
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

DYNAMIC APPLICATION AUTOTUNING FOR

SELF-AWARE APPROXIMATE COMPUTING

Doctoral Dissertation of:
Davide Gadioli

Supervisor:
Prof. Gianluca Palermo

Co-Advisor:
Prof. Cristina Silvano

Tutor:
Prof. Andrea Bonarini

The Chair of the Doctoral Program:
Prof. Andrea Bonarini

Year 2019 – Cycle XXX

Abstract

IN the autonomic computing context, we perceive the system as an en-
semble of autonomous elements capable of self-managing, where end-
users define high-level goals and the system shall adapt to achieve the

desired behaviour. This runtime adaptation creates several optimisation op-
portunities, especially if we consider approximate computing applications,
where it is possible to trade off the result accuracy and the performance.
Given the power consumption limit on modern systems, autonomic com-
puting is an appealing approach to increase the computation efficiency.

I divided this PhD thesis into three main sections. The first section fo-
cuses on a dynamic autotuning framework, named mARGOt, which aims
at enhancing the target application with an adaptation layer to provide self-
optimisation capabilities at the production phase. In this context, the end-
user might specify complex high-level requirements, and the proposed ap-
proach automatically tunes the application accordingly.

The second section evaluates the mARGOt framework, by leveraging
its features in two different scenarios. On the one hand, we evaluated the
orthogonality between resource managers and application autotuning. On
the other hand, we proposed an approach to enhance the application with a
kernel-level compiler autotuning and adaptation layer in a seamless way for
application developers. The third section focuses on two application case
studies, showing how it is possible to significantly improve computation
efficiency, by applying approximate computing techniques and by using
mARGOt to manage them.

I

Contents

1 Introduction 1
1.1 Thesis Motivations . 2
1.2 Thesis Contributions . 3
1.3 Thesis Outline . 4

I The proposed framework 7

2 Previous work 9
2.1 Background and definitions 9
2.2 Application autotuning . 11

2.2.1 Static autotuning frameworks 11
2.2.2 Dynamic autotuning frameworks 13

2.3 Comparison with the state-of-the-art 18
2.3.1 What are the metrics of interest? 18
2.3.2 How does it react to changes during the application

evolution? . 19
2.3.3 Is it able to leverage input features? 21
2.3.4 What is the integration effort? 22

2.4 Summary . 23

3 Dynamic Autotuning Framework 25
3.1 Framework overview and problem definition 25
3.2 Application knowledge . 27
3.3 Monitors module . 28

III

Contents

3.4 Application Manager . 30
3.5 On-line Design Space Exploration 33

3.5.1 Design of Experiment 35
3.5.2 The learning module 36
3.5.3 Model validation and selection 38

3.6 Integration in the target application 38
3.7 Summary . 43

4 Experimental evaluation 45
4.1 Evaluating the framework overheads 46
4.2 Evaluating the reaction mechanisms 48

4.2.1 Integration effort . 51
4.3 Evaluating the proactive adaptation 53

4.3.1 Integration effort . 56
4.4 Evaluating the online learning module 56

4.4.1 Model validation . 56
4.4.2 Molecular docking case study 58
4.4.3 Integration effort . 61

4.5 Summary . 62

II Framework exploitation 63

5 Evaluating Orthogonality between Application Autotuning and Re-
source Management 65
5.1 Introduction . 65
5.2 Background . 67
5.3 Methodology . 68
5.4 Experimental Setup . 70

5.4.1 Definition of metrics 70
5.4.2 Definition of dynamic workload 71
5.4.3 Platform description 71
5.4.4 Run-Time Management description 72

5.5 Experimental Results . 74
5.5.1 Application Auto-Tuning Results 74
5.5.2 Dynamic Workload Results 75
5.5.3 Evaluating RTM Strategies 77

5.6 Summary . 80

IV

Contents

6 A Seamless Online Compiler and System Runtime Autotuning Frame-
work 81
6.1 Introduction . 81
6.2 Background . 82
6.3 Proposed Methodology . 83

6.3.1 Reducing the compiler space complexity 84
6.3.2 Integration issues 86

6.4 Experimental Results . 87
6.5 Summary . 90

III Application case studies 93

7 Tuning a Server-Side Car Navigation System 95
7.1 Introduction . 95
7.2 Background . 97
7.3 Monte Carlo Approach for Probabilistic Time-Dependent Rout-

ing . 99
7.4 The Proposed Approach 102

7.4.1 Unpredictability Feature 105
7.4.2 Error Prediction Function 105

7.5 Integration Flow . 106
7.6 Experimental Results . 111

7.6.1 Training the Model 112
7.6.2 Validation Results 114
7.6.3 Comparative Results with Static Approach 116
7.6.4 Overhead Analysis 119
7.6.5 System-Level Performance Evaluation 120

7.7 Summary . 122

8 Tuning a Molecular Docking application 123
8.1 Introduction . 123
8.2 Background . 126
8.3 Methodology . 127

8.3.1 Application Description 127
8.3.2 Analysis of GeoDock-MA 128
8.3.3 Exposing Tunable Application Knobs 132
8.3.4 Application Autotuning 136

8.4 Experimental Setup . 139
8.4.1 Data Sets . 139
8.4.2 Metrics of Interest 139

V

Contents

8.4.3 Target Platform . 140
8.5 Experimental Results . 140

8.5.1 Data Dependency Evaluation 140
8.5.2 Trade-off Analysis 142
8.5.3 Time-to-solution Model Validation 144
8.5.4 Use-case Scenarios 145

8.6 Summary . 147

9 Conclusions 149
9.1 Main contributions . 149
9.2 Recommendation for future works 151

Publications 153

Bibliography 157

VI

CHAPTER1
Introduction

With the end of Dennard scaling [1], power consumption limits the per-
formance of modern systems. For this reason, there is a trend to shift the
optimisation focus toward energy efficiency in a wide range of scenarios,
not only related to embedded systems but also related to high-performance
computing (HPC) [2].

Among all the possible directions that promise to improve the compu-
tation efficiency of a system, this thesis focuses on two approaches at the
software layer. On the one hand, when application developers write the
source code, the best practice is to expose implementation parameters that
alter the extra-functional properties of the application, such as execution
time or power consumption. We have algorithm-agnostic parameters, such
as the number of software threads, the dimension of communication buffers
or the tile size in a loop; but we also have algorithm-specific parameters that
alter the procedure to obtain the result, such as the compression factor in an
image converter application. In literature, these parameters are also named
software-knobs, since a change on their value leads to a change in the extra-
functional properties as well. If it is possible to change their configuration
at runtime, they are named dynamic knobs [3].

On the other hand, several approaches aim at finding good enough re-

1

Chapter 1. Introduction

sults for the end-user, thus saving the unnecessary computation effort, im-
proving efficiency. In literature, this approach is named approximate com-
puting. A large class of applications implicitly expose software-knobs at
algorithm-level to find accuracy-throughput tradeoffs. They might found
especially in multimedia [4] and whenever it is possible to use approxima-
tion techniques such as loop perforation [5] or task skipping [6]. Since ap-
proximate computing can significantly increase the application throughput
by decreasing the result accuracy [7], several works in literature investigate
the possibility to use also approximate hardware accelerators [8, 9].

Among the implications of this trend, the application requirements are
increasing in complexity. Due to the tradeoffs created by using software-
knobs and approximate computing, the end-user might have complex re-
quirements which involve extra-functional properties (EFPs) in conflict with
each other, such as power consumption, throughput, and accuracy. More-
over, these extra-functional properties might depend on the actual inputs of
the application, on the available resources, and on the configurations of the
underlying architecture (such as the core frequencies).

In this context, the autonomic computing field investigates how to en-
hance the target system with a set of self-* properties [10], such as self-
healing, self-optimization or self-protection. In this thesis, we focus on
the self-optimization property, where the target system shall automatically
identify and seize optimisation opportunities according to the system evo-
lution.

1.1 Thesis Motivations

Given the vast difference in performance between software-knobs config-
urations, researchers have investigated several approaches for finding the
ones that lead to optimal tradeoffs between EFPs of interest for end-user
[11–13]. However, finding a one-fits-all software-knobs configuration is
complex if we consider the system evolution. The application requirements
may change according to external events. For example, end-user might
have different requirements according to whether the target platform is rely-
ing on batteries or not. Moreover, there might be changes in the underlying
architecture. For example, a power capper might lower the core frequen-
cies due to thermal reasons, or the available resources might change due
to workload fluctuations. Furthermore, the EFPs might have heavy input
dependency. Therefore, a one-fits-all software-knobs configuration might
lead to sub-optimal performance.

For these reasons, the self-optimization capability requires an adaptation

2

1.2. Thesis Contributions

layer that tunes the software-knobs configuration at runtime. However, how
to provide to a target application the optimal software-knob configuration,
according to end-user requirements and system evolution, is still an open
question. This is a known problem investigated in the literature using dif-
ferent approaches. The work carried out in this thesis aims at advancing the
state-of-the-art toward this direction.

1.2 Thesis Contributions

The main outcome of this thesis is a methodology to enhance a target appli-
cation with an adaptation layer that exposes mechanisms to adapt reactively
and proactively. Moreover, additional contributions of this thesis are the
methodology evaluation in different contexts and the analysis carried out
in real-world applications, to show how it is possible to improve computa-
tion efficiency. Furthermore, the proposed framework is a key component
of the ANTAREX approach, developed in the context of the Horizon 2020
European Project “AutoTuning and Adaptivity appRoach for Energy effi-
cient eXascale HPC systems”. In particular, the thesis contributions are the
followings:

1. The methodology implementation, named mARGOt, is a C++ library
that is linked to the target application and works at the function level.
mARGOt employs separation of concerns between functional and extra-
functional requirement. End-user might define or change require-
ments at runtime, according to application phases. Moreover, by using
feedback information from runtime monitors, it is possible to react to
changes in the execution environment, providing to the application the
most suitable software-knobs configuration. Furthermore, it leverages
input features to identify and seize optimisation opportunities accord-
ing to the current input. We publicly released the framework source
code [14], along with user manuals, with the hope that application de-
velopers can use mARGOt for improving the computation efficiency.

2. A framework has been implemented for learning the application knowl-
edge online, using a distributed approach. It uses models ensemble to
increase the predictive capabilities of base models that perform out-of-
sample predictions. Moreover, it uses an iterative procedure to obtain
the application knowledge using as few samples as possible.

3. An experimental evaluation of mARGOt has been performed in a wide
range of scenarios, from embedded to High-Performance Computing,

3

Chapter 1. Introduction

to assess the benefits of each feature of the proposed approach in real-
world applications and case studies. In particular, we target a Stereo-
matching application targeting an embedded platform, a Probabilistic
Time-Dependent Routing application targeting an HPC node, and a
Geometric Docking application targeting an HPC platform.

4. In the context of resource consolidation, we evaluated the orthogo-
nality between application autotuning and resource management. In
particular, we compared different policies for sharing computational
resources between co-running applications. Moreover, we proposed
a light-weight technique for run-time resource management based on
platform sensing at the application level, leveraging mARGOt.

5. A framework has been proposed to automatically tune compilation
flags and OpenMP parameters at the function level, in a seamless way
for the application developer. Beside mARGOt, it leverages the com-
piler autotuning framework COBAYN [15] for extracting the most
promising compilation fags, while it uses the LARA [16] aspect-oriented
language to enhance the original source code automatically.

6. In the context of smart cities, this thesis focused on a Probabilistic
Time-Dependent Routing application to show how it is possible to in-
crease the computation efficiency, by using mARGOt. In particular,
we analysed the effect of roads characteristic to the quality of the out-
put, to identify and seize optimisation opportunities at runtime.

7. In the context of a drug discovery process, a geometrical docking ap-
plication has been analysed for identifying software-knobs that expose
accuracy-throughput tradeoffs. mARGOt leverage these tradeoffs, to-
gether with features of the actual input, to tune the application for
respecting a requirement on given a time-to-solution for the HPC job.

In the remainder of this thesis, I will write using the first-person plural
to acknowledge the support from advisor and colleagues. However, I take
responsibility for all the decisions and choices described in this thesis, since
I was the main investigator. The only exceptions are the works described in
Chapter 5 and Chapter 7, that are a joint effort with other colleagues.

1.3 Thesis Outline

I divided this thesis into three main sections. The first section describes the
proposed framework, and it represents the main outcome of the thesis since

4

1.3. Thesis Outline

it has been continuously developed during the doctoral studies (Chapter
2-4). In particular, to introduce the reader to the field of autonomic com-
puting, Chapter 2 describes the background and defines the main concepts
used in this thesis. Moreover, it provides an overview of the state-of-the-
art, highlighting the contribution of this thesis. Then, Chapter 3 describes
in details the proposed approach, defining the methodology and the mAR-
GOt implementation. To better clarify the required integration effort and
to show the framework workflow, it also provides an example of how to
leverage mARGOt features in a toy example. Chapter 4 evaluates the bene-
fits and limitations of the proposed approach, by measuring the introduced
overheads and by evaluating each feature exposed by the adaptation layer,
highlighting the required changes in the application source code. This first
section relates to contributions 1-3.

The second section (Chapters 5,6) describes the exploitation of the frame-
work in two scenarios outside application autotuning. On the one hand,
Chapter 5 evaluates the orthogonality between resource managers and ap-
plication autotuners, and it shows the benefits and limitations of using mAR-
GOt as a lightweight resource manager (contribution 4). On the other hand,
Chapter 6 proposes a structured approach for the runtime selection of the
most suitable application configuration concerning compiler flags and par-
allelism parameters of the OpenMP runtime, in a transparent way for appli-
cation developers (contribution 5).

The third section (Chapters 7,8) shows how it is possible to use mAR-
GOt for leveraging the tradeoff between the EFPs of interest in two inter-
esting application case studies. Chapter 7 focuses on tuning a server-side
car navigation system, in the context of smart cities (contribution 6). While
Chapter 8 describes how we applied approximate computing techniques in a
geometrical molecular docking application, in the context of a drug discov-
ery process, for improving computation efficiency, managed by mARGOt
(contribution 7).

Finally, Chapter 9 concludes the thesis, by summarising the findings and
limitations of the proposed approach and by stating recommendations for
future works.

5

Part I

The proposed framework

7

CHAPTER2
Previous work

The main focus of this thesis is an approach to dynamically autotune an ap-
plication, implemented as the mARGOt autotuning framework. This chap-
ter provides at first an introduction to the related research field, and it de-
fines a common terminology used to compare mARGOt with the state-of-
the-art. Then, it describes in more details the most similar works, and it
identifies the differences with mARGOt. The summary of this chapter high-
lights the contributions of this thesis.

2.1 Background and definitions

The research carried out in this thesis belongs to the autonomic comput-
ing field [10]. In this context, we perceive a computing system as an en-
semble of autonomic elements that are able of self-management, without
a human-in-the-loop. According to the proposed vision, an autonomic el-
ement must have the self-configuration, self-optimization, self-healing and
self-protection abilities. Self-configuration is the ability to incorporate in
the system new components whenever they become available, as in the
Rainbow framework [17]. Self-healing is the ability to recover from a hard-
ware or software failure, as proposed in [18]. Self-protection is the ability

9

Chapter 2. Previous work

to defend itself against malicious attack or failures not corrected by any
self-healing mechanism, as proposed in [19]. Eventually, self-optimization
is the ability to identify and seize opportunities to improve the application
performance or efficiency. How to provide any of the self-* abilities within
a single framework and without losing in generality is still an open ques-
tion. Since the goal of mARGOt is to enhance an existing application with
an adaptation layer that provides the ability of self-optimization, we focus
on works related to the latter property. Previous surveys [20, 21] provide a
more detailed overview of the field, regarding the other self-* abilities.

The definition of a system in the context of autonomic computing in-
volves both, hardware and software. Therefore, several works in literature
aimed at optimising the system performance or efficiency. In this thesis
context, we might divide them into two main categories: resource managers
and application autotuners. Resource managers address system adaptabil-
ity through resource management and allocation. For example in data cen-
tre context [22, 23], in the grid computing context [24], in multi/many core
node contexts [25–27] or for embedded platforms [28, 29].

Application autotuners work at the software level, leveraging the as-
signed resources to reach end-user requirements. Therefore, they take or-
thogonal decisions. Before discussing the related work in literature, it is
important to clearly define the key concepts behind the methodology pre-
sented in this thesis. With the term application, we may refer to any soft-
ware that is possible to execute on the target architecture. However, we
consider only applications that perform an elaboration and that do not re-
quire human interaction, such as a video encoder, a navigation system or
scientific applications. Moreover, end-users or system administrators may
have preferences or requirements on the application extra-functional prop-
erties (EFPs), such as execution time, energy consumption or quality of the
results. For example, the user of a video encoder application would like to
convert a video streaming with the highest quality, provided a throughput
of at least 25fps; or the administrators of a navigation system would like to
minimize the energy consumption while respecting a Service Level Agree-
ment on the response time and quality of the results. We refer to the set of
EFPs relevant for the end-user or system administrator as metrics, defining
the application performance as a vector of values.

A large class of applications expose tunable parameters that alter the ap-
plication performance, named software-knobs. We may have application-
specific software-knobs and application-agnostic software-knobs such as
tile size or the number of Monte Carlo simulation. The main idea is that a
change in the software-knobs configuration leads to a change in the appli-

10

2.2. Application autotuning

cation performance as well.
The main goal of an application autotuner is to automatically tune the

software-knobs according to end-users or system administrator preferences
or requirements. The main challenge is that the relation between a software-
knobs configuration and application performance is unknown and usually
depends also on the underlying architecture and on the current input. For
this reason, it is possible to use the characteristics of the current input, such
as its size or autocorrelation, to better describe the relationship with appli-
cation performance. This set of values is named input features. The rep-
resentation used by application autotuner to describe the relation between
software-knobs configurations, input features and the application perfor-
mance is named application knowledge.

2.2 Application autotuning

In synergy with resource managers, application autotuning frameworks aim
at selecting the most suitable configuration of the software-knobs to lever-
age the assigned resources. Among these approaches, we have static au-
totuners which select the most suitable configuration before the production
phase, and we have dynamic autotuners which select the most suitable con-
figuration during the production phase. The following sections describe the
most related work in literature.

2.2.1 Static autotuning frameworks

Static autotuners target software-knobs that tailor the application for the
underlying architecture, such as tiling size, loop unrolling factor, compiler
options and algorithm selection. This tailoring process implies that static
autotuners have to consider a fair amount of knobs with a large, possibly un-
bounded, domain of possible values. The Design Space (DS) of an applica-
tion grows exponentially, making a full-factorial Design Space Exploration
(DSE) in this context unfeasible. Therefore, static autotuning frameworks
are typically designed to find the configuration that maximises/minimise a
utility function in a reasonable amount of time. Even if a fraction of static
autotuners perform such exploration at runtime, once they settle with an
optimal configuration they are not willing to change it anymore.

As examples of static autotuning frameworks, we may consider the fol-
lowing works. ATune-IL [30] focuses on pruning the Design Space before
of the tuning step. On the main hand, it prunes the space by handling de-
pendencies between software-knobs. On the other hand, it analyses the
code structure to split the set of software-knobs into independent regions

11

Chapter 2. Previous work

that might be tuned separately. This approach focuses on minimising the
execution time. AutoTune [31] targets multi-node applications, and it lever-
ages the Periscope framework [32] to measure the execution time. In their
work, they tune pipeline parameters such as buffer sizes, OpenHMPP [33]
related parameters and MPI related parameters. However, it is possible
to expand the framework using plugins to consider an arbitrary class of
software-knobs. QuickStep [34] and Paraprox [35] targets parallel regions
of an application and they perform code transformation without preserv-
ing the code semantics. The rationale behind this choice is to expose
and leverage the accuracy-throughput trade-off automatically. In particu-
lar, they minimise the execution time given a threshold on the minimum
accuracy. OpenTuner [36] explicitly addresses the problem of exponential
growth in the complexity for exploring the DS, by using an ensemble of
search algorithms. Since each algorithm shines for a particular class of ap-
plications, OpenTuner uses a multi-armed bandit solver to find and exploit
the best search algorithm for the given application. Moreover, it is possible
to define the extra-functional requirements as a constrained multi-objective
optimisation problem. PowerGAUGE [37] manipulates the assembly code
of an application, using a genetic algorithm, to expose and optimise the ac-
curacy/performance trade-off. ATF framework [38] is a language agnostic
autotuning framework that enables a user to tune the application according
to a constrained multi-objective optimisation problem. Moreover, it enables
the user to specify complex dependencies between software knobs values.
Recent work [39] investigates the effect of tuning independent regions of
code which share common software-knobs, e.g. the number of threads. In
particular, they show how a global tuning can further optimise the applica-
tion with respect to a local tuning of independent regions of code.

Moreover, in the context of High-Performance Computing, there are
several autotuning frameworks targeted at specific tasks. ATLAS [40] for
matrix multiplication routine, FTTW [41] for FFTs operations, OSKI [42]
for sparse matrix kernels, SPIRAL [43] for digital signal processing, CLTune
[44] for OpenCL applications, Patus [45] and Sepya [46] for stencil com-
putations, are some examples in this area.

These works are typically employed in a predictable execution environ-
ment, and they usually target a different class of software-knobs with re-
spect to dynamic autotuners. Indeed, by choosing a configuration at design
time, it is not possible to react to changes in either the application require-
ments or of the observed performance. Moreover, the decision algorithm is
not able to leverage input features.

12

2.2. Application autotuning

2.2.2 Dynamic autotuning frameworks

The defining characteristic of dynamic autotuning frameworks is that they
can continuously tune the software-knobs configuration at runtime. The
main idea is to leverage information about the actual execution context,
rather than the average behaviour when they decide which is the most suit-
able software-knobs configuration to apply. Usually, they rely on applica-
tion knowledge to predict the behaviour of a configuration and to drive the
decision process. In this section, we describe the most relevant work for
the methodology proposed in this thesis.

Configuring an application at runtime has been an appealing idea in-
vestigated in literature for a long time. For example, the ADAPT frame-
work [47] aims at decoupling run-time code generation from the selection
of the best variant. It monitors execution time for evaluating variants and
for identifying hot-spots in the code. It uses a remote optimiser to generate
versions of a variant, applying different optimisation techniques. Locally it
uses rules to flag specific transformations as stale and therefore avoids their
usage. For example, if the number of available cores is not greater than one,
parallelisation is not used.

Moreover, the work that proposes the ABLE framework [48] shows how
it is possible to derive an autotuner. This example targets the Lotus Notes
servers, and it tunes two software-knobs to maintain the CPU and mem-
ory utilisation below the desired level. At first, it generates a synthetic
workload to build application knowledge and then it leverages control the-
ory [49] to drive the selection of the configuration. Although the example
framework adapts the application at run-time, it focuses more on providing
self-protection abilities rather than self-optimization. Since the employed
autotuner is tailored for a specific application, later work [50] formalise
a blueprint for a generic auto-tuner based on control theory, highlighting
limitations and challenges.

Control theory is not the only scheme for adaptation investigated in the
literature. Indeed, a previous work [51] proposes a more proactive approach
based on machine learning. It leverages features of the actual input to select
the most suitable algorithm version. At first, it uses domain knowledge to
identify the features of an input which are related to the application execu-
tion time. Then, starting from a real-world problem, it proposes to generate
synthetic inputs to train and validate a Bayesian network to select the most
promising version. On the production phase, the approach leverage appli-
cation knowledge to adapt at run-time according to the actual input. Since
the focus of this pioneering work was to learn the effects of actual inputs

13

Chapter 2. Previous work

Figure 2.1: The GREEN framework overview. Image from [55].

at design time, it addresses only one metric, and it targets a predictable
execution environment.

More recent works evaluate the possibility of relaxing the constraint on
functional correctness to improve efficiency. The rationale is that we may
tolerate a lower accuracy of the results as long as the output of the com-
putation is useful for the end-user. A large class of applications implicitly
define application-specific software-knobs that relate with the output qual-
ity [52], for example in the context of multimedia. It might be a complex
task to identify such software-knobs, therefore works in literature describes
techniques to expose such tradeoffs by failing task on purpose [6] or by
skipping iterations of a loop [5]. A later work [7] investigates the effect of
loop perforation using a large set of applications from the PARSEC bench-
mark [53], showing how a small loss in accuracy may lead to a significant
increment in performance.

Following this trend, the Sage framework [54] investigates three source
transformations that expose accuracy-throughput tradeoffs, targeting CUDA
kernels. It takes as input the original CUDA kernel and a metric that rep-
resents elaboration quality. In the first step, Sage analyses the kernel code
and find opportunities to apply the proposed transformations, generating
different tunable versions of the code. In a second step, it uses a greedy
approach to select the kernel version and to tune its parameter to minimise
the execution time given a lower bound on the quality. At runtime, it pe-
riodically monitors the execution time and quality. If it detects a violation
of the target output quality, then it selects a more accurate configuration.
Since it focuses on a specific class of software-knobs, the integration effort
is negligible.

One of the pioneering framework designed to harness the throughput-
accuracy tradeoff for a generic application is the Green framework [55].
Figure 2.1 provides an overview of the approach. After an integration step,

14

2.2. Application autotuning

the Green compiler performs at first a DSE to generate QoS Data, and an
external program in MATLAB performs curve fitting and interpolation. In
the second step, the Green compiler generates the adaptive executable tak-
ing into account the desired QoS requirements. At run-time it periodically
measures QoS, triggering a re-calibration if the observed value differs with
respect to the expected one. The Green default re-calibration increases
or decreases the QoS requirements, however, the user may define its re-
calibration function.

Another interesting example of a framework that manages the accuracy-
throughput trade-off is PowerDial [3]. It takes as input the source code of
the application, the command lines options, a representative input set, and
an output abstraction to measure the accuracy. In the first phase, it lever-
ages llvm to identify, from the command lines options, the actual variables
in the source code that alters the extra-functional properties of the appli-
cation. In the second phase, it performs a DSE to sort the software-knobs
configuration according to a speed-up with respect to the baseline through-
put, i.e. the default configuration. In the third phase, it generates a binary
with a manager based on control theory, that selects the speedup required
to reach the target throughput. It uses the Heartbeats framework [56] to
measure the actual throughput, and it uses the application knowledge to
convert the control signal to a software-knobs configuration. PowerDial
defines the throughput goal at compile time, and it targets application with
homogeneous inputs or with few abrupt changes. Moreover, the designed
controller manages a tradeoff between the two metrics. To overcome this
limitation, later work [57] investigate an approach to extend the controller
to handle a trade-off between several metrics, by introducing limitations
and assumption on the software-knobs.

SmartConf [58] uses a similar adaptation scheme. However, it focuses
on Java server application, such as Cassandra or Hadoop, which expose a
large number of command line options that affect the system performance.
Indeed, a wrong configuration of those command line options may lead to
poor performance or crash due to memory usage. In a first phase, they
use an experimental campaign to model the relationship between a com-
mand line option and the related metric. SmartConf leverages control the-
ory to stabilise the metrics to a target value, with some assumptions re-
garding their interaction with the command line options. Although Smart-
Conf adapts the application at run-time, it focuses more on providing self-
protection abilities rather than self-optimization.

Among previous work that manages the throughput-accuracy trade-off,
the IRA framework [59] proposes an interesting approach to adapt an ap-

15

Chapter 2. Previous work

Figure 2.2: The IRA framework overview. Image from [59].

plication at run-time. Figure 2.2 provides an overview of the framework.
It investigates several features of the input, such as the mean value or its
autocorrelation, to generate a canary input. The latter is the smallest sub-
sampling of the actual input which has the same property as the original
input. It uses a statistical hypothesis test to perform such an evaluation.
However, the related paper investigates techniques for sub-sampling only
images or matrix-like inputs. IRA uses the canary input to perform a DSE
for each input, selecting as the most suitable software-knobs configuration
the fastest one within a given bound on the minimum accuracy. Then it uses
the best configuration with the actual input to produce the desired output.

A fascinating work that leverage input features is Capri [60], which in-
spired us in the mARGOt development. At design time it uses a set of
representative inputs to model a cost metric (e.g. execution time or energy)
and an error metric as a function of software-knobs configuration and in-
put features. The controller that selects the most suitable configuration is
based in Valiant’s probably approximately correct (PAC) theory [61]. In
particular, it aims at finding at runtime, the software-knobs configuration
that minimises the cost function given an error bound and a probability that
the bound is satisfied according to the representative inputs. Since Capri
does not address stream applications, the work is not investigating any re-
action mechanism to adapt the application knowledge according to system

16

2.2. Application autotuning

evolution. Due to the chosen formulation of the problem, the feasible re-
gion given by the error function does not depend on the actual input. This
assumption might miss optimisation opportunities when input features are
related to the error, for example in Monte Carlo algorithms.

A rather different approach with respect to the previous ones is Anytime
Automaton [62]. It suggests source code transformations to re-write the
application using a pipeline design pattern. The idea is that the longer the
given input executes in the pipeline, the more accurate the output becomes.
The work targets hard constraint on the execution time, interrupting the
algorithm when it depletes the time budget. In this way, it is possible to
have guarantees on the feasible maximum accuracy.

Beside frameworks that provide an adaptation layer to the target appli-
cation, Petabricks [63] is a language to expose algorithmic choices. The
Petabricks framework (compiler and autotuner) analyses the code and gen-
erates a configuration file that selects the fastest algorithm and software-
knob configuration according to the input size. The Petabricks run-time can
dynamically manage the application parallelism, taking into account the in-
put size. Since Petabricks is a language, the strategy to select the algorithm
version and software-knobs are hard-coded in the generated executable. In
later works, the framework has been enhanced to leverage the accuracy-
throughput trade-offs at the tuning phase and to check the quality level at
run-time [64]. In particular, the Petabricks compiler emits code to check
the accuracy of the output and if it is below the threshold, it will re-execute
the algorithm with next higher level of accuracy or execute user code. In
a more recent work [65], Petabrick has been further enhanced by taking
into consideration also input features, besides its size, in the tuning process
at design time. At runtime, Petabricks classify an input based on known
clusters features, and it selects the most suitable algorithm and configura-
tion accordingly. The proposed framework is interesting indeed, however,
it generates the adaption strategy at design-time without preserving the ap-
plication knowledge. Thus, it is not flexible to changes on requirements,
and they assume a predictable execution environment.

On the opposite side, Siblingrivarly [66] uses the Petabricks framework,
but it targets a very unpredictable execution environment. In particular, it
partitions the available cores in two identical groups. The first group exper-
iments new algorithms and configurations, using Petabricks and a genetic
algorithm for exploring the Design Space. The second group always choose
the safest configuration that minimises the execution time given a bound on
the minimum accuracy. In this way, it is possible to react to changes in the
execution environment.

17

Chapter 2. Previous work

Table 2.1: Classification of related work according to the considered metrics of interest

Category Previous Work

One metric Voss [47], Guo [51], Ansel [63]

Two metrics
Samadi [54], Baek [55], Hoffmann [3], Laurenzano [59],
Miguel [62], Ansel [64], Ding [65], Ansel [66], Sui [60]

Arbitrary metrics Filieri [57]

2.3 Comparison with the state-of-the-art

The previous section provided a review of the literature related to auto-
nomic computing, focusing on application autotuners. In our opinion, all
the work that we described earlier are indeed interesting, and they have pro-
vided contributions to the field, due to their unique point of view on how
to provide the self-optimization ability to a target application. This section
aims at highlighting the contribution of this thesis, by comparing the more
related approaches known in the literature, according to research questions
that define our point of view and drove the mARGOt development.

2.3.1 What are the metrics of interest?

The main goal of this thesis is to enhance an application with an adapta-
tion layer that provides self-optimization capabilities. Therefore, the first
question aims at classifying related work in literature according to the met-
rics involved in the optimisation process. Usually, the term performance
is synonymous with throughput or execution time since these are typi-
cally the most critical metrics for end-users. However, if we would like
to leverage the benefits of approximate computing and given that the used
or dissipated power limits the performance of a system [2], the through-
put is seldom enough for describing the application performance. Indeed,
by addressing additional metrics (such as result accuracy, energy consump-
tion and resource usage), we can define several trade-offs that might be
of interest for end-user, considering the recent shift toward efficiency in a
wide range of contexts, not only related to embedded platforms, but also on
High-Performance Computing.

Table 2.1 shows the literature classification according to three main cat-
egories. The first category represents works that aim at decreasing the exe-
cution time, or in general at minimising/maximising a single metric. Typi-
cally, in this category belong pioneering work that assesses the benefits of
adapting at runtime. The second category represents works that consider a

18

2.3. Comparison with the state-of-the-art

tradeoff between two metrics, typically a cost and an error metric. Usually,
these works define the application requirements as a minimisation (max-
imisation) problem of one metric, given a constraint on the other metric.
In particular, Sage [54], Green [55], IRA [59], Petabricks [64, 65], Siblin-
grivarly [66] and Capri [60] maximise the throughput given a lower bound
on accuracy. On the contrary, PowerDial [3] and Anytime Automaton [62]
maximise the accuracy given a lower bound on the throughput. The third
category represents works that consider several tradeoffs between an ar-
bitrary number of metrics. The only work that considers more than two
metrics is the blueprint framework analysed by Filieri et al. [57]. However,
it introduces limitations on the number of metrics according to the number
of software-knobs. Moreover, it relies on assumptions about the relations
between software-knobs and metrics.

Relation with the proposed methodology

The autotuning framework proposed in this thesis belongs to the third cat-
egory. Indeed, one of the key design goals of mARGOt is flexibility, en-
abling end-user to define application requirements as a constrained multi-
objective optimisation problem, with an arbitrary number of metrics of in-
terest. Moreover, we provide the possibility to consider software-knobs in
the objective function and in the constraints definition. For example, to
limit the number of software threads according to the assigned resources.
Using its flexibility, we applied mARGOt in a wider range of scenarios, and
it makes room for a broader range of adaptation requirements. For example,
by taking into account accuracy, execution time, resource usage and energy
consumption. On the other hand, defining the application requirements as
a predefined optimisation problem limits the applicability of the approach.
For example, the applicability of a significant fraction of the related works
that belong to the second category depends on whether the target applica-
tion has a constraint on the throughput or on the accuracy.

2.3.2 How does it react to changes during the application evolution?

One of the main benefits of delaying the choice of most suitable software-
knobs configuration at the production phase is that it provides the opportu-
nity of reacting to changes in the application knowledge or requirements.
Given that the application performance typically depends on the underlying
architecture configuration, such as the frequency of the cores, it is possible
that during the production phase that configuration changes. For exam-
ple, if a power capper throttles the core frequency due to thermal reasons.

19

Chapter 2. Previous work

Table 2.2: Classification of related work according to adaptive reaction scheme

Category Previous Work

None Guo [51], Ansel [63], Sui [60]
Accuracy Samadi [54], Baek [55], Ansel [64], Ding [65]
Knowledge Voss [47], Hoffmann [3], Filieri [57], Laurenzano [59]
Knowledge and Requirements Miguel [62], Ansel [66]

In this case, the application knowledge is no more accurate, and it might
lead the autotuner to select a software-knob configuration that is no more
able to deliver the requested performance. Moreover, given that application
performance might be input-dependent, each abrupt changes in the input
might lead to a violation of the application requirements. For example, if
we consider a video streaming application, the quality metric is typically
related to the video evolution. If we can monitor the error metric, we might
react to abrupt changes in the video, instead of relying on a conservative
sub-optimal configuration.

Furthermore, application requirements may change according to phases
of the application. For example, suppose that we are considering a video
surveillance application deployed either on a drone or a battery powered
surveillance system. In this context, the end-user would like to execute
the application with low power requirements if nothing is interesting in the
scene, while switch to a more accuracy oriented requirements otherwise.

Table 2.2 shows the literature classification according to four main cat-
egories. Even if some approaches could in principle react to changes in the
application requirements or knowledge, our classification considers only
the reaction mechanisms explicitly addressed or investigated in the related
article. The first category represents works that rely on a predictable execu-
tion environment, and therefore they do not provide any adaptive reaction
scheme. In this category falls pioneering works or frameworks that do not
focus on streaming application. The second category represents works that
check at runtime if the accuracy differs from the expected value. In this
case, the adaptation policy is to select a more accurate configuration or to
run a user-defined code, relying on a trial and error approach or offloading
the task to application developers. In the third category we have works that
provide mechanisms for reacting to changes in the expected behaviour us-
ing a more structured approach: ADAPT [47] uses a rule-based system to
flag configurations as “stale” and therefore not eligible; PowerDial [3] and
its enhancement [57] uses control theory to adapt; while the IRA frame-
work [59] performs a DSE using a “smaller” input. The last category rep-

20

2.3. Comparison with the state-of-the-art

Table 2.3: Classification of related work according to proactive adaptation scheme

Category Previous Work

Proactive Guo [51], Laurenzano [59], Ansel [63], Ansel [64], Sui [60], Ding [65]

Non-proactive
Voss [47], Samadi [54], Baek [55], Hoffmann [3], Filieri [57],

Ansel [66], Miguel [62]

resents works that also reacts to changes in the application knowledge.

Relation with the proposed methodology

Due to the application knowledge representation, mARGOt provides a re-
action mechanism to adapt according to changes in application knowledge
or requirements. Both of them might be defined or changed at runtime ac-
cording to application phases. Moreover, mARGOt uses telemetry informa-
tion from monitors, to adjust application knowledge if the observed metrics
value differs from the expected ones. Therefore, the framework presented
in this thesis belongs to the fourth category.

2.3.3 Is it able to leverage input features?

Given our definition of application, its performance usually depends on fea-
tures of the input, such as its size. Unless the autotuner provides a mecha-
nism to adapt proactively, it must select a configuration considering the av-
erage behaviour or selecting a more conservative one. This approach may
lead to sub-optimal behaviours. If we focus on streaming applications with
few abrupt changes in the input features, such as a multimedia application,
adapting using a reaction scheme may suffice. However, if we consider ap-
plications that elaborate a set of input without any clear relation between
them, such as a High-Performance Computing application, we need to take
proactive decisions.

Table 2.3 shows the literature classification according to two main cat-
egories: whether the proposed approach provides a mechanism to adapt
proactively, leveraging input features, or not. From this classification, we
may notice how autotuning frameworks that leverage proactive adaptation
have limited reaction mechanisms and vice-versa, due to their different ap-
proach for providing self-optimization capabilities. The only exception is
the IRA framework [59] since it performs a DSE using the canary input as
a proxy for the actual input. However, it is not trivial to build canary inputs
for heterogeneous data structures that are not matrix-like, limiting its appli-
cability. For example, in the case study of a molecular docking application

21

Chapter 2. Previous work

Table 2.4: Classification of related work according to the integration effort

Category Previous Work

Low Voss [47], Samadi [54], Hoffmann [3]
Mild Guo [51], Laurenzano [59], Sui [60], Baek [55], Filieri [57]
High Ansel [63], Ansel [64], Ansel [66], Miguel [62], Ding [65]

considered in Chapter 8, it is complicated to define a sub-sampled input due
to relations between the input data.

Relation with the proposed methodology

The framework proposed in this thesis can leverage input features to adapt
proactively. Therefore mARGOt belongs to the first category.

2.3.4 What is the integration effort?

From the application developer point of view, the effort required to inte-
grate a dynamic autotuning framework in the target application matters.
Even if application developers are the ones who are in charge of writing the
source code, this activity is often performed in cooperation with domain
experts or end-users, especially in the High-Performance Computing con-
text. Given that the main goal of the approach proposed in this thesis is to
enhance an existing application, the integration effort was a crucial point
during the mARGOt development. Table 2.4 shows the literature classifi-
cation according to three different categories. On the one hand, the first
category represents all the works that provide mechanisms to automatically
apply the approach, requiring a minimal integration effort from the appli-
cation developers. On the other hand, the third category represents all the
approaches that require a massive refactor of the source code or a porting
of the application in a new language. Due to the diversity of the approaches
and due to the fact the integration effort is often deemed as an implementa-
tion detail and thus omitted from the related paper, it is complicated to de-
fine objective criteria for a more fine-grained classification of the remaining
category. Therefore, we consider the other frameworks in an intermediate
category, requiring a mild integration effort.

Relation with the proposed methodology

From the methodology point of view, to minimise the intrusiveness of the
proposed approach, we designed mARGOt as a wrapper for the managed
regions of code. Moreover, to enforce the separation of concerns between

22

2.4. Summary

functional and extra-functional requirements we provide a tool that auto-
matically generates the required glue code, starting from an XML configu-
ration file of extra-functional concerns. In particular, the glue code defines
a high-level interface composed of few functions that hide as much as pos-
sible implementation details of the autotuning framework. Although we
minimised the effort required to use mARGOt, the proposed framework be-
longs to the second category.

In Chapter 6 we present a possible workaround to eliminate the mAR-
GOt integration effort from the application developer. However, it targets
a particular set of software-knobs, and an extension to a generic class of
software-knobs is not possible, due to design choices.

