“thesis” — 2019/1/20 — 23:36 — page 1 — #I

POLITECNICO
MILANO 1863

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ON How 1O EFFECTIVELY TARGET FPGAS
FROM DOMAIN SPECIFIC TOOLS

Doctoral Dissertation of:
Emanuele Del Sozzo

Supervisor:
Prof. Marco D. Santambrogio

Tutor:
Prof. Cristiana Bolchini

The Chair of the Doctoral Program:
Prof. Andrea Bonarini

2018 — XXXI Cycle

“thesis” — 2019/1/20 — 23:36 — page 2 — #2

“thesis” — 2019/1/20 — 23:36 — page 1 — #3

To my Family

“thesis” — 2019/1/20 — 23:36 — page 2 — #4

“thesis” — 2019/1/20 —T 23:36 — page I — #5

Abstract

ETEROGENEOUS System Architectures (HSAs) represent a promis-
ing solution to face the limitations of modern homogenous archi-
tectures, in terms of both performance and power efficiency. In-

deed, thanks to the combination of hardware accelerators like GPUs, FP-
GAs, and dedicated ASICs, such systems are able to efficiently run perfor-
mance demanding applications belonging to different application scenarios
(like image and signal processing, linear algebra, computational biology,
etc.) on the most suitable device for that domain. In order to fully take
advantage of HSAs, in the last years new programming models and tools
able to efficiently target such architectures, in terms of both final perfor-
mance and productivity, emerged. Domain Specific Languages (DSLs) and
Machine Learning (ML) frameworks are two significant examples. Both
permit users to quickly and easily develop portable and efficient designs
for multiple architectures. However, although DSLs and ML frameworks
are highly effective in assisting users towards the generation of efficient de-
signs for CPUs and GPUs, they still lack a concrete support for FPGAs.
Indeed, even though FPGA toolchains have significantly improved and in-
creased their features over the last years, the whole FPGA design process
remains complex and the integration with high-productivity tools and lan-
guages 1is still limited. For these reasons, this research project focuses on
the development of tools able to efficiently and easily target FPGAs from
domain-specific scenarios. In particular, it consists in both a framework for
the fast-prototyping and deployment of CNN accelerators on FPGA, and
FROST, a unified backend to efficiently hardware-accelerate DSLs on FP-

I

“thesis” — 2019/1/20 —‘ 23:36 — page II — #6

GAs. On one hand, the goal of the CNN framework is to bridge the gap
between high-productivity ML frameworks, like TensorFlow and Caffe,
and FPGA design process. The framework automatizes the CNN imple-
mentation flow on FPGA, supports Caffe descriptions of the network, and
provides a C++ library to design dataflow accelerators, as well as an inte-
gration with TensorFlow to train the network. On the other, starting from
an algorithm described in one of the supported DSLs, FROST translates
it into its Intermediate Representation (IR), performs a series of FPGA-
oriented optimizations steps, and, finally, generates an optimized design
suitable of FPGA tools. In order to better leverage the features of the FPGA
and enhance the performance, FROST provides a high-level scheduling co-
language the user can exploit to guide the optimizations to apply, as well as
specify the architecture to implement. This allows to easily evaluate differ-
ent hardware designs and choose the most suitable to the input algorithm.

IT

“thesis” — 2019/1/20 —‘23:36 — page III — #7

Sommario

Sistemi di Architetture Eterogenee (HSA) rappresentano una soluzione

promettente per fronteggiare le limitazioni delle moderne architetture

omogenee, in termini sia di prestazioni che di efficienza dal punto di vi-
sta della potenza. Infatti, grazie alla combinazione di acceleratori hardware
come GPU, FPGA e ASIC dedicati, tali sistemi sono in grado di eseguire
efficientemente applicazioni che richiedono alte prestazioni e che appar-
tengono a diversi scenari applicativi (come il processamento di immagini
e segnali, I’algebra lineare, la biologia computazionale, e cosi via) sul di-
spositivo piu adatto per quel dominio. Al fine di sfruttare a pieno gli HSA,
negli ultimi anni sono emersi nuovi modelli e strumenti di programmazione
in grado di rivolgersi a tali architetture, in termini sia di prestazioni finali
che di produttivita. Linguaggi a Dominio Specifico (DSL) e framework di
Machine Learning (ML) sono due esempi significativi. Entrambi permet-
tono all’utente di sviluppare velocemente e facilmente design portabili ed
efficienti per architetture multiple. Tuttavia, nonostante DSL e framework
di ML sono altamente efficienti per CPU e GPU, non lo sono altrettanto per
FPGA. Infatti, anche se, nel corso degli ultimi anni, le toolchain per FPGA
sono significantivamente migliorate ed hanno aumentato le loro caratteristi-
che, I’intero processo di design per FPGA resta complesso e I’integrazione
con strumenti e linguaggi ad alta produttivita ¢ ancora limitato. Per queste
ragioni, questo progetto di ricerca si concentra sullo sviluppo di strumen-
ti in grado di rivolgersi in maniera efficiente e facile alle FPGA partendo
da scenario a dominio specifico. In particolare, questo progetto consiste in
sia un framework per lo sviluppo veloce di acceleratori per CNN su FP-

III

“thesis” — 2019/1/20 —‘23:36 — page IV — #8

GA, e FROST, un backend unificato per accelerare efficientemente 1 DSL
su FPGA. Da un lato, lo scopo del framework per le CNN ¢ di colmare
lo spazio tra i framework di ML ad alta produttivita, come TensorFlow e
Caffe, e il processo di design per FPGA. Il framework automatizza il flusso
di implementazione di CNN su FPGA, supporta descrizioni in Caffe della
rete, e fornisce una libreria C++ per sviluppare acceleratori dataflow, in-
sieme ad una integrazione con TensorFlow per allenare la rete. Dall’altro
lato, partendo da un algoritmo descritto in one dei DSL supportati, FRO-
ST lo traduce nella propria rappresentazione intermedia (IR), applica una
serie di passi di ottimizzazioni orientati alle FPGA, e, infine, genera una
implementazione ottimizzata adatta per gli strumenti per FPGA. Al fine
di sfruttare al meglio le caratteristiche della FPGA e migliorare le presta-
zioni, FROST fornisce un co-linguaggio di scheduling ad alto livello che
I’utente puo sfruttare per guidare le ottimizzazioni da applicare, e specifi-
care I’architettura da implementare. Questo permette di valutare facilmente
design hardware differenti e scegliere la piu adatta 1’algoritmo in input.

v

“thesis” — 2019/1/20 —‘ 23:36 — page V — #9

Contents

1 Introductionl 1
(1. Heterogeneous Computing| 3
(.2 Problem Statementl L. 5
(L3 _Contributionsl oL oL 5
(I.3.1 Publications| 6

(1.4 "Thesis Organization|. 7

|2 Background on Hardware Architectures) 9
2.1 Graphics Processimg Unit) 11
(2.2 Field Programmable Gate Array| 13
[2.2.1 Configurable Logic Blocks| 14

[2.2.2 Digital Signal Processors| 15

R23 BIOCKRAMS o v voo oo e 15

2.2.4 Interconnection Networkl 16

[2.2.5 FPGA Configuration|. 17

[2.2.6 FPGA Design Process| 17

(2.3 Architectures Comparison| 20
24 FinalRemarks 21

3 How to Program FPGAs| 23
(3.1 Hardware Description Languages| 24
3.1.1 ArchHDL) . . . 000 oo 25

[3.1.2 Bluespec System Verilog| 25
BI3Chisell 26

“thesis” — 2019/1/20 — P3:36 — page VI — #10

Contents

B.14 Genesis2 27
BISTHMD. . . . oot 27
316 JHDO 28
BIZ Max]l. 28
BI8 myADD] 29
BIOPHDL 30
B.LIOPYMTL] 30
B.1.1TPyVerillog| 31
[(3.1.12HDL Comparison Table| 32
32 HLSI. . . . 34
321 BAMBU 34
[3.2.2 Catapult-C| 34
[3.2.3 CoDeveloper|. 35
[3.2.4 CyberWorkBench| 36
[3.2.5 DK DesignSuite[. 36
B26 DWARVI o oo oo e e e 37
B2T eXCHte] . . o o oo e 37
B28 GAUT . . oo oo e e e e e e e e e e 38
(3.2.9 Intel HLS Compiler| 38
OLegUp| 39
........................ 39
B212SOpenCL] 40
...................... 40
[3.2.14 Synphony C Compiler{ 41
3215 VivadoHLSIo oo 41
[3.2.16 Tools for Heterogeneous Systems| 42
(3.2.17HLS Comparison Table| 44
B3 FinalRemarks 46

An Autom Framework to Acceler nvolutional Neural Net-
L works on FPGA| 47
.1 Background on Convolutional Neural Networks| 51
“4.1.1 Perceptron Classifier]. 51
“.1.2 Artuficial Neural Networksl 52
“4.1.3 Convolutional Neural Networks| 53
4.2 Proposed Framework| 0 0. 58
“4.2.1 Proto Buffer Geperaton 60
422 TensorFlow Traiped 62
“4.2.3 Hardware Generator 64
4.3 Hardware Design| 65

“thesis” — 2019/1/20 — %3:36 — page VII — #11

Contents

@4.3.1 Convolutional Layer{ 66
4.3.2 PoolinglLayerd 68
4.3.3 Fully-Connected Layery 68
B34 Target FPGAS 69
4.4 Experimental Results| 70
70

4.4.2 MNIST Dataset 72

73

74

76

|

79

81

82

82

83

84

84

............................ 86
[5.3.1 Scheduling Co-Language| 86
532 FROST workflow] 88
0.4 FPGAbackend 92
[5.5 Experimental Evaluation| 93
[5.5.1 Experimental Setup| 93
[5.5.2 Experimental Results: Vivado HLS Video Library| . . 93
[5.5.3 Experimental Results: N-Body Simulation| 97

5.6 RelatedWorkl Lo 99
0.7 Final Remarksl 101
nclusions and Future Wor 103
6.1 Limitations and Future Workl 105
611 CNNframeworkl 105
6.1.2 FROSTI. o o 105
62 FinalRemarks 106
BID grap 109

Vil

“thesis” — 2019/1/20 — %3:36 — page VIII — #12

“thesis” — 2019/1/20 —‘23:36 — page 1 — #13

CHAPTER

Introduction

Thanks to the improvements in technology and methodologies, nowadays
computing performance has a critical role in many and different fields, like
finance, medical science, cutting-edge research, and so on. In the past
decades, the main method used to improve the performance of computing
systems consisted in increasing the operating frequency of the processing
units. This allowed the users to benefit of such performance boost in a com-
pletely transparent way, with no change required to their applications. In
this context, the improvements in transistor technologies were the funda-
mental factor that enabled the performance enhancement in computing sys-
tems. Indeed, according to Moore’s law [[1] and Dennard’s scaling law [2],
the yearly reduction of MOS transistors size permitted to fit more transis-
tors within the same area of an integrated circuit, keeping the power profile
roughly constant. Figure [I.1] portraits the trend of transistor count in Intel
microprocessors from 1971 to 2016 [3]. This chart shows that, in about
45 years, the number of transistors inside Intel’s processors increased from
2300 (Intel 4004 Processor [4]], 1971) to 5.56 billion (Intel Xeon Phi Pro-
cessor 7290F [5]], 2016). However, the aforementioned trend is not valid
anymore; indeed, due to the density of transistors, as well as the high op-
erating frequencies, it is unfeasible for the processing units to dissipate the

1

“thesis” — 2019/1/20 —‘23:36 — page 2 — #14

Chapter 1. Introduction

"] 8 88
| ogge 888080
ceidEs
- 108 - g
E o
g | 08@8 6
g 008688
Z 10° 05009
g o © ©
\ oo °©
10*
00 © °
T T T T T T T T T ‘ T T T T T T T T T ‘ T T T T T T T T T ‘ T T T T T T T T T ‘ T T T T T T
1970 1980 1990 2000 2010

production year

Figure 1.1: Transistor count in Intel microprocessors from 1971 to 2016.

significant thermal power produced [6}/7]. For this reason, academia and
companies started to consider alternative approaches to face the power wall
limit.

One of the proposed solutions oriented not only to power efficiency but
also to performance demand consisted in adopting multi-cores and par-
allel systems [8-11]. This kind of architecture is currently widespread
and available in different versions according to costumers’ needs. Indeed,
it is straightforward to find, on one hand, quad-core processors on con-
sumer electronics (for instance, Intel i5 [12] and i7 [13]] series or AMD
A-Series [14]) and, on the other, 16-cores on enterprise class server nodes
(like Intel Xeon series [15], IBM Power Systems [16], Oracle SPARC Sys-
tems [[17]], and so on). However, differently from the frequency scaling, the
performance improvement is up to the programmers, that have to reshape
and adapt their applications to efficiently exploit multi-core systems. In
this case, the law stated by Gene Amdahl in 1967 [[18]], which determines
the diminishing returns to increasing the number of processors, is still valid
today and limits the speedup provided by multi-core systems. As matter
of fact, according to Amdahl’s law, the sequential part of the application
bounds the theoretical speedup from parallelism. In other words, if 1/4
of the application is serial, the programmer can parallelize only 3/4 of the
application, achieving a maximum speedup of 4, even using hundreds of
processors.

Figure[I.2]displays the impact of Moore’s law, Dennard scaling and Am-
dahl’s law on processor performance for the past 45 years. In this scenario,

2

“thesis” — 2019/1/20 —‘23:36 — page 3 — #15

1.1. Heterogeneous Computing

End of
Moore's
Law
=

Amhdal's
Law
=>

End of
Dennard Scaling

Performance vs. VAX11-780

= 2X/6 yrs
. 2X/20 yrs
RISC 24;/1;‘?”5 (12%Iyr) |~ (39%/yr),
10" . .5 yrs
2X/1.5 yrs (23%/y1)
(52%/yr)
1 CISC
2X/3.5 yrs
(22%lyr)
f f f f f f f I
1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 1.2: Average performance gain for a single program over time versus VAX 11-780
using SPECintCPU [21|]. Image from [22]].

if this trend does not change, it would take 20 years for a single-program
performance to double. In summary, at the present state of the art [19]:

* transistors improvement is getting significantly slow (due to the end
of Moore’s Law),

» the peak power per mm? of chip is growing (due to the end of Den-
nard scaling), but factors like electromigration, mechanical and ther-
mal bounds limit the power budget per chip, and

* we have already attempted the multi-core solution (limited by Am-
dahl’s Law).

Considering these inevitable limitation, a promising approach to pur-
sue performance while keeping energy consumption under control is the
exploitation of Heterogeneous System Architectures (HSAs) [20].

1.1 Heterogeneous Computing

Heterogeneous architectures represent a promising solution to face the lim-
itations of modern homogeneous architectures, in terms of both perfor-
mance and power efficiency. Indeed, thanks to the combination of hardware
accelerators like Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs), and dedicated Application Specific Integrated Cir-
cuits (ASICs), such systems are able to efficiently run performance de-
manding applications belonging to different application scenarios (like im-
age and signal processing, linear algebra, computational biology, etc.) on

3

“thesis” — 2019/1/20 —‘23:36 — page 4 — #l16

Chapter 1. Introduction

the most suitable device for that domain. CPUs can efficiently run generic
tasks, GPUs are optimal for massively parallel repetitive tasks, and FPGAs
can be (dynamically) configured to provide a hardware implementation of
a software description for an efficient execution. As a result, thanks to their
nature, HSAs may be used to satisfy different workload goals, in terms of
both performance and power/energy consumption. For these reasons, HSAs
are currently in use also in High Performance Computings (HPCs) systems;
indeed, the top supercomputer in July 2018, according TOP500 list [23]], is
Summit, a system that features, per each node, both an IBM Power9 pro-
cessor and an NVIDIA Volta GPU [24]], while other supercomputers, like
Tianhe-2A, are accelerated by a Matrix-2000 coprocessor [25[]. On the other
hand, HSAs appear also in July 2018 Green500 list [26]], the ranking of the
most energy-efficient supercomputers in the world. HSAs dominate the top
places of the Green 500 list; indeed, the most energy-efficient supercom-
puter is Shoubu system B, a heterogeneous system composed of Intel Xeon
D-1571 CPU [27] and PEZY-SC2 [28]] many-core accelerators, which also
feature second and third ranked supercomputers in this list.

Naturally, if hardware evolves, software has to evolve as well. Thus, in
order to fully take advantage of HSAs, we need new programming models
and tools able to efficiently target such architectures, in terms of both final
performance and productivity. For this reason, in the last years we have wit-
nessed the rise of many and different solutions designed to simplify the de-
velopment of applications for multiple target architectures [29-31]]. In this
context, Domain Specific Languages (DSLs) represent one of the most in-
teresting solutions [32,33]]. Indeed, current DSLs allow the user to quickly
and easily develop portable designs for multiple architectures. Thanks to
the restriction of the domain, DSL compilers are able to rapidly explore the
design space and deeply optimize the resulting implementations. As a re-
sult, DSL applications often outperform hand-tuned libraries. On the other
hand, Machine Learning (ML) frameworks represent another fascinating
solution. Even though it has been around for decades, ML has been one of
the major topics in research and engineering field over the last years [34].
The reason for that is, on one hand, the availability of a huge amount of data
to train ML algorithms, and, on the other, the possibility to efficient execute
ML algorithms, like Convolutional Neural Networks (CNNs), on hardware.
As a consequence, ML tools quickly evolved. Nowadays, frameworks like
TensorFlow [35]], Caffe [36]], and Torch [37]] offer efficient solutions to eas-
ily both implement ML algorithms, without a significant expertise of the
field, and target hardware accelerators.

4

“thesis” — 2019/1/20 —‘23:36 — page 5 — #17

1.2. Problem Statement

1.2 Problem Statement

Although DSLs and ML frameworks are highly effective in assisting users
towards the generation of efficient designs for CPUs and GPUs, they still
lack a concrete support for FPGAs. Historically, hardware design for FPGAs
has always been more complex with respect to the design for CPUs and
GPUs. This limited the adoption of FPGAs in datacenters and HPC sys-
tems, in spite of the great design opportunities FPGAs can provide in such
contexts (like arbitrary data precision and the possibility to create a cus-
tom architecture, basically a Domain Specific Architecture, tailored to the
target application scenario). Similarly to what happened for CPUs and
GPUs, over the last years FPGA toolchains have significantly improved
and increased their features. For instance, High-Level Synthesis (HLS)
tools facilitated the design on FPGA; indeed, they permit to hardware ac-
celerate algorithms using languages like C/C++ and OpenCL, instead of
Hardware Description Languages (HDLs) like Verilog and VHDL. How-
ever, the whole FPGA design process remains complex and the integration
with high-productivity tools and languages is still limited. In particular, on
one hand, even though there exist some DSLs able to target FPGA [38-42],
a common solution capable of supporting multiple DSLs, even the ones
that do not have an FPGA backend, is still lacking. On the other, an official
and fully-integrated FPGA support within industrial ML frameworks, like
TensorFlow, is not available yet.

1.3 Contributions

Given these motivations, this thesis focuses on the development of tools
able to efficiently and easily target FPGAs from domain specific scenarios.
In other words, the goal of this thesis is to demonstrate the efficiency of
FPGAs when applied in a well-defined context, where the user can trans-
parently take advantage of such devices and the tools manage all the com-
plexity (i.e. the generation of an efficient hardware design). In particular,
this work describes tools oriented to the hardware acceleration on FPGA
of CNNs and DSLs. The purpose of such tools is to simplify the design
of FPGA accelerators providing users with high-level abstractions to de-
fine the computation (and not its implementation). On the other hand, the
proposed tools are able to build efficient hardware designs thanks to the
restricted domain.

The first tool is a framework for the fast-prototyping and deployment of
CNN accelerators on FPGA [43/44]. The goal of the framework is to bridge

5

“thesis” — 2019/1/20 —‘23:36 — page 6 — #18

Chapter 1. Introduction

the gap between high-productivity ML frameworks, like TensorFlow and
Caffe, and FPGA design process. The main features of the framework are:

* A novel framework written in Python, providing a set of modules
that implement the toolchain for the design and the implementation
of CNNs on FPGAs;

* A flexible internal representation based on Google Protocol Buffers
that is compliant with a subset of the layer definitions of the Caffe
deep learning framework, giving the possibility to provide existing
models as input;

* The integration with TensorFlow for CNN training, providing the train-
ing set and the test set directly to the framework;

* A hardware library with customizable modules implementing the dif-
ferent type of layers of CNNs.

The second tool is FROST, a unified backend to efficiently hardware-
accelerate DSLs on FPGAs [45,46]. Starting from an algorithm described
in one of the supported DSLs, FROST translates it into its Intermediate
Representation (IR), performs a series of FPGA-oriented optimizations steps,
and, finally, generates an optimized design for HLS tools. Here the main
features of FROST:

* A common backend exposing an IR that DSLs can target in order to
accelerate their computations on FPGA;

* Support for Halide [32], a state-of-the-art DSL for image processing,
and Tiramisu [47], a code optimization framework for HPC systems;

* A high-level scheduling co-language the user can exploit to guide
the optimizations to apply, specify the architecture to implement, and
combine with the optimizations offered by the frontends;

* Generation of efficient hardware designs suitable for HLS tools.

1.3.1 Publications

These paper partially contain the contributions of this thesis:

* E. Del Sozzo, A. Solazzo, A. Miele, and M. D. Santambrogio, “On
the Automation of High-Level Synthesis of Convolutional Neural Net-
works", 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), May 2016

6

“thesis” — 2019/1/20 —‘23:36 — page 7 — #19

1.4. Thesis Organization

¢ A. Solazzo, E. Del Sozzo, 1. De Rose, M. De Silvestri, G. C. Durelli,
and M. D. Santambrogio, “Hardware Design Automation of Convolu-
tional Neural Networks", 2016 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), July 2016

* E. Del Sozzo, R. Baghdadi, S. Amarasinghe and M. D. Santambrogio,
“A Common Backend for Hardware Acceleration on FPGA", 2017
IEEE International Conference on Computer Design (ICCD), Novem-
ber 2017

* E. Del Sozzo, R. Baghdadi, S. Amarasinghe and M. D. Santambrogio,
“A Unified Backend for Targeting FPGAs from DSLs", 2018 IEEE
29th International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP), July 2018

* R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, S. P. Amarasinghe, “TIRAMISU: A
Polyhedral Compiler for Expressing Fast and Portable Code", 2019
ACM International Symposium on Code Generation and Optimiza-
tion (CGO), February 2019

1.4 Thesis Organization

The work presented in our thesis is organized as follows:

* Chapter [2| reports the architecture and features of GPUs and FPGAs
and compares different solutions for HSAs according to multiple met-
rics in order to identify the best trade-off;

* Chapter [3] presents the state-of-the-art languages and tools to develop
hardware designs for FPGAs, and stresses the motivations of this work;

* Chapter |4| describes a framework to automate the hardware accelera-
tion on FPGA of Convolutional Neural Networks;

* Chapter [5|focuses on FROST, a common backend for targeting FPGAs
from Domain Specific Languages;

* Chapter [0] gives a general overview of this thesis work, and provides
some insights on the possible future work.

“thesis” — 2019/1/20 —‘23:36 — page 8 — #20

“thesis” — 2019/1/20 —‘23:36 — page 9 — #21

CHAPTER

Background on Hardware Architectures

The complexity and performance demand of current computing systems, as
well as their power consumption, are significantly growing at a remarkable
rate, and the advancements in silicon technologies and manufacture process
cannot any longer the yearly multiplying of computing performance typical
of the previous decades. In fact, the innovations in transistor technologies,
according to Moore’s law [|1] and Dennard’s scaling law [2], allowed such
a fast improvement in microprocessor performance, enabling more transis-
tors to fit in the same area of the integrated circuit, maintaining a generally
constant power density. Along with the advancement of transistor technol-
ogy, a significant effort in the progress of micro-architectural techniques
permitted to leverage an ever growing amount of instruction level paral-
lelism, while the development of on-die cache memories allowed a fast
access to frequently accessed data, hiding the latency between the fast mi-
croprocessor and the slow DRAM memory. However, as we are approach-
ing the end of Moore’s law and Dennard’s scaling law, this trend is not true
anymore; indeed, it is not possible to further lower the threshold voltage
of transistor while keeping the leakage current under control. Moreover,
the ever decreasing physical size of transistors generates additional scal-
ing challenges; indeed, as the power densities of microprocessors is reach-

9

“thesis” — 2019/1/20 — ‘23:36 — page 10 — #22

Chapter 2. Background on Hardware Architectures

10] © GPU
3 0 FPGA o
] o
10"+ g 8 °
E 0 0 o o
_ : 0%g .32
E o o o g§°g09o 8
=] —
: 10" o 8¢ g g Sg o
g 10° 19 o
) g 8
102 o
E o
106i T T ‘ T T ‘ T T ‘ T T ‘ T
1995 2000 2005 2010 2015

production year

Figure 2.1: Transistor count in GPUs and FPGAs devices.

ing those of nuclear reactors, the power consumption has become a hard
limit the microprocessors evolution [6]. For these reasons, since the single-
thread performance stabilized, research shifted the architectural paradigm
to keep on improve system performance. This paradigm shift consisted
in developing multi- and many-core architectures, as well as leveraging
thread-level parallelism instead of instruction-level parallelism. As a re-
sult, multi-core systems featuring a set of simple cores were able not only
to outperform highly complex single-core superscalar processor, but also
to respect the same power budget. The large amount of applications con-
taining parallelizable task represents one of the main reasons of multi-core
systems widespread success. In spite of these advantages, the dark silicon
phenomenon is constraining the growth of multi-core architectures [48,49]].
As matter of fact, also in this case the power budget limits the number of
cores a chip can contain. This leads to a under-utilization of transistors,
preventing multi-core systems to further scale and, consequently, creating
new design challenges.

In this scenario, Heterogeneous System Architectures (HSAs) repre-
sents an emerging approach to offer high-performance solutions for both
consumers and High Performance Computing (HPC) systems. According
to trends and projections [50], heterogeneous architectures seem to be the
most feasible way to reach exascale performance in HPC systems, while
maintaining a manageable power budget. HSAs are to improve the overall
performance of a system thanks to the combination of different kinds of
processing units, each one in charge of execution the most suitable task.

10

“thesis” — 2019/1/20 — ‘23:36 — page 11 — #23

2.1. Graphics Processing Unit

In general, a typical HSA combines a general purpose multi-core Central
Processing Unit (CPU), which executes the control-intensive parts of the
application, with highly efficient hardware accelerators whose purpose is to
run the most computationally intensive and performance-oriented tasks of
the application. The main hardware devices employed as accelerators are,
usually, Application Specific Integrated Circuits (ASICs), Graphics Pro-
cessing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). Just
like CPUs, these devices evolved through the years, from both a hardware
(Figure and a software prospective. In this Chapter, we first describe
the architecture of GPUs and FPGAs, then we analyze and compare the
advantages and disadvantages of both solutions against CPUs and ASICs,
in order to identify which architecture offers the best trade-off according to
different metrics.

2.1 Graphics Processing Unit

Graphics Processing Units (GPUs) are parallel devices designed to execute
both traditional graphics computations and general-purpose tasks. Even
though their main computational domain was computer graphics, in the last
years GPUs became more and more popular in equally demanding fields
such as biology, finance and engineering [S1]. Nowadays, GPUs are the
most popular choice when it comes to accelerating such domains. The fun-
damental event in this shift towards general-purpose GPU was the disclo-
sure of the NVIDIA’s Compute Unified Device Architecture (CUDA) plat-
form in 2006 [30]. CUDA is a parallel platform and programming model
that enables remarkable increases in performance by leveraging the com-
putational power of the GPUs. This has led to the development of other
multiplatform frameworks, like OpenCL [29], able to support also GPUs
from other vendors, such as AMD [52f]. The outcome is a robust and effi-
cient support to the most widely used libraries in fields like computational
sciences, data analysis and linear algebra, as well as a stable integration
within some of the most used programming languages, like C, C++, For-
tran, Python and MATLAB. GPU architecture contains different compo-
nents such as a unified shader pipeline, an Arithmetic Logic Units (ALUs)
built in compliance with the IEEE standard for floating-point arithmetic, an
instruction set designed for general computation, and execution units with
arbitrary read and write access to standard and shared memory. Modern
GPUs includes such features in order to excel at general-purpose compu-
tation. Thanks to their architecture, GPUs permit to leverage parallelism
and reach a high level of performance. Figure [2.2] displays the difference

11

“thesis” — 2019/1/20 — ‘23:36 — page 12 — #24

Chapter 2. Background on Hardware Architectures

CPU GPU
Multiple Cores Thousands of Cores

Figure 2.2: Comparison between CPU and GPU architectures.

between the architectures of CPU and a GPU in terms of number of cores.
More specifically, on one hand, a CPU consists of a few cores designed
for complex and sequential serial processing, on the other, the massively
parallel architecture of a GPU contains thousands of smaller, more efficient
cores optimized for managing multiple tasks simultaneously.

Although the GPU architecture permits to process a huge amount of
data in parallel, it has some limitations. For instance, while GPUs can eas-
ily outperform CPUs with data-level parallelism applications, their simple
architecture is slower when executing pure sequential and control-intensive
algorithms. For this reason, in order to take advantage of GPUs, it is of-
ten necessary to significantly reshape CPUs well-designed algorithms, and
small changes in code can generate relevant orders of performance due to
architectural constraints. Besides, a GPU cannot automatically store data
on disk when the memory is full, and it operates on vectors of integers
and floats, but it cannot work on strings, characters or other data struc-
tures. Moreover, GPUs result less efficient than CPUs when dealing with
control-intensive tasks. Finally, since the data transfer between GPUs and
CPUs could be a bottleneck, GPUs have to process high amounts of paral-
lel tasks, to leverage the higher amount of (slower) processing units and to
minimize the data transfer latency.

