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Abstract

In this work, some advanced numerical techniques are employed to address
the topology optimization problem from both a modeling and an algorith-
mic perspective. In both cases, we exploit a recent algorithm, which cou-
ples a standard density-based topology optimization formulation with an
anisotropic mesh adaptation procedure, named SIMPATY.
Concerning modeling, the goal pursued is to enhance standard methods for
the optimization of structures at both the macro- and micro-scales. At the
macro-scale, we propose an innovative structural optimization method whose
strong point is the sequential combination of shape and topology optimiza-
tion. The first optimization is a standard geometric shape optimization,
whereas the topology optimization resorts to the SIMPATY algorithm. The
resulting layouts are characterized by smooth and sharp void/material in-
terfaces besides exhibiting good mechanical performances, namely lightness
and stiffness. Additionally, anisotropic mesh adaptation allows us to design
structures intrinsically exhibiting free-form features. The same topology op-
timization strategy is then employed to devise optimal microstructures en-
joying extremal macroscopic mechanical properties. The mathematical set-
ting adopted in such context is the inverse homogenization method based on
topology optimization.
From an algorithmic viewpoint, we focus on the reduction of the computa-
tional burden typical of topology optimization. The offline/online paradigm
of a POD approach is exploited to reach this goal. In particular, the POD
procedure predicts a layout successively corrected with SIMPATY algorithm,
following a predictor/corrector approach. This device reduces the iterations
demanded to converge, while guaranteeing the desired mechanical perfor-
mances.

Keywords: Finite Elements, Topology Optimization, Shape Optimization,
Homogenization, Anisotropic Mesh Adaptation, Proper Orthogonal Decom-
position.
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Sommario

In questo lavoro, vengono presentate tecniche numeriche avanzate nell’ambito
dell’ottimizzazione topologica, sia da un punto di vista modellistico che com-
putazionale. In entrambi i casi, si ricorre all’algoritmo SIMPATY, di recente
implementazione, che accoppia una formulazione standard per l’ottimizzazione
topologica con una tecnica di adattazione anisotropa di mesh. Riguardo
gli aspetti modellistici, ci si è proposti di migliorare i metodi comunemente
impiegati per l’ottimizzazione strutturale sia alla macro- che alla micro-scala.
Alla macro-scala, è stato proposto un algoritmo che combina sequenzialmente
ottimizzazione di forma e topologica. Nel caso dell’ottimizzazione di forma,
si è utilizzata una formulazione classica, mentre, per l’ottimizzazione della
topologia della struttura, ci si è serviti dell’algoritmo SIMPATY. Le strut-
ture risultanti sono caratterizzate da interfacce vuoto/materiale ben definite
e dalle prestazioni meccaniche attese, quali la leggerezza e la rigidezza. In-
oltre, l’adattazione anisotropa di mesh favorisce il design di strutture intrin-
secamente free-form. La medesima strategia di ottimizzazione topologica è
stata inoltre impiegata per la progettazione di microstrutture ottimali, carat-
terizzate da proprietà meccaniche macroscopiche d’interesse. In tale ambito
viene sfruttato il metodo di omogeneizzazione inversa in un contesto di ot-
timizzazione topologica standard.
Da un punto di vista computazionale, si è cercato di abbattere l’onere com-
putazionale tipico delle tecniche standard di ottimizzazione topologica. A
tal fine si è utilizzato un approccio di tipo POD al fine di progettare una
struttura dal design ottimizzato, ad un costo computazionale ridotto. In
particolare, si è riusciti a contenere il numero delle iterazioni richieste per
la convergenza dell’ottimizzazione, pur preservando le proprietà meccaniche
richieste.
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Introduction

Structural optimization is a research field of large interest and great impact
in the community that relies on mathematical methods for the optimal design
of structures. Following a standard classification, we distinguish structural
optimization in size, shape, and topology optimization. Such techniques have
been gaining momentum due to their massive employment for the design by
means of new, sophisticated tools, as 3D printing and additive manufactur-
ing (AM). Several fields of application are involved by these new production
processes. For instance, automotive and aerospace companies are investing in
3D printing and AM for different design purposes (e.g., design of lightweight
and performant components). Other areas of application include architec-
ture, design, fashion and jewelry which are exploring 3D printing and AM to
customize and manufacture original and unique pieces. Moreover, 3D print-
ing is currently one of the cheapest techniques employed for rapid prototyp-
ing. In fact, due to the velocity characterizing the process and the contained
cost of certain materials (e.g., plastics), it is possible to test several different
designs and quickly verify how they perform when manufactured.

In practice, unlike subtractive methods, additive manufacturing consists
in the assembly of structures by the deposition (or the melting) of material
layer by layer. Additive techniques impact also on the design phase, since
they allow to manufacture free-form structures, characterized by weaker geo-
metric constraints with respect to the ones typical of subtractive procedures.
Virtually all the shapes, even the most complex, can be manufactured, blaz-
ing the trail for a novel, free-form design paradigm. Nevertheless, 3D printing
and AM are not immune from some issues, e.g., the choice of the optimal
orientation for the printing process, the use of supports in the production
phase, the presence of inhomogeneities in the printed material derived by
the incomplete melting of the powder (as in a laser-based process), just to
name a few. These issues are beyond the goals of this thesis and we focus on

v



vi INTRODUCTION

the reduction of the computational effort demanded in the design phase as
well as on the enhancement of mechanical properties and geometric features.

In particular, we will address the optimal design problem by means of
shape optimization and topology optimization. Shape optimization allows
to modify the shape of a given structure to meet prescribed constraints,
and to minimize/maximize an objective function related to a mechanical
performance, such as the structure compliance or the maximum frequency of
vibration. Topology optimization seeks the optimal distribution of material
inside an initial design domain by changing the topology, without moving
the outer structure boundary. The original contributions of this thesis are
collected in Chapters 2−4 from scientific papers and are currently published
in or submitted to international peer-reviewed journals.
In Chapter 1, the mathematical background used throughout the thesis is
presented and discussed. In particular, we introduce the standard topology
optimization techniques and the advanced mathematical methods used to
enhance the classical formulation.
Chapter 2 deals with the coupling of a shape optimization procedure with
an adaptive algorithm for topology optimization (SIMPATY) enriched with
anisotropic mesh adaptation.
Chapter 3 addresses the application of SIMPATY algorithm to the optimal
design of microstructures constituting the elementary cell of a metamaterial,
resorting to an inverse homogenization technique.
Chapter 4 presents a model order reduction technique, specifically the
Proper Orthogonal Decomposition, to contain the computational burden re-
lated to standard structural topology optimization.
Finally, we draw some conclusions of this work and we highlight some possible
future perspectives in a last section.



1
The skeleton

1.1 New challenges

The development of new manufacturing techniques and the enhancement of
existing ones have been encouraging a new interest in the design and redesign
of structures, with a view to their improvement [17, 36, 75]. The challenges
that we want to tackle with the proposal of some advanced mathematical
techniques are related to applications that have arisen from industrial and
academic partners. In particular, the proposed methods address different
issues in the structural optimization framework. Our aim is to handle realistic
configurations, characterized by complex setting and load conditions, in a
reliable, efficient, and performant way. This means that the final outcome of
structural optimization should be reliable from a mechanical viewpoint, and
possibly delivered in a short time.

The collaboration with Thales Alenia Space The industrial research
stems from the collaboration established during the 3-year Ph.D. program be-
tween Politecnico di Milano and Thales Alenia Space Italia (TAS in short),
a space company in Italy, with the goal to optimize satellite components.
The specific problem that they proposed was challenging: i) the geometry
is a 3D realistic configuration; ii) a large number of design constraints is
needed to enforce the manufacturabilty of the optimized component; and

1



2 CHAPTER 1. THE SKELETON

iii) the applied loads modeling the physical system simulate the load con-
dition in the launch event. Such problem can be of course studied with
simulation tools already present in the market, but they require expertise
and high performing computers, along with some trust, since commercial
software usually works as a black box. In this context, we refer to one of
the most commonly adopted software, namely Altair Hyperworks, a suite
for multiphysics simulations endowed with an automatic tool for topology
optimization (https://altairhyperworks.com/hw2017/). This software makes
the setting of a complex problem rather easy, but the numerical simulations
require a large computational power. Figure 1.1 shows the setting of the
problem and the output of the topology optimization of a satellite compo-
nent. The design domain presents a T -shaped structure which is intended
to accommodate 3 gyroscopes on the external surfaces. The 8 red paral-
lelepipeds are clamped and they do not undergo any optimization, while an
equivalent load is applied to the barycenter of the structure. The simula-
tion is run with the commercial software Altair Hyperworks using a common
laptop.

Figure 1.1: The satellite component under investigation with Altair Hyper-
works: the geometry (top-left), the loads with the application point (bottom-
left), and the optimized result (right).

It is evident that the result needs a massive post-processing before the
final structure is sent to the production phase. For this reason, TAS asked
for a comparison between the output provided by the commercial software
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and the one obtained with the innovative techniques developed in this thesis.
We refer to Section 1.4 to show the innovative solutions that we have devised.

The METAMAT laboratory The creation of an interdisciplinary lab-
oratory at Politecnico di Milano, the METAMAT Lab on metamaterials,
prompted a new research line. In particular, mechanical and chemistry engi-
neer partners raised the need of designing new microstructures to be exploited
in different fields. Several dedicated works are present in the literature (see
e.g., [41, 45]) and concern the study of microstructures extensively employed
in applications (see Figure 1.2).

Figure 1.2: Some geometries for structures currently employed and studied in
the literature: BCC cell, f2-BCC cell, f2-FCC cell, f2-FCC-L cell (top, left-
right); pyramidal cell, pyramidal-Z cell, Kagomè cell (bottom, left-right).
Courtesy of E. Marranchino.

The new approach that we suggested was to employ advanced mathe-
matical techniques to address the design of new and original optimized mi-
crostructures able to guarantee prescribed properties. The ultimate purpose
is to theoretically investigate the performances of these microcells under a
mechanical viewpoint and employ them for the design and the production
phases.

The roadmap The original contributions presented in the thesis consist
in the application of different mathematical models and techniques to struc-
tural optimization. We first provide the classic mathematical background
for topology optimization. In particular, Section 1.2 is devoted to the SIMP
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method and the minimum compliance problem. Section 1.3 introduces the
advanced techniques that will be used for enhancing the standard approaches.
Section 1.3.1 deals with the mesh adaptation technique with details on the
error estimation procedure and the anisotropic framework. Successively, in
Section 1.3.2, the homogenization theory is presented and the background
for the topology optimization problem at the microscale is set. Section 1.3.3
is extensively dedicated to the Proper Orthogonal Decomposition method
for model order reduction, and, finally, the last section collects the results
obtained for the industrial and academic challenges introduced so far.

1.2 Standard techniques for topology opti-

mization

We refer to topology optimization (TO) as the technique dealing with the
optimal allocation of material in a design domain, so that a certain quantity
of interest characterizing a physical system is optimized subject to prescribed
requirements. The constraints are related to design specifications (e.g., the
volume fraction in the final configuration, a local control over the maxi-
mum/minimum displacement or stress) and are usually expressed as equali-
ties or inequalities, whereas a PDE models the underlying physical system.
Concerning the quantity of interest, typical examples are the minimization
of the compliance and the maximization of the fundamental vibration fre-
quency.

From a mathematical viewpoint, the arrangement of void and solid should
be represented by a two-valued function which determines if a certain point
of the design domain is occupied by material or by void [14]. Neverthe-
less, this kind of binary formulation is very demanding in view of numerical
simulations and the optimization problem that arises can be classified as a
mixed-integer programming problem which is not computationally affordable
for realistic configurations. For these reasons, the integer form of topology
optimization has been relaxed and different techniques relying on a continu-
ous variable have been employed, although mimicking a binary allocation of
material [66, 74]. Such variable is generally referred to as the design variable
and takes a different meaning according to the selected method. The first
methods introduced in the literature exploit the homogenization theory [2, 6,
13, 29, 51, 52, 53, 55, 63, 64]. As an alternative, many authors consider the
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SIMP (Solid Isotropic Material with Penalization) method as the reference
method for TO. According to this approach, the design variable is the den-
sity ρ that takes value between 0 and 1, where 0 is associated with void and
1 with the material [11, 12, 14, 15]. Similarly, the phase field formulation
exploits a density variable taking value in [0, 1] whose intermediate values are
penalized via an integral term (e.g., see [19, 24, 79, 80]). The level set method
introduces a signed distance function, in order to track the contour of the
interface between void and solid regions in the design domain. The evolution
of this variable is guided by a time dependent equation with a driving force
represented by the topological derivative of the objective functional [3, 5, 7,
22, 23, 26]. All these mathematical models have been largely investigated
and sometimes enriched in order to deal with non-standard numerical dis-
cretizations. For instance, XFEM and CutFEM have been used to enhance
the resolution of the void-material interface [25, 37, 61, 78].

Independently of the model chosen for topology optimization, the general
form of a TO problem can be cast in the following framework

find χ ∈ X(Ω) such that

min
χ∈X(Ω)

J (w(χ)) :


S(w(χ)) = 0 w ∈ S
+

design constraints,

(1.1)

where χ is the generic design variable chosen in a suitable function space
X(Ω), J is the objective functional to be minimized, w ∈ S is the state
variable, and S represents the PDE state equation modeling the physical
system.

1.2.1 The minimum compliance problem for structural
optimization

Throughout this thesis, we will focus on the topology optimization problem
modeled via the SIMP method [15]. In particular, major attention will be de-
voted to the minimum compliance problem in the linear elastic setting, so as
to find the stiffest structure that meets the imposed constraints. Such prob-
lem has been extensively investigated in the literature and for the practical
implications is considered of great impact also for industrial applications [4,
15, 76, 81]. In more detail, we seek the optimal structure, inside the design
domain Ω ⊂ Rd, d = 2, 3, minimizing the static compliance under assigned
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constraints and loads. A traction f : ΓN → Rd is applied to a portion ΓN of
the boundary, ∂Ω, of the structure. Hence, the compliance is given by

G(u) =

∫
ΓN

f · u dγ,

where u = (u1, . . . , ud)
T : Ω→ Rd is the displacement field. The compliance

G coincides with the work done by the traction and the minimization of such
quantity is equivalent to the maximization of the stiffness of the structure.

The state equation is represented by the linear elasticity equation [43]
−∇ · σ(u) = 0 in Ω

u = 0 on ΓD

σ(u)n = f on ΓN

σ(u)n = 0 on ΓF ,

(1.2)

where σ(u) = 2µε(u)+λI : ε(u) represents the Hooke’s law relating displace-
ment and stress tensor for an isotropic material, with ε(u) =

(
∇u+(∇u)T

)
/2

the small displacement strain tensor, where

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

are the Lamé coefficients, with E the Young modulus, ν the Poisson ratio of
the material, I is the identity tensor, n is the unit outward normal vector to
∂Ω, ΓD is the portion of the boundary where homogeneous Dirichlet condi-
tions are imposed (i.e., where Ω is clamped), and ΓF is the normal stress-free
boundary, so that ΓD ∪ ΓN ∪ ΓF = ∂Ω.

With a view to numerical simulations, we consider the weak form of
system (1.2),

find u ∈ U = {v ∈ [H1(Ω)]d : v = 0 on ΓD}, such that

a(u,v) = G(v) ∀v ∈ U, (1.3)

with

a(u,v) =

∫
Ω

σ(u) : ε(v) dΩ, G(v) =

∫
ΓN

f · v dγ.

SIMP method employs the density variable ρ to identify the material
distribution in the design domain Ω. Specifically, the design function ρ ∈
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L∞(Ω, [0, 1]) determines the optimal topology by means of the extremal val-
ues, namely ρ = 0 corresponding to void, and ρ = 1 for the full material.
To avoid intermediate values in [0, 1], a power law penalization function ρp,
with p ≥ max

{
2/(1− ν), 4/(1 + ν)

}
is introduced [8, 15].

In the minimum compliance framework, the state equation (1.3) is prop-
erly modified by replacing the Lamé coefficients λ and µ with ρpλ and ρpµ,
respectively. Thus, the weak form of the state equation for the SIMP formu-
lation is

find u ∈ U such that

aρ(u,v) = G(v) ∀v ∈ U, (1.4)

with

aρ(u,v) =

∫
Ω

σρ(u) : ε(v) dΩ,

σρ(u) = ρp
[
2µε(u) + λI : ε(u)

]
being a modification of Hooke’s law.

The SIMP method is thus defined
find ρ ∈ L∞(Ω) such that

min
ρ∈L∞(Ω)

G(u(ρ)) :


aρ(u(ρ),v) = G(v) ∀v ∈ U∫

Ω
ρ dΩ ≤ α|Ω|

ρmin ≤ ρ ≤ 1,

(1.5)

where 0 < α < 1 denotes the maximum volume fraction of the optimized
configuration; 0 < ρmin < 1 is a lower bound for the density employed to
guarantee the well-posedness of the state equation, now depending on ρ.

A common practice to numerically solve (1.5) consists in resorting to a
standard finite element discretization. In particular, we introduce V r

h the
space of the finite elements of degree r associated with a conforming tessel-
lation Th = {K} of Ω, K being the generic element, and h the grid spacing
[21]. The optimization problem (1.5) in a discrete setting is

find ρh ∈ V r
h such that

min
ρh∈V rh

G(uh(ρh)) :


aρ(uh(ρh),vh) = G(vh) ∀vh ∈ U s

h∫
Ω
ρh dΩ ≤ α|Ω|

ρmin ≤ ρh ≤ 1,

(1.6)

with uh(ρh) ∈ U s
h the finite element approximation for the displacement, U s

h

being the finite element space of vector-valued functions of degree s.
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We remark that structural optimization problems and especially the TO
model presented are non-convex problems and may be characterized by mul-
tiple local minima. For this reason, we refer to the results with the adjec-
tive optimized in contrast with optimal, which should be used only when the
global optimum is reached. As a consequence, problem (1.6) also suffers from
numerical issues. Namely, the problem is mesh dependent, meaning that dif-
ferent configurations arise from the choice of different spatial discretizations.
Moreover, the final result can be characterized by non-manufacturable com-
ponents where the material regions are poorly connected; such phenomenon
is known as checkerboard effect [15, 28, 71]. Several remedies have been
proposed to contain these drawbacks, mainly related to the use of filtering
techniques to smooth, sharpen, or connect the density arrangement [20, 44,
46, 54, 70]. Concerning the checkerboard effect, it has also been suggested to
employ different polynomial degrees for the discretization of ρh and uh, i.e.,
s ≥ r [71].

The usual way to address the numerical optimization problem is to em-
ploy gradient-based routines. In this case, one should supply the chosen
algorithm with the derivative of the objective functional G(u(ρ)) with re-
spect to the design variable ρ. For this purpose, we resort to a standard
Lagrangian approach [16]. According to this procedure, we define the La-
grangian functional that considers the objective functional G together with
the state equation constraining the physical system

L = L(u, z, ρ) = G(u) + aρ(u, z)− G(z),

where z ∈ U is the Lagrange multiplier, also referred to as the dual or adjoint
variable. Finally, the gradient of the compliance ∇ρG(ρ) is defined as

∇ρG(u(ρ)) = ∇ρL
∣∣
u(ρ),z(ρ),ρ

,

where u(ρ) is the solution to the primal problem obtained via the Gâteaux
differentiation of L with respect to z. In the same way, by employing the
Gâteaux derivative of L with respect to u, we obtain the equation for z(ρ).
It is easy to verify that the primal problem coincides with (1.4), and the
adjoint problem reads

find z ∈ U such that

aρ(v, z) = −G(v) ∀v ∈ U. (1.7)
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Thanks to the self-adjointness of the bilinear form aρ(·, ·), we infer that z =
−u. The computation of ∇ρG(u(ρ)) requires the Gâteaux derivative of L
with respect to ρ along the direction ψ ∈ U to obtain

〈∇ρG, ψ〉 =

∫
Ω

p ρp−1σ(u) : ε(z)ψ dΩ,

implying
∇ρG(u(ρ)) = −p ρp−1σ(u(ρ)) : ε(u(ρ)), (1.8)

where the relation between z and u has been exploited.
The gradient thus computed can be employed to drive a gradient-descent

algorithm to solve problem (1.5) [39, 40]. In particular, several available
software libraries for optimization efficiently employ this kind of algorithm.
Nevertheless, these methods manage to find local minima and do not guaran-
tee any global optimum property. Thus, other methods are employed, such
as non-gradient approaches [60, 73] or continuation methods, even though
they present other drawbacks.

1.2.2 The minimum total power problem for fluid dy-
namics

Formulation (1.1) is completely general so that it allows us to address the
topology optimization problem in a different context, by properly modifying
function J and the state equation S. In particular, we focused on the op-
timal allocation of a solid structure in a creeping flow of a Newtonian fluid.
Namely, we cast the optimization problem in the setting of a generalized
Stokes system. Thus, the state problem coincides with the weak form

find (u, p) ∈ V ×Q such that{ ∫
Ω
µ∇u : ∇vdΩ +

∫
Ω
αu · vdΩ−

∫
Ω
p divvdΩ =

∫
Ω

f · vdΩ ∀v ∈ V

−
∫

Ω
q divu dΩ = 0 ∀q ∈ Q,

(1.9)
with u and p the velocity and the pressure of the fluid, respectively, and where
µ ∈ R+ is the fluid viscosity, α ∈ R+ is the inverse permeability, and f ∈
[L2(Ω)]2 is the forcing term. The function spaces involved in the formulation
(1.9) are the standard Sobolev space for the velocity V = [H1

ΓD
(Ω)]2, with

ΓD ⊂ ∂Ω, and Q = L2(Ω). We identify by aρ(·, ·) : V × V → R the bilinear
form
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aρ(u,v) =

∫
Ω

µ∇u : ∇vdΩ +

∫
Ω

αu · vdΩ,

while the form bρ(·, ·) : V ×Q→ R is

bρ(v, p)−
∫

Ω

p divvdΩ,

and the linear term is referred to as c(·) : V → R and coincides with

c(v) =

∫
Ω

f · vdΩ.

