σ

����α)
1 + exp

(
ELUMO − EF

kBT

) dE. (12.2)

The quantities K � K(α,σ) and Λ � Λ(α,σ) are computed in such a way that

1

Kσ

∫∞
−∞

exp

(
−

����E − ELUMO

Λ σ

����α) dE � 1

and

1

Kσ

∫∞
−∞
(E − ELUMO)2 exp

(
−

����E − ELUMO

Λ σ

����α) dE � σ2,
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12. Consistent formulation

which leads to

K � 2Λ Γ

(
1 +

1

α

)
and

Λ �

√√√√√√√√√√3 Γ

(
1 +

1

α

)
Γ

(
3 + α

α

) ,

where

Γ (z) �
∫∞
0

tz−1 exp(−t)dt.

In order to numerically compute the integral in eq. (12.2), it is convenient to apply the

change of the integration variable

η �
E − ELUMO

Λσ
�
−q(ϕ −ϕn)

Λσ
�
−qφ
Λσ

,

where we have used eq. (5.10) and (5.13), and rewrite it as

n(φ) �N0Λ

K

∫∞
0

exp(−η) exp (η − ηα) ·

·
©­­­­«

1

1 + exp

(
Λησ̂ − φ

Vth

) +
1

1 + exp

(
−Λησ̂ − φ

Vth

) ª®®®®¬
dη,

(12.3)

where σ̂ � σ/kBT, that can be approximated by means of Gauss-Laguerre quadrature

formulas.

Notice that, although the density of states functionmay not be differentiable for every

value of α, the charge density n in eq. (12.3) has a continuous derivative with respect to
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Figure 12.1.: Electron density and derivative for σ̂ � 3 and different values of α.

φ which can be expressed as

∂n

∂φ
(φ) �N0Λ

KVth

∫∞
0

exp(−η) exp (η − ηα) ·

·
©­­­­«

1[
exp

(
1

2

(
−Λησ̂ +

φ

Vth

))
+ exp

(
1

2

(
Λησ̂ − φ

Vth

))]
2

+

1[
exp

(
1

2

(
Λησ̂ +

φ

Vth

))
+ exp

(
1

2

(
−Λησ̂ − φ

Vth

))]
2

ª®®®®¬
dη.

Figure 12.1 and 12.2 show the quantities n(ϕ − ϕn) and its derivative dn/dφ as a

function of α and for σ̂ � 3 and σ̂ � 8, respectively. The diffusion enhancement factor

gD(n), defined as in eq. (5.17), and the enhancement potential ψ are shown in figs. 12.3

and 12.4, respectively.

Equation (12.1) has been simulated with a Gaussian initial guess for n for different

values of

The resulting n and ψ for α � 1, 2 and σ̂ � 3.5, 6 at different time steps are shown in

fig. 12.5, fig. 12.6, fig. 12.7, respectively.
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Figure 12.2.: Electron density and derivative for σ̂ � 6 and different values of α.
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Figure 12.3.: Diffusion enhancement as a function of α.
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Figure 12.4.: Enhancement potential as a function of α.

All the results show that the enhancement factor gD not only depends on ϕ, ϕn and

n, but also from the shape of the considered DOS distribution through the parameters α

and σ. Therefore, the choice for the functionN strongly affects the properties of charge

transport in semiconductors. In particular, results of simulations of charge transport,

such as computing the mobility and the diffusivity coefficients, can be exploited to

determine the corresponding DOS shape associated with the molecular properties of

the material considered, as discussed for example in [OHB12].
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12. Consistent formulation

(a) α � 1, σ̂ � 3.5 (b) α � 1, σ̂ � 6

(c) α � 2, σ̂ � 3.5 (d) α � 2, σ̂ � 6

Figure 12.5.: Problem 12. Solution n and ψ at t � 0.
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(a) α � 1, σ̂ � 3.5 (b) α � 1, σ̂ � 6

(c) α � 2, σ̂ � 3.5 (d) α � 2, σ̂ � 6

Figure 12.6.: Problem 12. Solution n and ψ at t � 2.5 · 10−6.
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12. Consistent formulation

(a) α � 1, σ̂ � 3.5 (b) α � 1, σ̂ � 6

(c) α � 2, σ̂ � 3.5 (d) α � 2, σ̂ � 6

Figure 12.7.: Problem 12. Solution n and ψ at t � 5 · 10−6.
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13. Parameter estimation in organic
semiconductor devices

The results presented in this chapter are the main subject of [Afr+17].

Despite the technological progress in the field of organic electronics, many funda-

mental questions are still debated and there is a strong need for simple yet reliable

approaches to extract physical parameters from experimental measurements [Vri+13b].

The predictive accuracy of state-of-the-art continuum models for charge transport in

organic semiconductors is highlydependent on the accurate tuningof a set of parameters

whose values cannot be effectively estimated either by direct measurements or by first

principles. Fitting the complete set of model parameters at once to experimental data

requires to set up extremely complex multi-objective optimization problems whose

solution is, on the one hand, overwhelmingly computationally expensive, and on the

other it provides no guarantee of the physical soundness for the value obtained for

each individual parameter. In [Afr+17] we presented a step-by-step procedure that

enables to determine the most relevant model parameters, namely the density of states

width, the carrier mobility and the injection barrier height by fitting experimental data

from a sequence of relatively simple and inexpensive measurements to suitably devised

numerical simulations. At each step of the proposed procedure only one parameter

value is sought for, thus highly simplifying the numerical fitting and enhancing its

robustness, reliability and accuracy. As a case study we consider a prototypical n-type

organic polymer in section 13.1 and a p-type polymer in section 13.2. Very satisfactory

fittings of experimental measurements are obtained, and physically meaningful values

for the aforementioned parameters are extracted.

