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Abstract

DURING the last five decades, the microelectronics industry has been
steadily evolving thanks to the Moore’s law predicting an expo-
nential increase of the number of transistors on the chip, and the

increase of clock frequency at each technology generation.
Currently, this scaling trend is coming to an end mainly due to the exces-

sive power dissipation. In addition, performance gap between the central
processing unit (CPU) and the off-chip working memory makes current
digital processors based on conventional von Neumann architecture ineffi-
cient in terms of energy and latency especially for the implementation of
emerging data-centric applications such as big data analytics and machine
learning tasks.

To face these challenges, emerging memory devices, also known as
memristors, such as resistive random access memory (RRAM), phase change
memory (PCM) and spin-transfer torque magnetic random access mem-
ory (STT-MRAM) have recently gained significant interest for their non-
volatility, scalability, low current operation, and compatibility with com-
plementary metal-oxide-semiconductor (CMOS) process.

Moreover, novel approaches aiming to radically subvert von Neumann
architecture blurring the distinction between computation and memory have
also been subject of intensive research. Among these novel approaches,
neuromorphic computing has rapidly attracted considerable attention for
its ambitious objective to emulate the brain ability to carry out extremely
complex cognitive functions such as learning, recognition, inference, and
decision making with an unrivaled energy efficiency due to its event-driven
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Abstract

information processing.
To achieve this goal, RRAM can play a key role enabling to repli-

cate synaptic plasticity rules believed to be the origin of learning such as
spike-timing dependent plasticity (STDP) and spike-rate dependent plastic-
ity (SRDP) at device level thanks to its tunable resistance. Also, nanoscale
size of RRAM devices offers the great opportunity to achieve high-density
integration of resistive devices, thus paving the way for the hardware imple-
mentation of high-density spiking neural networks with resistive synapses
capable of brain-inspired computing.

This doctoral dissertation covers modeling and simulation of spiking
neural networks with hybrid CMOS/RRAM synapses capable of bio-realistic
learning rules for implementation of brain-inspired cognitive tasks such as
unsupervised learning of visual patterns and associative learning.

Chapter 1 first provides an overview of fundamental issues currently
challenging the performance improvement of today’s digital computing
systems based on standard CMOS technology. Moreover, physical mech-
anisms and key characteristics of the main emerging non-volatile memory
technologies, and the novel computing approaches proposed to overcome
the current technology paradigm are extensively described.

Chapter 2 focuses on physics-based modeling of HfO2 RRAM devices.
First, a previous numerical model of HfO2 RRAM providing a detailed
understanding of the resistive switching mechanism at device scale is re-
viewed. After, a previous analytical model of HfO2 RRAM derived from
numerical model is also reviewed. In addition, a stochastic model taking
into account the statistical variability of set/reset processes in HfO2 RRAM
devices is described.

Chapter 3 presents two hybrid CMOS/RRAM synapse circuits devel-
oped to replicate two fundamental bio-realistic learning rules such as STDP
and SRDP. First, the implementation of STDP rule by a hybrid CMOS/R-
RAM synapse circuit with one-transistor/one-resistor (1T1R) structure is
discussed by simulations and experiments. In addition, the implemen-
tation of SRDP rule by a hybrid CMOS/RRAM synapse circuit with 4-
transistors/one-resistor (4T1R) structure is also discussed by simulations
and experimental measurements.

Chapter 4 covers the implementation of unsupervised learning and recog-
nition of visual patterns by 2-layer feedforward spiking neural networks
with 1T1R RRAM synapses capable of STDP at simulation and experi-
mental level. After discussing learning of a single pattern, on-line learning
of sequential patterns and multiple patterns is also extensively addressed in
simulation and experiments.
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Chapter 5 covers the implementation of unsupervised learning of visual
patterns by 2-layer feedforward spiking neural networks with 4T1R RRAM
synapses capable of SRDP. After discussing learning of a single pattern for
variable initial weight configuration, on-line learning of sequential visual
patterns is also investigated by simulations at network level.

Finally, chapter 6 presents a circuit implementation of a Hopfield recur-
rent spiking neural network with excitatory and inhibitory 1T1R RRAM
synapses capable of STDP. After discussing learning and recall of both a
single attractor state and a sequence of two non-overlapping attractor states
via simulations, RRAM-based Hopfield network is used to explore funda-
mental human brain primitives such as associative memory, pattern com-
pletion, and error correction.
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CHAPTER1
Memory and computing beyond Moore’s

law

1.1 Introduction

In recent years, the tremendous growth of computing devices has revolu-
tionized our society paving the way to the era of Internet of Things (IoT)
and Big Data.

In this scenario, new challenges are emerging as urgent priorities. First,
to reduce the excessive energy and latency costs due to the intensive data
movement towards the clouds for processing operations, the massive amount
of data generated by smart IoT sensors should be elaborated in real-time,
which would benefit especially some emerging applications such as active
health monitoring and decision-making in driver-less cars or robots. Also,
the today’s dramatic growth of Internet data requires increasingly fast and
scalable memory technologies to offer more storage capacity in portable
computers and data centers.

To meet these challenges, the exploration of new technological solutions
and novel paradigms thus plays a crucial role.

Since the 1960s, the extraordinary advances achieved in computing and
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Chapter 1. Memory and computing beyond Moore’s law

Figure 1.1: Scaling trend of the number of transistors per chip and processor operating
frequency over the past 50 years. According to Moore’s law, the downscaling of tran-
sistor size led to an exponential increase of device density on the chip, and the increase
of clock frequency generation after generation. However, in recent years these trends
have slowed down abruptly mainly because of the excessive power dissipation caused
by static and dynamic leakage processes. Reprinted from [2].

information technology have been driven by the miniaturization of metal-
oxide-semiconductor field-effect transistor (MOSFET) in step with the Moore’s
law predicting the doubling of number of integrated transistors in a micro-
processor chip approximately every two years [1]. This has resulted in
an exponential increase of device density on the chip, and an increase of
operating frequency generation after generation, eventually leading to the
development of today’s digital complementary metal-oxide-semiconductor
(CMOS) microprocessors.

However, as shown in Fig. 1.1, fundamental issues have recently slowed
down these trends. First, increasing leakage currents do not allow to de-
crease the threshold voltage of MOSFET devices further, thus hindering
the scaling-down of supply voltage and transistor size in digital circuits [3].
Also, the large power consumption achieved by today’s CMOS-based mi-
croprocessors, which ranges from 50 to 100 W per cm2 [3, 4], has put a
hard limit on the maximum clock frequency because of the excessive heat-
ing on the chip referred to as heat wall [2]. As a result, maximum operating
frequency has remained almost unchanged since early 2000s.

In addition to the heat wall, another hard barrier known as memory wall
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1.1. Introduction

is also challenging the Moore’s law [5]. In conventional processors, the
central processing unit (CPU) carries out operations at a speed much higher
than that needed to access the memory where the data are stored, which
makes the rate of bus-limited data movement between CPU and memory a
severe performance bottleneck [4,6]. The cause of this fundamental issue is
the physical separation of CPU and memory in the von Neumann architec-
ture of current digital computers, hence the name von Neumann bottleneck.

Recently, these concerns have been the subject of an intense research
leading to the investigation of novel concepts at device, circuit, and sys-
tem level [7–10]. On the one hand, to tackle scaling issues due to increas-
ing sub-threshold leakage, transistors are being redesigned to improve their
channel electrostatic control [11] and sub-threshold slope, possibly over-
coming the Boltzmann barrier of 60 mV/dec [12, 13]. On the other hand,
to continue improving performance according to Moore’s law despite the
power-limited operating frequency, more processor cores were integrated
on the same chip [2, 3]. The great advantage due to this parallel compu-
tation approach is that although each core on the chip is operated at fre-
quency lower than the maximum clock rate not to hit the power barrier,
the use of multiple cores at the same time enables to increase the overall
performances. However, multi-core processors have not removed the issue
because of the difficulty in making many algorithms parallel [2] and achiev-
ing a significant energy gain by decreasing clock rate further [3]. Thus, the
requirement to achieve a higher energy efficiency has encouraged the tran-
sition toward Systems on Chip (SoC) based on the co-integration of CPU,
graphics processing unit (GPU), which typically uses hundreds of cores
running in parallel with high memory bandwidths [6], and application-
specific accelerators, e.g. image or video processing accelerators, to com-
bine benefits resulting from specialization and extensive parallelism [3].

In addition to this, novel concepts have also been explored to overcome
memory wall. Fig. 1.2 shows the memory hierarchy of conventional pro-
cessors based on von Neumann architecture. In this hierarchy, cache, main
memory, and storage memory are based on static random access memory
(SRAM), dynamic random access memory (DRAM), and Flash memory,
respectively. SRAM offers an extremely fast access time of about 1-10 ns,
but it has the disadvantage to consume an area larger than 100 F2, where
F is the minimum feature size allowed by the lithography. As opposed to
SRAM, DRAM is much less expensive in terms of area, only 6 F2, but it
offers a lower operation speed ranging from 10 to 100 ns, whereas Flash
memory enables an ultra-high density storage up to Terabytes, albeit typi-
cal access time is of the order of hundreds of µs. Therefore, this means that
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Chapter 1. Memory and computing beyond Moore’s law

Figure 1.2: Memory hierarchy in today’s computers based on von Neumann architecture.
All the memory levels namely SRAM, DRAM, Flash and Hard Disk Drive are shown
and compared in terms of access time, number of CPU cycles to access the memory
and size. Copyright 2015, Springer Nature. Reprinted, with permission, from [14].

moving from cache to storage memory, write/read speed decreases whereas
memory capacity increases [14, 15].

Based on this hierarchy memory, efficiency and latency burdens of mem-
ory wall can thus be removed by increasing the data locality, namely reduc-
ing the gap between memory and computing [14].

To this end, in last 15 years emerging memory technologies have been
intensively investigated. These novel materials-based devices, also called
memristors [16, 17], are non-volatile memory devices with a 2-terminal-
based simple structure exhibiting high speed, high density, low power op-
eration and high compatibility with CMOS technology. In particular, as
opposed to CMOS-based memory elements such as SRAM, DRAM and
Flash memory where information storage is based on charge, emerging
memories exploit the physics of active materials to store information. How-
ever, although some emerging memories have led to the development of
commercial technologies on the market [18–21], they have failed to match
challenging performances in terms of operation speed, data bandwidth and
cost essential to achieve conclusive removal of memory wall so far [22].

In parallel to the investigation of emerging memory devices, the major
difficulties faced to overcome memory wall and the other fundamental bar-
riers have also led to the exploration of novel approaches such as hybrid
memory-logic integration, bioinspired computing and in-memory comput-
ing [23] (Fig. 1.3), which, benefiting from the progress of memristive tech-
nologies, do not aim to re-engineer current systems, but rather to radically
subvert von Neumann architecture [22]. Furthermore, growing interest has
also been attracted by another approach known as quantum computing [9],
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1.2. Emerging non-volatile memory technologies

Figure 1.3: Illustrative picture evidencing three hard barriers challenging today’s con-
ventional CMOS-based computing systems namely the end of Moore’s law, the memory
wall and the heat wall, and some promising approaches which, thanks to development
of memristor technology, can play a key role to tackle current limitations and meet new
computing challenges including cognitive computing, big data and Internet of Things.
Copyright 2018, Springer Nature. Reprinted, with permission, from [23].

which promises to solve untractable problems for current processors with a
dramatic saving in terms of time and cost exploiting quantum mechanics.

Ultimately, based on recent developments at research and industry level,
it can reasonably be expected that the achievement of improved devices
combined with more efficient computing schemes will thus play a crucial
role in coming years since not only it will contribute to hinder the looming
end of Moore’s law, but also will open the way to a completely new scenario
for computing able to meet emerging technological challenges such as brain
emulation, analysis of increasingly large databases and implementation of
ultra-low power systems for IoT applications with performances we have
never seen before.

1.2 Emerging non-volatile memory technologies

Emerging non-volatile memories are two-terminal memory devices based
on the resistive switching phenomenon which can be achieved by vari-
ous physical processes as shown in Fig. 1.4. In this wide range of resis-
tive switching memory concepts, phase change memory (PCM), resistive
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Chapter 1. Memory and computing beyond Moore’s law

Figure 1.4: Taxonomy of all the emerging memory devices based on resistive-switching
phenomenon. Copyright 2015 IEEE. Reprinted, with permission, from [24].

Figure 1.5: Table of device characteristics and performance metrics for mainstream
CMOS-based memories and main resistive-switching emerging memory technologies.
Copyright 2016 IEEE. Reprinted, with permission, from [15].

random access memory (RRAM), and spin-transfer torque magnetic ran-
dom access memory (STT-MRAM) have received an increasing interest as
strong competitors of the mainstream CMOS-based SRAM, DRAM and
Flash memories for their advantageous properties in terms of compactness,
power consumption, and operation speed summarized in the table shown in
Fig. 1.5 [15]. In particular, simple structure, high switching speed, CMOS
compatibility and low power operation make these resistive switching de-
vices very attractive not only as non-volatile storage memory, but also as
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1.2. Emerging non-volatile memory technologies

Figure 1.6: (a) Cross-section scheme of a PCM device with mushroom structure evidenc-
ing a phase-change active material sandwiched between the top electrode and the bot-
tom electrode acting as heater. (b) Cell programming or reading occurs by the appli-
cation of current pulses inducing a temperature increase via Joule heating within the
cell. As a long current pulse of medium amplitude leads temperature in PCM device
to cross the crystallization temperature, a set transition from amorphous to crystalline
phase is achieved. Conversely, as a fast current pulse with high amplitude leads tem-
perature above melting temperature, a reset transition from crystalline to amorphous
phase is activated. Copyright 2017 IEEE. Reprinted, with permission, from [26].

computational memory for neuromorphic and in-memory computing appli-
cations [25].

1.2.1 Phase change memory (PCM)

Phase change memory (PCM) is a resistive switching memory device where
a chalcogenide material, typically Ge2Sb2Te5 (GST), acts as active mate-
rial. As shown in Fig. 1.6(a), the structure of the conventional mushroom-
type PCM cell consists of the GST chalcogenide layer sandwiched between
the top electrode and a heater enabling to confine the heat and current, thus
leading to a programmable region with hemispheric shape.

In PCM, depending on the Joule heating induced in the GST by applied
electrical current pulses, the phase of active material can switch between the
amorphous phase and the crystalline phase. Amorphous phase is achieved
by the application of a reset current pulse with high amplitude of about
100 µA inducing a large temperature leading to a local melting of pro-
grammable region which is then abruptly quenched due to the short pulse
width (typically < 50 ns). Achieving the crystallization phase instead re-
quires the application of a set current pulse leading GST to overcome crys-
tallization temperature while keeping temperature below the melting tem-

11



Chapter 1. Memory and computing beyond Moore’s law

perature (620◦C for GST). To this end, set pulse is designed with amplitude
lower than reset pulse and duration in the range 100 ns-10 µs (Fig. 1.6(b)) [24,
26–30].

Set and reset transitions are thus asymmetric and lead to two states with
low and high resistance, respectively, where low resistance state (LRS) is
typically few kΩ while high resistance state (HRS) is few MΩ. As a result,
PCM enables to encode two logic states featuring a relatively large resistive
window of about 3 orders of magnitude which makes it potentially capable
of multilevel cell (MLC) operation [31].

The most attractive features making PCM a promising candidate for next
memory generation are good scalability, multilevel operation, high reliabil-
ity and high endurance [24, 26, 27, 30]. However, in last two decades, main
issues have challenged the development of PCM technology.

Because PCM stores information in the phase of active material, the
downscaling of contact area between the bottom electrode and PCM layer
results in the downscaling of melted active volume leading to a lower pro-
gramming current, thus keeping constant the current density [27]. Despite
this great advantage in terms of scalability due to the physics of PCM cell,
the cell miniaturization process has been hindered by the lithography limits
and the need for a transistor as select device to access individual cells in
large arrays with no sneak paths.

In addition, another barrier toward the achievement of high device den-
sity is the demanding drive current requirement which forces to adopt large
transistors [24, 26, 27, 30, 32].

In this scenario, to meet the challenge of high device density, the re-
search efforts focused on the stacking along the third dimension leading
to 3D architectures such as 3D-XPoint [20, 21] and investigation of novel
bidimensional material interface to obtain better selectors.

At the same time, the attractive perspective to attain multiple stable re-
sistive states (potentially up to 3 bits per cell [26]) in PCM devices is chal-
lenged by a physical phenomenon known as resistance drift. Because of
this effect, the programming of PCM cell in the high resistance state is fol-
lowed by a gradual resistance increase with logarithmic behavior over time
changing from write cycle to write cycle and from cell to cell, thus mak-
ing the write operation unpredictable [33, 34]. To mitigate drift resistance
impact, various solutions including drift-invariant read techniques [35, 36]
have been proposed.

Overall, the introduction of new efficient solutions combined with fur-
ther advancements at the level of material engineering, cell design and ar-
ray architecture can lead to a strong reduction of detrimental impact of
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1.2. Emerging non-volatile memory technologies

Figure 1.7: Schematic illustration of RRAM devices based on filamentary resistive switch-
ing such as OxRAM and CBRAM (a) and uniform-switching (b). Copyright 2008 Else-
vier Ltd. Adapted, with permission, from [37].

discussed issues on PCM performance in near future, thus making PCM
technology an extremely attractive candidate for storage-class memory and
embedded non-volatile memory applications.

1.2.2 Resistive switching memory (RRAM)

Resistive switching memory (RRAM) generally consists of a metal-insulator-
metal (MIM) stack, where resistance can change as a result of a local
modification of the material composition, e.g., along a conductive fila-
mentary (CF), or within an interface layer. This marks the difference be-
tween RRAM and PCM, where the resistance change is dictated by a differ-
ent phase of the active material [29], or magnetic random-access memory
(MRAM), where the resistance change results from a re-orientation of the
magnetic polarization within a ferromagnetic layer [38].

RRAM offers a simple two-terminal structure, compatibility with CMOS
process, back-end of the line (BEOL) process, high speed and low power
consumption. Given the large number of switching materials and their pos-
sible combination in MIM stacks [39], multilayers [40], and multi-terminal
structures [41], RRAM offers an unprecedented flexibility to serve different
demands of memory, storage and computing.

In particular, over the last decade, RRAM was used to achieve both
large-scale prototypes capable of density higher than 1 GB via one-transistor/one-
resistor (1T1R) [42] or cross-point architecture [19], and relatively small-
scale (< 10 MB) protoypes suitable for embedded memory applications
such as IoT applications [43].

However, significant issues such as the device reliability, namely the
control of device variability and noise degrading the stability of data af-
ter write operation, and the choice of the best selector device to achieve
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Chapter 1. Memory and computing beyond Moore’s law

high-density 3D crossbar architectures, are still open questions requiring
additional investigations and improvements at the level of material engi-
neering [25].

Resistive switching in RRAM devices

Resistive switching mechanisms in RRAM devices can be discriminated
by the type of localization of the chemical modification responsible for the
change of conductance. The two classes of switching phenomena are shown
in Fig. 1.7: chemical/conductance modification occurs along a filamentary
path, also known as conductive filament (CF), in filamentary switching (a),
whereas the change of conductance and composition occurs on an interface
region in the case of uniform, or interface, switching (b) [37].

Filamentary switching RRAM

As shown in Fig. 1.8, filamentary switching is generally triggered by a
forming operation, namely a soft breakdown operation that creates a lo-
cally degraded region with large concentration of defects. In oxide-based
RAM, also known as OxRAM, the dielectric switching layer consists of a
transition metal oxide such as HfOx, TiOx and TaOx, which is sandwiched
between a top and a bottom metal electrode [37, 44, 45].

After forming, the CF shows a high concentration of metallic impurities
and/or oxygen vacancies which are responsible for the low resistance state
(LRS) or set state. The CF is electrically disconnected via a reset operation,
which generally causes a defect depletion within a relatively limited region
along the CF, thus leading to a high resistance state (HRS). The set process
can recreate the CF thus supporting filamentary switching [25].

OxRAM can exhibit two switching modes depending on polarity of volt-
age pulses applied during set and reset operations. If both transitions oc-
cur under the positive polarity of applied voltage, resistive switching is re-
ferred to as unipolar. In unipolar OxRAM, which was originally reported in
NiO [46,47], CF formation and rupture are explained by thermally activated
redox reactions [48]. In particular, the reset process leads to CF oxidation
resulting in the formation of a depleted gap located at the point of CF at
maximum temperature [49, 50] while the set transition involves a chemi-
cal reduction of metal oxide induced by Joule heating. In bipolar switch-
ing, instead, set and reset processes occur under opposite voltage polarities.
In bipolar OxRAM, ion migration driven by electric field and accelerated
by temperature is responsible for the CF connection and disruption [51].
During reset, negatively biased top electrode attracts ionized defects such
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1.2. Emerging non-volatile memory technologies

Figure 1.8: Schematic illustration of the forming, set and reset processes for bipolar and
unipolar filamentary RRAM devices. Copyright 2012 IEEE. Reprinted, with permis-
sion, from [45].

as oxygen vacancies disconnecting the CF where the filament temperature
is maximum. Set transition, instead, leads to a defect migration into the
depleted gap region, causing the creation of a continuous CF whose size
is limited by the maximum (compliance) current during the set transition,
generally controlled by a transistor or resistance in series with the mem-
ory device. In particular, the same defects are migrated in one direction or
the other during set/reset transitions in bipolar switching, whereas unipolar
switching is assumed to require recreation of defects and their radial dif-
fusion [52]. As a result, bipolar RRAM devices generally exhibit a higher
endurance than unipolar RRAM, making bipolar switching overall more at-
tractive for cycling intensive applications. There have been reports where
the same device could show the coexistence of both unipolar and bipolar
switching behaviors, such as the case of TiN/HfO2 RRAM [53].

A second type of filamentary switching device is the conductive-bridge
RAM, also known as CBRAM [54–57]. In CBRAM, metal impurities,
typically cations supplied by Ag or Cu based metallic cap at the top elec-
trode, are injected in a chalcogenide (GeSe, GeS) or oxide (SiO2, Al2O3)
electrolyte layer to create conductive paths. As evidenced in Fig. 1.9, set
transition consists of the migration of Ag cations from the active top elec-
trode toward the bottom electrode under a positive voltage resulting in the
Ag-based CF formation and growth that is controlled by the compliance
current (A-D). On the other hand, by applying a negative voltage to the top
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Chapter 1. Memory and computing beyond Moore’s law

Figure 1.9: Schematic illustration of the set transition (A-D) and reset transition (E) in
CBRAM devices. Copyright 2011 IOP Publishing Ltd. Reprinted, with permission,
from [54].

electrode for reset process, cations migrate in the opposite direction caus-
ing a dissolution of the metallic CF (E) [54]. Unipolar switching has been
sometimes reported in CBRAM [58]. Despite several similarities in terms
of switching and reliability between OxRAM and CBRAM devices, some
differences exist. CBRAM shows a ratio between HRS and LRS resistances
of about 104 that is 2-3 orders of magnitude higher than OxRAM resistance
window. The large resistance window is probably due to the higher mo-
bility of Ag/Cu cations compared to the defects in OxRAM resulting in a
larger gap and consequently in an increased HRS resistance after reset tran-
sition. As a result of the increased HRS, CBRAM devices can also operate
at lower programming currents of about 10 pA [59], and feature multilevel
cell operation [60].