The topology optimization problem using the SIMP approach requires
a proper penalization model in order to drive the allocation of fluid and
material, without any intermediate behaviour represented by intermediate
densities. To this end, the design variable ρ is used to indicate the presence of
fluid where ρ = 1 and of solid for ρ = 0, and the inverse permeability α = α(ρ)
is modified accordingly with the introduction of a convex, decreasing, and
nonnegative function, e.g. α(ρ) = ρ−1−1 [30]. As in [18], we decide to model
α to attain low values in correspondence with the fluid and high values for
the solid, so that

α(ρ) = ᾱ + (α− ᾱ)ρ
1 + t

ρ+ t
,

where α and ᾱ are the minimum and maximum value for the inverse perme-
ability, respectively, and the parameter t penalizes the intermediate densities,
playing the role of the penalization exponent in the minimum compliance
problem. In particular, t > 0 and large values of this parameter discourage
intermediate values for ρ. Moreover, notice that the function α(ρ) attains
the minimum value α for ρ = 1, i.e., that the permeability of the fluid is α−1,
whereas the maximum value ᾱ is reached in correspondence with the solid
for ρ = 0. Thus, the final problem for the optimal design in the framework
of Stokes flow reads as

min
ρ∈L∞(Ω)

J (u(ρ)) :


aρ(u(ρ),v) + b− ρ(v, p) = c(v) ∀v ∈ V
bρ(u(ρ), q) = 0 ∀q ∈ Q∫

Ω
ρ dΩ ≤ β|Ω|

0 ≤ ρ ≤ 1,

(1.10)
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where β is the volume fraction, and the objective functional J coincides with
the total potential power defined as

J (u(ρ)) =
1

2
aρ(u(ρ),u(ρ))− c(u(ρ)),

which amounts to minimizing the dissipated power in the fluid, while maxi-
mizing the flow velocity in correspondence with the forcing term.

The numerical discretization is straightforward with the same setting as
in the linear elastic case. In particular, we choose linear finite elements for
the pressure and the design variable ρ, and quadratic finite elements for the
velocity field u.

We remark that for the minimum total power problem, the solution is
unique and smooth and the penalization model guarantees a clear alternation
of fluid and solid areas. Hence, neither regularization nor other advanced
techniques are required to avoid undesirable numerical issues, such as mesh
dependence and checkerboard patterns.

Here we report a test case from [18], where a diffuser and a curved pipe
are modeled. Concerning the diffuser test case, the domain Ω is the unitary
square. At the inlet boundary Γ1 = {(x, y) ∈ ∂Ω : x = 0} a parabolic
Dirichlet condition with maximum flow velocity uΓ1

max = [1, 0]T is imposed,
whereas at the outflow Γ2 = {(x, y) ∈ ∂Ω : x = 1, y ∈ [1/3, 2/3]} we impose a
parabolic profile with maximum value uΓ2

max = [3, 0]T . Homogeneous Dirichlet
conditions are imposed on ∂Ω \ (Γ1 ∪ Γ2). The diffusivity is µ = 1, the
forcing term f = 0, the volume fraction β = 0.5, t = 0.1, α = 2.5µ/1002 and
ᾱ = 2.5µ/0.012. The cardinality of the mesh employed for the discretization
is 3779.
For the curved pipe test case, the domain Ω is the unitary square. At the
inlet boundary Γ1 = {(x, y) ∈ ∂Ω : x = 0, y ∈ [7/12, 3/4]} a parabolic
Dirichlet condition with maximum flow velocity uΓ1

max = [1, 0]T is imposed,
whereas at the outflow Γ2 = {(x, y) ∈ ∂Ω : x = 1, y ∈ [7/12, 3/4]} we
impose a parabolic profile with maximum value uΓ2

max = [1, 0]T . Homogeneous
Dirichlet conditions are imposed on ∂Ω \ (Γ1 ∪ Γ2). The forcing term is
f = [fx, 0]T , with fx = 562.5/|Ωf |χΩf , and χΩf the characteristic function
of the set Ωf = {(x, y) ∈ Ω : (x − 1/2)2 + (y − 1/3)2 ≤ (1/12)2} .The
diffusivity is µ = 1 the volume fraction β = 0.25, t = 0.1, α = 2.5µ/1002 and
ᾱ = 2.5µ/0.012. The computing mesh consists of 6714 elements.

The results in Figure 1.3 are obtained resorting to a standard finite ele-
ment discretization.
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Figure 1.3: Numerical results for the topology optimization of a diffuser
(left), and of a curved pipe (right) with the use of standard finite elements
techniques.

1.3 Advanced techniques for topology opti-

mization

Topology optimization can be enhanced from both a modeling and a numer-
ical viewpoint, with an ad-hoc combination of TO with cutting-edge tech-
niques. Specifically, we propose new methods that aim at containing some
of the issues related to the SIMP method. In particular, we want to improve
the overall quality of the optimized structure in terms of sharpness of the
material/void interface and computation time. Additionally, with a view to
the design of new metamaterials, we will also deal with the so-called inverse
topology optimization.

To this aim, three techniques will be exploited, namely an anisotropic
mesh adaptation procedure, the homogenization theory, and the Proper Or-
thogonal Decomposition.

1.3.1 Mesh adaptation

The mesh adaptation technique is an automatic procedure to suitably modify
the spatial computational mesh Th employed for the discretization of a PDE.
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In particular, the purpose is to adapt the allocation of the elements of the
grid so that the discretization error, eh, or a functional of the error, Y (eh),
can be controlled. This procedure leads to local refinement or coarsening
operations according to the information provided by eh or Y (eh), i.e., the
mesh is expected to be finer in correspondence with the source of errors
(e.g., boundary layers, shocks) and coarser where the error is less relevant.
Mesh adaptation can be carried out by modifying the size of the elements
only, thus resulting in an isotropic mesh, or the size, the shape, and the
orientation of the elements in an anisotropic setting.

In this work, we will address mesh adaptation in an anisotropic frame-
work which turns out to be particularly useful when the phenomena under
investigation present preferential directions.

The error recovery procedure

In order to drive the mesh adaptation procedure, it is necessary to extract
the required information out of eh or some other sources related to the error.
We focus on the mesh adaption procedure driven by the H1-seminorm of
the discretization error, |eh|H1(Ω) = ||∇u − ∇uh||L2(Ω), where u is unknown
and represents the main quantity of the problem at hand, while uh is the
discrete approximation to u. In the case of practical problems, when the
exact solution is not known a priori, the error eh has to be estimated. The
definition of the error estimator can be undertaken with the choice from a
vast production [9, 33, 49, 62].

The approach that we investigate in this work is the one proposed by
O.C. Zienkiewicz and J.Z. Zhu in [82, 83, 84], where the error is recovered in
terms of the discrete solution. Specifically, the H1-seminorm of the error is
estimated using the recovery operator P for the gradient such that

|eh|H1(Ω) ' ||P (∇uh)−∇uh||L2(Ω) = η. (1.11)

The estimator η is thus fully computable in the spirit of an a posteriori error
analysis.

Among the available recipes for the recovered gradient P (∇uh), we adopt
the one provided in [57] defined over the patch of the element ∆K = {T ∈
Th : T ∩K 6= ∅}, namely the set of elements sharing at least one vertex with
K. Operator P is such that
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∫
∆K

(∇uh − P (∇uh)) · v dx = 0 v ∈ Pr,

and P(∇uh) is a polynomial of degree r as well. In the following we consider
only the case r = 0, i.e., a piecewise constant reconstruction of the gradient
over the patch ∆K ,

P (∇uh) =
1

|∆K |
∑
T∈∆K

|T |∇uh|T , (1.12)

where |·| is the Euclidean measure. Although this procedure is simple and
may lack of richness, it turns out to be very handy from an implementative
viewpoint. Unlike other common recovery gradient recipes, this technique is
not characterized by a high polynomial degree, i.e., it is not improving the
information carried by the discrete gradient ∇uh. However, this drawback
is balanced by the non-local average operation involving all the elements in
the patch ∆K .

The isotropic setting

The adaptation procedure in an isotropic setting has been extensively inves-
tigated in the literature [1, 10, 48, 65, 77]. The idea is to predict the optimal
element size hK , to generate a mesh able to capture the phenomenon at hand
to within a desired threshold on the (estimated) error. The estimator η in
(1.11) can be written in terms of the local contributions, ηK , such that

η2 =
∑
K∈Th

η2
K .

The quantity η̃2
K = |K|−1η2

K is the scaled version of the local estimator
ηK and can be exploited to retrieve the optimal grid space. In particular, we
remark that the equality |K| = h2

K |K̂|/3 relates the areas of the reference
element, K̂, and of the generic triangle K, when the reference element is
the equilateral triangle inscribed into the unit circle. To proceed with the
computation of the optimal grid, we fix two criteria: i) η ≤ MTOL, with MTOL

a user-defined quantity ; ii) the error is equidistributed over all the elements
of the mesh, namely

i) η ≤ MTOL; ii) η2
K =

MTOL2

#Th
.



1.3. ADVANCED TECHNIQUES FOR TOPOLOGY OPTIMIZATION 15

Using the second criterion and the scaled version of the estimator, we get

h2
K |K̂|η̃2

K

3
=

MTOL2

#Th
,

implying the formula for the optimal size of the element K

hK =

[
MTOL2

3 #Th|K̂|η̃2
K

]1/2

.

The anisotropic setting

In an anisotropic setting, as in [27, 31, 34, 35, 57], the geometric properties
of an element K are extracted from the spectral properties of the affine
transformation TK , which maps the reference element K̂ inscribed in the
unit circle in 2D and in the unit sphere in 3D into K, such that

x = TK(x̂) = MKx̂ + tK ,

with x ∈ K, x̂ ∈ K̂, MK ∈ Rd×d, tK ∈ Rd, d = 2, 3. In particular, the map
TK transforms the unit circle into an ellipse circumscribing the 2-dimensional
element K and the unit sphere into an ellipsoid circumscribing the tetrahe-
dron K (see Figure 1.4).

Figure 1.4: The affine map TK in 3D.

By means of the polar decomposition, the Jacobian MK is factorized
as the product BKZK , with BK ∈ Rd×d a symmetric positive definite ma-
trix performing a deformation of the element K, and ZK ∈ Rd×d an or-
thogonal matrix applying a rigid rotation to K. Matrix BK can be de-
composed in terms of the associated eigenvalues and eigenvectors, namely
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BK = RT
KΛKRK , with RT

K = [r1,K , . . . , rd,K ] and ΛK = diag(λ1,K , . . . , λd,K),
with λ1,K ≥ · · · ≥ λd,K , d = 2, 3.
We remark that RT

K and ΛK collect the geometric properties of the element
K, the eigenvectors ri,K identifying the directions of the semi-axes of the
ellipsoid circumscribed to K, for i = 1, 2, 3 (in the 2D case ri,K , with i = 1, 2
are the directions of the semi-axes of the circumscribing ellipse), and the
eigenvalues λi,K representing the length of such semi-axes. In the following,
we focus on the 3-dimensional case, only stating the main results in the 2D
case.

We introduce the aspect ratios of the tetrahedron K,

si,K =

 λ2
i,K∏

j 6=i

λj,K


2/3

, i = 1, 2, 3,

which provide a measure of the distortion of the element in the i-th direction.
In particular, it is straigthforward to verify that s1,K ≥ s2,K ≥ s3,K , and
s1,Ks2,Ks3,K = 1, with the isotropic case being recovered with the choice
s1,K = s2,K = s3,K = 1.

As in the isotropic case, the error estimator is decomposed in terms of
the local contributions, i.e.,

η2 =
∑
K∈Th

η2
K , (1.13)

where the local estimator ηK is obtained via projection of the recovered error
on the principal directions of the element K, as initially proposed in a 2D
setting in [56], such that

η2
K =

1

(λ1,Kλ2,Kλ3,K)2/3

3∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
, (1.14)

with E∇ =
[
P (∇uh) − ∇uh

]
∆K

the recovered error, and G∆K
(·) ∈ R3×3 is

the symmetric positive semidefinite matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T

wiwj dT with i, j = 1, 2, 3, (1.15)
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for any vector-valued function w = (w1, w2, w3)T ∈ [L2(Ω)]3. The isotropic
case is a special case of (1.14) for the choice λ1,K = λ2,K = λ3,K .

This estimator is prompted by the anisotropic error estimate for the
Clément quasi interpolant, I1

h, proposed in [31].

Lemma 1.3.1 Let v ∈ H1(Ω). If #∆K ≤ C1 and diam(∆̂K) ≤ C2, there
exists a constant C = C(C1, C2) such that

||v − I1
h(v)||L2(K) ≤ C

3∑
i=1

λ2
i,K

(
rTi,K G∆K

(
∇v)ri,K

)1/2

∀K ∈ Th,

where #∆K identifies the cardinality of the patch associated with K and
diam(∆̂K) is the diameter of the pullback of ∆K via the map TK, i.e., ∆̂K =
T−1
K (∆K).

The adaptive procedure The mesh adaptation procedure exploits the
estimator (1.14) in a predictive way, resorting to a metric-based setting [38].
In more detail, a metric, M : Ω → R3×3, is a symmetric positive defi-
nite tensor field which contains all the geometric information related to a
certain mesh. In a finite element setting, we approximate M by a piece-
wise constant function, MTh , associated with the actual grid Th, such that
MTh

∣∣
K

= RT
KΛ−2

K RK , consistently with the notation introduced above.
The ultimate goal of the adaptation procedure is to define a new metric

tensor guided by ηK . This goal is reached via an iterative procedure which,
eventually, yields an optimal adapted grid satisfying two criteria: i) the num-
ber of elements is minimized under the accuracy constraint, η ≤ MTOL, with
MTOL a user-defined tolerance; ii) the error is equidistributed among all the
elements of the actual grid, namely, η2

K =MTOL2/#Th, with #Th the mesh
cardinality.

The procedure adopted for the prediction of the metric entails a local op-
timization problem, as in [31, 57]. The local estimator ηK is firstly rewritten
by collecting the size information of the patch in a single factor, |∆K |, as

η2
K = |∆K |

3∑
i=1

si,K

(
rTi,K Ĝ∆K

(E∇) ri,K

)
︸ ︷︷ ︸

F3({si,K ,ri,K}i=1,2,3)

,

where Ĝ∆K
(·) is the scaled matrixG∆K

(·)/|∆K |, and |∆K | = λ1,Kλ2,Kλ3,K |∆̂K |,
with ∆̂K = T−1

K (∆K). Notice that |∆K | is a quantity related to the volume
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of the tetrahedra in the patch ∆K , whereas the other terms keep track of the
orientation and of the stretching of K.

Minimizing the cardinality of the mesh is equivalent to maximizing the
size of the patch, so that we are led to solve the local constrained minimiza-
tion problem

min
si,K ,ri,K

F3({si,K , ri,K}i=1,2,3) :


ri,K · rj,K = δij

s1,K ≥ s2,K ≥ s3,K

s1,Ks2,Ks3,K = 1,

(1.16)

with δij the Kronecker symbol and i, j = 1, 2, 3. This problem has a solution
in a closed formula provided in [31, 57] as stated in the following

Proposition 1.3.1 Let {gi,gi}i=1,2,3 be the eigenpairs associated with

Ĝ∆K
(E∇), with g1 ≥ g2 ≥ g3 > 0 and {gi}i=1,2,3 orthonormal. Then, F3(·)

is minimized when

s1,K =

3

√
Π3
i=1gi

g3

, s2,K =
3
√

Π3
i=1gi
g2

, s3,K =
3
√

Π3
i=1gi
g1

,

r1,K = g3, r2,K = g2, r3,K = g1.

Next, by employing the equidistribution criterion, the optimal values for the
lengths λi,K can be computed as

λ1,K = g
−1/2
3

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

,

λ2,K = g
−1/2
2

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

,

λ3,K = g
−1/2
1

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

.

The 2D case can be obtained by properly modifying the indices in the
estimator and the scaling factors used for the factorization of ηK . In more
detail, the local estimator is

η2
K = |∆K |

2∑
i=1

si,K

(
rTi,K Ĝ∆K

(E∇) ri,K

)
︸ ︷︷ ︸

F2({si,K ,ri,K}i=1,2)

,
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and the local optimization problem reads as

min
sK ,ri,K

F2({sK , ri,K}i=1,2) :

{
ri,K · rj,K = δij

sK ≥ 1,
(1.17)

where i, j = 1, 2, and here the aspect ratio is defined as sK = λ1,K/λ2,K .

Proposition 1.3.2 Let {gi,gi}i=1,2 be the eigenpairs associated with

Ĝ∆K
(E∇), with g1 ≥ g2 > 0 and {gi}i=1,2 orthonormal. Then, F2(·) is

minimized when

sK =
√
g1/g2, r1,K = g2, r2,K = g1.

The optimal values for the lengths λi,K , i = 1, 2 are

λ1,K = g
−1/2
2

(
MTOL2

2#Th |∆̂K |

)1/2

, λ2,K = g
−1/2
1

(
MTOL2

2#Th |∆̂K |

)1/2

, (1.18)

with |∆̂K | = |∆K |/(λ1,Kλ2,K).

Numerical results Here we employ anisotropic mesh adaptation to dis-
cretize the same test cases already analyzed in Section 1.2.2, where a diffuser
and a curved pipe are modeled. For the two test cases, MTOL = 0.1. Figure 1.5
shows the optimized results.

For the diffuser and the curved pipe, the anisotropic grids are char-
acterized by 1636 elements and max sK = 19.85, and 2746 elements and
max sK = 15.72, respectively. The quality of the solution (compare Fig-
ure 1.3 with Figure 1.5) is enhanced with the use of an anisotropic grid, but
it presents the same topology as in the isotropic case. This makes the fluid
setting somewhat less interesting than the structural framework, where the
impact of anisotropic meshes will be more relevant (see Chapters 2− 4).

1.3.2 The homogenization theory

The term homogenization is used to indicate a class of procedures developed
to study the macroscopic behaviour of a structure characterized by periodic
inhomogeneities at the microscale level. Such periodic media are very com-
mon (e.g., bones, metamaterials, honeycomb patterns). The study of such
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Figure 1.5: Numerical results for the topology optimization of a diffuser
(left), and of a curved pipe (right) with the employment of anisotropically
adapted meshes.

materials requires an analysis of both the macro- and the micro-scales, thus
entailing a considerable computational cost. Homogenization is a smart way
to avoid dealing simultaneosuly with both scales, since it allows one to de-
scribe the effective properties of a medium at the macroscale taking into
account the effects of the micro-scale [68, 69].

Consider a bounded domain Ω ⊂ R3 obtained by repeating domain Y ⊂
R3 periodically. The microscale and the macroscale coordinates, y and x,
respectively, can be related by means of a small parameter η, such that
y = x/η. The properties of the system Ω is assumed to be modeled by an
elliptic equation whose coefficients Cij depend on the coordinate y and are
Y -periodic, i.e.,

Cij = Cij(y), Cij(y) = Cij(y +Np),

where N is a diagonal matrix and p is a vector identifying the period (see
Figure 1.6).

The differential problem under investigation is{
Cηuη = f in Ω
uη = 0 on ∂Ω,

(1.19)
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Figure 1.6: A Y -periodic function φ. The local oscillations are superimposed
to the average. Figure extracted from [47].

where the right-hand side f is chosen so that the problem is well-posed, and
we assume the elliptic operator to be

Cη = −
3∑

i,j=1

∂

∂xi

(
Cij(y)

∂

∂xj

)
.

By adopting the asymptotic expansion of uη with respect to the parameter
η, the solution uη is expressed as

uη(x) = u0(x,y) + ηu1(x,y) + η2u2(x,y) . . . y = x/η, (1.20)

all the functions ui being Y -periodic.

The chain rule for the total derivative

∂

∂xi
=

∂

∂xi
+ η−1 ∂

∂yi
,

leads to the decomposition of the elliptic operator as

Cη = η−2C1 + η−1C2 + C3, (1.21)

where the three operators Ci, i = 1, 2, 3 are defined as
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C1 = −
3∑

i,j=1

∂

∂yi

(
Cij(y)

∂

∂yj

)
,

C2 = −
3∑

i,j=1

[
∂

∂yi

(
Cij(y)

∂

∂xj

)
+

∂

∂xi

(
Cij(y)

∂

∂yj

)]
,

C3 = −
3∑

i,j=1

∂

∂xi

(
Cij(y)

∂

∂xj

)
.

Using the expansion of the operator (1.21) and of the solution (1.20), the
differential problem in (1.19) becomes

(η−2C1 + η−1C2 + C3)(u0(x,y) + ηu1(x,y) + η2u2(x,y) . . . ) = f.

By collecting the terms with the same power of η and neglecting the terms
involving positive power of η, we get the system

C1u0 = 0,
C1u1 + C2u0 = 0,
C1u2 + C2u1 + C3u0 = f.

(1.22)

The first equation in (1.22) admits a unique solution, and since C1 contains
only derivatives with respect to the microscale coordinates, we find that u0 =
u0(x) depends only on the macroscale and is not affected by the microscopic
fluctuations. The second equation in (1.22) now reads

C1u1 = −C2u0 =
3∑

i,j=1

[
∂

∂yi

(
Cij(y)

∂

∂xj

)
+

∂

∂xi

(
Cij(y)

∂

∂yj

)]
u0(x),

which reduces to

C1u1 =
3∑

i,j=1

∂Cij(y)

∂yi

∂u0(x)

∂xj
. (1.23)

Equation (1.23) has a solution of the form

u1(x,y) =
3∑
j=1

Sj(y)
∂u0(x)

∂xj
+ s(x),
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because the operator C1 only entails derivatives in y. Here Sj(y), j = 1, 2, 3
derive from the integration of the equation in Y and s(x) plays the role of
the integration constant.

The equation C1w = g in Y has a unique solution if the average over Y
of the right-hand side g is 0. Hence, the last equation of system (1.22) has a
unique solution if

− 1

|Y |

∫
Y

(C2u1 + C3u0)dy + f = 0. (1.24)

Equation (1.24) combined with the definition of u1(x,y) and the period-
icity assumption on the coefficients Cij(y), yields the following equations for
u0(x)

−CH
ij

∂2u0

∂xi∂xj
(x) = f in Ω,

where the coefficients CH
ij characterize the homogenized differential operator

and are given by

CH
ij =

1

|Y |

∫
Y

(
Cij(y) +

3∑
k=1

Cik(y)
∂S(y)

∂yk

)
dy.

The elastic case

In this section, we will focus on the homogenization problem in the elastic
case. We indicate by Eijkl the stiffness tensor entering Hooke’s law, such that

σij = Eijklεkl,

where σij is (i, j)-th component of the stress tensor, i, j = 1, 2, 3, and

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
,

is the (k, l)-th component of the strain tensor, k, l = 1, 2, 3. Einstein notation
has been adopted and we assume that the tensor Eijkl is symmetric and
coercive [47, 69].

The goal of the homogenization procedure is to compute the effective
elastic properties of a periodic body, namely EH

ijkl. For this purpose, let us



24 CHAPTER 1. THE SKELETON

consider the microscopic reference cell Y ⊂ R3 constituting the periodic pat-
tern of the macroscopic medium Ω ⊂ R3. The general setting (1.19) can be
exploited in the linear elastic framework. Under these assumptions, the field
u defined over the macroscopic domain Ω can be expressed using expansion
(1.20) where u is now the displacement, and the differential equation is [43]

−∂σij
∂xj

= − ∂

∂xj
Eijklεkl = fi in Ω,

where fi is the i-th component of the forcing term, and εkl contains the
derivatives of the displacement.