2.4 Summary

Given the limitations emerged in the literature analysis done in this chapter,
the approach proposed in this thesis tries to overcome them by introducing
the following contributions:

• Flexibility to express application requirements has been one of the
critical points on the methodology. In mARGOt application require-
ments are expressed as a constrained multi-objective optimisation prob-
lem, with an arbitrary number of constraints, and it might address an
arbitrary number of EFPs as well.

• The main benefits of dynamic autotuners are due to the possibility to
leverage the actual information rather than relying on the expected av-
erage case. For this reason, mARGOt provides mechanisms to react to
changes in the application performance and requirements. Moreover,
it also provides a mechanism to adapt proactively according to input
features.

• From the implementation point of view, the effort to integrate mAR-
GOt in the target application is a key factor for the application devel-
opers. For this reason, we tried to minimise as much as possible the
number of lines to change, and we designed the interface as a wrapper
around the managed region of code; therefore limiting the intrusive-
ness.

23

CHAPTER3
Dynamic Autotuning Framework

This chapter describes the methodology proposed in this thesis and its im-
plementation. At first, we provide an overview of the framework, and we
define the optimisation problem that mARGOt aims to solve. Then we de-
scribe in details the framework components, highlighting design choices.
The integration workflow is then discussed along with a summary of the
framework main features.

3.1 Framework overview and problem definition

Figure 3.1 shows an overview of mARGOt and how it interacts with an ap-
plication. To simplify the description of the autotuning methodology, we
consider an application that is composed of a single phase. However, mAR-
GOt is designed to manage different phases, or blocks of code, indepen-
dently. Each phase is composed of a single kernel g that elaborates an input
i to generate the desired output o. Moreover, we assume that the kernel
algorithm exposes software-knobs that alter its EFPs, such as the number
of Monte Carlo simulations or the parallelism level. Let x = [x1, . . . , xn]
the vector of software-knobs, then we might define a kernel as o = g(x, i).
In this chapter, we assume for simplicity that the application is composed

25

Chapter 3. Dynamic Autotuning Framework

Figure 3.1: Global architecture of the proposed framework. Purple elements represent
application code, while orange elements represent mARGOt high-level components.
The black box represents the executable boundary.

of only one kernel. However, we might extend the latter definition to the
whole application, as a composition of several independent phases.

Within this abstraction, we define the end-user requirements as follows.
We denote the metrics of interest (i.e. EFPs) as the vectorm = [m1, . . . ,mn].
Suppose that the application developers can extract features of the current
inputs, for example, the ones analysed in IRA [59]. We denote such proper-
ties as the vector f = [f1, . . . , fn]. The end-user can define the application
requirements as in Equation 3.1:

max(min) r(x;m | f)

s.t. C1 : ω1(x;m | f) ∝ k1 with α1 confidence

C2 : ω2(x;m | f) ∝ k2

. . .

Cn : ωn(x;m | f) ∝ kn

(3.1)

where r denotes the objective function (named rank in mARGOt context),
defined as a composition of any of the variables defined in x or m, using
their mean values. Let C be the set of constraints, where each Ci is a con-
straint expressed as the function ωi, defined over the software-knobs or the
EFPs, that must satisfy the relationship ∝∈ {<,≤, >,≥} with a thresh-
old value ki and with a confidence αi (if ωi targets a statistical variable).
Since we are agnostic about the distribution of the target parameter, the

26

3.2. Application knowledge

1 <?xml version="1.0" encoding="UTF-8"?>
2 <points version="1.3" block="example">
3 <point>
4 <parameters>
5 <parameter name="knob1" value="3.4"/>
6 <parameter name="knob2" value="100"/>
7 </parameters>
8 <system_metrics>
9 <system_metric name="metric1" value="212.862" standard_dev="6.49"

/>
10 <system_metric name="metric2" value="27.6" standard_dev="0.9"/>
11 </system_metrics>
12 <features>
13 <feature name="feature1" value="100"/>
14 <feature name="feature2" value="10" />
15 </features>
16 </point>
17 </points>

Figure 3.2: Example of an XML configuration file which defines the application knowledge
as an Operating Point list. This example shows a list with a single Operating Point.

confidence is expressed as the number of times to consider its standard de-
viation. If the application is input-dependent, the value of the rank function
r and the constraint functions ωi also depend on the features of the input f .

In this formulation, the main goal of mARGOt is to solve the optimiza-
tion problem: finding the configuration x̂ that satisfies all the constraints
C and maximizes (minimizes) the objective function r, given the current
input i. The application must have a configuration to use even if it is not
feasible to satisfy all the constraints. For this reason, mARGOt might relax
constraints until a feasible solution is found, starting by relaxing the lowest
priority constraint. Therefore, the end-user must sort the set of constraints
by their priority. As shown in Figure 3.1, the mARGOt framework is com-
posed of the application manager, the monitors’ module, and the applica-
tion knowledge. The following sections explain in details each component.

3.2 Application knowledge

For a generic application, the relation between software-knobs, EFPs of
interest and input features is complex and unknown a priori. Therefore,
we need a model of the application extra-functional behavior to solve the
optimization problem stated in Eq. 3.1. mARGOt uses a list of Operat-
ing Points (OPs) as application knowledge, where each Operating Point θ
states the target software-knob configuration and the achieved EFPs with
the given input features; i.e. θ = {x1, . . . , xn, f1, . . . , fn,m1, . . . ,mn}. We

27

Chapter 3. Dynamic Autotuning Framework

choose this solution mainly for three reasons: (i) we are able to solve the
optimisation problem by inspection efficiently, (ii) it guarantees that mAR-
GOt will not choose an illegal configuration for the application, and (iii) it
provides great management flexibility.

Figure 3.2 shows an example of application knowledge configuration
file in XML, with a single Operating Point (lines 3-16). Let us suppose
that the target application exposes two software-knobs (knob1 and knob2),
it is interested on two metrics (metric1 and metric2) and it is able to ex-
tract two features from the current input (feature1 and feature2). In this
example, three sections compose the OP: the target software-knobs config-
uration (lines 4-7), the reached performance distribution (lines 8-11) and
the related feature cluster (lines 12-15).

The OPs list is considered a required input. Therefore, mARGOt is
agnostic on the methodology used to obtain the application knowledge.
Even if the latter is considered an input, it is of paramount importance to
mARGOt for solving the optimisation problem. Moreover, since the De-
sign Space grows exponentially with the number of software-knobs, how
to find set of software-knobs configurations that are Pareto-optimal, is a
well-known problem in the literature, where several approaches are inves-
tigated [11–13]. In particular, the XML configuration file that describes
the OPs list is compatible with the output generated by the Multicube Ex-
plorer [67]. Usually, this is a design time task since it requires the evalu-
ation of several configurations, before obtaining the model. As alternative
options, we provide to the application developer the possibility of learning
the application knowledge at runtime, using a distributed approach. The
latter will be described in details in Section 3.5.

3.3 Monitors module

This module provides to mARGOt the ability to observe the actual be-
haviour of either the application or the execution environment. This feature
is critical for an autonomic manager because it provides feedback infor-
mation, enabling the self-awareness ability [68]. The application knowl-
edge defines the expected behaviour of the application. However, it might
change according to the evolution of the system. For example, a power cap-
per might reduce the frequency of the processor due to thermal reasons. In
this case, we would expect that the application notices a degradation in its
performance and it reacts, by using a different configuration to compensate.
This adaptation is possible only if we have feedback information.

From the implementation point of view, mARGOt provides a suite of

28

3.3. Monitors module

predefined monitors with broad applicability both at high- and low-level.
Some examples of monitors implemented in mARGOt are:

Time Monitor. This monitor reads the time elapsed between a start
point and a stopping point. It uses the std::chrono interface and might be
configured to use different time units (e.g. nsec, usec, msec, sec).

Throughput Monitor. This monitor computes the throughput as the
amount of elaborated data over the observed time interval. The metric is
data/second. The time interval is measured as a difference between a start
point and a stopping point as the time monitor while also reporting the
throughput.

Memory Monitor. This monitor observes the resident set size of the
virtual memory that the process is using. To gather the data, it parses the
“/proc/self/statm” metafile. The unit of measure is the kilobytes, thus the
monitor stores integer values.

System CPU Usage Monitor. This monitor computes the average util-
isation of the processors at the system-level. The unit of measure is a per-
centage, and it is computed as the system busy time (both on the user and
system level), over the considered time interval. To collect these data, the
monitor parses the “/proc/stat” metafile. The OS updates the metafile val-
ues with a granularity of msec, but to get a significant measure, the interval
of time should be greater than 50msec.

Process CPU Usage Monitor. This monitor is similar to the System
CPU Usage Monitor, but it computes the average utilisation of the processor
by the application, defined as the time the application spent executing on
the processors over the elapsed time. The std::chrono interface is used to
compute the latter, while the getrusage function at OS level is used for the
former. Even in this case, to get a significant measure the interval of time
should be greater than 50msec.

PAPI Monitor. It is used to observe low-level metrics by wrapping the
widely adopted PAPI [69] framework. It enables an application to observe
platform-related metrics, such as cache misses or instruction per cycles,
transparently. The maximum number and type of observed metrics depend
on the platform.

As stated in Chapter 2, approximate computing is a promising path to
further improve computation efficiency, as shown in several works of lit-
erature. However, this approach requires to observe a metric related to
the output quality, which typically is application-specific. For this reason,
we implemented the monitors using a modular approach. In this way, ap-
plication developers might implement a custom monitor for observing an
application-specific metric easily. Since measuring quality metrics might

29

Chapter 3. Dynamic Autotuning Framework

Data-Aware Application-Specific RunTime Manager

Application-Specific RunTime Manager 1 ASRTM 2

Application
Knowledge

Runtime
Information

Provider
State 1 S2 SN

ASRTM M

Figure 3.3: Overview of the Application Manager implemented in mARGOt, based on a
hierarchical approach.

be expensive, mARGOt does not require a continuous observation of a met-
ric. The application developers choose if monitoring an EFP on each iter-
ation, periodically or sporadically. Obviously, by decreasing the observa-
tions frequency, it delays the reactions of mARGOt. If it is not possible to
monitor an EFP at runtime, mARGOt relies only on the expected behaviour,
operating in an open-loop.

3.4 Application Manager

This component is the core of the mARGOt dynamic autotuner, which pro-
vides the self-optimization capability using a lightweight framework. From
the methodology point of view, this component is in charge of solving the
optimisation problem stated in Eq. 3.1: to find the software-knobs con-
figuration x̂, while reacting to changes in the execution environment and
adapting proactively according to input features.

From the implementation point of view, the application manager has a
hierarchical structure, as shown in Figure 3.3, where each sub-component
solves a specific problem. The Data-Aware Application-Specific Run-Time
Manager (DA AS-RTM) provides a unified interface to application devel-
opers to set or change the application requirements, to set or change ap-
plication knowledge and to retrieve the most suitable configuration x̂. In-
ternally, the DA AS_RTM clusters the application knowledge according
to input features f , creating an Application-Specific Run-Time Manager
(AS-RTM) for each cluster of Operating Points with the same input fea-
tures. Therefore, the application knowledge implicitly defines the clusters

30

3.4. Application Manager

Algorithm 1: How the State component builds the internal representation of the opti-
mization problem.

Data: Application knowledge OPlist, optimization function r, list of constraints C
Result: list of valid OPs L_valid, lists of invalid OPs Lci

Lvalid = OPlist ;
for ci ∈ C (ascending priority order) do

Lci = ∅;
for OPj ∈ Lvalid do

if OPj does not satisfy ci then
Lci = Lci ∪OPj ;

end
end
Lvalid = Lvalid \ Lci ;
Lci = sort(Lci , dist(OPj , ci));

end
Lvalid = sort(Lvalid, r);

Algorithm 2: How the State element solves the optimization problem.

Data: list of valid OPs L_valid, list of invalid OPs Lci , list of constraints C
Result: most suitable Operating Point OP
if Lvalid! = ∅ then

return Lvalid[0];
else

for ci ∈ C (descending priority order) do
if Lci ! = ∅ then

return Lci [0];
end

end
end

of Operating Points. Given the input features of the current input, the DA
AS-RTM selects the cluster with features closer to the ones of the current
input. It is possible to use a Euclidean distance between the two vectors, or
a normalised one in case an element of the vector f is numerically different
with respect to the others. Moreover, it is possible to express constraints on
the selection of the cluster. For example, it is possible to enforce that the
feature f clusteri of the selected cluster must be lower (greater) or equal than
the feature f inpti of current input, i.e. f clusteri ∝ f inpti . Once the cluster for
the current input is selected, the corresponding Application-Specific Run-
Time Manager (AS-RTM) solves the optimisation problem relying on the
following components.

The State element is in charge of solving the optimisation problem by

31

Chapter 3. Dynamic Autotuning Framework

using a differential approach. The initial optimisation problem does not
have any constraints (i.e. C = ∅), and the objective function minimises
the value of the first software-knob. From this initial state, the application
might dynamically add constraints, define a different objective function or
change the application knowledge. The solver can find the new optimal
configuration efficiently, evaluating only the involved ones, by building an
internal representation of the optimisation problem. Algorithm 1 shows the
pseudo code for its initialisation. At first, it assumes that the application
knowledge satisfies all the constraints. Therefore Lvalid contains all the
OPs. Then, for each constraint ci, mARGOt iterates over the set of OPs in
Lvalid and it performs three operations. (1) It creates the list Lci which con-
tains all the Operating Points invalidated by the constraint ci. (2) Then it
removes the OPs contained in the set Lci from the set Lvalid, i.e. it removes
from the set of valid OPs the ones that do not satisfy ci. (3) Eventually, it
sorts all the OPs in Lci according to their distance from satisfying the con-
straint ci. After iterating over the constraints, mARGOt sort the list of valid
OPs Lvalid according to the objective function r. Using this representation,
each time that mARGOt is invoked to solve the optimisation problem, it
updates the internal structure and then it follows Algorithm 2. In particu-
lar, if the list Lvalid is not empty, mARGOt returns the one that maximizes
the rank function, i.e. Lvalid[0]. Otherwise, mARGOt iterates over the con-
straints according to their priority, in reverse order, until it finds a constraint
ci with a non-empty Lci . Then the best OP is the closest to satisfy the con-
straint ci, i.e. Lci [0]. If there is more than one OP at the same distance
from ci, mARGOt will narrow this set of the possible solutions using the
constraints at the lower priority than ci and the objective function r.

Given that the end-user might have different requirements according to
different phases of the application, it is possible to define different states
and switch among them at runtime. For example, in a video surveillance ap-
plication, the end-user would like to perform a more accurate computation
or a more energy-efficient one, according to the presence of an interesting
scenario to analyse.

The Runtime Information Provider correlates an EFP of the application
knowledge with an application monitor. In particular, it compares the ob-
served behaviour with the expected one, and it computes a coefficient error
defined as emi = expectedi

observedi
, where emi is the error coefficient for the i-th

EFP. To avoid the zero trap, we add 1 to the numerator and denominator
when observedi is equal to zero. Since it is impossible to observe the er-
ror coefficient also for other configurations (the application uses only one
configuration each time), we assume that their error coefficients are equal

32

3.5. On-line Design Space Exploration

to the observed one. This assumption implies that if we observe a perfor-
mance degradation of 10% for the current configuration, we assume that
also the other configurations will have a performance degradation of 10%.
Therefore we scale the constraint value accordingly to react. For example,
suppose that the end-user would like a throughput of at least 25fps and
that we are using a configuration that has an expected throughput of 30fps,
but we observe a throughput of 15fps. Then, the Runtime Information
Provider will double the constraint value to compensate. The linear error
propagation assumption might hold in several cases, providing a reaction
mechanism in a seamless way for the developer. However, it does not ap-
ply to all cases. Typically, this happens when co-running applications share
computational units. In this case, it is required to employ a more complex
reaction mechanism, as described in details in Chapter 5.

3.5 On-line Design Space Exploration

The mARGOt implementation let application developers define the applica-
tion knowledge at runtime, enabling the possibility to learn it online, during
the production phase. To achieve this goal, we propose an additional com-
ponent that distributes the Design Space Exploration (DSE) among all the
instances of an unknown application, integrated with mARGOt, at runtime.
The benefits of this approach are the following: 1) it is possible to leverage
all the available nodes to reduce the time-to-knowledge; 2) the application
knowledge is tailored for the current input, and 3) we measure the EFPs
with the production environment. From the methodology point of view, we
employ two strategies to minimise the time required to obtain the applica-
tion knowledge. On the one hand, we use design of experiment techniques
(DoE) [70] to efficiently sample the design space and state-of-the-art mod-
elling techniques to perform out-of-sample predictions. On the other hand,
we employ an iterative exploration strategy to reduce as much as possible
the required number of samples. In particular, the framework starts to ex-
plore a fraction of the design space and a learning plugin tries to obtain the
application knowledge. If the derived EFPs models are not able to reach a
target quality in the validation phase, the framework will resume the Design
Space Exploration (DSE).

From the implementation point of view, Figure 3.4a shows the overall
picture of the component, highlighting the two main actors: the Remote
Application Handler and the running application instances. Each instance
of the application has an Application Local Handler (client), as shown in
Figure 3.4b, which interacts with the Remote Application Handler (server)

33

Chapter 3. Dynamic Autotuning Framework

(a) Global structure of the distributed DSE framework (b) Structure of an application instance

Figure 3.4: The proposed approach to perform a distributed on-line Design Space Ex-
ploration, using a dedicated server outside of the computation node. We use MQTT
protocol to perform extra-node communication.

through MQTT or MQTTs protocols. The Application Local Handler is an
asynchronous utility thread, that sends to the Remote Application Handler
telemetry information and it manipulates the client application knowledge.
In particular, during the learning phase, it will force the autotuner to select
the software-knobs configuration to evaluate, while it sets the application
knowledge once available. The Remote Application Handler is a worker
thread-pool that interacts with clients to obtain the application knowledge,
and it runs in a dedicated out-of-band node. The server stores information
in a Cassandra database or CSV files, according to the execution context
scale. Moreover, it uses a plugin system to model and to interpolate the
relations between the EFPs, the software-knob configurations and the input
features clusters, including also a wrapper interface for R and Spark.

Although the implementation of a plugin to derive a metric is straightfor-
ward, in the current implementation mARGOt provides three default plug-
ins. The first one is rather simple, and it computes the mean value and
standard deviation for each observed software-knob configuration. It can be
used for a full-factorial Design Space Exploration, observing the whole De-
sign Space, including the possible input features. The second plugin lever-
ages a well-known approach [71] to interpolate application performance,
implemented by the state-of-the-art R package [72]. The third plugin is a
more complex learning module and it leverages model ensembles to boost
the predictive capabilities of several base models. Section 3.5.2 provides
more details of the plugin, while Section 3.5.3 describes the selection and
validation algorithms.

The typical workflow of the framework when it interacts with an un-
known application is as follows:

34

3.5. On-line Design Space Exploration

1. The clients notify themselves to the server.

2. The server asks one client information about the application, such as
the number of software-knobs and their domain, the DoE technique or
the number of observation for each software-knobs configuration.

3. Once the server has collected the information, it will call a model
plugin to generate a set of configurations to explore.

4. The server dispatches to the available clients the configurations to
evaluate in a round robin fashion.

5. Once the clients have explored all the configurations, the model plugin
generates the application knowledge.

6. If the quality of the derived model is above the acceptance criteria, the
server broadcasts the model to clients. Otherwise, it restarts from step
3, appending the new observations to the previous ones.

The framework implementation is resilient to crash of the server and the
clients. Moreover, whenever a new client becomes available, it can join the
design space exploration or receive the model directly. If application devel-
opers use a CASSANDRA database as back-end storage, it is also possible
to use standard tools to visualise the extra-functional values (e.g. the ex-
ecution traces of all the application instances running on the platform), or
for query the application knowledge.

3.5.1 Design of Experiment

The approach proposed in this section aims at obtaining the application
knowledge at the production phase. Therefore we want to reduce the de-
sign space exploration as much as possible. To reach this goal is essential to
sample the design space to maximise the retrieved information. This prob-
lem is well-known in literature, where the different design of experiments
(DoE) techniques are investigated [70], such as latin hypercube sampling
or full-factorial. On top of them, the application developer might choose to
leverage the Dmax algorithm [73] which maximises the determinant of the
correlation ρij defined as in Eq. 3.2,

ρij =
1− γ if hij ≤ ε,

0 if hij > ε,
(3.2)

where h is the distance between points xi and xj , ε is the threshold distance
of the correlation between two points, and γ is a variogram.

35

Chapter 3. Dynamic Autotuning Framework

This DoE technique exposes two free parameters: the total number of
points to explore n and the threshold distance ε. We set n as d·m, where d is
the number of dimensions of the design space (i.e. the number of software-
knobs) and m is the number of points to explore for each dimension. We
provide to end-user the possibility to change the parameters m and ε from
their default values (10 and 0.2 respectively). Moreover, the end-user might
specify how many times explore each point in the DoE.

3.5.2 The learning module

This section describes in more details the modelling techniques used to
learn the relation between EFPs and software-knobs by the learning mod-
ule. In mARGOt context, the learning plugins model each EFP indepen-
dently. Therefore, in our notation ŷ represents the expected value of the
target EFP, while x represents the vector of software-knobs and input fea-
tures.

Linear models

The linear regression with n dependent variables and p explanatory vari-
ables is defined in Eq. 3.3,

ŷ = αXβ + ε, (3.3)

where α is a constant, β is a vector of n parameters, X is a n× p matrix of
explanatory terms, and ε is the vector of residuals or errors.

We use two flavours of linear models: in one case we consider only the
model with a constant and the explanatory variables; in the second case we
also consider two-way interactions of explanatory variables. The latter is
created as the multiplication of pairs of explanatory variables.

MARS models

The second family of models used in the learning module is multivariate
adaptive regression splines (MARS) [74]. This model iteratively adds basis
functions to create the best possible representation of the variables interac-
tions (nonparametric model). The MARS representation is defined in Eq.
3.4,

ŷ = c+
k∑
i=1

wiBi(x), (3.4)

where c is a constant, k is number of basis functions, wi is the constant
coefficient of the basis function i, Bi(x) is the basis function i. The basis

36

3.5. On-line Design Space Exploration

function is of the form max(0, di−x), max(0, x−di) or the multiplication
of multiple basis functions. The parameter di is a constant estimated by
the model. In the learning module we also use a variation of this model,
named POLYMARS, which enables a maximum of two-way interactions
in the model [75].

Kriging model

The learning module uses an extension of the original Kriging model, named
Universal Kriging (UK) [76], which assumes that observed values y comes
from a deterministic process Y given by Eq. 3.5,

Y (x) = µ(x) + Z(x) (3.5)

where µ is trend defined by the number of basis functions, and Z is a known
covariance kernel.

In the context of mARGOt, the generating process is seldom determinis-
tic; therefore we need to relax this assumption. In particular, we forced the
determinism by averaging the observed values for each observed software-
knobs configuration.

Ensemble models

Model ensembling is a well-known approach to increase the predictive ca-
pabilities of base models by combining them, using different techniques.
The learning module leverages two techniques based on cross-validation
models: bagging [77] and stacking [78].

The bagging approach aims at decreasing the variance of the prediction.
It focuses on a single base modelling technique, and it combines instances
of the model trained with different data sub-samples. To perform predic-
tion, it uses the mean of the predictions generated by the model instances.
Given that we use average values for training the kriging model, the learn-
ing module is not allowed to leverage bagging ensembles, since the gener-
ated model will lead to an extremely biased validation.

The stacking approach aims at increasing the robustness of the predic-
tion by combining base models. A stacked model should be able to decrease
the weaknesses of the individual models and leverage their strengths. The
learning module uses a weighted mean to combine the base models, finding
the weights that lead the stacked model to best fit the observations vector.
Moreover, the weights must be positive and sum up to one. We use the R
package [79] to solve this problem of quadratic optimisation. As stated in
previous work [78], this definition of the stacking significantly reduces the
exploration space and makes the weights estimation robust.

37

Chapter 3. Dynamic Autotuning Framework

3.5.3 Model validation and selection

This section describes how the learning module, described in Section 3.5.2,
validates the available models and how it selects the best one. The typical
approach for testing how the models fare in the prediction is to divide input
data in a training and in a validation set. Given that we aim at reducing the
number of observations to explore, we are not willing to holdout samples
for the validation. Therefore, the learning module uses a k-fold validation
scheme: the whole observations are divided into k-parts of equal size. We
always use one part as a holdout set, and we use the rest of the observations
to train the model. This data partitioning scheme implies that the learning
module trains k models and each of them will have out-of-sample predic-
tions on a different part of data. We will call these models cross-validation
models.

To quantify the prediction quality of a model, we consider two metrics.
A variant of the coefficient of determination (R2) [80], and the mean ab-
solute error, normalised by the observed values range (MAE_adj). In our
case R2 is computed as the square of the correlation between observed and
predicted data. We choose this variant [80] because it can be used on the
cross-validation and out of sample predictions to compare the results con-
sistently. For evaluating these metrics for each base model, we consider
the median of R2 and MAE_adj across the cross-validation models. For
model ensembles, we compute them considering the whole set of observa-
tions.

Once we evaluate all the models, we deem as eligible the ones that
have R2 higher than εr and MAE_adj less than εm, to enforce a mini-
mum quality. Among the eligible models, we select the one that minimises
the MAE_adj. If no model is eligible, the proposed approach will restart
the design space exploration, up to a maximum number of iterations. When
the learning module reaches the maximum number of iterations (maxIt),
it concludes the exploration phase and does not perform out-of-sample pre-
dictions. The parameters εr, εm and maxIt are exposed to end-user and by
default, they are set to 0.5, 0.1 and −1 respectively.

3.6 Integration in the target application

In this section, we describe the effort required from end-users and applica-
tion developers to integrate mARGOt in their application. In this context,
end-users are the final users of the application, and therefore they are in
charge of defining the application requirements and identifying input fea-

38

3.6. Integration in the target application

tures (if any). Application developers are the ones that write the application
source code; therefore they are in charge of identifying software-knobs and
extracting features from the input (if any). From the implementation point
of view, we designed the framework: (i) to apply the separation of concern
approach between functional and extra-functional properties; (ii) to limit
the code intrusiveness in terms of the number of lines of code to be changed
and (iii) to propose an easy-to-use instrumentation of the code. Indeed, to
ease the integration process in the target application, mARGOt provides a
utility tool that starting from an XML description of the extra-functional
concerns, it generates a high-level-interface tailored for the target applica-
tion. The main configuration file describes the adaptation layer by stating:

1. the monitors of interest for the application;

2. the geometry of the problem, i.e. the EFPs of interest, the application
software-knobs, and data features of the input;

3. the application requirements, i.e. the optimisation problem stated in
Eq. 3.1. Optionally, the online DSE information.

If the application developers derive the application knowledge at design-
time, the second configuration file states the list of Operating Points as
shown in Figure 3.2.

Starting from this high-level description of the layer, the utility tool gen-
erates a library with the required glue code that aims at hiding, as much as
possible, the mARGOt implementation details. In particular, the high-level
interface exposes five functions to the developers:

• init. The global function that initializes the data structures.

• update. The block-level function that updates the application software-
knobs with the most suitable configuration found.

• start_monitor. The block-level function that starts all the monitors
of interest.

• stop_monitor The block-level function that stops all the monitors of
interest.

• log The block-level function that logs the application behavior.

These functions hide the initialisation of the framework and its basic usage.
For example, the update function takes as output parameters the software-
knobs of the application and as input parameters the features of the current
input. It uses the features to select the most suitable cluster, and then it

39

Chapter 3. Dynamic Autotuning Framework

sets software-knobs parameters according to the most suitable configura-
tion found by mARGOt. However, if application developers need a more
advanced adaptation strategy, for example, to change the application re-
quirement at runtime, they need to use the mARGOt interface on top of the
high-level one.

To show the integration effort, in the following example we focus on a
toy application with two software-knobs (knob1 and knob2) and two input
features (feature1 and feature2). The application algorithm is rather simple:
it is composed of a loop that continuously elaborates new inputs. In this
example, we suppose that the end-user is concerned about execution time
and the computation error. In particular, he/she would like to minimise the
computation error, provided an upper bound on the execution time.

In the context of this example, Figure 3.5 shows the main XML configu-
ration file that states the extra-functional concerns. This file is composed of
three sections: the monitor section (lines 4− 21), the application geometry
section (lines 23− 31) and the adaptation section (lines 33− 41).

The monitor section lists all the monitors of interest for the user. In
this example, we have an execution time monitor (lines 5−7) and a custom
monitor for observing the error (lines 8−21). All the monitors might expose
to application developers a statistical property over the observations, such
as the average value in this example (line 6 and 20). If the end-user is not
interested in observing the behaviour of the application, he/she might omit
this section.

The application geometry section lists the application software-knobs
(lines 24, 25), the metrics of interest (lines 26, 27) and the features of the
input (lines 28− 31). In particular, it is possible to specify how to compute
the distance between feature vectors (line 28) and to specify constraints on
their selection, as described in Section 3.4. For example, if we consider
feature2 (line 30), we state that a cluster is eligible to be selected only if its
feature2 value is lower or equal than the feature2 value of the current input.
If we consider feature1 (line 29) instead, we state that we do not impose
any requirement on a cluster to be eligible. This mechanism provides to
mARGOt a way to adapt proactively by sizing optimisation opportunities
according to the actual input.

While the application geometry describes the boundaries of the problem,
the adaptation section states the application requirements of the end-user.
In particular, it states the application goals (line 34), the feedback infor-
mation from the monitor (line 35) and the constrained multi-optimization
problem (lines 36 − 41). In the definition of a constraint (line 40), it is
possible to specify a confidence interval and a priority. The confidence

40

3.6. Integration in the target application

1 <margot application="toy_app" version="v1">
2 <block name="foo">
3
4 <!-- MONITOR SECTION -->
5 <monitor name="exec_time_monitor" type="Time">
6 <expose var_name="avg_exec_time" what="average"/>
7 </monitor>
8 <monitor name="error_monitor" type="Custom">
9 <spec>

10 <header reference="margot/monitor.hpp"/>
11 <class name="margot::Monitor<float>"/>
12 <type name="float"/>
13 <stop_method name="push"/>
14 </spec>
15 <stop>
16 <param>
17 <local_var name="error" type="float"/>
18 </param>
19 </stop>
20 <expose var_name="avg_error" what="average"/>
21 </monitor>
22
23 <!-- APPLICATION GEOMETRY -->
24 <knob name="k1" var_name="knob1" var_type="int"/>
25 <knob name="k1" var_name="knob1" var_type="int"/>
26 <metric name="exec_time" type="float" distribution="yes"/>
27 <metric name="error" type="float" distribution="yes"/>
28 <features distance="euclidean">
29 <feature name="feature1" type="double" comparison="-"/>
30 <feature name="feature2" type="double" comparison="LE"/>
31 </features>
32
33 <!-- ADAPTATION SECTION -->
34 <goal name="exec_time_goal" metric_name="exec_time" cFun="LE"

value="2"/>
35 <adapt metric_name="exec_time" using="exec_time_monitor" inertia="

3"/>
36 <state name="normal" starting="yes">
37 <minimize combination="simple">
38 <metric name="error" coef="1.0"/>
39 </minimize>
40 <subject to="exec_time_goal" confidence="1" priority="10"/>
41 </state>
42
43 </block>
44 </margot>

Figure 3.5: The main XML configuration file for the toy application, stating extra-
functional concerns. In this example, we highlighted each section of the file.

specifies how many times mARGOt shall take into account the standard de-
viation, to improve the resilience against noise with respect to the average
behaviour. The priority is used to sort the constraints by their importance
for the end-user. Application goals and feedback information provide to

41

Chapter 3. Dynamic Autotuning Framework

1 #include <margot.hpp>
2
3 int main()
4 {
5 margot::init();
6
7 int knob1 = 4;
8 int knob2 = 2;
9 float error = 0.0f;

10
11 while (work_to_do())
12 {
13 new_input = get_input();
14 const double feature1 = extract_feature1(new_input);
15 const double feature2 = extract_feature2(new_input);
16
17 MARGOT_MANAGED_BLOCK_FOO
18 {
19 do_job(new_input, knob1, knob2);
20 error = compute_error(new_input);
21 }
22 }
23 }

Figure 3.6: Stripped C++ code of the target toy application, after the mARGOt integra-
tion. The omitted code is application logic and required include files.

mARGOt the possibility to adapt reactively. Indeed, a violation of a goal
in the optimisation problem or a discrepancy between the observed and ex-
pected behaviour of the application, triggers an adaptation form mARGOt,
reacting to the event.

Starting from this configuration file, mARGOt automatically generates
the glue code accordingly, exposing to application developers a high-level
interface tailored for the specific problem. For a complete description of the
XML syntax and semantics, please refer to the user manual in the mARGOt
repository [14].

Figure 3.6 shows the source code of the application after the integration
with mARGOt. To highlight the required effort, we hide the application
algorithm in three functions: work_to_do (line 11) tests whether input data
are available, get_input (line 13) retrieves the last input to elaborate and
do_job (line 19) performs the elaboration. The integration effort requires
application developers to include the mARGOt header (line 1), to initialize
the framework (line 5) and to wrap the block of code managed by mARGOt
(lines 17, 18, 21). Due to the structure of the code, it is possible to use a
pre-processor macro to hide the five functions described earlier.

Even if we minimised the framework integration effort, we still need
application developers to identify and to write the code that extracts mean-

42

3.7. Summary

ingful features from an input (lines 14, 15); and a function that computes the
elaboration error (line 20). Although these metrics are heavily application-
dependent, a large percentage of works in literature analyse generic error
metrics [3], and generic input features [59]. Application developers might
consider these works as starting points to identify more customised metrics
for their application. Moreover, the next chapters of this thesis evaluate the
benefits of using the proposed framework in a wide range of scenarios and
presenting examples of error metrics and input features as well.

3.7 Summary

The mARGOt framework provides a runtime self-optimization layer for
adapting applications reactively and proactively. Differently, from static
autotuner frameworks, mARGOt focuses on application-specific software
knobs, whose optimal value depends on the system workload, on changes
in the application requirements or on features of the actual input. In particu-
lar, mARGOt may change the software-knobs configuration if: 1) the appli-
cation requirements changes, 2) the application knowledge changes, 3) the
expected performance differs from the observed one, and 4) according to
features of the current input. mARGOt has been designed to be lightweight
and flexible to enable its deployment in a wide range of scenarios.

A key feature of mARGOt is how to derive the application knowledge.
We offer to application developers two possibilities. First, they may lever-
age well-known techniques to run a DSE at design time. Second, we pro-
vide a software architecture to run the DSE directly at runtime, leveraging
the mARGOt ability to change application knowledge.

From the implementation point of view, mARGOt minimises the integra-
tion effort by generating the required glue code automatically, starting from
an XML description of extra-functional concerns, that hides implementa-
tion details. Moreover, the generated code exposes an easy-to-use interface
for wrapping the managed region of code. Advanced adaptation rule might
be expressed on top of this interface.

Furthermore, the mARGOt source code has been publicly released [14],
along with user guides on the framework itself and on the tool that gener-
ates the high-level interface. Moreover, it is possible to derive a Doxygen
documentation of the internal mARGOt implementation details to offer the
possibility to customise or extend the framework.

43

CHAPTER4
Experimental evaluation

This chapter aims at providing a brief experimental evaluation of the pro-
posed framework, highlighting the benefits of each feature exposed by the
adaptation layer. At first, we evaluate the overheads introduced by mAR-
GOt. Then, we show the benefits of the reaction mechanisms and how con-
sidering input features might lead to identify and seize optimisation oppor-
tunities. Moreover, we show how learning at runtime the relation between
software-knobs, extra-functional properties of interest and input features
might be beneficial for the target application. Furthermore, for each feature
we show a snippet of the target application source code, to better identify
the required integration effort for the evaluated feature. Later chapters of
this thesis provide a more detailed description of the framework exploita-
tion in different scenarios and application case studies.

Given the flexibility of mARGOt, we deployed it on different platforms
ranging from embedded to HPC. As a representative embedded platform,
we used a Raspberry Pi (R) 3 model B. The board has a quad-core ARMv7
(R) (@ 1.2 Ghz) CPU with 1 GB of memory. To represent a typical HPC
node, we used a platform composed of two Intel(R) Xeon(R) CPU E5-2630
v3 (@ 2.40GHz) with 128 GB of memory with dual channel configuration
(@1866 MHz). All the experiments described in this chapter make use of

45

Chapter 4. Experimental evaluation

the Intel platform, except the ones that evaluate the reaction mechanisms
(Section 4.2) which uses the ARM platform. Moreover, for the experi-
ments that aim at evaluating the online learning component, we use a plat-
form with eight CPUs Intel(R) Xeon(R) X5482 @3.20GHz with 8 GB of
memory.

4.1 Evaluating the framework overheads

The proposed framework enables to instrument the code to introduce the
adaptation layer as a standard C++ library that executes synchronously with
the application. Therefore, we should consider the time spent by the mAR-
GOt library to select a new configuration, to change the knowledge base, or
to update the internal structures that represent application requirements as
an overhead introduced to the target application.

This experiment aims at evaluating the overheads introduced by mAR-
GOt in the most significant operations exposed to application developers.
Instead of providing a single value, in this experiment, we increase the
problem complexity to show the trend of the overheads. Before discussing
the results, it is important to remember that the mARGOt implementation
follows a differential approach to solve the optimisation problem efficiently.
It starts with a default base optimisation problem, where the application
knowledge is empty, there are no constraints, and the optimisation function
maximises the value of the first software-knob. From this initial state, ev-
ery change issued from the application, such as adding Operating Points
or defining a new objective function, affects only the Operating Points in-
volved in the change. Even if the worst-case complexity of the algorithm is
the same, it reduces the complexity of the average- and best-case scenarios.

To measure the overheads of the framework, we rely on a benchmark
application that stresses the most demanding operations. Given that the ex-
ecution time depends on the underlying architecture, this utility is included
in the mARGOt repository. Therefore it is possible to measure the over-
heads on the target platform.

Figure 4.1 shows the introduced overheads by varying the size of the
application knowledge or input feature clusters across the evaluated opera-
tions. In particular, Figure 4.1a shows the overhead for introducing Oper-
ating Points in the application knowledge by varying their number. Given
that each constraint uses a dedicated “view” over the OPs, the introduced
overhead also depends on their number. Figure 4.1b shows the overhead
for introducing a new constraint in the optimisation problem. The overhead
of this operation depends on how many OPs are admissible for the new

46

4.1. Evaluating the framework overheads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Number of added Operating Points

No Constraints
1 Constraint

2 Constraints
3 Constraints

(a) Add Operating Points

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Size knowledge base [# Operating Points]

Worst case Best case

(b) Add a constraint

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Size knowledge base [# Operating Points]

Worst case Best case

(c) Define objective function

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Size knowledge base [# Operating Points]

No changes
5 Operating Points

50 Operating Points
100 Operating Points

(d) Find best configuration (flat)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Size knowledge base [# Operating Points]

1 constraint
2 constraints

3 constraints
4 constraints

(e) Find best configuration (scaling)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d
 [

u
s]

Number of feature cluster

Euclidean Normalized

(f) Select features cluster

Figure 4.1: Evaluation of the overheads introduced by mARGOt at runtime.

constraint. Even when no OPs are admissible, the introduced overhead is
due to the building of a dedicated “view”, which involves all the OPs in
the knowledge base. Figure 4.1c shows the overhead of defining a new ob-
jective function for the problem. In this case, the overhead depends on the
number of OPs that satisfy all the constraints of the optimisation problem.
Figure 4.1d and 4.1e show the overhead of solving the optimisation prob-
lem by inspection. While we might consider the previous operations as an
initialization cost, we pay this overhead each time the application enters

47

Chapter 4. Experimental evaluation

in the managed region of code. As shown in Figure 4.1d, the introduced
overheads depend only on the number of OPs involved in the change with
respect to the previous time that the optimisation problem was solved. Fig-
ure 4.1e shows the introduced overhead in the worst case scenario, which
is not only because all the Operating Points are involved in the change, but
it takes into consideration also the solver algorithm, by using a knowledge
base to stress the implementation. Where all the OPs have the same value
for the metrics related to the constraints and with the objective function.
Figure 4.1f shows the overhead of selecting the closest feature cluster of
the current input, where the feature vector is composed of three values. We
pay this overhead each time the application enters in the managed region
of code, and we shall add it to the overhead of solving the optimisation
problem.