13.1. P(NDI2OD-T2)

13.1.1. Introduction

In [Mad+15] the authors showed that, by fitting CV measurements of MIS capacitors, it

is possible to extract the width of the DOS – assuming it is a superposition of Gaussian

functions – exploiting the sensitivity of CV curves to the semiconductor disorder degree
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Figure 13.1.: One-dimensional schematic of the MIS capacitor used for the analysis and

related energy levels.

[Sun+16]. By operating MIS capacitors at suitably low frequency, quasi-equilibrium is

ensured which implies that simulations can be performed in the static regime and

that phenomena specifically related to carrier transport are negligible in order to fit

experimental measurements, which leads to advantages in terms of both computational

cost and accuracy. In addition, theDOS extraction is disentangled from carrier transport

properties, which makes the fitting procedure substantially simpler and more robust.

If a DOS consisting of a single Gaussian provides a reasonable fit, the carrier mobility

can be predicted in the framework of the EGDM [Coe+05], and used to successfully fit

the transfer characteristic curves of OTFTs in the linear regime. The schematic of the

simulated and measured MIS capacitor is depicted in fig. 13.1.

The extraction of the DOS width requires the accurate knowledge of the device ge-

ometrical dimensions, of the insulator and semiconductor permittivities, of the total

density of available states and, most notably, of the ΦB between the bottom metal and

the semiconductor. The latter parameter is the one that suffers from the highest level of

uncertainty: indeed, metal-semiconductor interfaces are still a subject of debate in the

scientific community [OKH14]; due to the various phenomena which may be involved

(pillow effect, interface dipoles, charge transfer, chemisorption) the prediction of ΦB is

a hard task, and its measurement requires very dedicated equipment such as XPS/UPS

[Koc07] or Kelvin Probe [BSF09; BSF02; Bür+03].

The uncertainty in ΦB results in an uncertainty in determining the DOS width, as

shown in [Mad+15] and reported in fig. 13.2: for each value of ΦB a value for the

DOS width can be fitted. Unfortunately, the fittings obtained by varying ΦB are all of

comparable quality. The uncertainty is not negligible indeed: by varyingΦB from 1 [eV]
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Figure 13.2.: P(NDI2OD-T2). Dependence of the fitted Gaussian DOS width σ on the

injectionbarrierΦB. Thedot on the curve identifies theσvalue that simulta-

neously yields in the best fitting of OTFT transfer characteristic curves and

of MIS capacitor Capacitance-Frequency (CF) curves. Experimental data

are taken from [Mad+15] and refer toMIS capacitors based on the prototyp-

ical n-type polymer Poly{[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-

bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)} (P(NDI2OD-T2)).

down to 0.5 [eV], the DOS width reduces from about 3.5 [kBT] down to about 0.5 [kBT],
which appears to be a rather unphysical value.

In the present work we demonstrate that this uncertainty can be drastically reduced

by cooperatively exploiting MIS CV curves, MIS CF curves and OTFT transfer charac-

teristic curves in the linear regime. To this end, we have simulated out-of-equilibrium

conditions in the framework of the DD scheme. This enabled us to simulate the whole

CF curve of the MIS capacitor. In addition, in the modeling and fitting of OTFT transfer

characteristic curves we have taken into account the contact resistance in the context of

the current crowding regime [NC12; Jun+08].

As a case study we choose as in [Mad+15]. P(NDI2OD-T2), a printable, prototypical

n-type polymer with a high mobility, exceeding 1

[
cm

2
V
−1
s
−1]

when processed from

suitable pre-aggregating solvents [Buc+15; Yan+09]. We find that the best fit to CV, CF

and OTFT curves is obtained by assuming a Gaussian DOS width of 2.6 [kBT] and a
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barrier for electron injection from gold contacts of 0.54 [eV]. As to the former, the DOS

width turns out to be slightly (13%) smaller than the former prediction in [Mad+15].

As to the latter, ΦB is considerably smaller than the nominal barrier, which is as large

as 1 [eV] assuming that the LUMO lies at 4.0 [eV] and that the gold Fermi level lies at

around 5 [eV]. The origin of such a small value for the barrier, which has already been

postulated in other studies, is discussed.

13.1.2. Results and discussion

By fitting CV experimental data and assuming the nominal 1 [eV] barrier, we extract

σ � 3.5kBT (fig. 13.2). We note that this value is slightly (about 15%) larger than what

reportedpreviously [Mad+15]. Thedifference can be ascribed to themore accuratemod-

eling of the metal-semiconductor interface used in the present study, which accounts

for the Schottky barrier lowering effect as previously discussed in section 5.6.1. But by

fitting OTFT IV characteristics (see section 13.1.4.3) we obtain µ0,n ' 33

[
cm

2
V
−1
s
−1]

(fig. 13.3), which is a completely unphysical value for P(NDI2OD-T2), whose low-field,

low-density mobility should be around 10
−1 ÷ 10

−2 [
cm

2
V
−1
s
−1]

. The large difference

with respect to [Mad+15] arises because the OTFT fitting takes into account the effect

of RC in the framework of the current crowding model [NC12; Jun+08]. Also the con-

tact resistance value extracted, in the range of hundreds of [kΩ cm], is in contrast to

the literature value of tens of [kΩ cm] for P(NDI2OD-T2) transistors with gold contacts

