
i
i

“thesis” — 2019/1/23 — 21:54 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA
DOCTORAL PROGRAMME IN COMPUTER SCIENCE AND ENGINEERING

NEW HORIZONS FOR STREAM PROCESSING

Doctoral Dissertation of:
Lorenzo Affetti

Supervisor:
Prof. Gianpaolo Cugola

Tutor:
Prof. Luciano Baresi

The Chair of the Doctoral Program:
Prof. Barbara Pernici

2019 – XXXI

i
i

“thesis” — 2019/1/23 — 21:54 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2019/1/23 — 21:54 — page 1 — #3 i
i

i
i

i
i

To my mother
and my father

i
i

“thesis” — 2019/1/23 — 21:54 — page 2 — #4 i
i

i
i

i
i

i
i

“thesis” — 2019/1/23 — 21:54 — page 3 — #5 i
i

i
i

i
i

Acknowledgements

I would like to thank my advisor, Gianpaolo Cugola, for his experienced and to-the-
point advices, and Alessandro Margara for his continuous support during my studies.

Thanks to the reviewers of this thesis, who gave many suggestions in order to im-
prove its quality.

There are many people that took part in my life and gave me support, love, and their
friendship during this experience. I enjoyed most of the weekend nights with my great
friends Alessandro and Mattia Piran. I found intellectual stimulation, sense of humor,
great colleagues, and great friends in Riccardo Tommasini and Michele Guerriero, fel-
lows in this great journey. Vanessa walked with me through the hardest parts of this
path. My family always supported me, and, in particular, my mother and my father,
who this thesis is dedicated to, provided me with all the unconditioned love they could.
There are now words to express how grateful I am towards them, both for their support,
and for what they taught to me to build the person I am now.

To all of you, thank you.

3

i
i

“thesis” — 2019/1/23 — 21:54 — page 4 — #6 i
i

i
i

i
i

i
i

“thesis” — 2019/1/23 — 21:54 — page I — #7 i
i

i
i

i
i

Abstract

STREAM processing has gained tremendous attention over the last years and many
Stream Processors (SPs) have been designed and engineered to cope with huge
volumes of data coming at high velocity. Streams could contain stock options,

user clicks in web applications, customer purchases in an e-commerce application,
positions of robots in a warehouse, or temperature measurements from sensors. The
common requirement for streaming applications is to process unbounded streams of
elements and continuously compute queries like “what is the top purchased product?”,
or “what was the average temperature in the server room in the last second?” in or-
der to take rapid compensating actions such as ordering a new stock of the top pur-
chased product, or prevent fire in the server room. In order to continuously process
huge amounts of elements and take real-time decisions, SPs exploit the computational
power offered by multiple machines by distributing the computation and dividing data
in shared-nothing partitions to avoid expensive data race management while process-
ing. Stream processing is also a programming paradigm suited for designing novel
event-driven applications with high throughput and low-latency requirements. Streams
offer decoupling among the processing modules and, thus, enhance application mod-
ularity and composability. Indeed, SPs are playing a central role in the technology
stacks of modern companies and they are covering more and more tasks that, in stan-
dard deployments, compete to other tools. The employment of one system instead
of multiple ones reduces system integration complexity, communication latency, and
facilitates application maintenance and modeling. Novel event-driven applications re-
quire a Database Management System (DBMS) for state management that is, indeed,
embedded in the state of computation of the SP. However, due to its embedding, the
DBMS suffers from some limitations such as the lack of multi-key transactions and
consistent external querying. Eventually, their central role requires SPs to conform to
a standardized execution semantics in order to improve their usability, interoperability,
and interchangeability.

This thesis takes a step towards SPs standardization through highlighting the dis-
crepancies between them, and a step towards their integration with DBMSs by extend-
ing their computational model to deal with transactional computation.

I

i
i

“thesis” — 2019/1/23 — 21:54 — page II — #8 i
i

i
i

i
i

For SPs standardization, we use SECRET, a well recognized mathematical model
to express their execution semantics, to model five distributed SPs that were developed
after the introduction of SECRET itself and are today widely used in companies at the
scale of Google, Twitter, and Netflix. We show that SECRET properly models a subset
of the behavior of these systems and we shed light on the recent evolution of SPs by
analyzing the elements that SECRET cannot fully capture.

In order to decrease system integration overhead and to overcome the limitations of
the current approaches for DBMS over SP, we enhance the capabilities of the SP with
DBMS’s ones by extending the SP computational model with transactional semantics:
we develop a unified approach for multi-key transactions on the internal state of the SP,
consistent external querying with respect to transactional operations on the state, and
streaming data analysis. We implement TSpoon, a prototypal implementation of our
extended model, as an extension to the open-source SP Apache FlinkTM. We evaluate
our prototype using synthetic workloads in various configurations to understand which
metrics mostly impact its performance. Eventually, we evaluate a real use-case scenario
and compare the results with the ones obtained from VoltDB, a commercial in-memory
database known for its excellent level of performance: TSpoon outperforms VoltDB in
the execution of multi-key transactions and proves to be a promising future direction
for the integration of DBMSs and SPs.

II

i
i

“thesis” — 2019/1/23 — 21:54 — page III — #9 i
i

i
i

i
i

Sommario

LO stream processing, ovvero, l’elaborazione di flussi di dati, ha richiamato grande
attenzione negli ultimi anni. L’interesse crescente alla gestione di grandi volu-
mi di dati prodotti ad altissime velocità ha dato vita alla progettazione ed allo

sviluppo di molti Stream Processor (SP) —gli strumenti volti a processare tali flussi. I
dati contenuti nei flussi possono essere di molteplice natura: fluttuazioni degli indici di
borsa; click in applicazioni web; acquisti in un’applicazione e-commerce; posizioni dei
robot nei magazzini; misurazioni di temperature da sensori o altro. I requisiti comuni
per le applicazioni in questo dominio sono l’elaborazione continua di infiniti flussi di
dati espressa per mezzo di query (i.e., interrogazioni sui dati) in modo da intraprendere
azioni di compensazione in base ai risultati ottenuti. Per esempio, la query “qual è il
prodotto più acquistato?” al fine di ordinarne una nuova provvista, oppure “qual era la
temperatura media nella stanza server nell’ultimo secondo?” per prevenire un possibile
incendio. Per processare grandi moli di dati senza soluzione di continuità e prendere
decisioni in tempo reale, gli SP sfruttano la potenza computazionale offerta da più mac-
chine distribuendo su di esse il calcolo e separando i dati in partizioni indipendenti, in
modo da evitare costose operazioni di coordinazione. Lo stream processing è anche un
paradigma di programmazione adatto alla progettazione di nuove applicazioni orien-
tate agli eventi che richiedono alto throughput e bassa latenza. I flussi di dati, infatti,
garantiscono disaccoppiamento tra i moduli applicativi e migliorano la componibilità
e la modularità delle applicazioni stesse. Dato ciò, gli SP ricoprono un ruolo sempre
più centrale nel portafoglio delle tecnologie utilizzate nelle aziende moderne e vengo-
no utilizzati per svolgere compiti per cui, in passato, venivano impiegati altri strumenti.
L’utilizzo di un solo sistema, infatti, evita la complessità di integrazione di diversi, ri-
duce le latenze di comunicazione tra sistemi e facilita la manutenibilità e il design delle
applicazioni stesse. Le nuove applicazioni orientate agli eventi, infatti, richiedono un
Database Management System (DBMS) (i.e., un sistema per la gestione dei dati) per
gestire lo stato della computazione, il quale viene incluso direttamente all’interno dello
SP. Tuttavia, il DBMS così progettato soffre di limitazioni, come l’assenza di tran-
sazioni su più chiavi e l’impossibilità di garantire la consistenza delle interrogazioni
esterne allo stato della computazione. Infine, dato il loro ruolo centrale, gli SP devono

III

i
i

“thesis” — 2019/1/23 — 21:54 — page IV — #10 i
i

i
i

i
i

conformarsi ad una semantica di esecuzione standardizzata per migliorarne l’usabilità,
l’interoperabilità e per poter essere intercambiabili.

Questa tesi si muove verso la standardizzazione degli SP delineandone le discrepan-
ze, e verso la loro integrazione con i DBMS estendendone il modello computazionale.

Per quanto riguarda la standardizzazione degli SP, viene utilizzato SECRET, un mo-
dello matematico per la semantica di esecuzione degli SP riconosciuto dal mondo ac-
cademico, per modellare cinque diversi SP distribuiti sviluppati dopo l’introduzione di
SECRET stesso e che sono oggi ampiamente utilizzati in aziende come Google, Twit-
ter e Netflix. Nella tesi, si mostra che SECRET modella propriamente un sottoinsieme
dei comportamenti di questi sistemi e si pone evidenza su alcuni aspetti della recente
evoluzione degli SP per mezzo dell’analisi di quegli elementi che SECRET stesso non
riesce a catturare.

Per l’attenuazione delle problematiche e delle limitazioni degli attuali approcci di
integrazione tra DBMS ed SP, viene adottato un approccio che porta le capacità di
gestione dei dati degli SP ad essere più vicine a quelle dei DBMS tradizionali. In
primo luogo, viene infatti esteso il modello computazionale degli SP con semantiche
transazionali, dando vita ad un approccio unificato per: transazioni su chiavi multiple
sullo stato interno allo SP; query esterne consistenti rispetto ad esse; ed analisi dei flussi
di dati. In secondo luogo, viene implementato il sistema TSpoon: l’implementazione
prototipale del nostro modello come estensione dello SP open-source Apache FlinkTM.
Per capire quali siano le metriche che più impattano le performance del prototipo, viene
dettagliata la sua valutazione per mezzo di workload sintetici con varie configurazioni.
Infine, viene fornito un caso d’uso reale, i cui risultati vengono paragonati a quelli
di VoltDB, un database commerciale in-memory noto per le sue elevate performance:
TSpoon ottiene risultati migliori di VoltDB nell’esecuzione di transazioni su chiavi
multiple, provando di costituire una promettente direzione futura per l’integrazione tra
DBMS ed SP.

IV

i
i

“thesis” — 2019/1/23 — 21:54 — page V — #11 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Modeling SPs Execution Semantics 3
1.2 Transactions on the Stream Processor 5
1.3 Thesis Contributions and Outline . 8

2 Related Work 9
2.1 Processing streams of data . 9
2.2 Modeling stream processing . 14
2.3 Distributed databases . 14

3 SPs Execution Semantics 19
3.1 Background . 19

3.1.1 The SPs Computational Model 19
3.1.2 SECRET . 22

3.2 Analysis of Stream Processing Engines 23
3.2.1 Experimental methodology . 24
3.2.2 Flink . 26
3.2.3 Storm . 27
3.2.4 Spark . 28
3.2.5 Google Cloud Dataflow . 29
3.2.6 Azure Stream Analytics . 29

3.3 Discussion . 30
3.3.1 Time model . 31
3.3.2 Windowing approaches . 32
3.3.3 Management of out-of-order elements 33
3.3.4 Graph of operators . 33
3.3.5 Fault tolerance . 34
3.3.6 Summary and open challenges 34

V

i
i

“thesis” — 2019/1/23 — 21:54 — page VI — #12 i
i

i
i

i
i

Contents

4 Transactions on the Stream Processor 37
4.1 State Management Capabilities . 37

4.1.1 Database Management Systems 37
4.1.2 Stream Processors . 39

4.2 Limitations in the SP model . 40
4.2.1 Transactional guarantees . 41
4.2.2 Queryable state . 42
4.2.3 Executive summary . 42

4.3 Transactions on a Stream Processor 42
4.3.1 Stream processing model . 43
4.3.2 State management model . 44
4.3.3 Transactional guarantees . 45
4.3.4 The model in action . 46
4.3.5 Limitations . 47

4.4 Implementation . 48
4.4.1 TSpoon API . 48
4.4.2 TSpoon architecture and transactional guarantees 49

4.5 Evaluation . 54
4.5.1 Experiment setup . 54
4.5.2 Default scenario . 54
4.5.3 Isolation levels and concurrency control strategies 55
4.5.4 Sensitivity to parameters . 56
4.5.5 Scalability . 61

5 Conclusions and Future Work 63

Bibliography 65

VI

i
i

“thesis” — 2019/1/23 — 21:54 — page 1 — #13 i
i

i
i

i
i

CHAPTER1
Introduction

From stock options to user clicks in web applications, from customer purchases in an
e-commerce application to positions of robots in a warehouse or temperature measure-
ments from sensors, data is produced and processed as unbounded streams of elements
in a wide variety of contexts. Streaming data is huge in volume, continuously produced,
and used to take rapid business decisions. Stream Processors (SPs) is the generic name
of those systems specifically tailored for processing large volumes of streaming data
as it is produced; as such, they exploit the computational power offered by multiple
machines as much as possible by distributing the computation and dividing the data in
share-nothing partitions to avoid expensive data race management while processing.

Thanks to their versatility, their ability to scale over multiple machines to cope
with huge volumes of continuously produced data, and their native design for time-
dependent computation, SPs address the most interesting novel use cases for data-
intensive applications. We forecast that SPs will play a central role in the stack of
modern companies and that they will cover more and more tasks that, at the moment,
compete to other tools1. This process must pass through a standardization of their ex-
ecution semantics and the analysis of their suitability to use cases different from pure
data analysis. In line with this assumption, this thesis takes a step towards a standard-
ized execution semantics through modeling the discrepancies between distributed SPs
and a parallel step towards their generality by extending SPs computational model to
deal with transactional computation.

In particular, stream processing is often employed for analytical queries on stream-
ing data; e.g., the most purchased item in the last hour, the average temperature in a
room, the top ten trending topics in a social platform. This kind of queries are often

1Proposals for all-streaming architectures are flourishing in non-academic context: http://milinda.pathirage.org/
kappa-architecture.com/, https://data-artisans.com/blog/drivetribe-cqrs-apache-flink

1

http://milinda.pathirage.org/kappa-architecture.com/
http://milinda.pathirage.org/kappa-architecture.com/
https://data-artisans.com/blog/drivetribe-cqrs-apache-flink

i
i

“thesis” — 2019/1/23 — 21:54 — page 2 — #14 i
i

i
i

i
i

Chapter 1. Introduction

time-dependent, indeed, SPs offer windowing —dividing elements in slices based on
their timestamp— out-of-the box. However, as a newborn processing paradigm, stream
processing lacks of a standardized semantics for time-dependent computation and ex-
isting SPs adopt different processing models [25]. This severely hampers the usability,
interoperability, and interchangeability of SPs, since a user needs to understand system-
specific aspects to confront various alternatives and select the ones that better suit her
needs. The need for modeling SPs execution semantics led in 2010 to the definition
of a formal model called SECRET [25]. However, SECRET targets first-generation,
single-node SPs that answer fixed-shape queries expressed with some declarative lan-
guage [12]; modern SPs are distributed over clusters of machines to cope with huge
volumes of streaming elements and express the most various streaming computations
through a graph of user-defined operators often programmed using full-fledged, stan-
dard programming languages (e.g. Java).

In order to provide users with a high-level tool that relieves them from understand-
ing the system-specific intricacies of distributed SPs execution semantics, we asses if
SECRET can still capture the differences between this new breed of SPs. We discover
that this is not the case and we propose where future modeling efforts should be directed
to [5].

Besides this effort in formalizing the semantics of existing systems, we address the
problem of the maintenance and the management of heterogenous systems that em-
ploy SPs together with traditional Database Management Systems (DBMSs). Indeed,
modern data-intensive applications include more components to achieve their goals:
SPs, stateless application servers, and DBMSs [53, 63] for their state management ca-
pabilities —i.e., consistently execute parallel updates and queries on the application’s
state, and handle recovery from failure. Integrating different systems may hinder the
design, implementation, and maintenance of the system, forcing developers to adopt
different languages and processing paradigms, and to manually integrate the different
sub-systems in a coherent way.

In order to overcome system integration complexity and to facilitate data-intensive
application maintenance and modeling, we develop a unified approach for both data
analysis and state management on the SP by extending the stream processing paradigm
with the state management capabilities of databases. We therefore enhance the SP ca-
pabilities with queryable state and transactional behavior for state updates. In doing so,
we both extend SPs computational model with transactional semantics and we proto-
type and evaluate our solution extending the open-source SP Apache FlinkTM [4].

The research objectives of this thesis are:

O1 highlighting the current discrepancies in distributed SPs execution semantics;

O2 proposing future directions for proper modeling of distributed SPs execution se-
mantics;

O3 designing a unified stream processing model for transactional and analytical data
processing;

In the remainder of this chapter we motivate our research objectives. Section 1.1
treats research objectives O1 and O2, and motivates the need for new models for dis-
tributed SPs. In Section 1.2, we motivate objective O3 by showcasing the problems of

2

i
i

“thesis” — 2019/1/23 — 21:54 — page 3 — #15 i
i

i
i

i
i

1.1. Modeling SPs Execution Semantics

integrating heterogenous systems and providing an overview of our solution for their
integration. Finally, in Section 1.3, we highlight the various contributions of this thesis
and its outline.

1.1 Modeling SPs Execution Semantics

In this section, we detail some of the issues that come along with different execution
semantics of SPs through a simple example.

The main factors that differentiate the behavior of SPs are the models of time and
windows they adopt [14]. Windowing consists in splitting the stream into finite blocks
of contiguous elements —called windows— and performing the computation within
the bounds of each window. Several types of windows exist: for instance, windows
can be defined either based on the number of elements they contain or based on time
boundaries, and they can partition a stream into non-overlapping chunks or contain
common elements [14]. Windows are useful for two different reasons. First of all,
they enable computation that takes into account the recency of the elements. For in-
stance, queries like ". . . in the last 5 minutes" or ". . . for the last 100 measurements"
would be otherwise impossible. Secondly, windows enable computations that would
be otherwise unfeasible on unbounded datasets such as streams. For instance, counting
the number of elements is not possible in general, since streams never terminate. The
common solution to those use cases consists in windowing the stream and performing
the computation within the bounds of each window. In the case of time windows (win-
dows defined by the progressing of time) their semantics strictly depend on the related
concept of time, which determines how the incoming elements are timestamped and
associated to different windows. In the case of event time, time is seen as meta-data
associated to each element in a stream either by the source that produces that element
or by the SP itself. In the case of processing time, time refers to the system clock of the
physical machine that runs the computation.

In order to better explain how different processing semantics could hamper SPs in-
teroperability, we examine the case of a system for monitoring temperature in a build-
ing. The system computes the average temperature every 2 minutes and displays the last
processed values on a web UI. It is composed of the sensors that collect measurements,
the SP that computes the average, the DBMS that stores the values, and the application
server that queries the database and displays the results obtained.

Figure 1.1 shows the input stream of couples (timestamp,measurement) and the
output for three different SPs.

• With SP1 the user cannot know what happened to window w2 and she should ac-
count for that. For instance, if the UI periodically queries the database for window
results, it should support the absence of values and handle that case.

• With SP2, while implementing the UI, the user should take into account that the
result forw1 has been produced twice and act accordingly; for instance, she should
display only the last result available.

• With SP3 the user should account for null values to avoid software failures; for
instance, if the schema for temperature measurements in the database does not

3

i
i

“thesis” — 2019/1/23 — 21:54 — page 4 — #16 i
i

i
i

i
i

Chapter 1. Introduction

10 1211 1413 15

t

29°

27°

28°

w1 [10, 11] w2 [12, 13] w3 [14, 15]

SP1

SP2

SP3
w3:
28°

t

w1:
28°

w2:
null

w3:
28°

t

w1:
27°

w1:
28°

w3:
28°

t

w1:
28°

Figure 1.1: Three SPs with different execution semantics and the output produced.

allow null values, the insertion of the result for window w2 would fail and cause
the system to crash.

Indeed, with the three SPs listed above, we are exemplifying existing SPs semantics
(see Chapter 3 for further details):

• SP1 waits that every element for a time window has come and outputs the results
of the average. If the windows is empty, it emits no output;

• SP2 does not wait and outputs the result of the computation as soon as a new
element comes;

• SP3 is like SP1, but it outputs empty windows results as null values.

Without a formal model of the SP behavior, the user should reverse engineer the
implementation details of the SP from its output and adequate downstream systems
accordingly. This could be overmuch expensive and not feasible in production phase
and, thus, it severely hampers the usability and interoperability of SPs with other sys-
tems. A model that provides a high-level specification of SPs execution semantics and
highlights their differences (i) relieves the user from the complex task of deducing the
SP internals from its output, (ii) lowers the risk of problems and bugs in the system,
(iii) and allows for a grater flexibility in swapping SPs and interoperate them.

In 2010, the problems in handling discrepancies between SPs motivated the def-
inition of SECRET, a model that captures the behavior of the SPs available at that
time [25]. SECRET was used to analyze both academic and industrial SPs. The seman-
tics of the former were typically well and precisely defined —yet different from system
to system— while the semantics of the latter were most often dependent on hidden im-
plementation details. SECRET could effectively capture and confront the behavior of
all the systems it was applied to.

After the definition of SECRET, the increasing number and the growing complexity
of real-time data analytics applications led to a bloom of new distributed SPs that target
cluster platforms to scale with the volume and velocity of input data. In order to asses
if the semantics of time and windowing has changed in these new systems and to model

4

i
i

“thesis” — 2019/1/23 — 21:54 — page 5 — #17 i
i

i
i

i
i

1.2. Transactions on the Stream Processor

the discrepancies in their execution semantics, we used SECRET to model the behavior
of five distributed SPs. We discovered that SECRET is not able to capture some aspects
of their behavior and some windowing strategies that they employ. However, for the
aspects that SECRET is able to capture, we discovered relevant discrepancies among
their execution semantics [5].

In Chapter 3 we tackle research objectives O1 and O2. We explain how we used SE-
CRET to model Flink, Storm, Spark Streaming, Google Dataflow, and Azure Stream
Analytics —distributed SPs that were developed after the introduction of SECRET it-
self and are today widely used in companies at the scale of Google, Twitter, and Netflix.
We show that SECRET models well a subset of the behaviors of these systems and we
shed light on the recent evolution of SPs by analyzing the elements that SECRET can-
not fully capture.