4.2 Evaluating the reaction mechanisms

To demonstrate the benefits of reacting to changes in the application re-
quirements or on the execution context, we target the Stereomatching ap-
plication. It takes as input a pair of images from a stereo camera, and it
computes a disparity map of the captured scene. The output of this applica-
tion is required for estimating the depth of the objects in the scene. In this
section, we consider a scenario where a smart camera is deployed either on
a drone or a battery powered surveillance system.

The algorithm derived by [81] builds adaptive-shape support regions for
each pixel of an image, based on colour similarity, and then it tries to match
them on the other image, computing its disparity value. The algorithm
implementation [4] exposes five application-specific knobs to modify the
effort spent on building the support regions and on matching them in the
second image to trade off the accuracy of the disparity image (the Stere-
omatching output) and the execution time (and thus the reachable appli-
cation throughput). The accuracy metric is the disparity error, defined as
the average intensity difference per pixel, in percentage, between the com-
puted output and the reference output. The application has been parallelised
by using OpenMP, making available as sixth software-knob the number of
threads used for the computation.

The end-user does not require the application to sustain the throughput
of the input video stream, but he requires that the application must reach a
minimum throughput for detecting the position and depth of the objects in
the scene. In this scenario, we set this high priority constraint to 3fps. On
top of this constraint, we envisioned two different application requirements

48

4.2. Evaluating the reaction mechanisms

 1

 2

 3

 4

 5

 6
T
h
ro

u
g

h
p

u
t

[f
p

s]
EFPs Goal Knobs

 0

 1

 2

 3

C
o
m

p
u
ta

ti
o
n
 E

rr
o
r

 0.5

 1

 1.5

C
P
U

 F
re

q
u
e
n
cy

 [
G

H
z]

 1

 2

 3

 4

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

th
re

a
d

s

Timestamp [s]

(a) Reaction to a throughput degradation

 1

 2

 3

 4

 5

 6

T
h
ro

u
g

h
p

u
t

[f
p

s]

EFPs Goal Knobs

 0

 1

 2

 3

C
o
m

p
u
ta

ti
o
n
 E

rr
o
r

 0

 10

 20

 30

 40

O
b

je
ct

 d
is

ta
n
ce

 [
%

]

Far Close

 1

 2

 3

 4

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

th
re

a
d

s

Timestamp [s]

(b) Reaction to a change in the requirements

Figure 4.2: Execution trace of Stereomatching running in an embedded platform. The
x-axis shows the timestamp of the experiment, while the y-axes show extra-functional
properties of the system or the value of target software-knob.

according to the scene observed from the stereo camera. First, if in the
previous scene there is no object close to the camera, the objective function
minimises the disparity error with an additional low-priority constraint for
executing the application by using a single software thread. Second, if
there are objects close to the camera, the objective function minimises the
geometric mean between the disparity error and the number of software
threads, without any other constraint except the one on the throughput. The
philosophy behind these two states is that in the first one we try to execute
in a “low-power” mode because nothing is interesting in the scene, while in
the second state we focus on the output quality without forgetting that the
smart camera is placed on a battery-powered device.

To demonstrate the adaptivity added to the Stereomatching application,
we focused on two different use cases as shown in Figure 4.2a and 4.2b.
The first use case (Figure 4.2a) shows how the feedback information from
the monitors trigger the adaptation, reacting to a change in the application
performance. The second use case (Figure 4.2b) shows the benefits of re-
acting to changes in the application requirements (such as switching from

49

Chapter 4. Experimental evaluation

D
is

p
a
ri

ty
 E

rr
o
r

Throughput [fps]

 0
 0.5

 1
 1.5

 2
 2.5

 3

 1 2 3 4 5 6
 1

 2

 3

 4

N
u
m

b
e
r

o
f

th
re

a
d

s

Figure 4.3: Application knowledge of the Stereomatching application. Each circle repre-
sents an Operating Point. The x-axis represents the expected average throughput, the
y-axis the expected average error, and the color range the parallelism level.

one state to the other) according to the system evolution. Figure 4.2 shows
the results of these experiments, while Figure 4.3 reports the application
knowledge (i.e. the Pareto-optimal Operating Points). For clarity reasons,
in Figure 4.2 we omitted the software-knobs that are not relevant to the
experiment.

In the first use case (Figure 4.2a), we execute Stereomatching for 60s.
After 20s, we reduce the frequencies of the platform cores by using the
CPUfreq framework, for example, to simulate the effect of a power capping
due to thermal reasons, and then we restore the original frequency of the
cores after 20s. We executed the entire experiment under the assumption
that there is an object close to the camera. Figure 4.2a shows the execution
trace of this experiment in terms of CPU frequency, number of threads,
computation error and throughput.

At the beginning of the experiment, mARGOt selects among the con-
figurations that satisfy the constraint on the throughput, the one that min-
imises the error and resource usage. When we reduce the frequency of the
cores, the throughput monitor observes a degradation on the performance
with respect to the expected one, triggering the adaptation. In particular,
mARGOt chooses among the valid configurations, the one that minimises
the objective function, while providing the requested throughput adjusted
by the measured degradation. When we restore the original frequency, the
throughput monitor observes a performance improvement and triggers the
second adaptation. Given that we restored the original condition, the se-
lected configuration is the same as the initial one.

In the second use case (Figure 4.2b), we processed a video stream cap-
tured from the stereo camera while it slowly moves from one close object
(from 0s to around 20s) to another one (around 40s to 60s). During the

50

4.2. Evaluating the reaction mechanisms

transition between the two objects, there is a period (around 20s to 40s)
where there is no object close to the camera. Figure 4.2b shows the execu-
tion trace of this experiment in terms of measured object distance, number
of threads, computation error and throughput.

At the beginning and at the end of the experiment, when there is an ob-
ject close to the camera, the configuration selected by mARGOt is the same
used to start the previous experiment (the conditions are the same). How-
ever, when at time 22s there are no more objects close to the camera, mAR-
GOt switches to a more power safe state, which introduces the constraint
on a single thread execution. From the knowledge base (see Figure 4.3), we
notice that on this platform there is no configuration reaching a throughput
of 3fps by using a single thread. For this reason, mARGOt automatically
relaxes the lower priority constraint, selecting the configuration which is
closest to satisfy it, i.e. using two threads. Among the software-knob con-
figurations that use two threads, mARGOt selects the one that minimises
the objective function.

4.2.1 Integration effort

While the previous section demonstrated the benefits of the reaction mecha-
nisms provided by the adaptation layer, this section aims at showing the in-
tegration effort in the target application to achieve the evaluated behaviour.
Figure 4.4 reports the source code of the Stereomatching application. To
highlight the integration effort, we omitted application-specific code, but
we kept source code structure. The application is composed by the main
loop that continuously elaborates incoming images, for the requested stream
duration (lines 19-51). The mARGOt integration is similar to the one de-
scribed in Chapter 3.6: we include the required header (line 2), we ini-
tialize the framework (line 14), and we wrap the managed region of code
(lines 21-30 and lines 34-43). For this application, the error measurement
involves a computation of the output image using a reference configura-
tion (lines 40-42), besides the actual computation (line 32). Therefore,
observing this metric at the production phase will kill the benefits of the
accuracy-throughput tradeoffs, because for evaluating the error it requires
the computation of the output using the reference software-knobs config-
uration. For this reason, the start_monitor and stop_monitor functions do
not handle the error monitor, but we manage it manually. The idea is to
measure the error metric only to obtain the application knowledge at design
time; i.e. only when the application knowledge is not empty (line 38). The
reaction to changes in the execution environment, as in the first use case,

51

Chapter 4. Experimental evaluation

1 // omitted application includes
2 #include <margot.hpp>
3
4 // default software-knobs configuration
5 int max_hypo_value = 100;
6 int hypo_step = 1;
7 int max_arm_length = 18;
8 int color_threshold = 26;
9 int matchcost_limit = 60;

10 int num_threads = 4;
11
12 int main()
13 {
14 margot::init();
15
16 // omitted initialization code
17
18 // main loop of the application
19 while(std::chrono::steady_clock::now() < stop_time)
20 {
21 // update the parameters
22 if (margot::disparity::update(max_hypo_value, hypo_step,
23 max_arm_length, color_threshold,
24 matchcost_limit, num_threads))
25 {
26 margot::disparity::manager.configuration_applied();
27 }
28
29 // start the monitors
30 margot::disparity::start_monitor();
31
32 // omitted application code
33
34 // stop the monitors
35 margot::disparity::stop_monitor();
36
37 // stop the monitors (cpu and throughput) and compute error
38 if (margot::disparity::manager.is_application_knowledge_empty())
39 {
40 cv::Mat ref_img = do_job(left_image, right_image, ref_conf);
41 const auto error = compute_error(output_img, ref_img);
42 margot::disparity::monitor::error_monitor.push(error);
43 }
44
45 // rule to change the state
46 const float proximity = compute_closeness(output_img);
47 if (proximity <= 10.0f + epsilon)
48 margot::disparity::manager.change_active_state("close");
49 else
50 margot::disparity::manager.change_active_state("far");
51 }
52 }

Figure 4.4: Stripped C++ code of the Stereomatching application, highlighting the inte-
gration effort required to achieve the desired behavior.

52

4.3. Evaluating the proactive adaptation

does not require additional integration effort. However, we need to add an
“if-then-else” rule (lines 47-50) to change the mARGOt state according to
the observed scene from the camera (line 46).

4.3 Evaluating the proactive adaptation

To demonstrate how the adaptation layer provided by mARGOt can identify
and seize optimisation opportunities at production phase by using features
of the current input, we target an application that uses Monte Carlo simu-
lations to estimate the travel time distribution in a processing pipeline for
a car navigation system. In particular, the Probabilistic Time-Dependent
Routing (PTDR) algorithm [82] is a crucial component of a cooperative
routing task computing the estimated travel time distribution. Then, later
stages of the navigation system leverage this information to select the best
solution among different routes.

To generate this output, PTDR must first estimate the travel time dis-
tribution and then extract statistical properties to be forwarded to the later
stages of the navigation system. Each trial of the Monte Carlo simulates
an independent route traversal over an annotated graph in terms of speed
profiles. Given a sufficient number of trials, the sampled distribution of
travel times will asymptotically converge towards the real distribution. The
application derives the statistical property of interest using this distribution
(such as the average or the 3rd quantile), which represents the actual output
of the application.

The application is designed and already optimised to leverage the re-
sources of the target HPC platform [83] and exposes as software-knob, the
number of Monte Carlo samples to be used to compute the output. We
defined the error metric as the difference between the value extracted with
a limited number of samples and the one extracted with a very large (the-
oretically infinite) number of samples (we used 1M samples). Moreover,
as defined in [83], we can differentiate among paths with a broad or nar-
row distribution of speed profiles, resulting respectively less or more pre-
dictable regarding travel time estimation. We call this feature, that we can
extract easily before running the PTDR, unpredictability. We provide this
data-feature to mARGOt for selecting the most suitable software-knob con-
figuration for each simulation. Chapter 7 describes in more details the ap-
plication and the effects of the unpredictability on the results quality.

Concerning application requirements, the end-user would like to min-
imise the number of samples used to compute the output, with a limit on
the error upper bound. In this use case, we want to demonstrate how it

53

Chapter 4. Experimental evaluation

 100

 300

 1000

 3000

Monday Sunday

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(a) Path A, premium user

 100

 300

 1000

 3000

Monday Sunday

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(b) Path A, free user

 100

 300

 1000

 3000

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(c) Path B, premium user

 100

 300

 1000

 3000

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(d) Path B, free user

Figure 4.5: Number of samples used by the adaptive PTDR application by changing the
starting time of the request.

is possible to use mARGOt to further increase the application efficiency,
by adapting the number of trials proactively according to the road and in
particular to its unpredictability. Without dynamic adaptation, the end-user
should find the minimum number of samples that leads to a satisfying com-
putation error for the worst case scenario. Moreover, the end-user would
like to differentiate the threshold on the computation error constraint, ac-
cording to whether a premium user (error< 3%) or a free user (error< 6%)
generates the request.

Before running the application, we performed an experimental cam-
paign by using random requests from 300 paths in the Czech Republic
[82], in different moments of the week, to build the application knowledge.
Moreover, we limited the software-knob values to [100, 300, 1000, 3000]
according to the previous analysis of the application [82]. Furthermore, to
increase the robustness of the approach, we consider three times the stan-
dard deviation of a software-knob configuration for the constraint on the
computation error.

Figure 4.5 shows the selected number of samples in an experiment that
generates four types of requests every 15min on two days of the week,
Monday and Sunday. In particular, for each type of user, we consider two
different paths. Figures 4.5c and 4.5a shows the results for the premium
user, while Figures 4.5d and 4.5b shows the results for the free user. On
the one hand, this experiment shows how changing the application require-
ments (premium and free users) decreases the number of samples used to

54

4.3. Evaluating the proactive adaptation

1 float ptdr(const Routing::MCSimulation& route)
2 {
3 // default software-knobs value
4 int num_samples = 10000;
5 float unpredictability = 0;
6
7 // declare the minimum amount of samples
8 int min_samples = 100;
9

10 // run with lowest number of samples
11 std::vector<float> travel_times = route.Simulate(min_samples);
12
13 // extract input feature
14 const float f = extract_feature(travel_times);
15
16 // update the application knobs, if neeeded
17 if (margot::travel::update(num_samples, unpredictability))
18 {
19 margot::travel::manager.configuration_applied();
20 }
21
22 // check if we need to perform
23 // additional simulations
24 if (num_samples > min_samples)
25 {
26 route.Simulate(travel_times, num_samples - min_samples);
27 }
28
29 // return the results
30 return compute_output(travel_times);
31 }

Figure 4.6: Stripped C++ code of the PTDR application, highlighting the integration
effort required to adapt in a proactive fashion.

satisfy the request, considering both static and dynamic approaches. On the
other hand, this experiment shows how input features (dynamic approach)
decreases the number of samples with respect to using a single conserva-
tive configuration (static approach). This approach is feasible since differ-
ent paths have different characteristics, defined by their unpredictability.
For example, countryside requests are more predictable than those coming
from an urban area. In this experiment, the proposed approach easily im-
plemented by using mARGOt uses approximately the 30% of the number
of samples with respect to a static approach, with an overhead comparable
to compute 2 samples only. As previously mentioned, Chapter 7 describes
in more details the relationship between the input features and the qual-
ity of the results. In particular, it will demonstrate through an extensive
experimental campaign the validity of the approach.

55

Chapter 4. Experimental evaluation

4.3.1 Integration effort

From the integration point of view, leveraging input features to adapt proac-
tively implies providing additional parameters to the generated update func-
tion. Figure 4.6 shows the computation kernel of the PTDR application,
used at production phase. In particular, it takes as an input parameter the
Monte Carlo simulator for the given route (line 1), and it provides as output
the desired statistical property (line 30). In the first phase of the execu-
tion, it performs the route traversal simulations with the lowest number of
samples (line 11). With this initial population, the application computes
the input feature (line 14). Then mARGOt selects the most suitable number
of samples according to the input feature (lines 17-20). Given that in this
application we tuned a single software-knob and given the high-level poli-
cies from end-user, we are not interested in observing the actual behaviour
of the application. If the selected number of samples is greater than the
minimum number, mARGOt simulates further route traversals to satisfy the
constraint on the accuracy (lines 24-27).

4.4 Evaluating the online learning module

This section aims at experimentally assessing the ability of mARGOt to
learn the application knowledge at runtime. In particular, Section 4.4.1
evaluates the learning module, using synthetic applications with a known
relation between EFPs and software-knobs. Section 4.4.2 focuses on a ge-
ometrical docking application to evaluate the benefits provided by the pro-
posed framework for the end-user in a real-world case study.

4.4.1 Model validation

This experiment aims at evaluating the ability of the learning module to
perform out-of-sample predictions, while we trained it with a fraction of
the design space. In particular, we created two synthetic applications, with
a known relation between the software-knobs and the EFPs.

The first application is based on a test function derived from the work of
Binh [84], and the problem is defined in Eq. 4.1:

f1(x, y) = x2 − y
f2(x, y) = −0.5x− y − 1

where −7 ≤ x, y ≤ 4.

(4.1)

56

4.4. Evaluating the online learning module

Training Test

M
A

E
_adj

R
2

6 9 12 15 6 9 12 15

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

Points per dimension

V
al

ue

Model Kriging
Mars

Mars Bagged
Polymars

Polymars Bagged
Stacked Models

(a) Binh f1

Training Test
M

A
E

_adj
R

2

6 9 12 15 6 9 12 15

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

Points per dimension

V
al

ue

Model Kriging
Mars

Mars Bagged
Polymars

Polymars Bagged
Stacked Models

(b) Binh f2
Training Test

M
A

E
_adj

R
2

6 9 12 15 6 9 12 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Points per dimension

V
al

ue

Model Kriging
Mars

Mars Bagged
Polymars

Polymars Bagged
Stacked Models

(c) Kursawe f1

Training Test

M
A

E
_adj

R
2

6 9 12 15 6 9 12 15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Points per dimension

V
al

ue
Model Kriging

Mars
Mars Bagged
Polymars

Polymars Bagged
Stacked Models

(d) Kursawe f2

Figure 4.7: R2 and MAE_adj for the Binh and Kursawe synthetic applications, using
different models, by changing the number of points per dimension.

The second application is based on the test function introduced in Kur-
sawe [85], and it is defined in Eq. 4.2:

f1(x) =
∑2

i=1

[
−10 exp

(
−0.2

√
(x2i + x2i+1

)]
f2(x) =

∑3
i=1 [|xi|0.8 + 5 sin(x3i)]

where −5 ≤ xi ≤ 5.

(4.2)

These functions were chosen to test the whole range of different func-
tion types such as linear, nonlinear and exponential. The Binh functions
have two different variables and therefore two software-knobs, while the
Kursawe functions have three different variables.

Figure 4.7 shows the results of this experiment. In particular, Figure 4.7a
and 4.7b refer to the Binh application, while Figure 4.7c and 4.7d refer
to the Kursawe application. For each function, we show the reached R2

and MAE_adj for nonlinear models, for training and test, by varying the
number of explored points per dimension. While they usually are included
in the model selection phase, we excluded the linear models from the plot
for graphical reasons. Indeed, 3 out of 4 studied functions are nonlinear,
and linear models had poor results in comparison to other models. On the

57

Chapter 4. Experimental evaluation

other hand, for the Bihn f2 linear models had a perfect fit for all the tested
points per dimension configurations.

From experimental results, we might notice a trend for the number of
points per dimension. In cases of a low number of explored points per
dimension, the R2 and MAE_adj values of the models are spread over a
considerable interval, where the learning module deems as best different
model families. On the opposite, while increasing the number of points per
dimension, it is possible to notice that the learning module converges to
accurate models when considering the Binh functions (f1 and f2) and the
Kursawe f1. After 10 points per dimension, it is possible to notice how the
R2 and MAE_adj stabilises and how the training values are comparable
to the test values. If we focus on the f2 of the Kursawe application, we
might notice how the learning module is not able to generate a good model
to be used in prediction. This result is due to the complexity of the relation
between f2 and software-knobs in the synthetic application. If we consider
the model selection, there are three models which are dominant: Kriging,
MARS bagged and stacked models. We can see this trend in both synthetic
applications. The actual model selected strongly depends on the predicted
function and on the values of the model selection parameters (i.e. εr and
εm).

4.4.2 Molecular docking case study

Among the tasks that are involved in a drug discovery process, molecular
docking is one of the earliest, and it is performed in silico. Usually, it is
used to virtual screen a huge library of molecules, named ligands, to find
the ones with the strongest interaction with the binding site of a second
molecule, named pocket, to forward to later stages of the drug discovery
process [86]. The complexity of this task is not only due to the considerable
number of ligands to evaluate but also to the number of degree of freedom
involved in the evaluation of a ligand-pocket interaction. In particular, it
is possible to alter the shape of the molecule, without altering its chemical
properties, by rotating a subset of bonds between the atoms of a ligand,
named rotamers.

In this experiment, we focus on a geometric docking kernel, part of the
LiGen Dock application [87], named GeoDock. Due to the complexity
of evaluating the chemical interaction of a pocket-ligand pair, this kernel
considers only geometrical information, and it is used to filter out the lig-
ands that are unable to fit in the target pocket. The application exposes
two software-knobs that generate quality-throughput tradeoffs by reducing

58

4.4. Evaluating the online learning module

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
E
xe

cu
ti

o
n
 t

im
e
 [

s]
Slave 1
Slave 2

Slave 3
Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500

Q
u
a
lit

y
 [

x
1

0
0

0
]

Timestamp [s]

(a) Pocket 1b9v

 0

 5

 10

 15

 20

 25

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Slave 1
Slave 2

Slave 3
Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500

Q
u
a
lit

y
 [

x
1

0
0

0
]

Timestamp [s]

(b) Pocket 1cvu

Figure 4.8: Execution trace of the docking application learning phase, using three slaves.
For each pocket, we show the execution time to compute the current ligand and the
reached quality. We omitted the master trace because it does not perform any compu-
tation.

the number of alternative poses evaluated for each rotamer of the ligand.
The end-users are typically pharmaceutical companies that rent resources
of an HPC platform, to evaluate a chemical library in a typical batch job.
Therefore, they are interested in time-to-solution and on the quality of the
elaboration, defined as the number of evaluated poses. Chapter 8 describes
in details the application domain, stating the identified software-knobs and
providing more insight into the application behaviour.

Given that the later stages of the drug discovery process include a mon-
etary effort to perform tests in-vitro and in-vivo, the reproducibility of the
experiment is a domain requirement. Therefore, once we have obtained the
application knowledge, we restart to evaluate the chemical library with the
configuration that maximises the quality, given a constraint on the time-to-
solution that includes the time spent on the learning phase. In the following
experiments, we used a library of 113k ligands, where each ligand has a
number of atoms between 28 and 153 and a number of rotamers between 2
and 53. Moreover, we use six pockets (1b9v, 1c1b, 1cvu, 1cx2, 1dh3 and

59

Chapter 4. Experimental evaluation

-15

-10

-5

 0

 5

 10

 15

 20

1b9v 1c1b 1cvu 1cx2 1d3h 1fm9 Global

P
re

d
ic

ti
o
n
 e

rr
o
r

[%
]

Pocket codenames

Figure 4.9: Distribution of the prediction error in percentage, grouped by different target
pockets. Negative values indicate an underestimation of time-to-solution.

1fm9) from the RCSB Protein Databank (PDB).

Figure 4.8 shows an execution trace of the docking application using a
“small” (Figure 4.8b) and a “big” pocket (Figure 4.8a), in terms of execu-
tion time for evaluating the pocket-ligand pair and quality of the results.
The length of the learning phases in the two cases depends on the different
model convergence time and on the input characteristic. After the learn-
ing phase, the application set the goal value as the average time required
to elaborate a ligand multiplied by the number of ligands to elaborate. It is
possible to notice how after the initial exploration of the design space, the
application settles with a software-knobs configuration that leads to similar
execution time, but with different quality according to the current input.

To validate the approach, we performed an experimental campaign using
a library of 4k ligands, randomly sampled from the 113k ligands, targeting
six different pockets. In particular, for each pocket we repeated the exper-
iment ten times, reporting the normalised difference between the expected
time-to-solution and the observed one (see Figure 4.9). For the learning
phase, we observed each software-knobs configuration in the DoE with
200 different ligands. Figure 4.9 shows that a large fraction of the time-
to-solution errors are within 5%. In this case, the proposed approach can
accurately estimate the time-to-solution for the current inputs, maximising
the quality of the results given the time budget. In this experiment, we
found that Kriging, MARS bagged, and stacked models are the top three
models according to MAE_adj, the actual selected model varied across
the experiments.

60

4.4. Evaluating the online learning module

4.4.3 Integration effort

1 void geodock_kernel(/* omitted parameters */)
2 {
3 // parse the received ligand and build data structures
4
5 // set the goal as received from master
6 margot::docking::goal::exec_time_limit.set(target_exec_time);
7
8 // update step for retrieving the new configuration
9 if (margot::docking::update(high_precision_step,

number_of_repetitions))
10 {
11 margot::docking::manager.configuration_applied();
12 }
13
14 // start the monitors
15 margot::docking::start_monitor();
16
17 // omitted kernel code
18
19 // stop the monitors
20 margot::docking::stop_monitor(quality);
21 }
22
23 void master_task(/* omitted parameters */)
24 {
25 bool i_was_in_dse = true;
26 float min_exec_time = -1.0f;
27
28 while(/* there are ligands in db*/)
29 {
30 // check if we need to restart the elaboration
31 if ((!margot::docking::manager.in_design_space_exploration()) &&

(i_was_in_dse))
32 {
33 // compute execution time goal value
34
35 // reset the database
36
37 i_was_in_dse = false;
38 }
39
40 // send ligand and goal value
41 }
42 }

Figure 4.10: Stripped C++ code of the GeoDock application, highlighting the integration
effort required to learn at runtime the application knowledge.

From the integration point of view, the generated high-level interface
handle the online Design Space Exploration automatically. Given the em-
barrassingly parallel nature of the GeoDock application, the implementa-
tion follows a master/slave pattern using the MPI framework, where a mas-

61

Chapter 4. Experimental evaluation

ter task dispatch work to any available slave. Figure 4.10 shows the source
code of the GeoDock application kernel (lines 1-21) and of the master task
(lines 23-42). The adaptation layer is defined inside the kernel using the
high-level interface: the update step retrieves the software-knobs configura-
tion (lines 9-12) and the start/stop methods instrument the execution (lines
15 and 20). Due to the determinism requirement, the observed values are
not used to react to changes in the execution environment, but to evaluate
the software-knobs configurations for learning the application knowledge.
Moreover, before the update step, the application kernel set the value on the
execution time goal (line 6) according to a value sent by the master task.

The master task purpose is to dispatch the next ligand in the chemical li-
brary to the first available slave. Due to the determinism requirement, once
we have collected the application knowledge and computed the goal value
(lines 31-38), the master task must restart to evaluate the database. More-
over, to have a unique constraint value for all the slaves without introducing
a global synchronisation point, each time the master sends the next ligand
to be evaluated, it shall also send the goal value.

4.5 Summary

This chapter assessed the proposed dynamic autotuning framework by eval-
uating the benefits of the features exposed by the adaptation layer and by
evaluating the introduced overheads. From the experiment results, it is pos-
sible to notice how the enhanced application can leverage the tradeoffs be-
tween the extra-functional properties of interest to reach high-level goals.
Moreover, the enhanced application might be able to identify and seize op-
timisation opportunities at runtime by using input features or by learning
the application knowledge at runtime for the actual input.

For each feature of the adaptation layer, this chapter described the inte-
gration effort by focusing on the related snipped of source code and high-
lighting the introduced changes. In the considered application, we may
notice how the intrusiveness of the approach is limited. Although the high-
level interface hides the mARGOt internal implementation details, appli-
cation developers are still in charge of computing the most suitable error
metric and of extracting the input features (if available).

62

Part II

Framework exploitation

63

CHAPTER5
Evaluating Orthogonality between

Application Autotuning and Resource
Management

This chapter describes a scenario where we use the mARGOt autotuning
framework in the context of co-running applications that share computa-
tion resources. Using a video processing application, we compare dif-
ferent techniques of Run-Time Resource Management (RTRM) to evaluate
how much the interaction between RTRM and application autotuning can
become synergistic yet orthogonal. Moreover, we propose a light-weight
RTRM technique, based on mARGOt and its ability to sense the execution
environment.

5.1 Introduction

A new trend in programming data-parallel computationally intensive ap-
plications is using OpenCL not only for programming heterogeneous plat-
forms (by exploiting GPU or FPGA accelerators) but also for homogeneous
platforms. OpenCL follows an "offload" programming model, where an
accelerator is accessed via the host system and is programmed as a co-

65

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

processor, to speed up the execution of computationally intensive kernels.
OpenCL API [88] is designed to make efficient use of the massive computa-
tional parallelism provided by modern accelerators. On the contrary, there
is not yet support for efficient deployment of multiple OpenCL applications
on the same platform. However, the increasing number of processing units
integrated on the same chip delivers computational capabilities that can ex-
ceed the performance requirements of a single application. Thus, server
consolidation is a common approach to reduce the number of machines
(and therefore the power consumption) needed to provide some services.
In this area, runtime adaptability represents a key technique for computing
systems to adjust their behaviour with respect to operating environments,
usage contexts, resource availability and even to faults, thus enabling close-
to-optimal operation in the face of changing conditions.

In this chapter, we address the problem of resource sharing in server
consolidation for adaptive and computationally intensive OpenCL appli-
cations. We characterise our target application scenario by unpredictable,
variable workloads, where applications have to serve concurrent requests
and provide a best-effort service to the users. In this context, we are in-
terested in evaluating the combination of i) application autotuning and ii)
Run-Time Resource Management (RTRM) techniques to improve resource
sharing among computationally intensive workloads. The lack of auto-
tuning and runtime adaptation capabilities at the application-level leads to
sub-optimal power/performance trade-offs at the system level given by the
underutilization of system resources. On one side, the autotuning mecha-
nism allows to trade off performance and Quality-of-Result metrics directly
acting on application-level knobs; on the other side, runtime system man-
agement needs to optimise the computing capabilities concerning dynamic
variations of the environmental conditions, computational demands, and
resource availability.

In this context, mARGOt tunes the application behaviour according to
available resources and given end-user requirements. Among the appli-
cation knobs, we have included a parameter which controls, on a multi-
core platform, the CPU quota used by the application. To this end, we
exploit the device fission OpenCL API [88] to deploy OpenCL kernels on
selected processing units of a multi-core CPU. The drawback of this API
is that OpenCL dynamic compilation is required each time we reconfigure
the computing device. Thus, our analysis also takes into account the ben-
efits of asynchronous compilation to reduce the reconfiguration overhead.
Additionally, this chapter introduces an innovative light-weight technique –
called resource-aware Application-Specific Run-Time Manager (AS-RTM)

66

5.2. Background

– where mARGOt is enabled to take autonomous decisions on resource uti-
lization. The resource-aware AS-RTM considers the information of system
workload gathered by platform sensing for taking reconfiguration decisions
while minimising the impact on other applications that share the same re-
sources. Therefore, the main difference from previous approaches (e.g.
"invade and retreat" [89]) is that applications act as autonomous agents,
without coordination among them. On the one hand, this solution has the
advantage of being non-intrusive from a design point of view, since it does
not require a communication infrastructure; on the other hand, it does not
provide any guarantee of fairness nor optimality in resource allocation. To
achieve system-level objectives such as fairness, we include in the exper-
imental setup a configuration (called Adaptive-RTRM) which exploits a
two-level run-time management: resource allocation delegated to a cen-
tralized resource manager and application-specific parameters controlled
by mARGOt. To summarise, the main contributions of this chapter can be
summarised as follows:

• The problem of resource allocation for computationally intensive OpenCL
applications on multi-core OpenCL platforms has been analysed.

• Different solutions for run-time management based on mARGOt has
been evaluated, to exploit the orthogonality between application-specific
knobs and resource allocation.

• A light-weight technique for run-time resource management based on
platform sensing at the application level has been proposed.

5.2 Background

In [90], the OpenCL standard is extended to support computation offloading
in the automotive industry, by exploiting IP-based in-car networks. How-
ever, computation offloading introduces the problem of resource sharing in
server consolidation [91]; thus it requires Run-Time Management (RTM)
techniques.

The adaptive control technique proposed in [92], called on-line archi-
tecture tailoring, is based on control theory and provides for continuous
self-adaptation of the application. However, this technique is demonstrated
for a single application while we target more complex workloads that would
require continuous adaptation at the system level.

A distributed RTM approach for homogeneous many-core systems based
on game theory is presented in [89]. While distributed approaches suf-

67

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

fer from communication overhead and convergence time, centralised solu-
tions [93] require heuristics for optimal resource allocation within a short
decision time. In [94], the authors combine design-time and run-time tech-
niques in order to train a global resource manager. A step forward made
on top of the previous approach has been done in [95] with a runtime man-
agement framework, called ARTE, supported by DSE. Even in this case,
the run-time manager is a single one (system-wide) and, at the application
level, it provides only the possibility to change the parallelization of the
application.

5.3 Methodology

The basic idea of the methodology proposed in this chapter consists of ex-
ploiting the orthogonality between application auto-tuning and runtime re-
source management for compute-intensive OpenCL applications. To this
purpose, we have envisioned a twofold approach. On one side, mARGOt
uses software-knobs at the application level to trade off the performance
with Quality-of-Result metrics. On the other side, system resources are
partitioned and assigned to the running applications by the resource man-
agement layer.

In a plain OpenCL application, the platform resources are managed by
the OpenCL runtime at application-level, so an application is enabled to
use all devices available on an OpenCL platform and, by default, the entire
quota of each device. On a multi-core CPU, for example, the OpenCL run-
time binds each application to all the compute units by default and relies on
the OS scheduler to assign CPU time to all applications (seen as different
processes by the scheduler). The drawback of this approach is that applica-
tion performance is not predictable, as the number of deployed applications
(processes) changes over time. Moreover, it is not possible to control the
amount of resource quota for each application: while the OS scheduler is
fair in allocating user time to processes, this is unfair for the application, be-
cause applications might have different resource requirements, constraints
or priority.

The methodology proposed in this chapter aims at extending the domain
of application knobs, to manage resource-related parameters without the
need of interacting with other actors. In this way, it is possible to avoid any
synchronization/communication delay and increase the portability of the
application to a new platform, without any additional effort, but generating
the application knowledge specific for that platform.

In this chapter, we rely on the ability of mARGOt to define application

68

5.3. Methodology

requirements on any metric of interest or software-knob to act as a resource
management layer. In this case study, we obtain at design time the perfor-
mance metrics in the application knowledge by profiling the application in
isolation on the target platform. Thus, for computationally intensive appli-
cations, the performance metrics – such as throughput – are likely to ben-
efit from increased computational parallelism, thus higher resource usage.
On the contrary, our target scenario consists of multiple applications, with
different performance and resource requirements, deployed on the same
platform.

It is possible to treat any resource-related parameter (such as the compu-
tational parallelism) as a generic application-specific parameter. However,
plain management of such parameters could lead to system configurations
where the total amount of computational parallelism required by the run-
ning applications exceeds the system resources. In turns, this would result
in a degradation of application performance since the OS scheduler limits
the process CPU usage.

To overcome this problem, we propose a resource-aware adaptive layer,
which takes into account the CPU usage (as we target multi-core CPU plat-
forms), for self-limiting the application parallelism (e.g. the number of
working threads). According to the decision policy stated in Chapter 3,
we add a constraint on the process CPU usage, on top of the application-
specific ones. We initialise the value of this constraint to the maximum
system CPU quota (Γ). At runtime, by monitoring the system CPU us-
age (γ) and the process CPU usage (πmeasured), the application updates this
constraint value according to the system evolution. In particular, mAR-
GOt selects the most suitable software-knobs configurations among the
ones where their expected CPU usage (πexpected) satisfies the following con-
straint:

πexpected ≤ Γ− γ + πmeasured (5.1)

If only one application is running, γ and πmeasured are equal; thus the
application is allowed to use the entire CPU resource. Otherwise, if the
platform is congested, Γ and γ have the same value, which forces mARGOt
to select the most suitable configuration among the ones whose expected
CPU usage fits the quota assigned by the OS scheduler.

In the experimental results, our solution is compared to a centralised ap-
proach, where resource allocation is delegated and coordinated by a system-
wide runtime resource manager (SW-RTRM), while mARGOt takes local
decisions only on application-specific parameters. We will show that it
is possible to reach the same average performance predictability with our

69

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

framework, at the expenses of no guarantee on fairness nor optimal re-
source allocation.

5.4 Experimental Setup

We consider a case study based on the Stereo-Matching application [96],
implemented with OpenCL APIs [88] and designed to export a set of pa-
rameters which impact on both application-specific and platform metrics.
Stereo-Matching belongs to a class of applications that exposes throughput-
accuracy tradeoffs using application-specific software-knobs [4].

5.4.1 Definition of metrics

The Stereo-Matching application has two metrics of interest, namely the
frame-rate (measured as [frames/s]) and the disparity error, which repre-
sents a measure of the average error associated to the application result (the
pixel disparity [96]). However, in our tests, we consider only normalised
metrics that abstract from the specific application, defined as follows.

Normalized Actual Penalty (NAP)

This metric measures the degree of user satisfaction, with respect to a
frame-rate goal set at the application start. The frame-rate goal is a soft
real-time constraint, which should be met independently from the machine
workload and resource availability.

NAP =
GOALmeasured −GOALdemanded
GOALmeasured +GOALdemanded

(5.2)

Normalized Error

This is a measure of the output quality normalised on the range of valid
values so that ERR = 1 when the application runs with the configuration
that provides the lowest – but still acceptable, according to design require-
ments – output quality; while ERR = 0 when the quality is highest. It was
obtained for Stereo-Matching from the disparity error (DErr) as follows:

ERR =
DErrOP −DErrMIN

DErrMAX −DErrMIN
(5.3)

Difference w.r.t. to off-line profiling

Another metric of interest is the deviation (DEV) of the metrics (e.g. cycle
period) observed at run-time with respect to the expected values, i.e. the

70

5.4. Experimental Setup

ones profiled at design-time.

DEV =

∣∣∣∣TcyclemeasuredTcycleexpected
− 1

∣∣∣∣ (5.4)

Since our tests consider dynamic scenarios, for the NAP and ERR met-
rics we compute a synthetic value that takes into account the temporal di-
mension:

NAPAVG =

∫
NAP (t) dt

∆t
, ERRAVG =

∫
ERR(t) dt

∆t
(5.5)

5.4.2 Definition of dynamic workload

A dynamic workload, in this chapter, consists of a set of applications with
different schedules (start time), amount of data to process (number of frames
in Stereo-Matching) and performance requirements (frame-rate). This use-
case aims at mimicking the workload expected in server consolidation,
which offloads computationally intensive OpenCL applications [90]. Al-
though we use only one type of application (Stereo-Matching), we mimic a
dynamic workload by exposing the following parameters:

• Start delay: each application instance is started upon user request;
thus we use different start times.

• Amount of input data: each Stereo-Matching instance is required to
process a different number of frames.

• Frame-rate goal: soft real-time constraint to guarantee a certain re-
sponse time, as demanded by the user.

The above parameters are randomly chosen for each Stereo-Matching run,
within a range of values shown in Table 5.1.

5.4.3 Platform description

We ran our experiments on two multi-core platforms:
1) AMD platform: NUMA machine with four nodes, each a Quad-Core

AMD Opteron Processor 8378 at 2.4 GHz, with 8 GB of RAM per node,

Table 5.1: Range of values for the random parameters of dynamic workload tests.

Parameter AMD Intel
Number of frames 10-840

Frame-rate goal [frames/s] 1-7
Start delay [s] 0-90

Num. instances 1-6 1-4

71

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

running a Linux distribution based on kernel 3.9. OpenCL 1.2 run-time
provided by AMD OpenCL SDK v2.8.1.

2) Intel platform: Workstation with Intel Xeon Quad-Core CPU E5-
1607 at 3.0 GHz and 8 GB RAM, running a Linux distribution based on
kernel 3.5. OpenCL 1.2 run-time provided by Intel OpenCL SDK 2013.

We use the device fission API to partition a multi-core CPU device
into sub-devices. The API defines several partition schemes. We use a
partitioning by count [88] to create one sub-device of a specific size, in
this way controlling the CPU resource usage. However, the OpenCL pro-
gram is bound to a context, so every time a new sub-device is selected it is
necessary to create a new context and rebuild the OpenCL program. The
OpenCL program build introduces overhead at run-time, which might limit
the benefits of application auto-tuning if the reconfiguration rate is high.
To reduce this reconfiguration overhead, we used asynchronous dynamic
compilation, a feature of the clProgramBuild OpenCL API [88] sup-
ported by some OpenCL run-time implementations (e.g. Intel). By passing
to clProgramBuild a function pointer to a notification routine, the ap-
plication can continue running in the previous configuration. When the
OpenCL runtime finishes building the program, it will call the related rou-
tine to notify the application. Our measurements with Intel OpenCL SDK
show that synchronous dynamic build of the Stereo-Matching kernels takes
624ms on average, while the reconfiguration overhead of asynchronous
build is only 58ms (10x less).

5.4.4 Run-Time Management description

We consider five Run-Time Management configurations in the experimen-
tal campaign:

Plain-Linux

Baseline implementation without SW-RTRM and mARGOt. In this config-
uration, we deploy each application instance as a plain OpenCL application;
thus it is bound by default to all processing elements available on the CPU.
On the one hand, since there is no SW-RTRM, this configuration relies on
the OS to schedule tasks from different applications. On the other hand, the
application runs a fixed configuration, with 50% QoS.