[Cai+10]. With such a large barrier, contacts are poorly injecting: to compensate this

phenomenon and to fit the experimental OTFT transfer characteristic curves the algo-

rithm has to admit an exceedingly high value for µ0,n. Nonetheless, the transistor is

severely contact limited and the fitting very bad (see fig. 13.4). The nominal barrier

leads to results in contrast with experimental measurements also in the simulation of

the CF curve of the MIS capacitor. Results are reported in fig. 13.5 together with the

experimental curve. The simulated curve shows a low frequency region and a high

frequency region, separated by a transition region. In the former frequency region the

MIS capacitor operates in the quasi-equilibrium regime; it does not appear as a plateau

becausewith Poly(methyl methacrylate) (PMMA) dielectric εins is frequency-dependent

(in fact by simulating a CF curve with a constant εins at low frequency a flat curve would

be obtained, see fig. 13.6). A neater information can be gained by looking at the phase

of the carrier density at the semiconductor-insulator interface, reported in fig. 13.7 (its

modulus is shown in fig. 13.8): at low frequency the phase is 0, implying that the ac-

cumulated channel is able to follow the modulation imposed by the small sinusoidal

signal on the gate; but when the frequency raises, a local minimum occurs in ∠n(0),
followed by a strong decrease, indicating that the channel lags behind the sinusoidal
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Figure 13.3.: P(NDI2OD-T2). Low-field, low-density mobility µ0,n (top) and contact re-

sistance RC (at Vgate � +35 [V], bottom), for different values of the injection

barrier ΦB. The dots on the curves identify the ΦB value that simultane-

ously yields in the best fitting of OTFT transfer characteristic curves and of

MIS capacitor CF curves.

modulation.

We choose the CF curve inflection point as the demarcation frequency between the

quasi-equilibrium and the out-of-equilibrium regions (see inset of fig. 13.5). With a

barrier of 1 [eV] the simulated curve does not reproduce the experimental one: the

former has an inflection point of about 10 [kHz], the latter an inflection point that, albeit

not clearly resolved in the measurement, is for sure in excess of 100 [kHz].
It is consequently clear that the nominal barrier does not produce consistent results

either in terms of OTFT contact resistance or in terms of MIS capacitor CF curves, and

that the real Au-P(NDI2OD-T2) interface has to be indeed more effective in injecting

charge carriers.

We then tried to reduce ΦB. For each value of ΦB, a value of σ is extracted by fitting

CV curves; related values for µ0,n and for the RC are obtained from OTFT measure-

ments and a new CF curve is simulated. The extracted DOS width is an increasing

function of ΦB. In fact, the smaller the barrier, the larger the concentration of carri-

ers at the metal-semiconductor interface. The population of thermal carriers close to
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Figure 13.4.: P(NDI2OD-T2). Comparison between experimental (red) and simulated

OTFT transcharacteristics. Simulated curves are shown for the nominal

barrier valueΦB � 1 [eV] (green) and the extracted optimumΦB � 0.54 [eV]
(blue). The simulation with the nominal barrier results in a severely

contact-limited transistor, in fact the transfer characteristic curve becomes

flat for high values of Vgate.

the metal-semiconductor interface interferes with the gate attraction of charge close to

semiconductor-insulator interface, thus making the CV curve less steep. This effect

is sizable because the semiconductor film is relatively thin. Therefore, in order to fit

experimental data, the smaller ΦB, the smaller σ.

As expected, the reduction of ΦB fixes the aforementioned problems. The low-field,

low-density carrier mobility is an increasing function ofΦB and lies in the correct range

(µ0,n ' 10
−1 ÷ 10

−2 [
cm

2
V
−1
s
−1]

) for ΦB < 0.8 [eV]. The contact resistance RC is an

increasing function of ΦB (see figs. 13.3 and 13.9), and for barriers lower than about

0.6 − 0.7 [eV] it lies in the expected range of tens of [kΩ cm]. RC becomes independent

of ΦB for ΦB < 0.55 [eV], since it starts to be dominated and limited by carrier mobility

rather than by carrier injection. As to CF curves, the inflection frequency is a decreasing

function of ΦB: its dependence on ΦB is correlated with the dependence of RC on ΦB,

meaning that the capacitor is contact limited rather than transport limited. A good

agreement with experimental data is obtained for barriers smaller than about 0.6 [eV].
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Figure 13.5.: P(NDI2OD-T2). CF curves in the accumulation regime (Vgate � +35 [V]), for
different values of the injection barrierΦB. The inset shows the dependence

of the inflection frequency on ΦB. Experimental CF characteristics shown

for comparison (cyan diamonds).

