
i
i

“thesis” — 2019/1/25 — 17:04 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ON THE CONTINUOUS AND REACTIVE ANALYSIS OF A
VARIETY OF SPATIO-TEMPORAL DATA

Doctoral Dissertation of:
Marco Balduini

Supervisor:
Prof. Emanuele Della Valle

Tutor:
Prof. Stefano Ceri

The Chair of the Doctoral Program:
Prof. Andrea Bonarini

XXX Cycle

i
i

“thesis” — 2019/1/25 — 17:04 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page — #3 i
i

i
i

i
i

Abstract

In recent years, an increasing number of situations call for reactive decisions making
process based on a heterogeneous streaming data. In this context, the urban environ-
ment results particularly relevant, because there is a dense network of interactions be-
tween people and urban spaces that produces a great amount of spatio-temporal fast
evolving data. Moreover, in a modern city there is a multitude of stakeholders who are
interested in reactive decisions for urban planning, mobility management, tourism, etc.
The growing usage of location-based social networks, and, in general, the diffusion of
mobile devices improved the ability to create an accurate and up-to-date representation
of reality (a.k.a. Digital footprint or Digital reflection or Digital twin). Five years ago,
the state of the art was exploiting only a single data source either social media or mobile
phones. However, better decisions can result from the analyses of multiple data sources
simultaneously. Multiple heterogeneous data sources, and their simultaneous usage, of-
fer a more accurate digital reflection of the reality. In this context, we investigate the
problem of how to create an holistic conceptual model to represent multiple heteroge-
neous spatio-temporal data and how to develop a streaming computational model to
enable reactive decisions. The main outcomes of this research are FraPPE conceptual
model and RI VE Rstreaming computational model with its implementations.

FraPPE is a conceptual model, more precisely an ontology, that exploits digital image
processing terms to model spatio-temporal data and to enable space, time, and content
analysis. It uses image processing common terms to bridge the gap between the data
engineer perspective and visual data analysis perspective. It does so to enable visual
analytics on spatio-temporal data. During my PhD, we first formalize the spatial and
temporal concepts in FraPPE 1.0, and, then, we add concepts related to the provenance
and the content in FraPPE 2.0. We check the adherence of both versions of FraPPE to
the five Tom Gruber’s principles, and demonstrate the validity of the conceptual model
in real world use cases.

RI VE Ris a streaming computational inspired by two principles: (P1) everything is
a data stream – a variety-proof stream processing engine must indifferently ingest data
with different velocities from any sources and of any size –, and (P2) Continuous In-
gestion – the data in input is continuously captured by the system and, once arrived,
it is marked with an increasing timestamp. Most of the stream processing engines in

i
i

“thesis” — 2019/1/25 — 17:04 — page — #4 i
i

i
i

i
i

the state of the art transform and adapt data at ingestion time. Contrariwise, RI VE R
is built around the idea of Lazy Transformation. So, a system that implements RI VE R
postpones data transformations until it can really benefits from them. Our hypothesis
is that Lazy Transformation saves time and resources. RI VE Rrelies on two main con-
cepts: the Generic Data Stream (S⟨T⟩) and the Generic Time-Varying Collection (C⟨T⟩)
and it proposes five different operators in order to ingest, process and emit data. The
IN⟨T⟩ operator is the entry point of the system, it takes an external data flow and injects
the items into the system creating a new S⟨T⟩. The S2C⟨T⟩, C2C⟨T,T′⟩ and C2S⟨T⟩
operators in RI VE R, inspired to the Continuous Query Language(CQL, the work on
streaming data proposed by the Stanford DB Group) processing model, allows to move
from S⟨T⟩ to C⟨T⟩ and vice-versa. The OUT⟨T⟩ operator transform an S⟨T⟩ into a new
external data flow. Exploiting the Pipeline Definition Language (PDL) – our graphical
language to abstract the operators’ implementation complexity –, RI VE Rallows users
to define computational plans, in the form of pipelines.

In this thesis, we propose three different implementations of RI VE R: Natron – a
single-threaded vertically scalable implementation –, rvr@Spark and rvr@Hive – two
horizontally scalable implementations based on distributed technologies (Spark and
Hive). In order to prove the validity of the Lazy Transformation approach, we first
evaluate Natron against our Streaming Linked Data engine that performs the data trans-
formation at ingestion time. The result of this evaluation shows that Natron is cheaper –
it consumes less resources in terms of memory and CPU load – and better approximates
the correct answer under stress conditions. Moreover, we evaluate the cost effective-
ness of Natron against rvr@Spark to prove that a distributed solution does not pay in
all the situations. Indeed, in a mobile telco analysis, we observe that Natron is more
cost-effective than rvr@Spark up to the scale of a nation. The results of those evalua-
tions demonstrate the validity of the Lazy Transformation approach and confirm, in the
stream processing engine field, that the a distributed solution does not pay at all scale.

In order to prove the feasibility and the effectiveness of FraPPE and RI VE Rin en-
abling reactive decision-making processes on heterogeneous streaming spatio-temporal
data, we present five real world use cases in Milan and Como. Moreover, during those
case studies, we propose the data visualizations to different audiences (public users and
stakeholders) in order to prove the guessability of our visual analytics interfaces.

Finally, we reflect on limitations and state the future directions of this research work.
In particular, those reflections involve the reasoning capabilities enabled by FraPPE,
the future evaluations of RI VE Ragainst longer and more complex use cases and the
evolution out the Pipeline Definition Language (PDL).

i
i

“thesis” — 2019/1/25 — 17:04 — page — #5 i
i

i
i

i
i

Sommario

Negli ultimi anni, in un numero sempre crescente di situazioni, é nata la necessitá di
prendere decisioni in modo reattivo basandosi su flussi di dati continui ed eterogenei. In
questo contesto, l’ambiente urbano risulta particolarmente rilevante grazie alla presenza
di una fitta rete di interazioni tra le persone e lo spazio cittadino. Questa rete produce
un’enorme quantitá di dati spazio-temporali che si evolvono velocemente nel tempo.
Inoltre, in ambito cittadino convivono una moltitudine di stakeholder interessati allo
sviluppo di un processo decisionale reattivo per la pianificazione urbana, la gestione
della mobilitá, il turismo, ecc.

L’uso sempre piú ampio della geo-localizzazione nei social network e, piú in gene-
rale, la diffusione di dispositivi di comunicazione mobili, ha migliorato la capacitá di
creare un’accurata rappresentazione della realtá in tempo reale, in inglese spesso de-
nominata Digital footprint o Digital reflection o Digital twin. Cinque anni fa, lo stato
dell’arte sfruttava solo una singola fonte di dati, ad esempio, i social media o i dati te-
lefonici. Tuttavia, un uso simultaneo di piú fonti dati eterogenee, aiuta a creare una piú
accurata rappresentazione digitale della realtá.

In questo contesto, abbiamo affrontato il problema della creazione di un modello
concettuale olistico per rappresentare dati spazio-temporali eterogenei e il problema
dello sviluppo di un modello computazionale per flussi di dati continui. I principali
risultati di questa ricerca sono un modello concettuale chiamato FraPPE e un modello
computazionale denominato RI VE Rcon le sue implementazioni.

FraPPE é un modello concettutale, piú precisamente un’ontologia, che sfrutta termi-
ni dell’elaborazione delle immagini (in inglese, Image Processing) per modellare dati
spazio-temporali e abilitare analisi nell’ambito spaziale, temporale e di contenuto. FraP-
PE sfrutta termini comuni nell’ambito dell’image processing per colmare il divario tra
la prospettiva del data engineer e quella dell’analista. L’annullamento di questo divario
permette di abilitare analisi visuale su dati spazio-temporali. Durante questo percorso
di dottorato, abbiamo per prima cosa formalizzato in FraPPE 1.0 i concetti spaziali e
temporali, abbiamo poi aggiunto i frammenti relativi alla provenienza del dato (Data
Provenance in inglese) del dato e al suo contenuto in FraPPE 2.0. Abbiamo controlla-
to che entrambe le versioni di FraPPE rispettassero i cinque principi di Tom Gruber, e
abbiamo dimostrato la validitá del modello concettuale attraverso casi d’uso reali.

i
i

“thesis” — 2019/1/25 — 17:04 — page — #6 i
i

i
i

i
i

RI VE Ré un modello computazionale per flussi di dati continui ed é basato su due
principi: (P1) tutti i dati possono essere modellati come flussi continui – un motore
per l’analisi di flussi di dati deve essere in grado di accettare in ingresso flussi di dati
con differenti velocitá, di qualsiasi dimensione e provenienti da qualsiasi fonte –, e (P2)
Ingestion Continua – il sistema deve catturare continuamente i dati che, una volta ar-
rivati, vengono marcati con un timestamp crescente. Al contrario della maggior parte
dei motori per l’analisi di flussi, che trasforma e adatta il dato non appena questo entra
nel sistema, RI VE Ré costruito intorno all’idea della Lazy Transformation. Un sistema
che implementa RI VE R, ritarda la trasformazione del dato in ingresso fino a quando il
sistema puó beneficiare di tale trasformazione. Abbiamo formulato l’ipotesi secondo
cui la Lazy Transformation permette di risparmiare tempo e risorse durante la computa-
zione. RI VE Rsi basa principalmente su due concetti: il Generic Data Stream (S⟨T⟩) e
la Generic Time-Varying Collection (C⟨T⟩) e propone cinque operatori per l’ingestion,
l’eleaborazione e l’emissione di flussi di dati. L’operatore IN⟨T⟩ rappresenta la porta
d’ingresso del sistema, prende un flusso di dati esterno e crea un nuovo S⟨T⟩. Gli opera-
tori S2C⟨T⟩, C2C⟨T,T′⟩ e C2S⟨T⟩ sono ispirati al Continuous Query Language(CQL,
il lavoro seminale dell’UniversitÃ di Standford sull’elaborazione di flussi continui di
dati) e permettono la trasformazione da S⟨T⟩ a C⟨T⟩ e vice-versa. L’operatore OUT⟨T⟩
trasforma un S⟨T⟩ in un nuovo flusso di dati esterno. Sfruttando il Pipeline Definition
Language (PDL) – il nostro linguaggio visuale che astrae la complessitá implementativa
degli operatori –, RI VE Rabilita l’utente a definire piani computazionali sotto forma di
pipeline di operatori.

In questa tesi, proponiamo tre implementazioni di RI VE R: Natron – un’implemen-
tazione single-threaded scalabile verticalmente –, rvr@Spark e rvr@Hive – due imple-
mentazioni a scalabilitá orizzontale basate su framework distribuiti (Spark e Hive). Con
l’intento di provare la validitá dell’approccio basato sulla Lazy Transformation, abbia-
mo valutato Natron rispetto al nostro motore Streaming Linked Data che trasforma il
dato non appena questo entra nel sistema. Il risultato di questa valutazione dimostra
che Natron consuma meno risorse, in termini di processore e memoria, e approssima
meglio la risposta corretta in condizioni di stress. Per determinare l’efficacia di Natron
sotto l’aspetto dei costi, l’abbiamo valutato rispetto a rvr@Spark, in modo da provare
che una soluzione distribuita non é la migliore in tutte le condizioni. Analizzando dati
telefonici a diversa scala (cittadina, regionale, nazionale ed estrema), abbiamo osserva-
to che Natron risulta piú efficace, sotto l’aspetto dei costi, rispetto a rvr@Spark per dati
fino alla scala nazionale. I risultati di questa valutazioni dimostrano la validitá dell’ap-
proccio basato sulla Lazy Transformation e confermano che, nell’ambito dei motori di
analisi di flussi di dati, la soluzione distribuita non é sempre la migliore.

Per dimostrare la capacitá di FraPPE e RI VE Rdi abilitare un processo decisionale
reattivo basato su flussi di dati spazio-temporali eterogenei, abbiamo presentato cin-
que casi d’uso reali portati avanti nelle cittá di Milano e Como. Durante questi casi di
studio, abbiamo presentato le visualizzazioni a platee diverse (partecipanti ad eventi e
stackeholder cittadini) per dimostrare la validitá delle nostre interfacce visuali.

Infine, abbiamo riflettuto sulle limitazioni delle soluzioni proposte e preso decisioni
riguardo la direzione futura di questo lavoro di ricerca. In particolare, le nostre rifles-
sioni hanno riguardato le capacitá di ragionamento automatico abilitate da FraPPE, le
future valutazioni di RI VE Rbasate su casi d’uso piú lunghi e complessi, e l’evoluzione

i
i

“thesis” — 2019/1/25 — 17:04 — page — #7 i
i

i
i

i
i

del Pipeline Definition Language (PDL).

i
i

“thesis” — 2019/1/25 — 17:04 — page — #8 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page — #9 i
i

i
i

i
i

Indice

1 Introduction 1
1.1 Relevancy . 1
1.2 Problem Statement and Research Question 2
1.3 Approach . 3
1.4 Outline . 4
1.5 Publications . 4

2 Preliminary Concepts: Taming Velocity and Variety 7
2.1 Velocity . 8

2.1.1 Models and Languages . 8
Stream Processing . 8
CQL . 8
SECRET . 10

2.1.2 Information Flow Processing and Architectures 11
2.1.3 Open Source Solutions . 14

ESPER & EPL . 14
Apache Kafka & KSQL . 15
Apache Spark . 15
Apache Hive . 16
Apache Flink . 16

2.2 Variety . 17
2.2.1 Models, Languages and Methodologies 17

RDF & SPARQL . 17
R2RML . 19
OWL . 20
Ontology Engineering . 20
OBDI & OBDA . 21

2.2.2 Open Source Solutions . 22
2.3 Velocity and Variety . 24

2.3.1 Models and Languages . 24
Stream Reasoning & RDF Stream Processing 24

i
i

“thesis” — 2019/1/25 — 17:04 — page — #10 i
i

i
i

i
i

Indice

RSP-QL . 25
2.3.2 Open Source Solutions . 27

2.4 RSP Middleware . 29
2.4.1 Streaming Linked Data (SLD) 29
2.4.2 Linked Stream Middleware . 31

2.5 Benchmarking . 32
2.5.1 Domain-Specific Benchmarks 32
2.5.2 Benchmarking Velocity Oriented Systems 33
2.5.3 Cost-Aware approach . 33

3 Urban Data analysis 35
3.1 Relevance and Motivation . 35
3.2 Urban Data Analysis Dimensions . 37

3.2.1 Content Analysis . 37
3.2.2 Spatial Analysis . 38
3.2.3 Temporal Analysis . 38
3.2.4 Combined Time and Space Analysis 39

3.3 Existing Semantic Web-Based Solutions 39
3.3.1 Monitoring Traffic Using Semantic and Stream Technologies . . 40
3.3.2 Semantic Traffic-Aware Routing 41
3.3.3 Monitoring Crowd Movement During London 2012 Olympics

Games . 41
3.3.4 Bottari . 42

4 Conceptual Model 45
4.1 Introduction and Problem Statement 45
4.2 FraPPE 1.0 . 47

4.2.1 The Conceptual Model . 47
4.2.2 Adherence to the Tom Gruber’s Principles 50
4.2.3 Working Example . 50

4.3 FraPPE 2.0 . 52
4.4 FraPPE 2.0 and Urban Data Analysis 54
4.5 Conclusion . 56

5 Computational Model 59
5.1 Introduction and Problem Statement 59
5.2 RI VE R . 60

5.2.1 Preliminaries . 60
5.2.2 RI VE R’s Operators and the Pipeline Definition Language 62

5.3 Reference Architecture . 69
5.4 Conclusion . 71

6 RI VE RImplementations and Evaluations 73
6.1 Introduction and Problem Statement 73
6.2 Implementations . 74

6.2.1 Natron - A Vertically Scalable Implementation 74

i
i

“thesis” — 2019/1/25 — 17:04 — page — #11 i
i

i
i

i
i

Indice

6.2.2 rvr@Spark - A Horizontally Scalable Implementation Based on
Spark . 75

6.2.3 rvr@Hive - A Horizontally Scalable Implementation Based on Hive 75
6.3 Validation of the Lazy Transformation Approach 76

6.3.1 Problem Settings . 77
6.3.2 Solution Design and Experimental Settings 78
6.3.3 Results and Discussion . 81

6.4 COST-Aware Evaluation: Distributed vs. Single-Threaded 86
6.4.1 Problem Settings . 86
6.4.2 Solution Design . 88
6.4.3 Experimental Settings . 91
6.4.4 Results and Discussion . 95

6.5 Conclusion . 98
7 Case Studies 99

7.1 Milano Design Week . 99
7.1.1 MDW2013 - Understanding the Data 100
7.1.2 MDW2014 - CitySensing Public Installation 102
7.1.3 MDW2016 - Advanced Visualizations 108

7.2 Milano Fashion Week . 110
7.3 Como Smart City for Smart Citizens 114
7.4 Conclusion . 117

8 Conclusion 121
8.1 Review of the Contributions . 121
8.2 Limitations and Future Directions . 123
8.3 Reflections . 124

Bibliografia 127

i
i

“thesis” — 2019/1/25 — 17:04 — page — #12 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 1 — #13 i
i

i
i

i
i

CAPITOLO1
Introduction

1.1 Relevancy

In an increasing number of situations, a decision must be reactive1 and must be based on
a variety of streaming data. In the electricity management domain, a reactive anomaly
detection system, which processes the consumption data, must react in seconds to avoid
network problems. In oil and gas extraction sites, the analyses of sensors’ readings from
the wells have at most minutes for the reactive detection of dangerous situations.

The urban environment is particularly relevant when talking about reactive decisions.
In modern cities, a dense network of interactions between people and urban spaces pro-
duces a great amount of spatio-temporal fast evolving data [1] and a multitude of stake-
holders are interested in reactive decisions. Tourists would value information about the
current top rated and less crowded attractions around the city [2]. Commuters would
like to know the current busiest roads to choose the fastest way home [3]. Public safety
agencies would like to learn about over-crowded area during a public event.

In the mid 2000s, the growing use of location-based social networks via mobile de-
vices, improved the ability to capture the people’s interests, habits, and preferences in
a privacy-preserving manner and enabled innovative scenarios. It became possible to
create an accurate and up-to-date representation of reality (a.k.a. Digital footprint or
Digital reflection or Digital twin) exploiting either social media or mobile phones data,
i.e. Call Data Records (CDR). For instance, analyzing social media Cho et al. [4] we-
re able to identify mobility patterns, while we built a location-based recommendation
engine for restaurant in Korea [5]. Parallel works exploited CDR to create models to
estimate the density of crowds and vehicles [6–8].

1Deciding an action in response to a stimulus before new incoming information makes the planned action ineffective.

1

i
i

“thesis” — 2019/1/25 — 17:04 — page 2 — #14 i
i

i
i

i
i

Capitolo 1. Introduction

However, better decisions can result from the analyses ofmultiple data sources simul-
taneously. The growing availability of new urban data sources (e.g., IoT andWI-FI logs)
stimulated the research of a holistic conceptual model to manage data variety in a com-
prehensive way. The current interest is for solutions that fuse streaming heterogeneous
data to enable reactive decisions.

1.2 Problem Statement and Research Question

In the first years of the 2010s the interest of the SemanticWeb community for the hetero-
geneous streaming urban data was growing [4,9]. We started investigating the modeling
and the analysis of streaming data from social media [5, 10] exploiting Stream Reaso-
ning [11] and state-of-the-art techniques based on RDF Stream Processing (RSP) [12],
named entity recognition and linking, and machine learning [10, 13].

Reflecting on those results, we identified two main findings from previous research:
(i) when dealing with data streams, a Continuous Ingestion mechanism avoids data los-
ses, but continuous analysis is not always needed; an analysis can be reactive even if
postponed. (ii) Ontologies are an adequate knowledge representation technique for mo-
deling data characterized by high variety. However Stream Reasoning researchers count
on two Assumptions:
A ontologies (adequate to model a domain) are available or they can be obtained with

minimal effort by extending existing ones. For instance, SMA [2], an ontology that
we created to represent location-based social media data, was defined starting from
SIOC2 by adding only few axioms.

B Data streams can be RDF-ized at a negligible cost. For instance, in our previous
works we used social media streams. Social media APIs return statuses in JSON
that can be easily transformed in JSON-LD3 exploiting standard format, such as
Activity Stream4.

Aiming at continuously and reactively analyzing a variety of spatio-temporal data,
we develop the research question with the Macro, Mezzo and Micro method [14].

At Macro level we focus on relevancy and formulate the question: Is it possible
to support reactive decisions by managing data characterized by velocity and variety
without forgetting volume?

At Mezzo level, we focus the attention on a question for which we can find a viable
solution. We concentrate our effort on spatio-temporal streaming data and, focusing on
previous findings, we characterize the way to support reactive decisions, i.e. visually
making sense of data. So, the Mezzo level question is: Is it possible to visually making
sense of a variety of spatio-temporal streaming data by enabling continuous ingestion
and reactive analysis?

Finally, atMicro level, we formalize a question that can be evaluated. We concentrate
our effort on the streaming urban data andwe specify away to exploit the visual analytics
instrument to support reactive decision making, i.e. find emerging patterns and data
dynamics. As a result, the research question of this PhD thesis is: Is it possible to

2http://sioc-project.org
3https://json-ld.org
4http://activitystrea.ms

2

http://sioc-project.org
https://json-ld.org
http://activitystrea.ms

i
i

“thesis” — 2019/1/25 — 17:04 — page 3 — #15 i
i

i
i

i
i

1.3. Approach

continuously ingest and reactively analyses a variety of streaming urban data in order
to visualize emerging patterns and their dynamics?

Within the scope of this research question, the assumptions A does not hold. In our
previous work, we focused on social media data. Social media data is semi-structured:
only time and space information is presented in a structured way; the content is unstruc-
tured, e.g. free texts or images. On the contrary in this work we aim at integrate IoT
data, WI-FI logs, CDRs, which are structured. While the integration of semi-structured
data is generally based on the content analysis (e.g. named entity recognition and lin-
king), the integration of structured data requires other methods, e.g., Ontology Based
Data Integration (OBDI) [15]. So, a first problem emerges:
Rp.1 Defining a conceptual model to represent a variety of streaming data.
Moreover, also Assumption B holds only for social media data. Therefore, we need

to face two problems :
Rp.2 Defining a streaming computational model to enable analysis on a variety of data.
Rp.3 Defining appropriate technical instantiations of the computational model in Rp.2.
Last, but not least, to verify and validate the solutions proposed to solve the problems

above, we need to:
Rp.4 Assess, in real world scenarios, the feasibility and the effectiveness of the instan-

tiations developed addressing Rp.3 using the models developed in solving Rp.1
and Rp.2.

The three levels of the research question are strictly correlated to the research pro-
blems. In fact, they aim at probing the validity (Rp.4) of the conceptual model (Rp.1),
of the computational model for streaming heterogeneous data (Rp.2) and of its technical
instantiations (Rp.3).

In answering to the Micro level question, we are directly contributing to answer the
Mezzo level question, and, indirectly, to cast some light on the Macro level question.

1.3 Approach

Inspired by OBDI methods, we approach the research problems in a modular way by
relaxing, in parallel, the two original assumptions presented in Section 1.2. This mo-
dularity reflects the research problem structure and allows performing a continuous
evaluation.

On the one hand, relaxing Assumption A, we create a conceptual model in the form
of an ontology by following the METHONTOLOGY [16] methodology and evaluate
the result using Tom Gruber’s principles [17] (See Chapter 4).

On the other hand, relaxing Assumption B, we develop a computational model that
enables continuous ingestion, wrangling and reactive analysis of heterogeneous data
streams. We implement such a computational model using different technologies, i.e.
single-threaded and distributed, in order to prove its adequacy in different work condi-
tions (see Chapter 5). We, then, evaluate those implementations against already existing
system (SLD [5]) and one against the other (see Section 6.3). In particular, inspired by

3

i
i

“thesis” — 2019/1/25 — 17:04 — page 4 — #16 i
i

i
i

i
i

Capitolo 1. Introduction

COST [18], we evaluated the cost-effectiveness of the single-threaded system against
the distributed one (see Section 6.4).

We, finally, put at work a complete system, composed by an implementation of
the computational model that exploits the conceptual model, in different scenario (see
Chapter 7).

1.4 Outline

The thesis is structured as follows:
• Chapter 2 offers an overview on the relevant background concepts used by the
Semantic Web community to tame velocity, variety and both of them in a single
system. It, then, defines the basic concepts of RSP Middleware systems and offers
an overview of the benchmarking principles.

• Chapter 3 offers an overview on the urban data analysis by setting the main cha-
racteristics of urban data, by reviewing the state of the art, and ,finally, by offering
significant examples of application of RDF stream processing in the field.

• Chapter 4 introduces FraPPE ontology, the conceptual model we proposed to tame
with the problem Rp.1. The chapter presents the motivation, the genesis and a first
evaluation of the original FraPPE 1.0. Moreover, it offers an overview of the FraP-
PE 2.0 extension while casting some light on how the proposed conceptual model
helps the user in spotting emerging patterns and understanding data dynamics in
the urban data analysis field.

• Chapter 5 introduces RI VE Rthe streaming computational model we proposed to
face the research problems Rp.2. In this chapter we present an overview of the
principles that underpin RI VE R, its genesis and its internals.

• Chapter 6 proposes three RI VE R’s implementation based on single-threaded and
distributed technologies. Moreover, in this chapter, we present the evaluations of
our implementations, a first one based on performance metric, and a second one
based cost-effectiveness metric.

• Chapter 7 presents real world use-cases where we put at work FraPPE and the
different implementations of RI VE Rin order to verify the solution to the research
problem Rp.4 and, consequently, validate the solutions proposed for the problems
Rp.1, Rp.2, Rp.3.

• Chapter 8 concludes the dissertationwith an overall review of the contributions and
with a discussion of the future work based on the limits of the actual solutions.

1.5 Publications

This thesis is based on the articles [19–26], listed above.
• Fabrizio Antonelli, Matteo Azzi, Marco Balduini, Paolo Ciuccarelli, Emanuele
Della Valle, Roberto Larcher: "City sensing: visualising mobile and social data
about a city scale event". AVI 2014: 337-338

4

i
i

“thesis” — 2019/1/25 — 17:04 — page 5 — #17 i
i

i
i

i
i

1.5. Publications

• Marco Balduini, Emanuele Della Valle: "FraPPE: A Vocabulary to Represent
Heterogeneous Spatio-temporal Data to Support Visual Analytics". International
Semantic Web Conference (2) 2015: 321-328

• Emanuele Della Valle, Marco Balduini: "Listening to and Visualising the Pulse of
Our Cities Using Social Media and Call Data Records". BIS (Workshops) 2015:
3-14

• Marco Balduini, Emanuele Della Valle, Matteo Azzi, Roberto Larcher, Fabri-
zio Antonelli, Paolo Ciuccarelli: "CitySensing: Fusing City Data for Visual
Storytelling". IEEE MultiMedia 22(3): 44-53 (2015)

• Marco Balduini, Emanuele Della Valle, Riccardo Tommasini: "SLD Revolution:
A Cheaper, Faster yet More Accurate Streaming Linked Data Framework". ESWC
(Satellite Events) 2017: 263-279

• Marco Balduini, Sivam Pasupathipillai, Emanuele Della Valle: "Cost-Aware
Streaming Data Analysis: Distributed vs Single-Thread". DEBS 2018: 160-170

• Marco Balduini, Marco Brambilla, Emanuele Della Valle, Christian Marazzi, Ta-
hereh Arabghalizi, Behnam Rahdari, and Michele Vescovi: "Models and practices
in urban data science at scale". Big Data Research, 2018: In Press

• Marco Balduini: "On the Continuous and Reactive Analysis of a Variety of Spatio-
Temporal Data". DC@ISWC 2018: 10-17

5

i
i

“thesis” — 2019/1/25 — 17:04 — page 6 — #18 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 7 — #19 i
i

i
i

i
i

CAPITOLO2
Preliminary Concepts: Taming Velocity and Variety

The transient nature of streaming data often requires to treat it differently from persistent
data, which can be stored and queried on demand. Data streams should often be consu-
med on the fly by continuous queries. Such a paradigmatic change has been largely in-
vestigated in the last decade by the database community [27], and, more recently, by the
Semantic Web community [11]. Several independent groups have proposed extension
of RDF and SPARQL [28] for continuous querying [29–31] and reasoning [12, 32].

The development of these solutions needs to deal with the nature of data streams
and with the user needs. The input information always changes over time (Velocity), the
sources are different and offer data that vary in syntax, structure and semantics (Variety).
The data continuously flows into the system and, even what looks like static data, e.g.
a city street grid, is not immutable over time. It slowly evolves.

In the next sections, we present an overview on (i) the theoretical and practical con-
cepts developed for managing data characterized by velocity and variety, (ii) the so-
lutions to easy the creation of system based on RDF Stream Processors, and (iii) the
benchmarking principles and techniques. In the Section 2.1, we present the theoreti-
cal models, the languages and the architectures for taming velocity, and we conclude
with an overview of the extended solutions we exploited during the research work. Sec-
tion 2.2 presents an overview on the concepts and the architectures for managing the
variety. In Section 2.3, we present an overview on the attempts for taming both ve-
locity and variety in a single architecture. In Section 2.4, we present the fundamental
principles of an RSP middleware and the implementations we exploited as term of com-
parison during this work. Finally, Section 2.5 presents the benchmarking principles and
the benchmarking techniques and metrics we exploited during this research work.

7

i
i

“thesis” — 2019/1/25 — 17:04 — page 8 — #20 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

S
Streams

R
Relations

stream-to-relation

relation-to-stream
relation-to-relation

Figura 2.1: The CQL processing model.

2.1 Velocity

Section 2.1.1 presents an overview of the models and languages to manage the data
velocity. Sections 2.1.2 and 2.1.3 then present two different architecture for a velocity-
first system, and the solutions that inspired our research work.
2.1.1 Models and Languages
Stream Processing

In order to introduce the concepts related to the analysis of streaming data, we need to
introduce the concepts of Time and Time Instant.
Definition 2.1.1. (Time) The time is an infinite, discrete, ordered sequence of time in-
stants (�1, �2, ..., �n), where �i ∈ ℕ. A time unit is the difference between two consecutive
time instants (�i+1 − �i) and it is constant.

Definition 2.1.2. (Time Instant) A time instant (or simply instant) is any value from T.

Now that we have formally defined the Time concept, we can introduce the Stream.
Definition 2.1.3. (Stream) A stream S is a bag (multiset) of elements ⟨s, �⟩, where s is
a tuple belonging to the schema of S and � ∈ is the timestamp of the element.

This definition of stream does not consider the time as a part of the data schema. At
any time instant � ∈ , zero or more elements could be in the stream and, consequently,
share the timestamp.

We finally present a formal definition of Relation, an unordered bag of tuples at any
time instant � ∈ , or simply R(�).
Definition 2.1.4. (Relation) A relation R is a mapping from to a finite but unbounded
bag of tuples belonging to the schema of R.

CQL

The Continuous Query Language(CQL) [33] represents both an expressive SQL-based
declarative language for managing continuous queries against streams and updatable
relations, and a processing model. It was originally proposed by the DB group of the
Stanford university.

Figure 2.1 depicts the three operators defined by the CQL processing model.
8

i
i

“thesis” — 2019/1/25 — 17:04 — page 9 — #21 i
i

i
i

i
i

2.1. Velocity

(i) The stream-to-relation. It takes a stream S as input and produces a relation R as
output, maintaining the schema. At any instant �,R(�) should be computable from
S.

(ii) The relation-to-relation operator. It takes one or more relations R1, ..., Rn as inputand produces a relation R as output. At any instant �, R(�) should be computable
from R1(�), ..., Rn(�).

(iii) The relation-to-stream operator. It takes a relation R as input and produces a stream
S as output maintaining the schema. At any instant �, S at � should be computable
from R up to �.

CQL, also, define an abstract semantics for the data management:
Definition 2.1.5. (Continuous semantics) Consider a query Q that is a composition of
the three basic CQL operators. The inputs to the operators operators of Q are streams
S1, ..., Sn(n ≥ 1) and relations R1, ..., Rm(m ≥ 0). The result of continuous query Q at
a time � when all inputs are "available" can be defined as:

1. If the top operator in Q is relation-to-stream and produces the stream S, the re-
sult of Q at time � is S up to �, produced by recursively applying the operators
comprising Q to streams S1, ..., Sn up to � and relations R1, ..., Rm up to �.

2. If the top operator in Q is stream-to-relation or relation-to-relation and produces
the relation R, the result of Q at time � is R(�), produced by recursively applying
the operators comprising Q to streams S1, ..., Sn up to � and relations R1, ..., Rm
up to �.

Stream-to-relation operators The stream-to-relation operators in CQL are based on the
sliding window concept (see Section 2.3.1). CQL exploits the concepts of window to
define three classes of sliding window: time-based, tuple-based and partitioned.
Definition 2.1.6. (Window) A windowW (S) is a set of elements extracted from a stream
S.

Time-based sliding window operator’s output is defined by sliding an interval of T
time units over the stream S.
Definition 2.1.7. (Time-based sliding window) A time-based sliding window on a
stream S takes a time-interval Ti as a parameter and is specified by following S in the
query with [Range Ti]. The output relation R of S[Range Ti] is defined as:

R(�) = {s ∣ ⟨s, � ′⟩ ∈ S ∧ (� ′ ≤ �) ∧ (� ′ ≥ max{� − Ti, 0})}

Tuple-based sliding window operator’s output is defined by sliding a window of size
N tuples over the stream S.
Definition 2.1.8. (Tuple-based sliding window) A tuple-based sliding window takes a
positive integer N as a parameter and is specified by following S in the query with [Rows
N]. The relation R of S[Rows N], R(�), consists of tuples obtained from the N elements
with the largest timestamps in S no greater than �.

9

i
i

“thesis” — 2019/1/25 — 17:04 — page 10 — #22 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

Partitioned sliding window logically partitions S into different sub-streams based on
equality of attributes A1, ..., Ak, computes a tuple-based sliding window of size N on
each sub-stream, then the output relation is the union of these sub-windows.
Definition 2.1.9. (Partitioned sliding window) A partitioned sliding window on a stream
S takes a positive integer N and a subset {A1, ..., Ak} of S attributes as parameters. It is
specified by following S in the query with [Partition By A1, ..., Ak Rows N]. Formally,
a tuple s with values a1, ..., ak for attributes A1, ..., Ak occurs in output instantaneous
relation R(�) iff exists an element ⟨s, � ′⟩ ∈ S such that � ′ ≤ � is among the N largest
timestamps among elements whose tuples have values a1, ..., ak for attributes A1, ..., Ak

Relation-to-relation operators The relation-to-relation operators operators transform re-
lations in other relations. They are often derived from typical relational queries, by ap-
plying the semantic mapping to time-varying relations. Relational algebraic expressions
are a well-known cases of this class of operators.
Relation-to-stream operators Starting from the concepts of stream and relation, CQL
defines three classes of relation-to-stream operators: Istream, Dstream, and Rstream.
Definition 2.1.10. (Istream) The insert stream applied to relation R contains an element
⟨s, �⟩ iff the tuple s is in R(�) − R(� − 1):

Istream(R) =
⋃

�≥0
((R(�) − R(� − 1)) × {�}).