Plain-RTRM

For this test we use an open source resource manager, the BarbequeRTRM
[93], to allocate resources to the running applications. In BarbequeRTRM,

72

5.4. Experimental Setup

we define application requirements by a set of Application Working Modes
(AWMs), identified at design time, each one corresponding to a given amount
of required resources. However, if the resource requirement gets higher at
run-time, an application can also request to the manager a higher AWM,
through a specialised API. Any change in the application resource require-
ments or in the system resource availability generates an event that triggers
a system reconfiguration. The SW-RTRM has complete knowledge of the
system state, including dynamic resource requirements of individual ap-
plications, which ensures optimal resource allocation w.r.t. system-level
objectives – such as fairness, execution priority, reconfiguration overhead
and congestion. Even in this case mARGOt is not used; thus the application
runs with QoS fixed to 50%.

AS-Linux

No SW-RTRM but mARGOt is enabled; therefore the adaptation layer can
leverage the trade-off between performance and QoS. Although mARGOt
can control the computational parallelism through a software-knob, the ef-
fective resource usage depends on the allocation of CPU user time by the
OS scheduler.

RA-AS-Linux

This configuration implements the approach presented in this chapter. Dif-
ferently from the previous configuration, here the computational parallelism
is used orthogonally with respect to the application-specific knobs. It im-
plements the technique presented in Section 5.3, based on monitoring of
the system CPU usage for smart adaptation of the resource requirement.

AS-RTRM

Two-level run-time management, which uses both the centralised resource
manager and mARGOt. On the one hand, this configuration delegates re-
source allocation to the BarbequeRTRM, which enforces a fair allocation
of platform resources among the running applications. On the other hand,
mARGOt controls at application-level the trade-off between performance
and accuracy metrics, by tuning the parameters orthogonal w.r.t. resource-
related parameters.

73

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

5.5 Experimental Results

The experiments described in this section have been carried out to assess
the benefits of the proposed methodology. In Section 5.5.1, a single stereo-
matching application, with some constraints on resource usage, has been
used to assess the capability of mARGOt to exploit the available trade-offs
between performance metrics. In Section 5.5.3, we evaluate the orthogonal-
ity between the decision space of mARGOt, analysed before, and different
RTRM techniques. We consider first an approach that manages resource
utilisation as an application parameter in a flat configuration (AS-Linux);
then, we present the two-level approach based on a centralised resource
manager (AS-RTRM); finally, we present the proposed technique for ef-
ficient resource sharing based on platform sensing (Resource-Aware AS-
Linux). We conclude this section with a campaign of experiments (Section
5.5.2) with random workloads to compare the different techniques analysed
individually in the previous experiments.

5.5.1 Application Auto-Tuning Results

This experiment aims at assessing the benefits of application adaptivity.
It consists of a single Stereo-Matching application deployed on the Intel
platform, with 200 frames to process. We repeated the test for each possible
number of cores (4 in total on the Intel platform), with the frame-rate goal
incremented at each run from 3 to 21 frames/s.

The results are shown in the three plots of Figure 5.1, where the x-
axis is the goal value and y-axis represents, in order, the average measured
frame-rate (5.1a), the average normalized error (5.1b), and the average NAP
(5.1c). With the highest resource availability (4-cores) mARGOt can pro-
vide 3 frames/s without quality loss (ERR'0%). On the contrary, config-
urations with lower resource availability, show a quality loss which ranges
from 20% to 50%, depending on the number of cores. This means that there
is a range of goal values, different for each amount of available resources,
where mARGOt can trade off performance and computation error to meet
the goal.

Figure 5.1 shows a similar behaviour but with different thresholds for
the maximum frame-rate that they can reach: the test with 1-core pro-
vides up to 4.3 frames/s, with 2-cores up to 8.1 frames/s, with 3-cores up to
11.5 frames/s and with 4-cores up to 16.4 frames/s. After these frame-rate
thresholds, mARGOt is unable to find any suitable software-knobs configu-
ration that satisfies the constraint; thus the NAP value starts growing.

In conclusion, this test demonstrates that for the selected case study,

74

5.5. Experimental Results

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16 18 20 22

F
P

S
 [
fr

a
m

e
s
/s

e
c
]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

(a) Average measured frame-rate vs. frame-rate goal

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20 22

E
R

R
 [
%

]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

(b) Average normalized disparity error vs. frame-rate goal

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20 22

N
A

P
 [
%

]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

(c) Average Normalized Actual Penalty vs. frame-rate goal

Figure 5.1: Observed frame-rate, normalized error and NAP by varying the frame-rate
goal and the number of cores.

mARGOt can satisfy higher throughput demands by exploiting the possible
trade-offs in the objective space in terms of performance versus computa-
tion error. The dynamic workloads presented in the next section will bene-
fit from this feature, since in a multi-application deployment configuration,
each instance cannot use the full platform, but is constrained to a subset of
resources.

5.5.2 Dynamic Workload Results

In this section, we compare in terms of predictability and fairness, the three
RTM strategies that use mARGOt. The experiment analyses application
adaptivity in a sequential scenario. In such a scenario, we executed four

75

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(f

ra
m

e
/s

e
c
)

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

App 1
App 2
App 3
App 4

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

E
rr

o
r

(%
)

Time (s)

App 1
App 2
App 3
App 4

(a) AS-Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300
Time (s)

App 1
App 2
App 3
App 4

(b) RA-AS-Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300
Time (s)

App 1
App 2
App 3
App 4

(c) AS-RTRM

Figure 5.2: Behavior of the Run-Time Management strategies, in terms of throughput and
normalized error.

Stereo-Matching instances on the Intel platform, with a fixed delay between
the start times. The number of frames to be processed by each instance has
been chosen to let all the applications run together for approximately 30s;
then they complete their execution at different times. All instances have
the same throughput goal (4 frames/s) and mARGOt minimises the dis-
parity error. We can logically partition the experiment in two phases. In
the first phase new applications are launched, so we can observe how al-
ready running applications react when the new applications steal resources.
The second phase begins when the oldest instance has completed its execu-
tion. In this phase, one by one, all applications leave the execution context,
so it is possible to see how the remaining instances exploit the resources
that are released. Figure 5.2 represents the three evaluated RTM strategies:
AS-Linux (5.2a), the proposed Resource-Aware AS-Linux (5.2b) and AS-
RTRM (5.2c). For each configuration, the plots show the expected through-
put and disparity error profiled at run-time, in a time window of 300 sec.

AS-Linux

When only one application is running, the throughput is stable, and the
disparity error is constant. As soon as the second application is started
(t = 20s), the throughput of both instances starts oscillating, but the error
remains constant. The reason for this is that mARGOt does not change the
OP (the throughput is above the goal) but, since the total amount of re-
sources demanded doubles the number of cores, the throughput is strongly

76

5.5. Experimental Results

related to the scheduler policies. The third application executes after 60s,
demanding even more resources, which strengthens the relationship be-
tween the OS scheduling and the throughput oscillation. In this case, the
measured throughput can go below the goal value, forcing mARGOt to se-
lect a faster OP, which in turns boosts the oscillation. In conclusion, this
configuration is not fair neither predictable.

Proposed Resource-Aware AS-Linux

Here the behaviour is quite different: after an initial transitory period, the
constraint on the CPU utilisation forces mARGOt to use only software-
knobs configurations that match the available resources, preventing the
throughput oscillations. Whenever a new application starts or ends, mAR-
GOt waits until the CPU usage, of both the system and the application,
becomes stable before updating the CPU usage constraint. During these
periods, the number of threads might be higher than the number of cores for
short periods (e.g. t = 20s, t = 70s), creating oscillations in the applica-
tion performance. When the applications partition the available resources
among them, the undesired oscillations end. The CPU monitor allows to
gain predictability, however – as the disparity error plot shows – this strat-
egy is not fair because there is no coordination in the resource allocation.

AS-RTRM

Thanks to the centralised coordination, the transitory periods – whenever
an application starts or ends – are drastically reduced. This configuration
provides the best performance predictability and allocation fairness. How-
ever, except for the transitory periods, the performance achieved by the
proposed Resource-Aware AS-Linux and the AS-RTRM are similar (see the
throughput plots).

5.5.3 Evaluating RTM Strategies

This section describes the results obtained by deploying a multi-application
configuration on both reference platforms. Table 5.1 shows the maximum
number of instances and the maximum frame-rate goal for this experiment.

Figure 5.3 reports the results for the test on the AMD platform, while
Figure 5.4 for the Intel one. As shown in Figure 5.3a and Figure 5.4a, Plain-
Linux has the worst NAP metric: although the single application can reach
all throughput demands, concurrent execution of applications with different
resource demands introduces high penalties on the performance metrics. In
this configuration, all applications use by default the entire CPU (device

77

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

N
A

P
 [
%

]

Plain-Linux
Plain-RTRM

AS-Linux
RA-AS-Linux

AS-RTRM

(a) Average Normalized Actual Penalty (NAP)

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

D
E

V
 [
%

]

(b) Throughput degradation w.r.t. to expected

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

E
R

R
 [
%

]

(c) Normalized output quality loss

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1 2 3 4 5 6R
e
c
o
n
fi
g
u
ra

ti
o
n
 o

v
e
rh

e
a
d
 [
%

]

Number of deployed applications

(d) Reconfiguration time w.r.t. total exec time

Figure 5.3: Dynamic workload analysis on
the AMD platform.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

N
A

P
 [
%

]

Plain-Linux
Plain-RTRM

AS-Linux
RA-AS-Linux

AS-RTRM

(a) Average Normalized Actual Penalty (NAP)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 2 3 4

D
E

V
 [
%

]

(b) Throughput degradation w.r.t. to expected

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

E
R

R
 [
%

]

(c) Normalized output quality loss

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4R
e
c
o
n
fi
g
u
ra

ti
o
n
 o

v
e
rh

e
a
d
 [
%

]

Number of deployed applications

(d) Reconfiguration time w.r.t. total exec time

Figure 5.4: Dynamic workload analysis on
the Intel platform.

fission is disabled), introducing a high rate of context-switches, which de-
grades the measured frame-rate. As a consequence of this configuration,
the difference between design-time and run-time profiling is the highest.
Moreover, this deviation continues to increase when we deploy more con-
current applications. This is an expected result since the OpenCL library
relies on the OS scheduler to allocate user time to different applications.

In Plain-RTRM the system-wide coordination of resource allocation has
the most significant impact on predictability of application performance:
indeed, the metric of performance deviation is the lowest for this configu-
ration. The NAP benefits from the execution in a controlled environment
since the allocation of CPU cores has the effect of reducing the number
of context switches. However, this configuration still fixes the QoS of the

78

5.5. Experimental Results

application output; thus the reconfiguration options are limited to the com-
putational parallelism.

This is not the case of AS-Linux, where the QoS metric (Figure 5.3c and
Figure 5.4c) is tuned at run-time to react to variations in the system work-
load. The error associated with the application output is below Plain-RTRM
in scenarios with 1-3 instances, above for scenarios with 4-6 instances. The
NAP benefits from the wider range of trade-offs, which is lower than in
Plain-RTRM; however, the predictability of performance metrics is low, as
shown by the performance deviation bar (Figure 5.3b and Figure 5.4b).

The proposed Resource-Aware AS-Linux overtake this limitation by al-
lowing an application to use computational resources only when they are
available. RA-AS-Linux performance is better than Plain-RTRM in our
tests, because mARGOt is more reactive than a centralised resource man-
ager; on the other hand, the performance predictability is slightly worse in
high contention scenarios. We must notice how the RA-AS-Linux approach
cannot provide any guarantees on fairness in the resource allocation, nor
can support applications with different priority levels whereas the Barbe-
queRTRM can do.

Finally, the configuration that performs best in all scenarios is the AS-
RTRM. By combining the benefits of system-wide resource management
and application-level autotuning, it is possible to achieve the best perfor-
mance. However, this configuration requires a more complex software
framework, which best-effort applications might not need.

The average Normalized Actual Penalty (NAP) (Figure 5.3a and Figure
5.4a) is the metric that better summarises this analysis. We can observe,
as expected, an increasing NAP for all configurations when the workload
increases as well. Nevertheless, the adaptive configurations (supported by
mARGOt) always reduce the NAP with respect to the plain configuration,
which in turns enable the application to meet the frame-rate goal much
more frequently. However, the NAP metric considers only the processing
time and not the run-time management overhead, e.g. the time spent in
reconfiguration. Thus Figure 5.3d and Figure 5.4d show also the reconfigu-
ration overhead, with respect to the total execution time of each experiment.
The average overhead in the configurations with BarbequeRTRM is 0.4%
on the AMD platform and 2% on the Intel platform. In both platforms,
we use synchronous OpenCL program build (see Section 5.4.3), because
the application execution context is not aware of the system state; thus it
cannot control the rescheduling events. Therefore, the difference in recon-
figuration overhead depends on the OpenCL run-time libraries: the build of
Stereo-Matching kernels takes 154ms on AMD and 624ms on Intel plat-

79

Chapter 5. Evaluating Orthogonality between Application Autotuning and
Resource Management

form, respectively. On the other hand, the overhead of AS-Linux and RA-
AS-Linux is different between the two platforms for another reason: the
Intel platform supports asynchronous OpenCL program build, while AMD
does not. This feature can be exploited in the configurations with decen-
tralised resource management because reconfiguration is completely man-
aged by mARGOt. On our Intel platform, this results in a 10x reduction of
the reconfiguration overhead.

5.6 Summary

In this chapter, we addressed the problem of managing multiple OpenCL
applications for server consolidation on multi-core platforms, using the
monitors’ module of mARGOt, as described in Chapter 3. The applica-
tion we targeted in our tests, Stereo-Matching, can achieve different per-
formance (frame-rate) depending on the computational capabilities of the
platform, however more fine-grained control of the resource usage is done
through the OpenCL device fission API.

We have evaluated different Run-Time Management strategies, in terms
of adaptability and predictability in the OpenCL context, reproducing some
approaches proposed in the literature [3], [93]. Moreover, we have intro-
duced a light-weight Run-Time Management technique, based on mAR-
GOt, which extends the trade-off space of a dynamic application autotuner
to resource-usage control. This technique, targeted to compute-intensive
applications, allows taking a local decision on resource utilisation at the
application level, for efficient resource sharing. Moreover, it enables ap-
plications to act as autonomous agents, without coordination among them,
differently from known distributed approaches.

Our tests show that the average performance of the proposed approach
is very close to the performance achieved with a combined approach based
on a centralised resource manager; at the same time, our approach is more
portable and less intrusive from an application design point of view.

80

CHAPTER6
A Seamless Online Compiler and System

Runtime Autotuning Framework

In this chapter, we address the problem of performance portability, concern-
ing options and OpenMP parameters. In particular, we propose a structured
approach, named SOCRATES, which uses mARGOt to automatically tune
the application and an aspect-oriented language to remove the integration
effort in the target source code. On the one hand, this chapter aims at mit-
igating the performance portability problem. On the other hand, it aims at
lowering the integration effort of mARGOt, as described in Chapter 2, since
it targets a well-defined set of software-knobs.

6.1 Introduction

Performance portability across different computing platforms is a challeng-
ing problem for application developers working on different computing
fields from embedded to HPC systems. The problem is that application
performance is strongly dependent on the underlying target platform, sys-
tem runtime, and input data. Ideally, the solution can be expressed as a mor-
phable code capable of adapting to the environmental conditions. However,

81

Chapter 6. A Seamless Online Compiler and System Runtime Autotuning
Framework

this approach faces several challenging problems not yet solved. Among
them, we can mention that writing such a kind of code would require a
flexible high-level language capable of expressing functional aspects, that
can be easily manipulated and customised for later compilation and code
generation phases.

In the past, customising applications without a complete rewriting of the
code, in terms of parallelism and compiler transformations, has been envi-
sioned as a promising path [97, 98]. These approaches are typically based
on the tuning of the application, compiler and system runtime knobs before
the actual code deployment, thus finding a one-fits-all configuration for the
target platform. However, selecting the most suitable configuration can
be a hard task, if we consider that the application workload and resource
partitioning change dynamically and the energy/power budget can evolve
depending on external events. Only a few recent efforts (see, e.g., [3, 60])
are applying strategies once the application has been deployed on the tar-
get system. The main problem of runtime solutions for application tuning
is that they require a high-level of intrusiveness in the source code. In-
deed, the original source code implementing the functional aspects should
be enhanced with glue code needed to profile, monitor and configure the
application according to extra-functional aspects.

This chapter introduces a structured approach, called SOCRATES, for
the runtime selection of the most suitable application configuration in terms
of compiler flags and parallelism parameters of the OpenMP runtime. The
main contribution of SOCRATES is to offer runtime autotuning features
while avoiding any manual intervention by the application developer. The
proposed approach uses an aspect-oriented language, LARA [16], to imple-
ment the separation of concerns between the functional and extra-functional
parts of the application, while an application-level autotuner, mARGOt, is
integrated for the optimal configuration selection. LARA automatically
performs all changes to the application code required by SOCRATES. Fur-
thermore, SOCRATES supports an energy efficient execution by introduc-
ing energy consumption as a key variable to be considered at runtime.

6.2 Background

Aspect-Oriented Programming [99] (AOP) provides mechanisms to express
and deal with cross-cutting concerns, promoting more modular and less
polluted code than alternatives (such as pragmas). One example of such an
AOP approach is LARA [16]. LARA differs substantially from annotation-
based approaches [97,100,101], as code transformations and compiler map-

82

6.3. Proposed Methodology

ping strategies are described in a separate file, allowing a high-level of
reuse. Moreover, LARA offers finer-grained manipulation over the trans-
formations, giving developers a very precise control of the application at the
expression and statement levels. Previous approaches exist for the specifi-
cation of code transformation and optimisation strategies [102,103]. These
enable the user to write recipes, separated from the original application,
specifying a sequence of transformations, but without offering any possi-
bility to select among them at runtime.

Concerning the autotuning of OpenMP parameters, several offline ap-
proaches have been presented in literature [104–106] and implemented in
commercial tools1. While the approaches proposed by Mustafa and Eigen-
mann [104] and Wang et al. [105] analysed the effect of code transforma-
tions and OpenMP parallelization on performance and energy consumption
for tuning purposes, Tiwari et al. [106] propose an entire framework for
offline autotuning based on Active Harmony [107] and CHiLL [108]. The
main limitation of these works is that their effectiveness is strongly depen-
dent on the tuning decisions are taken at profile time to find the one-fits-all
solution.

Overall, the presented frameworks focus on transformations for scien-
tific computing and mainly on tuning performance portability. SOCRATES
provides such features with a more general approach thanks to the signifi-
cant flexibility offered by the two key components (LARA DSL and mAR-
GOt). The proposed approach enables programmers to customise, in a non-
intrusive way, the source code to be then runtime tuned according to the
dynamicity of the environmental conditions and application requirements.

6.3 Proposed Methodology

The main goal of the SOCRATES framework is to provide to the applica-
tion developer an energy-aware framework to enhance the application with
a kernel-level compiler autotuning and adaptation layer in a seamless way.
In particular, the starting point of the approach is a generic source code that
describes the functional behaviour of the application, i.e. o = f(i) where
a generic function f computes the desired output o from the given input i.
The framework performs two major actions on the original application to
reach the adaptivity goal. The first action consists of transforming the appli-
cation into a tunable version, enhancing its structure to take as input a set of
knobs (k1, k2, . . . , kn) that affect its behavior, i.e. o = f(i, k1, k2, . . . , kn).
The idea is that a change in the configuration of the knobs results in a

1https://software.intel.com/en-us/articles/intel-software-autotuning-tool

83

Chapter 6. A Seamless Online Compiler and System Runtime Autotuning
Framework

change of the extra-functional property (EFP) of the application f and its
output o. Examples of EFPs of the function f might be execution time
and power consumption, while EFPs of the output o might be solution ac-
curacy and output file size. The second action consists of enhancing the
tunable version of the application with the intelligence needed to configure
its knobs dynamically, according to application requirements and environ-
mental conditions. Thus, it enhances the application with an adaptation
layer that provides the ability to monitor its behaviour and select the most
suitable configuration.

Even if the overall approach is suitable for different contexts, we de-
signed SOCRATES to address the following autotuning space:

Compiler Options (CO) : This knob represents a combination of compiler
flags. We used four standard optimization levels from gcc: Os, O1,
O2, O3, in addition to specific transformations such as: -funsafe-
math-optimizations, -fno-guess-branch-probability, -fno-ivopts, -fno-
tree-loop-optimize, -fno-inline-functions, -funroll-all-loops derived from
[109];

Number of threads (TN) : This knob sets the number of OpenMP threads
between 1 and the number of logical cores;

Binding Policy (BP) :This knob sets the OpenMP binding policy: spread
or close. We set the environmental variable OMP_PLACES to cores.

Figure 6.1 shows the SOCRATES toolchain. The proposed methodol-
ogy targets applications with one or more kernels representing different
phases of the computation. For reducing the compiler space, the toolchain
uses GCC-Milepost [110] to analyse every kernel of the original code and to
extract code features. Then, the compiler autotuning framework COBAYN
[15] is used to infer and extract the most promising compiler flags for ev-
ery kernel. We generated several versions of the kernel, according to the
autotuning space by using a LARA-controllable toolbox, while mARGOt
enhances the code with runtime autotuning capability. The enhanced code
is then profiled for all the alternatives to create the application knowledge
required by the final adaptive application binary.

6.3.1 Reducing the compiler space complexity

The first step of SOCRATES consists of pruning the compiler optimisa-
tion space. An appropriate methodology is to select efficiently the most
promising compiler options given a target application. To this end, we

84

6.3. Proposed Methodology

Figure 6.1: Tool flow of the SOCRATES approach from the original application source
code to the generation of the application adaptive binary.

adopted the COBAYN framework to select the best optimisation passes.
COBAYN is an autotuning framework that identifies the most suitable com-
piler optimisations by using Bayesian Networks (BN). It uses application
characterization to induce a prediction distribution by an iterative compila-
tion methodology. This technique identifies a suitable set of compiler op-
timisations to be applied to the target kernel, thus reducing the cost of the
compiler optimisation phase. We used GCC standard optimisation levels
and COBAYN predictions as reduced design space for the compiler flags.
Application characterization is done by extracting static code features by
GCC-Milepost, while COBAYN has been adapted to work at kernel func-
tion granularity. In SOCRATES, we used the compiler space adopted in
the original COBAYN paper (128 flags combination) by reducing it to four
alternatives.

85

Chapter 6. A Seamless Online Compiler and System Runtime Autotuning
Framework

Figure 6.2: Example of the automatic application code transformation from the original
code (a) to the final adaptive code (c).

6.3.2 Integration issues

LARA strategies are used to enhance automatically the original source code
for making the application tunable and to integrate the mARGOt frame-
work. In particular, we use code transformation and code insertion strate-
gies specified in LARA aspects to interact with the application source code.
MANET [111] is used as a source-to-source compiler to weave the cross-
cutting concerns described in the aspects in C applications.

There are two main strategies: Multiversioning and Autotuner. Figure
6.2 shows an example of how the application code evolves during the en-
tire process: from pure functional code to adaptive code, ready to be de-
ployed. The first strategy, Multiversioning, generates different versions
of the target kernel and a mechanism to choose which version to call at
runtime. The autotuning space is composed of GCC compiler flags, bind-
ing policy and the number of OpenMP threads. The first two parameters
must be statically defined, while the number of OpenMP threads can be
controlled dynamically. The first action of the Multiversioning strategy
clones the kernel several times. Each function clone represents a differ-
ent version of the kernel in terms of compiler options and binding strat-
egy. No cloned versions have been generated to manage the number of
threads variable because it does not require to be known at compile time.
For each function clone, the strategy inserts GCC pragmas to set compi-
lation flags (e.g., #pragma GCC optimize ("O2,no-inline"))
and OpenMP pragmas (e.g., #pragma omp for num_threads(NT)
proc_bind(close)) to configure the parallelization of the kernels. The

86

6.4. Experimental Results

strategy also generates a wrapper, which selects the target version of the
kernel, according to control variables. Afterwards, the strategy replaces
each call of the kernel from application source files, with a call to the wrap-
per (see Figure 6.2b). The entire process is fully automated.

The second strategy, Autotuner, is responsible for integrating mARGOt
into the application. First, the connection between the generated kernel
versions and the autotuner is made by exposing variables containing the
current configuration. Then, the strategy inserts the required headers and
the initialisation function call at the main function. Finally, as shown in
Figure 6.2c, the strategy surrounds the call to the wrapper with the mARGOt
API code to monitor EFPs and to update the most suitable configuration.

6.4 Experimental Results

The platform used for the experiment is a NUMA machine with two Intel
Xeon E5-2630 V3 CPUs for a total of 16 cores with hyperthreading enabled
and 128 GB of DDR4 memory (@1866 MHz). The experimental campaign
is based on 12 apps from the Polybench/C benchmark suite [112]. We
used the SOCRATES framework to automatically generate the additional
code without any manual intervention on the target applications. In the
experimental campaign, we considered the autotuning space presented in
Section 6.3. We used mARGOt to perform two tasks. The first one profiles
the application to perform a Design Space Exploration (DSE) and build the
knowledge required by the autotuner. The second task tunes the application
at runtime according to application requirements given by the experiment.
To evaluate this approach, we used a full-factorial analysis over the design
space; however, our approach is agnostic with respect to the used DSE
strategy.

Table 6.1 presents some metrics regarding the developed strategy and its
application to each benchmark code. Att is the number of attributes checked
in the LARA strategy about the source code of the application, including
function signature information and OpenMP pragma information. Act is
the number of actions performed on the code, including code insertions,
cloning and pragma insertion. The LOC columns represent, in order, the
number of logical lines of code of the original (O-) benchmark, the weaved
(W-) benchmark and their difference (D-). The number of logical lines of
source code in the complete LARA strategy is 265. This is used to calculate
the Bloat metric [113], that roughly estimates how much code is weaved in
the original application per line of code in the aspect files.

These data present an overview of how complicated, time-consuming

87

Chapter 6. A Seamless Online Compiler and System Runtime Autotuning
Framework

Table 6.1: Metrics collected from the application of LARA strategies.

Benchmark Att Act O-LOC W-LOC D-LOC Bloat

2mm 698 378 136 2068 1932 7.29
3mm 708 378 125 1801 1676 6.32
atax 684 250 81 1071 990 3.74
correlation 1347 410 138 2366 2228 8.41
doitgen 561 218 72 1018 946 3.57
gemver 631 218 94 1008 914 3.45
jacobi-2d 4429 154 145 2918 2773 10.46
mvt 339 154 64 571 507 1.91
nussinov 551 154 78 1356 1278 4.82
seidel-2d 445 154 47 565 518 1.95
syr2k 376 186 66 749 683 2.58
syrk 370 186 62 743 681 2.57

Average 928 237 92 1353 1261 4.10

and error-prone it would be to execute these tasks manually. For instance,
take the case of 2mm, in the first row. The weaver automatically inspects
multiple points in the program code, checking the value of 698 attributes
and performs transformations (or insertions) on 378 of the inspected points.
The resulting code has a number of logical lines of code that is an order of
magnitude larger than the original one. From the Bloat value for 2mm,
we can see that, on average, we insert 7.29 lines of C code per line of
LARA aspect code. The large differences from benchmark to benchmark
are explained because their kernels may be very different in size and have
different numbers of loops, which are closely related to the number of lines
of code and actions performed, respectively.

Figure 6.3 shows the experiment that analyses the trade-off space be-
tween power consumption and throughput of the target kernels by using a
full-factorial DSE. In particular, it shows the distribution (as boxplot) be-
tween the throughput and the average power consumption. The values on
the y-axis represent the distribution of the target metrics, for each evaluated
application, considering only the Pareto-optimal configurations. Given the
large power/performance swing, there is no one-fits-all configuration, thus
confirming the importance of the proposed approach.

This experiment aims at assessing the benefits of the proposed approach
when autotuning is done statically (compile-time) according to a given
power budget. Figure 6.4 shows the results in terms of execution time and

88

6.4. Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

2m
m

3m
m

atax
correlation

doitgen

gem
ver

jacobi-2d

m
vt

nussinov

seidel-2d

syr2k

syrk

N
o
rm

a
liz

e
d

 M
e
tr

ic
s

Power Throughput

Figure 6.3: Power/Throughput distribution of the Pareto-optimal software-knobs configu-
ration, leading to an optimal trade-off according to user requirements.

 1095

 8185

 15275

E
xe

c
ti

m
e
 [

m
s]

-O3

CF1

CF2

CF3

CF4

C
o
m

p
ile

r
Fl

a
g
s

 0

 7

 14

 21

 28

 35

O
M

P
 T

h
re

a
d
s

C
S

 45 64 83 102 121 140O
M

P
 b

in
d

Power Budget [W]

Figure 6.4: Static analysis of the proposed approach, that aims at minimizing execution
time given a constraint on power budget (x-axis).

89

Chapter 6. A Seamless Online Compiler and System Runtime Autotuning
Framework

 80
 93

 106
 119
 132
 145

Po
w

e
r

[W
]

 90

 125

 160

 195

E
xe

c
Ti

m
e
 [

m
s]

C

S

B
in

d

CF1

CF2

C
o
m

p
ile

r
Fl

a
g
s

 5
 20
 35

 0 50 100 150 200 250 300

T
h
re

a
d
s

Timestamp [s]

Figure 6.5: Execution trace of the 2mm application by varying application requirements
at runtime each 100 seconds.

the selected configuration (y-axis) while changing the available power bud-
get, for the target application (2mm). The plot shows the power-performance
trade-off available in the Pareto curve and also highlight that there is not a
clear trend on the selected software-knobs. For this experiment, the custom
flag combinations suggested by COBAYN (CF1-CF4) are: CF1) O3, no-
guess-branch-probability, no-ivopts, no-tree-loop-optimize, no-inline; CF2)
O2, no-inline,unroll-all-loops; CF3) O2, unsafe-math-optimizations, no-
ivopts, no-tree-loop-optimize, unroll-all-loops; CF4) O2, no-inline.

The last experiment shows the runtime effectiveness of SOCRATES.
Figure 6.5 reports an execution trace of the target application (2mm), when
the requirement changes from an energy-efficient policy optimizing Through-
put per Watt2 (Thr/W 2) – in the 0s-100s interval – to a performance-
oriented policy optimizing the Throughput – 100s-200s interval – and back
to optimizing Thr/W 2 – 200s-300s interval. When changing from an
energy-aware to a performance-oriented policy (and vice-versa), we can no-
tice how the parameter sets change dynamically to meet the requirements.

6.5 Summary

The contributions of this chapter are twofold. On the one hand, it ad-
dressed the performance portability problem, in terms of compiler options

90

6.5. Summary

and OpenMP runtime parameters. On the other hand, this chapter aimed at
lowering the integration effort from application developers, as mentioned in
Chapter 2. The main outcome is an autotuning framework, named SOCRATES.
It leverages mARGOt for selecting the most suitable software-knobs con-
figuration automatically. While it uses the LARA aspect-oriented language
to significantly lower the integration effort from the application developers
point of view. SOCRATES has been applied to the OpenMP Polybench
suite by varying application requirements. Experimental results show how
SOCRATES can reach significant benefits in terms of exploiting runtime
energy-performance trade-offs in a dynamic environment.

91

Part III

Application case studies

93

CHAPTER7
Tuning a Server-Side Car Navigation

System

In this chapter, we focus on an application domain to show how it is possi-
ble to significantly improve the computation efficiency by using mARGOt.
The analysed application falls in the context of a navigation system, and it is
the one used in Section 4.3. However, this chapter describes in more details
the relationship between input features and the quality of results. More-
over, we use the LARA aspect-oriented language also in this case study, for
hiding the extra-functional concerns from the application source code.

7.1 Introduction

In smart cities, the trend is to combine and automate several common tasks
to ease the life of citizens. Among these tasks, traffic estimation and pre-
diction plays a central role: it is used not only to avoid traffic congestion,
which allows having predictable travel times but also to reduce car emis-
sions. Considering the rising wave of self-driving cars, the amount of car
navigation requests will increase rapidly together with the need for real-
time updates and processing on large graphs representing the urban net-

95

Chapter 7. Tuning a Server-Side Car Navigation System

work. This trend imposes larger and more powerful computing infrastruc-
tures composed of HPC resources.

Concerning the algorithmic problem, car navigation is one of the main
problems of applied theoretical research. The Dijsktra’s shortest path al-
gorithm is used for finding the optimal path between two vertices in a
weighted graph representing a road network. Apart from single naviga-
tion between two points, navigation algorithms are used in various systems
for solving larger optimisation problems, like route planning for a fleet of
package delivery vehicles, waste collection management or traffic optimi-
sation in a smart city [114]. Definition of the optimal path is based on the
type of used weights of the graph edges. The shortest path is based on the
geographical distance between two adjacent vertices of a graph. The fastest
path is based on the time needed to cross a particular edge. There might be
more complex criteria; however, their description is out of the scope of this
chapter. Time needed to cross a particular stretch of road can be affected
by various elements, such as accidents, traffic congestion, road work and
so on. At the basic level, the upper legal limit of speed is used, based on
the assumption that each vehicle travels at the same speed. This approach
can be vastly inaccurate due to the natural behaviour of traffic.

With the increasing availability of historical traffic monitoring data, there
are several research efforts to determine the average speed on road networks
by using statistical analysis and various models. However, a single speed
value is still not very useful as it does not reflect the stochastic behaviour
of the traffic. The probability distribution of the speed at a certain time
enables to incorporate low probability real world events that can cause ma-
jor delays and affect traffic over vast areas. By incorporating probability
distribution to the computation, the system can compute the probability of
arrival time within a certain time-frame which can be useful for more pre-
cise route planning. This problem is called Probabilistic Time-Dependent
Routing (PTDR).

A scalable algorithm for solving the PTDR problem based on Monte
Carlo simulations has been presented in [82] [83] and represents the base
for our work. In particular, the algorithm uses probability distributions of
travel time for the individual graph edges to estimate the distribution of the
total travel time and it is integrated into an experimental server-side routing
service. This service is deployed on an HPC infrastructure to offer optimal
performance for a large number of requests as needed by the smart city con-
text. The PTDR algorithm employed in this work simulates a large number
of vehicles driving along a determined path in a graph at a particular time
of departure. The speed of vehicles on individual roads is sampled from the

96

7.2. Background

speed probability distribution (also called speed profile) associated to the
graph edge. The number of samples is a parameter that directly affects the
informational value of the output as well as its computational requirements.
Given a large number of requests to be served, even small changes in the
workload can affect the overall HPC system efficiency. While the original
version was based on a worst-case tuning of the number of samples [82],
and given that a reactive approach [115] is not a viable solution due to the
overheads, in this chapter we present a proactive method for dynamically
adapting the number of samples for the Monte Carlo (MC) based PTDR
algorithm.

In particular, the main contributions of this chapter can be summarised
as follows:

• A methodology has been proposed for self-adapting the PTDR algo-
rithm presented in [82] [83] to the input data in a proactive manner,
maximising its performance while respecting the output quality level;

• A probabilistic error model has been proposed to correlate the input
data characteristics with the number of samples used by the Monte
Carlo algorithm;

• An aspect-oriented programming language has been adopted to keep
separated the functional version of the application from the code needed
to introduce the adaptivity layer.

7.2 Background

Determining the optimal path in a stochastic time-dependent graph is a
well-studied problem which has many formulations [116]. Our approach is
closest to the Shortest-path problem with on-time arrival reliability (SPOTAR)
formulation. It can be seen as a variant of the Stochastic on-time arrival
(SOTA) problem, for which a practical solution exists as shown in [117].
These algorithms have the objective of maximising the probability of ar-
riving within a time budget and are related to optimal routing in stochastic
networks. However, there are not many solutions for the time-dependent
variant of both of the problems. In [116] authors show practical results for
the time-dependent variant of SOTA, simultaneously in [118] authors elab-
orate on the complexity of existing theoretical solutions of the SPOTAR
problem and show how it can be extended with time dependency. There are
many other papers which show various theoretical approaches for the SOTA
problem, including some practical applications [117] [119] [120] [121]. So-
lution to the SPOTAR problem based on policy-based SOTA as a heuristic

97

Chapter 7. Tuning a Server-Side Car Navigation System

is presented [120]. However, the authors assume that the network is time-
invariant, which is not true in real cases if considering long paths. The
solution is also unusable in on-line systems as its scalability to graphs rep-
resenting real-world routes is not sufficient.

Our approach follows the same philosophy presented in [82, 83] where
the authors provide an approximate solution of the time-dependent variant
of the SPOTAR problem based on Monte Carlo simulations. As shown in
Section 7.3, our approach uses the k-shortest paths algorithm [122] [123]
[124] to determine the paths for which the travel time distribution is es-
timated. This separation allows us to implement the approach in an on-
line system which provides adaptive routing in real-time. Given the Monte
Carlo nature of the algorithm, to improve the efficiency of the PTDR cal-
culation, we have two main alternatives [125]. The first is the sampling
efficiency, while the second is the sampling convergence. In both cases,
the algorithm optimisation is reached by exploiting the iterative nature of
the Monte Carlo simulation. Several techniques have been proposed to de-
termine what is the next sample to be evaluated to maximise the gathered
knowledge [125, 126] and to improve the sampling efficiency. However,
in the implementation under analysis this has been discarded because our
goal is to exploit the parallelism of the underlying HPC architecture [83]
that excludes any iterative approach to the Monte Carlo. For the same rea-
son also the approaches that require a statistical property evaluation after
every iteration [115], checking if the error is acceptable, cannot be consid-
ered acceptable. Both approaches would be too time-consuming and, how
it has been already analysed in [82], for the specific problem the number
of samples has to be chosen a priori in a proactive rather than in a reactive
manner.

A two-step approach for solving the Monte Carlo problem has been en-
visioned in [127]. Similar to our work, the authors suggest to have a first
shot of a reduced number of samples to provide an initial approximate solu-
tion as fast as possible, and then to refine the output to the required accuracy
in successive iterations. In the proposed context, this idea suffers from two
main problems. First, it is suitable for scientific work-flows where an inter-
mediate solution is used to trigger next computations, and it is not our case.
Second, in the iterative phase, it suggests a reactive approach rather than
a proactive one, that we already discussed to be necessary for the specific
PTDR problem.

98

7.3. Monte Carlo Approach for Probabilistic Time-Dependent Routing

Figure 7.1: The complete navigation infrastructure for serving a single request.

7.3 Monte Carlo Approach for Probabilistic Time-Dependent
Routing

So far, many theoretical formulations and several algorithms have been
developed for solving the problem of computing the travel time distribu-
tion [116]. In this chapter we consider a path-based approach (SPOTAR)
where the paths are known a-priori and travel-time distributions are deter-
mined subsequently for each one of the paths [128].

In the context of the complete traffic navigator application illustrated
in Figure 7.1, our focus is on the efficient estimation of the arrival time
distribution (PTDR - Probabilistic Time-Dependent Routing phase). More
in detail, the three main steps of the application can be described as fol-
lows: (i) The first step consists of determining K alternative paths to be
passed to the next steps. In the navigation scenario, the identification of the
shortest path is not enough to determine a good solution, if no traffic infor-
mation has been considered. Thus alternative routes derived by algorithms
for determining k-Short Paths with limited overlap have to be adopted in
this step [123] [124] [122]. This first phase is out of the scope of this chap-
ter; (ii) For every path selected by the previous step (K-alternative paths),
the computation of the travel time is done using the Probabilistic Time-
Dependent Routing module. While the exact solution to the travel-time
estimation (PTDR) has exponential complexity, in this work we efficiently
approximate the solution of the SPOTAR problem by adopting a Monte
Carlo sampling approach [82]; (iii) The final step gathers the timing infor-
mation provided by the k instances of the PTDR module for every single
request and selects the best path to be given back to the user. This phase
does not provide a single route but reorders the list of k paths determined by
the first step according to the timing distributions determined in the second
phase and user preference [129].

This three-step approach of the whole navigation application allows us
to implement an approximate solution to the SPOTAR problem, which can
be used online in a system to serve a large volume of routing requests.

Our definition of a probabilistic road network is similar to the defi-

99

Chapter 7. Tuning a Server-Side Car Navigation System

nition of the stochastic time-dependent network as described by Miller-
Hooks [128], except for the segment travel times, which has been substi-
tuted by the speed probability distribution (speed profile) for a given time
of departure within a week. Formally, it can be defined as follows. Let
G = (V,E) be a well connected, directed and weighted graph, where V
is the set of vertices and E is the set of edges. Each vertex represents a
junction or some important point corresponding to geospatial properties of
the road, while edges represent the individual road segments between the
junctions. Each path selected by the first phase of the application (i.e. K-
Alternative paths) can be formally represented as a vector of graph edges
S = (s1, s2, . . . , sn), while Sp ⊆ E and n is the number of road segments
in the path.