By repeating the general framework introduced above and considering
only the first two terms in (1.20), the homogenized tensor is given by

EH
ijkl =

1

|Y |

∫
Y

Eijpq
(
ε0,(kl)
pq − ε∗,(kl)pq

)
dy,

where ε
0,(kl)
pq is one of 9 linearly independent unit prestrain fields, with p, q, k, l =

1, 2, 3 [72]. The periodic microscale fluctuation ε
∗,(kl)
pq is defined by a differ-

ential problem
find ε

∗,(kl)
pq ∈ E such that∫

Y

Eijpqεij(v)ε∗,(kl)pq dy =

∫
Y

Eijpqεij(v)ε0,(kl)
pq dy ∀v ∈ E,

where E is a Y -periodic Sobolev space.
For further details, we refer to [47, 69]. In [72], this procedure is referred

to as direct homogenization in contrast with inverse homogenization, deal-
ing with the optimal design of periodic media whose homogenized tensor is
prescribed (see Chapter 3).

1.3.3 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a method to address the model
order reduction of a problem of interest, referred to as full-size problem, so
that the dimension of the new problem (reduced problem) is considerably
lower with respect to the dimension of the full model. It is extremely suited
for parametric differential problems and allows one to quickly compute the
solution corresponding to new user-defined parameters. This is made possible
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by exploiting some high fidelity pre-computed solutions associated with a
certain sampling of the set of parameters.

In particular, the technique consists of two steps, namely the offline and
the online phases [50, 67]. The offline phase deals with the collection of
the solutions to the full-size problem, called snapshots, for the choice of a
sufficiently large set of parameters. The snapshots are collected in the so-
called response matrix. Then, the singular value decomposition (SVD) is
used to extract a basis out of the snapshots.

We exemplify the POD on the generic weak form of an elliptic PDE,
depending on a single parameter µ ∈ R,

find qµ ∈ W such that

cµ(qµ, r) = b(r) ∀r ∈ W, (1.25)

where cµ(·, ·) : W ×W → R and b(·) : W → R are the bilinear and linear
forms, respectively, W ⊂ H1(Ω) is the Hilbert space where the differential
problem is set and Ω is the computational domain. For a given value of
the parameter µ̄, the solution to (1.25) is indicated by qµ̄ to highlight the
dependence on the parameter.

The numerical discretization of (1.25) in a finite element setting, charac-
terized by the step size h, is straightforward by means of Galerkin projections
onto the discrete space Wh ⊂ W whose dimension is N . In more detail, the
algebraic version of the discrete equation in (1.25) is

Cµqµh = b, (1.26)

where matrix Cµ represents the stiffness, qµh is the vector containing the
degrees of freedom of the unknown qµh , and b is the right-hand side.

We denote by {µi}Mi=1 the collection of M parameters used to generate
the snapshot matrix

S = [qµ1h ,q
µ2
h , ...,q

µM
h ] ∈ RN×M .

The POD method extracts the main features of the considered scenarios
via the SVD of matrix S [42],

S = V ΣΦT ,

with V ∈ RN×N and Φ ∈ RM×M orthogonal matrices containing the left
and right singular vectors of S, respectively, while Σ ∈ RN×M is a pseudo-
diagonal matrix containing the singular values of the response matrix. The
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columns of matrix V provide a basis for the reduced space. Following different
criteria [50, 67], one can choose to truncate the size of the reduced basis to
tune the richness of the reduced space. In particular, choosing an integer
0 < l ≤ M , we define the POD space as VPOD = span{Vi : i = 1, ..., l},
where Vi is the i−th left singular vector of S.

In the online phase, the user picks a new value, µ∗, for the parameter with
the goal of building an approximation to the solution qµ

∗

h . For this purpose,
we project (1.26) onto VPOD. This yields the reduced system

C̃µ∗qµ
∗,POD
h = b̃, (1.27)

where C̃µ∗ = VTCµ∗V ∈ Rl×l is the reduced stiffness matrix, b̃ = VTb ∈ Rl

is the corresponding right-hand side, qµ
∗,POD
h ∈ Rl is the vector of the POD

coefficients, and V = [V1, . . . ,Vl] is the matrix collecting the basis vectors.
Finally, it is possible to retrieve the solution on the finite element space by
the back-projection

qµ
∗

h ≈ Vqµ
∗,POD
h =

l∑
i=1

[qµ
∗,POD
h ]iVi,

with [qµ
∗,POD
h ]i the i−th component of the POD solution.

1.4 Advanced solutions for the new challenges

In Figure 1.7 the optimized structure obtained by enriching SIMP method
with an anisotropic mesh adaptation (see SIMAPATY algorithm in Chapter
2, [58, 59]) for the satellite component is shown. The new layout is character-
ized by boundaries sharply detected by the mesh adaptation procedure. Un-
like in the output of Altair (see Figure 1.1), the alternation of solid and void
is clear-cut and the structure does not demand a massive post-processing.
A more quantitative comparison between the two structures in terms of me-
chanical performances is carried out in [32]. After some modifications, the
structure has been printed (see Figure 1.8).

As far as the metamaterial application is concerned, the optimization of a
microcell in 3D is performed by means of the anisotropic adaptive algorithm
starting from a design domain 1 [m] ×1 [m] ×1 [m] cube, loaded with a
compressive traction of magnitude 0.5 [N] located at the centers of the 6
faces, for a volume fraction α = 0.15, and with material properties E = 1
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Figure 1.7: Outcome of the SIMPATY algorithm for the satellite component.
Adapted anisotropic mesh (top-left), final strucure (bottom-left), and the
density variable ρ.

Figure 1.8: 3D printed satellite component.

[Pa] and ν = 1/3. The resulting layout is shown in Figure 1.9 and exhibits
sharp boundaries. These results are preliminary and will be developed with
a view to a successive 3D-printing of the specimen.
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Figure 1.9: Optimized microstructures: 4× 4 pattern (left), and close-ups of
the reference cell (right).
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[9] I. Babuška and W. C. Rheinboldt. “Reliable error estimation and mesh
adaptation for the finite element method”. In: Computational methods
in nonlinear mechanics (Proc. Second Internat. Conf., Univ. Texas,
Austin, Tex., 1979). North-Holland, Amsterdam-New York, 1980, pp. 67–
108.

[10] R. Becker and R. Rannacher. “An optimal control approach to a pos-
teriori error estimation in finite element methods”. In: Acta Numer. 10
(2001), pp. 1–102.

[11] M. P. Bendsøe. “Optimal shape design as a material distribution prob-
lem”. In: Struct. Optimization 1.4 (1989), pp. 193–202.

[12] M. P. Bendsøe. Optimization of Structural Topology, Shape, and Mate-
rial. Springer-Verlag, Berlin, 1995, pp. xii+271.

[13] M. P. Bendsøe and N. Kikuchi. “Generating optimal topologies in struc-
tural design using a homogenization method”. In: Comput. Methods
Appl. Mech. Engrg. 71.2 (1988), pp. 197–224.

[14] M. P. Bendsøe and O. Sigmund. “Material interpolation schemes in
topology optimization”. In: Arch. Appl. Mech. 69.9 (1999), pp. 635–
654.

[15] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Meth-
ods and Applications. Springer-Verlag, Berlin Heidelberg, 2003.

[16] D. P. Bertsekas. Constrained optimization and Lagrange multiplier meth-
ods. Computer Science and Applied Mathematics. Academic Press,
Inc., New York-London, 1982, pp. xiii+395.

[17] C. Beyer. “Strategic implications of current trends in additive manufac-
turing”. In: Journal of Manufacturing Science and Engineering 136.6
(2014).

[18] T. Borrvall and J. Petersson. “Topology optimization of fluids in Stokes
flow”. In: Internat. J. Numer. Methods Fluids 41.1 (2003), pp. 77–107.

[19] B. Bourdin and A. Chambolle. “Design-dependent loads in topology
optimization”. In: ESAIM Control. Optim. Calc. Var. 9 (2003), pp. 19–
48.

[20] B. Bourdin. “Filters in topology optimization”. In: Internat. J. Numer.
Methods Engrg. 50.9 (2001), pp. 2143–2158.



BIBLIOGRAPHY 31

[21] S. C. Brenner and L. R. Scott. The mathematical theory of finite ele-
ment methods. Second. Vol. 15. Texts in Applied Mathematics. Springer-
Verlag, New York, 2002, pp. xvi+361.

[22] M. Burger, B. Hackl, and W. Ring. “Incorporating topological deriva-
tives into level set methods”. In: J. Comput. Phys. 194.1 (2004), pp. 344–
362.

[23] M. Burger and S. J. Osher. “A survey on level set methods for inverse
problems and optimal design”. In: European J. Appl. Math. 16.2 (2005),
pp. 263–301.

[24] M. Burger and R. Stainko. “Phase-field relaxation of topology opti-
mization with local stress constraints”. In: SIAM J. Control Optim.
45.4 (2006), pp. 1447–1466.

[25] E. Burman et al. “Shape optimization using the cut finite element
method”. In: Comput. Methods Appl. Mech. Engrg. 328 (2018), pp. 242–
261.

[26] V. J. Challis and J. K. Guest. “Level set topology optimization of fluids
in Stokes flow”. In: Internat. J. Numer. Methods Engrg. 79.10 (2009),
pp. 1284–1308.
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2.1 Introduction

The spreading of new manufacturing technologies has prompted new para-
digms for designing structures. In particular, Additive Layer Manufacturing
(ALM) has allowed the production of objects without many of the geometrical
and manufacturability constraints imposed by traditional technologies, such
as material removal, forming and tooling. Both traditional and innovative
technologies can be driven by trial-and-error or more rigorous optimization
procedures which aim at identifying an optimal material distribution within
a given design domain, according to prescribed requirements. This paper
focuses on sophisticated mathematical methods, namely Shape Optimization
and Topology Optimization (see, e.g., [3, 13, 18, 46, 48, 58, 59, 62, 63, 77]).
A third possible technique is represented by Size Optimization which is,
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however, not considered here, being less effective with respect to the others.
Shape and topology optimization pursue the common goal of minimizing

a certain cost functional, under given constraints on mass, stiffness or other
physical quantities of interest related to the application at hand. However,
they work in a complementary way. Shape optimization modifies the design
domain by changing its boundary, while preserving the topology; on the
contrary, topology optimization allows one to change the topology of the
final structure, preserving the outer boundary of the original domain but
enforcing a given reduction of the mass. Thus, the final structure may have a
completely different layout with respect to the starting one, including regions
of void of arbitrary shape, according to a free-form design [22, 72].

In this paper, we tackle the minimum compliance problem in the linear
elastic case (see, e.g., [5, 18, 65, 73]). In more detail, we seek the optimal
structure, Ω ⊂ R3, minimizing the static compliance under assigned design
constraints and loads. We assume that a load, f : ΓN → R3, is applied on a
portion ΓN of the boundary, ∂Ω, of the structure. Then, the compliance is
given by

G(u) =

∫
ΓN

f · u dγ,

with u = (u1, u2, u3)T : Ω→ R3 the induced displacement field. From a phys-
ical viewpoint, G corresponds to the work done by the external forces. The
minimization of this work is equivalent to the maximization of the structure
stiffness.

The linear elasticity problem represents the mathematical model under-
lying the structure deformation [40], and is given by

−∇ · σ(u) = 0 in Ω

u = 0 on ΓD

σ(u)n = f on ΓN

σ(u)n = 0 on ΓF ,

(2.1)

where σ(u) = 2µε(u)+λI : ε(u) is the stress tensor for an isotropic material,
with ε(u) =

(
∇u + (∇u)T

)
/2 the small displacement strain tensor,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

are the Lamé coefficients, with E the Young modulus, ν the Poisson ratio
and I the identity tensor, n is the unit outward normal vector to ∂Ω, ΓD
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is the portion of the boundary where homogeneous Dirichlet conditions are
imposed (i.e., where the structure is clamped), and ΓF is the normal stress-
free boundary, such that ΓD ∪ ΓN ∪ ΓF = ∂Ω.

From a numerical viewpoint, the discretization is performed via a stan-
dard finite element technique. Hence, we derive the weak form of system
(2.1),

find u ∈ U = {v ∈ [H1(Ω)]3 : v = 0 on ΓD}, such that

a(u,v) = G(v) ∀v ∈ U, (2.2)

with

a(u,v) =

∫
Ω

σ(u) : ε(v) dΩ, G(v) =

∫
ΓN

f · v dγ.

In this work, we numerically address the structural optimization problem
by means of both shape and topology optimization, highlighting pros and
cons of the two techniques. In particular, in order to increase the perfor-
mances of standard topology optimization algorithms, we enrich a classical
density-based approach with an anisotropic mesh adaptation procedure [51,
52]. In addition to the separate analysis of the two optimization techniques,
we couple them sequentially, aiming at taking advantage of their specific
features (see, e.g., [28, 41, 44, 57, 71]).

The paper is organized as follows. In Section 2.2, we provide some basic
elements of shape optimization, with particular attention to the definition of
shape derivative and to some implementation issues. Section 2.3 is devoted
to topology optimization. A standard density-based approach is presented
and combined with an anisotropic mesh adaptation procedure. Then, in
Section 2.4, the shape and topology optimization algorithms are combined
and numerically assessed. Finally, we draw some conclusions and highlight
possible future developments.

2.2 Shape optimization

Shape optimization (SO) pursues the minimization of a functional of interest,
J , through a change in the shape of the domain alone, without modifying
the topology nor the volume of the initial configuration, Ω0. Thus, the SO
problem is
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find ΩOPT ∈ Uad such that

J (ΩOPT ) = min
Ω∈Uad

J (Ω),

where Uad is the set of all the admissible domains Ω ⊂ R3.
We distinguish shape optimization into two categories, according to the

method employed to modify the boundaries of the domain [3, 25, 56]. In
particular, it is possible to express the shape in terms of a small number, N ,
of parameters. Hence, any modification of Ω can be represented by the varia-
tions of such parameters. In this case, we refer to the method as parametrized
shape optimization. Although this method is easy to implement and essen-
tially relies on solving N equations, it turns out to be little handy due to the
few possible choices in varying the shape. On the contrary, geometric shape
optimization allows more freedom since it does not restrict a priori the set of
possible deformations. Following this approach, ∂Ω has to be considered as
the design variable. Due to its higher flexibility, we focus on the geometric
technique.

2.2.1 The shape derivative

In order to derive the SO algorithm, we briefly examine the gradient method
in a Hilbert space, X, [24, 55]. In the context of the minimization of a
functional, J , the gradient method consists in updating the current design
variable, xk, along a descent direction, dk, so that

xk+1 = xk − `kdk, (2.3)

where `k ∈ R+ properly tunes the length of the descent step. Vector dk

identifies the best direction to minimize the functional, and it is related to
the gradient, J ′, of J , by

(dk, θ)X =X∗< J ′, θ >X ∀θ ∈ X, (2.4)

(·, ·)X being the inner product in X and X∗ < ·, · >X the duality pairing
between X and its dual, X∗. As a result, for a suitably small step size `k, dk

is a descent direction and J (xk+1) < J (xk).
Additionally, in the case of a functional J strongly convex, it holds that

xk −−−−→
k→+∞

x∗ = arg min
x∈X
J (x).
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With reference to the shape optimization problem, we employ the Hadamard
boundary variation method to account for modifications of the domain Ω [2,
6, 42, 63], and we endow Uad ⊂ R3 with a differentiable structure.
Given a vector field θ : Ω ⊂ R3 → R3, θ ∈ W 1,∞(R3,R3), a generic variation
of Ω can be indicated as

Ω(θ) = (I + θ)Ω = {x + θ(x)|x ∈ Ω}.

It holds

Lemma 2.2.1 For θ ∈ W 1,∞(R3,R3) such that ||θ||W 1,∞(R3,R3) < 1, the map
(I + θ) is a Lipschitz diffeomorphism.

A scalar function Ω 7→ J (Ω) ∈ R is shape differentiable at Ω if the func-
tion JΩ : θ 7→ J (Ω(θ)) is Fréchet-differentiable at 0, provided that θ ∈
W 1,∞(R3,R3) and Ω is a smooth domain. In particular,

J (Ω(θ)) = J (Ω) + J ′(Ω)(θ) + o(||θ||W 1,∞(R3,R3)).

We refer to the linear mapping θ 7→ J ′(Ω)(θ) as to the shape derivative of J
at Ω [2, 6, 42, 63]. Then, the descent direction, d, is the function in [H1(Ω)]3

corresponding to the gradient J ′ and is computed by solving (2.4) with
X = [H1(Ω)]3 endowed with the standard scalar product [6]. Consequently,
the descent direction d is the unique solution to the following boundary value
problem,

find d ∈ [H1(Ω)]3 such that∫
Ω

(∇d · ∇θ + d · θ)dΩ =X∗< J ′, θ >X ∀θ ∈ [H1(Ω)]3,

(·, ·) being the standard inner product in [H1(Ω)]3.

The shape derivative in the minimum compliance problem

We define Uad = {A ⊂ R3 |ΓN ∪ ΓD ⊂ ∂A, |A| = V0}, with | · | the measure
of an open set and V0 a prescribed volume for the admissible shape.
Thus, the definition of shape derivative for the minimum compliance problem
can be formulated.
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Proposition 2.2.1 Let Ω be a smooth bounded open set in R3 and θ ∈
[H1(Ω)]3 and assume that the solution to (2.1) belongs to [H2(Ω)]3. Then,
the shape derivative of G(Ω) is

X∗ < G ′(Ω), θ >X= −
∫

ΓF

[
2µ‖ε(u)‖2 + λ[∇ · u]2

]
(θ · n)dγ,

where ΓF is the portion of the boundary allowed to change and ‖ · ‖ denotes
the tensor norm.

We define the set D = {δ ∈ [H1(Ω)]3| δ = 0 on ΓD ∪ ΓN} of the possible
descent directions [4, 6]. Then, the optimal descent direction for the gradient
method solves the problem

find d ∈ D such that∫
Ω

(∇d · ∇θ + d · θ)dΩ =

−
∫

ΓF

[
(2µ‖ε(u)‖2) + λ[∇ · u]2

]
(θ · n)dγ ∀θ ∈ D. (2.5)

2.2.2 Numerical implementation

For numerical purposes, the SO algorithm is implemented in a finite element
code. The discretization is performed on a mesh, Th, composed by regular
tetrahedra and we employ Lagrangian finite elements [26]. Via Galerkin
projection, equations (2.2) and (2.5) are discretized, yielding

find uh ∈ U s
h, such that

a(uh,vh) = G(vh) ∀vh ∈ U s
h, (2.6)

for the linear elasticity equation, and
find dh ∈ Dmh such that∫

Ω

(∇dh · ∇θh + dh · θh)dΩ =

−
∫

ΓF

[
(2µ‖ε(uh)‖2) + λ[∇ · uh]2

]
(θh · n)dγ ∀θh ∈ Dmh , (2.7)

for the descent direction computation, where U s
h and Dmh denotes the finite

element subspace of U and D and of degree s and m, respectively. In partic-
ular, in the numerical assessment in Section 2.2.3, we choose s = m = 1.
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The constraint for the volume is enforced using a Lagrangian approach
[6, 8]. We require that the volume, V0, of the initial domain Ω0 is preserved
in the optimization iterations. To this end, we introduce a positive Lagrange
multiplier, φ, so that the Lagrangian is

G̃(Ω) = G(Ω) + φ (V (Ω)− V0) ,

where V (Ω) denotes the volume of the current shape Ω, while φ enforces the
constraint in a weak sense, and it is changed at each iteration by considering
the optimality condition, G ′(Ω)+φ̄V ′(Ω) = 0, understood in an average sense
on the boundary of Ω, solved for φ̄. Following [6], at the k-th iteration, φk+1

is thus updated as

φk+1 =
φk + φ̄

2
+ εφ

V (Ω)− V0

V0

, (2.8)

where εφ is a positive real number, set to 2 in the simulations below.
As far as the update of the computational domain is concerned, we em-

ploy rule (2.3) after identifying the vector xk with the vector collecting all of
the coordinates of mesh vertices and picking `k so that functional G is mini-
mized and no element inversion occurs [58]. We enrich these criteria with the
following additional strategy: if (dk+1

h ,dkh) > 0, namely two consecutive de-
scent directions are, in some sense, close, we are allowed to choose `k+1 > `k,
without compromising the procedure. Conversely, if (dk+1

h ,dkh) < 0, the step
size is reduced to avoid oscillations in the convergence history. Eventually, a
regularization loop over the elements completes the whole process.

The complete procedure is provided in Algorithm 1.
The input parameters to the algorithm are: kmax for the maximum num-

ber of iterations allowed for the gradient method, ∆BEST a safety factor
used to reasonably ensuring convergence to a minimum, T 0

h the initial mesh,
and V0 for the volume constraint. In lines 6 and 9, movemesh is the routine
employed to update the current mesh, whereas regularize in line 10 per-
forms the tetrahedra regularization. Algorithm 1 has been implemented in
the FreeFem++ environment [43].

2.2.3 Numerical assessment for SO

We carry out three test cases, i.e., the bridge, the cantilever beam, and the
dome. In Figures 2.1, 2.3, 2.5, the domain Ω0 and the load are sketched. In
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Algorithm 1 Shape Optimization (SO)

Input : kmax, ∆BEST , T 0
h , V0

1: Set: k = 0, kBEST = 0, TBEST = T 0
h , GBEST = G(Ω0);

2: while k− kBEST < ∆BEST & k < kmax do
3: Solve (2.6);
4: Solve (2.7);
5: Compute φk, `k;
6: T k+1

h = movemesh(T k
h , dk

h, `
k);

7: while T k+1
h has degenerate elements do

8: Reduce `k;
9: T k+1

h = movemesh(T k
h , dk

h, `
k);

10: T k+1
h =regularize(T k+1

h );
11: Compute G(Ω);
12: if G(Ω) < GBEST then
13: GBEST = G(Ω);
14: kBEST = k + 1;
15: TBEST = T k+1

h ;

16: k = k + 1;

particular, we mark with a triangle the portions of surface corresponding to
ΓD, while ΓN is enclosed within the white boxes. The red arrows indicate the
directions of the applied load. In Table 2.1, we collect the physical parameters
used to describe the homogeneous employed materials.

Test case E [GPa] ν [-]
Bridge 15 1/3
Cantilever beam 1.0 1/3
Dome 1.0 1/3

Table 2.1: Physical parameters employed in the SO simulations.