Uniform switching RRAM

Uniform switching where chemical composition at the origin of the resis-
tance change occurs within the whole device area, was evidenced in other
classes of materials, such as perovskite-type oxides, e.g., Pr1−xCaxMnO3

(PCMO) [61] and TaOx/TiO2 bilayers [62,63]. Uniform switching was ex-
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Figure 1.10: Comparison between the typical I-V curve of a filamentary RRAM such as
Ta2O5−x/TaO2−x RRAM device (a) and the typical I-V characteristics for a uniform
switching RRAM such as Al/PCMO-based RRAM device (b). (a) Copyright 2011 Na-
ture Publishing Group. Reprinted, with permission, from [40]. (b) Copyright 2009
AIP Publishing LLC. Reprinted, with permission, from [61].

plained as a local chemical reaction taking place at the interface between
2 separate materials. For instance, field-induced oxygen exchange can oc-
cur between a reactive top electrode and the oxide layer, e.g., between Sm
top electrode and PCMO [64]. Alternatively, oxygen exchange occurs be-
tween TiO2 and TaOx, where the latter serves as the barrier oxide control-
ling HRS/LRS resistance values [62, 63].

Taking as reference the schematic illustration in Fig. 1.7(b), when a pos-
itive voltage is applied to the top electrode, oxygen ions and/or electrons
drift from the bulk oxide layer toward the top electrode, thus inducing the
oxidation of the electrode/oxide interface. Interface switching requires thus
the use of a relatively reactive oxide, such as Al or Sm, while inert metals
such as Pt do not yield significant resistance change. The resulting oxidized
layer causes a resistance increase by enhancing the barrier height in a tun-
neling or Schottky barrier for electrons/holes injection. The application of
a negative voltage results in a switching to LRS because of oxygen migra-
tion back to the bulk oxide layer. Since resistivity change occurs across the
whole interface area, the HRS/LRS resistance values and the programming
currents are generally proportional to the device area [65].

Filamentary and interface switching usually differ also by the shape of
their I-V characteristics. Fig. 1.10 shows the I-V characteristics for a fila-
mentary Ta2O5−x /TaO2−x RRAM device [40] (a) and a uniform switching
RRAM with Al/PCMO structure (b) [61]. Filamentary switching is marked
by an abrupt set transition, which can be explained by a sudden voltage
snap back due to the sudden self-accelerated formation and growth of a

17



Chapter 1. Memory and computing beyond Moore’s law

conductive filament [66]. On the other hand, uniform switching appears
as smooth set/reset transition, and usually shows largely asymmetric char-
acteristics due to rectification induced by Schottky barriers or asymmetric
tunneling barriers.

1.2.3 Spin-transfer torque magnetic random access memory (STT-
MRAM)

In last 20 years, physics and technology advancements have led to novel
magnetic memory concepts such as spin-transfer torque magnetic random
access memory (STT-MRAM). STT-MRAM device is based on the spin-
transfer torque effect, which was theoretically predicted by physicists John
Slonczeswki [67] and Luc Berger [68] in 1996 and then observed for the
first time in the late 1990s [69–71].

As shown in Fig. 1.11(a), a spin-torque-based memory consists of a
magnetic tunnel junction (MTJ) stack with an ultrathin (≈ 1 nm) tunnel
oxide layer, such as crystalline MgO, sandwiched between two ferromag-
netic layers (generally CoFeB electrodes) referred to as pinned layer and
free layer due to their fixed and variable magnetization orientation, respec-
tively.

This structure is characterized by two stable states depending on the
relative magnetic orientation of two ferromagnets, namely the parallel (P)
state, depicted in Fig. 1.11(b), where the free magnetization direction Mfree

is aligned to fixed magnetization direction Mfixed, and the anti-parallel
(AP) state, depicted in Fig. 1.11(c), in which Mfree orientation is not aligned
to Mfixed.

Also, AP and P states, which are achieved by a reset and set transition,
respectively, as evidenced by typical I-V characteristics in Fig. 1.11(d), can
exhibit a percentage change in resistance up to about 200% [74] as a result
of the tunnel magnetoresistance (TMR) effect [75].

As illustrated in Fig. 1.11(e), the injection of a current through the MTJ
can manipulate the magnetic polarization of the free layer leading STT-
MRAM device to switch from P to AP state or from AP to P state depending
on applied current sign [38, 76, 77].

If the electrons enter from the free layer of a STT-MRAM in P state
(left), namely the applied current flows from fixed to free layer, the elec-
trons with a spin opposite to the Mfree are reflected back to the free layer in-
ducing a spin-transfer torque (STT) capable of exerting a rotation of Mfree,
eventually leading STT-MRAM state from P to AP (reset transition), thus
in HRS. Conversely, if the electrons enter from the fixed layer of a STT-
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Figure 1.11: (a) Sketch of MTJ structure based on MgO tunnel oxide sandwiched be-
tween two CoFeB-based ferromagnetic layers with a free and pinned magnetization
orientation, respectively. MTJ enables two stable states due to (c) parallel and (d)
anti-parallel alignment of magnetization in ferromagnetic electrodes. (d) Typical I-V
characteristics for a STT-MRAM device evidencing AP-to-P (set) and P-to-AP (reset)
transitions achieved by (e) a current-induced spin-transfer torque causing a rotation
of free layer magnetization. (a)-(d) Copyright 2016 IEEE. Reprinted, with permission,
from [72]. (e) Copyright 2014 IEEE. Reprinted, with permission, from [73].

MRAM prepared in AP state (right), namely the applied current is forced
from free to fixed layer, only the electrons with spin parallel to Mfixed can
reach free layer inducing a STT capable of exerting a rotation of Mfree,
eventually leading STT-MRAM state from AP to P (set transition), thus in
LRS [73].

Compared to PCM and RRAM devices where to store information is
needed to move atoms, the STT-MRAM storage principle based on the
rotation of magnetization direction in the free layer makes STT-MRAM
extremely attractive for high cycling endurance, generally referred to as
virtually infinite [78]. However, even a relatively small voltage (< 1 V)
can cause a sensible electrical stress to the MgO barrier capable of induc-
ing a dielectric breakdown of thin tunnel layer, thus limiting device cycling
endurance performance [72, 76, 79].

Regarding read/write operation, STT-MRAM exhibits an extremely fast
access time, lower than 3 ns [80] and therefore dramatically faster than
Flash memory. To improve this performance further, write currents must
be downscaled and the stack should be suitably engineered to decrease the
errors during writing phase due to the thermally activated nature of resistive
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Figure 1.12: Comparison between CMOS-based microprocessors with von-Neumann ar-
chitecture built since 1971 and biological brain in terms of dissipated power density
and operation frequency. Although the technology development driven by Moore’s
law has led to increasingly powerful processors, today’s computers cannot compete
with the brain efficiency in performing many complex cognitive tasks. Copyright 2014,
American Association for the Advancement of Science. Reprinted, with permission,
from [4].

switching in STT-MRAM affecting data retention [76].
The great potential in terms of operation speed and endurance combined

with good scaling capabilities, demonstrated down to 11 nm [81], makes
STT-MRAM a promising alternative to DRAM memories. In addition, fur-
ther advancements such as lower write currents and a higher TMR might
even lead it to reach access times lower than embedded DRAM and thus to
be used in the cache in the next future [76].

1.3 Novel approaches for beyond-CMOS computing

1.3.1 Neuromorphic computing

To tackle latency and energy burdens challenging digital computers based
on conventional von Neumann architecture, various alternative paradigms
have recently been explored. Among them, strong interest has been at-
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tracted by an intriguing approach referred to as neuromorphic computing
taking inspiration from biological brain. Biological brain is a very com-
plex system capable of massively parallel and error-tolerant computation
thanks to its architecture based on very large networks of neurons con-
nected by synapses (about 1011 neurons and 1015 synapses overall). Also,
as shown in Fig. 1.12, it features a power consumption orders of magnitude
lower than the most important clocked digital computers built so far, which
stems from the event-based strategy used to process information contained
in the spikes sparsely emitted by stochastic neurons [4, 82]. Therefore, the
goal pursued by neuromorphic computing is to achieve complex cognitive
functionalities with an energy efficiency comparable with that of biological
brain mimicking its structure and fundamental mechanisms.

Neuromorphic computing by conventional CMOS technology

The path toward the building of neuromorphic systems started in the late
1980s as the scientist Carver Mead introduced pioneering advancements in
bio-inspired microelectronics based on the analogy between the physics of
MOSFET biased in the subthreshold region and the physical properties of
biological neurons [83, 84].

Over the following decades, the application of this novel approach led
to the design and building of silicon-based neuron [85, 86] and synapse
circuits [87,88], opening the way for significant hardware implementations
of CMOS VLSI neuromorphic systems [89–99].

Among the large-scale hardware neuromorphic platforms have emerged
in recent years [4,100–102], the Manchester University project called SpiN-
Naker [100] is one of the most important. SpiNNaker is a highly distributed
digital computer equipped with a custom communication framework that
enables to interconnect many multi-core chips [100, 103]. Its architec-
ture relies on the assembly of several boards including up to 48 packages,
which incorporate a chip realized in 130 nm CMOS technology based on
18 ARM968 cores and a memory chip of 128 Mbyte Synchronous DRAM
(SDRAM) (Fig. 1.13) [100, 103]. The SpiNNaker system enables to simu-
late the activity of large spiking neural networks on the biological time scale
adopting many types of synapse and neuron behavioral models. However, a
significant disadvantage is that the use of synapse and neuron models with
increasing complexity causes a severe limitation on the network size that
can be simulated in real time [6]. In addition, complete SpiNNaker opera-
tion involves a power consumption of about 50 kW which is not compatible
with biological brain energy efficiency.

Another recent CMOS-based neuromorphic platform of great interest
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Figure 1.13: A small-scale SpiNNaker circuit board with 48 packages. Copyright 2014
IEEE. Reprinted, with permission, from [100].

is the IBM TrueNorth chip [4, 104]. TrueNorth is a 28 nm CMOS fully
digital chip with area of 4.3 cm2 based on 4096 neurosynaptic cores of
spiking neural networks, each including 256 digital leaky integrate-and-
fire neurons and 256 x 256 binary programmable synapses via a SRAM-
based crossbar array (Fig. 1.14). Although the dynamics of neurons is con-
trolled by a global clock signal at 1 kHz, the cores communicate in a fully
asynchronous fashion evidencing a parallel operation driven by spike-based
events delivered at synapses by firing neurons. Compared to SpiNNaker,
IBM TrueNorth chip offers an extremely low power consumption (< 150
mW) and a memory distributed on the whole network, which makes this
system highly parallel, modular and noise resilient. However, this high
parallelism results in a relative loss of density efficiency because of all
the unused synapses for a certain application. Also, a strong limitation
for TrueNorth chip is that the synapses do not incorporate weight update
mechanisms, thus preventing on-line learning. At the level of applications,
TrueNorth chip was operated on 400-pixel-by-240-pixel video input at 30
frames per second achieving detection and recognition of multiple objects
in real time with an extremely low-power dissipation of only 63 mW.

The goal of reproducing faithfully the dynamics of biological synapses
in hardware led to the development of a new CMOS-based neuromorphic
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Figure 1.14: TrueNorth chip layout consisting of a 2D grid of 64x64 neurosynaptic cores
where each core includes a scheduler buffering input spikes to implement axonal de-
lays, a token controller to manage operation in the core, a SRAM memory to store data
for neurons, a time-multiplexed neuron block updating neuron internal potentials, and
a router to transmit the spike events. Copyright 2015 IEEE. Reprinted, with permis-
sion, from [104].

Figure 1.15: Micrograph of ROLLS neuromorphic processor chip. To achieve memory
storage and massively-distributed computation, most of chip area is designed to host
non-linear synapse circuits capable of implementing short-term plasticity and long-
term-plasticity. Copyright 2015 IEEE. Reprinted, with permission, from [6].

processor system by Institute of Neuroinformatics (INI) of University of
Zurich and ETH Zurich called ROLLS [6, 99]. This chip, fabricated in
180 nm CMOS technology, comprises 256 neurons and slightly more than
130.000 synapses within an area of 51.4 mm2. The configurable spiking
neural network implemented by ROLLS uses analog subthreshold circuits
to mimic the real dynamics of neurons and synapses, and asynchronous
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digital logic circuits to control the event-based communication and config-
ure the properties of the network as the synaptic connectivity in a flexible
fashion. Fig. 1.15 shows the micrograph of ROLLS chip evidencing that
chip area is mostly occupied by short-term memory and long-term mem-
ory nonlinear synapses serving as sites of memory storage and computa-
tion. In particular, the long-term memory synapses include analog bistable
circuits capable of implementing learning according to a stochastic spike-
based plasticity model where the arrival of pre-synaptic spikes can activate
the update process leading the synaptic weight to the fully potentiated or
fully depressed state based on the initial value [105]. The great computa-
tional power of ROLLS chip was demonstrated by the hardware implemen-
tation of attractor networks capable of associative memory thanks to their
recurrent synaptic connectivity, and two-layer spiking neural networks for
image classification tasks [99].

Neuromorphic computing by memristive devices

Despite great complexity and high performance, state-of-art fully CMOS
neuromorphic hardware is not still competitive with the human brain in
terms of integration density because of the area-expensive neuron and synapse
circuits [106]. Also, power dissipation achieved in these platforms is much
higher than human brain consumption, which is estimated around 20 W
[82, 107].

To overcome these limitations, the research on nanoscale materials has
evidenced that emerging non-volatile device technologies such as RRAM
and PCM feature characteristics making them suitable for the implementa-
tion of synapses in neuromorphic circuits [39, 107–110]. First, RRAM and
PCM devices can enable non-volatile storage of multiple resistance states
in a very compact area. Moreover, their tunable resistance can be exploited
to replicate in hardware bio-realistic synaptic plasticity rules such as the
spike-timing dependent plasticity (STDP).

STDP rule, which was experimentally observed for the first time in cul-
tured hippocampal neurons in the late 1990s [111], describes the modula-
tion of synapse weight or efficacy as a function of the relative time delay be-
tween the spikes emitted by the pre-synaptic neuron and the post-synaptic
neuron, respectively. If pre-synaptic neuron fires just before the fire emitted
by the post-synaptic neuron (∆t > 0), the synapse weight increases resulting
in the synaptic long-term potentiation (LTP). Conversely, if the pre-synaptic
neuron fires just after the post-synaptic neuron (∆t < 0), the synapse weight
decreases resulting in the synaptic long-term depression (LTD). Also, these
experimental data show that the extent of synaptic weight change is maxi-
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Figure 1.16: (left) Hardware implementation of the neural network building block com-
prising pre-synaptic neuron (PRE), synapse and post-synaptic neuron (POST) by a
memristor-based crossbar structure where PCM devices operate as synapses while bot-
tom/top electrode lines serve as PRE/POST spike lines. (right) PRE and POST spike
overlapping across PCM synaptic devices for variable time delays results in a STDP
hardware implementation evidencing a nice agreement with original biological data.
Copyright 2011 American Chemical Society. Adapted, with permission, from [113].

mum for very short time delays and then decreases rapidly with increasing
time delay [111, 112].

In last 10 years, STDP rule was demonstrated in individual RRAM [114,
115] and PCM [113] devices (Fig. 1.16), and in hybrid CMOS/memristive
structures such as the one-transistor/one-resistor (1T1R) structure [116–
118] and the 2-transistor/1-resistor (2T1R) structure [119,120] using schemes
based on overlapping spikes at synapse terminals. Note that a more com-
plex hybrid CMOS/memristive synapse circuit that does not adopt an over-
lap scheme to implement STDP and limits the integrated current in the
post-synaptic neuron was also recently proposed [121].

Moving from device to network level, many memristive spiking neu-
ral networks capable of capturing cognitive abilities such as unsupervised
learning and recognition of visual or auditory patterns via STDP rule have
been implemented in simulation [116, 121–128]. Nevertheless, only im-
plementations of spiking neural networks with a limited number of mem-
ristive synapses capable of STDP have been achieved in hardware up to
date [118, 129–132].

Although STDP has received considerable attention as main mechanism
underlying synaptic plasticity, biological experiments in the early 2000s
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evidenced that spike rate plays a key role in controlling plasticity of real
synapses [133]. This thus led to the exploration of another synaptic plas-
ticity mechanism called spike-rate dependent plasticity (SRDP) which was
connected to spike triplets [134–136]. As a result, new synapse models in-
corporating weight update based on spike rate have been implemented in
both simulation and hardware [137–144].

However, STDP and SRDP do not complete the wide range of biolog-
ical mechanisms controlling synaptic plasticity in human brain. The goal
of replicating more faithfully the synaptic dynamics has thus stimulated the
investigation of memristive devices based on materials such as Ag2S [145]
and SiOxNy:Ag [146] which, thanks to their volatile resistive switching
mechanism, have enabled to achieve the hardware implementation of an
additional effect displayed by biological synapses called short-term plas-
ticity.

In addition, various memristive devices have been investigated to repli-
cate not only synaptic behavior but also the neuron behavior [132, 147–
149].

Specifically, as evidenced in Fig. 1.17, a PCM device can be used to
implement the neuronal integration (Fig. 1.17(a)) matching the increase
of membrane potential triggered by incoming spikes with the increase of
crystalline phase of chalcogenide active material (Fig. 1.17(b)) [149]. Com-
pared to the use of conventional bulky CMOS-based integrate-and-fire neu-
ron circuits, this approach could lead to an additional improvement of the
device density in hardware neuromorphic systems with memristive devices.

Although neuromorphic computing is strongly linked to the biological
world, important demonstrations of complex cognitive capabilities have
also been achieved using schemes different from brain-inspired unsuper-
vised learning such as the supervised learning based on backpropagation
rule [150–152].

In this frame, motivated by the desire to achieve the very high per-
formance of artificial intelligence in performing machine-learning tasks
such as image recognition [152, 153], speech recognition [154], transla-
tion of sentences [155], natural language processing [156, 157] and other
complex applications [158–160] via software-based deep neural networks
(DNNs), valuable hardware demonstrations with memristive devices have
been achieved, including electroencephalography pattern recognition by
a cross-point RRAM synapse array [161], face recognition by an 1T1R
RRAM array [162] and image classification by multi-layer fully connected
artificial neural network (ANN) with 1T1R RRAM [163] and 1T1R PCM [164,
165] synaptic devices.
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Figure 1.17: (a) Schematic illustration of a PCM-based neuron which (b) stores its mem-
brane potential due to integration of input spikes in the crystalline phase configuration
of PCM cell. Copyright 2016, Springer Nature. Adapted, with permission, from [149].

Fig. 1.18(a) shows the scheme of the 3-layer fully connected ANN used
in [164,165] to demonstrate image classification task on MNIST handwrit-
ten digit dataset [151, 166]. In this feedforward network architecture, each
layer includes software-based neurons implementing a nonlinear activation
function and drives the next layer by weights wij implemented in hardware
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Figure 1.18: (a) Schematic illustration of a feedforward fully-connected deep neural net-
work (DNN) used to demonstrate supervised learning and classification of handwritten
digit images from MNIST database. (b) Measured and calculated accuracy perfor-
mance for both training and classification phase achieved by 3-layer DNN with PCM-
based synaptic weights. Copyright 2014 IEEE. Adapted, with permission, from [164].

by an array of 1T1R 2-PCM synapses. During training, such weights are
adjusted in response to the submission of 5000 images, which represent the
training dataset used in this experiment, according to an experimental over-
lapping pulse scheme replicating backpropagation algorithm. Backpropa-
gation rule is a well-known computational algorithm that allows to optimize
the learning efficiency of the neural network on a large image dataset. The
submission of an input pattern to the network results in an output signal,
whose distance from the ideal value is called error signal. After calculating
the error signal at the output stage, it is backward propagated from the out-
put stage to the input layer leading to the update of all the synaptic weights
of an amount directly proportional to the product of the input and the error
signals [150–152]. After training, neural network classification capability
was tested by the presentation of new handwritten digit images to the input
layer. Fig. 1.18(b) shows the measured learning and test accuracies with
corresponding simulations evidencing a maximum accuracy around 83%
which is due to the detrimental impact of PCM asymmetry and nonlinear-
ity during weight update process.

To overcome this strong limitation due to PCM non-idealities, a new
synaptic “2PCM + 3T1C” unit cell, which combines a pair of PCM devices,
each with own transistor serving as selector, with a 3-transistor/1-capacitor
analogue conductance device implementing volatile weight storage, was re-
cently proposed in [167] enabling to experimentally achieve classification
accuracy values equivalent to those obtained by software-based DNNs not
only for MNIST dataset, but also for CIFAR-10 and CIFAR-100 datasets
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[168]. Most importanly, the efficiency and throughput performance demon-
strated by mixed hardware-software DNNs based on these analogue mem-
ory devices are 280 and 100 times better, respectively, than the correspond-
ing performance of recent GPUs, thus suggesting analogue memory and
computing devices as key elements for low-power acceleration of training
in hardware DNNs [167].

In summary, the co-integration of memristive devices such as RRAM
and PCM and CMOS-based circuits is a promising solution to design brain-
inspired neuromorphic systems with enhanced energy efficiency and inte-
gration density. Although the objective to achieve the massive parallelism
and the outstanding computational abilities of biological brain is still far
and many issues at both device and system level such as the device re-
liability and the integration strategy need to be still addressed, the great
potential of neuromorphic computing approach and the future findings in
neuroscience can pave the way for the building of truly brain-inspired com-
puting systems.

1.3.2 In-memory computing

Carrying out calculations where the data are stored is the only strategy to
totally remove the memory wall. Recent works have evidenced that this ap-
proach, known as in-memory computing [10, 22, 23, 169], can be achieved
using the physics of resistive switching devices such as RRAM [169–172]
and PCM [148, 173–175], and the fundamental laws of electrical circuits
such as Ohm’s law and Kirchhoff’s laws [176]. Also, depending on the bi-
nary or gradual nature of resistive switching phenomenon, different schemes
such as in-memory digital computing and in-memory analogue computing
can be implemented by memristive devices [22].

In-memory digital computing by RRAM devices

The increasing appeal of emerging non-volatile memory devices for im-
plementation of computing tasks has pushed digital computing to explore
new in-memory logic gate and circuit concepts to carry out digital Boolean
operations saving energy and area compared to corresponding CMOS im-
plementations [169–173].

Among different types of resistive-switching devices, RRAM is the most
suitable technology for digital computing due to its binary operation during
set. Also, RRAM enables high scalability, a direct access to the cell by
interconnections and the device reconfiguration via voltage pulses.
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Figure 1.19: Schematic illustration of implementation of an AND gate using a serial
configuration of RRAM devices evidencing initial state for P and Q RRAM cells, I-
V characteristics for both RRAM devices, final state for P and Q RRAM cells and
time evolution of measured conductance before and after application of the voltage
pulse (from left to right). AND logic function was demonstrated testing RRAM-based
structure operation preparing devices in all the initial configurations, namely (a) Q =
0 and P = 0, (b) Q = 1 and P = 0, (c) Q = 0 and P = 1, and (d) Q = 1 and P = 1.
Copyright 2015 IEEE. Reprinted, with permission, from [171].

For example, as proposed in [171], an AND logic gate can be imple-
mented by two serially connected RRAM devices. Moving from left to
right, Fig. 1.19 schematically shows the initial configuration of two devices
called Q (top RRAM) and P (bottom RRAM), respectively, the I-V op-
eration characteristics, the final state and the corresponding experimental
demonstration covering all combinations from the case where both devices
are prepared in LRS (a) to the case where both devices are prepared in HRS
(d). The logic operation is driven biasing the devices by the application of a
driving voltage V at the top electrode of the structure with the intermediate
electrode left floating and the bottom electrode at ground. Specifically, be-
cause V can have values between 2VC and 2Vset, it is always positive and,
as a consequence, only abrupt set transitions can occur in each resistive
cell.
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As evidenced in Fig. 1.19(a), if both Q and P are initialized in LRS (state
0), no switching event occurs in the devices since they are already in LRS.
Thus, the final state is (Q’, P’) = (Q, P) = (0, 0). Unlike previous case, if
Q and P are prepared in HRS (state 1) and LRS, respectively, i.e., (Q, P) =
(1, 0), the applied voltage V mostly drops across Q inducing a set transition
leading to a final state (Q’, P’) = (Q, P) = (0, 0) with both devices in LRS
(Fig. 1.19(b)).