1.2 Transactions on the Stream Processor

Companies often need to integrate data analytics tasks —complex computations over
the input data— with state management tasks —transactional updates and queries to
the application state. In this section we analyze two different system architectures that
combine SPs for data analytics and DMBSs for state management and we explain their
limitations. We, therefore, motivate the need for unification of SPs and DBMSs under
a unique system.

As a first example, consider a system where the DBMS applies its transactional
logic and provides the outcome of executed transactions to a downstream SP that ex-
tract useful analytics by processing them. For instance, take a banking system that
accepts deposits, withdrawals, and money transfers from an account to another; applies
them to the users’ accounts; and computes analytics on the transactions executed; e.g.,
it calculates the most active geographical regions in the last hour, and/or the top ten
biggest transactions executed in the last month, updating the results every time a new
transaction arrives. The resulting system is composed of a database that applies the
transactional logic for bank operations and a SP that computes the low-latency analyt-
ics and stores the results on the DBMS for retrieval (Figure 1.2a).

As a complementary example, consider a system where the SP processes the raw
requests from users and operates transactions on a downstream DBMS. For instance,
take a voting system in which voters send votes about participants in a talent show. The
system wants to reward the singers that have a constant rate of votes over time and so,
every second, it gathers the 10 most voted singers of the last 5 seconds and adds a point
to them and it does the opposite for the 10 least voted singers. The resulting system is
composed of a SP that computes the low-latency analytics and stores, within a single
database transaction, the points for singers on the downstream DBMS (Figure 1.2b).

In both examples, administrators must deploy both a database and a SP and manage
their interaction.

In the bank use case, the SP must extract the outcomes of transactions from the
database: a first solution is to push the outcomes of transactions to the SP directly from
the database. However this approach could not always be feasible because it degrades
the performance of the database when updating its state.

Another solution is to poll the database at some fixed interval and process the ob-

5

i
i

“thesis” — 2019/1/23 — 21:54 — page 6 — #18 i
i

i
i

i
i

Chapter 1. Introduction

DB

balances,
analytics

SP

Transfers,
deposits,

withdrawals

Transaction
outcomes

Most active
geographical regions

push/poll

(a)

Raw votes
10 most/least

voted
participants DB

votes

SP

(b)

Figure 1.2: Two systems that integrate a SP and a DBMS. (a) The DBMS executes transactions and the
SP computes analytics on their outcome. (b) The SP computes analytics and saves the results on the
downstream DBMS.

6

i
i

“thesis” — 2019/1/23 — 21:54 — page 7 — #19 i
i

i
i

i
i

1.2. Transactions on the Stream Processor

tained results; however, this approach could be overwhelming for the database if the
SP polls it at a high rate, or produce out-of-date results if employing a low rate. In
general, system administrators should fine tune the polling interval to achieve a proper
recency-performance trade off basing on the workload of the database and the compu-
tational power it is granted at the moment. This task requires a deep knowledge of the
system architecture and leads to further reconfiguration steps when the physical deploy
changes.

In the voting use case, on the contrary, the SP should be fine tuned in order to
send transactions at a reasonable rate to the database based on its maximum sustain-
able workload. Again, administrators should fine-tune the systems and take care of
reconfiguring them every time that the physical deploy changes.

Both applications fall into some major drawbacks due to the need of integrating
multiple systems:

• maintenance of multiple systems: deploying, updating, and connecting many sys-
tems together requires configuration effort and careful design by dedicated per-
sonnel with a deep understanding of the semantics of individual systems, with the
risk of introducing functional errors and performance problems;

• variety of programming paradigms: different systems have their own lexicon and
abstractions, this introduces overhead in the communication among different de-
veloping teams that must find a common ground to discuss the capabilities of the
specific subset of the application and continuously maintain their interaction and
integration;

• decreased responsiveness: when requests cross the boundaries of multiple com-
ponents of the system, they incur in additional network latency.

We, therefore, propose to unify the state management capabilities of DBMSs and the
computational capabilities of SPs under the same system and programming abstraction.
By unifying the two components, we address the problems listed above by providing:

• maintenance of a single system: with a unified approach, the administrators only
need to understand and deploy a single system for the application to work;

• unified programming paradigm: developing teams can focus on the functional-
ities that the application must provide as a whole. A single team, indeed, can
develop all features of the system from state management to data analysis without
switching to a different knowledge domain;

• responsiveness: there is no cross boundary communication between the database
and the SP, and so, a request is processed with no additional latency imposed by
architectural overhead.

In order to integrate state management and computational capabilities, we extend
the dataflow model of computation of stream processing to account for transactional
computations.

In the dataflow programming paradigm, computation is expressed as a graph of
operators connected by streams of elements. Each operator applies some functional
logic to input elements and produce results to downstream operators. The operators

7

i
i

“thesis” — 2019/1/23 — 21:54 — page 8 — #20 i
i

i
i

i
i

Chapter 1. Introduction

can be either stateless (e.g., filtering the odd elements in a stream of integer elements)
or stateful (e.g., count the occurrences of words in a stream of tweets) [2, 7, 9, 29].
We extend this model with transactional subgraphs: well-defined areas in the graph of
computation in which the operators both expose their internal state to external queries
and apply consistent updates to such state by guaranteeing transactional behavior of
operations [4].

In Chapter 4, we tackle research objective O3. We describe in detail the limita-
tions that prevents SPs from expressing transactional behavior and what transactional
subgraphs guarantee to the user. We also present TSpoon, a prototypal implementa-
tion of our extended model of computation that extends the open-source SP Apache
FlinkTM with transactional subgraphs; we describe its implementation; and we evaluate
its performance.

1.3 Thesis Contributions and Outline

Firstly, in tackling the problem of assessing the adequacy of SECRET in modeling
modern distributed SPs, this thesis contributes to the research on stream processing in
several ways: (i) it provides a precise modeling of five modern SPs using SECRET;
(ii) it compares systems and highlights their similarities and differences, thus helping
the users to identify the systems that better satisfy their requirements; (iii) it identifies
some aspects of modern SPs that SECRET cannot fully capture; (iv) based on these
aspects, it discusses the evolution of SPs since the definition of SECRET and suggests
promising directions for future modeling efforts.

Secondly, with our effort in system integration this thesis contributes to the research
on stream processing and state management in various ways: (i) it introduces a novel
model that seamlessly integrates queryable state and transactional semantics within a
SP; (ii) it formalizes the semantics of transactions on the state of a SP and proposes
configurable levels of isolation and durability for these transactions; (iii) it presents
the TSpoon system, that implements the new and extended streaming model, and it
explores different strategies to achieve the proposed guarantees; (iv) it offers a detailed
evaluation of the performance of TSpoon, focusing on the benefits and costs of the
different strategies for transactional semantics and on the comparison with state-of-the-
art tools for distributed stream processing and state management.

In particular, Chapter 3 analyzes the SECRET model, describes its limitations by
using it to model five modern distributed SPs. Chapter 4 introduces our model for
transactions on the SP and presents and evaluates TSpoon, our implementation on the
Flink SP. Finally, Chapter 2 presents the related work and Chapter 5 concludes this
thesis and forecasts future work.

8

i
i

“thesis” — 2019/1/23 — 21:54 — page 9 — #21 i
i

i
i

i
i

CHAPTER2
Related Work

The inter-disciplinary nature of this thesis relates it to several fields like stream process-
ing, database systems, and data management architectures. This chapter is divided into
sections that overview them. Section 2.1 overviews the main approaches and systems
to process streams of data which is the main field touched by this thesis. Section 2.2
overviews the work related to the definition of the execution semantics of modern dis-
tributed SPs. Section 2.3 overviews the relevant work for the integration of distributed
DBMS and SPs, such as distributed databases state management capabilities and mod-
ern big data architectures that unify low-latency computation and consistent state man-
agement.

2.1 Processing streams of data

Stream processing applies transformations to unbounded sequences of elements to pro-
duce relevant results. The type of transformations are manyfold and originate from var-
ious use cases: continuous query answering, pattern matching, and continuous event
processing.

Continuous query answering is similar to classic DBMS query answering with the
difference that the query is not “one-shot”, but it is “installed” in the SP and it is contin-
uously executed as new elements come and update its result. Consider the query “count
the number of taxi drivers that earned more than 2000$”. If it is executed as a standard,
one-shot query (it can be expressed in SQL, and executed by a DBMS for example),
the result is a list of taxi drivers that never changes through time. If the query is exe-
cuted by a SP, its result is a stream of taxi drivers that evolves through time according
to the fares paid by passengers. Typically, the SPs that are tailored for query answering
provide also abstractions to deal with time. It is common that the continuous query

9

i
i

“thesis” — 2019/1/23 — 21:54 — page 10 — #22 i
i

i
i

i
i

Chapter 2. Related Work

contains some time reference, such as “count the number of taxi drivers that earned
more than 2000$ in the last month”. The SPs that provide time windows can slice input
streams within time boundaries and perform the query on the content of the window
itself.

Pattern matching is different from continuous query answering in that, given a rule
and stream sources, it extracts patterns of primitive events to generate new streams of
complex events. To better understand the difference from continuous query answering,
consider a scenario in which a forest is equipped with smoke, humidity, and temper-
ature sensors that produce streams of measurements. A system for continuous query
answering analyzes the measurements of temperature and humidity and it can calculate,
for instance, “the average temperature and humidity every second”; while a system for
pattern matching, given a rule, is able to detect fire in the forest. The rule could be “if
there is Smoke and, in the last 5 minutes, the Temperature is above 45 degrees, and
there was not Rain, then signal Fire”. Fire is the complex event identified by the
composition of Temperature, Rain, and Smoke by means of the rule described.

Continuous event processing is different from the two above: there is no such a
concept of “query” or “rule”, but an event-driven streaming application that embeds its
business logic and the state of computation —that is exposed to external systems for
querying. The focus is not only on the transformation of the input streams into output
streams, but also on the side effects that the events generate on the state of computation
and on the external actions that they cause once processed.

The three approaches can be combined together. For example, an SP capable of
continuous event processing, continuous query answering, and pattern matching can
implement a complete social network. User posts and comments are stream of events
ingested by the streaming application. Operators process events, apply their specific
application logic, and store the effect in their state: they ingest posts, validate them,
and store them for querying —for example, for the presentation layer. The new posts,
that passed through the application logic, trigger a continuous query that computes the
top cited users over all posts. Eventually, events are pattern-matched against a rule for
detecting anomalous behavior of users (e.g., fake post creation to cite a user program-
matically); bad users are used by the application logic to strengthen the validation step,
in turn.

This thesis is relevant for the first and the third type of systems. Indeed, Chapter 3
treats the execution semantics of distributed SPs for continuous query answering and
Chapter 4 extends the model of computation of modern SPs to accommodate event-
driven streaming applications.

Several SPs have been proposed both from the academia and from the industry in
the last decade, thanks to an increasing need for continuously processing unbounded
sources of information and for producing low-latency results. As anticipated in Chap-
ter 1, many of these systems differ in their execution semantics and none of them pro-
vides a unified approach to distributed transactional and analytical processing. In the
remainder of this section, we provide an historical overview of the SPs related to the
three areas of continuous query answering, pattern matching, and continuous event pro-
cessing.

We distinguish two generations of SPs. The first generation flourished in the mid
2000s and focuses on the definition of abstractions for continuous query answering

10

i
i

“thesis” — 2019/1/23 — 21:54 — page 11 — #23 i
i

i
i

i
i

2.1. Processing streams of data

–Data Stream Management Systems (DSMSs)– or on pattern matching to detect situ-
ations of interest from streams of low-level information —Complex Event Processing
(CEP) systems. The interested reader can refer to the detailed survey of these systems
by Cugola and Margara [37].

DSMSs usually rely on declarative query languages derived from SQL, which spec-
ify how incoming data have to be selected, aggregated, joined together, and modified,
to produce one or more output streams [14]. The reference model of DSMSs has been
defined in the seminal work on the Continuous Query Language (CQL) [12]. In CQL,
the processing of streams is split in three steps: first, stream-to-relation operators –
windows– select a portion of each stream to implicitly create static database table. The
actual computation takes place on these tables, using relation-to-relation (mostly SQL)
operators. Finally, relation-to-stream operators generate new streams from tables, af-
ter data manipulation. An example of CQL query in natural language is “calculate
the average speed of cars in the last 5 minutes for every segments of this road”. The
windowing operator (“the last 5 minutes”) is used to extract a relation from the stream
of speed measurements, which is used to compute the query that extracts the aver-
age on the speed field. Eventually, the results of the aggregation generate the output
stream. Several variants and extensions of CQL have been proposed, but they all rely
on the same general processing abstractions defined above. The declarative language
of Azure Stream Analytics that we analyze in Section 3.2.6 also derives from this pro-
cessing model. The SECRET model we adopt in Chapter 3 was originally designed to
capture the processing semantics of this kind of systems [25, 42]. The Aurora/Borealis
DSMS first introduced the idea of defining the processing in terms of a directed graph
of operators [2] and to deploy the operators on different physical nodes [1]. This ap-
proach deeply influenced the second generation of SPs that we overview below and that
are the subject of this thesis.

CEP systems were developed in parallel to DSMSs and represent a different ap-
proach towards the analysis of streaming data, which targets the detection of situations
of interest from patterns of primitive events [44, 58]. CEP systems typically consider
the elements of a stream as notifications of event occurrences and express patterns in
form or rules using constraints on the content and time of occurrence of events [26,35].
Their internal behavior is different from DSMSs, that slice streams in time windows
and compute aggregates on them. For instance, the T-Rex CEP [36] system translates
rules into event detection automata. Every time a new event enters the system, T-Rex
checks wether new automata instances must be created and if the event activates a tran-
sition that leads the automata to the next state. If an automata terminates (reaches the
final state), the composite event must be generated. Interestingly, some CEP systems
use interval timestamps. In this model, each data element is associated with two points
in time that define the first and the last moment when it is valid [72, 82]. This model
is never used in the modern SPs that we consider in this thesis and is not captured by
SECRET.

More recently, the artificial intelligence and knowledge representation communities
also started investigating streaming data posing an accent on integration and automated
reasoning. This emerging field of research was named Stream Reasoning [40, 62]. In
less then a decade, it has extended the Semantic Web stack with the RDF Stream data
model, several continuous extensions to the SPARQL query language, and reasoning

11

i
i

“thesis” — 2019/1/23 — 21:54 — page 12 — #24 i
i

i
i

i
i

Chapter 2. Related Work

algorithms optimized for RDF streams [11, 19]. Systems in this area are often referred
to as RDF Stream Processing (RSP) engines. The interested readers can refer to the
working drafts of the W3C RSP Community Group1.

First-generation systems were mainly adopted for continuous querying, and, thus,
they do not support internal state queryability, nor transactional execution of groups of
operations.

The second generation of SPs has its roots in the research on Big Data and comprises
systems designed to process large volumes of streaming data in cluster environments for
continuous query answering. The research on Big Data initially focused on static data
and batch processing and proposed functional abstractions such as MapReduce [38] to
automate the distribution of processing. Subsequent research increased the expressivity
of MapReduce, enabling developers to specify arbitrarily complex directed graphs of
operators [85]. These systems assume long running computations and provide fault
tolerance mechanisms to resume intermediate results if they are lost due to the failure
of one or more machines in a large cluster [84].

The second generation of SPs inherits the same processing model based on a graph
of functional operators. Initially, the engines did not provide any built-in construct to
express windows, and developers had to implement windowing manually if required by
the application at hand. This is for example the case of Storm prior to version 1.0 [78].
Given the complexity of time and window management, windows have become first
class objects in all modern SPs, as well as primitives to express event time and manage
out-of-order records to produce correct results [9, 29, 54], and this motivates the need
for a precise modeling and analysis of their behavior. Although being similar from their
computational model and their time-related primitives, modern SPs differ in their pro-
cessing techniques. Some of them, for instance Spark Streaming [86], provide stream-
ing computations on top of batch processing by splitting each stream into small static
chunks (micro-batches). Remarkably, Naiad [66] follows a similar approach. In order
to achieve streaming computation, the developer has to divide the input streams into
epochs that are fed iteratively to the graph of computation. Timely Dataflow –Naiad’s
programming model– timestamps input records with their epoch and uses it to track the
completeness of each step of computation. Thanks to this approach, Naiad achieves
fault tolerance by synchronously checkpointing operators’ state among epochs. Us-
ing the same model, Naiad supports more use cases, such as iterative batch processing
(e.g., calculate the PageRank algorithm [67] on a graph of millions of nodes) by feeding
the results of each epoch to the next one until convergence. Other SPs provide native
support for streaming computations, where stream elements move from an upstream
operator to a downstream operator as soon as the former has completed its processing
task. This is the case of Storm [78], Heron [55], Google DataFlow [9], and Flink [29],
which we adopt and extend in Chapter 4. The distribution across machines of SPs posed
tremendous attention on their fault tolerance. The second generation, not only embeds
time-related primitives, but also it aims at providing fault-tolerant stateful computation
by preserving a consistent state across machines and guaranteeing exactly-once pro-
cessing semantics —i.e, the processing of each record affects the state of computation
only once. The paper about the Asynchronous Barrier Snapshotting algorithm by Paris
Carbone [28] shed light on the evidence that consistently snapshotting the operators’

1http://www.w3.org/community/rsp/

12

http://www.w3.org/community/rsp/

i
i

“thesis” — 2019/1/23 — 21:54 — page 13 — #25 i
i

i
i

i
i

2.1. Processing streams of data

state of a distributed graph of computation is possible with a low overhead while pro-
cessing new records; the algorithm, indeed, was later implemented and used in many
production setups by Apache FlinkTM [27]. Remarkably, modern distributed SPs con-
verged to produce correct (with respect to time) and consistent (with respect to failure)
results at high throughput and low latency. In these systems, shared-nothing state is of
paramount importance to achieve high performance; indeed, none of them consider the
case of distributed transactions over their state for DBMS integration as TSpoon does.

The second generation of SPs not only performs low-latency streaming data analy-
sis, but it can also support event-driven streaming applications. As anticipated at the
beginning of this section, they are stateful applications that ingest events from one or
more event streams and reacts to incoming events by triggering computations, state
updates, or external actions. In contrast with traditional applications with separated
compute and data storage tiers, they are based on stateful stream processing applica-
tions, where data and computation are co-located for better performance, both in terms
of throughput and latency. Fault-tolerance and persistence is achieved by using the
native mechanisms of the SP. Flink provides integrated state management capabilities,
event time management, and an API for scheduling tasks according to the flow of event
time to implement complex business logic2. Apache Kafka is a distributed streaming
platform that allows to store streams, publish and subscribe to them, and process their
records to produce derived ones3, by leveraging a robust, fault-tolerant, distributed log-
ging system at its core [79]. It provides both a library for stateful, distributed stream
processing and low-level APIs for implementing producers and consumers of messages,
thus enabling more flexible patterns of production/consumption from streams. More-
over, stored streams enable the addition of operators to the graph of computation at
runtime by requesting the records from one or more streams as needed. Kafka is more
flexible in application composition with respect to Flink –that does not allow to add
operators to the graph of computation at runtime– however, its state management capa-
bilities are limited to the stateful stream processing library.

Even if these modern features enable more complex stream processing applications,
they still cannot fully integrate DBMSs capabilities because of shared-nothing state
limitations. We tackle these limitations in Chapter 4 by providing a model for stream
processing transactions, and the working prototype TSpoon, a SP that can express and
execute both transactional and analytical graphs of computation.

Related to processing dynamic data, the programming language community pro-
posed Reactive Programming (RP) abstractions [16], which build on three pillars
1. time-changing variables and explicit definition of their dependencies; 2. automated
propagation of changes. RP shares many similarities with stream processing, with the
graph of dependencies between variables being analogous to the graph of computation
in the SP. Some recent proposals in the field study the trade-off between consistency
and performance in distributed RP, which is closely related to the topic of this the-
sis [43, 60, 61].

As a final clarifying remark, the term “transaction” is used by some SPs, although
with a different meaning that in the context of this thesis (see Chapter 4). Trident4

enables exactly-once semantics on top of Storm [78] by dividing the input streams
2https://flink.apache.org/usecases.html#eventDrivenApps.
3https://kafka.apache.org/.
4http://storm.apache.org/releases/1.0.6/Trident-tutorial.html.

13

https://flink.apache.org/usecases.html#eventDrivenApps
https://kafka.apache.org/
http://storm.apache.org/releases/1.0.6/Trident-tutorial.html

i
i

“thesis” — 2019/1/23 — 21:54 — page 14 — #26 i
i

i
i

i
i

Chapter 2. Related Work

into batches and transactionally updating the state of the graph of computation upon
batch processing completion. Similarly, Kafka [79] provides exactly-once semantics
by transactionally placing markers on its output streams once a batch of input records
has been consumed and produced its results5. Both approaches are an alternative to
Flink’s asynchronous checkpointing algorithm [27] and have to be considered as such.
They are orthogonal to our approach to model multi-partition, multi-state updates on
the internal state of the SP with ACID transactions.

2.2 Modeling stream processing

Several formalisms have been proposed to specify the execution semantics of individ-
ual stream and event processing engines, ranging from automata [6, 26] to temporal
logic [35], to event algebras and calculi [13, 52]. While these formalisms often capture
the semantics of time-based operators in general and window operators in particular,
they are tailored to the specific features offered by the language they formalize and
thus are not suitable to study the similarities and differences between heterogeneous
stream processing systems.

Only few models have been proposed in the past to describe and compare some of
the SPs discussed above. The survey by Cugola and Margara introduces a framework
of models that capture the key aspects of DSMSs and CEP systems [37], such as the
data and processing models, the processing language and operators, and the semantics
of time. Etzion and Niblett propose the Event Processing Network (EPN) formalism
to discuss CEP systems and event processing architectures [44]. An EPN is a directed
graph where nodes represent operators and edges represent data flows between opera-
tors. These proposals, however, are descriptive and do not provide a formal ground to
assess the commonalities and differences of the various SPs. To the best of our knowl-
edge, SECRET represents the first attempt to formally capture the time and window
semantics of SPs.