Concerning parameters kmax and ∆BEST of Algorithm 1, we set kmax =
300 and ∆BEST = 5 in all the test cases.
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The bridge test case

We consider the optimization of a simplified bridge, modeled starting from a
parallelepiped 6 [m] ×1 [m] ×1 [m] clamped in four portions of the bottom
surface of size 0.01 [m] ×0.01 [m] each (see Figure 2.1, right). The surface
load f = [0, 0,−1]T is applied onto the rectangular surface 1 [m] ×0.1 [m]
located at the center of the upper face (see Figure 2.1, center). The domain
Ω0 is discretized using a tetrahedral mesh composed by 25869 elements.

Figure 2.1: The bridge test case (SO): geometry and boundary conditions
(left); details of the top surface, with highlighted ΓN (white box) and the
direction of the load (red marker) (center); details of the bottom surface with
highlighted ΓD (yellow boxes) (right).

In Figure 2.2, the output of the Algorithm 1 is shown at the convergence
iteration k = 33. The optimized structure preserves the portions ΓN and ΓD,
as expected and the symmetry of the original configuration.

In Table 2.2, we collect the value of the compliance for the initial domain
and for the optimal structure, and the decreasing percentage of G. The same
comparison is carried out on the volume, to assess its conservation. We ob-
serve a remarkable reduction of G and an almost exact volume conservation.

The cantilever beam test case

We deal with the optimization of a cantilever beam starting from the paral-
lelepiped 2 [m] ×1 [m] ×0.5 [m] in Figure 2.3. The entire back face corre-
sponds to ΓD, ΓN is a square of side 0.1 [m] centered at the centroid of the
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Figure 2.2: The bridge test case (SO): optimized structure (left), lateral
(center), frontal (top-right) and top (bottom-right) views of the optimized
structure.

Compliance
G before SO 0.0933 [J]
G after SO 0.0796 [J]
∆%G -14.68% [-]

Volume
V0 6.000 [m3]
V after SO 5.999 [m3]
∆%V -0.017% [-]

Table 2.2: The bridge test case (SO): compliance and volume before and
after SO.

frontal face, and the load f = [0, 0,−1]T is tangential to the frontal face. The
initial mesh consists of 5870 tetrahedra.

The result of the optimization is shown in Figure 2.4 after 113 iterations
of Algorithm 1. The shape of the new structure is quite different with respect
to Ω0, being more slender in correspondence with the frontal face with respect
to the clamped surface. The symmetry is still preserved. From a quantitative
viewpoint, Table 2.3 summarizes the compliance and the volume before and
after the optimization. In this case, the stiffness of the structure improves
strongly, the compliance being reduced of 2/3. Additionaly, also the volume
constraint is ensured.
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Figure 2.3: The cantilever beam test case (SO): geometry and boundary
conditions (left) and frontal surface (right), with highlighted ΓN (white box)
and the direction of the load (red arrow); the triangles identify ΓD.

Figure 2.4: The cantilever test case (SO): optimized structure (left), lateral
(center), frontal (top-right) and top (bottom-right) views of the optimized
structure.

The dome test case

The geometry in Figure 2.5 is the result of the intersection between a hemi-
spheric shell of radius 1.25 [m], thickness 0.02 [m] and clamped at the bottom,
with a circular cylinder of radius 0.25 [m]. Boundary ΓN is a portion of the
upper surface, concentric to the hole, with radius 0.25 + 0.0314 [m], and the
load is f = [0, 0,−1]T . The initial spatial discretizion is based on a mesh
with 83428 elements.

We run Algorithm 1 which stops after 198 iterations. The resulting op-
timized structure is shown in Figure 2.6. Notice that the initial shape has
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Compliance
G before SO 0.0309 [J]
G after SO 0.0104 [J]
∆%G -66.34% [-]

Volume
V0 1.000 [m3]
V after SO 1.000 [m3]
∆%V 0.0% [-]

Table 2.3: The cantilever beam test case (SO): compliance and volume before
and after SO.

Figure 2.5: The dome test case (SO): geometry and boundary conditions,
with highlighted ΓN (white circular box) and the direction of the load (red
arrow); the triangles identify ΓD.

undergone a sort of squeezing in the vertical direction.

Table 2.4 collects the values obtained for the compliance and the volume,
confirming an enhancement of the mechanical performance of the optimized
structure with respect to the original shape.

2.3 Topology optimization and the SIMP method

One of the most employed mathematical models for topology optimization
(TO) is the SIMP (Solid Isotropic Material with Penalization) [10, 14, 15,
17, 18]. Other approaches exploit level set methods (see, e.g., [8, 21, 23, 70]),
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Figure 2.6: The dome test case (SO): lateral (left), top (top-right) and frontal
(bottom-right) views of the optimized structure.

Compliance
G before SO 7.1654 [J]
G after SO 3.2433 [J]
∆%G -54.74% [-]

Volume
V0 0.05256 [m3]
V after SO 0.05231 [m3]
∆%V -0.478% [-]

Table 2.4: The dome test case (SO): compliance and volume before and after
SO.

homogeneization (see, e.g., [7, 16, 32]), a phase field formulation (see, e.g., [19,
29, 36]), gradient-free methods (see, e.g., [54, 61]), high order discretizations
(see, e.g., [39, 60]), cutFEM (see, e.g., [67]) and volumetric expressions of the
shape gradient (see, e.g., [38]).

SIMP method is based on an auxiliary variable, ρ, which models the ma-
terial distribution in the original design domain. In particular, the density
function, ρ ∈ L∞(Ω), takes values in [0, 1], where ρ = 0 corresponds to
the void, whereas ρ = 1 identifies the presence of full material. Neverthe-
less, all the intermediate values in the interval [0, 1] are allowed and for this
reason a suitable penalization has to be introduced to push the density to
the extremal values, 0 and 1. Thus, the stiffest material and the void are
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favoured, consistently with the maximization of the structure stiffness. To
this end, we employ the standard power law penalization function ρp, with
p ≥ max

{
2/(1− ν), 4/(1 + ν)

}
[10, 18].

In the minimum compliance framework, model (2.1) represents the state
equation for the optimization problem, after taking into account the material
density. In particular, according to the SIMP approach, we solve model (2.1)
with a modified Hooke law with ρpλ and ρpµ replacing λ and µ, respectively.
Thus, the weak form of the SIMP-linear elasticity equation is

find u ∈ U such that

aρ(u,v) = G(v) ∀v ∈ U, (2.9)

with

aρ(u,v) =

∫
Ω

σρ(u) : ε(v) dΩ,

and σρ(u) = ρp
[
2µε(u) + λI : ε(u)

]
. Notice that G(u) = aρ(u,u) still

represents the static compliance, i.e., the functional to be minimized.
The topology optimization problem finally becomes

find ρ ∈ L∞(Ω) such that

min
ρ∈L∞(Ω)

G(u(ρ)) :


aρ(u(ρ),v) = G(v) ∀v ∈ U∫

Ω
ρ dΩ ≤ α|Ω|

ρmin ≤ ρ ≤ 1,

(2.10)

where 0 < α < 1 denotes the maximum allowable volume fraction and 0 <
ρmin < 1 is a lower bound for the density, which ensures the elasticity system
to be well-defined.

Problem (2.10) is numerically tackled via a standard finite element dis-
cretization. The discrete counterpart of (2.10) becomes

find ρh ∈ V r
h such that

min
ρh∈V rh

G(uh(ρh)) :


aρ(uh(ρh),vh) = G(vh) ∀vh ∈ U s

h∫
Ω
ρh dΩ ≤ α|Ω|

ρmin ≤ ρh ≤ 1,

(2.11)

where it is understood that uh(ρh) ∈ U s
h and V r

h is the finite element space
of scalar functions of degree r.

Formulation (2.11) suffers from two numerical issues, namely the depen-
dence of the final topology on the mesh and the checkerboard effect [18, 31,
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60]. The former is linked to the non-uniqueness of the solution to prob-
lems (2.10) and (2.11). To this end, it is possible to consider additional
constraints, for instance a limitation on the perimeter of the structure [9].
The checkerboard effect strongly depends on the discretization pair adopted
for the density-displacement formulation. Some combinations of finite el-
ements might be unstable, as in the case of the two-field pressure-velocity
formulation of the Stokes problem. It may result in material/void alternation
as in a checkerboard, leading to non-manufacturable designs (for additional
comments see [52]).

A partial remedy to both mesh dependence and checkerboard effect is to
filter the density ρ, with smoothing techniques. Alternatively, it is possible
to use higher order finite elements for the displacement with respect to the
density (s ≥ r in (2.11)) to tackle the checkerboard issue. However, high
order finite elements require a bigger computational effort and this choice
may be unaffordable for three dimensional simulations.

As an alternative to these remedies, since the optimized density obtained
by the SIMP method exhibits strong gradients in correspondence with the
boundaries of the structure (i.e., along the void-material interface), it has
been proposed an enrichment of the standard SIMP algorithm with a mesh
adaptation strategy in [52]. Among the benefits characterizing this new ap-
proach, we mention the possibility to use low degree finite element spaces
for both ρh and uh (i.e., s = r = 1) and to avoid a massive employment
of filtering, thus containing the computational cost and the post-processing.
In particular, we limit the filtering to the very first optimization iteration,
when a low-pass filter based on the diffusion kernel is adopted. For this pur-
pose, we replace the density ρh with its filtered version, ρf , solution to the
Helmholtz-type problem

{
−τ 2∆ρf + ρf = ρh in Ω

τ 2∇ρf · n = 0 on ∂Ω,
(2.12)

with τ a real parameter that measures the characteristic length of the smoothed
density [47].

The algorithm merging the SIMP method with the Helmholtz filter for
the density is provided in Algorithm 2 [52].
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Algorithm 2 SIMP algorithm on a fixed grid
Input : CTOL, kmax, ρmin

1: Set: ρ0
h = 1, k = 0, errG = 1+CTOL

2: while errG > CTOL & k < kmax do
3: ρk+1

h = optimize(ρkh, Mit,TOPT, ∇ρG, ...);
4: ρk+1

h = ρf (ρ
k+1
h );

5: errG = ‖ρk+1
h − ρkh‖∞;

6: k = k + 1;

Some comments are in order. The main input parameters are the lower
value, ρmin , for the density, the maximum number, kmax, of iterations and
the tolerance CTOL for the stopping criterion. In line 3, problem (2.11) is
solved via an optimization routine, i.e., optimize. In particular, we employ
the Interior Point OPTimizer (IPOPT) package [69], but other options are
viable, such as the MMA algorithm [64]. IPOPT is a common large-scale
nonlinear optimization tool based on the interior point algorithm [68]. Both
equality and inequality constraints can be tackled via suitable slack vari-
ables. Constraints may involve both the control variables (for example, the
density ρ) as well as functions of these (for instance, the total volume of the
structure,

∫
Ω
ρdΩ). Among the input parameters of optimize, Mit identifies

the maximum number of iterations allowed and TOPT is the tolerance for the
adopted stopping criterion. The computation of the gradient, ∇ρG, of the
compliance with respect to the density has to be provided as well. With this
aim, we introduce the Lagrangian functional

L = L(u, z, ρ) = G(u) + aρ(u, z)− G(z),

where z ∈ U is the Lagrange multiplier. It is well known that

∇ρG(ρ) = ∇ρL
∣∣
u(ρ),z(ρ),ρ

,

where u(ρ) and z(ρ) are the solutions to the primal and adjoint problem
associated with the Gâteaux derivative of L with respect to z and u, respec-
tively. In particular, the primal problem coincides with (2.9), whereas the
adjoint problem is

find z ∈ U such that

aρ(v, z) = −G(v) ∀v ∈ U. (2.13)
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On comparing (2.13) with (2.9) and due to the self-adjointness of aρ(·, ·), we
infer that z = −u, that is we have a cost-free adjoint solution. Finally, the
Gâteaux derivative of L with respect to ρ along the direction ψ ∈ U is∫

Ω

p ρp−1σ(u) : ε(z)ψ dΩ = 〈∇ρG, ψ〉,

implying
∇ρG(ρ) = −p ρp−1σ(u(ρ)) : ε(u(ρ)). (2.14)

Thus, each evaluation of the gradient of the compliance requires only a
primal solve and the computation of (2.14).

The output density ρk+1
h from optimize is then filtered in line 4 by ap-

proximating (2.12) via linear finite elements. The global convergence check
in line 5 is based on the difference between two successive iterations of the
density with respect to the L∞(Ω)-norm.

Other strategies can be adopted as an alternative to Algorithm 2, for
example procedures where a more frequent use of the filters inside the opti-
mization routine occurs and/or where ∇ρG is smoothed as well [20, 45].

2.3.1 SIMP enriched with anisotropy

To manufacture smooth structures, a sufficiently fine mesh or a heavy den-
sity filtering are usually adopted. However, both these choices are often
very demanding in terms of computational cost. In [52], the authors propose
combining the SIMP procedure with an anisotropic adaptation of the mesh
as a computationally efficient alternative. In fact, anisotropic mesh adapta-
tion allows us to reduce the employment of a filter, the optimized structure
being intrinsically smooth. This goal is reached by resorting to a rigorous
mathematical tool, i.e., an a posteriori error estimator used to generate the
anisotropic adapted mesh.

The anisotropic framework

We refer to the setting in [30, 33, 35, 50], where the geometric properties
of a generic tetrahedron K are extracted from the spectral properties of
the standard affine transformation TK , which maps the reference element K̂
inscribed in the unit sphere into K, such that

x = TK(x̂) = MKx̂ + tK ,
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with x ∈ K, x̂ ∈ K̂, MK ∈ R3×3, tK ∈ R3. Through TK , the unit sphere
is transformed into an ellipsoid circumscribing K. By means of the polar
decomposition, MK is factorized as the product BKZK , with BK ∈ R3×3 a
symmetric positive definite matrix taking into account the deformation of
the element K, and ZK ∈ R3×3 an orthogonal matrix rigidly rotating K.
Matrix BK can be decomposed in terms of the corresponding eigenvalues
and eigenvectors, leading to BK = RT

KΛKRK , with RT
K = [r1,K , r2,K , r3,K ]

and ΛK = diag(λ1,K , λ2,K , λ3,K), with λ1,K ≥ λ2,K ≥ λ3,K . Matrices RT
K

and ΛK collect all the geometric features of element K. In particular, the
eigenvectors r1,K , r2,K and r3,K represent the directions of the semi-axes of
the ellipsoid circumscribed to K, while the eigenvalues λ1,K , λ2,K and λ3,K

measure the length of the semi-axes. It is possible to introduce the aspect
ratios of the element K,

si,K =

 λ2
i,K∏

j 6=i

λj,K


2/3

, i = 1, 2, 3,

which quantify the anisotropic features of K. Notice that s1,K ≥ s2,K ≥ s3,K

and s1,Ks2,Ks3,K = 1, the isotropic case coinciding with s1,K = s2,K = s3,K =
1.

The error estimator

Among the possible a posteriori error estimators available in the literature [1,
12, 66], we resort to a recovery-based analysis [74, 75, 76] which consists of
two steps, i.e., the computation of the recovered gradient and the successive
definition of the estimator. In [49, 50], an extension of this approach to an
anisotropic setting has been proposed for the first time. The recipe adopted
for the recovered gradient is

P (∇uh)
∣∣
∆K

=
1

|∆K |
∑
T∈∆K

|T | ∇uh|T ,

where ∆K = {T ∈ Th : T ∩ K 6= ∅} is the patch of elements associated
with K. We remark that P (∇uh) is piecewise constant on Th, differently
from the piecewise linear gradient reconstruction adopted in the papers by
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O.C. Zienkiewicz and J.Z. Zhu. A generalization of P (∇uh) to higher degree
reconstructions can be found in [49, 50].

Then, the anisotropic a posteriori error estimator is

η2 =
∑
K∈Th

η2
K , (2.15)

where the local contribution ηK is

η2
K =

1

(λ1,Kλ2,Kλ3,K)2/3

3∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
, (2.16)

where E∇ =
[
P (∇uh) −∇uh

]
∆K

is the recovered error, and G∆K
(·) ∈ R3×3

is the symmetric positive semidefinite matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T

wiwj dT with i, j = 1, 2, 3, (2.17)

for any vector-valued function w = (w1, w2, w3)T ∈ [L2(Ω)]3. The scaling

factor
(
λ1,Kλ2,Kλ3,K

)−2/3
in (2.16) ensures the consistency with respect to

the isotropic case (i.e., for λ1,K = λ2,K = λ3,K).

The SIMPATY algorithm

We resort to a metric-based approach to generate the adapted mesh, by ex-
ploting the information contained in η. In more detail, a metric, M : Ω →
R3×3, is a symmetric positive definite tensor field which contains all the geo-
metric information related to a certain mesh [37]. In a finite element setting,
we approximate M by a piecewise constant function, MTh , associated with
the actual grid Th, such that MTh

∣∣
K

= RT
KΛ−2

K RK , consistently with the
notation introduced in Section 2.3.1.

We use the local estimator ηK in a predictive way to define a new metric
field. This goal is reached via an iterative procedure which, eventually, yields
an optimal adapted grid satisfying the two criteria: i) minimization of the
number of elements under the accuracy constraint, η ≤ MTOL, with MTOL a
user-defined tolerance; ii) error equidistribution, namely, η2

K =MTOL2/#Th,
with #Th the mesh cardinality.

Now, we sketch the procedure adopted for the prediction of the metric
out of the estimator, while referring to, e.g., [33, 50] for more details.
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With reference to the generic k-th iteration of Algorithm 2, we rewrite
estimator ηK by collecting the size information of the patch in a single factor,
|∆K |, as

η2
K = |∆K |

3∑
i=1

si,K

(
rTi,K Ĝ∆K

(E∇) ri,K

)
︸ ︷︷ ︸

F({si,K ,ri,K}i=1,2,3)

,

where Ĝ∆K
(·) is the scaled matrixG∆K

(·)/|∆K |, and |∆K | = λ1,Kλ2,Kλ3,K |∆̂K |,
with ∆̂K = T−1

K (∆K). Notice that |∆K | is the main quantity related to the
volume of the tetrahedra, the other terms keeping track of the orientation
and of the stretching of K.

Minimizing the cardinality of the mesh is equivalent to maximizing the
size of the patch, so that we are led to solve the constrained minimization
problem

min
si,K ,ri,K

F({si,K , ri,K}i=1,2,3) :


ri,K · rj,K = δij

s1,K ≥ s2,K ≥ s3,K

s1,Ks2,Ks3,K = 1,

(2.18)

with δij the Kronecker symbol and i, j = 1, 2, 3. This problem has an explicit
solution provided in [33, 50] and stated in the following

Proposition 2.3.1 Let {gi,gi}i=1,2,3 be the eigenpairs associated with Ĝ∆K
(E∇),

with g1 ≥ g2 ≥ g3 > 0 and {gi}i=1,2,3 orthonormal. Then, F(·) is minimized
when

s1,K =

3

√
Π3
i=1gi

g3

, s2,K =
3
√

Π3
i=1gi
g2

, s3,K =
3
√

Π3
i=1gi
g1

,

r1,K = g3, r2,K = g2, r3,K = g1.

Next, by employing the equidistribution criterion, the optimal values for
length λi,K can be computed as

λ1,K = g
−1/2
3

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

,

λ2,K = g
−1/2
2

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

,

λ3,K = g
−1/2
1

(
MTOL2

3 #Th|∆̂K |

)1/3( 3∏
i=1

gi

)1/18

.
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The optimal piecewise constant metric MTh is thus obtained simply by col-
lecting the optimal values {ri,K}3

i=1 and {λi,K}3
i=1, for each K ∈ Th. The

optimal metric is finally provided to a metric-based mesh generator to build
the adapted mesh. For this task, we employ mmg3d, a standalone applica-
tion suited for grid adaptation [27]. The output file containing the adapted
mesh is then read by FreeFem++, the environment used to code the whole
procedure itemized in Algorithm 3 [51, 52].

Algorithm 3 SIMPATY: SIMP with AdaptiviTY

Input : CTOL, MTOL, kmax, ρmin, T 0
h

1: Set: ρ0
h = 1, k = 0, errM = 1+CTOL

2: while errM > CTOL & k < kmax do
3: ρk+1

h = optimize(ρkh, Mit, TOPT, ∇ρG, ...);
4: T k+1

h = adapt(T k
h , ρk+1

h , MTOL);
5: errM = |#T k+1

h −#T k
h |/#T k

h ;
6: k = k + 1;

The main difference with respect to Algorithm 2 is in line 4, where mesh
adaptation is carried out, with a prescribed tolerance, MTOL, on the accuracy.
For the stopping criterion, at line 5, we check the stagnation of the adapted
meshes through the relative variation of the cardinality of the mesh elements
to within CTOL.

2.3.2 Numerical assessment for TO

The same test cases analyzed in Section 2.2.3 are now tackled by TO.

We remark that Mit is usually updated (namely, we decrease Mit as
k increases) within the external loop of Algorithm 3. This choice should
allow the optimizer to get very close to the optimal solution on the initial
mesh, whereas a less strict check is expected to suffice in the next iterations.
Indeed, it is not reasonable to compute an accurate density function on a
rough intermediate mesh which is not necessarily the final optimal one.

In order to reduce the computational burden required by TO, we simulate
only a quarter of the geometry under investigation, by exploiting the sym-
metry planes. Precisely, we impose u ·n = 0 on the surfaces where symmetry
occurs, and u · t = 0, with t the unit tangent vector, on the surfaces where
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antisymmetry occurs [45]. In Figure 2.7, the portions of the domain actu-
ally employed in the simulations are shown. Once convergence is reached,
the complete structures are obtained using reflection tools, avalaible in post
processing softwares used for visualization purposes (e.g., Paraview [11]).

Figure 2.7: Portion of the domains actually simulated by SIMPATY algo-
rithm.

The input parameters for SIMPATY algorithm are gathered in Table 2.5.
We do not set any value for TOPT since we rely only on Mit as a stopping
criterion for optimize.

Test case CTOL MTOL kmax ρmin

Bridge 1e-2 0.35 10 0.001
Cantilever beam 5e-3 0.09 10 0.001
Dome 5e-3 1.10 7 0.001

Table 2.5: Input data to SIMPATY algorithm.

The bridge test case

The topology optimization of the bridge is carried out with SIMPATY by
setting a volume fraction α = 0.4, Mit = 100 for the first iteration, 50 for
the second, and 25 for the subsequent ones, and selecting an initial mesh of
52556 elements.