Definition 2.1.11. (Dstream) The delete stream applied to relation R contains an
element ⟨s, �⟩ iff the tuple s is in R(� − 1) − R(�):

Dstream(R) =
⋃

�≥0
((R(� − 1) − R(�)) × {�}).

Definition 2.1.12. (Rstream) The relation stream applied to relation R contains an
element ⟨s, �⟩ iff the tuple s is in R at time �:

Rstream(R) =
⋃

�≥0
(R(�) × {�}).

The concepts introduced by CQL represent a fundamental theoretical base for the
development of the stream processors, see Section 2.3.2. We exploited these constructs
during the development of our Streaming Computational Model, see Chapter 5.
SECRET

In 2000s, different systems try to implement a streaming processing model (see Sec-
tion 2.3.2). Despite they are based on common concepts, they present significant diffe-
rences in the way they manage data and queries. In order to explain the differences in
the behavior of window operators in the existing stream processing engines, Botan et
el. present SECRET [34]. Differently from CQL, it assigns two time instants to each
stream item: (i) the application and (ii) the system time. The former, already defined
by CQL processing model, refers to the instant related to the event represented by the

10

i
i

“thesis” — 2019/1/25 — 17:04 — page 11 — #23 i
i

i
i

i
i

2.1. Velocity

Figura 2.2: SECRET of a query plan (source [34]).

element in the stream. It is not unique (contemporaneity is allowed) and defines a par-
tial order among the stream elements. The latter must be unique and introduces a total
order in the stream. From a conceptual point of view, the application time represents
the most relevant information, but the system time is also important to understand the
correct behavior of the stream engine.

As depicted in Figure 2.2, the SECRET framework introduces the notions of scope,
content, report and tick to explain the window operator.

The Scope function associates an evaluation time instant t to the active window time
interval. The computation of the scope relies on the t0 parameter, the first active window
start timestamp.

The Content identifies the set of items of S in the active window. This function is
influenced by both the application and the system time.

The Report function defines the conditions under which the relation-to-relation ope-
rators can access the window content for additional query evaluation and result repor-
ting. SECRET identifies four reporting strategies: (i) Content change – the system
reports if the content changes –, (ii) Window close – the system reports if the active
window closes –, (iii) Non-empty content – the system reports if the active window is
not empty – and, finally, (iv) Periodic – the system reports only at regular intervals.

The Tick is a function that defines under which conditions input can enter the window
and, consequently, can be processed by the engine. SECRET defines tuple-driven and
time-driven strategies. Systems that adopt the former strategy add the tuple to the win-
dow operator as soon as they arrive, contrariwise, systems that adopt the latter strategy,
add tuple to the window at each application time instant.

The key concepts formalized by SECRETS result useful to guarantee a comparable
behavior of all the different implementations of our Conceptual Model presented in
Chapter 5.

2.1.2 Information Flow Processing and Architectures

Cugola et al. in [35] proposed the Information Flow Processing (IFP) as an application
domain in which users need to collect information produced by multiple, distributed
sources for processing it in a timely way in order to extract new knowledge as soon as
the relevant information is collected.

11

i
i

“thesis” — 2019/1/25 — 17:04 — page 12 — #24 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

Figura 2.3: The functional architecture of an IFP system (source [35]).

From an high-level point of view, an IFP takes data flows from multiple sources as
input, processes them and produces other information flows as output. This output is
then directed toward a set of sinks.

Figure 2.3 shows the components of a generic IFP system. The receiver implements
the transport protocol to move data over the network and manages the connection bet-
ween the sources and the IFP engine. Moreover, it is also connected to the clock – an
architectural element that produces special data items that hold the current time. Then,
the data items, from external sources or from the clock, enter the processing pipeline
that elaborates the data according to the rules stored into the rule store. A rule is logi-
cally composed by a condition part (C) and an action part (A). C specifies the condition
that has to be satisfied by the information to trigger the rule in the IFP, while A specifies
what to do. The logical disjunction produces a physical disjunction, the processing are
splitted in two different phases: (i) the detection – realized by the decider that checks
the condition (C) on each incoming item –, and (ii) the production – realized by the pro-
ducer that triggers the actions (A). The knowledge base represents a read only-memory1
that contains useful information for the decider and the producer. Finally, the forwarder
is in charge to deliver the information to the output sinks.

In the early 2010s, Nathan Marz coined the term � architecture describing a gene-
ric, scalable and fault-tolerant data processing architecture that was very successful in
distributed environment. The IFP functional model are at the basis of this architecture,
formalizes by Marz et al. in [36].

In a system implementing a � architecture (see Figure 2.4), a separation between
the batch processing pipeline (a.k.a. Batch Layer) and the real-time processing pipeline
(a.k.a. Real-time Layer) is easily identifiable. This clear separation helps to isolate
and localize the complexity of data update. The Serving Layer offers a mechanism to
combine Batch Layer results with Real-time Layer results in order to offer the latest
information to the user. The three layers are depicted in Figure 2.4. The Batch Layer is
in charge of storing the immutable, constantly growing master dataset and of computing
views from the stored dataset. The computation of the views is a periodic operation, the
new data is aggregated once arrived and the views are incrementally computed on the

1The knowledge base is read-only from the IFP engine perspective, but can be modified by external systems

12

i
i

“thesis” — 2019/1/25 — 17:04 — page 13 — #25 i
i

i
i

i
i

2.1. Velocity

Input
Streams

Batch LayerAll Data
Precompute

Views
(Map Reduce)

Batch
Recompute

Speed LayerProcess
Stream

Incremental
ViewsReal-Time

Increment

Real-Time Views

Batch Views

BV1 BV2 BVn…

RV1 RV2 RVn…

Query

Serving Layer

Figura 2.4: The � architecture.

entire dataset every time. The Batch Layer operations could take hours to be completed,
depending on the size of the cluster and of the data. The Speed Layer compensates the
high latency of the Batch Layer. It, normally, computes real-time views on the most
fresh data. The views, computed by the Speed Layer, contain only the delta results
to supplement the ones computed by the Batch Layer. The Speed Layer continuously
computes real-time views. That views are transient, once the information propagates
through the Batch and Serving Layers the corresponding results in the real-time views
lost its validity. The Serving Layer is responsible for merging, indexing and exposing
the views in order to make them available for query operations.

In recent years the complexity and the maintenance cost of � architectures were
criticized2 and Jay Kreps proposed the � architecture3, a stream-only architecture.

Figure 2.5 depicts the main components of the � architecture, that aims at exploiting
a single stream processing engine to handle real-time data processing and continuous
reprocessing. In this architecture the Speed Layer are in charge of computing real-time
views on themost fresh data from the Input streams. The Real-Time views are incremen-
tally computed when new data enters the system. The most recent views are available
to the Serving Layer for querying operation. In a system based on a � architecture, the
canonical data store is an append-only immutable log.

Both � and � architectures inspired our system presented in Section 2.1.3 and our
Computational Model presented in Chapter 5.

2https://www.oreilly.com/ideas/questioning-the-lambda-architecture
3http://milinda.pathirage.org/kappa-architecture.com/

13

https://www.oreilly.com/ideas/questioning-the-lambda-architecture
http://milinda.pathirage.org/kappa-architecture.com/

i
i

“thesis” — 2019/1/25 — 17:04 — page 14 — #26 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

Input
Streams

Speed LayerProcess
Stream

Incremental
ViewsReal-Time

Increment

Real-Time Views

RV1 RV2 RVn…
Query

Serving Layer

Figura 2.5: The � architecture.

2.1.3 Open Source Solutions

In this section, we present open-source solutions for taming velocity. All the propo-
sed systems represent implementations of a � or a � Architecture. We choose to work
with open-source software in order to explore and modify the internals to cope with
our needs. The section proposes one vertical scalable system (ESPER) and four diffe-
rent horizontally scalable systems with different characteristics (Kafka, Spark, Hive and
Flink). The proposed solutions inspired our streaming Computational Model proposed
in the Chapter 5.

ESPER & EPL

Esper4 is an open-source system for complex event processing (CEP) and streaming ana-
lytics. Esper exploits in-memory processing to address the requirements of applications
that analyze high volume of fast data (between 1,000 to 100k messages per second in
input), and must promptly react to events (from a few milliseconds to a few seconds of
latency) by applying complex computations (e.g., pattern detection, filter, aggregation,
etc.)

The Event Processing Language (EPL) offers SELECT, FROM, WHERE, GROUP
BY, HAVING and ORDER BY clauses and is compliant to the SQL-92 standard. In
the EPL logic, streams replace tables as primary source of data and, instead of rows,
events become the basic information unit. As for rows in the relational environment,
events are composed by data. EPL allows the definition of windows over stream of data
to define a subset of the data to be analyzed. Such windows can be time-based or event-
based (see Section 2.1.1) and can be combined applying intersection or union operators.
Moreover, EPL provides the concept of named window, a data windows that can be used
in multiple statements via the FROM clause, in a join or in a sub-query.

Together, Esper and EPL, provide a powerful and extendable environment for stream
processing and implements the basic concepts of a � Architecture (see Section 2.1.2).
Esper is a key components of the C-SPARQL Engine (see Section 2.3.2).

4http://www.espertech.com/esper/

14

http://www.espertech.com/esper/

i
i

“thesis” — 2019/1/25 — 17:04 — page 15 — #27 i
i

i
i

i
i

2.1. Velocity

Apache Kafka & KSQL

Apache Kafka [37] is a distributed message broker with stream processing capabilities.
Kafka organizes data into topics. Each topic is made up of one or several partitions.
Each partition is assigned to a node in the Kafka cluster.

The Kafka APIs are based on the producer and consumer components. The producer
is responsible for transferring data from an external source to a Kafka cluster. Conver-
sely, the consumer is responsible for reading data from a Kafka cluster and sending it
to an external sink. By instantiating and using these components, an application can
integrate Kafka as its storage solution. Kafka is designed to enable high-throughput
applications, and it supports at-least-, at-most-, and exactly-once message delivery.

KSQL5 is a streaming SQL engine for real-time data processing against Apache Ka-
fka. KSQL offers SQL-like language and ensures scalability and fault-tolerancy while
enabling commons streaming operations (e.g. window, filter, aggregations, etc).

A system based on Kafka and KSQL enables all the commons operators described
in CQL (see Section 2.1.1) and represents an implementation of a � Architecture (see
Section 2.1.2). Kafka is a key component of the infrastructure we used to test our work,
see Section 6.4
Apache Spark

Apache Spark [38] is a distributed processing engine which improves the Apache Ha-
doop [39] cluster computing paradigm for processing massive amounts of data in paral-
lel. The main advantage over Apache Hadoop is that intermediate results can be stored
into main memory, thus reducing disk I/O operations.

Spark environment consists of several components, which communicate with each
other via the network. The highest level components are the master and the workers.
The master is responsible for coordinating the execution of a Spark application and
presenting its results. The workers are responsible for managing the execution of the
distributed application code. There can be more than one worker, and each physical
machine can host several workers. Both the master and the workers are implemented as
separate processes running in the JVM.

Apache Spark is based on the Resilient Distributed Dataset (RDD) abstraction. An
RDD represents an immutable dataset distributed over a cluster of machines. Each frag-
ment of the dataset is termed a partition. A Spark application consists of a sequence of
transformations on a collection of RDDs. During execution, these transformations run
in parallel on each partition. When an aggregated result is needed, e.g. COUNT after
GROUP BY, Spark performs a shuffle operation by transferring partitions over the net-
work between workers. Each worker spawns several subprocesses known as executors.
Executors run the distributed application code. The atomic unit of parallel execution is
called a task. At runtime each task is assigned to an executor.

Spark Streaming [40] is an extension of the core Spark API that enables scalable,
high-throughput, fault-tolerant and real-time processing of data. It offers adapters for
various data sources (e.g. Kafka, Flume, etc.). The key abstraction behind Spark Strea-
ming is the DStream (Discretized Stream), a potentially infinite flow of small batches.
DStream are built on RDDs. Spark Streaming represents an attempt to enable strea-

5https://www.confluent.io/product/ksql/

15

https://www.confluent.io/product/ksql/

i
i

“thesis” — 2019/1/25 — 17:04 — page 16 — #28 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

ming, interactive, and batch queries in a single engine that supports: (i) continuous ag-
gregations, (ii) windowing operations, (iii) stateful stream aggregations, and (iv) stream
watermark operations.

Structured Streaming [41] is a new declarative streaming API available starting from
Apache Spark 2.0 to support continuous applications. It is a higher-level API than the
one offered by Spark Streaming and it is integrated into Dataset and DataFrame API.
Structured Streaming treats all the input data as an unbounded input table, each new
items is appended once arrived. The queries see the input as a static table and the
system compute the results incrementally. Structured Streaming represents streams as
DataFrames or Datasets with the isStreaming property set to true, therefore, the creation
of an application with both stream and batch operations results very simple. A developer
has just to describe the query at higher level, with few information about input, output
and other details, and the system runs the query incrementally supporting consistency
and recovery operations.

We exploited Spark Structured Streaming to create a distributed implementation of
our streaming Computational Model presented in the Chapter 5.
Apache Hive

Apache Hive [42] is an open-source data ware-housing solution built on top of Apache
Hadoop [39]. It offers a SQL-like declarative language, namely HiveQL, that supports
the insertion of custom map-reduce scripts directly into queries.

Hive data is organized into: (i) the Database – the counterpart of the relational data-
bases –, (ii) the Table – an abstraction of the classic relational tables, it corresponds to
an HDFS directory that contains the serialized data –, (iii) the Partition – it represents
the organization of the data in the sub-directories tree –, (iv) the Bucket – a division
of the data within a partition, a single bucket is represented as a single file. Hive has a
limited support to streaming data. Hive Streaming API allows a system to continuously
ingest information in small batches into an existing Hive partition or table. Once the
flowing information is committed, it becomes immediately available to all Hive queries.

HiveQL supports primitive data-types within a table, but the underlying IO libraries
can be extended to access data in custom formats. Hive includes a system catalog, the
Hive-Metastore. It contains schemas and statistics to be used during the data exploration
phases. HiveQL support a simple window operator6 that can partially simulate the CQL
window operator (see Section 2.1.1).

Hive implements typical batch operator and offers a minimal support for the strea-
ming operations (i.e. window operator). We exploited Hive windows to implement a
distributed version of Our streaming Computational Model presented in the Chapter 5.
Apache Flink

Apache Flink [43] is a distributed platform for streaming data (DataStream API) and
batch data (DataSet API). The dataflow engine, the core of the platform, guarantees
the fault tolerance during the distributed computations. Flink’s provides an event-at-
a-time processing model throw a dataflow of streams and transformations. The Da-
taStream API enables classic stream processing operations (e.g., filters, aggregations,

6https://cwiki.apache.org/confluence/display/Hive/LanguageManual+
WindowingAndAnalytics

16

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics

i
i

“thesis” — 2019/1/25 — 17:04 — page 17 — #29 i
i

i
i

i
i

2.2. Variety

window functions) on bounded or unbounded streams of data, the DataSet API enables
transformations (e.g. filters, mapping, joining, grouping) only on finite dataset.

Flink offers a relational abstraction of the data, the Table, that can be created from
external data sources or from existing DataStreams and DataSets. The table can be
accessed via: (i) the Tables API, a SQL-like expression language that supports relatio-
nal operators (e.g., selection, aggregation, joins); and via (ii) regular SQL. Both of the
access methods offer equivalent functionalities and can be mixed in the programming
flow.

Flink can natively manage both stream and batch of data. A system based on it,
represents an implementation of a � architecture (see Section 2.1.3).

2.2 Variety

In the next sections, we present an overview of the Models, Languages and Methodo-
logies to tame the data variety. After an overview on the main concepts behind RDF,
SPARQL and R2RML mapping language, we go through the ontological world. Gru-
ber in [44] define an ontology as "an explicit specification of a conceptualization". A
conceptualization is defined as "the objects, the concepts and other entities that are assu-
med to exist in some area of interest and relationships that hole among them" [45]. An
ontology, with its capability to offer a common representation of heterogeneous data,
offers a good starting point in facing the variety problem. The following sections present
OWL, an overview of two ontology engineer methodologies (METHONTOLOGY and
NEON) and OBDI as an example of integration methods based on ontologies. Finally,
we present the open source solutions that we exploited during our research work.
2.2.1 Models, Languages and Methodologies
RDF & SPARQL

The Resource Description Framework (RDF) is a W3C standard for data interchange
on the Web [46]. The main data structure in RDF is the directed labeled graph, made of
nodes, which represent the resources and of edges which represent the relations between
them. The atomic RDF element is the triple that consists of subject, predicate, and
object. We identify with I, B and L respectively the sets of IRIs, blank nodes, and
literals. We define an RDF term as an element of the set I ∪ B ∪ L.
Definition 2.2.1. (RDF statement and RDF graph). An RDF statement is a triple
(s, p, o) ∈ (I ∪ B) × (I) × (I ∪ B ∪ L), while a set of RDF statements is called an
RDF graph, which is a directed, labeled graph that represents Web resources.

The SPARQL Protocol and RDF Query Language (SPARQL) [47] is W3C Recom-
mendation and enables data retrieve, data manipulation and query operation on data
stored in RDF format. A SPARQL query typically contains one or more triple patterns
called a basic graph pattern, it is similar to an RDF triple except for the possible presence
of variables instead of resources.
Definition 2.2.2. (Triple pattern and Basic Graph Pattern). A triple pattern tp is a triple
(sp, pp, op) such that

(sp, pp, op) ∈ (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V),

17

i
i

“thesis” — 2019/1/25 — 17:04 — page 18 — #30 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

where V is the infinite set of variables. A basic graph pattern is a set of triple pat-
terns. Graph patterns in a SPARQL query can include basic graph patterns and other
compound expressions defined recursively as:
1. A set of triple patterns is a basic graph pattern;
2. If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2) and (P1 UNION
P2) are graph patterns;

3. If P is a graph pattern and u is a symbol in I ∪ V , (GRAPH u P) and (SERVICE
u P) are graph patterns;

4. If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R)
is a graph pattern.

A SPARQL built-in condition consists of the elements of the set (I∪L∪V) and con-
stants, logical connectives (¬,∨,∧), the binary equality symbol (=), ordering symbols
(<,≤,≥, >), and unary predicates such as bound, isBlank, isIRI .

To introduce the evaluation semantics of a SPARQL query, we define solution
mapping as detailed in [47, 48].
Definition 2.2.3. (Solution mappings). A solution mapping � is a partial function
�∶ V → I ∪ B ∪ L. It maps a set of variables to a set of RDF terms. A mapping
has a domain dom(�) which is the subset of V over which it is defined. We denote as
�(x) the RDF term resulting by applying the solution mapping to variable x. We de-
note as ! a multiset of solution mappings, and as a sequence of solution mappings.
Typical relational algebraic operators can be applied to multiset of solution mappings:

Ω1⨝Ω2 = {�1 ∪ �2|�1 ∈ Ω1 ∧ �2 ∈ Ω2 ∧ �1 ∼ �2}
Ω1 ∪ Ω2 = {�|�1 ∈ Ω1 ∨ �2 ∈ Ω2}
Ω1∖Ω2 = {�|� ∈ Ω1 ∧ ∄�1 ∈ Ω2∶ � ∼ �1}
Ω1 ⋈Ω2 = (Ω1⨝Ω2) ∪ (Ω1∖Ω2)

RDF datasets is a collections of one or more RDF graphs and represents the format
of input data.
Definition 2.2.4. (RDF dataset). An RDF dataset DS is a set:

DS = G0, (u1, G1), (u2, G2), ...(un, Gn)

where G0 and Gi are RDF graphs, and each corresponding ui is a distinct IRI. G0 is
called the default graph, while the others are called named graphs. During the evalua-
tion of a query, the graph from the dataset used for matching the graph pattern is called
active graph. Multiple graphs can become active during the evaluation, but only one at
time.

SPARQL defines four query forms: SELECT – which produces a result of variable
bindings matching the graph pattern –, CONSTRUCT, which produces a new RDF gra-
ph with the query solutions –, ASK – which produces a boolean value that is true if
at least a solution exists –, and DESCRIBE – which produces an RDF description of
resources in the solution. A query can also contain solution modifiers (e.g., LIMIT, DI-
STINCT, ORDER BY) that are applied after pattern matching. A SPARQL query [48]
can be defined as:
Definition 2.2.5. (SPARQL Query). A SPARQL query is defined as a tuple (E, DS, QF),
where E is a SPARQL algebraic expression, DS is an RDF dataset, and QF is a query
form.

18

i
i

“thesis” — 2019/1/25 — 17:04 — page 19 — #31 i
i

i
i

i
i

2.2. Variety

Figura 2.6: R2RML mapping process (source: https://www.w3.org/TR/r2rml).

A query solution is a bag of solution mappings that assign RDF triples to variables
of the query. The evaluation semantics of a SPARQL query algebraic expression w.r.t.
an RDF dataset is defined for every operator of the algebra, and it is expressed through
an evaluation function.
Definition 2.2.6. (SPARQL evaluation semantics). The SPARQL evaluation semantics
of an algebraic expression E is denoted as ED(G), where DS(G) is the dataset DS with
active graph G.

RDF and SPARQL represent a fundamental concepts in the data variety
management, both in static and streaming environment (see Section 2.3).

R2RML

The RDB to RDF mapping language7 (R2RML) is a language to create custom map-
pings to transform relational data into RDF. R2RML mappings file presents itself as an
RDF graphs and, unlike Direct Mapping8 (DM), allows user to define highly customi-
zed views over relational data sources. The R2RML conceptual mapping is tailored to
a specific database schema and target vocabulary (i.e., the input database must conform
to the presented schema) and produces an RDF dataset (see Section 2.2.1) that conforms
to the target vocabulary. The R2RML processors can work as a virtual access layer to
the relational data or can materialize the output data.

Figure 2.6 depicts the overview of the mapping process. R2RML mapping accesses
to the relational input data through logical tables. A logical table can be a base table in
the input database, a view or a valid SQL query (R2RML view). Each logical table is
then mapped to RDF using a triple map, a set of rules that allows the system to transform
each row in the logical table into one or more RDF triples. The rules are composed by

7http://www.w3.org/TR/r2rml/
8https://www.w3.org/TR/rdb-direct-mapping/

19

http://www.w3.org/TR/r2rml/
https://www.w3.org/TR/rdb-direct-mapping/

i
i

“thesis” — 2019/1/25 — 17:04 — page 20 — #32 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

a subject map that creates the subject for all the triples generated by a single row and by
multiple predicate-object maps that consist of predicate maps and object maps.
OWL

The Web Ontology Language (OWL)9 is a W3C Semantic Web language designed for
creating ontologies. OWL is part of the W3C’s Semantic Web technology stack. It is
a computational logic-based declarative language characterized by formal semantics.
The knowledge expressed in OWL can be reasoned to verify the consistency of that
knowledge or to make implicit knowledge explicit. The fundamental notions exploited
by OWL to represent knowledge are: (i) the Axioms – the basic statement of an ontology
–, (ii) the Entities – the representation of a real world object –, and (iii) the Expressions
– a combination of entities to describe a complex object.

The three concepts presented above allow OWL to create a human-like knowledge
representation with the concept of consequence. When a statement is a consequence
of another statement, it is true whenever the other statements are. In OWL, a set of
statements S entails a statement s if in any state of affairs wherein all statements from
S are true, also s is true. A set of statements may be consistent (there is a possible state
in which all the statements in the set are jointly true) or inconsistent (there is no such
state). The formal semantics of OWL specifies for which condition a particular set of
OWL statements is true.

The W3C-endorsed OWL specification includes the definition of three variants of
OWL: OWL Lite, OWL DL and OWL Full, presented in order of expressiveness.
OWL210 represents the latest specification of the Web Ontology Language. It is dated
to 2009 and introduces three additional profiles: OWL2EL, a fragment with polynomial
time reasoning complexity; OWL2QL, a language to enable easier access and query to
data stored in databases; and OWL2RL, a rule subset of OWL2.

The Conceptual Model presented in the Chapter 4 is formalized with OWL2.
Ontology Engineering

We report a briefly overview of METHONTOLOGY, an ontology development me-
thodology we exploited in the definition of the Conceptual Model presented in Chap-
ter 4, and NeOn, an evolution of METHONTOLOGY, that supports the reuse of already
available ontologies.

METHONTOLOGY [16] is a methodology for creating ontologies from scratch,
by reusing other ontologies or by re-engineering them. The framework enables the
construction of ontologies at the "knowledge level".

It includes: (i) the formal identification of the development process and its pha-
ses (i.e., scheduling, control, quality assurance, specification, knowledge acquisition,
conceptualization, integration, formalization, implementation, evaluation, maintenan-
ce, documentation and configuration management); (ii) an evolving prototypes based
lifecycle (see Figure 2.7) that identifies the phases the ontology passes during its life-
time and the interdependencies with the lifecycle of the connected ontologies; (iii) the
specific techniques to perform each activity, the output of each phases and the evaluation
methods.

9https://www.w3.org/TR/owl-features/
10https://www.w3.org/TR/owl2-overview/

20

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-overview/

i
i

“thesis” — 2019/1/25 — 17:04 — page 21 — #33 i
i

i
i

i
i

2.2. Variety

Figura 2.7: Ontology lifecycle (source [16]).

The NeOn [49] methodology encourage the reuse of other ontologies as well as
of non-ontological resources during the engineering process. The framework provi-
des strong guidelines for the execution of the development activities (e.g., the usage of
ontology design patterns).

OBDI & OBDA

The data integration problem consists of combining data from heterogeneous sources,
and offering the user a unified view of the information. Due to the growing number of
data sources (e.g., smartphones, sensors, etc), the problem of designing data integration
systems are becoming more and more important in the real-world. Moreover, compa-
nies are shifting from centralized and self-contained way to manage their data (i.e., a
central database or a data warehouse) to a distributed, interactive andmulti-source world
where the information becomes the exchange good. The volume and the heterogeneity
of the data are constantly growing and companies are now focusing on finding the right
information. Most of the available sources is characterized by syntactic, structural and
semantic heterogeneities.

In a generic data integration system [15], the sources contain the real data, while a
global schema offers an integrated and reconciled overview of such sources. Modeling
the relation (namely, the mapping) between the sources and the global schema repre-
sents an important aspects of the data integration process. The data integration issue
have been faced following three different approaches: (i) the Global-As-View (GAV)
approach – the most used form of mappings, where the data schema is expressed in
terms of the data sources –, (ii) the Local-As-View (LAV) approach – where the data
schema is specified independently from the sources –, and a hybrid approach (GLAV) –
the most general form of mapping. Independently from the approach, in a data integra-
tion system, the query process requires a reformulation step where the query over the
global schema is reformulated in terms of a set of queries over the sources.

In several domains, such as Enterprise Application Integration, in the Semantic Web
and, in particular, in the data integration [15], ontologies are considered as the ideal for-
mal tool to provide a common conceptualization of the domain, and Description Logics

21

i
i

“thesis” — 2019/1/25 — 17:04 — page 22 — #34 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

(DLs) are widely considered appropriate for expressing ontologies. DLs are also at the
basis of the OWL Language (see Section 2.2.1).

Consequently, an Ontology-Based Data Integration (OBDI) system consists of three
main components: (i) an ontology – the formal description of the considered domain –,
(ii) a set of data sources – the repositories where data are stored –, and (iii) the mapping
– a specification of the correspondences between the data and the ontology elemen-
ts. Such system allows users to access the data using the ontology components as a
predicates. Differently from the traditional data integration, OBDI system offers a se-
mantically rich description of the relevant concepts in the domain of interest and of the
relationships between such concepts, in addition to a separation between the conceptual
level (presented to the client through the ontology), and the logical/physical level of the
information system (the one stored in the sources).

Intuitively, in the simplest technique for enabling query answering, the system first
retrieves the concepts and the roles instances from the data sources through the mapping
and then, exploiting the ontology axioms, it "expands" such a set of (stated and infer-
red) instances deriving and materializing all the logically entailed concepts and roles
assertions. In this way, the queries can be evaluated on the complete set of instances.
Unfortunately, the set of entailed instance assertions may be infinite and, consequently,
such a techniques is not feasible.

Since 2000s, Ontology-Based Data Access (OBDA) [50] has become a popular ap-
proach to enable users to access data sources through an ontology. Moreover, a GAV
approach based on a data model expressed in OWL 2 QL (based on the DL-Lite fami-
ly of description logics), ensures the effectiveness of query answering operation with
LOGSPACE complexity (more precisely, AC0).

In a classic OBDA framework, query rewriting starts from the computation of the
perfect rewriting in order to enable the query evaluation on the data sources. The crea-
tion of the rewriting can be modularized into a first phase of of query rewriting related
to the ontology and in a second phase of query rewriting related to the mapping.

During our research work we exploited OBDI and OBDA techniques in many ap-
plications (see Chapter 7) using our Conceptual Model presented in Chapter 4 as the
ontology to mediate between the user queries and the data.
2.2.2 Open Source Solutions

In this section, we present the solutions we used over the years in our research work. As
usual in this research, we have privileged open source solution in order to access and
exploits the internals.

We start from Jena and Sesame, frameworks to manage RDF data and to build Se-
mantic Web applications. Apache Jena11 is written in Java. The main data structure in
Jena is the Model, an abstract representation of an RDF graph. A model can be acces-
sed and queried via SPARQL and its source can be external file, databases, URLs or a
combination of them. Jena offers different components to support the creation of ap-
plication, it provides the TDB, an RDF database that supports SPARQL 1.1 query, and
Fuseki, a database server that support the access via the standard SPARQL protocols12.
Jena is a core component of the C-SPARQL Engine (see Section 2.3.2).

11https://jena.apache.org/
12http://www.w3.org/TR/sparql11-protocol/

22

https://jena.apache.org/
http://www.w3.org/TR/sparql11-protocol/

i
i

“thesis” — 2019/1/25 — 17:04 — page 23 — #35 i
i

i
i

i
i

2.2. Variety

Figura 2.8: Architecture of the Ontop system (Source [56]).

Sesame [51] is an open-source framework for storing, querying and analyzing RDF
data. It also offers support for RDFS inferencing and querying. Sesame implements
an in-memory/on-disk triplestore and offers a Servlet packages to manage and access
the stored data on a permanent server. Sesame supports concurrency control, export
of RDF and RDFS information and a query engine for RQL, SPARQL and SeRQL. In
May 2016, Sesame officially forked into an Eclipse project called RDF4J13 that provides
functionality for efficient and scalable storage, querying, and reasoning with RDF data,
and a vendor-neutral access API for RDF databases.

To explore the basic reasoning techniques we worked with Hermit and RDFox. Her-
miT [52] is a Description Logic reasoner based on a "hypertableau" calculus techniques,
an innovative and efficient reasoning algorithm. It also incorporates the "anywhere bloc-
king" strategy, which limits the sizes of constructed models. HermiT uses direct seman-
tics and is conformant to all OWL 2 tests for direct semantics reasoners. RDFox [53] is
a main-memory, scalable, centralized datalog engine. It supports materialization-based
parallel reasoning, SPARQL query answering and implements Backward/Forward al-
gorithm proposed in [54]. The innovative intuition is the combination of backward and
forward reasoning to limit the recomputation performed by the traditional DRed [55].

As OBDA framework, we used OnTop [56], an open-source Ontology-Based Data
Access (OBDA) system that offers a solid theoretical base, a virtual OBDA approach
implemented with query rewriting technique, its compliance to W3C recommendations
and its support for all major relational databases.

Figure 2.8 presents the four levels of a system based on Ontop: (i) the input, such
as queries, database, ontology and mapping; (ii) the Ontop core needed to rewrite
SPARQL queries SQL queries; (iii) the API for accessing system services; and (iv)
the applications for the end-user to execute SPQARL queries over relational data.

13http://rdf4j.org

23

http://rdf4j.org

i
i

“thesis” — 2019/1/25 — 17:04 — page 24 — #36 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

2.3 Velocity and Variety

In the next sections, we present the solution to manage the data variety in a streaming
fashion. We start from the formal definition of the concepts behind Stream Reasoning
and RDF Stream Processing (RSP). We present RSP-QL, an attempt to unify the diffe-
rent RSP query languages developed over the years by the RSP community and, finally,
we present an overview of the currently available solutions.

2.3.1 Models and Languages

Stream Reasoning & RDF Stream Processing

In 2009, Della Valle et al. [11] proposed to start to investigate on how to represent, mana-
ge, and reason on heterogeneous continuously flowing data in the presence of expressive
domain models.

In a scenario, where an ontology offers a conceptual view over autonomous data
sources, a reasoner can play a key role in finding answers that are not syntactically
present in the data sources, but are derivable from the data and the ontology (see Sec-
tion 2.2.1 on OBDI and OBDA). RDF (see Section 2.2.1) represent the dominant data
model in the field of reasoning for data integration and RDF streaming languages (see
Section 2.3.2) bridge the gap between stream processing and OBDI. Reasoning in a
streaming fashion looks conceptually simple, but it is hard to be efficiently performed.
Della Valle et al. [57] showed how continuous DL reasoning can be reduced to periodic
repetition of reasoning over a windowed ontology stream. Barbieri et al. [58] presen-
ted an optimization of DRed algorithm when deletion becomes predictable. In parallel
Komazec et al. [59] implemented an extension of the RETE algorithm, Ren at al. [60]
approached the problem via truth maintenance systems and Motik et al. [54] represents
the state of the art in this research field. Still along this DL-centric line, more recently,
Calbimonte et al. [31] exploited OBDA principles by rewriting continuous ontological
queries to a stream processing system. In parallel to this line, at the beginning of 2000s
Heintz et al. [61] proposes a first approach to middleware for knowledge processing and
in [62] an implementation of this approach. More recently, De Leng et al. [63] proposed
logic-based spatio-temporal stream reasoning focusing on run-time verification to gua-
rantee the safety of autonomous systems and Anicic et al. [64] developed a system that
processes in logic programming both stream reasoning and complex event processing.

RDF Stream Processing (RSP) represents the sub-area of stream reasoning that
concentrates on the Semantic Web [65].