Fig. 1.19(c) instead shows the case with Q and P prepared in LRS and
HRS, respectively, i.e., (Q, P) = (0, 1). Because P cell is initially in HRS,
the V drops almost totally across P causing a set transition for P. As a result,
(Q’, P’) = (Q, P) = (0, 0).

Finally, in the case shown in Fig. 1.19(d) where both Q and P are initial-
ized in HRS, i.e., (Q, P) = (1, 1) , V divides equally between two resistive
switches, thus preventing any switching event in Q and P cells, resulting in
a final state (Q’, P’) = (Q, P) = (1, 1), since the voltage drop across each
device is lower than Vset.

In summary, the output states (Q’, P’) show that this circuit based on
serial connection of two RRAM switches implements an AND logic func-
tion of input states (Q, P), thus supporting RRAM as viable technology for
in-memory digital computing.

In-memory analogue computing by PCM devices

While in-memory digital computing takes advantage of binary resistive
switching, a gradual resistance change is instrumental in capturing other
concepts such as analogue computing [22].

A fundamental example of in-memory analogue computing is the im-
plementation of the arithmetic summation in a PCM device thanks to the
gradual crystallization of amorphous chalcogenide material [148, 149]. As
shown in Fig. 1.20, to carry out a sum operation in base-10, the cell is first
prepared in a fully amorphous HRS configuration (R = 500 kΩ) by reset
transition and 10 consecutive pulses are needed to achieve the partial crys-
tallization corresponding to full LRS. Specifically, to perform the sum 1+3,
the application of 1 pulse (state-1) is followed by the application of 3 se-
quential pulses with the same amplitude and width. As a result, the PCM
cell reaches the resistance state achievable by the application of 4 consec-
utive pulses (state-4), thus simultaneously obtaining computation and stor-
age of the sum result [148]. Therefore, this task supports PCM device as
in-memory accumulator capable of tackling the high area consumption of
CMOS implementations.
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Figure 1.20: Measured resistance response of a base-10 PCM-based accumulator. Start-
ing from the cell in high-resistance amorphous configuration, the application of 1 pulse
followed by the application of additional 3 pulses leads the PCM device from state-1
to state-4 via the gradual chalcogenide crystallization process, thus enabling the im-
plementation of the arithmetic sum. Copyright 2012, John Wiley and Sons. Reprinted,
with permission, from [148].

In-memory analogue computing by crossbar arrays

In addition to the use of physics of memristive devices, in-memory com-
puting can be achieved exploiting the fundamental laws of electrical cir-
cuits such as Ohm’s law and Kirchhoff’s laws [22, 23]. This approach is
particularly suitable for the analogue implementation of the matrix-vector-
multiplication (MVM) operation by crossbar arrays.

Fig. 1.21 shows the architecture of a crossbar array where each intersec-
tion or crosspoint between orthogonal column and row electrodes hosts a
memristive device. Based on this architecture, the application of a voltage
Vj at each j-th column induces a current Vj·Gij , where Gij is the conduc-
tance of memristor device located at crosspoint between the i-th row and
j-th column. The sum of all currents activated at each i-th row results in a
total current Ii =

∑
j Gij · Vj , thus evidencing the analogue implementa-

tion of MVM operation simply using the Ohm’s law and Kirchhoff’s law.
Most importantly, crossbar architecture enables MVM in only one opera-
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Figure 1.21: Sketch of a 3x3 crossbar array enabling the physical implementation of a
matrix-vector multiplication (MVM) operation by Ohm’s law and Kirchhoff’s law for
in-memory analogue computing. Copyright 2018, Springer Nature. Reprinted, with
permission, from [22].

Figure 1.22: Artificial neural network implemented by a crossbar array based on mem-
ristive devices capable of emulating biological synapses. Copyright 2018, Springer
Nature. Reprinted, with permission, from [23].

tion step, thus decreasing time and energy costs compared to digital MAC
operation carried out in current processors. In addition, thanks to MVM
accelerated computation, crossbar architecture has attracted strong interest
for hardware implementation of high density ANNs with memristive de-
vices serving as synaptic weights [23], as shown in Fig. 1.22, and image
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processing [177].

Issues and challenges for in-memory computing

Despite in-memory computing features great potential to overcome von-
Neumann bottleneck, many issues have yet to be addressed [22].

First, the inherent variability of resistive switching mechanism such as
the cycle to cycle and device to device variability of Vset, and the memory
instability are two limiting factors toward RRAM-based implementation of
reliable in-memory digital logic gates. While memory instability mostly
burdens RRAM devices due to the extreme sensitivity of LRS and HRS
from displacement of single atoms close to the conductive filament, PCM
is mostly affected by drift and strong non-linearity of HRS resistance. As a
result, crosspoint array computation becomes limited only to error-resilient
applications such as pattern recognition [22].

The future development of in-memory computing is closely related to
the technology scalability. To achieve higher density is first needed to
down-scale the computing element dimension, which however involves an
undesired increase of cell-to-cell variability. In addition, as a result of
cell miniaturization, interconnection lines have also to down-scale, induc-
ing an increasing series resistance and consequently high parasitic voltage
drops [22].

Such issues resulting from in-plane scaling could be successfully solved
by the hardware implementation of 3D-crossbar arrays since they allow to
increase device density by multi-layer stacking, thus avoiding the concerns
due to the cell miniaturization. Also, to further increase device density,
the distance between two adjacent cells could be reduced by decreasing the
thickness of memristor switching layer, which makes RRAM more suitable
than PCM as computing element for crosspoint array because of its very
thin switching layer [22].

In summary, in-memory computing with memristive devices exhibits
a very strong potential in terms of energy and computational efficiency
thanks to its peculiar feature to enable calculations in situ. However, sig-
nificant challenges including the improvement of device performances such
as endurance, variability and power consumption, and the building of effi-
cient 3D crosspoint arrays are issues to be addressed in order to achieve an
extensive use of this approach. Therefore, major efforts at research and in-
dustrial level are still needed before this paradigm enables to overcome the
memory wall and consequently becomes a feasible technology for beyond-
CMOS computing.
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1.3.3 Quantum computing

Since the Nobel Laureate physicist Richard Feynman began to speculate on
the possibility to build a new type of computer to efficiently simulate quan-
tum physics in 1982 [178], the prospect of achieving a quantum computer,
that is a computing machine capable of storing, processing and transmitting
information using quantum mechanical phenomena, has attracted growing
interest from both academic community and industry.

Unlike the traditional computers where the information is encoded into
bits, which can only be in either of two states, namely 0 or 1, quantum
computers store information in quantum bits (qubits) which can be either
in the basis states |0〉 and |1〉, or in any pure state given by their quantum
superposition, namely |ψ〉 = α|0〉+β|1〉 where α and β are two complex
numbers representing the probability amplitudes such that |α|2 + |β|2 = 1.
Therefore, the building of a quantum computer with an internal memory
based on N qubits may in principle allow to store information in the quan-
tum superposition of 2N basis states described by 2N complex coefficients.
As a result, a quantum computer may store an amount of information expo-
nentially larger than the classical counterpart, which would make it dramat-
ically more powerful from the computational viewpoint at least for certain
applications [179–181]. Among such tasks, the best-known examples are
the prime factorization of large integers, which can be exponentially accel-
erated using the Shor’s polynomial-time quantum algorithm [182], and the
database search, which can be carried out with a quadratic speedup apply-
ing the Grover’s quantum algorithm [183].

To understand how classical and quantum computers work, Fig. 1.23
shows a comparison between the two computation strategies. In classical
computers, starting from all bits prepared in the state 0 with unity probabil-
ity (a), computation leads to changes in the memory state via Boolean logic
operations (b), until reaching a new state a with unity probability (c).

On the other hand, in quantum computers, starting from all qubits initial-
ized in the basis state |0〉 with unity probability, which involves a delta-like
probability density distribution in the |0〉 state (d), the quantum state de-
fined by a wavefunction |ψ〉 evolves with time according to the Schrödinger
equation (e) until the probability density distribution given by |ψ|2 centers
around a new state |a〉 (f). As a result, whereas classical computation al-
ways provides a deterministic output, quantum computation only gives a
probabilistic output [180].

Capturing the enormous potential in terms of storage capacity predicted
for quantum processors is not however easy since preserving and maintain-
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Figure 1.23: Comparison between (a-c) classical and (d-f) quantum computating ap-
proaches. In classical computers, starting from all bits set to the state 0 (a), the memory
state follows a deterministic evolution driven by Boolean logic operations (b) achiev-
ing another state a with unit probability (c). In contrast, in quantum computers, the
memory state initially prepared in |0〉 state (d) follows a probabilistic evolution accord-
ing to Schrödinger equation (e) achieving a final state |a〉 with a certain probability
distribution. Copyright 2013 Materials Research Society. Reprinted, with permission,
from [180].

ing information in the qubits is strongly challenged by two fundamental
physical processes.

As a qubit typically consists of a two-level quantum system, quantum
information contained in a qubit is first degraded by the decay from the ex-
cited state to the ground state due to the energy relaxation mechanism be-
ing governed by a timescale T1. In addition, it is also affected by a second
process, referred to as quantum decoherence, consisting of the unwanted
interaction of qubit with its surrounding physical environment resulting in
the degradation of the qubit phase over a timescale T2, which is lower than
T1 in the most cases. Consequently, decoherence has a more detrimental
impact than energy relaxation on quantum computation, which can be miti-
gated by the application of schemes referred to as quantum error correction
(QEC) techniques [181].

In particular, note that the effect of noise on computation marks an im-
portant distinction between quantum computing and brain-inspired neuro-
morphic computing. Whereas the inevitable interaction of qubits with their
physical environment is the main cause of loss of coherence and thus of
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Figure 1.24: List of 5 different material systems to make qubits in hardware. Copyright
2013 Materials Research Society. Reprinted, with permission, from [180].

information for quantum computation, the presence of noise was proven to
play a beneficial role in brain-inspired neuromorphic computing enabling
to capture increasingly complex cognitive primitives [184]. Therefore, al-
though the quantum computing promises to capture a computational power
even higher than that of the biological brain using quantum parallelism
and entanglement, the demanding technological requirements to achieve
extremely low levels of noise have considerably hindered the development
of practical quantum computing systems with respect to that of neuromor-
phic systems in these years. To overcome this obstacle, the novel concept
of quantum neuromorphic computing has recently been proposed and is
currently under investigation [185, 186].

Regarding the building of the qubits, several material systems have been
explored. In this framework, Fig. 1.24 evidences five different engineering
solutions receiving great interest [180].

A first approach to make qubits consists of the electromagnetic con-
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finement of single ions in harmonic potentials (ion traps) at extremely low
temperature by application of voltages to the electrodes close to ions. The
state of a qubit based on trapped ion is given by combination of two hyper-
fine states used as |0〉 and |1〉, respectively [180], and is measured thanks to
the photon generated by the ion. To achieve a quantum computer based on
trapped ion technology, the project is to exploit the entanglement of mul-
tiple ions to create scalable networks of quantum nodes communicating
by emitted photons. In these years, the intensive research on this technol-
ogy has led to significant advances [187] that culminated with the recent
achievement of two-qubit logic gates, namely fundamental blocks for quan-
tum computing, capable of combining the state-of-art level of precision or
fidelity (99.8 %) with a new record of speed (1.6 µs) [188].

A second manner to achieve qubits relies on the use of defects in solids.
In particular, great interest has been gained by the nitrogen-vacancy (NV)
centers in diamond lattice, namely defects formed by a missing carbon-
atom close to a nitrogen atom replacing one carbon atom [189]. This type
of qubit system exploits the spin degrees of freedom of the NV center asso-
ciated with its bound electrons and near nuclear spins [189]. Its great appeal
origins from atomic-like properties such as robust spin quantum states and
precise optical transitions combined with the solid-state structure, which
enables a fast electrical and magnetic control [189]. Most importantly, this
technology has the unique feature to achieve long coherence times even at
room temperature [180,189,190]. Specifically, coherence times longer than
1 s at room temperature for nuclear spins were reported in [191]. Therefore,
the solid-state structure, which can also be exploited to design large-scale
systems, and room temperature operation make this scheme promising for
the building of commercially-available quantum computing platforms.

Another attractive solid-state material system to make qubits is provided
by quantum dots, namely nanoscale semiconductor regions realizing the
confinement of single electrons in potential wells. Specifically, they capture
qubit functionality by exploiting the spin degree of freedom of the electrons
confined within semiconductor structures such as GaAs/AlGaAs system of
Group III-V and Si/SiGe system of Group IV. This approach promises great
advantages in terms of scalability and compatibility with conventional inte-
grated circuits even though significant improvements in material engineer-
ing such as the growth and deposition of oxides at ultra-low temperatures
are crucial to make it a competitive technology for development of com-
mercial quantum computing machines [192].

In addition to previous material systems, academic and industry research
has also focused on the building of qubits, called superconducting qubits,
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by electronic circuits including capacitors, inductors, interconnections and
mainly Josephson tunnel junctions, namely devices based on a very thin
(≈ 1 nm) insulating layer interposed between two supeconducting elec-
trodes, made via lithography and cooled at ultra-low temperatures of the
order of 20 mK. At these temperatures, such circuits exhibit a behavior sim-
ilar to that of the quantum oscillators evidencing discrete quantum states.
Among these, the first two levels at lowest energies typically are those that
effectively form a superconducting qubit. Also, depending on the elements
used within the superconducting circuits, three different types of supercon-
ducting qubits, referred to as charge qubit, phase qubit, flux qubit, respec-
tively, can be implemented [193]. This approach shows interesting features
such as the great prospectives for scalability by use of existing lithographic
techniques, increasing coherence times and control at microwave frequen-
cies. However, fundamental challenges such as device operation at ultra-
low temperature for large-scale systems, spourious cross-coupling among
many qubits and the imperfections in fabrication process of circuits will
have to be suitably addressed in near future so that superconducting qubits
meet demanding requirements for implementation of quantum computing
machines working not only in the laboratories [194].

Finally, semiconductor nanowires have also been explored to build qubits.
In this frame, as reported in [195], when a one-dimensional semiconduc-
tor nanowire exhibiting high spin-orbit coupling is combined with a proper
magnetic field and the proximity effect of a superconductor, a curious par-
ticle called Majorana fermion can be observed. Starting from these experi-
ments, topological qubits based on the location of Majorana fermions were
demonstrated [196]. The great advantage of this approach consists of tack-
ling the loss of information due to the interactions between qubit and local
field by exploiting the delocalization of quantum state [180].

With the rapid progress of technology, very important companies in the
field of information technology have announced the building of their first
quantum computer prototypes in the last years. After realizing a first quan-
tum machine based on five superconducting qubits called IBM Quantum
Experience in May 2016 [197], which was the first quantum computer us-
able by the public via cloud, in November 2017 IBM announced the devel-
opment of both a new commercial quantum computer based on 20 super-
conducting qubits and a first prototype of 50 qubit quantum computer [198].
In addition to IBM, in early 2018, Intel unveiled his 49-qubit supercon-
ducting quantum-processor chip called Tangle Lake [199] and the Google’s
Quantum Artificial Intelligence Lab announced a new 72-qubit supercon-
ducting quantum computing chip called Bristlecone [200].
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Overall, quantum computing is a fascinating computing paradigm be-
ing expected to introduce a dramatic acceleration in solving problems too
computationally expensive in terms of time and cost for today’s comput-
ers in various fields including the simulation of complex quantum systems
investigated in physical chemistry and materials science, the discovery of
new life-saving drugs, optimization of large systems such as transportation
routes, machine learning and finance [201, 202]. In addition, it is believed
that it could lead to a deep revolution in the field of data security in that
the encryption schemes currently used in many activities such as private
messaging and banking could be potentially broken by future quantum al-
gorithms [203].

Despite the great advances recently made in the exploration of new ap-
proaches at the level of material systems, the implementation of large-scale
practical applications with commercially available quantum computers is
however far from being achieved shortly. To solve problems computation-
ally intractable for classical computers by exploiting unique phenomena
such as quantum entanglement and superposition, future quantum comput-
ers will have to indeed use over thousands of highly interconnected qubits
operating with very low error rates against the some tens of qubits used
in current implementations [204]. The extremely high level of precision
with which the qubits have to be created, manipulated, and measured in
order to achieve a reliable computation thus imposes remarkable technical
challenges [185]. In particular, much attention has been focused on the
need to strongly limit the errors arising from spurious interactions among
the qubits and to optimize the qubit connectivity. To achieve these goals,
systems based on trapped ions seem the leading technology thanks to their
superior precision and high connectivity yields [201]. Also, another critical
challenge is the fact that very low error levels can be typically achieved in
most material systems only keeping qubits at ultra-low temperatures of the
order of millikelvins [204]. To tackle this additional issue, an interesting
solution being recently under investigation of research community could be
the use of qubits based on NV centers in diamond system which offer the
great advantage to work at room temperature and to be natural light emit-
ters, which facilitates the measurement process [201]. In addition, diamond
system exhibits a solid-state crystal structure which could be exploited in
order to overcome another crucial challenge as scalability of the technology
by adapting nanofabrication techniques currently used in semiconductor in-
dustry to the development of integrated quantum devices [189]. Unfortu-
nately, the current manifacturing methods of NV centers require significant
improvements to realize enough defects in a reliable manner [194].
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In the end, quantum computing is an emerging technology approach ev-
idencing a disruptive potential which is attracting increasing attention and
investments by leader companies in information technology and govern-
ments in the world. Nevertheless, its development is still in the early stages
and it will be many years before universal quantum computers are available
on the market and thus a new information revolution begins.

1.4 Conclusions

This chapter provides an overview of main solutions at the level of device,
circuit and system receiving much attention to solve the fundamental issues
currently challenging performance improvement of today’s computers. Af-
ter discussion of the solutions for the scaling issues and heat wall, novel
approaches to remove memory wall have also been presented. On the one
hand, the great potential of emerging non-volatile memory devices has been
described reviewing physical mechanisms and key characteristics of three
fundamental device technologies such as RRAM, PCM and STT-MRAM.
On the other hand, new computing schemes aiming to overcome limita-
tions of von Neumann architecture such as neuromorphic computing and
in-memory computing have been extensively described, showing that the
use of memristive devices can play a key role to achieve future computing
beyond standard CMOS technology. Finally, another attractive paradigm
for future computing, namely quantum computing, has also been presented
discussing both its impressive potential in tackling computational problems
extremely hard for conventional processors and the concerns slowing down
the market entry of a truly universal quantum computer.
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CHAPTER2
Physics-based modeling of HfO2 RRAM

devices

2.1 Introduction

The semiconductor industry is currently challenged by the emergence of
Internet of Things, Big data, and deep-learning techniques to enable object
recognition and inference in portable computers. These revolutions demand
new technologies for memory and computation going beyond the standard
CMOS-based platform.

In this scenario, resistive switching memory (RRAM) is extremely promis-
ing in the frame of storage technology, memory devices, and in-memory
computing circuits, such as memristive logic or neuromorphic machines.
To serve as enabling technology for these new fields, however, there is still
a lack of industrial tools to predict the device behavior under certain oper-
ation schemes and to allow for optimization of the device properties based
on materials and stack engineering.

To address this strong limitation, various types of computational models
have been developed across the whole hierarchy of materials-level atomistic
simulations, device simulation, and compact models for exploring RRAM
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applications in memory and computing [205].
Among these modeling approaches, finite element method (FEM) nu-

merical models have raised a strong interest for their ability to grasp the
switching mechanisms at the device scale (few tens of nm3) [206–208].
Specifically, these simulation models have the added value of providing a
direct output in the form of calculated current-voltage characteristics, or
calculated response to applied pulses.

Most importantly, these numerical simulations allow to visualize the lo-
cal dynamics of defect concentration leading to set/reset processes, thus
providing the basis for the development of compact models consisting of a
simplified set of analytical equations for microscopic parameters, such as
the conductive filament (CF) diameter, the gap length and the local temper-
ature [51, 66, 209–212].

Compact models are essential tools for circuit simulations, to anticipate
the demonstration of storage/computing concepts [211, 212], thus support-
ing RRAM in various application frameworks to strengthen the short-term
impact on the market and industry evolution.

This chapter, which is based on the works [66, 127, 205, 206], covers
an extensive description of various physics-based models of HfO2 RRAM
devices. A previous numerical model capable of a detailed understanding
of the switching mechanisms and a previous analytical model are first re-
viewed. Finally, a stochastic simulator of set/reset statistical variability in
HfO2 RRAM devices, which provides a variability-aware framework for
the design and simulation of neuromorphic circuits, is also described.

2.2 Numerical model for HfO2 RRAM devices

Numerical FEM models can provide an accurate microscopic understand-
ing of the switching dynamics in RRAM devices, while accurately describ-
ing the current-voltage characteristics (I-V characteristics) and the time
evolution of the device [206–208].

The FEM simulation of RRAM device consists of the self-consistent
solution of three fundamental partial differential equations, namely (i) the
carrier continuity equation for electronic conduction, (ii) the steady-state
Fourier equation of heat transport, and (iii) the drift/diffusion continuity
equation of ionized defects, which describes the ion migration processes at
the origin of the set and reset transitions [206].

Fig. 2.1 shows the simulated geometry used in [206], consisting of the
initial configuration of the RRAM device in the set state. Here, a continuous
CF with an ideal cylindrical shape connects the top electrode (TE) and the
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Figure 2.1: Schematic illustration of simulated geometry used in the numerical model to
describe the set state of HfO2 RRAM device. Copyright 2012 IEEE. Reprinted, with
permission, from [206].

bottom electrode (BE). In the simulation, the CF consists of a region with
enhanced concentration of defects such as oxygen vacancies and metallic
impurities, thus causing a low resistance path between the two electrodes.
In particular, the switching layer, which will be assumed to be HfO2 if
otherwise noted, is assumed to have a 20 nm thickness.

In this numerical model, ion migration is described as a result of the
combined effects of diffusion and drift forces, according to the ionic hop-
ping phenomenon. Diffusion consists of the random hopping of defects
along potential wells separated by an average energy barrier EA (Fig. 2.2(a)).
On the other hand, the presence of an applied electric field can induce drift,
because of the energy barrier lowering by a factor αqV, where V is the
applied voltage, in the field direction (Fig. 2.2(b)). Drift predominates in
set and reset transitions, where a strong field is applied to induce a fast-
directional ion migration and change the resistance.

Combining the diffusion flux jdiff and the drift flux jdrift, the total ion
flux jD is given by:

jD = jdiff + jdrift = −D∇nD + µFnD, (2.1)

where D is the ion diffusivity, nD is the ionized defect concentration, µ is
the ion mobility and F is the applied electric field.
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Figure 2.2: Schematic illustration of physical mechanisms controlling hopping-based mi-
gration of ionized defects in bipolar RRAM. (a) Ionic diffusion is driven by temperature
and concentration gradient, while (b) ionic drift is driven by the electric field. Copy-
right 2012 IEEE. Reprinted, with permission, from [206].

Note that ion diffusivity is temperature activated according to the Arrhe-
nius law, namely:

D = D0e
−EA

kT , (2.2)

where D0 is a pre-exponential factor, k is the Boltzmann constant, EA is the
energy barrier for hopping transport in Fig. 2.2(a), and T is the temperature.