12

“thesis” — 2019/1/20 — ‘23:36 — page 13 — #25

2.2. Field Programmable Gate Array

Switch
Matrix

P A
[A g
P A

[R
[R g
[R

P A
[A g
P A

D Functional Block

D Input/Output Block

Figure 2.3: High-level structure of an FPGA.

2.2 Field Programmable Gate Array

A Field Programmable Gate Array is an integrated circuit whose main fea-
ture is consist in being electrically programmable after fabrication. This
permits to change the behavior of the FPGA and implement nearly any
type of digital circuit [53]]. Such a feature makes the FPGA an ideal device
for many and different applications, ranging from testing and prototyping
ASIC, to the production of cheap hardware circuits. Another field of ap-
plication of FPGAs is reconfigurable computing. In this context, the users
exploit the FPGA as a hardware accelerator and take advantage of its flexi-
bility to program the device with different applications at different moment,
achieving high performance typical of hardware implementations.

Even though there is not a standard terminology, as it changes among
vendors, from a high-level prospective an FPGA device contains:

* A bi-dimensional matrix of functional blocks to implement logic func-
tions as well as provide on-chip memory;

* A programmable interconnection network to connect the functional
blocks;

13

“thesis” — 2019/1/20 — ‘23:36 — page 14 — #26

Chapter 2. Background on Hardware Architectures

Look-Up Table (LUT)

0

1

0

: MUX

1 — = 3 MUX
0

0

1

select

3

Figure 2.4: Simplified structure of a CLB with a 3-input LUT.

* Input/Output Blocks (IOBs) at the periphery of the FPGA, which op-
erate as interfaces between the device and the external world.

Figure [2.3] portraits the architecture of an FPGAs. In the next Sections we
describe the main components available on an FPGA device, as well as its
configuration and design process.

2.2.1 Configurable Logic Blocks

The basic functional block of an FPGA is the Configurable Logic Block
(CLB). This element both implements combinational or sequential func-
tions, and provides a basic storage capability. The main building block
of a CLB is a configurable combinational circuit, usually implemented by
means of a Look-Up Table (LUT), a device capable of storing any n-input
combinational function. A basic LUT is a 2"-bit memory element incorpo-
rating the truth table of the combinational function, along with a multiplexer
to select the proper output bit from the truth table according to the n-bit in-
put. The combination of multiple LUTs permits to build more complicated
functions. Modern FPGAs organizes LUTs within CLB slices, which com-
municates with the other processing blocks by means of the interconnection
network. An important design trade-off consists in the size of the LUTs;
indeed, a proper LUT size may balance area and delay. Typically, the size
and the number of the LUTs within the CLBs change according to the target
market of the FPGA, as well as the vendor. For instance, each CLB within
Xilinx 7 Series FPGAs contains two slices, each one comprises four 6-input
2-output LUTs [54]. In order to implement sequential circuits, CLBs also

14

“thesis” — 2019/1/20 — ‘23:36 — page 15 — #27

2.2. Field Programmable Gate Array

|>

48-Bit Accumulator

\\ Pre-Adder [
Pattern

[y / Detector

|o

|o

Figure 2.5: The structure of a Xilinx DSP48E]1 Slice.

include memory elements. Thus, a basic CLB usually contains, in addition
to the LUT, a D-type Flip Flop (FF) and a multiplexer to select the proper
output between the FF and the LUT.

2.2.2 Digital Signal Processors

While in the past FPGAs were homogeneous and contained only general-
purpose CLBs as functional blocks, modern FPGAs are heterogeneous and,
alongside CLBs, feature specialized elements to efficiently execute some
kinds of computation. As matter of fact, although modern FPGAs feature
a impressive number of CLBs, they usually result space and time ineffi-
cient when implementing computationally intensive operations, in particu-
lar floating-point ones. In this scenario, Digital Signal Processors (DSPs)
represent a commonly available example of specialized functional blocks.
Figure[2.5|display the architecture of a Xilinx DSP48EI] slice. The purpose
of DSPs is to mathematically process and manipulate input signals, in order
to perform such operations more efficiently than CLBs. DSPs are capable
of implementing several arithmetic operations, ranging from additions/sub-
tractions to multiply and accumulate operations. This allows FPGAs to
implement fully custom, pipelined designs for computationally intensive
applications, reaching both maximum performance and high frequencies.

2.2.3 Block RAMs

FPGA s contain IOBs and pins in charge of connecting the device with off-
chip peripherals. In case of applications demanding a significant data re-

15

“thesis” — 2019/1/20 — ‘23:36 — page 16 — #28

Chapter 2. Background on Hardware Architectures

usage, the connection with components like DDR and Flash memories can
satisfy the memory requirements. Nonetheless, the limited bandwidth of
off-chip memories can constraint the application performance, as well as
introduce stalls on the computational data-path. To overcome this limita-
tion, in addition to CLBs and DSPs, modern FPGAs also feature a large
amount of on-chip SRAM, called Block RAM (BRAM). The usages of
such memories include single or dual port RAM, First-In First-Out (FIFO)
functions, Finite State Machines (FSMs), and so on. The combination of
multiple BRAMs connected together permits to implement memories ca-
pable of storing a relatively large amount of data. As matter of fact, the
BRAMs of modern FPGAs can store several Megabytes.

2.2.4 Interconnection Network

The FPGA interconnection network consists of wires and programmable
switches, and covers up to 90% of the whole area. A highly flexible net-
work is a fundamental part of FPGA device, as it permits to connect all
the aforementioned functional blocks available on the device and imple-
ment many classes of circuits with varying interconnection requirements.
To this end, the interconnection network has to be definitely efficient, in
order to interconnect both local and distant blocks while satisfying tim-
ing constraints of the application. Moreover, a modern FPGA with various
functional blocks introduces constraints related to the placing of the circuit
parts, as some resources are not so copious as others. For instance, the num-
ber of CLBs highly exceeds the number of BRAMs and DSPs. For these
reasons, the efficiency and design of the FPGA routing has significantly
improved from one generation to another. There are mainly two kinds of
routing architectures:

* Mesh-based Routing Architecture: this design organizes functional
blocks as a 2D grid, and interconnects neighbor blocks by means of
horizontal and vertical routing tracks and programmable switches.

* Hierarchical Routing Architecture: this design organizes functional
blocks into clusters, recursively connected by means of wires. The
connection between blocks from different clusters passes through dit-
ferent hierarchical levels. This design is particularly suitable for local
serial connections, like in dataflow streaming applications.

A dedicated interconnection network is in charge of managing clock
signals. Also in this case, the efficiency of the clock network is critical, as

16

“thesis” — 2019/1/20 — ‘23:36 — page 17 — #29

2.2. Field Programmable Gate Array

it has to guarantee low skew between all the registers from the same clock
domain.

2.2.5 FPGA Configuration

The FPGA configuration consists in setting the bits of a set of configuration
points according to the design to implement on the device. In particular, the
configuration points include the truth table of the LUTs, the select signal
of the CLB multiplexers, the initial state of the D FFs, the interconnection
network, and so on. The result of the configuration is the circuit designed
by the user, which connects the different functional blocks on the FPGA to
perform the target computation.

The bistream file, a binary file in a vendor-specific format, configures
the FPGAs mapping its content to the programmable bits. The bitstream
file is the final result produced by vendor-specific tools as the end of the
FPGA design process. SRAM or flash memories are the most common
methods to store the configuration bitstream in FPGAs.

The FPGA configuration may be complete or partial. Indeed, while a
complete configuration sets all the programmable bits of the FPGA, partial
configuration permits to configure just a portion of the FPGA. In particu-
lar, partial dynamic configuration is the process of partially configuring the
FPGA while maintaining the rest of the circuitry operating without inter-
ruption. This process increases the flexibility of the FPGA and permits to
design modular circuits.

2.2.6 FPGA Design Process

The high complexity of typical FPGA designs makes the circuit design un-
feasible manually. For this reason, hardware designers rely on sophisticated
Electronic Design Automation (EDA) tools and closed-source algorithms
to guide the transformations from a high-level representation of the design
into a low-level hardware specification tailored to the target FPGA technol-
ogy. During the application of this procedure, vendor tools leverage many
abstractions and models, as classified by the Gajsky-Kuhn Y chart [56],
and then refined by Walker and Thomas [55]]. The Y chart, as reported in
Figure [2.6] classifies the representations of a circuit under three different
domains of description:

* Behavioral representation concerns the basic functionality of the cir-
cuit,

17

“thesis” — 2019/1/20 — ‘23:36 — page 18 — #30 GF

Chapter 2. Background on Hardware Architectures

Behavioral Architectural Structural

representation representation

performance specs. —X »— CPUs, memories

algqriihms AN hardif«gzre modules

register transfers 7— ALUs, MUXs; registers

boolean equations —4 gateé‘,FFs

Circuit

differential equations —> 7— transistors

ol estilr,n';:ltes, d?t"ails
T »-———‘éél—lle‘:stimétllFS"
L figorpans

R -cliléfe‘r;‘

B -phys'iééf partitions

\
Physical
representation

Figure 2.6: The Y chart. Adapted from [55)]. ©1985 IEEE.

e Structural representation is an intermediate domain describing an ab-
stract implementation of the circuit (for instance, a set of components
and connections under constraints like area or timing),

* Physical representation concerns the physical implementation.

The rings of the Y chart describe multiple levels of abstraction embracing
all the domains, so that, as approaching the center of the Y chart, the level
of abstraction decreases, while the level of detail increases. A synthesis
step describes a transformation moving from a higher level representation
to a lower one, or from a domain to another. The complete top-down design
synthesis consists in a set of such transformations, starting from the high-
level behavioral representation and ending up in the physical one at the
center of the Y chart.

Although the Gajski model refers to VLSI circuits, the same principles
are also valid for the FPGA design process, the main different consists in
the backend implementation and design constraints.

The FPGA design process starts, in most of the cases, from a functional

18

“thesis” — 2019/1/20 — ‘23:36 — page 19 — #31

2.2. Field Programmable Gate Array

design written in a Hardware Description Language (HDL), like Verilog
or VHDL. High-level synthesis tools represent an alternative flow, where
the hardware designer writes the application in a high-level programming
language, like C/C++ or OpenCL, and, from that, the tool generates the
HDL code. After the designing part, specialized tools, usually produced by
FPGA vendors, synthesize and optimize the circuit, eventually generating
the bitstream file, which, in the FPGA context, represents the lowest level
of the Y chart. The FPGA design process consists in the following steps:

1. Logic synthesis,
. Technology mapping,
. Packing,

2

3

4. Placement,
5. Routing,

6

. Timing analysis,
7. Bitstream generation.

The purpose of the logic synthesis is to convert the HDL description into a
netlist, i.e. a set of Boolean gates and FFs. The logic synthesis step involves
different technology-independent optimizations, like logic minimization,
and algorithms aiming at satisfying the timing and area constraints of the
circuit. The goal technology mapping step is to find a mapping between
the original circuit expressed as a netlist and the resources available on the
target FPGA, like LUTs, DSPs, and so on. In case of FPGAs equipped with
CLBs containing multiple slices, the packing step is in charge of forming
groups of logic blocks suitable for a direct mapping to a CLB. The task of
the placement step is to map the logic blocks to the physical regions and
resources of the FPGA, in order to minimize the wire-length or maximize
the circuit step. After the placement, the routing step interconnects the
FPGA resources to form the circuit. The timing analysis step establishes
the speed of the circuit. Finally, the bitstream generation step produces the
bitstream file to program the FPGA.

Most of the steps towards the final bitstream generation deal with com-
plex optimization problems, which quite often require iterative techniques,
like simulated annealing, to converge to an efficient solution. This implies
that the Computer Aided Design (CAD) flow is a definitely computation-
intensive process, which may take hours or days to synthesize highly com-
plex circuits. Because of this significant difference in the design flow and

19

“thesis” — 2019/1/20 — ‘23:36 — page 20 — #32

Chapter 2. Background on Hardware Architectures

performance performance
fabrication power fabrication power
cost efficiency cost efficiency
flexibility design flexibility design
effort effort

CPU implementations

ASIC implementations

performance performance
fabrication power fabrication power
cost efficiency cost efficiency
flexibility design flexibility design
effort effort

FPGA implementations

GPU implementations

Figure 2.7: Comparison between hardware architectures. For each indicator, the inner-
most level means low, whereas the outermost high.

time with respect to CPU and GPU systems, FPGA tools usually include
powerful simulators to perform some stages of verification of the hardware
design and analyze its efficiency before the synthesis.

2.3 Architectures Comparison

So far, we have described the architecture of GPUs and FPGAs, which, in
addition to ASICs, represent the main devices employed for hardware ac-
celeration. Along with CPUs, each device has its own peculiarities, advan-
tages and disadvantages with respect to the others. We decided to compare
each architecture (CPUs, GPUs, FPGAs and ASICs) according to five met-
rics: performance, power efficiency, design effort, flexibility and fabrica-

20

“thesis” — 2019/1/20 — ‘23:36 — page 21 — #33

2.4. Final Remarks

tion cost. Figure[2.7|displays how each architecture fits the chosen metrics.
With respect to the considered indicator, the innermost level of the spider
graph means low, while the outermost high. For instance, CPUs reach an
extremely high flexibility at the cost of a relatively low design effort. It is
clear that it is not possible to have an architecture able to outperform all
the others according to every metric, hence we need to investigate which
architecture offers the best trade-off.

With respect to our metrics, the two extreme possibility are CPUs, offer-
ing the highest degree of flexibility but limited achievable performance, and
ASICs, achieving the highest performance at the expense of development
cost and achievable flexibility. Between these extremes, GPUs and FPGAs,
offer good trade-offs between performance and flexibility but both have
their advantages and disadvantages. GPUs are a great solution when con-
sidering massively parallel repetitive tasks that can be executed in a Single
Instruction Multiple Data (SIMD) fashion. In addition, GPUs are flexi-
ble and easy to program using high level languages and APIs that abstract
hardware details. Compared to the fixed hardware architecture of the GPU,
FPGAs consist of hundreds of thousands of programmable logic blocks
and programmable interconnects that can be configured and reconfigured to
deal with control paths as well as data paths. Moreover, the dataflow pattern
of an application is exploited in FPGAs through parallelism and pipelining,
and designers have the flexibility to trade-off performance for resources.
Regarding the disadvantages of these solutions, in GPUs control flow in-
structions can significantly impact the performance of a program and again
the power consumption is pretty high; FPGAs, on the other hand, achieve
high performance at an acceptable power consumption but they require a
considerable design effort. Given these considerations, FPGAs provide the
best trade-off with respect to the other architectures in terms of the chosen
metrics.

2.4 Final Remarks

The approaching end of Moore’s law and Dennard’s scaling pushed re-
searchers to investigate and develop alternative solutions to overcome the
limitations in terms of performance and power/energy efficiency of stan-
dard general purpose processors. In this context, HSAs represent an ef-
fective approach to boost performance while maintaining a relatively low
power profile. Indeed, the combination of CPUs with one or more hard-
ware accelerators, like GPUs, FPGAs and ASICs, permits to completely
or partially offload compute-intensive applications to the most suitable ar-

21

“thesis” — 2019/1/20 — ‘23:36 — page 22 — #34

Chapter 2. Background on Hardware Architectures

chitecture for that task. GPUs are a good match for highly-parallel and
repetitive computations, while FPGAs well fit dataflow applications, and
so on. It is critical notice that it does not exist an architecture able to over-
take other architectures for each possible computation. Therefore, often the
most suitable architecture is the one that offers the best trade-off, according
to metrics like performance, energy efficiency, flexibility, and so on.

For this scenario, FPGAs offer the best trade-off with respect to other
architectures. Indeed, FPGAs deliver performance higher than CPUs and
comparable to GPUs, while consuming definitely less power than these two
architectures. On the hard other, even though they can difficulty reach the
potentialities of ASICs, FPGAs compensate with their reconfigurable fea-
ture, which allows to reconfigure the board both in a static and dynamic
way. Despite their benefits, the main limitations of FPGAs consist in their
long synthesis times, the complexity in their programming model, as well
as the huge design space to explore. This makes FPGAs learning curve
highly steep, mainly restricting their usage to experienced hardware de-
signers. In the next Chapter, we will examine in depth the most relevant
tools available in literature to develop hardware designs for FPGAs, and
will discuss in detail the features of each of those.

22

“thesis” — 2019/1/20 — ‘23:36 — page 23 — #35

CHAPTER

How to Program FPGAs

Field Programmable Gate Arrays (FPGAs) are reconfigurable integrated
circuits that contain a matrix of functional blocks interconnected together
by a switching routing network. Differently from Central Processing Units
(CPUs) and Graphics Processing Units (GPUs), which rely on fixed data
paths and topologies, the configuration and interconnection of FPGA re-
sources permit to design custom pipelines tailored to a specific applica-
tion. In this way, users can take advantage of a system able to efficiently
implement different functionality, providing a good trade-off between the
flexibility of general purpose CPUs and the performance and power effi-
ciency of Application Specific Integrated Circuits (ASICs) [57]. Despite
the great opportunities, the fundamental drawback of FPGAs has always
been their programmability. The hardware design flow for FPGAs resem-
bles the one available for ASICs, and, historically, the main way to develop
hardware design for FPGAs, as well as ASICs, consisted in using Hardware
Description Languages (HDLs), especially Verilog and VHDL. These low-
level languages permit to describe and define digital multi-signal circuits
abstracting the behavior and structure. Many industrial and commercial
Electronic Design Automation (EDA) tools, like the ones by Xilinx [58]],
Synopsys [59] and Mentor Graphics [60]], takes in input Register Transfer

23

“thesis” — 2019/1/20 — ‘23:36 — page 24 — #36

Chapter 3. How to Program FPGAs

Level (RTL) description in Verilog and/or VHDL, and, from that, they per-
form a sequence of steps towards the generation of the circuit itself. As a
disadvantage, in order to efficiently take advantage of these languages, the
user requires a significant knowledge and experience in hardware design.
Thus, this made the FPGA learning curve definitely steep.

As described in the previous Chapter, the complexity of hardware ar-
chitectures significantly increased in the last decades, as a single chip con-
tains hundreds of functionalities, and producers release new devices ev-
ery year. On the other hand, researchers started using FPGAs not only
for ASIC-prototyping and networking, but also as hardware accelerators.
Nonetheless, the features offered by Verilog and VHDL did not evolve as
fast. Hardware designers and EDA tools still use Verilog and VHDL, but
limitations like high verification effort and time-consuming and error-prone
design make these languages less attractive than how they used to be. As a
result, over the last years, new solutions have emerged to cope with the lim-
itations of Verilog and VHDL. In particular, we can identify two main cat-
egories: high-level HDLs and High-Level Synthesis (HLS) tools. Modern
HDLs offers features and abstractions not available in Verilog and VHDL,
like polymorphism, while still providing a design experience close to hard-
ware. On the other hand, HLSs tools permit designers to rely on high-level
languages, as C, C++ and OpenCL, to design hardware architectures. Inde-
pendently from the category, the goal of such tools is to: increase the level
of abstraction and productivity for hardware design; permit a high reuse
and customization of IPs; reduce verification effort and design errors; make
FPGAs accessible to a wider audience of users and developers. As a con-
sequence, these solutions result definitely more appealing than Verilog and
VHDL, to both hardware designers who wants to quickly evaluate different
architectures, and to application developers who want to hardware acceler-
ate applications, especially High Performance Computing (HPC) ones, and
could find significant difficulties in doing that with Verilog and VHDL.

Given these premises, the purpose of this Chapter is to describe the most
relevant HDLs and HLS tools available in literature and currently in use.

3.1 Hardware Description Languages

In this Section we analyze the various HDLs available in the state of the
art, apart from Verilog and VHDL. For each languages, we describes their
features, programming model, as well as their specific advantages and dis-
advantages with respect to other languages.

24

“thesis” — 2019/1/20 — ‘23:36 — page 25 — #37

3.1. Hardware Description Languages

3.1.1 ArchHDL

ArchHDL [61] is a HDL for RTL modeling based on C++ developed by
the Tokyo Institute of Technology. It is basically a hardware library for
C++ that offers features like non-blocking assignments, all the constructs
of Verilog, and additional content for simulation optimizations. Design-
ers can simply compile code written using ArchHDL library with a C++
compiler and simulate the hardware design executing the resulting binary.
A module description in ArchHDL does not use ports. Therefore, the de-
scription about connections between modules is implemented by referring
directly to the elements declared in a module. The main focuses of Arch-
HDL are intuitive module description by object oriented programming and
the flexible test-bench description using C++ standard environment.

Even though ArchHDL can generate Verilog for synthesis purposes,
its primary objective is to have a faster simulation compared to a Ver-
ilog one and also provide easier access to hardware implementation. Users
can compile ArchHDL using GCC and parallelize it using OpenMP. This
two factors combined permits ArchHDL to achieve significative simulation
speedup over Synopsys VCS. Moreover, ArchHDL uses the C++ syntax
also to describe test-benches, therefore allowing a fast and easy designs for
the latter. Although all the benefits of C++, ArchHDL has some limitations.
Because ArchHDL has to be translated in Verilog, all the data types inside
the ArchHDL library that can be used to describe Hardware are only the
ones that Verilog uses. Some variables, like wires and integer, come from
C++ integer type, thus introducing some restrictions, and also ArchHDL
supports only arrays with at max two dimensions. ArchHDL supports only
one clock signal, and assigns variable only at the positive edge of the clock,
thus limiting the possible desings.

3.1.2 Bluespec System Verilog

Bluespec System Verilog (BSV) [62,63]] is a HDL developed by BlueSpec
Inc., which aims to provide a general purpose language for hardware de-
sign. BSV offers an approach to HDL using Atomic transactions to enable
high level of parallelism and smoothly refinable designs. Atomic trans-
actions are rules that dictate the behavior of the described hardware. The
designer develops modules in BSV, and implements, for each module, both
methods and rules. The methods of a module represent the outwards inter-
faces, while the rules update and modify the internal state of the module.
Both rules and methods have guards, and they can fire only if the guards
are true and there are no conflicts with respect to that rule. The code in

25

“thesis” — 2019/1/20 — ‘23:36 — page 26 — #38

Chapter 3. How to Program FPGAs

BSV heavily relies on these transactions to deliver concurrent execution
and easy reconfigurability. The designer can set the hierarchical order of
the rules without changing the rules themselves, as opposite to System Ver-
ilog for instance. BSV carries the dependencies between rules and permits
a rule to be executed only if its guard is true and it has no conflicts. Hence,
atomicity is also always true in BSV, differently from System Verilog. BSV
synthesis tool compiles parallel hardware for the rules, but it always is log-
ically equivalent to a serialized execution of them. This is true at every
degree of the program development.

Module interfaces are components of atomic transactions, and derive
from C++ and Haskell interfaces. BSV permits polymorphism in order to
create easily complex and fully type-checked interfaces in a bottom-up ap-
proach by constructing templates. BSV interfaces also support overloading
thus simplifying the connections between interfaces. In BSV, designers
can easily design components as reusable building blocks and then com-
pose an architecture with those. Moreover, the generation mechanism of
micro-architectures supports conditionals, loops and even recursion, mak-
ing the design process easier and more customizable. On the other hand,
the parametrization structure of BSV permits designers to parametrize mod-
ules, and, then instantiate specialized versions of the modules in their micro-
architectures according to the provided parameters.

BSV claims to be as productive as HLS C-based tools since it allows to
easily describe architectures and adapt their modules. Besides, BSV mod-
ules can coexist with modules in System Verilog, thus giving the possibility
to the developer to use already existing modules.

3.1.3 Chisel

Chisel [64] 1s a HDL developed by UC Berkeley, embedded in Scala. This
choice of Scala offers an easier approach to HDL design compared to Ver-
ilog. For instance, the designer can define functions using Scala conven-
tions, construct and nest data structures, design components as classes,
redefine operators. Chisel specific libraries permit the designer to also
employ specific data types. A key for embedding Chisel in Scala is to
support highly parameterized circuits generators, a weakness of traditional
HDLs. In this way, designers can declare classes as parameterizable, as
well as recursively create hardware subsystems. As another interesting fea-
ture, Chisel abstracts the memory representation. The designers can first
define it, and then create ports for it. Chisel offers a fast C++ simula-
tor for RTL debugging, as well as a Verilog translator, which permits fine

26

“thesis” — 2019/1/20 — ‘23:36 — page 27 — #39

3.1. Hardware Description Languages

changes and integration with already designed Verilog modules as black-
boxes. Nonetheless, is important to notice that Chisel-generated Verilog is
slower to simulate on Synopsys VCS than handwritten behavioral Verilog.

3.1.4 Genesis2

Genesis2 [65] is an extension of the functionalities of System Verilog de-
veloped by Stanford University. It is built on top of SystemVerilog without
modifying its formal syntax. Genesis2 provides hardware designers with a
rich software language for writing instructions that specify how to generate
modules from a set of input parameters, while the behavioral description is
still in System Verilog. Even though it requires System Verilog to describe
the hardware modules, Genesis2 uses PERL to express the notion of what
hardware to use at a given instance.

In order to allow polymorphism, Genesis2 enables designers to define
and give default values to parameters, and then provides a simple mecha-
nism for over-writing these values from external configuration files. Gene-
sis2 permits the implement custom types for the parameters, increasing the
flexibility of the modules. Every time the Genesis2 compiler runs, it not
only generates code, but also extracts the entire parameterization space, hi-
erarchically, into an XML-formatted description file, thus enabling to easily
read out the machine configuration.

3.1.5 HML

HML [66] is an innovative HDL based on the functional language SML.
HML aims to be a highly flexible and intuitive HDL language. HML heav-
ily relies on strong type polymorphism permitting to design a function op-
erating over several different data types. However, the designer does not
need to specify types; indeed, HML system is in charge of generating I/O
behavior and ports. HML enriches SML syntax with specific features for
hardware description, including hardware function declaration, signal as-
signments, bit-vector operations, and extensions for describing both behav-
ioral and structural hardware. In particular, HML defines structures as a set
of modules, while behaviors as group of hardware description expressions.
Besides, HML does not need to specify clock information, therefore there
is no sensitivity list like in VHDL. Because of this, HML supports only one
clock cycle. Variables in HML can be declared throughout the program,
overcoming a typical restriction of traditional HDLs. Moreover, HML in-
fers the data types, as well as the nature of the variables (e.g. input/output),
and, if the type checker cannot find the basic type of a variable, it assigns a

27

“thesis” — 2019/1/20 — ‘23:36 — page 28 — #40

Chapter 3. How to Program FPGAs

special type to the variable, which denotes the variable to have the biggest
data width possible. Alternatively, HML offers explicit type definition to
increase accuracy. Finally, HML translates the code to VHDL.

3.1.6 JHDL

Just another HDL (JHDL) [67] is a language developed by the Brigham
Young University, designed to integrate the host and kernel development.
JHDL is integrated within Java as a set of libraries that comprehend both
circuit simulation and hardware support. JHDL leverages the object ori-
ented nature of Java language to handle circuits as objects: their resources
are created just like Java objects, through the use of class constructors. A
single class that wraps all its components and connections represents the
whole circuit defined in JHDL. Java methods describes the behavior of the
hardware modules, which support parametrization.

The designer can easily select the target of JHDL code execution (hard-
ware or simulation) by just changing the description of the class. This per-
mits a simple host configuration, because the program can be written in one
piece and the parts that the designer wants to execute in hardware can be ex-
plicitly specified. The simulation at clock level happens by means of JHDL
simulation kernel. In order to start a simulation, the circuit class first checks
all its components and connection, then issues a clock to start the simula-
tion. On the other hand, if the designer wants to directly run the design in
hardware on an FPGA, it is necessary to generate the bitstream first (JHDL
produces VHDL code). Nonetheless, in order to permit the translation to
VHDL, Java statements that can be used in JHDL are limited. JHDL does
not support behavioral synthesis, but provides a graphical schematic viewer
and a cycle-based simulator to check the designs. An interesting features of
JHDL is the support for contructors/deconstructors in order to reconfigure
the circuits on the host side. Since Java does not support explicit object
deconstruction (the garbage collector is in change of that), JHDL libraries
provide a specific delete method. This permits to simply reconfigure the
circuit by means of a method call. JHDL also provides permits that a GUI
can be executed from the host while parts of the code are executed on an
FPGA.

3.1.7 Max]

Max]J [63] is a HDL developed by Maxeler Technologies. The MaxJ lan-
guage, a derivative of Java, generates synthesizable code for the Maxeler
Dataflow Engine (DFE). The designer employs Java constructs and features

28

“thesis” — 2019/1/20 — ‘23:36 — page 29 — #41

3.1. Hardware Description Languages

to define components and signals (hence, MaxJ supports parametrization
and polymorphism), while the syntax remains close to the one from HDL
languages. MaxJ offers a great level of abstraction on the operations for
the designer, providing also easy integration between host and FPGA, but
its use is limited to target Maxeler devices only. MaxCompiler is the spe-
cific compiler for MaxJ that compiles the code into output compatible with
the FPGA synthesis tools. A key feature of MaxCompiler is the schedul-
ing of the design into a pipelined dataflow architecture. Indeed, starting
from MaxJ code, MaxCompiler generates a dataflow graph representing
the schedule of the operations. MaxCompiler automatically pipelines each
operation, and connects components by means of FIFOs, whose size is in-
ferred implicitly. In this way, MaxCompiler is able to synchronize different
paths with different latencies. While being highly optimized for dataflow
computations, this also limits MaxCompiler in other applications where the
dataflow pattern is not suitable.

The designer is in charge of developing both the host code running on
the CPU and the kernel for the FPGA. While the kernel is in MaxJ, the
designer may write the host code in different languages, like C/C++, MAT-
LAB, etc. Starting from the kernel description, MaxCompiler automatically
generates the interfaces to allow the communication between host and ker-
nel.