Unfortunately by looking at the dependence of CV and CF curves on ΦB, only an

upper bound for ΦB can be found, but an optimum value for the barrier cannot be

identified. Firstly, the various CV curves are all of comparable quality. In fact, the

fitting procedure minimizes the distance between the peaks of measured and simulated

dC/dV curves. Irrespective ofΦB, fittings are very good: peak distances (see fig. 13.10)

are comparable for all the barrier values (being almost 3 orders of magnitude smaller

than the peak heights themselves) and a clear minimum is not present. Secondly, the

relative error between simulated and experimental CF curves is an increasing function

ofΦB but saturates forΦB < 0.6 [eV] (see fig. 13.11). This occurs because CF curves tend

to become independent of ΦB for ΦB < 0.55 [eV] and the inflection frequency tends to

saturate at about 5 [MHz]. The situation is further complicated by the fact that in the

very range of barrier values which is giving the best agreement between experimental

and simulated CF curves and the most plausible value for RC, viz. ΦB < 0.6 [eV],
the dependence of the DOS width on the barrier becomes very steep and hence the

uncertainty on σ very large.

To identify the optimal barrier valuewe take advantage ofOTFT transfer characteristic
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Figure 13.6.: P(NDI2OD-T2). CF characteristic at the optimal barrier ΦB � 0.54 [eV],
simulated with a constant insulator permittivity εins.

curves. These latter are sensitive to the DOS disorder degree through the dependence

of the mobility on the carrier density: the higher is σ, the stronger the dependence of

µ on the carrier density, the higher the (positive) curvature of transfer characteristic

curves. If we look at the fit residuals of the experimental transfer characteristic curves,

reported in Figure 13.12, it can be appreciated that two relative minima exist: one for

ΦB � 0.7 [eV] and one for ΦB � 0.54 [eV]. The former can be excluded because for a

barrier of 0.7 [eV] the simulated CF curve does not reproduce the experimental one,

while the latter value lies in the region where CF curves fit the experimental curve and

where µ0,n and RC values are in agreement with the literature. The DOS width turns

out to be 2.6 kBT and µ0,n ' 4 × 10−2
[
cm

2
V
−1
s
−1]

.

With respect to the results reported in [Mad+15], the DOS width is slightly (about

15%) reduced and µ0,n 30% larger.

The optimum value for ΦB of 0.54 [eV] is sizeably smaller than the nominal barrier

which assumes for gold a work function of 5.0 [eV]. But this latter value indeed refers

to an atomically clean gold surface. In this case, the gold contact is solvent cleaned

and processed in ambient air. As a consequence hydrocarbons are adsorbed on the

gold surface, and reduce the metal surface dipole (which significantly contributes to the

work function) bymeans of the so-called push-back effect. It has been demonstrated that
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Figure 13.7.: P(NDI2OD-T2). Phase of the carrier density at the semiconductor-insulator

interface ∠n(0) in the accumulation regime (Vgate � +35 [V]), for different
values of the injection barrier ΦB.

in polymer-gold interfaces gold behaves as it had an effective work function of 4.5 [eV]
[BSF09]. With a P(NDI2OD-T2) LUMO level of 4.0 [eV] and considering such effective

gold work function, the value forΦB of 0.54 [eV]we extract is perfectly conceivable.

13.1.3. Conclusions

Experimental CV curves of a MIS capacitor in quasi-equilibrium can be equally well

fitted by a relatively large set of values for the DOS width σ and for the Schottky

barrierΦB. This occurs because a small barrier produces – to a certain extent – the same

smoothing effect on the CV curve of a large DOSwidth. As a consequence, uncertainties

onΦB result in uncertainties on determining σ.

But if the dynamic, out-of-equilibrium behavior of the MIS capacitor and the transfer

characteristic curve in the linear regime of the OTFT are additionally considered, such

uncertainty can be drastically reduced. Based on the above considerations we presented

a step-by-step procedure to determine the values of the DOS width σ, of the injection

barrier ΦB and of the low-field, low-density mobility µ0,n. In the first step a coarsely

spaced set of possible values for ΦB is selected and for each of those values σ and µ0,n
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Figure 13.8.: P(NDI2OD-T2). Modulus of the carrier density at the semiconductor-

insulator interface |n(0)| in the high accumulation regime (Vgate � +35 [V]).

are determined by fitting CV curves for a MIS device and the transfer characteristics of

an OTFT device respectively. This first step is performed using the fitting procedure

defined in [Mad+15], but with a refined model for metal-semiconductor interfaces

including field induced barrier lowering. Once the values of σ and µ0,n corresponding

to each assumed value of the barrier height ΦB are known, the CF curves of the MIS

device can be simulated. These latter simulations can be used to restrict the range of

acceptable ΦB values by eliminating those values for which the frequency response of

the device is inconsistent with respect to experiments. The set of candidate values for

ΦB within this restricted range is refined and the best fitting value is selected based on

the residual of the least-squares distance of experimental to numerical curves.

When applied to the prototypical n-type polymer P(NDI2OD-T2), the proposed strat-

egy results in a value for σ of 2.6kBT, for µ0,n of 4 × 10
−2 [

cm
2
V
−1
s−1

]
and for ΦB

of 0.54 [eV]. In particular, this latter can be rationalized considering that the polymer

LUMO lies at 4.0 [eV] and the gold work function, taking into account its contamination

by ambient air hydrocarbons, lies at 4.5 [eV]. This barrier permits to correctly estimate

the OTFT contact resistances and to nicely reproduce MIS capacitor CF curves.

We expect that a wide class of materials can be analyzed using the proposed method.