In addition, ion mobility µ depends on ion diffusivity D according to the
equation:

µ =
qD

kT
, (2.3)

which is known as Einstein relation.
The drift-diffusion ionic continuity equation∇jD = 0 must then be solved

with the Poisson continuity equation for electron current, which yields F to
enter Eq. 2.1, and the Fourier equation to calculate T entering Eq. 2.2. Note
that this model attributes resistive switching to a pure migration of defects,
without any significant generation or recombination of defects.

These are assumed to be generated at forming, and remain confined in
the CF region with negligible loss during the set/reset cycling. The migra-
tion of ions within an active region, generally consisting of the CF area,
results in a change of chemical composition which affects the local resis-
tance. To describe the impact of composition on resistivity, the defects, e.g.,
oxygen vacancies and hafnium ions, can be considered to act as dopants in
the metal oxide [206]. In fact, increasing the defect density in a metal oxide
is known to affect the local density of states (DOS), by introducing states in
the gap which can act as doping [213, 214]. According to this picture, the
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Figure 2.3: Calculated evolution of electrical conductivity parameters in Eq. 2.4, namely
(a) the pre-exponential factor σ0 and (b) the activation energy EAC at increasing of
defect density nD. Copyright 2012 IEEE. Reprinted, with permission, from [206].

local defect concentration nD controls the electrical conductivity σ, which
is assumed dependent on temperature via an Arrhenius law given by:

σ = σ0e
−EAC

kT , (2.4)

where σ0 is a pre-exponential factor and EAC is the activation energy for
electrical conduction. In Eq. 2.4, electrical transport is assumed to obey
to a thermally activated hopping mechanism, such as Poole-Frenkel, which
has indeed been evidenced at relatively low conductance in RRAM devices
[215].

Fig. 2.3 shows (a) σ0 and (b) EAC as a function of nD [206]. A lin-
ear increase of σ0 is assumed in the calculation, to describe the transition
from HRS, at low defect concentrations, to LRS at high defect concen-
tration approaching a maximum value nD = 1.2 · 1021 cm−3 at which the
local conductivity becomes virtually metallic. The linear increase of σ0 is
consistent with both the Poole-Frenkel picture of conduction, where each
carrier is thermally emitted from a localized state, and the doping theory
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Figure 2.4: (a) Measured and calculated I-V characteristics for HfO2 RRAM device, and
3D color plots of (b) reset and (c) set states obtained by the FEM model described
in [206]. In the color plot, red and blue regions indicate high and low concentration
of defects, respectively. Reprinted from [205].

in semiconductors, where carriers originate from the ionization of doping
atoms. The activation energy EAC is assumed zero for high nD, because
of the doped-semiconductor or metallic-like conduction of CF in the set
state, while EAC is assumed to linearly increase for decreasing nD close to
zero as a result of a Poole-Frenkel-type electrical conduction in the case of
disconnected filament.

Fig. 2.4(a) shows the measured and calculated I-V characteristics of
HfOx-based bipolar RRAM evidencing an abrupt set transition and a more
gradual reset process. The latter is due to the migration of ionized defects
activated by field and temperature toward the negatively biased top elec-
trode resulting in a depleted gap along CF [51,206]. The depletion process
is seen to start close to the middle of CF, where T generally reaches its max-
imum value along the CF [206]. This physical explanation of reset process
is supported by the evolution of the defect density calculated by the numer-
ical FEM model [206], which is shown in Fig. 2.4(b) at the end of the reset
transition, i.e., for the HRS. In fact, the map evidences a clear depletion
region, or depleted gap, extending close to the bottom electrode. In this
depleted gap, the concentration of defects is so low that the conductivity
pre-factor σ0 is relatively small, while the energy barrier is large according
to Fig. 2.3, therefore resulting in a relatively large resistance in the depleted
region which is at the origin of the resistance rise during the reset process.

On the other hand, when a positive voltage is applied to the top elec-
trode, ionized defects migrate in the direction of the electric field toward
the bottom electrode, causing a fast increase of defect density in the de-
pleted gap. The map of nD at the end of the set transition, namely for the
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Figure 2.5: 3D contour plots of the defect concentration illustrating the evolution of (a)
set transition by the formation and growth of the CF and (b) reset transition via a
gradual opening of a depleted gap. Copyright 2014 IEEE. Reprinted, with permission,
from [216].

LRS, in Fig. 2.4(c) shows no depleted gap and a continuous CF with low
resistance. More details about the evolution of the CF during set transition
are obtained by 3D contour plots of defect density shown in Fig. 2.5(a).

From the initial HRS, the set process results in the connection of top
and bottom stubs via formation of a sub CF whose diameter φ increases
until reaching a maximum value limited by the compliance current. Fig.
2.5(b) illustrates the evolution of CF shape during reset transition, showing
the formation and the gradual opening of the depleted gap with length ∆
reaching a maximum value in the HRS [206, 216].

Fig. 2.6 shows the (a) measured and (b) calculated current during the re-
set transition as a function of the absolute value of voltage. The I-V curves
are shown for various initial set states (S1, S2, S3 and S4) differing by their
diameter φ, namely initial resistance increases from S1 to S4 as φ decreases
due to a decreasing compliance current IC used during the previous set
transition [217]. Note that the reset voltage Vreset is almost constant for all
set states, thus the reset current linearly increases with LRS conductance
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Figure 2.6: (a)-(b) Measured and calculated I-V characteristics showing reset transitions
at variable initial LRS resistance (S1 - S4). Both measured and simulated curves ev-
idence that Vreset does not depend on initial state. (c)-(d) Measured and calculated
I-V curves for variable HRS (R1 - R4) obtained by voltage sweeps at increasing Vstop

starting from the set state S2 of resistance R = 0.4 kΩ. Vreset increases with the initial
resistance of the HRS. Copyright 2012 IEEE. Reprinted, with permission, from [217].

1/R, or equivalently with the cross-sectional area of the CF. Also, note that
Ireset ≈ IC in Fig. 2.6 (a) and (b) since Vreset is almost equal to VC , i.e., the
critical voltage controlling ionic migration during set transition.

Fig. 2.6 also shows the (c) measured and (d) calculated I-V curves of
reset transition for various initial states, including a set state S2 of resis-
tance R = 0.4 kΩ and four reset states (R1, R2, R3, and R4) of increasing
resistance. These reset states were obtained by applying consecutive reset
sweeps with increasing stop voltage Vstop, namely the maximum voltage in
the reset transition. As Vstop increases, the depleted gap length ∆ increases
in the final reset state, thus R also gradually increases from R1 to R4. The
first reset state R1 was obtained by resetting S2 with Vstop = 0.5 V.

Afterward, starting from R1, a second voltage sweep with Vstop = 0.6 V
is applied causing the device resistance to increase to a higher value cor-
responding to the reset state R2. Finally, R3 and R4 are obtained by the
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Figure 2.7: Measured and simulated Vreset as a function of R for variable set states,
differing by IC in the set transition, and variable reset states, differing by Vstop in
the reset transition. Reset states resulting from set states obtained at two different
values of IC (0.5 mA and 1 mA) are compared in the figure. Note that Vreset is almost
constant for set states, while it increases with R for reset states. Copyright 2012 IEEE.
Reprinted, with permission, from [217].

application of further consecutive sweeps at increasing Vstop resulting in a
further increase of R. Note that Vreset, defined as the first voltage evidenc-
ing an increase of R, increases with the initial resistance of the reset state
in both the experimental data and the calculations, which is in contrast with
the behavior of Vreset observed for set states in Fig. 2.6 (a) and (b).

The different behavior of Vreset is further summarized in Fig. 2.7, col-
lecting the measured and calculated Vreset for variable set and reset states.
Set states are achieved at variable IC while reset states are obtained at vari-
able Vstop starting from 2 initial set states with IC = 1 mA and IC = 0.5 mA,
respectively. In the case of the set states, Vreset remains essentially constant
at 0.4 V since the maximum electric field and maximum temperature in the
CF are not affected by any change in CF diameter and cross-section [215].
On the other hand, reset states with increasing R show an increasing Vreset,
as a result of the increasing length of the depleted gap. In fact, the electric
field is strongly localized at the depleted gap, and the longer is the depleted
region, the smaller is the remaining field across the conductive region of
the CF, where F drives ionic migration at the origin of the reset transition.
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Figure 2.8: Measured and calculated evolution of reset time as a function of (a) pulse
amplitude and (b) 1/kT, where T indicates the maximum temperature in the CF cal-
culated by the numerical model. Copyright 2012 IEEE. Reprinted, with permission,
from [206].

As a result, to activate ion migration in reset states, Vreset must increase
according to the gap extension.

In addition to static DC characteristics as in Figs. 2.4 and 2.6, the nu-
merical drift-diffusion model can provide accurate prediction of AC-type
measurement results, such as Vreset under variable sweep rate, or reset time
at constant voltage. Fig. 2.8 shows the measured and calculated reset time
defined as the time to observe an increase of resistance by 60 % with respect
to the initial value during the reset transition at constant voltage [206,217].
The reset time in Fig. 2.8(a) shows a highly non-linear dependence on the
absolute value of the applied voltage. This can be explained by the Ar-
rhenius dependence of diffusion kinetics in Eq. 2.2, where the local T is
induced by Joule heating, thus increases approximately with the square of
the applied voltage [51]. To support this explanation, Fig. 2.8(b) shows the
reset time as a function of 1/kT, where T was evaluated from the model
as the maximum temperature along the CF at the reset transition. Data
and calculations show a clear exponential dependence, thus evidencing the
Arrhenius dependence and supporting the crucial role of temperature in ac-
celerating ion migration and reset transition.

The FEM model thus shows a full capability to predict device behav-
ior under both basic lab-type experiment, such as quasi-static I-V curves,
and more application-driven explorations of device speed, thus satisfying
the need for industrial technology computer-aided design (TCAD) device
simulations.
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2.3 Analytical model for HfO2 RRAM devices

For the design and simulation of circuits comprising RRAM devices, the
numerical model of Section 2.2 is not suitable because of a relatively high
computational cost and long solution time [205]. This limitation can be
overcome by physics-based compact models, where the device characteris-
tics can be calculated by the solution of simplified analytical equations [66].

In general, the starting point for developing a compact model is to learn
the switching mechanism from a detailed device simulation, such as the
FEM simulation of filamentary switching shown in Fig. 2.5. Here, the
CF shows distinctly different evolutions during set and reset processes: set
transition consists of a sudden appearance of defects within the depleted
gap, followed by a CF growth in terms of defect density and CF diameter
within the depleted gap. On the other hand, reset transition is due to an
increased length of the depleted gap. The “explosive” nature of set process
agrees well with the abrupt change of current in the I-V curves, compared
to the more gradual transition in the reset process.

In the analytical model for RRAM switching described in [66], the dif-
ferent dynamics of set and reset processes can be understood by the positive
or negative feedback of electric field, temperature, and the defect distri-
bution along the CF [66, 206]. In fact, defects during set transition mi-
grate in response to the large electric field across the depleted gap. As
defect migration starts to take place, the depleted gap length decreases,
thus the local electric field increases,which further accelerates defect mi-
gration. Such positive feedback effect would result in a destructive failure
of the device; however, current limitation (compliance) systems introduce
an external negative feedback which allows to reduce the voltage during set
transition, thus preventing destructive breakdown and enabling a detailed
control of the final CF size and resistance [51, 66].

On the other hand, defect migration during reset transition is triggered
by a relatively low electric field across the continuous CF. As the depleted
gap starts to form, the electric field decreases in the CF regions where de-
fects are located, thus slowing down the migration kinetics. As a result
of such negative feedback effect, the voltage must be increased to further
sustain the reset transition, resulting in the gradual increase of resistance.

Fig. 2.9 shows the CF evolution in a filamentary-type RRAM during (a)
set and (b) reset transition [66]. The CF evolution mimics the observed
set/reset migration dynamics in Fig. 2.5, namely, set transition evolves via
the growth of CF diameter φ within the depleted gap region (a), whereas
reset transition occurs by the gradual increase of the depleted gap length
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Figure 2.9: Schematic illustration of filament evolution during switching in RRAM for
(a) set transition, (b) reset transition, and (c) I-V curve calculated with an analytical
model, compared to experimental data for a TiN/HfO2/TiN device. Copyright 2014
IEEE. Adapted, with permission, from [66].

∆ (b). Formally, the rate equations for φ and ∆ resemble the drift/diffu-
sion equations governing the continuous FEM modeling of RRAM [206],
namely:

dφ

dt
= Ae

− EA
kTinj , (2.5)

for set transition, where A is a pre-exponential constant, EA is a voltage-
dependent energy barrier for migration, and Tinj is the local temperature at
the injecting CF tip, namely the one with positive potential. A similar rate
equation was assumed for reset transition, namely:

d∆

dt
= Ae

− EA
kTinj , (2.6)

where Tinj is again calculated at the positively biased, injecting CF
tip [66]. These equations can be viewed as a simplified description of the
CF evolution mechanism, where the CF evolves via Arrhenius-type migra-
tion dynamics controlled by an energy barrier EA, and driven by the local
electric field and the local temperature Tinj .

Fig. 2.9(c) shows the measured and calculated I-V curve obtained by this
model: simulation results show the same abrupt change of resistance dur-
ing set transition, and a gradual change of resistance during reset transition,
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Figure 2.10: Measured and calculated I-V characteristics showing reset transition at in-
creasing sweep rate, namely (a) β = 1 V/s, (b) β = 102 V/s, (c) β = 104 V/s and (d) β
= 106 V/s. Copyright 2014 IEEE. Reprinted, with permission, from [66].

thus demonstrating that it correctly captures the positive/negative feedback
loops controlling the microscopic CF evolution. Among the model equa-
tions, it is necessary to include (i) a shape-resistance relationship allowing
to derive R for each value of φ and ∆, and (ii) a simplified electro-thermal
model allowing to estimate the local temperature Tinj based on the dissi-
pated power V·I, and based on a detailed description of the thermal resis-
tance controlling heat exchange across the time-varying CF and the sur-
rounding oxide layer [66].

In the simulation results of Fig. 2.9, a migration energy barrier EA = 1.2
eV was assumed, thus similar to the values derived from time-dependent
analysis of switching by numerical simulations [206], and similar to inde-
pendent ab-initio studies of diffusion barriers in amorphous HfO2 [218].

To better support the feasibility of Eqs. 2.5 and 2.6 combined with this
value of EA, Fig. 2.10 shows the measured and calculated I-V curves de-
scribing the reset transition at variable rate of the applied voltage sweep [66].
As the sweep rate β = dV

dt
was increased from 1 Vs−1 to 106 Vs−1, the re-

set voltage and corresponding reset current increased by about a factor 2,
although the initial LRS resistance was kept constant. This is due to the
time-dependent reset dynamics, where a higher local Tinj , hence a higher
Vreset , is needed to trigger ionic migration within a shorter time according
to the Arrhenius law in Eqs. 2.5 and 2.6.

The analytical simulations in Fig. 2.10 agree very well with the ex-
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Figure 2.11: Measured and calculated (a) average LRS resistance R, (b) reset current
Ireset and (c) reset voltage Vreset, as a function of the compliance current IC . Data
were collected for integrated one-transistor/one-resistor (1T1R) structures allowing
control of the LRS in the range 10-100 kΩ for IC in the range 10-100 µA. Calcula-
tions agree very well with experimental data, supporting multilevel cell control of LRS
resistance and low power operation of RRAM. Copyright 2014 IEEE. Reprinted, with
permission, from [216].

perimental data, supporting the accuracy of the rate equations and of the
energy barrier EA assumed in the calculations of resistance switching in
TiN/HfO2/TiN. Note that a different material and/or stack would lead to
different values of A and EA in the equations; thus, this compact model
requires careful adjustment to describe a specific RRAM technology.

The model also accounts for the dependence on current compliance IC
via the LRS resistance.

Fig. 2.11 shows (a) the measured and calculated resistance R, (b) reset
current Ireset and (c) reset voltage Vreset, as a function of IC . These ex-
perimental results were collected for integrated one-transistor/one-resistor
(1T1R) structures, where the small parasitic capacitance allowed for a tight
control of the maximum current during set transition close to IC and with-
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out significant overshoots [219]. As IC decreases, LRS increases as a result
of the reduced maximum CF size reached within the experimental time,
which was about 1 s in the DC experiments of Fig. 2.11. In fact, a rel-
atively small IC causes a negative-feedback-induced voltage snap back to
occur at relatively low current, thus forcing the final resistance to a rela-
tively high value R = VC /IC , where VC is a characteristic voltage capable
of inducing ionic migration on experimental time scale [51, 66]. Analysis
of data in the figure indicates VC = 0.5 V for these experimental devices, in
agreement with other RRAM device technologies including both unipolar
and bipolar switching RRAMs [66]. The reset current increases with IC as
a result of the decreasing R and of the constant reset voltage Vreset. This
is almost equal to VC , thus suggesting a symmetric behavior of ionic mi-
gration with respect to voltage polarity. Two device types differing in HfO2

thickness and deposition recipe are compared in the figure [216,220], how-
ever indicating only minor deviations. In particular, the value of VC was
shown to depend only slightly on the device material/stack and geometry
parameters, such as the thickness of the oxide layer, or the length of the
CF [51]. This can be explained by the analytical formula for the maximum
temperature along the CF, given by:

T = T0 +
Rth

R
V 2 = T0 +

V 2

8ρkth
, (2.7)

where T0 is the room temperature, Rth/R is the ratio between thermal
and electrical resistances of the CF, V is the voltage drop across the CF, ρ
is the electrical resistivity and kth is the thermal conductivity of the CF ma-
terials. The equation indicates that the local temperature does not depend
on CF thickness, but is solely controlled by applied voltage since Rth/R is
approximately constant. The balancing effect of thermal/electrical resis-
tances can be explained as follows: as the thickness increases, the power
dissipation P = V2/R within the CF decreases, while the corresponding tem-
perature along the CF increases. As a result, the same voltage VC is needed
to achieve the critical temperature needed to induce migration within the
time scale of the experiment [51].

2.4 Stochastic model for HfO2 RRAM devices

A key challenge of RRAM devices is the switching variability, where a
single cell operated for several set/reset cycles displays different switching
characteristics from cycle to cycle [216, 220]. Similarly, RRAM devices
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Figure 2.12: Sequences of voltage pulses used to characterize (a) random reset and (b)
random set transitions in a 1T1R structure. Copyright 2016 IEEE. Reprinted, with
permission, from [127].

can display a cell-to-cell variability, where different cells display different
switching processes.

To study switching variability, the I-V characteristics are usually col-
lected on Ti/HfOx/TiN RRAM samples with 1T1R structure [127]. To ad-
dress the stochastic variation of conductance, set and reset transitions were
experimentally studied at variable applied voltage with the application of
triangular pulses as shown in Fig. 2.12.

First, the reset statistics at variable Vstop was studied by the pulse se-
quence in Fig. 2.12(a), including an initial reset/set sequence to prepare the
device in the LRS, followed by a negative voltage pulse with increasing
amplitude Vstop to induce a reset transition. On the other hand, Fig. 2.12(b)
shows the sequence adopted to study the set statistics, including an initial
set/reset sequence to prepare the device in the HRS, followed by a final tri-
angular voltage pulse with increasing positive amplitude VA. Both set and
reset experiments were repeated for 103 times to obtain resistance distribu-
tions based on sufficient statistics [127].

Fig. 2.13(a) shows the cumulative distributions of resistance obtained
via the reset measurements with variable Vstop from -0.7 V to -1.6 V. As
Vstop increases, the average resistance increases from LRS (insufficient
voltage to induce reset) to HRS [221]. The figure also shows calculated
distributions according to an empirical Monte Carlo model aimed at pre-
dicting the HRS distributions as a function of Vstop. The distributions were
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Figure 2.13: (a) Measured and calculated cumulative distributions of resistance describ-
ing reset states at increasing |Vstop|, (b) average values µLRS and µHRS , and (c)
standard deviations σLRS and σHRS as a function of Vstop. The average values and
standard deviations can be used to calculate the reset statistical distribution by a Monte
Carlo model of synaptic weight update. Copyright 2016 IEEE. Reprinted, with permis-
sion, from [127].

calculated by the superposition of a lognormal sub-distribution of LRS with
average value µLRS and standard deviation σLRS , and a lognormal sub-
distribution of HRS with average value µHRS and standard deviation σHRS .
Fig. 2.13(b) shows the average values µLRS and µHRS , while Fig. 2.13(c)
shows the standard deviations σLRS and σHRS as a function of Vstop. The
use of this set of parameters allows for the calculation of the HRS distribu-
tions after synaptic depression at a generic voltage Vstop [127].
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Figure 2.14: (a) Measured and calculated cumulative distributions of resistance obtained
by the random set experiments at increasing VA. (b) I-V characteristics corresponding
to 3 possible results of the set process, namely set transition (state A), no set transi-
tion (state B), and incomplete set transition (state C). (c) Measured and calculated set
probability Pset as a function of VA. Copyright 2016 IEEE. Reprinted, with permis-
sion, from [127].

Fig. 2.14(a) shows the measured distributions of resistance with increas-
ing applied voltage VA for set transition. Starting from the HRS, the appli-
cation of a pulse of voltage VA results in set transition only for a fraction of
cycles, as shown in Fig. 2.14(b). Here, the set process for a given voltage
(VA = 1.2 V) appears to be random, as a result of the statistical variability
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of the set voltage Vset. For instance, the set transition takes place for cycle
A as VA is larger than Vset for that particular cycle. On the other hand, no
set transition is seen for cycle B, due to VA < Vset.

Finally, an incomplete set transition occurs for cycle C, possibly due
to VA being very close to Vset, and the migration taking place for a rela-
tively short time during the pulse. States A (LRS), B (HRS), and C (in-
complete LRS) are shown in the distributions of Fig. 2.14(a) for reference.
Fig. 2.14(c) shows the probability for set transition as a function of VA,
with the criterion that the resistance R is below 80 kΩ. The set probability
increases as VA increases compared to the average Vset. The figure also
shows the calculated results of the compact formula for Pset given by:

Pset =
1 + erf(VA−µV√

2σV
)

2
, (2.8)

where µV = 1.3 V and σV = 0.193 V are the average value and stan-
dard deviation of Vset, respectively. Based on Pset, it is possible to predict
the distributions of R in Fig. 2.14(a) by a Monte Carlo model combinating
random HRS and LRS resistance with probabilities 1-Pset and Pset, respec-
tively. The results are in good agreement with the measured distributions,
supporting the stochastic Monte Carlo model for RRAM resistance distri-
butions. For example, the stochastic set process in Fig. 2.14(a) can be use-
ful for true random number generator (TRNG), aimed at generating random
bits by the inherent stochastic phenomena in the device physics [222, 223].

2.5 Conclusions

In this chapter, a previous FEM numerical model of HfO2 RRAM devices
capable of providing a deep understanding of set and reset processes and
their microscopic interpretation has been first reviewed. Afterward, a pre-
vious compact analytical model based on detailed device characteristics
achieved by numerical model has been discussed evidencing its capability
of accurately capturing the different dynamics of set and reset processes by
positive and negative feedback effects, respectively. Finally, a stochastic
Monte Carlo simulator capable of accurately predicting the statistical vari-
ability of set and reset transitions in HfO2 RRAM devices, which makes
it particularly suitable for calculation of synaptic weight updates in neuro-
morphic circuits with RRAM-based synapses, has been presented.
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CHAPTER3
Resistive switching synapses for

neuromorphic computing

3.1 Introduction

Neuromorphic computing is attracting an increasing interest for cognitive
functions, such as pattern recognition [152] and natural language process-
ing [157]. In a neuromorphic circuit, integrate-and-fire (I&F) neurons are
connected by synapses, and usually process information by event-driven
spiking activity [6]. Spikes serve for both carrying the information and
inducing plasticity in the synapses, which forms the basis for learning.
Brain-inspired learning rules are generally based on the timing of the spike
arriving from the pre-synaptic neuron, or PRE, and the spike delivered by
the post-synaptic neuron, or POST. For instance, in spike-timing dependent
plasticity (STDP), the change of synaptic weight is dictated by the delay
between PRE and POST spikes. STDP has been demonstrated to occur in
certain synapses in the brain [111, 112], and are currently among the most
popular approaches for unsupervised training of neural networks [123,224,
225].