3.1.8 myHDL

MyHDL [69] is a language designed by Jan Decaluwe that exploits the
Python infrastructure to implement HDL specifications in order to open
the hardware development to beginners. Its HDL description is similar
to Verilog, but with an easier approach to verification; indeed, it is pos-
sible to convert code written in MyHDL into Verilog by means of specific
built-in Python libraries and use Python constructors to verificate the de-
signs easily. Also MyHDL supports waveform viewing. MyHDL models
hardware as interactive light-weight threads that communicate with each
others. In particular, MyHDL description structure is based around gener-
ators, namely modules that wait for a specific signal in order to perform
specific actions. Generators communicate with each other using generator
functions, a Python feature similar to normal functions but with non-fatal
return state. This permits MyHDL to model concurrency efficiently. More-
over, generator functions allow to keep the state of the used functions and
resume them if needed, making them usable as ultra-light threads. In this
way, it is also possible to pass control information to the simulator. In order

29

“thesis” — 2019/1/20 — ‘23:36 — page 30 — #42

Chapter 3. How to Program FPGAs

to evaluate MyHDL descriptions, a dedicated run-time, called simulator
is in charge of executing them. MyHDL also supports co-simulation with
other HDL simulators by translating MyHDL code into Verilog.

3.1.9 PHDL

PHDL [70] is a Python framework for hardware design, developed by Ali
Mashtizadeh at MIT, whose purpose is to significantly increase the level
of abstraction for hardware design. PHDL objective does not imply that
the design process is faster nor easier, but rather makes the designers more
aware of what they are doing. The PHDL framework has two main compo-
nents: framework classes and a component library. In particular, the library
contains pre-made descriptions for the low level components. Designers
build components and systems using mainly three types of objects: con-
nectors, components, and connections. Connectors represent actual wires
and special collections of wires. PHDL components may be either meta-
components or vanilla components. The former are in charge of choosing
the best component to employ for a target design. The latter implement the
actual logic. Connection objects take care of tying connectors together. De-
signers implement, on one hand, components and wires as classes through
templates provided by PHDL, on the other connections as functions. In
addition, PHDL allows to develop and reuse one abstract implementation
of a component, thus enabling parametrization of hardware modules. Fi-
nally, PHDL outputs Verilog, and it is also possible to integrate PHDL with
already existing libraries by creating a wrapper for them.

3.1.10 PyMTL

PyMTL [71] is a highly productive domain specific embedded language
for concurrent-structural modeling and hardware design, developed by Cor-
nell University. PyMTL is a framework for Cycle-Level (CL), Functional-
Level (FL), and RTL modeling. It relies on Python for the behavioral spec-
ification, structural elaboration, and verification of the circuit enabling a
rapid code-test-debug cycle for hardware modeling. PyYMTL permits a fast
access hardware design especially for CL and FL modeling, while RTL
modeling resembles more classic HDLs. On the other hand, PyMTL han-
dles the simulation by means of SimJIT, a custom JIT specialization engine
that leverages the LLVM compiler and Verilator [[72] to automatically gen-
erates C++ for CL and RTL models. This permits to speed up the simula-
tion, which, otherwise, would take much longer than the commonly used
ones in VHDL. In terms of language features, PyMTL supports dynamic

30

“thesis” — 2019/1/20 — ‘23:36 — page 31 — #43

3.1. Hardware Description Languages

types, providing more flexibility to the possible implementations and sim-
plifying the code and a highly parameterizable behavioral and structural
components. Run-time simulation logic relies on nested functions deco-
rated with annotations to indicate their simulation-time execution behavior.

In PyMTL the construction of a module follows a bottom-up approach.
At first the designer focuses on the functionality of the algorithm, thus try-
ing multiple implementations of it. PyYMTL permits rapid prototyping, be-
cause of the nature of the language, and also provides optimizations li-
braries for this step. Then, after completing and checking the functionality
stage, the next step analyzes the operations done within a cycle. The de-
signer can tweak this step to achieve the desired performance, as well as
enforce some optimizations provided by specific PyYMTL libraries. At last,
PyMTL implements the RTL model and generates Verilog. This process
enables the designer to start with an implementation of the algorithm from
a higher point of view, utilizing the structure of Python for faster prototyp-
ing, then to perform a CL inspection to have more information about the
timing, and, at last, to work at RTL level to further improve performance.
In addition, PyMTL permits the reuse of test-benches created for the CL
and FL also for the RTL step.

3.1.11 PyVerilog

PyVerilog [73]] is an open source, Python-based toolkit for analysis and
code generation of RTL designs developed by the Nara Institute of Science
and Technology. PyVerilog provides a lightweight abstraction of Verilog
HDL Abstract Syntax Tree (AST) in order to create a design in Verilog by
using the AST abstraction and Python. The various tools present inside
PyVerilog permit a deep grained analysis of the design, thus providing to
the developer numerous ways to optimize the code. In particular, Py Verilog
offers code parser, dataflow analyzer, control-flow analyzer, visualizer and
code generator for Verilog HDL. The code parser analyzes Py Verilog code
and generates an AST based on the preprocessing of the code. From that,
the dataflow analyzer constructs a dataflow graph that represents relation-
ships among signals. The dataflow analyzer first passes the AST, builds a
list of all the modules within it, and classifies signals (even though it does
not analyze assignment statements). Then it checks connections between
modules. After that, the dataflow analyzer checks signal assignments. Fi-
nally this tool constructs a data flow graph for each signal. The control-flow
analyzer generates a graph representation of Finite State Machines (FSMs)
in hardware, exploring the previously generated data flow graph. This tool

31

“thesis” — 2019/1/20 — ‘23:36 — page 32 — #44

Chapter 3. How to Program FPGAs

infers the values of candidate conditions from the assignment conditions in
the dataflow graph. It also identifies the assertion conditions of the signals,
so that it can identify the conditions of state transitions. Finally, the code
generator of PyVerilog generates a source code in Verilog from the inter-
mediate representation of an AST written in PyVerilog. PyVerilog deep
analysis tools come at a cost, the syntax PyVerilog resembles the Verilog
one, but with added complexity, in order to integrate the design with the
tools. PyVerilog is also the base for other similar tools. For instance, Ver-
iloggen [74] is a Python open-sourced library designed to generate a Verilog
HDL source code constructed on PyVerilog. The purpose of Veriloggen is
not to directly design hardware (it generates not synthesizable HDL), but
rather to offer abstractions to develop Domain Specific Languages (DSLs)
and tools upon.

3.1.12 HDL Comparison Table

Here we summarize the main features of the HDLs described so far. Ta-
ble[3.T]compares each language in terms of different metrics, like input/out-
put language, support for parametrization and polymorphism, HW/SW code-
sign option, hardware design simulation, and additional optimizations.

32

23:36 page 33 #45
|

2019/1720

“thesis”

3.1. Hardware Description Languages

sdooT 104 pauoddng poyoddng pauoddng poyoddng pawoddng 10N BAR[[XeIN

J[qe[IeAY 10N pauoddng pauoddng poyroddng joN payoddng TAHA BAR[TAHC

JIqe[TeAY 10N pauoddng pauoddngjoN peuoddng joN pouoddng SO[LIoA uoyikq TAHd

JIqe[TeAY 10N pouoddng pouoddng joN pewmoddng joN pauoddng joN So[LIA ++D TAHYOIY
SO[1IoA WAISAS

J[qe[IeAY 10N pauoddng pauoddngjoN pamoddng 10N payutoddng 3o[L1op wIISAS ZSISauan)
Jo uorsuaIxg

JIqe[TeAY 10N pauoddng poyoddng pauoddng payoddng 10N So[LIep uoykq TLINAd

J[qe[IeAY 10N pauoddng ponoddng joN pauoddng payoddng TAHA TNS TNH

JIqe[TeAY JON pouoddng pouoddng joN pamoddng joN payoddng J0N SO[LIoA uoykq oA £d

s1oje[nuiis TAH
J[qe[reAY 10N pauoddng joN pauoddng 10N pawtoddng 10N So[LIoA uoylAg TAHAN
10130 Pim payroddng
JIqe[TeAY 10N pouoddng ponuoddng 10N pauoddng poyoddng JO[LIA B[eos PsyD
UOISINOAY S0[1IoA WAISAS SO[LIOA WAISAS
pauoddng ponoddng jo0N pauoddng payioddng So[uIoA woISAS

sdoof 104 JO uoISuAIXyg oadgenig
us3Isapo) Jgdengue| adengue|

uoneziundQ uonemuIs wisiydaiowdjod uoneZIIPWERIE] Jgendue| TqH
MS/MH mdinQ nduy

STAH paruasaid ayy Jo 2)qpy uostvduio)) 1°¢ dqel,

33

“thesis” — 2019/1/20 — ‘23:36 — page 34 — #46

Chapter 3. How to Program FPGAs

3.2 HLS

After describing relevant HDLs in the state of the art, we now focus on
HLS tools. The purpose of such tools is to further abstract the hardware
design process by enabling designers to develop architectures using high-
level languages. Here we review the most interesting HLS tools available
nowadays. For each of them, we first describe the tool itself, and then
we summarize the supported optimizations, as well as the tool perculiar
characteristics.

3.2.1 BAMBU

Bambu [75] is a tool developed at the Politecnico di Milano as part of the
Panda framework [76]]. Its aim is to support the designer in the HLS process
of complex applications. Bambu was released in 2012 and, over the past
years, Bambu developers have been releasing a new version every year. The
input of Bambu is a behavioral description written in C, while the output is
a synthesizable RTL implementation in VHDL or Verilog and a test-bench
for simulation and validation.

Bambu supports most of the C constructs (function calls, pointers, structs,
multidimensional arrays, dynamic resolution of memory accesses) and, since
its frontend is built on GCC, it benefits from all the target independent
compiler-based optimizations implemented in GCC. Currently, it does not
support recursion, but, if necessary, GCC can automatically convert recur-
sive forms into non-recursive forms.

In terms of scheduling, besides the default one, a speculative scheduling
algorithm is available. Moreover, the tool gives the possibility to specify in
input a fixed scheduling (as XML file) and, as a last option, the designer can
activate the post-rescheduling option, useful to better distribute resources.

Supported optimizations: All GCC target independent optimizations,
Operation chaining, Pipelining, Resource sharing, Speculation.

Peculiar characteristics: it provides different Pareto Optimal implemen-
tations (tradeoff latency and resources); it supports HW/SW partitioning;
thanks to its modular organization, it is easily extensible with new algo-
rithms; it efficiently supports complex constructs of C language; it supports
different data types.

3.2.2 Catapult-C

Catapult-C [77.[78]] is a commercial platform developed by Mentor Graph-
ics to target to both FPGAs and ASICs. It takes C++ or SystemC as input

34

“thesis” — 2019/1/20 — ‘23:36 — page 35 — #47

3.2. HLS

and outputs RTL code in VHDL or Verilog. Both syntax and semantics of
C++ are completely preserved, and all basic statements (if, for, while, do,
switch) are fully supported. Catapult-C also fully supports functions, point-
ers and templates. Only two restrictions apply: it does not support dynamic
memory allocation/deallocation and it requires the code to be statically de-
terminable, i.e. all properties defined at compile time. On the other hand,
Catapult-C supports integer and fixed-points data types, in both cases with
arbitrary length. In particular, it manages bit accuracy through templates
parameters.

Catapult-C GUI offers a set of built-in graphical analysis tools such as
the Gantt Chart Viewer, which provides insights on loop profiles, algorith-
mic dependencies and functional units, or the Resource Viewer, to enable
full visibility of the HLS results. Finally, Catapult-C also provides a cover-
age tool to compute quality coverage metrics.

Supported optimizations: Loop optimizations like pipelining, unrolling,
merging, Hierarchical Synthesiﬂ Scheduling .

Peculiar characteristics: it supports Bit-Accurate data types; native dual-
language support; it provides an integrated verification tool; it provides a
set of graphical analysis tools to enable easier debug and optimization con-
trol.

3.2.3 CoDeveloper

CoDeveloper is a commercial software tool developed by Impulse Acceler-
ated Technologies suited to image and video processing, digital signal pro-
cessing, and data compression/encryption [79,80]. CoDeveloper accepts C
as input and outputs VHDL or Verilog. The suite includes the Impulse C
compiler and an interactive parallel optimizer. In addition, it provides in-
teractive and graphical tools to compile and optimize the code, helping the
pipelining and parallelization of critical parts. CoDeveloper natively gives
the possibility of using all the standard C development tools to verify and
debug, and supplies features like HW/SW partitioning, as well as support
for integer and floating point data types.

For the verification part, CoDeveloper suite offers cycle-accurate hard-
ware simulation and testbench generation. It even provides an Application
Monitor from which the application can be observed during the execution
capturing messages, streams of data and any other generated information.

Supported optimizations: Loop optimizations, Scheduling, Pipelining.

!Hierarchical Synthesis is the term used in [[77] to denote the optimization that generalizes pipelining, allow-
ing different functions to run in a parallel and pipelined manner.

35

“thesis” — 2019/1/20 — ‘23:36 — page 36 — #48

Chapter 3. How to Program FPGAs

Peculiar characteristics: suited to image and video processing, digital
signal processing, data compression/encryption; it supports HW/SW parti-
tioning.

3.2.4 CyberWorkBench

CyberWorkBench (CWB) [[81]] is an IDE developed by NEC that integrates
many tools: from Cyber Behavioral Synthesis tool to all their verification
and simulation tools built on Cyber. CWB is completely based on C (“All-
in-C” approach): all modules in a VLSI design should be described in be-
havioral C language and all the verification (and debugging) tasks should
be done at the C source code level. The main idea of CWB is that a designer
should never have the need to debug the RTL code: the IDE even allows
the designer to write properties and assertions directly at the C level. CWB
geneates Verilog and/or VHDL, and supports legacy RTL and gate net list
blocks as black boxes.

It supports FPGA families from Xilinx and Altera and the RTL gener-
ated is optimized for the specified technology. CWB offers the possibility to
specify the clock frequency and to specify any resource constraints. Among
its features, this tool supports both automatic and manual scheduling, is
able to handle clocks domain crossing and clock gating, and offers Qual-
ity of Results reports, with information about area, latency and resources
utilized. Finally CWB supplies a Design Exploration tool that generates
trade-off charts between area, latency and timing, to let the designer choose
in full awareness.

The verification tools include an Automated Test Bench generator with
the ability of generating test benches at the behavioral level and automati-
cally comparing source code results with cycle accurate/RTL simulations.

Supported optimizations: Loop optimizations like merging, unrolling,
pipelining, False loop detection, Automatic bit-width optimization, Specu-
lation.

Peculiar characteristics: All-in-C approach; automatic scripts genera-
tion to invoke Third Party tools.

3.2.5 DK Design Suite

DK Design Suite [82] is a tool by Mentor Graphics designed for Handel-C
language, a rich subset of the C language that targets low-level hardware.
DK Design Suite is a complete environment for Handel-C that offers sim-
ulation and debugging functionalities. It outputs VHDL, Verilog or EDIF
and it supports Altera and Xilinx FPGAs. DK Design Suite offers a Data

36

“thesis” — 2019/1/20 — ‘23:36 — page 37 — #49

3.2. HLS

Streaming Manager that facilitates software partitioning between the pro-
cessor and the FPGA. Finally, the tool can generate exhaustive report con-
taining information about: errors and warning, block counts, area estima-
tion, summary of the used hardware, optimization.

Supported optimizations: General high level optimizations, Loop opti-
mizations (unrolling), Memory pipelining.

Peculiar characteristics: Integration with leading third party simula-
tors; facilitates partitioning between processor and FPGA; can output EDIF
(Electronic Design Interchange Format) files.

3.2.6 DWARV

DWARYV [|83] is a HLS compiler developed at the Delft University of Tech-
nology. It is built on CoSy, a compiler development system developed by
ACE [84]. Therefore, its characteristics are directly related to the features
of CoSy: modular and robust back-end, easiness of extension with new op-
timizations. Besides, thanks to CoSy, it provides a flexible and easy way to
exploit standard and custom optimizations.

DWARY does not restrict the application domain and is able to generate
hardware for both streaming and control intensive applications. This tool
works on a C subset and outputs VHDL. Over the years, developers ex-
tended the supported features of C, including pointers, memory accesses,
as well as integer and floating point datatypes. However, DWARV does not
support global variables [85]], nor recursion and the mathematical functions
of the standard C library.

Supported optimizations: Loop optimizations (hoisting, scalar replace-
ment, unrolling, pipelining), Scheduling, If-Conversion, Operation chain-
ing, Bit-Width analysis.

Peculiar characteristics: based on CoSy; it is an academic tool.

3.2.7 eXCite

eXCite [86], developed by Y Exploration, is a synthesis tool for FPGAs
and ASICs that takes ISO/ANSI-C as input and synthetizes it to Verilog or
VHDL for both Altera and Xilinx FPGAs. It supports both integer and
floating point datatypes, and many utilities from math.h library. eX-
Cite offers hardware/software partitioning, but communication channels
between software and hardware have to be manually inserted. In terms
of simulation, this tool provides automatic testbench generation that can be
used with any simulation tool to perform the verification, and offers a bit

37

“thesis” — 2019/1/20 — ‘23:36 — page 38 — #50

Chapter 3. How to Program FPGAs

accurate simulation. A relevant functionality is the support for automatic
IP reuse and the presence of an IP template library.

Supported optimizations: Generic compiler optimizations, Pipelining
(both for loop or entire IP cores), Bit Reduction.

Peculiar characteristics: 1P template library.

3.2.8 GAUT

GAUT is an academic and open-source HLS tool dedicated to digital signal
processing applications [87-89]]. As input, it accepts C and C++ code and
itis able to generate VHDL or, in case, SystemC for simulation, visual pro-
totyping or design space exploration. The SystemC models generated are
cycle-accurate and bit-accurate and can be employed in external platforms,
like SocLib [87]]. Thanks to the Algorithmic CTM class library from Men-
tor Graphics, GAUT supports bit-accurate integer and fixed-point variables.
GAUT requires to specify constraints on the throughput and the clock pe-
riod, while the memory mapping and the I/O timing diagram are optional.
The final architecture generated by GAUT contains three main components:
a processing unit, a memory unity and a communication and interface unit.
Finally, GAUT automatically generates a test bench to validate the resulting
architecture.

Supported optimizations: Loop optimizations (loop invariant, loop peel-
ing, loop fusion, partial loop unrolling), Operator chaining, Resource allo-
cation optimizations, Bit-Width analysis, Scheduling.

Peculiar characteristics: academic, free and open-source; it outputs
SystemC simulation model.

3.2.9 Intel HLS Compiler

Intel HLS Compiler [90,91] takes untimed ANSI C/C++ as input and gen-
erates RTL optimized for Intel FPGAs. It is part of Intel Quartus Prime
Design Software for FPGAdesign. Intel HLS Compiler has native support
for fixed point and floating point data types, and supports arbitrary width
integers. However, the compiler has several limitations regarding the sup-
ported subset of C99 and C++. For instance, it does not support dynamic
memory allocation, virtual functions, function pointers, and C/C++ library
functions except a few math functions. On the other hand, it provides the
designer with a tool for design exploration, as well as high level constraints
and directives. Moreover, Intel HLS Compiler performs device-specific
optimization and technology mapping for Intel FPGAs. This tool also sup-
ports verification of the generated RTL by comparison with the original

38

“thesis” — 2019/1/20 — ‘23:36 — page 39 — #51

3.2. HLS

C++ source model, and is able to generate interactive analysis reports with
cross-probing support.
Supported optimizations: Loop optimizations (unrolling, pipelining).
Peculiar characteristics: aimed at Intel FPGAs; well integrated with
other Intel tools, like Quartus Prime and Platform Designer.

3.2.10 LegUp

Currently at version 6.1, LegUp is a HLS tool currently developed and re-
leased by LegUp Computing [92]]. It was first developed, up to the version
4.0, as an open source tool by the University of Toronto [93]]. LegUp 4.0 is
still available [94] for non-commercial and not-for-profit use. LegUp tar-
gets Intel, Xilinx, Lattice, Microsemi and Achronix FPGAs, and the same
HLS design can be synthesized for any FPGA vendor.

LegUp environment offers an IDE (LegUp IDE, based on Eclipse), and
accepts C and C++ languages as input. Moreover, it supports libraries like
pthreads and OpenMP, even though OpenMP is only supported on Linux
systems. Starting from the input code, LegUp performs the HLS process
producing both RTL in Verilog and report files. The RTL can then be sim-
ulated with ModelSim (by Mentor Graphics) and synthesized with vendor
CAD tools.

Supported optimizations: Loop optimizations like pipelining and un-
rolling, Function Pipelining, Bit-Width minimization, If-Conversion, Op-
erator Chaining.

Peculiar characteristics: it is completely vendor-agnostic: the same
HLS design can be synthetized for any FPGA vendor; it can synthesizes
the program to a hybrid system comprising a processor (i.e. ARM proces-
sor) and one or more hardware accelerators (currently on Intel FPGAs).

3.2.11 ROCCC

ROCCC (Riverside Optimizing Compiler for Configurable Computing) [95,
96] is a C to VHDL compilation toolset particularly suitable for streaming
applications. The designer has fine-grained control over the code transfor-
mations (to optimize throughput, memory accesses and resources) through
an elaborated GUI developed as an Eclipse plug-in. The GUI provides an
integrated way to manage the instantiation of modules and cores into C
code, control code transformations and optimizations, interface with plat-
forms, and generate testbenches for verification. The same source code can
be manually tuned for different FPGA platforms by varying the compiler
optimizations in the GUI, without altering the original code. For instance,

39

“thesis” — 2019/1/20 — ‘23:36 — page 40 — #52

Chapter 3. How to Program FPGAs

the designer can manually tune parameters like the number of channels and
bitwidth. ROCCC offers support for floating-point and integer operations,
while it precludes resource sharing, in favor of better performance.

Supported optimizations: Loop optimizations (unrolling, pipelining, in-
lining), Pipelining.

Peculiar characteristics: loop optimizations can be specified on a loop-
by-loop basis; it supports triple modular redundancy; specific porting to
Convey HC machine and Pico devices are available.

3.2.12 SOpenCL

SOpenCL (Silicon-OpenCL) [97] is a tool presented in 2011 able to gen-
erate hardware accelerators and System on Chip systems in Verilog, from
OpenCL programs. SOpenCL uses C as internal representation language
and leverages the transformation from OpenCL to C to coarsen the granu-
larity of the kernel functions. In the second stage the C code is converted in
HDL.. In this stage the tool uses an architectural template that can be instan-
tiated to match performance requirements and available FPGA resources.
During this stage, the available compiler applies different optimizations.

Supported optimizations: Predication, Code Slicing, Modulo Schedul-
ing, Thread Serialization, Variable Privatization.

Peculiar characteristics: it uses the concepts of work-groups (multi-
ple logical-threads) and grid of computation (multiple work-groups). The
parallelism granularity is coarsen from a per-logical-thread to a per-work-
group basis; template-based hardware accelerators generation.

3.2.13 Stratus HLS

Released by Cadence, Stratus HLS [98,,99]] is a commercial platform that
takes C, System C or C++ descriptions and creates RTL implementations
for ASIC, SoC and FPGA. This platform integrates Forte Cynthesizer and
Cadence C-to-Silicon Compiler into one tool providing full support for de-
signs created with those two tools. It supports industry-standard IEEE 1666
SystemC, C, and C++. Floating point datatypes are available in single and
double precision and they are even customizable by the designer.

Stratus HLS provides an IDE that allows the designer to actively choose
trade-offs between power, area and performance. The environment pro-
vides control and dataflow graphs schematic viewer, pipeline analysis and
visualization to evaluate the impact of optimizations. Stratus HLS helps
in automating the design and verification flow of hundreds of blocks from
transaction-level modeling (TLM) to gates. Moreover, it gives designers

40

“thesis” — 2019/1/20 — ‘23:36 — page 41 — #53

3.2. HLS

synthetizable SystemC building blocks to increase productivity. Finally,
Stratus HLS platform also has tools for RTL verification and debugging,
power analysis, design exploration, formal equivalence check.

Supported optimizations: loop optimizations, like pipelining unrolling,
merging.

Peculiar characteristics: power aware scheduling; accurately identify
hotspots in the RTL, both in time and space; other low power optimizations.

3.2.14 Synphony C Compiler

Synphony C Compiler [100] is an HLS tool released by Synopsys that
works on C/C++ and outputs RTL code for ASICs or FPGAs. This tool
is part of a toolchain offered by Synopsys which includes several differ-
ent tools for synthesis, design, optimization of power consumption, design
exploration, testing and others.

Synphony C offers both streaming and memory interfaces and, by means
of pragmas, it allows designers to fine tune performance-related optimiza-
tion options. Besides, it supplies image processing and streaming libraries
This tool supports fixed point arithmetic, but not floating-point operations.

Synphony C offers support for architectural clock gating, both at register-
level and at block-level, to enable low power designs. Automatic verifi-
cation is possibile and is carried out at different levels: after scheduling,
after preprocessing, source-code, after synthesis and on the overall gener-
ated design. The tool offers automatic generation of testbenches, as well as
interactive simulation.

Supported optimizations: Loop optimizations (unrolling, pipelining),
Automated single-to-multi-threaded transformations, Hierarchical block-
level resource sharing, Timing optimizations for variable bounded loops.

Peculiar characteristics: HDL of other vendors can be directly invoked
by the tool; an analysis published by BDTi [[101]] showed that performance
and area metrics for Synphony-produced circuits are comparable with those
obtained with AutoESL (that was aquired by Xilinx and became Vivado
HLYS); it is part of the toolchain offered by Synopsys.

3.2.15 Vivado HLS

Vivado HLS [102]], formerly AutoPilot by AutoESL and acquired by Xilinx
in 2011, includes a complete design suite that allows to convert high-level
languages in HDL. It accepts C, C++, SystemC as input specification lan-
guages and can generate hardware in VHDL, Verilog or SystemC. Along
with the input code, the designer can provide contraints on the clock period,

41

“thesis” — 2019/1/20 — ‘23:36 — page 42 — #54

Chapter 3. How to Program FPGAs

the clock uncertainty, specify the FPGA target and optimization directives,
to better control default behavior of the internal logic.

Vivado HLS provides integer and fixed-point arbitrary precision data
types for C and C++, as well as support for the arbitrary precision data
types in SystemC. Besides, it supports floating-point operations and pro-
vides half-precision floating-point data types.

Vivado supplies tools for verification at the C-level, hardware level, tim-
ing and resource usage analysis, and it supports all major simulators in
integrated mode.

Supported optimizations: Loop optimizations like unrolling, pipelining,
merging, flattening, Operation chaining, Data packing, Function inlining,
Bit-Width minimization.

Peculiar characteristics: itis a full-fledged HLS suite; it supports partial
reconfiguration; part of a wide toolchain offered by Xilinx.

3.2.16 Tools for Heterogeneous Systems

The following tools have the peculiar purpose of being dedicated to the
development of accelerators for heterogeneous systems. This means that
these tools are meant to develop accelerators for systems with a CPU and
an FPGA (or more than one) where the application runs on the CPU as any
standard application, while some functionalities run on the FPGA to enable
better performance. The peculiarity of these tools is that the cover the entire
hardware design flow, from HLS to bitstream generation.

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL [[103], previously known as AOCL (Altera
SDK for OpenCL), is a development environment that enables software de-
velopers to accelerate their applications targeting heterogeneous platforms
with Intel CPUs and Intel FPGAs. The tool compiles and builds both the
kernel and the host from the input code. The compilation can be set to be
done in a fast and incremental way. The tool inserts performance counters
in the FPGA design and the result obtained can then be reviewed using the
Dynamic Profiler tool. Moreover, it offers analysis on the resources and
performance, as well as a fast FPGA-based emulation. Once the host appli-
cation and the kernel match the expected performance, the tool generates a
design suitable for deployment, performing a full compilation towards the
bitstream.
Supported optimizations: Loop optimizations (unrolling, pipelining).

42

“thesis” — 2019/1/20 — ‘23:36 — page 43 — #55

3.2. HLS

Peculiar characteristics: what-if kernel performance analysis; fast and
incremental FPGA compilation; symbolic debug support; incremental com-
pilation; full deployment supported.

SDAccel

SDAccel [104]] is a Development Environment by Xilinx aimed at accel-
erating functionalities in data centers (such as encryption, search, speech
recognition, image recognition) through FPGA resources. It is an Eclipse-
based IDE that provides functionalities for code development, profiling and
debugging. In addition to that, the IDE provides coding templates and
FPGA emulation on x86 platforms.

The SDAccel compiler supports source code using any combination of
OpenCL, C, and C++ to develop the hardware kernel. Moreover, SDAc-
cel automatically manages the FPGA runtime. In this way, applications
can have multiple kernels swapped in and out of the FPGA during runtime
without disrupting the interface between the server CPU and the FPGA.
Finally, SDAccel wraps the usage Vivado HLS and Vivado Design Suite
toolchains, abstracting and automatizing all the steps towards the bitstream
generation.

Supported optimizations: Loop optimizations (unroll, merge, flatten);
Array Optimizations (merging, partitioning, reshaping); Pipelining; Bit-
Width Minimization.

Peculiar characteristics: It targets acceleration of functionalities of Data
Centers; Automation of the complete FPGA design flow; FPGA emulation
on x86 platforms.

SDSoC Development Environment

SDSoC [105] provides a framework for developing hardware accelerated
embedded processor applications using C and C++ languages. The SD-
SoC development environment is a tool by Xilinx, and has similarities
with SDAccel in their functionalities, even though they target different sce-
narios. SDSoC comes with an Eclipse-based IDE and compilers for the
embedded processor applications. The compiler analyzes the input pro-
gram to determine the dataflow between software and hardware functions.
Then, on one hand, it automatically implements the hardware functions on
FPGA, and, on the other, it generates the host code for bare metal, Linux
or FreeRTOS. SDSoC provides a completely automated flow for software
acceleration on FPGA and system connectivity generation, management
of data transfer, synchronization of hardware accelerators, and automatic

43

“thesis” — 2019/1/20 — ‘23:36 — page 44 — #56

Chapter 3. How to Program FPGAs

hardware-software partitioning.