Firstly, the involved experimental setup and electrical measurements are simple, requir-
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Figure 13.9.: P(NDI2OD-T2). Sheet resistance Rsh, access resistance Ry and the resulting

contact resistance Rc, extracted at Vgate � +35 [V] for different values of the
injection barrier ΦB. The dots on the curves identifies the ΦB value which

simultaneously yields in the best fitting of OTFT transfer characteristic

curves and of MIS capacitor CF curves.

ing the characterization of the capacitance as a function of frequency in MIS structures

and linear transfer characteristics in OTFTs. The requisite on the patterning of the

semiconductor in MIS capacitors does not hamper the method applicability: indeed, in

this work we have met this requirement through a subtractive, wet-based approach, but

should the associated chemistry prove harmful for the semiconductor, other solutions

could be devised, such as subtractive, dry etching (e.g. laser patterning) or additive

deposition. Secondly, the fitting procedure relies on the description of the DOS as a

single Gaussian and of carrier transport according to the analytical formulation given in

the framework of the EGDM; in case the spatial correlations are shown to be significant,

the closely-related Extended Correlated Disorder Model (ECDM) [Bou+09] could be

implemented as well. As to the DOS shape, it has been recognized that only a DOS

steeper than the exponential can reproduce the experimentally-observed mobility in-

dependence on carrier density at low concentration [Bar14]. Actually, the experimental

critical concentration at which the mobility starts to show density-dependence can only

be explained assuming a DOS shape very close to the Gaussian one [OHB12]. In general
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Figure 13.10.: P(NDI2OD-T2). Distance between the peaks of measured and simulated

dC/dV curves at different values of the injection barrier ΦB.

terms, it is possible that a single energy scale cannot effectively describe the real DOS

(due to the superposition of inhomogeneously broadened, electronically inequivalent

molecular states) [Bar14], as we actually verified for a recently synthesized n-type poly-

mer [Sun+16] that required two Gaussians in order to satisfactorily fit CV curves. In

such case, to our knowledge, neither the EGDM nor any other analytical model is able

to accurately describe carrier transport. As to the EGDM, we implemented the compact,

analytical form for the mobility that is the result of a 1D parametrization of a 3D numer-

ical modeling based on theMaster Equation approach. As a consequence, we inherit the

limits of such parametrization: the disorder parameter σ cannot substantially exceed

about 8kBT [CB12], so that highly disordered materials are excluded. In addition, the

model accuracy diminishes at very high concentrations (above 0.1N0) and fields (above

2σ/qa, with a the inter-site distance) [VC08], but this has no actual impact: the highest

carrier concentration in MIS structures does not exceed a few 0.001N0, and longitudinal

fields are in the range of a few thousands of 2σ/qa in OTFTs biased in the linear regime.

Thirdly, thanks to the propermodeling of themetal-semiconductor interface, there is no

strict need for a perfectly ohmic contact as long as thewidth of the quasi-static frequency

plateau of the MIS capacitor is sufficiently large to be easily measured and identified.

To summarize, the combined exploitation ofMISCVandCF curves andOTFT transfer
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Figure 13.11.: P(NDI2OD-T2). Relative error between experimental and simulated CF

characteristics for each barrier valueΦB.

characteristic curves, enables the simultaneous assessment of the width of the Gaussian

DOS, of the carrier mobility and of the metal-semiconductor injection barrier. The pos-

sibility to extract these three quantities by means of simple electrical measurements is

extremely valuable, especially considering that the assessment of injection barriers usu-

ally requires dedicated and non-trivial experimental setups. The presented approach

can thus easily empower a more detailed knowledge of organic semiconductors and

foster further fundamental studies.

13.1.4. Methods

13.1.4.1. Experimental

Experimental data have been taken from [Mad+15], where MIS capacitors were devel-

oped by spin-coating P(NDI2OD-T2) upon a gold bottom contact. The semiconductor

was patterned [Cha+10] to suppress the spurious effect of lateral carrier spreading

[TA08; Ull+09; Jun+07]. PMMA was then spin coated as insulator and Aluminum was

evaporated as gate contact. MIS capacitors were measured by means of an Agilent

E4980A Precision LCR Meter, applying to the gate an oscillation amplitude of 100 [mV]
of variable frequency superimposed to a biasing constant voltage.
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Figure 13.12.: P(NDI2OD-T2). Residual of the least-squares fit of the OTFT transfer

characteristic curves with contact resistance effects taken into account, at

different values of the injection barrier ΦB. The solid line represents the

range of barrier values that correspond to acceptable CF curves, as shown

in fig. 13.5, while the dotted line is used for the range of barrier height

values for which it is not possible to fit experimental CF curves and thus

are to be considered unacceptable.

On the same substrate OTFTs were realized in a staggered, top-gate bottom-contact

configuration with gold source and drain contacts and Al gate and a channel width and

length of 10 [mm] and 10

[
µm

]
. Transfer characteristic curves were measured applying

a drain-to-source voltage of 5 [V] bymeans of Agilent B1500A Semiconductor Parameter

Analyzer.

13.1.4.2. Models for Numerical Simulations

Charge transport in the considered devices is modeled, in transient regime, by the

Drift-Diffusion model presented in section 6.1.

Transient simulations are used to compute the voltage and frequency dependence of

the small-signal capacitance of the MIS capacitor, according to the numerical methods

presented in section 6.3. The DD model features that are more important for this study
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Insulator

Semic.Source Drain

Gate

VDS

Vg
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Rsh

Figure 13.13.: Sketch of the OTFT under current crowding effects.

are: i) theboundary condition representing charge injection through theSchottkybarrier
at the metal-semiconductor interface, and ii) the dependence of the mobility and of the

diffusion coefficient on theDOSwidth. While useful for computing the capacitance over

a wide range of frequencies, the full DD model turns out to be of too high complexity

and of insufficient numerical accuracy for efficiently fitting measured low-frequency

CV curves. For this reason the NLP model, described in section 6.2, which includes an

accurate description of the contact injection barrier with respect to the previous work

[Mad+15] and is therefore fully consistent with the zero-frequency limit of the complete

DD model, was simulated.