Interestingly, Dell’Aglio et al. define a model built on SECRET to capture the ex-
ecution semantics of RSP engines [41]. The W3C RSP community group adopts it,
together with LARS [21], as a reference model to define the semantics of RSP query
language.

Given the relevance of performance —throughput and response time— for SPs,
several proposals aim to model performance characteristics of SPs with the goal
of predicting or improving some quality of service metrics or the allocation of re-
sources [20, 31, 68]. These works are complementary to the proposal of Chapter 3,
since they focus on predicting the performance of SPs rather than modeling their exe-
cution semantics.

2.3 Distributed databases

Distributed relational databases provide ACID transactional guarantees through dis-
tributed commit protocols, concurrency control algorithms [24], and recovery mecha-
nisms [64]. TSpoon builds on these concepts to integrate transactional semantics within
the SP.

5https://www.confluent.io/blog/transactions-apache-kafka/.

14

https://www.confluent.io/blog/transactions-apache-kafka/

i
i

“thesis” — 2019/1/23 — 21:54 — page 15 — #27 i
i

i
i

i
i

2.3. Distributed databases

The tension between strong consistency and guarantees in data management sys-
tems has been widely investigated, leading to the formulation of various levels of iso-
lation [3, 22, 46]. Indeed, with the increasing size of data-intensive applications [53], a
number of systems trade consistency (for instance, in the case of replication, failure, or
high contention) and strong transactional semantics for scalability and/or availability.
Indeed, most commercial DBMSs used in production environments such as MySQL,
Postgres, SAP HANA, or MS SQL Server do not offer serializable as their default iso-
lation level, but read committed [15]. Serializability of transactions, indeed, comes at a
high cost both in throughput and latency. Moreover, it severely hampers the availability
of the distributed DBMS. High Available Transactions (HATs) offer a family of isola-
tion levels and data replication semantics still guaranteeing an “always on” distributed
DBMS upon failure. In its work, Peter Bailis proves that HATs cannot achieve serializ-
ability [15]. To the extreme of this approach, in order to provide maximum availability
and scalability, NoSQL databases provide a limited version of transactions or directly
drop their support. For instance, Amazon’s key-value store Dynamo [39] was born
without transactional support; the document-based database MongoDB only supports
transactions that involve a single document [17], and the Redis key-value store does not
support arbitrary distributed transactions [32].

More recently, NewSQL database systems aim to reconcile strong transactional se-
mantics and efficient distributed state management for some workloads. According
to Michael Stonebraker (Turing Award, 2015), this new wave of DBMSs must em-
body the following characteristics in order to address the new requirements of high
transactional throughput and real-time query answering: (i) SQL as the primary mech-
anism for application interaction; (ii) ACID support for transactions; (iii) a non-locking
concurrency control mechanism so real-time reads will not conflict with writes, and
thereby cause them to stall; (iv) an architecture providing high per-node performance;
(v) a horizontally scalable, shared-nothing architecture, capable of running on a large
number of nodes [75]. H-Store [76] is an in-memory database that enforces atomicity
of transactions on single partitions of the state through single threaded computations,
and schedules multi-site operations to ensure ACID properties. Furthermore, H-Store
enables transaction optimization by enhancing the support for pre-compiled stored pro-
cedures. This approach later evolved in the VoltDB database system that we used in our
evaluation [59]. Calvin is a deterministic DBMS that gathers transactions into batches
and applies an agreement protocol to make every site of the distributed database agree
on the execution order of transactions. Once reached the agreement, transactions can be
executed (and re-executed in case of failure) deterministically and without employing
any distributed commit protocol. Indeed, Calvin does not allow programmatic abort of
transactions; i.e., transactions can only abort because of non-deterministic hardware/-
software failure [69, 77]. Spanner [34] is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is able to provide, at global scale,
strong consistent reads and writes, and globally-consistent reads across the database at
some timestamp in the past. These features are enabled by the fact that it assigns
globally-meaningful timestamps to distributed transaction that reflects the serialization
order by using its TrueTime API. TrueTime exposes clock uncertainty, so that Spanner
can wait out that uncertainty upon commit in order to preserve transaction execution
order across nodes and serve consistent data to reads. Google’s implementation of the

15

i
i

“thesis” — 2019/1/23 — 21:54 — page 16 — #28 i
i

i
i

i
i

Chapter 2. Related Work

TrueTime API keeps uncertainty small (generally less than 10ms) by using GPS and
atomic clocks. Spanner shards data across data-centers into directories. Developers are
responsible for describing one or more primary keys for each table and to assume join
criteria between them. For example, suppose that every user has a set of photographic
albums: if the developer specifies that the tableAlbumswill be joined with table Users
on UserID, then Spanner will gather users and albums in the same directory (sharding
it by UserID) and interleave their rows in order to execute the query “select every
album of a particular user” on a single directory, thus exploiting data locality. Thanks
to data sharding, Spanner scales with the number of nodes. Spanner uses two-phase
commit (over Paxos to mitigate availability issues) to agree on the results of distributed
transactions. A closely related system, even if not distributed, is S-Store. It defines
stream processing capabilities on top of a DBMS (H-Store), implementing streams as
time-varying tables and stream processing as triggers [33]. In S-Store, a transaction is
a directed acyclic graph of stored procedures calls that can access the whole underlying
database. Instead, our approach limits the scope of transactions to individual operators
(and, thus, fractions of the global application state) to exploit data locality and enable
intra-transactional parallelism.

TSpoon can be considered a NewSQL system with a strong inclination for real-time
queries. As a final remark, note that NewSQL systems require the developer to provide
them with hints on how to organize data, in order to exploit data locality at its maxi-
mum degree and fully use the power of the cluster. As a consequence, these systems
loose performance when executing transactions that are disrespectful of how data is
organized. For example, if some transaction spans multiple nodes, it forces the system
coordination in order to agree on its result, thus causing overhead in communication and
increasing latency and, in most cases, decreasing throughput. Lastly, NewSQL systems
focus on data storage and querying; while they can, in principle, perform stream pro-
cessing at each node in the cluster, they lack both the flexibility in expressing generally
complex graphs of computation, and the specific tailoring for parallel computation of
SPs.

Related, although orthogonal, to our work in DBMSs and SPs integration are sys-
tems that unify OnLine Transaction Processing (OLTP) and OnLine Analytic Process-
ing (OLAP). OLTP systems answer to external user requests in a reasonable amount
of time (i.e., traditional DBMSs); while OLAP systems analyze the historical updates
gathered from OLTP systems for business intelligence. “What was the total revenue of
each of stores in January 2002?”, or “how many more cars than usual did the company
sell during that period?”, or “which brand of phone covers is most often purchased to-
gether with that smartphone?” are examples of common OLAP queries. While SPs
focus on real-time computation and transformation of dynamic streams of data, OLAP
systems focus on interactive queries on big chunks of static, historical data. The differ-
ent requirements of OLTP systems – random-access, low-latency writes from user in-
put, and fast reads on a small amount of keys– and OLAP ones –computing aggregates
over a large number of records– led to different architectures of the underlying storage
layer –row-oriented for OLTP and columnar for OLAP– in order to achieve better data
compression, indexing, and performance. L-Store [70] provides an integrated solution
for OLTP and OLAP by employing a native multi-version, columnar storage model in
order to lazily and independently stage stable data from a write-optimized layout into

16

i
i

“thesis” — 2019/1/23 — 21:54 — page 17 — #29 i
i

i
i

i
i

2.3. Distributed databases

a read-optimized columnar layout. SAP [45] provides a unified solution by gluing to-
gether different pre-existing OLTP and OLAP engines. IBM’s Wildfire [18] handles
hybrid transactional (only at snapshot isolation level of isolation [22]6) and analytical
workloads by enhancing Spark with OLTP capabilities, thus making it possible to ex-
ploit Spark streaming [86] to process transactions results in real time. However, both
SAP and Wildfire do not support distributed transactions. To the best of our knowledge,
TSpoon is the first distributed system that supports multi-partition ACID transactions
at serializable isolation level and real-time stream processing.

TSpoon exploits the organization of operators in the graph of computation to achieve
inter- and intra-transaction parallelism for higher performance. Related to transac-
tion parallelism, the seminal works on nested and multi-level transactions [65, 80, 81]
provide an extended transaction model that decompose transactions into subtransac-
tions for concurrent execution, and prove isolation and recovery properties for this new
model. Interestingly, new trends in DBMS employ this concept and provide the de-
veloper with well known primitives to express transaction composition and nesting:
Actor-Oriented Database Systems (AODB) model the database and its transactions as
actor-oriented programs where each actor manages a portion of the global state and
embeds subtasks of the transaction logic [23, 74]. They provide low-level primitives
to express intra-transaction parallelism explicitly using a mixture of SQL statements
and asynchronous messaging between actors. We achieve a similar goal by translating
transactional operations onto the graph of computation, although we do not provide the
same flexibility as actors in the communication between the operators in the graph. We
believe that the mixture of SQL and asynchronous messaging hinders the code main-
tainability and demands for multiple specific skills to database administrators. We do
believe that our approach of modeling transactions on top of the graph of computation
with simple data structures as internal state could be explored as a valid alternative in
the future.

Some data processing architectures aim to solve the dichotomy between consistent
state management and low-latency stream processing. The Lambda Architecture pro-
vides low-latency results, but serves exact yet “old” results in case of failures [63]. It
was conceived when SPs did not provide full support for distributed, fault-tolerant, and
stateful computation and where used as a fast speed layer that could potentially provide
wrong results in the case of failures. Thus the speed layer is coupled with a batch layer
that runs periodic batch jobs to generate higher-latency but exact results. When the data
is queried, the serving layer encapsulates the complex logic that integrates the results
of the speed layer (recent, but possibly inaccurate) or those of the batch layer (accurate,
but possibly outdated).

More recent proposals criticize the complexity of this architecture and advocate
stream-only solutions7, where every event in the application is stored in streams, and
its services consume events, apply their business logic, expose their internal state to
external queries, and produce events. The strength of this approach lies in its opportu-
nities for modularity and composability: one can add a new service and start processing
events without affecting the overall architecture. The key enabler for this architecture
is a fault-tolerant, scalable, distributed stream storage system like Kafka [79]. Persisted

6Snapshot isolation is a lower isolation level than serializable.
7http://milinda.pathirage.org/kappa-architecture.com/

17

http://milinda.pathirage.org/kappa-architecture.com/

i
i

“thesis” — 2019/1/23 — 21:54 — page 18 — #30 i
i

i
i

i
i

Chapter 2. Related Work

streams, indeed, offer decoupling between services and can be replayed at will from the
past. For instance, a new module of the application can be added to a system under ex-
ecution and consume historical events to keep up with the current state of computation,
or the output of a new version of a module can be compared to existing ones for A/B
testing. However, flexibility comes with the downside of lack of coordination among
services, unmanaged state, and absence of unified time-dependent operations. Pure
SPs offer these guarantees, but lack of flexibility to perform general-purpose applica-
tion logic and queryable state. Recently, some SPs introduce this feature to provide fast
and dirty reads for rapid insights on the progress of computation [27]. Remarkably,
they focus on individual operators without providing transactional guarantees as we do
with TSpoon. Our proposal moves transactional updates directly on the SP and it can
be considered as an evolution towards stream-only architectures.

18

i
i

“thesis” — 2019/1/23 — 21:54 — page 19 — #31 i
i

i
i

i
i

CHAPTER3
SPs Execution Semantics

This chapter describes our approach in assessing SECRET’s [25] adequacy in mod-
eling modern distributed SPs. Section 3.1 provides an overview of the SPs computa-
tional model and describes the SECRET model. In Section 3.2 we model five modern
distributed SPs by using SECRET and describe our methodology. Based on the re-
sults obtained from the modeling, Section 3.3 highlights the aspects of modern SPs that
SECRET does not capture and proposes promising future directions for new models.

The reference paper for this chapter is [5].

3.1 Background

3.1.1 The SPs Computational Model

SPs provide abstractions to operate on dynamic datasets and produce new results on the
fly as new input data becomes available. SPs take in input one or more streams, which
are append-only unbounded sequences of data, and produce output streams as a result
of their computation.

f f

Stream Processing Engine (SPE)Input Output

s w

s f w f

Figure 3.1: The architecture of an SP

19

i
i

“thesis” — 2019/1/23 — 21:54 — page 20 — #32 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

The abstract architecture of an SP is presented in Figure 3.1. SPs receive input
streams from one or more sources —grey diamonds in Figure 3.1— and organize
the computation into a directed graph of operators —white circles and boxes in Fig-
ure 3.1— either explicitly or implicitly. In the latter case, developers are provided with
high-level languages that are automatically translated by the SP into the operator graph.
Some systems adopt functional languages and provide composable functions —such as
map, filter, reduce, etc.— that transform input streams into output streams. Other
systems adopt declarative, SQL-like languages that represent the processing as queries
that get repeatedly and continuously evaluated as new data becomes available. Mod-
ern SPs take advantage of cluster architectures and deploy the operators in the graph
on different cluster nodes, possibly replicating them. Organizing the computation into
separate operators enables for task parallelism —different operators run on different
threads on the same machine, or on different machines— while replication enables for
data parallelism —different portions of an input stream are processed in parallel on
different instances of the same operator.

In this chapter we separate operators in two classes: processing operators and win-
dows. Processing operators apply a function to each and every element of their input
streams. For instance, a filter operator selects or discards input elements based on a
user-defined predicate, and a map operator converts each element of the input stream
into an element of the output stream based on a user-defined function. We represent
them in Figure 3.1 as white circles.

Windows enable computations that would be otherwise impossible due to the un-
bounded nature of streams. For instance, the average value of a stream of integers could
only be computed after reading the entire stream, which is impossible since the stream
never terminates. Windows obviate this problem by isolating the portions of the input
streams upon which the function embedded within an operator should be applied [14].
We represent them in Figure 3.1 as white boxes.

Windows capture contiguous stream elements and are defined in terms of two pa-
rameters: a size that indicates the length of each window, and a slide that determines
the interval between two consecutive windows. Count windows define the size and the
slide based on number of elements. Time windows define the size and the slide based
on some notion of order —time— between the elements in their input stream.

The behavior of time windows also depends on the notion of time, and different
SPs adopt different time semantics. Using the terminology of Akidau et al. [9], we say
that an SP adopts processing time semantics when each operator considers the clock
time of the physical machine it is running on. In this case, elements do not have an
attached timestamp and their mutual order is implicitly defined by the order in which
they enter the operator. Processing time semantics leads to non-determinism, since the
behavior of the system depends on the speed at which elements enter the engine and on
the speed at which the elements flow between operators inside the engine, which is not
under direct control of the developer. For these reasons, processing time has been often
subject to critics, especially when considering distributed deployments of operators [9].
Nevertheless, some modern SPs adopt processing time, under the implicit assumption
that the clock skew between the physical machines where the SP is running is negligible
for the application at hand, and that the operators do not introduce significant delays.

We say that an SP adopts ingestion time semantics when each input element is times-

20

i
i

“thesis” — 2019/1/23 — 21:54 — page 21 — #33 i
i

i
i

i
i

3.1. Background

t=1 t=2 t=3 t=4 t=5

A B C E
D

t=6 t=7

w1

w2

w3

w4

B, C, D

C, D, E

E

E

w5

Figure 3.2: Example of time window with size 3 and slide 1

tamped when it first enters the engine, assuming that a single machine receives and
timestamps all the input elements. Each time-dependent operator refers to such times-
tamp during evaluation. Given a specific timing of arrival of input elements, ingestion
time ensures that the engine produces deterministic results.

We say that an SP adopts event time semantics when each element is timestamped
by the source that produces that element, outside the SP. In the presence of event time,
operators might receive elements out of order, due to clock skew between sources or due
to network latency. In this case, the operators temporarily buffer the input elements and
reorder them before processing. If the engine waits for enough time to receive all out of
order elements —that is, if no element is lost— then event time ensures determinism.

To better explain the notion of windows, Figure 3.2 shows the effect of a time win-
dow of size 3 and slide 1 over an input stream. Stream elements are identified by upper
case letters and ordered based on their timestamp —event time semantics. Notice that
event time defines a partial order: for instance, elements C and D both have timestamp
t = 3. Let us consider windows starting from t ≥ 1. Window w1 includes all the
elements from t = 1 excluded to t = 4 included, that is B, C, and D. Window w2
includes C, D, and E. Time windows can contain a heterogeneous number of elements,
as in the case of w1 and w3. Furthermore, they might be empty, as in the case of w5.

In general, the results produced by an SP depend on (i) the topology of the operator
graph; (ii) the functions implemented in each operator; (iii) the semantics of windows
and time.

The first two elements are application-specific: they are defined by developers and
are not system dependent. Instead, the semantics of windows and time varies from
system to system and thus is the key element to capture the differences between the
available SPs. The SECRET model we adopt in this work focuses on the semantics of
windows in the case of event time.

21

i
i

“thesis” — 2019/1/23 — 21:54 — page 22 — #34 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

3.1.2 SECRET

SECRET [25] models both time windows and count windows and builds on the fol-
lowing assumptions: (i) stream elements have an associated timestamp —event time
semantics— that defines a partial order between elements; (ii) each operator reorders
the input elements and processes them in timestamp order.

SECRET defines the semantics of windows by introducing the concepts (functions)
of Scope, Content,Report, and T ick. For ease of explanation, we present the SECRET
formalism with reference to time windows, and we briefly discuss the differences in the
case of count windows at the end of the section. The interested reader can refer to
complete formalization of SECRET for further details [42].

As discussed in Section 3.1.1, each window operator is characterized by a size and
a slide, and splits the input stream into windows all having the same size. SECRET
defines windows as an interval (to, tc] where to is the start time (excluded from the
window) and tc is the end time (included in the window). A window is open at time t
if to < t ≤ tc. A window is closed at time t if t > tc. A window w contains an element
e of an input stream if the timestamp of e is within the boundaries of w.
Scope is a function that maps each point in time t to its active window, which is the

open window w with the lowest to1. Scope only depends on the size and slide of the
window operator, and on the start time of very first window —t0—, which is system
specific.
Content is a function that maps each point in time t to the stream elements that are

in the active window at t.
Report is a function that defines the strategies that a window adopts to make its

Content visible for downstream processing. A window can adopt any combination —
conjunction— of the following four strategies: (i) content change: w reports only if
the window content changes (with respect to the previous report); (ii) window close: w
reports only when the active window closes; (iii) non-empty content: w reports only if
the active window is not empty; (iv) periodic: w reports only at regular time intervals.

With reference to Figure 3.2, an SP that reports on content change would not report
the window w4, since its content is identical to the content of the previous window w3.
Similarly, an SP that reports on non-empty content would not report window w5, since
it does not contain any element.
T ick is a function that describes the conditions that trigger a possible Report. SE-

CRET identifies the following alternative T ick strategies: (i) tuple-driven: each in-
coming element triggers an evaluation; (ii) time-driven: each time progress triggers an
evaluation.

With reference to Figure 3.2, an SP that adopts a tuple-driven T ick would evaluate
the Report conditions twice for time t = 3, since two elements have timestamp t = 3.
Conversely, a time-driven T ick would trigger a single evaluation.

The case of count windows is analogous, with the difference that the size and slide
of windows are defined in terms of number of elements rather than time. SECRET
identifies each element of the input stream with a unique id and defines a global order
between the stream elements based on their id. In the case of count windows, the Scope

1Since a window operator is defined in terms of a slide that is greater than zero, at any given point in time the active window
for that operator is unique.

22

i
i

“thesis” — 2019/1/23 — 21:54 — page 23 — #35 i
i

i
i

i
i

3.2. Analysis of Stream Processing Engines

t=1 t=2 t=3 t=4 t=5

A B
C
D

E F

5 { E, F }
{ }4

3 ?
2 { }

{ }1
reportt

Figure 3.3: Example of time-driven T ick: count window with size 2 and slide 2

function is defined in terms of the parameter i0 —instead of t0— which identifies the
first id of the very first count window in the engine.2

Notice that a corner case can occur in the case of time-driven T ick associated to
count windows. Indeed, multiple windows might close at the same point in time, leav-
ing to the SP the choice of which of them to report. Figure 3.3 exemplifies this situation
for a count window with a size of two and a slide of two. Figure 3.3 denotes stream
elements using upper case letters and orders them based on their event time. Element
A has timestamp 1, and elements B, C, and D all have timestamp 2.

At time t = 1, no window closes and so the engine does not report. The same occurs
at time t = 2. When the engine receives element E at time t = 3, all the elements
for time t < 3 have been received —SECRET assumes that elements are processed
in order. Thus, the system can process the elements A, B, C, and D, which fill two
different windows of size two. Since the choice of the windows to report is engine
specific, SECRET models this case by introducing a new Pick function that encodes
the selection.

As a final note, we observe that modern SPs consider windows as special operators
in their processing graph and can use multiple window operators in the same graph —
see Figure 3.1. On the other hand, SECRET focuses on windows and does not consider
processing operators. Thus we model each window in isolation. We believe that this is
not a severe limitation, since the overall semantics of a processing graph can be defined
through the composition of its individual operators, and window operators are the most
critical as they define the data slices upon which other operators get executed. At the
same time, a complete modeling of the execution semantics of modern SPs should also
take into account the topology of the processing graph. We defer a detailed discussion
of this and other possible limitations of the SECRET model to Section 3.3.

3.2 Analysis of Stream Processing Engines

This section models the execution semantics of five widely adopted modern SPs using
SECRET. We conduct an empirical analysis to determine the value of the parameters
of SECRET —Scope, Content, Report, T ick, Pick— for each of the systems under
analysis. The remainder of this section first presents the experimental methodology
and then the systems under analysis and the results of our experiments for each of
them.

2In the remainder of the thesis, we assume that the id associated to the very first element that enters the SP after it starts has
value 0. The id is increased by one for each incoming element.