Supported optimizations: Loop optimizations (unroll, merge, flatten);
Array Optimizations (merging, partitioning, reshaping); Pipelining; Bit-
Width Minimization.

Peculiar characteristics: no prior knowledge of FPGAs is needed; based
on the sds++ optimizing compiler; it allows design exploration and system-
level profiling.

3.2.17 HLS Comparison Table

The purpose of this Section is to compare the main differences between the
HLS tools we analyzed. Table[3.2]summarizes the key features of each HLS
tool. For instance, the Table reports the input/output languages, whether the
tool is able to generate the bitstream of the hardware design, abstracting the
all the steps after the HLS process. The Table also contains other features
like support for HW/SW codesign, the type of simulation provided and if
the tool can automatically produce a testbench, as well as the target domain
and support for floating-point and fixed-point operations.

44

page 45 #57

‘23:36

2019/1720

“thesis”

HLS

3.2

S9, $9 y 0, $9 $9, $9, Soquop ¢ Xurjr RIOIWIO, JUSUIUONAUY

A A nv MH 'MS N A A A [LoA "IAHA ++D D mx [et o) Juowdoaas H0SAS

So[LIoA WwoIskg 1DuedQ 10§

o 59, $9, s,)) : ad & BIOTOUIWO, -

N S9A nv MH A X SA SX “So[LoA “TAHA 1OoudO [au] [EIOIoWIWO) NS VO []
S9, $9, y $9, $9, 9, 9, MO-CO\/ED.-W%W JUCOQQ XuIjr RIDIOWIWO, 00

A SR nv MH 'MS BN BN A N “So[LoA “TAHA G430 mx [et D [220vAds

. i Aessoy],

ON Sk nv MH ‘MS SOk SOk ON ON So[LIoA TOudo 30 ATQ) [erOIOWIWO) TOudOs
S9N SeA nv MH ‘MS ON ON SA ON SO[LIA +0 D _B& [eoRwwo) 1opdwo) §TH (U]
S9, s, y s9, o s, o ouialsks ouialsks XUI[T BIOTOUIIO, OpPAT
SO SOX v MH ‘MS Sok N SoX N SoluoA “IAHA TOuadO “+4+)) mx Tet] STH OPEBAIA
9 o y s9 o 9, o owaIsks ‘ sAsdouk BIOIQWIWO wondwo)

A N v MH MS RN N A N “So[uoA “TAHA +D D SAS S [et o) 5 AuoyduAg

Sunndwo)
ON sox Surweonsg MH SOX. ON SOx ON TAHA jo8qns c..a:cuﬁ [BIOJOWILIO)) 20004
. Sunndwo)
ON SOx v MH SO SO SOX ON So[LIoA ++D D dnso [e1o1oUIIO)) dn3e
¢ ¢ png

SOA ON dsa MH SoK ON ON ON Duwrdisks “IAHA +D D ouserorg 0 JIuapedy LAVD
9, s, y)) S9, o OwsAs uonerofdx BIOTOUIO, AIDX

A A v MH 'MS A A A N “So[LoA “TAHA o) helofdxg A [er o) MDX:
SO Sk v MH BN BN ON ON TdHA o] ¥ed Nl JIwpedy AIVMd
SOk ON Surweong MH ON SOR SOR ON So[LIA “TAHA D-[opuey mwhﬂmw% [eroIoWIWo)) amg udisoq A
SO SoX v MH ‘MS SoK BN SoX ON SO[LRA “TAHA ~ DWAISAS “++D D OAN [eIoJoWOD YOUEGYIOMI0GAD

. ‘ _ . . Owsks KQ at ¢ S
SOX SOk v MH ‘MS SOx SOx Sox ON So[op “IAHA DWASAS “++) D Qouape) [BIoIOWIWO)) STH smens
ON S9k 3uissad0iq MH ‘MS SOX SOX SR ON So[LoA “TAHA Does[nduy aspnduy [e1oIWIWO)) 1odooadgo)
09pIA /oS ; :
S9, (8] (8] (8] 9, o UEOuw%w W)SAG ¢ womsam.—o RIOIOWIWO, -jndeje
SoX N [\ MS N N SoK N ‘SO[LOA “TAHA DWASAS “++D TOIAI [et D D-indejed
ON S9A nv MH ‘MS SA SA ON ON So[LRA “TAHA o) TIN'Iod JIwapedy nqureq
ue] ue]

dXid dd urewo(q uoneuIS YPUIYSAL MS/MH IND weansig TLA nduy JRUMAQ ASURIY dureN [oo],

§1003 STH pauasaid ayj Jo 21qv1 uostipduio)) '€ dqel,

45

“thesis” — 2019/1/20 — ‘23:36 — page 46 — #58

Chapter 3. How to Program FPGAs

3.3 Final Remarks

Similarly to what happened with programming languages and frameworks
for general purpose processors, tools for FPGA hardware design changed
and evolved as well. Modern HDLs and HLS tools offer a new level of ab-
straction and productivity with respect to Verilog and VHDL. This, on one
hand, allows to reduce the design time, facilitate IP reuse, customization
and verification, and, on the other, makes FPGA learning curve smoother
for non-hardware designers. For instance, tools like Xilinx SDAccel offer
an efficient HLS environment, and completely abstract and automatize the
hardware design flow, hiding the complexity of the system-level design.

Despite the high level of abstraction provided, the analyzed tools require
a certain knowledge and familiarity with hardware design. This is true not
only for HDLs but also for HLS tools. The possibility to use high-level
languages like C, C++ and OpenCL is for sure an advantage with respect
to HDLs, but such languages are not really designed to describe hardware.
While HLS compilers make a great job in translating and scheduling high-
level languages into hardware RTL, the designer needs to have clear in
mind the desired hardware architecture and implement it consequently, in
order to facilitate the HLS process. Moreover, many HLS do not automati-
cally optimize the hardware design, but rather they require the designers to
use the provided options and directives guide the optimization process. As
matter of fact, HLS tools increase abstractions and productivity at cost of
control on the resulting design. As a result, also hardware design with HLS
tools may become a time-consuming and error-prone task, while still being
faster than hardware design with Verilog and VHDL.

Emerging tools, especially domain specific ones, like DSLs and machine
learning frameworks, are able to reach relevant levels of both productivity
and performance. Indeed, their backends are able to highly optimize the
input code thanks to the restriction of the considered domain. On the other
hand, tailor-made languages, in case of DSLs, or a high-level language like
Python, in case of machine learning frameworks, permit to significantly
boost the productivity and express the computation in a simple and intuitive
way. Despite the great support for CPUs and GPUs, the support for FPGAs
1s still limited, even though a combination of such tools with modern HDLs
and/or HLS tools could provide a great benefits to designers and further
lower the bar for FPGA design. To this end, the next Chapters will describe
the main contributions of this work: a framework to automatize the hard-
ware acceleration on FPGA of Convolutional Neural Networks (CNNs),
and a common backend to permit multiple DSLs to target FPGAs.

46

“thesis” — 2019/1/20 — ‘23:36 — page 47 — #59

CHAPTER

An Automated Framework to Accelerate
Convolutional Neural Networks on FPGA

Every day quintillion bytes of data are generated and stored in data-centers
of different service provides [106,107]. These data have different natures:
posts on social networks, online transactions, text documents, videos and
photos, audio files, GPS signals, and many others. The challenging aspect
related to such amount of data (usually called Big Data) is definitely their
processing and analysis; indeed, this study enables to extract information
concealed within the data, like patterns and trends of the market, to name
a few. The final outcome may be useful at different ends, ranging from
business decisions to research. In order to model and analyze these data,
the field of Big Data analysis mainly relies on Machine Learning (ML) al-
gorithms (e.g. Neural Networks (NNs), Support Vector Machines (SVMs),
decision trees, random forests, etc.). Figure @ reports the most used ML
algorithms in data science in 2017 [108]]. As a result, many datacenter
applications exploit ML to provide end users with services. Well-known
examples of these online services are AWS by Amazon [109]], the docu-
ment analysis of Microsoft Bing [110], cloud-assisted voice assistants as
Siri [111]], Google Photos [[112]], and so on. However, conventional ML

47

“thesis” — 2019/1/20 — ‘23:36 — page 48 — #60

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

70%

63.5

60% —
49.9
o 0% 463
& i
5 40%
b o 376
o 4
& 30.6
§ 30% — :] 28.5 267 o
3 b .
= 20% — 18.9
] 12.3
10% — 8.3
] 55 54 49 28
0% —— T T T \ T T T T T T T T \ \ T
O I - RNC R ST BEC e & & S & =
& & ¢ & & & S &S &S «z§\ & F
Q_@"a) \-%\OQ bo@ \éﬁ &@c‘? \qﬁ\ N ?’QQ& . 0%°
& F &S S S & & %
& <SS SRS & & &
W IR Ny & NS
& & Ky
& <

Figure 4.1: Most used Machine Learning algorithms in data science in 2017 [|108)].

have limitations in processing natural data in raw form, and their require a
high level of expertise to design feature extractor able to turn raw data into
an appropriate representation for ML systems [113]].

Moving to a different scale, nowadays computing is going mobile. Tech-
nologies have considerably improved from the first mobile phone, and we
are now surrounded by a plethora of smart devices, designed to be always
connected and always ready to interact with the surrounding environment
in real time. This scenario is known as Internet of Things (loT) paradigm,
and it describes the interconnection among all kinds of physical objects,
ranging from sensors to smart devices. The interaction between 10T de-
vices, as well as their data collection, enabled the rise of new applications
in many and different domains, like smart cities [114]], healthcare [115],
transportation, and more [116,|117]. Just like in the Big Data field, all the
information gathered from IoT require an efficient analysis able to uncover
hidden patterns within them. Such analysis may occur either remotely in
the cloud on the very same device, according to the use cases and user ex-
pectations. As a consequence, although energy efficiency remains a critical
constraint for these devices, performance steadily gained relevance in the
IoT industry. Therefore, it is critical to find the right trade-off between per-
formance and energy efficiency, particularly in the current scenario where
new smart devices, like wearable ones, keep entering the market.

48

“thesis” — 2019/1/20 — ‘23:36 — page 49 — #61

In the recent years, deep learning [[113,/118]] has emerged as the most
promising solution to face the challenges of the aforementioned fields. Deep
learning is a class of techniques composed of multiple layers of represen-
tation. The composition of simple but non-linear modules allows to turn a
representation into another, increasing the level of abstraction. Deep learn-
ing is enabling significant advances in solving problems and research. In-
deed, it has been successfully applied to fields like image [118-121] and
speech recognition [122-124]], bioinformatics [[125-127]], natural language
processing [128]], and many others, outperforming other ML techniques.

Among the deep learning class of algorithms, Convolutional Neural Net-
works (CNNs) [129] have emerged as the most effective method for image
recognition and classification. This supervised learning algorithm repre-
sents a variant of feed-forward NN, and takes its inspiration from the bio-
logical process in the visual cortex of animals. Starting from the raw data of
an image, CNNs are capable of both extracting and aggregating more and
more accurate features in order to classify the image subject. Thanks to
their high level of performance and efficiency, CNNs have quickly become
the state of the art algorithm in image recognition and classification [[118]].
Moreover, in the last years many ML tools and frameworks have emerged
thanks to a considerable engineering and research effort. As a result, frame-
works like TensorFlow [35]], Caffe [36] and Torch [[37]] offer efficient solu-
tions to build and train CNNs, as well as other ML algorithms, without a
significant expertise of the field.

It is fundamental to notice that, despite all the benefits, constraints in
terms of performance and energy efficiency may limit the adoption of deep
learning techniques, such as CNNs, at different scales. On one hand, in the
datacenter scenario, it is crucial to process and analyze data at a significant
high rate, according to the use case requirements. This implies a relevant
consumption of power. On the other hand, in the IoT field, the same chal-
lenges hold. In addition, the limited resources available on the IoT devices
often prevent implementing deep learning techniques on the target hard-
ware [130]]. Therefore, since software solutions running on Central Pro-
cessing Units (CPUs) may not be able to address these challenges, it is
necessary to find new solutions able to provide a high level of performance,
while maintaining a low power profile.

The computation pattern of CNNs presents a highly repetitive, paral-
lelized and pipelined structure, which makes CNNs an ideal candidate for
hardware acceleration. As a consequence, over the last years many hard-
ware implementations of CNNs have emerged in literature, targeting de-
vices such as Graphics Processing Units (GPUs), Field Programmable Gate

49

“thesis” — 2019/1/20 — ‘23:36 — page 50 — #62

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

Arrays (FPGAs), and Application Specific Integrated Circuits (ASICs) [131-
133]]. For instance, Google released the Tensor Processing Unit (TPU) [[134]],
a specialized hardware for deep learning algorithms. Among the afore-
mentioned devices, FPGAs offer a good trade-off in terms of performance,
power consumption and flexibility. Indeed, although FPGAs may not be
able to reach GPUs peak performance for some kind of workloads, their
power efficiency makes them preferable to GPUs in case of strict power
constraints. On the other hand, even though ASICs offer the best trade-
off between performance and power consumption, reconfiguration features
allow FPGAs to more easily adapt to changes, without the need of de-
signing a new ASIC. Therefore, FPGAs are an ideal candidate to tackle
the challenges described so far. However, the main challenge of FPGA
design is the steep learning curve, as well as the long development time
needed to generate working and efficient solutions. In the last years, High-
Level Synthesis (HLS) tools [102}|104]] certainly enhanced productivity
and FPGA programmability, allowing hardware designers to leverage high-
level languages like C/C++ and OpenCL, instead of Hardware Description
Language (HDL), to design custom hardware accelerators. Nonetheless,
FPGA design remains a challenging task, and the current level of produc-
tivity provided by HLS tools is definitely not close to one offered by high-
productivity languages and frameworks. As a result, in case of CNNs and
ML in general, end users prefer to rely on the aforementioned ML frame-
works, even though they usually target other devices, like CPUs and GPUs.
Thus, there is clearly a gap between solid and widely adopted CNNs devel-
opment frameworks and modern tools to target FPGAs such as HLS ones.

Given these motivations, this work proposes a framework to automated
the generation and synthesis of hardware implementation of CNNs on FPGA
devices [43,/44]. The framework, designed in Python, permits users to pro-
vide a high-level description of the network, along with the hyper-parameters
of the different layers. Then, after turning the CNN specification into an
internal representation based on Google Protocol Buffers [135]], the frame-
work produces a C++ implementation of the network, as well as the .tcl
scripts to automatize all the steps towards the bitstream generation, such as
HLS and system level design steps. Moreover, the framework is compatible
with industrial ML tools, such as Caffe and TensorFlow. We evaluated the
proposed approach on a various set of Xilinx boards, ranging from embed-
ded to high-end devices, as well as on a large experimental set, proving the
goodness of the proposed framework on state-of-the-art case studies like
USPS [136] and MNIST [137] datasets.

50

“thesis” — 2019/1/20 — ‘23:36 — page 51 — #63

4.1. Background on Convolutional Neural Networks

X7
¢
.X'Z W2
f() —
Wn
Yo
xn

Figure 4.2: Diagram of the Perceptron model.

4.1 Background on Convolutional Neural Networks

The purpose of this Section is to present the necessary technical background
to understand how CNNs work. First, we introduce the notion of Percep-
tron probabilistic model (Section 4.1.1)), then we describe Artificial Neural
Networks (ANNs) (Section .1.2)), and, finally, we provide an overview of
CNN topology (Section {.1.3). Given the goal of the proposed work, i.e.
hardware-accelerate the classification process of CNNs, we will mainly fo-
cus on that aspect instead of the training one.

4.1.1 Perceptron Classifier

In 1957, Dr. Frank Rosenblatt presented the Perceptron, a probabilistic
model inspired by the biological neurons in animal brain [138]]. As showed
in Figure .2 the Perceptron model receives an arbitrary number of in-
puts z1, xs, ..., x, and generates an output y. Each connection between an
input value and the nucleus of the Percetron, also known as synapse, is
weighted with a value. In particular, wy, ws, ..., w, represent the weights
of the synapses, while wy is a special weight serving as a threshold of the
neuron, known as bias. After receiving the weighted inputs, the Percep-
tron applies a function f(-) on them, called activation function. There are
different types of activation functions, like Heaviside step, sigmoid, hyper-
bolic tangent, Rectified Linear Unit (ReLLU), and so on. The purpose of the

51

“thesis” — 2019/1/20 — ‘23:36 — page 52 — #6064

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

activation function is to decide whether the Perceptron can fire or not the
output. We can describe the Perceptron as follows:

y=1r (i(wi'xiwb) (4.1)

i=1

where b is the bias, defined as b = 1 - wy. According to the activation
function, y may assume different values. Let us consider a step activation
function. The output of the Perceptron would be as follows:

{1 it S0 (w; - @) +b >0,
y:

) (4.2)
0 if Y (w;-x) +b<0

which basically means that the Perceptron can fire if and only if the weighted
sum is greater or equal than the bias b.

Provided with a proper set of weights, the Perceptron is capable of dis-
criminating any linearly-separable set of inputs. Learning the right set of
weights is a task related to the training process of the Perceptron.

4.1.2 Artificial Neural Networks

Despite its features, the main limitation of the Perceptron is its capabil-
ity of discriminating only linearly-separable patterns. In order to over-
take this limitation, a simple yet effective solution consists in connecting
multiple Perceptrons to assemble a network of neurons, similarly to the
neural networks within the animal brain. The result of such interconnec-
tion is an important machine learning algorithm known as Artificial Neural
Network (ANN), Neural Network (NN) or Multi-Layer Perceptron (MLP).
Figure [4.3] displays an example of ANNs. This kind of network features
an arbitrary number of layers of Perceptrons. In particular, we define three
categories of layers: input layer (the first one), output layer (the last one),
and hidden layers (the ones in the middle). Starting from the input layer,
Information pass through the ANN layers and, eventually, reach the output
layer, which returns the classification of the input data. Just like in the case
of a single Perceptron, the goodness of the inference phase heavily rely on
the network training.

Artificial Neural Networks demontrated their capability as classifiers
even in image recognition tasks [[129,/139,/140]]. Indeed, it is quite straight-
forward to consider an image as a vector of pixels, that become the in-
put vector of a network. Although obtaining promising results, due to the
complete interconnection between neurons, NNs are not able to take into

52

“thesis” — 2019/1/20 — ‘23:36 — page 53 — #65

4.1. Background on Convolutional Neural Networks

Input layer Hidden layers Output layer

Figure 4.3: Example of ANN.

account the instrinsic spatial locality of an image. However, taking inspira-
tion from another biological process, a variant of classic ANNs particularly
efficient for image classification has been developed. This new type of neu-
ral networks are known as Convolutional Neural Networks (CNNSs).

The work in [[141], published in the late 1960s, showed that animal vi-
sual cortex contains specialized neurons that respond to small regions of the
visual field. The same type of cells are present in similar regions across the
visual cortex, providing a complete map of the visual space. This working
principle lead to the idea behind CNNs structure.

4.1.3 Convolutional Neural Networks

ANNSs have demonstrated their efficiency as classifiers in different fields,
including the image recognition one [129,139,/140]. In such a scenario,
the image pixels become the input vector of the ANN. However, despite
the promising results, ANNs fail in considering the intrinsic spatial locality

53

“thesis” — 2019/1/20 — ‘23:36 — page 54 — #66

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

Input Feature Maps Feature Maps Feature Maps Neurons Output

Convolutional Sub-sampling Convolutional Linear Classification
layer layer layer layer layer

Figure 4.4: Example of CNN structure.

of an image. This limitation, mainly due to the complete interconnection
between neurons, constrains the image recognition capabilities of ANNSs.

To address this issue, in 1990s a new variant of ANN emerged, called
Convolutional Neural Network (CNN) [[129]. This kind of network takes its
inspiration from the animal visual cortex [141]], and is specifically tailored
to analysis of images and other similar types of data presenting a 2D struc-
ture. Figure 4.4 presents the overall architecture of a CNN; it is structured
in a configurable chain of layers that can be partitioned in two main stages,
called features extractor and classifier, respectively.

Feature Extractor

The features extractor takes in input the image and identifies the various
invariant features, such as corners, edges or lines, that are collected in the
so-called feature maps. This stage exploits the intrinsic spatial correlation
in images to define a simpler sparsely-connected organization between ad-
jacent layers: each neuron in a layer takes in input the values produced
by a subset of neurons located in contiguous places in the previous layer.
The features extractor is composed of a sequence of layers of two different
types: convolutional, and sub-sampling layers.

The convolutional layer implements the K filters to extract relevant
features from the input image; for each filter k, a feature map is generated,
as shown in Figure .5] Another peculiarity of CNN, implied by the trans-
lation invariance property of the features in the image domain, is that all
neurons of a single layer share the same filtering function and the same pa-
rameters characterization. Therefore, the output feature maps are obtained
by repeatedly applying the same filters across sub-regions of the entire im-
age, i.e., by performing a convolution of the input data with each filter
function. More technically, the convolutional layer takes as input a 3D
volume of dimensions C' x H x W, which are respectively the channels,

54

“thesis” — 2019/1/20 — ‘23:36 — page 55 — #67

4.1. Background on Convolutional Neural Networks

T

CACATAVAL

2
TS

A\
\

2

L—
L—
L—
L—

Figure 4.5: Example of convolution.

height, and width of the input. This volume represents either the original
image or the feature maps produced by the previous layer. For each ker-
nel k, the convolutional layer performs a convolution with the correspond-
ing function represented by a Cy x Hj x W tensor w of weights (with
C>CyNH > H, NW > W) and a bias b;. The following equation
describes the convolutional layer works:

C H, W

Oij = Z Z Z(wf,h,m “Tithjrme) + i (4.3)

c=0 h=0 m=0

where ofi ; the output pixel produced by the k-th kernel at coordinates (3, j).
It is worth noting that all filters have the same size. Optionally, a nonlinear
function, such as tanh() or maz(0,z), may be applied on each value in
the output volume. Moreover, additional hyper-parameters can be set for
configuring the layer. Moreover, two additional hyper-parameters can be
set for configuring the layer: (i) the stride S, a positive number, usually set
to 1, smaller than the kernel size, with which the filter slides on the input
image; (i) the size P of the zero-padding, which represents the number of
zeros that sometimes is convenient to pad the input volume around the bor-
der. As result, the generated 3D output volume representing the extracted

55

“thesis” — 2019/1/20 — ‘23:36 — page 56 — #68

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

1for (1 = 0; 1 < H - Hk + 1; i++)

2 for (j =0; J<W- Wk + 1; j++)
3 for (k = 0; k < K; k++)

4 for (c = 0; ¢ < C; ct++)

5 for (h = 0; h < Hk; h++)

6 for (m = 0; m < Wk; m++) {
7 w = weights[k] [c] [h] [m];
s x = in[i+h] [J+m] [c];

9 out [k][1] [J] += w * x;

10 }

Listing 4.1: Pseudo-code of a convolutional layer

feature maps has a C" x H' x W' shape where:

C'=K
H’:(H—Hk+2P)/S+1 4.4)
W/:(W—Wk—i-Qp)/S—l-l

On the other hand, we can easily describe the computation performed
by the convolutional layer in an algorithmic way, as reported in Listing[4.1]
In this example, the stride S is 1, while the zero-padding P is 0. An impor-
tant feature of the code is the lack of control structures, which makes the
convolutional layer definitely suitable for a dataflow implementation.

The pooling layer, also called sub-sampling layer, is generally inserted
between two convolutional ones to progressively decrease the size of the
elaborated data in order to reduce the number of parameters in the kernels
and, consequently, the required computations, while forwarding the more
relevant features. This layer is again implemented by means of a small
kernel (usually 2 x 2 or 4 x 4) that is swiped among the analyzed vol-
ume in order to cluster locally connected data. The overall structure of the
pooling layer is the similar of the convolutional one. The main difference
relies in the filtering function. The most common one is the so-called Max-
pooling, which replaces each submatrix in the input volume with its max-
imum value. Other types of pooling functions are Min-pooling and Mean-
pooling, which, respectively, extract the minimum or mean value from the
current submatrix of the input volume. Finally, in this layer, each channel
on the depth axis is considered separately. As a result, the size of the output

56

“thesis” — 2019/1/20 — ‘23:36 — page 57 — #69

4.1. Background on Convolutional Neural Networks

volume is the following:

c'=C
H
H =
Pstep (45)
w
W' =
Pstep

where P, is the pooling step, which is usually equal to the stride.

The activation layer is an element-wise operator that applies an activa-
tion function to every of the input pixels, similarly to what takes place in the
Perceptron. The utility of the activation function lets in to squash the value
of the pixels inside the boundaries of the specific function, keeping off in-
definitely growing of the values due to the multiply-accumulate operation
in the convolution layer. Besides, such characteristic adds a non-linearity
that smooths the received classification boundaries. Examples of functions
used in the activation layer are the following:

1

.= With range [0, 1]

e Sigmoid function: o(z) =

* Hyberbolic tangent function: tanh(z) = 5= with range [-1,1]

Classifier

The second stage of the architecture is the classifier, that is implemented
using a classical fully-connected ANNSs. This stage takes as input the fea-
ture maps provided by the features extractor, and elaborates them to deter-
mine the affinity for the input image with the various considered classes.
This stage is composed of a series of linear layers optionally followed by a
final normalization operator.

The linear layer is composed by J simple Perceptrons, which compute
the output values as linear combination of the elements of the input vector
opportunely weighted:

1

Oj = Z(wi,j . l'@) + bj (46)

=0

where z; is the vector of input elements provided by the previous layer, w; ;
the weights and b; a bias. The number of neurons of the last linear layer is
equal to the number of classes to be recognized.

57

“thesis” — 2019/1/20 — ‘23:36 — page 58 — #70

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

1for (j = 0; j < OUT_NEURONS; Jj++)
» for (i = 0; i < IN_NEURONS; i++) {
3 w = weights[j] [i];

4 out[j] += w = inf[i];

5

}

Listing 4.2: Pseudo-code of a fully-connected layer

Finally, the last layer in the classifier is a normalization operator im-
plemented as a SoftM ax operator o

eri

Zszl ek
where z; is the input vector generated by the linear layer. In particular, this
operator enforces the K values of the output to lie in range [0, 1] and to sum
up to 1, such that they can be interpreted as the probability of the input to
belong to a certain class (i.e. the maximum probability).

Similarly to the convolutional layer, the computation pattern of fully-
connected layers does not contain any control structure, which makes it
definitely fitting for hardware acceleration. Listing 4.2] shows the pseudo-
code of a fully-connected layer.

for 5=1,....K 4.7)

gj

4.2 Proposed Framework

In this Section we describe in detail the proposed framework. As stated
in the previous Sections, over the last years CNNs have been one of the
major topics in research and engineering field. As a result, different work
focused not only on designing new CNNs and improving accuracy, but also
on developing tools and frameworks, like TensorFlow [35]] and Caffe [36],
to easily implement CNNs and, consequently, increase productivity. How-
ever, although many frameworks allow users to efficiently target both CPUs
and GPUs, there is still little to no support for FPGAs. As matter of fact, the
CNN accelerators for FPGA available in literature are mainly the outcome
of manual designs. The implementation of efficient CNN architectures on
FPGA is definitely a complex and time consuming task, in particular for
developers who are not familiar with hardware design. Thus, a framework
able to reduce the development effort of CNNs on FPGA could significantly
help this category of developers and widen the adoption of such architecture
in different application scenarios.

For these reasons, we developed a framework for the fast-prototyping
and deployment of CNN accelerators on FPGA. The goal of the frame-

58

“thesis” — 2019/1/20 — ‘23:36 — page 59 — #71

4.2. Proposed Framework

4)
Caffe Representation
& J
(* N\
7 Python APIs S
Trained w > * g
Weights | 1 .
Proto Buffer Generator |
N J 3
* @)
N\ (%
Training & Test > TensorFlow Trainer g
Datasets L (Optional)) g
. £
Already > NN %
trained? model O
Weights
Hardware Generator
\ N~ X / /)

Y

(Embedded / High-end |
FPGA

(S J

Figure 4.6: Framework organization and workflow.

work is to bridge the gap between high-productivity ML frameworks and
FPGA design process. The framework automatizes the CNN implementa-
tion flow on FPGA, and provides high-level APIs to sketch the network, a
C++ library to design dataflow accelerators, as well as an integration with
ML framework to train the network. We designed the framework as a set
of Python modules. On one hand, we chose Python because almost all the
ML frameworks provide Python APIs. This permits to simply interact with
other ML toolchains, as we will describe later. On the other hand, the mod-
ular architecture of the framework makes it scalable and self-contained;
indeed, it is quite straight-forward to use it as a Python package, or employ
the single modules as stand-alone Python programs.

Figure {.6| depicts the overall architecture of the proposed framework.
The following three modules compose the core of the framework:

* PROTO BUFFER GENERATOR: this module receives in input the de-

59

“thesis” — 2019/1/20 — ‘23:36 — page 60 — #72

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

scription of the network by means of the framework APIs. The frame-
work supports both a Caffe . prototxt definition of a network, and
a custom JSON notation. The module converts the input definition
into a .proto file, i.e. a Google Protocol Buffer [135] file contain-
ing a serialized definition of the network.

* TENSORFLOW TRAINER: this module is in charge of training the in-
put CNN via TensorFlow APIs [35]. To this end, the module requires
in input both the training and test datasets, as well as the . proto def-
inition of the network, which is the outcome of the previous module.
The output of the module are the trained weights of the input CNN. It
is worth noting that this module is optional; indeed, users can skip the
training by supply the trained weights themselves.

* HARDWARE GENERATOR: the last module receives in inputa .proto
file and the weights of the network. The .proto not only contains
the definition of the network, but also the target FPGA. Starting from
those files, the module produces both a C++ implementation of the
network suitable for HLS tools and a set of .tc1 scripts to automa-
tize all the steps towards the bitstream generation.

The next Sections describe in details the implementation of the afore-
mentioned modules.