The latter extended NLP model naturally describes the effect of the deviation from

Einstein’s relation but, as it is derived for the quasi-static regime, it does not require to

model the mobility coefficient.

13.1.4.3. Modeling the OTFT

We will describe hereafter the models used for computing the transfer characteristics

curve of the OTFT, shown in fig. 13.13, in a one-dimensional setting.

Once the DOS width σ has been extracted by fitting static CV curves, the low-field,

low-densitymobility µ0,n canbedeterminedby computingOTFT transfer characteristics
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13. Parameter estimation in organic semiconductor devices

in the linear regime. The drain-to-source current is expressed as

IDS(Vgate) �
VDS

Rtot(Vgate)
,

where VDS is the potential drop across the channel and Rtot is the total device resistance,

accounting for both the channel and the contact resistance contributions:

Rtot � Rch + RC,

where the channel resistance Rch is given by:

Rch �

[
W

L

∫
Ωsemic

qµnn

]−1
, (13.1)

W and L being the channel width and length respectively. As for RC, we followed the

physical description provided in [NC12; Jun+08] in the framework of current crowding

regime. By considering the contributions due to the current flowacross the accumulated

channel and along the semiconductor layer, characterized by a sheet resistance Rsh and

a resistance per unit area Ry respectively, the contact resistance is computed as:

RC �
Ry

WL0 tanh(Lov/L0)
,

where Lov is the overlap length between the gate and the source-drain electrodes, L0 �√
Ry/Rsh and

Rsh �

(∫
Ωsemic

qµnn

)−1
,

Ry �

∫
Ωsemic

(
q µnn

)−1
,

(13.2)

(13.3)

where Ωsemic is the semiconductor region of the computational domain.

The integrand functions in equations (13.1), (13.2), (13.3) are computed by simulat-

ing, as highlighted in fig. 13.13, two different one-dimensional vertical cross-sections

corresponding to the middle of the channel (Rch, Rsh) and to the source contact (Ry)

respectively.

The mobility coefficient µn(z) is expressed through the EGDM model (5.24), where

the enhancement factors g1(n) and g2(E) (E � VDS/L is the drain-to-source field) can

be easily computed once σ is known, as described in section 5.5. Therefore, the total
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13.2. PBTTT

current IDS is known up to the multiplicative constant µ0,n, which is then extracted by

fitting numerical and experimental IV curves through a least-squares procedure. The

fitting residual has been exploited to determine the optimal value of ΦB, as shown in

fig. 13.12.

13.2. PBTTT

The parameter estimation procedure described in the previous section was also tested

to characterize the physical properties of the p-type Poly(2,5-bis(3-tetradecylthiophen-

2-yl)thieno[3,2-b]thiophene) (PBTTT) semiconductor, starting from experimental data

on a MIS capacitor and an OTFT based on this polymer.

Experimental data taken from [Mad+15] would lead to estimate a nominal injection

barrierΦB � 0.9 [eV]. As described in the previous section, the uncertainty in determin-

ing a physically meaningful value of ΦB affects other physical properties as obtained

by fitting the MIS experimental CV curve, which leads to the dependence of σ and the

contact resistance RC on ΦB shown in figs. 13.14 and 13.15 respectively.

5.1	kBT

σ	
[k

B
	T

]

2

3

4

5

6

7

8

9

ΦB	[eV]

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 13.14.: PBTTT. Dependence of the fitted Gaussian DOS width σ on the injection

barrierΦB. The dot on the curve identifies the σ value that simultaneously

yields in the best fitting of OTFT transfer characteristic curves and of MIS

capacitor CF curves.
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Figure 13.15.: PBTTT. Contact resistance RC (at Vgate � +35 [V]) for different values of
the injection barrierΦB. The dots on the curves identify theΦB value that

simultaneously yields in the best fitting of OTFT transfer characteristic

curves and of MIS capacitor CF curves.

However, the uncertainty can be reduced by fitting IV transfer characteristics of the

OTFT. The procedure yields to the residual in fig. 13.16 that has a uniqueminimum, cor-

responding to the optimal barrier valueΦB � 0.58 [eV] and, accordingly, σ � 5.1kBT and

µ0,n � 7.84 · 10−8
[
cm

2
V
−1
s
−1]

. The resulting fitted IV curve, compared to experimental

data, is shown in fig. 13.17.

In this case experimental CF curves are limited to a narrow range of frequencies.