23

i
i

“thesis” — 2019/1/23 — 21:54 — page 24 — #36 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

Determine Pick

- t0 / i0

Determine Scope

- Content change
- Window close
- Non-empty content
- Periodic

Determine Report

- Tuple-driven
- Time-driven

Determine Tick

SPE Execution

Comparison of results

SECRET simulation

Experiments

Figure 3.4: Workflow of the experiments

3.2.1 Experimental methodology

We devise an experimental methodology to determine the parameters of the SECRET
model for the systems under analysis. We build minimal processing graphs that include
a single source and a single window operator w that outputs the entire content of w. We
observe the time and content of each report from w.

Figure 3.4 presents the workflow defined in our methodology: the dashed block
on the left of the figure represents the empirical experiments we perform to determine
the functions Report, T ick, Scope, and Pick. For each function, we list the concrete
parameters that we need to identify, if any.

The behavior ofReport depends on four independent flags: content change, window
close, non-empty content, and periodic, which can be either active or inactive. T ick can
be either tuple-driven or time-driven. Scope only depends on the parameter t0 —in the
case of time windows— or i0 —in the case of count windows. Pick can be any function
that takes a set s of windows and returns a subset of s.

To validate the correctness of our modeling, we rely on a simulator implemented by
the authors of SECRET that we extend to capture the SPs under analysis. For a given
input and for given Report, T ick, Scope, and Pick functions, the simulator generates
the expected output. We compare the results of the simulator with the real results
produced by each SP using the same topologies and input data defined in the SECRET
paper [25], which exercise the corner cases of the modeled behavior. We made the code
for the deployment and execution of all the experiments publicly available3. The entire
codebase consists of about 3000 lines of code, mostly written in Java and including the
original SECRET simulator. Plugging a new SP only requires adapting the available
examples to the API of that specific SP. We hope this will promote future extensions to
other SPs.

We now proceed to describe the experiments we performed in detail. Unless oth-
erwise specified in the description of the specific SP, we deploy the SP under analysis

3https://github.com/deib-polimi/spes

24

https://github.com/deib-polimi/spes

i
i

“thesis” — 2019/1/23 — 21:54 — page 25 — #37 i
i

i
i

i
i

3.2. Analysis of Stream Processing Engines

and the source of input data on the same machine. We configure the SP as a stand alone
component and we use network communication to interact with it. We submit input el-
ements in timestamp order, always using FIFO channels to avoid reordering. SECRET
does not capture problems related to clock skews and out-of-order elements that might
emerge in distributed settings. Thus, these issues are outside the scope of the analysis
and will be better discussed in Section 3.3.

We adopt input elements in the form 〈val, ts〉, where val is a string value and ts
is the timestamp of the element expressed in seconds. We design the experiments in
such a way that timestamps well approximate the physical time measured on the wall
clock time at the source. To do so, we pause the source between the submission of two
consecutive elements e1 = 〈val1, ts1〉 and e2 = 〈val2, ts2〉 for ts2 − ts1 seconds. We
keep the input rate low enough to guarantee that the SP is never overloaded. Finally, we
assume the variance of the latency between the source and the SP to be negligible. Un-
der these conditions, event time approximates well the processing time, thus making it
possible to use SECRET also to analyze systems that adopt processing time semantics.

We discuss how we determine the T ick,Report, and Scope functions in the case of
time windows, being the procedure for count windows analogous.

Determine T ick. To determine the T ick, we define a time window of size ω > 1 and
we submit more than ω elements all having the same timestamp. If the SP reports more
than once, then the T ick is tuple-driven, meaning that the window advances even with
elements that have the same timestamp, otherwise the T ick is time-driven.

Determine Report. The semantics of report depends on four flags, and the SP reports
if (the constraints expressed in) all the flags are satisfied. We determine whether a
flag f is satisfied by conducting experiments in which the results only depend on the
satisfiability of f .

First, we build an experiment where content change and non-empty content do not
influence the results. To do so, we submit elements with increasing timestamps, where
the distance between the timestamp of two consecutive elements is a fixed value τ . We
set a window of size τ and slide τ and we observe whether the system reports at every
new tuple or only periodically, thus determining the value of the periodic flag. Next, we
increase the size of the window to understand if the SP reports only on window close.
Second, we build an experiment in which the content of the window does not change
across subsequent ticks, to determine the value of content change. As we discuss in the
following, none of the systems under analysis exhibits periodic behaviors and none of
them reports only on content change. Finally, we consider empty windows and analyze
the reports of the SP to determine the value of the non-empty content flag.

Determine Scope. The Scope function depends on the parameter t0, which is the start
time of the very first window considered by the SP. Let us call tsi the timestamp of
the first element submitted to the SP, ω the window size, and β the window slide. To
understand the value of t0, we submit elements to the SP with a predefined frequency
and we consider different combinations of ω, β, and tsi. We use the results we obtain
to infer the value of t0 as a function of ω, β, and tsi. In the case of count windows, we
consider the parameter idi instead of tsi, which is the id of the very first element that
enters the engine.

Determine Pick. The Pick function is only relevant in the case of count windows

25

i
i

“thesis” — 2019/1/23 — 21:54 — page 26 — #38 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

Time windows
T ick Report Scope

CC WC NE P
Flink time X X t0 = tsi + β − ω − 1
Storm time X X t0 = tsi + β − ω
Spark time X t0 = β − ω − 1
DataFlow time X X t0 = tsi + β − ω − 1
Azure S.A. time X X ?

Count windows
T ick Report Scope P ick

CC WC NE P
Flink tuple X X i0 = idi + β − ω − 1 –
Storm tuple X X i0 = idi + β − ω − 1 –
Spark 1.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
DataFlow n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Azure S.A. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Table 3.1: Parameters identified for the SPs under analysis

if the SP under analysis provides time-based T ick. As explained in Section 3.1.2, this
situation might lead to multiple windows closing simultaneously, and the Pick function
selects which of them toReport.

Most of the systems under analysis do not support count windows, and when count
windows are available, they are always associated to a tuple-driven T ick. Thus, the
Pick function is never used in the context of our analysis.

3.2.2 Flink

Flink [29] is an Apache project built on the Stratosphere research prototype [10] devel-
oped at the Technische Universität of Berlin. Flink has gained popularity in the last few
years, becoming Apache Top Level Project in March 2014. It provides both a DataSet
and a DataStream API to process static and streaming data, respectively. It also offers
a number of libraries built on top of such APIs for disparate application domains, such
as machine learning and graph processing.

We consider Flink 1.1.4 and we target the DataStream API. Flink processes streams
of data using event time semantics. Time-related operators such as time-based windows
use a watermarking mechanism [8] to reorder input elements before processing: an
operator o sends a watermark with timestamp t to another operator o′ to guarantee that
o′ will not receive from o any more items with timestamp lower or equal than t. When
an operator receives a watermark with timestamp t from all its upstream operators, it
can safely start processing all the elements up to time t.

Flink offers exactly once semantics even in the presence of node failures and imple-
ments fault tolerance using a distributed snapshot algorithm [71].

To model Flink in SECRET, we follow the methodology presented in Section 3.2.1,
using a single source connected to a single window operator through a socket. Flink
exposes some configuration parameters other than window size and slide to tune the
behavior of time windows. For instance, developers can force Flink to implement a
processing time semantics as opposed to the default event time semantics. In our ex-
periments, we always adopt the default parameters and we derive the SECRET model
accordingly. We defer to Section 3.3 a detailed discussion of the implications of such
parameters.

In Flink, each operator is responsible for providing the watermark to all its down-
stream operators. In particular, each source needs to submit a new watermark upon the

26

i
i

“thesis” — 2019/1/23 — 21:54 — page 27 — #39 i
i

i
i

i
i

3.2. Analysis of Stream Processing Engines

delivery of a new element or periodically. In our experiments, we ingest input elements
in event time order, so that the engine needs not wait for late, out of order elements.
We make the source submit periodic watermarks with a frequency that is higher than
the input rate. Each watermark is set to the timestamp of the last emitted element mi-
nus one second. This enables us to submit multiple elements with the same timestamp,
for instance to determine the value of T ick. All the elements with a timestamp τ are
immediately processed when an element with timestamp greater than τ (and the corre-
sponding watermark) is received, without waiting for out-of-order elements.

Table 3.1 lists the parameters of SECRET for Flink. In the case of time windows,
the T ick is time-driven and Flink reports on window close with non-empty content.
The first window closes at time tsi + β − 1, which means that it opens at time t0 =
tsi + β − ω − 1. In the case of count windows, Flink changes its T ick to tuple-driven.
As a consequence, it never experiences windows closing simultaneously and so it does
not need to implement thePick function. The value of i0 = id0+β−ω−1 is analogous
to the t0 extracted for time windows. Under the assumption that t0 = 0 and i0 = 0 the
formulas for t0 and i0 can be simplified to t0 = i0 = β − ω − 14.

As a side note, we report that the behavior of Flink might differ from the behavior
of the SECRET model when considering the very last active window before the system
shuts down. Indeed, Flink flushes the active window when the system terminates, but
this behavior is not captured by SECRET, which models the SP assuming a steady state.

3.2.3 Storm

Storm [78] is a framework for distributed real-time computation acquired by Twitter
in 2011 and released as an open source Apache project. In Storm, developers specify
the behavior of individual operators using imperative code and connect operators with
each other to form a direct acyclic graph. Starting from version 1.0, Storm also offers a
native support for time windows, which are the subject of our model. Each Storm op-
erator processes stream elements one at a time and implements fault tolerance using a
per-element acknowledgement and resubmission. This ensures that each operator pro-
cesses each input element at least once, but does not guarantee exactly once processing.
This aspect might affect the semantics of processing in the case of faults, but it is not
modeled in SECRET. Thus, in the case of failures, the results produced by Storm might
differ from those produced by its SECRET model.

We performed our experiments using Storm version 1.0.2. We implemented a topol-
ogy with a single source and a single window operator connected through a TCP socket.
Since Storm supports event time semantics and handles out of order arrival of elements
through watermarking, we adopted the same strategy for the submission of watermarks
as in Flink.

Table 3.1 lists the parameters to model Storm in SECRET. In the case of time win-
dows, Storm presents the same T ick andReport as Flink: it has a time-based T ick and
reports on window close with non-empty content. Storm’s t0 differs from Flink’s t0 by
a fixed offset of one: while this difference might appear marginal, this means that the
windowing behavior of Storm and Flink are different and thus the two engines produce
different results when fed with identical input.

4SECRET assumes the domain of time and ids to be discrete. Timestamps and ids are allowed to be negative.

27

i
i

“thesis” — 2019/1/23 — 21:54 — page 28 — #40 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

Initially, we started our experiments with Storm version 1.0.1. Using this version,
we could not model count windows, since in the case of elements with identical times-
tamps Storm reported the last ω elements in the active window bn/ωc times, where ω is
the size of the window and n is the number of elements not-yet reported. We reported
this suspicious behavior to developers that recognized it as a bug. Storm version 1.0.2
integrates a bug fix5 and we complete Table 3.1 accordingly. The observed behavior
is identical to that of Flink. The detection of this bug highlights the importance of a
formal model to analyze the execution semantics of SPs. Thanks to the adoption of
SECRET we could identify the presence of a misbehavior.

3.2.4 Spark

Spark [85] is a general-purpose cluster computing system. Initially developed at Berke-
ley and currently an Apache project, Spark is widely adopted in batch and stream pro-
cessing applications that involve large volumes of data, also thanks to the availability of
several application-specific libraries. Spark stores data in Resilient Distributed Datasets
(RDDs), a read-only, lazily evaluated, partitioned collections of records. RDDs are per-
sisted on a distributed file system for fault tolerance and can be cached in main memory
to enable low-latency computations. Spark keeps track of how RDDs are computed. If
an RDD is lost due to some failure, its value is recomputed through the RDDs it depends
on. This guarantees exactly once semantics even in the presence of node failures.

Spark models streaming computations as a series of stateless, deterministic batch
computations on small batches of data —µ-batch. In particular, streams are discretized
into a sequence of immutable, partitioned RDDs, which enable Spark to reuse the strate-
gies and algorithms for batch computation also in streaming scenarios. This approach
trades latency for throughput, since it delays a computation until a µ-batch is available.
The µ-batch approach has also some consequences on the semantics of processing.
Specifically, Spark only supports time windows having a size and slide that are multi-
ple of the µ-batch size. This technological constraint is outside the scope of SECRET
and thus is not captured in our model.

More significantly, Spark only supports processing time semantics and not event
time semantics. Each operator considers the wall clock time of the machine it is running
on and thus the order and time distance of the elements in a stream also depend on the
processing capabilities of that specific machine. This means that the same input might
produce different results in different deployments of the same processing topology. As
discussed in Section 3.2.1, we designed the source such that its submission time is a
good approximation of the value of its timestamp. This enables us to use the SECRET
model, which relies on event time, also in the case of processing time. However, it is
worth mentioning that this approach only works if the system is not overloaded: if the
system instead introduces some processing delay, event time and processing time might
differ, making our modeling imprecise.

In our experiments, we adopt Spark version 2.1. We configure Spark to use the
minimum size of µ-batch of 1 ms and we connect a single source to the engine using
a TCP socket. Spark only supports time windows and does not offer count windows.
As shown in Table 3.1, Spark implements a time-based T ick that reports on window
change independently from the content of the window. The value of t0 is different than

5https://github.com/apache/storm/pull/1568

28

https://github.com/apache/storm/pull/1568

i
i

“thesis” — 2019/1/23 — 21:54 — page 29 — #41 i
i

i
i

i
i

3.2. Analysis of Stream Processing Engines

in the other systems we analyze. Indeed, Spark closes the first window at time β − 1
after the SP starts up at time τ and also reports empty windows (thus the non empty
window flag is not set).

SECRET cannot model the start up time τ of the system, since it can only reason
about the event time as encoded in the timestamps of incoming elements, while τ can
only be captured by considering the wall clock time of the machine in which the SP
runs. To solve this issue, in our experiments we assume that the SP starts up at time 0,
thus obtaining the value t0 = β − ω − 1. This highlights a limitation of SECRET that
we better discuss in Section 3.3.

3.2.5 Google Cloud Dataflow

Google offers the Google Cloud Dataflow6 SP as a service in the Google Cloud Plat-
form. Google open-sourced the Software Development Kit for Dataflow, but not the
underlying engine that remains proprietary.

Since Dataflow is only offered as a Cloud service, we had to adapt the experimental
methodology. We communicate with the engine using the Pub/Sub messaging service7

in the Google Cloud Platform, which offers multicast communication on distinct chan-
nels called topics. Specifically, we deploy a topology composed of four operators:
(i) a Pub/Sub subscriber that reads elements from an input topic; (ii) a window opera-
tor; (iii) a reducer that concatenates the content of each window into an output string;
(iv) the Pub/Sub publisher that writes the results of the reducer on an output topic. We
submit elements by publishing them on the input topic and we read the results from the
output topic.

By default, Dataflow applies event time semantics and adopts a watermarking mech-
anism to handle out of order. Watermarks are emitted by the very first operator that
receives elements from outside the SP (the subscriber in our topology). During the
experiments, we observed a dependency between the input and the output rates. In
particular, a low input rate could lead to unbounded output latency. We believe that
a dynamic management of watermarks determines this behavior: in presence of a low
input rate, the subscriber assumes a high latency in the arrival of elements, and thus be-
comes more conservative in the values of watermarks. As a consequence the values of
watermarks do not advance and the engine stops processing new elements and emitting
new output. We overcome this problem by attaching a long tail of additional elements
at the end of each experiment, which ensures that we eventually receive all the output
of that experiment.

Table 3.1 shows the SECRET parameters for Dataflow. Dataflow only supports time
windows and does not provide count windows. The Report is not-empty content and
on window close, while its T ick is time-based. The Scope is the same as in Flink
t0 = tsi + β − ω − 1.

3.2.6 Azure Stream Analytics

Microsoft offers the Azure Stream Analytics SP8 as a Cloud service. The communica-
tion with the SP can be realized using either a publish-subscribe service or a message

6https://cloud.google.com/dataflow/
7https://cloud.google.com/pubsub/
8https://azure.microsoft.com/en-us/services/stream-analytics/

29

https://cloud.google.com/dataflow/
https://cloud.google.com/pubsub/
https://azure.microsoft.com/en-us/services/stream-analytics/

i
i

“thesis” — 2019/1/23 — 21:54 — page 30 — #42 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

Listing 3.1: An example of Stream Analytics query.

SELECT System . Timestamp AS t s , C o l l e c t ()
INTO o u t p u t−queue
FROM i n p u t−hub TIMESTAMP BY t a p p
GROUP BY HoppingWindow (second , 4 , 2)

queuing service. In our experiments we submit elements through publish-subscribe
primitives and we read output elements from a queue.

In Azure Stream Analytics, the developer defines the processing tasks in the Stream
Analytics Query Language, a SQL-like declarative language that is compiled to a graph
of operators and deployed on the Cloud. Listing 3.1 shows the query we use in our
experiments. The GROUP BY clause introduces a HoppingWindow, which is the
Azure Stream Analytics implementation of a time based sliding window. The query
extracts the timestamp of each element —stored in the tapp field— and returns the
entire content of the window —Collect()— and the (event time) timestamp of the end
of the window.

Azure Stream Analytics supports event time semantics, where timestamps repre-
sent time in UTC. Developers can set a maximum time skew for late arrivals. When
an element e enters the engine, the engine compares the ingestion time of e with the
timestamp of e. If the difference between the two times is larger than the maximum
time skew, then the engine drops e. Since the maximum time skew cannot be larger
than few days, we could not use the same timestamps adopted for the other SPs that
start from 0. Instead, we shifted all the timestamp by δ, where δ is the UTC time when
the experiment started, as extracted from the wall clock time of our local machine. This
solution enables us to extract the parameters for the Azure Stream Analytics for T ick
andReport. We were not able to extract the value of t0 since it probably depends on the
ingestion time of the first element, which we cannot access from the Cloud platform.

As Table 3.1 shows, Azure Stream Analytics only supports time based windows,
reports on window close with non-empty content, and presents a time-based T ick.

3.3 Discussion

This section presents the key conclusions we draw from the modeling effort reported
in Section 3.2. Under some assumptions that we better discuss in the remainder of this
section, SECRET captures the semantics of windows in the SPs we analyzed and high-
lights a general agreement on the T ick andReport of windows, based on the following
rules: (i) in the case of time windows, the T ick is always time-driven; (ii) in the case of
count windows (if available), the T ick is always tuple-driven; (iii) all systems Report
on window close and non-empty content, with the only exception of Spark that also
reports empty windows.

Conversely, the systems under analysis present differences in terms of Scope. In
most systems the first active window closes after a slide β − 1 from the arrival of the
first element, meaning that t0 = tsi + β − ω − 1 (io = idi + β − ω − 1 in the case of
count windows). Storm considers t0 = tsi+β−ω, which is probably due to a different
definition of windows that includes the open time and excludes the end time. Finally,

30

i
i

“thesis” — 2019/1/23 — 21:54 — page 31 — #43 i
i

i
i

i
i

3.3. Discussion

Spark adopts a processing time semantics, and the position of windows is not related to
the timestamp of the first element, but rather to start up time of the SP.

While the differentReport and t0 in Spark and the different t0 in Storm might appear
small variations with respect to the behavior of the other SPs, they lead to different
execution semantics and thus to different results. This motivates the need for a formal
model to capture the execution semantics of modern SPs and highlight their differences.

Our analysis also sheds light on some aspects of modern distributed SPs that SE-
CRET cannot fully model. They are of great interest since (i) they hint at the key
differences between “old generation” SPs (those that SECRET was designed to model)
and “modern” SPs for distributed processing in cluster environments; (ii) they suggest
promising lines of investigation to build a more comprehensive model that captures all
the relevant aspects of modern SPs. We describe them in detail in the next sections.

3.3.1 Time model

SECRET assumes event time semantics and further assumes that all the stream ele-
ments enter the engine in order with respect to their timestamps. These assumptions
were motivated by the nature of the stream processing systems available when SECRET
was conceived, which were mainly centralized and specifically designed for continuous
query answering. Stream elements often encoded occurrences of noteworthy facts in
the application environments and queries typically included time boundaries. Because
of this, windows —and time windows in particular— were perhaps the most relevant
operators for these systems.

Conversely, modern SPs such as the ones we consider in this paper are designed
to perform generic computations on large volumes of streaming data. They do not
consider time as a first class citizen and do not necessarily associate a timestamp to
each and every stream element. In most cases, windowing constructs are not core
building blocks of the engine, but rather operators developed on top of the base engine
services to better support some application scenarios. This is for example the case of
Storm, which offers windows only starting from recent versions.

Moving from these premises, it is not surprising that some systems, such as Spark,
use processing time as their default time semantics. Under processing time semantics
stream elements are processed by an operator in the order in which they enter that
operator. The engine does not assume elements to be timestamped and thus it cannot
exploit timestamps to learn the semantics of time of the application at hand.

The execution semantics of a single windowing operator under processing time can
be approximated in event time if the following conditions hold: (i) The order in which
the elements enter the SP reflects the desired order for the application at hand. (ii) The
distance between the arrival of elements in processing time reflects their distance in
event time; for instance, if the source that emits elements and the windowing opera-
tor are deployed on different physical machines, this means that the variance of the
network latency between them is negligible. (iii) The physical node that executes the
window operator is not overloaded, and thus it does not introduce additional delay in
the processing time.

The second and the third assumptions are the most critical, since they depend on run-
time behaviors —processing speed, load, and network latency— that are not under the
control of developers and difficult or impossible to achieve, as in the case of constant

31

i
i

“thesis” — 2019/1/23 — 21:54 — page 32 — #44 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

network latency.
As for the first assumption, it is reasonable to assume that individual external sources

submit elements in some meaningful order, but without timestamps it is impossible to
define a total order between elements produced at different external sources. If the
developer wants to ensure event time semantics on top of a system that does not support
it, she has to manually implement the application logic responsible for buffering and
reordering input elements before processing.

3.3.2 Windowing approaches

SECRET models tumbling and sliding windows. However, those are not the only win-
dowing strategies available. The size of some type of windows is not fixed (let it be a
time span, or a number of elements), but it depends on their content. We provide below
some examples of different windowing behavior gathered from the state of the art.