4.2.1 Proto Buffer Generator

The Google Protocol Buffer [135], also known as ProtoBuf, is a flexible,
light-weight, extensible mechanism to both store and serialize information
in a so-called message. ProtoBuf builds the message according to a struc-
tured specification of the fields provided by the user. A message field can
represent standard data types, like int, bool, string, and enumera-
tions, or another message type. After receiving in input the specification,
ProtoBuf compiles it and generate ad-hoc APIs to write, read, and manip-
ulate messages as objects. Moreover, ProtoBuf allows to export a human-
readable representation of the message in a . prototxt file. Thanks to its
features, ML frameworks like Caffe [36] take advantage on ProtoBuf as a
mechanism to describe a CNN.

In the context of this work, we rely on ProtoBuf as both an entry-point
to the framework, and as a method to send information from a module
to another. In particular, the framework expects in input either a Caffe
.prototxt model or a JSON file describing the network to accelerate on
FPGA. Listing {.3] describes the structure of the input message to the

60

“thesis” — 2019/1/20 — ‘23:36 — page 61 — #73

4.2. Proposed Framework

1message Project({
optional string name = 1; // the assigned value

o

3 optional NetParameter network = 2;

4 optional Dataset training set = 5;

5 optional Dataset test_set = 6;

6 optional Training training param = 7;
7

8 enum DeviceType{

9 ZEDBOARD = 0;

10 ZYBO = 1;

1 VIRTEX7 = 2;

14 optional DeviceType device = 3 [default = ZEDBOARD];
15 optional uint32 num cores = 4 [default = 1];

Listing 4.3: Protocol Buffer definition of a Pro ject message.

1message NetParameter {

2 optional string name = 1; // representative name of the network
3 repeated LayerParameter layer = 2; //The network layers
4 // This field specifies each layer configuration, including

connectivity and behavior
s}
6
rmessage LayerParameter {

8 optional string name = 1; // the layer name
9 optional string type = 2; // the layer type
10 optional string bottom = 3; // the name of each bottom blob

1 optional string top = 4; // the name of each top blob

13 // Layer type-specific parameters.

14 optional ConvolutionParameter convolution param = 106;

15 optional PoolingParameter pooling_param = 121;

16 optional InnerProductParameter inner_ product_param = 117;
17 optional MemoryDataParameter memory_data param = 119;

Listing 4.4: Protocol Buffer definition the network model, compliant with a subset of the
one provided by the Caffe deep learning framework.

61

“thesis” — 2019/1/20 — ‘23:36 — page 62 — #74

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

framework. Message Project contains all the information necessary to
both build the CNN (i.e. network) and train it (i.e. training_set,
test_set, training_param). Moreover, it provides details about the
hardware synthesis, like the target device and the number of cores to in-
stantiate on the FPGA. The tag optional on a field indicates that it is
not mandatory, while the unique number assigned to each field identifies it
in the message binary format [142].

The NetParameter message type provides the network model, as de-
scribed in Listing [4.4] and is compliant with Caffe definition. The content
of this message is a sequence of LayerParameter fields, which repre-
sent the primary types of layers of a CNN, like convolutional, pooling and
fully-connected layers. Even though we are considering only a subset of the
possible layers, they are enough to build a significant number of state-of-
the-art CNNs. Moreover, the scalable definition of the LayerParameter
message allows to easily introduce additional types of layers.

Listing [4.5] reports the message definitions of the supported types of
layers. Each definition provides the hyper-parameters typical of the CNN
layer it defines. For instance, the ConvolutionParameter message
contains fields related to the convolutional layer, like the dimensions of
the kernel and the number of output feature maps. On the other hand, the
PoolingParameter message characterizes the structure of the pool-
ing layer in terms of sub-sampling operator, kernel dimensions, and so
on. Then, the InnerProductParameter message provides informa-
tion about the fully-connected layers, namely the number of output neurons.
Finally, the MemoryDataParameter message defines the dimensions of
input image.

The Dat aset message contains information regarding the input dataset,
as reported in Listing .6] For instance, it describes the format of the input
images. Currently, the framework supports the IDX format (for the MNIST
dataset [[137]) and common image formats like png, jpg, bmp.

4.2.2 TensorFlow Trainer

The TENSORFLOW TRAINER module is in charge of proving APIs to train
the input CNN and generate the weights of the network, which are fun-
damental to the inference process. In order to properly train the network,
this module requires in input the CNN definition, which comes from the
previous module, training and test datasets, and the corresponding labels.
The module builds the CNN model according to the ProtoBuf message and
maps it into a TensorFlow computational graph definition. At this point,

62

“thesis” — 2019/1/20 — ‘23:36 — page 63 — #75

4.2. Proposed Framework

1message ConvolutionParameter {

2 optional uint32 num_output = 1; // Outputs for the layer
3 optional bool bias_term = 2 [default = true];

4

5 repeated uint32 kernel_size = 4; // The kernel size

6 repeated uint32 stride = 6; // Defaults to 1

7 optional uint32 kernel_h = 11; // The kernel height

8 optional uint32 kernel_w = 12; // The kernel width

nmessage PoolingParameter {

12 enum PoolMethod {
13 MAX = 0;
14 AVE = 1;

17 optional PoolMethod pool = 1 [default = MAX]; // The pooling method _

18 optional uint32 kernel_size = 2; // The kernel size (square)
19 optional uint32 stride = 3 [default = 2]; // Equal in Y, X
20 optional uint32 kernel_h = 5; // The kernel height

21 optional uint32 kernel w = 6; // The kernel width

23

umessage InnerProductParameter ({

25 optional uint32 num_output = 1; // Outputs for the layer
26 optional bool bias_term = 2 [default = true];

27 }

28

v message MemoryDataParameter {

30 optional uint32 batch_size = 1;
31 optional uint32 channels = 2;
3 optional uint32 height = 3;

33 optional uint32 width = 4;

34}

Listing 4.5: Protocol Buffer definition of Layer messages.

63

“thesis” — 2019/1/20 — ‘23:36 — page 64 — #76

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

1message Dataset {

16

17

optional string path = 1;
optional string img_file = 8;
optional string img_ext = 10;
optional string label file = 9;

enum Format {
MNIST = 0;
OTHER = 1;
}

optional Format format = 2 [default = OTHER];
optional ImageInfo img_info = 6;

optional uint32 num_images = 3;

optional uint32 classes = 7;

}

ismessage ImageInfo {

19

20

21

22

optional uint32 channels = 4;
optional uint32 height = 5;
optional uint32 width = 6;

}

Listing 4.6: Protocol Buffer definition of a Dataset message.

TensorFlow trains the network by means of the cross-entropy error func-
tion [[139]. The user can specify training parameters, like the batch size of
images and learning rate, using the Training field in Listing 4.3] Natu-
rally, as said in Section 4.2] the execution of the TENSORFLOW TRAINER
module is optional, since the user may already have trained the CNN before
using the framework. In this case, the user can directly provide the network
weights and, consequently, skip this step. Once the training is over, the
module exports the weights in either a csv or npy file format.

4.2.3 Hardware Generator

The purpose of the HARDWARE GENERATOR module is the automatic gen-
eration of a hardware implementation of the input CNN suitable for HLS,
and its consequent implementation on FPGA. Starting from the Proto-
Buf description of the network and its weights, this module produces a
C++ implementation of the CNN. In particular, the HARDWARE GENER-
ATOR module implements a hardware module for each layer. Section [4.3]
provides more details about the hardware implementation. On the other
hand, the module writes the input weights into a header file as static multi-
dimensional arrays and initialized. Finally, this module produces .tcl

64

“thesis” — 2019/1/20 — ‘23:36 — page 65 — #77

4.3. Hardware Design

scripts to automatize the implementation of the FPGA accelerator. More
technically, the . t c1 scripts create both a Vivado HLS and Vivado project,
and run all the necessary steps towards the bistream generation, like the
HLS process, the system-level design, and so on. In this way, the user does
not have to spend time setting up the tools every time.

4.3 Hardware Design

As stated in the previous Sections, the computation pattern of CNNs is
definitely suitable for hardware acceleration on devices like FPGAs, GPUs
and ASICs. Indeed, most of the computations within a CNN are basically
dot-products between two tensors representing, respectively, the weights
and the input to that layer. Convolutional and fully-connected layers belong
to this category, as we can notice from Equation (4.3)) and Equation (4.6)).
Thanks to the its instrinsic parallelism, dot-product computations well fit
specialized hardware. This enables to significantly reduce the latency of
such computation with respect to a single multiply-accumulate operation.

Figure depicts the hardware accelerator the proposed framework
produces from the input CNN definition. The framework implements each
network layer as a stand-alone module, which relies on First-In First-Outs
(FIFOs) to both receive and send data. These design choices permit to
build a dataflow architecture able to seamlessly process images in a stream-
ing fashion. As matter of fact, the accelerator forms a pipeline whose
macro stages correspond to the hardware modules. Internally, each mod-
ule works in a pipelined way as well. This design guarantees that each
pixel has the lowest possible latency inside each module, maximizing the
overall throughput of the accelerator. Finally, an AXI Direct Memory Ac-
cess (DMA) is in charge of retrieving the input images from the off-chip
DDR, sending them to accelerator, receiving the results of the classification
from the accelerator, and storing them back to the off-chip memory.

We designed the proposed architecture by means of HLS tools, in par-
ticular we employed Vivado HLS to sketch it. The framework generates
a C++ top function containing calls to templatized functions, which repre-
sent each layer of the network. To this end, we created a C++ library for
the supported layers. Thanks to the flexibility of C++ templates, we imple-
mented only one function for each layer. The framework customized each
call according to the dimensions of the specific layer. Vivado HLS pro-
vides directives to guide the synthesis process and help users generate the
architecture they have in mind. We took advantage of different directives
to optimize the accelerator and tailor it to its goal.

65

“thesis” — 2019/1/20 — ‘23:36 — page 66 — #78

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

()
Board
‘ On-Board DDR Memory ’
, < { 1
FPGA AXI4-St AXI4-St
-Stream | AXI DMA -Stream
{7 Core u
AJ +
}E[FIFO FIFO }E[
M D
|| || O/
FIFO FIFO
Convolutional layer Pooling layer Fully-connected layer
- J
- J

Figure 4.7: Convolutional Neural Network architectural template.

First of all, we leveraged the DATAFLOW directive and inserted it in
the top function. This made Vivado HLS form a pipeline composed of the
layer modules. As a result, each module can start computing as soon as
it receives the first output data from previous layer. This avoid to stall the
computation until the previous module is done and, consequently, increases
the throughput. Moreover, each function implementing a layer contains a
PIPELINE directive to pipeline the loops within it. This permits to reduce
the latency of the module itself. Then, the top function directly communi-
cates with the DMA via AXI-4 stream interface, which provides a very low
overhead for control signals, thus permitting streaming data transfer. More
technically, the top function takes two parameters, which represent, respec-
tively, the input and output of the accelerator. We employed Vivado HLS
directives to specialize such parameters as AXI-4 streams. Finally, we re-
moved the control signals of the accelerator, which means that it is always
active. In this way, as long as there are data in the input FIFO, the ac-
celerator keeps on computing. This permits to seamlessly process batches
of images without restarting the accelerator. The next Sections provide
additional details about the implementation of convolutional, pooling and
fully-connected layers.

4.3.1 Convolutional Layer

The hardware module implementing the convolutional layer leverages the
intrinsic parallelism typical of such computation. Indeed, since each filter
works independently from the others, we can easily pipeline their execu-

66

“thesis” — 2019/1/20 — ‘23:36 — page 67 — #79

4.3. Hardware Design

Off-chip memory On-chip memory
(N)
Input image 3x3 Kernel swipe Output
2
k=]
8
= > —_—
Input image 3x3 Kernel swipe Output
g
=]
IR
5 o]
5| |2 > —
= E
S
>
g
1<
)
Input image 3x3 Kernel swipe Output
2 > —_—
)
<
8
z
\
. J o J

Figure 4.8: Example of input image loading on on-chip memory.

tions and produce one pixel per output feature map at each clock cycle.
However, in order to apply the filters, the module has to internally store a
portion of the input feature maps among different iterations. To this end,
each convolutional module exploits shift registers to store the portion of
data necessary to compute a row of the output feature maps.

We relied on the hls: :Window class from the Vivado HLS library to
implement the shift registers. This class allocates a bidimensional array
of shift registers, and permits to simultaneously access one or more values
in the 2D window in the same clock cycle. Besides, the window class
permits to shift all the columns left or right and all the rows up or down. We
configured the hls: :Window to store M x N values, where M is equal
to the height of the convolutional kernels Ky and N is equal to W x Ch,
respectively the width and the number of the input feature maps. Figure {.§]
depicts the behavior of the window in the convolutional module. Before
starting the convolution itself, the module fills the window with the values
coming from the previous module. In this way, the module has enough
data to start the computation. We pipelined the loop iterating on the output

67

“thesis” — 2019/1/20 — ‘23:36 — page 68 — #30

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

feature maps. As a result, Vivado HLS unrolls the inner loops, which apply
the filters on a portion of data within the window. After swiping the filters
over the entire window, the module shifts the window content up, removing
the first row, which contains the oldest values. The module then loads the
next row into the window and the computation goes on until the module
produces all the output feature maps.

4.3.2 Pooling Layer

Pooling or sub-sampling layers usually rely on operators, like max or mean
operators, to both reduce the size of the output feature maps and forward
relevant information to the next layers. The dimension reduction permits
to save resources on FPGA, since the size of the window depends on the
width of the feature maps.

Similarly to the convolutional module, the pooling module leverages the
hls::Window to store a portion of the input data, and generates one out-
put per clock cycle in a pipelined way. On the other hand, the stride of
the pooling kernel is usually equal to the kernel dimension, hence the win-
dow has to shift a proper number of rows before loading the next ones. As
soon as the module produces a row of the output feature maps, the module
reads new data coming from the previous module, fills the window, and the
computation continues.

4.3.3 Fully-Connected Layer

The computational pattern of the modules described so far mainly operates
on a relatively small subset of the input values. On the other hand, the
fully-connected module requires all the input data to compute each value
of the output vector. For this reason, there is no need to use a bidimensional
array of shift-registers, also because it would consume a significant amount
of logic on the FPGA without a real advantage.

The module reads one input element ¢ per clock cycle in a pipelined
manner and calculates its contribution to all the output values j multiply-
ing ¢ by the weights w; ;. This requires an additional buffer to store the
temporary output values. Besides, Vivado HLS automatically unrolls the
inner loop updating the output values. As a consequence, the module may
exceed the resources available on the FPGA, in particular the Digital Sig-
nal Processors (DSPs) in case of floating point multiplication and addition.
Nonetheless, Vivado HLS directives permit to instantiate only a limited
number of DSPs. In this way, it is possible to find a good tradeoff between
performance and resource usage. Finally, once the computation of the out-

68

“thesis” — 2019/1/20 — ‘23:36 — page 69 — #81

4.3. Hardware Design

put vector is over, the module writes them in a pipelined way on the output
FIFO.

4.3.4 Target FPGAs

So far we have described the CNN accelerator the proposed framework au-
tomatically designs. After receiving the network topology, the framework
generates C++ files implementing the CNN and a . tc1 script. This script
contains a sequence of commands to automatize the HLS process. Once
this process is over, Vivado HLS generates the CNN IP Core. At this point,
the framework integrates the CNN IP Core within a system composed of
different modules for run-time control and memory management. This step,
called System-Level Design, is necessary to connect the IP with the off-chip
memory and monitor its execution.

According to the target device, the System-Level Design may differ in
terms of hardware modules. Currently, the framework supports three differ-
ent platforms: Zybo [143] and Zedboard [144] platforms, both powered by
a chip of the Zyng-7000 All Programmable System on Chip (APSoC) fam-
ily, composed of a hardwired Arm processor and an FPGA, and the VC707
Development Board [145]], powered by a Virtex-7 FPGA. The hardware
design for Zyng-7000 devices contains the ZYNQ7 Processing System (a
dual-core Arm processor), an AXI DMA module, an AXI Interconnect and
the CNN IP generated by Vivado HLS. In particular, the ZYNQ7 Process-
ing System leverages the AXI High Performance slave interfaces (up to 4
ports) to transfer data to the DMA through the AXI Interconnect module.
On the other hand, even though the overall structure is quite similar, the
hardware design for the Virtex-7 FPGA presents some differences. Indeed,
this kind of devices does not contain any hardwired processor like the Arm
processor for Zyng-7000 devices. Hence, in order to manage the run-time
and communicate with the off-chip memory, we need to instantiate a Mi-
croBlaze soft-processor and a Memory Interface Generator (MIG) module,
which provides a standard interface to the memory channels of the on-board
DDR. Thanks to this interface, we can transfer data between the off-chip
memory and the CNN IP Core. Also in this case, we rely on a DMA module
to stream data to/from the CNN IP.

According to the chosen system (Zynq-7000 or Virtex-7), the framework
generates a . tcl script to automatize the System-Level Design step using
Vivado and execute all the following steps towards the bitstream generation.
Finally, for both systems, the framework permits to instantiate more CNN
IP cores in the design, each with its own DMA module for data transfer.

69

“thesis” — 2019/1/20 — ‘23:36 — page 70 — #82

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

This enables a coarse-grained parallelism for the inference of the given
dataset.

4.4 Experimental Results

This Section describes the validation of the proposed framework. We im-
plemented the framework modules using Python 2.7, and relies on Google
Protocol Buffers version 2 to send messages from one module to another.
We employed the Xilinx Vivado HLx Editions 2016.2 to both design the
CNN accelerators and generate the bitstream files.

We implemented different networks, in terms of number of layers and
hyper-parameters, for both the U.S. Postal Service (USPS) and MNIST
datasets. We evaluated the corresponding accelerators on both embedded
and high-end FPGA boards (Zedboard and Virtex-7, respectively). For each
dataset, the CNN accelerator performs the inference process using 32-bit
floating point operations, while the host collects and normalizes the results
by means of a SoftMax operator. We then analyzed each accelerator, syn-
thesized at 100MHz, in terms of execution time, Floating-Point Operations
per Second (FLOPS), resource usage and power consumption. In partic-
ular, we used the Energy Logger 4000 by Voltcraft [[146] to measure the
power absorbed by the target boards.

4.4.1 U.S. Postal Service Dataset

The first case study presents two different CNN models able to recognize
the handwritten digits of the USPS dataset, which provides 16x16 grey-
scale images of digits scanned from the envelops of the U.S. Postal Ser-
vice [136]. Table and Table [4.1b] report the architectures of the two
CNNs, respectively called Small and Large. The two networks are quite
similar, the Large one contains an additional convolutional layer with re-
spect to Small one, and the fully-connected layers contain a different num-
ber of neurons. The proposed framework trained the two CNN architectures
using TensorFlow and generated the C++ implementation of the networks.
We evaluated the two networks using 1000 images from the USPS test set
and compared the performance of the FPGA designs against a CPU multi-
threaded (2 threads) execution on the ARM Cortex-A9 of the Zedboard.
Table [4.2a] and Table {.2D] report, respectively, the comparison between
hardware and software implementations and the FPGA resource usage.
We accelerated the Small network on both Zedboard and Virtex-7 board.
Due to the limited resources on the Zedboard, a complete parallelization of

70

“thesis” — 2019/1/20 — ‘23:36 — page 71 — #83

4.4. Experimental Results

Table 4.1: Architecture of Small and Large CNNs for USPS dataset recognition

(a) Small USPS-Net

LAYER Kg.e Kstriae INFM OFM INDIM ODIM FLOP

Convl 5 1 1 6 16 12 44064
Pooll 2 2 6 6 12 6 864
FC1 - - - - 216 10 4330

(b) Large USPS-Net

LAYER K Kiirige INFM OFM INDiM ODiM FLOP

Convl 5 1 1 6 16 12 44064
Pooll 2 2 6 6 12 6 864
Conv2 5 1 6 16 6 2 19264
FC1 - - - - 64 10 1290

the Small network layers was not feasible. To overcome this issue, we re-
duced the level of parallelism and, consequently, decreased the usage of
DSPs and Look-Up Tables (LUTs). Nonetheless, the Zedboard design out-
performed the multi-threaded implementation on the Arm processor by a
factor of almost 60X in terms of execution time. Besides, even though the
Zedboard platform consumed more power when the FPGA is configured,
the hardware implementation was more energy efficient than the software
one. On the other hand, thanks to the higher number of resources and a dif-
ferent lithography, the implementation of the Small CNN on Virtex-7 was
able to reach higher performance with respect to Arm processor by means
of both fine and course level of parallelism. Indeed, at first, we fully par-
allelized the Small CNN module, and then we instantiated up to four CNN
modules on the Virtex-7 board. This permitted to outperform the software
implementation by a factor of 98X (one module) and 379X (four modules),
and reach peak performance of 11 Giga Floating-Point Operations per Sec-
ond (GFLOPS). Finally, the four-module design was 40 times more energy
efficient than the software implementation running on Arm processor.

For what concerns the Large network, it was not possible to implement
it on the Zedboard, due to the larger number of resources required with
respect to the Small one. Hence, we accelerated the Large CNN on the
Virtex-7 board only. This implementation reached a speedup of 127X com-
pared to the Arm multi-threaded reference. Moreover, the energy consump-
tion of this design is 0.36J, definitely lower than the 4.75J consumed by the
software implementation.

71

“thesis” — 2019/1/20 — ‘23:36 — page 72 — #84

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

Table 4.2: USPS-Nets performance and resource utilization

(a) USPS Hardware vs. Software implementations

EXECUTION TIME POWER ENERGY
CNN DEVICE SW HW SPEEDUP GFLOPS CPU DEVICE SW oW
Small Zedboard 1.67s 0.028s 59.64X 1.76 22W 440W 3.677 0.12)
Small VC707 1.67s 0.017s 98.23X 2.89 22W 20.01W 3.67] 0.34])
Small VC707 (4 Cores) 1.67s 0.0044s 379.54X 11.12 22W 21.1W 3.67] 0.09]
Large VC707 2.16s 0.017s 127.06X 3.83 22W 209W 4751 0.36]

(b) FPGA resources utilization

RESOURCES
CNN DEVICE FLIP-FLOPS LUT BRAM DSP SLICES
Small Zedboard 31110 (29.24%) 32909 (61.86%) 11 (7.86%) 137 (62.27%)
Small VC707 54777 (9.02%) 52238 (17.21%) 21.5(2.09%) 143 (5.11%)
Small VC707 (4 Cores) 162704 (26.80%) 145684 (47.99%) 66.5 (6.46%) 554 (19.79%)
Large VC707 223843 (36.86%) 130433 (42.96%) 21 (2.04%) 895 (31.96%)

4.4.2 MNIST Dataset

The second case study focuses on the well-known MNIST dataset [[137]].
Such dataset provides 28x28 black and white images of handwritten digits.
We designed two CNN models based on the MNIST dataset to properly
classify the input images. The first network is a custom topology named
MNIST-Net and contains two convolutional layers with max-pooling and
one fully-connected layer. The second CNN is a variant of the LeNet-
5 [129], and is composed of three convolutional layers with max-pooling
and three fully-connected layers. Table and Table [4.3b| summarize the
architectures of the considered CNNss.

We relied on the proposed framework to train and implement the two
CNNs on FPGA. We evaluated the two networks on the inference of 10,000
images from the MNIST test set. We compared the performance of the
FPGA designs in terms of execution time and power/energy consumption
against a multi-threaded (4 threads) software implementation running on
a Intel Core 17 6700HQ CPU. Table 4.4a] compares the performance of
the hardware and software implementations, while Table [4.4b| reports the
FPGA resource usage.

We accelerated both networks on the Virtex-7 board. The FPGA design
for MNIST-Net was able to process 10,000 images in 0.081s, outperform-
ing the multi-threaded implementation by a factor of 3.33X and reaching
59 GFLOPS. Besides, in terms of energy consumption, the hardware im-

72

“thesis” — 2019/1/20 — ‘23:36 — page 73 — #85

4.4. Experimental Results

Table 4.3: Architecture of the two CNNs for inference of the MNIST dataset

(a) MNIST-Net

LAYER Kgie Kgtridae INFM OFM INDIM ODIM FLOP

Convl 5 1 1 8 28 24 235008
Pooll 2 2 8 8 24 12 4 608
Conv2 3 1 8 16 12 10 232000
Pool2 2 2 16 16 10 5 1 600
FC1 - - - - 400 10 8010

(b) Variant of LeNet-5

LAYER Kgie Kstridae INFM OFM INDIM ODIM FLOP

Convl 5 1 1 6 28 24 176 256
Pooll 2 2 6 6 24 12 3456
Conv2 5 1 6 16 12 8 308224
Pool2 2 2 16 16 8 4 1024
Conv3 4 1 16 64 4 1 32832
FC1 - - - - 64 64 8256
FC2 - - - - 64 32 4128
FC3 - - - - 32 10 650

plementation was significantly more energy efficient than the software one
(1.62) and 12.38J, respectively). On the other hand, the CNN accelera-
tor of LeNet-5 was capable of obtaining a speedup of 3.7X with respect to
the Intel processor, and, consequently, reaching 62 GFLOPS. Similarly to
MNIST-Net, the hardware design outperformed the software implementa-
tion also in terms of energy efficiency. Finally, it is worth noting that the
implementation of LeNet-5 on FPGA required a high amount of resources,
and almost used all the LUTs and DSPs. This was mainly due to the higher
number of layers within this network with respect to MNIST-Net.

4.4.3 Framework Evaluation

The main goal of the proposed framework is to abstract and automatize
the development of a CNN hardware accelerator for FPGA. This permits
to simply and speed up a process that, otherwise, could be complex and
time consuming. Indeed, the CNN models we implemented count up to
more than 9,000 Lines of Code (LoC) tailored to HLS tools. Starting from
the network model in a prototxt file, the framework generates the CNN
C++ design in few minutes, while, starting from scratch, it would take def-

73

“thesis” — 2019/1/20 — ‘23:36 — page 74 — #86

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

Table 4.4: Performance and resource utilization of networks for MNIST dataset inference

(a) MNIST Hardware vs. Software implementations

. EXECUTION TIME POWER ENERGY
CNN Device SW HW SPEEDUP GFLOPS CPU DEVICE SW oW
MNIST-Net VC707 0.29s 0.081s 3.33X 59 42.TW 20W 12.38] 1.62]
LeNet-5 VC707 0.3s 0.087s 3.7X 62 43.8W 20.5W 13.14] 1.66J

(b) FPGA resources utilization

RESOURCES
FLIP-FLOPS LUT BRAM DSP SLICES

MNIST-Net VC707 108995 (17.95%) 131469 (43.3%) 21(2.04%) 510 (18.21%)
LeNet-5 VC707 258645 (42.6%) 267358 (88.06%) 67.5 (6.55%) 2296 (82%)

CNN Device

Table 4.5: Summary of the evaluated CNN accelerators

NETWORK LoC FLOPS FPS GFLOPS)w FPS/y
Small USPS-Net 864 49K 58K 0.14 29K
Large USPS-Net 1,583 65K 58K 0.18 2.78K
Mnist-Net 2,300 048M 123K 2.96 6.15K
LeNet-5 9,181 0.54M 115K 3.03 5.61K

initely more minutes or hours to get the same result.
Table 4.5[summarizes the implemented networks, and, for each of them,
it reports the LoC, throughput and performance-per-watt ratio.

4.5 Related Work

In Section .1 we described the reasons behind the development of CNNss,
as well as their topology. According to the data to classify, it is often neces-
sary to design big networks. This may help increase the level of accuracy of
the classification. However, as the size of the network grows, the amount
of computations performed by the CNN considerably increases too. The
considerable computational demand of CNNs is for sure one of main as-
pects that makes general purpose processors not suitable for such compu-
tation. As matter of fact, modern CPUs fail in delivering high performance
when running recent CNNSs applications. For this reason, in the last years,
many research work evaluated solutions based on dedicated devices such
as GPUs, FPGAs or even custom ASIC. As explained in Section [@.1] the
computational pattern of CNNs is definitely a good match for hardware
acceleration, thanks to the dataflow nature of such computation. In this

74

“thesis” — 2019/1/20 — ‘23:36 — page 75 — #87

4.5. Related Work

context, solutions based on GPUs have been able to reach adequate levels
of performance [118}/147,148|]. Nonetheless, their high power profile pre-
vent GPUs from being efficiently adopted in scenarios like the embedded
and mobile one. On the other hand, ASICs-based solutions [|134,/149] are
surely appealing in terms of performance and power consumption, but this
comes at a price, i.e. lack of flexibility and high production costs. Finally,
as shown in different research work ([|133,/150~154]), solutions based on
FPGAs offer the best trade-off in terms of performance, power consump-
tion, and flexibility with respect to the aforementioned architectures.

The work presented in [[131] describes a memory-centric design method-
ology to accelerate CNNs on FPGA. Thanks to the efficient data pattern
access, the authors managed to improve data reuse, and, at the same time,
improve performance and energy efficiency. The authors evaluated their
designs on a Xilinx Virtex-6 FPGA board, and were able to outperform
standard scratchpad memories accelerators.

In [[151]], the authors leveraged computation reordering and local buffer
usage to boost performance and energy efficiency of a CNN accelerator
running on FPGA. In addition, the authors described an analytical method-
ology oriented to the optimization of nested loops for inter-tile data reuse.
The experimental evaluation showed a relevant improvement in MicroBlaze
soft-core performance, and a 2.1X reduction in terms of data movement.

The work described in [[133]] takes advantage of the roofline model [[153]],
a well-known performance model, to explore the design space of convolu-
tional layers on FPGA. The authors designed the resulting architecture as
a configurable single module able to execute all the network layers in se-
quence. As a result, their implementation of AlexNet [118] managed to
surpass the previous implementations available in literature.