The resulting function ρ in Figure 2.8, left is characterized by a sharp
alternation of void and full material and by very thin layers. The corre-
sponding structure (Figure 2.8, center), obtained by a truncation procedure
which keeps only the elements of the mesh where ρ|K ≥ 0.5, exhibits very
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Figure 2.8: The bridge test case (TO): density field (left), final structure
(center), and a quarter of the domain with both density and adapted mesh
(right) as delivered by SIMPATY.

smooth boundaries and it is almost ready for the printing process. Figure 2.8,
right, shows the domain actually employed in the simulations, with the final
adapted mesh superposed to the density. In particular, the adapted mesh
sharply detects the void/material interface with very stretched tetrahedra.
This is more evident in Figure 2.9, which focuses on the external faces from
three different view angles. The elements are highly stretched along the
boundaries of the structure and they massively concentrate in these portions
of the domain. Instead, where the design variable is smooth, the mesh is
coarse, reducing the computational burden of the simulation.

Figure 2.9: The bridge test case (TO): frontal (top), top (center), and bottom
(bottom) views of the density superposed to the adapted mesh.

The resulting structure, seen from different angles, is shown in Figure 2.10.
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We can appreciate the smoothness of the boundary surfaces, which is made
possible by the optimal shape, size and orientation of the mesh elements. In
particular, from the bottom view, some complex features of the structure are
evident, as further highligthed in the slice-plot shown in Figure 2.11.

Figure 2.10: The bridge test case (TO): frontal (top), top (center), and
bottom (bottom) views of the structure returned by SIMPATY.

In Table 2.6, some quantitative results are provided. As expected, the
mass reduction is responsible for a slight increase of the compliance.

G before TO 0.0933 [J]
G after TO 0.1009 [J]
∆%G +8.15% [-]
#Th 95482 [-]

Table 2.6: The bridge test case (TO): compliance before and after TO, per-
centage variation of the compliance, cardinality of the final adapted mesh.

The cantilever test case

Results for the topology optimized cantilever beam are shown in Figure 2.12.
We pick α = 0.5, Mit = 75 for the first iteration, 50 for the following ones,
and T 0

h a uniform mesh consisting of 35280 tetrahedra.
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Figure 2.11: The bridge test case (TO): slices of the density (left) and of the
adapted mesh (right).

The final structure is very smooth (see Figures 2.12-2.14). Despite the
apparent massive external shell, an internal cavity is generated by SIMPATY
to lighten the optimized structure as it is also evident from the slice plot in
Figure 2.15. The anisotropic features of the adapted mesh are able to sharply
capture the interface between material and void, considerably coarsening the
mesh in the areas inside and outside the structure.

Concerning the quantitative data in Table 2.7, we have that the reduc-
tion of half the mass of the cantilever leads to a considerable increment of
the compliance, which almost triplicates with respect to the initial value.
Despite the contained number of tetrahedra, the final structure generated by
SIMPATY is almost ready to print with a reasonable mechanical response.

G before TO 0.0309 [J]
G after TO 0.0867 [J]
∆%G 180% [-]
#Th 96038 [-]

Table 2.7: The cantilever test case (TO): compliance before and after TO,
percentage variation of the compliance, cardinality of the final adapted mesh.
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Figure 2.12: The cantilever test case (TO): density field (left), final structure
(center), and a quarter of the domain with both density and adapted mesh
(right) as delivered by SIMPATY.

Figure 2.13: The cantilever test case (TO): frontal (top), rear (center), lateral
(right-top), and top (right-bottom) views of the density superposed to the
adapted mesh.

The dome test case

For the dome test case, we set α = 0.2, Mit = 120 for the first iteration, 60
for the second, and 20 for the subsequent ones, and we employ an initial grid
of 20857 elements.

The final layout for the optimized dome is shown in Figure 2.16, where
the smooth final density, left is shown along with a close-up of the quarter
of domain actually employed, right. In addition, three views of the obtained
structure are provided in Figure 2.17. SIMPATY algorithm turns out to be
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Figure 2.14: The cantilever test case (TO): frontal (left), rear (center), lat-
eral (right-top), and top (right-bottom) views of the structure returned by
SIMPATY.

Figure 2.15: The cantilever test case (TO): slices of the density (left) and of
the adapted mesh (right).

effective also in the case of a thin shell domain. In some way, the obtained
layout can be identified with a macro-grid, in the spirit of a Michell struc-
ture [53]. Finally, Figure 2.18 shows how the anisotropic mesh closely follows
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Figure 2.16: The dome test case (TO): density (left), and a quarter of the
domain close-up (right) as delivered by SIMPATY.

Figure 2.17: The dome test case (TO): frontal (left), top (right-top), and
lateral (right-bottom) views of the structure returned by SIMPATY.

the distribution of the material despite the very thready components of the
optimized dome.

The values collected in Table 2.8 show that a considerable reduction of
the mass of the final configuration leads to a slight increase in the compliance.
The number of elements in the final configuration is rather high likely due
to the curvature of the geometry. The software mmg3d includes options to
control the geometric features of the domain, so that the mesh can follow the
original curvature of the surface to within a threshold.
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Figure 2.18: The dome test case (TO): adapted mesh superposed to the
density for a quarter of the domain.

G before TO 7.1654 [J]
G after TO 7.7265 [J]
∆%G +7.83% [-]
#Th 118435 [-]

Table 2.8: The dome test case (TO): compliance before and after TO, per-
centage variation of the compliance, cardinality of the final adapted mesh.

A comparison with another approach in the literature.

We compare the performance of SIMPATY algorithm with the anisotropic
mesh adaptation proposed in [45]. The main difference in the two algorithms
lies in the driving force for the adaptation procedure, namely an actual error
estimator in SIMPATY versus a heuristic indicator based on the filtered
Hessian of the density and of a filtered sensitivity. In contrast, we essentially
do not apply any filtering.

In particular, we consider the same configuration as in Figure 9 of [45].
The structure provided by SIMPATY (see Figure 2.19) is topologically com-
parable with the one in [45].

From a quantitative viewpoint, the outcome from SIMPATY provides a
slightly better performing structure, characterized by a compliance equal to
1.2996 versus a compliance of 1.5529 in [45]. Moreover, SIMPATY converges
in 9 iterations after 0.76 [h]1, providing a final mesh with 4205 nodes to be

1The computations have been run on a GenuineIntel Pentium(R) Dual-Core CPU
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Figure 2.19: Comparison with [45]: slice plot for the density and the adapted
mesh (top); whole optimized structure and adapted mesh on the simulated
quarter of domain (bottom).

compared with 3.3 [h] and 3121 vertices in [45].

2.4 The coupling of shape and topology op-

timization

So far, shape and topology optimization have been applied separately. The
goal now is to combine them in order to improve the overall performance of
the optimization (see, e.g., [28, 41, 44, 57, 71]).

On the one hand, TO delivers light structures with a mass reduction
with respect to the initial configuration but with a higher compliance. On
the other hand, SO ensures a reduction of the compliance keeping the volume
fixed. Hence, the idea here is to sequentially couple the two techniques to
take advantage of the benefits of both of them.

In principle, there are at least three possibile combinations of topology
and shape optimization: SO first and TO after (STO), TO first and SO after

E6300 2.80 GHz 4GB RAM desktop computer.
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(TSO), and SO and TO iteratively intertwined. We pursue the first approach,
namely, we first move out of the box the boundary of the design domain by
means of SO. Then, the resulting structure is topologically optimized by
means of the SIMPATY algorithm. The choice for STO instead of TSO
is justified by the observation that the shape optimization of an already
topologically optimized structure emphasizes the thinning of the thready
components, even leading to invalid mesh elements, and, in general, to non-
manufacturable layouts. These drawbacks may be amplified by a more tight
alternation between SO and TO, while are generally mitigated by a STO
approach.

The STO procedure is listed in Algorithm 4.

Algorithm 4 Shape and Topology Optimization (STO)

Input : CTOL, MTOL, ktmax, ksmax, ∆BEST , T 0
h , V0, ρmin

1: Set: ks = 0, kBEST = 0, TBEST = T 0
h , GBEST = G(Ω0);

2: while ks− kBEST < ∆BEST & ks < ksmax do
3: Solve (2.6);
4: Solve (2.7);
5: Compute φk, `k;
6: T ks+1

h = movemesh(T ks
h , dks

h , `ks);
7: while T ks+1

h has degenerate elements do
8: Reduce `ks;
9: T ks+1

h = movemesh(T ks
h , dks

h , `ks);

10: T ks+1
h =regularize (T ks+1

h );
11: Compute G(Ω);
12: if G(Ω) < GBEST then
13: GBEST = G(Ω);
14: kBEST = ks + 1;
15: TBEST = T ks+1

h ;

16: ks = ks + 1;

17: Set: ρ0
h = 1, kt = 0, errM = 1 + CTOL, T 0

h = T ks
h

18: while errM > CTOL & kt < ktmax do
19: ρkt+1

h = optimize (ρkth , Mit, TOPT, ∇ρG, ...);
20: T kt+1

h = adapt(T kt
h , ρkt+1

h , MTOL);
21: errM = |#T kt+1

h −#T kt
h |/#T kt

h ;
22: kt = kt + 1;
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2.4.1 Numerical assessment for STO

We re-run the test cases analyzed for SO and TO. The parameters for SO
are the same as those in Section 2.2.3. Instead, the values for TO are listed
in Table 2.9, the volume fraction α being the same as in Section 2.3.2.

Test case CTOL MTOL ktmax ρmin

Bridge 5e-3 0.01 15 0.001
Cantilever 1e-3 0.075 10 0.001
Dome 5e-3 1.00 11 0.001

Table 2.9: Input data to SIMPATY algorithm for STO.

The bridge test case

The STO bridge is shown in Figures 2.20-2.23. It is evident the combined
effect of SO with TO. In particular, we recognize as external shape the one
delivered by the single SO (compare with Figure 2.2), whereas the two spans
of the bridge are yielded by TO similarly to what obtained in Figure 2.8,
center. Notice that the final structure is sufficiently symmetric, even though
no symmetry condition is enforced in the algorithm. This can be ascribed to
the sufficiently fine isotropic grid used as initial mesh T 0

h , consisting of 10477
tetrahedra, so that the results are not biased by a poor discretization.

Figure 2.20: The bridge test case (STO): density field (left) and final struc-
ture (right).
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Figure 2.21: The bridge test case (STO): frontal (top), top (center), and
bottom (bottom) views of the density superposed to the adapted mesh.

Figure 2.22: The bridge test case (STO): lateral view of the density (left)
and of the density superposed to the adapted mesh (right).

Finally, Table 2.10 highlights the reduction of the objective function with
respect to the non-optimized case. The benefits due to SO in terms of struc-
ture stiffness are not thoroughly compromised by the TO step. Additionally,
the number of elements in the final mesh is considerably low for a full 3D
simulation.
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Figure 2.23: The bridge test case (STO): frontal (top), top (center), and
bottom (bottom) views of the final structure.

G before STO 0.0933 [J]
G after STO 0.0820 [J]
∆%G -12.12% [-]
#Th 40301 [-]

Table 2.10: The bridge test case (STO): compliance before and after STO,
percentage variation of the compliance, cardinality of the final adapted mesh.

The cantilever test case

The cantilever beam yielded by Algorithm 4 starting from an initial mesh
comprising 120355 elements, is displayed in Figures 2.24-2.26. The external
shape is essentially the same as in Figure 2.4, while the inner topology has
considerably changed with respect to that provided by the sole SIMPATY
algorithm. Indeed, we recognize the presence of an additional cavity in the
frontal part of the cantilever, as clearly highlighted by comparing Figure 2.14
with Figure 2.26. This redistribution of the material makes the structure
stiffer in the STO case with respect to the TO case, as confirmed by the
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values in Tables 2.7 and 2.11. A slight lack of symmetry can be observed in
the final configuration.

Figure 2.24: The cantilever test case (STO): density field (left) and final
structure (right).

Figure 2.25: The cantilever test case (STO): frontal (left), rear (middle),
lateral (right-top), and top (right-bottom) views of the density superposed
to the adapted mesh.

The dome test case

The structure obtained for the dome geometry initially tiled by 92964 ele-
ments, is completely different from a straightforward merging of the effects
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Figure 2.26: The cantilever test case (STO): frontal (left), rear (middle),
lateral (right-top), and top (right-bottom) views of the final structure.

Figure 2.27: The cantilever test case (STO): slices of the density (left) and
of the adapted mesh (right).

G before STO 0.0309 [J]
G after STO 0.0162 [J]
∆%G -47.4% [-]
#Th 127513 [-]

Table 2.11: The cantilever test case (STO): compliance before and after STO,
percentage variation of the compliance, cardinality of the final adapted mesh.

of SO and TO. A two-story layout for STO replaces the three-story configu-
ration in Figure 2.17. Additionally, we loose the radial symmetry of the TO
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case.

Finally, the values in Table 2.12 confirm the trend of the other test cases,
with a net decrease of the compliance despite the drastic reduction of the
total mass by 80%.

Figure 2.28: The dome test case (STO): frontal (left), top (right-top), and
lateral (right-bottom) views of the final density field.

Figure 2.29: The dome test case (STO): frontal (left), top (right-top), and
lateral (right-bottom) views of the final structure.
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Figure 2.30: The dome test case (STO): frontal (left), top (right-top), and
lateral (right-bottom) views of adapted mesh superposed to the density.

G before STO 7.1654 [J]
G after STO 6.9127 [J]
∆%G -3.52% [-]
#Th 37143 [-]

Table 2.12: The dome test case (STO): compliance before and after STO,
percentage variation of the compliance, cardinality of the final adapted mesh.

2.5 Conclusions and future developments

We proposed a new technique for structure design, combining shape opti-
mization (SO) with topology optimization (TO) in order to minimize the
compliance of the final layout. A sequential coupling of these two procedures
is here enriched by the added value of anisotropic mesh adaptation. The
merging between SO and TO allows us to take advantage of the benefits of
each single technique. In particular, shape optimization moves the optimized
structure out of the initial design domain with a reduction in terms of com-
pliance. Successively, topology optimization is applied to reduce the total
mass in the final structure with an increment of the compliance. The main
advantage of the sequential coupling is that the increase of the compliance
due to the TO step in the STO procedure is not sufficient to compromise the
compliance reduction provided by the SO phase, thus ensuring a final benefit
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in terms of mechanical performance (see Table 2.13).
The introduction of an anisotropic mesh adaptation procedure has proven

to be a key feature. In particular, it allows us to obtain very smooth struc-
tures, essentially ready to print, thus avoiding any post-processing.

Test case Initial G G after SO ∆%G G after TO ∆%G G after STO ∆%G
Bridge 0.0933 [J] 0.0796 [J] -14.68% 0.1009 [J] +8.15% 0.0820 [J] -12.12%
Cantilever 0.0309 [J] 0.0104 [J] -66.34% 0.0867 [J] +180% 0.0162 [J] -47.4%
Dome 7.1654 [J] 3.2433 [J] -54.74% 7.7265 [J] +7.83% 6.9127 [J] -3.52%

Table 2.13: Compliance before and after SO, TO and STO and corresponding
percentage variation of the compliance for the three test cases.

Possible future developments of this research include the validation of the
STO algorithm on more realistic configurations and the generalization of the
procedure to a multi-objective context.
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3.1 Introduction

The design of performant and light structures has been gaining popularity for
the last years thanks to the rise and development of Additive Manufacturing
(AM) techniques. Differently from subtractive methods, AM enjoys great
versatility in the achievable shapes and presents very few limitations.

In this framework, topology optimization (TO) has proved to be the refer-
ence mathematical method suitable for designing innovative and performant
structures of engineering interest. Essentially, it consists in the allocation

85



86 CHAPTER 3. INVERSE HOMOGENIZATION

of material in the so-called design domain, ensuring the optimization of a
given functional and, at the same time, the satisfaction of design require-
ments. The final result of TO is an optimized structure, where areas of full
material and void alternate so that the new topology guarantees the desired
production specifications.

With a particular focus on the linear elastic problem, it is observed that
the stiffness of an optimal designed structure, subject to given loads and
constraints, is increased by inserting small substructures [2]. Consequently,
different authors have investigated the possibility of employing topology opti-
mization at a microscale as well, aiming at yielding optimized microstructures
(metamaterials) [24, 26]. The ultimate goal is to combine the microscopic
optimized structures with a standard TO performed at the macroscale. This
link is made possible by employing homogenization techniques, which are
widely used to incorporate the information provided by the microscale into
macroscale models [1, 3, 19].

In this work, we enrich such an approach by resorting to a numerical dis-
cretization of the linear elastic problem based on a standard finite element
solver combined with a mesh adaptation procedure. In particular, in Sec-
tion 3.2, we briefly present a density-based approach for a generic topology
optimization problem. In Section 3.3, the homogenization procedure is pre-
sented. We distinguish between a direct and an inverse method, consisting
in prescribing the desired macroscopic effective values in order to retrieve the
optimal microstructure. Section 3.4 is devoted to the numerical approxima-
tion and to the anisotropic setting used for the finite element discretization.
In particular, we examine the mathematical tool employed to anisotropi-
cally adapt a two-dimensional mesh to the problem at hand, coupling such a
procedure with the inverse homogenization technique. In Section 3.5, some
numerical results are provided in order to assess the proposed algorithm, and
finally some conclusions are drawn in Section 3.6.

3.2 A density-based method for topology op-

timization

We consider the SIMP formulation for topology optimization to address the
structural optimization problem [2]. In this context, the optimal layout of a
material is determined in terms of an auxiliary scalar field, say ρ, defined over
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the domain Ω. In particular, ρ is a relative density belonging to L∞(Ω, [0, 1]),
determining presence of full material (ρ = 1) or void (ρ = 0). The optimiza-
tion problem is set once the objective function C and the design requirements
are defined, while a balance equation S constrains the optimization. Then,
in order to account for changes in the topology, the state equation S is prop-
erly modified to include the density variable in the formulation. The final
optimization problem thus reads

min
ρ∈L∞(Ω)

C(ρ) :


State equation S(ρ) is satisfied

Boundary conditions∫
Ω
ρ dΩ ≤ α|Ω|

ρmin ≤ ρ ≤ 1,

(3.1)

where α is the maximum volume fraction we wish to ensure in the final
configuration, and ρmin is a lower bound for the density, to avoid the possible
ill-posedness of S.

In particular, S is chosen according to the physical phenomenon under
investigation, i.e., to the application at hand. For instance, for the optimiza-
tion of elastic structures, the state equation can be represented by the linear
elastic equation, whereas, when considering the optimization of the energy
dissipation of a steady flow, one can identify S with the Stokes equations.
In the specific case of the present work, we deal with the optimization of
the design of elastic microstructures. A homogenized version of the elastic
equations will represent the reference state equation as detailed in the fol-
lowing section. Concerning the inclusion of the density variable in the state
equation, a suitable power law of ρ is usually employed to weigh the main
physical constants in S, such as the standard Lamé constants, λ and µ, for
the elastic problem or the inverse permeability of the fluid for the Stokes
equations.

3.3 The homogenization procedure

The homogenization method is an asymptotic technique whose goal is to
assign macroscopic effective properties to microscopic entities, which are ar-
ranged periodically. This approach plays a crucial role in multiscale simula-
tions since it allows one to deal with the macroscale only, the effects of the
microscale being inherited through homogenization. The technique has been
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widely investigated both theoretically [3, 19] and numerically [1], and it is a
well-established practice.

In this section, we analyze also the converse technique, known as inverse
homogenization [13, 18, 21, 22]. This can be formulated as a control problem
or, specifically, as a topology optimization problem. The aim is to find the
optimal arrangement of material at the microscale so that desired effective
properties are guaranteed at the macroscale. Notice that the flow of informa-
tion is opposite with respect to the classical homogenization. The macroscale
is fixed or prescribed, whereas the microscale is modified to match the desired
requirements.

3.3.1 The direct method

Direct homogenization has been employed in different fields of application to
modify the macroscale model according to the microscale layout [6, 11, 19].
This technique relies on the periodic arrangement of a microstructure which
constitutes the base cell, Y . Such elementary entity represents the domain
of interest and it is analyzed in order to retrieve its effect on the macroscale.

Let us consider the linear elasticity equation [10]

−∇ · σ(u) = f in Ω, (3.2)

where Ω ⊂ R2 is the domain under investigation at the macroscale, f is the
volumetric forcing term, u = [u1, u2]T is the displacement field, and σ is
the stress tensor. For the sake of generality, we stick to the convention of
denoting by Eijkl the fourth-order stiffness tensor, so that the stress tensor
has components

σij = Eijklεkl with εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
,

where xl, with l = 1, 2, are the spatial coordinates, εkl are the components
of the strain tensor ε, and we have adopted the Einstein notation to manage
index summation.

The homogenization technique relies on the repetition of the base cell
Y . In order to preserve this physical feature, we impose periodic boundary
conditions. In this way, we enforce that the displacement field u is equal in
correspondence with opposite boundaries [5].

Then, the actual objective becomes to compute the homogenized (or ef-
fective) stiffness tensor, EH , representing a macroscopic mean value of the
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tensor E, after neglecting the microscale fluctuations E∗. To this end, we
resort to an asymptotic expansion of the displacement field u with respect
to the base cell size, considering only the first two terms. Then, following [3,
21], it can be shown that the homogenized tensor EH is given by

EH
ijkl =

1

|Y |

∫
Y

Eijpq(ε
0,kl
pq − ε∗,klpq ) dY, (3.3)

where |Y | is the measure of the cell Y , ε0,kl identifies a fixed strain field,
chosen among the four linearly independent possible fields (k, l being equal
to 1, 2), while ε∗,kl is the Y-periodic fluctuation strain, i.e., the weak solution
to the equation∫

Y

Eijpqε
∗,kl
pq εij(v) dY =

∫
Y

Eijpqε
0,kl
pq εij(v) dY, ∀v ∈ V, (3.4)

V ⊂ [H1(Y )]4 being a periodic Sobolev function space. Thus, by combining
(3.3) and (3.4), we obtain the final form of the effective stiffness tensor [1,
21]

EH
ijkl =

1

|Y |

∫
Y

Epqrs(ε
0,kl
pq − ε∗,klpq )(ε0,ij

rs − ε∗,ijrs ) dY. (3.5)

Equations (3.4) and (3.5) constitute the state equations to be employed
in the inverse homogenization technique, as detailed in the following section.

3.3.2 The inverse method

We refer to inverse homogenization as the procedure concerning the design
of a base cell, Y , whose contribution to the macroscale, according to the
direct homogenization process in the previous section, is prescribed [18, 22].
In order to modify the formulation of the direct method, we have to account
for variations in the initial distribution of material in the base cell. This
goal can be pursued via topology optimization, yielding optimized structures
according to specific, user-defined, constraints and objectives.

The same paradigm as in Section 3.2 is now exploited to incorporate the
cell design in the homogenization problem. Let us fix the objective function,
J , as a control over the quadratic deviation between the computed value of
the homogenized stiffness tensor, EH , and the requested one, EW , i.e.,

J =
∑
ijkl

(EH
ijkl(ρ)− EW

ijkl)
2.