Using a travel time estimation function, we are interested in estimating
the travel time θ as θ̂S,t,PS where S is the given path, t is the departure
times and PS are the probabilistic speed profiles for the segments in S.
More in detail, t ∈ T is a departure time within a set of possible departure
times which divide a certain timeframe to a set of intervals T = {t : t =
n · φ, n ∈ N} [130], where the length of the interval φ is determined by
input data. P is the set of probabilistic speed profiles for the entire graph
edges E, where PS ⊆ P . Each speed profile p ∈ P is represented by a set
of discrete speed values and assigned probabilities. The number of speed
values depends on the method used for deriving the profiles from historical
traffic monitoring data, while the minimum and maximum values represent
the congestion speed and the free flow speed respectively.

In our work, the time frame is set to one week and φ = 900s (15 min-
utes). This approach reflects traffic variations during the various hours of
the day and for all the days of a week. By extending the time frame, other
factors can be included, such as the seasons or holidays. The number of
speed values has been set to 4 levels according to the characteristics of the
input data used for the creation of the speed profiles.

Focusing on the SPOTAR problem, we are not interested in a single
travel time value θ, but we require to calculate the probability distribution
of the arrival time. Given the previous formalisation of the problem, the
travel time distribution can be estimated by traversing the path segments
together while considering the speed profile distribution. In particular, we
can define a tree where each layer represents a segment in the selected
path [82]. The tree root is the starting segment, while the end segment is
on the leaves. Each node in all layers of the tree has l children, where l is
a number of the discrete speed values for each segment, and the tree depth
corresponds to the number of selected path segments |S|. Each edge in

100

7.3. Monte Carlo Approach for Probabilistic Time-Dependent Routing

Figure 7.2: The original approach for PTDR routing based on Monte Carlo simulations
to derive the travel time distribution.

the tree is annotated by the discrete speed value, its probability, and by the
length of the considered segment.

Travel time can be computed by a depth-first search (DFS) while select-
ing an arbitrary child node at each level of the tree. The travel time value
is then the sum of the time spent in each segment (length/speed), while the
probability of that value is the product of the probability on each edge of
the traversal. Each traversal corresponds to a single car travelling along the
entire path. The exact solution is obtained by an exhaustive search over
all the possible paths between the root node and all the leaves. This ap-
proach is clearly not efficient since it scales exponentially with the number
of segments in the path.

A Monte Carlo-based approach can be successfully employed in this
case. By generating a large number of random tree traversals, enough sam-
ples can be obtained to estimate the final distribution. We define this final
distribution, which is a collection of θ values (θ1...θx) obtained through the
Monte Carlo simulation MCS(x, i), where x is the number of random tree
traversals, and i is the input set of the θ̂ function (i.e. S, t, PS).

Given that travel times usually have a long-tailed distribution due to in-
herent properties of the traffic (e.g. rare events such as accidents) a large
number of samples is needed to estimate the travel time distribution with
sufficient precision. Regarding the definition of the number of samples for
the Monte Carlo simulation, the particular implementation of the PTDR
kernel cannot rely on run-time stability analysis of the output. Each tree
traversal (a sample of the Monte Carlo simulation) is independent of the
others. Thus this problem is perfectly suitable for parallel computing ar-
chitectures, such as modern CPUs or accelerators. However, it is necessary
to know apriori the number of travel time estimations required to build the

101

Chapter 7. Tuning a Server-Side Car Navigation System

final distribution for exploiting this parallelism efficiently.
To summarise, the PTDR algorithm can be seen as in Figure 7.2, where

all the information regarding the request are provided to the Monte Carlo
simulation (MCS) capable of returning the predicted travel time distribution
for the given route.

7.4 The Proposed Approach

The Monte Carlo simulation is designed to use a given number of samples
x for every run. Based on a conventional approach, this number is selected
according to the worst-case analysis, and it is the lowest number of samples
always able to reach a target precision [83]. In this section, we present the
proposed technique adopted to select at runtime the number of samples for
the Monte Carlo simulation according to the input data characteristics.

Before moving on the methodological part, let us better define the spe-
cific context of the problem. In particular, even if we are interested in
the travel time distribution, our goal is to know a value τi to guarantee
with a certain probability that the travel time will be within that value:
P (θ < τi) ≥ y where i has been defined as the input set of the travel-time
function. The value τi is the output of the PTDR phase. In the following,
we characterise that value with an additional property τi,y, where y is the
probability that the travel time will be lower than τ .

Using the Monte Carlo simulation, we can estimate the value of τi,y us-
ing x samples as follows τ̂xi,y = MCS(x, i, y). In particular, we estimate
the value τ̂xi,y by selecting the y-th percentile of the finite-sample distribu-
tion obtained from the Monte Carlo simulation (i.e. if y = 95% then τ̂xi,y is
the 95th percentile of the distribution).

In the context of this work, we are interested in minimizing the execution
time of the function MCS, while limiting the prediction error defined as
errorxi,y =

|τi,y−τ̂xi,y |
τi,y

. In particular, the target problem can be expressed as
follows:

minimize
x

cpu_timexi

subject to errorxi,y ≤ ε
(7.1)

where ε represents the upper bound on the computation error. We want this
error to be relative to the output of the MCS, that is the desired percentile of
the predicted travel time. In this way, we can abstract from the actual path.
Given the tight correlation between the execution time and the used number
of samples x, the previous problem can also be simplified by considering
the minimisation of x instead of the cpu_time. According to Monte Carlo

102

7.4. The Proposed Approach

properties, we can derive that τi,y ≡ τ̂∞i,y, where τ̂∞i,y is the output of the
MCS function computed using an infinite number of samples. Thus, we
can rewrite the error as

errorxi,y =
|τ̂∞i,y − τ̂xi,y|

τ̂∞i,y
(7.2)

Due to the Monte Carlo properties [131], the value τ̂xi,y is a random vari-
able, asymptotically normally distributed with mean µτ̂xi,y and standard de-
viation στ̂xi,y . In particular, according to the central limit theorem [132],
while considering enough values of samples the mean value does not de-
pend on the number of Monte Carlo simulations, and the standard deviation
decreases by increasing the number of Monte Carlo simulations. Given
that, we can define the error as characterized by a normal distribution with
mean 0 and a standard deviation στ̂xi,y/µτ̂xi,y . In the following, we refer to the

standard deviation of the error as ντ̂xi,y =
στ̂x
i,y

µτ̂x
i,y

. This expression is the same

as the coefficient of variation (relative standard deviation) of the result of
the Monte Carlo simulation.

According to the probabilistic nature of the problem, we cannot guar-
antee that the error will always be below ε. However, this can be done
by relaxing the error constraint by introducing a confidence interval (CI)
level. In particular, given the normal distribution of the error, the selected
confidence interval can be correlated with the expected error:

P (errorxi,y ≤ ε) ≥ CI =⇒ ˆerrorxi,y ≤ n(CI)× ντ̂xi,y ≤ ε (7.3)

where n(CI) is a value that express the confidence level (e.g. n(68%)=1,
n(95%)=2 and n(99.7%)=3 derived from the 1-3 σ-intervals of the normal
distribution). Thus, if we decrease the number of Monte Carlo simulations
used to derive τ̂xi,y, on the one hand, we decrease the execution time of the
application, but on the other hand we are also reducing the accuracy of the
results, having a larger value for the coefficient of variation ντ̂xi,y .

An additional problem is derived from the fact that τ̂xi,y is input depen-
dent. This means that it is not possible to predict the possible Monte Carlo
error for unknown paths, according to the number of samples. To deal with
this, we found a feature ui of the inputs i that can be used to quickly esti-
mate the number of samples necessary to keep the error below the threshold
ε. The idea is to evaluate the error by using ui instead of the actual i so that
we can transform the original problem as

errorxi,y ≤ n(CI)× ντ̂xui,y . (7.4)

103

Chapter 7. Tuning a Server-Side Car Navigation System

Path, Starting Time and other PTDR
information

Data Evaluation
and Feature
Extraction

Dynamic
autotuner Other

Requirements (e.g.
SLA, Available

Resources,
Objective

Function,...)

Profilied Knowledge

Travel Time
Distribution

Figure 7.3: The proposed adaptive approach for PTDR routing based on Monte Carlo
simulations and dynamic choice of the number of simulations.

The feature ui has been called unpredictability, since it represents a set of
characteristics of the inputs i (road, starting time,...) that provides informa-
tion about how complex is the prediction of τi,y, therefore it is also related
on how many samples are required to satisfy a certain error and confidence
level. More details on the unpredictability feature are presented in Section
7.4.1.

Given that the error is not anymore related to the specific input set i
but only to the feature ui, the number of samples needed to satisfy the
constraint can be easily extracted by ντ̂xui,y ≤

ε
n(CI)

. A profiling phase on
a set of representative inputs can be used to extract the values of ν̂τ̂xui,y ,
that will be used to determine the correlation between the unpredictability
function and the error. More details on the profiling phase including the
prediction function are presented in Section 7.4.2.

To summarise, the proposed methodology adds an adaptivity layer on
top of the Monte Carlo simulation (see Figure 7.3) to quickly determine at
runtime the right number of samples for each request that satisfies the re-
quired accuracy. In particular, a feature-extraction procedure estimates the
unpredictability value from the input data of the request (path, starting time
and segment speed-profiles). The dynamic autotuner combines this data
feature with the profiled knowledge and the extra-functional requirements
to configure the Monte Carlo simulation.

104

7.4. The Proposed Approach

7.4.1 Unpredictability Feature

Given that the extraction of the data feature from inputs should be done
at runtime, its computation should not be a costly operation. Otherwise,
the benefit of speeding up the computation phase by reducing the number
of Monte Carlo samples would be reduced by the data feature extraction
overhead, eventually making the whole approach meaningless.

From the experimental results, we have found that a measure of the un-
predictability of the path can be extracted by a simple statistical property of
the set of travel times θ extracted by a quick Monte Carlo simulation: the
coefficient of variation. Intuitively the more the results are spread out, the
more the route is hard to predict, thus to have a precise estimation of the
distribution, and in particular the percentiles, we need a higher number of
samples.

The unpredictability function is defined as ui = σxθi/µ
x
θi

where σθi and
µθi are evaluated on a MCS done with the minimum number x of samples
allowed at runtime. It is important to note that σθi is the variance of the
travel times extracted by a single Monte Carlo simulation on the minimum
number of samples. We calculate the unpredictability function together
with the first set of Monte Carlo samples to further reduce the overhead
introduced by the data feature extraction. In particular, we will use this first
short Monte Carlo run to determine if there is a need for further samples
(and how many) to satisfy the error constraint.

To validate the usage of u instead of i, we performed the Spearman cor-
relation test [133] between the unpredictability value and the value of ντ̂xi,y
used in the calculation of the expected error for different values of x and y
over a wide range of inputs sets i. In all cases, the correlation values were
larger than 0.918 showing a p-value equal to 0. These correlations con-
firm our hypothesis, and the p-values prove that the results are statistically
significant.

7.4.2 Error Prediction Function

To predict the expected error for a specific configuration according to the
data feature u, we need to extract ν̂τ̂xui,y from profiling data. We run the
Monte Carlo simulation several times for each configuration in terms of the
number of samples. In particular, we decided to use values ranging from
100 samples up to 3000. The two numbers have been derived from the
observation that 100 samples are the minimum to have the estimation of
the percentile for the distribution, while 3000 is the number of samples that
have already been found good enough to satisfy the worst case conditions

105

Chapter 7. Tuning a Server-Side Car Navigation System

C
lava

Original
Application

(.cpp) Final
Application

(.cpp)

mARGOt
Library

(.hpp, .cpp)

mARGOt Configuration
aspect (.lara)

Application Specific
Glue Code and mARGOt API

insertion aspect (.lara)

m
AR

G
O
t

User Specified Automatically Generated

Figure 7.4: Integration flow outlining the two main LARA aspects and related actions:
original code enrichment and autotuner configuration.

on the previous work [134]. Between the two values, we selected 2 more
sampling levels corresponding to 300 and 1000, that have been derived by
considering that the Monte Carlo error decreases as 1/

√
n [135]. Thus in

our case at each sampling level, we have that the error is almost halved.
We run each set of Monte Carlo simulations with the same configuration

in terms of the number of samples on a large set of inputs i (i.e. roads, start-
ing time ...), and we extract ντ̂xui,y and ui from every single configuration.
Then we create a predictor ν̂τ̂xui,y as the quantile regression [136] over the
extracted data. The use of quantile regression enhances the robustness of
the model in the context of its use. Indeed, we are not interested in predict-
ing an average value as final result, but we want to use it for the inequality
formula ν̂τxui,y ≤

ε
n(CI)

. In this case, a higher value of the quantile with
respect to 50th (the purely linear regression), guarantees higher robustness
in satisfying the previous inequality. The quantile used for the regression
is an additional parameter that can be explored to trade-off robustness and
performance.

7.5 Integration Flow

While the previous section introduces the proposed methodology from the
end-user perspective, thus considering execution time and elaboration error,
this section focuses on the application developer perspective by presenting
the integration flow proposed to enhance the target application with lim-
ited effort. The proposed integration flow enforces a separation between
the functional and extra-functional concerns using an Aspect-Oriented Pro-
gramming Language to inject the code needed to introduce the adaptivity

106

7.5. Integration Flow

1 // Load data
2 Routing::MCSimulation mc(edgesPath, profilePath);
3 auto run_result = mc.RunMonteCarloSimulation(samples, startTime);
4 ResultStats stats(run_result);
5 Routing::Data::WriteResultSingle(run_result, outputFile);
6 return 0;

Listing 7.1: Original source code before integrating the adaptivity layer.

layer in the target source code.
On the one hand, we use mARGOt to dynamically tune the application,

thus implementing the adaptivity concepts presented in Section 7.4 and thus
transforming the target application as highlighted in Figure 7.3. In this con-
text, we use mARGOt to select the number of samples that minimises the
execution time, provided that they are enough to lead to an error below a
certain threshold. In particular, the selection is made by considering the un-
predictability value of the current path, and using as application knowledge
the design-time model described in Section 7.6.1.

On the other hand, we hide all the complexity for code manipulation to
the application developer by using LARA [16] as a language to describe
user-defined strategies, and its Clava compiler 1 for source code analysis
and transformation. LARA is a Domain Specific Language inspired by
Aspect-Oriented Programming concepts. It allows a user to capture spe-
cific points in the code based on structural and semantic information, and
then analyse and act on those points. This produces a new version of the
application, leaving the original unchanged and separating the main func-
tional concerns from those specified in LARA. Clava is a C/C++ source-to-
source compiler based on the LARA framework. The compilation analyses
and code transformations are described in scripts written in the LARA lan-
guage.

In this work, we use Clava to perform two main tasks: first, to enrich
the original source code with the required autotuner glue code, and second,
to configure the autotuner library according to application requirements.
Figure 7.4 depicts the transformation process, from the original source code
to the final application and highlights the two main LARA aspects used. To
further clarify the evolution of the application code and related aspects,
Listing 7.1–4, present respectively the original source code, the two LARA
aspects used to enhance the target application, and the final enriched code.

In particular, the code in Listing 7.2 shows the aspect needed to con-
figure mARGOt, producing an autotuning library tailored according to the

1Project repository: https://github.com/specs-feup/clava

107

https://github.com/specs-feup/clava

Chapter 7. Tuning a Server-Side Car Navigation System

1 aspectdef McConfig
2 /* Generated Code Structure*/
3 output codegen end
4
5 /* mARGOt configuration */
6 var config = new MargotConfig();
7 var travel = config.newBlock(’ptdrMonteCarlo’);
8
9 /* knobs */

10 ptdrMonteCarlo.addKnob(’num_samples’, ’samples’, ’int’);
11 /* data features */
12 ptdrMonteCarlo.addDataFeature(’unpredictability’, ’float’,

MargotValidity.GE);
13 /* metrics */
14 ptdrMonteCarlo.addMetric(’error’, ’float’);
15 /* goals */
16 ptdrMonteCarlo.addMetricGoal(’my_error_goal’, MargotCFun.LE, 0.03,

’error’);
17
18 /* optimization problem */
19 var problem = ptdrMonteCarlo.newState(’problem’);
20 problem.setStarting(true);
21 problem.setMinimizeCombination(MargotCombination.LINEAR);
22 problem.minimizeKnob(’num_samples’, 1.0);
23 problem.subjectTo(’my_error_goal’, 1);
24
25 /* creation of the mARGOT code generator for the following code

enhancement (McCodegen aspect) */
26 margoCodeGen_ptdrMonteCarlo = MargotCodeGen.fromConfig(config, ’

ptdrMonteCarlo’);
27 end

Listing 7.2: LARA aspect for configuring the mARGOt autotuner.

108

7.5. Integration Flow

application requirements. In lines 9–16, we define the num_samples tun-
able software knob, the unpredictability feature that we want to observe, the
error metrics and the goal (i.e. the Service Level Agreement, error < 3%)
that in mARGOt is a condition that can be used later to define the optimiza-
tion problem. Once the knobs, metrics, and data features have been defined,
we can proceed with the creation of the multi-objective constrained optimi-
sation problem that the autotuner has to manage (lines 18–23). In mARGOt
optimisation problems are called states (line 19). It is because mARGOt
gives the possibility to define multiple optimisation problems (only one
can be the default one, line 22) and also to switch among them according to
dynamic conditions. The constraints can be generated as in line 23, where
the number represents the priority of the constraint. In case of more than
one constraint, if the runtime is unable to satisfy both of them, it will relax
the low priority one. Lines 21–22 define the objective function. Given that
in this case, the objective is the minimisation of the number of samples, the
aspect describes it as a linear combination (line 21) of the num_samples
knob only by using a linear coefficient equal to 1 (line 22). mARGOt and
LARA integration aspects permit to build different types of combined ob-
jective functions (e.g. linear or geometric combinations). Finally, line 26
builds the LARA internal structure margoCodeGen_ptdrMonteCarlo that
is then used to create the mARGOt configuration file and code generator.

The second aspect (shown in Listing 7.3) aims at integrating the pro-
posed methodology in the target application. It takes as input (line 3) the
target function call that we want to tune, the mARGOt code generator pro-
duced by the previous aspect (Listing 7.2), and the number of samples
needed to evaluate the unpredictability feature. In line 6, we query the
code to identify the statement (stmt) including Monte Carlo function call
as target join point to be manipulated. Lines 7–17 contain the actual manip-
ulation actions done on the selected join point stmt of the target code. It is
composed of mainly two different types of operations. First, to integrate the
mARGOt calls for initialising the library and updating the software knob
(Lines 10 and 14). Second, to insert the glue code (LARA codedef) for
calculating the unpredictability (line 12 and lines 21–25), and to replace
the original Monte Carlo call with the optimised one that does not repeat
the unpredictability samples (line 16 and lines 28–31).

Overall, in this specific instance of integration, we used 53 lines of
LARA to generate 221 lines of C++ code. However, the advantage can-
not be only considered from a numerical point of view (>4x in terms of
the line of codes). There are three main reasons to justify this approach.
First, the user does not need not to worry about the details of the mARGOt

109

Chapter 7. Tuning a Server-Side Car Navigation System

1 aspectdef McCodegen
2 /* Target function, mARGOt code generator from McConfig aspect, #

samples for feature extraction */
3 input targetName, margoCodeGen_ptdrMonteCarlo,

unpredictabilitySamples end
4
5 /* Target function call identification */
6 select stmt.call{targetName} end
7 apply
8 /* Target Code Manipulation */
9 /* Add mARGOt Init*/

10 margoCodeGen_ptdrMonteCarlo.init($stmt);
11 /* add unpredictability code */
12 $stmt.insert before UnpredictabilityCode(unpredictabilitySamples)

;
13 /* Add mARGOt Update */
14 margoCodeGen_ptdrMonteCarlo.update($stmt);
15 /* Add Optimized Call Code */
16 $stmt.insert replace OptimizedCall(unpredictabilitySamples);
17 end
18 end
19
20 /* Unpredictability extraction code */
21 codedef UnpredictabilityCode(unpredictabilitySamples) %{
22 auto travel_times_feat_new = mc.RunMonteCarloSimulation([[

unpredictabilitySamples]], startTime);
23 ResultStats feat_stats(travel_times_feat_new, {});
24 float unpredictability = feat_stats.variationCoeff;
25 }% end
26
27 /* Optimized MonteCarlo call */
28 codedef OptimizedCall(unpredictabilitySamples) %{
29 auto run_result = mc.RunMonteCarloSimulation(samples - [[

unpredictabilitySamples]], startTime);
30 run_result.insert(run_result.end(), travel_times_feat_new.begin(),

travel_times_feat_new.end());
31 }% end

Listing 7.3: LARA aspect for inserting the application-specific glue code
(unpredictability extraction) and the required mARGOt calls.

110

7.6. Experimental Results

1 // Load data
2 Routing::MCSimulation mc(edgesPath, profilePath);
3 auto travel_times_feat_new = mc.RunMonteCarloSimulation(100,

startTime);
4 ResultStats feat_stats(travel_times_feat_new, {});
5 float unpredictability = feat_stats.variationCoeff;
6 if(margot::travel::update(samples, unpredictability)) {
7 margot::travel::manager.configuration_applied();
8 }
9 auto run_result = mc.RunMonteCarloSimulation(samples - 100, startTime

);
10 run_result.insert(run_result.end(), travel_times_feat_new.begin(),

travel_times_feat_new.end());
11 ResultStats stats(run_result);
12 Routing::Data::WriteResultSingle(travel_times_new, outputFile);
13 return 0;

Listing 7.4: Target source code after the integration of the adaptivity layer.

configuration files and low-level C++ API, but can instead focus on the
high-level interface available in LARA that results to be more declarative
on the target problem (as shown in Listing 7.2 and Listing 7.3). Second,
this approach reuses information between the integration’s several steps.
There is mARGOt-specific information that should be provided by the user
in several places like the configuration files and when using the autotuning
API (e.g. the name of the autotuner block and the knobs and data features).
By using high-level LARA aspects, users only define this information once,
saving time and possibly resulting in fewer production errors. Third, this
approach leverages on a separation of concerns between the original code
(functional description) and the autotuning code (extra-functional optimisa-
tion). All the extra-functional optimisations, including problem definition
(optimisation targets and constraints), are kept separated, and users do not
have to modify the original source. In this way, the original developer does
not need to be involved with all the optimisation process and tools, thus
permitting the functional development and extra-functional optimisation to
run in parallel.

7.6 Experimental Results

In this section, we show the results of applying the proposed methodology
to the PTDR algorithm. The platform used for the experiments is com-
posed by several nodes based on the Intel Xeon E5-2630 V3 CPUs (@2.8
GHz) with 128 GB of DDR4 memory (@1866 MHz) on a dual channel
memory configuration. First, we show the results of the model training for

111

Chapter 7. Tuning a Server-Side Car Navigation System

estimating the expected error (see Section 7.6.1). Then, in Section 7.6.2
we validate the approach by verifying the respect of the error constraint
ε. We compare the proposed approach with respect to the original version
that takes a static decision on the number of samples (see Section 7.6.3).
Finally, in Section 7.6.4, we discuss the overhead introduced, while in Sec-
tion 7.6.5 we evaluate the optimisation impact when considering the entire
navigation service at system-level.

7.6.1 Training the Model

The first actual phase of the methodology is done off-line, and it consists
of training the error model (ˆerrorxi,y) presented in Section 7.4.2 by using
a different number of samples. For training the quantile regression, we
used profiling data extracted by running the PTDR algorithm on a training
set. This training data set has been built using random requests done on
300 different paths across the Czech Republic in different time-slots, thus
considering different speed-profiles for each segment of the paths. All these
requests have been made for all the four levels of sampling used in this
chapter (i.e. 100, 300, 1000 and 3000, as described in Section 7.4.2). The
output of the model training is represented in Figure 7.5. The points in the
three plots represent the results obtained from the profiling runs. The lines
represent the quantile regression lines, thus the model that will be used at
runtime. The three sub-figures are different in terms of the quantile value
used for the regression. Figure 7.5a represents the 50th percentile, Figure
7.5b represents the 75th percentile, while Figure 7.5c represents the 95th
percentile.

We can see that the three regressions are slightly different since we pass
from a more permissive one in Figure 7.5a, where almost half of the points
are below the corresponding regression lines, to the most conservative one
in Figure 7.5c where only a few points are above. Analysing in depth the
data, we can see that the coefficients of the lines of the quantile regression
are almost doubled passing from 75th to 95th percentile (e.g. for 100 sam-
ples, the coefficients pass from 0.27 to 0.38, while for 3000 samples they
pass from 0.049 to 0.071).

The extracted models are now ready to be used at run-time by the dy-
namic autotuner to select the minimum number of samples that satisfy the
error constraint for the given unpredictability value. The results shown in
Section 7.6.2 will demonstrate the effectiveness of the proposed method at
runtime.

112

7.6. Experimental Results

 0

 1

 2

 3

 4

 5

 6

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ν τ̂
 u

i,yx [
%

]

Input Unpredictability

3000 samples
1000 samples
300 samples
100 samples

3000 regression
1000 regression
300 regression
100 regression

(a) Quantile regression using the 50th perc.

 0

 1

 2

 3

 4

 5

 6

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ν τ̂
 u

i,yx [
%

]

Input Unpredictability

3000 samples
1000 samples
300 samples
100 samples

3000 regression
1000 regression
300 regression
100 regression

(b) Quantile regression using the 75th perc.

 0

 1

 2

 3

 4

 5

 6

 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ν τ̂
 u

i,yx [
%

]

Input Unpredictability

3000 samples
1000 samples
300 samples
100 samples

3000 regression
1000 regression
300 regression
100 regression

(c) Quantile regression using the 95th perc.

Figure 7.5: Training of the error model by using different number of samples and quantile
regressions.

113

Chapter 7. Tuning a Server-Side Car Navigation System

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

△ xxx
△ xx△△ xx△△ △ xx△ x△△△ xx xxx xx△ x△ xx△ x△ xx△
△
△△

x△ △ x
△

x△ x
△

x△ x x
△

x△△△△ xx x△ x△△ △△ x△△ △△△ x xx△△ xxx△
△

△ ox△ xxx△△△ x x△ x△ xx△ x x
x

xx△△△ xx△
△

x△ △ x
△△ x△△ x△ x

△ x△ x x△ x x△ △
△

x△△△ x△△△ △ x△△ x x△△△ △ x
△
△ x△△ x△ xxx△ x△△ x

△
x△ xx

x△△△△△
△

△ x△ △△ x x△ △ x△△ x△ △△ △ x
△
△

xx△△ △△
△

△ △△△ xx△
x
xx△ △△

△
x△ o△△

△
xx△ x x

xx△△△ x△ △ x△
△

xx
△ △△ x△ x x x
△

x△
△△ x
△

x△
x

△ xx△△ △△△ x△ △ x
x△△ x△ x△ △

△
x△ △ x△△ △△

△△ xx△ △△△ △ x△△ xx△ x△ x△ xx△ x△ △ x△ △△ o△ x△ x xx△ x△△△ x
△

x
△△
△ x
△△ x△

△
xx△ x

△ x
x△ x△△ x△△ xx△△ x xxx

x
△ x△

△△
△△△ △ x△ △x△ xx△△ x x△ x△△△ x

△
x x△ xx△ x△ x

△△ △△ x x xxx△ x△ x△△ △ x△ x△△ △ △ x xx△
△△ △ x△ △ xx△ xxx△△ △ x△ △△ x△ x△ x xx△ x△ x△

x△ x
△ x△ x△ xx x

x△ x△ x△△
x

xx△ xx△ x△ x△△ x x
△

x△ x△ △ x△ △△△ x△
△△ x△ xx△ △
△
△△ △

x△ △ x△△△ △△
x

△
x△△△△△ △△△△△

△△ △ xx△ △
△

xx△△ x△△
x

△

△ x△
x

x x△ x△△
△

△ xx△ x△
△ xx x△ xxx x
△
x△△ xx x△

△
x

x
△ x△△ xxx xx oxx△ △ x x△ xxx

x△△
xx△△

△
x△

△△△△ xx
△△
△△△

△△
x

△ x△△ △ x△ x x△ xx o△△ x o△ x
△△△△△ △ x△△ △△ △ x△△ x
△

x ox△△△ x
△

△△
△
△△ x△ △

xx
△△△ xx xx△

△
△ △△x△

xxx△
△ x xxx△

xx△ xxxx o△ △
x△ xx xx△

△△ △ x△△△ △△△△△△△ xxx△△ x△ x
△△△ x△ xx△

△△ x
△

x
△△ x△ xx△ x△
△ x△ xxx
△

△ x x
△ △

xx x△△ x△ xx△ x△△ xxx△ x△ x△ xx
△ x△△△

xx
x△ x x△

△△ x△ x△△ x△△ x x△ x△△ x△ x
△△

xxx△ xxx
xx

△
△

△△ △△
△

x
△△

ox xx x△
△ △

△
△
△△ xx x x

xxx△ △ x△ x△ △ x△ x x x△△ x△△ x△△
△

△
△△△ x△ x△ xx
△

△ △ xx△ x x△△
△

x x△△
△△△ xx△
△

x△ x△
xx△ △△ △△ x△△ x△△ xx△ △x x

△
x△ x x xx

△
o△ xx△ x△ x

△ x
△ △ x△△△△△△△△

△
△△△ x x△
△ x△ x△△ xx△ x△△
△

x△
△

xx ox△ xxxx△ x△△
△

△ △ x△ △△ x xx x△ x△ xx
xx△xx△ x

△△△ x△ ox△ △ xx△ x△
x ox

△△

△
△ x
△

x△ x△
x x△ △△ x

△ x△ x△ △△ xxxxxx xxx
△ x x△ x△△ x△ x
△

x△△
x△ x△ x△△ △△△ △△△ △△ xxx△△ x o△△△△ xxx△ xxxx△ x△ x

△
x xx△△△ x△ oxx△ △△ o△△△ x△△△△ xxx

△
△ x xx△△△△△

△

△△ △ x x△ x△ x△ x△ x△△ x x△ x
△ x

x△△ xx△ x x△△ x x△ xx xx xx
x

△△ x△ xx△△△ △ x x△△△△ △ x△xxx△
△△△ △△

x x△△
△△ △△△ x x△△ x

△
△△

△△
△

xx x
△

xx
△

o△ x△ x△ x
△△ x△ xx x

△
x△ x△△

△x△ △△△ x△ xx△△△△
x△ △△ x△

△
△

x x△△ xx x△△ xx x△ xx△ △△ x△△ xx x xx△△ x△ x△ x x△△

△
x

△ x
△
△△ △△△△ x△ △△△ x△

o△△△
x△

△

△△ x xx△ △ x△ △△ x△△△ △ xx x△△
△ x△ △△ △△ △ x△

△
△ x△ △

△
△△ △△ xx△△

x
x x△x

△x△ △
△
△
△ x

x
△△ △

△
△△
△ xxxx
△△△ △△ △△ x△ x

△ △

x
x△ △ x△△ △△ x x△ xx

△
△ x△

(a) Quantile regression using the 50th perc.

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

△ xx
x△ xx△ x xx

△
xx ox△ x
△△△ xxxxx ox△ o△ xx△ x△ xxx△x△ x△ x x△ x△ x△ x
△

x
x△

xx△△△ xxx△ x△△
△△ x△△ xx

△ xxx△ xxx x△ x△ ox△ xx x△△ △ xx△ xx x△
△ x ox x xx
△△ xxx△ x△ △ x△ △ x△△ x△△

x xxx x△ x o△ x
△ x△△△ x△△△
△ x△△ x x△ x△
△

xxx x
△

△ x△ xx△△
x△△ x△
x△ xx

x
△△ x△△△△ x

△ △x x x△ x x△△ x△
△

△ △ x
xx xxx△ x△ x△ x△

△ xxx x o
x△ △△ x x△ o△△ x x△△ x xxxx△

△ x△
x

x△ △ ox△ x△ x△ xxxxx△ xx x△ xxxx xx△△ △△ x x
△△ x△△ △ x△ △△ △
△

x△△ x△△
△ x x
△ xx△△△△ △ x△△ x x

△ x△ x△ x△△ x△ xx△ x△ ox
x△ x o
x△ x△△△ x△△

xx△ xx△ xxx xx△ xx xx△ x△ x x△△ x xx△ xx
xx

△
△ x△ x△ x△△ △ o
△ x x△ xx△△ x xx x△ △△ x

△ x x△ xxx x△
xx△ x△ x x xxx△ xx x

△
△ x x△ △△△△ x x xx△ △△ △△△ △ xx△ xx△

△△△ x
△△△ o△ x△ x

xxxx
△ x△x△ x△ x△ xxx x x x△ x△ x△△ x xx△ x△△ x△ x△△ xx△ x△ x△

x x
△ x△△ x△ △△ x△ xx△ x x

x△ x x△ △ x△△△ xx x△ x xx
△△△ △ x△
△

△△ △△ xx
△
△△ xxx△ x△△ o△△ x

x x
xx△ o△△ x△ xx△
x△△ xx
x

△ x xx xxx△△ x x ox△ xx△ x△△ xxx xx oxx△ xx x△ x
xx x△△ x

x xx△x△ x△xx x△△△ xx
△x△ x△ x△

△△ xx x o
△

xx ox
△ x o△ △△△△△ △△ x△△△△ x△△△

x
x x oox

△
△ ox△△

△
x△ x△△ xxxx△ xxx△△x△ △△ x△ x ox△△ x xxxx xxx oxx x o△ △ o

△ oxxx△△△△ x△△
△ x△△△△△△ xx△
△

△ x△ x
△△△ x△

x xx△△ xx
x△△ x△ xx△

x△ x x△ xx x△x x x△
△

xx xx△ x△ xx△ x△△ xxx△ x△
x△ x

x△ x△△ △ xx x△ x x△ x△ x△ x△△ x△△ xxxx△ △ x△ x
△△ xxx△ oxx o o△ xx△
△△ △

△x△ ox ox x△△ △ x
△

△ △ xx x xx
xxx xx

△ x△
△ x△ x x x△

△ x△△ x△
△△ x△△ △

x△ x△ xx△△ △ x
x△ xxx△ x x

x
△△△△△ xx△ △ xxxx x△△△△ xx

x△
△ x△ x xx△ xx

x
x x△ x xxxx o△ x△△

x
△ xx o△ △ x△△ x△ △△△
△△ xx△ x xxx xx

△△△ xx△ x△△ x xxx ox ox△ x
x
xx△ x△△△△ △ x△ x

△ xxx x
△

x△ xx xxx
△

x△
xx△ x x△ ox

△△ x△△ x△ x ox△△
△
△ xxx△ xx x o△ △△ x

△ x△ xxx△ xx xx xx oxx
△

x x
△ △ xx x△ xx

xx△ x△
x△ x△△ x△△ △△△△△ xx x△ xx o△

△ xx xxx△ xx xx△ x△ x△ x xx△△ xx△ oxx△ x
x

o
△△

△ x
x

x△△ x
x x△△ x xx

△ x△ △△ x△△ △ x o△
o△ xx x△ x△△ x x△ x△ △ xx△ x x△ △ o

△△ xx△ x
△

xx xxx△△ x△
xxxx△ x xx△△△△ △ xxx

△ x△△△
△ xx xxx
△ △△ △△△ x x△△ x

x△△
△
△△ xx x△ xx△ ox△△ x△ x△△ x△ xx x△ x△ xx△ x△△△ xx x△ xx△△△△ x△ x△ xx△△ xx△△ xx x△△ x x x△ x x△

x△
△
△△ xxx xx△△ xx x△ △ x
△

△ △ xx
x

△△△ △△△△ x△ △
△△ ox o
△

x△ x
△△

△△
x

x
x△△ x△ x△ oxx△ xxx x△△△ x△ x

△
x△△ x△ x△
x

△ △△ △△ △△ xx△△ x
x xx xx△△ △△△△ x x△△ △ xx△ △ xxx x

x△△
△△ △△ x△ x△△ x x△
△

x△△ △ x x x△ xxx△ x
△

(b) Quantile regression using the 75th perc.

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

△ x x o△ xx△ xx xxx x ox△ xxx△ ox oxx ox• o△ ox△ x△ x oxxx
△

xx△ x△ ox x△ xx oo
x xx△△△ xxx△ o△

△
xx o

△
△ xx△ x x x△x x xxx xx oxx xoxx△△ xx△ x

x x x△ x ox o
xx△△ x xxx o

•
x x△ △ xx x o△ xx xxx x△ x o△ xx xx△ x o△△△ xx△

•
x ox xxx x△
x o△ x x△ x xx x xx△ xx ox ox ox x xxx x△ o△ xx x
x

xx x△• o△ x△ x oxx xxx△ xx x△ x△△ xxx o ox△△△ x o△ o
△△ x ox△ x o ox

x
△•

x△ x x△ △ ooxx
•

o△ xxxxx△ xx xx ox xx ox
△

xx xx o△
x

xxx△ xx x△ x xx
△
△ x

△△ △ xx△ oo△△△
•

x x△△ oxx o
△

o
△

xxx o△ x x△ x△ o
x x

x x oo△ o△
△

x x△ x xxx ox△ ox△ xxx xx ox△ x△ x x
•
△ x xx△ o oxxx△ x

•
x△ xx△ x o△ xxx

x
xxx x ox x△△

△
x△ oo△ ox

x
o

x x
x

△ x△ xx oxx△ x x ox△ x x△ x△△
△

xx ox△△△ x x△ x o
x

x oxx△ x△
x

△△
△ ox ox x oxx xx

oxxx x△ oxxxx
x

o ox x△ x△△
x

x x
△ xx△ o

△
o△△ oox o△ x△ x x△ xx△ x△ x• xx ox△ xxxx

xx△ x o△
△△ xx xx xxx△△△ x x△ x△△xx oxxxx ox

x△
ox△ ox• ox o

x o△ ox△ x△ xxx oxxx x o△ o ox oxxx△ ox o△△ o o△ o
△
△ xxx ox oxx

△
xx

x
x

x
xx xxx xxx xx x

△
xxxx oxx

△ x
xx x△ o△ o
x△△ xxx ox xx oxx o oxxx

△△△ xx ox△
△

△ x x△△ ox x ooxx△ ox△• xx• x△ x oxx x• xxx xxx△
△

x
x

x x ox△
•

x ox xxxxx oxxx o
• △ ox ox x

x
△△ x x xx△△ x△ x
△△
△△ x
△

xxx ox xx x△ x△ x
xxxx x xxx△ ox xx△ ox x ox xx oxx x o

△x x x ox
• xx ox△ o△ x xxx△ oxx△ oox xx△ △ oxx△

x
o△ xx xx x△△ ox△ xxx x△△ o△ x• △ oxx△ oxx o oxx

x• x
△ x xx△ ox ox

x
△△ xxxxx xx x ox oxx xxxx△
△ x△ xx ox• xx△ x△△△ x△△ △ x△ o
△ xx△△ x ox△ x xx△ x x oxx

△△△ xx△ x ox xx xx△ x△ xx x△△ x
x x oo△ xx ox o△ xx ox△ o△ o△△ o△ xx o△ x

x△△
△

△△△△ △△ xx
△

x oxx xx
x

x
△ ox△ xx△ x oxx ox oox oxx x

•
xx xx△ x oxx

△
xxx ox x

△ xx ooxx x△ x o△ x ox oxx xxx△ x△ x ox•
△ x xxxx△ x△ o

o△ x△ xx xx x
△

xx
x

o
x
x
x

x oxxx xxxxxx
o△ ox o

△△ o△ xx x△△ x△△ x△△ xx ox
x

xx x oxx xx xxxx xxx xx ox x
△

x oo△△ x ox ooxx x
x ox△△ xxx△

△ x xx
x

x o oxx x△ x
• x△△△ o o△ ox ox ox o△•

x o△ xxxxxxx x△ x oxx xx△ xx ox xxxxx xx xox x△ xx xx△△△ x xxxxxx△△△ xx x
ox△ x

•
x△△ x ox△ xx△△ x△ △ oxxx ox

△
ox

xx x△ x
△

△ xx ox xx xx xx
•

xx
△

x xx
x

△ x xxxx
• x
△ xx ox△ △ oo△△ xx x△△ ooo△ x x△ xx xx△ ox x oxx△ ox x△ x ox△ x ox o△x△ x xx△ x△ x

△• ox o△ x
△ xxxxx x oo△
△

x△ x△ oxx△ x xx o△△△ oxxxx△ x xx xx x△△△ x
△

x△ o oxx oo ox xxx• △
xxx x

o△△ xxx△ x xxx xxx△ x△ x△ xx x△ xx o△ x
x△△ xx oo△ oxx△ xx

(c) Quantile regression using the 95th perc.

Figure 7.6: Validation of the proposed approach by using 3% as target error and different
percentiles for the quantile regression.