ConvNets Processor [156] is a programmable CNN processor. The au-
thors implemented ConvNets on a custom board powered by a low-end
DSP-oriented FPGA. A Lush-based network compiler takes in input a Lush
description of the CNN, and generates the instructions for the processor.
In [153], the authors designed a CNN accelerator capable of overtaking
resource under-utilization issues on FPGA. To this end, the authors de-
veloped a modular pipelined architecture structured as a chain of various
modules. As a result, the authors were able to optimize the resource usage,
and avoid data dependencies between modules. The consequent design,
evaluated on a Virtex-7 485T FPGA, reached a 97.1% of dynamic resource
utilization, and outperformed the single module state-of-the-art design of
the same network by a factor of 1.3X (in terms of throughput).

The work in [154]] focuses on a FPGA design for Image-Net large-scale

75

“thesis” — 2019/1/20 — ‘23:36 — page 76 — #388

Chapter 4. An Automated Framework to Accelerate Convolutional Neural
Networks on FPGA

image classification. According to their analysis of literature on FPGA-
based CNN accelerators, the authors state that convolutional layers are
computational-centric, whereas linear layers are memory-centric. For these
considerations, the authors designed a dynamic-precision data quantization
method to improve bandwidth and resource utilization. The experimental
evaluation showed a definitely small accuracy loss (0.4%), as well as higher
performance with respect to previous approaches.

The approaches we have described so far mainly consisted in designing
efficient CNN accelerators in terms of performance, power consumption,
resource utilization, and so on. The authors manually developed all the
aforementioned solutions, and, most of the time, such solutions target a
single specific scenario, like the High Performance Computing (HPC) one.
As a consequence, re-designing and adapting these architectures to differ-
ent application scenarios (e.g. the embedded one) easily turns into an error
prone and time consuming task. Hence, the goal of the proposed framework
is to surpass such limitations and allow users to target different scenarios
by means of reusable and automatically generated architectural templates.

4.6 Final Remarks

Convolutional Neural Networks are the state of the art in image recognition
and classification. Thanks to their features, they are becoming the stan-
dard in many application fields like Big Data Analysis, mobile robot vision,
video surveillance and so on. However, the huge amount of data to process
makes implementations on modern general purpose architectures impracti-
cal, in terms of both performance and power consumption. For this reason,
over the last years researchers and engineers have been investigating solu-
tions based on hardware accelerators. In this context, FPGAs proved to be
definitely effective as flexible, low-power devices to accelerate the execu-
tion of CNNs. Nonetheless, designing efficient FPGA-based accelerators is
a time consuming and error-prone task that requires significant experience
in hardware design. HLS tools may ease this process permitting to build
the hardware accelerator in high-level languages such as C and C++, but
still some knowledge in hardware design is fundamental to produce effec-
tive designs. This makes FPGA tools not easily accessible for most of the
software developers, differently from machine learning frameworks, like
TensorFlow and Caffe, which provide high-level tools and abstractions to,
almost effortlessly, design CNNSs.

For this reason, we developed a framework able to bridge the gap be-
tween FPGA hardware design and software development, allowing users to

76

“thesis” — 2019/1/20 — ‘23:36 — page 77 — #89

4.6. Final Remarks

design and implement CNN accelerators on FPGA, starting from a high-
level description of the network. In particular, starting from a network
definition in Caffe, at first the framework builds an internal representa-
tion of the CNN based on Google Protocol Buffer message structure. The
framework relies on this representation to make its internal modules com-
municate. Then, if necessary, the framework trains the network by means
of TensorFlow APIs to produce the CNN weights. Finally, the proposed
framework generates a C++ implementation of the input network suitable
for HLS tools, along with script to automatize all the steps towards the
bitstream generation. We evaluated the proposed approach implementing
different networks for the USPS and the MNIST datasets. The experimental
evaluation showed the efficiency of the resulting hardware designs, which
outperformed pure software version running on CPU in terms of both per-
formance and power/energy consumption.

77

“thesis” — 2019/1/20 — ‘23:36 — page 78 — #90

“thesis” — 2019/1/20 — ‘23:36 — page 79 — #91

CHAPTER

A Common Backend to Target FPGAs from
Domain Specific Languages

In the recent years, we have been experiencing an increasing interest in
systems composed by multiple heterogeneous architectures. Such systems
permit to overcome the limits of homogeneous architectures [[157] and thus
improve performance while reducing power consumption. For this rea-
son, many high performance systems [23] are currently combining Central
Processing Units (CPUs) with architectures like Graphics Processing Units
(GPUys), Field Programmable Gate Arrays (FPGAs), and Application Spe-
cific Integrated Circuits (ASICs) to accelerate computations belonging to
different fields (like image and signal processing, linear algebra, computa-
tional biology, etc.) on the most suitable device for that domain.
Concurrently, many and different tools are emerging in literature to ease
and abstract the design of highly parallel applications for such architectures
[30,31]]. One of the most interesting solutions in this context is represented
by Domain Specific Languages (DSLs). Indeed, current DSLs [32,33,147]]
allow the user to quickly and easily develop portable designs for multiple
architectures (mainly CPUs and GPUs). Thanks to the restriction of the do-
main, DSL compilers are able rapidly explore the design space and deeply

79

“thesis” — 2019/1/20 — ‘23:36 — page 80 — #92

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

‘ DSL 1 Frontend H Translation and Optimization passes H FPGA synthesis ‘

'FJ —> | Code —»QQ oo QQ» HDL
a g gl
Pass 1 Pass N
‘ DSL 2 Frontend ‘ ‘ Translation and Optimization passes ‘ ‘ ‘

Pass | Pass M :

[4
G4 - @—»Qg Qg» =

Figure 5.1: Current design flows of DSLs towards FPGA.

optimize the resulting implementations. As a result, DSL applications often
outperform hand-tuned libraries.

Among the aforementioned architectures, FPGAs currently lack a con-
crete support for DSLs. Historically, hardware design for FPGAs has al-
ways been more complex with respect to the design for CPUs and GPUs, in
spite of the great design possibilities FPGAs can provide (for instance, in
terms of arbitrary data precision and custom architecture tailored to the tar-
get application). Even though in the last years there has been a significant
improvement in the toolchain for FPGAs, like High-Level Synthesis (HLS)
tools [102] that permit to hardware accelerate algorithms using C/C++ and
OpenCL instead of Hardware Description Languages (HDLs) like Verilog
and VHDL, the design process remains complex and the supported lan-
guages are still limited. As a consequence, there is little to no support for
DSLs. In fact, there exist some DSLs able to target FPGAs [38-42], but
each one of these DSLs has its own custom flow that, eventually, generates
either HDL or code for HLSs tools. Figure displays the current design
flows towards FPGA available for state-of-the-art DSLs. As a consequence,
a common solution to target FPGAs from DSLs is still lacking, which im-
plies that, in most of the times, developers have to start from scratch in
order to create an FPGA backend for a new DSL,

This work describes FROST [45,46], a unified backend to efficiently
hardware accelerate DSLs on FPGAs. Starting from the an algorithm de-
scribed in one of the supported DSLs, FROST translates it into its Intermediate
Representation (IR), performs a series of FPGA-oriented optimizations steps,

80

“thesis” — 2019/1/20 — ‘23:36 — page 81 — #93

5.1. FROST Overview

and, finally, generates an optimized design suitable of HLS tools. In order
to better leverage the features of the FPGA and enhance the performance,
FROST provides a high-level scheduling co-language the user can exploit
to guide the optimizations to apply, as well as specify the architecture to
implement. This allows to easily evaluate different hardware designs and
choose the most suitable to the input algorithm.

This work provides the following contributions:

* A common backend capable of supporting multiple DSLs as frontend.
In the context of this work, we show FROST integration with Halide
and Tiramisu.

* A scheduling co-language to support the user in the generation of an
optimized hardware acceleration for the target application, acting on
the different levels of the hardware design.

» The FPGA designs generated by FROST obtain performance in line
with state-of-the-art FPGA designs of the N-Body Simulation All-
Pairs method, and, thanks to a combination of both FROST and Tiramisu
scheduling commands, outperform a hand-tuned HLS library by a fac-
tor of 17X.

Here the outline of this Chapter: Section[5.6|describes the related work,
while Section [5.1] exhaustively analyzes FROST architecture, as well as
its high-level scheduling co-language. In Section [5.5] we report FROST
experimental evaluation. Finally, Section draws the conclusions and
gives some insights on the future work.

5.1 FROST Overview

The purpose of this Section is to provide an overview of FROST and its key
features. FROST is a common backend for the acceleration of FPGA for
DSLs. Given a description of an algorithm in one of the supported DSLs,
FROST translates it into FROST IR, and then manipulates and optimized
the IR. To this end, FROST provides a high level scheduling co-language
to allow users to specify the optimizations to apply at different levels (e.g.,
computation, memory interface, and so on). Once the optimization process
is done, FROST generates a C++ code suitable for HLS tools. The final step
consists in generating the FPGA bitstream from FROST output. Figure [5.2]
gives an overview of FROST design flow.

81

“thesis” — 2019/1/20 — ‘23:36 — page 82 — #94

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

‘ Frontends FROST FPGA toolchain
: j
'm —p | DSL1
Code
[] AN
%—»DSU—» @ — a Q—» e
Code Q Q Code
ass. ass N

Translation to

‘ ‘ IR Optimization ‘ ‘ Code Gen

SDAccel”™

Environmen it

Figure 5.2: FROST design flow.

5.1.1 Scope

FROST is designed for expressing data parallel algorithms, in particular al-
gorithms that operate over dense arrays using loop nests. These algorithms
are often found in the areas of image processing, dense linear algebra and
tensor algebra, stencil computations, and deep neural networks. Moreover,
FROST is designed as a common backend for DSLs only. We restrict our-
selves to DSLs because DSLs are very effective in producing efficient code
for a given target architecture (CPU, GPU, FPGA) because they are re-
stricted to a small set of language features and because their context is
limited. Indeed, domain restrictions allow better exploration of the design
space and better identification of the computational patterns that are typi-
cal in a specific domain. Language restrictions allow better static analysis
for the code. For example, many DSLs do not have pointers which allows
better static analysis (it is known that static analysis is undecidable if the
language has double pointer indirection [158]). As a result, DSLs enable
users to easily reach significant performance with a relative small effort
with respect to other more general programming languages.

5.1.2 Stack

The overall stack of the proposed work contains three main components:
frontends, FROST itself, and an FPGA backend. Figure @] shows the
complete stack. While most of the work consisted in designing and im-
plementing FROST and its IR, it was also necessary to efficiently connect
FROST with both the supported frontends and FPGA toolchain chosen as
backend. To this end, for each frontend, we implemented an ad-hoc transla-
tor to FROST IR. At the end of the optimization process, FROST generates
code suitable for the target FPGA toolchain, namely Xilinx SDAccel [[104]].

82

“thesis” — 2019/1/20 — ‘23:36 — page 83 — #95

5.2. Frontends

Figure 5.3: FROST stack.

In the following Sections, we deeply analyze these three components
of FROST stack. In particular, in Section [5.2] we first start describing the
DSLs supported as frontends, as well as the rationale behind the choice
of designing FROST as a common backend. Section focuses on the
internals of FROST framework. In particular, it first presents and motivates
the FROST scheduling co-language (Section [5.3.1)), and then it describes
the FROST workflow (Section [5.3.2)). Finally, in Section [5.4] we report the
FPGA bitstream generation step, which starts from FROST output.

5.2 Frontends

Recently, the use of DSLs and high level languages has been gaining in
popularity for many reasons: (1) they provide portability across multiple
hardware architectures; (2) they provide high productivity, and (3) they al-
low the application of certain optimizations such as fusion, and data lay-
out transformations that are difficult otherwise. The input of the FROST
backend is the FROST IR which describes the algorithm and a list of op-
timizations (scheduling) commands to optimize the algorithm. Currently,
the FROST IR is fully compatible with Halide [32], a state-of-the-art DSL
and compiler for image processing pipelines, as well as Tiramisu [47], a

83

“thesis” — 2019/1/20 — ‘23:36 — page 84 — #96

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

unified optimization framework for DSL compilers, and which presently
is integrated in DSLs such as Julia [159]] and Theano [[160]. In this work,
we will focus on presenting FROST itself, and on evaluating FROST with
Halide and Tiramisu as frontends. In the next Sections, we describe Halide
and Tiramisu.

5.2.1 Halide

Halide [32,|161]] is an image processing DSL and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing pipelines.
One of the main features of Halide, with respect to other DSLs for im-
age processing and, in general, pipelines of such computations, is a sep-
arate scheduling co-language for expressing when and where to perform
the computation. This permits to separate the algorithm from its schedule,
enabling the user to write the algorithm only once, and then evaluate dif-
ferent strategies. Indeed, thanks to the scheduling language, the user can
optimize the computation at different levels, for instance by applying loop
tiling, loop unrolling, vectorization, parallelization and so on. This allows
the user to tailor the computation to the algorithm.

Thanks to its features, Halide has quickly become popular and the state-
of-the-art DSL for image processing. Indeed, platforms like Google+ Pho-
tos rely on Halide. Besides, in the state of the art there are different tools
built upon Halide IR. Some examples are Tensor Comprehensions [[162] by
Facebook, a C++ library and mathematical language to bridge the gap be-
tween researchers and engineers, and TVM [163]], an optimizing compiler
for deep learning.

5.2.2 Tiramisu

Tiramisu [47] is a compiler optimization framework designed for targeting
high performance systems. Figure [5.4] portraits an overview of this frame-
work. Tiramisu takes a high level representation of the program (pure algo-
rithm and a set of commands specifying the schedule and data-layout), ap-
plies transformations on the representation and generates highly optimized
code for the target architectures. Tiramisu is well suited for the implemen-
tation of data parallel algorithms (loop nests manipulating arrays). It is
designed to hide the complexity and large variety of execution platforms
by providing a multi-layer representation suitable for transforming from
high-level languages to multicore CPUs, GPUs, distributed machines, and
FPGAs, thanks to FROST.

84

“thesis” — 2019/1/20 — ‘23:36 — page 85 — #97

5.2. Frontends

High
Level

Code

s N Y4 N
Automatic or [Layer I: Abstract Algorithm]

user specified
schedules

<---->

[Layer II: Computation Management]
>]

[Layer I: Data Management]
>]

[Layer I: Communication Management]
>]

[Code generation: Abstract Syntax Tree]

Tiramisu

D R PR PP 2

[Communication (distribution across nodes)j

Vectorized Backends
parallel

x86

GPU
(Nvidia)

FPGA
(Xilinx)

\ J

Portable performance across a range of platforms

D R R EEEE LR PR =

Figure 5.4: Tiramisu overview.

Tiramisu allows users to partition their program and specify communi-
cation from the same source code using a simple set of scheduling com-
mands. This simplifies programming distributed and heterogeneous sys-
tems: the algorithm does not change and only commands that control its
execution and communication mapping require modification. In this vision,
Tiramisu uses a novel multi-layer IR that fully separates the architecture-
independent algorithm from the schedule, data-layout and communication.
The multi-layer design makes the algorithm portable and makes it easier to
perform each program transformation at the right layer of abstraction. This
multi-layer IR also helps Tiramisu address the memory dependence chal-
lenge since this design separates data-layout from other transformations.

Tiramisu manages the optimization process of the target application by
separating mechanism from policy in scheduling and by removing heuris-
tics and automatic decision-making. This way, Tiramisu allows full control
over scheduling while still enabling integration with higher level frame-
works for policy-making (deciding which optimization should be applied).
Tiramisu guarantees correctness using dependence analysis and thus does

85

“thesis” — 2019/1/20 — ‘23:36 — page 86 — #98

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

not need to impose undue restrictions on its input language to guarantee
correctness.

Finally, Tiramisu relies on polyhedral sets to represent the multi-layer
IR. This makes it simple for Tiramisu to reason about and implement it-
eration space and data-layout transformations, since these are represented
as transformations on polyhedral sets. It also simplifies deciding about the
legality of transformations based on dependence analysis. The polyhedral
framework also enables the application of a large set of complex optimiza-
tions. Tiramisu does not extend the core of the polyhedral model, but rather
it leverages the power of polyhedral compilation to target heterogeneous
systems and to generate efficient code that matches kernels from highly
optimized libraries such as the Intel MKL library.

5.3 FROST

In this Section, we first describe the motivation for the scheduling co-
language, and analyze the commands that the user can express with it (Sec-
tion |5.3.1). Then, we focus on the IR manipulation and optimization pro-
cess (Section [5.3.2). More specifically, we explain how the IR changes
according to the scheduling commands.

5.3.1 Scheduling Co-Language

We decided to provide FROST with a high scheduling co-language for dif-
ferent reasons. In many performance critical domains, users need code
that achieves performance comparable to hand-optimized code. Generat-
ing such code requires combinations of non-trivial program transforma-
tions that optimization frameworks try to fully automate using cost models,
heuristics [[164]], and machine learning [165]. While automatic optimization
techniques provide productivity, they may not always achieve the desired
level of performance. A scheduling co-language allows to solve this prob-
lem by separating mechanism from policy ﬂ This way, FROST allows full
control over scheduling while still enabling integration with higher level
frameworks for policy-making.

Another reason for the scheduling co-language is the fact that designing
efficient architectures for FPGA is definitely a challenging task, and it gets
more complex when the goal is to generate them automatically. Again, a
set of well defined guidelines for the development of the FPGA design is a
viable solution, but it would prevent a fully exploitation of the FPGA fea-

Mechanism means the application of optimizations while policy means deciding which optimization to apply

86

“thesis” — 2019/1/20 — ‘23:36 — page 87 — #99

5.3. FROST

tures. On the other hand, an exhaustive design space exploration can for
sure identify a highly efficient FPGA design, but it would require a signif-
icant amount of time. Besides, not even HLS tools do that automatically,
but rather they provide the designer with a set of directives to enhance the
performance of the hardware design, even though most of the work is still
up to the designer’s expertise and skills with FPGA design. As a result,
producing and evaluating different hardware designs may quickly become
a time-consuming and error-prone task.

For the aforementioned reasons, the purpose of FROST scheduling co-
language is to (1) separate mechanism from policy and enable users to fully
control the generated code; (2) provide the user with a set of possible opti-
mizations in order to tailor the resulting architecture to the input computa-
tion, and (3) simplify optimization space exploration. Given the scheduling
commands, FROST will automatically generate an optimized version of the
input code.

FROST scheduling commands may refer to different aspects of the re-
sulting hardware design. Indeed, they can specify the scheduling of parts
of the computation (e.g., loop scheduling), how the data need to be stored
on the FPGA memory (either logic or BRAM), or the design of the over-
all architecture. To this end, we organized the scheduling commands in
three different categories (Table reports a summary of the scheduling
commands currently supported by FROST).

Computation commands: This category contains the scheduling com-
mands that allow to change the scheduling of part of the computations
within the overall hardware architecture. In particular, these commands
mainly involve the scheduling of loop statements. Indeed, given a func-
tion within the design that iterates over the dimensions of the input/output
buffers, the user can mark one or more dimensions to be pipelined, un-
rolled, or (un)flattened. Moreover, the user can choose to vectorize one or
more input/output buffers in chunks of n bits. This command has an impact
on both the access to the off-chip memory and the computation. Finally, the
user can require a function inlining.

Local memory commands: This category refers to the scheduling com-
mands related to the data storage on the FPGA. Indeed, given a buffer,
such commands enable to partition one or more dimensions of the buffer in
a complete, cyclic or block way. According to the command, the
data are stored in one or multiple BRAMs, or in logic. In this way, it is
possible access in the same clock cycle to different elements of a buffer.

Architecture commands: This last category of scheduling commands
impacts on the overall architecture to be generated by FROST. In particular,

87

“thesis” — 2019/1/20 — %3:36 — page 88 — #100

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

it defines whether to generate a t i1ed or st reaming dataflow architec-
ture. In Section we will better describe the difference between these
two architectures. These commands also take care of the communication
with the off-chip memory. With respect to that, in case of a target board
with multiple DDR memory ports, the user can map an input/output buffer
to a specific port. This permits to better exploit the DDR bandwidth and
increase performance when dealing with memory bound applications. Cur-
rently, FROST provides support for a master/slave communication based on
AMBA AXI4 interface protocol [166]]. This protocol allows to either stream
or move a tile of data from the DDR to the FPGA local memory and vice-
versa. According to the selected command, FROST employs a different
approach to move data from/to the off-chip memory.

Finally, it is fundamental to notice that FROST scheduling co-language
only focuses on transformations related to the FPGA implementation. Thus,
FROST is not designed to perform transformations like loop splitting, loop
tiling, and so on. Such transformations are surely useful and necessary in
some cases (e.g. vectorization), but, since the supported DSLs, like Halide
and Tiramisu, already support them, there was no point in re-implement
them also in FROST. Therefore, the idea behind this design choice is that
FROST and its frontends has to work in synergy to produce an efficient
hardware implementation.

5.3.2 FROST workflow

The input of FROST framework is a set of functions described in one of
the supported DSLs, as well as the scheduling commands to optimize the
output hardware design. First of all, FROST translates the input functions
into FROST IR by means of an ad-hoc translator for each of the frontend
DSLs. As a result, FROST represents each function as a data structure that
mainly contains: the name of the function itself, its arguments (which are
either buffers or scalars), an Abstract Syntax Tree (AST) describing the
body of the function, along with other minor parameters. FROST requires
the dimensions of the input/output buffers to be specified at this stage of the
workflow, otherwise it may not be possible to apply some of the optimiza-
tions. At this point, FROST starts applying a series of IR manipulation and
optimization steps. In particular, the scheduling commands trigger some
of the steps to perform. FROST enforces the scheduling commands in two
different ways: IR manipulation or directives for HLS tools. Indeed, some
of the commands have a direct map to HLS directives (like loop pipelining,
unrolling, etc.), hence FROST inserts them during the code generation.

88

“thesis” — 2019/1/20 — %3:36 — page 89 — #101

5.3. FROST

Table 5.1: Scheduling Commands

We assume that f is a function, while m is the whole computation

Command Description

Computation scheduling commands

f.pipeline (1) marks the dimension i to be pipelined

f.unroll (1) marks the dimension i to be unrolled

f.flatten (1) marks the dimension i to be (un)flattened

f.vectorize (b, n) marks the buffer b to be vectorized in
chunks on n bits

f.inline () marks the function £ to be inlined

Local Memory scheduling commands

f.partition (b, d, t) marks the buffer b to be partitioned on
dimension d in a t way

Architecture scheduling commands

m.tiled() marks the architecture to be implemented in
atiled way

m.streaming () marks the architecture to be implemented in
a streaming dataflow way

m.portmap (b, p) maps global buffer b to memory port p

We now focus on the main steps FROST may perform according to the
scheduling commands.

Top function generation: The first step of FROST is the definition of
the top function, i.e. the main function to be synthesized on FPGA. The pur-
pose of this function is to: (1) invoke the input functions, (2) instantiate the
local buffers, (3) declare the memory interfaces, (4) manage the data trans-
fer from/to the off-chip DDR memory. To this end, FROST analyzes the
arguments of each function to differentiate the global arguments (i.e., the
arguments that refer to buffers to be read/written from/to the off-chip mem-
ory) from temporary arguments (i.e. the arguments existing only within
the top function). For instance, let us consider a pipeline of two image pro-
cessing filters, namely FilterA and FilterB. The arguments/buffers of
FilterA are InA and OutA, while the arguments/buffers of FilterB
are InB and OutB. Since these two filters work as a pipeline, the output of
FilterAistheinputof FilterB, hence InBis OutA. As aresult, InA
and OutB are the global buffers, while OutA/InB is a temporary buffer.
After identifying the global buffers, FROST inserts code blocks to read-

89

“thesis” — 2019/1/20 — %3:36 — page 90 — #102

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

I:' input I:I output D data on BRAM

I

\4

l

Figure 5.5: Tiled architecture.

/write buffers from/to the off-chip memory before/after the computation.
More technically, according to the chosen architecture command (namely
tiled or streaming), FROST instantiates different read/write blocks,
as well as buffer types.

Tiled architecture: In case of a t i 1ed architecture, FROST instanti-
ates the buffers as local arrays, and copies all the data from the off-chip
memory, leveraging the memory burst, before starting the computation.
Thanks to the data locality, each computation can access data within buffers
at different offsets, and iterate multiple times on the same data (ideal for lin-
ear algebra kernels). In this case, partition scheduling commands may
help to improve the performance enabling access to data at different off-
sets in the same clock cycle. Once the computation is over, the output data
are copied back to the off-chip memory. Figure [5.5] portraits the tiled
architecture.

Streaming architecture: On the other hand, a st reaming dataflow
architecture (more suitable for applications like image processing filters) re-
quires a more complex IR manipulation and analysis of the access patterns
within each function. Indeed, to enable a dataflow computation and pipelin-
ing between the computations, FROST considers global and local buffers
as streams of data (i.e., data FIFOs), and inserts the data coming from the
off-chip memory inside such streams. According to the access pattern of
the computations, FROST may instantiate line buffers and shift registers to
store, respectively, lines of the input (typically an image) and the portion of
data to be filtered. This allows to store on the FPGA memory only the data
necessary to produce the output. At each clock cycle, the function reads a
new element from the input stream and inserts it into the line buffers, while

90

“thesis” — 2019/1/20 — %3:36 — page 91 — #103

5.3. FROST

line buffer shift register

~ | Ve

Figure 5.6: Streaming architecture.

removing the oldest element from it. At the same time, the function loads
data into the shift registers. In this way, as soon as enough data are available
within such data structures, the function starts generating outputs and push-
ing them into the output streams. As a consequence, the functions overlap
their execution, significantly reducing the latency of the hardware design.
Figure [5.6|displays an overview of the st reaming dataflow architecture.

Vectorization: Another optimization step that requires significant ma-
nipulation of FROST IR is vectorization. Using vectorization com-
mand, the user marks the buffer data to be packed in bunches of /V bits. This
command is available both for t i 1ed and st reaming architectures. For
instance, a 512-bit vectorization of a 32-bit integer buffer packs 16 integers
into a single variable. The vectorization allows to significantly reduce la-
tency of both data transfer and computation itself, but, on the other hand,
it implies a significant code restyling. At first, FROST update the data
types of the buffers to be vectorized. Then, FROST has to update the ac-
cess to the data bunches as well. Finally, similarly to the st reaming
architecture, FROST may need to insert shift registers to store a portion of
data. In particular, this is necessary when the computation applies a fixed
nearest-neighbor pattern to produce the output (e.g., an image processing
filter). Hence, FROST analyzes the access pattern to the buffer in order to
instantiate a proper sequence of shift registers. Like for the st reaming
architecture, FROST introduces additional code blocks to manage the in-

91

“thesis” — 2019/1/20 — %3:36 — page 92 — #104

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

sertion, access and shift of data within the shift registers. The main draw-
back of an /V-bit vectorization relies in the fact that the number of elements
in the buffer (in case of a multi-dimensional buffer, the last dimension)
has to be multiple of N/K, where K is the bitwidth of the original buffer
data. Consequently, the input may need to be padded, while the output may
contain some garbage data. For instance, let us consider a 3 x 3 filter ap-
plied on a N x M single channel input image. The filtered output should
be a (N —2) x (M — 2) image. In case of vectorization, assuming the
M-dimension does not need to be padded, the corresponding output is a
(N —2) x M image, where two columns contain garbage data. Padding al-
lows to maintain the hardware design simpler avoiding an invasive control
flow.

Final steps: Once the IR manipulation is over, FROST analyzes the new
ASTs in order to start the code generation. During the analysis, FROST
extracts information related to the to the libraries to include (in case of
mathematical functions or particular HLS data structure), and the type of
the variables. Basically, FROST builds a lookup table for each function.
Finally, FROST visits the ASTs one last time, and, during the generation
of the C++ code, enforces the remaining scheduling commands as HLS
directives.

5.4 FPGA backend

The last step of FROST workflow consist in generating the bitstream file
to configure the FPGA. Once the IR optimization step is done, FROST
produces a C++ implementation of the input algorithm suitable for HLS
tools. Such code can be immediately imported in a HLS tool like Xilinx
Vivado HLS [102] or Xilinx SDAccel [104] to have an estimation of the
performance of the current design (for instance, in terms of circuit latency,
resource usage, and so on). In this way, the user can verify whether the
resulting design reaches, at least theoretically, the expected performance or
not, and, if necessary, generate a new optimized design using FROST.
Once satisfied by the produced FPGA design, the user can employ SDAc-
cel to write the host code using SDAccel APIs, and start the synthesis pro-
cess to, eventually, produce the bitstream file. Indeed, SDAccel environ-
ment covers all the steps of the design flow for FPGA (i.e., the HLS and
System Level Design steps) and automatizes them. Starting from the ker-
nel generated by FROST, SDAccel first translates it to RTL, and the wraps
the resulting IP Core within SDAccel infrastructure. Such infrastructure is
in charge of enabling the communication between the board powered by

92

“thesis” — 2019/1/20 — %3:36 — page 93 — #105

5.5. Experimental Evaluation

the FPGA and the host machine via PCle, as well as exploiting partial dy-
namic reconfiguration enable kernel reconfiguration at runtime. At the end
of synthesis process, SDAccel produces the bitstream file. Thus, the user’s
task consist only in writing the host code using SDAccel APIs to manage
the FPGA configuration, and the communication with it via PCle.

Currently, these steps (namely, evaluation of performance using a HLS
tool, host code generation, and SDAccel invocation) are done manually by
the user, but we plan to automatize them from FROST, as an additional
scheduling command.

5.5 Experimental Evaluation

This Section presents the experimental evaluation of FROST framework.
In Section [5.5.1] we describe the experimental setup of our work (Sec-
tion [5.5.1)), and then evaluate the performance of the designs generated by
FROST. In particular, in Section [5.5.2] we compare against a hand-tuned
library available in Vivado HLS, while, in Section [5.5.3] against state-of-
the-art hardware designs for the N-Body Simulation.

5.5.1 Experimental Setup

For each design generated by FROST, we first leveraged Xilinx Vivado
HLS 2017.4 to evaluate the performance and resource usage of the design,
then Xilinx SDAccel 2017.4 to synthesize it and, consequently, produce the
bitstream file. We deployed the final bitstreams on a AWS F1 2x instance,
which features a VU9P board powered by a Xilinx Ultrascale+ FPGA. We
leveraged SDAccel APIs to manage the application execution, the commu-
nication between the host and the FPGA via PCle, and other aspects of the
computation.