90 CHAPTER 3. INVERSE HOMOGENIZATION

Hence, the minimization of J should lead to a micro-design, whose macro-
features are the ones desired by the user [22]. Thus, the final system for the
micro-optimization is obtained by solving the following problem

min
ρ∈L∞(Y )

J (ρ) :


(3.4)ρ − (3.5)ρ are satisfied

+ Periodicity conditions∫
Y
ρ dY ≤ α|Y |

ρmin ≤ ρ ≤ 1,

(3.6)

where (3.4)ρ− (3.5)ρ represent equations (3.4) and (3.5) after replacing Eijkl
with ρpEijkl, in order to include the design variable ρ in the formulation, p
being a penalization exponent.

3.4 The numerical discretization

Problem (3.6) can be numerically solved via a finite element discretization
[7]. After introducing a conforming tessellation Th = {K} of Y , with K
the generic triangle, we denote by V r

h the associated finite element spaces of
piecewise polynomials of degree r > 0, with h the maximum diameter of the
mesh elements.

The topology optimization problem discretized via a finite element scheme
is known to suffer from several numerical issues [14, 20]. Some of these
can be tackled with a suitable choice of the spaces employed to discretize
displacement and density or via filtering techniques. Here, we propose to
contain any post-processing phase by exploiting the intrinsic smoothness of
the optimized density field yielded using ad-hoc meshes. In particular, we
choose to discretize problem (3.6) on a sequence of anisotropically adapted
grids and, consequently, we modify the optimization algorithm to deliver
smooth and, essentially, directly manufacturable structures.

3.4.1 The anisotropic setting

We resort to an anisotropic adaptive procedure driven by the density field
ρ, which is expected to sharply change from 0 to 1 in correspondence with
the boundaries of the structure. The expected strong gradients across the
material-void interface justify the employment of anisotropic meshes as an
ideal tool to sharply describe the directional features of the density field.
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We follow a metric-based procedure in order to generate the optimal
mesh to discretize the problem [9]. Essentially, the adaptation procedure
relies on an a posteriori error estimator, merging the error information with
the geometric properties of the grid. In particular, we employ an anisotropic
variant of the Zienkiewicz-Zhu estimator [25], to evaluate the H1-seminorm of
the discretization error, which is expected to be the most effective measure
for detecting the material-void interface. Following [15], the elementwise
contribution to the anisotropic error estimator is

η2
K =

1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
, (3.7)

where λ1,K and λ2,K are the lengths of the semi-axes of the ellipse circum-
scribed to element K, while r1,K and r2,K represent the directions of such
axes. The quantity E∇ =

[
P (∇ρh) − ∇ρh

]
∆K

is the recovered error as-

sociated with the density ρ, where P (∇ρh)|∆K
= |∆K |−1

∑
T∈∆K

|T |∇ρh|T
denotes the recovered gradient computed on the patch ∆K of the elements
sharing at least a vertex with K, | · | being the measure operator, and ∇ρh
is the gradient of the discrete density [8, 16]. Finally, G∆K

(·) ∈ R2×2 is the
symmetric positive semidefinite matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T

wiwj dT with i, j = 1, 2, (3.8)

for any vector-valued function w = (w1, w2)T ∈ [L2(Ω)]2. Then, the global

error estimator is given by η2 =
∑
K∈Th

η2
K .

The mesh adaptation is carried out by minimizing the number of elements
of the adapted mesh, while requiring an upper bound TOLAD to the global
error estimator η together with an error equidistribution criterion. This
gives rise to an elementwise constrained optimization problem which admits
a unique analytic solution. Specifically, by introducing the aspect ratio sK =
λ1,K/λ2,K ≥ 1 measuring the deformation of element K, the adapted grid is
characterized by the following quantities

sadaptK =
√
g1/g2, radapt1,K = g2, radapt2,K = g1,

where {gi,gi}i=1,2 are the eigen-pairs associated with the scaled matrix Ĝ∆K
(E∇) =

G∆K
(E∇)/|∆K |, with g1 ≥ g2 > 0, {gi}i=1,2 orthonormal vectors.
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Finally, imposing the equidistribution, i.e., η2
K = TOLAD2/#Th, with #Th the

mesh cardinality, we obtain the geometric information identifying the new
adapted mesh, i.e.,

λadapt1,K = g
−1/2
2

(
TOLAD2

2#Th |∆̂K |

)1/2

, λadapt2,K = g
−1/2
1

(
TOLAD2

2#Th |∆̂K |

)1/2

,

radapt1,K = g2, radapt2,K = g1,
(3.9)

with |∆̂K | = |∆K |/(λ1,Kλ2,K).

3.4.2 The adaptive algorithm

The algorithm employed to merge the topology optimization of the base cell
Y with the mesh adaptation procedure described above is here presented.
We name it microSIMPATY algorithm since it is inspired from the algorithm
SIMPATY in [17].

Algorithm 5 : microSIMPATY

Input : CTOL, TOLAD, TOPT, kmax, ρmin, T (0)
h

1: Set: ρ0
h, k = 0, errC = 1 + CTOL

2: while errC > CTOL & k < kmax do
3: ρk+1

h = optimize(ρkh, Mit, TOPT, ρmin,J (ρ),∇ρJ (ρ), ...);

4: T (k+1)
h = adapt(T (k)

h , ρk+1
h , TOLAD);

5: errC = |#T (k+1)
h −#T (k)

h |/#T
(k)
h ;

In Algorithm 5, optimize is a numerical routine for the inverse topol-
ogy optimization, which stops whenever the maximum number of iterations,
Mit, is exceeded, or the prescribed tolerance, TOPT, is satisfied. Beside the
objective function J (ρ), the corresponding derivative with respect to ρ is
required by the optimize algorithm, as well as other possible constraints to
be imposed, with the associated derivatives. Such sensitivities are analyt-
ically computed following a Lagrangian approach [4]. Function adapt is a
routine performing the mesh adaptation starting from the metric derived in
(3.9). The algorithm is terminated by two stopping criteria, one based on the
number of iterations, the other on the stagnation of the number of elements
between two consecutive mesh adaptations to within CTOL.
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3.5 Numerical results

The following numerical verification has been carried out with FreeFem + +
[12], which provides the users with built-in functions for both optimization
[23] and metric-based mesh adaptation. In both the considered test cases,
we deal with the design of a 1[m] ×1[m] base cell with negative Poisson ratio
ν = λ/[2(λ+ µ)], corresponding to E1122. We choose p = 4 for the penaliza-
tion exponent in (3.6). The material employed has Young modulus equal to
0.91[Pa] and Poisson ratio ν = 0.3. Finally, ρ0

h is set to |sin(2πx1) sin(2πx2)|.

Case 1. In Figure 3.1, the results for EW
1122 = −1 are shown. We require

a volume fraction α = 0.3, we start with an initial structured mesh consisting
of 1800 elements, and we pick TOLAD = 10−5, CTOL = 10−4, TOPT = 10−3,
ρmin = 10−4, kmax = 20, while the maximum number of iterations, Mit, is set
to 35 for the first three iterations and to 10 for the next ones. The algorithm
stops after 20 iterations, delivering a structure with EH

1122 = −0.65. The final

Figure 3.1: Optimized microstructure for EW
1122 = −1: 4×4 periodic arrange-

ment of the base cell (left), base cell (top-right) and corresponding adapted
mesh (bottom-right).

design thus obtained is comparable with the one in [13], Figure 3, while the
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quality of the solution is increased when resorting to the microSIMPATY
algorithm, no filtering techniques being required. In Figure 3.1, bottom-
right, we show the last adapted grid. Notice that the elements are highly
stretched and concentrated in correspondence with the void-solid interface.
The cardinality of such final mesh is 2620 and its maximum aspect ratio is
97.76.

Case 2. The second case concerns the optimization of a micro-design
with EW

1122 = −0.7 and α = 0.5 (see [21], Figure 2.17). As for the previous
test, we perform 20 iterations, starting from a structured mesh of 1800 ele-
ments and picking the same parameters as in the previous case, except for
Mit, which is now set to 35 at the first iteration, to 25 until the fifth one, and
to 15 for the later iterations. The results in Figure 3.2 show a very smooth
solution, where intermediate densities are very limited to a thin boundary
layer, whose quality is enhanced by the adapted grid. In the final mesh, the
directionalities of the density field are properly detected, making 4266 ele-
ments enough for a sharply-defined solution, with a maximum value for the
aspect ratio equal to 85.58. The final structure delivers an effective Poisson
ratio equal to −0.54.

3.6 Conclusions

In this work, we presented an algorithm to optimize microstructures ac-
cording to user-defined requirements, based on the inverse homogenization
method, properly merged with an anisotropic mesh adaptation procedure.

The structures derived in Section 3.5 are consistent with the ones available
in the literature and exhibit a remarkable smoothness along structure bound-
aries, the thin material/void layers being sharply detected by the adapted
mesh. This feature confirms the benefits due to microSIMPATY algorithm.

Nevertheless, the optimization process depends on several parameters to
be accurately tuned in order to meet user requirements. For this reason, we
plan to perform a more rigorous investigation in such a direction, especially
to make the homogenized stiffness tensor closer to the requested one.

Finally, with a view to real applications, we are extending the algorithm
to a 3D framework.
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Figure 3.2: Optimized microstructure for EW
1122 = −0.7: 4 × 4 periodic ar-

rangement of the base cell (left), base cell (top-right) and corresponding
adapted mesh (bottom-right).
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4
POD-assisted strategies for

structural topology
optimization

N. Ferro, S. Micheletti, S. Perotto
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4.1 Introduction

Topology optimization methods are nowadays popular thanks to recent de-
velopments in 3D and rapid prototyping printing techniques [10]. Topology
optimization can be demanding in terms of computational resources, espe-
cially when complex structures are designed. Due to this issue, several math-
ematical methods are commonly employed to reduce the complexity of the
problem at hand. The purpose of such methods is to find a trade-off between
accuracy and efficiency, by devising procedures characterized by a reduced
computational burden without waiving the quality of the final manufactured
product.

Our interest is in structural optimization among the several fields of appli-
cation. Different choices are viable to reach the above trade-off. For instance,
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in [20, 40] we resort to a customized computational mesh with a contained
number of elements, providing smooth and sharp structures almost ready
to be printed via additive layer manufacturing. The main idea of this work
is to employ a different computational tool to reach the same goal, namely
a model reduction procedure based on the Proper Orthogonal Decomposi-
tion (POD) [30, 45]. POD is a standard technique to deal with parametric
problems, widely employed in engineering applications [28, 32, 34, 43, 49,
54]. POD exploits an offline/online paradigm, when one first samples the
parameter space to collect a certain number of high-fidelity scenarios which
are successively employed to extract an informative reduced basis for the
space of the parametric solutions; then, this basis is used to recover a new
scenario with respect to the ones sampled. In general, the dimension of
the reduced basis is considerably lower compared with the dimension of the
original problem.

As far as we are aware of, few papers address the employment of POD
in a structural optimization context. We cite, for instance, [42] where POD
is applied to multi-objective shape optimization, [55] combining POD with
homogeneization techniques with a view to a multiscale model, and [58] where
a frequency response problem is tackled by combining a standard topology
optimization method with POD at an algebraic level.

Structural optimization can be pursued by means of different strategies,
ranging from size, to shape and topology optimization [8]. In this work, we
focus on topology optimization, namely the design tool seeking an optimal
material distribution in an initial domain, for assigned loads and boundary
conditions, under some constraints (see [6, 8, 15, 44, 48]). Typical optimal-
ity criteria are represented by minimum volume, minimum compliance (or
maximum stiffness), maximum fundamental frequency in the dynamic case,
while constraints can be maximum allowed displacements and stresses, or a
given fraction of the initial volume.
Density-based methods are among the widely employed in the engineering
community, which offer an alternative to level-set methods [2, 52], topolog-
ical derivative procedures [50], phase field techniques [9, 16], evolutionary
approaches [56], homogenization [1, 6], performance-based optimization [35].

Here we focus on the minimization of the compliance for a fixed volume
fraction, by resorting to the density-based SIMP (Solid Isotropic Material
with Penalization) method [6, 8, 44]. In practice, it consists of solving a
minimization problem for an auxiliary density variable, identifying the ma-
terial/void distribution, constrained by the linear elasticity equation. In par-
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ticular, POD is properly combined with SIMP, by generating a reduced basis
for the density only. Extra care will be taken to deal with parameters in-
volving the design constraints. A straightforward combination of POD with
SIMP leads to a numerical design process which is efficient but lacks accu-
racy in some circumstances, in particular when the collected snapshots are
excessively either sharp or smooth in correspondence with the material/void
boundary. This first merging between POD and SIMP is improved accord-
ing to a predictor-corrector approach, where the POD prediction is used as
an initial guess for the corrector standard SIMP method, further enriched
with anisotropic mesh adaptation [39, 40]. We refer to this new method
as PC-SIMPOD. It turns out that PC-SIMPOD is robuster than the basic
POD approach, providing the desired trade-off between fast simulations and
reliable structures, essentially ready-to-print thanks to mesh adaptation.

The paper is organized as follows. In Section 4.2, the basic POD ap-
proach for topology optimization is introduced and numerically checked on
some benchmark configurations, for different choices of the paramenters. Sec-
tion 4.3 proposes the PC-SIMPOD method, showing the improvements of
this new procedure with respect to the basic POD one. In Section 4.4, PC-
SIMPOD is extended to a multi-parameter setting with a view to practical
engineering problems. Conclusions are drawn in the last section with per-
spectives for the future.

4.2 POD for topology optimization

This section focuses on a first attempt to contain the computational cost of
SIMP algorithm, by resorting to POD. The assessment in Section 4.2.3 show
that we can achieve a considerable gain in terms of computational time even
though the predicted layouts are not as performing as expected, in terms of
compliance. An additional weak point turns out to be the proper tuning of
the procedure used to yield the snapshots for the offline phase.

4.2.1 The topology optimization technique

Structural topology optimization is a mathematical technique whose goal is
to provide an optimized structure fulfilling user-defined requirements. In the
most general formulation, it consists in redistributing the material inside an
initial design domain in order to satisfy mechanical performances combined
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with physical constraints. There are several models available in the spe-
cialized literature that address the topology optimization problem (see, for
instance, [19, 44, 48] for a review on the topic).

Among the several approaches, level set methods and density-based tech-
niques are the most common ones. In both cases, the reference state equation
is represented by the linear elasticity problem, suitably incorporating infor-
mation about the material distribution through an auxiliary function. The
level set approach relies on a function χ governed by a time-dependent equa-
tion which makes an initial contour propagating towards the optimized final
layout [2, 11, 12, 26, 52, 57]. Density-based methods modify the elasticity
equation by weighting the Lamé coefficients via a density function, ρ, which
identifies the allocation of the material in the structure. In particular, ρ takes
values in [0, 1], where ρ = 0 means void and ρ = 1 material. These meth-
ods include phase-field models [9, 16, 23, 53] and the SIMP (Solid Isotropic
Material with Penalization) method [3, 4, 5, 7, 8].

In this paper, we focus on the SIMP method. To formalize SIMP method
we start from the density-modified elasticity problem

−∇ · σρ(u) = 0 in Ω

u = 0 on ΓD

σρ(u)n = f on ΓN

σρ(u)n = 0 on ΓF ,

(4.1)

where Ω ⊂ R2 defines the design domain with boundary ∂Ω; u = [u1, u2]T is
the displacement field; σρ(u) = ρp

[
2µε(u) +λI : ε(u)

]
is the penalized stress

tensor, with ρ the density function, p the penalization exponent set to 3 [3,
8], ε(u) =

(
∇u + (∇u)T

)
/2 the strain tensor,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

the Lamé coefficients, with E the Young modulus, and ν the Poisson ratio,
I the identity tensor; f is a traction applied to a portion ΓN of ∂Ω; ΓD ⊂ ∂Ω
and ΓF = ∂Ω\(ΓN∪ΓD) denote the portion of the domain where the structure
is clamped and stress-free, respectively; n is the unit outward normal vector
to ∂Ω.

With a view to the minimization of the structure compliance, G(u) =∫
ΓN

f · u dγ, SIMP formulation becomes
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find ρ ∈ L∞(Ω) such that

min
ρ∈L∞(Ω)

G(u(ρ)) :

{
aρ(u(ρ),v) = G(v) ∀v ∈ U
C(ρ,u(ρ)) ≤ 0

(4.2)

with

C(ρ,u(ρ)) =


∫

Ω

ρ dΩ− α|Ω|

ρmin − ρ,
ρ− 1,

and where u ∈ U = {v ∈ [H1(Ω)]2 : v = 0 on ΓD},

aρ(u,v) =

∫
Ω

σρ(u) : ε(v) dΩ,

is the bilinear form associated with (4.1), α > 0 is the maximum volume
fraction allowed for the optimized structure, |Ω| is the measure of the domain,
and ρmin ∈ (0, 1) is a lower value for the density to ensure the well-posedness
of the state equation. Notice that ρ 7→ u(ρ) defines the solution operator of
the state equation.

The discretization of problem (4.2) is tackled by using standard finite
elements [13], yielding

find ρh ∈ V r
h such that

min
ρh∈V rh

G(uh(ρh)) :

{
aρ(uh(ρh),vh) = G(vh) ∀vh ∈ U s

h

C(ρh,uh(ρh)) ≤ 0
(4.3)

with

C(ρh,uh(ρh)) =


∫

Ω

ρh dΩ− α|Ω|

ρmin − ρh,
ρh − 1,

(4.4)

and where V r
h ⊆ H1(Ω) and U s

h ⊂ U are the scalar and vector continuous
finite element spaces, associated with a triangulation, Th = {K}, of Ω, of
degree r and s, respectively and where it is understood that uh(ρh) ∈ U s

h.
It is well-known that SIMP suffers from some issues, such as the mesh

dependence, the presence of undesired intermediate densities, and checker-
board patterns [8, 18, 47]. In particular, to mitigate the checkerboard effect,
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it is advisable choosing r ≤ s in (4.3)-(4.4). As an alternative, we follow
the approach proposed in [20, 40], by picking r = s = 1. For this particular
choice, in the sequel we adopt the simplified notation Vh and Uh.

The minimization is performed using a gradient-like method by properly
including the constraints [41].

4.2.2 The POD method applied to topology optimiza-
tion

We now aim at performing a structure optimization driven by SIMP at a con-
tained computational cost. For this purpose, we introduce the parametrized
version of (4.3)-(4.4),

find ρµh ∈ Vh such that

min
ρµh∈Vh

G(uh(ρ
µ
h)) :

{
aµρ(uh(ρ

µ
h),vh) = Gµ(vh) ∀vh ∈ Uh

Cµ(ρµh,uh(ρ
µ
h)) ≤ 0

(4.5)

with

Cµ(ρµh,uh(ρ
µ
h)) =


∫

Ω

ρµh dΩ− α|Ω|

ρmin − ρµh,
ρµh − 1,

(4.6)

with µ a real parameter which may be related to the state equation and/or
to the constraint inequality.

Algorithm 6 provides a possible implementation of the computational
procedure employed to solve problem (4.5)-(4.6), denoted by SIMPµ. This
version of SIMP algorithm is a variant of the basic approach, due to the
enrichment with both filtering and sharpening. This choice is justified with
a view to the offline phase of the POD algorithm. In particular, to perform
the filtering, we adopt the Helmholtz-type partial differential problem{

−τ 2∆ρf + ρf = ρh in Ω

τ 2∇ρf · n = 0 on ∂Ω,
(4.7)

with τ a real parameter measuring the thickness of the smoothed density,
to be properly tuned [33]. In practice, problem (4.7) is discretized with
piecewise linear finite elements.
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Algorithm 6 : SIMPµ

Input : CTOL, kmax, kmax1, kmax2, τ1, τ2, τ3, β, ρmin, µ

1: Set: ρ0
h = 1, k = 0

2: while k < kmax do
3: ρk+1

h = optimize(ρkh, kmax1, CTOL, ρmin, µ);

4: ρk+1
h = filter(ρk+1

h , τ1);

5: k = k+1;

6: endwhile

7: ρk+1
h = optimize(ρkh, kmax2, CTOL, ρmin, µ);

8: ρk+1
h = filter(ρk+1

h , τ2);

9: ρk+1
h = sharpening(ρk+1

h , β);

10: ρk+1
h = filter(ρk+1

h , τ3);

Concerning the sharpening, we apply the projection step

ρS = 0.5

(
1 +

tanh(β(ρh − 0.5))

tanh(0.5 β)

)
,

with β a parameter tuning sharpening features, to emphasize the density
gradient, thus yielding a sharper material-void pattern [27, 33, 46]. We
observe that sharpening is, in general, applied to a filtered density. The
particular alternation of filtering and sharpening adopted in Algorithm 6
will be more precisely justified later on.

Function optimize implements a suitable algorithm for constrained min-
imization. For this purpose, we adopt function IPOPT in FreeFem++ [29, 51].
In particular, CTOL is a tolerance for the stopping criterion, kmax1, kmax2 set
the maximum number of iterations allowed for the optimizer. Routine IPOPT

requires also the gradient of G and of C with respect to the density. For more
details about the computation of these gradients, we refer to [40].

According to an offline/online paradigm typical of a POD approach [30,
45], in the offline phase we collect the solutions to the full-size problem by
SIMPµ, called snapshots, into the response matrix, S, for a sufficiently large
set of parameters, {µi}Mi=1. In particular, we are interested in the output
density of Algorithm 6, so that

S = [ρhµ1 ,ρ
h
µ2
, ...,ρhµM ] ∈ RN×M ,



108 CHAPTER 4. POD-ASSISTED TO

with dim(Vh) = N < +∞, and where ρhµ ∈ RN collects the degrees of freedom
of ρhµ, solution to (4.5)-(4.6), with respect to the basis {ϕi}Ni=1 of Vh. Then, to
identify the POD basis we apply the singular value decomposition (SVD) [25]
to S,

S = V ΣΦT ,

with V ∈ RN×N and Φ ∈ RM×M the orthogonal matrices collecting the left
and the right singular vectors of S, respectively, while Σ ∈ RN×M is the
pseudo-diagonal matrix of the singular values of S. The POD basis is thus
identified by the first l columns of V , {vi}li=1, with 0 < l ≤ M , so that the
reduced space V lPOD = span{v1, . . . ,vl} ⊂ RN . By exploiting the bijection
between Vh and RN [13], we define the subspace V l

h,POD of Vh associated with

the subspace V lPOD of RN . As far as the choice of l is concerned, different
criteria can be pursued [30, 45]. The role of SVD is to generate a reduced
basis which turns out to be particularly effective, by removing the redundancy
in the response matrix.