Other learning rules have been considered to be responsible for learn-
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ing in biological neural networks. According to the Bienenstock-Cooper-
Munro (BCM) theory [226], synaptic plasticity is governed by the PRE
and POST spike frequency, rather than the timing of a pair of PRE and
POST spikes. A high frequency of PRE and POST spikes leads to po-
tentiation, while a low frequency leads to depression. This spike-rate de-
pendent plasticity (SRDP) has been recognized as a bio-realistic learning
rule [227], and linked to triplet based learning rules [135], where potenti-
ation relies on the temporal occurrence of 3 spikes [134]. Integrated cir-
cuits capable of learning by STDP or SRDP rules generally require com-
plicated and large synaptic blocks hosting multiple transistors and capac-
itors [106, 228]. To enable small-area synapse, hence high density neural
circuits, emerging memories such as resistive switching memory (RRAM)
and phase change memory (PCM) have recently attracted a strong inter-
est [114,115,118,119,121,126–128,137,141,229,230]. The development
of RRAM-based SRDP synapses is still a major challenge for neuromor-
phic engineering [129, 138–140, 146, 231].

In this chapter, which is based on works [118, 127, 129, 143, 232], two
RRAM-based synaptic structures capable of STDP and SRDP, respectively,
are presented. First, a hybrid structure comprising a RRAM device seri-
ally connected to one transistor, referred to as one-transistor/one-resistor
(1T1R) structure, is described to demonstrate STDP rule via experiments
and simulations at the level of single device. In addition, a resistive synapse
with 4-transistors/one-resistor (4T1R) structure is described to demonstrate
a SRDP learning rule where potentiation and depression processes are achieved
via 3-spike overlapping according to a modified triplet rule. To support sim-
ulation results, frequency-dependent synaptic operation was also tested on
a synapse prototype providing extensive experimental characteristics.

3.2 1T1R synapse for STDP learning

3.2.1 1T1R synapse structure

Fig. 3.1(a) shows the sketch of a hybrid CMOS/RRAM synapse with 1T1R
structure consisting of a RRAM device, which is based on a Si-doped HfOx

layer interposed between a TiN bottom electrode (BE) and a Ti top elec-
trode (TE), serially connected to a field-effect transistor (FET). In 1T1R
synapse, FET serves as selector element enabling to access the device for
the gate voltage VG above the threshold voltage and also the limitation of
compliance current IC to control the CF diameter, hence the current con-
sumption during set and reset processes. Fig. 3.1(b) shows the measured
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Figure 3.1: (a) Sketch of an electronic synapse based on a Ti/HfOx/TiN RRAM device
with 1T1R configuration, and (b) measured I-V characteristics of a 1T1R synapse with
compliance current IC = 50 µA during the set transition. The gate voltage VG allows
to control the compliance current IC . Copyright 2016 IEEE. Adapted, with permission,
from [127].

I-V characteristics of a Ti/HfOx/TiN RRAM, with the compliance current
of 50 µA controlling the conductance of the low resistance state (LRS),
while the high resistance state (HRS) is controlled by Vstop. Also, note that
set transition to achieve LRS is activated at voltage Vset ≈ 1.5 V while reset
transition to achieve HRS is activated at voltage Vreset ≈ -1 V [127].

In Fig. 3.2, the 1T1R synapse is shown as a connecting element between
a pre-synaptic neuron (PRE) and a POST-synaptic neuron (POST) [127,
233, 234]. The PRE is connected to the gate of the FET in the 1T1R struc-
ture, while the POST receives the synaptic current from the BE while con-
trolling the voltage at the TE of the 1T1R structure.

The operation of the 1T1R synapse can be understood as follows: as the
PRE emits a positive voltage spike, the FET acts as a pass-transistor en-
abling a synaptic current proportional to the RRAM synaptic conductance.
The current spike enters the POST via the BE which can collect incoming
currents from several synaptic channels, as in the ideal McCulloch-Pitts
(MCP) neuron scheme [235]. The currents are integrated in the I&F POST
circuit, eventually leading to a fire event as the integral signal Vint hits the
threshold Vth. At fire, the POST generates a spike toward the next layer of
neurons, and additionally applies a feedback spike to the synapse TE. The
feedback spike consists of the sequence of a positive pulse with amplitude
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Figure 3.2: Sketch of a resistive synapse with 1T1R configuration connected to a pre-
synaptic (PRE) neuron and a post-synaptic (POST) neuron. As a spike is emitted by
PRE, a current spike is activated across the synapse leading to an increase of Vint

within the POST. As POST integration leads Vint to exceed the internal threshold Vth,
a fire spike is backward applied to the TE of the 1T1R synapse, causing a weight update
according to STDP. Copyright 2016 IEEE. Adapted, with permission, from [233].

VTE+ > Vset and a negative pulse with amplitude VTE− < Vreset, which
can induce a weight update depending on the relative timing with the PRE
spike referred to as spike-timing dependent plasticity (STDP).

3.2.2 Potentiation and depression in 1T1R synapse

To achieve STDP functionality, spike waveforms are designed so that if
PRE spike shortly precedes the POST spike (Fig. 3.3(a)), namely the rela-
tive time delay ∆t = tPOST - tPRE is positive (0 < ∆t < 10 ms), PRE spike
only overlaps with the positive pulse within POST spike, thus inducing a
set transition in RRAM device, which results in the long-term potentiation
(LTP) of 1T1R synapse (synaptic weight increase) as a result of RRAM
conductance change from HRS to LRS.

On the other hand, if the PRE spike shortly follows the POST spike
(Fig. 3.3(b)), namely the relative time delay ∆t is negative (-10 ms < ∆t < 0),
PRE spike only overlaps with the negative pulse within POST spike caus-
ing a reset transition in RRAM device which results in the long-term de-
pression (LTD) of 1T1R synapse (synaptic weight decrease) as a result of
RRAM conductance change from LRS to HRS.
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Figure 3.3: STDP implementation by overlapping PRE and POST spikes. (a) If the PRE
spike occurs before the POST spike (∆t > 0), the resistance decreases due to the posi-
tive TE spike causing set transition, or synaptic potentiation. (b) Otherwise, if the PRE
spike occurs after the POST spike (∆t < 0), the resistance increases due to the nega-
tive TE spike causing reset transition, or synaptic depression. Copyright 2016 IEEE.
Adapted, with permission, from [233].

3.2.3 STDP experimental demonstration by 1T1R synapse

STDP implementation by 1T1R synapse was corroborated by experimental
measurements at device level [118]. Fig. 3.4(a) shows a pair of PRE and
POST voltage spikes with a positive delay ∆t = 3 ms to explore LTP and a
pair of PRE and POST voltage spikes with a negative delay ∆t = -7 ms to
study LTD. As a result, Fig. 3.4(b) shows the measured resistance evidenc-
ing a resistance decrease from HRS to LRS, namely a synaptic potentiation
event, in response to the application of first PRE/POST spike pair and a
resistance increase from LRS to HRS, namely a synaptic depression event,
in response to the application of second PRE/POST spike pair.

Also, Fig. 3.4(c) shows the correlation plot of the resistance R(ti+1) mea-
sured after the spike application as a function of R(ti) measured before
the spike application, for variable ∆t [118]. Under potentiation condition,
namely for positive delay satisfying 0 < ∆t < 10 ms, a RRAM prepared
in HRS undergoes a set transition to the LRS, whereas if the RRAM de-
vice is initially in LRS, no resistance variation occurs because the RRAM
is already at its minimum resistance state [118, 127, 236]. For negative de-
lay satisfying -10 ms < ∆t < 0, corresponding to the condition for synaptic
depression, a resistance transition is activated when the RRAM device is
initialized in its LRS. Finally, if ∆t assumes values outside the plasticity
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Figure 3.4: (a) PRE and POST voltage waveforms applied to the gate and the TE, re-
spectively, in case of positive delay (left) and negative delay (right). (b) Measured
resistance evidencing a transition from HRS to LRS (synaptic potentiation) in the case
of positive delay and a transition from LRS to HRS (synaptic depression) in the case of
negative delay. (c) Correlation plot of the RRAM resistance at epoch ti+1 R(ti+1) as a
function of the RRAM resistance at epoch ti R(ti) for variable ∆t, corresponding to the
cases of potentiation, depression, and no change of weight because of excessive delay.
Adapted from [118].

window (|∆t| > 10 ms), the PRE and POST spikes do not overlap, therefore
the RRAM resistance does not change. As a result of the full set/reset op-
erations taking place in the plasticity mechanism, the 1T1R synapse only
displays HRS and LRS resistive levels, thus evidencing the binary opera-
tion of the 1T1R synaptic device due to the relatively abrupt set and reset
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Figure 3.5: (a) Measured and (b) calculated STDP characteristics indicating the relative
change of resistance R0/R as a function of ∆t for variable initial resistance states R0,
from full LRS (R0 = 25 kΩ) to full HRS (R0 = 500 kΩ). Potentiation and depression
are both a function of time delay and the initial synaptic state, resulting in the final
state being either HRS or LRS. Copyright 2016 IEEE. Reprinted, with permission,
from [127].

transitions [118].
Note that more resistance levels can be achieved by time dependent

modulation of the PRE and POST spikes as in the 2T1R synapse circuit pro-
posed in [119]. In this synapse architecture, the waveform of the PRE spike
allows for time-dependent potentiation, where a longer ∆t corresponds to
a smaller conductance due to the lower compliance current during set tran-
sition. On the other hand, the waveform of the POST spike allows for
time-dependent depression, where a longer ∆t corresponds to a smaller re-
sistance due to the lower voltage applied during reset transition [119]. The
enhanced functionality comes at the expense of a slightly higher complex-
ity of the 2T1R synapse circuit, requiring 2 transistors instead of only one
in the 1T1R synapse.

3.2.4 STDP characteristics

To further support the dependence of STDP on initial state in the 1T1R
synapse, Fig. 3.5 shows the (a) measured and (b) calculated STDP char-
acteristics, namely the ratio between the initial resistance R0 and the final
resistance after potentiation/depression, as a function of ∆t for increasing
R0 [127]. Calculations were done based on the analytical model for RRAM
devices [66] discussed in the section 2.3.

These results show binary STDP behavior, where the amount of potenti-
ation and depression is a function of R0. The variable change of resistance
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Figure 3.6: 3D color plot of calculated STDP characteristics shown in Fig. 3.5(b). Copy-
right 2016 IEEE. Reprinted, with permission, from [127].

allows the final resistance to be equal to either HRS or LRS, in strong anal-
ogy with biological synapses where the weight update is limited between
two boundary states.

Finally, Fig. 3.6 further illustrates the three-dimensional (3D) color map
of the calculated STDP characteristics, evidencing the increase of potenti-
ation/depression level of 1T1R synapse with increasing/decreasing R0 for
positive/negative ∆t [127].

3.3 4T1R synapse for SRDP learning

3.3.1 4T1R synapse structure

According to some biological experiments [133], the rate of the spiking
activity has a significant impact on plasticity of biological synapses.

To emulate the dependence of weight update process on spike rate ob-
served in a biological synapse as one schematically depicted in Fig. 3.7(a),
a synapse circuit capable of capturing SRDP was developed. The synapse
shown in Fig. 3.7(b) consists of a hybrid CMOS/RRAM structure, combin-
ing 4 MOS transistors and a bipolar-switching RRAM device [118, 237],
and serving as connection between a PRE and a POST [129]. In the synap-
tic circuit, the transistors are arranged in 2 branches, namely transistors M1

and M2 which are responsible for synaptic long-term potentiation (LTP),
and transistors M3 and M4 for synaptic long-term depression (LTD). The
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Figure 3.7: (a) Sketch of a biological synapse connecting PRE- and POST-synaptic neu-
rons and (b) schematic illustration of corresponding PRE-synapse-POST circuit. 4T1R
synapse is capable of LTP via M1/M2 branch, which is controlled by PRE spikes at av-
erage frequency fPRE induced by external stimuli, and LTD via M3/M4 branch, which
is activated by PRE and POST noise spikes at average frequencies f3 and f4, respec-
tively. Copyright 2018 IEEE. Reprinted, with permission, from [143].

RRAM device is connected in series to the parallel of branches M1/M2 and
M3/M4. The PRE spike is applied to the gate of M1 and, after a delay by a
time ∆tD, to the gate of M2. The gate of M3 is driven by a random noise
PRE spiking. The POST consists of an I&F circuit, which delivers a fire
spike to the TE of RRAM device as the internal potential resulting from
integration exceeds a certain threshold [98, 127]. The POST also generates
a negative noise spike that is alternatively submitted to the TE and, after
inversion, to the gate of M4. The POST multiplexer (MUX) activates the
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Figure 3.8: Illustrative description of spike timing inducing (a) LTP for high frequency
PRE spiking activity, (b) no LTP for low frequency PRE spiking activity, and (c)
stochastic LTD via PRE and POST noise spikes. Copyright 2016 IEEE. Adapted, with
permission, from [129].

fire channel on at every POST fire, temporarily inhibiting the noise channel
to the TE. Noise spikes can be obtained by tunable random number gen-
erator circuits, e.g., by amplification of thermal noise, e.g., 1/f noise [238]
or random telegraph noise [239], or by random set processes in RRAM
devices [222, 240].

The hybrid CMOS/RRAM structure of 4T1R synapse has some key ad-
vantages compared to previous approaches where SRDP was demonstrated
by specific RRAM materials, such as Ag2S [231], Ag/AgInSbTe/Ag [138],
Pt/FeOx/Pt [139], Al/TiO2−x/AlOx/Al [140], and Ag/SiON [146]. In par-
ticular, 4T1R synapse relies on memory-grade RRAM technology with fast
switching, long endurance and long-term retention, which might be used in
a multipurpose system-on-chip (SoC) for several functions, including em-
bedded nonvolatile memory for code/data storage, generation of random
keys for hardware security functions, such as a physical unclonable func-
tion (PUF) [223], and neuromorphic synapse/neuron circuits for on-chip
cognitive computation.

3.3.2 Potentiation and depression in 4T1R synapse

Potentiation at high PRE-spike frequency

Synapse potentiation takes place at high frequency of PRE spiking, as
shown by Fig. 3.8(a). In fact, if the PRE frequency is higher than ∆tD−1
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(fPRE > ∆tD−1), there is a strong probability for the gate of M1 (activated
by a spike at time t) and the gate of M2 (activated by a previous spike de-
layed by ∆tD) to be stimulated at the same time. The repeated and simul-
taneous activation of M1 and M2, forming a NAND gate, results in current
spikes which are integrated in the I&F circuit and finally cause fire. The
fire spike is then delivered to the TE of RRAM such that the overlapping
spikes at M1, M2 and TE induce a set process of the resistive device, hence
a LTP event. Note that the positive fire spike is also applied to the gate of
M4 after inversion, which deactivates the M3/M4 branch.

In summary, a high PRE spiking frequency causes LTP through the
M1/M2 branch. This result supports the need for a triplet of spikes (PRE-
PRE-POST) to induce a frequency dependent potentiation of a synapse [134,
135].

Depression at low PRE-spike frequency

As shown in Fig. 3.8(b), PRE spiking at low frequency (fPRE � ∆tD−1)
cannot activate the NAND-type M1/M2 branch, thus LTP cannot take place.
On the other hand, random noise spikes from the PRE and the POST can
simultaneously activate M3 and M4, respectively, as shown in Fig. 3.8(c).
Since the negative POST noise is applied to the TE, the simultaneous noise
spiking of the PRE and POST leads to a stochastic reset process of the
RRAM device, hence synaptic LTD event. As a result, the SRDP un-
dergoes synapses LTP or LTD depending on the competition between the
spike-controlled activation of the M1/M2 and the M3/M4 branch, respec-
tively [129].

Note that the 2-branch, 4T1R structure might be relatively expensive
from the viewpoint of area consumption, e.g., compared to 1T1R synapses
[127] and 2T1R synapses [119] for STDP. However, this is the minimum
structure to serve the function of online potentiation/depression from rate-
coded spiking information.

3.3.3 SRDP characteristics

The potentiation/depression dynamics of the 4T1R synapse was studied by
individually testing each branch by an integrated 2T1R structure, consisting
of 2 transistors and a HfO2 RRAM device in series [241].

The bipolar-switching RRAM used in these experiments had a Ti TE
and a TiN BE. The active material was Si-doped HfO2 deposited with an
amorphous phase. The Ti top electrode also plays the role of creating an
oxygen exchange layer (OEL), by inducing an oxygen vacancy rich layer by
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Figure 3.9: Measured and calculated cumulative distributions of resistance R (a) before
and (b) after learning and (c) measured and calculated average R for increasing fPRE .
(d) Number of overlapping PRE spikes activating M1 and M2 as a function of fPRE .
Copyright 2016 IEEE. Reprinted, with permission, from [129].

oxygen gettering [241]. The TiN layer served as inert BE to prevent break-
down during the bipolar switching operation of the device. In addition, the
size of transistors used in the structure was W/L = 3 µm/1.45 µm [242].

To demonstrate the synaptic potentiation induced by a high frequency
PRE spiking, the LTP branch was characterized by applying a constant pos-
itive voltage of 2 V to the TE, while the gate of M1 was stimulated by a train
of random spikes with amplitude 3.2 V, pulse-width 1 ms and average fre-
quency fPRE . The same train was delayed by a time ∆tD = 10 ms, then
applied to the gate of M2. The M2 pulse amplitude was also reduced to
1.6 V to limit the overall current to a compliance level IC = 50 µA during
set process for a controlled LTP. The RRAM device was prepared in a HRS
of about 150 kΩ to check the LTP statistics during a 0.75-s-long training
process with given value of fPRE . The training experiment was repeated
1000 times on the same devices for each value of fPRE .

Fig. 3.9 shows the measured and calculated distributions of R (a) be-
fore and (b) after each training process, for increasing fPRE . The initial
distribution in Fig. 3.9(a) corresponds to the initial HRS, as obtained by a
reset pulse of -1.6 V applied to the TE with gate voltage 3.2 V applied to
M1 and M2. The distributions in Fig. 3.9(b) after training show increas-
ing fractions of LRS for increasing fPRE , with average LRS resistance of
20 kΩ. In particular, note that the probability of set transition is high only
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Figure 3.10: (a) Measured and calculated average R for increasing fPRE . (b) Number of
overlapping PRE spikes activating M1 and M2 as a function of fPRE . Copyright 2016
IEEE. Reprinted, with permission, from [129].

for fPRE≥ 100 Hz, corresponding to an average time between 2 consec-
utive spikes of about ∆tD. Figs. 3.9(a) and (b) also show calculated dis-
tributions obtained by the stochastic model of RRAM device discussed in
Sec. 2.4 [127], derived from the analytical model of bipolar RRAM dis-
cussed in Sec. 2.3 [66]. The distributions were accurately predicted by
calculating the probability for spike overlap within the 0.75-s-long training
sequence, and assuming a R-dependent variability for LRS and HRS [127].
Fig. 3.10(a) summarizes the results by showing the measured and calcu-
lated average R as a function of fPRE . The transition to the LTP regime
occurs abruptly for fPRE = ∆tD−1.

Note that the SRDP synapse works as a binary synapse, namely, the
RRAM device in the 4T1R structure is always found in either LRS or HRS.
This is due to the rather abrupt transitions of set and reset process in the
adopted HfO2 RRAM [127]. However, the adoption of RRAM devices
with materials capable of gradual set/reset processes, such as PCMO [243]
or TaOx/TiOx bilayers [244], might result in analog SRDP of the synapse,
with advantages in terms of gray-scale learning [118].

These results can be understood by the increasing probability for spike
overlapping at M1 and M2 for increasing fPRE , as shown in Fig. 3.10(b).
Both experiments and calculations show that the overlap probability in-
creases with fPRE2, as expected for the joint probability of 2 indepen-
dent spikes in the Poissonian train exciting the LTP branch at the same
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f4

Figure 3.11: Measured and calculated average R resulting from LTD branch characteriza-
tion for increasing PRE noise frequency f3 at fixed POST noise frequency f4. Copyright
2016 IEEE. Reprinted, with permission, from [129].

time [129].
To demonstrate LTD, the same 2T1R structure was tested by stimulating

one transistor (M3) by a spike train of amplitude 3.2 V at variable frequency
f3, while the other transistor (M4) was stimulated by a spike train of ampli-
tude 1.6 V and average frequency f4 = 10 Hz. The same pulse sequence of
the gate of M4 was applied after inversion to the TE. This training sequence
was maintained for 6000 epochs, equivalent to 6 s, and each experiment
was repeated 5 times after preparing the device in the LRS. Fig. 3.11 shows
the measured and calculated R as a function of f3, indicating a transition to
the LTD regime for f3 > f4, as the overlap probability becomes sufficiently
large to allow for at least one reset transition [129].

Note that the particular choice of frequency operation for potentiation
and depression is dictated by the analogy with biological systems, e.g., ex-
periments on synaptic plasticity in vitro [227]. Note however that, by tuning
∆tD, fPRE and noise frequencies f3 and f4, it is possible to freely vary the
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Figure 3.12: Calculated color map of synapse conductance change R0/R for variable
fPRE and ∆tD

−1 evidencing LTP (red), LTD (blue), and no weight change (green).
Copyright 2018 IEEE. Reprinted, with permission, from [143].

operation frequency, e.g., for accelerated training of neural networks. The
ultimate frequency for SRDP synapse is in the range of 1 GHz, because of
limitations in the RRAM switching time of a fraction of ns [245, 246].

3.3.4 SRDP simulation in 4T1R synapse

To support the experimental study of 4T1R synapse, extensive simulations
at level of single synapse device were carried out using the stochastic model
of RRAM device [127]. All the calculated results were collected in a color
map, reported in Fig. 3.12, showing synaptic weight change R0/R as a
function of fPRE and the reciprocal of time delay ∆tD−1 by settling an
initial intermediate resistance R0 = 100 kΩ and training time of 1 s. Ide-
ally, LTP transition should take place for any fPRE ≥ ∆tD−1 however, be-
ing the training time limited to 1 s, no conductance change is observed as
fPRE and ∆tD−1 assume low values because no spike overlap events occur.
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In addition, the map evidences that LTD transition can be also observed
for fPRE < ∆tD−1 provided that PRE and POST noise rates, both set to
∆tD−1/10, are sufficiently high.

3.4 Conclusions

In this chapter, the well known STDP rule has been demonstrated by a
1T1R RRAM synapse structure via experiments and simulations at device
level. In addition to 1T1R synapse, another synapse circuit implementing
SRDP rule that is considered as a fundamental learning rule in the human
brain has also been presented. This hybrid synapse combines one RRAM
device with 4 MOS transistors arranged in 2 NAND-type branches, serv-
ing the LTP and LTD functions in SRDP. Noise is used to induce LTD of
synapses connected to neurons spiking at low frequency. Finally, to exten-
sively investigate LTP and LTD in 4T1R synapse, experiments on integrated
2T1R structures and simulations at the level of device have been carried
out supporting the feasibility of SRDP algorithm in hybrid CMOS/RRAM
synapses.
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CHAPTER4
Feedforward spiking neural networks with

1T1R RRAM synapses for unsupervised
pattern learning

4.1 Introduction

In last 60 years, the development of computing machines capable of human-
like cognitive behavior, also known as artificial intelligence (AI), has been
the subject of intensive research [247]. Specifically, human abilities includ-
ing image recognition and classification [152], speech recognition [154],
translation of sentences [155] and playing games such as AlphaGo [158,
159] have recently been demonstrated with outstanding accuracy via software-
based deep neural networks (DNNs) trained on central processing units
(CPUs) or graphic processing units (GPUs) accelerators of conventional
computing platforms based on von Neumann architecture.