Cutty [30] is a framework for efficient aggregate sharing across overlapping win-
dows. Interestingly, it provides a classification of windows in deterministic and non-
deterministic ones. Essentially, deterministic windows are the ones for which, when a
new element occurs, it can be associated immediately to a window. Periodic windows
(tumbling and sliding) are deterministic. For non-deterministic ones, on the contrary, it
is impossible to state if a record is in a window or not without further information. As
an example, consider a window that contains the last record in a stream every 5 seconds:
when record r occurs at time t, it is impossible to know in advance if no record will
occur before the end of the window; in other words, it is impossible to state if r is in
the window until the window period expires. Li et al. [57] proposed a similar approach
to define windows based on the content of input elements. They adopt this formalism
to define an effective evaluation strategy for window aggregates.

Google Dataflow and Apache Flink introduced the concept of session windows [9],
in which the boundaries of each window are defined based on the frequency of the input
elements. A session window is considered closed when there is a user-defined gap of
inactivity between elements.

Frames [50] are content-defined windows that provide developers with built-in func-
tions to simplify the statistical analysis of data.

Predicate windows [48] predicate on the content of an input element to determine
whether it has to be considered as new information, or as an update (or deletion) of
existing information. They were introduced to define views and to support view main-
tenance in DSMSs. Predicate windows are more flexible since they are not append-only,
but they enable incoming elements to overwrite part of a window content.

Bugra Gedik [47] provides a unified framework to define multiple types of windows
based on their insertion, trigger, and eviction policies: insertion represents the addition
of an element into its respective window; eviction represents removal of one or more of
the oldest elements from the window; trigger represents the application of the operator
logic to the content of the window. These policies can be applied in different orders
and can be composed (from a specification of standard policies provided by the author)
in order to implement user-defined windowing behavior.

In conclusion, the space of windowing strategies is much wider than only tumbling
and sliding. The advent of new types of windows and user-defined ones will demand
for novel models that can extend or complement SECRET.

32

i
i

“thesis” — 2019/1/23 — 21:54 — page 33 — #45 i
i

i
i

i
i

3.3. Discussion

3.3.3 Management of out-of-order elements

As discussed in the previous section, SECRET assumes input elements to enter the
engine in order with respect to their associated timestamp. Instead, modern SPs support
out-of-order arrival of input elements, but differ in the way they manage such elements.

A common approach to deal with out of order consists in specifying the maximum
delay for the arrival of elements and defer the processing until such a delay has elapsed.
Yet, the semantics of processing in the case some element overcomes such maximum
delay changes from system to system. For instance, as discussed in Section 3.2, Azure
Stream Analytics discards input elements that arrive too late with respect to the UTC
wall clock time. These behaviors cannot be captured within the SECRET model.

Another approach consists in producing metadata at the sources to indicate when the
produced elements can be safely processed without incurring the risk of late arrival of
further out of order elements. The watermarks adopted in Flink are a concrete imple-
mentation of this more flexible approach [8] that enables each source to dynamically
adjust the metadata it provides to the engine based on its current operating conditions.
Also in this case, the semantics of processing in the case some elements violate the
content of metadata might change from system to system.

Finally, other systems produce results in the form of mutable, time-annotated
datasets. In the presence of out-of-order elements that alter the values of some results
produced in the past, the engine retracts the previous output from the mutable dataset
and substitutes it with the newly computed values. This is the case of the Kafka Stream
system [79].

3.3.4 Graph of operators

SECRET considers the semantics of windows in isolation. This is motivated by the
default processing model of the SPs SECRET was designed to capture, which typically
consists of a predefined, fixed structure with three steps [12]: (i) a stream-to-relation
step that uses windows to select portions of the input stream; (ii) a relation-to-relation
step that performs the actual processing by only considering the content of windows;
(iii) a relation-to-stream step that converts back the results of the computation into
stream elements. This fixed structure well serves the purpose of performing continuous
queries on streaming data, but it is not flexible enough for general purpose computa-
tions.

Conversely, modern SPs enable developers to build complex graphs of operators.
How the structure of these graphs influences the execution semantics is outside the
scope of SECRET and certainly relevant to fully model modern SPs. For instance,
some SPs admit cyclic topologies, but the way in which they implement cycles might
differ. In general, the execution semantics might change depending on the way SPs
route elements between operators, since distributed deployments might affect the mu-
tual order of stream elements as they move from operator to operator. Distribution
becomes particularly relevant in the case of processing time semantics, where the pres-
ence of heterogeneous nodes, different processing speed, or different in latency between
nodes might affect the overall behavior of the SP in ways that cannot be predicted by
only looking at the graph topology.

Finally, in modern SPs windows are not special entities, but rather one of the possi-

33

i
i

“thesis” — 2019/1/23 — 21:54 — page 34 — #46 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

ble operators that compose the processing graph. As a consequence, it becomes worth
to investigate how different windows interact with each other based on their location in
the graph.

3.3.5 Fault tolerance

Modern SPs are designed to run on a multitude of physical nodes. In this setting, the
probability of failure of at least one node is not negligible. Thus, SPs include fault
tolerance mechanisms to keep processing and producing results even in the presence of
some failures.

Such mechanisms include per-element acknowledgments and retransmissions as in
Storm, lineage graph and recomputations as in Spark, and distributed snapshots as in
Flink. Most significantly, different mechanisms provide different semantics and yield
different results in the presence of failures. For instance, both Flink and Spark guaran-
tee that each element is processed at each operator exactly once, which means that the
results produced do not change in the case of failure. Conversely, Storm only guaran-
tees at least once semantics, meaning that each operator can submit an element more
than once to its downstream operators. Clearly, these differences affect the results pro-
duced by the engine in presence of faults and should be captured by a complete model
of the system.

Even in the case of exactly once semantics, fault tolerance mechanisms affect the
time when a result is produced. In the case of event time semantics, individual elements
include a timestamp that defines the order and time distance between elements. In the
case of processing time semantics, elements do not embed any notion of time and so
their original order and relative time distance is lost in the case of faults. In other
words, the assumptions we made to model systems with processing time semantics in
SECRET no longer hold in the case of faults.

3.3.6 Summary and open challenges

The above discussion highlights the need to extend and complement SECRET to build a
comprehensive model that fully captures the execution semantics of modern SPs. Here
we summarize the aspects of modern SPs that demand for further modeling efforts and
propose interesting directions for future research in this area.

First of all, SECRET assumes event time semantics. In the case of a single window
in which all the elements are received in order, and in the presence of non overloaded
machines, event time well approximates processing time.

However, the assumption of in order arrival of events might be unrealistic in several
real world scenarios in which the clocks of different sources are not well synchronized
or the channels between the sources and the SP have different latency [9]. A proper
analysis of this situation requires a model that takes into account the differences be-
tween the application time perceived at the sources and the time when elements are
processed within the SP.

Furthermore, under processing time semantics, the processing speed of the machines
as well as temporary overloads might impact on the output produced. To capture these
aspects, a model should take into account performance metrics. Given the intrinsic non-
determinism of performance measurements, we foresee the adoption of probabilistic

34

i
i

“thesis” — 2019/1/23 — 21:54 — page 35 — #47 i
i

i
i

i
i

3.3. Discussion

models that encode the probability of the SP to deviate from a default expected output.
In this case, the content of a window is the whole set of the elements in a stream
(possibly infinite), each one with an associated probability of membership. Fuzzy sets
are the mathematical abstraction that may be used to model a probabilistic Content
function [83].

Also, by solely relying on event time semantics, SECRET cannot model the aspects
of an engine that depend on wall clock time. For instance, windows in Spark start to
report after the engine starts up; similarly in Azure Stream Analytics, elements which
time differs too much from the wall clock time of the physical machine get discarded.
A comprehensive model that encodes both event time and wall clock time could also
capture these behaviors.

Second, SECRET was designed to capture the semantics of individual windowing
operators. This was motivated by the nature of the SPs SECRET was designed for:
those SPs were mainly intended to answer continuous queries, where a single window
was used to isolate the portion of the stream upon which the queries were evaluated.
With well defined semantics for the queries, a precise modeling of the windowing be-
havior was then sufficient to capture the overall execution semantics of the engine.

Modern SPs are designed to solve a larger class of problems, and offer program-
ming abstractions that are suitable to encode general streaming computations. In most
cases, the developer does not specify the processing task in terms of a high-level declar-
ative query language, but rather explicitly defines the graph of operators that the input
elements traverse to produce the output.

Windows still represent the most critical operators to model, since they accumulate
the portions of the stream upon which other operators are executed. Nevertheless, a
complete model that fully captures the execution semantics of modern SPs needs to
precisely encode the semantics of the operators graph formalism, defining its shape —
for instance, whether loops are allowed— and behavior —for instance, how elements
from multiple input streams are ordered within an operator.

Third, modern SPs are designed to run on multiple nodes without a shared memory.
In most cases the distribution of processing is transparent and does not impact on the
output of the SP. Yet in some cases the distribution might affect the execution seman-
tics: for instance, we already discussed the consequences of heterogeneous processing
capabilities under processing time semantics.

Thus, we believe that a precise model of SPs should also be concerned with details
about the processing infrastructure and the deployment of the operators on the physical
nodes. For instance, it should consider whether the SP enables the partitioning or the
replication of some operators on multiple nodes to improve the performance, and how
partitioning and replication might impact on the execution semantics of the engine.
In this case, indeed, windowing operators can be replicated too, making it possible
to have more then one window with the same open and close timestamp. SECRET’s
assumption of one active window could not be applicable in these cases. Furthermore,
replicated windows are applied only to a partition of the original stream, thus definitely
influencing the results of the Content function.

Fourth, some modern SPs introduce new types of windows that SECRET cannot
model. For instance, session, non-deterministic, predicate, or user-defined windows
have boundaries not defined by the time or by the number of elements, but rather by

35

i
i

“thesis” — 2019/1/23 — 21:54 — page 36 — #48 i
i

i
i

i
i

Chapter 3. SPs Execution Semantics

their content. For instance, in a web site monitoring scenario, a window might open
upon receiving an element that indicates that a user started a particular operation and
close when the operation ends. TheReport function should be extended with additional
policies in order to account for these new types of windows. User-defined windows
represent a particular case, in that they impact both Report and Content. The model
provided by Bugra Gedik [47] is a good point to start in shaping them. The Content
function should be extended to accommodate for insertion and eviction policies, while
Report should account for trigger policies.

Finally, modern SPs introduce fault tolerance mechanisms to cope with the rather
frequent hardware failure in the cluster platforms in which they operate. Different SPs
provide different guarantees in the presence of failures: in most cases, the SP guaran-
tees exactly once semantics, meaning that no loss or duplicate processing are possible
and hence failure do not affect the execution semantics. However, some platforms of-
fer weaker guarantees. For instance, Storm offers at least once semantics, in which
duplicate processing of some elements is allowed. In this case, failures impact on the
execution semantics and need to be modeled. This demands for a model that not only
contemplates the presence of loss or duplicate elements in one operator, but also how
loss and duplicate elements affect the entire processing graph.

In conclusion, one could ask if it is really worthwhile to capture such behavior as
part of the execution semantics of a system, or if it could be the case to classify them as
faults. However, every aspect we analyzed so far constitutes part of the actual behavior
of systems that are in use in many software stacks. If a model is distant from the actual
behavior of such systems, then it should be updated in order to account for it. Justifying
the need for modeling the graph of operators, operator replication, and content-based
windows is straightforward, because these aspects are a must for distributed SPs, and
significantly impact the semantics of the application at hand. Architectural aspects
as processing time and fault tolerance could be left outside of the model. However,
processing time is a processing mode that can be enabled in many systems and it is
actually employed for use cases where the sources do not timestamp elements; and
different fault tolerance guarantees are accepted modes of operation of distributed SPs.
In general, if an architectural aspect impacts the accepted output of the system, then it
should be included in the model.

36

i
i

“thesis” — 2019/1/23 — 21:54 — page 37 — #49 i
i

i
i

i
i

CHAPTER4
Transactions on the Stream Processor

In this chapter, we describe our approach for unifying SPs and DBMSs under the same
system. Section 4.1 provides background information for DBMSs and SPs state man-
agement capabilities. Section 4.2 describes the limitations of the SPs computational
model in expressing transactional behavior. In Section 4.3 we model transactional be-
havior within the graph of computation of SPs. In Section 4.4 we describe the imple-
mentation of TSpoon and, finally, in Section 4.5, we evaluate its performance.

The reference paper for this chapter is [4].

4.1 State Management Capabilities

Before discussing in detail the limitations of SPs in Section 4.2, we compare the state
management capabilities of DBMSs and SPs. As anticipated, our work combines the
efforts of different communities: we extend the SP computational model with the state
management that DBMSs offer. Section 4.1.1 describes the state management capabil-
ities of databases. Section 4.1.2 provides background on the SPs computational model
by summarizing the concepts already introduced in Section 3.1, although focusing on
state management on the SP.

4.1.1 Database Management Systems

DBMSs are tailored to manage state. Their state management capabilities involve state
queries and updates, state integrity, and fault tolerance:

Queries and updates the DBMS provides a language for querying and updating the
state (e.g. SQL) and offers the abstraction of transactions1, group of operations

1Many DBMSs have a restricted definition and scope for transactions [17, 32, 39], here, we describe the most general case.

37

i
i

“thesis” — 2019/1/23 — 21:54 — page 38 — #50 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

on the state that are executed as one.

Integrity the DBMS guarantees that the state is kept consistent with the integrity con-
straint specified by the user. For instance, there cannot be two different data items
that have some key, or, if a data item references another, it must exist —referential
integrity. Moreover, the DBMS can enforce user-defined invariants on the state,
such as “user balances cannot fall below 0$”.

Fault tolerance in case of hardware/software failure, the DBMS must guarantee to
recover to a consistent state.

The transaction abstraction is of paramount importance for users in order to im-
plement queries and updates in isolation, without thinking of the nitty-gritty details
about what could go wrong if some transaction is executed in parallel with another one.
For performance reasons, indeed, DBMSs execute transactions in parallel, let them be
single site or distributed. Transactions provide a higher level framework for the in-
teraction with the state, letting the application designer trust the DBMS for operation
concurrency, consistency of the state, and possible failure during transaction execution.
ACID transactional guarantees [49, 51] elicit four different aspects of transactions:

Atomicity a transaction either succeeds (commits) or fails (aborts) leaving the database
state unchanged. A transaction can either fail because of hardware or software
failures, or at user will, based on some particular condition;

Consistency a transaction brings the database from a consistent state to another one;
i.e., the integrity (e.g. user-defined integrity constraints, referential integrity) of
the database is preserved;

Isolation every transaction is executed in isolation with respect to the others; i.e., the
concurrent execution of transactions results in a system state that would be ob-
tained if transactions were executed sequentially;

Durability if a transaction commits, its results will be visible across time, even in the
case of failures and crashes.

Enforcing integrity constraints during transaction execution is notably one of the most
delicate tasks for the DBMS to achieve. It involves isolating operations when needed
by applying different concurrency control techniques [24, 56]. The goal of the DBMS,
indeed, is to provide the abstraction of “group of operations” without sacrificing per-
formance on one side, and ACID guarantees on the other.

Transactions are composed of read and write operations on single data items2. Con-
sider now the DBMS of a banking system that executes deposit operations in parallel
without any kind of concurrency control. Both Bob and Carl owe Alice 50$ who has a
balance of 100$. So, Bob and Carl issue two deposits towards Alice at the same time.
Each deposit operation consist of reading Alice’s current balance (rdebtor), calculate the
update, and write the value back to the database (wdebtor). Suppose that the order of
execution of operations is rBob rCarl wBob wCarl: since there is no concurrency control,
both Bob and Carl would read the same value for Alice’s balance –100$– and write back

2DBMSs also provide support for predicate read and write operations that affect a set of data items that match some user-defined
predicate.

38

i
i

“thesis” — 2019/1/23 — 21:54 — page 39 — #51 i
i

i
i

i
i

4.1. State Management Capabilities

the very same value —150$. The result is that Alice will complain about missing a fee
and Bob and Carl will claim firmly to have paid3. This and other phenomena happen
when no isolation between transaction is enforced [22, 46]. As anticipated, transaction
isolation is achieved at the cost of performance. In some cases, the application can
tolerate some inconsistency and a minor degree of isolation for increased parallelism
and performance in transaction execution. Proscribing phenomena means to raise the
isolation level. The maximum level of isolation —that coincides with the standard def-
inition of isolation— is serializable and it guarantees that the transactions results are
the same obtained from a sequential execution.

4.1.2 Stream Processors

In order to describe SPs state management capabilities we briefly describe their com-
putational model and their state model.

State-of-the-art SPs such as Apache Storm [78], Google DataFlow [9], and Apache
Flink [29] enable high-throughput and low-latency distributed processing of data
streams by adopting a dataflow model that organizes the computation into a directed
graph of operators. The edges of the graph are the streams of data —unbounded se-
quences of data elements— that flow from operator to operator. Operators consume
data from their input streams and append data to their output streams. For instance, a
map operator transforms each input element into an output element according to the
behavior specified by a user-defined function. Similarly, a filter operator propagates
or discards input elements according to a user-defined predicate. Depending on the
specific system, the graph can be explicitly defined by the developer or generated from
a higher-level specification. Operators can be either stateless or stateful. Stateless op-
erators do not retain any state, and the processing of each input element only depends
on the content of that element. Stateful operators accumulate some local state, which
can be accessed while processing input elements. For instance, a stateful count op-
erator receives a stream of words and continuously stores and outputs the number of
occurrences of each word received so far.

This model offers task parallelism by enabling different operators to run simultane-
ously on the same or on different machines. It also offers data parallelism by creating
parallel instances of each operator, with each instance working on an independent par-
tition of the input streams. Developers need only to specify the behavior of operators
and how the input streams are partitioned among parallel instances. For example, in the
case of the count operator above, the stream needs to be partitioned by word to ensure
that all the occurrences of a given word are processed by the same operator instance,
which retains the current count for that word. In the case of stateless operator, partition-
ing does not involve any particular local state; instead, partitioning stateful operators
causes the state to be distributed across different instances of the same operator.

We hereby compare state integrity, query and update, and fault tolerance for SPs to
DBMSs:

Queries and updates The set of updates on local states caused by an element entering
the graph of computation, is a group of operations, i.e. a transaction. The SP
allows for updates of states by defining operators logic, and, in some cases, it

3This anomaly is known as lost update [22].

39

i
i

“thesis” — 2019/1/23 — 21:54 — page 40 — #52 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

b1

b2

b3

b4

account
balance

v1

v2

v3

v4

request
validator

Figure 4.1: A SP implementation of a bank management application.

provides the tools to query the local states directly [27].

Integrity the SP does not offer state integrity. It is up to the user that defines operator’s
logic to guarantee state integrity;

Fault tolerance in case of hardware/software failure, the SP guarantees to restart pro-
cessing from a consistent state; so, no state must contain the effect of a partial
processing of an element4.

The SP runtime takes care of operator deployment, data communication, and fault-
tolerance, which are arguably among the most complex and critical aspects in dis-
tributed applications by enforcing some design rules that trade generality for perfor-
mance and scalability. Most notably, the model requires the computation to be local to
its state. This means that different operators (instances) cannot access any other oper-
ator’s state. Moreover, as in the word count example, the order in which the operators
process input elements must be irrelevant. Finally, queries to the local state of operators
are never coordinated with state updates [27].

Indeed, transactions on a SP differ from the ones in DBMSs in three important as-
pects: (i) SPs do not enforce any integrity constraint on the local state of operators, and
so, an operation cannot fail programmatically and cause others in the same transaction
to fail; (ii) state updates can happen in any order; and (iii) external queries can access
any state without checking for concurrent updates, and so, the SP does not need to
handle race conditions.

In general, although these rules are key to performance and scalability, they limit
the state management capabilities of SPs, as we discuss in the next section.

4.2 Limitations in the SP model

Our work moves from two observations: (i) companies often need to integrate data
analytics tasks —complex computations over the input data— with state management
tasks —transactional updates and queries to the application state; (ii) the SP model is
suitable for data analytics, but presents some severe limitations in state management.

4Some SPs offer the possibility to trade this strong consistency guarantee with weaker, but more performing ones [27, 78].

40

i
i

“thesis” — 2019/1/23 — 21:54 — page 41 — #53 i
i

i
i

i
i

4.2. Limitations in the SP model

As a consequence, companies couples SPs with state management systems, building
complex architectures that hinder the design, implementation, and maintenance of the
overall solution. This thesis aims to offer a unifying solution that overcomes some lim-
itations of today’s SPs to accommodate state management side by side with analytics.

To better illustrate the limitations of the SP model in state management tasks, let
us consider a bank application that introduces classic problems of state management.
Figure 4.1 shows part of the application: from the left, users produce a stream of bank
requests, which can be either deposits, withdrawals, or transfers. Requests are first
processed by a request-validator operator that stores the amount of money that each
user has transferred from or to her account in the last month. The request-validator
blocks further requests when the amount overcomes a given threshold. Requests are
then forwarded to the account-balance operator that retains the current account bal-
ance for each user. Both operators consist of four instances (v1 .. v4 and b1 .. b4),
each responsible for a subset of the accounts. Next, we use this example to illustrate the
limitations of the SP model in terms of transactional guarantees and queryable state.