Therefore, the validation of the values extracted is not as clear as in the case of

P(NDI2OD-T2) since both thenominal and the optimal set of parameters seem toprovide

a good agreement to experimental measurements, as reported in fig. 13.18. Anyhow,

the ratio between the capacitance computed in the accumulation and in the depletion

regime shows that the nominal barrier leads to a capacitance drop at a low frequency

of about 10
3 [Hz] that is not seen in experimental data, while the optimal barrier results

in a plateau extending to a range that perfectly matches the one seen in experiments.
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Figure 13.16.: PBTTT. Residual of the least-squares fit of theOTFT transfer characteristic

curveswith contact resistance effects taken into account, at different values

of the injection barrier ΦB.
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Figure 13.17.: PBTTT. Comparison between experimental (red) and simulated OTFT

transcharacteristics at the optimal barrier value ΦB � 0.58 [eV].
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Figure 13.18.: PBTTT. CF curves in the accumulation regime (Vgate � +35 [V]), the
depletion regime (Vgate � −15 [V]) and normalized, computed for the

nominal injection barrier ΦB � 0.9 [eV] and for the optimal barrier ΦB �

0.58 [eV]. Experimental CF characteristics shown for comparison.
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14. Stationary 2D simulations of OTFTs

The equilibrium model presented in section 6.2 has been used to simulate the OTFT

geometry for different applied gate voltages Vgate in the interval [−5V , 20V].
Figure 14.1 shows the solution to the NLP equation and the corresponding adapted

mesh at Vgate � −5 [V], while results corresponding to different gate voltages are dis-

played in fig. 14.2.

(a) Solution ϕ at gate voltage Vgate � −5 [V]. (b) Initial mesh at gate voltage Vgate �

−5 [V].

Figure 14.1.: Problem 14. Solution and mesh at gate voltage Vgate � −5 [V].

The previous results have been used to compute the device capacitance, in fig. 14.3.

The figure shows the comparison of the CV curve simulated using the adaptation

procedure and a uniform mesh with about 6 · 104 degrees of freedom, that empirical

evidence has proved to be the coarsest possiblemesh required to reach the specified level

of accuracy. The benefits provided by the adaptivemesh in terms of computational costs

are noticeable: the same level of accuracy in the computation of the CV curve can be

attained with about 75% less degrees of freedom by taking advantage of the adaptation

algorithm.

Numerical simulations have also been exploited to compute themid-channel potential

shown in fig. 14.4, that is the electric potential ϕ evaluated at the semiconductor-
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14. Stationary 2D simulations of OTFTs

(a) Solution ϕ at gate voltage Vgate � −2.5 [V]. (b) Adapted mesh at gate voltage Vgate �

−2.5 [V].

(c) Solution ϕ at gate voltage Vgate � −0.7 [V]. (d) Adapted mesh at gate voltage Vgate �

−0.7 [V].

(e) Solution ϕ at gate voltage Vgate � 20 [V]. (f) Adapted mesh at gate voltage Vgate �

20 [V].

Figure 14.2.: Problem 14. Solution ϕ and adapted meshes computed at different gate

voltages.
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Figure 14.3.: Problem 14. Comparison of the CV curve simulated using uniform and

adaptive meshes.
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Figure 14.4.: Problem 14. Mid-channel potential for different applied gate voltages.

substrate interface, i.e. the midpoint of the substrate between the source and drain

contacts. The results confirm that the assumptions made in chapter 13 to compute

the OTFT IV curve based on 1D models is verified, since the midpoint potential in the

accumulation regime – i.e.when current actually flows – is constant with respect to the

applied gate voltage.
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15. Transient 2D simulations of OTFTs

Once the application of the procedure illustrated in chapter 13 has provided the intrin-

sic parameters of an OTFT, transient simulations of the full DD system presented in

section 6.1 can be performed in a predictive fashion to understand the device behavior

under specific working regimes.

This chapter aims at presenting the results of the simulation of an OTFT to reproduce

the same setting used for the experimental computation of the transfer characteristic

curve. Let the simulation timespan be the interval (0, 350s]. The gate and the drain

contacts are connected to ramp voltage generators: firstly, the desired drain voltage of

5 [V] is applied through

VD(t) �


0, t ∈ (0, 50],

5 · t − 50
100

, t ∈ [50, 150],

5, t ∈ [150, 350].

Then, the gate voltage is increased up to 50 [V]:

Vgate(t) �


0, t ∈ (0, 200],

50 · t − 200
100

, t ∈ [200, 300],

50, t ∈ [300, 350].

The source contact is kept grounded, i.e. VS(t) � 0.

The considered geometry is the one depicted in fig. 13.13, where both the contact and

channel length are set equal to 10

[
µm

]
. The computational domain is further extended

from both sides of an additional 10

[
µm

]
length accounting for the fingered structure

of a realistic OTFT, as in fig. 3.1.

The computed electric potentialϕ and electron densityn in the semiconductor region

at t � 150, i.e. when VD � 5 [V] and Vgate � 0 [V], are shown in fig. 15.1: under such

conditions, the channel is pinched off as the region surrounding the drain contact is

depleted of carriers – the minimum electron density is of about 10
−58 [

m
−3]

– and the

transistor is still off.
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15. Transient 2D simulations of OTFTs

(a) Electric potential ϕ [V]. (b) Electron density n
[
m
−3]

.

Figure 15.1.: Problem 15. Solution at VD � 5 [V], Vgate � 0 [V]. Only the semiconductor

region is shown.

(a) Electric potential ϕ [V]. (b) Electron density n
[
m
−3]

.

Figure 15.2.: Problem 15. Solution at VD � 5 [V], Vgate � 5 [V]. Only the semiconductor

region is shown.
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A channel is created by increasing the gate voltage to a value Vgate > VD + VT that

turns the transistor on, VT being the threshold voltage described in section 3.1: as shown

in fig. 15.2 the charge carrier concentration in the lateral region next to the drain contact

grows up to a value of about 10
19

[
m
−3]

. The transition between these two regimes

is delicate from a numerical perspective, as dealing with a variation of n of about 77

orders of magnitude demands for a remarkably robust scheme.