However, although AI has achieved very high levels of performance in
this class of machine/deep learning tasks [152], CMOS-based digital com-
puters perform brain-inspired tasks inefficiently. This is first due to the
large area and slow data movement resulting from physical separation of
processing and memory units in von Neumann architecture. In addition,
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increasing complexity of emerging cognitive tasks demands a power dissi-
pation much higher than the power consumption of biological brain, which
is approximately 20 W [107], as a result of the radically different comput-
ing schemes used in conventional digital computers and brain, respectively.

In fact, while in digital computers information is transmitted through
bits according to a clock signal at a very high frequency in the range of
GHz, in the human brain information is transmitted through spikes sparsely
emitted by biological neurons at a very low frequency of 10 Hz [82, 107].
As a result, this event-driven computing scheme makes the brain operation
extremely energy-efficient since the energy consumption occurs only where
and when the information is processed [6].

To achieve brain’s energy efficiency and massive parallelism in hard-
ware, a new class of material-based devices called memristors [17] has been
intensively investigated in recent years for implementing artificial synapses
in high-density hardware spiking neural networks [39, 107, 110]. Unlike
synapse circuit implementations in CMOS technology which are very ex-
pensive in terms of area [4, 106], emerging memory devices such as PCM
and RRAM feature a great potential to meet the hard challenge of replicat-
ing the massive synaptic density (≈ 104 synapses per neuron on average)
and low power consumption of the brain thanks to their nanoscale size,
tunable resistance and low current operation [114].

In addition to synaptic density, synaptic arrangement also plays a funda-
mental role in the brain to achieve learning. In this frame, taking inspiration
from significant computational abilities shown by a simple 2-layer feedfor-
ward neural network model referred to as perceptron in selective learning
and recognition of incoming sensory patterns [248,249], the use of spiking
neurons and memristive plastic synapses in feedforward neural networks
has recently attracted an increasing interest leading to demonstrations of
unsupervised learning and recognition of visual/auditory patterns at the
level of both simulation [116, 121–128, 250] and hardware [118, 129–131].

In this chapter, which is based on the works [118, 127, 129, 232, 251],
unsupervised learning and recognition of visual patterns is demonstrated by
2-layer feedforward neural networks equipped with 1T1R RRAM synapses
capable of STDP in both simulation and hardware. In addition to single
pattern learning, other fundamental cognitive functionalities such as on-line
learning of two sequential patterns and on-line learning of multiple patterns
are also demonstrated. Finally, the impact of noise on learning performance
in a RRAM-based perceptron neural network is extensively investigated via
experiments supported by simulations.
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Figure 4.1: Sketch of a two-layer perceptron neural network consisting of 64 pre-synaptic
neurons (PREs) within the input layer and only 1 post-synaptic neuron (POST) within
the second layer.

4.2 Unsupervised learning of a single visual pattern

Learning ability in biological brain is considered to arise from changes in
synapse strength driven by the spiking activity of neurons in neuronal net-
works [252].

Thus, to achieve a conclusive proof of concept for brain-inspired learn-
ing is not enough to implement learning rules such as STDP at the level of
single synaptic element, as discussed in the Sec. 3.2, but rather demonstra-
tions at network level are essential.

Here, a classical 2-layer feedforward neural network referred to as per-
ceptron [248, 249] is designed and simulated to demonstrate unsupervised
learning of visual patterns.

Fig.4.1 shows a schematic illustration of the simulated perceptron neu-
ral network consisting of a first layer, called pre-synaptic layer, with 64
pre-synaptic neurons (PREs) fully connected to the only one post-synaptic
neuron (POST) of second layer by synapses implemented via 1T1R struc-
tures. To achieve unsupervised learning of a visual pattern, the network
is operated according to a stochastic approach, namely, at any epoch con-
sisting of a 10 ms time step, either the pattern “O” shown in Fig. 4.2(a),
or random noise, as for instance one shown in Fig. 4.2(b), is alternatively
submitted with equal probability of 50% to the PREs [127].
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Figure 4.2: Color plots of (a) pattern “O” and (b) an example of random noise image
being submitted to the perceptron network for a single pattern learning simulation. (c)
At any epoch, pattern and noise are alternatively presented with equal probability to
PREs, (d) leading POST to fire as Vint hits the threshold Vth.

In response to the stochastic presentation of pattern and noise shown in
Fig. 4.2(c), PREs activate synaptic currents across the corresponding 1T1R
synapses which are integrated by the I&F POST, thus causing an increase of
POST internal potential Vint eventually crossing the fire threshold Vth. At
that point, as indicated in Fig. 4.2(d), POST emits a fire which is backward
delivered at TEs of 1T1R synapses by inducing the weight update within
only selected synapses according to scheme shown in Fig. 3.3.

If a pattern submission induces a POST fire, namely ∆t > 0 as de-
scribed in Fig. 3.3(a), potentiation occurs at all synapses within the pat-
tern. On the other hand, if the POST fire is followed by the presentation
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Figure 4.3: Color plots of calculated synaptic weights during pattern learning at (a) epoch
0, (b) epoch 500, and (c) epoch 1000. (d) Time evolution of calculated synaptic weights
evidencing pattern learning from an initial random weight configuration via a sudden
potentiation of pattern synapses (red lines) and a gradual depression of background
synapses (cyan lines) activated by random noise. Black line and blue line indicate the
mean evolution of pattern and background conductance, respectively, supporting the
different timescale between potentiation and depression process.

of random noise, namely ∆t < 0 as described in Fig. 3.3(b), depression oc-
curs at synapses stimulated by random noise. Note that a refractory time
was adopted for preventing the submission of the pattern at two consecu-
tive epochs so that a pattern presentation can only be followed by a noise
presentation leading to depression within background synapses by the se-
quence pattern-fire-noise [251].

As a result, pattern synapses are selectively potentiated, whereas all the
other synapses, called background synapses, are stochastically depressed,
thus supporting the network ability to learn the submitted visual pattern
irrespective of the initial state of each synapse [118, 127].

Fig. 4.3 shows calculated learning of pattern “O” by perceptron neural
network. The simulation was carried out using the stochastic Monte Carlo
model of RRAM resistance distributions [127] discussed in the Sec. 2.4 to
describe the set and reset transitions in binary 1T1R synapses. Specifically,
potentiation (set transition) and depression (reset transition) were induced
by POST spike pulses designed with amplitude VTE+ = 1.6 V and VTE− = -
1.6 V, respectively.

Starting from initial weights randomly distributed between HRS and
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Figure 4.4: (a) Schematic illustration of a 4x4 perceptron neural network with 16 PREs
and 1 POST. (b) Circuit scheme of a 4x4 perceptron network including 16 PRE
switches, an Arduino 2 microcontroller, a multiplexer and a transimpedance ampli-
fier. Copyright 2018 IEEE. Adapted, with permission, from [251].

LRS as shown in Fig. 4.3(a) by color plot of synaptic weights at epoch
0, pattern submission alternated with noise activates selective potentia-
tion within pattern synapses and stochastic depression within background
synapses (Fig. 4.3(b)) leading to pattern learning within 1000 epochs as
shown by color plot in Fig. 4.3(c). Fig. 4.3(d) shows the detailed evolu-
tion of calculated synaptic conductance for increasing epoch, evidencing
fast convergence of pattern synapses to high conductance values (within
about 10 epochs) and a more gradual convergence of background synapses
to low conductance values, thus supporting learning of a visual pattern via
a perceptron network equipped with 1T1R synapses capable of STDP.

Note that pattern learning achieved in Fig. 4.3 for a small-scale per-
ceptron network can be also demonstrated for larger perceptron networks
properly tuning the threshold of POST according to pattern density, namely
the number of the activated pixels divided the total number of pixels of the
pattern image, and the density of submitted noise, namely the ratio between
the average number of activated pixels within a random noise image and the
total number of pixels of the image, to achieve the best trade-off between
stability and speed of learning process [253].

To validate pattern learning functionality in experiments, a perceptron
neural network consisting of 16 PREs, 16 synapses and 1 POST, schemat-
ically illustrated in Fig. 4.4(a), was realized in hardware [118, 251]. As
shown by schematic circuit of the network in Fig. 4.4(b), PRE spikes are
implemented via digital switches (PRE switches) controlled by the an Ar-
duino Due microcontroller (µC) enabling the application of a voltage VG

to the gate of the 16 RRAM-based integrated synapses with 1T1R struc-
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Figure 4.5: Hardware implementation of a 4x4 perceptron network on a PCB. Copyright
2018 IEEE. Adapted, with permission, from [251].

ture. The synaptic currents activated by PRE spikes are collected and sent
to a transimpedance amplifier (TIA) to be converted into an analog volt-
age which is then submitted to the µC for digital integration. As integrated
current exceeds the threshold, the µC generates the feedback spike driv-
ing a multiplexer (MUX) to provide the appropriate voltage to the TE of
1T1R synapses according to the scheme described in Fig. 3.3. In addition,
Fig. 4.5 shows the printed-circuit board (PCB) realized to implement the
4x4 hardware perceptron spiking neural network [118, 251].

Fig. 4.6 shows an experimental demonstration of unsupervised learning
of a 4x4 visual pattern representing a diagonal feature by the hardware
spiking neural network. Similar to pattern learning simulations, a stochastic
operation was adopted to train the network [118]. Fig. 4.6(a)-(d) shows the
color plots of 16 synaptic conductances measured during the experiment.
Starting from initial weights randomly prepared between LRS and HRS, the
pattern/noise stochastic presentation to the PREs with the same probability
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Figure 4.6: Color plots of measured synaptic conductance during an experiment of unsu-
pervised pattern learning via the hardware neural network in Fig. 4.5 at (a) epoch 0,
(b) epoch 300, (c) epoch 600 and (d) epoch 1000. The measured synaptic weights at the
end of experiment demonstrate the learning of submitted diagonal pattern. (e) Raster
plot of spikes in each of 16 PRE channels resulting from stochastic submission of pat-
tern and noise. (f) Time evolution of synaptic weights for pattern synapses (red lines)
reaching high conductance values and background synapses (blue lines) reaching low
conductance values. Reprinted from [118].

of 50% leads the network to learn the submitted pattern within 1000 epochs
via the potentiation of synaptic weights within the diagonal feature and the
noise-induced depression of the other synapses within background.

Note that the noise stochastically alternated to the diagonal pattern at
any epoch of the experiment (Fig. 4.6(e)) features a relatively low noise
density of 3% to avoid that learning dynamics becomes unstable because of
unwanted fires induced by noise input spikes [251].

Finally, Fig. 4.6(f) shows the evolution of measured synaptic weights
with increasing epoch evidencing an abrupt transition to high conductance
for pattern synapses and a more gradual transition to low conductances for
background synapses as expected by simulation results. Both simulation
and experiment thus support learning of visual patterns by perceptron neu-
ral networks with 1T1R synapses implementing STDP learning rule.
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Figure 4.7: Color plots of pattern #1 (a) and pattern #2 (b) submitted to an 8x8 percep-
tron network to demonstrate on-line pattern learning. (c) Raster plot of PRE spikes
during learning evidencing the sequential application of two patterns. Pattern #1 is
alternatively presented to noise during the first training phase from epoch 0 to epoch
1000, while pattern #2 is alternatively presented with noise during the second training
phase from epoch 1001 to epoch 2000.

4.3 Unsupervised on-line learning of sequential patterns

Another fundamental cognitive ability of human brain is to learn visual pat-
terns in real time via synaptic weight adaptation. To test the on-line pattern
learning, the perceptron network in Fig.4.1 was trained in simulation by a
sequence of two 8x8 visual patterns shown in Fig. 4.7(a) and Fig. 4.7(b),
representing the letters “O” and “X”, respectively. Fig. 4.7(c) shows the
PRE spikes in response to pattern/noise presentation as a function of time
evidencing the submission of the pattern #1 (“O”) stochastically alternated
with random noise with equal probability for 1000 epochs followed by the
presentation of the pattern #2 (“X”) stochastically alternated with random
noise with equal probability for the following 1000 epochs.

After preparing the initial synaptic weights in a random resistance state
between LRS and HRS (Fig. 4.8(a)), the presentation of pattern #1 and
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Figure 4.8: Color plots of synaptic weights at (a) epoch 0, (b) epoch 1000, and (c) epoch
2000. (d) Evolution of calculated synaptic weights as a function of time evidencing the
sequential learning of two patterns by a sudden increase of conductance for synaptic
weights within pattern #1 (red lines) and pattern #2 (magenta lines) combined with a
slower depression of background synapses for each pattern (cyan lines). Black and
blue lines indicate the mean evolution of conductance within pattern and background
during both training phases, respectively, thus supporting on-line learning of “O” and
“X”.

noise for 1000 epochs leads to the selective potentiation of synapses within
pattern #1 and the stochastic depression of background synapses according
to STDP rule, which results in the learning of “O” as shown in Fig. 4.8(b).

At epoch 1000, the submitted input pattern is changed from the pat-
tern #1 to the pattern #2. As a result, synapses within the pattern #2 un-
dergo potentiation while all the background synapses undergo depression
(Fig. 4.8(c)), thus demonstrating the network ability to remove or “forget”
the previously stored pattern and learn a new pattern applied in sequence
by the on-line adaptation of synaptic weights based on STDP rule. Fi-
nally, Fig. 4.8(d) shows the time evolution of calculated synaptic conduc-
tance evidencing the abrupt dynamics of potentiation process leading pat-
tern synapses to high conductances and the gradual dynamics of depression
process within the background synapses reaching low conductances in both
learning phases.

After achieving on-line pattern learning in simulation, this cognitive
functionality was also experimentally demonstrated by the hardware neu-
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Figure 4.9: Experimental demonstration of learning of 3 sequential patterns, namely (a)
pattern #1, (b) pattern #2, and (c) pattern #3, stochastically submitted with (d) random
noise. Color plots of (e) initial weights prepared in a random state between LRS and
HRS and synaptic weights after (f) 300 epochs, (g) 600 epochs and (h) 1000 epochs.
(i) Raster plot of PRE spikes and (h) time evolution of synaptic weights during whole
training process of hardware network. Reprinted from [118].

ral network shown in Fig. 4.5 [118]. Fig. 4.9(a)-(c) shows the 3 patterns
which were sequentially presented to the PREs of perceptron network dur-
ing the experiment, while Fig. 4.9(d) shows an example of noise which
was stochastically alternated with each of patterns. Starting from synap-
tic weights in HRS (Fig. 4.9(e)), the network was externally stimulated
by pattern #1 for initial 300 epochs (3 s), resulting in the potentiation of
pattern synapses and depression of background synapses, as evidenced in
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Fig. 4.9(f). In the following 300 epochs (epochs 301-600), the submitted
pattern is changed from pattern #1 to pattern #2, thus leading the network to
adapt to new pattern and remove the previous one via selective potentiation
process and noise-activated depression process. Note that the percentage
of randomly activated PRE channels within a noise image presented during
this experiment is 3% on average. Finally, during the last 300 epochs of
experiment (epochs 601-1000), pattern #2 was replaced by pattern #3 as
input pattern leading to a new update of synaptic weights resulting in the
stable learning of pattern #3 as evidenced in Fig. 4.9(h).

In addition, to capture more details of the on-line pattern learning exper-
iment, Fig. 4.9(i) shows the raster plot of spikes within all the PRE chan-
nels evidencing the sequential presentation of the 3 patterns stochastically
alternated with random noise while Fig. 4.9(j) shows the time evolution of
measured conductance of synaptic weights evidencing a fast convergence
to LRS for pattern synapses and a more gradual convergence to HRS for
background synapses during each training phase. These experimental re-
sults thus corroborate unsupervised on-line pattern learning in harwdare
perceptron networks equipped with RRAM-based 1T1R synapses capable
of STDP.

4.4 Unsupervised on-line learning of multiple patterns

To match brain ability to learn multiple visual patterns simultaneously, the
perceptron network used to demonstrate single pattern learning and on-line
pattern learning in simulation was extended by the introduction of an addi-
tional POST within the second layer [118].

As shown in Fig. 4.10(a), all the 64 PREs are connected to each of the
two POSTs, called POST #1 and POST #2, respectively, through a single
excitatory synapse with 1T1R structure. Also, POST #1 and POST #2 are
mutually connected by two non-plastic lateral inhibitory synapses playing a
crucial role for the operation of this network. As POST #1 fires in response
to the presentation of an input pattern, a spike is sent from POST #1 to
POST #2 through an inhibitory synapse to decrease the internal potential of
POST #2 by a certain fixed amount, thus preventing POST #2 to specialize
on the pattern causing POST #1 fire. Similarly, as POST #2 fires in response
to the submission of a pattern, a spike is sent from POST #2 to POST #1
by the other inhibitory synapse to reduce its internal potential by the same
percentage. This mechanism, referred to as winner-takes-all (WTA), thus
enables to maximize storage capacity of perceptron network inducing each
POST to specialize on only one of submitted patterns [254].
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Figure 4.10: (a) Schematic illustration of a perceptron network with 64 PREs fully con-
nected to each of 2 POSTs by excitatory synapses. To maximize storage capacity of the
network, the POSTs are mutually connected by two lateral inhibitory synapses imple-
menting winner-takes-all (WTA) scheme. Illustration of 8x8 (b) top row and (c) bottom
row visual patterns submitted to the network during first 1000 training epochs, and (c)
left column and (d) right column presented in the following 1000 training epochs to
achieve learning and recognition of multiple patterns.

To achieve on-line learning of multiple patterns in simulation, the per-
ceptron network in Fig. 4.10(a) was first trained for 1000 epochs provid-
ing two 8x8 visual patterns representing (b) top and (c) bottom rows, re-
spectively, alternated with noise. After epoch 1000, top and bottom rows
were replaced with (d) left and (e) right columns, which were submitted
alternatively to noise for additional 1000 epochs. Also, WTA scheme was
implemented setting inhibitory synapses such that the internal potential of
POST #1 was reduced by amount of 60% at fires of POST #2 and vice
versa.

Fig. 4.11 shows the color plots of calculated excitatory synaptic weights
connecting (a) PREs to POST #1 and (b) PREs to POST #2 at epoch 0,
epoch 1000, and epoch 2000, thus supporting the ability of the simulated
network to learn separately the submitted patterns during each training
phase via implementation of WTA scheme. Specifically, note that POST #1
and POST #2 can specialize on one or the other pattern with equal proba-
bility via WTA algorithm.

Fig. 4.11(c) and (d) also shows the evolution of calculated conductance
of pattern and background synapses connecting PREs to POST #1 and
POST #2, respectively, as a function of epochs evidencing the specializa-
tion of each POST on one of 2 submitted patterns in both training phases
via selective potentiation at pattern synapses and noise-induced depression
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Figure 4.11: Color code representation of calculated synaptic weights from PREs to
(a) POST #1 and (b) POST #2 evidencing the network ability to learn the top/bot-
tom row by POST #1/POST #2 within epoch 1000 and the left/right column by
POST #1/POST #2 within epoch 2000 starting from random weight configurations.
Time evolution of calculated conductance in pattern (red lines) and background
(cyan lines) synapses during two sequential training phases for (c) POST #1 and (d)
POST #2.

at background synapses.
To validate these simulation results, this task was experimentally demon-

strated by the hardware implementation of the network schematically illus-
trated in Fig. 4.12(a) in the case of 3x3 input patterns [251]. POST #1 and
POST #2 are each connected to the 3x3 PRE layer via 9 1T1R synapses ca-
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Figure 4.12: (a) Schematic illustration of perceptron network with a 3x3 PRE layer and 2
POSTs used to demonstrate learning of multiple patterns in hardware. (b) Color plots
of the pairs of 3x3 visual patterns sequentially submitted to train the network. (c) Color
plots of measured synaptic weights connecting PREs to POST #1 and POST #2 at the
end of first training phase (epoch 1000) and second training phase (epoch 2000) evi-
dencing network ability to learn both submitted patterns during each phase. Copyright
2018 IEEE. Reprinted, with permission, from [251].

pable of STDP. Also, to avoid learning of the same pattern by the 2 POSTs,
POST #1 and POST #2 were controlled by the µC to implement the WTA
optimization scheme. Fig. 4.12(b) shows two 3x3 patterns (top row and
bottom row) submitted during the first 1000 training epochs and the fol-
lowing pair of 3x3 patterns (left column and right column) submitted in
the following 1000 training epochs. Fig. 4.12(c) shows the color plots of
measured synaptic conductances achieved at the end of each training phase
evidencing the capability of hardware neural network to learn the first two
submitted patterns within epoch 1000, with POST #1 and POST #2 spe-
cialized on top row and bottom row, respectively, and the following pair of
presented patterns within epoch 2000, with POST #1 specialized on the left
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Figure 4.13: (top) Raster plot of PRE spikes, (center) measured synaptic weights of pat-
tern and background synapses and (bottom) calculated synaptic weights of pattern and
background synapses during 1000-epoch-long learning process for noise densities (a)
N = 5%, (b) N = 10%, and (c) N = 15% evidencing how too noise can make learning
dynamics in the neural network strongly unstable. Copyright 2018 IEEE. Reprinted,
with permission, from [251].

column and POST # 2 on right column. These experimental results there-
fore support the feasibility of on-line learning of multiple patterns via WTA
scheme in hardware neuromorphic networks equipped with 1T1R RRAM
synapses.

4.5 Noise impact on pattern learning performance

As previously shown, noise presentation plays a crucial role to achieve un-
supervised learning of visual patterns because it allows to implement the
STDP depression condition (∆t < 0) within background synapses via the
occurence of pattern-fire-noise sequences during learning process [127].
However, although the noise presentation is particularly beneficial for on-
line learning because it enables the network to forget the previously learnt
pattern, excessive noise can be detrimental for network performance. In
fact, if the amount of noise submitted to the network is exaggerated, un-
wanted noise-fire-pattern sequences can occur with high probability during
learning process inducing the depression of pattern synapses, thus making
pattern learning dynamics unstable.

To investigate the impact of noise on learning performance, experiments
and simulations were carried out using a 4x4 perceptron neural network
[251]. Fig. 4.13 shows the sequence of PRE spikes submitted to the network
(top), the time evolution of measured synaptic weights (center) and the time
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Figure 4.14: (a) Measured and calculated Plearn, namely the probability to fire in re-
sponse to the submitted pattern, and (b) Perr, namely the probability to fire in re-
sponse to a noise submission, as a function of noise density N. Copyright 2018 IEEE.
Reprinted, with permission, from [251].

evolution of calculated synaptic weights (bottom) for three increasing val-
ues of noise density N, namely (a) N = 5%, (b) N = 10% and (c) N = 15%,
indicating the ratio between the average number of on-pixels within a noise
image and the total number of image pixels. These experimental results,
supported by corresponding simulations, evidence that the stochastic pre-
sentation of random noise images of density N = 5% results in a stable
learning dynamics whereas the presentation of random noise images with
densities N = 10% and N = 15% leads to an increansingly unstable pattern
learning because the submitted noise induces increasingly frequent noise-
fire-pattern sequences leading to the abrupt depression of pattern synapses
and potentiation of background synapses.