5.5.2 Experimental Results: Vivado HLS Video Library

In this Section, we report the evaluation we performed on the designs pro-
duced by FROST against the Vivado HLS Video Library, a library imple-
menting several hand-tuned OpenCV functions for FPGA. In this context,
we used both Halide and Tiramisu as frontends, and evaluated FROST
with 8 image processing kernels, namely Threshold, AddWeighted,
Erode, PaintMask, BlurXY, Scale, Sobel, Gaussian. We de-
cided to target such kernels because they are already available within the
Video Library. We designed the first four kernels using Halide, and the re-
maining with Tiramisu. For each kernel, we compared the resulting design

93

“thesis” — 2019/1/20 — %3:36 — page 94 — #106

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

HLS Video Library
| @ FROST + Halide

Normalized Exection Time

0.1+

Threshold AddWeighted Erode PaintMask
Applications

Figure 5.7: Performance comparison between FROST with Halide and Vivado HLS Video
Library.

(in terms of execution time and resource usage) against the corresponding
kernel in the HLS Video Library. The input of each kernel is a 8-bit FullHD
(1920x1080) RGB image. The only exception is the threshold kernel,
which works on single-channel images.

It is important to notice that the Video Library expects the input images
arranged in an interleaved format, i.e. a format that encodes each color
(and alpha) channel, one after the other, for every pixel (RGBRGBRGB...).
The main reason is to maintain consistency with software OpenCV library.
This is a good design choice and enables to compute each channel in par-
allel (i.e. one pixel per clock cycle). However, a different image format,
like a planar one, where all of the samples in each channel are stored con-
secutively and the channels themselves are consecutive in memory as well
(RRR...GGG...BBB...), would allow to process more elements in parallel
(for instance, N elements belonging to the same channel per clock cycle).
This is particularly true when we consider channel-independent filters. In
this regard, I demonstrated that FROST is flexible enough to design both
interleaved and planar designs, thanks to the integration with its frontends.

It is important to notice that the Video Library expects the input images
arranged in an interleaved format, i.e. a format that encodes each color
(and alpha) channel, one after the other, for every pixel (RGBRGBRGB...).
The main reason is to maintain consistency with software OpenCV library.
This is a good design choice and enables to compute each channel in par-

94

“thesis” — 2019/1/20 — %3:36 — page 95 — #107

5.5. Experimental Evaluation

Table 5.2: Resource usage of Halide benchmarks

Application BRAM_I8K DSP48E FF LUT
PP (4320) (6840) (2364480) (1182240)
FROST
Threshold 1 0 1851 1196
AddWeighted 1 30 7834 4293
Erode 4 0 2301 1452
Paintmask 1 0 2473 1410
Vivado HLS Video Library
Threshold 1 0 1864 1207
AddWeighted 1 30 7481 5118
Erode 5 0 2493 1690
Paintmask 1 0 3306 1977

allel (i.e. one pixel per clock cycle). However, a different image format,
like a planar one, where all of the samples in each channel are stored con-
secutively and the channels themselves are consecutive in memory as well
(RRR...GGG...BBB...), would allow to process more elements in parallel
(for instance, N elements belonging to the same channel per clock cy-
cle). This is particularly true when we consider channel-independent fil-
ters. In this regard, In this regard, we demonstrate that FROST is able to
design both interleaved and planar designs, thanks to the integration with
its frontends. In particular, we implemented all the kernels in a channel
interleaved manner, while, for the ones expressed in Tiramisu, we took
advantage of Tiramisu features to also rearrange the input in a planar man-
ner. Moreover, for each kernel we leveraged both FROST and the fron-
tends scheduling co-language to evaluated different optimizations, while
we chose a st reaming dataflow architecture to implement such kernels,
since the are implemented in the same way within the Video Library. Fi-
nally, we synthesized each considered design at 250MHz.

Halide benchmarks: For the Halide benchmarks, we chose the follow-
ing kernels: Threshold, AddWeighted, Erode, and PaintMask.
We designed each kernel in a channel interleaved manner, just like the HLS
Video Library does. The resulting designs exploit both Halide and FROST
scheduling commands to enable a parallel computation of the channels
within each pixel (except the Threshold kernel, as it works on single-
channel images). In Figure we show the comparison, in terms of nor-
malized execution time, between the FROST (with Halide) designs and the
ones from the Video Library. FROST designs are able to match the perfor-

95

“thesis” — 2019/1/20 — %3:36 — page 96 — #108

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

HLS Video Library
| @ FROST + Tiramisu

Normalized Exection Time

0.1+

BlurXY Scale Sobel Gaussian
Applications

Figure 5.8: Performance comparison between FROST with Tiramisu (interleaved designs)
and Vivado HLS Video Library.

mance of the HLS Video Library. Table [5.2] describes the resource usage
of the considered kernels. We can notice that the resource usage of FROST
designs is in line with the one of the Video Library.

Tiramisu benchmarks: For what concerns the Tiramisu benchmarks,
we selected the following image processing kernels: BlurXY, Scale,
Sobel, and Gaussian. For each kernel, we implemented both an inter-
leaved and planar design. We relied on both FROST and Tiramisu schedul-
ing commands to optimize the hardware designs. First of all, Tiramisu al-
lowed us to prepare the computation for vectorization (applying loop split-
ting), and, when necessary, rearrange it in a planar manner. Then, FROST
applied vectorization to the hardware designs and built a streaming
dataflow architecture. On one hand, for the interleaved designs, we packed
the 3 channels into a single variable, just like HLS Video Library does. On
the other hand, the planar designs leveraged a higher level of parallelism,
as we packed the input in chunks of 512-bit (i.e., 64 elements per chunk).
This value represents the maximum bit-width of the memory ports of the
DDR mounted on the target board. As we were using the full bit-width of
the DDR ports, we mapped input/output buffers to different memory ports
to fully exploit the available bandwidth (the VU9P board has 4 memory
ports).

Figure [5.8]displays a comparison in terms of normalized execution time
between FROST interleaved designs and the HLS Video Library designs,

96

“thesis” — 2019/1/20 — %3:36 — page 97 — #109

5.5. Experimental Evaluation

HLS Video Library
1@ FROST + Tiramisu

Normalized Exection Time

BlurXY Scale Sobel Gaussian
Applications

Figure 5.9: Performance comparison between FROST with Tiramisu (planar designs) and
Vivado HLS Video Library.

while, in Figure[5.9] the comparison is between FROST planar designs and
the Video Library. In Figure [5.8] we notice that FROST designs match the
performance of HLS Video Library. In Figure[5.9] thanks to a higher level
of parallelism, FROST designs significantly outperform the Video Library,
reaching a speedup of 17X. Table [5.3] reports the resource usage of both
FROST designs (interleaved and planar) and Vivado HLS Video Library
designs. The interleaved designs have a resource usage similar to the Video
Library, while the planar designs require a higher number of resources due
to the higher level of parallelism.

5.5.3 Experimental Results: N-Body Simulation

In this Section, we compare an N-Body Simulation FPGA design produced
by FROST, using Tiramisu as frontend, against state-of-the-art implemen-
tations on FPGA. The N-Body Simulation process describes the evolution
of a system of forces composed of N bodies, which may represent celes-
tial objects, molecules, and so on. The most accurate algorithm for N-
Body simulation, the All-Pairs method, is particularly compute intensive,
as it consists in a brute-force technique where all the pairwise interactions
among the bodies are calculated. As a result, the computational complex-
ity of such method is O(N?). We chose this application as benchmark
because its high computational demand makes it a good candidate for hard-
ware acceleration, as witnessed by different work in literature [167-172].

97

“thesis” — 2019/1/20 — %3:36 — page 98 — #110

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

Table 5.3: Resource usage of the Tiramisu benchmarks

Application BRAM 18K DSP48E FF Lur
PP (4320) (6840) (2364480) (1182240)
FROST (interleaved)
BlurXY 4 0 2283 1342
Scale 1 15 4782 2696
Sobel 4 0 2214 1281
Gaussian 2 0 1835 1167
FROST (planar)
BlurXY 30 0 10955 5098
Scale 15 320 68368 35979
Sobel 72 0 10381 5878
Gaussian 7 0 2589 1685
Vivado HLS Video Library
BlurXY 5 12 2494 1853
Scale 1 15 4703 3704
Sobel 5 0 2532 1706
Gaussian 8 63 3316 2587

Moreover, differently from image processing kernels, this benchmark well
fits a tiled architecture; hence, in this way, we can evaluate also this feature
of FROST.

As stated before, we designed it in Tiramisu and optimized it for FPGA
using FROST. Thanks to the co-scheduling language of FROST, we easily
evaluated different solutions, and then implemented a design with multiple
computational pipes. Table[5.4]reports the comparison between FROST de-
sign and the most relevant FPGA implementations of the N-Body All-Pairs
method. We designed our accelerator with 96 computational pipes, just like
the work in [172], which has the best M Pairs/s and performance/power
ratio in the Table [5.4] and managed to synthesize it at 155.6 MHz. The
design operates on 60,000 bodies at the time, and it is possible to deal with
more bodies by invoking the design multiple times on different tiles of bod-
ies.

As reported in the Table, our design reaches 13,069 MPairs/s and out-
performs most of the works in literature, paying just about 3% loss in
performance with respect to [172]. In terms of performance/power ratio,
FROST implementation achieves 653.45 MPairs/s/W. As the target board
is the same, the power consumption is in line with [[172]], thus the difference
in performance/power ratio mainly depends on the performance difference.

98

“thesis” — 2019/1/20 — %3:36 — page 99 — #l111

5.6. Related Work

Table 5.4: Comparison between the proposed approaches and the All-Pairs N-Body im-
plementations available in the literature.

Performance Performance/Power

Platform Cores/Pipelines [MPairs/s] [MPairs/s/W] Ref.
Vectis MAX3 Card - 2,978 21.30 [168]
Xilinx VC707 32 2,327 116.36 [170]
VU9P - 2,725 - [[169]
Arria 10 64 10,944 - [171]
VU9P 96 (3 x 2 X 16) 13,441 672.06 [[172]
vUu9IP 96 13,069 653.45 FROST

Table 5.5: Resource usage of different N-Body designs

Platform BRAM_18K DSP48E FF LUT Ref.
Xilinx VC707 34% 48% 26% 85% [170]
VU9P 84% 55% 27% 46% [172]
vuIp 19% 56 % 18% 31% FROST

Finally, Table [5.5] contains the resource usage of both FROST and some
state-of-the-art designs, as this information is not available in all the paper.
We can notice that our design significantly uses the FPGA resources. In
particular, Digital Signal Processors (DSPs) are the critical resource, reach-
ing 56% of the available ones. Considering work targeting the same board,
FROST design uses less resources with respect to the design in [[172]], which
contains more logic to perform tiling in hardware.

5.6 Related Work

In the state of the art there are many and different tools whose purpose is to
facilitate the hardware acceleration on FPGA of algorithms. HLS tools are
examples of that. For instance, frameworks like Xilinx Vivado HLS [[102],
Intel HLS Compiler [173]] and SDK for OpenCL [|174]] allow users to pro-
duce a RTL representation of a high level code, usually written in languages
like C/C++ and OpenCL. HLS tools, like the aforementioned, support all
computational domains, and feature a set of directives to guide the opti-
mizations to apply to the resulting hardware design, as well as exhaustive
reports describing the details of the design (e.g., resource usage, pipeline
depths, etc.).

On the other hand, many frameworks and compilers focusing on spe-
cific contexts to generate efficient hardware implementations are emerg-

99

“thesis” — 2019/1/20 — 2@:36 — page 100 — #112

Chapter 5. A Common Backend to Target FPGAs from Domain Specific
Languages

ing in literature. Darkroom [38] is a language and compiler embedded
in Terra language [175] for image processing. Darkroom compiler takes
as input a high level description of the application and translates it into
line-buffered pipelines, expressed in Verilog HDL. Darkroom then synthe-
sizes such pipelines for ASIC, FPGA, or CPU. The experimental evalu-
ation of Darkroom reports gigapixel/sec performance for ASIC designs,
while realtime 1080p/60 video processing for FPGAs ones. In [39], the
authors present RIPL, a memory-efficient, declarative FPGA image pro-
cessing DSL. At first, RIPL compiles the input programs into dataflow
graphs, then it relies on an open source dataflow compiler [[176] to gen-
erate the HDL. The authors evaluated RIPL against five benchmarks, and,
without the need of synthesis directives, they showed a comparable mem-
ory usage with respect to the Vivado HLS Video Library [177]. The work
in [40] presents an FPGA backend for the PolyMage DSL [178]. At first,
the proposed backend enforces optimizations in terms of both data paral-
lelism and memory bandwidth, then it leverages Vivado HLS to produce
the FPGA design. In the experimental evaluation, the authors compared
their backend against both Darkroom, and Vivado HLS Video Library. On
average, this work reaches a 1.5x speedup. ExaSlang 4 [41] is a DSL de-
signed for the hardware acceleration on FPGA of numerical solvers based
on the multigrid method. ExaSlang 4 takes advantage of Vivado HLS as
backend to generate the hardware implementation of the input code. The
presented approach outperformed a vectorized, single-threaded execution
on an Intel 17 by a 3X factor. In [42], the authors describe an extension
to Halide [32] to accelerate image processing kernels on Xilinx Zynq MP-
SoCs. To this end, the authors provided Halide with additional scheduling
commands to control some crucial aspects of the resulting FPGA designs,
like the depth of the FIFOs between kernels. Polyhedral compilers such as
Rose [[179] and PENCIL [33]] use fully automatic techniques (such as the
Pluto [[180] scheduling algorithm) to parallelize and optimize computations
and generate an OpenCL or HLS code that targets FPGA architectures.

With respect to the aforementioned work available in literature, FROST
is designed as a common backend for multiple DSLs, instead of being spe-
cific to one DSL, and thus reduces the effort of developing a new FPGA
backend. It is also designed to support data parallel algorithms imple-
mented as loops and operating on dense arrays and tensors. One of the
fundamental features of FROST is its high level scheduling co-language,
which allows the user to specify exactly how the computation should be
optimized and mapped to FPGA. Thanks to this feature, FROST is capable
of being generic enough and to support general data parallel algorithms,

100

“thesis” — 2019/1/20 — 43:36 — page 101 — #113

5.7. Final Remarks

while still reaching a high level of performance.

5.7 Final Remarks

DSLs are an efficient solution to both easily target heterogeneous archi-
tectures and increase productivity. Indeed, they permit users to quickly
and easily develop portable and efficient designs for multiple architectures.
However, in spite of the high support and efficiency when targeting CPUs
and GPUs, DSLs still lack a concrete support for FPGAs. To this end,
we designed FROST, a unified backend to efficiently hardware-accelerate
DSLs on FPGAs. The design of FROST allows to support multiple DSLs
as frontends, and leverages Xilinx SDAccel to generate the bitstream file.
A crucial feature of FROST is a high-level scheduling co-language, which
permits to optimize the resulting FPGA design according to the input ap-
plication characteristics. In the experimental evaluation of FROST, we em-
ployed Halide and Tiramisu as frontends, and reached the same level of
both performance and resource usage of a hand-tuned HLS library for im-
age processing kernels (when we used the same level of parallelism), and
outperformed it up to 17X thanks a combination of Tiramisu and FROST
scheduling commands. On the other hand, FROST reached performance in
line with hand-tuned state-of-the-art FPGA implementations of the N-Body
Simulation All-Pairs method.

101

“thesis” — 2019/1/20 — 43:36 — page 102 — #114

“thesis” — 2019/1/20 — 43:36 — page 103 — #115

CHAPTER

Conclusions and Future Work

As described in the previous Chapters, the forthcoming end of Moore’s
Law [1]] and Dennard’s scaling [2] pushed researchers to investigate new
solutions and innovate the computer architecture field. Over the last past
decades, we first witnessed a significant shift in the trend of microproces-
sor design, from single core architectures to multi/many-cores. However,
as the scaling of single core designs reached an end, multi-core scaling
is following the same path, limited by Amdahl’s Law [157]. Then, the
trend shifted towards Heterogeneous System Architectures (HSAs). Het-
erogeneity seems a promising solution in order to increase performance
and, at the same time, reduce the power consumption. Indeed, despite
a higher management complexity, the combination of different process-
ing units, namely CPUs, Graphics Processing Units (GPUs), Field Pro-
grammable Gate Arrays (FPGAs), and specialized Application Specific In-
tegrated Circuits (ASICs), offers multiple solutions to efficiently execute
the target workloads.

Different architectures provide different trade-offs in terms of perfor-
mance, power/energy efficiency, and other metrics. Among the aforemen-
tioned architectures, FPGAs is the one offering the best trade-off. FPGAs
are able to deliver higher performance than CPUs and similar to GPUs

103

“thesis” — 2019/1/20 — 43:36 — page 104 — #116

Chapter 6. Conclusions and Future Work

(higher for some workloads), while maintaining a relative low power pro-
file (lower than CPUs and GPUs). In addition, even though FPGAs can-
not reach the performance and power/energy efficiency of ASICs, recon-
figurability feature makes them definitely more flexible and adaptable than
ASICs. Therefore, FPGAs are for sure an effective solution in the con-
text of HSAs, and, in general, as hardware accelerator. Nonetheless, the
main limitation of FPGAs has historically been their programmability and
their steep learning curve. Indeed, the development of efficient hardware
designs for FPGA is a significantly complex task, and requires more time
than similar CPUs and GPUs designs. Over the last years, there have been
great improvements in FPGA tools, and the evolution of High-Level Syn-
thesis (HLS) tools permitted to develop effective accelerators using lan-
guages like C, C++, and, recently, OpenCL. Although such innovations, the
FPGA design still requires a high knowledge and expertise from the user,
precluding or, at least, constraining, their usage to hardware designers.

Modern tools to program CPUs and GPUs offer a significant level of
abstraction and productivity, and this is particularly true for domain spe-
cific tools, like Domain Specific Languages (DSLs) and Machine Learn-
ings (MLs) frameworks. In such contexts, thanks to the restriction of the
domain, languages like Halide [32]] and/or tools like TensorFlow [35] per-
mit users to fully focus on the computation itself, instead of its real imple-
mentation. In this way, the tools are completely in charge of implementing
and optimizing the computation. The reduction of the domain also implies
a reduction of the design space to explore, which allows domain specific
compilers to converge to an optimal solution faster. In addition, domain
specific tools usually provide backends not only for CPUs, but also for
GPUs, which enable users to easily target multiple devices without a deep
knowledge and expertise in designs for such architectures.

At the moment, the support for FPGAs within both DSLs and ML frame-
works 1is still limited. In the former case, some DSLs are able to target
FPGAs, but each DSL has its custom backend, and this reduce the possi-
bility to easily create an FPGA backend for a specific DSL without starting
from scratch. In the latter case, even though we will probably arrive to that
point in the future, currently industrial ML frameworks do not officially and
completely support FPGAs as backend. Given these motivations, the goal
of this thesis is to bridge the gap in such contexts by providing tools able to
abstract and facilitate FPGA design from domain specific tools. In this con-
text, the contributions of this thesis are: a framework to automatize the de-
sign of FPGA accelerators from Convolutional Neural Networks (CNNs),
highly integrated with ML frameworks like TensorFlow and Caffe [36]; a

104

“thesis” — 2019/1/20 — 43:36 — page 105 — #117

6.1. Limitations and Future Work

common backend to effectively target FPGAs from DSLs, which also offers
a high-level scheduling co-language to express the optimize and customize
the resulting design.

6.1 Limitations and Future Work

Although efficient, the proposed tools still have some limitations and there
is room for further improvements. In this Section we describe the possible
future work of both the CNNs framework and FROST.

6.1.1 CNN framework

Currently, the proposed CNN framework supports a limited number of
possible CNN layers, consequently reducing the CNN models the users
can implement. In terms of resources, the hardware designs generated
by the framework are massively parallel and rely on 32-bit floating-point
operations. This implies a significant usage of FPGA resources like pro-
grammable logic and Digital Signal Processors (DSPs), thus limiting the
possibility of implementing deep networks.

Thanks to its modularity and the customizability of its hardware li-
braries, the proposed framework is flexible and scalable enough to permit
the add new features able to surpass the aforementioned limitations. In-
deed, from a framework prospective, the introduction of additional layers,
like activations layer for Rectified Linear Unit (ReLU) or hyperbolic tan-
gent, as well as other features is straightforward. With respect to the hard-
ware designs, an efficient solution to reduce DSPs usage is the adoption of
low/fixed-precision data types, leveraging the FPGA capability to imple-
ment operations with a custom bitwidth. Moreover, we plan to include in
the hardware libraries additional parameters to tune the level of parallelism
of each layer. This would allow to choose the right trade-off between re-
source usage and performance.

6.1.2 FROST

Currently, we evaluated FROST with Halide, an image processing DSL,
and Tiramisu, an optimization framework for high performance system.
Although Tiramisu is more general than Halide and permits to describe
other types of computations in addition to image processing ones, we still
have to fully evaluate FROST with DSLs targeting other domains, like lin-
ear algebra. This does not mean that FROST cannot currently handle such
computations; indeed, FROST scheduling co-language already permits to

105

“thesis” — 2019/1/20 — 43:36 — page 106 — #118

Chapter 6. Conclusions and Future Work

design a tiled architecture, which may be more suitable for linear algebra
computations with respect to a streaming one. However, only after integrat-
ing one or more DSLs of this kind, it would be possible to better understand
if additional scheduling commands oriented to such domain are necessary.

Given this motivation, as future work, first of all, we plan to add support
for additional DSLs that are not currently supported. This will require to
implement an ad-hoc translator from such DSLs to FROST Intermediate
Representation (IR), as we did for Halide and Tiramisu. Then, as said be-
fore, we intend to introduce other high-level scheduling commands, like
one for tree-reduction in case of accumulations, to further improve the pro-
ductivity and efficiency of FROST. We would also like to better integrate
FROST with Xilinx SDAccel. This would allow to invoke SDAccel directly
from FROST and enable users to easily evaluate the performance of a de-
sign, optimize it according to the HLS phase results, and, once satisfied,
start the compilation process by means of the script already provided by
FROST. In addition to that, we would like to provide FROST with an auto-
tuner. With respect to that, we could either implement an auto-tuner from
scratch or rely on state-of-the-art tools like OpenTuner [[181], similarly to
what already happens with Halide. Finally, we plan to release FROST as
open source.

6.2 Final Remarks

As said before, FPGA are gaining more and more attention as hardware
accelerators. As matter of fact, nowadays many companies offer cloud in-
stances powered by FPGAs. Some examples are: Alibaba Cloud F2 in-
stances [[182]], Amazon EC2 F1 instances [183]], Huawei FPGA Acceler-
ated Cloud Server [184], Baidu FPGA Cloud Server [185]], Nimbix FPGA
instances [|186[], Tencent FPGA Cloud Server [187], and so on. In addition
to that, such services also provide some libraries of ready-to-use IPs to ac-
celerate certain types of computations, like ML ones. This demonstrates the
increasing interest of companies towards FPGAs as an alternative to CPUs
and GPUs, and their effort to reduce the complexity of FPGA design.

On the other hand, the restriction of the application domain permits to
both further boost performance, and design tools capable of abstracting
the complexity at algorithmic level and tailoring compiler optimizations to
the target context. As a consequence, domain specific tools and architec-
tures are one of the current and future trends in computer science. Indeed,
as also stated by Prof. Hennessy and Prof. Patterson during their Turing
Lecture [188]], Domain Specific Architectures (DSAs) represent the next

106

“thesis” — 2019/1/20 — 43:36 — page 107 — #119

6.2. Final Remarks

step in the compute architecture scenario towards major improvements in
performance-cost-energy. A significant example of this trend is the Google
Tensor Processing Unit (TPU) [[134]. Also in this context, FPGAs may
become an effective solution, given the possibility to evaluate different ar-
chitectural choices and easily upgrade and improve current designs, without
the need of producing a new device, as it happens with ASICs.

This work is in-between of these two scenarios. On one hand, its pur-
pose is to ease and abstract the usage of FPGAs to make them more ap-
pealing to non-hardware designers. On the other, it focuses on domain
specific tools, like DSLs and ML frameworks, and leverages the features
and peculiarities of such domains to generate efficient hardware designs.
In conclusion, the final goal of this thesis is to contribute to the research
in this field and be one of the building blocks for the future generation of
domain specific solutions.

107

“thesis” — 2019/1/20 — 43:36 — page 108 — #120

“thesis” — 2019/1/20 — %3:36 — page 109 — #121

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, pages
114-117, Apr 1965.

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-
implanted mosfet’s with very small physical dimensions. 9(5):256-268, Oct 1974.

Intel. Microprocessor Quick Reference Guide. http://www.intel.com/
pressroom/kits/quickreffam.htm.

Intel. The Story of the Intel 4004. http://www.intel.com/content/www/us/en/
history/museum-story-of-intel-4004.htmll

Intel. Intel Xeon Phi Processor 7290F. https://ark.intel.com/products/
95831 /Intel-Xeon-Phi-Processor—-7290F-16GB-1-50-GHz~-72-core-.

Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Communications of
the ACM, 54(5):67-77, May 2011.

Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and Raj Rajkumar.
Critical power slope: Understanding the runtime effects of frequency scaling. In Proceedings
of the 16th International Conference on Supercomputing, ICS *02, pages 35-44, New York,
NY, USA, 2002. ACM.

D Pham, S Asano, M Bolliger, MN Day, HP Hofstee, C Johns, J Kahle, A Kameyama, J Keaty,
Y Masubuchi, et al. The design and implementation of a first-generation cell processor-a
multi-core soc. In Integrated Circuit Design and Technology, 2005. ICICDT 2005. 2005
International Conference on, pages 49-52. IEEE, 2005.

Jeff Parkhurst, John Darringer, and Bill Grundmann. From single core to multi-core: Prepar-
ing for a new exponential. In Proceedings of the 2006 IEEE/ACM International Conference
on Computer-aided Design, ICCAD ’06, pages 67-72, New York, NY, USA, 2006. ACM.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33—
38, 2008.

David Geer. Chip makers turn to multicore processors. Computer, 38(5):11-13, May 2005.

Intel. 6th Generation Intel Core i5 Processors. http://www.intel.com/content/
www/us/en/processors/core/core-i5-processor.html,

109

http://www.intel.com/pressroom/kits/quickreffam.htm
http://www.intel.com/pressroom/kits/quickreffam.htm
http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1-50-GHz-72-core-
https://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1-50-GHz-72-core-
http://www.intel.com/content/www/us/en/processors/core/core-i5-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i5-processor.html

“thesis” — 2019/1/20 — %3:36 — page 110 — #122

Bibliography

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]
[30]
(31]
[32]

[33]

Intel. 6th Generation Intel Core i7 Processors. http://www.intel.com/content/
www/us/en/processors/core/core—i7-processor.html.

AMD. AMD A-Series APU Processors. http://www.amd.com/en-us/products/
processors/desktop/a-series—apu.

Intel. Intel Xeon Processor E7 Family. http://www.intel.com/content/www/us/
en/processors/xeon/xeon—-processor—e7-family.html|

IBM. IBM Power Systems. http://www—03.ibm.com/systems/power/index.
html.

Oracle. Oracle SPARC Systems. https://www.oracle.com/servers/sparc/
index.html.

Gene M. Amdahl. Validity of the single processor approach to achieving large scale comput-
ing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS *67 (Spring), pages 483—485, New York, NY, USA, 1967. ACM.

David Patterson. 50 years of computer architecture: From the mainframe cpu to the domain-
specific tpu and the open risc-v instruction set. In Solid-State Circuits Conference-(ISSCC),
2018 IEEE International, pages 27-31. IEEE, 2018.

HSA Fundation. http://www.hsafoundation.com,

Standard Performance Evalutation Corporation. SPEC Benchmarks. https://www.
spec.org/benchmarks.htmll

John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition,
2017.

TOPS500 List - June 2018. https://www.top500.0rg/lists/2018/06/.

Oak Ridge National Laboratory. Summit. https://www.olcf.ornl.gov/olcf-
resources/compute—-systems/summit /.

Wikichip. Matrix-2000. https://en.wikichip.org/wiki/nudt/matrix-2000.

Green500 List - June 2018. https://www.top500.0rg/green500/1ists/2018/
06/.

Intel, Inc. Intel Xeon Processor D-1571. https://ark.intel.com/products/
93355/Intel-Xeon-Processor-D—-1571-24M-Cache-1-30-GHz-.

Wikichip. PEZY-SC2 Many Core Processor. https://en.wikichip.org/wiki/
pezy/pezy-scx/pezy—sc2l

Khronos Group Inc. OpenCL. https://www.khronos.org/opencl/|
NVIDIA. CUDA. https://developer.nvidia.com/about-cudal
Open MPI Project. https://www.open-mpi.orgl

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519-530,
2013.

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chandan
Reddy, Sven Verdoolaege, Adam Betts, Alastair F Donaldson, Jeroen Ketema, et al. Pencil:
A platform-neutral compute intermediate language for accelerator programming. In Parallel
Architecture and Compilation (PACT), 2015 International Conference on, pages 138—149.
IEEE, 2015.