In this section, we introduce the concept of RDF data item and, consequently, Time-
stamped RDF data item. The RDF data item represents the minimal informative unit
in the RDF stream. It is a generic concept and the existing RSP implementations (see
Section 2.3.2) consider it in two different ways: RDF statements and RDF graphs, as
defined in Section 2.2.1. In the most intuitive case a RDF stream is composed of RDF
statements [57]. Due to the limited amount of information carried by a single state-
ment, in order to ease the task of model real world use case, in 2010 Barbieri et al. [66]
proposes to use the RDF graphs. In 2013 we were the first to implement this concept
in [5].

The definition of a Timestamped RDF data item can be formalized as:
24

i
i

“thesis” — 2019/1/25 — 17:04 — page 25 — #37 i
i

i
i

i
i

2.3. Velocity and Variety

RDF
Streams

Solution
Mappings

S2R operator

S2R operator
R2R operator

Figura 2.9: The CQL processing model adapted for RSP.

Definition 2.3.1. (Timestamped RDF data item) A timestamped RDF data items is a
pair (d,�), where d is an RDF graph and � ∈ is a time instant.

Once defined the possible nature of the RDF data item, we can now define a RDF
stream.
Definition 2.3.2. (RDF stream) An RDF stream S is an unbounded sequence of
timestamped RDF data items in non-decreasing time order:

S = ((d1, �1), (d2, �2), ..., (dn−1, �n−1), (dn, �n), ...)

where, for every i > 0, di is a timestamped RDF item and �i <= �i+1.

A time-varying RDF graph capture the evolution of graph content over time, con-
trariwise, instantaneous graph represents the content of the graph at a fixed time
instant
Definition 2.3.3. (Time-varying Graph) A time-varying graph G is a function that
relates time instants � ∈ to RDF graphs:

G ∶ → g|g is anRDF grapℎ

Definition 2.3.4. An instantaneous RDF graph G(t) is the RDF graph identified by the
time-varying graph G at the given time instant t.

The RDF stream processing model is depicted in Figure 2.9. It is directly derived
from the CQL one (see Section 2.1.1). The stream and the relation concepts are map-
ped to RDF streams and to set of mappings (using the SPARQL algebra terminolo-
gy), respectively. To highlight the similarity of the RSP operators [67] to the CQL
ones, the same names (S2R, R2R and R2S) are used to indicate the stream-to-relation,
relation-to-relation and relation-to-stream operators.

The concepts described in this section are all implemented in our Streaming Linked
Data (SLD) framework (see Section 2.4.1) and inspired the definition of our generic
streaming Computational Model presented in Chapter 5.
RSP-QL

RDF Stream Processor Query Language (RSP-QL) [67] is an extension of SPARQL
created to unify existing RSP query languages (i.e, C-SPARQL [12], CQELS [30] and
SPARQLstream [64]). RSP-QL enables user to register continuous queries. The que-
ries are registered once over streams of data and continuously evaluated. Due to the

25

i
i

“thesis” — 2019/1/25 — 17:04 — page 26 — #38 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

continuous evaluation semantic, a query produces multiple results over time and the
instantaneous answer is a composition of the results of each iteration. RSP-QL is de-
signed following two main requirements: (i) every evaluation of a query over input
data produces a unique solution, (ii) RSP-QL, inspired by SECRET(see Section 2.1.1),
captures the operational semantics of C-SPARQL engine, CQELS and Morphstream (see
Section 2.3.2). RSP-QL implements the basic concepts of the extensions of SPARQL
concepts presented in the Section 2.2.1. We start presenting the core concept of the
RSP-QL language, the RSP-QL query.
Definition 2.3.5. (RSP-QL query) RSP-QL query Q is defined by the tuple
(SE,SDS,ET,QF) where

• SE is an RSP-QL algebraic expression

• SDS is an RSP-QL dataset

• ET is the sequence of time instants on which the evaluation occurs

• QF is the Query Form

The presence of the time dimension calls for a new notion of RDF dataset, the input
data of the RSP-QL query.
Definition 2.3.6. (RSP-QL dataset) An RSP-QL dataset SDS is a set composed by an
(optional) default graph, n (n ≥ 0) named graphs and m (m ≥ 0) named time-varying
graphs obtained by the application of time-based sliding windows over o ≤ m streams:

SDS = {G0, (u1, G1), ..., (un, Gn),
(w1,W1(S1)), ..., (wj ,Wj(S1)),

(wj+1,Wj+1(S2)), ..., (wk,Wk(S2)), ...,
(wl,Wl(So)), ..., (wm,Wm(So))}

with:

• G0 is the default time-varying graph

• up, wq are IRIs (up, wq ∈ I) for each p ∈ [1, n] and q ∈ [1, m]

• (up, Gp) identifies a time-varying named graph, for each p ∈ [1, n]

• (wq,Wq(Sr)) identifies a named time-based sliding window over an RDF stream,
for each q ∈ [1, m] and r ∈ [1, o]

In a continuous environment a definition o a time-varying sequence of solution
mappings is needed.
Definition 2.3.7. (Time-varying sequence of solutionmappings) A time-varying sequen-
ce of solution mappings maps time instants � ∈ to the set of solution mapping
sequences:

 ∶ → {Ψ| is a sequence of solutionmappings}

The RSP-QL evaluation semantic is an evolution of SPARQL evaluation semantic
defined taking into account the time dimension.

26

i
i

“thesis” — 2019/1/25 — 17:04 — page 27 — #39 i
i

i
i

i
i

2.3. Velocity and Variety

Definition 2.3.8. (RSP-QL evaluation semantic) Given an RSP-QL dataset SDS, an
algebraic expression SE and an evaluation time instant �, we define

eval(SDS(G), SE, �)

as the evaluation of SE at time � with respect to the RSP-QL dataset SDS having active
time-varying graph G.

2.3.2 Open Source Solutions

In the next sections, we present the principal solutions proposed by the Semantic Web
community for taming velocity for heterogeneous data. In particular, we present vertical
RDFStreamProcessors developed before the definition of RSP-QLwith their own query
languages and a couple of distributed implementations. The proposed solution inspired
the streaming Computational Model presented in the Chapter 5.

C-SPARQL Engine Continuous SPARQL (C-SPARQL) [12] is a language to express
continuous queries over flowing data in RDF format. It extends SPARQL 1.1 by de-
fining Data Stream Processing operators, including the possibility of defining window
over streams of data. The C-SPARQL engine14 is an open-source software that exploits
the C-SPARQL language to enable the registration of continuous queries to be executed
over RDF streams. Its core is based on two sub-components: Esper (see Section 2.1.3)
and Jena (see Section 2.2.2) . The former is responsible of executing continuous opera-
tions on the stream, e.g. sliding window to produce RDF graph. The latter periodically
executes standard SPARQL query on the RDF stream fragments to produce continuous
results.

CQELS CQELS-QL [30] is a declarative query language that extends SPARQL 1.1
grammar with operators to deal with streaming data. Continuous Query Evaluation
over Linked Streams (CQELS) interpret queries in CQELS-QL and, differently from
C-SPARQL, supports only the Istream relation-to-stream operator (see Section 2.1.1).
CQELS offers a flexible framework for the query operations with a dynamic adapting
processors that continuously reorders operators to improve query execution in terms of
delay and complexity. It natively implements the query operators in order to limit the
overhead and the limitations related to the usage of other engines (e.g. C-SPARQL
engine relies on Esper and Jena).

Morphstream SPARQLstream [31] extends SPARQL to support all the stream operators
(e.g. sliding window). SPARQLstream is implemented in Morphstream engine that ex-
ploits Ontology-Based Data Access techniques [68]. Morphstream execution is based on
R2RML15 mappings between ontologies and data streams. The queries are first rewrit-
ten in a relational algebra expression with time window extension and then translated
in the Data Stream Processing target language.

14http://streamreasoning.org/resources/c-sparql
15https://www.w3.org/TR/r2rml/

27

http://streamreasoning.org/resources/c-sparql
https://www.w3.org/TR/r2rml/

i
i

“thesis” — 2019/1/25 — 17:04 — page 28 — #40 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

Figura 2.10: CQELS Cloud architecture (source [70]).

INSTANS Incremental eNgine for STANding Sparql (INSTANS) [69] enables users to
create a flow of multiple SPARQL 1.1 queries that represents a single task. The engine
is in charge of continuously evaluates the incoming data and store intermediate results.
INSTANS approaches RDF stream processing from a different perspective and does not
require a continuous extensions to RDF or SPARQL.

ETALIS and EP-SPARQL Event TrAnsaction Logic Inference System (ETALIS) [64]
is an RDF stream processing engine that takes in account two time-stamps during the
data processing. It is a pluggable system that can use multiple prolog engines. An
internal ETALIS task can be specified using two different languages, Event Processing
SPARQL (EP-SPARQL) and ETALIS Language for Events (ELE). Both of them allow
users to derive complex events through deductive prolog rules. The engine supplies
the results as soon as they are available and supports three different policies during
the execution of the task: (i) unrestricted, all the input items are used for matching
the declared patterns; (ii) chronological, the earliest matchable input are selected for
matching the event patterns, the next evaluations will ignore the already selected data;
(iii) recent, the latest matchable input are selected for matching the event patterns, as
for chronological policy, they are then ignored.

CQELS Cloud CQELS Cloud [70] presents an elastic and distributed environment that
exploits an extension of CQELS to enable a network of processing nodes to parallelize
tasks. The input of the CQELS Cloud execution model is a set of CQELS-QL queries to
be executed against a set of RDF input streams and the output is a set of output streams
(in RDF or relational format). The input queries are compiled to produce a logical query
network that defines the algebras for each input stream. The logical query network is,
then, mapped on a processing network made of processing nodes, namely the Operator
Containers (OCs). The tasks are distributed among the OCs by the Global Scheduler.

Figure 2.10 depicts the general architecture of the system. CQELS Cloud implemen-
ts the elastic execution model and the parallel algorithms exploiting ZooKeeper [71],

28

i
i

“thesis” — 2019/1/25 — 17:04 — page 29 — #41 i
i

i
i

i
i

2.4. RSP Middleware

Storm16 and HBase17.
Strider Strider [72] is a distributed and adaptive RDFStreamProcessing engine that op-
timizes logical query plan according to the data stream evolution developed to guarantee
scalability, availability, fault-tolerance, high throughput and acceptable latency.

Strider relies on well known distributed technology and is composed by two main
components: (i) the data flow management and (ii) the Computing core. The former
is based on Apache Kafka, it categorizes the input RDF streams into different message
topics which represent the different family of RDF events. The latter is based on the
Spark Streaming framework, it creates a pipeline to perform parallel processing on the
messages emitted by Kafka.

Strider proposes static and adaptive optimization components based, respectively, on
heuristic rules and (stream-based) statistics and two strategies for the Adaptive Query
Processing (AQP): backward (B-AQP) and forward (F-AQP) that mainly differ on the
query plan computation time (i.e. at the previous or current window).

2.4 RSP Middleware

RSP Middlewares ease the task of deploying the RSP Engine in real-world applications
by offering extensible means for collecting data in real-time, for publishing, accessing
and querying collected information as Linked Data, and for visualizing query results.

In the next sections we present two different implementations of an RSP Midd-
leware (the Streaming Linked Data (SLD) framework [5] and the Linked Stream Midd-
leware [73]). They approach the problem in different ways. The SLD framework
adopts a data driven in-memory approach for the processing of RDF streams with li-
mited support for static information, the Linked Stream Middleware is a cloud-based
infrastructure to integrate time-dependent data with other Linked Data sources.
2.4.1 Streaming Linked Data (SLD)
The Streaming Linked Data (SLD) framework is a general-purpose, pluggable system
that supports the development of applications that continuously analyse RDF streams.
SLD is designed to address five different requirements:
(R1) every input is an RDF data stream. The system must indifferently ingest data with

different velocities from any sources. All the incoming information is modeled as
an RDF data stream.

(R2) Continuous Ingestion. The continuous nature of data streams requires a continuou-
sly capture phase. The data, once arrived, is marked with an increasing timestamp.
The system could handle data arriving with its own time mark.

(R3) publish/subscribe. SLD enable a publish/subscribe logic for its components. A
senders, the publishers, publish timestamped RDF triples into RDF streams, and
receivers, the subscribers, listen to one or more RDF streams, and only receive
timestamped RDF triples that are of their interest. Publisher and subscribers do
not have to know each other.

16http://storm-project.net/
17http://hbase.apache.org/

29

http://storm-project.net/
http://hbase.apache.org/

i
i

“thesis” — 2019/1/25 — 17:04 — page 30 — #42 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

Figura 2.11: The architecture of the Streaming Linked Data framework (source [5]).

(R4) reliable message-passing. SLD implements a logically reliable message-passing
system that guarantees timestamped RDF triples to be delivered in order.

(R5) minimizes latency by using main memory. SLD minimizes latency by using main
memory and avoiding disk I/O bottlenecks.

Figure 2.11 illustrates the architecture of the SLD framework. The leftmost column
logically contains the streaming data sources, the central one the SLD server, and the
rightmost one the visual widgets to be embedded in a dashboard.

The streaming data sources are assumed to be distributed across the Web and
accessible via HTTP.

The core of the framework is SLD Server. It includes components for accessing
data stream sources, internally streaming data, registering and replaying portion of data
streams, decorating and analysing time-boxed portion of the stream, and publishing the
results.

The adapters allow to access data stream resources, possibly delegating filtering ope-
rations to the data source, and to translate data items in the stream into set of time-
stamped RDF triples. SLD framework includes adapters for different social networks
(e.g., Twitter, Instagram, foursquare) and for several sensor networks. For instance, the
Twitter adapter allows to push to Twitter either geo-spatial filters, which ask Twitter to
stream to SLD only tweets posted from given locations, or keyword-based filters, which
ask Twitter to stream to SLD only tweets containing one or more of such key-words.
Each tweet is internally represented using the extension of SIOC ontology presented
in [2].

The publishers make available on the Web the content of chosen RDF stream follo-
wing the Linked Data principles [74] in the Streaming Linked Data format proposed
in [66]. The format is based on two types of named RDF graphs: instantaneous Gra-
phs (iGraphs), which contain a set triples having the same timestamp, and stream gra-
phs (sGraphs), which contains triples that point to one or more timestamped iGraphs.
The number of iGraphs pointed by an sGraph and their time interval of validity can be
configured when instantiating the publisher.

The recorders are special types of publishers that allow for persistently storing a part
of an RDF stream. As format, we used an extension of the Streaming LinkedData format
based on iGraphs and recording graphs (rGraphs). The latter are similar to sGraphs, but
they include pointers to all the iGraph recorded and such pointers do not have a time
interval of validity. The re-players can inject in an RDF stream what recorded in an
rGraph.

The analysers continuously observe the timestamped triples that flow in one or more
RDF stream, perform analyses on them and generate a continuous stream of answers.
SLD framework includes a built-in engine that executes C-SPARQL queries, but any

30

i
i

“thesis” — 2019/1/25 — 17:04 — page 31 — #43 i
i

i
i

i
i

2.4. RSP Middleware

Figura 2.12: Linked Stream Middleware architecture (source [73]).

of the aforementioned continuous extensions of SPARQL (see Section 2.3.2) can be
plugged in SLD server and used for the analysis.

The decorators are special types of analysers that look for a pattern of triples in a RDF
stream. When the pattern matches, the decorators run a computation of the matching
and add new triples to the stream.

SLD represents the first attempts to create a streaming computational model with
the definition of generic principles related to the RDF stream processing world. SLD
inspires the generic streaming computational model presented in the Chapter 5.

2.4.2 Linked Stream Middleware

Le-Phuoc et al. [73] proposes Linked Stream Middleware (LSM), a platform to create
a bridge between data streams and Semantic Web. LSM offers: (i) a wide range of ex-
tendable wrappers to access streaming sources and transform the raw data into Linked
Stream Data [75], (ii) components for annotating and visualizing data through a Web
interface and live querying functionalities over unified Linked Stream Data and data co-
ming from the Linked Open Data cloud exploiting a standard SPARQL query processor
and CQELS.

The LSM architecture is layered to increase scalability and flexibility, Figure 2.12
presents an overview of LSM middleware.

The Data Acquisition layer is in charge of collecting data from streaming data sour-
ces via a wide range of wrappers. The different characteristics of the proposed wrappers
allows the system to cover a broad range of input format. The output of the wrappers

31

i
i

“thesis” — 2019/1/25 — 17:04 — page 32 — #44 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

conforms to format described in the Data Access Layer. The system allows users to
develop their own wrapper in order to guarantee the flexibility of the entire system. The
Linked Data layer, following the Linked Data publishing principles presented in [76],
adds a global identifier to the data to ensure the data composability and exploits an on-
tology to represent data in a triple-based format. In particular LSM use the Semantic
Sensor Network (SSN) Ontology18. The Data Access layer enable declarative query
answering on top of the Linked Data layer in a pull-based or push-based fashion. This
layer enables the storage of stream data and metadata in a triple format to ease the ac-
cess of historic data. The Application layer offers support for developing applications to
exploit query processing capabilities of the Data Access layer. The layer offers a SPAR-
QL Endpoint, a Linked Sensor Explorer, a Mashup Composer and Notifications/Stream
channels and enables query operation on historical sensor data. Continuous queries can
be registered into the system to populate user-defined output streams.

2.5 Benchmarking

In this section, we propose an overview the benchmarking principles. In particular,
Section 2.5.1 introduces domain-specific benchmarks. Section 2.5.2, then, concentrates
on the benchmarking of velocity oriented systems, i.e., systems created to deal with
continuously flowing data (e.g., RSP). Finally, Section 2.5.3 casts some light on the
innovative concept of Configuration that Outperforms a Single Thread (COST), showing
that a distributed solution, to be effective, must outperform a single-threaded one.

2.5.1 Domain-Specific Benchmarks

Nowadays, the variety of application of computer systems are growing faster than ever.
A singlemetric cannotmeasure and evaluate the performance of a computer system in all
applications and domains. A computer system is generally designed to face few problem
domains and the performance in performing other tasks can be very poor. Jim Gray [77]
proposes the domain-specific benchmarks concept as a response to the heterogeneity of
computer system use.

A benchmark, built according to this concept, specifies a synthetic workload shaped
to evaluate a system while it performs a typical application for which it was designed.
A domain-specific benchmarks must follow four criteria. It must be:

• Relevant: given the problem domain, the benchmark must measure the peak per-
formance and price/performance of the system during a typical domain-specific
operation.

• Portable: the benchmark should be easy to be implemented on different systems
and architectures.

• Scalable: the benchmark should apply to small and large computer systems, it
should be also possible to test system on parallel architecture.

• Simple: to ensure the credibility of the system, it must be understandable.
18http://purl.oclc.org/NET/ssnx/ssn

32

http://purl.oclc.org/NET/ssnx/ssn

i
i

“thesis” — 2019/1/25 — 17:04 — page 33 — #45 i
i

i
i

i
i

2.5. Benchmarking

As stated in the principles, Gray [77] highlights the importance of price/performance
metrics for system benchmarking. The next sections will highlight the existing works
on benchmarking streaming systems and the cost-aware approach.

2.5.2 Benchmarking Velocity Oriented Systems

The most relevant benchmark effort related to data stream management systems is the
Linear Road benchmark [78]. In this work the authors present a benchmark specification
for data management system with continuous querying capabilities. The benchmark is
based on a traffic simulation use case. The system under test must answers queries from
the vehicles on the road network in simulated real-time. The specification includes I/O,
queries, expected results and relevant metrics for the system under test.

In many contexts, performance is very relevant. One of the first benchmarks for
distributed streaming data processing is the Yahoo Streaming Benchmark [79]. This
benchmark is based on a realistic use case. Also, a complete pipeline is implemented,
from data ingestion to results. It is focused on performance metrics, namely latency
and throughput, and it does not consider cost in its comparison. The benchmark code is
available online under the Apache 2.0 license19.

A more recent work on comparing popular distributed processing engines can be
found in [80]. This work presents a performance comparison for Apache Storm [81],
Apache Flink [82] and Apache Spark [38]. The comparison is based on realistic
industrial use cases, and it focuses on throughput and latency.

The correctness theme pushed the discussion on what is really important in a dsb for
Stream Reasoning [83]. Dell’Aglio et al. [84] propose a formal characterization of the
operational semantics of different RSP (i.e. C-SPARQLEngine, CQELS, SPARQLstreamand EP-SPARQL) exploiting CQL and SECRET. This formalization allows to determine
a concept of correctness in RSP domain and to develop CSRBench [84] an extension
of SRBench [85] to address query result correctness verification using an automatic
method. Along the same line, Ali et al. [86] and Kolchin et al. [87] propose workloads
and software environments to run experiments and perform measurement of quality
criteria. A recent work of Tommasini et al. [88] proposes an open-source test-stand to
ensure the reproducibility of experiments.

The performance metrics plays a key role in the evaluation (see Section 6.3) of the
implementations of our streaming Computational Model presented in Chapter 5

2.5.3 Cost-Aware approach

Recently, in the Distributed System community, the concept of Configuration that Out-
performs a Single Thread, namely COST, is gaining importance. McSherry et al. [18]
introduce the COST metric and demonstrate that a single-threaded implementation of
popular graph algorithms outperforms all distributed graph processing engines by or-
ders of magnitude, at a fraction of the cost. Similarly, Boden et al. [89] compare single-
threaded implementations of common machine learning algorithms with their distribu-
ted counterparts. Those are implemented using the most popular distributed machine
learning libraries.

19https://github.com/yahoo/streaming-benchmarks

33

i
i

“thesis” — 2019/1/25 — 17:04 — page 34 — #46 i
i

i
i

i
i

Capitolo 2. Preliminary Concepts: Taming Velocity and Variety

The concept of COST plays a crucial role in the evaluation (see Chapter 6.4) of the
different implementations of the Computational Model proposed in Chapter 5

34

i
i

“thesis” — 2019/1/25 — 17:04 — page 35 — #47 i
i

i
i

i
i

CAPITOLO3
Urban Data analysis

In this chapter, we introduce the state-of-the-art on urban data analysis. We justify the
choice of urban data as a privileged form of spatio-temporal data useful for a PhD thesis
like this one, due to its variety and availability. Section 3.1 presents relevance and moti-
vations of the urban data analysis with an overview of themost important research works
in the field. In Section 3.2, we present the different dimensions of urban data analysis,
related to content, time and space (and a combination of them). Section 3.3 presents an
overview of relevant examples of implementations of RDF stream processing concepts
at work on urban data. RSP represents a suitable solution because of the variety and
velocity of the data sources and because of the need to fuse static (slowly evolving) and
streaming data. The first examples (see Section 3.3.1 and Section 3.3.2) exploit data
from different urban sources and the capability of RSP to abstract the real nature of
the data through OBDA (see Section 2.2.1) that helps the machinery and the final user
to extract insights from data. The two examples in Section 3.3.4 and in Section 3.3.3,
mainly exploit data from Twitter. The data from social network has an intrinsic graph
nature and was extracted using the official APIs that return the data in JSON format.
Therefore, it is easy to transform it in JSON-LD1, a format compatible with Semantic
Web technologies. The usage of an RDF stream processor in this scenario is natural.

3.1 Relevance and Motivation

The relevance of urban computing, or urban informatics, has been recognized since
long. A recent survey on urban sensing [90] clearly shows the value of mobile phone
data to get insights of urban dynamics and human activities.

1https://json-ld.org/

35

https://json-ld.org/

i
i

“thesis” — 2019/1/25 — 17:04 — page 36 — #48 i
i

i
i

i
i

Capitolo 3. Urban Data analysis

Studies like Gonzalez et al. [91] focus on using the mobile phones data, namely the
call data records (CDRs), to track individual motion patterns characterizing each indi-
vidual using a time-independent travel distance parameter and a significant probability
to return to a few highly frequented locations. Candia et al. [92] investigate patterns of
calling activity at the individual level and show that the inter-event time of consecutive
calls is heavy-tailed. In recent years, the analysis of telco data in such an individual way
rises serious privacy issues.

However, it is also possible to use telco data in privacy preserving way. A common
applications is to use CDRs to estimate the density of crowds and vehicles in diffe-
rent urban regions [93, 94]. Another example involves the detection of people habits.
Ratti et al. [95] present the Mobile Landscape project, one of the first urban analysis
based on the geographical mapping of cell phone usage at different times of the day in
the metropolitan area of Milan. Becker et al. [7] capture key mobility patterns within
Morristown, NJ, by identifying users’ home and work locations from CDRs. This in-
formation is particularly useful for urban managers and authorities that are responsible
for efficient public transportation systems. Also De Nadai et al. [96] test the four Jacobs
conditions2 that promote life in cities by using CDRs. Wesolowski et al. [98] combine
CDRs with other cellphone-related logs (e.g., tower pings, cellular handovers) in order
to compare human mobility patterns derived from CDRs.

Although mobile phones data is a priceless source to gather underlying patterns of
cities and their citizens, they have got some limitations since they cannot reveal any
information about people interests and thoughts. Social media data represents an op-
portunity to access information at individual level without violating privacy. This data
is, indeed, made public by the user through a self determination process. Social media
streams are a powerful mean to explore people opinions and preferences with regard to
specific venues and events. For instance, Hristova et al. [9] analyze temporal, spatial,
and microeconomic patterns of sport game attendees to understand the users’ dynamics,
while Lee et al. [99] and Cho et al. [4] use social networks and cell phone location data,
to identify humans’ mobility patterns. Psyllidis et al. [100] concentrate their effort on
wide range of urban data and create a web-based platform to support city planning and
decision-making. In particular, Singh et al. [101] introduce the concept of social pi-
xel that aggregates social interests of users about particular themes and locations. This
notion plays a key role during the development of our conceptual model presented in
Chapter 4.

Moreover, urban data from different sources (e.g., CDRs, social data, IoT, etc.) can
be merged to reveal even more interesting insights on city dynamics and urban monito-
ring. The platform built by Calabrese et al. [8] combines the users’ mobile phones’ data
with the real-time location of buses and taxis to model the car traffic in Rome. Botta
et al. [102] try to quantify the dimension of the crowd by exploiting a combination of
CDR and social media data. Quercia and his colleagues [103] use CDRs to study hu-
man mobility related to special planned events in Boston. Calabrese et al. [104] show
that there is a high correlation between the kind of event, e.g., sport, theater, music,
family events, and the home location area of its attendees. Quercia et al. [105] build a
recommendation system for social events and find out that the most effective algorithm

2The four conditions exposed by Jane Jacobs in [97]: mixed land uses, small blocks, buildings diversity in terms of age and
form and sufficient dense concentration of people and buildings

36

i
i

“thesis” — 2019/1/25 — 17:04 — page 37 — #49 i
i

i
i

i
i

3.2. Urban Data Analysis Dimensions

recommends those events that are popular among local residents.
Sentiment analysis covers a wide range of applications in cities. Authors in [106]

propose a city sensing architecture from Twitter data to monitor user opinions about
events and topics. Hawelka et al. [107] and Calabrese et al. [108] analyze geo-located
Twitter messages and geographical preferences in order to predict global patterns of
human mobility.

One of the features of interest for policy makers and cities managers [109] is the ex-
tremely diversified composition of the language mix, or multilingualism. This interest
is motivated by the increasing immigration flows towards cities [110], which result in
rapidly changing population density [111]. Multilingualism has also a broad scope in
academia. In particular, different papers approach the issue of multilingualism from a
historical perspective. Leimgruber in [112], for example, analyses the city of Singapo-
re, Garcia et al. [113] the city of New York, Extra et al. [114] develop a cross-linguistic
perspective on Gothenburg, Hamburg, The Hague, Brussels, Lyon and Madrid. Mo-
reover, Tasse et al. [115], Arnaboldi et al. [116] and Bokanyi et al. [117] characterize
cities and their neighborhoods from different aspects namely safety, culture and demo-
graphics through social media networks. Quaggiotto et al. [118] present a tool called
City Murmur with the aim at showing how different media describe the urban space
through the attention that is payed on each street of a city. It wants to build a time-based
narration, an historical archive of media coverage of the urban space which is able to
reveal some hidden dynamics useful for city policy support, critical media analysis, and
sociocultural research.

The interest around the exploitation of urban data are growing, however the joined
use of multiple data sources has not yet been fully explored. In the next sections, using
technologies meant to tame velocity and variety simultaneously (see Section 2.4), we
present different use cases of urban streaming data analysis.

3.2 Urban Data Analysis Dimensions

The urban data analysis can be developed on three different dimensions: space, time,
and content. In this section, we summarize the characteristic of each analysis dimen-
sion. See Section 4.4 for more information about how our conceptual model (proposed
in Chapter 4) enables the described analysis dimensions

3.2.1 Content Analysis

The content can be associated to an event and thus indirectly to the time and space of the
happening, and carries information that represents a measure of intensity of a tracked
event. During a content based analysis of urban data, a stakeholder can be interested
about the contextual and behavioral knowledge about what and how users share about
an event.

The content analysis can be approached in two different ways: (i) using the Original
content, or (ii) creating Augmented content. In the former approach, the original content
is analyzed as is and used for profiling social media users who are engaged in events.
In the latter one, the augmented content can be created by using concept and feature
extraction techniques from the original content for the purpose ofmore complex analysis
about the events and their attendees.

37

i
i

“thesis” — 2019/1/25 — 17:04 — page 38 — #50 i
i

i
i

i
i

Capitolo 3. Urban Data analysis

The augmented content could consist of different media types including text, image,
video, etc. that also contain low-level information about events like locations, time ta-
bles, related social users and so forth. From such content, low-level features such as
color schema for images or n-gram distribution for text, can be extracted. For instance,
a system can use the main color schema in photos related to an event to verify the cor-
rectness of the estimated location of that event. Furthermore, high-level features like
number of people and their demographics in a photo, list of existing concepts that are
represented in a photo or a video (using deep learning techniques) or semantic entities
from text using ontology-based matching, can be extracted.
3.2.2 Spatial Analysis
Another dimension of interest in city analyses is space. Therefore, a urban analytics
system must focus on analyzing events, people presence and flow, content and opinion
sharing, or any other type of phenomena (like electrical consumption, traffic, econo-
mical value) with respect to the spatial distribution and spreading, also considering its
dynamics in time. The spatial dimension is more complex to deal with than one can
expect. Indeed, in smartcity context, the data sources may vary a lot: some information
may refer to specific geographical points (geo-coordinates), some others may refer to
venues or locations (restaurants or other public or private spaces), while others can pro-
vide information referring to broad areas, possibly with different size and shape. Any
analysis considering two or more different data sources need to keep this into account.

Interesting types of relevant analysis categories can be:
1. Dispersion: studying the spatial distribution of locations of events, in particu-

lar with respect to the deviation from purely random configuration. This can be
achieved with measures such as the Gini coefficient [119].

2. Distance and relation to places: studying the spatial relation of events with respect
to a set of given locations (e.g., stores or venues for specific happenings such as
fashion shows, see Section 7.2). This is covered by simple measures such as the
average Euclidean distance between event and location, or the average Manhattan
distance over an artificial grid of cells or travel distance over the road network.

3. Correlation: studying the relevant correlations between different signals along the
space dimension (e.g, within and across administrative boundaries).

4. Prediction: defining predictive analytics along the space dimension, by analyzing
historic series of data and comparing it with the most fresh information from given
geographical area.

3.2.3 Temporal Analysis
Temporal analysis focuses on the study of the evolution and spreading of signals over
time (e.g., measuring how fast information about an event propagates). The goals of
temporal analysis can be diverse. We identify the following types of relevant analysis
categories:
1. Description: consisting in defining the signal as a time series in order to have a

view of the evolution of information flows over time.
38

i
i

“thesis” — 2019/1/25 — 17:04 — page 39 — #51 i
i

i
i

i
i

3.3. Existing Semantic Web-Based Solutions

.
Figura 3.1: The STAR-CITY semantic stream enrichment (source [3]).

2. Correlation: studying the temporal correlation between different time series and
infer common behaviors and dynamics.

3. Prediction: allowing generating temporal prediction over observed or correlated
phenomena.

4. Anomaly detection: identifying discrepancies between expected temporal
behaviors and actual happenings.

5. Causality: determining possible causality relations between different events.

3.2.4 Combined Time and Space Analysis

Given the basic space and time analysis aspects described above, the subsequent le-
vel of interest is the combined analysis along both directions. A system can combine
techniques described in the previous sections for running analysis across time and space.

Furthermore, one can define time series of values that are aggregated or calculated
on geographical basis. For instance, a system can define the time series of the values of
the Gini Index or of the average distance of events from a set of given venues, and then
analyze them along the temporal axis.

3.3 Existing Semantic Web-Based Solutions

The next sections present four different solutions for urban data analysis based on Se-
mantic Web technologies. Section 3.3.1 and Section 3.3.2 present respectively STAR-
CITY and Traffic LarKC, two works that face the problem, from architectural point of
view. Both of the presented solutions perform spatial and temporal analysis on the col-
lected data to offer the best route to the user based on weather, traffic and other multiple
external sources. In Section 3.3.3 we propose an overview of the infrastructure we crea-
ted for monitoring crowds movement during the 2012 Olympic Games in London. The
solution exploits data from social network and perform content, spatial and temporal
analysis to spot emerging pattern and mobility dynamics and enables the creation of

39

i
i

“thesis” — 2019/1/25 — 17:04 — page 40 — #52 i
i

i
i

i
i

Capitolo 3. Urban Data analysis

.
Figura 3.2: The Traffic LarKC workflows and external datasets (source [120]).

complex data visualizations. Finally, Section 3.3.4 presents BOTTARI, a mobile appli-
cation that performs content, spatial and temporal analysis on social network and urban
data to recommend restaurants to the user.

3.3.1 Monitoring Traffic Using Semantic and Stream Technologies

In recent years, public administrations and governments are embracing Open Data in the
attempt to made available information to increase transparency and improve accounta-
bility of public services. Many cities are offering data regarding transportation, envi-
ronment, energy and planning. Web sources offer an abundance of information (e.g.,
weather information, bike sharing usage, etc.) and non-public data can also be accessed
(e.g., current location and state of public transportation, CCTV images, etc.). Lecue et
al. [3] proposes Semantic Traffic Analytics and Reasoning for CITY (STAR-CITY), a
solution designed to ease the integration of data characterized by variety (structured and
unstructured), velocity (static and real time streaming data) and volume (large amount
of historical data).