To capture the optimum value of N enabling stable pattern learning,
learning probability Plearn and error probability Perr were measured and
calculated for variable N training the network with a 4x4 diagonal pattern
for 1000 epochs. While Plearn, which is defined as the probability of ’true
fire’, namely the probability of fire as a result of application of the diagonal
pattern, was obtained for any N counting the number of true fires during
whole training process, Perr, which is defined as the probability of ’false
fire’, namely the probability of fire as a result of application of any other
4x4 pattern different from the diagonal but with same pixel density of 25%,
was obtained counting the number of false fires emitted by POST during
whole training phase. As a result, Fig. 4.14 shows measured and calculated
(a) Plearn and (b) Perr as a function of N ranging from 0% to 20%. On
the one hand, increasingly low Plearn values were achieved for increasing
N supporting the results shown in Fig. 4.13. On the other hand, Perr evi-
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Figure 4.15: Experimental data and calculated evolution of learning time τ learn, defined
as the time to depress the background synapses at a given resistance state, as a function
of noise density N. Copyright 2018 IEEE. Reprinted, with permission, from [251].

denced a minimum around N = Nopt = 3%, thus indicating the best noise
density value to achieve a stable pattern learning.

In addition, Fig. 4.15 shows the evolution of measured and calculated
learning time τ learn with increasing N. Since potentiation of pattern synapses
has usually a very abrupt dynamics, τ learn was defined as the time needed
to depress background synapses at the resistance 66 kΩ. Both experimen-
tal and simulation results show that τ learn decreases with increasing N ac-
cording to a hyperbolic behavior, thus evidencing a trade-off with Perr that
unlike increases for N > 5%.

These results thus suggest that noise with a relatively low density ca-
pable of achieving a full background depression (not allowed for N = 0%)
without inducing unstable learning is thus beneficial for optimizing pattern
learning performance in perceptron neural networks.

4.6 Conclusions

In this chapter, learning and recognition of visual patterns has been achieved
by simulations of 2-layer feedforward spiking neural networks using RRAM-
based 1T1R synapses capable of STDP and experiments on a hardware
perceptron network with 1T1R synapses. Both simulation and experimen-
tal results have evidenced the network ability to learn not only a single
pattern but also more patterns submitted in sequence using a stochastic ap-
proach. Also, changing the network architecture by the introduction of
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another POST in the second layer, on-line learning of multiple patterns
based on WTA scheme implemented via lateral inhibitory synapses be-
tween 2 POSTs has been demonstrated. Finally, a detailed study of noise
effect on learning performance for a 4x4 perceptron network has been pre-
sented evidencing the need to suitably tune the density of submitted noise
to achieve the best trade-off between learning stability and speed. These re-
sults thus support spiking neural networks equipped with hybrid CMOS/R-
RAM synapses as promising building blocks for the development of scal-
able and energy-efficient hardware neuromorphic systems capable of brain-
inspired computing.
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CHAPTER5
Feedforward spiking neural networks with

4T1R RRAM synapses for unsupervised
pattern learning

5.1 Introduction

In recent years, the challenge to achieve brain-inspired cognitive function-
alities in hardware has fueled a lot of curiosity toward the research field of
neuromorphic engineering.

A key element in cognitive hardware systems is the ability to learn via
bio-realistic plasticity rules, combined with the area scaling capability to
enable integration of high-density neuron/synapse networks. To this pur-
pose, RRAM devices have recently attracted a strong interest as potential
synaptic elements in neuromorphic networks capable of replicating biolog-
ically plausible learning rules.

In this frame, motivated by Bienenstock-Cooper-Munro (BCM) theory
[226] and biological experiments showing the dependence of synaptic plas-
ticity on the rate of spikes emitted by pre- and post-synaptic neurons [133],
spike-rate dependent plasticity (SRDP) learning rule was demonstrated at
the level of single synapse using various types of RRAM devices in both
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Figure 5.1: Schematic illustration of a 2-layer perceptron neural network capable of pat-
tern learning according to SRDP rule where high and low PRE spiking rates lead to
pattern potentiation and background depression, respectively. Copyright 2018 IEEE.
Reprinted, with permission, from [143].

experiments and simulation [129, 138–140, 146, 231].
However, as already highlighted for STDP rule, to conclusively demon-

strate brain-inspired unsupervised learning by SRDP, experiments and sim-
ulations of learning at the level of synaptic network are essential.

This chapter, which is based on the works [129, 143], covers the im-
plementation of pattern learning at the level of network by 4T1R RRAM
synapses capable of SRDP rule described in the Sec. 3.3. Pattern learning
ability via SRDP is first tested by experiments and subsequently by simu-
lation of a 2-layer feedforward neural network with 64 neurons for variable
configuration of the initial synaptic weights. In addition to single pattern
learning, on-line learning of 2 visual patterns submitted in sequence via
SRDP is also addressed in simulation. Finally, the impact of noise fre-
quency on learning efficiency is investigated for both pattern learning ap-
plications.

5.2 Experimental demonstration of pattern learning by SRDP

To prove the feasibility of unsupervised learning by SRDP at the level of
synaptic network, SRDP synapses were used within a feed-forward percep-
tron neural network, where the input information is coded into the spiking
frequency. Note however that the applicability of SRDP synapses is not re-
stricted to a particular neuromorphic system or architecture. Indeed, SRDP
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Figure 5.2: Illustration of (a) the input pattern and (b) an example of random noise image
submitted during the training process. Color plots of synaptic weights (c) initially
prepared in a random state between LRS and HRS, (d) after LTD phase and (e) as a
result of pattern presentation during the LTP phase of the training process. Copyright
2018 IEEE. Reprinted, with permission, from [143].

synapses are generically suitable for the training of any spiking neural net-
work, e.g., feed-forward or recurrent networks, in presence of rate-coded
spikes.

Fig. 5.1 depicts the perceptron network, where the PREs in the first layer
generate spikes at high or low frequency, depending on their position being
within or outside of a pattern, assumed to correspond to a reference image.
The PRE spikes are submitted to a single POST in the second layer via
SRDP synapses.

Thanks to the SRDP behavior, synapses in the pattern will experience
LTP because of the high spiking frequency, whereas synapses in the back-
ground (i.e., outside of the pattern) will undergo LTD due to the low PRE
spiking frequency overwhelmed by random noise spiking. The SRDP algo-
rithm was applied to integrated 2T1R structures used alternatively as LTD
and LTP branches in the 4T1R synapse [143]. LTD and LTP operation
schemes were applied for 1 s each on the same 2T1R structure. As a refer-
ence synaptic network, an array of 8x8 SRDP synapses that were initially
prepared in a random state with resistance between LRS and HRS levels
was adopted.

Fig. 5.2(a) shows the visual pattern that was considered as input for
image learning demonstration. The training procedure consists of 2 phases:
in the first phase (LTD), random noise images such as the one in Fig. 5.2(b)
were submitted for 1 s to all synapses to achieve LTD.

Starting from the initial synaptic weight distribution in Fig. 5.2(c), the
first training phase resulted in LTD as demonstrated by the HRS weights
in Fig. 5.2(d). In the second phase, the LTP mode was adopted by stim-
ulating background and pattern synapses with random spikes at low fre-
quency (fPRE = 5 Hz) and high frequency (fPRE = 150 Hz), respectively,
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Figure 5.3: (a) Time evolution of measured pattern (red) and background (cyan) con-
ductance showing synaptic LTD within 1 s due to PRE and POST noise spiking and
the selective potentiation of synapses in the pattern because of high frequency PRE
stimulation during the following 1-s-long LTP phase. (b) Mean evolution of measured
pattern and background synaptic weights as a function of time supporting background
depression and pattern potentiation. Copyright 2018 IEEE. Reprinted, with permis-
sion, from [143].

for 1 s. The final weight distribution in Fig. 5.2(e) demonstrates learning
of the submitted pattern thanks to the spiking frequency being higher than
∆tD−1, where ∆tD = 10 ms.

Fig. 5.3(a) shows the measured synaptic weights 1/R as a function of
time during the 2 phases of training. In the first period, both pattern and
background synapses approach low weight due to noise induced stochastic
LTD. In the second period, synaptic weights in the pattern increase due
to LTP process induced by SRDP, while background synapses remain at
a low conductance due to low frequency spiking. Fig. 5.3(b) shows the
corresponding average synaptic weights for the pattern and the background
as a function of time, clearly indicating LTD and LTP phases.

5.3 Simulation study of pattern learning by SRDP

5.3.1 Single pattern learning

To further corroborate SRDP pattern learning by 4T1R synapse, the 2-layer
perceptron network shown in Fig. 5.1 was simulated. The same 8x8 pattern
of Fig. 5.2(a) was adopted for simplicity. Fig. 5.4(a) shows the sequence
of spikes submitted at each of the 64 channels, evidencing different spiking
frequencies at the pattern (fPRE = 100 Hz) and background (fPRE = 1 Hz).

102



5.3. Simulation study of pattern learning by SRDP

Figure 5.4: (a) PRE spikes as a function of time showing high and low frequency stimula-
tion for pattern and background input channels, respectively. Distributions of time
intervals between two consecutive spikes for (b) pattern/background channels and
(c) PRE/POST noise channels. Copyright 2018 IEEE. Reprinted, with permission,
from [143].

Figure 5.5: Color plots of synaptic weights at times (a) t = 0 s, (b) t = 5 s and (c) t = 10 s.
(d) Time evolution of calculated synaptic weights initialized in a random state between
LRS and HRS levels. The evolution of conductances as a function of time evidences fast
potentiation of pattern synapses (red) and a slower depression of background synapses
(cyan). Black and blue lines indicate time evolution of mean pattern and background
synapses, respectively. Copyright 2018 IEEE. Reprinted, with permission, from [143].

Fig. 5.4(b) shows the distributions of time intervals between consecutive
spikes for pattern and background, evidencing an exponential decrease with
frequency which is typical of random Poissonian events. Fig. 5.4(c) shows
the distribution of inter-spike times for PRE and POST noise spiking with
rate f3 = 50 Hz and f4 = 10 Hz, respectively.
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Figure 5.6: Color plots of synaptic weights at times (a) t = 0 s, (b) t = 5 s and (c) t = 10 s.
(d) Evolution of calculated synaptic weights as a function of time starting from initial
HRS weights. Synaptic evolution reveals a very fast pattern learning since background
is already fully depressed. Copyright 2018 IEEE. Reprinted, with permission, from
[143].

Figure 5.7: Color plots of synaptic weights at times (a) t = 0 s, (b) t = 5 s and (c)
t = 10 s. (d) Time evolution of calculated synaptic weights, which are initially prepared
in LRS state, evidencing a slower pattern learning in comparison with the previous two
cases because all background synapses need to be depressed. Copyright 2018 IEEE.
Reprinted, with permission, from [143].
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Fig. 5.5 shows the calculated synaptic weights in a color plot at times (a)
0 s, (b) 5 s, (c) 10 s, and the detailed time evolution of the calculated 1/R
during the whole training process. Initial weights are uniformly distributed
between LRS and HRS. Pattern synapses are potentiated within about 1 s
from the start of training, while background synapses approach low weight
more slowly, as the noise spiking activity has lower frequency compared
to fPRE in the pattern. Note that pattern synapses may be temporarily dis-
turbed from their high weight due to stochastic noise. This disturb was
quantified in a probability of 1% for pattern synapses to have low weight
during training, under the conditions of this simulation.

Also, synaptic weights were calculated as a function of time during
training under the same conditions as Fig. 5.5, except the initial distribu-
tion being prepared in HRS (Fig. 5.6) or LRS (Fig. 5.7). In the first case,
learning only requires LTP of pattern synapses, whereas in the second case
complete learning requires LTD of the background synapses, thus requires
longer time [143].

5.3.2 Impact of noise on learning efficiency

Noise plays a leading role in SRDP by inducing LTD. On the other hand,
noise affects all synapses at the same extent, thus may also disturb pat-
tern learning. To study the impact of noise on learning, the efficiency of
perceptron network was evaluated as a function of PRE noise frequency
f3 and POST noise frequency f4. The learning efficiency was evaluated
by calculating the learning probability Plearn, defined as the probability of
POST fire in response to the submission of the pattern after the training
stage, and error probability Perror, defined as the probability of POST fire
in response to the submission of an input random noise [117, 127]. The
pattern in Fig. 5.2(a) was used for the training phase, which lasted 5000
epochs, equivalent to 5 s. Fig. 5.8 shows the calculated (a) Plearn and (b)
Perror in a color plot as a function of f3 and f4. Plearn becomes very close
to 1 as either f3 or f4 decreases, thus making noise disturbance negligible.
As f3 and f4 increase, Plearn decreases because noise spikes make learning
process strongly unstable. On the other hand, Perror shows the opposite
behavior, as a low noise rate induces no LTD, thus any random noise may
excite synapses in the LRS and cause false fire. A high noise frequency
instead causes strong LTD and suppression of false fires, although true fires
are also affected. The noise rates were identified for best tradeoff between
efficient learning and low false fires, which can be found along the curve
with constant geometric average

√
f3f4 = 40 Hz.
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Figure 5.8: Calculated color maps showing the effect of PRE and POST noise average fre-
quencies f3 and f4 on (a) learning probability and (b) error probability of “X” pattern
via a perceptron-like neural network with RRAM-based synapses capable of SRDP.
Optimal performance is achieved if f3 and f4 satisfy the tradeoff relation described by
indicated curve. Copyright 2018 IEEE. Reprinted, with permission, from [143].

Figure 5.9: (a) Raster plot of PRE spikes evidencing the change of input pattern at time
5 s. Color plots of synaptic weights at (b) t = 0 s, (c) t = 5 s and (d) t = 10 s during
learning of a sequence of images with PRE and POST noise spiking rates equal to
50 Hz and 20 Hz, respectively. (e) Time evolution of synaptic weights showing a fast
potentiation of “X” weights and a gradual depression of background synapses within
5 s. At 5 s, the “X” pattern is replaced with the “C” pattern and all weights adapt
to new submitted pattern according to SRDP learning rule. Copyright 2018 IEEE.
Reprinted, with permission, from [143].

106
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Figure 5.10: (a) Raster plot of PRE input spikes due to sequential patterns. Color plots
of synaptic weights at (b) t = 0 s, (c) t = 5 s and (d) t = 10 s during an online learning
process with PRE and POST low frequency noise spiking at 10 Hz and 5 Hz, respec-
tively. (e) Time evolution of synaptic weights evidencing final potentiation of synapses
in both patterns since the first stored pattern “X” cannot be erased without sufficiently
strong noise activity. Copyright 2018 IEEE. Reprinted, with permission, from [143].

5.3.3 On-line learning of sequential patterns

One of the advantages of bidirectional SRDP, i.e., the availability of both
LTP and LTD, is on-line learning, where the synaptic network learns the
currently submitted pattern and is capable of erasing, or forgetting, any
previously stored pattern [118, 234]. To support the capability of on-line
learning, the presentation of 2 different patterns in sequence to the per-
ceptron network was simulated. Fig. 5.9(a) shows the spiking sequence
submitted by the PRE layer, including a first phase with pattern “X” for
5 s, followed by a second phase where pattern “C” was submitted for 5 s.
The figure also shows the color maps of 8x8 synaptic weights at times (b)
0 s, (c) 5 s, and (d) 10 s, evidencing accurate learning of the submitted
patterns. Fig. 5.9(e) shows the synaptic weights as a function of time, in-
dicating convergence to LRS or HRS of pattern synapses or background
synapses, respectively, in each phase. In particular, as pattern “X” starts
being excited at low frequency at 5 s, the corresponding synapses are de-
pressed by PRE and POST random noise spiking activities at 50 Hz and
20 Hz, respectively. Therefore, as the input pattern is changed, the neural
network is capable of forgetting the first pattern to adapt to the second one
by SRDP plastic 4T1R synapses, by properly tuned noise spiking activity.
However, if the online learning process was carried out with too low PRE
and POST noise spike rates equal to 10 Hz and 5 Hz, respectively, the PRE
input spike trains shown in Fig. 5.10(a) would lead from initial random
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weights to the simultaneous potentiation of synapses within both “X” and
“C” pattern (Fig. 5.10(b-d)), thus preventing a selective online adaptation
of synaptic weights to the visual patterns submitted in sequence to the first
one.

5.4 Conclusions

In this chapter, unsupervised pattern learning at network level by 4T1R
synapses capable of SRDP has been demonstrated by an extensive simu-
lation study supporting experimental measurements. First, learning of a
single 8x8 visual pattern by a perceptron network with 64 neurons has been
demonstrated irrispective of initial distribution of synaptic weights and in-
vestigated for variable PRE and POST noise frequencies to find the best
operating condition of the network. In addition, on-line learning of two se-
quential 8x8 visual patterns has also been demonstrated evidencing the abil-
ity of simulated perceptron network to recognize in real time pattern and
background within submitted images, and the need to properly tune PRE
and POST noise frequency to forget the previously learnt pattern. These
results thus support hybrid CMOS/RRAM integrated circuits as building
blocks for low-power hardware neuromorphic systems with memristive de-
vices.
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CHAPTER6
Recurrent spiking neural networks with

1T1R RRAM synapses for associative
learning

6.1 Introduction

The human brain is a very complex biological system capable of achieving
a highly parallel and error-tolerant processing of sensory information with
a very low power consumption of about 20 W [4, 82, 107] thanks to its
massively distributed architecture and energy-efficient computing strategy
based on spike events [6, 82, 107].

However, such a computing scheme cannot be efficiently reproduced in
current digital computers based on classical von Neumann architecture be-
cause of the slow and energy-hungry data shuttle between working memory
and CPU [4, 6].

To tackle this strong limitation, emerging non-volatile memory devices,
also known as memristors [16, 17], such as PCM and RRAM devices have
been extensively investigated in last decade for their ability to combine
storage and computation [22, 23], which enabled to replicate biological
rules believed to be the origin of learning capability such as STDP and
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SRDP [107, 108, 113–115, 143, 229]. In addition, their nanoscale size can
allow to achieve in hardware a synaptic density comparable to the biologi-
cal one, which is approximately 104 synapses per neuron [82, 114].

Although synaptic density plays a crucial role in brain computation, this
also depends on the arrangement of synaptic connectivity.

In this context, experimental studies have evidenced that the regions
mostly involved in storage and retrieval of memories such as the CA3 re-
gion of the hippocampus, include large networks of neurons with a recur-
rent connectivity pattern processing information via forward and backward
spikes propagating across excitatory and inhibitory synapses.

Based on experimental observations [255] and theoretical studies [256],
recurrent neural networks, also referred to as attractor networks [256,257],
including the well-known Hopfield network [258, 259], have been imple-
mented in both hardware via fully-CMOS [90, 99, 260, 261] and hybrid
CMOS/memristive [262–264] circuits, and simulation [125, 265, 266].

In this chapter, which is based on the works [232, 265, 267, 268], Hop-
field spiking neural networks equipped with 1T1R RRAM synapses capa-
ble of STDP are designed and simulated. First, learning, recall and sta-
bility of attractor states via external stimulation and recurrent cooperation
and competition are demonstrated by simulations. Based on these results,
fundamental brain-inspired primitives such as associative memory, pattern
restoration and error correction are explored by simulations.

6.2 Hopfield spiking neural network with 1T1R RRAM synapses

Hopfield network is a well-known recurrent neural network capable of im-
plementing brain-inspired primitives such as content-addressable memory
[258,259] or solving difficult optimization problems such as the Traveling-
Salesman Problem (TSP) [269] and constraint-satisfaction problems such
as the Sudoku puzzle [270] as a result of collective firing activity of large
populations of elementary neuron units [258].

Fig. 6.1 shows a sketch of a Hopfield network with 6 fully connected
neurons receiving external input stimuli Xi, with i = 1:6 [265].

To replicate this network scheme, the circuit implementation shown in
Fig. 6.2 was designed and simulated [265]. Here, N = 6 neurons imple-
mented by I&F blocks are fully connected by N·(N-1) = 30 RRAM-based
1T1R excitatory synapses (blue) and 30 inhibitory synapses (red) capable
of STDP. Each neuron block Ni was designed with 2 inputs given by exter-
nal asynchronous current spikes Xi and the sum of excitatory and inhibitory
synaptic currents activated by other neurons, respectively, and 3 outputs,
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Figure 6.1: Sketch of a Hopfield neural network comprising 6 neurons.

Figure 6.2: Schematic illustration of the simulated Hopfield network with 6 fully con-
nected neurons, 30 excitatory synapses (blue) and 30 inhibitory synapses (red). Di-
agonal synapses Wii and W’ii (i = 1 to 6) are absent to prevent self-feedback. Each
neuron behaves as both pre-synaptic neuron controlling the gates of all row excitato-
ry/inhibitory 1T1R synapses and post-synaptic neuron controlling the top electrodes of
excitatory/inhibitory 1T1R synapses of corresponding column. Copyright 2017 IEEE.
Reprinted, with permission, from [265].

namely (i) Gi which is applied to the gate of 1T1R synapses of the i-th row,
(ii) O’i which is applied to the TE of inhibitory 1T1R synapses of i-th col-
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Figure 6.3: Schematic illustration of the synaptic dynamics in the RRAM-based Hop-
field network: as N3 fires, the gate spike VG3 induces a positive (negative) current at
synapse W31 (W’31). If N1 is coactive with N3, the overlapping spikes lead to W31

potentiation and W’31 depression. Copyright 2017 IEEE. Adapted, with permission,
from [265].

umn, and (iii) Oi which is applied to the TE of excitatory 1T1R synapses
of i-th column. Thus, each Ni acts as both PRE and POST controlling the
gate of i-th row excitatory/inhibitory 1T1R synapses and the TE of i-th col-
umn excitatory/inhibitory 1T1R synapses, respectively [265, 267]. Also,
according to original Hopfield network model [259], note that the synapses
along the diagonal of synaptic matrix are absent (Wii = 0) to prevent that
self-feedback leads the network to unstable states.

Fig. 6.3 describes the operating principle of this hybrid CMOS/RRAM
Hopfield network to achieve the storage of a stable memory state or at-
tractor state considering the pair of neurons N1 and N3 and their mutual
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excitatory and inhibitory synaptic connections W31 and W’31.
As N3 fires, the gate voltage spike G3 activates all the excitatory/in-

hibitory synaptic gates within the 3rd row, thus inducing excitatory and
inhibitory currents, including the excitatory current I31 and the inhibitory
current I’31, since the top electrodes of excitatory and inhibitory synapses
are biased by read voltages Vread and V’read = -Vread, respectively. These
currents are recurrently fed to and integrated with the external current spike
X1 by N1, eventually contributing to N1 fire. If N1 and N3 fire at the same
time, the overlap of voltage spikes G3 and O1, which has a positive ampli-
tude Vexc higher than Vset, causes the synaptic potentiation of the excita-
tory 1T1R synapse of weight W31, while the overlap of voltage spikes G3

and O’1, which has a negative amplitude Vinh exceeding Vreset, causes the
synaptic depression of the inhibitory 1T1R synapse of weight W’31.

Moreover, since N1 and N3 are both PRE and POST, the symmetric
excitatory and inhibitory weights, namely W13 and W’13, are also them-
selves potentiated and depressed, respectively, thus leading to the typical
symmetric configuration of synaptic weights featuring Hopfield neural net-
works [258].

In this implementation, the synaptic weight updates triggered by coac-
tive neurons obey to the Hebbian postulate “neurons that fire together wire
together” [271]. Specifically, potentiation of the excitatory synapses and
depression of the inhibitory synapses between coactive neurons are achieved
as simplified cases of the STDP in the 1T1R synapses described in Sec-
tion 3.2, where the bipolar voltage pulse at the TE is replaced by a unipolar
voltage pulse, with either positive voltage Vexc or negative voltage Vinh.