Remark 4.2.1 A priori one could build a response matrix also for the dis-
placement. We have decided to work with the density matrix only, to contain
the computational cost of the offline phase. Additionally, first numerical
checks have highlighted a low accuracy for this double reduction. This topic
is currently out of the focus of this paper.

With a view to the online phase, we introduce matrix Vl = [v1, . . . ,vl] ∈
RN×l collecting the POD basis vectors, so that, with any vector wl ∈ Rl, we
can associate an element wN ∈ RN ∩ V lPOD given by

wN = Vl wl. (4.8)

For any wh ∈ V l
h,POD, by exploiting the standard expansion in terms of the

finite element basis, {ϕi}Ni=1, it follows that, for a suitable wN satisfying (4.8),

wh(x) =
N∑
i=1

wi ϕi(x) =
N∑
i=1

(
Vl wl

)
i

ϕi(x) =
N∑
i=1

( l∑
j=1

Vlijwlj

)
ϕi(x)

=
l∑

j=1

wlj ϕ̃j(x),
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with ϕ̃j(x) =
N∑
i=1

Vlij ϕi(x), i.e., V l
h,POD = span{ϕ̃1, . . . , ϕ̃l} ⊂ Vh, and where

we denote by wi the i-th component of wN .
We now pick a new value for the parameter µ, say µ = µ∗, with µ∗ 6= µi

with i = 1 . . . ,M , and we solve the following SIMPµ∗,POD problem

find ρµ
∗, l
h,POD ∈ V l

h,POD such that

min
ρµ
∗, l
h,POD∈V

l
h,POD

G(uh(ρ
µ∗, l
h,POD)) :

{
aµ
∗
ρ (uh(ρ

µ∗, l
h,POD),vh) = Gµ∗(vh) ∀vh ∈ Uh

Cµ∗(ρµ
∗, l
h,POD,uh(ρ

µ∗, l
h,POD)) ≤ 0

(4.9)
instead of the SIMPµ∗ in (4.5)-(4.6). Solution ρµ

∗, l
h,POD thus provides an approx-

imation for ρµ
∗

h . The computational benefit expected from this procedure can
be ascribed to the fact that (4.9) involves a constrained minimization prob-
lem of dimension l instead of N , in general being l � N . This implies that
few iterations are required to converge. The challenge will be to assess also
the reliability of the POD solution.

From an implementative viewpoint, SIMPµ∗,POD is described by the fol-
lowing variant of Algorithm 6:

Algorithm 7 : SIMPµ∗,POD

Input : CTOL, kmax, β, ρmin, µ∗

1: Set: ρ0
h = 1;

2: ρ1h = optimize(ρ0
h, kmax, CTOL, ρmin, µ∗);

3: ρ1h = sharpening(ρ1h, β);
4: Set: ρµ

∗, l
h,POD = ρ1h;

The whole POD procedure, labeled in the sequel by SIMPOD, is itemized
in Algorithm 8. We remark that the online phase turns out to be effective
if the POD basis does not consist of high-frequency modes. This can be
achieved by employing smooth snapshots with a sufficiently sharp interface
between void and material. Actually, the optimizer returns jagged bound-
aries when no filtering and sharpening are adopted, with associated highly
oscillating POD modes. This justifies the tight combination of optimization
with filtering and sharpening in SIMPµ algorithm.

The effort performed offline allows us to avoid any filtering in the online
phase, while keeping only sharpening.
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Algorithm 8 : SIMPOD

Input : M, {µi}Mi=1, l, µ∗

1: Set: S = [];

2: for i=1:M do

3: ρµih =SIMPµi;

4: S = [S,ρµih ];

5: endfor

6: [V,Σ,Φ] = svd(S);
7: construct space V l

h,POD;

8: ρµ
∗, l
h,POD = SIMPµ∗,POD;

4.2.3 Numerical results for SIMPOD

We focus on the topology optimization of two different structures, namely
a cantilever beam and a bridge. The parameter µ will assume a different
meaning, being associated with either the state equation or the inequality
constraint.

Concerning the input values for Algorithms 6-7, we refer to Table 4.1,
except for the parameter µ and µ∗, changing through the test-cases.

SIMPµ SIMPµ∗,POD

CTOL= 5 · 10−3 CTOL= 5 · 10−3

kmax= 3 kmax= 300
kmax1= 50 β = 7.5
kmax2= 150 ρmin = 0.01
τ1 = 0.04
τ2 = 0.025
τ3 = 0.02
β = 5
ρmin = 0.01

Table 4.1: Input values for SIMPµ and SIMPµ∗,POD algorithms.
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The SIMPOD cantilever beam

We consider the rectangular domain Ω = (0, 2) × (0, 1) ⊂ R2, with x =
[x, y]T ∈ Ω. The clamped portion of the boundary is ΓD = {(x, y) : x =
0, 0 ≤ y ≤ 1}, the traction f = [0,−100]T is imposed on ΓN = {(x, y) :
x = 2, 0.45 ≤ y ≤ 0.55}, while the material constants are E = 1000 and
ν = 1/3. A triangular structured mesh consisting of 8100 elements discretizes
the domain Ω, N being equal to 4186.

We first choose for parameter µ in (4.5)-(4.6) the volume fraction, α. The
response matrix is assembled with M = 20 snapshots, uniformly sampled in
the interval Iα = [0.2, 0.675]. For the online phase, we select two new values
for the volume fraction, namely, µ∗1 = α∗1 = 0.222 and µ∗2 = α∗2 = 0.578.

Figures 4.1 and 4.2, top-left show the full reference solutions, ρ0.222
h and

ρ0.578
h , respectively, both computed via Algorithm 6 after skipping the last

filtering step and with the same inputs as in Table 4.1. The other panels in
the same figures provide the POD density for the values of l in Tables 4.2
and 4.3. The main difference between the two cases is that, while 4 POD
modes suffice to detect the topology for the structure in Figure 4.1, the more
complex layout of the cantilever in Figure 4.2 requires at least 16 modes.

From a quantitative viewpoint, we collect information of interest in Ta-
bles 4.2 and 4.3, i.e., the CPU time (in seconds1), the compliance, G, and
the number of iterations demanded by SIMPµ∗ and SIMPµ∗,POD to converge,
where, for SIMPµ∗ , the sum of the iterations involved in the four runs of
optimize is understood. The values in the two tables exhibit a different
trend. For the smaller volume fraction, a few iterations are demanded by
the POD procedure, with a consequent reduced CPU time compared with
SIMPµ∗1

(by a factor 8 in the worst case and 20 for l = 4). Nevertheless,
the estimated compliance is more than double compared with the reference
value, 15.7588. For the larger value of α∗, the predicted compliance is more
reliable (with a mismatch of about 14%). Moreover, few iterations suffice to
compute the reference solution.

The numerical verification provides a partial justification to the different
behaviour in the tables. Actually, the smaller the volume fraction, the larger
the number of iterations required by SIMPµ∗ to converge, whereas the time
demanded by the POD approach essentially scales in the same way for both
the configurations.

1The computations have been run on a GenuineIntel Pentium(R) Dual-Core CPU
E6300 2.80 GHz 4GB RAM desktop computer.
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Figure 4.1: SIMPOD cantilever test case - volume fraction α∗1: reference
solution (top-left); POD solution for l = 4 (top-right), l = 7 (bottom-left)
and l = 13 (bottom-right).

Figure 4.2: SIMPOD cantilever test case - volume fraction α∗2: reference
solution (top-left); POD solution for l = 1 (top-right), l = 5 (bottom-left)
and l = 16 (bottom-right).
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CPU time [s] G #iterations
SIMPµ∗1

140.71 15.7588 198
l = 4 7.27 55.3057 14
l = 7 11.14 44.1419 20
l = 13 16.58 36.0107 28

Table 4.2: SIMPOD cantilever test case - volume fraction α∗1: quantitative
data for SIMPµ∗1

and SIMPµ∗1,POD algorithms.

CPU time [s] G #iterations
SIMPµ∗2

41.95 4.9978 59
l = 1 4.52 6.8983 9
l = 5 10.83 6.1095 20
l = 16 27.14 5.7209 28

Table 4.3: SIMPOD cantilever test case - volume fraction α∗2: quantitative
data for SIMPµ∗2

and SIMPµ∗2,POD algorithms.

CPU time [s] G #iterations
SIMPµ∗ 56.11 6.5420 79
l = 1 3.88 22.0962 8
l = 2 5.55 9.5097 11
l = 3 14.04 8.4831 27
l = 5 10.35 7.6995 18
l = 8 16.50 7.5410 16

Table 4.4: SIMPOD cantilever test case - traction position: quantitative data
for SIMPµ∗ and SIMPµ∗,POD algorithms.

We now make a different choice for parameter µ, namely we pick the
position, yf , where the traction is applied. Consequently, the Neumann
boundary becomes ΓN = {(x, y) : x = 2, |y − yf | ≤ 0.05} and α is now set
to 0.5. Matrix S is built starting from M = 11 snapshots, and selecting yf
uniformly in the interval [0, 1]. For the online phase, we choose µ∗ = y∗f =
0.111. The reference topology is shown in Figure 4.3, top-left.

Figure 4.3, top-right, center and bottom, provides the layout predicted
by SIMPOD algorithm for the five values of l in Table 4.4. We remark that
only two modes provide a layout with the same topology as the reference
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Figure 4.3: SIMPOD cantilever test case - traction position: reference solu-
tion (top-left); POD solution for l = 1 (top-right), l = 2 (center-left), l = 3
(center-right), l = 5 (bottom-left) and l = 8 (bottom-right).

structure, except for some detail in the bottom-right portion of Ω. Eventu-
ally, 8 POD modes furnish an accurate prediction for the expected cantilever,
as confirmed also by the quantitative analysis in Table 4.4. Actually, the re-
duction of the computational time amounts to a factor of about 3.4, while
the discrepancy on the compliance is about 15%.

The SIMPOD bridge

This second test case deals with the optimization of a bridge. The domain is
Ω = (0, 6)× (0, 1), discretized with an isotropic triangular mesh consisting of
11260 elements, with N = 5840. The traction f = [0,−100]T is imposed on
the portion ΓN = {(x, y) : 2.9 ≤ x ≤ 3.1, y = 1} of the boundary. On ΓD1 =
{(x, y) : 0 ≤ x ≤ 0.06, y = 0} we impose that the vertical displacement
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is null to model a roller, whereas on ΓD2 = {(x, y) : 5.94 ≤ x ≤ 6} both
the components of the displacements are set to zero. Finally, the material
constants are E = 1000 and ν = 1/3 as for the cantilever test case.

The parameter adopted for the POD analysis is the volume fraction, α.
The offline phase is performed with SIMPµ algorithm with the same input
values as in Table 4.1, except for τ3 which is now set to 0.05, and choosing
M = 20 values of µ evenly distributed in Iα = [0.2, 0.675]. The parameter
selected for the online phase is α∗ = 0.362.

Figure 4.4, top-left exhibits the reference solution together with three
predictions corresponding to an increasing number of POD modes. At least,
12 modes have to be employed to obtain a somewhat accurate prediction, as
shown in Figure 4.4, top-right and bottom.

Concerning the data in Table 4.5, the computational saving provided by
SIMPOD is about eight times in the worst case, even though the predicted
compliance is not so accurate, differing from the reference one of about 19%
for the largest value of l (l = 12).

Figure 4.4: SIMPOD bridge test case - volume fraction: reference solution
(top-left); POD solution for l = 1 (top-right), l = 2 (bottom-left), l = 12
(bottom-right).

CPU time [s] G #iterations
SIMPµ∗ 227.53 63.6929 273
l = 1 5.4 158.1365 8
l = 2 10.23 107.4605 14
l = 12 28.57 75.7358 35

Table 4.5: SIMPOD bridge test case - volume fraction: quantitative data for
SIMPµ∗ and SIMPµ∗,POD algorithms.
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4.3 An enhanced approach

In the previous section, a basic-POD approach for topology optimization has
been proposed and verified. As the numerical experiments show, the algo-
rithm succeeds in remarkably reducing the computational time, delivering a
reliable result, yet rough and, in general, less performing with respect to the
reference solution if the number of POD modes is not sufficiently large. To
overcome this limit, it is standard to resort to a larger number of snapshots.
This option can be prohibitive in terms of memory usage, since the number
of entries in S linearly depends on the number of snapshots, and the optimal
value for both M and l is, in general, not known a priori.

As an alternative, we here propose a new approach, where the output
of SIMPOD is used as the initial guess, cheap and rough, for a new run
of a topology optimization procedure, in the spirit of a predictor-corrector
method, named PC-SIMPOD.

4.3.1 A predictor-corrector SIMPOD (PC-SIMPOD)
technique enriched with mesh adaptation

The scheme here proposed exploits the advantages of SIMPOD (predictor)
to quickly obtain an initial guess (more accurate than a dummy choice) for
the optimization of the structure, so that the topology optimizer (corrector)
can be initialized in a neighbourhood of the solution. The expected result
of such a combination is that a few optimization iterations in the correction
step suffice to deliver a solution that is competitive with the one directly
produced by the SIMP method on a generic initial guess.

In particular, for the correction step, we adopt the adaptive version of
SIMP algorithm, namely SIMPATY, proposed in [39, 40], where the employ-
ment of a fixed mesh as in Section 4.2.3 is replaced by a grid which sharply
follows the boundaries of the structure to be optimized. As shown in [20,
40], the main benefit of SIMPATY is to yield sharp layouts characterized by
smooth material/void boundaries, almost ready for the 3D printing process.
This is achievable using an anisotropic mesh adaptation procedure driven by
a sound mathematical tool, namely an a posteriori error estimator.

Anisotropic meshes allow us to properly tune the size of mesh elements
together with the corresponding shape and orientation. To get all this infor-
mation, we resort to the setting used in [17, 21, 22, 38], based on the affine
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transformation TK : K̂ → K, mapping the equilateral reference element K̂
inscribed in the unit circle, into a generic element K of Th,

x = TK(x̂) = MKx̂ + bK ∀x̂ ∈ K̂,

where MK ∈ R2×2 deforms and rotates the reference element and bK shifts
it. The Jacobian MK can be factorized by successively applying the polar
and the spectral decomposition, so that

MK = (RT
KΛKRK)ZK ,

where ZK ∈ R2×2 is a rotation matrix, ΛK = diag(λ1,K , λ2,K) ∈ R2×2 collects
the eigenvalues of the symmetric positive definite matrix RT

KΛKRK , with
λ1,K ≥ λ2,K , and RT

K = [r1,K , r2,K ] ∈ R2×2 is the orthogonal matrix of
the corresponding eigenvectors. Matrices ΛK and RK contain the geometric
features of the element K, namely the length, λi,K , of the semi-axes of the
ellipse circumscribed to K, and the directions, ri,K , of such axes, with i = 1, 2
(see Figure 4.5). Triangle K is thus fully identified by the three quantities
{λ1,K , λ2,K , r1,K}. The aspect ratio sK = λ1,K/λ2,K ≥ 1 provides a measure
of the deformation of the element, with the understanding that high values
for sK are associated with very stretched elements.

Figure 4.5: Map TK from the reference element K̂ to the generic one K.

SIMPATY algorithm relies on a posteriori error estimator to generate
the anisotropic adapted mesh. We resort to an anisotropic variant of the
recovery-based error estimator proposed by O.C. Zienkiewicz and J.Z. Zhu
in [59, 60, 61], following [36, 38]. In particular, the estimator η for the
H1(Ω)-seminorm of the density discretization error, |ρ− ρh|H1(Ω), is given by

η2 =
∑
K∈Th

η2
K ,
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with

η2
K =

1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
(4.10)

the element contribution, and where E∇ = [P (∇ρh)−∇ρh]∆K
is the recovered

error,

P (∇ρh)|K =
1

|∆K |
∑
T∈∆K

|T | ∇ρh|T

is the recovered gradient associated with K, obtained via an area-weighted
average of the gradient of ρh computed on the patch ∆K of the elements
sharing at least one vertex with K, |∆K | is the area of ∆K and G∆K

(·) ∈ R2×2

is the symmetric positive semidefinite matrix with entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T

wiwj dT with i, j = 1, 2, (4.11)

for any vector-valued function w = (w1, w2)T ∈ [L2(Ω)]2.
Estimator η is then turned into a practical information to build the new

adapted mesh. This is carried out via a metric-based procedure [24], which
aims at minimizing the number of elements to ensure a certain accuracy,
η ≤ TOL, in combination with an equidistribution of the error over the tri-
angles. This leads to the prediction of the optimal spacing, {λopt

i,K}2
i=1, and

orientation, {ropt
i,K}2

i=1, for each element K of the mesh via an iterative pro-
cedure. This can be accomplished following [37], so that

λopt
1,K = g

−1/2
2

(
TOL2

2#Th |∆̂K |

)1/2

, λopt
2,K = g

−1/2
1

(
TOL2

2#Th |∆̂K |

)1/2

,

ropt
1,K = g2, ropt

2,K = g1,

(4.12)

with |∆̂K | = |∆K |/(λ1,Kλ2,K), and where {gi,gi}i=1,2 are the eigenvalue-

eigenvector pairs associated with the scaled matrix Ĝ∆K
(E∇) = G∆K

(E∇)/|∆K |,
with g1 ≥ g2 > 0, {gi}i=1,2 orthonormal vectors, and #Th denotes the cardi-
nality of the mesh elements.

The spacing and the orientation thus predicted, {λopt
i,K , r

opt
i,K}2

i=1, become
the input to a metric-based mesh generator which produces the new anisotropic
adapted mesh. The process is repeated in an iterative loop, until some con-
vergence criterion is met.
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The PC-SIMPOD with mesh adaptation procedure is itemized in Algo-
rithm 9.

Algorithm 9 : PC-SIMPOD with anisotropic mesh adaptation

Input : MTOL, CTOL, TOL, kmax, ρmin, T 0
h , µ∗, l

1: k = 0, errM = 1 + MTOL;

2: Compute ρµ
∗, l
h,POD with Algorithm 8;

3: Set ρ0
h = ρµ

∗, l
h,POD;

4: while errM > MTOL & k < kmax do

5: kmax1=20-3k;

6: ρk+1
h = optimize(ρkh, kmax1, CTOL, ρmin, µ∗);

7: T k+1
h = adapt(T k

h , ρk+1
h , TOL);

8: errM = |#T k+1
h −#T k

h |/#T k
h ;

9: k = k + 1;

10: endwhile

The routine adapt in line 7: generates the new adapted mesh identified
by the optimal spacing and orientation in (4.12). Concerning the stopping
criterion, we rely on the stagnation of the cardinality of the elements between
two consecutive meshes, to within the tolerance MTOL. We remark that an
interpolation of the density onto the new adapted mesh is understood at each
change of the grid before restarting the procedure (see [40] for more details).
Moreover, neither filtering nor sharpening are applied in this algorithm, since
mesh adaptation automatically provides smooth structures which avoid the
employment of these procedures.

4.3.2 Numerical results for PC-SIMPOD

We show here the improvements led by Algorithm 9 in terms of accuracy on
the test-cases in Section 4.2.3 and 4.2.3.

The PC-SIMPOD cantilever beam

We adopt as predictor density the output of SIMPOD algorithm for two
different values of l.
The scenario to be recovered is the same as in Figure 4.3, where the selected
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parameter coincides with the traction position, namely µ∗ = 0.111. In more
detail, we start from the two less accurate POD approximations in Figure 4.3,
namely ρ0

h = ρµ
∗, 1
h,POD and ρ0

h = ρµ
∗, 2
h,POD. Concerning the input parameters for

Algorithm 9, we set

MTOL = 0.01, CTOL = 10−4, TOL = 0.125, kmax = 4, ρmin = 0.01,

while T 0
h coincides with the structured mesh of 8100 triangles in Section 4.2.3.

For the sake of comparison, the new reference solution coincides with the
output of Algorithm 9, skipping step 2:, and directly setting ρ0

h in 3: as the
approximation provided by SIMPµ∗ (see Figure 4.6, top).

Figure 4.6, center-bottom shows the output of PC-SIMPOD for l = 1
and l = 2, respectively. We remark that the PC-SIMPOD approximation for
l = 1 is very close to the reference structure even though the initial guess,
ρµ
∗, 1
h,POD, is poor. The final topology is slightly different from the expected one

because of the presence of an additional hole in the bottom-right corner, and
it also exhibits a bent contour in correspondence with the traction application
point.
Starting from a barely richer initial guess is enough to obtain a much more
accurate layout, as shown in the bottom panel of the figure. Concerning
the computational mesh, it is evident that the anisotropic features allow us
to detect the void/material interface in a sharp manner and yield a smooth
layout.

CPU time [s] G TC [s] #iterC #Th maxK sK
SIMPµ∗ 113.72 5.1831 59.32 61 5802 564.43
l = 1 51.09 6.5215 47.39 45 5920 97.33
l = 2 62.36 5.6006 57.06 58 5438 345.58

Table 4.6: PC-SIMPOD cantilever test case - traction position: quantitative
data for PC-SIMPOD for different choices of ρ0

h.

Table 4.6 enriches the quantities in the previous tables with additional
information, namely the time, TC , required by the while loop in Algorithm 9,
the total number, #iterC , of iterations of optimize in the corrector step,
the mesh cardinality, #Th, and the maximum aspect ratio, maxK sK , of the
final anisotropic adapted mesh.
The total CPU time demanded by PC-SIMPOD for l = 1, 2, is essentially
half the time associated with the same procedure starting from ρ0

h =SIMPµ∗ .
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Figure 4.6: PC-SIMPOD cantilever test case - traction position: density
(left) and density superposed to the mesh (right) when ρ0

h =SIMPµ∗ (top),

ρ0
h = ρµ

∗, 1
h,POD (center), ρ0

h = ρµ
∗, 2
h,POD (bottom).

As expected, most of the computational time is spent in the while loop. The
maximum discrepancy in the compliance is of about +10% with respect to
the reference configuration. The adaptive procedure delivers in all the three
cases meshes with a similar number of triangles, which are, in general, highly
stretched.

The PC-SIMPOD bridge

We aim at reconstructing the structure in Figure 4.4, top-left starting from
the SIMPOD approximation in the bottom-right panel of the same figure
(namely, µ∗ = 0.362). Algorithm 9 is slightly modified by setting kmax1=15



122 CHAPTER 4. POD-ASSISTED TO

for all iterations, and choosing as input values

MTOL = 0.01, CTOL = 10−4, TOL = 0.1, kmax = 12, ρmin = 0.01,

with T 0
h the same mesh used for SIMPOD.

The reference solution, shown in Figure 4.7, top, is computed via Algorithm 9
directly setting the initial guess, ρ0

h, for the density as the approximation
delivered by SIMPµ∗ .