STAR-CITY exploits the W3C Semantic Web stack to represent the semantics of in-
formation and to elaborate the outcomes through a combination of reasoning techniques
(Figure 3.1 shows STAR-CITY semantic stream enrichment architecture). The solution
was mainly designed to perform spatial and temporal analysis on heterogeneous data,
on order to provide insights on historical and real-time traffic conditions. The traffic
scenario was chosen because most of the industrial countries are suffering of traffic
congestion and transportation issues that can reduce the health of citizenship and can
interfere with the passage of emergency vehicles. The system was successfully tested
in various scenario involving different cities (Dublin, Bologna, Miami and Rio).

40

i
i

“thesis” — 2019/1/25 — 17:04 — page 41 — #53 i
i

i
i

i
i

3.3. Existing Semantic Web-Based Solutions

(a)

(b)

Figura 3.3: The Figure (a) shows the people’s interest at different zoom level during the Open ceremony
of Olympic Games. Figure (b) shows the movement of the crowd in the surrounding of the Olympic
Stadium at different time around the ceremony (source [5]).

3.3.2 Semantic Traffic-Aware Routing

In the late 2000s, the increasing usage of mobile technologies to get directions and in-
formation about the surrounding presented various challenges. Those challenges were
only partially solved by the existing research: operation research solved the routing pro-
blem, machine learning addressed traffic forecasting, and semantic technologies mana-
ged data integration and information retrieval. Therefore, the research of location-based
comprehensive solution was still an open problem.

Traffic LarKC [120] is a fist attempt to build a comprehensive system able to tame of
those challenges simultaneously. It offers amix of conceptual query answering, machine
learning, and operations research. It can answer questions like "What Asian restaurant
can I reach in less than 15 minutes if I get into my car at 6 p.m.?".

Figure 3.2 depicts the Traffic LarKC workflows. The service exploits the LarkC
platform [121] to offer a comprehensive solution to periodically perform spatial and
temporal analysis on the data and compute the best route taking in account weather,
traffic and other data from external dataset.

3.3.3 Monitoring Crowd Movement During London 2012 Olympics Games

The work presented in this section shows how to track the movements of the crowds
in big events exploiting the analysis of geo-tagged tweets. Previous work shows that
the data from social network is incomplete and inconsistent (see Section 2.3.2) and the
proposed system must deal with these data characteristics.

The presented system exploits the C-SPARQL Engine [12] within SLD (see Sec-
tion 2.4.1) framework in order to perform content, spatial and temporal analysis on
Social Media streams (i.e., Twitter). It models the data in a convenient format and ex-
ploits OBDA to extract the position on the interesting geo-tagged tweets. Being public

41

i
i

“thesis” — 2019/1/25 — 17:04 — page 42 — #54 i
i

i
i

i
i

Capitolo 3. Urban Data analysis

.
Figura 3.4: BOTTARI visualizations (source [5]).

not only the position of the tweet but also the content, the system can track the people
attention and select only the tweets with content related to the event.

Figure 3.3(a) shows the attention of the people at different space granularity, i.e.
World, Europe, City of London, during the London 2012 Open Ceremony. The in-
formation was extracted from Tweets selected exploiting keywords present in text of
the content. Figure 3.3(b) shows movements of the crowd before, during and after the
Olympics open ceremony. Exploiting the Tweets position the system can clearly shows
people arriving at the Olympic Stadium, entering the Olympic Stadium and leaving the
Olympic Stadium. Figure 3.3(a) and Figure 3.3(b) shows how the infrastructure can
enable visual analytics. Both of the figure are based on the same data, but, while the
former enables the observation of world-wide attention pattern, the latter offers insights
of crowds’ movements in a given area.

3.3.4 Bottari

In 2011, an average of three million tweets per day was posted in Seoul and many of that
carry the user’s live opinion about restaurants, bars, cafes, and many other semi-public
points of interest (POIs) in the city. The stream of data, which we continuously collec-
ted, results (i) incomplete, i.e. only 41% of users rated at least the same POI, and (ii)
inconsistent, i.e. many users rates a POI several times in different way. BOTTARI [2]
exploits inductive and deductive stream reasoning (see Section 2.3.1) to continuously
perform content, spatial and temporal analysis on Social Media streams (i.e., Twitter)
in order to understand how the Social Media users collectively perceive the POIs in a
given area (e.g., Insadong’s restaurants) and build a recommendation engine.

BOTTARI is designed following an OBDI architecture (see Section 2.2.1). The in-
frastructure behind BOTTARI application is pluggable and is based on SLD framework
(see Section 2.4.1). A first component in SLD pipeline casts in RDF the data item in
the stream. A second downstream component performs the analysis exploiting the C-
SPARQL Engine (see Section 2.3.2) as deductive stream reasoner A last downstream
component, based on the Statistical Unit Node Set (SUNS) [122, 123] approach, acts

42

i
i

“thesis” — 2019/1/25 — 17:04 — page 43 — #55 i
i

i
i

i
i

3.3. Existing Semantic Web-Based Solutions

as inductive stream reasoner. The data was continuously collected and modeled using
BOTTARI ontology, an extension of SIOC vocabulary, to cope with the variety.

Figure 3.4 shows the various visualization offered by the augmented reality Android
application that returns BOTTARI results to the end user. Such an application guides
the user to the POI choice. The presented POIs are based on the deductive/inductive
stream reasoning results and are personalized for the user.

43

i
i

“thesis” — 2019/1/25 — 17:04 — page 44 — #56 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 45 — #57 i
i

i
i

i
i

CAPITOLO4
Conceptual Model

In this chapter, we propose a conceptual model named FraPPE [20]. FraPPE is a vo-
cabulary that bridge the gap between the data engineer and visual interface designers
for enabling visual analytics for the detection, the understanding and the interpretation
of spatio-temporal data. We introduce the problem, solved by FraPPE, in Section 4.1.
In Section 4.2, we present an overview of the first version of FraPPE. In Section 4.3,
we propose FraPPE 2.0, an extension of the original vocabulary where we expand the
provenance fragment and add a content related fragment. Finally, Section 4.4 presents
an overview of the analysis enabled by FraPPE 2.0.

4.1 Introduction and Problem Statement

Since the last decade, the rapid increase of sources, which expose geo-located time-
varying data, has been drawing attention of those who are looking for data-driven deci-
sion making. The availability of social media, telecommunication, traffic and weather
data improved the ability to capture peoples’ interests, habits and preferences.

In particular, the growing availability of urban data sources (see Chapter 3) stimu-
lated the research of a holistic conceptual model to manage data variety in a compre-
hensive way. The current interest is for solutions that enable the fusion of streaming
heterogeneous data to enable reactive decisions.

One of the main assumptions of any smart-city approach is to work upon a layer of
data collected from the city itself that describes its dynamics. The city evolution can
span multiple layers, from architecture to urban design, from population composition
and migrations to citizen behaviors and interests. Each of these layers has a different
dynamics and speed of change. Therefore, it should be monitored collecting data from
different sources and using multiple analysis techniques (see Section 3.2).

45

i
i

“thesis” — 2019/1/25 — 17:04 — page 46 — #58 i
i

i
i

i
i

Capitolo 4. Conceptual Model

Figura 4.1: A real-world example of visual analytics of two heterogeneous datasets. (source [20]).

In particular, our research question, presented in Section 1.2, refers to visual analy-
tics1 as a way for making sense of heterogeneous spatio-temporal streaming data. For
instance, Figure 4.1 illustrates a real case of visual analytics for a general audience we
experimented during the Milano Design Week events (see Section 7.1.2). The Figure
presents a grid of 6x3 cells overlaid to a city street map. Green circles can appear in
each cell. They visually represent the number of tweets posted in a time interval from
each cell. The fill color opacity value of each cell is, instead, mapped to the number
of mobile calls from each cell. As we showed in Section 7.1.2, people without specific
expertise in data analytics can easily guess the cells where the two signals are correlated.

Unfortunately, data is not often ready for visual analytics. A gap exists between the
terms used by the designers who create the visual analytics interface and those used
by the computer scientists who prepare the data. The designers expect data aggrega-
ted over time and space, while the data engineers talk about fine-grained geo-located
time-varying data. For instance, in 2012, during the BOTTARI experiment (see Sec-
tion 3.3.4) in the city of Seoul, we model data using SMA ontology (see Figure 4.2).
SMA extends the SIOC vocabulary2 adding the spatial aspect. To do so, it exploits
terms from W3C WGS-84 vocabulary3. SMA poses the attention only on the raw data
representation. It does not include any specific concept to represent data aggregations
or data abstractions to enable advanced analytics, which is one of the goal of this thesis.

During years of collaboration with the Design Department of Politecnico di Milano4,
we discover that image processing terms like Pixel or Frame are common among both
designers and data engineers. They represent a bridge between who prepare the data
and who create the interfaces for visualizing it.

With this observation in mind, in order to answer the research questions, we
formulated the hypotheses Hp.1.1 and Hp.1.2

Hp.1.1 A conceptual model containing terms from the image processing domain
can represent spatio-temporal data in an extendable and coherent way with a
minimal encoding bias and a minimal ontological commitment.

1The science of analytical reasoning facilitated by interactive visual interfaces [124].
2http://sioc-project.org/
3https://www.w3.org/2003/01/geo/
4https://densitydesign.org/

46

http://sioc-project.org/
https://www.w3.org/2003/01/geo/
https://densitydesign.org/

i
i

“thesis” — 2019/1/25 — 17:04 — page 47 — #59 i
i

i
i

i
i

4.2. FraPPE 1.0

Figura 4.2: Overview of the SMA ontology used in the BOTTARI project to model the data (source [2]).

Hp.1.2 Visual analytics interfaces built directly on data represented with the
conceptual model of Hp.1.1 are guessable5.

4.2 FraPPE 1.0

In this section, we propose our first attempt to create a conceptual model to represent
spatio-temporal data. Section 4.2.1 exposes the main concepts behind FraPPE and the
development methodology. In Section 4.2.2, we present an evaluation of FraPPE 1.0
based on its adherence to the Tom Gruber’s principles [44]. Finally, Section 4.2.3 pre-
sents a working example, where we use FraPPE 1.0 to model the data of the DEBS
Grand Challenge 20156.

4.2.1 The Conceptual Model

In order to verify the hypotheses Hp.1.1 and Hp.1.2, we proposed the conceptual model
FraPPE. It is named out of its four main concepts: Frame, Pixel, Place and Event. In
this section, we refer to FraPPE 1.0 as FraPPE.

FraPPE ontology is formalized using the version 2 of the Web Ontology Langua-
ge (see Section 2.2.1). It reuses GeoSparql [126] as geographical data model, the Ti-
me [127] and Event ontologies [128]) as time/event vocabularies, and PROV- O [129]
as provenance ontology.

FraPPE enables an OBDA approach for the data analysis by exploiting the terms
imported from GeoSparql, Time, Event and PROV-O ontologies without any axiomati-
zation. This is because OBDA requires OWL2-QL ontologies, while FraPPE with the
imported ontologies is in OWL2 Full.

FraPPE offers a high level view of the detection, the understanding, and the inter-
pretation of geo-spatial time-varying data. It uses a digital image processing metaphor

5The guessability is defined as the measure of the cost to the user involved in using an interface to perform a new task for the
first time. The lower the cost, the higher the guessability [125]. The cost can be measured in terms of time, errors, or effort.

6http://www.debs2015.org/call-grand-challenge.html

47

http://www.debs2015.org/call-grand-challenge.html

i
i

“thesis” — 2019/1/25 — 17:04 — page 48 — #60 i
i

i
i

i
i

Capitolo 4. Conceptual Model

A B

Places

Grid made
of 4 cells

Frames made
of 4 Pixels

𝜏n

𝜏n+1

𝜏n-1

EA

EB

Events

Cells

Grids

Frames
Pixels

Places
Events

Figura 4.3: A high-level view of FraPPE including 3 Frames made of 4 Pixels containing the Places
where the Events happen.

(see Figure 4.3) to track the three main dimensions of analysis introduced in Section 3.2:
space, time, and content.

FraPPE assumes that the real world can be described as a bi-dimensional space, whe-
re Events happen in Places over time. For instance, a user making a check-in on a geo-
located social network generates an event in a place. A taxi ride generates a sequence of
two events (a pick-up and a drop-off) in two distinct places. A garbage collector truck
generates a sequence of events around the city in different points in time, one for each
trash bin it cleans up.

Figure 4.4 depicts all the main concepts in the model. FraPPE is organized in three
interconnected parts: the geographical, the time-varying and the provenance fragmen-
ts. It proposes to capture the digital footprints of what happens in the real-world as
a sequence of Frames. A Grid sits between the physical world and the frames of the
film. It decomposes the physical world in Cells. Each frame is, therefore, decomposed
accordingly in Pixels.

More formally, Place, Cell and Grid belong to the geographical fragment and reu-
se terms from the GeoSparql vocabulary [126]. Event, Pixel and Frame are in the
time-varying part. The Event term is borrowed from the Event ontology [128]. The
provenance part includes the activities Capture and Synthesize and reuses the PROV
Ontology [129] (PROV-O).

An Event has a location in a Place in a Cell – the basic spatial unit of aggregation of
information in FraPPE – which, in turn, is in a Grid.

A Pixel is the time-varying representation of a Cell. It is the only element in FraPPE
1.0 that carries information through the hasValue data property. As in image processing,
this value represents a measure of intensity of some phenomenon in the real world. For
instance, it can represent the number of micro-posts posted in a given time interval in a
certain Cell. Each Pixel refersTo a single Cell, contrariwise a Cell could be referredBy
many differentPixels that captures different information associated to the sameCell, e.g.,
the alreadymentioned number of micro-posts, but also the number of mobile phone calls
or the number of goods’ pick-ups.

48

i
i

“thesis” — 2019/1/25 — 17:04 — page 49 — #61 i
i

i
i

i
i

4.2. FraPPE 1.0

frappe:isIn
frappe:contains

frappe:Placefrappe:Cellfrappe:Grid

frappe:Pixel

frappe:Frame

frappe:CapturedFrame

geo:sfContainsgeo:sfContains

geo:sfWithingeo:sfWithin

fra
pp
e:
re
fe
rs
To

frappe:Capture

pr
ov
:w
as
G
en
er
at
ed
B
y

prov:used

fra
pp
e:
wa
sC
ap
tu
re
dF
ro
m frappe:isR

eferredB
y

Literal

event:Event

fra
pp
e:
lo
ca
tio
n

frappe:is
LocationO

f

frappe:contains

frappe:hasValuefrap
pe:s

amp
ling
Tim
e

time:Instant

frappe:Synthesize
prov:usedprov:was

GeneratedBy
prov:Activity

xsd:dateTime
prov:startedAtTime

prov:endedAtTime
frappe:SyntheticFrame

prov:Entity

frappe:was
SynthetizedFrom

Figura 4.4: The UML representation of the original version of the FraPPE ontology

Similarly, a Frame is the time-varying counterpart of aGrid and a sequence of Frames
composes the film of the evolution of a physical portion of the world over time. FraPPE
distinguishes between two specializations of Frames: the CapturedFrames and the Syn-
theticFrames. Frame and Grid are Entity in PROV-O. This is because FraPPE proposes
the ternary relationships Capture and Synthesize as specializations of the relationship
Activity of PROV-O.

ACapturedFramewasGeneratedBy aCaptureActivity startedAtTime �i and endedAt-
Time �j that used a given Grid. It contains a Pixel for every Cell in the Grid it wasCap-
turedFrom. Different Frames represent different images of the observed phenomena at
the same samplingTime (e.g., a frame captured the volume of the social activity while
another one captured the volume of the mobile phone calls at 12.00). The object pro-
perty wasCapturedFrom is the result of the chaining of the two wasGeneratedBy and
used object properties. Moreover, the value of the samplingTime data property, which
describes the CapturedFrame, is the one assigned to the startedAtTime data property
that describes the captured activity.

Similarly, a SyntheticFrame wasGeneratedBy by a Synthesize Activity that used one
or more Frames. The idea is to derive a Frame from one or more others. The Synthesize
operation can be a filter applied to the values of the pixels, or an aggregation of values
of Pixels across Frames or the difference between the values associated to the Pixels of
two different Frames.

We develop FraPPE using METHONTOLOGY [16] (see Section 2.2.1) methodolo-
gy by following the whole ontology life cycle. We started from the specification phase
following, in the scoping activity, a middle-out approach (see Section 4.1 in [16]). We
exploited terms from image processing and spatial glossaries in order to find the primary
concepts of FraPPE and to verify, at the earliest possible stage, the conciseness and com-
pleteness of our specification. We then conceptualized the specification and produced

49

i
i

“thesis” — 2019/1/25 — 17:04 — page 50 — #62 i
i

i
i

i
i

Capitolo 4. Conceptual Model

a complete Glossary of Terms (GT). Most of the concepts in FraPPE are directly inte-
grated from other domain specific ontologies (e.g., Instant from Time ontology [127],
Activity from PROV-O ontology [129], etc.)
4.2.2 Adherence to the Tom Gruber’s Principles
We evaluated FraPPE, by checking if it adhere the five principles of Tom Gru-
ber [44]: clarity, coherence, minimal encoding bias, minimal ontological commitment
and extendibility.

FraPPE satisfies the clarity principle because all definitions are documented in natu-
ral language (see the version of FraPPE published on github7). The terms proposed in
FraPPE are: (i) common terms in spatial-related vocabularies (e.g., Place, Cell, Grid);
(ii) well known terms of the image processing domain (e.g., Pixel, Frame, Capture, or
Synthesize); and (iii) terms defined in other ontologies (e.g., Event, Instant, Entity, or
Activity).

FraPPE has a minimal encoding bias because it is encoded in OWL2. Moreover, we
explicitly avoided adding cardinality restrictions, because, in our works (see Chapter 7),
we use FraPPE to integrate data following an Ontology-Based Data Access approach
which requires OWL2 profile that does not include cardinality restrictions.

FraPPE requires a minimal ontological commitment, meaning that, as Tom Gruber
recommended, FraPPE makes as few claims as possible about the geo-located time-
varying data being modeled allowing who uses FraPPE to specialize and instantiate it
as needed.

We tested in details that FraPPE is extendable by successfully modeling the da-
taset made available by ACM DEBS 2015 Grand Challenge8, for all the details, see
Section 4.2.3. Moreover, we check the extendibility of FraPPE while using it in the
experiences reported in the Chapter 7. For further details see Section 7.4.

Last but not least, FraPPE is coherent, i.e., all FraPPE inferences at T-box level
are consistent with the definitions and in modeling A-boxes containing social, tele-
communication, environment, traffic, and energy consumption data, we never inferred
inconsistent or meaningless data.
4.2.3 Working Example
TheACMDEBS 2015Grand Challenge proposes a taxi route analysis scenario based on
a grid of 150x150 Kms with cells of 500x500 m. A stream of data represents the route
of a taxi rides in terms of: (i) taxi description, (ii) pick-up and drop-off information (e.g.,
geographical coordinates of the place and time of the event), and (iii) ride information
(e.g., tip, payment type and total amount). In Listing 4.1, we report a subset of the
information representing a single taxi ride in FraPPE. The pick-up Event represents the
start of the ride and contains the taxi id. The drop-off Event represents the end of the
trip and it is connected to all the information about the ride. The fragment models the
geographical part of the ride using two Places within two different Cells of a single
Grid. Moreover, it models the time varying-part of the ride using two Events captured
in two Pixels of a single Frame along with the provenance part through the Capture
activity. Indeed, we use all FraPPE concepts, we specialize Event in PickUpEvent and

7https://github.com/streamreasoning/FraPPE.git
8http://www.debs2015.org/call-grand-challenge.html

50

https://github.com/streamreasoning/FraPPE.git
http://www.debs2015.org/call-grand-challenge.html

i
i

“thesis” — 2019/1/25 — 17:04 — page 51 — #63 i
i

i
i

i
i

4.2. FraPPE 1.0

Listing 4.1: Fraction of the model representing ACM DEBS Grand Challenge 2015 Data
@prefix frGrid: <http://streamreasoning.org/debsGC/Grids/> .
@prefix frCell: <http://streamreasoning.org/debsGC/Cells/> .
@prefix frPixel: <http://streamreasoning.org/debsGC/Pixels/> .
@prefix frPlace: http://streamreasoning.org/debsGC/Places/:> .
@prefix frEvent: <http://streamreasoning.org/debsGC/Events/> .
@prefix frFrame: <http://streamreasoning.org/debsGC/Frames/> .
@prefix frCapture: <http://streamreasoning.org/debsGC/Captures/> .

frGrid:Grid_1 gs:sfContains frCell:Cell_1, frCell:Cell_2 .

frCell:Cell_1 a fr:Cell ;
rdfs:label "39460"^^xsd:long ;
fr:isReferredBy frPixel:1356995100000_39460 ;
gs:sfContains frPlace:A ;
gs:sfWithin frGrid:Grid_1 .

frPlace:A a sf:Point ;
fr:isLocationOf frEvent:E_B ;
gs:asWKT "POINT(40.715008 -73.96244)"^^gs:wktLiteral ;
gs:sfWithin frCell:Cell_1 .

frEvent:E_A a fr4d:PickUpEvent ;
a event:Event ;
event:time [a time:Instant ;

time:inXSDDateTime "2013-01-01T00:00:00"^^xsd:dateTime] ;
fr:location frPlace:A> ;
fr4d:hackLicense "E7750A37CAB07D0DFF0AF7E3573AC141"^^xsd:string ;
fr4d:medallion "07290D3599E7A0D62097A346EFCC1FB5"^^xsd:string .

frEvent:E_B a fr4d:DropOffEvent ;
a event:Event ;
event:time [a time:Instant ;

time:inXSDDateTime "2013-01-01T00:02:00"^^xsd:dateTime] ;
fr:location frPlace:B ;
fr4d:connected frEvent:E_A ;
fr4d:fareAmount "3.5"^^xsd:double ;
fr4d:mtaTax "5.0"^^xsd:double ;
fr4d:paymentType "CSH"^^xsd:string ;
fr4d:surcharge "5.0"^^xsd:double ;
fr4d:totalAmount "4.5"^^xsd:double ;
fr4d:tripDistance "0.44"^^xsd:long ;
fr4d:tripTime "120"^^xsd:long .

frPixel:1356995100000_39460 a fr:Pixel ;
fr:isIn frFrame:1356995100000 ;
fr:refers frCell:Cell_1 .

frFrame:1356995100000 a fr:CapturedFrame ;
fr:contains frPixel:1356995100000_39460,
frPixel:1356995100000_39461 ;
fr:samplingTime [a time:Instant ;

time:inXSDDateTime "2013-01-01T00:05:00"^^xsd:dateTime];
fr:wasCapturedFrom frGrid:Grid_1 ;
prov:wasGeneratedBy frCapture:1356995100000 .

51

i
i

“thesis” — 2019/1/25 — 17:04 — page 52 — #64 i
i

i
i

i
i

Capitolo 4. Conceptual Model

Listing 4.2: Sparql query to create the SYTHETICFRAMEs containing the PIXELs with the
profitability value.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
PREFIX time:<http://www.w3.org/2006/time#>
PREFIX f4d:<http://streamreasoning.org/ontologies/frappe4debs#>
PREFIX prov:<http://www.w3.org/ns/prov#>
PREFIX event:<http://purl.org/NET/c4dm/event.owl#>
PREFIX geos:<http://www.opengis.net/ont/geosparql#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX fr:<http://streamreasoning.org/ontologies/frappe#>
PREFIX sf:<http://www.opengis.net/ont/sf#>

CONSTRUCT{
concat("frFrame:",now()") a fr:SyntheticFrame ;
fr:contains ?pixel ;
fr:samplingTime [a time:Instant ;

time:inXSDDateTime ?time] ;
fr:wasSynthesizedFrom ?frame .
...

}
WHERE {

?pixel f:isIn ?frame ;
fr:refers ?cell .
?cell geos:sfContains ?place ;
rdfs:label ?cellLabel .
?place f:isLocationOf ?e .
?e a f4d:DropOffEvent ;
f4d:totalAmount ?t .
?frame time:hasBeginning ?beginning .
?beginning time:inXSDDateTime ?time .
FILTER(?time >= \"2013-01-01T00:10:00\"^^xsd:dateTime

&& ?time <= \"2013-01-01T00:15:00\"^^xsd:dateTime)"
}
GROUP BY ?pixel ?cell ?cellLabel

DropOffEvent, and we extend the vocabulary adding two attributes (e.g., tripTime, and
totalAmount) and an object property (i.e., connected) specific of the taxi ride domain.

Synthetic frames are also important in representing the data of the challenge.
One of the problems, assigned to the challengers, asks to compute the top profita-
ble cells for a given time interval. Listing 4.3 contains the representation of the
SytheticFrame, named frFrame:1356995700000, computed by the Synthesize activi-
ty (frSynthesize:1356995700000) represented by the SPARQL query presented in Li-
sting 4.2. The SyntheticFrame, wasSynthesizedFrom four different CapturedFrames,
and contains two Pixels, associated to two different Cells with different values of
profitability (number of DropOffEvent).

4.3 FraPPE 2.0

In order to extend the expressiveness of FraPPE and enable more advanced analysis
(see Section 4.4), we propose FraPPE 2.0. We, mainly, extended the original FraPPE
by improving the provenance fragment, in order to specialize the Agent concept, and by
adding the content related fragment, in order to enable more fine grained analysis.

Figure 4.5 depicts a UML representation of the FraPPE 2.0 model, only the exten-
ded parts is presented in the figure. As highlighted by different colors, FraPPE 2.0 is

52

i
i

“thesis” — 2019/1/25 — 17:04 — page 53 — #65 i
i

i
i

i
i

4.3. FraPPE 2.0

Listing 4.3: Fragment of the model that represents a SYTHETICFRAME
frFrame:1356995700000 a fr:SyntheticFrame ;

fr:contains frPixel:1356995700000_39462,
frPixel:1356995700000_39463 ;
fr:samplingTime [a time:Instant ;

time:inXSDDateTime "2013-01-01T00:15:00"^^xsd:dateTime];
prov:wasGeneratedBy frSynthesize:1356995700000 ;
fr:wasSynthesizedFrom frFrame:1356994800000,

frFrame:1356995100000,
frFrame:1356995400000,
frFrame:1356995700000.

frSynthesize:1356995700000 a prov:Activity ;
prov:startedAtTime "2013-01-01T00:15:00"^^xsd:dateTime .

frPixel:1356995700000_39462 a fr:Pixel;
fr:isIn frFrame:1356995700000 ;
fr:refers frCell:Cell_1 ;
fr:hasValue "37"^^xsd:integer.

frPixel:1356995700000_39463 a fr:Pixel ;
fr:isIn frFrame:1356995700000 ;
fr:refers frCell : Cell_2 ;
fr:hasValue "65"^^xsd:integer.

organized in different interconnected parts: the white one is related to time, the light
gray one to content, and the dark gray one to provenance.

The temporal fragment (the classes Frame, Pixel and Event) and the spatial frag-
ment (the classes Grid, Cell and Place) are inherited from FraPPE 1.0. For a detailed
description of these parts we refer the reader to Section 4.2.1

In FraPPE 2.0, the content can be associated to the time-varying classes and carries
information about the event it is associated to. At event level the content can be Ori-
ginal or Augmented. The original content represents a simple measure or description
of a phenomenon, while any enrichment of an original content produces an augmented
content. For instance in a Tweet related to the Museum of Modern Art (MOMA), the
OriginalContent, in form of a text, contains different entities presented in different surfa-
ce forms (e.g., moMA, Museum of Modern Art, etc). The Augmentation allows to link
those surface forms to a single db-pedia entity9 (see Listing 4.4). The content related to
Pixel or Frame is Synthetic and it is derived by processing event-related contents.

In the extended provenance fragment of FraPPE 2.0, the Agent concept is explicitly
defined. Each activity is performed either by a HumanAgent or by a SoftwareAgent.
Consequently, the two Agents wasAssociatedTo, respectively, HumanActivity or Soft-
wareActivity. On the one hand, an example of HumanActivity is the Create activity,
exploited to create an OriginalContent. On the other hand, a SoftwareActivity can be
exemplified by the Synthesize activity, used to create a Synthetic content associated to
a Pixel or a Frame.

We developed FraPPE 2.0 keeping in mind the evaluation based on Tom Gruber’s
principles presented in Section 4.2.2 and it also complies to them. FraPPE 2.0 keeps
satisfying the clarity principles because we add common terms in provenance and con-
tent analytics domains. FraPPE 2.0 remains as general as possible in order to satisfy the

9http://dbpedia.org/page/Museum_of_Modern_Art

53

http://dbpedia.org/page/Museum_of_Modern_Art

i
i

“thesis” — 2019/1/25 — 17:04 — page 54 — #66 i
i

i
i

i
i

Capitolo 4. Conceptual Model

prov:Activity

frappe:
SoftwareActivity

frappe:
HumanActivity

frappe:Capture

frappe:Synthesize frappe:Augment

frappe:Createprov:Agent

prov:
SoftwareAgent

prov:
Person

pr
ov

:w
as

A
ss

oc
ia

te
dW

ith

pr
ov

:w
as

A
ss

oc
ia

te
dW

ith

frappe:
Event-Level
Content

frappe:
Augmented
Content

frappe:
Original
Content

frappe:
Pixel-Level
Synthesis

frappe:
Frame-Level
Synthesis

prov:was
AttributedTo

frappe:SyntheticFrame

event:Event

frappe:isIn

frappe:Pixelfrappe:Frame

frappe:contains

fra
pp

e:
ha

s
C

on
te

nt

fra
pp

e:
ha

s
C

on
te

nt

fra
pp

e:
ha

s
C

on
te

nt

frappe:CapturedFrame

pr
ov

:w
as

G
en

er
at

ed
B

y

pr
ov

:w
as

G
en

er
at

ed
B

y

pr
ov

:w
as

G
en

er
at

ed
By

Time Related Entities

Content Related Entities

Provenance Related
Entities

frappe:
Content

prov:was
GeneratedBy

pr
ov

:w
as

Gen
er

ate
dB

y
prov:was

GeneratedBy

frappe:is
DerivedFrom

frappe:is
DerivedFrom

fra
pp

e:
us

es

Figura 4.5: The extended version of the FraPPE model, represented as a colored UML diagram
highlighting time-, content-, and provenance- related concepts.

minimal encoding bias and theminimal ontological commitment principles. FraPPE 2.0
is still coherent and the use cases in the Chapter 7 demonstrates its extendibility.

4.4 FraPPE 2.0 and Urban Data Analysis

In this section, we summarize the methods we use in exploiting FraPPE to enable the
three classic dimensions of the urban data analysis (see Section 3.2). The use cases,
presented in Chapter 7, offer an overview of the FraPPE capabilities in enabling all the
classic urban data analysis categories.

Concerning the Content Analysis, as mentioned in the Section 4.3, FraPPE enables
the association of the information content to an event, with all the indirect information
related to time and space.

Listing 4.4 represents the sending event of a micropost by a social media user. The
listing mainly focuses on the FraPPE 2.0 extensions (content and provenance). Accor-
ding to the FraPPE conceptual model, the messageSending Event is described by a set
of properties, including the Event-RelatedContent. FraPPE 2.0 distinguishes between
two different types of this content, the OriginalContent and the AugmentedContent. In
the example, the OriginalContent is the text of the message and is produced by a Create
activity, performed by a Person. Contrariwise, the AugmentedContent is created by the
DBpediaSpotlight SoftwareAgent that automatically extract the DBpedia entities from
the OriginalContent.

54

i
i

“thesis” — 2019/1/25 — 17:04 — page 55 — #67 i
i

i
i

i
i

4.4. FraPPE 2.0 and Urban Data Analysis

Listing 4.4: The FraPPE representation of a social message
@prefix frappe:<http://streamreasoning.org/ontologies/frappe#>
@prefix frPlace: <http://streamreasoning.org/frappe/Places/> .
@prefix frEvent: <http://streamreasoning.org/frappe/Events/> .
@prefix frContent: <http://streamreasoning.org/frappe/Content/> .
@prefix frAct: <http://streamreasoning.org/frappe/Activity/> .
@prefix frAgent: <http://streamreasoning.org/frappe/Agent/> .
@prefix frEntity: <http://streamreasoning.org/frappe/Entity/> .
@prefix xsd:<http://www.w3.org/2001/XMLSchema#>
@prefix time:<http://www.w3.org/2006/time#>
@prefix prov:<http://www.w3.org/ns/prov#>
@prefix event:<http://purl.org/NET/c4dm/event.owl#>
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>

frEvent:E a frappe:messageSending ;
a event:Event ;
event:time [a time:Instant ;
time:inXSDDateTime "2018-07-10T10:00:00"^^xsd:dateTime] ;

frappe:location frPlace:P ;
frappe:hasContent frContent:oc ;
frappe:hasContent frContent:ac .

frContent:oc a frappe:OriginalContent ;
frappe:litContent "At Museum of Modern Art to see Claude Monet, Water Lilies #

moMA"^^xsd:string ;
prov:wasGeneratedBy frAct:cActivity ;
prov:wasAttributedTo frUser:user .

frAct:cActivity a frappe:Create ;
a frappe:HumanActivity ;
prov:wasAssociatedWith frAgent:user .

frAgent:user a frappe:HumanAgent ;
a prov:Person .

frContent:oc a frappe:AugmentedContent ;
frappe:dbPediaEntity frEntity:MOMA ;
frappe:dbPediaEntity frEntity:Claude_Monet ;
frappe:dbPediaEntity frEntity:Water_Lilies ;
prov:wasGeneratedBy frAct:aActivity .

frEntity:MOMA a prov:entity ;
prov:value ".../Museum_of_Modern_Art"^^xsd:anyURI ;

frEntity:Claude_Monet a prov:entity ;
prov:value ".../Claude_Monet"^^xsd:anyURI ;

frEntity:Water_Lilies a prov:entity ;
prov:value ".../Water_Lilies_(Monet_series)"^^xsd:anyURI ;

frAct:aActivity a frappe:Augment ;
a frappe:SoftwareActivity ;
prov:wasAssociatedWith frAgent:sa .

frAgent:sa a frappe:SoftwareAgent ;
rdfs:label "DBpediaSpotlight"^^xsd:string;

55

i
i

“thesis” — 2019/1/25 — 17:04 — page 56 — #68 i
i

i
i

i
i

Capitolo 4. Conceptual Model

FraPPE enables the Spatial Analysis mainly through the concepts of Grid and Cell.
Moreover, thanks to their common sense, the Grid and Cell concepts improve the under-
standability and navigability of geographical-based content. They can be instantiated
in multiple ways: we may define different types of grids and cells, based on the specific
data sets and on the analysis needs. We identify three main categories of grids:

• Regular squared grid: a regular Grid dividing the physical space in cells that are
uniform for shape, size, and positioning. For instance, in many of our experiences
around the city of Milan (see Section 7.1), we defined a Grid of 100 x 100 Cells,
each Cell having a size of 250 x 250 meters.