7.6.2 Validation Results

The set of validation results presented in this section are reported to demon-
strate how the dynamic tuning of the number of samples satisfies the error
constraints. For doing this, we randomly generated 1500 requests to the en-
hanced PTDR module for routes on the Czech Republic at different starting
times. These requests are different from the ones used in the training phase
of the model. We validate the approach by using three different quantile
regressions (on 50th, 75th and 95th quantile), two different target errors ε
(3% and 6%) and a confidence interval (CI) for the error constraint equal
to 99% (i.e. n(99%) = 3). The error has been derived by considering a run
of the Monte Carlo simulation on the same input set by using 1 million of
samples, thus enough to be considered a good estimation of the actual travel
time distribution. Then, we selected as error the maximum between differ-
ent key percentiles: 5th, 10th, 25th, 50th, 75th, 90th and 95th percentile.

The results are reported in Figure 7.6 and Figure 7.7 respectively for
an error constraint ε equal to 3% and 6%. The two figures show the error
results for each run with respect to the unpredictability feature extracted
on the path. Each dot in the plots represents a PTDR request, while its

114

7.6. Experimental Results

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

• • △△
• •

••
• •••

• • x
•

•
•••• △• • △• △•

• △•
△

△
• •
• △△•

•

•

•
•••

△• △
• •

• ••
△△•

△
•

••• •
•

•

• ••• •• △•• ••• △△△
•

•
•
△•

• ••
△

••
△

△
△

•
••

•

△•
•
•

•

•
•

△
△• △△•

••
•
△

••
•

• • △• • •• • △
• •
•

△•
•

△•
• △

•
•
• △••
•

△••• •
•

•
• •

△

•
•
•• •
•

• △• • △• •

•

•
•

△
•• •

•

△•
•

•

△

• •
• •••
• △

• ••
•

•

•

•

△
•• △•

•• • △•• △△••

•

•

••

•••
••

•
△ △

•• •• •
△

• x
•

• • △••
• △

△
△••• •

• •
△

• •
△△••

• △• ••
△

•
••
•

• △• △
• △•

△
•••

•

••
△• • △•••

•
• •• • • •

• •

△

•
•

•
••• △••

•
•• • △•
• △△

•
△

•
•• •

•• △• •
•• •

• x•
△•

△ △
△• △•• • △•

• ••
•

△

•
• △
•• • ••

△
• △

△• ••• △•
• •

•
•• △ △• △•• ••

•
•

•
•
•

•

△
•

•

•

• △△
•• •

△•△•••
•• •

△• △△
•

△• △
•

• ••
•• △

•
△• •• △••

•
•

•
••

• • • △ △•
••• • •• • △

•

•
△

•
••

• • △•
•• x• △

•

△
△△

••
• •

•
••
△•
△• △

•
•

△ △△• △• •••
△

• △• △
•• •

• △•• △
△• △

•
••

•

△•
•

••
••

•
• △• △△• •

•
•

•
• •• •
•

••• •• ••
•• •

•
•• • •• •••

•
• △

••
•

•
△••• △

•• △•• △

•

△• △• △• •
•

• • △
•

△• • •
△ △• △ △• △
△

•
•

• •
•

△•• △•• △
•

• △
•

△

△•

△△••
• •

•
• •

△
•
•

•• •
•

••• △
•
••• •

•••
• •

•• •

•

△
• △••• ••• △•

•
• △•• △

x••
•

••• ••
△•• •

• •
•

•• △
• • x

△
•

•
• △

••
• ••• •

•• △
△

•
•

•
△

•
••• ••••

•

•
△

△•
•• •

•

•••
••

•

△△△△
△

•
•

△• △
• •△•• • • •

•
•• △•

•

•• ••
•
•••• △• △

••• △

•
•△
•

••
•

•
••• △•
••

•
•••

•

• △

•
△

•
• • △• • •

•
△••

•
• • △
•

△•
•

•
•
•

•
△•

•
• △

△• △•• • △

•
△

• △
△•

•
•

•

• ••• △•
•

△
•

• •
•• △•

••
• △••

•
△

△
• △△

•
••

•
•

•
•

△
•• △

•
△

• △•• •

•
•• • •

•
△
△

•
△

•• △•• ••• •• •
△

△
•

•
••

• △•••

••
• • △

•

△
•

△

•

••
• △

•
•

•
•

•
•

•

△
△

•
••• • △
••

•

△
•
•

•

•

••
•• ••

•

•

•
••

• △△• •
•

△• △•
△ △△

•• △
• △
•• △• •• △
• • △•
•
•

•••••
• • •

• •
△

•

•

•
•

•••
△

•
• •••

• △•
• △

•
x△• △•• △•

•
•

•
••

• △• •• ••
• △•

••
△△

△△

△
• •

•

••
• • △• △•• •

△•
• •

•
•

△
•

••
•

•
△• •

• •
•

△

△•
•

• •• •• •• •
•

△ △

• △•
△ △•

•

• △△••
•

•
△

• △•
△

•
• △

• •
•

•
•• ••• ••• •• △

•

△••
• △

•• •• •

•

••

△
•

△
•

•
△• △• △

△△•• • •• △
△

•• ••
x

••
•

• △••
•

• △•

••
• △•• •

•
•

• ••• • • △
•

△
• △
•

△•
•

••

•

△• △•

△

•

•• •
△

•
• △

•
•

△
•

•
•• △•

•
△ △••
△

• •
△

•
••

• •••••
•

• △•
••
•

•••• •• • △•••• ••
• • △

•
•

△•
• • •

•
• △•

•
•

△•
•

△• •• •• △
•

•
△

• △•
•

• ••

•
•• •

•• • ••
△

• •
△

•
••• •

• •• △•
• •

△
△•

• •
• △

•
• △•

△

•
• •

•
•
••••

△•
•

△
•

••
•

•

•
• • △•• •

△
•

△
•••
•

•

•
•

•
•

••• △• x
• •• △••

••
•

△△• •
△• ••

△

•

••
•

•

•

△
•

•• △••
•

•
•

•
•

•

•
• •••

• •• ••
△

△

•

•
△△△•

•
••• ••••

• △
••

•
•

•
••

•••
△•••

•
•

•• ••

•

•

•
•
△

•

• ••• •• △△• △•
•

• ••

(a) Quantile regression using the 50th perc.

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials
E
rr

o
r

[%
]

Unpredictability

•

△△ △
• △••

•
△ △•• △ x△• △•••
△

•△

•

△ △
•• x

• △

•

• •• △
△••••

•
• • △• △• △•

•• △
△• △••

•
• △

•

•

• △•
•

•

•
△•• △

•• △△△•• △△
△•
△

• x△• △△△
•

••
△

•
•

•

• •

•
•

△ △• △
△••

•

•
△

•

• △
• •

△

•
• △•

• △••
•

△△

•
△•

•
x•

•• △
••
• △•••
•

•
•

•

•

△•
• •

•
△•• △•

••
• ••△

•
△•• △•
△• △•

•
•
•••

•
••

△
•

•• △△• • △•• △•
•

• •

△
•

• △△
•• •

•
•• ••• △

•
•

△△
△• •• • △

• x•• △ △•• △ △ △△•••
••

• △• • △△••• △•
•
△ △

•

△
• △

• △• △• △•
•

△
•

• •• • △
• • △

△•

•

△• △• •
• △

• •
•

•• •
•

••
x△

•
•••

•
△• •
△△•

△
• △•

•••
△

• ••• •• x•
△• • △△• △•••

△• •
•

•
• △

•
• △•• △△• △• △

△•
△

• • △••
• △
••

△ △△
•

•• •• •• •••
• △•
• △•

△
△

•
• •

△

•
△• •• •

•
△
△• △△

• △
• •••

•
•

• △ △
△△• △•

△•• ••• •••• △△

△△• •
• • •• • △•• △△

•
•• • △••
•

x• △
• △

x
△••• △

•
△

• △• △
•

△• • △△△
•

△• △• •
••
•

• △•• △•

△
•• △△• △•

△
•

△
△•

••• •• •• △• △△• △
•
•• • △• • △••• ••
△• △•
•

••• • •• ••
•

•

•

△

△
•

•
•

△
△•• △

••
x•• △

•
△△△• x

•
•

•• △ △• △
•

••
△ △

•

△

△
•

△•
•
•

•
△△ △•• △ △

•
△

•
•

△
△△△△ x△△• • △

△
•

△△
△
△•• △△△•

•
•

•
•

•
•

• △△•• △•••
• △

•
△••• △• △ △• △

△ x

•
• △ x

• •
•

••
• •• △•
• •• •

••
• △

• △
x△••• △

•

•• •
••

•• •
△△

•
•

•

•

△
△△•••

•• △• x△••• △
△

•△△•△• △
△

△ △ x• • △• x△ △△•
•• • △

••
• ••

••• •• ••
•

•
•

△
•

△• •• △• △
••• •

△

•

△•

•

△
• △•

•
△

•• △• △• △••
•

△• • •• △

•

• △•
•

△•
△•• △

•
••

△•
••

△△• △•• •
△

△△• • △• ••
••

••• △
•• △△

• △• •
△

• •
•

• △△•• △△• △
△•• △• •

••
△•• x
△ x• △•

• • △•

•
•

• △ △
△

• △
•• △△

•
△••
△

• △ △ △•• •
•

• △•
•
•

•

•• • △• △
• •△••

• △•
• △

△•
•

•

△
△

••
••
• △△•
•

△
•

△• △
•

•
•• △

• △•
• •••

△
△• •

•
△• △• △

△△•
• △• △•

• △
•

•• x
• •

△

•
• •

• ••
• • •• △• • △•• △

• •••
△

△• •
••

•
△△• △△ x△• △△ △

△
• △

•
••

•
•

△••• • △△ △• △
•

△△△△△

•

△
•

△△•
• △•

x
△• •

△••

••

•
x••• ••

△
• △•

•• △
x

•
•• •• △

•
△• •

• △ △
△ △△△

△
△ △• △△•

••
• △

•
△• △• •
△

• •
•

•

•• •••
•••

•
• △

△△

•
• △

△

•

•
••
•
△
△• △•• △• △• △• △

•

△
•

• △△
•

x
△

△• △

•
x••• ••••• △•△•• △

△
△

•
•

• •
• △
•• • △ △• △• △• △•

△
•• △△

•
△

•
△△•

•
△ △

• △ x•• △△• △
•

△•
△
△

△•
• △• △ △•

△• •

•

△
•

••• •
••
••
•

•• •
• •• △

△
•

• ••
•••

•
△

•

• △•• •
•

•• △•△• △•• △

•
•
• △• △•

• △

• △△
••
△

•

•△•

•

••
•

•△ △• • △
••

•
• •• •• △•
•

•
△△

•
•

•
•

△•• △△ △• •
△•

•
•
•••

△
• △△

•

•• △
•

△•
•

△
••

•
△△
△•

•• •

•
••

•
• ••• △△ x

• △• △•

• •
•

△ △△• •
△• •• x

••• •
△
△ △•

•• △• •• ••
• •• •• △• ••
•••• △△•• △

△
△• •

•△•

•
••

• • △••

•

• ••
•

••
△△

••• •• ••
• •

△••
△ △

• •
△••

•

△
△ △•
△

••
• ••

(b) Quantile regression using the 75th perc.

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

• △△△•
△△• △
△△•△

△ x△• △••• △△ △△△ x△
• x

•
△

△• △• △△△
•

△• △

••
△

•
x• △• △△ x△△ △••••

△△

•

• △
•
• △

△ △•• △△• △
△

△• • △△△• △• x△• △△ △•••
△△• △• △△• △

x△ △ △△•• △
△•• △• • △•• △• △△

△△△ △△△ △
•

△ x•
•

•

△△•
•

△••• △△••
△ x

△△
•
•

△
△△

x• △
•

• △△
△
△ △△• △• △• △△

x•• △△
• △
•

x•

•

△△ △• △ △•• △

••
• △

△
•

△ △△△• △•
••••• △△
• x x△• ••

△ △• x

•

• △
△•

• △ xx
△△••

△• • △
• •

xx△△• △• △
△ x△ △

• △△
△• △

△
△• △

△
△• △

• △ x
•

△ △
△• △ △• △

•
•△ △•

• △
•• • △△• x△•••

•
• △•• △△△

x• △•
△

•
△ x• △

△•
•

•
x△ △

•

△ x

△

• △△• △△• △△• △
△

△

•
△△

•
△

△• △△ x△
• △•

△
△•

•

△

△△• △ x△ △
△

•

•
•

△•
△•

•
△ x

• △
△• △△△

•
△ x

△ △• •• △
•

△ x• △△△
x• △△• △

• △ △
x△△•

△
△△•• △ △• △

•• • △△ x△• △
• • △
• •

x△• △
△△•• △ △•••

x• x
• △

x△
△
△• △

•△
•

△
•

△•

△• △
△

xx

△

△• △• • △△△• △
△• △

•
x••

△
△• △

• △• △△
• △

•• △•△• △• △△• △△
••• △

•

•
△• △•

•

• △•
△

△
△•

•
•

• △• •
•

•
•△

x
△

•
•• △△△• x
•• x

•
• △△

x
△ △

• x••
△• △△

△ △•
△ △△

△
• △ x△ x△

△
•

•
△ △ x

••
△ x• △•

•
△△△

△
△ x△△• △ △ △

△ △△
△ △△• △△
△△•
△

• △ △•△ △△•△ △△• △
• △

△ △••
• △△

△

x△ △△ x△• x x△
△△•••

••

△
••

•

• △△•• △△ △ xx△
•

• x△•• • △• △•• △△
•

△• △△△△
△
△

•••
△

• △
x△•• △ △△

△
△
△ △

•
x△ △

△
x•• x

• x
•

△△
• •• △△•
•
•

△• ••• •• △△••
•

x• △△△
• △• △ △△△△

△△△•• x△ x△
• x• • △

△
△

△
△△•

•
x• • △

△
x△• △

•
△△

•
△

•
△ △△ △

•

x
•

△
• x△• △

△•
• x

△
x

• △ △• △• △• △
•• △△• △△△ △•

•
x• △

•

• △△△• x
△

△ x x• △△•
•

• • x
•

• x△ x
△△•

•
△△••• △△ △ x△ x
△

△ △
△• △• • △• △△ x

△• △
•

• △•••
•

••
•

△• △• △△•
•

•

△△• △ △△•

•

△ x
•••
•

• △
△•
△
△△ △• △•

•
•
• △△

x

•
•

△

△
△

x△• △△ x△ x
•

△
x△

△•
x

• △•
•

x
• △

△ x• △
△•

•
•

•
•
•

••• △△
•

△ △
△

• △•

•

△• x△
• △

•
•

•
△△• x

△ xx△ x△△△• △•
△•

•
• △

•
△• △

△△ x• △•
△△ △△

△△ △• △△•

•

x
•

x△
•

△ △
△

• △
•

△ x△•• △ △
△△ △

• •
• △ x
••• △△ △• △• △△

x△△△ △△
x

△
△

△ △
△• △△△

x•
△

△ △
△•

△
•

△
•
△••

•
•• △

•

•
•
• △△ △

•
•
△ x• △ △

• △△△△ △△
△△• △• △• △

△

△•• △ △
•

xx△△

•
•

x△
•• △△△

•
•

•

△△△• △ x△•
△• •• △•

• • △
x

•
x△ △• △

△ △•• △
x• △

•

△

△△• △△
• △

x
△•
△
△• △△ x△△

△

△•• △• △△
••

•
• △

△
△•• • △△△ △
△△•••

• △
• △

△
△•

•
• △••

△ △•• △
△

• • •••
x△

△• x•
•

x△△• △• △
••

x
•

x△△

•
△• △△• △△• △ △
△ △

• △△
•••

• △•
•• △

•
•

• △△• • △△ △•• △△ x• △
△

• △
△

△△

•

x△

•

△△•• △△△
•

△ x•• • x△
△•

•• • △△
•

△• △•
• x△ x

•

△• △△
△
△

• △ △ x•• △• △• x△△
•

△△
△

x
••• x

•
△••

•
• △• △• △• •• ••
△• △ x△

•

xx x△ x△△• •••• △ x
•

• ••△• • △△
△ △
△

•
• ••

•

• △• △• • △
△

••
△△• △△ △ x• x△△

•
△

•

(c) Quantile regression using the 95th perc.

Figure 7.7: Validation of the proposed approach by using 6% as target error and different
percentiles for the quantile regression.

shape depends on the number of samples used for the Monte Carlo simula-
tion. In most of the cases, the actual error is below the target error. As it
was expected considering the same value of the error constraint ε, the more
conservative is the quantile regression, the less are the points that violate
the constraint error. For the data, we processed, in all cases the number of
times the error constraint is not respected is within the selected CI (99%).
At the same time, moving from a less conservative quantile regression (e.g.
50th percentile) towards a more conservative one (e.g. 95th percentile), it
is possible to note how the threshold values for selecting the same number
of samples shifts to the left. As an example, by considering an error con-
straint ε = 3% (see Figure 7.6), the maximum unpredictability value for
having 300 samples moves from 0.075 to less than 0.06 respectively when
considering the quantile regression from the 50th percentile, up to the 95th

quantile. Similar is the case when we consider an error constraint ε = 6%
(see Figure 7.7), where the same threshold moves from an unpredictability
of 0.15 to 0.14 and 0.11 when using the 50th, the 75th and the 95th as quan-
tile value for the regression. Finally, it is visible the difference in terms of
the number of samples between the two cases with different ε values. In-

115

Chapter 7. Tuning a Server-Side Car Navigation System

deed, while for ε equal to 3% (Figure 7.6) only a tiny fraction of the cases
use 100 samples and there are a not negligible fraction of cases where 3000
samples are employed. For ε equal to 6% (Figure 7.7) in some cases only
100 samples are required.

7.6.3 Comparative Results with Static Approach

In this subsection, we demonstrate the advantages obtained by using the
proposed approach with respect to the baseline version [82] where the num-
ber of samples is defined a priori. To provide a fair comparison, we ex-
tracted the number of samples to be used for the baseline version by using
the training dataset.

For the 4 levels of sampling used in this chapter (i.e. 100, 300, 1000
and 3000, as described in Section 7.4.2), we analyzed the cumulative dis-
tributions of the expected error (see Fgiure 7.8). We selected the minimum
sampling level that passes a certain threshold of the cumulative value be-
fore reaching the error constraint value ε. This threshold value has almost
the same robustness meaning of the quantile regression value used in our
approach. In the following, we are going to compare the proposed approach
where the quantile regression model has been built over a certain percentile,
with a static tuned version where the same percentile has been used as the
threshold for the cumulative. If we use for the proposed approach the quan-
tile regression at 95%, we compare with the statically tuned version where
the number of samples has been defined looking at the cumulative curve
that reaches at least 95% before to the target error constraint. In particular
looking at Figure 7.8, we can notice that for an error constraint ε = 6%
the static tuning is set to 1000 samples for the entire percentile interval
between 72th and 98th, while for values larger than 98th and smaller than
72th percentile (down to 7th) we have to consider the configuration using
3000 and 300 samples respectively. On the other side for ε = 3% we se-
lect 3000 samples within the percentile interval 72th-97th, 1000 samples for
percentile values smaller than 72th (down to 5th), while we need more than
3000 samples if the request is very tight on a percentile larger than 97th.

Table 7.1 shows the comparative results obtained by using the proposed
adaptive technique with respect to the original version (baseline) with the
statically defined number of samples obtained with the previously described
analysis. In particular, Table 7.1 presents the average number of samples
and gain with respect to the baseline for different values of error constraint ε
and different percentiles used to build the predictive model and for the static
tuning of the baseline. The results are obtained by running a large exper-

116

7.6. Experimental Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
u
m

u
la

ti
v
e
 P

ro
b

a
b

ili
ty

Error

100 samples
300 samples

1000 samples
3000 samples

Figure 7.8: Cumulative distribution of the error by using different numbers of samples
over the training set.

imental campaign over randomly selected pairs of Czech Republic routes
and starting times, different from those used for the training. While the
routes have been randomly selected, we used a more realistic distribution
of the starting time [137] [138].

In all the considered cases, the proposed approach reduces the number
of samples by at least 36% and up to 81%. As expected, the average number
of samples for the proposed approach is lower when we relaxed either the
error constraint (i.e. 6%) or the percentile used for building the model
(e.g. 50th percentile). The lower gain for the configurations using the 50th

percentile with respect to the cases using the 75th-95th percentile is due
to the fact that in the former case the baseline requires a lower number of
samples with respect to the latter cases (i.e. 1000 vs 3000 for ε = 3% and
300 vs 1000 for ε = 6%). When we focus on the absolute numbers, it is
possible to detect that even if the percentage gain seems higher with more
conservative regressions (75th-95th), the actual average number of samples

Table 7.1: Average number of samples for the validation set using different quantile re-
gression values (columns) and different error constraints. The results are reported for
the baseline and proposed adaptive versions.

Average Number of Samples
ε 50th perc. 75th perc. 95th perc.

3% baseline 1000 3000 3000
adaptive 632 (-36%) 754 (-74%) 1131 (-62%)

6% baseline 300 1000 1000
adaptive 153 (-49%) 186 (-81%) 283 (-71%)

117

Chapter 7. Tuning a Server-Side Car Navigation System

 100

 300

 1000

 3000

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

N
u
m

 o
f

S
am

p
le

s

(a) Error constraint ε=3%

 100

 300

 1000

 3000

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

N
u
m

 o
f

S
am

p
le

s

(b) Error constraint ε=6%

Figure 7.9: Number of samples selected by the proposed adaptive method when the same
request is performed every 15 minutes during the entire week.

used is smaller with the more permissive quantile (50th).
The reduction in terms of the number of samples is directly reflected in

the execution time reduction since there is a linear dependency, except for
the overhead introduced by the dynamic autotuner. In particular, we ob-
served an execution time speed-up between 1.5x and 5.1x. A more detailed
analysis of the overhead is presented in Section 7.6.4.

To further show the benefits of the proposed methodology, Figure 7.9
shows the number of samples selected by the adaptive Monte Carlo sim-
ulation when the same request in terms of target path is performed every
15 minutes during the entire week. The used temporal interval is derived
by the smaller time granularity (φ) we had for the database containing the
speed profiles. The two plots (a) and (b) have been generated using respec-
tively 3% and 6% as maximum target errors and for both experiments a
quantile regression on the 75th percentile.

By looking at the number of samples requested by the adaptive version
of the Monte Carlo simulation, we can easily recognise well-known traffic
behaviours in both plots. The daily distribution on the weekdays is charac-
terised by two main peaks determined by less predictable situations. The
first around 7–8 am and the second around 4–5 pm. During the weekend the
morning peak seems to be a bit postponed, while the afternoon one almost
disappears. On the opposite, it is also visible how the evening hours result
to be the most predictable ones.

This dynamic behaviour that is captured by the enhanced version of the
algorithm cannot be exploited by using the original (baseline) version. Fol-

118

7.6. Experimental Results

lowing the same philosophy adopted in Figure 7.1, the original version must
be tuned by considering 3000 samples for the experiment in Figure 7.9(a)
(ε = 3%) and 1000 samples for the experiment in Figure 7.9(b). In both
cases, the static tuning results to be the larger number of samples selected
from the proposed techniques, that instead is able to use it only when it is
strictly required (e.g. during the traffic peaks). Also considering the static
tuning to the average case (i.e. 1000 samples for the experiment in Fig-
ure 7.9(a) (ε = 3%) and 300 samples for the experiment in Figure 7.9(b))
is not a viable solution. This is because there are still many sampling re-
duction possibilities in predictable moments that will not be captured, and
more important, the prediction will not be able to satisfy the algorithm out-
put quality during the most unpredictable periods. Finally, a fixed time-slot
policy is also sub-optimal since the unpredictability strongly depends not
only on the time of the request but also on the path characteristics (e.g. ur-
ban or countryside path, close or far from congested areas) and length (e.g.
when it is expected the arrival in a congested area).

7.6.4 Overhead Analysis

While we widely describe in Section 7.5 how we reduced the integration
overhead from the application developer point of view, this section clarifies
the time-overhead introduced to obtain the proposed adaptivity. In partic-
ular, the additional computations that we add are related to the calculation
of the ντ̂xi,y and to the autotuner calls used to determine the right number of
samples to be used. The initial 100 Monte Carlo samples, required to ex-
tract the data feature, are not part of the overhead given that they are reused
(and thus discounted) to calculate the expected travel time (see Listing 7.4).

Figure 7.10 shows the overhead introduced by the proposed method-
ology compared to a set of Monte Carlo calculation by using a different
number of samples (from 100 to 300, and 1M) over a set of paths among
different locations in the three main cities in the Czech Republic. As ex-
pected, it is evident that the execution time is strictly correlated to the num-
ber of samples used for the travel time computation. The different paths we
used are in a range between 300 and 800 segments long. When we fix the
number of samples, the different number of segments is the main reason for
the variability of the Monte Carlo simulation computing time.

Although the proposed methodology introduces an overhead for every
request, it is almost negligible, i.e. more than two orders of magnitude less
than the smaller Monte Carlo simulation with 100 samples. In particular,
we found that the execution time of the data feature extraction and mAR-

119

Chapter 7. Tuning a Server-Side Car Navigation System

100

101

102

103

104

105

106

107

108

overhead 100 300 1000 3000 1000000

E
xe

cu
ti

o
n
 T

im
e
 [

u
s]

Num of Samples

Figure 7.10: Evaluation of the execution time overhead due to the additional code for
the proposed method with respect to the target Monte Carlo simulation by varying the
number of samples.

GOt calls is comparable to the evaluation of a single sample of the Monte
Carlo on a road composed of 200 segments.

7.6.5 System-Level Performance Evaluation

To quantify at system-level the effects of the proposed adaptive method, in
this section we present an analysis to evaluates the efficiency of the PTDR
module when it is included in the full navigation pipeline shown in Figure
7.1. We built a performance model of the navigation pipeline by using the
simulation environment Java Modeling Tools (JMT) [139]. JMT is an inte-
grated environment for workload characterization and performance evalua-
tion based on queuing models [140]. It can be used for capacity planning
model simulation, workload characterization and automatic identification
of bottlenecks. In particular, to build the simulation model of the queuing
network, we considered one station for each of the modules that compose
the navigation pipeline, and we added a fork-join unit to model the parallel
PTDR evaluations of each alternative path found in the first stage.

The model, shown in Figure 7.11, has been annotated with values de-
rived by the profiling of each module (K-Alternative path, PTDR, and re-
ordering) and considering a value for K (the number of alternative paths to
evaluate) equal to 10. Moreover, we made a resource allocation according
to a load produced by up to 100K cars producing a request every 2 minutes.
The latter number is in line with the consideration of having self-driving
cars continuously connected with route planner, while the former has been
derived by a simple estimation considering a Smart City such as the Milan

120

7.6. Experimental Results

Figure 7.11: Complete navigation pipeline modeled using JMT.

urban area. Indeed, in this area the population is composed of around 4
Million people, every day it is estimated to have more than 5 Million trips,
and only less than 50% are done by using public transportation [141, 142].

Under these conditions and considering the configuration with ε = 6%
and 95thpercentile, we found out that by adopting the proposed technique
we have a 36% reduction in terms of the number of resources needed to sat-
isfy the target workload. In particular, we can differentiate 2 cases. The first
one considering the number of resources needed to satisfy the steady-state
conditions, and thus that the throughput in terms of input requests should be
satisfied by all the stages. In this case, without the proposed optimisation
we would have needed at least 777 computing resources (cores). Among
them, 400 cores (52% of the entire set) should be dedicated to PTDR. By
applying the proposed technique, only 497 cores are needed, reducing to
120 (24% of the entire set) those required for the PTDR stage. The sec-
ond case considers a more dynamic environment where it is suggested to
keep the average utilisation rate of each station below 70%. While respect-
ing this rule of thumb [143], the distribution of the system response time
(the time passing from the navigation request to the response) results to be
narrow, thus being able to react better to burst of requests. In this second
case, without the proposed optimisation we would have needed 1010 cores
to allocate the entire pipeline. 572 of them (57% of the entire set) should
be dedicated to the PTDR stage. By applying the proposed technique, 646
cores are enough to allocate the pipeline, and out of them, only 172 (26%
of the entire set) are dedicated to the PTDR.

121

Chapter 7. Tuning a Server-Side Car Navigation System

7.7 Summary

In this chapter, we focused on Probabilistic Time-Dependent Routing to
show how it is possible to improve computation efficiency, by using mAR-
GOt. The proposed method quickly samples the input data to extract an
unpredictability feature used to determine the number of simulation proac-
tively, while satisfying a certain error threshold. The runtime decision is
based on a probabilistic error model – learned offline – correlating the un-
predictability feature extracted from the data and the number of samples
used by the Monte Carlo algorithm. Experimental results demonstrated that
the proposed adaptive approach for the PTDR problem could save a large
fraction of simulations (between 36% and 81%) with respect to a static
approach while considering different traffic situations, paths and error re-
quirements. Considering the entire navigation pipeline, also composed of
the k-alternative path and reordering stages, the adoption of the proposed
technique guarantees a significative reduction in terms of computing re-
sources. Finally, we adopted an aspect-oriented programming language
(LARA) to reduce the effort necessary on the application developer for in-
troducing the code needed to improve the execution efficiency. Even if we
can completely remove the integration effort from the source code point
of view, the application developer is still required to interact with LARA.
However, by using this approach, it is possible to enforce separation of
concerns between functional and extra-functional requirements.

122

CHAPTER8
Tuning a Molecular Docking application

In this chapter we use mARGOt to autotune a typical HPC application
which has a constraint on the time-to-solution, in the context of a drug
discovery process. We introduced this application in Section 4.4.2. This
chapter analyses the algorithm to identify software-knobs that can expose
throughput-quality tradeoffs. Then, we show how it is possible to learn the
relation between the exposed tradeoffs and features of the current input.
At runtime, mARGOt leverages the application knowledge to maximise the
accuracy of the current input elaboration within the given time-to-solution.

8.1 Introduction

The goal of a drug discovery process is to find novel drugs starting from
a huge exploration space of possible molecules. Typically, this process
involves several in vivo, in vitro and in silico tasks ranging from chemical
design to toxicity analysis. Molecular docking is one stage of this process
[144, 145]. It aims at estimating the three-dimensional pose of a given
molecule, named ligand when it interacts with the target protein. The ligand
is much smaller than the target protein; therefore we focus a small region of
the target protein (or receptor), named pocket (or binding site). Given the

123

Chapter 8. Tuning a Molecular Docking application

three-dimensional pose of the ligand within the pocket, we can estimate the
strength of the chemical and physical interactions between the ligand and
the pocket by computing a geometric fitting score.

The evaluation of the pose of each ligand is independent of the evalu-
ation of all the other candidates. Given that in drug discovery the number
of ligands that we are interested in analysing is above the billion units, we
can consider this problem embarrassingly parallel. However, to find the
three-dimensional pose of the ligand when it interacts with the pocket, we
have to deal with a large number of degrees of freedom. While we might
represent the target pocket as a rigid structure, the ligand is a flexible set
of atoms bound together by chemical bonds, i.e. sharing of electron pairs
between atoms (covalent bond). From a purely geometrical point of view,
it is possible to identify a subset of bonds – named rotamers – which can
split the ligand into two disjoint non-empty fragments when we remove
them. We can independently rotate each of those fragments without alter-
ing the chemical connectivity of the ligand. Therefore, we have to consider
changes in the shape of the ligand that can be obtained through the rotation
of all its rotatable fragments.

As evaluating the chemical and physical interactions between the lig-
and and the pocket is a computationally intensive problem, state-of-the-
art approaches [146–148] suggest splitting the pose prediction task from
the virtual screening task. The pose prediction task focuses on providing
the best pose for a given ligand within a given binding site, whereas the
virtual screening task aims at selecting among a huge database of candi-
dates a small set of promising ligands which best fit the given binding site.
The structure of the two tasks is very similar to each other. Indeed, sev-
eral industrial applications [87,149] provide both functionalities within the
same software module. A remarkable difference between the pose predic-
tion and the virtual screening task lies in the approach to the estimation of
the chemical and physical interactions between the ligand and the pocket.
It is possible to estimate such interactions with either a geometrical or a
pharmacophoric approach. The geometrical approach estimates the ligand-
pocket interactions by only using the shape and volume information, while
the pharmacophoric approach evaluates the actual chemical and physical
interactions.

The latter approach is the most computational-intensive one, and it is
regularly exploited on the pose prediction task. Although the best solution
according to a pharmacophoric approach also has a very good geometrical
score, the best geometrical solution does not guarantee to be either a valid
solution or a good solution from a pharmacophoric perspective. Therefore,

124

8.1. Introduction

there is always the need to apply the pharmacophoric approach. The geo-
metrical approach can be exploited for virtual screening before the pharma-
cophoric evaluation. The scope of this chapter is limited to the geometrical
approach for virtual screening.

During the virtual screening process, the time budget is one of the con-
straints that a molecular docking application has to meet. Nowadays it is
common practice to have a domain-expert human in the loop, whose job
is to tune the size of the ligands database according to the available time
budget. This approach limits the exploration space without any guarantee
neither to find a global optimum nor to find a good local optimum. In order
to increase the chances to find an interesting solution, we need to enlarge
the ligands’ input set. Therefore, a reduction in the time spent on evaluating
a single pair ligand-pocket enables the end-user to explore a larger set of
candidates.

In this chapter, we focus on GeoDock-MA, a molecular docking Mini-
App for High-Performance Computing (HPC) systems based on the LiGen-
Dock module [87]. In general, Mini-Apps can be an important aid for com-
puting architecture and algorithm design space explorations in the early
stages of code development. GeoDock-MA attempts to capture key com-
putation kernels of the molecular docking application for drug discovery
implemented in LiGenDock. By developing GeoDock-MA in parallel with
the new version of LiGenDock, application developers can work with sys-
tem architects and domain experts to evaluate alternative algorithms that
can either better satisfy the end-user constraints, or better exploit the ar-
chitectural features. GeoDock-MA allows faster performance analysis and
optimisation of the key kernels.

The main goal of the proposed approach is to enable tunable approxima-
tions to explore performance-accuracy trade-offs during the docking phase.
In this chapter, we enhance GeoDock-MA with software knobs, and we use
them to control time-to-solution in the virtual screening task. In particular,

• the GeoDock-MA has been analysed to properly introduce approxi-
mate computing techniques on the most significant kernels;

• a performance/accuracy trade-offs have been enabled by exposing tun-
able software knobs to drive GeoDock-MA approximations;

• a GeoDock-MA performance model based on the exposed software
knobs and input data features has been presented for estimating time-
to-solution in a virtual-screening process;

• a GeoDock-MA has been enhanced with an autotuning layer capable

125

Chapter 8. Tuning a Molecular Docking application

of satisfying user-defined time budget according to the workload char-
acteristics.

8.2 Background

Molecular docking is a well-known research topic that is addressed in lit-
erature from different perspectives. A large share of work in this field
approaches the problem by exploiting random-based algorithms, such as
genetic algorithms [150,151] or Monte Carlo simulations [149,152]. How-
ever, a desirable feature of a molecular docking application is the deter-
minism of the solution. Since the tasks following the in-silico step require
expensive solution-dependent resources, for several companies having a de-
terministic and repeatable result is a constraint.

Early work in the literature, such as [153], produce deterministic so-
lutions. However, they consider only rigid movements of the ligand dur-
ing the docking procedure. Real case scenarios usually require the rota-
tion of portions of the ligand molecule. Therefore, the limitation of rigid
movements is likely to prevent the applicability of the solution in the in-
dustry. The work by Palma et al. [154] overcomes this issue: they intro-
duce a molecular docking framework which can deal with the flexibility
of the ligand molecule. It adopts a model of the electrostatic interactions
to finalise the docking. Similar works such as DOCK [155], FlexX [156],
FlexX-Scan [157] and sur-flex [158] provide deterministic molecular dock-
ing of flexible ligands. They allow the user to exploit several docking algo-
rithms according to the specific use case. All these algorithms also rely on
both geometric and pharmacophoric properties in their docking algorithms.
All these works implement a different docking procedure with respect to
LiGenDock; however, no one has been designed to expose software knobs
to enable possible quality-performance trade-offs explicitly. The proposed
approach behind GeoDock-MA unlocks the possibility to tune the docking
procedure according to high-level constraints, such as the allocated time
budget for a given size of the ligand database to be virtually screened.

Algorithm-level approximate computing techniques are well known in
the literature [159]. In this work, we exploit grid-based optimisations on
the geometrical docking kernel. In particular, in computational physics, it
is very common to exploit models based on multi-level grids to achieve a
fine-grained solution in a restricted area of the whole simulated environ-
ment. The size of the grid is a parameter which allows the physicists to
trade-off granularity of solution for the increasing/decreasing number of
elements to be processed. Geophysics applications exploited for a long

126

8.3. Methodology

time nested grids, such as thermosphere models [160–162] and ocean flows
models [163]. The evolution of nested-grids models made the researchers
abandon regular grids in favour of variable-size grids. Irregular grids have
been exploited in climate forecast models to improve the performance of
grid-based models. Authors of [164] demonstrate that a variable-resolution
stretched grids lead to longer-term climate forecast with the same accuracy
of the nested grid models. In physics, variable-size grids are used to discre-
tise geophysical problems such as advection equations [165].

In the field of image rendering, grid processing has been optimised by
selecting which tiles need to be processed first and which later or do not re-
quire processing at all. An element is peeled from each tile, and its value is
used to decide how to compute the corresponding tile. Depth peeling [166]
is a technique which allows splitting an image into several layers. GPUs
can render images layer by layer, starting from the closest layer to the
viewer. Authors of [167] apply depth peeling to focus computation only
on the interesting tiles and selectively skip useless tiles. Several visuali-
sation applications and physics simulations exploited this technique, such
as [168].

At compiler-level, GPU-oriented selective skip of instructions has been
performed in [169]. Authors implemented approximate-computing tech-
niques via compiler transformations to be applied before the execution of
CUDA kernels. Their approach requires to generate in advance a set of
kernels with different approximation levels and to switch between them at
runtime according to the measured error. In this chapter, we exploit a simi-
lar technique on MPI kernels.

8.3 Methodology

This section first introduces GeoDock-MA. In particular, we describe its
algorithm, and we highlight the application hot spots. Then, we perform a
functional analysis to drive the approximation of the elaboration, enabling
the accuracy-throughput trade-off. Finally, we describe the exploitation
of the trade-off for the application auto-tuning subject to time-to-solution
constraints and workload characteristic.

8.3.1 Application Description

In the context of LiGen toolflow [86], LiGenDock [87] is the module that
aims at docking one or more ligands into a target protein. It can be used to
perform both the pose prediction and the virtual screening tasks. It exploits
chemical and geometrical features to dock the ligand through an iterative

127

Chapter 8. Tuning a Molecular Docking application

algorithm. In particular, LiGenDock uses chemical features to set the initial
pose of the ligand and to drive the docking process between each iteration.
However, it also uses geometrical features to optimise the pose of the ligand
in each iteration, by taking into account all the degrees of freedom of the
problem space.

The optimisation of the ligand pose is the most computationally inten-
sive part of LiGenDock during the virtual screening task. GeoDock-MA
includes all the functionalities of LiGenDock that optimise the ligand pose
by exploiting the geometric approach. GeoDock-MA takes as input the tar-
get pocket and a database of ligands, and it produces as output, the score of
each pocket-ligand pair, after optimising the pose of the ligand.

GeoDock-MA performs the virtual screening task by using the geomet-
ric approach. It estimates the pocket-ligand interactions with the similarity
between the shape of the ligand and the three-dimensional shape of the
pocket in PASS format [170], which is produced by LiGen PASS [86]. Ac-
tually, GeoDock-MA scores each ligand with the overlap score function.
The overlap score, as defined in Equation 8.1, is the reciprocal of the mini-
mum square distance between the ligand and the pocket:

o =
l

l∑
i=0

p

min
j=0

d2(L[i], P [j])

(8.1)

where o is the overlap score, l is the number of atoms in the ligandL, p is the
number of 3D points in the pocket P , and d2 represents the squared distance
between the i-th atom of the ligand and the j-th point of the pocket. Hence,
higher overlap means better geometric compatibility between pocket and
ligand.

Figure 8.1 shows an example of docked a ligand inside a pocket (i.e.
1cvu [171]). The ligand structure is visible in the 3D image, and the bot-
tom left corner highlights its planar representation. Larger bubbles are
the atoms L of the ligand while the connections between atoms are the
molecule bonds. The dark spots in the figure are the points P representing
the PASS version of the target pocket. These points are the centre of the
spheres used to model the binding site.