Figure 4.7 shows the good matching between the reference and the PC-
SIMPOD solutions despite some local differences can be detected. However,
these heterogeneities do not affect the mechanical performance of the layout
yielded by the predictor. Actually, the compliance of the PC-SIMPOD bridge
is thoroughly comparable with the reference value, while the gain in terms
of computational time is remarkable (the CPU time is, in practice, halved).

Finally, the anisotropic mesh is highly stretched as confirmed by the val-
ues of the maximum stretching factors in Table 4.7.

Figure 4.7: PC-SIMPOD bridge test case - volume fraction: density (left) and
density superposed to the mesh (right) when ρ0

h =SIMPµ∗ (top), ρ0
h = ρµ

∗, 12
h,POD

(bottom).

CPU time [s] G TC [s] #iterC #Th maxK sK
SIMPµ∗ 342.67 29.9937 115.02 62 32480 1540.80
l = 12 156.49 30.9364 104.66 58 43308 1310.30

Table 4.7: PC-SIMPOD bridge test case - volume fraction: quantitative data
for PC-SIMPOD for two choices of ρ0

h.
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4.4 Multi-parameter topology optimization

In Sections 4.2 and 4.3, we have focused on the case where structure opti-
mization depends on just one parameter. Nevertheless, realistic configura-
tions involve more parameters, simultaneously. For instance, with reference
to test cases tackled in the previous sections, it could be of interest to identify
the optimal configuration for a new pair (α, yf ).

From a formal viewpoint, SIMPµ formulation can be rewritten as in (4.5)-
(4.6) simply by replacing the scalar parameter µ by the q-dimensional vector
of parameters, µ = [µ1, µ2, ..., µq]T ∈ Rq. In practice, for each parameter
µj, we consider Sj different values, µjij , with ij = 1, . . . , Sj and j = 1, . . . , q.

SIMPµ algorithm is then employed to generate a discrete density ρ
µI
h for each

parameter µI = [µ1
i1
, µ2

i2
, . . . , µqiq ]

T ∈ Rq where I = [i1, i2, . . . , iq]
T ∈ Nq, with

i1 = 1, . . . , S1, i2 = 1, . . . , S2, iq = 1, . . . , Sq. The offline phase thus collects
a total of M = S1 S2 . . . Sq snapshots that have to be properly gathered into
a generalization of the standard response matrix usually referred to as atlas,
A. With this aim, several approaches can be employed, ranging from an
arbitrary organization of the densities ρ

µI
h into a two-dimensional (N ×M)

matrix to a q-dimensional array. The first approach is viable if q is small
and the standard SVD can be employed to extract the POD basis. In such
a case, the ordering of ρ

µI
h in A is arbitrary. We adopt the index ordering

based on the following for loops:

for i1 = 1:S1

for i2 = 1:S2

...

for iq = 1:Sq

...

end

end

end

On the contrary, for large values of q, the approach based on the q-dimensional
array turns out to be advisable and a Higher-Order SVD (HOSVD) can be
adopted as a more performing procedure to extract the reduced basis [14,
31].

Since we limit the numerical assessment to the case of two parameters,
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we define A as

A =
[
ρ
µ11µ

2
1

h , ...,ρ
µ11µ

2
S2

h ,ρ
µ12µ

2
1

h , ...,ρ
µ12µ

2
S2

h , ...,ρ
µ1S1

µ21
h , ...,ρ

µ1S1
µ2S2

h

]
,

where the generic density ρ
µ1i1

µ2i2
h is the output of the multi-parameter version,

multi-SIMPµ, of Algorithm 6, with µ replaced by the vector µ = [µ1
i1
, µ2

i2
]T ,

and we apply the standard SVD to A to extract the POD basis.
The online phase is started by selecting the new multi-parameter, µ∗ =

[µ∗,1, µ∗,2, ..., µ∗,q]T ∈ Rq, and by resorting to the multi-parameter version,
multi-SIMPµ∗,POD, of SIMPµ∗,POD.

We will refer to the whole procedure here described as multi-SIMPOD. In
a straightforward way, we can generalize the PC-SIMPOD procedure enriched
with anisotropic mesh adaptation to the multi-parameter case, denoting the
resulting procedure by multi-PC-SIMPOD.

Goal of the next section is to investigate the performances of both multi-
SIMPOD and multi-PC-SIMPOD methods.

4.4.1 Numerical results for multi-SIMPOD and multi-
PC-SIMPOD

We first check the performances of multi-SIMPOD algorithm focusing on
the cantilever test case in Section 4.2.3, and by choosing as multi-parameter
µ = [µ1, µ2]T = [α, yf ]

T . We investigate the sensitivity of the predicted
layout to two different atlas consisting of 25 and 50 snapshots. For the first
atlas, A1, we set S1 = S2 = 5 and

µ1 ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, µ2 ∈ {0, 0.25, 0.5, 0.75, 1}.

For the second atlas, A2, S1 = 10 and S2 = 5 corresponding to the following
samplings

µ1 ∈ {0.3, 0.325, 0.35, 0.375, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6},
µ2 ∈ {0, 0.25, 0.5, 0.75, 1}.

The input parameters for SIMPµ are the same as in Table 4.1, except for τ3

and β now set to 0.0286 and 10, respectively, while SIMPµ∗,POD shares all
the input values. The computational mesh is the structured one as in Sec-
tion 4.2.3. The online multi-parameter is µ∗ = [µ∗,1, µ∗,2]T = [0.333, 0.444]T .
As reference structure, we consider the output provided by multi-SIMPµ∗ .
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Figure 4.8 and Table 4.8 summarize the output of multi-SIMPOD proce-
dure from a qualitative and quantitative viewpoint, respectively. Entries in
Table 4.8 preserve the same meaning as for the previous test cases. At least 5
POD modes have to be adopted to correctly identify the traction area, while
almost all of the 25 modes are required to obtain a reliable prediction of the
layout.

Similarly to the single-parameter setting, we observe a bad prediction of
the mechanical stiffness which is about 140% higher in the multi-SIMPOD
case (l = 22) with respect to the reference configuration. The computational
time reduces, however, by a factor 8.

Figure 4.8: multi-SIMPOD cantilever test case for atlas A1: reference solu-
tion (top-left); POD solution for l = 3 (top-right), l = 4 (center-left), l = 5
(center-right), l = 13 (bottom-left) and l = 22 (bottom-right).

Due to the poor structural performances of multi-SIMPOD for atlas A1,
we investigate if a finer sampling of the possible scenarios improves the quality
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CPU time [s] G #iterations
multi-SIMPµ∗ 172.08 7.4551 249
l = 3 8.68 39.4493 15
l = 4 19.33 33.7280 33
l = 5 13.92 29.4964 23
l = 13 26.38 19.9066 39
l = 22 21.56 17.9476 34

Table 4.8: multi-SIMPOD cantilever test case for atlas A1: quantitative data
for multi-SIMPµ∗ and multi-SIMPµ∗,POD algorithms.

of the prediction by resorting to atlas A2.
In Figure 4.9, we compare the density distribution provided by multi-

SIMPOD for different choices of l with the reference configuration. At least
22 modes are required to identify the final topology, whereas 41 modes deliver
a sharp and smooth structure very close to the reference one. Table 4.9
provides a more quantitative assessment. The performances are still not
so satisfactory. Indeed, the mismatch between the two configurations in
terms of mechanical stiffness is about 100% higher in the multi-SIMPOD
case (l = 41) with respect to the reference configuration. The gain in terms
of computational time is now of a factor about equal to 4. Moreover, it turns
out that there are critical configurations where a large number of iterations
is demanded, possibly due to the switching of the solution from two different
minima of the compliance functional.

CPU time [s] G #iterations
multi-SIMPµ∗ 172.08 7.4551 249
l = 4 10.12 31.1832 18
l = 17 70.05 20.2008 109
l = 22 49.93 18.6441 75
l = 31 38.96 15.9707 52
l = 41 39.73 14.6244 46

Table 4.9: multi-SIMPOD cantilever test case for atlas A2: quantitative data
for multi-SIMPµ∗ and multi-SIMPµ∗,POD algorithms.

Moving from the improvements led by the PC-SIMPOD algorithm in
Section 4.3.2, we apply the multi-parameter version of such an algorithm
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Figure 4.9: multi-SIMPOD cantilever test case for atlas A2: reference solu-
tion (top-left); POD solution for l = 4 (top-right), l = 17 (center-left), l = 22
(center-right), l = 31 (bottom-left) and l = 41 (bottom-right).

to both atlases. Figure 4.10 compares the reference layout provided by
multi-PC-SIMPOD when fed by the output of multi-SIMPµ∗ , with the multi-
PC-SIMPOD approximation initialized by the structure predicted by multi-
SIMPOD algorithm for l = 4. There is no striking difference between the
two cantilevers, except for a slight discrepancy at the tip, which exhibits a
mild bending when starting from the first atlas.

In Table 4.10, we gather the same quantities as in Table 4.6 for l = 4
and l = 22. These two values for l are the only ones shared by Tables 4.8
and 4.9. Overall, the four configurations do not yield appreciable differences
in terms of compliance and of computational time, for the same l. Also the
meshes have a similar number of elements as well as maximum aspect ratio.
Nevertheless, since the computational gain provided by the choice l = 4 is
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much higher compared with l = 22 (about 3 and 2 times, respectively), we
can reasonably assume that the first choice pays off both in terms of accuracy
and computational saving.

Figure 4.10: multi-PC-SIMPOD cantilever test case: density (left) and
density superposed to the mesh (right) when ρ0

h =multi-SIMPµ∗ (top),

ρ0
h = ρµ

∗, 4
h,POD for atlas A1 (center), ρ0

h = ρµ
∗, 4

h,POD for atlas A2 (bottom).

CPU time [s] G TC [s] #iterC #Th maxK sK
multi-SIMPµ∗ 249.81 7.3418 78.64 105 12770 921.32

A1 l = 4 76.45 7.5701 60.26 85 11146 342.75
l = 22 103.83 7.1408 82.79 110 9178 539.94

A2 l = 4 74.07 7.4773 65.05 90 12068 458.27
l = 22 124.98 7.4173 78.64 105 12914 349.10

Table 4.10: multi-PC-SIMPOD cantilever test case: quantitative data for
multi-PC-SIMPOD for different choices of ρ0

h.
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4.5 Conclusions

For the sake of clarity, in Table 4.11 we provide an overview of the methods
considered in this paper, by highlighting some of the associated main features,
based on the numerical assessment in Sections 4.2.3, 4.3.2, 4.4.1. Namely, we
supply a short description of the methods, classified in offline and/or online
(off⁄on-line), computationally efficient and/or reliable (E ⁄R) with respect
to the standard SIMP algorithm [6, 8, 44], and based on a fixed or adapted
(F ⁄A) mesh.

It turns out that three are the methods outperforming the others, namely,
SIMPATY and PC-SIMPOD for the single-parameter case, and multi-PC-
SIMPOD for the multi-parameter case. Nevertheless, Table 4.11 emphasizes
qualitative information only. Thus, to compare more deeply SIMPATY with
PC-SIMPOD, we refer to Tables 4.6 and 4.7, while for SIMPATY versus
multi-PC-SIMPOD to Table 4.10. In general, it turns out that SIMPATY is
slightly more reliable as it provides structures with better mechanical proper-
ties, whereas PC-SIMPOD and multi-PC-SIMPOD are more efficient, cutting
down the CPU time by a factor 2.

On the contrary, the plain application of POD to SIMP on a fixed mesh
leads to very efficient simulations which are, however, not so reliable from the
mechanical standpoint. Although there is still some room for improvements
by a more careful tuning of filtering and sharpening, we are confident that
PC-SIMPOD and multi-PC-SIMPOD methods are the ones to be supported
as a robust design tool for structural topology optimization. Moreover, we
expect that the advantages observed in the two-dimensional case will be
magnified by generalizing these methods to a 3D context, which represents
the next step of our research.
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off⁄on-line E ⁄ R F ⁄ A

SIMPATY SIMP+anisotropic mesh adaption [39, 40] 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

SIMPµ SIMP+filtering+sharpening 3 ⁄ 7 7 ⁄ 3 3 ⁄ 7

SIMPµ∗,POD SIMP on the reduced space+sharpening 7 ⁄ 3 3 ⁄ 7 3 ⁄ 7

SIMPOD SIMPµ+SIMPµ∗,POD 3 ⁄ 3 3 ⁄ 7 3 ⁄ 7

PC-SIMPOD predictor: SIMPOD + corrector: SIMPATY 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

multi-SIMPµ multi-parameter SIMP+filtering+sharpening 3 ⁄ 7 7 ⁄ 3 3 ⁄ 7

multi-SIMPµ∗,POD multi-SIMP on the reduced space+sharpening 7 ⁄ 3 3 ⁄ 7 3 ⁄ 7

multi-SIMPOD multi-SIMPµ+multi-SIMPµ∗,POD 3 ⁄ 3 3 ⁄ 7 3 ⁄ 7

multi-PC-SIMPOD predictor: multi-SIMPOD + corrector: SIMPATY 7 ⁄ 3 3 ⁄ 3 7 ⁄ 3

Table 4.11: Main features of the methods considered in the paper.
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[16] L. Dedè, M. J. Borden, and T. J. R. Hughes. “Isogeometric analysis
for topology optimization with a phase field model”. In: Arch. Comput.
Methods Eng. 19 (2012), pp. 427–465.

[17] L. Dedè, S. Micheletti, and S. Perotto. “Anisotropic error control for en-
vironmental applications”. In: Appl. Numer. Math. 58.9 (2008), pp. 1320–
1339.

[18] A. Dı́az and O. Sigmund. “Checkerboard patterns in layout optimiza-
tion”. In: Struct. Multidiscip. Optim. 19 (1995), pp. 89–92.

[19] H. Eschenauer and N. Olhoff. “Topology optimization of continuum
structures: a review”. In: Appl. Mech. Rev. 54.4 (2001), pp. 331–390.

[20] N. Ferro, S. Micheletti, and S. Perotto. “A sequential coupling of shape
and topology optimization for structural design”. Submitted.

[21] L. Formaggia, S. Micheletti, and S. Perotto. “Anisotropic mesh adap-
tion with application to CFD problems”. In: Proceedings of WCCM V,
Fifth World Congress on Computational Mechanics. Ed. by H. Mang,
F. Rammerstorfer, and J. Eberhardsteiner. 2002, pp. 1481–1493.



BIBLIOGRAPHY 133

[22] L. Formaggia and S. Perotto. “New anisotropic a priori error esti-
mates”. In: Numer. Math. 89 (2001), pp. 641–667.

[23] H. Garcke et al. “Numerical approximation of phase field based shape
and topology optimization for fluids”. In: SIAM J. Sci. Comput. 37.4
(2015), A1846–A1871.

[24] P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing.
Application to Finite Elements. Editions Hermès, Paris, 1998.

[25] G. H. Golub and C. F. Van Loan. Matrix computations. Fourth. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins Univer-
sity Press, Baltimore, MD, 2013.

[26] F. de Gournay, G. Allaire, and F. Jouve. “Shape and topology opti-
mization of the robust compliance via the level set method”. In: ESAIM
Control Optim. Calc. Var. 14.1 (2008), pp. 43–70.

[27] J. K Guest, J. H. Prevost, and T. Belytschko. “Achieving minimum
length scale in topology optimization using nodal design variables and
projection functions”. In: Int. J. Numer. Methods Engng 61.2 (2004),
pp. 238–254.

[28] M. D. Gunzburger. Perspectives in Flow Control and Optimization.
Vol. 5. Advances in Design and Control. Society for Industrial and
Applied Mathematics (SIAM),Philadelphia, PA, 2003.

[29] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math.
20.3-4 (2012), pp. 251–265.

[30] M. Kahlbacher and S. Volkwein. “Galerkin proper orthogonal decompo-
sition methods for parameter dependent elliptic systems”. In: Discuss.
Math. Differ. Incl. Control Optim. 27.1 (2007), pp. 95–117.

[31] K. Kamalja and N. Khangar. “Singular value decomposition for multi-
dimensional matrices”. In: Int. J. Eng. Res. Appl. 3.6 (2013), pp. 123–
129.

[32] K. Kunisch and S. Volkwein. “Galerkin proper orthogonal decomposi-
tion methods for a general equation in fluid dynamics”. In: SIAM J.
Numer. Anal. 40.2 (2002), pp. 492–515.

[33] B. S. Lazarov and O. Sigmund. “Filters in topology optimization based
on Helmholtz-type differential equations”. In: Int. J. Numer. Meth.
Engng 86.6 (2011), pp. 765–781.



134 BIBLIOGRAPHY

[34] P. LeGresley and J. Alonso. “Airfoil design optimization using reduced
order models based on proper orthogonal decomposition”. In: AIAA
Paper 2000-2545 (2000).

[35] Q. Liang. Performance-based Optimization of Structures. Theory and
Applications. Spon Press, London, 2005.

[36] S. Micheletti and S. Perotto. “Anisotropic adaptation via a Zienkiewicz-
Zhu error estimator for 2D elliptic problems”. In: Numerical Mathemat-
ics and Advanced Applications. Ed. by G. Kreiss et al. Springer-Verlag
Berlin Heidelberg. 2010, pp. 645–653.

[37] S. Micheletti and S. Perotto. “Reliability and efficiency of an anisotropic
Zienkiewicz-Zhu error estimator”. In: Comput. Methods Appl. Mech.
Engrg. 195.9–12 (2006), pp. 799–835.

[38] S. Micheletti, S. Perotto, and P. E. Farrell. “A recovery-based error
estimator for anisotropic mesh adaptation in CFD”. In: Bol. Soc. Esp.
Mat. Apl. SeMA 50 (2010), pp. 115–137.

[39] S. Micheletti, S. Perotto, and L. Soli. Ottimizzazione topologica adat-
tativa per la fabbricazione stratificata additiva. Italian patent applica-
tion No. 102016000118131, filed on November 22, 2016 (extended as
Adaptive topology optimization for additive layer manufacturing, Inter-
national patent application PCT No. PCT/IB2017/057323). 2017.

[40] S. Micheletti, S. Perotto, and L. Soli. “Topology optimization driven
by anisotropic mesh adaptation: towards free-form design”. Submitted.

[41] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series
in Operations Research. Springer-Verlag, New York, 1999.

[42] B. Raghavan et al. “A bi-level meta-modeling approach for structural
optimization using modified POD bases and Diffuse Approximation”.
In: Computers & Structures 127 (2013), pp. 19 –28.

[43] S. S. Ravindran. “A reduced-order approach for optimal control of flu-
ids using proper orthogonal decomposition”. In: Internat. J. Numer.
Methods Fluids 34.5 (2000), pp. 425–448.

[44] G. I. N. Rozvany. “A critical review of established methods of struc-
tural topology optimization”. In: Struct. Multidiscip. Optim. 37 (2009),
pp. 217–237.



BIBLIOGRAPHY 135

[45] E. W. Sachs and S. Volkwein. “POD-Galerkin approximations in PDE-
constrained optimization”. In: GAMM-Mitt. 33.2 (2010), pp. 194–208.

[46] O. Sigmund. “Morphology-based black and white filters for topology
optimization”. In: Struct. Multidiscip. Optim. 33 (2007), pp. 401–424.

[47] O. Sigmund and J. Petersson. “Numerical instabilities in topology op-
timization: a survey on procedures dealing with checkerboards, mesh-
dependencies and local minima”. In: Struct. Optim. 16.1 (1998), pp. 68–
75.

[48] O. Sigmund and K. Maute. “Topology optimization approaches, A com-
parative review”. In: Struct. Multidiscip. Optim. 48.6 (2013), pp. 1031–
1055.

[49] L. Sirovich. “Turbulence and the dynamics of coherent structures. I.
Coherent structures”. In: Quart. Appl. Math. 45.3 (1987), pp. 561–571.

[50] J. Sokolowski and A. Zochowski. “On the topological derivative in
shape optimization”. In: SIAM J. Control. Opt. 37 (1999), pp. 1251–
1272.
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Conclusions

In this thesis, the structural optimization problem has been investigated
from a methodological and numerical viewpoint, mainly in terms of topology
optimization. The standard formulation has been enriched with advanced
mathematical procedures. The goal of the proposed methods is twofold. On
the one hand, we enhance the mechanical performances of given structures
by means of shape and topology optimization. On the other hand, we im-
prove the standard SIMP method for topology optimization by resorting to
anisotropic mesh adaptation and the POD model order reduction technique.

In Chapter 2, the mechanical performance, represented by the static com-
pliance, has been improved by proposing a sequential coupling between shape
and topology optimization. The results highlight that the structure predicted
by the coupled shape-topology optimization algorithm is lighter compared
with the result of the shape optimization only, as well as stiffer than the
layout provided by the single topology optimization. The additional benefit
due to anisotropic mesh adaptation is the creation of very smooth structures
characterized by sharp solid/void interfaces. This makes the new designs
almost ready to be 3D-printed.

Chapter 3 concerns the application of SIMPATY algorithm to the design
of metamaterials. The mathematical framework is the inverse homogeniza-
tion theory and the objective is to devise new micro-cells ensuring desired
mechanical properties at the macro-scale. The proposed method delivers
innovative cell designs as well as standard micro-cells as present in the litera-
ture. In all cases, the micro-cells have sharp contours and exhibit the desired
effective macroscale properties.

Chapter 4 is focused on the reduction of the computational burden in-
volved in topology optimization. For this goal, we adopted a POD approach,
properly intertwined with SIMPATY algorithm. The main idea is to use the
POD prediction as the initial guess for SIMP enriched with anisotropic mesh
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adaptation, in the spirit of a predictor/corrector method. This idea con-
siderably reduced the number of iterations for SIMPATY to converge also
ensuring similar mechanical performances.

Concerning possible future developments for this work, we list the appli-
cation of the advanced techniques proposed in this thesis to real-life prob-
lems, such as the design of satellite components or prosthetic devices, and
the design of new metamaterials enjoying both mechanical and thermal prop-
erties. For instance, we aim at enhancing catalytic capabilities for strongly
exothermic chemical processes. From a modeling viewpoint, an extension
of the presented algorithms to a more general framework characterized by
uncertainty is mandatory with a view to complex applications. We also plan
to enrich the formulation of the topology optimization problem with de-
sign constraints, to include the manufacturing phase. For instance, in a 3D
printing-based design, it is highly desirable to identify the best orientation of
the printing plate or the optimal location of the overhangs. Multi-objective
topology optimization and a comparison between the SIMP approach and the
level-set method represent another possible issue for future investigations.
Finally, we are interested in incorporating the new techniques here proposed
in a commercial software for topology optimization.