• Irregular grid with official business-driven meaning: a Grid of Cells that are dif-
ferent in shape, size and orientation based on some official definition (e.g., the
boroughs or zones of a city) or based on some business specification (e.g., the
commercial areas of the city). An example of this can be the official city districts
defined by the municipality or the areas where a large Event is located. During our
experiences in Milan we used the definitions of the official MDW areas to perform
aggregated analysis on the data (see Section 7.1).

• Irregular grid with data-driven definition: a Grid of Cells defined bottom-up based
on the domain data available or on partial analysis and aggregations already per-
formed on them. Some examples include the areas served by different electricity
sub-stations, the mobile phone cell coverage, or the areas where mobile phone pre-
sence can be clustered with sufficient precision with respect to the location of the
antennas. During our work in Como (see Section 7.3), we experienced data-driven
definition of different areas related to the mobile network coverage.

Another important feature of the Grid is the coverage of the area of interests. We can
define Grids with total coverage or partial coverage. Typically, regular Grids tend
to feature total coverage, while irregular ones, especially when defined starting from
business requirements, may offer only a partial coverage of the area.

All the relevant spatial analysis exposed in Section 3.2 (i.e., Dispersion, Distance and
relation to places, Correlation and Prediction) can be performed exploiting the concept
of Grid and Cell.

The Temporal analysis in FraPPE can be described as the study of the evolution and
spreading of signals captured by Pixels, which refers to Cells, over time in different Fra-
mes. FraPPE enables all the categories of the temporal analysis described in Section 3.2.
The Description in FraPPE describe the signal captured by Pixel-level contents to crea-
te a time-series. FraPPE enables the Correlation, Prediction, Anomaly detection and
Causality analysis exploiting the concepts of Pixel and Frame.

Finally, FraPPE exploits the links between Cell and Pixel, Grid and Frame to enable
the combination of time and space analysis.

4.5 Conclusion

In this chapter, we study the problem of modeling spatio-temporal data to enable ana-
lyses that involve time, space and content aspects of the data. The growing availability
of geo-located time-varying data, in particular in the urban environment, increased the

56

i
i

“thesis” — 2019/1/25 — 17:04 — page 57 — #69 i
i

i
i

i
i

4.5. Conclusion

needs for an holistic conceptual model to describe the data itself, its dynamics and to
enable advanced analysis.

To address this problem, we proposed FraPPE conceptual model. FraPPE exploits
digital image processing terms to tame three main dimensions of analysis: space, time,
and content. It uses image processing common terms to create a bridge between the data
engineers and visual interface designers and enables visual analytics on geo-spatial time
varying data.

We first developed FraPPE 1.0 using state of the art methodology (METHONTO-
LOGY). It is formalized using OWL2 and reuses already existing ontologies (see Sec-
tion 4.2.1 for further details). We then extended FraPPE to version 2.0 by adding con-
cepts related to the provenance and the content (see Section 4.3 for additional details on
the extension).

In order to validate Hypothesis Hp.1.1, we checked the adherence of FraPPE 1.0 to
the five Tom Gruber’s principles (see Section 4.2.2). The clarity, minimal encoding
bias and coherence is respected by construction. Infact, the FraPPE 1.0 definitions are
documented in natural language, they are formalized using OWL2 standard and all the
inferred data is meaningful and consistent. Moreover, FraPPE 1.0 requires a minimal
ontological commitment because it easily allows specialization, while its extendibility
is ensured by the number of use cases that are based on it.

Our extended usage of FraPPE 1.0 in real world use cases (see Chapter 7) pushed us
to create FraPPE 2.0 that contains the formalization of the concepts that we used more
often in our use cases. They are related to the provenance of the information and to
the content of the events. Also FraPPE 2.0 results clear, coherent, extendable and with
minimal encoding bias. Moreover, it still requires a minimal ontological commitment,
since the new concepts has been formalized because they are shared by two or more use
cases.

The overall evaluation, based on Tom Gruber’s Principles, validates the Hypothesis
Hp.1.1. The presentation of the validation of the Hypothesis Hp.1.2 is postponed to
Chapter 7 because it is based on the empirical evaluation of the guessability of the use
cases’ visualizations.

57

i
i

“thesis” — 2019/1/25 — 17:04 — page 58 — #70 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 59 — #71 i
i

i
i

i
i

CAPITOLO5
Computational Model

In this chapter, we propose RI VE R1 – a variety-proof computational model to deal with
streaming data. Section 5.1 introduces the problem of dealing with data characterized
by high Variety and Velocity without forgetting Volume. In Section 5.2, we propose a)
the background concepts that underpin RI VE R, b) the semantics and textual syntax of
the operators of RI VE Rand c) the Pipeline Definition Language – a graphic language
to ease the modeling of RI VE Rplans.

5.1 Introduction and Problem Statement

In our case studies (see Chapter 7), we noticed that data can come from different sources
that vary in format (Variety) and size (Volume), but it always flows (Velocity). Evenwhat
we normally call "static data", e.g., a city street network, is not immutable over time, it
slowly evolves.

In 2013, we presented SLD (see Section 2.4), a middleware to ease the deployment
of an RSP engine in a real world scenario characterized by heterogeneous streaming
data. In five years of SLD usage, we learned that using RDF streams is valuable when
(i) data are naturally represented as graphs, (e.g., micro-posts in the larger social graph)
and when (ii) the availability of popular vocabularies eases the development of adapters
that semantically annotate the external data flows. For instance, we wrote adapters that
annotate streams from the major social networks using SIOC [130].

However, we also found out several weaknesses of the RDF-only approach: (i) RDF
streams cannot be found in the wild, yet, JSON is largely used in practice (e.g., Twitter
Streaming APIs2 and W3C activity stream 2.0 working draft3) and (ii) the results of a

1The name RI VE R, and its graphics, is inspired by the data continuously flowing one way into the system.
2https://dev.twitter.com/streaming/overview
3http://www.w3.org/TR/activitystreams-core/

59

https://dev.twitter.com/streaming/overview
http://www.w3.org/TR/activitystreams-core/

i
i

“thesis” — 2019/1/25 — 17:04 — page 60 — #72 i
i

i
i

i
i

Capitolo 5. Computational Model

continuous computation are often relational and forcing them into an RDF stream is
suboptimal.

Those reflections inspired the idea to work with the data in its original format as long
as possible to reduce the latency caused by the data transformations at ingestion time.
We named this approach Lazy Transformation.

In order to investigate how Lazy Transformation helps in address our research que-
stions – Is it possible to continuously ingest and reactively analyses a variety of strea-
ming urban data in order to visualize emerging patterns and their dynamics? – we
formulate the hypothesis:
Hp.2.1 The implementation of a streaming computational model that defers as long

as possible the data transformation demands less resources and better approxi-
mates the correct answer under stress conditions than an implementation of a
computational model that cast data into RDF at ingestion time.

5.2 RI VE R

In the next sections, we present RI VE R, a variety proof streaming computational model
built around the idea of Lazy Transformation.

In Section 5.2.1, we introduce the background concepts that underpin RI VE R. Sec-
tion 5.2.2 presents in detail the semantics and the textual syntaxes of the RI VE R’s ope-
rators, the Pipeline Definition Language (PDL) – a graphic syntax to abstract the im-
plementation complexity – and, eventually, examples of physical languages (e.g., EPL,
SQL, SPARQL, etc.) to implement the RI VE R’s operators. All of those concepts are
presented through a running example. Finally, in Section 5.3, we present a reference
architecture for systems that implement RI VE R.

5.2.1 Preliminaries

Based on the considerations resulting from the development of our conceptual model
(see Chapter 4) and on our past experiences (see Chapter 7), we identify two principles
that inspire RI VE R.

(P1) Everything is a data stream. According to this principle, a variety-proof
stream processing engine must indifferently ingest data with different velocities from
any sources and of any size.

For instance, the movements of a car is a fast data stream where the information flow
records the identity, the positions and the speeds of the cars. In this case, the distance
between two subsequent observations can be seconds. On the other side, a city road
is a slowly evolving data stream, where the information flow contains, for instance, the
information about the addition of a bike lane. In this second case, the distance between
two subsequent observations can be days or months.

The continuous nature of data streams, and the importance of the information ex-
tracted by the most fresh data, require such a category of engine to avoid data loss and,
consequently, to implement our second principle: (P2) Continuous Ingestion. The data
in input is continuously captured by the system and, once arrived, it is marked with an
increasing timestamp. Notably, some data sources may natively include their own time-
stamp too (namely, the application timestamp, presented in Section 2.1.1). It is worth

60

i
i

“thesis” — 2019/1/25 — 17:04 — page 61 — #73 i
i

i
i

i
i

5.2. RI VE R

to note that a continuous ingestion mechanism helps to avoid data losses, but conti-
nuous analysis is not always needed; an analysis can be reactive even if postponed (see
Section 6.4).

In order to challenge the hypothesis Hp.2.1, we propose the Lazy Transformation
approach. A variety-proof stream processing engine operates on the data in its original
format as long as it can, and it transforms data only if it really needs to do so. Indeed,
operations like projections, filters or aggregations can operate on generic data without
requiring to cast all data in a single format (such as RDF). Therefore, for those ope-
rations, we can delay transformations. Contrariwise, a join operation, normally, first
requires to cast data in a common format (e.g., the relational one).

So, this kind of system must rely on data of generic type T.
Definition 5.2.1. (Type to-be-specified-later) A type to-be-specified-later T represents
the generic type of the atomic object flowing into the system.

Together with the definition of time (already reported in Section 2.1.1), we can define
the information flowing into this kind of systems as a Generic Data Stream.
Definition 5.2.2. (Time) The time is an infinite, discrete, ordered sequence of time in-
stants (�1, �2, ..., �n), where �i ∈ ℕ. A time unit is the difference between two consecutive
time instants (�i+1 − �i) and it is constant.

Definition 5.2.3. (Generic Data Stream) A Generic Data Stream S⟨T⟩ is a potentially
unbounded sequence of timestamped data items (di, �i):

S = (d1, �1), (d2, �2),… , (dn, �n)

where di is of type T, �i ∈ is the associated time instant and �i < �i+1.

Note that the time instants associated to data items is monotonically increasing. We
do not allow contemporary ingestion, becausewe consider the time as a form of punctua-
tion. So, the data items di in a Generic Data Stream S⟨T⟩ is of types to-be-specified-later
T, and, for instance, it can be, indifferently, a tree representation of a JSON document,
a set of tuples in CSV or in parquet format, or a graph in RDF.

Generic Functions and Generic Types [131] represents the natural abstraction
to model the operations that manipulate information in accordance with the Lazy
Transformation approach.

Let us now define a Generic Time-Varying Collection as:
Definition 5.2.4. (Generic Time-Varying Collection) A Generic Time-Varying Collec-
tion C⟨T⟩ is a mapping from to a finite but unbounded bag of data items di, where di
is of type T.

Differently from a Generic Time-Varying Collection, a Generic Instantaneous
Collection defines an unordered bag of data items at a specific time instant.
Definition 5.2.5. (Generic Instantaneous Collection) A Generic Instantaneous Col-
lection C⟨T⟩(�) is the bag of data items in a collection at �, a given point in time
.

61

i
i

“thesis” — 2019/1/25 — 17:04 — page 62 — #74 i
i

i
i

i
i

Capitolo 5. Computational Model

π,count

π

⋈

O3

O4

O5

O6

O7

O8

O1

O2

O9

SA

SB

S2C Operator

C2C Operator

C2S Operator

Operator Type

IN Operator
OUT Operator

Tree (e.g., JSON)

Relational
(e.g., table)

Graph (e.g., RDF)

Data Type
<T> Generics

<T> <T>

<T><T>

Figura 5.1: Pipeline that presents an example of the operators and of the typical data type produced
during the computation.

5.2.2 RI VE R’s Operators and the Pipeline Definition Language

RI VE Rcomputational model enables users to define computational plans, in the form of
pipelines (formally DAGs4), composed by different operators that take care of ingesting,
processing and emitting Generic Data Streams. In order to ease the definition of the
computational plans, we propose the Pipeline Definition Language (PDL). It defines
the graphical syntax of the operators.

The reader will be guided into the details via the running example depicted in Fi-
gure 5.1. The presented operators and symbols will be detailed discussed in the next
paragraphs.
Example 5.2.1. The example, depicted in Figure 5.1, represents the pipeline to deal
with a typical social media analytics use case. The inputs to the pipeline are the post
stream SA and the users’ friend network, the stream SB, in the form of graph. The two
streams have to be joined in order to connect users with common friends in the same
location.

More formally, Figure 5.2 depicts the five classes of RI VE Roperators and their inte-
ractions. The operators, defined as S2C⟨T⟩, C2C⟨T,T′⟩ and C2S⟨T⟩ in RI VE R, are in-
spired to the CQL processing model (see Section 2.1.1), and allow to move from S⟨T⟩ to
C⟨T⟩ and vice-versa. In addition to the CQL-like operators, we introduce the ingestion
(defined as IN⟨T⟩ in RI VE R) and emission (defined as OUT⟨T⟩ in RI VE R) operators.
They, respectively, ingest and emit external data flow to/from a system implemented
using RI VE Rcomputational model.

In the next paragraphs, we report the details of the operators and present, for each
of them, its formal definition, its graphical syntax in PDL, the examples of physical
languages for its implementation and its role in the running example (see Figure 5.1).

4A finite directed graph with no directed cycles.

62

i
i

“thesis” — 2019/1/25 — 17:04 — page 63 — #75 i
i

i
i

i
i

5.2. RI VE R

S⟨T⟩
Generic Data

Stream

C⟨T⟩
Generic

Collections

S2C⟨T⟩

C2S⟨T⟩
C2C⟨T,T’⟩

IN⟨T⟩

OUT⟨T⟩

Figura 5.2: Overview of RI VE Roperators.

Ingestion Operator

Definition 5.2.6. (Ingestion operator) A IN⟨T⟩ operator takes an external data flow
and inject the items into the system creating a new S⟨T⟩. The ingestion operator is type-
agnostic, it works independently from the external source data-type. It always transform
the items in the external data flow into internal generics (defined as ⟨T⟩).

In PDL we introduce the symbol△ to represent the Ingestion operator.
Example 5.2.2. (cont’d) The external data flows SA and SB need to be ingested in order
to be analyzed. O1 and O2 are implementations of IN⟨T⟩ operator for Twitter. They
contain the logic for connecting to twitter and retrieve the requested informations. On
the one hand, O1 takes care of the external data flow SA, by connecting to the Twitter
streaming API and ingesting JSONTrees as generics ⟨T⟩. Listing 5.1 shows the resulting
JSON.

Listing 5.1: Example of the data resulting by the ingestion operation performed by O1.
{
"data": [{

"user_id": ":Alice",
"content": "breathless at #moma",
"hashtag": [

{
"tag_id":"t1"
"text":"moma"

}
],
"latitude":40.761620,
"longitude":-73.977257,
"time":"2018-09-30T09:00:00"
}
]
}

On the other hand, O1 manages the external data flow SB, by polling the Twitter
REST API and ingesting RDF Graph as generics ⟨T⟩. Listing 5.2 shows the resulting
RDF Graph.

63

i
i

“thesis” — 2019/1/25 — 17:04 — page 64 — #76 i
i

i
i

i
i

Capitolo 5. Computational Model

Listing 5.2: Example of the data resulting by the ingestion operation performed by O2.
:Alice a :User ;

:userName "Alice"^^xsd:string ;
:birthDate "1980-06-21"^^xsd:date ;
:hasFriend :Bob .

Stream-to-collection Operator

Definition 5.2.7. (Stream-to-collection operator) A S2C⟨T⟩ operator transforms a por-
tion of a potentially infinite Generic Data Stream S⟨T⟩ into a Generic Time-Varying
Collection C⟨T⟩. S2C⟨T⟩ operator is type-agnostic, the operation is completely
independent from T.

Similarly to CQL, the implementations of the S2C⟨T⟩ operator are based on the
concept of sliding window. In particular, we can define the concept of Generic Data
Window.
Definition 5.2.8. (Generic Data Window) A window W⟨T⟩(S) is a set of data items (d1,
..., dn), of type T, extracted from a Generic Data Stream S⟨T⟩.

Exploiting this concept we can now define two classes of Generic DataWindow. The
time-based Sliding Generic Data Window and the tuple-based Generic Data Window.

Time-based Sliding Generic Data Window operator defines its output by sliding an
interval of K time units over the stream S⟨T⟩.
Definition 5.2.9. (Time-based SlidingGeneric DataWindow) A Time-based SlidingGe-
neric Data Window on a stream S⟨T⟩ takes a time-intervalK as a parameter and is spe-
cified by following S⟨T⟩ in the query with [RangeK]. The output Generic Instantaneous
Collection C⟨T⟩(�) of S⟨T⟩[Range K] is defined as:

C⟨T⟩(�) = {s ∣ ⟨s, � ′⟩ ∈ S⟨T⟩ ∧ (� ′ ≤ �) ∧ (� ′ ≥ max{� − K, 0})}

Tuple-based Sliding Generic Data Window operator defines its output by sliding a
window of size N data items over the stream S⟨T⟩.
Definition 5.2.10. (Tuple-based Sliding Generic Data Window) A Tuple-based Sliding
Generic Data Window takes a positive integer N as a parameter and is specified by fol-
lowing S⟨T⟩ in the query with [RowsN]. The Generic Instantaneous Collection C⟨T⟩(�)
of S⟨T⟩[RowsN], consists of data items of type T obtained from theN elements with the
largest timestamps in S⟨T⟩ no greater than �.

In PDL, we use the symbol▭ to represent the S2C⟨T⟩ operator. In particular, the sym-
bol related to the S2C⟨T⟩ operators can give an hint about the operator’s implementation.
For instance, the S2C⟨T⟩ operators O3 and O4, proposed in Figure 5.1, are implemented
as two windowers.
Example 5.2.3. (cont’d) The operators O3 and O4 apply Time-based sliding window
operations to the streams resulting from the operators O1 and O2. Operator O3 is a
S2C⟨T ree⟩, while O4 implements a S2C⟨Grapℎ⟩

64

i
i

“thesis” — 2019/1/25 — 17:04 — page 65 — #77 i
i

i
i

i
i

5.2. RI VE R

As anticipated in the introduction, we report the physical implementation of some
operators. In this case, both O3 and O4 can be implemented exploiting ESPER engine
(see Section 2.1.3) and using the EPL clause TIME to create sliding windows with 1
minute duration. Note that the operators are completely agnostic to the data type. O3
and O4 are the same query, except for the name of the stream (see Linting 5.3 and
Linting 5.4).

Listing 5.3: EPL query, applied by O3 operator, to window the stream of JSON trees
SELECT * FROM treeEvent#TIME(1 MIN)

Listing 5.4: EPL query, applied by O4 operator, to window the stream of RDF graphs
SELECT * FROM graphEvent#TIME(1 MIN)

The proposed EPL queries, produce two Generic Instantaneous Collections that
contain, respectively, the JSON trees and the RDF graphs ingested in the last minute,
without apply any transformation to the data items.

Before producing the output, in order to enable query operation for the downstream
operators, O3 merges the different JSON trees in a single JSON tree which contains
an array of elements (see Listing 5.5). The operator O4 works in a similar way on the
input stream of RDF graphs. It windows the stream and creates a single RDF graph in
output that contains all the information that entered the system in the last minute (see
Listing 5.6).

Collection-to-collection Operator

Definition 5.2.11. (Collection-to-collection operator) A C2C⟨T,T′⟩) operator tran-
sforms one or more Generic Instantaneous Collection C⟨T⟩(�) in input into a single
Generic Instantaneous Collection C⟨T′⟩(�).

The implementations of this class of operators are tailored on the different data
format, e.g., JSONiq operators process JSON, SQL operators process relational table,
SPARQL operators process RDF graph, etc. Notably, T and T′ can be of different ty-
pes, but they can also be of the same type. For instance, a filter on a table, on a tree
or on a graph extract tuples, sub-trees or sub-graphs maintaining the original data type.
Contrariwise, as we noticed above, a count aggregation transform the original data type
into a table.
In PDL, we use the symbol○ to represent the C2C⟨T,T′⟩ operator.
Example 5.2.4. (cont’d) The operator O5 is a C2C⟨T ree, Relational⟩ and performs an
aggregation on the output of the O3 operator. The JSON object from O3 contains the list
of the posts that have entered the system in the last minute. Differently from the generic
EPL queries (see Listing 5.3 and Listing 5.4), in order to perform the aggregation query
(presented in the Listing 5.7) the operator O5 needs to know the data format in advance.
As specified in the operator’s definition, the implementation of the operator change with
the input data type and can be choose at design time.

65

i
i

“thesis” — 2019/1/25 — 17:04 — page 66 — #78 i
i

i
i

i
i

Capitolo 5. Computational Model

Listing 5.5: Example of result of the O3 operators.
{

"data": [{
"user_id": ":Alice",
"content": "breathless at #moma",
"hashtag": [

{
"tag_id":"t1"
"text":"moma"

}
],
"latitude":40.761620,
"longitude":-73.977257,
"time":"2018-09-30T09:00:00"
},{
"user_id": ":David",
"content": "Morning at #moma",
"hashtag": [

{
"tag_id":"t1"
"text":"moma"

}
],
"latitude":40.761620,
"longitude":-73.977257,
"time":"2018-09-30T09:00:30"
},{
"user_id": ":Carl",
"content": "Spending my day at #MoMA",
"hashtag": [

{
"tag_id":"t2"
"text":"MoMA"

}
],
"latitude":40.761620,
"longitude":-73.977257,
"time":"2018-09-30T09:00:45"
},{
"user_id": ":Alice",
"content": "#picasso at #moma",
"hashtag": [

{
"tag_id":"t1"
"text":"moma"

}, {
"tag_id":"t3"
"text":"picasso"

}
],
"latitude":40.761620,
"longitude":-73.977257,
"time":"2018-09-30T09:00:55"
}
]

}

66

i
i

“thesis” — 2019/1/25 — 17:04 — page 67 — #79 i
i

i
i

i
i

5.2. RI VE R

Listing 5.6: Example of result of the O4 operator.
:Alice a :User ;

:userName "Alice"^^xsd:string ;
:birthDate "1980-06-21"^^xsd:date ;
:hasFriend :Bob .

:Bob a :User ;
:userName "Bob"^^xsd:string ;
:birthDate "1965-08-10"^^xsd:date ;
:hasFriend :Alice ;
:hasFriend :Carl .

:Carl a :User ;
:userName "Carl"^^xsd:string ;
:birthDate "1965-05-15"^^xsd:date ;
:hasFriend :Bob .

Listing 5.7: JSONiq Query for aggregating JSON element, applied by the operators O5.
FOR $user IN COLLECTION("data")
GROUP BY $user_id := $user.user_id
RETURN { "user_id" : $user_id, "count" : COUNT($user) }

The query in Listing 5.7 counts the elements in the list, grouped by user_id, and
produces a relational table.

Table 5.1 presents the output of O5: a relational table with the user_id and the
associated count.

In the other branch of the pipeline, which manage the slowly evolving data that enter
the system in RDF graph format, the operator O6, similarly to the operator O5, extracts
information related only to the users who have at least one friend in common.

Listing 5.8: SPAQL query applied by operator O6 to the RDF stream to project information about
the user.

SELECT ?user_id ?name ?birthDate
WHERE {

?user1 a :User;
:user_id ?user_id ;
:userName ?name ;
:birthDate ?birthDate ;
:hasFriend ?commonFriends .
?user2 a :User;
:hasFriend ?commonFriends .

FILTER (?user1 != ?user2)
}

Operator O6 is a C2C⟨Grapℎ,Relational⟩. It extracts information from the slowly
evolving RDF graph stream via the SPARQL query presented in Listing 5.8 and creates
a relational table as presented in the Table 5.2.

The operator O7 joins two collections C⟨Relational⟩ from the two branches using the
user_id as key and produces an enriched Collection C⟨Relational⟩. Table 5.3 presents
the results of the join operation. It contains the personal information of the users with at
least one Friend in common, together with the count of posts tweeted in the last minute.

67

i
i

“thesis” — 2019/1/25 — 17:04 — page 68 — #80 i
i

i
i

i
i

Capitolo 5. Computational Model

Tabella 5.1: Example of result produced by the O5 operator.

user_id count
:Alice 2
:Carl 1
:David 1

Tabella 5.2: Example of result produced by the O6 operator.

user_id name birthDate
:Alice Alice 1980-06-21
:Carl Carl 1965-05-15

Collection-to-stream Operator

Definition 5.2.12. (Collection-to-stream operator) The C2S⟨T⟩ operator needs a Ge-
neric Collection C⟨T⟩ as input, to create a new Generic Data Stream S⟨T⟩ as output.
This operator is used to emit, as a new Generic Data Stream S⟨T⟩, the results over time
of C2C⟨T,T′⟩ operators.

Similarly to CQL, RI VE Rintroduces three classes of C2S⟨T⟩ operators.
Definition 5.2.13. (Insert Generic Data Stream) The Istream applied to Generic Col-
lection C⟨T⟩ contains an element ⟨d, �⟩, with d of type T, iff the data item d is in C⟨T⟩(�)
- C⟨T⟩(� − 1):

Istream(C⟨T⟩) =
⋃

�≥0
((C⟨T⟩(�) − C⟨T⟩(� − 1)) × {�}).

Definition 5.2.14. (Delete Generic Data Stream) The Dstream applied to Generic Col-
lection C⟨T⟩ contains an element ⟨d, �⟩, with d of type T, iff the data item d is in
C⟨T⟩(� − 1) - C⟨T⟩(�):

Dstream(C⟨T⟩) =
⋃

�≥0
((C⟨T⟩(� − 1) − C⟨T⟩(�)) × {�}).

Definition 5.2.15. (Relation Generic Data Stream) The Rstream applied to Generic
Collection C⟨T⟩ contains an element ⟨d, �⟩, with d of type T, iff the data item d is in
C⟨T⟩ at time �:

Rstream(C⟨T⟩) =
⋃

�≥0
(C⟨T⟩(�) × {�}).

In PDL, we propose the symbol ◊ to represent the C2S⟨T⟩ operators.
Example 5.2.5. (cont’d) The operator O8 is a C2S⟨Relational⟩ and produces a stream
S⟨Relational⟩. We exploit ESPER and EPL to extract an Istream from the results of the
join performed by the operator O7 (see Listing 5.9)

68

i
i

“thesis” — 2019/1/25 — 17:04 — page 69 — #81 i
i

i
i

i
i

5.3. Reference Architecture

Tabella 5.3: Example of Results produced by the O7 operator

user_id name birthDate count
:Alice Alice 1980-06-21 2
:Carl Carl 1965-05-15 1

Listing 5.9: EPL query, applied by O8 operator, to create a stream after the join operation.
SELECT istream * FROM joinEvent#TIME(1 MIN)

Emission Operator

Definition 5.2.16. (Emission operator) The OUT⟨T⟩ operator lets the results of the
computation exit the system. As for the ingestion operator, it is type-agnostic. The
emission operator takes a S⟨T⟩ in input, and produces an external data flow following
a custom logic.

In PDL we propose the symbol▽ to represent the OUT⟨T⟩ operator.
In the running example, the operator O9 is an implementation of an OUT⟨T⟩ operator

for a relational database. It takes a S⟨T⟩ in input, where T is relational table with a
defined schema, and exploits custom operation to connect and push the results on a
target database.

Moreover, in PDLwe add packages, represented by⎔ symbols, as a general purpose
mechanism for organizing RI VE Roperators into groups. It allows to graphically group
different semantically related operators. Typically, it is useful to represent a chain of a
S2C⟨T⟩, C2C⟨T,T′⟩ and C2S⟨T′⟩ operators that represents the transition from one or
more S⟨T⟩ to a single S⟨T′⟩. For instance, with reference to Figure 5.1, a package could
have in input the Generic Data Streams produced by the ingestion operators O1 and O2and in output the S⟨Relational⟩ generated by operator O8.

5.3 Reference Architecture

Figure 5.3 presents an reference architecture for systems that implement RI VE Rcompu-
tational model. Information enters from the left and exits to the right going through three
operational phases. Phase 1 (namely, Continuous Capturing Phase) continuously cap-
tures data over time. Phase 2 (namely, Augmentation and Synthesis Phases) enriches,
manipulates and transforms captured data. Phase 3 (namely, Analysis Phase) analyses
data to compute results. Accordingly to the RI VE R’s operators definition, Phase 1 ex-
ploits different implementations of the IN⟨T⟩ operator. Phase 2 exploits a combination
of S2C⟨T⟩, C2C⟨T,T′⟩ and C2S⟨T⟩ operators implementations. And, finally, Phase 3
exploits OUT⟨T⟩ operator implementations to emit the results.

During the Continuous Capturing Phase the data, which continuously flows in, is
just marked with a timestamp, i.e., following the Lazy Transformation approach, it is
captured in its original form independently from its complexity.

The proposed architecture treatsVolume as orthogonal toVariety andVelocity. When
Volume is present, system must implement the continuous ingestion phase in a partition
tolerant way (see Section 6).

69

i
i

“thesis” — 2019/1/25 — 17:04 — page 70 — #82 i
i

i
i

i
i

Capitolo 5. Computational Model

Continuous Capturing
Phase

C1

C2

Cn

…

…

…

Batch Layer

…

C1

…

C2

…

Cn-1

…

Speed Layer

…

Cn

Periodic
Analysis

A-Posteriori
Analysis

Real-Time
Analysis

Common Abstraction Layer

Augmentation & Synthesys
Phase

Analysis
Phase

Provenance Logging Layer

…

Figura 5.3: Example of the architecture of a system that implements RI VE R.

The fragment of the architecture, which has in charge the Augmentation and Synthe-
sis Phases, is inspired by a � architecture (see Section 2.1.2). Let us denote with Ci theinformation the Speed Layer is able to process while staying reactive, and let us denote
with Cn the most recently captured information, and with C1, ..., Cn−1 all the data cap-tured. While the Speed Layer processes Cn, the Batch Layer updates C1, ..., Cn−2 withthe results generated by the Speed Layer while processing Cn−1.The Analysis Phase exploits, based on the information need of the user, indifferently
various part of the upstream architecture. The Batch Layer can be used alone for pe-
riodic and post-hoc analysis, or in support of the Speed Layer for analysis that needs to
compare the most recent data with the historical one. Nevertheless, the speed layer, can
be independently used to perform instantaneous analysis.

For instance, a taxi company can exploit the Batch Layer, to synthesize statistics
about the cost and the duration of all the rides captured so far in a city. An a-posteriori
analysis of those statistics can determine a complete origin-destination matrix for the
taxi rides, i.e., a distribution of the durations and the prices of all possible routes from
any point to any other point in the city (see Section 4.2.3). At the same time, the taxi
company can exploit the Speed Layer to determine the current most profitable routes
using the latest incoming data. The comparison between the latest price of the rides
(computed in the Speed Layer) with the information in the origin-destination matrix
(computed in the Batch Layer) can be useful to foil a fraud.

Twomore layers compose the proposed architecture: the CommonAbstraction Layer
– that contains the abstraction used to model or manipulate data (e.g., FraPPE concepts
and RI VE R’s operators) and enables OBDA operations – and the Provenance Logging
Layer – that contains all the artifact useful to document data lineage and to log the system

70

i
i

“thesis” — 2019/1/25 — 17:04 — page 71 — #83 i
i

i
i

i
i

5.4. Conclusion

actions (e.g., in accordance with concepts in the Provenance fragment of FraPPE).

5.4 Conclusion

In this chapter, we investigate the problem of managing data characterized by high va-
riety and velocity without forgetting volume. Taking in account the conceptual model
presented in Chapter 4, we concentrate our efforts on the creation of a computational
model to deal with data with such characteristics.

We propose RI VE R, a variety-proof streaming computational model based on two
main principles (see Section 5.2): (P1) everything is a data stream, and (P2)Continuous
Ingestion. A system based on (P1) and (P2) can manage flowing data without any data
loss. During this research work, in order to answer the research question, we propose the
Lazy Transformation and formulate the hypothesisHp.2.1. A system, which implements
the Lazy Transformation approach, postpones the data transformation until it can benefit
from it.

We present a formal definition of RI VE R’s operators in terms of semantics and tex-
tual syntax (see Section 5.2.2), together with the Pipeline Definition Language (PDL)
– a graphic language that enables user to create computational plans, in the form of
pipelines, to ingest, process and emit data.

RI VE Rrepresents the formal basis of the implementations proposed in the next
chapter (see Chapter 6), that will be exploited to experimentally validate Hp.2.1.

71

i
i

“thesis” — 2019/1/25 — 17:04 — page 72 — #84 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 73 — #85 i
i

i
i

i
i

CAPITOLO6
RI VE RImplementations and Evaluations

In this chapter, we propose different implementations of RI VE Rcomputational model
(see Chapter 5) and the evaluations of such implementations from different points of
view. Section 6.1 introduces the problem of implementing RI VE Rfrom the scalability
perspective. In Section 6.2 we propose Natron – a vertically-scalable implementation
of RI VE R–, rvr@Spark and rvr@Hive – two horizontally-scalable implementations of
RI VE R. The Section 6.3 and the Section 6.4 presents, respectively, the evaluation of Na-
tron against an already existing system, and an evaluation of Natron against rvr@Spark
based on cost-effectiveness.
6.1 Introduction and Problem Statement

In the following sections, we discuss three alternative implementations of RI VE Rcom-
putational model. Based on our experiences, we identify three situations where the na-
ture of the data, in particular the Volume, and the system scalability requirements shape
the specific implementation of RI VE Rreference architecture (see Section 5.3). In parti-
cular, inspired by the benchmarking basic principles (see Section 2.5), we consider the
cost effectiveness as the most important characteristic of an implementation.

When the amount of data is small and the cost of a complex infrastructure is unaf-
fordable, an ad-hoc implementation results suitable. In this situation, there is no need
for scalability and the final artifact can be developed in any language or using any fra-
mework, e.g. Python or Java. Wework following this direction [25], but we do not report
the results because they are out of the scope of this thesis. If the amount of data grows,
a scalability requirement arises. An ad-hoc solution results hard to be cost-effective, if
compared to a more generic and reusable implementation.

Conscious that distribution and parallelization does not pay at all scales [89], we
developed (i) a vertically scalable single threaded implementation – Natron – and (ii)

73

i
i

“thesis” — 2019/1/25 — 17:04 — page 74 — #86 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

Ingester

Processor

EmitterGeneric Data Stream Bus

Figura 6.1: Overview of Natron architecture.

two horizontally scalable implementations based on Spark – rvr@Spark – and Hive –
rvr@Hive. In the next sections, we present Natron, rvr@Spark and rvr@Hive, and the
evaluation results that validated the Hypothesis Hp.2.1 (formulated in Chapter 5).