8.3.2 Analysis of GeoDock-MA

GeoDock-MA is designed to target an HPC platform. It exploits the machine-
level parallelism through the MPI master/slave paradigm. In particular, the
master process reads the ligands’ input database and dispatch those ligands

128

8.3. Methodology

Figure 8.1: 3D visualization of a docked ligand (connected structure) inside a PASS ver-
sion of the target pocket (dark spots).

to any free slave. Each slave computes the overlap score of a given ligand
with respect to the pocket of the target molecule. At the end of the compu-
tation, each slave process notifies the master about the best overlap score
found and waits for new data to be processed. GeoDock-MA, as well as the
original LiGenDock, avoids the parallelism at the level of each slave task
as it falls under the embarrassing parallel class. Indeed, given that the huge
number of ligands to be processed, the parallelism is widely exploited at a
higher level.

We profile the application in order to understand which are the critical
sections of the code by using GPROF1. Figure 8.2 shows the Call Graph
report. It groups the individual functions by the caller.

The application spends a significant fraction of the execution time on
MatchProbesShape. This kernel is responsible for the optimisation of
the shape of the ligand, using a steepest descent algorithm to deal with all
the internal degrees of freedom of the ligand. In this chapter, we focus on
the introduction of possible software knobs through approximation tech-
niques to tune the time-to-solution of this functionality.

1GNU gprof https://sourceware.org/binutils/docs/gprof/

129

https://sourceware.org/binutils/docs/gprof/

Chapter 8. Tuning a Molecular Docking application

99.9% - MPISlaveTask

98.7% - Molecule::MatchProbesShape

89.2% - Molecule::MeasureOverlap

08.2% - Fragment::CheckBumps

Figure 8.2: Application Call Graph profile. Functions taking less than 2% of the overall
execution time are omitted.

Algorithm 3 shows the pseudo code of the target kernel. At first, the
algorithm identifies the set of rotamers (line 1), thus selecting all the pos-
sible sources of flexibility in the ligand shape. Then, it iterates over the
set of these bonds to find the best shape of the ligand (lines from 2 to 20).
In particular, the body of the algorithm grows a left and right ligand frag-
ments, with respect the two extremes of the bond (line 3). The left and
the right fragments are rotated independently. The first to be processed is
the left fragment. It is rotated step by step up to a 360 degree angle (lines
from 4 to 5); At each step, we check whether the ligand shape is valid.
There is a non-null possibility of internal bumping of the molecule (line 6),
which invalidates the shape of the ligand. If the ligand shape is valid, the
overlap score of the ligand is considered during the check for possible im-
provements (lines from 7 to 9). At the end of the whole 360 degrees of
exploration, we rotate once more the left fragment to match the angle that
maximises the overlap score (line 11). The same procedure is applied to
the right fragment (lines from 12 to 19).

The kernel applies the same computation of the left and right fragment
of each rotamer. For this reason, in the rest of the chapter, we do not differ-
entiate between the two fragments.

Figure 8.2 shows also that the computation of the overlap score of each
pose (Molecule::MeasureOverlap) is the most expensive operation.
The implementation of Molecule::MeasureOverlap is relatively sim-
ple, and its optimisation is not trivial given that much effort has been spent
in the past in terms of performance tuning. Our contribution aims at re-
ducing the number of invocations performed by its caller. In particular, we
want to avoid the computations which are very likely to do not lead to any
improvement.

Figure 8.3 shows an example of how the rotation of a fragment affects
the overlap score of the ligand. The x-axis represents the rotation space,
while the blue line shows the overlap score of the ligand according to the
position of the fragment. The empty spaces are due to the fact that some

130

8.3. Methodology

Algorithm 3: Pseudo-code of the MatchProbesShape kernel, which changes the
shape of the ligand to maximize the overlap score.

Data: the pocket and the 3D structure of the ligand
Result: the overlap score of the ligand

1 get the list of rotamers;
2 foreach rotamer do
3 grow the right and left fragment;
4 for angle in 0-360 degrees with step 1 degree do
5 rotate left fragment to angle;
6 if the ligand shape is feasible then
7 measure the overlap of the ligand;
8 check if the overlap is improved
9 end

10 end
11 set the left fragment to best angle found;
12 for angle in 0-360 degrees with step 1 degree do
13 rotate right fragment to angle;
14 if the ligand shape is feasible then
15 measure the overlap of the ligand;
16 check if the overlap is improved
17 end
18 end
19 set the right fragment to best angle found;
20 end
21 return the overlap score of the ligand;

of the generated poses of the ligands are not valid because of the internal
bumps of the ligand atoms. We define as delta overlap the difference be-
tween the minimum and maximum overlap of a single rotation. We define
as peak the set of contiguous and valid rotation angles whose overlap is
higher than 50% of the delta.

We analyse the behaviour of the application to find exploitable patterns
for reducing the number of evaluations for each fragment rotation, thus
creating possible application knobs (see Figure 8.4).

Figure 8.4a correlates the size of a fragment with its impact on the final
score of the ligand. In particular, the x-axis represents the relative size of
the fragment with respect to the size of the ligand. The y-axis represents the
delta overlap normalised with respect to the final score of the ligand. We
can notice that small fragments have small deltas, which means that such
fragments usually have a limited impact on the numeric value of the final
score of the ligand.

Figure 8.4b correlates the width of a peak (in degree) with its height

131

Chapter 8. Tuning a Molecular Docking application

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 50 100 150 200 250 300 350

Max overlap score

Min overlap score

D
e
lt

a
 o

v
e
rl

a
p

O
v
e
rl

a
p
 s

co
re

Rotation angle [degree]

Figure 8.3: Changes in the overlap score by rotating a fragment of the ligand. The x-axis
represents the angle of the rotation, while the y-axis represents the overlap score of the
ligand.

normalized with respect to the delta overlap. From this plot, we can no-
tice that the peaks that contain the maximum overlap are usually higher
than 50 degrees, while narrow peaks rarely reach the maximum height. We
can conclude that the behaviour of the overlap score is rather smooth since
small peaks are also narrow.

Figure 8.4c shows on the y-axis the number of peaks which are con-
tained in a fragment, by changing the fragment size on the x-axis. We can
notice how larger fragments usually have only one peak, while smaller ones
tend to have more.

Besides the functional behaviour of the overlap score, Figure 8.5a shows
the detailed composition of the time spent by the application to find the best
rotation angle of a fragment of the ligand (y-axis) according to the size of
the fragment (x-axis). From the execution time, we highlight the time spent
by measuring the overlap score (MeasureOverlap) and the time spent on
checking if the evaluated angle is admissible (CheckBumps). From the
plot, we see that computing the overlap score is independent of the size of
the fragment. We expected this result since it involves the evaluation of the
whole ligand.

Moreover, Figure 8.5b shows the frequency of the size of a fragment.
Due to the definition of the ligand database, smaller and larger fragments
are slightly more frequent with respect to the other sizes.

8.3.3 Exposing Tunable Application Knobs

In the original implementation of LiGenDock [87], the authors listed sev-
eral parameters that alter the behaviour of the docking algorithm. However,
most of them are chemical-specific parameters that do not impact the ex-

132

8.3. Methodology

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 - 10

10 - 20

20 - 30

30 - 40

40 - 50

50 - 60

60 - 70

70 - 80

80 - 90

90 - 100

D
e
lt

a
 o

v
e
rl

a
p
 s

co
re

 [
%

]

Fragment size [%]

Distribution 50th percentile

(a) Distribution of the delta overlap.

 0

 50

 100

 150

 200

 250

 300

 350

50 - 55

55 - 60

60 - 65

65 - 70

70 - 75

75 - 80

80 - 85

85 - 90

90 - 95

95 - 100

Pe
a
k

w
id

th
 [

d
e
g
re

e
]

Peak height [%]

Distribution 50th percentile

(b) Distribution of the peak geometry.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0 - 10

10 - 20

20 - 30

30 - 40

40 - 50

50 - 60

60 - 70

70 - 80

80 - 90

90 - 100

N
u
m

b
e
r

o
f

p
e
a
ks

Fragment size [%]

Distribution 50th percentile

(c) Distribution of the number of peaks.

Figure 8.4: Analysis on the peaks of overlap across different fragments. Each plot shows
the minimum value, the 25th, 50th, 75th percentile and the maximum value.

ecution time of GeoDock-MA. The only exception is a constant parameter
which performs loop perforation [5] on the loops that rotates a fragment
of the ligand (lines from 4 to 5 in Algorithm 3). In particular, the base-
line version uses a step of 1◦, while it is possible to increase the step size
to skip iteration, thus reducing the number of evaluations, increasing the

133

Chapter 8. Tuning a Molecular Docking application

 0

 1

 2

 3

 4

 5

 6

 0 - 10

 10 - 20

 20 - 30

 30 - 40

 40 - 50

 50 - 60

 60 - 70

 70 - 80

 80 - 90

 90 - 100

E
xe

cu
ti

o
n
 t

im
e
 [

m
s]

Fragment size [%]

Other MeasureOverlap CheckBumps

(a) MatchProbesShape execution time composition.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 - 10

 10 - 20

 20 - 30

 30 - 40

 40 - 50

 50 - 60

 60 - 70

 70 - 80

 80 - 90

 90 - 100

Fr
e
q
u
e
n
cy

 d
is

tr
ib

u
ti

o
n
 [

%
]

Fragment size [%]

(b) Frequency distribution of the fragments.

Figure 8.5: Analysis of the execution time and the frequency of fragments, grouped by
their relative size.

performance of the application.
In addition to this first step, based on the analysis done in the previ-

ous section, we can exploit domain knowledge to define more aggressive
software-knobs which approximate the GeoDock-MA results. In particu-
lar, we know from Figure 8.4a that small fragments have a limited impact
on the delta overlap. Therefore, instead of applying a flat loop perfora-
tion, as in the original application, we introduce a parametric loop perfo-
ration which allows us to focus only on the most important fragments of
the ligand. Whenever the size of the current fragment is below a given
THRESHOLD, we use a coarse-grain rotation step (LOW-PRECISION STEP),
otherwise, we use a fine-grain rotation step (HIGH-PRECISION STEP).

On the other hand, since MatchProbesShape is a greedy algorithm,
we might improve the overlap score by repeating the whole procedure, thus
considering multiple time each fragment. In particular, the more we repeat
the procedure, the more we increase the probability to find a better pose for
the target ligand. Therefore, we define the tunable software knob REPETI-

134

8.3. Methodology

TIONS as the number of times to repeat the procedure. This step may seem
counterintuitive; however, we argue that it is better to perform more times
MatchProbesShape using aggressive approximations with respect to
run MatchProbesShape once with fewer approximations.

Furthermore, we can extract other important information about the over-
lap score from the peak analysis we discussed in the previous section. In
particular, we can rely on the smoothness of the overlap score through the
entire rotation space, which means that each fragment has a limited number
of peaks and that the most important peak is usually wide (the median is
68◦). For each fragment above THRESHOLD we partition the 360◦ rotation
space into several tiles of fixed-size x. Then, we peel and evaluate only
one element for each tile (the central one). In the following iteration, we
evaluate only the tile corresponding to the most promising peeling element,
using HIGH-PRECISION STEP. Given this policy, the number of evaluated
rotations (y) is function of the tile size (x) and HIGH-PRECISION STEP, as
described in Figure 8.2.

y =
360◦

x
+

x

HIGH-PRECISION STEP
(8.2)

We are interested in minimising the number of pose evaluation while pre-
serving a high probability to identify the most important peak. The mini-
mization of Figure 8.2 has a unique solution, its value x̂ is defined in Figure
8.3.

x̂ = 6 ∗
√

10 ∗
√

HIGH-PRECISION STEP (8.3)

For example, if we set HIGH-PRECISION STEP at the same accuracy of
the original algorithm (1◦), the optimal tile size is 18◦, which means that
we have a high probability of identifying the most important peak with
the peeling element. In particular, Figure 8.6 shows, for each tile size (x-
axis), the probability that the width of the most important peak is greater
than the evaluated tile size (y1-axis, blue line) and the number of evaluated
iterations (y2-axis, green line). The red line highlights the optimal value.
As a consequence of Figure 8.3, we observe that an increment of HIGH-
PRECISION STEP implies an increment in the value of the optimal tile size
and a decrement of the probability of finding the best peak.

To summarize, starting from the original algorithm described in Fig-
ure 3, we have introduced five tunable software-knobs: HIGH-PRECISION
STEP, LOW-PRECISION STEP, THRESHOLD, REPETITIONS and ENABLE
REFINEMENT, to approximate the application by reducing the number of
ligand evaluations. The main idea is to focus the elaboration only when it
is required, according to the functional behaviour analysed in Figure 8.3.2.

135

Chapter 8. Tuning a Molecular Docking application

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350
 0

 50

 100

 150

 200

 250

 300

 350

 400

C
u
m

u
la

ti
v
e
 p

ro
b

a
b

ili
ty

 d
is

tr
ib

u
ti

o
n

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

Tile size [degrees]

Probability to find the highest peak in a fragment
Evaluations required to process a fragment

Proposed tile size

Figure 8.6: For each tile size (x-axis), the relation between the number of evaluated ro-
tations (y2-axis) and the probability that the width of the best peak is greater than the
given size (y1-axis).

In particular, Algorithm 4 shows the parametric algorithm of MatchProbesShape.
The outer loop (line 2) contains all the original algorithm, which repeat the
pose optimisation according to REPETITIONS. The optimization of the pose
of left fragment is described between line 5 and line 16. According to the
relative size of the fragment and to THRESHOLD (line 5), we perform ei-
ther a coarse grained exploration using LOW-PRECISION STEP (line 6) or a
fine grained exploration (lines 9-15). In the latter case, we either perform
a two-step optimisation using iterative refinements, or we perform a flat
exploration using HIGH-PRECISION STEP, according to ENABLE REFINE-
MENT. The two-step optimization evaluates the peeling elements of the
rotation (line 10) and then it refines the exploration of the most promising
tile using HIGH-PRECISION STEP (line 11). Due to the symmetry of the
problem, the same procedure is applied to the right fragment (lines 17-28).

8.3.4 Application Autotuning

The software knobs defined in the previous subsection aim at narrowing
the exploration space of ligand poses, decreasing the time-to-solution of
the application and the accuracy of the results as well. However from the
end-user point of view, a manual selection of the application configuration
it is a nontrivial task. Therefore we use the mARGOt autotuning framework
to select the software-knobs configuration that maximises the accuracy of
the result given a time budget.

136

8.3. Methodology

Algorithm 4: The tunable pseudo-code of the MatchProbesShape kernel.
Data: the pocket and the 3D structure of the ligand
Result: the overlap score of the ligand

1 get the list of rotamers;
2 for the number of REPETITIONS do
3 foreach rotamer do
4 grow the right and left fragment;
5 if relative size of left fragment ≤ THRESHOLD then
6 place the left fragment in the best angle found with step

LOW-PRECISION STEP;
7 end
8 else
9 if ENABLE REFINEMENT then

10 evaluate the peeling element for each tile;
11 place the left fragment in the best angle found in the best tile using

step HIGH-PRECISION STEP;
12 end
13 else
14 place the left fragment in the best angle found with step

HIGH-PRECISION STEP;
15 end
16 end
17 if relative size of right fragment ≤ THRESHOLD then
18 place the right fragment in the best angle found with step

LOW-PRECISION STEP;
19 end
20 else
21 if ENABLE REFINEMENT then
22 evaluate the peeling element for each tile;
23 place the right fragment in the best angle found in the best tile using

step HIGH-PRECISION STEP;
24 end
25 else
26 place the right fragment in the best angle found with step

HIGH-PRECISION STEP;
27 end
28 end
29 end
30 end
31 return the overlap score of the ligand;

The autotuner must know or predict the performance of the configura-
tions for the actual input for selecting the most suitable configuration. As

137

Chapter 8. Tuning a Molecular Docking application

the accuracy is platform-independent and it is used only to sort the config-
urations in terms of software knobs, it is possible to run an error profiling
campaign only once, averaging the results over a representative set of pock-
ets and ligands.

On the other hand, to complete the execution of the application within
a given time budget, we must estimate the time-to-solution given the tar-
get architecture and the actual input dataset (pocket and ligands database).
As the target problem is embarrassing parallel, without the need of syn-
chronisation, the overhead of the MPI environment has been found to be
negligible even scaling over a large set of nodes. Therefore, assuming ho-
mogeneous resources, we predict the time to solution of the serial case and
then split it according to the available resources.

If we focus on a single software-knobs configuration, it is possible to
use input data features to estimate the time to solution of the given input.
To this end, we model the entire database as a set of ligands with the same
average data features. In particular, we use a multivariate linear regression
with interaction to estimate the time-to-solution tla for the average ligand.
The vector of predictors x is composed by the number of 3D points of
the pocket xpp, the average number of atoms in a ligand xla, the average
number of rotamers in a ligand xlr, and all the possible interactions among
them (i.e. xpp · xla, xpp · xlr, xla · xlr, and xpp · xla · xlr). Thus, the target
model is simply composed of tla = α · x + β, where α is the vector of
predictor coefficient, while β is the intercept.

To generalise the approach, we consider the parameters of the regression
as a function of the proposed software knobs since the impact of the data
features on the execution time is strongly dependent on the software-knobs
configuration. Using this information, we can build a model that estimates
the time-to-solution as stated in Equation 8.4, where k is the vector of soft-
ware knobs and ν is the number of ligands to dock, in the input database.

t = ν · (α(k) · x+ β(k)) (8.4)

Opposed to the accuracy characterisation, we should train the perfor-
mance model every time we change the computing platform. However,
in both cases, the experiment described in Section 8.5.1 suggests that a
small database of ligands is enough to define the accuracy-performance be-
haviour.

To recap, we enhanced the original algorithm of the application by ex-
posing software knobs that enables performance-accuracy trade-offs. We
used an application autotuner to automatically configure the application ac-
cording to simple user-oriented parameters: the number of available com-

138

8.4. Experimental Setup

putational resources and the available time-budget. The data features of the
actual input can be either included by the user or directly extracted by a
preliminary input data analysis.

8.4 Experimental Setup

To assess the benefits of using the approximation techniques described in
this chapter, we need to define the data sets used in the experiments, the
metrics of interest and the platform that executes the application.

8.4.1 Data Sets

To evaluate the functional and extra-functional performance of the pro-
posed approximation techniques, we used a database of ligands composed
of 113K ligands. The molecules are different in terms of the number of
atoms (between 28 and 153) and rotamers (between 2 and 53). We used
6 pockets protein-ligand complexes derived from the RCSB Protein Data
Bank (PDB) [171]: 1b9v, 1c1v, 1cvu, 1c2, 1dh3, 1fm9. In particular, the
PASS [170] version of the pockets has also been used together with the
database of ligands. The PASS (Putative Active Sites with Spheres) version
uses spheres to represent binding sites, unlike the classic grid representa-
tion of the pocket. This solution has been widely used in the context of fast
docking [170].

8.4.2 Metrics of Interest

To measure the performance of GeoDock-MA we consider its throughput
and the time to solution. In particular, we define the application throughput
as the number of ligand’s atoms processed in one second, while the time to
solution is the time taken by the application to elaborate the input.

We use the metric overlap degradation to quantify the mean loss of ac-
curacy introduced by approximation techniques with respect to the base-
line, which is the configuration that leads, on average, to the better overlap
score: HIGH-PRECISION STEP = 1◦, THRESHOLD = 0, REPETITIONS = 3
and ENABLE REFINEMENT = false. The overlap degradation is defined
as described in Figure 8.5,

scoredegradation = (1− overlapapprox
overlaporiginal

)× 100 (8.5)

where overlapapprox is the mean overlap score of the top 1% ligands of
the evaluated configuration, while overlaporiginal is the mean overlap score

139

Chapter 8. Tuning a Molecular Docking application

of the top 1% ligands of the non-approximated version of the application
(baseline).

8.4.3 Target Platform

The platform used to execute the experiments is composed of two dedi-
cated supercomputer NUMA node that features two Intel Xeon E5-2630
V3 CPUs (@2.8 GHz) with 128 GB of DDR4 memory (@1866 MHz) on
a dual channel memory configuration. The experiments are performed by
using the GALILEO platform located at CINECA supercomputing center2.

8.5 Experimental Results

In this section, we evaluate the benefits of the proposed approach using
four different experiments. Since GeoDock-MA is a data-dependent appli-
cation, the first experiment aims at assessing data sensitivity by changing
the number of ligands to use for evaluating a configuration. The second
experiment aims at assessing the benefits of applying the approximation
techniques, with respect to the original version of the application. We show
the enabled accuracy-performance trade-off for a virtual screening proce-
dure, and we also evaluate the effect of the overlap degradation on a single
ligand docking procedure. The third experiment validates the accuracy of
the time-to-solution model. Finally, the fourth experiment aims at show-
ing the benefits of the proposed approach for the end-user on two different
application scenarios.

8.5.1 Data Dependency Evaluation

In this chapter, we aim at enhancing the geometrical docking module of
LiGenDock with approximation techniques, to trade off the quality of re-
sults for throughput. Therefore we are interested in finding the set of con-
figurations in the Pareto front, that results to be non-dominated solutions
considering both target metrics. However, this application needs to find
the most promising ligands across a heterogeneous data set. As a conse-
quence, the performance might depend on which ligands the application is
evaluating.

This experiment aims at assessing how much the performance of the
application is dependent on changes in the dataset, to avoid a profiling
phase of the alternative software-knobs configurations for each evaluated
database of ligands. To this end, we evaluate four different configurations

2https://www.cineca.it/en

140

8.5. Experimental Results

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

[a
to

m
s/

se
c]

Number of ligand considered [k]

Configuration 1
Configuration 2

Configuration 3
Configuration 4

(a) Throughput per process

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

O
v
e
rl

a
p
 d

e
g
ra

d
a
ti

o
n
 [

%
]

Number of ligand considered [k]

Configuration 1
Configuration 2

Configuration 3
Configuration 4

(b) Overlap score degradation

Figure 8.7: Application analysis in terms of throughput per process and overlap score
degradation by varying the number of ligands. For each configuration we show the
average values (dot) and the standard deviation (colored area).

of the enhanced version of GeoDock-MA in terms of tunable knobs. For
each configuration, we characterise the application behaviour in terms of
throughput and overlap degradation, by varying the number of considered
ligands. The set of ligands considered to evaluate each configuration has
been selected by randomising 20 times over the full set of 113K elements,
thus emulating new datasets.

Figure 8.7 shows the results of the experiment. In particular, Figure 8.7a
focuses on the application throughput (y-axis), while Figure 8.7b focuses
on the overlap degradation (y-axis). For both of them, each dot represents
the mean performance of the evaluated configuration by varying different
databases of ligands. The transparent solid curve represents the uncertainty
of the mean, using the standard deviation of the measures. The x-axis indi-
cates the number of ligands considered in the evaluation.

From these results we see in Figure 8.7a that the average application
throughput has a minimal dependency on both on the number of ligands in

141

Chapter 8. Tuning a Molecular Docking application

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
v
e
rl

a
p

 d
e
g

ra
d

a
ti

o
n
 [

%
]

Throughput single process [Katoms/sec]

Baseline Flat Full

Figure 8.8: Pareto front of GeoDock-MA in terms of overlap score degradation and
throughput: Flat vs Full.

the target database and on the input data (i.e. very small standard devia-
tion). We expected this result, since the throughput definition we consid-
ered is related to the number of atoms of the database instead of the number
of ligands, thus providing a normalised measure. On the other hand, Figure
8.7b shows how the overlap degradation is a bit more data dependent than
throughput. In particular, we need to consider at least 5K ligands to have a
steady average value. This behaviour is due to the overlap degradation def-
inition that makes the value dependent on the top 1% ligands and therefore
on which ligands are selected. However, we can determine that less than
10K ligands are enough to characterise the configurations of the enhanced
version of GeoDock-MA for both throughput and overlap degradation.

8.5.2 Trade-off Analysis

This experiment aims at defining the performance-accuracy trade-off when
we apply the approximation techniques described in Section 8.3.3. Figure
8.8 shows the Pareto front of the design space exploration carried out in a
single node of Galileo using 20k ligands, targeting a single pocket.

Figure 8.8 compares the performance of the application by using a flat
sampling on the rotation angles, as proposed in the LiGenDock paper [87],
with the performance of the application using the full set of software knobs
proposed in this chapter. In particular, the flat design space is the following:
HIGH-PRECISION STEP [1◦, 2◦, 3◦, 5◦, 10◦, 15◦, 45◦, 60◦], REPETITIONS [1,
2, 3]. While the Full design space, which aims at evaluating all the software
knobs proposed in this chapter, is the following: HIGH-PRECISION STEP
[1◦, 2◦, 3◦, 5◦], LOW-PRECISION STEP [45◦, 90◦], THRESHOLD [0, 0.3, 0.6,

142

8.5. Experimental Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

1b9v
1c1b

1cvu
1cx2

1d3h
1fm

9
m

ean

O
v
e
rl

a
p

 s
co

re

Pocket codename

Co-Crystal
Baseline

Approximated

Figure 8.9: Overlap score by varying the target pocket for the co-crystallized ligand, for
the baseline and proposed approximated version.

0.8], REPETITIONS [1, 2, 3], ENABLE REFINEMENT [true, false]. For
both of them, we use a full factorial Design of Experiments. We consider
as baseline configuration the most precise one, that is actually the same
version even if derived from flat and full – i.e. HIGH-PRECISION STEP=1◦

and REPETITIONS=3 for the flat version, and HIGH-PRECISION STEP=1◦,
LOW-PRECISION STEP=*, THRESHOLD=0, REPETITIONS=3, and ENABLE
REFINEMENT=false for the full version.

As expected, from the results in Figure 8.8, the Pareto front derived
by the full version dominates the one derived by the flat sampling. It is
possible to notice how only by enabling the iterative refinement (first con-
figuration on the full curve after the Baseline) we can significantly improve
the throughput of the application (7.4X) with a limited overlap degradation
(2.3%) with respect to the baseline version.

The Protein Data Bank (PDB) [171] contains the three-dimensional struc-
tural data of biological molecules, providing also the pose of the ligand
when co-crystallized within the target pocket (i.e. the actual pose of the
best ligand for that pocket). Therefore, we decided to use some pocket-
ligand pairs to see the effects of accuracy degradation better. Figure 8.9
shows for each pocket-ligand pair: a) the overlap score of the crystal, b) the
overlap score of the docked ligand using the baseline version, and c) the
overlap score of the approximated version using only the iterative refine-
ment (i.e. 7.4x speedup). We may notice that the investigated configuration

143

Chapter 8. Tuning a Molecular Docking application

 0

 1

 2

 3

 4

 5

 6

 7

 8

1000 2000 5000 10000

P
re

d
ic

ti
o
n
 e

rr
o
r

[%
]

Number of ligands

Figure 8.10: Prediction error of the time to solution, by varying the number of ligand to
dock in the target pocket.

of the enhanced GeoDock-MA has a small degradation of the overlap score
not only in the average case but also when considering a single target lig-
and. The overlap score of the co-crystallized ligand is usually lower with
respect to the computed ones because the real pose of the ligand takes into
consideration also chemical features which are not captured by the geomet-
rical score.

8.5.3 Time-to-solution Model Validation

This experiment aims at validating the time-to-solution model described in
Section 8.3.4. In particular, the model is defined within the design space of
the full version described in Section 8.5.2. To compute the coefficients of
the linear regression for each configuration (see Equation 8.4), we run the
application several times using 1K ligands per pocket for each configura-
tion. The extracted models for each configuration have an average adjusted
R2 value equal to 0.977.

We run an experiment campaign to further validate the accuracy of the
time-to-solution prediction of the model, by using a leave-one-out scheme
on the pockets and using a different set of ligands with respect to those used
for training. For each pocket and configuration stated in Section 8.5.2, we
execute the application with three different databases randomly selected
over the entire set and composed of 1k, 2k, 5k and 10k ligands. We do
not use very small numbers for the target database size because our goal
is to predict the time-to-solution during a virtual-screening process, thus

144

8.5. Experimental Results

composed of a large number of target ligands. For each run, we stored the
predictor value of the input and the observed time-to-solution to extract the
prediction error. Figure 8.10 shows the distribution of the prediction error
of our model, by varying the number of ligands in the experiment. We
notice that the average error is below 1% of the observed time to solution
for the entire range of considered ligand-database size, while the value of
outliers (we validate the application using more than 15K runs) reaches a
maximum of 7.9%, with a trend which is stable by increasing the number
of docked ligands.

8.5.4 Use-case Scenarios

The last experiment aims at evaluating the benefits of the proposed ap-
proach for the end-user, i.e. a pharmaceutical company that aims at screen-
ing a large set of ligands within a specific time budget. We envision two
use cases to exploit the performance-accuracy trade-off. In the first sce-
nario, we consider a fixed time budget for the computation, and we would
like to understand what is the effect of incrementing the size of the database
to investigate, to increase the chances to find a better drug. In the second
one, we plan the opposite scenario. We fix the size of the database, and
we observe the effects in varying the time budget, thus varying the cost of
the experiment as well. We can summarise these two scenarios as attempts
to provide the user with two high-level knobs: in the first case the number
of ligands to be screened, while in the second one the time budget, and
thus the cost of the experiment. The time-to-solution model will be used
to set the right low-level application knobs included in GeoDock-MA while
satisfying the constraints.

Figure 8.11 shows the expected behaviour of the application, assuming
that the end-user is using eight nodes of the Galileo machine (see Section
8.4.3). On the y-axis are represented the expected performance of the appli-
cation (top two plots) and the selected configuration of the software knobs
(bottom five plots). We define the performance of the application in terms
of the expected completion percentage of the planned ligand database and
the related overlap degradation of the result. The completion percentage is
the ratio between the number of ligands docked within the allocated time
budget and the size of the target ligand database. Each plot includes two
lines, one for the baseline version of GeoDock-MA the other for the adap-
tive version presented in this chapter.

The x-axis represents the high-level parameter tuned by the end-user,
according to the scenario. On one side, in Figure 8.11a the end-user would

145

Chapter 8. Tuning a Molecular Docking application

 0

 20

 40

 60

 80

 100

E
x
p
e
ct

e
d
 c

o
m

p
le

ti
o
n
 [

%
]

Baseline Adaptive

 0

 10

 20

 30

 40

 50

O
v
e
rl

a
p
 d

e
g
ra

d
a
ti

o
n
 [

%
]

 0

 20

 40

 60

 80

 100

Lo
w

 p
re

ci
si

o
n
 s

te
p
 [

°]

 0

 10

 20

 30

 40

 50

 60

H
ig

h
 p

re
ci

si
o
n
 s

te
p
 [

°]

 0

 20

 40

 60

 80

 100

T
h
re

sh
o
ld

 s
iz

e
 [

%
]

 1

 2

 3

R
e
p
e
ti

ti
o
n
 [

#
]

no

yes

 250 500 750 1000

It
e
ra

ti
v
e
 r

e
fi
n
e
m

e
n
t

Ligand db size [x106]

(a) Scenario 1. Varying the size of the ligand
database allocating one day to the time
budget.

 0

 20

 40

 60

 80

 100

E
x
p
e
ct

e
d
 c

o
m

p
le

ti
o
n
 [

%
]

Baseline Adaptive

 0

 10

 20

 30

 40

 50

O
v
e
rl

a
p
 d

e
g
ra

d
a
ti

o
n
 [

%
]

 0

 20

 40

 60

 80

 100

Lo
w

 p
re

ci
si

o
n
 s

te
p
 [

°]
 0

 10

 20

 30

 40

 50

 60

H
ig

h
 p

re
ci

si
o
n
 s

te
p
 [

°]

 0

 20

 40

 60

 80

 100
T
h
re

sh
o
ld

 s
iz

e
 [

%
]

 1

 2

 3

R
e
p
e
ti

ti
o
n
 [

#
]

no

yes

 1 10

It
e
ra

ti
v
e
 r

e
fi
n
e
m

e
n
t

Allocated time to solution [days]

(b) Scenario 2. Varying the allocated time
budget given the ligand database size
equal to 500 × 106.

Figure 8.11: GeoDock-MA behavior in terms of expected percentage of ligand database
completion, expected overlap degradation, and the selected configuration (a) by vary-
ing the size of the input, and (b) the time budget, when using 8 nodes of Galileo.

like to tune the size of the database of ligands to complete the job within
a time budget of one day. On the other side, in Figure 8.11b the end-user
would like to tune the time budget of the application to dock a database of
500× 106 ligands.

In both cases, from the results, we notice that the proposed software
knobs enable a swing of several orders of magnitude for the end-user to
tune the parameters of the job, i.e. problem size and time to solution. More-
over, by using an autotuner together with the time to solution model, we
can alleviate the burden of the manual selection of the software knobs from

146

8.6. Summary

the end-user, exposing more straightforward parameters. While the aver-
age trend of the application knobs values for both scenarios can be derived
from their meaning, the actual values and when to switch among the con-
figurations according to the high-level constraints (i.e. problem size and
time to solution) is something that is hard to know without any automatic
support. A clear example of this is the behaviour of the THRESHOLD-value
within the middle range (300–700×106) of the problem size considered in
the experiment shown by Figure 8.11a.

In terms of application performance, we can notice how in the scenario
where we fix the time to solution (see Figure 8.11a), while the proposed
adaptive version can keep the completion rate of the ligand database equal
to 100% up to 850×106, the baseline version rapidly decreases the rate
to very low values when enlarging the database size. This behaviour is
due to the capability of the proposed adaptive version, not present in the
baseline, to trade-off accuracy and performance. Moreover, the second plot
in Figure 8.11a also demonstrates how the deep parametrisation introduced
in the target Mini-App provides a smooth degradation of the application
quality. On the other scenario shown in Figure 8.11b, where we fixed the
size of the target database, and we varied the allocated time budget, we
observed similar behaviour. By increasing the time budget, the proposed
adaptive version rapidly reaches (< 1 day) the value of 100% completion
at the cost of low accuracy, while for the baseline we had to allocate more
than 20 days.

Finally, in both scenarios, the experimental results show how the adap-
tive approach can provide an output with a limited overlap degradation (less
than 10%), while the baseline can process only the 10% of input data set.
This result demonstrates the effectiveness of the extracted low-level knobs
in GeoDock-MA.

8.6 Summary

In this chapter, we have analysed GeoDock-MA as a representative batch
job application which runs in HPC centre. From an analysis campaign of
the application domain, we identified five software-knobs that enable an
accuracy-performance trade-off, by focusing the computation only where
it is likely to have a significant impact on the output. The adaptive version
of GeoDock-MA provides different accuracy levels according to the needs
of the virtual screening experimental campaign, automatically managed by
mARGOt. In particular, experimental results demonstrated how, by varying
the quality of the results, the application could complete a virtual screening

147

Chapter 8. Tuning a Molecular Docking application

campaign over a given ligand database, within a wide range of time-to-
solution. These results represent a considerable advantage for pharmaceu-
tical industries in a context in which the use of HPC system and software
in drug discovery have become a valuable asset to find novel drugs. Due
to the large number of theoretical molecules that may be evaluated, this
procedure can lower the cost of the drug discovery process or evaluate a
larger number of ligands, increasing the chances of finding better candi-
dates. With respect to other case studies described in previous chapters,
this one is more similar to a static tuning. The dynamicity is due to the fact
that we do not configure the application with a one-fits-all configuration,
but we rely on application knowledge and input features to select the most
suitable configuration for the actual input. Finally, thanks to the analy-
sis derived from the work presented in this chapter, the complete version of
the geometrical docking application (not the MiniApp), has been optimized
and tuned to run a very large run on the whole MARCONI machine from
CINECA (>250Kcores, >10PetaFlops system and position number 17 on
the top 500). In particular, this experiment will perform one of the largest
virtual screening campaign for the ZIKA virus considering a database of
1.2B ligands. Results on this run are not shown in the current version of the
thesis since it is going to take place during the first days of November.

148

CHAPTER9
Conclusions

In this thesis, we addressed the problem on how to enhance a target appli-
cation with an adaptation layer that provides self-optimization capabilities.
The main outcome is a dynamic autotuning framework that exposes mecha-
nisms to adapt reactively and proactively, and it enables to learn application
knowledge at runtime, in a distributed fashion. We have experimentally
evaluated the proposed approach and its exploitation in two different sce-
narios. Moreover, we described how it is possible to leverage approximate
techniques in two application case studies that belong to entirely different
contexts. The remainder of this chapter summarises the finding and limi-
tation of the proposed approach and provides recommendations for future
works.

9.1 Main contributions

The main results of the work carried out in this thesis might be summarised
as follows:

1. The features exposed by the adaptation layer has been evaluated in dif-
ferent scenarios, ranging from embedded to High-Performance Com-
puting. Experimental results show how leveraging feedback infor-

149

Chapter 9. Conclusions

mation from monitors provides a mechanism to adapt the application
knowledge according to the observed behaviour, under the assump-
tion of linear error propagation. Given the mARGOt flexibility for
expressing application requirements, it is possible to further improve
efficiency by adapting the requirements according to external events,
for example using information from the current input. Moreover, it is
possible to identify and seize optimisation opportunities by leveraging
features of the current input. Furthermore, by learning the application
knowledge at runtime, it is possible to learn complex relations be-
tween software-knobs configuration, EFPs of interest and the current
input, increasing the computation efficiency.

2. The orthogonality between resource managers and application auto-
tuning has been evaluated, by applying different adaptation schemes in
a dynamic workload with co-running applications. Our tests show that
the average performance of using mARGOt as a lightweight resource
manager is very close to the performance achieved with a combined
approach based on a centralised resource manager. Moreover, our ap-
proach is more portable and less intrusive from an application design
point of view. However, it does not provide any guarantee of fairness
nor optimality in resource allocation.

3. An approach has been proposed to combine the adaptation mecha-
nisms of mARGOt, with source-to-source transformations of the LARA
aspect-oriented language [16], and with insight provided by the COBAYN
compiler autotuner [15], to provide to application developers a seam-
less online compiler and system runtime autotuning framework. The
proposed approach can provide self-optimization capabilities to the
target application, in terms of compiler options and OpenMP parame-
ters, in a transparent way to application developers.

4. In the context of smart cities, we focused on a time-dependent proba-
bilistic routing algorithm, by analysing the relationship between end-
user requirements, application software-knob and features of the in-
put. Experimental results show how it is possible to drastically im-
prove computation efficiency, by leveraging input features.

5. In the context of a drug discovery process, we focused on a geomet-
rical docking miniapp, by analysing the effect of approximation tech-
niques for the extra-functional properties of interest. Experimental
results show how it is possible to increase the application throughput
by one order of magnitude, with an accuracy degradation less than

150

9.2. Recommendation for future works

30%. By using mARGOt, end-user can harness this tradeoff to satisfy
a time-to-solution constraint.

9.2 Recommendation for future works

Experimental evaluations of the proposed framework show promising re-
sults; however, there are still open questions to investigate. In our opinion,
the most challenging point to solve are the following:

1. mARGOt uses feedback information from monitor to adapt the knowl-
edge base by assuming a linear error propagation, as a local reaction
mechanism for the application. However, there are cases where this
assumption is wrong, typically when co-running applications share
computational resources. Therefore, this reaction mechanism should
be improved. For example, it is possible to leverage a change point
detection mechanism [172] to re-trigger a Design Space Exploration
to update the application knowledge.

2. Even if mARGOt can manage different application regions of code,
it considers them independently. As demonstrated in previous work
[39], if different regions of code share common software-knobs, an
independent tuning of them might lead to sub-optimal performance.

3. In the current implementation, mARGOt relies on end-users and appli-
cation developers to define error metrics and input features since they
are utterly application-specific. However, previous work [7,59] shows
that generic error metrics and input features might apply to different
applications. It may be of interest to investigate more their effective-
ness to decrease the integration effort of the approach.

4. The mARGOt framework can handle input features to adapt proac-
tively. However, it does not provide any mechanism to extract such
features from the current input automatically. It is possible to envision
a new module that can extract common information from “iterable”
data structures, such as the average, standard deviation, or autocorre-
lation [59].

We hope that the work discussed in this thesis, on the one hand, will help
application developers to improve computation efficiency. On the other
hand, we hope that it will help researchers to advance toward an autonomic
manager. To this end, we publicly released the mARGOt source code [14],
along with user manuals and Doxygen documentation.

151

Publications

Articles published or under review in international journals

1. Ralph Görgen, Kim Grüttner, Fernando Herrera, Pablo Peñil, Julio
Medina, Eugenio Villar, Gianluca Palermo, William Fornaciari, Carlo
Brandolese, Davide Gadioli, Sara Bocchio, Luca Ceva, Paolo Azzoni,
Massimo Poncino, Sara Vinco, Enrico Macii, Salvatore Cusenza, John
Favaro, Raùl Valencia, Ingo Sander, Kathrin Rosvall, Davide Quaglia
“CONTREX: Design of embedded mixed-criticality CONTRol sys-
tems under consideration of EXtra-functional properties.” Micropro-
cessors and Microsystems 51 (2017): 39-55.