4.2.1 Transactional guarantees

The impossibility to share state between operator instances makes it hard to imple-
ment the bank management application in a SP while preserving correctness guaran-
tees. Consider a transfer request and its effect on the state of account balance: the
request should update the balance of both the provider and the recipient accounts; how-
ever, due to partitioning, the two accounts can be stored in different instances of the
operator. In this situation, a developer can follow two paths. On the one hand, she
can make sure that the state of account balance is not partitioned, so that a single
instance can process transfer requests. However, this approach relinquishes scalability
to multiple machines, which is one of the main advantages of SPs. On the other hand,
she can split each transfer request into a withdrawal from the provider account and a
deposit to the recipient account. Also this second option opens several problems. (1) A
deposit should succeed only if the corresponding withdrawal terminates successfully.
For instance, if the provider account does not contain enough money, the entire transfer
should be discarded. In other words, we would like the transfer to satisfy some con-
sistency constraints — take place only if there is enough money in the source account
— and to be atomic — if it succeeds, it must affect both the provider account and the
recipient account, and if it fails, it must affect none of them. Atomicity should extend
to multiple operators as well: if a request does not succeed in account balance, its
effects should also be discarded from request validator. Unfortunately, SPs do not of-
fer consistency constraints, nor they enable atomic execution of a group of operations
in different instances. (2) Requests should not interfere with each other. Consider for
instance the following situation: Bob owns 5$, receives 10$ from Alice, and transfers
10$ to Chuck. If the payment from Alice fails, Bob should not be able to complete the
transfer to Chuck. In other words, we would like transfers to take place in isolation and
not to access dirty state left by other not yet completed transfers. Again, since SPs do
not offer mechanisms to group together the withdrawal and the deposit that are part of
a transfer, we cannot ensure that both have been completed before performing further
operations. (3) Once a transfer has been performed, it should be stored in the system
indefinitely, even in the case of failures. In other words, transfers should be durable.

41

i
i

“thesis” — 2019/1/23 — 21:54 — page 42 — #54 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

While all today’s SPs offer fault-tolerance mechanisms, they do not always guarantee
that the operations are executed in the same order upon recovery, which might lead to
different states after recovering from a failure.

In summary, SPs partition their internal state across operator instances; this enables
task and data parallelism, but prevents the correct implementation of application sce-
narios that require ACID transactional guarantees for state updates, as exemplified by
the bank management application above.

4.2.2 Queryable state

Even if SPs retain state information during processing, this state is hidden into operators
and cannot be queried and retrieved on demand from outside the SP. To access relevant
state, developers can store it in external state management systems. For instance, if
account balance outputs the current state of each account, this information can be used
to update an external DBMS. However, this leads to data duplication, with potential
waste of resources and additional effort to integrate multiple systems and keep them in
a consistent state.

Despite some initial proposals to make the operator state visible [27], no SP sup-
ports queries that span multiple operator instances, or considers the consistency of the
returned information. For instance, in the case of bank transfers, if we could access
the state of multiple accounts from account balance, we would like to see a trans-
fer completed both in the provider and in the recipient accounts, or in none of them.
In addition, we should not access any dirty state caused by the computation of failing
transfers. Finally, once we observe the effects of a transfer, those effects should reflect
in any subsequent state access.

In summary, application scenarios such as our bank management application would
benefit from query capabilities that retain transactional guarantees.

4.2.3 Executive summary

The overcome the limitations of SPs in state management tasks, current architectures
couple SPs with external data stores, where they duplicate state information. How-
ever, the complexity of these architectures forces developers to manually integrate the
different sub-systems in a coherent way. They may prove inefficient or overmuch ex-
pensive due to the need of replicating data and processing tasks: the input streams of
new data get duplicated and processed by a layer responsible for data storage, query,
and retrieval, and by a layer responsible for (streaming) data analytics.

We tackle this problem by proposing a novel SP model that enables (i) query to the
operator state, and (ii) transactional semantics for read queries and state updates. The
model lets developers selectively apply transactional guarantees only to the operators
that need them. Moreover, developers can configure the transactional semantics that
the system offers by selecting different levels of isolation and durability, thus choosing
the best trade-off between performance and consistency for the application at hand.

4.3 Transactions on a Stream Processor

We extend the dataflow model of distributed SPs by introducing the concept of transac-
tional subgraph (t-graph), which identifies a portion of the graph of computation where

42

i
i

“thesis” — 2019/1/23 — 21:54 — page 43 — #55 i
i

i
i

i
i

4.3. Transactions on a Stream Processor

n1

n2 n3

n4

n5

(a) Logical view.

n1
1

n1
k1

n1

…

n2
1

n2
k2

n2

…

n3
1

n3
k3

n3

…

n4
1

n4
k4

n4

…

n5
1

n5
k5

n5

…

(b) Physical view.

Figure 4.2: The topology of a graph of computation: logical and physical view.

the state of enclosed operators is accessed and updated with transactional semantics.
Each streaming element that enters the t-graph initiates a read-write transaction: all its
effects on the state of operators within the t-graph are processed as a single transac-
tion with ACID guarantees. The state of operators within the t-graph is also externally
queryable through read-only transactions. By limiting the scope of transactions to t-
graphs, the model provides data consistency when needed and high performance when
possible. Furthermore, developers can configure the level of isolation and the durability
for t-graphs, selecting the best trade-off for the application at hand.

4.3.1 Stream processing model

Building on the dataflow model of distributed SPs, we represent a computation as a
directed graph G = (N,E), where the nodes in N are the processing operators and the
edges in E are the streams of data between operators. Streams are typed, meaning that
all the elements in a stream share the same structure. Figure 4.2a shows a graph of com-
putation that includes five operators n1 . . . n5. An operator can receive input elements
from one or more streams and append output elements to one or more streams. Streams
originate from sources (such as operator n1 in Figure 4.2a) that receive data from the
external environment, and terminate in sinks (such as operator n5 in Figure 4.2a) that
return results to the external environment. We abstract the behavior of an operator
ni ∈ N with a characteristic function fn that determines how the operator processes
input elements, updates its internal state (if any), and produces output elements.

Operators can be replicated in multiple instances for scalability, with each instance
considering a portion of the input streams. We denote the k instances of an operator
ni ∈ N as n1

i , . . . , n
k
i . An instance nj

i processes one input element at a time on a sin-
gle processing thread, and appends zero, one, or more elements to each of its output
streams, according to the characteristic function fni

of the operator. Figure 4.2b shows
the physical view of a graph of computation, with multiple instances of each operator.
We assume that the communication channels between instances (the arrows in Fig-
ure 4.2b) are FIFO ordered, meaning that the elements are received and processed by
the downstream operator in the same order in which they are produced by the upstream
operator. To the best of our knowledge, this assumption holds in all distributed SPs,

43

i
i

“thesis” — 2019/1/23 — 21:54 — page 44 — #56 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

which usually adopt TCP communication channels.
We define a causal relation between stream elements as follows. Element e1 causes

element e2 iff e2 is produced by an operator instance nj
i as a result of processing e1, and

we write e1 → e2. We denote e1
∗−→ e2 the transitive closure of the causal relation.

As in the original SP model, the state of operators is local to each instance such
that two instances of the same or different operators do not share any state. Developers
control the partitioning strategy through a keyBy function, which computes a key for
a given element. Elements with identical keys are guaranteed to be processed by the
same operator instance, which retains any state for that key. The partitioning strategy
is relevant in the case of stateful operators. For example, in the bank management
application in Figure 4.1, account balances are partitioned by account number. All the
requests involving a given account need to be processed by the same operator instance,
the one that stores that account. Developers can enforce this by indicating the account
number as the key of the elements that enter account balance.

In general, each instance of an operator ni can produce elements for any instance
of a downstream operator nj . However, if two operators have the same partitioning
strategy, then the k-th instance of operator ni (nk

i) is guaranteed to produce elements
only for the k-th instance of a downstream operator nj (nk

j). This is exemplified by the
communication between n2 and n3 in Figure 4.2b.

4.3.2 State management model

Our model introduces state management capabilities within transactional subgraphs
(t-graphs). A t-graph T = (NT , ET) is a connected subgraph of G that is constrained
to have a single input edge inT . Developers can introduce multiple t-graphs, provided
that they do not share any operator. We denote ST (the state of T) the set of all the
stateful operators that are part of the t-graph T . Each operator s ∈ ST has a name
ns to make it visible and queryable by name from outside the SP. As in the traditional
SP model, an operator s ∈ ST processes elements partitioned by key: each operator
instance stores the state for the partition it is responsible for in the form of key-value
pairs (k, v), k ∈ Ks, v ∈ Vs, where Ks is the key domain and Vs is the value domain
for operator s. Keys are unique, meaning that an operator s can store only one value
for each key. An operator s ∈ ST can be associated with an integrity constraint that
determines the set of valid values for a given key. In the bank application in Section 4.2,
a developer can introduce an integrity constraint that requires the amount of money for
each account to be non-negative.

Each streaming element e entering a t-graph T determines a read-write transac-
tion: all the state changes that e induces on ST take place with transactional semantics.
External queries are read (only) transactions that retrieve part of the state in ST with
transactional semantics. More precisely, we model the interaction with ST with two
operations: read and write, which access and update the value for a key, respectively.
Insert and delete operations are considered as special cases of write. We model a trans-
action as an ordered set of operations. Queries include only read operations. Read-write
transactions include also write operations: they are initiated by an element e entering
T and comprise all the operations performed by e or by any element e′ caused by e
(e ∗−→ e′) on any operator s ∈ ST during the execution of its characteristic function fs.

We associate each transaction with a unique identifier and we denote ti the transac-

44

i
i

“thesis” — 2019/1/23 — 21:54 — page 45 — #57 i
i

i
i

i
i

4.3. Transactions on a Stream Processor

tion with identifier i. Transactions can either succeed (commit) or fail (abort). We call
read setRi the set of keys that transaction ti only reads and update setWi the set of keys
that transaction ti also writes. We model the evolution of ST by associating versions
to key-value pairs. Versions can be created, installed, or invalidated. We denote ri(skj)
a read operation in transaction ti that reads version j for key k in the stateful operator
s. We denote wi(s

k
j) a write operation in transaction ti that creates version j for key k

in operator s. If a transaction ti aborts, it instantaneously invalidates all the versions it
created for any key in Wi. If a transaction ti commits, it instantaneously installs the last
version it created for any key in Wi.

Each element that exits a t-graph T and that belongs to transaction ti piggybacks
the outcome of the transaction —commit or abort— and the set of installed versions, if
any. This enables further analysis of the transaction effects downstream.

A history H over a set of transactions consists of a partial order among the read
and write operations of those transactions. A history is always complete —contains the
union of all the operations in all the transactions— and always preserves the order of
operations within individual transactions.

4.3.3 Transactional guarantees

We now formalize the transactional guarantees that our model offers in terms of con-
straints on the presence and order of operations in the history.

Atomicity Our model provides atomicity by ensuring that every transaction ti either
installs the last version it created for any key in Wi or invalidates all the versions it
created for any key in Wi. This provides “all or nothing” semantics, ensuring that all
the effects of a committed transaction are stored and none of the effects of an aborted
transaction are stored. No intermediate states are allowed.

Consistency We enable developers to specify integrity constraints on the value of indi-
vidual keys in t-graphs. Our model ensures that the state in a t-graph is always consis-
tent: for every t-graph T , for every stateful operator s ∈ ST and for every key-value
pair (k, v) stored in s, the installed version of k satisfies the integrity constraints for
k. Since versions are installed by committed transactions, this means that successful
transactions bring the t-graph from a consistent state to another consistent state. The
versions of aborted transactions are instead invalidated.

Isolation Isolation limits the interaction between concurrently executed transactions
that read and write common keys. Our model allows developers to select different
levels of isolation. More relaxed levels introduce fewer constraints and thus enable
a higher degree of concurrency and higher performance. Conversely, stricter levels
constrain the interaction between transactions more and thus offer higher guarantees
but a lower degree of concurrency and performance. We inherit and extend standard
isolation levels from the database literature [3] and we present them from the least to
the most constraining. Each level subsumes the previous one.

Isolation level PL1 avoids write dependencies between concurrent transactions: the
effects of transactions are the same as if their write operations were performed in some

45

i
i

“thesis” — 2019/1/23 — 21:54 — page 46 — #58 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

b1

b2

b3

b4

account
balance

c1

c2

c3

c4

request
validator

s1

s2

split

Figure 4.3: Implementation of the bank management application in our model.

sequential order. Specifically, if transaction t1 installs version v1 for key k, and trans-
action t2 over-writes k by installing version v2, there should not be another key k′ in
which the revers occurs, that is, all writes of t1 must be ordered before or after all writes
of t2.

Isolation level PL2 additionally requires transactions to only read installed ver-
sions5. Specifically, under PL2, a valid history cannot contain a write operation w1(k

s
v)

where transaction t1 writes (creates) version v for key k in state s followed by a read
operation r2(ksv) where transaction t2 reads version v, unless t1 commits and installs v.

Isolation level PL3 additionally prevents transactions from overwriting versions
read by other transactions that have not yet completed. Specifically, under PL3, a
valid history cannot contain a read operation r1(ksv1) where transaction t1 reads version
v1 for key k in state s followed by a write operation w2(k

s
v2
) where transaction t2 writes

version v2 before transaction t1 is committed or aborted. Isolation level PL3 is also
known as (conflict) serializable isolation [24] and ensures that the state of a t-graph is
the same as if all the transactions were executed in some sequential order, one after the
other.

We further provide a stricter level of isolation that we denote PL4. It extends level
PL3 by ensuring that the state of a t-graph is the same as if all the read-write transac-
tions were executed sequentially in the same order in which they enter the t-graph. This
level corresponds to strict serializability in classic database literature [73].

Durability Given a t-graph T and its state ST , durability ensures that the effects that
processing an input element e has on ST persist even in the case of failure. Our fail-
ure model considers both software failures in some operator instances and hardware
failures in some component of the infrastructure. TSpoon ensures that the effects of
transactions appear as if transactions were executed exactly once in the order expressed
by the history, also in the presence of failures. In other words, it is not possible that two
(read or read-write) transactions that take place before and after a failure, respectively,
observe different orders in the history of operations.

4.3.4 The model in action

To further clarify our model, we show how it can be used to implement the bank man-
agement application in Figure 4.1. Recall that request validator blocks requests based

5Reading non-installed versions results in the dirty read anomaly [24]. For this reason, PL2 is also referred to as read-
committed in the ANSI standard [46].

46

i
i

“thesis” — 2019/1/23 — 21:54 — page 47 — #59 i
i

i
i

i
i

4.3. Transactions on a Stream Processor

on the history of requests for a given account, and account balance stores the current
value of each account. As discussed in Section 4.2, SPs presented two main limitations
in this context: the impossibility to access the internal state of operators and the impos-
sibility to process bank transfers correctly without sacrificing the distribution of data
and processing. Figure 4.3 shows a possible implementation of the bank application
in our model. To guarantee transactional semantics, we include all the operators in a
t-graph (dashed box in Figure 4.3). We introduce a split operator (consisting of two
instances in Figure 4.3) that processes user requests and redirects them to the instances
of the downstream request validator and account balance partitioned by account —
that is, the keyBy function specifies the account number as the key for each request. A
bank transfer request is split in a withdrawal from the source account and a deposit to
the receiver account. Finally, account balance has an associated integrity constraint
that requires the amount of each bank account to be non-negative.

Our model avoids the problems discussed in Section 4.2 and correctly processes
bank transfers even if the information on bank accounts is partitioned across multiple
instances of request validator and account balance. Indeed, the withdrawal and the
deposit that compose a bank transfer originate from a single input request that enters
the t-graph and are processed as part of a single read-write transaction with ACID guar-
antees. Atomicity and consistency ensure that if the withdrawal violates the integrity
constraints on the account balance, then none of the effects of the request is regis-
tered in the state of the operators. Instead, the effects of successful requests reflect on
the state of both request validator and account balance. Isolation guarantees that
two requests do not overlap. By selecting level PL3 or higher, developers ensure that
requests behave as if they were executed sequentially. Durability ensures that the effect
of successful requests are persisted even in the case of failures. Finally, the state of
account balance is exposed for queries, which are guaranteed to return all the effects
of a bank transfer or none of them.

4.3.5 Limitations

The design of the presented model exploits the state-of-the-art graph of computation
model for stream processing, that requires shared-nothing operators and the absence of
a global state. This decision limits the expressiveness of transactional computation for
the sake of locality of computation and better performance during execution.

The absence of a global state means that it is impossible to read and/or update rows
in different states from a single operator. The only global condition on the state en-
forced by the model is invariants.

For example, take S-Store’s stream-voting example [33], where a set of voters vote
for candidates in a TV game-show. The voters can cast a single vote each. The candi-
date with the fewest votes is removed every 20, 000 votes received, because she/he is the
least popular. When these candidates are removed, votes submitted for him or her are
returned to the people who cast them. Those returned votes may then be re-submitted
for any of the remaining candidates.

Using TSpoon to implement it, we can use an operator that keeps the count of votes
and forbids voters to vote twice; an operator to store the count of votes for every can-
didate; and an operator that stores the candidate that is at the bottom of the ranking,
in order to remove her/him every 20, 000 votes. However, TSpoon cannot implement

47

i
i

“thesis” — 2019/1/23 — 21:54 — page 48 — #60 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

this streaming application, because the last operator cannot return the votes for the
eliminated candidate: this would mean that it should be possible to update the state
of the operator containing the number of votes per voter from the last operator of the
pipeline. TSpoon’s model allows to influence the computation by propagating results
downstream, instead.

If needed, the model and the implementation of TSpoon could be adapted to account
for these use cases in the future. However, note that this choice limits the developer in
favor of a model closer to the state-of-the-art one for SPs, and in favor of efficiency.

4.4 Implementation

We implemented our model in the TSpoon (Transactions ON the Stream ProcessOr)
system6, which builds on the Apache Flink [29] open-source distributed SP.

4.4.1 TSpoon API

We illustrate the TSpoon API with an implementation of the bank application from
Section 4.3.4, where we omit the request validator for simplicity. The application
receives a stream of bank transfer requests, splits each of them into a deposit and a
withdrawal, and executes them within a single transaction. Listing 4.1 shows the code
of the application.

Listing 4.1: Bank transfer example in TSpoon

DataStream < T r a n s f e r > t r a n s f e r S t r e a m = g e t I n p u t S t r e a m (. . .) ;

/ / Open a t r a n s a c t i o n a l subgraph
T r a n s a c t i o n a l D a t a S t r e a m < T r a n s f e r > t = t r a n s f e r S t r e a m . o p e n T r a n s a c t i o n () ;

/ / S p l i t a t r a n s f e r i n t o a w i t h d r a w a l and a d e p o s i t
T r a n s a c t i o n a l D a t a S t r e a m < BankOpera t ion > opStream =

t . f l a t M a p (t r −> {
c o l l e c t o r . c o l l e c t (t r . g e t D e p o s i t ()) ;
c o l l e c t o r . c o l l e c t (t r . g e t W i t h d r a w a l ()) ;

}) ;

/ / Apply t h e d e p o s i t / w i t h d r a w a l t o t h e " a c c o u n t b a l a n c e " s t a t e
/ / and c l o s e t h e t r a n s a c t i o n
opStream . keyBy (op −> op . getAccountNumber ())

. map (" a c c o u n t b a l a n c e " , S t r i n g . c l a s s , F l o a t . c l a s s ,
(o ldVal , op) −> o ldV a l + op . getAmount () ,
v a l u e −> v a l u e >= 0 ,
v a l u e)

. c l o s e T r a n s a c t i o n () ;

TSpoon augments the Flink API with two openTransaction and closeTransaction
operators to define the boundaries of a t-graph. In Listing 4.1, TSpoon takes in input a
stream of bank transfers transferStream. The openTransaction opens a t-graph and
transforms the input DataStream into a TransactionalDataStream t. A flatMap
operator splits each transfer into the corresponding deposit and withdrawal, creating a
stream of BankOperation. TSpoon offers an overload of several Flink operators that
makes the internal state and its changes explicit. In Listing 4.1, the account balance
operator is implemented as a stateful map: the first three arguments are the name of
the operator and the types of the key and value. The fourth argument indicates how the
value for a given key is updated when a new bank operation op is received. The fifth

6TSpoon is open-source and publicly available at https://github.com/affo/t-spoon.

48

https://github.com/affo/t-spoon

i
i

“thesis” — 2019/1/23 — 21:54 — page 49 — #61 i
i

i
i

i
i

4.4. Implementation

s1

s2

split

b1

b2

account
balance

open close

query

t-graph

Figure 4.4: Bank management application: architecture of the t-graph.

argument is the integrity constraint on the value. The last argument is the output of the
operator. Finally, the closeTransaction() closes the t-graph.

External components can submit queries (read transactions) referring to stateful op-
erators (for example, account balance) by name. TSpoon supports both the retrieval
of individual values by key and predicate queries.

4.4.2 TSpoon architecture and transactional guarantees

Figure 4.4 shows how TSpoon instantiates the t-graph defined in Listing 4.1. The t-
graph contains the account balance stateful operator with the current balance of bank
accounts partitioned across two instances; split is the flatMap function that receives
transfer requests and redirects them to the instances of account balance that are re-
sponsible for the bank accounts in each request. As an example, Figure 4.4 shows
the stream elements involved in the processing of two transfer requests, represented
as square boxes of different colors (light grey for one request and dark grey for the
other one). Each request is managed by a different instance of the split operator that
transforms the transfer into a deposit and a withdrawal, each handled by an instance
of account balance. The close operator propagates downstream all the results of ac-
count balance enriched with the outcome and set of changes of the transaction they
belong to.

For each t-graph, TSpoon automatically and transparently instantiates the open,
query, and close operators, also shown in Figure 4.4, which implement the algorithms
to process queries and to enforce the required transactional guarantees. In a nutshell,
the open operator wraps all incoming elements into data structures that carry metadata
about transactions. Since individual transactions might be invalidated and re-executed
multiple times to satisfy isolation constraints, the open operator also stores pending
transactions. The query operator acts as a proxy for read-only queries and ensures that
they achieve the desired isolation level. Stateful operators process the input elements
and try to apply the requested changes to their local state. They propagate downstream
the outcome of the changes, which might also be negative (abort) in the case of the vio-
lation of some integrity constraint. The close operator collects all outgoing elements to
determine the global outcome of a transaction, and communicates it back to the stateful
operators involved. When all these stateful operators acknowledge the communication,
the close operator propagates the result of the transaction downstream. At this point,
we say that the transaction is complete. Although not shown in Figure 4.4, TSpoon can
create multiple instances of the open and close operators to process different transac-
tions in parallel.