Moreover, in order to cast some light on the research questions taking in account
possible alternative implementations, w.r.t. scalability, we formulate the hypothesis:
Hp.2.2 A single-threaded implementation of the streaming computational model from

Hp.2.1 is more cost-effective than a distributed implementation of the same
model while guaranteeing the reactiveness of the system.

6.2 Implementations

Section 6.2.1 proposes Natron, an implementation based on single-threaded technology
able to manage heterogeneous streaming data characterized by medium Volume. When
scaling to large volume is required, a single threaded implementation is at risk of loosing
cost-effectiveness because, even if the entry cost is much lower than a Big Data imple-
mentation, its cost grows exponentially in the size of the data. Therefore, an horizontally
scalable solution, using Big Data technology, represents a good choice. The results of
the evaluation reported in Section 6.3, convinced us to assume the Lazy Transformation
as a principle to be applied in the horizontally scalable implementations of RI VE Rcom-
putational model. In our work, we employed two different solutions respectively based
on Spark (rvr@Spark) and Hive (rvr@Hive). Section 6.2.2 and Section 6.2.3 present
an overview of those implementations.

6.2.1 Natron - A Vertically Scalable Implementation

Natron is a single threaded implementation of RI VE Rreference architecture (see Sec-
tion 5.3) able to deal with continuously flowing data characterized by medium Volume,
high Variety and very high Velocity. It continuously ingests streaming data represented
as a time-stamped data items that are typed, only when needed. The type is declared as
an annotation to the captured information.

Figure 6.1 depicts an overview of the Natron internals. The Ingesters allow ingesting
external data flows, and push the data on the Generic Stream Bus. As recommended by
the Lazy Transformation approach, we postpone the transformation as long as possible in
the process, only the ingestion time is added. The Processors, e.g. an Information Flow
Processor as Esper (see Section 2.1.3), listens to one or more streams S⟨T⟩, computes
different operations and produces a new stream S′⟨T′⟩. Emitters allowNatron producing
a new external data flow in multiple formats. In Natron, the window operator can be
implemented in two different ways: either using the ingestion timestamp added during

74

i
i

“thesis” — 2019/1/25 — 17:04 — page 75 — #87 i
i

i
i

i
i

6.2. Implementations

the Continuous Capturing Phase, or using an application timestamp, e.g. a time mark
added during the Augmentation & Synthesis Phase referring to the notion of Frame in
FraPPE.

6.2.2 rvr@Spark - A Horizontally Scalable Implementation Based on Spark

rvr@Spark is an implementation of RI VE Rbased on Spark Structured Streaming pro-
cessing engine (see Section 2.1.3). It enables the users to create pipeline of streaming
computation as they are creating a batch computation, and to leave to the Spark SQL
engine to manage the incremental update of the results in a transparent way.

rvr@Spark offers different implementations of the IN⟨T⟩ operator that exploits the
DataFrames and Datasets API offered by Spark to ingest data from different sources
(e.g., filesystem, Kafka, socket, etc.). In the same way, rvr@Spark exploits the sink of
Spark Structured Streaming as implementations of the OUT⟨T⟩ operators (e.g., filesy-
stem sink, Kafka sink, Console sink, etc.). The access to the data, during the Ingestion
and Augmentation & Synthesis Phase, is guaranteed by OBDA techniques implemented
in the various components that exploit FraPPE as data schema. Moreover, theDataframe
APIs enable the implementation of all the RI VE R’s operators and allow the develop-
ment of the complete stack of layers presented in the RI VE Rreference architecture (see
Section 5.3).

Listing 6.1: Example of Window operator in Spark.
val itemsCounts = inputStream.groupBy(

window($"ts", "40 seconds", "20 seconds"),
$"Agg(Count)"

).count()

In particular, the rvr@Spark implementation of the S2C⟨T⟩window operator exploi-
ts the native Spark Structured Streaming windowing operations on the ingestion time
added to the data during the Continuous Capturing phase.

Listing 6.1 presents the code to compute the aggregation Agg(Count), representing
the amount of the data items that entered the system in the last 40 seconds, using a
window that slides every 20 seconds.

6.2.3 rvr@Hive - A Horizontally Scalable Implementation Based on Hive

rvr@Hive is a distributed implementation of RI VE Rcomputational model based on Hi-
ve (see Section 2.1.3). Hive is a Big Data warehouse solution and is not originally ready
for managing streaming data. This limitation can be overcome by chaining, during the
Ingestion Phase, the implementations of a IN⟨T⟩ operator and a S2C⟨T⟩ operator (win-
dow). This chain enable the system to add the ingestion timestamp, ts to each incoming
data and to transform the time-varying input into a Hive compatible static format (e.g.,
Parquet) partitioned by ts. The Augmentation & Synthesis Phase exploits OBDA tech-
niques to access data using FraPPE ontology as data schema. The FraPPE Commons
Abstractions layer contains the concepts to enrich and transform data according to the
FraPPE conceptual model (e.g., adding a reference to FraPPE Frame that groups the
data items by time and space). The final result is then served to the user through im-

75

i
i

“thesis” — 2019/1/25 — 17:04 — page 76 — #88 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

Figura 6.2: Example of Window operator using Hive.

plementations of different OUT⟨T⟩ operators that allow the system to save the data in
different format (e.g., filesystem, Kafka, websocket).

As for the rvr@Spark, we now focus on the S2C⟨T⟩ window operator in rvr@Hive
that exploits the Hive window operator. Differently from Spark, the window operator
is not natively supported due to the batch nature of the framework. However, if we
augment the data items with a frame ID during the Augmentation & Synthesis Phase,
tumbling windows can be implemented grouping by Frame ID.

Figure 6.2 shows a simple example of a chain of operations that ingest a data stream,
augment it with a Frame ID and simulates a tumbling window that counts the number of
data items per frame. I1 represents the data saved on HDFS during the ingestion phase.
I1 is in form of a table containing various attributes and partitioned by the ingestion
timestamp ts. The data is augmented using a query that uses a User Defined Function
(UDF) to attach a Frame ID based on the ts and save the result incrementally in a parquet
file partitioned by Frame ID. Such an UDF is configured passing the opening time t0 ofthe first window, and the length of a Frame !. In the example t0 = 0 and ! = 20.
The Frame groups the data items in windows and enables operation on time-varying
data in a batch oriented system such as Hive. I2 represents the augmented data. The
Window Based Operation exploits the Frame ID to perform a simple count aggregation
by applying a Group by on the Frame ID. I3 represents the aggregated data.

6.3 Validation of the Lazy Transformation Approach

As a first evaluation step, we compared Natron against SLD (see Section 2.4). Both of
them are single-threaded but, while SLD is based on RDF streams, Natron implements
the Lazy Transformation approach.

Differently from SLD, Natron i) uses time-stamped generic data items (instead of
focusing only time-stamped RDF graphs) and ii) processes them according to their ori-
ginal nature. In particular, we test if a system exploiting i) and ii) results a cheaper (using
less memory and CPU), faster (reaching higher maximum input throughput) and more
accurate (better approximating the correct answer) version of a streaming computational
model.

In the following sections, we expose the problem, the solution design and the ex-
perimental settings, and, finally, we bring experimental evidences that validate the
hypothesis Hp.2.1.

76

i
i

“thesis” — 2019/1/25 — 17:04 — page 77 — #89 i
i

i
i

i
i

6.3. Validation of the Lazy Transformation Approach

6.3.1 Problem Settings
As domain, we chose Social Media analysis as done by the Linked Data Benchmark
Council (LDBC) in the SNBench1.

SLD and Natron receive information in the same way, they both connect to a web
socket and handle JSON-LD files.
Listing 6.2: JSON representation of a Twitter micro-post. Due to the lack of space we omitted the

context declaration that contains the namespace.
{"@context": { ... },

"@type": "Collection",
"totalItems": 1,
"prov:wasAssociatedWith": "sr:Twitter",
"items": [{
"@type": "Post",
"published": "2016-04-26T15:40:03.054+02:00",
"actor": {

"@type": "Account",
"@id": "user:1",
"sioc:name": "@streamreasoning"

},
"object": {

"@type": "Content",
"@id": "post:2",
"alias": "http://.../2",
"prov:wasAssociatedWith": "sr:Twitter",
"sioc:content": "You ARE the #socialmedia!",
"dct:language": "en",
"tag": [{

"@type": "Tag",
"@id": "tag:3",
"displayName": "socialmedia"

}]
}

}]
}

In Listing 6.2, we propose a JSON-LD serialization of the Activity Stream2 repre-
sentation of a tweet as it was injected during the experiments in both systems. The
JSON-LD representation of an Activity Stream is a Collection (specified by@type pro-
perty) composed by one or more social media items. The Collection is described by
two properties, i.e., totalItems and prov:wasAssociatedWith, which tell respectively the
number of items and the provenance of the items. The collection in the example contains
a Post created on 2016-04-26 (published property) by an actor (Line 6) that produce the
object (Lines 7-13). The Actor has a unique identifier@id, a displayName, a sioc:name
and a alias. TheObject has a sioc:content, a dct:language, zero or more tags, and optio-
nally a url and a to to represent, respectively, links to web pages and mentions of other
actors.

Listing 6.3 shows the RDF produced by SLD in transforming the JSON-LD in Li-
sting 6.2 at ingestion time. The translation exploits well known vocabularies, in parti-
cular SIOC3 to represent the online community information, PROV- O [129] to track
the provenance of an item and DCTERMS4 to represents information about the object.

1http://www.ldbcouncil.org/benchmarks/snb
2https://www.w3.org/TR/activitystreams-core/
3http://sioc-project.org/
4http://dublincore.org/documents/dcmi-terms/

77

http://www.ldbcouncil.org/benchmarks/snb
https://www.w3.org/TR/activitystreams-core/
http://sioc-project.org/
http://dublincore.org/documents/dcmi-terms/

i
i

“thesis” — 2019/1/25 — 17:04 — page 78 — #90 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

Listing 6.3: RDF N3 representation of a Twitter micro-post
<post:2> a sma:Tweet ;

dcterms:created "2016-04-26T15:40:03.054+02:00"^^xsd:dateTime ;
dcterms:language "en"^^xsd:string ;
sioc:content "You ARE the #socialmedia!"^^xsd:string ;
sioc:has_container "Twitter"^^xsd:string ;
sioc:has_creator <user:1> ;
sioc:id "2"^^xsd:string ;
sioc:link "http://.../status/2"^^xsd:string ;
sioc:topic <tag:3> .

<tag:3> a sioct:Tag ;
rdfs:label "socialmedia"^^xsd:string .

<user:1> a sioc:UserAccount ;
sioc:account_of "StreamReasoning"^^xsd:string ;
sioc:creator_of <post:2> ;
sioc:id "1"^^xsd:string ;
sioc:name "@streamreasoning"^^xsd:string .

6.3.2 Solution Design and Experimental Settings

A test consists of sending a constant amount of JSON-LD synthetic data. The data is
sent in chunks three times per minute (i.e. at the 10tℎ, the 30tℎ and the 50tℎ seconds of
the minute). Each chunk contains the same amount of posts. We tested the configuration
for different rates: 1500 posts per minute (i.e., three chunks of 500 posts), 3000 posts
per minute, 6000 posts per minute, 9000 posts per minute, 12000 posts per minute and
18000 posts per minute.

The rates and the input methodology test a normal situation for SLD (1500 and 3000
posts per minutes) as well as situations that we know to overload SLD (more than 6000
posts per minute) [22].

the pipelines used for testing the systems (depicted in Figure 6.3a and in Figure 6.3b)
are both split into two branch. The first branch produces an area chart by computing the
number of tweets observed over time, the second one produces a bar chart by counting
how often hashtags appear in the tweets received in the last 15 minutes.

The two pipelines are coded in SLD and Natron in two different ways. SLD performs
the transformations of JSON-LD in RDF by default, on all the input data, independently
from the task to perform. Natron keeps the data in its original format as much as possi-
ble, i.e., it implements the Lazy Transformations approach. In Natron, the results can be
continuously computed i) using a generic sliding window S2C⟨T ree⟩ operator, which
works looking only to the time-stamps of the data items in the generic stream, and ii)
accessing with C2C⟨T ree⟩ operator implemented as a path expression the totalItems
property in the JSON-LD file, i.e., the number of items in the collection.

Figure 6.3a presents the two pipelines in SLDwith PDL. The input data are translated
in RDF as soon as they enter the pipelines by the Ingester O1, an implementation of an
IN⟨T⟩ operator. The computations for the area chart and for the bar chart (see the part
marked with A and B) are composed by the same type of components and share the
new RDF stream translated by O1. The pipelineA uses two C-SPARQL queries applied
to the stream by the operators O2 and O3. Both of them represent a chain of 3 different
RI VE Roperators (a S2C⟨T⟩, a C2C⟨T,T′⟩ and a C2S⟨T′⟩). O2 (see Listing 6.4) appliesa tumbling window of 1 minute, while O3 aggregates the results using a 15 minutes time
window that slides every minute (see Listing 6.5).

78

i
i

“thesis” — 2019/1/25 — 17:04 — page 79 — #91 i
i

i
i

i
i

6.3. Validation of the Lazy Transformation Approach

(A)O4

O7

O1 O2 O3

O5 O6

(B)

(a)

O7

O1

O5 O6

(A)
O4O2 O3

(B)

<T>

<T>

(b)

Figura 6.3: (a) SLD pipeline. Even if both the input and the output data are in JSON-LD format, SLD
use RDF graph for the internal computation. (b) Natron pipeline. The input and the output data
are both in JSON-LD format, Natron keeps the data in tree format as long as possible during the
internal computation. Both the pipelines are presented exploiting the Pipeline Definition Language
(see Chapter 5)

It is worth to note that the first query is an important optimization in terms of memory
consumption. It avoids the engine to keep 15 minutes of tweets only to count them. In
SLD, we often use this design pattern, we call this first query a pre-query. Pipeline B
also exploits this design; it applies a pre-query through the O5 operator to reduce the
amount of data and, then, a query to produce the final result through the O6 operator. Itis also worth to note that all the C-SPARQL queries use the form REGISTER STREAM
... AS CONSTRUCT ..., because RDF streams are the only means of communication
between SLD components. The OUT⟨T⟩ operators of both pipelines, namely O4 andO7, make the results available to processes outside SLD. In this case, both O4 and O7,write JSON files on disk.

Figure 6.3b presents the pipelines in Natron. As for SLD, the pipeline A is for the
area chart, while B is for the bar chart. Differently from the Ingester in the SLD pi-
peline, O1 does not apply any transformation to the input stream, and the data flows
in Natron in JSON-LD format. The O1 operator applies a generic EPL query (pre-
sented in Listing 6.6) characterized by a 1 minute long time window. The clauses

79

i
i

“thesis” — 2019/1/25 — 17:04 — page 80 — #92 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

Listing 6.4: C-SPARQL query applied by O2 that count the number of post in the stream from O1
using a tumbling window of 1 minute.

REGISTER STREAM presocialstr AS
CONSTRUCT { ?id sma:twitterCount ?twitterC }
FROM STREAM <http://.../socialstr> [RANGE 1m STEP 1m]
WHERE {

SELECT (uuid() AS ?id) ?twitterC
WHERE {

SELECT (COUNT (DISTINCT ?mp) AS ?twitterC)
WHERE { ?mp a sma:Tweet }

}
}

Listing 6.5: C-SPARQL query applied by O3 that aggregates the results from O2 using a 15 minutes
time window that slides every minute.

REGISTER STREAM ac AS
CONSTRUCT { ?uid sma:twitterCount ?totTwitter ;

sma:created_during ?unixTimeFrame
}

FROM STREAM <http://.../presocialstr> [RANGE 15m STEP 1m]
WHERE {

SELECT (uuid() AS ?uid)
?unixTimeFrame
(SUM(?twitter) AS ?totTwitter)

WHERE { ?id sma:twitterCount ?twitter ;
sma:created_during ?timeFrame .

?timeFrame a sma:15mTimeFrame ;
sma:inUnixTime ?unixTimeFrame

}
GROUP BY ?unixTimeFrame

}

FORCE_UPDATE5 and START_EAGER6 tell the stream processing engine, respecti-
vely, to emit also empty reports and to start processing the window as soon as the query
is registered (i.e., without waiting for the first time-stamped data item to arrive). It is
worth to note that this query exploits the event-based nature of the generic stream it is
observing. It does not inspect the payload of the events; it only uses their time-stamps.

Listing 6.6: The generic window query applied by the operator O1.
SELECT *
FROM event#TIME(1 min,"FORCE_UPDATE, START_EAGER")

As explained in Section 6.2.1, processors are the central components of Natron. They
can listen to one or more generic stream, compute different operations and push out a
generic streams. The type of the input and output streams can be different. The two
pipelines use different processors (e.g. RDF translator, windower and SPARQL).

5The FORCE_UPDATE flow control keyword instructs the view to post an empty result set to listeners if there is no data to post
for an interval. Note that FORCE_UPDATE is for use with listeners to the same statement and not for use with named windows.
Consider output rate limiting instead.

6The START_EAGER flow control keyword instructs the view to post empty result sets even before the first event arrives,
starting a time interval at statement creation time. As when using FORCE_UPDATE, the view also posts an empty result set to
listeners if there is no data to post for an interval, however it starts doing so at time of statement creation rather then at the time of
arrival of the first event.

80

i
i

“thesis” — 2019/1/25 — 17:04 — page 81 — #93 i
i

i
i

i
i

6.3. Validation of the Lazy Transformation Approach

Natron maintains the data format as long as possible in order to reduce the overhead
of the translations. It can exploit the tree-based nature of JSON-LD. In pipeline A, the
operator O3 exploits a path expression data to extract totalItems, i.e., the number of
items in each collection, from the time-stamped JSON-LD items in the generic stream
it listens to. It outputs a tuple ⟨timeframe,count⟩ that is aggregated every minute over a
window of 15 minutes using an EPL statement.

The pipelineB of Natron shares the O1 operator with the pipelineA. The operator O5translates the generics in input in RDF graph. This transformation is required to extract
information about the hashtags. As for the pipelineB of SLD, we use a pre-query design
pattern to reduce the amount of data. A SPARQL processor, implementing the operator
O5, applies the SELECT query in Listing 6.7 to every data-item in the stream and pushes
out a stream of tuples ⟨hashtagLabel,count⟩. The relational stream is then aggregated
with an ESPER processor, which implements O6, with a 15 minute time window that
slides every 1 minute (see Listing 6.8).

Listing 6.7: SPARQL pre-query applied by the component O6
SELECT ?htlabel (COUNT(DISTINCT(?mpTweet)) AS ?htTweetCount)
WHERE { ?mpTweet a sma:Tweet ; sioc:topic ?tweetTopic .

?tweetTopic a sioctypes:Tag ; rdfs:label ?htlabel }
GROUP BY ?htlabel
ORDER BY DESC(?htTweetCount)

Listing 6.8: EPL query for the bar chart, applied to the stream by the component O6
SELECT htlabel, SUM(count) as sumHt
FROM HTCountEvent#TIME(15 min)
GROUP BY htlabel
OUTPUT SNAPSHOT EVERY 1 min

As for SLD pipelines, the operators O4 and O7 of the Natron pipelines are imple-
mentations of Emitters and offer the result to the user in the form of JSON files on
disk.

6.3.3 Results and Discussion

As key performance indicators (KPIs), we measure the resources consumption of the
two systems and the correctness of the results. For the resource consumption, we mea-
sure every 10 seconds: i) the CPU load of the system thread in percentage, ii) the me-
mory consumption of the thread in MB and iii) the memory consumption of the Java
Virtual Machine (JVM). For the correctness, we compared the computed results with
the expected results. Being the input a constant flows of tweets that only differ for the
ID, the area chart is expected to be flat and the bar chart is expected to count exactly the
same number of hashtags every minute.

Figure 6.4 offers an overview of the results of the experiments. The full results are
reported at the end of this section in Figure 6.5. On the X, axis we plot the median of the
CPU load in percent, while on the Y axis, we plot the memory allocated by the engine
thread. The size of the bubble maps the median of the error of the area chart. Bubbles

81

i
i

“thesis” — 2019/1/25 — 17:04 — page 82 — #94 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

3.9%
22.2%

50.2%

16.7%

32.1%

R²	=	0,96413 R²	=	0,99891

30

300

3000

1 10 100

M
ed

ia
n	
En

gi
ne

	M
em

or
y	
(M

B)

Median	CPU	Load	(%)	

SLD

Natron

Expon.		(SLD)

Linear		(Natron)

Figura 6.4: An overview of the experimental results; larger bubbles means greater % errors.

in the lower left corner correspond to the experiment where we sent 1500 tweets per
minute.

Increasing the throughput results in more memory consumption and CPU load for
both systems. However, Natron consumes less memory than SLD and occupies less
CPU. Moreover, Natron presents a linear increment for both these KPIs, while the re-
source usage for SLD grows exponentially with the throughput (note the R2 in Figu-
re 6.4). Also the error in the results increases with the throughput: SLD already shows
an median error greater than 3% in the bar chart at 3000 tweets per minutes and in the
area chart at 9000 tweets per minute; Natron is faster - i.e. it reaches higher maximum
input throughput - and more accurate – i.e. it reaches 3% error level only for 18000
tweets per minutes, providing more precise results than SLD.

Figure 6.6 presents the recorded time-series for CPU load and memory usage in
both systems. The memory usage graphs contain two different time series. The blue
one represents the memory usage of the system thread, while the orange one shows the
total memory usage for the JVM.

The memory usage of the system thread accounts for all the components and data
in the pipeline. Notably, when the system under testing is not overloaded, the memory
usage is constant over time, while when the system is overloaded it grows until the
system crashes. The total memory usage of the JVM shows, instead, the typical pattern
of the garbage collector that lets the JVM memory grow before freeing it. Also in this
case, when the system it is overloaded, the garbage collector fails to free the memory.

During the experiments the median of the memory used by SLD spans from 115MB,
when loaded with at 1500 posts/min, to 1.6 GB, when loaded with 18000 posts/min. For
Natron, instead, it spans from 44 MB to 511.5 MB in the same load conditions. The
experimental results clearly shows that Natron consumes (in average) three times less
memory than SLD.

The same considerations can be proposed for the CPU load. The median of the CPU
load spans from 2% to 10% for Natron, while it spans from 10% to 39.5% for SLD.
Natron consumes in average 4 time less CPU time than SLD. Moreover, it offers higher
level of stability for both the parameters in all the experiments.

The correctness results are summarized in Figure 6.7. The X axis of each plot shows
the percentage of error; it ranges from 0% to 100%. The Y axis is the percentage of

82

i
i

“thesis” — 2019/1/25 — 17:04 — page 83 — #95 i
i

i
i

i
i

6.3. Validation of the Lazy Transformation Approach

post/min KPI Min. 1st	Qu. Median 3rd	Qu. Max. Min. 1st	Qu. Median 3rd	Qu. Max.
1500 112 114 115 115 116 42 43 44 45 48
3000 188 190 191 192 193 45 48 50 52 58
6000 330 337 340 342 353 52 61 64 67 78
9000 478 481 485 488 504 59 73 80 84 102
12000 684 783 888 956 1015 66 88 97 107 144
18000 871 919 1652 2565 4451 212 392 511,5 597,2 774
1500 7,3% 9,3% 10,0% 10,8% 14,1% 1,3% 1,8% 2,0% 2,2% 3,4%
3000 8,3% 10,5% 11,2% 12,1% 16,2% 1,3% 2,0% 2,2% 2,5% 3,8%
6000 16,1% 18,6% 19,7% 21,0% 29,5% 1,4% 2,1% 2,4% 2,8% 4,5%
9000 24.3% 26,3% 28,3% 30,4% 37,0% 1,5% 2,3% 2,7% 3,2% 5,1%
12000 31.4% 32,6% 34,9% 36,9% 43,3% 1,3% 2,6% 3,2% 4,2% 8,9%
18000 33.8% 35,2% 39,6% 46,1% 72,5% 2,8% 7,2% 10,3% 13,8% 26,2%
1500 0,0% 0,0% 0,0% 0,1% 66,7% 0,0% 0,0% 0,0% 0,0% 33,3%
3000 0,0% 0,0% 0,0% 0,1% 33,4% 0,0% 0,0% 0,0% 0,0% 33,3%
6000 0,0% 0,1% 0,6% 8,1% 61,8% 0,0% 0,0% 0,0% 0,0% 33,3%
9000 0,1% 1,2% 3,9% 9,5% 30,2% 0,0% 0,0% 0,0% 0,0% 33,3%
12000 0,1% 14,1% 22,2% 26,0% 82,4% 0,0% 0,0% 16,7% 33,3% 33,3%
18000 38,2% 44,8% 50,2% 59,5% 93,1% 0,0% 16,9% 32,1% 53,7% 100,0%
1500 0,0% 0,0% 2,2% 2,3% 6,7% 0,0% 0,0% 0,0% 0,0% 93,3%
3000 0,0% 0,1% 4,5% 4,5% 4,5% 0,0% 0,0% 0,0% 0,1% 2,2%
6000 0,1% 2,3% 2,3% 4,1% 5,7% 0,1% 0,1% 2,3% 2,3% 2,3%
9000 1,8% 3,4% 4,2% 5,4% 7,5% 1,6% 2,4% 2,4% 2,4% 3,2%
12000 13,6% 19,4% 21,0% 25,0% 28,0% 0,2% 1,5% 2,5% 4,7% 6,1%
18000 49,5% 51,1% 52,6% 54,7% 57,9% 2,9% 9,4% 12,6% 16,3% 22,4%ba

r	c
ha

rt
	e
rr
or

SLD Natron

m
em

or
y	
(M

B)
CP

U	
lo
ad

	(%
)

ar
ea
	ch

ar
t	e

rr
or
	

Figura 6.5: The experimental results.

results with that error; it also ranges from 0% to 100%. A bar as tall as the Y axis in the
left side of the graph means that all results where correct. The smaller that bar is and
the greater the number of bars to the right is, the more errors were observed.

In general, the results show that Natron is more accurate (the result error is smaller)
than SLD and, consequently, validate the hypothesis Hp.2.1. For the area chart the di-
stribution shows that Natron percentage of error is very low when the input throughput
is between 1500 posts/min and 9000 posts/min. When it is higher (i.e., 12000 and 18000
posts/min) also Natron starts suffering and the percentage of errors starts growing. For
SLD, errors are present even at lower input rate, the graph shows that the error distribu-
tion starts moving to the right at 6000 posts/min. Similar consideration can be proposed
for the bar chart error distribution. The degradation of performance of SLD starts a very
low rate, a substantial presence of errors around 7% can be seen with 6000 posts/min in
input.

Figure 6.6 and Figure 6.7 show the deep correlation between resources usage and
errors. Clearly, a growing input throughput drives the systems to be less reliable. For
both Natron and SLD the correctness of the results decreases as soon as the machine is
overloaded and the resources usage starts rising out of control.

Differently from SLD, that uses only the ingestion time to optimize the reactiveness,
Natron, also accept the application time. It guarantees the accuracy of the computation
at the expense of reactiveness. It is worth to note that it is important to find a good

83

i
i

“thesis” — 2019/1/25 — 17:04 — page 84 — #96 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

Figura 6.6: Memory and CPU usage over time. In the Memory Usage columns, the blue dots represents
the memory usage of the system thread, while the orange dots shows the total memory usage for the
JVM. In the CPU Time Usage columns, the blue dots represents the CPU time usage of the system
thread.

84

i
i

“thesis” — 2019/1/25 — 17:04 — page 85 — #97 i
i

i
i

i
i

6.3. Validation of the Lazy Transformation Approach

Figura 6.7: Area chart and bar chart errors distributions

85

i
i

“thesis” — 2019/1/25 — 17:04 — page 86 — #98 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

trade-off between the two KPIs, this trade-off is domain dependent.

6.4 COST-Aware Evaluation: Distributed vs. Single-Threaded

In [24], in order to validate the hypothesis Hp.2.2 and inspired by COST (see Sec-
tion 2.5.3), we propose an empirical comparison between a rvr@Spark and Natron for a
streaming data analysis task. The focus of our analysis is less on performance, and more
on the total cost of solving the task. This shift is motivated by the industrial setting in
which this work is conceived. In industry, solutions must be evaluated both in terms of
cost-effectiveness and efficacy. The research question we want to answer is – What is
the most cost-effective solution for streaming data analysis when comparing distributed
and single-threaded deployments?

It is well established that performance metrics are frail when they ignore cost-related
indexes (see Section 2.5.1). For this reason, differently from previous works [78,79] that
focuses on latency and throughput, we base our analysis on the total solution cost. This
cost is obtained by multiplying the price-per-second of the machines storing the data
and running the solution by the execution time needed for the analysis task. With this
choice, we want to highlight the cost-effectiveness of a solution.

Our use case is an on-line anomaly detection task. Our goal is to detect unusually
crowded areas in a city. Our dataset consists of the mobile phone connection data col-
lected in Milan during 2016 (see Section 7.1.3). The possibility to perform this task
is well documented in [8, 104, 132]. Both of our solutions use the same anomaly de-
tection strategy. This consists in a statistical model-based anomaly detector trained on
historical data [23] (for more information, see Chapter 7).

We compare the performance of rvr@Spark and Natron. In both cases, RDF is not
used at all and data are kept in their format as long as possible. In the follows, we
describe the tuning of both solutions to our particular use case. Then, we compare
them on the total cost required to solve the anomaly detection task. In order to assess
the solutions’ scalability, the analysis is replicated multiple times and for different data
volumes.

The design of an industrial solution also requires operational considerations. With
the term operational, we refer to the choices regarding when and how data is ingested,
stored, and processed. Depending on the use case, there might be different operational
requirements. In our use case, data is generated continuously from the mobile phone
network. To avoid data losses, our only operational requirement is that data must be
ingested continuously (see Section 5.1). For our analysis, we consider the following
two consumption policies: (i) continuous – data is consumed in real-time as soon as it
is ingested – and (ii) periodic – data is consumed at regular time intervals (e.g., once a
day, or once a week). Those choices influence the total solution cost. For example, if
we want to analyze data continuously, we need dedicated hardware running 24/7.

6.4.1 Problem Settings

In this work, we use mobile phone data, in particular the CDRs (see Section 3.1), col-
lected in the city of Milan, Italy, during the months of February, March, April and June
2016. Data was made available thanks to the collaboration with TIM – Telecom Italia.

86

i
i

“thesis” — 2019/1/25 — 17:04 — page 87 — #99 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

We model data using FraPPE (see Chapter 4) . The city was overlaid by a Grid, each
grid Cell represents a 250x250 meters square. In order to preserve user privacy, data
is aggregated at Pixel level using 15-minutes-long Frames. Consequently, we created a
film of Frames, which shows the evolution of the city, by counting the number of distinct
mobile phone users in each Pixel. For privacy preserving reasons, if the counting goes
below a given threshold, it is set to zero.

The data collected in the month of April is the most significant; in this period the
city of Milan hosts a design festival7 that attracts half a million of visitors, and an ano-
malous density of people can be detected in the 11 districts of Milan that host the 1.151
events [23] of the festival. This dataset comprises CDRs of calls and SMSs collected
between April 13th and April 17th 2016. CDRs of Internet connections are filtered out
since this data is missing in the majority of the months considered. This one-week data-
set occupies 1.7GB, and contains around 24 millions calls and 17 millions SMS records.
We name this dataset Mobile 1, and we shorten it as MOB1.

We use the rest of the data (March, February, June) for training the models described
in Section 6.4.1. The cost of this activity is not considered in the paper.

In order to include the scalability dimension in our analysis, we generated several
datasets by scaling our original MOB1 dataset. The scaling procedure takes as input an
integer scaling factor k, and it replicates each CDR in the dataset k times.

Through scaling, we generated several additional datasets for our experiments. The
most representative ones are:

• MOB1 (1.7GB), original dataset, representative of weekly mobile traffic
(excluding Internet connections) in a large metropolitan area (Milan).

• MOB10 (17GB), k = 10, representative of weekly mobile traffic (including
Internet connections) in a large metropolitan area (Milan).

• MOB30 (50GB), k = 30, representative of weekly mobile traffic in a country
(Italy).

• MOB50 (83GB), MOB100 (170GB), extreme situations.
Representative sizes are based on internal TIMmetrics. Unfortunately, all datasets used
in this study are not available for public disclosure under TIM policies. Aggregated data
similar to the one we produced internally when processing the raw CDRs is available as
part of the TIM Big Data challenge 2015 dataset8.

In our use case, we are interested in finding out which areas of a metropolitan city
are unusually crowded. The people present in a certain area can be approximated by the
number of active mobile phones in the area.

We can cast this use case into an on-line time series anomaly detection problem.
Anomaly, or outlier, detection is a data analysis task such as classification or clustering
[133]. Anomaly detection consists in identifying the most anomalous data patterns in a
data set. An anomalous pattern could be composed of a single or several data elements.
Anomaly detection relies on the ability of building a model of normality for a system or
phenomenon. The model is then used to detect anomalies by computing the ”distance”
between the model and the anomalous element.

7http://archivio.fuorisalone.it/2016/en
8http://www.telecomitalia.com/tit/en/bigdatachallenge.html

87

http://archivio.fuorisalone.it/2016/en
http://www.telecomitalia.com/tit/en/bigdatachallenge.html

i
i

“thesis” — 2019/1/25 — 17:04 — page 88 — #100 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

.
Figura 6.8: General architecture of our solution

In our case, an anomaly represents an infrequent event in the city, which attracts a
large number of people. A model of normality can be built by analyzing mobile phone
data in periods where no event occurs. This is usually known as training in the machine
learning community. Then, the trained model is compared with the collected data to
detect anomalies.

We perform an online anomaly detection analysis (see Section 3.2). For training, we
consider a the evolution of each Pixel. Following [23], we assume each Pixel follows
a Gaussian distribution, and we approximate its parameters by computing the sample
mean and variance in periods where no sizable event happens (i.e., in February, March,
and June). We repeat this process for weekdays and weekends, since they present diffe-
rent mobile activity patterns. This accounts for 2 × 24 × 4 = 192models for each pixel,
i.e., 1.92 million models considering the 10.000 pixels the city is divided in. Anomalies
are detected at runtime by joining each pixel measurement with the corresponding mo-
del distribution. Measurement x is reported as an anomaly if its z-score is larger than
3, that is

|�̄ − x|
�̄

> 3 (6.1)
where �̄ and �̄ are the estimated mean and standard deviation for x’s pixel in the
corresponding fifteen minutes slot.