110

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html
http://www.amd.com/en-us/products/processors/desktop/a-series-apu
http://www.amd.com/en-us/products/processors/desktop/a-series-apu
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html
http://www-03.ibm.com/systems/power/index.html
http://www-03.ibm.com/systems/power/index.html
https://www.oracle.com/servers/sparc/index.html
https://www.oracle.com/servers/sparc/index.html
http://www.hsafoundation.com
https://www.spec.org/benchmarks.html
https://www.spec.org/benchmarks.html
https://www.top500.org/lists/2018/06/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://en.wikichip.org/wiki/nudt/matrix-2000
https://www.top500.org/green500/lists/2018/06/
https://www.top500.org/green500/lists/2018/06/
https://ark.intel.com/products/93355/Intel-Xeon-Processor-D-1571-24M-Cache-1-30-GHz-
https://ark.intel.com/products/93355/Intel-Xeon-Processor-D-1571-24M-Cache-1-30-GHz-
https://en.wikichip.org/wiki/pezy/pezy-scx/pezy-sc2
https://en.wikichip.org/wiki/pezy/pezy-scx/pezy-sc2
https://www.khronos.org/opencl/
https://developer.nvidia.com/about-cuda
https://www.open-mpi.org

“thesis” — 2019/1/20 — %3:36 — page 111 — #123

Bibliography

[34]

[35]

(36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

NVIDIA, Inc. Machine Learning. https://www.nvidia.com/object/machine-
learning.html.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoftrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems. http://tensorflow.
orqg/, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

Torch Framework. http://torch.chl

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven
Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Darkroom: compiling high-level
image processing code into hardware pipelines. ACM Trans. Graph., 33(4):144-1, 2014.

Robert Stewart, Greg Michaelson, Deepayan Bhowmik, Paulo Garcia, and Andy Wallace. A
dataflow IR for memory efficient RIPL compilation to FPGAs. In International Conference
on Algorithms and Architectures for Parallel Processing, pages 174—188. Springer, 2016.

Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. A DSL compiler for
accelerating image processing pipelines on FPGAs. In Parallel Architecture and Compilation
Techniques (PACT), 2016 International Conference on, pages 327-338. IEEE, 2016.

Christian Schmitt, Moritz Schmid, Frank Hannig, Jiirgen Teich, Sebastian Kuckuk, and Har-
ald Kostler. Generation of multigrid-based numerical solvers for FPGA accelerators. In
Proceedings of the 2nd International Workshop on High-Performance Stencil Computations
(HiStencils), pages 9-15, 2015.

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley,
and Mark Horowitz. Programming heterogeneous systems from an image processing dsl.
ACM Transactions on Architecture and Code Optimization (TACO), 14(3):26, 2017.

E. Del Sozzo, A. Solazzo, A. Miele, and M. D. Santambrogio. On the automation of high
level synthesis of convolutional neural networks. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 217-224, May 2016.

A. Solazzo, E. D. Sozzo, 1. De Rose, M. D. Silvestri, G. C. Durelli, and M. D. Santambrogio.
Hardware design automation of convolutional neural networks. In 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 224-229, July 2016.

E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio. A common backend
for hardware acceleration on fpga. In 2017 IEEE International Conference on Computer
Design (ICCD), pages 427-430, Nov 2017.

E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio. A unified backend
for targeting fpgas from dsls. In 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 1-8, July 2018.

R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. P. Amarasinghe. TIRAMISU: A Polyhedral Compiler for Expressing Fast
and Portable Code. In 2019 ACM International Symposium on Code Generation and Opti-
mization (CGO), February 2019.

111

https://www.nvidia.com/object/machine-learning.html
https://www.nvidia.com/object/machine-learning.html
http://tensorflow.org/
http://tensorflow.org/
http://torch.ch

“thesis” — 2019/1/20 — %3:36 — page 112 — #124

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in servers.
31(4):6-15, July 2011.

Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Power limitations and dark silicon challenge the future of multicore. ACM Transac-
tions on Computer Systems, 30(3):11:1-11:27, August 2012.

P. Kogge and J. Shalf. Exascale computing trends: Adjusting to the “new normal” for com-
puter architecture. Computing in Science & Engineering, 15(6):16-26, Nov 2013.

Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

AMD. High-performance computing. https://www.amd.com/en-us/products/
graphics/workstation/firepro—-remote—graphics/gpu—compute,

Scott Hauck and Andre DeHon, editors. Reconfigurable computing: the theory and practice
of FPGA-based computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
first edition, 2010.

Xilinx Inc. 7 series fpgas configurable logic block. https://www.xilinx.com/
support/documentation/user_guides/ugd474_7Series_CLB.pdf.

R.A. Walker and D.E. Thomas. A model of design representation and synthesis. In 22nd
(DAC ’85), pages 453—459, June 1985.

D.D. Gajski and R.H. Kuhn. Guest editors’ introduction: New vlsi tools. 16(12):11-14, Dec
1983.

Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of systems and
software. ACM Comput. Surv., 34(2):171-210, June 2002.

Xilinx Inc. Vivado Design Suite. http://www.xilinx.com/products/design—
tools/vivado.html|

Synopsys. RTL Synhtesis and Test. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test.htmll

Mentor Graphics. Design Creation. https://www.mentor.com/products/fpga/
hdl_design/.

Shimpei Sato and Kenji Kise. Archhdl: A novel hardware rtl design environment in c++. In
Applied Reconfigurable Computing, pages 53—64. Springer, 2015.

Rishiyur Nikhil. Bluespec: A general-purpose approach to high-level synthesis based on
parallel atomic transactions. In High-Level Synthesis, pages 129—146. Springer, 2008.

Rishiyur Nikhil. Tutorial bluespec systemverilog: Efficient, correct rtl from high-level speci-
fications. In Proceedings. Second ACM and IEEE International Conference on Formal Meth-
ods and Models for Co-Design, pages 69-70, 2004.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek, and
K. Asanovic. Chisel: Constructing hardware in a scala embedded language. In DAC Design
Automation Conference 2012, pages 1212—1221, June 2012.

Ofer Shacham, Sameh Galal, Sabarish Sankaranarayanan, Megan Wachs, John Brunhaver,
Artem Vassiliev, Mark Horowitz, Andrew Danowitz, Wajahat Qadeer, and Stephen Richard-
son. Avoiding game over: Bringing design to the next level. In DAC Design Automation
Conference, pages 623—629. IEEE, 2012.

Yanbing Li and Miriam Leeser. Hml, a novel hardware description language and its translation
to vhdl. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(1):1-8, 2000.

112

https://www.amd.com/en-us/products/graphics/workstation/firepro-remote-graphics/gpu-compute
https://www.amd.com/en-us/products/graphics/workstation/firepro-remote-graphics/gpu-compute
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html
https://www.mentor.com/products/fpga/hdl_design/
https://www.mentor.com/products/fpga/hdl_design/

“thesis” — 2019/1/20 — %3:36 — page 113 — #125

Bibliography

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

[81]

[82]

[83]

[84]
[85]

[86]
(87]

Peter Bellows and Brad Hutchings. Jhdl - an hdl for reconfigurable systems. In IEEE Sympo-
sium on FPGAs for Custom Computing Machines. IEEE, 1998.

Maxeler Inc. Multiscale dataflow programming. |https://www.maxeler.com/
products/software/maxcompiler/l

Jan Decaluwe. Myhdl: a python-based hardware description language. https://www.
linuxjournal.com/article/7542]

Ali Mashtizadeh. Phdl: A python hardware design framework. https://dspace.mit.
edu/handle/1721.1/41543\l

Derek Lockhart, Gary Zibrat, and Christopher Batten. Pymtl: A unified framework for ver-
tically integrated computer architecture research. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 280-292. IEEE, 2014.

Verilator. https://www.veripool.org/projects/verilator/l

Shinya Takamaeda- Yamazaki. Pyverilog: A python-based hardware design processing toolkit
for verilog hdl. In Applied Reconfigurable Computing, pages 451-460. Springer, 2015.

Veriloggen. https://github.com/PyHDI/veriloggen.

Christian Pilato and Fabrizio Ferrandi. Bambu: A modular framework for the high level
synthesis of memory-intensive applications. In Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on, pages 1-4. IEEE, 2013.

Bambu: A free framework for the high-level synthesis of complex applications. https:
//panda.del.polimi.it/?page_id=31.

Thomas Bollaert. Catapult synthesis: a practical introduction to interactive C synthesis. In
High-Level Synthesis, pages 29-52. Springer, 2008.

Mentor Graphics. Catapult High-Level Synthesis. https://www.mentor.com/hls—
lp/catapult-high-level-synthesis/|

Impulse Accelerated Technologies. = CoDeveloper Help Contents. http://www.
impulsec.com/ReleaseFiles/Help/iAppMan.pdfl

Impulse Accelerated Technologies. Impulse C User Guide. http://www.impulsec.
com/ReleaseFiles/Help/ImpulseCUserGuide.pdfl

NEC. CyberWorkBench: High Level Synthesis from C/C++/SystemC to ASIC/FPGA.
https://www.nec.com/en/global/prod/cwb/index.html|

Mentor Graphics. DK Design Suite. https://www.mentor.com/products/fpga/
handel-c/dk-design-suite/|

Razvan Nane, Vlad-Mihai Sima, Bryan Olivier, Roel Meeuws, Yana Yankova, and Koen Ber-
tels. Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler. In Field Programmable Logic

and Applications (FPL), 2012 22nd International Conference on, pages 619-622. 1IEEE,
2012.

ACE. CoSy compiler development system. http://www.ace.nl/compiler/cosy.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,
Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, et al. A survey and eval-
uvation of fpga high-level synthesis tools. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(10):1591-1604, 2016.

YXI. eXCite. http://www.yxi.com/products.phpl

Philippe Coussy, Cyrille Chavet, Pierre Bomel, Dominique Heller, Eric Senn, and Eric Mar-
tin. Gaut: A high-level synthesis tool for dsp applications. In High-Level Synthesis, pages
147-169. Springer, 2008.

113

https://www.maxeler.com/products/software/maxcompiler/
https://www.maxeler.com/products/software/maxcompiler/
https://www.linuxjournal.com/article/7542
https://www.linuxjournal.com/article/7542
https://dspace.mit.edu/handle/1721.1/41543
https://dspace.mit.edu/handle/1721.1/41543
https://www.veripool.org/projects/verilator/
https://github.com/PyHDI/veriloggen
https://panda.dei.polimi.it/?page_id=31
https://panda.dei.polimi.it/?page_id=31
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://www.impulsec.com/ReleaseFiles/Help/iAppMan.pdf
http://www.impulsec.com/ReleaseFiles/Help/iAppMan.pdf
http://www.impulsec.com/ReleaseFiles/Help/ImpulseCUserGuide.pdf
http://www.impulsec.com/ReleaseFiles/Help/ImpulseCUserGuide.pdf
https://www.nec.com/en/global/prod/cwb/index.html
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://www.ace.nl/compiler/cosy
http://www.yxi.com/products.php

“thesis” — 2019/1/20 — %3:36 — page 114 — #126

Bibliography

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
(971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Universite Bretagne Sud. GAUT - High-Level Synthesis Tool from C to RTL. http:
//hls—labsticc.univ-ubs.fr/l

Philippe Coussy, Ghizlane Lhairech-Lebreton, Dominique Heller, and Eric Martin. Gaut — a
free and open source high-level synthesis tool. In IEEE DATE, 2010.

Intel. Intel HLS Compiler - Overview. https://www.intel.com/content/www/
us/en/software/programmable/quartus—-prime/hls—compiler.html.

Intel. Intel HLS Compiler - Reference Manual. https://www.intel.com/content/
dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls—
reference.pdfl

LegUp Computing. High-Level Synthesis For Any FPGA. https://www.
legupcomputing.com/}

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H
Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level synthesis for fpga-
based processor/accelerator systems. In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, pages 33-36. ACM, 2011.

ECE Department, University of Toronto. LegUp High-Level Synthesis. |http://hls—
labsticc.univ-ubs.fr/.

Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. Designing modular hard-
ware accelerators in ¢ with roccc 2.0. In Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on, pages 127-134. IEEE, 2010.

University of California, Riverside. ROCCC 2.0. http://roccc.cs.ucr.edu/.

Muhsen Owaida, Nikolaos Bellas, Konstantis Daloukas, and Christos D Antonopoulos. Syn-
thesis of platform architectures from opencl programs. In Field-Programmable Custom Com-
puting Machines (FCCM), 2011 IEEE 19th Annual International Symposium on, pages 186—
193. IEEE, 2011.

Cadence. Impulse C User Guide. https://www.cadence.com/content/
cadence—-www/global/en_US/home/tools/digital-design—and-
signoff/synthesis/stratus-high-level-synthesis.html.

David Pursley and Tung-Hua Yeh. High-level low-power system design optimization. In
VLSI Design, Automation and Test (VLSI-DAT), 2017 International Symposium on, pages
1-4. IEEE, 2017.

Synopsys. Synphony C Compiler. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/synphony-c-—
compiler.htmll

Berkeley Design Technology Inc. BDTI High-Level Synthesis Tool Certification Program
Results. https://www.bdti.com/Resources/BenchmarkResults/HLSTCP.

Xilinx Inc. Vivado HLS. https://www.xilinx.com/products/design—-tools/
vivado/integration/esl-design.html|

Intel. Intel FPGA SDK for OpenCL. https://www.intel.com/content/www/us/
en/software/programmable/sdk—-for-opencl/overview.html.

Xilinx Inc. SDAccel Development Environment. |https://www.xilinx.com/
products/design-tools/software—-zone/sdaccel.htmll

Xilinx Inc. SDSoC Development Environment. https://www.xilinx.com/
products/design-tools/software-zone/sdsoc.html.

114

http://hls-labsticc.univ-ubs.fr/
http://hls-labsticc.univ-ubs.fr/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls-reference.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls-reference.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/hls/mnl-hls-reference.pdf
https://www.legupcomputing.com/
https://www.legupcomputing.com/
http://hls-labsticc.univ-ubs.fr/
http://hls-labsticc.univ-ubs.fr/
http://roccc.cs.ucr.edu/
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html
https://www.bdti.com/Resources/BenchmarkResults/HLSTCP
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html

“thesis” — 2019/1/20 — %3:36 — page 115 — #127

Bibliography

[106]

[107]

[108]

[109]
[110]

[111]
[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

IBM, Inc. 2.5 quintillion bytes of data created every day. How does CPG & Retail manage
it? https://www.ibm.com/blogs/insights-on-business/consumer—
products/2-5-quintillion-bytes-of-data-created-every-day-
how—-does—-cpg-retail-manage—1it/aaa.

Domo, Inc. Data Never Sleeps 6.0. https://www.domo.com/learn/data-never—
sleeps—o6.

Kaggle, Inc. 2017 The State of Data Science & Machine Learning. https://www.
kaggle.com/surveys/2017, 2017.

Amazon.com, Inc. AWS Rekognition. https://aws.amazon.com/rekognition/,

Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A
reconfigurable fabric for accelerating large-scale datacenter services. In Computer Architec-
ture (ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13-24. IEEE, 2014.

Apple Inc. Siri. http://www.apple.com/ios/siri/|
Google Inc. Google Photos. https://photos.google.com/\

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436—
444, 05 2015.

Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. Towards a smart city based on cloud
of things. In Proceedings of the 2014 ACM International Workshop on Wireless and Mobile
Technologies for Smart Cities, WiMobCity *14, pages 61-66, New York, NY, USA, 2014.
ACM.

P. A. Laplante and N. Laplante. The Internet of Things in Healthcare: Potential Applications
and Challenges. IT Professional, 18(3):2—4, May 2016.

Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Sam Leroux, and Pieter
Simoens. Dianne: Distributed artificial neural networks for the internet of things. In Proceed-
ings of the 2Nd Workshop on Middleware for Context-Aware Applications in the loT, M4loT
2015, pages 19-24, New York, NY, USA, 2015. ACM.

Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things: A survey. Comput.
Netw., 54(15):2787-2805, October 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, page
2012.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene
labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1915-1929,
Aug 2013.

Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a con-
volutional network and a graphical model for human pose estimation. In Proceedings of
the 27th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’ 14, pages 1799-1807, Cambridge, MA, USA, 2014. MIT Press.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1-9, 2015.

T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky. Strategies for training large
scale neural network language models. In 2011 IEEE Workshop on Automatic Speech Recog-
nition Understanding, pages 196201, Dec 2011.

115

https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.domo.com/learn/data-never-sleeps-6
https://www.domo.com/learn/data-never-sleeps-6
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://aws.amazon.com/rekognition/
http://www.apple.com/ios/siri/
https://photos.google.com/

“thesis” — 2019/1/20 — %3:36 — page 116 — #128

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]
[136]

[137]
[138]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82-97, Nov 2012.

T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran. Deep convolutional neural
networks for lvesr. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8614-8618, May 2013.

Junshui Ma, Robert P. Sheridan, Andy Liaw, George E. Dahl, and Vladimir Svetnik. Deep
neural nets as a method for quantitative structure-activity relationships. Journal of Chemical
Information and Modeling, 55(2):263-274, 2015. PMID: 25635324.

Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung,
and Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse
retina. Nature, 500:168-174, 2013.

Michael K. K. Leung, Hui Yuan Xiong, Leo J. Lee, and Brendan J. Frey. Deep learning of
the tissue-regulated splicing code. In Bioinformatics, 2014.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. J. Mach. Learn. Res.,
12:2493-2537, November 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. of the IEEE, 86(11):2278-2324, 1998.

Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and Fahim
Kawsar. An early resource characterization of deep learning on wearables, smartphones and
internet-of-things devices. In Proceedings of the 2015 International Workshop on Internet of
Things Towards Applications, 1oT-App ’15, pages 7-12, New York, NY, USA, 2015. ACM.

M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal. Memory-centric accelerator design
for convolutional neural networks. In Computer Design (ICCD), 2013 IEEE 31st Interna-
tional Conference on, pages 13-19, 2013.

Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar, Igor Dur-
danovic, Eric Cosatto, and Hans Peter Graf. A massively parallel coprocessor for convo-
lutional neural networks. In Proc. of IEEE Int. Conf. on Application-specific Systems, Archi-
tectures and Processors ASAP), pages 53—60, 2009.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural Networks. In Proc. of
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays (FPGA), pages 161-170, 2015.

Google Tensor Processing Unit. https://cloudplatform.googleblog.com/
2016/05/Google—supercharges—-machine-learning-tasks—-with—
custom-chip.html|

Protocol Buffers. https://developers.google.com/protocol-buffers/.

Y LeCun, B Boser, JS Denker, D Henderson, RE Howard, W Hubbard, and LD Jackel. Hand-
written digit recognition with a back-propagation network. In Proceedings of the 2nd Inter-
national Conference on Neural Information Processing Systems, pages 396-404. MIT Press,
1989.

MNIST handwritten digits dataset. http://yann.lecun.com/exdb/mnist/|

Frank Rosenblatt. The perceptron a perceiving and recognizing automaton. Technical report,
tech. rep., Technical Report 85-460-1, Cornell Aeronautical Laboratory, 1957. 2, 1957.

116

https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://developers.google.com/protocol-buffers/
http://yann.lecun.com/exdb/mnist/

“thesis” — 2019/1/20 — %3:36 — page 117 — #129

Bibliography

[139]
[140]

[141]

[142]

[143]

[144]
[145]

[146]
[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Michael Nielsen. Neural Networks and Deep Learning.

Anil Kumar Goswami, Shalini Gakhar, and Harneet Kaur. Automatic object recognition from
satellite images using artificial neural network. International Journal of Computer Applica-
tions, 95(10), 2014.

David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture of monkey
striate cortex. The Journal of physiology, 195(1):215-243, 1968.

Google, Inc. Protocol Buffers Language Guide. https://developers.google.com/
protocol-buffers/docs/proto, 2018.

Xilinx Inc. Zybo Zyng-7000 Development Board. |http://www.xilinx.com/
products/boards—and-kits/1-4azfte.htmll

Zedboard. http://zedboard.org/product/zedboard.

Xilinx Inc. Virtex-7 FPGAs. https://www.xilinx.com/products/silicon-—
devices/fpga/virtex—7.htmll

Voltcraft. http://www.voltcraft.com,

D. Strigl, K. Kofler, and S. Podlipnig. Performance and Scalability of GPU-Based Con-
volutional Neural Networks. In Proc. of Euromicro Int. Conf. on Parallel, Distributed and
Network-Based Processing (PDP), pages 317-324, 2010.

Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jiirgen Schmid-
huber. Flexible, high performance convolutional neural networks for image classification. In
Proc. of Int. Joint Conf. on Artificial Intelligence, volume 22, page 1237, 2011.

C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello. Hardware ac-
celerated convolutional neural networks for synthetic vision systems. In Proc. of IEEE Int.
Symp. on Circuits and Systems (ISCAS), pages 257-260, 2010.

M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal. Memory-centric accelerator design
for convolutional neural networks. In Computer Design (ICCD), 2013 IEEE 31st Interna-
tional Conference on, pages 13—19, Oct 2013.

Maurice Peemen, Bart Mesman, and Henk Corporaal. Inter-tile Reuse Optimization Applied
to Bandwidth Constrained Embedded Accelerators. In Proc. of Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 169-174, 2015.

C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. CNP: An FPGA-based processor for Con-
volutional Networks. In Proc. of Int. Conf. on Field Programmable Logic and Applications
(FPL), pages 32-37, 2009.

Yongming Shen, Michael Ferdman, and Peter Milder. Overcoming Resource Underutiliza-
tion in Spatial CNN Accelerators. In Proc. of Int. Conf. on Field Programmable Logic and
Applications (FPL), pages 1-4, 2016.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqgi
Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proc.of ACM/SIGDA Int. Symp. on
Field-Programmable Gate Arrays, pages 26-35, 2016.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65-76,
2009.

C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. CNP: An FPGA-based processor for Con-
volutional Networks. In Proc. of Int. Conf. on Field Programmable Logic and Applications
(FPL), pages 32-37, 2009.

117

https://developers.google.com/protocol-buffers/docs/proto
https://developers.google.com/protocol-buffers/docs/proto
http://www.xilinx.com/products/boards-and-kits/1-4azfte.html
http://www.xilinx.com/products/boards-and-kits/1-4azfte.html
http://zedboard.org/product/zedboard
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://www.voltcraft.com

“thesis” — 2019/1/20 — %3:36 — page 118 — #130

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]
[169]

[170]

[171]

[172]

Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA *11, pages 365-376, New York,
NY, USA, 2011. ACM.

William Landi. Undecidability of static analysis. ACM Lett. Program. Lang. Syst., 1(4):323—
337, December 1992.

Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

James Bergstra, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier Delalleau, Guil-
laume Desjardins, Ian Goodfellow, Arnaud Bergeron, Yoshua Bengio, and Pack Kaelbling.
Theano: Deep learning on gpus with python, 2011.

Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. Distributed halide. In Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
page 5. ACM, 2016.

Facebook Inc. Annuncing Tensor Comprehensions. https://research.fb.com/
announcing-tensor—-comprehensions/.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated end-
to-end optimizing compiler for deep learning. In /3th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 578-594, 2018.

Mary W Hall, Saman P Amarasinghe, Brian R Murphy, Shih-Wei Liao, and Monica S Lam.
Detecting coarse-grain parallelism using an interprocedural parallelizing compiler. In Su-
percomputing, 1995. Proceedings of the IEEE/ACM SC95 Conference, pages 49-49. IEEE,
1995.

Georgios Tournavitis, Zheng Wang, Bjorn Franke, and Michael FP O’Boyle. Towards a
holistic approach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. ACM Sigplan Notices, 44(6):177-187, 20009.

Xilinx Inc. AMBA AXI14 Interface Protocol. https://www.xilinx.com/products/
intellectual-property/axi.html.

Junichiro Makino and Hiroshi Daisaka. Grape-8—an accelerator for gravitational n-body sim-
ulation with 20.5 gflops/w performance. In High Performance Computing, Networking, Stor-
age and Analysis (SC), 2012 International Conference for, pages 1-10. IEEE, 2012.

Maxeler Technologies. N-body, 2015.

Lorenzo Di Tucci, Marco Rabozzi, Luca Stornaiuolo, and Marco D Santambrogio. The role
of cad frameworks in heterogeneous fpga-based cloud systems. In Computer Design (ICCD),
2017 IEEE International Conference on, pages 423-426. IEEE, 2017.

Emanuele Del Sozzo, Lorenzo Di Tucci, and Marco Domenico Santambrogio. A highly scal-
able and efficient parallel design of n-body simulation on fpga. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 241-246, May
2017.

Kentaro Sano, Shin Abiko, and Tomohiro Ueno. Fpga-based stream computing for high-
performance n-body simulation using floating-point dsp blocks. In Proceedings of the 8th
International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies,
page 16. ACM, 2017.

E. Del Sozzo, M. Rabozzi, L. Di Tucci, D. Sciuto, and M. D. Santambrogio. A scalable
fpga design for cloud n-body simulation. In 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 1-8, July 2018.

118

https://research.fb.com/announcing-tensor-comprehensions/
https://research.fb.com/announcing-tensor-comprehensions/
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html

“thesis” — 2019/1/20 — %3:36 — page 119 — #131

Bibliography

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]
[187]

[188]

Intel Inc. Intel HLS Compiler. |https://www.altera.com/content/dam/
altera-www/global/en_US/pdfs/literature/wp/wp-01274-intel-
hls-compiler-fast-design-coding-and-hardware.pdf.

Intel Inc. Intel FPGA SDK for OpenCL. https://www.altera.com/content/
dam/altera-www/global/en_US/pdfs/literature/hb/opencl-
sdk/aocl_getting_started.pdfl

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: a multi-
stage language for high-performance computing. In ACM SIGPLAN Notices, volume 48,
pages 105-116. ACM, 2013.

Endri Bezati. High-level synthesis of dataflow programs for heterogeneous platforms. PhD
thesis, EPFL, 2015.

Xilinx Inc. Xilinx Vivado HLS Video Library. http://www.wiki.xilinx.com/HLS+
Video+Library.

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Automatic optimiza-
tion for image processing pipelines. SIGARCH Comput. Archit. News, 43(1):429-443, March
2015.

Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. Polyhedral-
based data reuse optimization for configurable computing. In Proceedings of the ACM/SIGDA
international symposium on Field programmable gate arrays, pages 29-38. ACM, 2013.

Uday Bondhugula, A Hartono, J] Ramanujam, and P Sadayappan. Pluto: A practical and fully
automatic polyhedral program optimization system. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation (PLDI 08), Tucson,
AZ (June 2008). Citeseer, 2008.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bos-
boom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework
for program autotuning. In Proceedings of the 23rd International Conference on Parallel Ar-
chitectures and Compilation, PACT 14, pages 303-316, New York, NY, USA, 2014. ACM.

Alibaba. Alibaba Cloud. https://www.alibabacloud.com/about?spm=a3c0i.
7911826.675768.dnavwhya2.2d00968evRW3ZQ.

Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance—
types/fl/.

Huawei. FPGA Accelerated Cloud Server. https://www.huaweicloud.com/
product/fcs.htmll

Baidu. Baidu FPGA Compute Cloud. https://cloud.baidu.com/product/
fpga.html,

Nimbix. Xilinx Alveo Accelerator Cards. https://www.nimbix.net/alveo/l

Tencent. FPGA Compute Cloud. https://cloud.tencent.com/product/fpga?
lang=en.

Hennessy, John and Patterson, David. Turing Lecture. ’http://iscaconf.org/
isca2018/turing_lecture.html, 2018.

119

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_getting_started.pdf
http://www.wiki.xilinx.com/HLS+Video+Library
http://www.wiki.xilinx.com/HLS+Video+Library
https://www.alibabacloud.com/about?spm=a3c0i.7911826.675768.dnavwhya2.2d00968evRW8ZQ
https://www.alibabacloud.com/about?spm=a3c0i.7911826.675768.dnavwhya2.2d00968evRW8ZQ
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.huaweicloud.com/product/fcs.html
https://www.huaweicloud.com/product/fcs.html
https://cloud.baidu.com/product/fpga.html
https://cloud.baidu.com/product/fpga.html
https://www.nimbix.net/alveo/
https://cloud.tencent.com/product/fpga?lang=en
https://cloud.tencent.com/product/fpga?lang=en
http://iscaconf.org/isca2018/turing_lecture.html
http://iscaconf.org/isca2018/turing_lecture.html

	Introduction
	Heterogeneous Computing
	Problem Statement
	Contributions
	Publications

	Thesis Organization

	Background on Hardware Architectures
	Graphics Processing Unit
	Field Programmable Gate Array
	Configurable Logic Blocks
	Digital Signal Processors
	Block RAMs
	Interconnection Network
	FPGA Configuration
	FPGA Design Process

	Architectures Comparison
	Final Remarks

	How to Program FPGAs
	Hardware Description Languages
	ArchHDL
	Bluespec System Verilog
	Chisel
	Genesis2
	HML
	JHDL
	MaxJ
	myHDL
	PHDL
	PyMTL
	PyVerilog
	HDL Comparison Table

	HLS
	BAMBU
	Catapult-C
	CoDeveloper
	CyberWorkBench
	DK Design Suite
	DWARV
	eXCite
	GAUT
	Intel HLS Compiler
	LegUp
	ROCCC
	SOpenCL
	Stratus HLS
	Synphony C Compiler
	Vivado HLS
	Tools for Heterogeneous Systems
	HLS Comparison Table

	Final Remarks

	An Automated Framework to Accelerate Convolutional Neural Networks on FPGA
	Background on Convolutional Neural Networks
	Perceptron Classifier
	Artificial Neural Networks
	Convolutional Neural Networks

	Proposed Framework
	Proto Buffer Generator
	TensorFlow Trainer
	Hardware Generator

	Hardware Design
	Convolutional Layer
	Pooling Layer
	Fully-Connected Layer
	Target FPGAs

	Experimental Results
	U.S. Postal Service Dataset
	MNIST Dataset
	Framework Evaluation

	Related Work
	Final Remarks

	A Common Backend to Target FPGAs from Domain Specific Languages
	FROST Overview
	Scope
	Stack

	Frontends
	Halide
	Tiramisu

	FROST
	Scheduling Co-Language
	FROST workflow

	FPGA backend
	Experimental Evaluation
	Experimental Setup
	Experimental Results: Vivado HLS Video Library
	Experimental Results: N-Body Simulation

	Related Work
	Final Remarks

	Conclusions and Future Work
	Limitations and Future Work
	CNN framework
	FROST

	Final Remarks

	Bibliography