2. Davide Gadioli, Emanuele Vitali, Gianluca Palermo, Cristina Silvano
“mARGOt: a Dynamic Autotuning Framework for Self-aware Ap-
proximate Computing” IEEE Transactions on Computers, accepted,
in publishing

3. Davide Gadioli, Gianluca Palermo, Stefano Cherubin, Emanuele Vi-
tali, Giovanni Agosta, Candida Manelfi, Andrea R. Beccari, Carlo
Cavazzoni, Nico Sanna, Cristina Silvano “Tunable Approximations
for Controlling Time-to-Solution in an HPC Molecular Docking Mini-
App”, IEEE Transactions on Computers, under peer review

4. Davide Gadioli, Emanuele Vitali, Gianluca Palermo, Cristina Silvano
“mARGOt: a Dynamic Autotuning Framework Targeting Adaptivity
and Controllable Approximation” SoftwareX, under peer review

153

Chapter 9. Conclusions

5. Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Martin Gola-
sowski, João Bispo, Pedro Pinto, Jan Martinovič, Kateřina Slaninová,
João M. P. Cardoso, Cristina Silvano “An Efficient Monte Carlo-based
Probabilistic Time-Dependent Routing Calculation Targeting a Server-
Side Car Navigation System” IEEE Transactions on Emerging Topics
in Computing, under peer review

6. Tomáš Martinovič, Davide Gadioli, Gianluca Palermo, Cristina Sil-
vano “On-line Application Autotuning Exploiting Ensemble Models”
IEEE Transactions on Computers, under peer review

Articles published in proceedings of international conferences

1. Edoardo Paone, Davide Gadioli, Gianluca Palermo, Vittorio Zaccaria,
Cristina Silvano ”Evaluating orthogonality between application auto-
tuning and run-time resource management for adaptive OpenCL appli-
cations“ IEEE 25th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2015

2. Davide Gadioli, Simone Libutti, Giuseppe Massari, Edoardo Paone,
Michele Scandale, Patrick Bellasi, Gianluca Palermo, Vittorio Zac-
caria, Giovanni Agosta, William Fornaciari, Cristina Silvano ”OpenCL
application auto-tuning and run-time resource management for multi-
core platforms” IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications (ISPA), 2014

3. Davide Gadioli, Gianluca Palermo, Cristina Silvano “Application au-
totuning to support runtime adaptivity in multicore architectures” IEEE
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), 2015

4. Cristina Silvano, Giovanni Agosta, Stefano Cherubin, Davide Gadi-
oli, Gianluca Palermo, Andrea Bartolini, Luca Benini, Jan Martinovič,
Martin Palkovič, Kateřina Slaninová, João Bispo, João M. P. Cardoso,
Rui Abreu, Pedro Pinto, Carlo Cavazzoni, Nico Sanna, Andrea R Bec-
cari, Radim Cmar, Erven Rohou ”The ANTAREX approach to auto-
tuning and adaptivity for energy efficient HPC systems“ Proceedings
of the ACM International Conference on Computing Frontiers, 2016

5. Cristina Silvano, Giovanni Agosta, Jorge Barbosa, Andrea Bartolini,
Andrea R. Beccari, Luca Benini, João Bispo, João M. P. Cardoso,
Carlo Cavazzoni, Stefano Cherubin, Radim Cmar, Davide Gadioli,
Candida Manelfi, Jan Martinovič, Ricardo Nobre, Gianluca Palermo,

154

9.2. Recommendation for future works

Martin Palkovič, Pedro Pinto, Erven Rohou, Nico Sanna and Kateřina
Slaninová “The ANTAREX tool flow for monitoring and autotuning
energy efficient HPC systems” IEE International Conference on Em-
bedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2017

6. Davide Gadioli, Ricardo Nobre, Pedro Pinto, Emanuele Vitali, Amir
H Ashouri, Gianluca Palermo, João M. P. Cardoso, Cristina Silvano
“SOCRATES-A seamless online compiler and system runtime auto-
tuning framework for energy-aware applications” Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2018

7. Cristina Silvano, Gianluca Palermo, Giovanni Agosta, Amir H Ashouri,
Davide Gadioli, Stefano Cherubin, Emanuele Vitali, Luca Benini, An-
drea Bartolini, Daniele Cesarini, João M. P. Cardoso, João Bispo,
Pedro Pinto, Riccardo Nobre, Erven Rohou, Loïc Besnard, Imane
Lasri, Nico Sanna, Carlo Cavazzoni, Radim Cmar, Jan Martinovič,
Kateřina Slaninová, Martin Golasowski, Andrea R Beccari, Candida
Manelfi ”Autotuning and adaptivity in energy efficient HPC systems:
the ANTAREX toolbox” Proceedings of the ACM International Con-
ference on Computing Frontiers, 2018

8. Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R. Bec-
cari, Luca Benini, Loïc Besnard, João Bispo, Radim Cmar, João M. P.
Cardoso, Carlo Cavazzoni, Stefano Cherubin, Davide Gadioli, Mar-
tin Golasowski, Imane Lasri, Jan Martinovič, Gianluca Palermo, Pe-
dro Pinto, Erven Rohou, Nico Sanna, Kateřina Slaninová, Emanuele
Vitali “ANTAREX: A DSL-based Approach to Adaptively Optimiz-
ing and Enforcing Extra-Functional Properties in High Performance
Computing” Euromicro Conference on Digital System Design, 2018

Articles published in proceedings of international workshops

1. Davide Gadioli, Gianluca Palermo, Cristina Silvano “Application Adap-
tation at Runtime through Dynamic Knobs Autotuning.” RES4ANT@
DATE, 2016

2. Ahmet Erdem, Davide Gadioli, Gianluca Palermo, Cristina Silvano
“Design Space Pruning and Computational Workload Splitting for
Autotuning OpenCL Applications” Proceedings of the Rapido’18 Work-
shop on Rapid Simulation and Performance Evaluation: Methods and
Tools, 2018

155

Chapter 9. Conclusions

3. Emanuele Vitali, Davide Gadioli, Gianluca Palermo, Andrea Beccari,
Cristina Silvano “Accelerating a Geometric Approach to Molecular
Docking with OpenACC” Proceedings of the 5th International Work-
shop on Parallelism in Bioinformatics, 2018

Posters published/presented in poster sessions co-located with
international conference

1. Jan Martinovič, Kateřina Slaninová, Martin Golasowski, Radim Cmar,
João M. P. Cardoso, João Bispo, Gianluca Palermo, Davide Gadioli,
Cristina Silvano “DSL and Autotuning Tools for Code Optimisation
on HPC Inspired by Navigation Use Case” Supercomputing, 2016

156

Bibliography

[1] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA),
2011 38th Annual International Symposium on, pages 365–376. IEEE, 2011.

[2] Marc Duranton, Koen De Bosschere, Christian Gamrat, Jonas Maebe, Harm Munk, and
Olivier Zendra. The hipeac vision 2017, 2017.

[3] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic knobs for responsive power-aware computing. In ACM SIGPLAN
Notices, volume 46, pages 199–212. ACM, 2011.

[4] Edoardo Paone, Gianluca Palermo, Vittorio Zaccaria, Cristina Silvano, Diego Melpignano,
Germain Haugou, and Thierry Lepley. An exploration methodology for a customizable opencl
stereo-matching application targeted to an industrial multi-cluster architecture. In Proceed-
ings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 503–512. ACM, 2012.

[5] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin Rinard.
Using code perforation to improve performance, reduce energy consumption, and respond to
failures. 2009.

[6] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks. In Proceedings of the 20th annual international conference on Supercomputing, pages
324–334. ACM, 2006.

[7] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality of ser-
vice profiling. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 25–34. ACM, 2010.

[8] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceleration for
general-purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 449–460. IEEE Computer Society,
2012.

[9] Qian Zhang and Qiang Xu. Approxit: A quality management framework of approximate
computing for iterative methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2017.

157

Bibliography

[10] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[11] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Respir: a response surface-based
pareto iterative refinement for application-specific design space exploration. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 28(12):1816–1829,
2009.

[12] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive auto-tuning with boosted
regression trees. In 2012 Innovative Parallel Computing (InPar), pages 1–9, May 2012.

[13] Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland. Can search algorithms save
large-scale automatic performance tuning? Procedia Computer Science, 4:2136 – 2145,
2011. Proceedings of the International Conference on Computational Science, ICCS 2011.

[14] mARGOt framework git repository. https://gitlab.com/margot_project/
core, 20018.

[15] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos,
and Cristina Silvano. Cobayn: Compiler autotuning framework using bayesian networks.
ACM Trans. Archit. Code Optim., 13(2):21:1–21:25, 2016.

[16] João M. P. Cardoso, José G. F. Coutinho, Tiago Carvalho, Pedro C. Diniz, Zlatko Petrov,
Wayne Luk, and Fernando Gonçalves. Performance-driven Instrumentation and Mapping
Strategies Using the LARA Aspect-oriented Programming Approach. Softw. Pract. Exper.,
2016.

[17] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–54,
2004.

[18] Eric M Dashofy, André Van der Hoek, and Richard N Taylor. Towards architecture-based
self-healing systems. In Proceedings of the first workshop on Self-healing systems, pages
21–26. ACM, 2002.

[19] Rema Ananthanarayanan, Mukesh Mohania, and Ajay Gupta. Management of conflicting
obligations in self-protecting policy-based systems. In Autonomic Computing, 2005. ICAC
2005. Proceedings. Second International Conference on, pages 274–285. IEEE, 2005.

[20] Markus C Huebscher and Julie A McCann. A survey of autonomic computing - degrees,
models, and applications. ACM Computing Surveys (CSUR), 40(3):7, 2008.

[21] Sara Mahdavi-Hezavehi, Vinicius HS Durelli, Danny Weyns, and Paris Avgeriou. A system-
atic literature review on methods that handle multiple quality attributes in architecture-based
self-adaptive systems. Information and Software Technology, 90:1–26, 2017.

[22] William E Walsh, Gerald Tesauro, Jeffrey O Kephart, and Rajarshi Das. Utility functions in
autonomic systems. In Autonomic Computing, 2004. Proceedings. International Conference
on, pages 70–77. IEEE, 2004.

[23] Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. A hybrid re-
inforcement learning approach to autonomic resource allocation. In Autonomic Computing,
2006. ICAC’06. IEEE International Conference on, pages 65–73. IEEE, 2006.

[24] David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational economy for
grid computing and its implementation in the nimrod-g resource broker. Future Generation
Computer Systems, 18(8):1061–1074, 2002.

[25] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and Anant Agar-
wal. Seec: a general and extensible framework for self-aware computing. 2011.

158

https://gitlab.com/margot_project/core
https://gitlab.com/margot_project/core

Bibliography

[26] Juan A Colmenares, Gage Eads, Steven Hofmeyr, Sarah Bird, Miquel Moretó, David Chou,
Brian Gluzman, Eric Roman, Davide B Bartolini, Nitesh Mor, et al. Tessellation: refactoring
the os around explicit resource containers with continuous adaptation. In Proceedings of the
50th Annual Design Automation Conference, page 76. ACM, 2013.

[27] Frank Hannig, Sascha Roloff, Gregor Snelting, Jürgen Teich, and Andreas Zwinkau.
Resource-aware programming and simulation of mpsoc architectures through extension of
x10. In Proceedings of the 14th International Workshop on Software and Compilers for Em-
bedded Systems, pages 48–55. ACM, 2011.

[28] Luigi Palopoli, Tommaso Cucinotta, Luca Marzario, and Giuseppe Lipari. Aquosa-adaptive
quality of service architecture. Software: Practice and Experience, 39(1):1–31, 2009.

[29] Shuangde Fang, Zidong Du, Yuntan Fang, Yuanjie Huang, Yang Chen, Lieven Eeckhout,
Olivier Temam, Huawei Li, Yunji Chen, and Chengyong Wu. Performance portability across
heterogeneous socs using a generalized library-based approach. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 11(2):21, 2014.

[30] Christoph A Schaefer, Victor Pankratius, and Walter F Tichy. Atune-il: An instrumentation
language for auto-tuning parallel applications. In European Conference on Parallel Process-
ing, pages 9–20. Springer, 2009.

[31] Renato Miceli, Gilles Civario, Anna Sikora, Eduardo César, Michael Gerndt, Houssam
Haitof, Carmen Navarrete, Siegfried Benkner, Martin Sandrieser, Laurent Morin, et al. Auto-
tune: A plugin-driven approach to the automatic tuning of parallel applications. In Interna-
tional Workshop on Applied Parallel Computing, pages 328–342. Springer, 2012.

[32] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. Periscope: An online-based dis-
tributed performance analysis tool. In Tools for High Performance Computing 2009, pages
1–16. Springer, 2010.

[33] Romain Dolbeau, Stéphane Bihan, and François Bodin. Hmpp: A hybrid multi-core par-
allel programming environment. In Workshop on general purpose processing on graphics
processing units (GPGPU 2007), volume 28, 2007.

[34] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential programs
with statistical accuracy tests. ACM Transactions on Embedded Computing Systems (TECS),
12(2s):88, 2013.

[35] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Para-
prox: Pattern-based approximation for data parallel applications. ACM SIGPLAN Notices,
49(4):35–50, 2014.

[36] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bos-
boom, Una-May OŔeilly, and Saman Amarasinghe. Opentuner: An extensible framework
for program autotuning. In Parallel Architecture and Compilation Techniques (PACT), 2014
23rd International Conference on, pages 303–315. IEEE, 2014.

[37] Jonathan Dorn, Jeremy Lacomis, Westley Weimer, and Stephanie Forrest. Automatically
exploring tradeoffs between software output fidelity and energy costs. IEEE Transactions on
Software Engineering, 2017.

[38] Ari Rasch, Michael Haidl, and Sergei Gorlatch. Atf: A generic auto-tuning framework. In
High Performance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/S-
martCity/DSS), 2017 IEEE 19th International Conference on, pages 64–71. IEEE, 2017.

[39] Juan J Durillo, Philipp Gschwandtner, Klaus Kofler, and Thomas Fahringer. Multi-objective
region-aware optimization of parallel programs. Parallel Computing, 2018.

159

Bibliography

[40] R Clint Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In Pro-
ceedings of the 1998 ACM/IEEE conference on Supercomputing, pages 1–27. IEEE Computer
Society, 1998.

[41] Matteo Frigo and Steven G Johnson. The design and implementation of fftw3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[42] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521.
IOP Publishing, 2005.

[43] Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David
Padua, Manuela Veloso, and Robert W Johnson. Spiral: A generator for platform-adapted
libraries of signal processing alogorithms. The International Journal of High Performance
Computing Applications, 18(1):21–45, 2004.

[44] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl kernels.
In Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2015 IEEE 9th International
Symposium on, pages 195–202. IEEE, 2015.

[45] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and auto-
tuning framework for parallel iterative stencil computations on modern microarchitectures.
In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages
676–687. IEEE, 2011.

[46] Shoaib Ashraf Kamil. Productive high performance parallel programming with auto-tuned
domain-specific embedded languages. University of California, Berkeley, 2012.

[47] Michael J Voss and Rudolf Eigenmann. Adapt: Automated de-coupled adaptive program
transformation. In Parallel Processing, 2000. Proceedings. 2000 International Conference
on, pages 163–170. IEEE, 2000.

[48] Joseph P. Bigus, Don A. Schlosnagle, Jeff R. Pilgrim, W Nathaniel Mills III, and Yixin Diao.
Able: A toolkit for building multiagent autonomic systems. IBM Systems Journal, 41(3):350–
371, 2002.

[49] Sujay Parekh, Neha Gandhi, Joseph Hellerstein, Dawn Tilbury, T Jayram, and Joe Bigus.
Using control theory to achieve service level objectives in performance management. In
Integrated Network Management Proceedings, 2001 IEEE/IFIP International Symposium on,
pages 841–854. IEEE, 2001.

[50] Yixin Diao, Joseph L Hellerstein, Sujay Parekh, Rean Griffith, Gail Kaiser, and Dan Phung.
Self-managing systems: A control theory foundation. In Engineering of Computer-Based
Systems, 2005. ECBS’05. 12th IEEE International Conference and Workshops on the, pages
441–448. IEEE, 2005.

[51] Haipeng Guo. A bayesian approach for automatic algorithm selection. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI03), Workshop on AI and
Autonomic Computing, Acapulco, Mexico, pages 1–5, 2003.

[52] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. Analysis and
characterization of inherent application resilience for approximate computing. In Proceedings
of the 50th Annual Design Automation Conference, page 113. ACM, 2013.

[53] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, pages 72–81. ACM,
2008.

160

Bibliography

[54] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott Mahlke.
Sage: Self-tuning approximation for graphics engines. In Microarchitecture (MICRO), 2013
46th Annual IEEE/ACM International Symposium on, pages 13–24. IEEE, 2013.

[55] Woongki Baek and Trishul M Chilimbi. Green: a framework for supporting energy-conscious
programming using controlled approximation. In ACM Sigplan Notices, volume 45, pages
198–209. ACM, 2010.

[56] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and Anant Agar-
wal. Application heartbeats: a generic interface for specifying program performance and
goals in autonomous computing environments. In Proceedings of the 7th international con-
ference on Autonomic computing, pages 79–88. ACM, 2010.

[57] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated multi-objective control
for self-adaptive software design. In Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, pages 13–24. ACM, 2015.

[58] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and Achmad Imam Kisti-
jantoro. Understanding and auto-adjusting performance-sensitive configurations. In Proceed-
ings of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 154–168. ACM, 2018.

[59] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars, and Lingjia
Tang. Input responsiveness: using canary inputs to dynamically steer approximation. ACM
SIGPLAN Notices, 51(6):161–176, 2016.

[60] Xin Sui, Andrew Lenharth, Donald S Fussell, and Keshav Pingali. Proactive control of ap-
proximate programs. ACM SIGOPS Operating Systems Review, 50(2):607–621, 2016.

[61] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[62] Joshua San Miguel and Natalie Enright Jerger. The anytime automaton. In ACM SIGARCH
Computer Architecture News, volume 44, pages 545–557. IEEE Press, 2016.

[63] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and
Saman Amarasinghe. PetaBricks: a language and compiler for algorithmic choice, vol-
ume 44. ACM, 2009.

[64] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Ama-
rasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms. In
Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pages 85–96. IEEE Computer Society, 2011.

[65] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May OŔeilly, and
Saman Amarasinghe. Autotuning algorithmic choice for input sensitivity. In ACM SIGPLAN
Notices, volume 50, pages 379–390. ACM, 2015.

[66] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-May OŔeilly,
and Saman Amarasinghe. Siblingrivalry: online autotuning through local competitions. In
Proceedings of the 2012 international conference on Compilers, architectures and synthesis
for embedded systems, pages 91–100. ACM, 2012.

[67] Vittorio Zaccaria, Gianluca Palermo, Fabrizio Castro, Cristina Silvano, and Giovanni Mar-
iani. Multicube explorer: An open source framework for design space exploration of chip
multi-processors. In Architecture of Computing Systems (ARCS), 2010 23rd International
Conference on, pages 1–7. VDE, 2010.

[68] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In Unconventional
Programming Paradigms, pages 257–269. Springer, 2005.

161

Bibliography

[69] Vincent M Weaver, Daniel Terpstra, Heike McCraw, Matt Johnson, Kiran Kasichayanula,
James Ralph, John Nelson, Philip Mucci, Tushar Mohan, and Shirley Moore. Papi 5: Measur-
ing power, energy, and the cloud. In Performance Analysis of Systems and Software (ISPASS),
2013 IEEE International Symposium on. IEEE, 2013.

[70] Douglas C Montgomery. Design and analysis of experiments. John wiley & sons, 2017.

[71] Benjamin C Lee and David M Brooks. Accurate and efficient regression modeling for mi-
croarchitectural performance and power prediction. In ACM SIGOPS Operating Systems
Review, volume 40, pages 185–194. ACM, 2006.

[72] Zhenghua Nie and Jeffrey S Racine. The crs package: Nonparametric regression splines for
continuous and categorical predictors. R Journal, 4(2), 2012.

[73] Delphine Dupuy, Céline Helbert, and Jessica Franco. DiceDesign and DiceEval: Two R
Packages for Design and Analysis of Computer Experiments. Journal of Statistical Software,
2015.

[74] Jerome H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,
1991.

[75] Charles J. Stone, Mark H. Hansen, Charles Kooperberg, and Young K. Truong. Polynomial
splines and their tensor products in extended linearmodeling. Annals of Statistics, 1997.

[76] R. WEBSTER and T. M. BURGESS. OPTIMAL INTERPOLATION AND ISARITHMIC
MAPPING OF SOIL PROPERTIES III CHANGING DRIFT AND UNIVERSAL KRIGING.
Journal of Soil Science, 1980.

[77] Leo Breiman. Bagging predictors. Machine Learning, 1996.

[78] Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, jul 1996.

[79] S original by Berwin A. Turlach R port by Andreas Weingessel <An-
dreas.Weingessel@ci.tuwien.ac.at>. quadprog: Functions to solve Quadratic Programming
Problems., 2013. R package version 1.5-5.

[80] Brian. Everitt and Anders. Skrondal. The Cambridge dictionary of statistics. 2010.

[81] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-based local stereo matching using or-
thogonal integral images. IEEE transactions on circuits and systems for video technology,
19(7):1073–1079, 2009.

[82] Radek Tomis, Lukáš Rapant, Jan Martinovič, Kateřina Slaninová, and Ivo Vondrák. Prob-
abilistic time-dependent travel time computation using monte carlo simulation. In Interna-
tional Conference on High Performance Computing in Science and Engineering, pages 161–
170. Springer, 2015.

[83] Martin Golasowski, Radek Tomis, Jan Martinovič, Kateřina Slaninová, and Lukáš Rapant.
Performance evaluation of probabilistic time-dependent travel time computation. In IFIP In-
ternational Conference on Computer Information Systems and Industrial Management, pages
377–388. Springer, 2016.

[84] To Thanh Binh. A Multiobjective Evolutionary Algorithm - The Study Cases. INSTITUTE
FOR AUTOMATION AND COMMUNICATION, 1999.

[85] Frank Kursawe. A variant of evolution strategies for vector optimization. In Lecture Notes in
Computer Science, 1991.

[86] Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele Costantino. Ligen: a high
performance workflow for chemistry driven de novo design. Journal of Chemical Information
and Modeling, 53(6):1518–1527, 2013.

162

Bibliography

[87] Claudia Beato, Andrea R Beccari, Carlo Cavazzoni, Simone Lorenzi, and Gabriele
Costantino. Use of experimental design to optimize docking performance: The case of ligen-
dock, the docking module of ligen, a new de novo design program, 2013.

[88] Khronos Group. OpenCL Specification. 2012.

[89] Stefan Wildermann, Tobias Ziermann, and Jurgen Teich. Game-Theoretic Analysis of Decen-
tralized Core Allocation Schemes on Many-Core Systems. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2013, pages 1498–1503, New Jersey, 2013. IEEE
Conference Publications.

[90] Holger Endt and Kay Weckemann. Remote Utilization of OpenCL for Flexible Computation
Offloading using Embedded ECUs, CE Devices and Cloud Servers. In PARCO, pages 133–
140, 2011.

[91] Yanzhi Wang, Shuang Chen, Hadi Goudarzi, and Massoud Pedram. Resource allocation and
consolidation in a multi-core server cluster using a Markov decision process model. In In-
ternational Symposium on Quality Electronic Design (ISQED), pages 635–642. IEEE, March
2013.

[92] Martina Maggio, Henry Hoffmann, Marco D. Santambrogio, Anant Agarwal, and Alberto
Leva. Power Optimization in Embedded Systems via Feedback Control of Resource Alloca-
tion. IEEE Transactions on Control Systems Technology, 21(1):239–246, January 2013.

[93] Patrick Bellasi, Giuseppe Massari, and William Fornaciari. A RTRM proposal for
multi/many-core platforms and reconfigurable applications. In 7th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE,
July 2012.

[94] Chantal Ykman-Couvreur, Philipp A. Hartmann, Gianluca Palermo, Fabien Colas-Bigey, and
Laurent San. Run-time resource management based on design space exploration. In Proceed-
ings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis - CODES+ISSS ’12, page 557, New York, USA, October 2012. ACM
Press.

[95] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. ARTE: An
Application-specific Run-Time managEment framework for multi-cores based on queuing
models. Parallel Computing, 39(9):504–519, September 2013.

[96] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-Based Local Stereo Matching Using Or-
thogonal Integral Images. IEEE Transactions on Circuits and Systems for Video Technology,
19(7):1073–1079, July 2009.

[97] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based empirical performance tuning
using Orio. In IEEE IPDPS, 2009.

[98] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and
Saman Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In Pro-
gramming Language Design and Implementation, 2009.

[99] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. 1997.

[100] Apan Qasem, Guohua Jin, and John Mellor-crummey. Improving performance with integrated
program transformations. Technical report, 2003.

[101] Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis Barthou, Albert
Cohen, María Jesús Garzarán, David Padua, and Keshav Pingali. A language for the com-
pact representation of multiple program versions. In Languages and Compilers for Parallel
Computing, 2006.

163

Bibliography

[102] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacqueline Chame. A pro-
gramming language interface to describe transformations and code generation. In Workshop
on Languages and Compilers for Parallel Computing, 2010.

[103] Qing Yi. POET: A scripting language for applying parameterized source-to-source program
transformations. Software-Practice & Experience, 2012.

[104] Dheya Mustafa and Rudolf Eigenmann. Portable Section-level Tuning of Compiler Paral-
lelized Applications. In High Performance Computing, Networking, Storage and Analysis,
2012.

[105] Wei Wang, John Cavazos, and Allan Porterfield. Energy Auto-tuning using the Polyhedral
Approach. In Workshop on Polyhedral Compilation Techniques, 2014.

[106] Ananta Tiwari, Michael A. Laurenzano, Laura Carrington, and Allan Snavely. Auto-tuning
for Energy Usage in Scientific Applications. 2011.

[107] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable auto-tuning
framework for compiler optimization. In Symposium on Parallel Distributed Processing,
2009.

[108] C. Chen. Model-Guided Empirical Optimization for Memory Hierarchy. PhD thesis, Univer-
sity of Southern California, 2007.

[109] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier
Temam, and Chengyong Wu. Deconstructing iterative optimization. ACM Trans. Archit.
Code Optim., 9(3):21:1–21:30, October 2012.

[110] Grigori Fursin et al. Milepost-gcc: Machine learning enabled self-tuning compiler. Intern,
Journal of Parallel Programming, 2011.

[111] P. Pinto, R. Abreu, and J. M. P. Cardoso. Fault Detection in C Programs using Monitoring of
Range Values: Preliminary Results. ArXiv, 2015.

[112] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/pouchet/software/polybench, 2012.

[113] Cristina Videira Lopes and Gregor Kiczales. D: A language framework for distributed pro-
gramming. PhD thesis, Northeastern University, 1997.

[114] Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and Applications, vol-
ume 18. SIAM, 2014.

[115] Michael J. Gilman. A brief survey of stopping rules in monte carlo simulations. In Proceed-
ings of the Second Conference on Applications of Simulations, pages 16–20. Winter Simula-
tion Conference, 1968.

[116] Anton Agafonov and Vladislav Myasnikov. Reliable routing in stochastic time-dependent
network with the use of actual and forecast information of the traffic flows. In Intelligent
Vehicles Symposium (IV), 2016 IEEE, pages 1168–1172. IEEE, 2016.

[117] Samitha Samaranayake, Sebastien Blandin, and A Bayen. A tractable class of algorithms for
reliable routing in stochastic networks. Procedia-Social and Behavioral Sciences, 17:341–
363, 2011.

[118] Yu Marco Nie and Xing Wu. Shortest path problem considering on-time arrival probability.
Transportation Research Part B: Methodological, 43(6):597–613, 2009.

[119] Maleen Abeydeera and Samitha Samaranayake. Gpu parallelization of the stochastic on-time
arrival problem. In High Performance Computing (HiPC), 2014 21st International Confer-
ence on, pages 1–8. IEEE, 2014.

164

Bibliography

[120] Mehrdad Niknami and Samitha Samaranayake. Tractable pathfinding for the stochastic on-
time arrival problem. In International Symposium on Experimental Algorithms, pages 231–
245. Springer, 2016.

[121] Evdokia Nikolova, Jonathan Kelner, Matthew Brand, and Michael Mitzenmacher. Stochastic
shortest paths via quasi-convex maximization. Algorithms–ESA 2006, pages 552–563, 2006.

[122] Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative Route Planning. In
Daniele Frigioni and Sebastian Stiller, editors, ATMOS - 13th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems - 2013, volume 33 of Ope-
nAccess Series in Informatics (OASIcs), pages 108–122, Sophia Antipolis, France, September
2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[123] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser. Alternative
routing: k-shortest paths with limited overlap. In Proceedings of the 23rd SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, Bellevue, WA, USA,
November 3-6, 2015, pages 68:1–68:4, 2015.

[124] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, and Ulf Leser. Exact and
approximate algorithms for finding k-shortest paths with limited overlap. pages 414–425,
2017.

[125] Hans Janssen. Monte-carlo based uncertainty analysis: Sampling efficiency and sampling
convergence. Reliability Engineering & System Safety, 109:123 – 132, 2013.

[126] Q. Xu, M. Sbert, M. Feixas, and J. Sun. A new adaptive sampling technique for monte carlo
global illumination. In 2007 10th IEEE International Conference on Computer-Aided Design
and Computer Graphics, pages 191–196, Oct 2007.

[127] J. S. Miguel and N. E. Jerger. The anytime automaton. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pages 545–557, June 2016.

[128] Elise Miller-Hooks and Hani Mahmassani. Path comparisons for a priori and time-adaptive
decisions in stochastic, time-varying networks. European Journal of Operational Research,
146(1):67–82, 2003.

[129] Jan Martinovič, Václav Snášel, Jiří Dvorský, and Pavla Dráždilová. Search in documents
based on topical development. In Vaclav Snášel, Piotr S. Szczepaniak, Ajith Abraham, and
Janusz Kacprzyk, editors, Advances in Intelligent Web Mastering - 2, pages 155–166, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[130] Mohammad Asghari, Tobias Emrich, Ugur Demiryurek, and Cyrus Shahabi. Probabilistic es-
timation of link travel times in dynamic road networks. In Proceedings of the 23rd SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, page 47.
ACM, 2015.

[131] JM Juritz, JWF Juritz, and MA Stephens. On the accuracy of simulated percentage points.
Journal of the American Statistical Association, 78(382):441–444, 1983.

[132] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for Engineers. John
Wiley and Sons, 2003.

[133] D. Zwillinger and S. Kokoska. CRC Standard Probability and Statistics Tables and Formulae.
Chapman & Hall, 2000.

[134] Radek Tomis, Jan Martinovič, Kateřina Slaninová, Lukáš Rapant, and Ivo Vondrák. Time-
dependent route planning for the highways in the czech republic. In IFIP International
Conference on Computer Information Systems and Industrial Management, pages 145–153.
Springer, 2015.

165

Bibliography

[135] Phelim P. Boyle. Options: A monte carlo approach. Journal of Financial Economics,
4(3):323–338, 1977.

[136] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge Univer-
sity Press, 2005.

[137] Federal Highway Administration US Department of Transportation. US Department of Trans-
portation, Federal Highway Administration – Traffic Report. 2014.

[138] gov.uk UK Department for Transport. Average annual daily flow and temporal traffic distri-
butions. 2017.

[139] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. Jmt: Performance engineering tools
for system modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15, March 2009.

[140] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantitative
System Performance: Computer System Analysis Using Queueing Network Models. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[141] Milano Agenzia Mobilita’ Ambiente e Territorio. Annual Mobility Report.

[142] Marco Bedogni, Milano Agenzia Mobilita’ Ambiente e Territorio. Road Traffic Measures in
The City of Milan.

[143] Marco Gribaudo, Pietro Piazzolla, and Giuseppe Serazzi. Consolidation and replication of
vms matching performance objectives. In Khalid Al-Begain, Dieter Fiems, and Jean-Marc
Vincent, editors, Analytical and Stochastic Modeling Techniques and Applications, pages
106–120, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[144] Evanthia Lionta, George Spyrou, Demetrios K. Vassilatis, and Zoe Cournia. Structure-based
virtual screening for drug discovery: Principles, applications and recent advances. Current
Topics in Medicinal Chemistry, 14(16):1923–1938, 2014.

[145] Andrea R. Beccari, Marica Gemei, Matteo Lo Monte, Nazareno Menegatti, Marco Fan-
ton, Alessandro Pedretti, Silvia Bovolenta, Cinzia Nucci, Angela Molteni, Andrea Rossig-
noli, Laura Brandolini, Alessandro Taddei, Lorena Za, Chiara Liberati, and Giulio Vistoli.
Novel selective, potent naphthyl trpm8 antagonists identified through a combined ligand- and
structure-based virtual screening approach. In Scientific reports, 2017.

[146] Douglas B. Kitchen, Hélène Decornez, John R. Furr, and Jürgen Bajorath. Docking and
scoring in virtual screening for drug discovery: methods and applications. Nature Reviews
Drug Discovery, 3, Nov 2004. Review Article.

[147] Paul D Lyne. Structure-based virtual screening: an overview. Drug Discovery Today,
7(20):1047 – 1055, 2002.

[148] Jayashree Srinivasan, Angelo Castellino, Erin K. Bradley, John E. Eksterowicz, Peter D. J.
Grootenhuis, Santosh Putta, and Robert V. Stanton. Evaluation of a novel shape-based com-
putational filter for lead evolution: Application to thrombin inhibitors. Journal of Medicinal
Chemistry, 45(12):2494–2500, 2002. PMID: 12036357.

[149] Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic,
Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, David E.
Shaw, Perry Francis, and Peter S. Shenkin. Glide: A new approach for rapid, accurate docking
and scoring. 1. method and assessment of docking accuracy. Journal of Medicinal Chemistry,
47(7):1739–1749, 2004. PMID: 15027865.

[150] René Thomsen and Mikael H Christensen. Moldock: a new technique for high-accuracy
molecular docking. Journal of medicinal chemistry, 49(11):3315–3321, 2006.

166

Bibliography

[151] Gareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and Robin Taylor. Development
and validation of a genetic algorithm for flexible docking. Journal of molecular biology,
267(3):727–748, 1997.

[152] Ming Liu and Shaomeng Wang. Mcdock: a monte carlo simulation approach to the molecular
docking problem. Journal of computer-aided molecular design, 13(5):435–451, 1999.

[153] Fan Jiang and Sung-Hou Kim. “soft docking”: matching of molecular surface cubes. Journal
of molecular biology, 219(1):79–102, 1991.

[154] P Nuno Palma, Ludwig Krippahl, John E Wampler, and José JG Moura. Bigger: a new (soft)
docking algorithm for predicting protein interactions. Proteins: Structure, Function, and
Bioinformatics, 39(4):372–384, 2000.

[155] Todd JA Ewing, Shingo Makino, A Geoffrey Skillman, and Irwin D Kuntz. Dock 4.0:
search strategies for automated molecular docking of flexible molecule databases. Journal
of computer-aided molecular design, 15(5):411–428, 2001.

[156] Bernd Kramer, Matthias Rarey, and Thomas Lengauer. Evaluation of the flexx incremental
construction algorithm for protein-ligand docking. Proteins: Structure, Function, and Bioin-
formatics, 37(2):228–241, 1999.

[157] Ingo Schellhammer and Matthias Rarey. Flexx-scan: Fast, structure-based virtual screening.
PROTEINS: Structure, Function, and Bioinformatics, 57(3):504–517, 2004.

[158] Ajay N Jain. Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexi-
bility, and knowledge-based search. Journal of computer-aided molecular design, 21(5):281–
306, 2007.

[159] J. Han and M. Orshansky. Approximate computing: An emerging paradigm for energy-
efficient design. In 2013 18th IEEE European Test Symposium (ETS), pages 1–6, May 2013.

[160] TJ Fuller-Rowell. A two-dimensional, high-resolution, nested-grid model of the thermo-
sphere: 1. neutral response to an electric field “spike”. Journal of Geophysical Research:
Space Physics, 89(A5):2971–2990, 1984.

[161] TJ Fuller-Rowell. A two-dimensional, high-resolution, nested-grid model of the thermo-
sphere: 2. response of the thermosphere to narrow and broad electrodynamic features. Journal
of Geophysical Research: Space Physics, 90(A7):6567–6586, 1985.

[162] Wenbin Wang, Tim L Killeen, Alan G Burns, and Raymond G Roble. A high-resolution,
three-dimensional, time dependent, nested grid model of the coupled thermosphere–
ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 61(5):385–397, 1999.

[163] Lie-Yauw Oey and Ping Chen. A nested-grid ocean model: With application to the simulation
of meanders and eddies in the norwegian coastal current. Journal of Geophysical Research:
Oceans, 97(C12):20063–20086, 1992.

[164] Michael S. Fox-Rabinovitz, Lawrence L. Takacs, Ravi C. Govindaraju, and Max J. Suarez.
A variable-resolution stretched-grid general circulation model: Regional climate simulation.
Monthly Weather Review, 129(3):453–469, 2001.

[165] Paul A Ullrich and Christiane Jablonowski. An analysis of 1d finite-volume methods for
geophysical problems on refined grids. Journal of Computational Physics, 230(3):706–725,
2011.

[166] Cass Everitt. Interactive order-independent transparency. White paper, nVIDIA, 2(6):7, 2001.

[167] FÃ¡bio F. Bernardon, Christian A. Pagot, JoÃ£o L. D. Comba, and ClÃ¡udio T. Silva. Gpu-
based tiled ray casting using depth peeling. Journal of Graphics Tools, 11(4):1–16, 2006.

[168] Cheng-Kai Chen, Chris Ho, Carlos Correa, Kwan-Liu Ma, and Ahmed Elgamal. Visualizing
3d earthquake simulation data. Computing in Science & Engineering, 13(6):52–63, 2011.

167

Bibliography

[169] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott Mahlke.
Sage: Self-tuning approximation for graphics engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages 13–24, New
York, NY, USA, 2013. ACM.

[170] G Patrick Brady and Pieter FW Stouten. Fast prediction and visualization of protein binding
pockets with pass. Journal of computer-aided molecular design, 14(4):383–401, 2000.

[171] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. Nucleic Acids Res, 28:235–
242, 2000.

[172] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. Change detection tests using the ici
rule. In Neural Networks (IJCNN), The 2010 International Joint Conference on, pages 1–7.
IEEE, 2010.

168

	Introduction
	Thesis Motivations
	Thesis Contributions
	Thesis Outline

	I The proposed framework
	Previous work
	Background and definitions
	Application autotuning
	Static autotuning frameworks
	Dynamic autotuning frameworks

	Comparison with the state-of-the-art
	What are the metrics of interest?
	How does it react to changes during the application evolution?
	Is it able to leverage input features?
	What is the integration effort?

	Summary

	Dynamic Autotuning Framework
	Framework overview and problem definition
	Application knowledge
	Monitors module
	Application Manager
	On-line Design Space Exploration
	Design of Experiment
	The learning module
	Model validation and selection

	Integration in the target application
	Summary

	Experimental evaluation
	Evaluating the framework overheads
	Evaluating the reaction mechanisms
	Integration effort

	Evaluating the proactive adaptation
	Integration effort

	Evaluating the online learning module
	Model validation
	Molecular docking case study
	Integration effort

	Summary

	II Framework exploitation
	Evaluating Orthogonality between Application Autotuning and Resource Management
	Introduction
	Background
	Methodology
	Experimental Setup
	Definition of metrics
	Definition of dynamic workload
	Platform description
	Run-Time Management description

	Experimental Results
	Application Auto-Tuning Results
	Dynamic Workload Results
	Evaluating RTM Strategies

	Summary

	A Seamless Online Compiler and System Runtime Autotuning Framework
	Introduction
	Background
	Proposed Methodology
	Reducing the compiler space complexity
	Integration issues

	Experimental Results
	Summary

	III Application case studies
	Tuning a Server-Side Car Navigation System
	Introduction
	Background
	Monte Carlo Approach for Probabilistic Time-Dependent Routing
	The Proposed Approach
	Unpredictability Feature
	Error Prediction Function

	Integration Flow
	Experimental Results
	Training the Model
	Validation Results
	Comparative Results with Static Approach
	Overhead Analysis
	System-Level Performance Evaluation

	Summary

	Tuning a Molecular Docking application
	Introduction
	Background
	Methodology
	Application Description
	Analysis of GeoDock-MA
	Exposing Tunable Application Knobs
	Application Autotuning

	Experimental Setup
	Data Sets
	Metrics of Interest
	Target Platform

	Experimental Results
	Data Dependency Evaluation
	Trade-off Analysis
	Time-to-solution Model Validation
	Use-case Scenarios

	Summary

	Conclusions
	Main contributions
	Recommendation for future works

	Publications
	Bibliography