Note that there exists a plethora of more advanced anomaly detection techniques (for
an extensive reference see [133]). Finding the most accurate detector is outside the
scope of this work. We use the Gaussian model since it has been shown [23] to be well-
fit for the problem at hand. In particular, our method can be executed in parallel on a
cluster of computers, since every pixel can be analyzed independently from the others.
As already mentioned. the only operational requirement for our use case is that data is
collected in real-time to avoid data losses.

6.4.2 Solution Design

The cost of an analytics solution depends on infrastructural, architectural, and opera-
tional choices. The proposed solution is a specialization of the reference architecture
presented in Section 5.3.

being a specialization of RI VE Rreference architecture, our data analysis task can be
decomposed into three main phases (see Figure 6.8):

88

i
i

“thesis” — 2019/1/25 — 17:04 — page 89 — #101 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

.
(a)

.
(b)

Figura 6.9: (a) Architecture for the single-threaded solution. (b) Architecture for the distributed solution

• data ingestion – data is collected from the mobile network and transferred to a
storage layer.

• data consumption – data is transferred from the storage layer to the analysis layer.
• data analysis – data is processed and results are generated by joining streaming
data with the static models.

Note that we add a storage layer between ingestion and consumption to decouple
the two phases. This means that we can ingest data in real-time, and analyze it at a
later stage. This also enables various operational scenarios. An infrastructural choice
specifies where a solution is deployed. The hardware used to run an application can
be bought, or rented from a cloud service provider. We restrict our analysis to cloud
services, since they usually reduce the operational cost of the solution.

When instantiating virtual machines (VMs), cloud service providers usually offer
two types of billing policies: pay-per-use instances and reserved instances. Reserved
instances (RIs) can be held for a fixed amount of time at a reduced price with respect to
pay-per-use instances. RIs are well-fit to reduce the cost of continuous data analysis so-
lutions, while pay-per-user instances are better fit for bursty workloads, such as periodic
analysis tasks. In the following, we refer to pay-per-use instances as shared.
Tabella 6.1: Azure VM sizes (January 2018)

VM Type Cores RAM (GB) S/R (e/month)
VM1 2 4 64.62/60.33
VM2 4 8 127.99/121.58
VM3 8 16 256.61/242.42
VM4 16 32 513.23/484.92

Table 6.1 presents the characteristics of the virtual machines used in this study. The
last column contains the approximated cost of running a shared instance versus a re-
served instance. The reported costs and characteristics refer to Fsv2-series VMs of
Microsoft Azure9. We chose the Fsv2-series because it is equipped with computation
optimized hardware that fitted our needs at affordable cost. Nevertheless, reported costs
do not differ significantly from those of other cloud service providers.

In this work, we use Kafka (see Section 2.1.3) as our streaming data storage. We use
two different configurations, one for each solution. The single-threaded solution, based

9https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute

89

i
i

“thesis” — 2019/1/25 — 17:04 — page 90 — #102 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

on Natron, reads data from a single VM1 machine. The distributed solution, based on
rvr@Spark, reads data from a Kafka cluster composed of four VM2. In the distributed
setting, we set the number of partitions for each topic to eight. We choose this value by
considering the number of executors used in the experiments, since executors can read
in parallel from different partitions.

In the single-threaded solution, the consumption phase is implemented using a Kafka
Ingester that polls the data from the server in comma separated value format. The archi-
tecture for this solution is depicted in Figure 6.9(a). The Ingester connects to an Apache
Kafka server that provides the data. The data enters the system as a stream of generic
objects. Each object contains its event timestamp. Downstream to the Ingester, a Pro-
cessor takes the data from the Bus and transforms each element into a domain-specific
Java object (i.e. a Java representation of a CDR, named PixelCDR).

Then, an Processor based on Esper (see Section 2.1.3) performs the analysis. The
internal stream of PixelCDRs flows into Esper, which performs the query presented in
Listing 6.9. The query counts, every 15 minutes, the number of calls/SMSs grouped by
pixelId, i.e. the pixel identifier. The window operation is performed on the event time-
stamp. We use Kafka exactly-once message delivery to analyze the whole data stream.
The query produces the list of anomalous pixels. The anomalies are identified using the
isAnomalous user defined function, that access the models file, stored in memory, and
implements Equation (6.1). The query results are then saved to the file system by an
Emitter.
SELECT pixelId, MAX(timestamp)
FROM PixelCDR.WIN:EXT_TIMED_BATCH(timestamp, 15 min)
GROUP BY pixelId
HAVING isAnomalous(pixelId, COUNT(*), MAX(timestamp))

Listing 6.9: EPL query performed by Esper Processor.

We implemented our distributed streaming pipeline using rvr@Spark and we regi-
ster both the static models table, and the CDR data stream as temporary views that can
be queried through the Structured Streaming API. The CDR view is actually a dynamic
table that gets updated as data is ingested. The anomaly detection method is implemen-
ted as a SQL query that performs a join on the aforementioned tables, and filters the
results based on the anomaly condition defined in Equation (6.1). Listing 6.10 contains
the pseudocode for the query.
SELECT pixelId, timestamp
FROM (

SELECT cdrs.pixelId, cdrs.timestamp, COUNT(1)
FROM cdr_stream AS cdrs
WINDOW ON cdrs.timestamp EVERY 15 minutes
GROUP BY cdrs.pixelId

) AS windowed_cdrs LEFT JOIN models
ON models.timestamp = windowed_cdrs.window.start
WHERE isAnomalous(windowed_cdrs.value, model.mean, model.sd)

Listing 6.10: Spark SQL anomaly detection query.

The distributed application is deployed on a multi-node Spark cluster, while data is
ingested from a multi-node Kafka cluster. This deployment is represented in Figure

90

i
i

“thesis” — 2019/1/25 — 17:04 — page 91 — #103 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

6.9(b). Spark is integrated with Kafka to provide parallel reads from multiple Kafka
partitions.

We choose Apache Spark for our distributed solution due to its wide spread use in
industry, and the availability of previously developed source code and expertise. Ope-
rational requirements are related to business choices (see Section 3.2). They deal, for
example, with how often a result report should be produced. We consider the following
two operational scenarios:

• Continuous ingestion – continuous consumption and analysis. This scenario inclu-
des real-time use cases, such as crowd monitoring for security purposes. Data is
consumed as soon as it is produced, and the delay with which results are produced
corresponds to the latency of the system. In this regime, results are produced con-
tinuously with whatever latency the system might have. This scenario requires the
continuous utilization of reserved resources, since the solution must run without
interruptions.

• Continuous ingestion – periodic consumption and analysis. Periodic analysis re-
presents a common scenario. In many use cases, the results of the analysis can be
summarized in a periodic report, and the real-time analysis is not necessary. The
ingestion layer must still run continuously to avoid data losses. On the other hand,
the analysis layer can be allocated only for the amount of time needed to perform
the analysis and generate the results.

Another important considerations when designing an industrial analytics system are
fault-tolerance and redundancy. Apache Kafka and Apache Spark respectively provide
out-of-the-box redundancy and fault-tolerance. Nonetheless, we do not include these
aspects in our analysis, since the total solution cost of a fault-tolerant system can be
approximated as the total solution cost multiplied by the redundancy factor. If we apply
this consideration to both solutions, it does not affect our final results.
6.4.3 Experimental Settings
The goal of our experimental methodology is to find the most cost-effective solution
for the given problem. To assess this, we run our solutions on both real and simulated
problem instances. The real data MOB1 is collected from the mobile phone network of
TIM. Starting from this real data we generated several other datasets (MOB10, MOB30,
etc.). Those datasets were generated to analyze the scalability of our solutions.

We compare our solutions based on their total cost when they both provide correct
results. This is not always the case since the most economic single-threaded configu-
rations struggle to deal with the most demanding problem instances. The solution cost
is computed by multiplying the cost of the solution (i.e., price-per-second of the used
VMs) with the execution time of the experiment (if completed correctly). The cost of
the solution also depends on the operational requirements, e.g., a continuous solution
can run on reserved instances, thus reducing the price-per-second.

We executed all experiments on Microsoft Azure Linux VMs. For each experiment,
we performed five experimental runs. All reported results are average over four runs
by discarding the worst outcome. We do not include error bars in the plots since their
bounds are so tight that they simply overlap with the point shapes and clutter the images.

We do not consider latency in our analysis due to the following reasons:
91

i
i

“thesis” — 2019/1/25 — 17:04 — page 92 — #104 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

1. In the continuous analysis scenario, at regime the latency of the system does not
influence the stream of results. Moreover, the latency to analyze one minute of
data is below 1.5 seconds for both solutions, which is appropriate for our use case.

2. In the periodic analysis scenario, the latency of both systems is negligible with
respect to the periods considered (i.e. every day or every week).

Thus, in the following we omit latency from our discussion.
Our goal is to find the most cost-effective configuration which solves the problem.

We restrict our analysis to Fsv2-series VMs under the assumption that in cost-aware
scenarios more general-purpose VMs are preferable to workload-optimized VMs, since
they can be shared and used by different workloads. Figures 6.10(a) and 6.10(b) show
the solution cost as a function of the scale factor for different configurations of Natron
and rvr@Spark.

Natron was deployed using a docker container to create a sandbox environment and
to ease the monitoring operations for CPU and memory consumption. The whole in-
frastructure needed a single VM for each experiment in addition to the VM needed for
the data provider, i.e. a single partition Kafka server on a VM1. We run multiple expe-
riments for each dataset and remove the outliers, e.g. the first run of each experiments
was considered as a system setup, collect data result for correctness check, i.e. ano-
malies, and CPU/memory consumption log to monitor the health of the infrastructure.
During each run the container exploits all available virtual machine resources for the
computation. We vary the dimension of the VMs in azure to stress the environment and
get the upper limit of the resource needed to handle a given amount of data.

We experimented with three configurations, having different number of cores, RAM,
disk I/O, and network I/O available: (i) Natron1 with a single VM1, (ii) Natron2 with a
single VM2, and (iii) Natron3 with one VM4.

The single-threaded implementation suffers from the volume of the data, a single
VM cannot scale horizontally to deal with a continuously increasing amount of data.
Figure 6.10(a) clearly shows that the different configurations can bear different loads of
data. Natron1 can handle datasetMOB1, which represents the original data size, and can
perform the anomaly detection in about 120 seconds. This configuration can handle up
to dataset MOB10, but bigger dataset results are problematic. Configurations Natron2
and Natron3 can bear at most dataset MOB50 andMOB100 (respectively), but are more
expensive than configuration Natron1 . The three chosen configurations widely explore
the hardware offerings in order to find the best solution related to the data loads. Due to
the variability of configurations’ behaviors, we tested the system against more dataset
than the ones listed in Section 6.4.1, i.e. we tested dataset with scale factor k=2, k=3,
k=5, and k=20.

We compare all the three Natron configurations with the best configuration chosen
for the distributed system in order to have a complete overview for the different input
volumes. During the experiments, regardless of the Natron configuration, the norma-
lity models are loaded in memory, while streaming data is read from the Kafka cluster
described in Section 2.1.3.

We deployed rvr@Spark application on a Spark cluster tuned using the total solu-
tion cost as a metric, and experimenting with three parameters which commonly affect
Spark’s performance. Our intention here is to present our findings on the best Spark

92

i
i

“thesis” — 2019/1/25 — 17:04 — page 93 — #105 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

.
(a)

.
(b)

.
(c)

.
(d)

Figura 6.10: (a) Solution cost over data scale for different Natron configurations. (b) Solution cost over
data scale for different rvr@Spark configurations. (c) Solution cost over number of executors per
worker on different datasets (RAM at 24GB). (d) Solution cost over total number of RAM in GB for
different datasets (1 executor per worker).

configuration for our specific use case, datasets, and problem setting. We implemented
our Apache Spark cluster using Azure Linux VMs (see Table 6.1).

We experimented with the following cluster parameters: i)the virtual machine size,
ii) the number of executors per worker (or number of cores per executor), and iii) the
memory allocated per executor. All other parameters were set to their default values.
Note that, since in Microsoft Azure each virtual core (vCPU) corresponds to a single
thread, in the following we use the terms core and thread interchangeably.

Cloud service providers offer several VM types. Those types vary depending on
the number of cores, RAM, disk I/O, and network I/O available to user applications
running on the VM. Thus, an important consideration when deploying a cloud solution
is the choice of VM type.

We evaluated two different cost-equivalent configurations for our Spark cluster (refer
to Table 6.1 for VM characteristics): (i) rvr@Spark1 with one VM2 as a master and
four VM2 workers, and (ii) rvr@Spark2 with a singly VM2 as a master and two VM3

93

i
i

“thesis” — 2019/1/25 — 17:04 — page 94 — #106 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

workers.
Note that we also experimented with smaller cluster configurations (e.g., a single

VM2 worker). However, we found that these were not as cost-effective as the configu-
rations described above. This might seem counterintuitive. However, consider that
a smaller configuration usually takes more time to perform the analysis. Since our
metric is the total solution cost, to be cost-effective a solution’s cost reduction should
compensate for its performance penalty.

As an example, we found out that a cluster with a single VM2 worker takes from
2.75 to 3 more time (depending on the dataset) to perform the task with respect to our
rvr@Spark1 configuration, while only costing 2.5 less.

Figure 6.10(b) shows the cost of the solution for both configurations. All Spark
settings were set to their default values (all available cores, 1GB of RAM per executor).
The figure highlights that the rvr@Spark1 configuration tend to be more cost-efficient,
even though the total number of used cores is the same in both configurations.

Even after tuning both clusters, i.e. by changing the default parameters, we could not
find a configuration for rvr@Spark2 outperforming rvr@Spark1. We used rvr@Spark1
for all other experiments. The two following sections provide more details on the expe-
riments we performed measuring the sensitivity of the selected configuration to changes
in the number of cores per executor and in the amount of RAM per executor.

An important parameter in Spark configuration is the number of cores allocated to
each executor. The default configuration allocates all available cores. Incidentally, the
number of cores per executor also determines the number of executor processes that a
worker can spawn. Thus, we perform our sensitivity analysis in term of executors per
worker. We fixed the total RAM to 24GB and varied the number of executors per worker
machine. Figure 6.10(c) shows our results. We can see that having a single executor
on each worker outperforms other configurations. This is supposedly due to the fact
that when multiple executors reside on the same machine, the JVM must handle a large
volume of I/O network traffic in order for them to communicate. This could possibly
influence application performance.

Another important parameter is the amount of RAM designated to each executor. In
this case, we picked the best configuration from the previous analysis, i.e. one executor
per worker, and varied the RAM allocated to each executor. Figure 6.10(d) shows our
results to this sensitivity analysis. We can notice that the amount of memory allocated
to each executor does not seem to affect execution time. This is surprising, considering
the common knowledge that Spark performance is proportional to the amount of main
memory available. However, our particular use case, i.e. windowed and watermarked
relational query, is executed considering one window of data at a time. Even at ma-
ximum scale (x100), our windows do not exceed 1GB of RAM, and therefore in this
particular scenario the system is not memory-bounded.

All the following experiments were executed using configuration rvr@Spark1 with
4 cores and 3GB of RAM per executor. The normality models are stored in a static file
over the Spark cluster, while streaming data is read from the Kafka cluster described in
Section 2.1.3.

94

i
i

“thesis” — 2019/1/25 — 17:04 — page 95 — #107 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

Tabella 6.2: Operational scenarios. Each layer of the system can run continuously (C) or periodically
(P), and on shared (S) or reserved (R) hardware. Data ingestion and consumption are both handled
by Apache Kafka, therefore they are always executed on the same hardware.

Scenario Ingestion Consumption Analysis
S1 C/R C/R C/R
S2 C/R P/R P/S

6.4.4 Results and Discussion
In this section, we present our experimental results. We organize our discussion based
on the operational requirements considered in Section 6.4.2. The analyzed scenarios
are summarized in Table 6.2.
Tabella 6.3: Monthly solution costs. The monthly cost of our solution depending on the operational

scenario. Notice that if we perform continuous ingestion, the consumption costs are included (Incl.).
The third scenario represents the case in which ingestion costs are fixed, i.e. they do not depend on
the number of machines, but only on data throughput. The most cost-effective solution is highlighted.

Scenario Ingestion Consum. Analysis Total
S1 rvr@Spark1 e486.32 Incl. e607.9 e1094.22

Natron3 e60.33 Incl. e484.92 e545.25
S2 rvr@Spark1 e486.32 Incl. e12,41 e498,73

Natron3 e60.33 Incl. e76.85 e137.18
S3 rvr@Spark1 Fixed e9.93 e12.41 e22.34

Natron3 Fixed e9.68 e76.85 e86.53

The resulting monthly solution costs per scenario are represented in Table 6.3. All
costs refer to the MOB100 dataset. Periodic scenarios (S2 and S3) refer to analysis
carried out daily, i.e., 30 times per month.

S1 – Continuous ingestion – continuous consumption and analysis In this scenario,
we consider the case in which we require a continuous analytics solution. The whole
infrastructure must be continuously up and running to support the ingestion, consump-
tion and analysis phases. We can compute a monthly solution cost by considering the
reservation price of all VMs used in the solution.

From Table 6.3, we can see the estimated monthly solution cost for scenario S1.
Ingestion cost is calculated using reserved instance price, since these machines must run
continuously. This is the same for analysis cost. Consumption cost is included in the
ingestion, since the Kafka VMs perform both phases continuously. The single-thread
cost is calculated considering configuration Natron3.

In this case, we can clearly see that the single-threaded implementation is the most
cost-effective solution for the problem.

S2 – Continuous ingestion – periodic consumption and analysis This scenario repre-
sents a use case where the continuous analysis is not necessary, but periodic reports are
needed. Table 6.3 contains the cost analysis for this scenario. The costs of ingestion and
consumption are equivalent to S1. The analysis cost is computed on the more deman-
ding dataset MOB100, using rvr@Spark1 and Natron3 configurations. We report the

95

i
i

“thesis” — 2019/1/25 — 17:04 — page 96 — #108 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

.
(a)

.
(b)

.
(c)

Figura 6.11: (a) Total solution cost for S3: Natron1 vs rvr@Spark1. Natron1 is the lowest cost solution,
but it can handle only datasets of modest size. (b) Total solution cost for S3: Natron2 vs rvr@Spark1.
The two solutions are cost-equivalent at a scale factor around 10. After that, rvr@Spark1 becomes
the most cost-effective solution. (c) Total solution cost for S3: Natron3 vs rvr@Spark1. Natron3
can handle all datasets considered, however it is less cost-effective than the distributed system at all
scales.

96

i
i

“thesis” — 2019/1/25 — 17:04 — page 97 — #109 i
i

i
i

i
i

6.4. COST-Aware Evaluation: Distributed vs. Single-Threaded

monthly cost for an analysis performed daily. The ingestion phase must be continuous
and, consequently, the infrastructure that support the ingestion and consumption phases
can be deployed on reserved hardware. The analysis is periodic (once a day), and can
be executed on pay-per-use VMs which can be turned on only for the duration of the
analysis.

In this scenario, we can see that the rvr@Spark system is more cost-effective with
respect to the analysis phase, but not to the ingestion phase. The cost of continuously
ingesting data using a distributed cluster outvalues the benefits of processing such data
in parallel. This is still true at lower data scales, where the convenience of the single-
threaded solution is even more evident.

After realizing this fact we included a final scenario (S3) in our analysis. This sce-
nario is a situation where data ingestion is provided at a fixed and small price, i.e. it
does not depend on VMs cost but only on data throughput and retention. This is the
case with some particular offers from cloud providers such as Confluent10. Since the
throughput and the retention are fixed, in this scenario the ingestion cost is the same for
both solutions.

S3 – Continuous ingestion at fixed/small price – periodic consumption and analysis
In this scenario the total cost of the solution depends on the number of machines active
during the analysis phase, and on the duration of this phase. Thus, if the additional costs
of using more machines in the distributed setting implies reducing the execution time
by the same factor, then the distributed solution is the most cost-effective.

Table 6.3 presents the results for this scenario. The results compare configuration
rvr@Spark1 versus configuration Natron3 when processing the dataset MOB100. We
assume the analysis is carried out periodically each day. We can see that the reduced
execution time for the analysis makes up for the increased number of VMs. This makes
the distributed solution around 3.8 times more cost-efficient than the single-threaded
system.

We provide more insight on this scenario by considering different data scales. We
compare configuration rvr@Spark1 with the less expensive Natron configuration that
can handle a given data scale: configuration Natron1 for a scale factor up to 10, confi-
guration Natron2 for a scale factor up to 50, and configuration Natron3 for the dataset
MOB100.

We can see that, in this setting, the most cost-effective solution depends on the da-
ta size. At small data scales, configuration Natron1 is the most cost-effective solution.
The configuration Natron1 can only deal with data volumes up to scale factor 10 (ci-
ty scale), but, until this point, it is more cost-effective than configuration rvr@Spark1
(Figure 6.11(a)). When the data size increases, the solutions first become equivalent
in term of cost around city scale (Figure 6.11(b)), and, then, configuration rvr@Spark1
becomes the most cost-effective solution (Figure 6.11(c)) when dealing with national
and extreme scales.

The results presented in this section show that in case of continuous analysis, the
single-threaded solution is the most cost-effective option.

When periodic analysis is considered, the distributed solution is the most cost-
effective in analyzing the data. However, this benefit is outvalued by the costs of di-

10https://www.confluent.io

97

https://www.confluent.io

i
i

“thesis” — 2019/1/25 — 17:04 — page 98 — #110 i
i

i
i

i
i

Capitolo 6. RI VE RImplementations and Evaluations

stributed data ingestion. Thus, the single-threaded application remains the best choice
also in this case.

Finally, if we assume that data ingestion costs only depends on data throughput and
retention, i.e. they are fixed and small, we show that the most cost-effective choice de-
pends on the data size. The single-threaded application is cost-effective when managing
small datasets, which is our setting are the CDRs generated by Milan when including
Internet or those of the entire Italy if limiting the analysis to calls and SMSs. However,
as the data size grows to the size of Italy including Internet, the distributed solution
becomes the most cost-effective option.

6.5 Conclusion

In this chapter, we investigate how to implement RI VE Rcomputational model from
different points of view. We concentrate our effort on the implementation of the Lazy
Transformation approach.

We present Natron (see Section 6.2.1) – a single-threaded, vertically scalable imple-
mentation of the RI VE Rcomputational model – and we evaluate it against our Strea-
ming Linked Data Framework (SLD) that applies data transformation at ingestion time
(see Section 6.3). The result of this evaluation validates Hypothesis Hp.2.1: Natron
results better than SLD under both resource consumption and correctness points of view.

Comforted by the results of this performance evaluation, we assume the Lazy Tran-
sformation as a third principle (P3) of our computationalmodel andwe apply it in the ho-
rizontally scalable implementations based on distributed technologies (see Section 6.2.2
and Section 6.2.3): rvr@Spark and rvr@Hive.

In order to reaffirm the importance of the cost-effectiveness metric in the evalua-
tion of streaming based system, we perform an empirical comparison between Natron
and rvr@Spark for a streaming data analysis task (see Section 6.4). The overall results
partially validates the hypothesis Hp.2.2. Natron results cost-effective when managing
medium size datasets (up to the scale of a large city like Milan), but, as the data size
grows, rvr@Spark becomes the most cost-effective option.

98

i
i

“thesis” — 2019/1/25 — 17:04 — page 99 — #111 i
i

i
i

i
i

CAPITOLO7
Case Studies

In this chapter, we investigate our research question (see Section 1.2) in real world cases
through the hypothesis:

Hp.3 A solution using FraPPE conceptual model and an implementation of RI VE R
computational model, can create a bridge between data analytics and data vi-
sualization that enhances the comprehension of a variety of spatio-temporal
data and, at the same time, allows reactive decisions.

We provide evidence that Hp.3 is valid presenting five case studies where we exploi-
ted, together, FraPPE (see Chapter 4) and one of the implementations of the RI VE R
computational model (see Chapter 6) to represent, ingest, augment, synthesize and ana-
lyze urban spatio-temporal streaming data. Section 7.1 presents our three-years-long ex-
perience related to Milano Design Week. Section 7.2 presents the case study of the Mi-
lano FashionWeek and Section 7.3 presents the work we carried on for the municipality
of Como.

7.1 Milano Design Week

In the next sections, we report our experience in monitoring Milan Design Week
(MDW). The monitoring project spreads across three editions (2013, 2014 and 2016),
and represents a first attempt to put at work a system based on FraPPE,Natron, rvr@Hive
and rvr@Spark to monitor a city-scale event (CSE) that lasts days and is spread across a
city. Indeed, MDW takes place in hundreds of places that host thousands of small-scale
events, attracting half a million people. The aim of the project is to feel the pulse of
Milan during the MDW using data from different sources.

99

i
i

“thesis” — 2019/1/25 — 17:04 — page 100 — #112 i
i

i
i

i
i

Capitolo 7. Case Studies

7.1.1 MDW2013 - Understanding the Data

During MDW2013, relying on our past experiences [5, 13], we concentrate our effort
on the social data sources [134]. We name Social Signal the collection of the digital
foot-prints left by MDW attendees on social media. During the preliminary study, we
recognized that such a signal is strong enough to build a graph linking people, places,
and events, but it is not sufficiently reliable (or, more precisely, statistically sound) to
identify the most crowded MDW places. To tell a reliable story of MDW and iden-
tify the most crowded places, we need to show that the social signal is correlated to
another, statistically sound, signal. Our hypothesis is that mobile phones can generate
such a signal. We work in partnership with Telecom Italia in order to access priva-
cy preserving aggregates of the mobile phone activity of the people present in Milan
area. The availability of such a data allows us to compute an index of anomaly that sho-
ws off the discrepancies between the expected and the actual activities on the mobile
telecommunication network in a given area (for more details, see Section 6.4.1).

We study the nature of the social and mobile anomaly signals to understand which
visualization better fits the purpose to tell the MDW story to its attendees and we use
FraPPE concepts (marked by special font in the paragraphs) to represent data.

Milan was in overlaid by a square Grid of 10,000 Cells (100 per side), each of which
has a size of 250 x 250 meters. We considered three sources of Events at Places: mo-
bile phone calls/sms/internet-accesses, geo-referenced micro-posts related to the Milan
Design Week, and the 1,200 long-lasting events that are organized in 600 places spread
around Milan during the Design Week.

The spatial analysis (see Section 4.4) of the social and telco data, based on FraPPE,
requires to assign each OriginalContent to a specific Cell.

The analysis of the social data requires a mapping action. A social message can
be explicitly geo-located and can be easily assigned to a specific Cell, but, more often,
a message has no assigned latitude and longitude. In most of the social media posts,
related to the MDW, the location can be extracted from the content and linked to the
MDW locations exploiting Named Entity recognition and linking techniques during the
augmentation phase.

The analysis of mobile phone data is based on CDR (Call Data Record) analysis.
CDRs are generated by telecommunication networks to log the activity of the users,
associated to a mobile phone cell for billing purposes. Every mobile phone cell has
a unique identifier, the Cell Global Identity (CGI). The CGI is characterized by the
country, theMobile NetworkOperator (MNO), the LocationArea of the cell, the latitude
and longitude of the barycenter of the cell and of the antenna, the distance between
barycenter and antenna, and other properties. The CDR analysis requires to map each
CGI to the Cells of the Grid. There are many techniques to do so, we opted for assigning
a coverage percentage to each Cell based on the orientation of the antenna, and the land
usage of the covered area.

In order to perform a temporal analysis (see Section 4.4), we captured a Frame every
15 minutes. We did so, because we empirically observed that there is always at least a
micropost per Frame – the social signal is less dense than the telco one.

We analyzed 2 months of CRDs from Milan to synthesize two Gaussian models for
each cell (for further details see Section 6.4.1): one grouping the Frames by working
days, and one grouping them by week-end days. We were able to build 1.92 millions

100

i
i

“thesis” — 2019/1/25 — 17:04 — page 101 — #113 i
i

i
i

i
i

7.1. Milano Design Week

Figura 7.1: Precision and recall of the social and mobile anomaly signals in identifying pixels where
Milan Design Week (MDW) events happen in (a) Milano and the (b) Brera and (c) Tortona districts.

Gaussian models1. The anomaly index is obtained by computing how far the number of
calls/sms/internet-accesses (which we refer as n) is from the average behavior (which
we refer as avg), keeping into account the computed standard deviation (which we refer
as std). The formula to obtain the anomaly index can be compactly written as:

2Φavg,std2(n) − 1

where 2Φavg,std2 is the cumulative distribution function of a Gaussian random variable
with mean avg and variance std. Anomalies are identified by filtering all the records
with an anomaly index greater than a given threshold.

We, then, created a gold standard (MilanP) consisting of all the pixels that contain at
least one MDW2013 place. We also created two subsets of this gold standard (BreraP
and TortonaP) that focus on the pixels that belong to the districts of Brera and Tortona,
where the most important events were located. For each frame, we measured the ability
of the social and mobile anomaly signals in identifying pixels in MilanP, BreraP, and
TortonaP (see Figure 7.1) measuring precision and recall.

14 frames per hour X 24 hours X 2 day types (working and weed-end days) X 10.000 pixels.

101

i
i

“thesis” — 2019/1/25 — 17:04 — page 102 — #114 i
i

i
i

i
i

Capitolo 7. Case Studies

The results of the analysis show that the social signal has high precision (between
0.8 and 1 for 95 percent of the frames) in identifying pixels in MilanP. Its recall is low
in identifying pixels in MilanP, but it is good (above 0.4 for around 60 percent of the
frames) in identifying pixels in BreraP and TortonaP. In all cases, the signal volume
is low: the average number of microposts linked to MDW per hour is 15 for MilanP,
three for BreraP, and five for TortonaP. However, the social signal is correlated to the
anomaly index signal (see Figure 7.1) during the working days. The Pearson correlation
for MilanP is 0.61 with a p-value of 2x10−4 for BreraP, it is 0.76 with a p-value of
4.6x10−7; and for TortonaP, it is 0.56 with a p-value of 3.1x10−5.

Moreover, not only the two signals are correlated, but they also identify the same
pixels. To measure this, we computed the Jaccard similarity coefficient2 between the
pixels identified by the social signal and those identified by the mobile anomaly signal.
As we can observe in Figure 7.1, the Jaccard similarity coefficients in Brera and Tortona
almost constantly overlaps with the recall of the social signal – that is, if a pixel is
identified by the social signal, then it’s among those identified by the mobile anomaly
signal.

The data analysis phase (see phase 3 of the reference architecture presented in Sec-
tion 5.3) bring evidences that: (i) Telco Big Data can provide a very relevant and dy-
namic overview of the presence of people in the context of a specific city or territory,
aggregated at the level of the single cell tower, and (ii) Social data represent a precious
source to build the interaction graph between people, events and places. However, since
building the morphology of the territory can impact on the effectiveness of the cells, the
CDR information can describe the city’s dynamics at the macro level, but it cannot be
used to precisely represent such dynamics at the micro level, e.g. input/output flows
into one specific street or square. The social data, thanks to its public content and the
precise location of each message, can help in filling this gap.

7.1.2 MDW2014 - CitySensing Public Installation

During the Milan Design Week 2014 (MDW2014), exploiting the knowledge acquired
analyzing the previous edition, we use Natron and rvr@Hive to realize the proposed
CitySensing platform to collect and analyze social and telecommunication data. The
visualization, enabled by CitySensing, is presented in a public installation in Mediateca
Santa Teresa3.

During the MDW2014, we consider 21,782 micro-posts from Twitter and Insta-
gram, data describing MDW2014 places and events from three heterogeneous sour-
ces (fuorisalone.it, breradesigndistrict.it, and tortonaroundesign.com), and Telecom
Italia’s CDRs (19,719,629 calls, 20,240,485 SMSs, and 197,767,245 Internet data
accesses counted in the Milan area from 8 to 14 April 2014). rvr@Hive analyze
calls/sms/internet-accesses in real-time by aggregating them for each pixel and for each
frame and by computing how anomalous they are comparing each of them against the
predictions of the Gaussian models built at set-up time.

As detailed in [23], the anomalous pixels correspond with high precision to pixels
in which events of the Milan Design Week are happening. This allows us to provide
experimental evidence that the extra 400,000 people that come to Milano for the Desi-

2The Jaccard coefficient measures similarity between finite sample sets
3http://www.mediabrera.it/index/index.php

102

http://www.mediabrera.it/index/index.php

i
i

“thesis” — 2019/1/25 — 17:04 — page 103 — #115 i
i

i
i

i
i

7.1. Milano Design Week

(a) (b)
Figura 7.2: Social media used to explain the reason of anomalous peaks of presence in some pixels: (a)

shows the most popular hashtags posted in the anomalous pixels during Milan Design Week, whereas
(b) highlights the emergent hashtags, i.e., the non predicted ones. While the generic most popular
tags contains also hashtag about a popular TV show (i.e., Amici or Emma), the emergent hashtags
are those of Milan Design Week.

gn Week generate extra calls/sms/internet-accesses from the cells that contain the 600
locations of the 1,200 Milan Design Week events.

To process social streams, we use Natron (see Section 6.2.1). The original data
stream are injected in Natron in Activity Stream 2.0 format4. Natron semantically aug-
ments them using our custom Named Entity recognition and linking solution tailored on
Milan DesignWeek [135]. A continuous query captures a frame every 15minutes coun-
ting the number of distinct hashtags and semantic entities present in the geo-referenced
microposts for each pixel. The results of this continuous query is a stream modeled in
FraPPE.

As illustrated in Figure 7.2.(a) a (partial) semantic explanation of the mobile anoma-
lies, can be attempted aggregating the top-10 hashtags used in those pixels. For instance,
in Brera district the Italian hashtag of Milan Design Week (i.e., Fuorisalone) emerges.
However, this technique is not dependable. For instance, in Tortona district also the
hashtags of a popular TV show (i.e., Amici) and its protagonists (e.g., Emma) appear.
Once again, the solution is in the ability to compare the current top hashtags against
the those predicted by a statistical model. This allows highlighting only the emergent
hashtags of this frame for the selected pixels (see Figure 7.2.(b)).