49

i
i

“thesis” — 2019/1/23 — 21:54 — page 50 — #62 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

Data structures

The open operator wraps each incoming element inside a data structure with metadata
fields that are accessed and modified by the operators in the t-graph. TSpoon extends
the standard Flink operators to provide the same processing semantics when used inside
t-graphs, while also dealing with the management of metadata. The metadata for an
element e that is part of a transaction t comprise the following fields:

• id. The unique identifier of the transaction t.

• tsexec. A sequential timestamp associated to the current execution of t: a trans-
action may be aborted and re-executed multiple times due to isolation conflicts,
in which case it preserves the same id but obtains different timestamps at each
execution.

• tscompl. The execution timestamp of the last transaction that is known to be com-
plete.

• fragment. Tracks the number of element that are part of a transaction t. It enables
the close operator to compute the number of elements it must receive for t.

• update. Changes (write operations) performed on the stateful operators.

• outcome. Outcome of the processing performed in the stateful operators: com-
mit, abort (violation of integrity constraints), or retry (violation of isolation con-
straints).

The open operator assigns the fields id, tsexec, and tscompl. Each operator in the
t-graph that processes an element e1 producing element e2 copies these fields from e1
to e2. The open operator ensures that timestamps are unique. The fragment tracks the
number of elements that each operator in the t-graph produces. For instance, consider
again the bank management application in Figure 4.4: when the split operator pro-
cesses a bank transfer request, it generates a deposit and a withdrawal, and uses the
fragment field to notify downstream that it produced two elements. The close operator
inspects the fragment field to determine when it received all the elements for a transac-
tion. Stateful operators process incoming elements and propagate downstream the state
changes they perform — update field — and the local outcome of the processing, which
might indicate the occurrence of errors such as the violation of an integrity constraint.

Atomicity and consistency

TSpoon achieves atomicity and consistency by implementing a two phase commit
(2PC) protocol [24], where stateful operators are participants and the close operator
is the coordinator. Consider a transaction ti with id i and tsexec ts. Consider a stateful
operator o that processes an element e that is part of ti. While processing e, operator
o can access its local state and create new versions for its local keys. Operator o deco-
rates the output elements with the outcome metadata, which is propagated downstream
to all the elements caused by e. The outcome is commit if the processing terminates
successfully, abort if the processing violates some integrity constraints, or retry if the
processing violates some isolation policy. A retry is semantically equivalent to an abort,
but additionally causes TSpoon to attempt re-executing the transaction.

50

i
i

“thesis” — 2019/1/23 — 21:54 — page 51 — #63 i
i

i
i

i
i

4.4. Implementation

The close operator collects the outcomes from all state operators involved in ti,
using the fragment field to determine the number of elements to wait for. The global
outcome for ti is commit if all the instances retured commit, retry if there is at least
one retry, and abort otherwise. The close operator notifies the global decision to the
stateful operators involved, which install — in the case of commit — or invalidate
— in the case of abort/retry — the versions created for ti. Every stateful operator
involved acknowledges the close operator, which propagates downstream the results of
ti, if the outcome is either commit or abort, or asks the open operator to schedule a
new execution for ti if the outcome is retry. The close also operator notifies the open
operator that the transaction with execution timestamp ts is complete. As we will see,
this information is used to ensure isolation.

The protocol above ensures consistency by checking the integrity constraints when
accessing stateful operators, and atomicity by either applying or invalidating all the
changes triggered by a transaction.

Isolation

TSpoon implements isolation through concurrency control protocols. We implemented
two alternative protocols. (i) Lock-based protocols lock keys to prevent concurrent
access from other transactions. (ii) Timestamp-based protocols use timestamps to de-
termine which version for a key to access within a given transaction. We implement
isolation levels PL2, PL3, and PL4, since PL2 can be implemented with no additional
cost with respect to PL1. In addition, in the case of lock-based the implementations of
levels PL2 and PL3 coincide, so we consider only the latter.

Lock-based protocols In lock-based protocols, each stateful operator maintains a queue
of elements for each key. When an element e belonging to transaction t is processed
for key k, t acquires an exclusive lock for k, preventing concurrent accesses. The lock
is released only when the close operator notifies the global outcome of t, which results
in installing or invalidating the state changes performed by t. Each subsequent element
e′ from a transaction t′ that wants to access the same key k waits in the input queue.
This ensures that e′ accesses the version installed by e, if t commits, or the previously
installed version, if t aborts.

This strategy serializes operations on individual keys, but still allows write oper-
ations from concurrent transactions to be installed in different orders in different in-
stances of one or more operators, which violates the requirement of PL1. Consider
for example the two bank transfer requests in Figure 4.4 and assume that they involve
the same two bank accounts a1 and a2. Since the requests are handled concurrently in
the split operator, it is possible that account a1 processes the light grey request first,
while account a2 processes the dark grey request first. TSpoon prevents this violation
by forcing transactions to execute in order with respect to their execution timestamp
tsexec. In particular, it aborts transactions that attempt to execute operations out of
timestamp order and schedules them for re-execution (with a higher timestamp). This
strategy avoids deadlocks: if transaction t2 is waiting for some operation of transaction
t1 to complete, then the execution timestamp of t2 is larger than that of t1. As a conse-
quence, if some operator receives an element from t1 after an element from t2, it aborts
t1 preventing it from locking any resource. Finally, to further reduce the probability of

51

i
i

“thesis” — 2019/1/23 — 21:54 — page 52 — #64 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

re-executing transactions, the lock-based protocol reorders queued elements according
to their execution timestamps while they wait to acquire some resource.

The above protocol ensures that a transaction can access a key only when the pre-
vious updates to that key have been installed, thus preventing the read-uncommitted
anomaly. Moreover, all the (read and write) operations that involve the same keys are
executed in timestamp order. This ensures that the results of transactions are the same
as if they were executed sequentially in timestamp order. Thus, this algorithm guar-
antees isolation level PL3. The protocol, however, does not guarantee isolation level
PL4, since in the case of re-execution the order of execution timestamps may not reflect
the order of transaction ids. If the developer requires level PL4, TSpoon introduces an
additional sequencer component before each stateful operator in a t-graph, which con-
sists of a single instance and reorders transactions according to their id. The sequencer
adopts the same mechanism (based on fragment) of the close operator to determine the
number of elements that compose a transaction.

Timestamp-based protocols Timestamp-based protocols do not lock resources, but rather
use timestamps to ensure that transactions always read/update versions that are consis-
tent with the desired isolation level. In the case this is not possible, they abort transac-
tions and schedule them for re-execution. In the following, we define the timestamp of
a version as the timestamp of the transaction that created that version.
PL2 Isolation level PL2 constrains the order between writes. To enforce it, we ensure
that the write operations of two transactions are executed in timestamp order every-
where: we enable a transaction to update (write) a key only if there is no other version
for the same key with a higher timestamp, otherwise we abort and retry the transaction.
PL2 further prevents transactions from reading versions that have not been installed
yet. To ensure this, we force a transaction t to always read the latest version of a key
that is known to be installed when t starts executing. Recall that the open operator
assigns to each transaction a tscompl that is the timestamp of the last transaction that it
knows to be complete. Thus we force a transaction t with tscompl tc that wants to read
key k to access the latest version of k with timestamp lower or equal to tc.
PL3 Isolation level PL3 requires transactions to execute as if they were performed
sequentially. To ensure this, we force transactions to read installed versions as in PL2,
and we enable them to update a key only if there is no version for the same key higher
than tscompl. Although similar, PL2 and PL3 differ with respect to the constraints on
the versions that they can read and write, which influence the transactions that are re-
executed due to the violation of such constraints.
PL4 Isolation level PL4 requires transactions to execute as if they were performed
sequentially in id order. To ensure this property we adopt the same implementation
as in PL3 but we add a component before the close operator, consisting of a single
instance that collects all the elements from all the transactions, orders them by their id
and checks for violations in the order of execution. If this is the case, it aborts violating
transactions and schedules them for re-execution.

Queries

TSpoon provides access to the state of a t-graph using the query operator as a proxy.
It ensures that queries access a consistent snapshot of the t-graph by obtaining the

52

i
i

“thesis” — 2019/1/23 — 21:54 — page 53 — #65 i
i

i
i

i
i

4.4. Implementation

timestamp of complete transactions from the open operator. When trying to access a
key, a query (that is, a read-only transaction) is assigned the timestamp tc of the last
completed (committed or aborted) transaction, and it always accesses the latest version
with timestamp lower or equal to tc.

Durability

TSpoon provides durability by relying on and extending the fault-tolerance algorithm of
Flink, based on distributed snapshotting [28]: special markers periodically flow through
the network of operators from sources to sinks; upon receiving a marker, each stateful
operator stores its state to some durable storage and propagates the marker downstream.
Upon failure, operators restore their state from the last snapshot, and sources replay all
the elements that were not part of the snapshot.

TSpoon cannot reuse this mechanism out of the box to save the state of t-graphs for
two reasons. (i) In the t-graph some state changes are asynchronous with respect to the
flow of stream elements in the network of operators, and thus the markers might not
capture a consistent snapshot of the state. For example, the close operator communi-
cates back to stateful operators the global outcome of a transaction, which determines
if the versions created by that transaction are installed or invalidated. (ii) In the case
of re-executions, elements could be processed in a different order with respect to the
first execution. This could violate durability guarantees: for example, two queries that
take place before and after a failure could observe the effects of transactions in different
orders.

To overcome these problems, TSpoon integrates the Flink algorithm with a Write
Ahead Log (WAL) that stores the operations of successful transactions. The close op-
erator registers on the WAL all state changes performed by a transaction right before
forwarding the results of that transaction downstream. For each key in a stateful oper-
ator, the WAL preserves only installed updates and the exact order in which they were
installed. The WAL is made available to all the operators in the t-graph in the case of
recovery through external storage services such as a distributed filesystem.

Upon recovery, we can identify three kinds of transactions. (i) Transactions whose
installed versions are stored in the last snapshot of stateful operators. (ii) Transactions
whose installed versions are stored in the WAL but not in the last snapshot of stateful
operators. (iii) Transactions that are not stored in the WAL (not yet completed).

TSpoon restores the updates of the first type of transactions from the Flink snapshot.
Since they are part of the snapshot, Flink does not try to replay them. Then, it restores
the effects of the second type of transactions from the WAL, thus ensuring that they are
applied in the same order as in the original execution. Since these transactions are not
part of the snapshot, Flink attempts to replay them. The open operator discards these
re-executions, since it knows that the replay is performed through the WAL. Finally,
the close operator propagates the results of these transactions downstream, to enable
the recovery of downstream operators. The third type of transactions were not yet com-
pleted at the time of failure. TSpoon restarts their execution when the open operator
receives the corresponding input elements.

53

i
i

“thesis” — 2019/1/23 — 21:54 — page 54 — #66 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

Latency Sust. throughput
TSpoon 3.57 ms 8580 el/s
Flink 0.6 ms 59609 el/s
VoltDB 4.03 ms 243 tr/s

Table 4.1: Default scenario: comparison with Flink and VoltDB.

4.5 Evaluation

TSpoon aims to reduce the complexity of data processing and management architec-
tures. To achieve this goal and be useful in practice, it has to provide an adequate level
of performance in terms of the volume and velocity of data it can handle. Our TSpoon
prototype builds on top of Flink 1.3.2 and it offers exactly the same performance of
Flink for pure stream processing tasks that do not use the new facilities we added.
Hence, our evaluation assesses the behavior of TSpoon in the presence of transactions,
with three main goals: (i) study the absolute performance of TSpoon against a state-
of-the-art solution for data management in distributed environments; (ii) investigate
the trade-off between performance and transactional guarantees with different levels
of isolation and durability; (iii) compare lock-based (LB in figures) and timestamp-
based protocols (TB in figures); (iv) study how other workload parameters affect the
performance of TSpoon.

4.5.1 Experiment setup

We deploy TSpoon on a cluster of 5 Amazon EC2 t2 xlarge instances (with 4 CPU
cores and 16 GB of RAM) and 15 t2 large instances (with 2 CPU cores and 8 GB of
RAM), for a total of 50 CPU cores and 184 GB of RAM. As a default scenario, we
consider the bank application presented in Section 4.4: TSpoon receives a stream of
input bank transfers, and splits each transfer in a deposit and a withdrawal that are pro-
cessed within a single transaction. We store 100k bank accounts partitioned across 50
instances of the account balance stateful operator, one for each CPU core. The source
and destination accounts for each bank transfer are selected randomly following a uni-
form distribution. We assess the performance of TSpoon by measuring its throughput
and latency. We measure the average latency when the system is unloaded, by submit-
ting input requests sequentially, sending an element at a time. In terms of throughput,
we want to determine the maximum value of input elements that TSpoon can sustain
before becoming overloaded and losing responsiveness (we call this “the sustainable
throughput”). In practice, for each experiment we increase the input rate stepwise until
the latency overcomes a given threshold (20 times the latency of the unloaded system).
We repeat all experiments 8 times. For each measure, we plot the average value and the
standard deviation.

4.5.2 Default scenario

We use the default scenario described above to compare TSpoon against Flink 1.3.2
and the VoltDB in-memory distributed DBMS version 8.07, which are state-of-the-art
representatives of their categories, well known for their excellent level of performance.

7https://github.com/voltdb/voltdb

54

https://github.com/voltdb/voltdb

i
i

“thesis” — 2019/1/23 — 21:54 — page 55 — #67 i
i

i
i

i
i

4.5. Evaluation

We configure both Flink and TSpoon to deploy 50 instances of each operator — one
per CPU core, a typical Flink configuration. We set the level of isolation for TSpoon to
PL3 (the same adopted by VoltDB) and we use timestamp-based concurrency control.
VoltDB only enables developers to configure the number of database partitions per ma-
chine. We configure 2 partitions per machine, for a total of 40 partitions, since 15 out
of 20 nodes in the cluster have 2 CPU cores, and we do not want to over-commit the
available resources. We implement the bank transfer transaction as a stored procedure
that is analyzed and compiled at deployment time to eliminate the overhead of creating
a query plan at runtime. We compute the throughput and latency of VoltDB using the
provided benchmarking tools8. They measure the maximum throughput by submitting
200k bank transfer transactions in a single burst, and then computing the average la-
tency with an input rate that is below the maximum throughput. The comparison is fair,
since the maximum throughput is an over-estimation of the sustainable throughput.

Table 4.1 shows the results we measured. TSpoon achieves a sustainable through-
put of more than 8500 input elements/s with 3.57 ms latency. By comparison Flink
processes 59609 input elements/s with an average latency of 0.6 ms. However, it is
worth mentioning once for all that the application implemented in Flink differs from
that implemented by TSpoon and VoltDB as Flink does not provide any transactional
guarantee and the results it produce can violate the requirements of our bank transfer
scenario. In practice, these tests measure the overhead of TSpoon in enforcing trans-
actional guarantees. Flink can process deposits and withdrawals in parallel, in any
order, while TSpoon introduces concurrency constraints to enforce isolation and atom-
icity. As a more fair comparison, VoltDB offers the same transactional guarantees of
TSpoon, but achieves a throughput of only 243 transactions/s with a latency of around
4 ms. Here we may observe that VoltDB is optimized for transactions that involve a
single partition and this result indicates that multi-partition transactions are very expen-
sive. Indeed, if we change our workload, forcing bank transfer requests to move money
from accounts being part of the same partition, VoltDB performance grows consider-
ably, providing a throughput of more than 400k transactions/s with an average latency
of 0.03 ms. On the other hand, VoltDB partitions cannot span multiple CPU cores or
machines, which force using multi-partition transactions in all those applications that
do not naturally map transactions on a statically identifiable subset of data.

In summary, the results shown in Table 4.1 demonstrate that TSpoon is competitive
with state-of-the-art data processing and management systems: it provides the same
performance as Flink when used for pure stream processing tasks, and reduces the
throughput by less than 7× when providing strong (PL3) transactional guarantees. It
also significantly outperforms VoltDB in terms of multi-partition transactional updates.

4.5.3 Isolation levels and concurrency control strategies

Figure 4.5 shows the performance of TSpoon in our default scenario with different
isolation levels (PL2, PL3, PL4) and concurrency control strategies (lock-based and
timestamp-based). Moving from PL2 to PL3 does not introduce a significant drop in
throughput (Figure 4.5a) or latency (Figure 4.5b). Indeed, our default scenario includes
a large number of bank accounts that lead to minimal state access conflicts. At level
PL3, lock-based and timestamp-based protocols exhibit comparable behaviors, with

8https://github.com/VoltDB/voltdb/blob/master/examples/voter/README.md

55

https://github.com/VoltDB/voltdb/blob/master/examples/voter/README.md

i
i

“thesis” — 2019/1/23 — 21:54 — page 56 — #68 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

PL2 PL3 PL4

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

TB
LB

(a) Sustainable throughput

PL2 PL3 PL4

0

5

10

15

20

A
ve

ra
ge

 la
te

nc
y

[m
s]

TB
LB

(b) Average latency

Figure 4.5: Default scenario: comparison of isolation levels and concurrency control strategies.

a small advantage of timestamp-based in terms of throughput. PL4 is clearly more
expensive, leading to a throughput of about 2280 elements/s for lock-based and about
3100 elements/s for timestamp-based. Indeed, the strong requirement of processing
transactions in id order demands for a single-instance operator that enforces this order.
lock-based imposes the order upfront, while timestamp-based checks the order before
transactions complete, aborting and rescheduling those transactions that violate it. In
our default scenario, the first strategy is more expensive and leads to an increase in
latency (up to 7.5 ms).

4.5.4 Sensitivity to parameters

We now investigate how workload parameters influence TSpoon.

Chain of dependent updates

We first consider a chain of updates performed one after the other, mimicking a sce-
nario where the data produced by a state update is elaborated downstream and produces
updates in other operators. We consider both the case in which all the involved stateful
operators belong to the same t-graph and the case in which each stateful operator be-
longs to a different t-graphs. Each stateful operator includes 100k different keys, as in
our default scenario. Figure 4.6 shows that the throughput decreases with the number
of stateful operators, both in the case of a single t-graph and in the case of multiple
t-graphs. In the case of a single t-graph (Figure 4.6a), the elements of a transaction
traverse the entire pipeline of operators before the transaction complete. The longer
the pipeline, the higher the probability of conflicts between transactions. This problem
does not occur in the case of different t-graphs (Figure 4.6b), which instead introduce
the overhead of opening and closing multiple transactions. The throughput is higher in
the case of a single t-graph, meaning that the opening and closing multiple t-graphs is
more expensive than processing a single, longer transaction.

In the case of a single t-graph, the latency only slightly increases when moving
from one to five stateful operators due to the longer path from sources to sinks, and
remains below 14 ms for all the configurations we tested (Figure 4.6c). In the case of
multiple t-graphs, the latency increases more (up to almost 30 ms in the case of PL4
with timestamp-based protocol), due to the presence of an additional open and close
operators for each t-graph.

56

i
i

“thesis” — 2019/1/23 — 21:54 — page 57 — #69 i
i

i
i

i
i

4.5. Evaluation

LB-PL3 LB-PL4 TB-PL2 TB-PL3 TB-PL4

1 2 3 4 5
Number of stateful operators

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

(a) Throughput single t-graph

1 2 3 4 5
Number of t-graphs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

(b) Throughput multiple t-graph

1 2 3 4 5
Number of stateful operators

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 la
te

nc
y

[m
s]

(c) Latency single t-graph

1 2 3 4 5
Number of t-graphs

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 la
te

nc
y

[m
s]

(d) Latency multiple t-graph

Figure 4.6: Chained updates.

Independent updates

Figure 4.7 shows the performance of TSpoon when considering independent state up-
dates that occur in parallel, in a single t-graph or in distinct t-graphs. In the case of a
single t-graph (Figure 4.7a), the throughput decreases with the number of stateful oper-
ators. Indeed, a higher number of stateful operators increases the probability of access
conflicts and also forces the close operator to wait for more outcomes. The through-
put decreases from about 8000 elements/s to less than 3700 elements/s with isolation
levels up to PL3. PL4 exhibits the lower throughput with about 2500 elements/s for
timestamp-based and about 1500 elements/s for lock-based. The overhead of PL4 pro-
tocols dominates the costs associated to the increased number of stateful operators,
leading to the same throughput from one to five stateful operators. In the case of mul-
tiple t-graphs (Figure 4.7b), the throughput remains almost constant, since TSpoon can
process transactions entirely in parallel. The latency (Figure 4.7c and Figure 4.7d) also
remains almost constant in all the scenarios we tested.

Number of keys

We now study how the probability of state access conflicts between transactions influ-
ences the performance of TSpoon. We consider again our default scenario and we
change the number of keys (bank accounts) within the account balance operator.
As Figure 4.8a shows, lock-based tolerates access conflicts better, and its throughput
does not significantly decrease even in the extreme case of only 100 keys. Instead,
timestamp-based is more affected. The throughput decreases when reducing the num-
ber of keys for all isolation levels. In the case of PL2, the throughput remains stable

57

i
i

“thesis” — 2019/1/23 — 21:54 — page 58 — #70 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

LB-PL3 LB-PL4 TB-PL2 TB-PL3 TB-PL4

1 2 3 4 5
Number of stateful operators

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

(a) Throughput single t-graph

1 2 3 4 5
Number of t-graphs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

(b) Throughput multiple t-graph

1 2 3 4 5
Number of stateful operators

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 la
te

nc
y

[m
s]

(c) Latency single t-graph

1 2 3 4 5
Number of t-graphs

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 la
te

nc
y

[m
s]

(d) Latency multiple t-graph

Figure 4.7: Independent updates.

from 10k to 1000 keys, and decreases with fewer keys from 8900 to less than 6200
elements/s. State access conflicts influence PL3 and PL4 the most, since these two
levels of isolation introduce more constraints and increase the number of transactions
that have to be re-executed. The throughput decreases in both cases, reaching less than
1000 elements/s in both cases (less than PL4 with lock-based protocol). The latency,
reported in Figure 4.8b, remains almost stable when changing the number of keys. In-
deed, we measure latency when the system is not overloaded and there are no state
access conflicts.

LB-PL3 LB-PL4 TB-PL2 TB-PL3 TB-PL4

102103104105

Number of keys

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

(a) Throughput

102103104105

Number of keys

0.0

10.0

20.0

30.0

40.0

50.0

A
ve

ra
ge

 la
te

nc
y

[m
s]

(b) Latency

Figure 4.8: Number of keys.