The current flow in the OTFT can be tuned by properly adjusting the gate voltage: the

computed ϕ, n and the vector field Jn for Vgate � 15.5 [V] and Vgate � 50 [V] are shown

in figs. 15.3 and 15.4, respectively. Such results provide a numerical proof of the current

crowding phenomenon: the current flow originating to/from the source/drain contacts

is non-negligible only in correspondence of thin regions alongside the channel. It is also

remarkable that the crowding is asymmetric, as it is restricted to amuch narrower region

at the drain side rather than at the source contact.

Due to the thinness of the semiconductor film, the channel depth extends far beyond

the semiconductor-insulator interface, as a non-negligible drain-to-source current flows

also at the substrate. We also remark that the zero normal current condition at the

interface is matched.

Finally, at the drain side the current vanishes at a short distance from the channel,

which is not the case at the source side. This suggests that electrons, going in the

opposite way as the current density Jn, follow a path that extends also beyond the

source contact: a carrier moving from the source contact towards the semiconductor-

insulator interface initially gets driven away from the channel. Then, when close to the

interface, the electron turns back and moves parallel to the interface to reach the drain

region, where it is collected by the drain contact.
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15. Transient 2D simulations of OTFTs

(a) Electric potential ϕ [V]. (b) Electron density n
[
m
−3]

.

(c) Current density Jn
[
A ·m−2

]
, colored based on its modulus.

Figure 15.3.: Problem 15. Solution at VD � 5 [V], Vgate � 15.5 [V]. Only the semiconduc-

tor region is shown.
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(a) Electric potential ϕ [V]. (b) Electron density n
[
m
−3]

.

(c) Current density Jn
[
A ·m−2

]
, colored based on its modulus.

Figure 15.4.: Problem 15. Solution at VD � 5 [V], Vgate � 50 [V]. Only the semiconductor

region is shown.
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16. Conclusions and future work

In this Ph.D. thesis we have addressed the problem of mathematical modeling and

numerical simulating organic semiconductor devices, with a particular focus onOrganic

Thin-Film Transistors (OTFTs), a key component for electronic circuits.

Theapplicative relevance and impact of the aboveambitionhaspromptedour research

towards

1. deriving an accurate mathematical description of the several complex physical

phenomena involved in charge transport in organic semiconductors;

2. proposing and implementing robust, stable, accurate and high-performance nu-

merical schemes for the analysis of the proposed models on the solution of both

academic and application-motivated test problems.

More specifically, the first issue has been addressed by embracing state-of-the-art

differential models describing charge transport in the devices under consideration. In-

deed, accurate models of the physics of energy barrier lowering and charge injection

at metal-semiconductor interfaces and constitutive relations that are representative of

the molecular disorder of organic semiconductor materials have been included in the

framework of the DD equations. Moreover, we have derived a hierarchy of mathe-

matical formulations that has been shown to provide a consistent representation of the

considered physical systems under equilibrium, transient and time harmonic regimes

of operation. The DD system has been coupled with a proper additional algebraic

equation to be solved for the enhancement potential that provides discrete consistency.
Dealing with the peculiarities of charge transport in OTFTs, such as the disordered

morphology and energetic structure, and with the typically extreme form-factors of

such devices constituted a challenge demanding high level of accuracy and properties

of robustness and stability for the schemes employed in the numerical treatment of

the systems under analysis. In this regard, we have presented a modification of the

Scharfetter-Gummel discretization method, relying on the above mentioned enhance-

ment potential, that has been shown to provide discrete consistence with the thermo-

dynamic limit for arbitrary DOS shapes – even those that don’t match with the classical

Einstein relation. This scheme satisfies in particular a discrete maximum principle that
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16. Conclusions and future work

makes it positivity-preserving, as required by the constraint of non-negative electron

density. This strategy has been combined with an adaptive time-advancing scheme and

a robust linearization method.

The need to account for a set of inherently multi-dimensional phenomena – namely

the non-planarity of semiconductor-insulator interfaces (due to the solution processing

of the materials), parasitic capacitances (due to the coupling between metal layers), the

bending of energy bands at the semiconductor-substrate interface away from contacts

and the contact resistance (due to current-crowding effects) – has motivated the exten-

sion of the above described numerical scheme to 2D geometries onmeshes of quadtrees.

The accuracy has also been increased by deriving a new recovery metric-based mesh

adaptation procedure.

In the framework of HPC, the goal of achieving extreme scalability has driven the

development of an efficient, parallel, scalable finite element code that has resulted in

the in-house software bim++, a high-level C++ interface to p4est, the dynamic back-end

manager of quadtree data structures.

Despite our endeavors, not all possible issues concerning the mathematical modeling

in the field of organic semiconductor devices have been settled. The presented work

still warrants for further extensions.

First of all, the implementation of a DD code performing out-of-equilibrium 2D

numerical simulations with automatic mesh adaptation is still a delicate task from a

robustness perspective.

Moreover, the boundary condition imposed at metal-semiconductor interfaces, as

described in section 5.6.1, suffers from coefficient discontinuities arising from extending

physical models that are known to be valid only in asymptotic regimes also to transition

regions. This justifies a deeper investigation of the physical phenomena involved in

correspondence of such interfaces. In particular, amultiscale coupling of the DD system

with a molecular model at the interface is desirable.
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