6.3 Learning and recall of a single attractor

6.3.1 Learning of a single attractor

Based on network operation schematically described in Fig. 6.3, the hybrid
CMOS/RRAM Hopfield network can settle into or learn an attractor state
providing external spikes at high frequency to sub-populations of neurons
within the network.

Fig. 6.4 shows the time evolution of attractor learning process activated
by the external stimulation of neuron sub-population N1, N2 and N3 via
Poisson spike trains of amplitude Ix = 10 µA and frequency fx = 200 Hz.
Note that the read voltage and the threshold of I&F neurons used in this
attractor learning simulation were Vread = 0.3 V and Ith = 30 µA, respec-
tively.

113



Chapter 6. Recurrent spiking neural networks with 1T1R RRAM synapses
for associative learning

Figure 6.4: Time evolution of calculated attractor learning in RRAM-based Hopfield neu-
ral network evidencing the spikes emitted by attractor neurons N1, N2 and N3 (red dots)
in response to an external stimulation (blue dots) at frequency fx = 200 Hz. Copyright
2017 IEEE. Adapted, with permission, from [265].

In the first epochs of training, the integration of external spikes pro-
vided to 3 neurons (blue dots) leads to the emission of output spikes (red
dots) at low frequency because excitatory/inhibitory synaptic weights were
initialized in a depressed/potentiated state. However, as the externally stim-
ulated neurons fire at the same time, the potentiation of mutual excitatory
synapses and the depression of corresponding inhibitory synapses are ac-
tivated according to Hebbian plasticity rule inducing an increasing firing
activity due to higher integrated synaptic currents, eventually leading to the
formation of the attractor state [265]. This means that attractor learning in
the Hopfield recurrent neural network results in the achievement of a stable
high-frequency firing pattern for externally stimulated neurons [257].

Fig. 6.5 shows the evolution of both (a) excitatory and (b) inhibitory
synaptic weights during attractor learning process described in Fig. 6.4,
supported by color plots of weights at times t = 0, t = 0.5 s and t = 1 s. Start-
ing from initial excitatory/inhibitory weights prepared in a depressed/po-
tentiated state, the output spikes of externally-stimulated neurons activate
set/reset transitions for the excitatory/inhibitory synapses shared by coac-
tive neurons leading to the formation of the attractor state within t = 1 s
[265]. Note that set transitions from HRS to LRS in 1T1R excitatory
synapses and reset transitions from LRS to HRS in 1T1R inhibitory synapses

114



6.3. Learning and recall of a single attractor

Figure 6.5: (a) Time evolution of the excitatory synaptic weights during attractor learn-
ing of sub-population N1, N2 and N3. Starting from fully depressed excitatory weights,
simultaneous spiking activity of the attractor neurons induces resistance transitions to
LRS for mutual excitatory synapses until reaching attractor formation. (b) Time evo-
lution of the inhibitory synaptic weights during attractor learning of sub-population
N1, N2 and N3. Starting from potentiated inhibitory weights, simultaneous spiking ac-
tivity of attractor neurons induces resistance transitions to HRS for mutual inhibitory
synapses until reaching attractor formation. Copyright 2017 IEEE. Adapted, with per-
mission, from [265].

were simulated using the stochastic Monte Carlo model for HfO2 RRAM
resistance distributions discussed in section 2.4.

6.3.2 Recall of a single attractor

After achieving single attractor learning, hybrid CMOS/RRAM Hopfield
network was tested to demonstrate another key computational ability of
recurrent neural networks, namely the recall of a stored attractor state by a
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Figure 6.6: Neuronal dynamics of the RRAM-based Hopfield network during recall pro-
cess. The raster plot indicates that the external stimulation (blue dots) of a fraction of
previously stored attractor, i.e. N1, enables to reactivate the full attractor state (N1,
N2, and N3) and achieve a sustained spiking activity (red dots) even if the external
stimulation is removed.

partial external stimulation [257, 258].
To capture recall capability, the operation mode of network described for

training in Fig. 6.3 is changed via the replacement of voltage pulses applied
at the outputs of i-th neuron Oi and O’i with the read voltages Vread and
V’read, respectively, thus preventing unwanted updates of the excitatory and
inhibitory synaptic weights obtained by network training [267].

Fig. 6.6 shows the recall of the previously stored attractor in response
to the application of a partial external stimulation at frequency fx = 50 Hz
only to one attractor neuron out of 3, namely N1. The integration of ex-
ternal spikes X1 of amplitude Ix = 10 µA (blue dots) leads N1 to hit the
threshold (Ith = 30 µA) and, consequently, emit output spikes (red dots)
which, thanks to the attractor state, induce synaptic currents proportional
to the LRS conductance of weights W12 and W13 at the input of N2 and
N3, eventually leading to the attractor reactivation resulting in a sustained
spiking activity despite the removal of external input at t = 200 ms.

To extensively investigate the recall of a single attractor state, Fig. 6.7(a)
and (b) show the color plots of the recall probability as a function of fx and
Ith for Ix = Ith/5 in the case of one externally stimulated neuron and 2 exter-
nally stimulated neurons, respectively. Note that 100 1-s-long simulations
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Figure 6.7: Color plots of recall probability as a function of Ith and fx for Ix set to Ith/5
in case of (a) 1 externally stimulated neuron and (b) 2 stimulated neurons. Average
recall time as a function of Ix for variable fx and Ith set to 30 µA in the case of (c) 1
externally stimulated neuron and (d) 2 externally stimulated neurons.

were carried out for each pair of fx and Ith values to obtain a sufficient
statistics.

Simulation results show that attractor recall can be always achieved for
Ith ≤ 30 µA provided that fx ≥ 10 Hz in case of one stimulated neuron
and fx ≥ 5 Hz in case of 2 stimulated neurons. On the one hand, neuron
threshold has to be set within 30 µA because this is the maximum current
that each neuron within attractor can integrate at each time to sustain the re-
verberation activity after removal of external input. On the other hand, the
color plots evidence that the cooperation of two externally stimulated neu-
rons can enable to achieve attractor recall even if the stimulation frequency
is lower than one used in case of a single stimulated neuron. Also, note
that if Ix was closer than Ith, the minimum frequency leading to attractor
recall would decrease slightly since fewer external current spikes would be
sufficient to reactivate spiking activity within the attractor.

In addition to probability to achieve attractor recall, average time needed
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to recall the attractor was also investigated. Fig. 6.7(c) and (d) show the cal-
culated average recall time, namely the time required to reactivate a persis-
tent spiking activity within the attractor, as a function of Ix with increasing
fx in the cases of one stimulated neuron and 2 stimulated neurons, respec-
tively. The average recall time was studied assuming the maximum recall
threshold, namely Ith = 30 µA. Also, note that 1000 1-s-long simulations
were carried out for each pair of Ix and fx values to obtain a sufficient statis-
tics.

Simulation results first evidence that calculated recall time decreases
with increasing fx in both cases since a stronger external stimulation in-
duces stimulated neuron/neurons to fire more rapidly, thus accelerating re-
call process. Also, observing recall time as a function of Ix at each fx, one
can note that it decreases with transitions for specific Ix indicating the need
for one less external current spike to hit the neuron threshold and reacti-
vate attractor. In particular, these jumps are abrupt in Fig. 6.7(c) because
only one neuron channel is externally stimulated to achieve attractor recall,
while they are more gradual in Fig. 6.7(d) since external spikes of 2 neu-
rons can contribute to attractor recall. Finally, it should be noted that the
external stimulation of 2 neurons accelerates recall process with respect to
the case of 1 stimulated neuron, enabling to retrieve the attractor even at fx
= 5 Hz, which, is not sufficient if only one neuron is externally stimulated.

6.4 Learning and recall of sequential attractors

6.4.1 Learning of two orthogonal attractors in sequence

In additon to the case of a single attractor, learning and recall capabilities
of simulated Hopfield network were also tested for 2 non-overlapping or
orthogonal sequential attractors [265].

To achieve sequential attractor learning, the 1-s-long external stimula-
tion at fx = 200 Hz of neurons N1, N2 and N3 was followed by a 1-s-
long external stimulation of neurons N4, N5 and N6 at the same frequency.
Fig. 6.8 shows the color code representation of (a) excitatory and (b) in-
hibitory synaptic weights during sequential training. Starting from initially
depressed/potentiated excitatory/inhibitory synaptic weights, the network
is capable of learning the first attractor state in response to the external
stimulation of N1, N2 and N3 within t = 1 s by potentiation/depression of
mutual excitatory/inhibitory synaptic weights, and the second attractor state
in response to the external stimulation of N4, N5 and N6 within t = 2 s by
potentiation/depression of mutual excitatory/inhibitory synaptic weights.
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Figure 6.8: Color code representation of calculated weights for (a) excitatory and (b)
inhibitory synapses at times 0 s, 1 s, and 2 s during sequential learning process of
two non-overlapping attractors. Time evolution of (c) excitatory and (d) inhibitory
conductances evidencing formation of two orthogonal attractor states in sequence via
resistance transitions of weights within each attractor to LRS and HRS, respectively.
Copyright 2017 IEEE. Adapted, with permission, from [265].

In addition, Fig. 6.8(c) and (d) show the time evolution of excitatory
and inhibitory synaptic weights during sequential learning, respectively,
evidencing the formation of each of two attractors via the resistance tran-
sitions to LRS/HRS of excitatory/inhibitory synapses within the first and
second attractor, respectively. Note that in this simulation of sequential at-
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Figure 6.9: Sequential recall of two orthogonal attractors, where the external stimulation
provided to N2 reactivates the first attractor (N1, N2, and N3) in the first period within
t = 100 ms, followed by stimulation of N5 to recall second attractor (N4, N5, and N6)
in the second period within t = 200 ms.

tractor learning Ix was set to 20 µA and the neuron threshold was set higher
than 30 µA (Ith = 40 µA) to avoid that the strong spiking activity of first
attractor after 1 s prevents the formation of the second attractor because of
potentiated mutual inhibitory synapses.

6.4.2 Recall of two orthogonal attractors in sequence

Fig. 6.9 shows the spiking response of the network (red dots) induced by
the partial stimulation of 2 previously stored attractors via external spikes
(blue dots) sequentially provided to N2 and N5, respectively. The applica-
tion of external spikes of amplitude Ix = 20 µA at frequency fx = 100 Hz to
N2 leads it to cross the recall threshold Ith = 30 µA and emit output spikes
activating synaptic currents across the potentiated excitatory synapses con-
necting N2 to N1 and N3, eventually leading to the restoration of the first
attractor by a high frequency spiking activity of sub-population N1, N2 and
N3 capable of sustaining even after t = 100 ms, namely when the external
stimulation is switched from N2 to N5.

After t = 100 ms, the external current spikes provided to N5 at frequency
fx cannot reactivate immediately the second attractor because they are re-
duced by inhibitory synaptic currents activated by output spikes of first at-
tractor, thus preventing N5 internal potential to cross rapidly the threshold.

120



6.5. Brain-inspired computing applications with RRAM-based Hopfield
neural network

Figure 6.10: Illustrative explanation of associative memory inspired to Pavlov’s dog ex-
periments. The external stimulation of a single neuron symbolized by the ring of a bell
(a) or the vision of food (b) results in recalling of all neurons, namely bell, food and
dog’s salivation. Copyright 2017 IEEE. Reprinted, with permission, from [265].

As the integration of these currents eventually leads N5 to fire, the output
spikes of N5 activate inhibitory currents within the first attractor, thus lead-
ing to the switching from the first to the second attractor, as evidenced by
activation of persistent spiking activity of N4, N5 and N6 until t = 200 ms.
Note that the switching from two attractors during sequential recall process
can be achieved provided that inhibitory weights are initialized in a resis-
tance state higher than LRS, for instance between 50 kΩ and 100 kΩ as in
this simulation, such that the excitatory currents activated by second attrac-
tor can exceed the inhibitory currents activated by first attractor. This appli-
cation thus highlights the need for inhibitory synapses to switch from one
to another attractor in the simulated Hopfield network with 1T1R RRAM
synapses.

6.5 Brain-inspired computing applications with RRAM-based
Hopfield neural network

6.5.1 Associative memory

Learning and recall of attractor states discussed in the sections 6.3 and 6.4
pave the way to the replication of various human brain cognitive functions
via RRAM-based Hopfield neural networks.

The recall of an attractor state by testing of the network with a partial or
erroneous stimulus is first at the origin of a fundamental cognitive primi-
tive in the mammalian brain known as associative learning, which received
an intense theoretical and experimental investigation, as evidenced by the
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Figure 6.11: (a) “X” and (b) “C” 8x8 input patterns used to train the simulated RRAM-
based Hopfield neural network with 64 neurons. Color code representation of exci-
tatory (c) and inhibitory (d) synaptic weights during sequential learning process at
times t = 0 s, t = 5 s, and t = 10 s. Copyright 2018 IEEE. Adapted, with permission,
from [267].

Pavlov’s dog experiments [272].
To illustrate the associative learning in the RRAM-based attractor neural

network, Fig. 6.10 shows simulation results for recalling the attractor N1,
N2, N3, and its significance in terms of associative learning according to
the Pavlov’s dog experiments [265]. If the food presentation to the dog is
always combined with the ringing of a bell, the “bell” and “food” concepts
are associated, i.e., an attractor linking bell and food is formed in the dog’s
brain. Consequently, whenever the dog hears the bell’s ring alone, it resus-
citates the concept of food and the stimulus to salivation (Fig. 6.10(a)), just
as if the bone is directly presented to the dog (Fig. 6.10(b)).

This application is extremely significant since it provides a strong link
between recurrent neural networks and the biophysics of the mammalian
brain and consequently received a great interest resulting in many circuit
level implementations by memristive devices [273–275].

6.5.2 Pattern completion

Pattern completion, namely the ability to reconstruct a previously learnt
pattern by submission of an erroneous or incomplete stimulation, is one
of the main brain-inspired computational tasks achieved in hardware [261,
263] and simulated recurrent neural networks [125, 266, 267].
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Figure 6.12: Features of original pattern “X” with (a) 9 and (b) 5 active input channels
inducing the reactivation of all the 12 attractor neurons within about 0.1 s and 0.2
s, respectively (c). Incomplete versions of the original pattern “C” with (d) 7 and
(e) 4 active input channels leading to the reactivation of all the 12 attractor neurons
within about 0.15 s and 0.3 s, respectively (f). Copyright 2018 IEEE. Adapted, with
permission, from [267].

To demonstrate pattern completion functionality, sequential learning of
two orthogonal attractors associated to two 8x8 visual patterns representing
a letter “X” (Fig. 6.11(a)) and a letter “C” (Fig. 6.11(b)), respectively, was
first simulated by a RRAM-based Hopfield network with 64 leaky integrate-
and-fire (LIF) neurons [267].

Fig. 6.11(c) and (d) show the color plots of calculated excitatory and
inhibitory synaptic weights, respectively, during the sequential learning
process of orthogonal attractors. Starting from initial excitatory synaptic
weights in HRS and inhibitory synaptic weights in an intermediate resis-
tive state (R = 50-100 kΩ), the presentation of pattern “X” to the network
leads to the formation of the first attractor via potentiation/depression of ex-
citatory/inhibitory synapses connecting “X” neurons within 5 s. After that,
submitted pattern is changed from “X” to “C” leading to storage of the sec-
ond attractor via potentiation/depression of excitatory/inhibitory synapses
connecting “C” neurons within 10 s.

After achieving sequential learning of two attractors, pattern restoration
was studied testing the Hopfield neural network with 64 neurons upon pre-
sentation of a fraction of the original patterns “X” and “C” [267].

Fig. 6.12(a) shows the input patterns that were submitted in the simula-
tions, consisting of partial versions of the pattern “X” with only (a) 9 active
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Figure 6.13: Average recall time of attractor ’X’ as a function of density of submitted
partial pattern for variable τ values. Copyright 2018 IEEE. Adapted, with permission,
from [267].

channels or (b) 5 active channels and partial versions of the pattern “C”
with only (c) 7 active channels or (d) 4 active channels.

Fig. 6.12(e) shows the simulation results of attractor recall with the par-
tial patterns in (a) and (b), each case being simulated 10 times for statistical
significance. The number of activated neurons increases with time during
the submission of the partial pattern, eventually activating all the 12 neurons
in the original pattern “X”. Note that the average time required to retrieve
the whole pattern “X” decreases as the number of externally stimulated
neurons increases, as a result of the higher synaptic current feeding other
unstimulated neurons within the selected attractor. Similarly to pattern “X”,
the stimulation of a fraction of attractor “C” leads to the restoration of all
the 12 neurons in the attractor, as shown in Fig. 6.12(f). These results sup-
port error tolerant pattern recognition, where a pattern is recognized even
in presence of a bare suggestion, or stimulation of only a fraction of the
pattern.

In addition, Fig. 6.13 shows the calculated average recall time to retrieve
“X” as a function of the number of attractor neurons stimulated by external
spikes. In the simulations, various values of time constant τ , corresponding
to various leakage during integration of incoming spikes, were assumed.
The recall time was defined as the time the network takes to reactivate all
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Figure 6.14: Color map of probability P of recalling attractor “X”, as a function of
the number of externally activated neurons within pattern “X” and pattern “C”. The
probability of reactivating the attractor “C” can be obtained as 1-P. Copyright 2018
IEEE. Reprinted, with permission, from [267].

neurons of a stored memory. As τ increases, the recall time for a given
number of initially active neurons decreases because leakage impact on the
firing activity of recalled attractor neurons gradually decreases. Similarly,
the minimum number of active neurons to restore the full pattern increases
for decreasing τ as the discharge of internal potential within each neuron
becomes gradually faster by preventing attractor neurons to fire. Note that
the same result would be also obtained for “C” since they features the same
density of activated pixels [267].

6.5.3 Error correction

To explore the limits of the error tolerant recognition, and the possibility
of confusion between competing patterns, Fig. 6.14 shows a color map of
the calculated probability P of recognizing the pattern “X” after externally
stimulating the Hopfield neural network with 64 neurons for 1 s [267]. The
recognition probability is reported as a function of the number of externally
stimulated neurons belonging to “X” or “C”. The reported P is the average
over 1000 simulations for each case. Note that all the simulations eventu-
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ally led to recognition of either “X” or “C”, therefore the probability for
recognizing pattern “C” is given by 1-P.

The results indicate that P increases as the number of stimulated X-
neurons increases, and P decreases as the number of stimulated neurons
within C increases. For similar number of X- and C- neurons being ex-
cited, the color plot shows random behavior of the simulated network with
P of about 50%.

Finally, note that as the stimulated X- and C-neurons within the submit-
ted test pattern are both above 7, P assumes intermediate values since such
a high external excitation can activate either attractors with high probabil-
ity, thus the recall process is mainly controlled by the stochastic Poisson
input spike trains used to stimulate the attractor network.

These results corroborate the feasibility of error-tolerant brain-inspired
Hopfield spiking neural network with RRAM-based 1T1R synapses capa-
ble of STDP.

6.6 Conclusions

In this chapter, a circuit implementation of Hopfield neural networks with
1T1R RRAM synapses capable of STDP has been described, enabling to
achieve learning and recall of both a single attractor state and sequen-
tial attractor states. After demonstrating fundamental abilities for a re-
current neural network, attractive human brain primitives such as asso-
ciative memory, pattern completion and error correction have been suc-
cessfully achieved in simulation by the RRAM-based Hopfield neural net-
work. These results thus pave the way for hardware implementation of
brain-inspired associative learning in embedded low-power neuromorphic
systems with resistive synapses.
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A short summary of research achievements presented in this Ph.D.
dissertation and the prospects of this work are reported in the fol-
lowing.

A stochastic Monte Carlo model for HfO2 RRAM devices was first de-
veloped in order to capture stochastic learning processes in spiking neural
networks with RRAM synapses thanks to its ability to accurately predict
the experimental distributions of resistance obtained by characterization of
set and reset transitions at variable applied voltage.

After that, two hybrid CMOS/RRAM circuits were designed and simu-
lated enabling to achieve nanoscale resistive synapses capable of replicating
two well-known bio-realistic learning rules as STDP and SRDP.

A RRAM-based synapse circuit with 1T1R structure enabled to imple-
ment STDP rule by application of a scheme using overlapping spikes. To
support STDP functionality in hardware, this scheme was experimentally
validated in 1T1R RRAM structures. Also, to support the dependence of
STDP on initial state in 1T1R synapses, STDP characteristics calculated
for variable initial resistance state by a previous analytical model of HfO2

RRAM were compared with experimental counterparts evidencing a good
agreement.

In addition to 1T1R synapse capable of STDP, another hybrid CMOS/R-
RAM synapse circuit comprising 4 transistors and one RRAM device was
designed and simulated to implement SRDP learning rule.

Both synaptic potentiation for high frequency stimulation and synaptic
depression for low frequency stimulation were successfully achieved by
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simulations, thus corroborating the experimental measurements carried out
by 2T1R integrated structures.

After discussing the use of RRAM device at level of single synapse, sim-
ulations and experiments were also carried out at higher level of network for
implementing neuromorphic computing tasks such as unsupervised learn-
ing and recognition of visual patterns.

In this frame, a two-layer feedforward spiking neural network with 1T1R
synapses implementing STDP was designed and simulated achieving unsu-
pervised learning and recognition of a visual pattern according to a stochas-
tic approach. After demonstrating learning of a single visual pattern, on-
line learning of sequential patterns and on-line learning of multiple pat-
terns were also demonstrated in simulation. Also, to support the feasibil-
ity of these fundamental cognitive tasks in hardware, all calculated results
were validated by experiments via a hardware neural network with 1T1R
RRAM synapses built on a PCB. Furthermore, a detailed study based on
experiments and simulations investigating pattern learning performance as
a function of density of submitted random noise was carried out leading
to find the noise density optimizing learning performance of neuromorphic
network used in the experiments.

In addition to unsupervised pattern learning by STDP, unsupervised learn-
ing of a single pattern and on-line learning of sequential patterns were also
demonstrated by design and simulation of a two-layer feedforward spiking
neural network with 4T1R RRAM-based synapses implementing SRDP.
To support simulation results, unsupervised pattern learning via SRDP rule
was validated by experiments with 2T1R integrated structures, separately
achieving background depression and pattern potentiation. Also, the impact
of noise frequencies on learning efficiency of the neuromorphic network
was investigated in simulation achieving the best trade-off.

Finally, a circuit implementation of a Hopfield recurrent neural network
with 1T1R RRAM synapses capable of STDP was developed and simu-
lated. RRAM-based Hopfield network first enabled to demonstrate in sim-
ulation learning and recall of both a single attractor state and two sequential
orthogonal attractor states. Based on these results, attractive brain-inspired
cognitive abilities such as associative memory, pattern restoration and er-
ror correction were achieved by simulation of RRAM-based Hopfield net-
works.

These results can open the way for the exploration and implementa-
tion at simulation and experimental level of other interesting neuromorphic
computing applications in the coming years.

First, feedforward spiking neural networks with a higher number of lay-
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ers fully connected by resistive synapses capable of bio-realistic plasticity
can be developed and simulated to achieve the demonstration of cognitive
tasks more complex than learning of a single visual pattern or sequential vi-
sual patterns such as the classification of images within very large datasets.

Also, taking inspiration from the great potential of Hopfield networks,
Hopfield spiking neuromorphic network based on resistive synapses can be
further investigated to demonstrate in simulation and hardware new cogni-
tive functions such as decision making ability and unsupervised learning
of temporal sequences, and the solution of hard computational problems
such as constraint-satisfaction problems, e.g. Sudoku puzzle, or systems of
linear equations.

Finally, the approach based on resistive switching synaptic devices can
be very useful to also achieve the implementation of other fundamental
types of neuromorphic networks that are gaining increasing interest in neu-
romorphic computing landscape such as Restricted Boltzmann Machines
and Reservoir Computing networks.
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