58

i
i

“thesis” — 2019/1/23 — 21:54 — page 59 — #71 i
i

i
i

i
i

4.5. Evaluation

100 101 102 103

Number of keys per query

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

throughput
partitions

0

10

20

30

40

50

A
ve

ra
ge

 n
um

be
r o

f p
ar

tit
io

ns

(a) Throughput and number of partitions

100 101 102 103

Number of keys per query

0

20

40

60

80

100

A
ve

ra
ge

 la
te

nc
y

[m
s]

value

(b) Latency

Figure 4.9: Read queries at different selectivity.

Queries

We now study the throughput for external queries. Since the isolation level does not
affect queries, we fix it to PL3. We use our default scenario with a fixed rate of updates
of 1000 bank transfer requests/s and we change the selectivity of queries, that is, the
number of accounts that each query selects. The yellow line in Figure 4.9a shows the
average number of account balance instances each query accesses. The black line
shows the sustainable throughput for queries: TSpoon supports 53900 queries/s when
accessing a single instance of account balance. As the number of involved instances
increases, the throughput decreases, reaching 890 queries/s in the extreme case in which
a query accesses 1000 keys. Query latency, reported in Figure 4.9b, ranges from less
than 1 ms when querying a single partition to 10 ms when querying all partitions.

59

i
i

“thesis” — 2019/1/23 — 21:54 — page 60 — #72 i
i

i
i

i
i

Chapter 4. Transactions on the Stream Processor

Cost of durability

100 200 300 400 500 600
Number of entries in the WAL (thousands)

0

10

20

30

R
ep

la
y

tim
e

[s
]

stateful operator
open operator

Figure 4.10: Number of pending transactions.

When durability is enabled, TSpoon persists the results of completed transactions in
a Write Ahead Log (WAL) on disk before propagating them downstream. This intro-
duces a runtime overhead due to disk access. We measure such overhead in our default
scenario, with isolation level PL3 and lock-based protocol. When the system is un-
loaded, writing to the WAL introduces a negligible increase in latency. However, when
the rate of input transactions increases, the need of continuous I/O operations influences
the throughput that TSpoon can sustain, which in our default scenario decreases from
8350 to 5448 elements/s when durability is enabled.

Next, we measure the time to recover from a failure. Recall that we rely on the
Flink snapshot algorithm for fault-tolerance, which we augment with the WAL to en-
sure transactional semantics. The time to recover includes (1) the time to discover a
failure; (2) the time to restore Flink to the last snapshot; (3) the time to restore the state
of t-graphs from the WAL. The first two contributions only depend on Flink and its
configuration. Thus, we measure the last contribution, which is specific to our model.
Restoring the state of t-graphs involves the costs to restore: (i) the local state of each
stateful operator; (ii) the state of the open operator. These two operations are performed
in parallel, and so the overall cost of recovery is the maximum of the two contributions.
Figure 4.10 shows the cost of these two contributions in our default scenario, when
changing the number of elements stored in the WAL (which depends on the input rate
of transactions and on the frequency between two snapshots). In our scenario, the cost
to restore the open operator dominates the cost to restore each stateful operator, result-
ing in a recovery time of 3.5 s with 60k transactions in the WAL and 32 s with 600k
transactions in the WAL.

60

i
i

“thesis” — 2019/1/23 — 21:54 — page 61 — #73 i
i

i
i

i
i

4.5. Evaluation

4.5.5 Scalability

0 10 20 30 40
Graph parallelism

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Su
st

ai
na

bl
e

th
ro

ug
hp

ut
 [K

tr/
s]

Figure 4.11: Number of partitions.

Finally, Figure 4.11 shows how TSpoon scales when increasing the number of cores
(and, correspondingly, the number of partitions for the stateful operators). In our default
scenario, the throughput increases from 544 to 6436 elements/s (11.8×) when moving
from 1 core to 16 cores. After this threshold, adding new cores brings fewer benefits,
and the throughout only increases to 8866 with 48 cores.

61

i
i

“thesis” — 2019/1/23 — 21:54 — page 62 — #74 i
i

i
i

i
i

i
i

“thesis” — 2019/1/23 — 21:54 — page 63 — #75 i
i

i
i

i
i

CHAPTER5
Conclusions and Future Work

In the first part of this thesis we studied the execution semantics of modern distributed
SPs focusing on the key notions of time and windows. Our analysis grounds on the
SECRET model that was developed in 2010 to capture the semantics of the SPs avail-
able at that time. On the one hand, SECRET can capture the window behavior of most
modern SPs, which indicates that the same abstractions that were introduced in early
systems are still adopted. The analysis highlights a general agreement on the seman-
tics of time windows, supported by all the systems we analyzed, and count windows,
present only in few systems. On the other hand, modern SPs are far more complex that
the systems SECRET was designed for, and a precise understanding of their behavior
demands for additional modeling efforts.

We identified some key points that SECRET lacks in expressing, such as the effect of
distribution, out-of-order arrival of elements, behavior in case of failure, and dynamic
windows. By shading light on these aspects, we posed the foundations for a precise
understanding of modern distributed SPs and we drew a road map for future research
efforts.

In the second part of this thesis, we tackled DBMS/SP integration. Data-intensive
applications, indeed, increasingly often combine consistent state management with ana-
lytics on large volumes of dynamic (streaming) data. Current architectures satisfy these
needs by exploiting multiple subsystems, but this leaves developers with the daunting
task of coherently integrating these subsystems. This approach increases the main-
tenance cost of the entire system, forces developing team to adopt a variety of pro-
gramming models, and degrades the responsiveness of the system. To overcome these
limitations, we proposed a novel model that seamlessly integrates transactional state
management within a distributed stream processor. The model introduces transactional
regions within dataflow computation graphs: each element entering a transactional re-

63

i
i

“thesis” — 2019/1/23 — 21:54 — page 64 — #76 i
i

i
i

i
i

Chapter 5. Conclusions and Future Work

gion initiates a read-write transaction, and the internal state of the region can be queried
with read-only transactions. We implemented the model in the TSpoon system, which
offers different levels of isolation and durability to let developers choose the best trade-
off between performance and consistency for the application at hand. We evaluated
TSpoon thoroughly measuring its performance under different workloads, transactional
semantics, and implementation strategies, showing that it can outperform state-of-the-
art state management tools in common scenarios. The key advantage of our model
with respect to DBMSs is its capability of expressing transactional workloads with a
dataflow graph of computation which enables for inherent task and data parallelisms.
TSpoon, indeed, proves its high performance when dealing with workloads of transac-
tion composed of operations that can be executed in parallel. This trait is key to the per-
formance in executing transactional workloads. Indeed, it has already been investigated
in the past in the form of multi-level transactions and, more recently, in actor-oriented
databases. We argue that both approaches obtain the expected performance increase,
but they sacrifice usability of the query language by forcing the user to use a mixture
of declarative SQL and asynchronous computation. This would require personnel able
to use both programming paradigms. We identify the dataflow as key to expressing
concurrent computation in an easy and understandable way and, as such, as an enabler
for expressing parallel transactional computations.

However, there is still work to do. For instance, our model does not treat single-
partition updates as special cases: these type of transactions do not require coordination
upon commit/abort, because the outcome of the transaction can be determined locally
to the partition, thus achieving higher throughput and lower latency.

Moreover, our model does not allow the flexibility that DBMSs provide; for example
it does not provide the abstraction of global state, but only enables local computation
thus making it impossible to implement transactions that repeatedly update the same
piece of state. In the future, we plan to extend our model to manage this use case.

Finally, the query language for queryable state is still programmatic and not SQL
based.

However, we are confident that this work has the potential to open a new line of
research and innovation, and lead to architectures that are more efficient and easier to
design, develop, and maintain.

64

i
i

“thesis” — 2019/1/23 — 21:54 — page 65 — #77 i
i

i
i

i
i

Bibliography

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong hyon Hwang, Wolfgang Lind-
ner, Anurag S. Maskey, Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of
the borealis stream processing engine. In Proceedings of the Conference on Innovative Data Systems Research,
CIDR ’05, pages 277–289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael
Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model and architecture for data stream manage-
ment. The VLDB Journal, 12(2):120–139, 2003.

[3] A. Adya, B. Liskov, and P. O’Neil. Generalized isolation level definitions. In Proceedings of the International
Conference on Data Engineering, ICDE ’00, pages 67–78. IEEE, 2000.

[4] Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. Flowdb: Integrating stream processing and
consistent state management. In Proceedings of the 11th ACM International Conference on Distributed and
Event-based Systems, pages 134–145. ACM, 2017.

[5] Lorenzo Affetti, Riccardo Tommasini, Alessandro Margara, Gianpaolo Cugola, and Emanuele Della Valle.
Defining the execution semantics of stream processing engines. Journal of Big Data, 4(1):12, 2017.

[6] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient pattern matching over event
streams. In Proceedings of the International Conference on Management of Data, SIGMOD’08, pages 147–
160, New York, NY, USA, 2008. ACM.

[7] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey, Jeong-Hyon Hwang, Anjali Jhingran, Anurag
Maskey, Olga Papaemmanouil, Alexander Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stan Zdonik.
Distributed operation in the borealis stream processing engine. In Proceedings of the International Conference
on Management of Data, SIGMOD ’05, pages 882–884, New York, NY, USA, 2005. ACM.

[8] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-tolerant stream processing at internet scale.
Proceedings of VLDB, 6(11):1033–1044, 2013.

[9] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. The VLDB Journal, 8(12):1792–1803, 2015.

[10] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid
Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer,
Matthias J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. The stratosphere
platform for big data analytics. The VLDB Journal, 23(6):939–964, 2014.

[11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: A unified language for
event processing and stream reasoning. In Proceedings of the International Conference on World Wide Web,
WWW’11, pages 635–644, New York, NY, USA, 2011. ACM.

[12] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query language: Semantic foundations
and query execution. The VLDB Journal, 15(2):121–142, 2006.

65

i
i

“thesis” — 2019/1/23 — 21:54 — page 66 — #78 i
i

i
i

i
i

Bibliography

[13] A. Artikis, M. Sergot, and G. Paliouras. An event calculus for event recognition. IEEE Transactions on
Knowledge and Data Engineering, 27(4):895–908, 2015.

[14] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and issues in
data stream systems. In Proceedings of the Symposium on Principles of Database Systems, PODS ’02, pages
1–16, New York, NY, USA, 2002. ACM.

[15] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. Highly available
transactions: Virtues and limitations. Proceedings of the VLDB Endowment, 7(3):181–192, 2013.

[16] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx, and Wolfgang de
Meuter. A survey on reactive programming. ACM Computing Surveys, 45(4):52:1–52:34, 2013.

[17] Kyle Banker. MongoDB in Action. Manning Publications Co., Greenwich, CT, USA, 2011.

[18] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vijayshankar Raman, Richard Si-
dle, Matt Spilchen, Adam J Storm, Yuanyuan Tian, Pinar Tözün, et al. Evolving databases for new-gen big
data applications. In CIDR, 2017.

[19] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus.
Querying rdf streams with c-sparql. Proceedings of the International Conference on Management of Data,
39(1):20–26, 2010.

[20] P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, and N. Fernández-García. Architecting time-critical
big-data systems. IEEE Transactions on Big Data, 2(4):310–324, 2016.

[21] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. LARS: A logic-based framework for analyzing
reasoning over streams. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI ’15, pages
1431–1438, Palo Alto, California, 2015. AAAI Press.

[22] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A critique of ansi
sql isolation levels. In ACM SIGMOD Record, volume 24, pages 1–10. ACM, 1995.

[23] Philip A Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Orleans: Distributed virtual
actors for programmability and scalability. Technical report, Microsoft, 2014. MSR-TR-2014–41.

[24] Philip A Bernstein and Nathan Goodman. Concurrency control in distributed database systems. ACM Com-
puting Surveys (CSUR), 13(2):185–221, 1981.

[25] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J. Miller, and Nesime Tatbul. Secret: A
model for analysis of the execution semantics of stream processing systems. The VLDB Journal, 3(1-2):232–
243, 2010.

[26] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath Panda, Mirek Riede-
wald, Mohit Thatte, and Walker White. Cayuga: A high-performance event processing engine. In Proceedings
of the International Conference on Management of Data, SIGMOD’07, pages 1100–1102, New York, NY,
USA, 2007. ACM.

[27] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas Tzoumas. State management
in apache flink R©: consistent stateful distributed stream processing. Proceedings of the VLDB Endowment,
10(12):1718–1729, 2017.

[28] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015.

[29] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine. IEEE Data Engineering Bullettin, 38(4):28–38, 2015.

[30] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl. Cutty: Aggregate sharing
for user-defined windows. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 1201–1210. ACM, 2016.

[31] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. Optimal operator placement
for distributed stream processing applications. In Proceedings of the International Conference on Distributed
and Event-based Systems, DEBS ’16, pages 69–80, New York, NY, USA, 2016. ACM.

[32] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT, USA, 2013.

[33] Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John Meehan, Andrew Pavlo, Michael
Stonebraker, Erik Sutherland, Nesime Tatbul, et al. S-store: a streaming newsql system for big velocity
applications. Proceedings of VLDB, 7(13):1633–1636, 2014.

66

i
i

“thesis” — 2019/1/23 — 21:54 — page 67 — #79 i
i

i
i

i
i

Bibliography

[34] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[35] Gianpaolo Cugola and Alessandro Margara. Tesla: A formally defined event specification language. In Pro-
ceedings of the International Conference on Distributed Event-Based Systems, DEBS’10, pages 50–61, New
York, NY, USA, 2010. ACM.

[36] Gianpaolo Cugola and Alessandro Margara. Complex event processing with t-rex. Journal of Systems and
Software, 85(8):1709–1728, 2012.

[37] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys, 44(3):15:1–15:62, 2012.

[38] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[39] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In Proceedings of the Symposium on Operating Systems Principles, SOSP ’07, pages
205–220. ACM, 2007.

[40] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intelligent Systems, 24(6):83–89, 2009.

[41] Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte, and Oscar Corcho. Rsp-ql semantics: A
unifying query model to explain heterogeneity of rdf stream processing systems. International Journal of
Semantic Web & Information Systems, 10(4):17–44, 2014.

[42] Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas, and Irina Botan. Modeling the execution
semantics of stream processing engines with secret. The VLDB Journal, 22(4):421–446, 2013.

[43] Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. Distributed REScala: An update algo-
rithm for distributed reactive programming. In Proceedings of the International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 361–376, New York, NY, USA, 2014.
ACM.

[44] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications, 2010.

[45] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe, and Jonathan Dees.
The sap hana database–an architecture overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[46] American National Standard for Information Systems. Ansi x3.135-1992, database language sql, November
1992.

[47] Buğra Gedik. Generic windowing support for extensible stream processing systems. Software: Practice and
Experience, 44(9):1105–1128, 2014.

[48] Thanaa M Ghanem, Ahmed K Elmagarmid, Per-Åke Larson, and Walid G Aref. Supporting views in data
stream management systems. ACM Transactions on Database Systems (TODS), 35(1):1, 2010.

[49] Jim Gray et al. The transaction concept: Virtues and limitations. In VLDB, volume 81, pages 144–154, 1981.

[50] Michael Grossniklaus, David Maier, James Miller, Sharmadha Moorthy, and Kristin Tufte. Frames: Data-
driven windows. In Proceedings of the International Conference on Distributed and Event-based Systems,
DEBS ’16, pages 13–24, New York, NY, USA, 2016. ACM.

[51] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM Computing
Surveys (CSUR), 15(4):287–317, 1983.

[52] Annika Hinze and Agnès Voisard. Eva: An event algebra supporting complex event specification. Information
Systems, 48:1–25, 2015.

[53] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems. O’Reilly, 2017.

[54] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo Costa, and Peter
Pietzuch. Saber: Window-based hybrid stream processing for heterogeneous architectures. In Proceedings of
the International Conference on Management of Data, SIGMOD’16, pages 555–569, New York, NY, USA,
2016. ACM.

67

i
i

“thesis” — 2019/1/23 — 21:54 — page 68 — #80 i
i

i
i

i
i

Bibliography

[55] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron: Stream processing at scale. In Pro-
ceedings of the International Conference on Management of Data, SIGMOD ’15, pages 239–250, New York,
NY, USA, 2015. ACM.

[56] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Transactions on
Database Systems, 6(2):213–226, 1981.

[57] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Semantics and evaluation tech-
niques for window aggregates in data streams. In Proceedings of the International Conference on Management
of Data, SIGMOD ’05, pages 311–322, New York, NY, USA, 2005. ACM.

[58] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in Distributed Enter-
prise Systems. Addison-Wesley, 2001.

[59] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker. Rethinking main memory oltp
recovery. In Proceedings of the International Conference on Data Engineering, ICDE 2014, pages 604–615.
IEEE, 2014.

[60] A. Margara and G. Salvaneschi. On the semantics of distributed reactive programming: the cost of consistency.
IEEE Transactions on Software Engineering (Preprint), 99(0):1–25, 2018.

[61] Alessandro Margara and Guido Salvaneschi. We have a DREAM: Distributed reactive programming with
consistency guarantees. In Proceedings of the International Conference on Distributed Event-Based Systems,
DEBS ’14, pages 142–153, New York, NY, USA, 2014. ACM.

[62] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Streaming the web. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, 25(C):24–44, 2014.

[63] Nathan Marz and James Warren. Big Data: Principles and best practices of scalable realtime data systems.
Manning Publications Co., Greenwich, CT, USA, 2015.

[64] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: a transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Transactions
on Database Systems (TODS), 17(1):94–162, 1992.

[65] John Eliot Blakeslee Moss. Nested transactions: An approach to reliable distributed computing. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1981.

[66] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. Naiad: a
timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, pages 439–455. ACM, 2013.

[67] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

[68] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo Seltzer.
Network-aware operator placement for stream-processing systems. In Proceedings of the International Con-
ference on Data Engineering, ICDE ’06, pages 49–, Washington, DC, USA, 2006. IEEE.

[69] Kun Ren, Alexander Thomson, and Daniel J Abadi. An evaluation of the advantages and disadvantages of
deterministic database systems. Proceedings of the VLDB Endowment, 7(10):821–832, 2014.

[70] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and Mustafa Canim. L-store: A
real-time oltp and olap system. arXiv preprint arXiv:1601.04084, 2016.

[71] Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, and Volker Markl. "all roads lead to rome": optimistic re-
covery for distributed iterative data processing. In Proceedings of the International Conference on Information
& Knowledge Management, CIKM’13, pages 1919–1928, New York, NY, USA, 2013. ACM.

[72] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed complex event processing
with query rewriting. In Proceedings of the International Conference on Distributed Event-Based Systems,
DEBS’09, pages 4:1–4:12, New York, NY, USA, 2009. ACM.

[73] Ravi Sethi. Useless actions make a difference: Strict serializability of database updates. Journal of the ACM
(JACM), 29(2):394–403, 1982.

[74] Vivek Shah and Marcos Antonio Vaz Salles. Reactors: A case for predictable, virtualized actor database
systems. In Proceedings of the International Conference on Management of Data, SIGMOD ’18, pages 259–
274. ACM, 2018.

[75] Michael Stonebraker. Newsql: An alternative to nosql and old sql for new oltp apps. Communications of the
ACM. Retrieved, pages 07–06, 2012.

68

i
i

“thesis” — 2019/1/23 — 21:54 — page 69 — #81 i
i

i
i

i
i

Bibliography

[76] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The end of an architectural era (it’s time for a complete rewrite). In Proceedings of VLDB, VLDB ’07, pages
1150–1160. VLDB Endowment, 2007.

[77] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J Abadi. Calvin:
fast distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 1–12. ACM, 2012.

[78] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy.
Storm@twitter. In Proceedings of the International Conference on Management of Data, SIGMOD ’14, pages
147–156, New York, NY, USA, 2014. ACM.

[79] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh, Neha Narkhede,
Jun Rao, Jay Kreps, and Joe Stein. Building a replicated logging system with apache kafka. Proceedings of
the VLDB Endowment, 8(12):1654–1655, 2015.

[80] Gerhard Weikum. Principles and realization strategies of multilevel transaction management. ACM Transac-
tions on Database Systems (TODS), 16(1):132–180, 1991.

[81] Gerhard Weikum and Hans-Jörg Schek. Concepts and applications of multilevel transactions and open nested
transactions, 1992.

[82] Walker White, Mirek Riedewald, Johannes Gehrke, and Alan Demers. What is "next" in event processing? In
Proceedings of the Symposium on Principles of Database Systems, PODS’07, pages 263–272, New York, NY,
USA, 2007. ACM.

[83] Lotfi A Zadeh et al. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[84] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the Conference on Networked Systems Design and Implementa-
tion, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[85] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster com-
puting with working sets. In Proceedings of the Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[86] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In Proceedings of the Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM.

69

	Introduction
	Modeling SPs Execution Semantics
	Transactions on the Stream Processor
	Thesis Contributions and Outline

	Related Work
	Processing streams of data
	Modeling stream processing
	Distributed databases

	SPs Execution Semantics
	Background
	The SPs Computational Model
	SECRET

	Analysis of Stream Processing Engines
	Experimental methodology
	Flink
	Storm
	Spark
	Google Cloud Dataflow
	Azure Stream Analytics

	Discussion
	Time model
	Windowing approaches
	Management of out-of-order elements
	Graph of operators
	Fault tolerance
	Summary and open challenges

	Transactions on the Stream Processor
	State Management Capabilities
	Database Management Systems
	Stream Processors

	Limitations in the SP model
	Transactional guarantees
	Queryable state
	Executive summary

	Transactions on a Stream Processor
	Stream processing model
	State management model
	Transactional guarantees
	The model in action
	Limitations

	Implementation
	TSpoon API
	TSpoon architecture and transactional guarantees

	Evaluation
	Experiment setup
	Default scenario
	Isolation levels and concurrency control strategies
	Sensitivity to parameters
	Scalability

	Conclusions and Future Work
	Bibliography