As one can expect, the simple Gaussian model used for the mobile activity is not
appropriate to predict hashtag usage. We found, instead, that an Holt-Winter method
can be used [136] to predict the usage over time of a specific hashtag (e.g., #milan).
In order to use Holt-Winter, we use FraPPE: we build SyntheticFrames that aggregate
the CapturedFrames in five parts of a day (i.e., 2am-7am, 7am-11am, 11am-2pm, 2pm-
7pm and 7pm-2am). Moreover, as for the CDRs, we distinguish between working days
and week-ends. This approach allows to build effective predictive models for hashtags
about the points of interest of Milan and about popular TV shows. Figure 7.3 illustrates
how this method detects the anomalous usage of #milan during the Milan DesignWeek,

4http://www.w3.org/TR/activitystreams-core/

103

http://www.w3.org/TR/activitystreams-core/

i
i

“thesis” — 2019/1/25 — 17:04 — page 104 — #116 i
i

i
i

i
i

Capitolo 7. Case Studies

Figura 7.3: Highlighting of anomalies in hashtag usage: The hashtag #milan is used more often during
the Milan Design Week. Forecasting the #milan time-series using Holt-Winter method, we were able
to identify the anomalous usage, which is highly correlated to the usage of #mdw – the official hashtag
of Milan Design Week.

which is highly correlated to the usage of #mdw – the official hashtag of Milan Design
Week.

During the Milan Design Week, using Natron to compare those models with the
observed usage of an hashtag, we detect in real-time emerging hashtags. Figure 7.3
illustrates how the extra usage of #milan is correlated to the appearance of the official
hashtag of Milan Design Week (i.e., #mdw).

Using the analyses described above, CitySensing identifies pixels where people is
talking about Milan Design Week. As detailed in Section 7.1.1, those pixels are not as
numerous as those identified as anomalous using the CDRs. However, they match with
almost absolute precision the pixels in which Milan Design Week events happen. The
most interesting finding is that almost all those pixels are contained inmobile anomalous
ones. This provides further experimental evidence that the anomalies observed in the
CDRs are caused by the people coming to Milan for the Design Week.

The particular scheduling and geographical organization of the events of Milano De-
signWeek, withmost of the events concentrated in some specific areas of the city, enable
also to perform analysis with irregular grid, based on the official areas of Fuorisalone.

The CitySensing visualizations exploit the FraPPE concepts to relate time and space.
They comprise two main views: a geographical view (see Figures 7.4(a) and 7.4(b))
that displays signals on a static map of Milan, and a graph view (see Figure 7.4(c))
that displays the evolution of the graph of people visiting MDW2014 places and events.
Both can be zoomed in at the city or district level. The system underpinning the views
enables the story to be told in nearly real time, but the visualized phenomenon is better
viewed quickly, with the system playing a day in few minutes. To this end, a new frame,

104

i
i

“thesis” — 2019/1/25 — 17:04 — page 105 — #117 i
i

i
i

i
i

7.1. Milano Design Week

(a)

(b)

(c)

Figura 7.4: MDW2014 CitySensing installation geographical view (a) at city level, where the visualiza-
tion highlights the pixels of official MDW districts, and (b) at district level, the map is zoomed and
centered on the district. (c) The graph view displays the evolution of the graph of people visiting
MDW2014 places and events. (source [23]).

105

i
i

“thesis” — 2019/1/25 — 17:04 — page 106 — #118 i
i

i
i

i
i

Capitolo 7. Case Studies

which aggregates 15 minutes of data, is displayed every 2 seconds5.
Finally, we perform an empirical evaluation of FraPPE in order to understand how

the CitySensing visualizations ease the attendees’ understanding of data dynamics and,
consequently, validate the Hp.3.

We start from the author-driven perspective, illustrating the visualizations as the peo-
ple who watched the installation in Mediateca Santa Teresa experienced them. Then,
we take the reader-driven perspective and report on the results of a questionnaire meant
to assess whether the audience could guess the visualizations’ intended message.

Figure 7.5(a) illustrates how the correlation between the social and mobile anomaly
signals is readable in the story told by the geographical view at the city level. The figure
represents a cumulative view of the frames between 6:00 and 24:00 on 10 April (the
most active day in 2014). The majority of the streets of MDW districts "spot out" that
is, the pixel highlighted by the mobile anomaly signal are MDW places. Furthermore, a
clear pattern emerges: the MDW social signal (the green circles) originates fromMDW
districts.

Figure 7.5(b) presents the geographical view, but it focuses on the Brera district. This
view illustrates the evolution of the social and mobile anomaly signals over three frame
groups (06:00–12:00, 12:00–18:00, and 18:00–24:00) on 10 April 2014. The places
where MDW events are held normally open in the late morning, but the majority of
the events start in the afternoon. This is clearly visible both in the value of the mobile
anomaly signal (mapped to the opacity of the pixels) and the volume of the social signal
(mapped in the size of the green circles): both signals increase in most of the pixels and
especially in those containing MDW places (blue triangles).

Figure 7.5(c) illustrates the graph view. It shows the evolution of the same three
frame groups on 10 April 2014. During the morning, few users are linked by topics
related to MDW; in the afternoon, a cluster of people talking about places and events
of MDW appears; and in the evening, just few users remain unlinked. This is a direct
consequence of the long-tail distribution of the discussion topics: 80 percent of the users
talk about 20 percent of the places/events, while the remaining 20 percent of the users
talk about the other 80 percent of places/events.

This pattern repeats over the days at city scale and in the Brera and Tortona districts.
It disappears when MDW ends. To verify the Hp.3, we asked people without specific
skills in data visualization and analytics to guess the message of the views shown in
Figure 7.5(a) and 7.5 (c). We asked them the six questions reported in Figure 7.6. In four
cases, we asked true-or-false questions, and in two cases, we asked questions that had
no correct answer (see "uncertain" in the figure). The correct answers are underlined in
Figure 7.6. As the distribution of the answers of the 23 responders shows, the messages
we intended to transmit were correctly guessed. The responders correctly correlated the
social and the mobile anomaly signals when the correlation was not evident and could
not guess the correct answer when the correlation was not present. The same happens
when they guess the meaning of the graph that links people based on the places and
events that they jointly discussed. Those results validate Hypothesis Hp.3.

5http://citysensing.fuorisalone.it, http://youtu.be/MOBie09NHxM

106

http://citysensing.fuorisalone.it
http:// youtu.be/MOBie09NHxM

i
i

“thesis” — 2019/1/25 — 17:04 — page 107 — #119 i
i

i
i

i
i

7.1. Milano Design Week

(a)

(b)

(c)

Figura 7.5: (a) The correlation between the social and mobile anomaly signals is readable in the story
told by the geographical view at city level. On 10 April 2014, the social and mobile anomaly signals
tell the success of MDW districts: Brera and Tortona beat all others. (b) A geographical view in
which the social and mobile anomaly signals tell the daily pattern of activity in Brera. (c) This graph
view highlights the scale-free nature of the graph of people when connected by the places, events, and
hashtags they discuss on social media. (source [23]).

107

i
i

“thesis” — 2019/1/25 — 17:04 — page 108 — #120 i
i

i
i

i
i

Capitolo 7. Case Studies

Figura 7.6: The results of the questionnaire about the visualizations presented in (a) Figure 5 and (b)
Figure 7. As we can see from the distribution of the answers of the 23 responders, the messages we
intended to transmit (underlined) were correctly guessed. (source [23]).

7.1.3 MDW2016 - Advanced Visualizations

Comforted by the guessability level of the CitySensing visualization, we try to reach
an higher level of complexity in the data presentation. During the 2016 edition of the
event we had the opportunity to collect data coming from an additional relevant source:
the official mobile application of Fuorisalone. In particular, we had access to the GPS
positions of places where the users open the App and the events inserted in the agenda
on the App. Also, in this context, we apply the method of squared grid tessellation of
the city, in order to analyze the correlation between pairs of different signals.

The Figures 7.7 and Figures 7.8 depicts the results, obtained exploiting FraPPE, Na-
tron and rvr@Spark, of different use cases that involves data from heterogeneous sour-
ces (i.e., GPS record of the usage of the official Fuorisalone App, public social network,
official schedule of Fuorisalone events).

Figure 7.7(a) shows the correlation between the use of the App and the number of
Fuorisalone events. To visualize such a phenomenon, we consider as events the use of
the App in a place, that generates a GPS record, and the scheduled event of MDW with
their place that users put in their agenda. Data is aggregated grouping by Pixels and
capturing daily Frames.

Another available source of Events is the geo-located activity on the public social
networks: we collect the Twitter and Instagram posts geo-located in thePlaces contained
in each Cell and we aggregate them gropuping by Pixels containing the GPS observa-

108

i
i

“thesis” — 2019/1/25 — 17:04 — page 109 — #121 i
i

i
i

i
i

7.1. Milano Design Week

(a)

(b)

Figura 7.7: The Figure (a) shows the number of Mobile App GPS observations collected in one day
inside each square of the grid (red dots) correlated with the number of events of Milano Design Week
scheduled for the same day in the same square. The Figure (b shows the correlation between GPS
observations (red dots) and geo-located posts on social networks (blue dots) inside each square.

109

i
i

“thesis” — 2019/1/25 — 17:04 — page 110 — #122 i
i

i
i

i
i

Capitolo 7. Case Studies

tions, as shown in Figure 7.7(b). Both Frames show the increasing of the Events in the
areas of the Fuorisalone.

Another interesting use case is represented by the analysis of the provenance of the
visitors during the Milano Design Week. In order to estimate the provenance of the
visitors we use the GPS information collected by the App, extracting the GPS position
of the first observation logged for each user before the days of the MDW (assuming that
the users download the App at home). Using appropriate shape files we map each GPS
location to a Country in the world, obtaining the provenance of the user.

Mapping the GPS observation events in the grid of pixels, it is possible to visualize,
for each daily frame and for each people group, which are the most popular areas of the
city. Figure 7.8(a) shows the localization of the five largest groups of European foreign
visitors and United States visitors. Figure 7.8(b) shows the region of provenance of
Italian visitors and their distribution in the events.

As for the public installation during MDW2014, we test the guessability of the ad-
vanced visualizations. The new advanced visualizations are created for a more profes-
sional audience (i.e. Studiolabo6, the main organizer and stakeholder of Fuorisalone).
A user-centric study we conducted observing how Studiolabo used the visualizations
during a workshop, allowing us to affirm that our stakeholder was able to understand
the visualizations and exploit the analysis results. Therefore, these empirical evaluation
of the MDW2016 visualizations enforces the validity of Hypotheses Hp.3.

7.2 Milano Fashion Week

The Milano Fashion Week (MFW) represents another example of CSE in Milan. This
experience deals with the problem of understanding the social media response of the
MFWoccurred from the 24tℎ to the 29tℎ February of 2016. We use Natron to analyze the
behavior of users who re-acted (or pro-acted) in relationship with each specific fashion
show during the week. MFW represents the most important meeting between market
operators in the Italian fashion industry. Out of the 170 shows, we are interested only in
the catwalk shows, which are the core of the fashion week. The whole set of catwalks
includes a total of 73 brands; among them, 68 brands organize one single event, 4 brands
organize 2 events, and 1 brand organizes 3 events.

We initially extract posts by invoking the social network APIs of Twitter and In-
stagram; for identifying the social reactions to MFW, we use a set of 21 hashtags and
keywords provided by domain experts in the fashion sector, i.e., researchers of the Fa-
shion in Process group (FIP) of Politecnico di Milano7. We focused on 3 weeks: the one
before, the one after and the one of the event. In this way, Natron and rvr@Hive collec-
ted 106K tweets (out of which only 6.5% geo-located) and 556K Instagram posts (out
of which 28% geolocated). Eventually, we opt for considering only Instagram posts, as
they represent a much richer source for the particular domain of Fashion with respect
to Twitter [137, 138].

We model the data using FraPPE and exploit Natron and rvr@Hive to enable tem-
poral, spatial and content analyses on the modeled information. Following the FraPPE
approach, we build a regular Grid of cells above the area of Milan, and assigned each

6http://studiolabo.it/
7http://www.fashioninprocess.com/

110

http://www.fashioninprocess.com/

i
i

“thesis” — 2019/1/25 — 17:04 — page 111 — #123 i
i

i
i

i
i

7.2. Milano Fashion Week

(a)

(b)

Figura 7.8: The Figure presents (a) the localization of the five largest groups of European and US visitors
and (b) Italian visitors.

111

i
i

“thesis” — 2019/1/25 — 17:04 — page 112 — #124 i
i

i
i

i
i

Capitolo 7. Case Studies

(a) Granger Causality tests result

(b) Density of posts

Figura 7.9: (a) Granger causality test curves between physical events and social media response of each
brand during the MFW, clustered by similarity of behavior; (b) Geographical dispersion over the cells
of physical events (red stars) and density of social media activity (blue).

112

i
i

“thesis” — 2019/1/25 — 17:04 — page 113 — #125 i
i

i
i

i
i

7.2. Milano Fashion Week

post to the appropriate Cell. The Grid has a square shape, with sides of 10km, divided
into 20 rows and 20 columns, for a total of 400 Cells of 500m × 500m.

According to the FraPPEmodel, an Event is organized by a brand at time �n, hosted inthePlace, located theCell of aGrid. EachCell is related to aPixel and theGrid is captured
by a CapturedFrame. An Agent (a user) may contribute with some OriginalContent
(e.g., Instagram post), related to an Event, which in turn is going to be augmented by an
automated enriching and analysis process that may add entities, as well as extract visual
properties (color, pattern, ...) and concepts (objects, people, ...) from posted images.

We extend FraPPE with FrameLevelSynthesis and PixelLevelSynthesis activities in
order to represent the augmentation activities on the OriginalContent. We also add
further concepts to FraPPE. We name Alive pixels those where the percentage of posts
shared in the considered pixel is more than 1% of the total number of posts in the frame.
We name Active pixels those where the percentage of posts shared in the considered
pixel is more than 10% of the total number of posts in the frame. We name Strongly
Active pixels those where the percentage of posts shared in the considered pixel more
than 20% of the total number of posts in the frame. We compute the number of alive,
active and strongly active cells for all brands; we also compute the differences between
subsequent durations (e.g. 3h - 6h) by counting how many cells changed their state.

Our first goal is to perform a temporal analysis aiming at characterizing the time at
which social media respond to the events which appear in the official calendar and are
linked to specific brands. Exploiting frame level synthesis we observe either peaks of
reactions which then quickly disappear, or instead slower reactions that tend to remain
observable for a longer time. Estimating the time latency of social responses to events
is important for the brands, which could reactively plan more accurate reinforcement
actions, essentially by adding well-planned social actions so as to sustain their social
presence over time. We run Granger causality for each brand to compare the physical
events and the social media reaction, and then we exploite k-means algorithm to clu-
ster the brand by similarity of the Granger curves. Figure 7.9(a) shows the clusters of
Granger causality curves of the brands.

Our second goal is to analyze the geographical dispersion of social media respon-
se. We have two different spatial signals: (i) the calendar events; and (ii) the volume of
social media posts on the Web with geographical information attached, i.e., latitude and
longitude. Given these two signals, several features can be computed in order to descri-
be the spatial dispersion of posts following an event. We compute different measures
that reflect the dispersion of the social media signal over time, using: Gini coefficient,
Average distance of the social media signals from the event location, and the number
of alive, active and strongly active cells. Figure 7.9 (b) shows the map representing the
geographical distribution of events (represented by red stars) and post density using a
synthetic frame where the pixel are darker where the density is higher.

The final result of the analysis is a set of advanced visual interfaces to be exploited by
professional users. The stakeholder (FIP), exploiting those visual interfaces, was able
to observe that: (i) as the duration of the frame increases, the number of alive pixels
also increases. Moreover, the number of active and strongly active pixels is floating
in the range from 1 to 3, with very few brands reaching 4 active pixels. (ii) At the
start of the event, posts are shared near the event location, but, as looking at the bigger
picture, including 24 hours or even the entire period of 24 days, the average distance is

113

i
i

“thesis” — 2019/1/25 — 17:04 — page 114 — #126 i
i

i
i

i
i

Capitolo 7. Case Studies

4

2
1

6
7

3
5

Figura 7.10: The seven irregular data-driven cells based on mobile phone data that cover the Como
territory.

increasing, showing the growing dispersion of the social signal. (iii) TheGini coefficient
proves how the concentration of the social signal remains always high, due also to the
fact that the low percentage of users that allows Instagram to geo-tag their own photo is
reducing the number of authors implied in this study, and so the few authors with high
volumes of posts generated are biasing the results. However, looking at the Gini alive
coefficient, which refers to the Gini coefficient computed only over the pixels that result
alive for at least one brand in the specific frame, they can see a weak smoothing of the
concentration strength with the increasing of the time-scope.

This proposed visual interfaces, based on FraPPE concept (in particular, Frame and
Pixel), result guessable and enable visual correlation of the presence of an event (stars)
to the density of the social activity (darker pixels) over time. The guessability of this
visualizations validates, once more, Hypothesis Hp.3.

7.3 Como Smart City for Smart Citizens

Como Smart City for Smart Citizens (ComoSC2) is a big-data integration project started
in 2016 where we involve the Municipality of Como and TIM-Telecom Italia. The
purpose of the project is to create a system for the integration, analysis and interpretation
of the large amount and heterogeneous data coming from different sources, in order to
understand Como’s urban dynamics and support the decision making process of Como’s
local government.

As in MDW, we analyze the dynamics of mobile phone traffic (preventively ano-
nymized and aggregated, according to privacy-preserving policies) in different areas of
the city. Differently from the experiences in Section 7.1 and 7.2, in ComoSC2 we use
FraPPE with and irregular Grid composed by seven data-driven cells built according
to the distribution of the phone antennas and the characteristics of the area. We na-

114

i
i

“thesis” — 2019/1/25 — 17:04 — page 115 — #127 i
i

i
i

i
i

7.3. Como Smart City for Smart Citizens

me those cells: historical city center, lakeside promenade, touristic areas outside from
the historical center, lake area, mountain area around the city, business and universities
area, industrial outskirts. The map in Figure 7.10 represents the distribution of the seven
cells.

We collect the mobile phone traffic data during several months, in particular we fo-
cuse on the summer period (from May to October 2016). Inside each cell, exploiting
rvr@Spark, we analyze the trend of mobile phone traffic capturing frames with diffe-
rent duration (one hour, one day) and different coverage (the complete grid or a group
of cells). Anonymized mobile phone data contains also information about the SIM (li-
ke international dial-code) and demographics information about the owner of the SIM
(like gender or age-range). As a result, we can perform analysis not only about the
events of people presence but also about the characteristics of people (event content)
and to produce visualizations to ease the understanding of complex data. For instance,
Figure 7.11 shows the comparison between the number of visitors from neighboring
countries of Italy. In particular Figure 7.11(a) shows the amount of visitors during the
summer, while Figure 7.11(b) refers to July.

Besides mobile phone data analysis, we instrumented the Cathedral Square of Como
(Piazza Duomo) with a set of IoT (Internet of Things) sensors for counting people
passing in the square. The installation of the IoT sensors covers all the access to the
square, and each sensor count how many people pass from the access every minute and
push the results in real-time to rvr@Spark. We collect the data from IoT sensors and
model it with FraPPE. Exploiting CapturedFrames with different time duration (hour,
day and week), we construct the trend of passages from and to the Duomo Square ac-
cording to the day of the week and the hour of the day (see Figure 7.12). This trend
represents the starting point to analyze trending pattern and anomalies.

The result of the analysis is a report containing an overview of the crowd movement
around the city. In order to validate Hypothesis Hp.3, we organized a workshop for the
data analysis team of the Municipality of Como. Exploiting the report on the analysis of
mobile traffic data, the analysts were able to identify particular trends. For instance, the
analysis of Figure 7.11 shows that Swiss people usually comes to Como for shopping
on Saturdays in July, but this trend dramatically decreases in September. Moreover, ex-
ploiting the passage trend analysis, the team, identifies two different patterns of people
presence in Duomo Square: one for working days and one for weekends, with a signi-
ficant increase of people during Saturdays and Sundays, with respect to working days.
More in details, they found some differences inside the two patterns. For example in
week-ends clearly emerge a difference during the evenings: Saturday evening shows a
sort of persistence of people presence, while Sunday evenings appear more similar to
working-day evenings. Another significant difference is the increase of people presen-
ce on Tuesday and Thursday mornings, with respect to the other working days. They
are significant because the local market activities in the square during such mornings
induces higher flows than usual.

The report eases the access to the results and is exploited by the Municipality of
Como to enable decision making process to change the urban aspect of the city center
(i.e, the creation of a new pedestrian zone). Once again, we collected experimental
evidence that the FraPPE approach, together with the rvr@Spark implementation of
RI VE R, enables a series of different analytics on data streams characterized by high

115

i
i

“thesis” — 2019/1/25 — 17:04 — page 116 — #128 i
i

i
i

i
i

Capitolo 7. Case Studies

(a)

(b)

Figura 7.11: (a)Number of foreign visitors per country per day in July in Como: Swiss, German, and
French are the most present in the weekends. (b) Number of foreign visitors per country per day in
Como from June to October. One can notice that Swiss visitors decrease sensibly in September.

116

i
i

“thesis” — 2019/1/25 — 17:04 — page 117 — #129 i
i

i
i

i
i

7.4. Conclusion

Mon

Tue

Wed

Thu

Fri

Sat

Sun

#People

0am 6am 12noon 6pm 0am

Hour

Figura 7.12: Patterns of people presence in Duomo Square on working days and weekends: Tuesday,
Thursday and Saturday are more crowded due to open market in the streets; Week ends are extremely
crowded (including Saturday night).

variety. The understandability of complex data and the enabled decisionmaking process
validate Hypothesis Hp.3.

7.4 Conclusion

In this section, we conclude the chapter by showing the correlation of the case studies
with: (i) the adoption and the evolution of the FraPPE concepts, and (ii) the implemen-
tation of RI VE Rthat better fits the analytics needs. Table 7.1 proposes an analysis of
how important each of the FraPPE concept is in the various experiments and shows the
extendibility of FraPPE, while Table 7.2 shows which implementation of RI VE Ris used
in the various use case.

The basic FraPPE concepts were introduced during the Milan Design Week expe-
riences. The accent is on Place and Event. Also the Cell and the Pixel – its time-variant
counterpart – are important to bridge the gap between the analyzed data and the vi-
sual analytics we intend to enable [23]. The Grid and Pixel – its time-variant counter-
part – were useful as abstractions, but they did not play a key role. The provenance of
all steps of the analysis were documented using the generic Action concept; captured
and synthesized were only possible value of an attribute of the action. The data of the
MDW2013 andMDW2014 experiences, is analyzed using SLD (see Section 2.4.1), whi-
le the MDW2016 is the first real world validation for the lazy transformation approach
implemented in Natron, and for the distributed implementations of RI VE Rin Spark
and HIVE. Indeed, during the 2016 edition, the data from telco network (CDR) is cha-
racterized by an high volume, so we first aggregate it using rvr@Spark and rvr@Hive
implementations of RI VE R. Natron, instead, is used to analyze social network data,
enrich it and merge the different data aggregations.

The Milano Fashion Week experience is key to extend the original FraPPE with
the concepts that allow describing the content as well as to extend FraPPE with some
provenance concepts. Specifically for this experience, in FraPPE 2.0.we introduce the
distinction between original and augmented content at event-level. We also perceive

117

i
i

“thesis” — 2019/1/25 — 17:04 — page 118 — #130 i
i

i
i

i
i

Capitolo 7. Case Studies

Tabella 7.1: A comparison of how the FraPPE concepts are used in the two large-scale events of Mi-
lan Design Week (MDW) and Milan Fashion Week (MFW) as well as in a longitudinal analysis we
performed Como. The ‘x’ symbols have the following meaning: xxx – key concept; xx – important
concept; and x – useful concept. The lack of stars means that the concept was not used.

MDW MFW Como
Sp

ati
al Place xxx xxx x

Cell xx x xx
Grid x x xx

Te
mp

ora
l Event xxx xxx x

Pixel xx x xx
Frame x x xx
- CapturedFrame xx xxx
- SyntheticFrame xx xxx

Co
nte

nt

Content xxx x
- Event-level content xxx x
- Original content xxx x
- Augmented content xx x

- Pixel-level synthesis xxx xxx
- Frame-level synthesis xx xxx

Pro
ven

anc
e Action x

- Capture x xx
- Synthesize xx xx
- Augment xx xx

Tabella 7.2: An overview of analysis technologies used in the two large-scale events of Milan Design
Week (MDW) and Milan Fashion Week (MFW) as well as in a longitudinal analysis we performed
Como.

MDW2013 MDW2014 MDW2016 MFW ComoSC2

SLD x x
Natron x x
rvr@Hive x x
rvr@Spark x x

the need to model the content that we connected to each pixels, namely the pixel-level
synthesis. We reflecte this extension also in the provenance part of FraPPE introducing
the capture, the augment and the synthesize actions. The data of theMFWwas analyzed
exploiting Natron and rvr@Hive.

The longitudinal analysis, which we performed on Como in the context of ComoSC2,
serve as validation for FraPPE 2.0. All the concepts are used, although their use and be-
nefit depends on the different types of analysis performed. In particular, more emphasis
is posed on the Grid, the Frames and the frame-level synthesis, which is introduced in
FraPPE during this experience. The data involved in the Como experience, in particu-
lar the demographically enriched CDR, must be pre-aggregated in order to manage its
volume. We exploit rvr@Spark to perform this task and to aggregate the results.

The experiences inMilan (MDWandMFW) and in Como demonstrate the validity of
the FraPPE approach in the data representation, and the robustness of the implementa-
tions of RI VE R. The guessability of the data visualizations improved the understanding
of the urban environment from different points of view and enabled decision making

118

i
i

“thesis” — 2019/1/25 — 17:04 — page 119 — #131 i
i

i
i

i
i

7.4. Conclusion

processes by the stakeholders. The results of these experiences validate Hypothesis
Hp.3.

119

i
i

“thesis” — 2019/1/25 — 17:04 — page 120 — #132 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 121 — #133 i
i

i
i

i
i

CAPITOLO8
Conclusion

During the PhD research work reported in this thesis, we develop our research question
exploiting the Macro, Mezzo and Micro methodology [14]. At Macro level, we focus
on relevancy and formulate the question: Is it possible to support reactive decisions by
managing data characterized by velocity and variety without forgetting volume?

In order to specify a problem for which we can find a viable solution, at Mezzo
Level, we concentrate our effort on the task of visually making sense of spatio-temporal
streaming data. The result of those reflections is the question: Is it possible to visually
making sense of a variety of spatio-temporal streaming data by enabling continuous
ingestion and reactive analysis?

Willing to formalize a question at micro level, for which we can find a solution that
can be evaluated, we look for spatio-temporal data sources. We observed that modern
cities offer a growing volume of heterogeneous flowing data from sensors, telecommu-
nication infrastructures, time tables of public services, and, last but not least, from the
people who leave the city every day (e.g., citizens, commuters, tourists, etc.). Thanks
to the nature and the availability of those urban data, the interest around them are gro-
wing fast. So, in this PhD thesis, we investigate the micro question: Is it possible to
continuously ingest and reactively analyses a variety of streaming urban data in order
to visualize emerging patterns and their dynamics?

8.1 Review of the Contributions

In this section, we offer an overview of the thesis’ contributions in terms of the problems
solved and how they offer a valid solution for the research questions. The development
of each contribution is related to one or more research problems and its validation is
guided by the formulation of one or more hypotheses.

121

i
i

“thesis” — 2019/1/25 — 17:04 — page 122 — #134 i
i

i
i

i
i

Capitolo 8. Conclusion

Reflecting on the research questions, we split the research work in two different sub-
lines: data modeling and data computation.

Investigating the former sub-line a first problem emerges:
Rp.1 Defining a conceptual model to represent a variety of streaming data.
To address Rp.1 we formulate the hypotheses Hp.1.1 and Hp.1.2:

Hp.1.1 A conceptual model containing terms from the image processing domain
can represent spatio-temporal data in an extendable and coherent way with a
minimal encoding bias and a minimal ontological commitment.

Hp.1.2 Visual analytics interfaces built directly on data represented with the
conceptual model of Hp.1.1 are guessable.

In order to validate Hp.1.1 and Hp.1.2, we propose FraPPE ontology (see Chapter 4)
that exploits digital image processing terms to tame three main dimensions of analysis
(i.e., space, time, and content) and enables OBDA operations on heterogeneous spatio-
temporal data.

FraPPE bridges the gap between the data engineer perspective and the visual analy-
tics perspective. We formally evaluated FraPPE by checking its adherence to the Tom
Gruber’s principle and, in doing so, we validate the Hypothesis Hp.1.1. From the visual
analytics perspective, we validate the Hypothesis Hp.1.2 by empirically checking the
guessability of the visualizations created exploiting the data modeled using FraPPE.

Investigating on the latter sub-line (on data computation) two problems emerge:
Rp.2 Defining a streaming computational model to enable analysis on a variety of data.
Rp.3 Defining appropriate technical instantiations of the computational model in Rp.2.
In order to investigate the research questions and address Rp.2 and Rp.3, we propose

RI VE Rcomputational model and its implementations (see Chapter 5 and Chapter 6).
RI VE Ris a streaming computational model inspired by two principles: (P1) everything
is a data stream, and (P2) continuous ingestion. It is built around the idea of Lazy
Transformation. Differently from the state of the art, a system that implements RI VE R
can postpone data transformations until it can really benefits from them. To validate
RI VE Rand the Lazy Transformation approach, we formulate the hypothesis:
Hp.2.1 The implementation of a streaming computational model that defers as long

as possible the data transformation demands less resources and better approxi-
mates the correct answer under stress conditions than an implementation of a
computational model that cast data into RDF at ingestion time.

We propose Natron a single-threaded vertically scalable implementation of RI VE R
and evaluated it against our Streaming Linked Data (SLD) engine that apply data tran-
sformation (to RDF) at ingestion time. We evaluate both the systems in terms of cor-
rectness and resource consumption. The result of such evaluation validates Hypothesis
Hp.2.1 and convince us in assuming the Lazy Transformation as a third principle (P3).

In order to prove the adequacy of RI VE Rin different work conditions, we pro-
pose two horizontally scalable implementations based on distributed technologies
(rvr@Spark and rvr@Hive). Aiming at reaffirming the importance of cost-effectiveness
in Stream Processing field we formulate the hypothesis:

122

i
i

“thesis” — 2019/1/25 — 17:04 — page 123 — #135 i
i

i
i

i
i

8.2. Limitations and Future Directions

Hp.2.2 A single-threaded implementation of the streaming computational model from
Hp.2.1 is more cost-effective than a distributed implementation of the same
model while guaranteeing the reactiveness of the system.

The overall results of the comparative evaluation of Natron against rvr@Spark
validate Hypothesis Hp.2.2.

Focusing on assessing the validity of the proposed solutions, a last problem emerges:
Rp.4 Assessing, in real world scenarios, the feasibility and the effectiveness of the

instantiations developed addressing Rp.3 using the results proposed for Rp.1 and
Rp.2.

In order to solve Rp.4, we formulate the hypothesis:
Hp.3 An implementation of RI VE Rthat uses FraPPE, can create a bridge between

data analytics and data visualization that enhances the comprehension of a
variety of spatio-temporal data and, at the same time, it can allow reactive
decisions.

Aiming at validating Hypothesis Hp.3, we put at work FraPPE and RI VE R’s imple-
mentations in four week-long case studies in Milan (during the Milano Design Week in
2014, 2015 and 2016, and theMilano FashionWeek 2016) and a 6months-long use case
in Como. We evaluate the guessability of the visualizations by collecting the answers to
a questionnaire proposed to the public audiences and by organizing workshops for the
use cases’ stakeholders – Studiolabo1, one of the biggest organizer of theMilano Design
Week events, Camera della Moda, the organizer of the Milano Fashion Week, and the
Municipalities of Como. All those audiences were asked to visually correlate events
and to find data patterns through the visualizations. The collected results demonstrate
the validity of the FraPPE approach in the data representation, and the robustness of the
implementations of RI VE R.

8.2 Limitations and Future Directions

In this section, we discuss the limitations we identified in this research work and the
future directions to take to overcome those limitations.

The FraPPE evaluation shows its effectiveness in making spatio-temporal data ready
for visual analytics. We prove the validity of the model at Micro and Mezzo level, but
we have no evidence of it at Macro level. In the future, it is worth to keep working on
the validation of the model by involving different data for different reactive tasks.

Moreover, in order to reduce the ontology complexity and enable OBDA operations,
FraPPE exploits only the terms of external ontologies, without any axiomatization. The
relation between OBDA and data model complexity represents a challenge in multiple
fields and it is an hot research topic. For instance, in spatial reasoning, the transitive
relations play a crucial role, but they are not compatible with an OWL-QL data model
and, consequently, with OBDA. In this field, Eiter et al. in [139] exploit a DL-LiteA datamodel to present a query rewriting approach for the traffic, while in [140] they present
two automatic routing use cases. In parallel, Kontchakov et al. in [141] propose a new

1http://www.studiolabo.it

123

http://www.studiolabo.it

i
i

“thesis” — 2019/1/25 — 17:04 — page 124 — #136 i
i

i
i

i
i

Capitolo 8. Conclusion

query language, based on datalog, for performing spatial analysis. Also the data ana-
lytics world suffers the problem. Mehdi et al. in [142] propose an innovative approach
to create ontologies for the data analysis, while Kharlamov et al. in [143] present a ty-
pical use cases of reasoning for data analysis. Artale et al. in the survey [144] on time
series analysis methods demonstrate how this problem is hot and wide, while Brandt
et al. in [145] proposes different methodologies for dealing with it. In the future it is
worth to keep monitoring the OBDA field advances to improve FraPPE expressiveness,
for broadening the range of usage fields and fostering its adoption.

From the data computation point of view, RI VE Rand the Pipeline Definition Lan-
guage (PDL) help users in designing computational plans, but they do not offer any
concrete help in abstracting from the physical implementation of each operator. In par-
ticular, PDL, is only a graphical syntax, and it is still missing an editor and a compiler.
Next step is to use RI VE Rand PDL for automating optimizations of the streaming com-
putation. Future developments of RI VE Rand PDL should concern static optimization –
regarding the automatic selection of the physical operators – and dynamic optimization
– regarding the automatic decision about the best moment to perform a data transforma-
tion. Investigating on the formal definition of operators’ cost model represents a viable
solution to ease the proposed optimizations. An operators’ cost model allows to estimate
the overall cost of the pipelines and to automatically detect the best computational plan
from the cost-effectiveness perspective. From the external evaluation point of view, a
formal cost model allows a formal comparison of RI VE Ragainst already existing com-
putational models. Last but not least, we also aim at automating the code generation. To
this end, we need to work on the alignment of the algebraic representations of RI VE Rto
the existing stream processing engines that we want to target with our code generation.

As for FraPPE, it is worth to keep working on the validation of RI VE Rthrough
its implementations by broadening the type of involved tasks and data. In particular,
the development of the distributed implementation of RI VE Ris still at an early stage.
Distributed framework is an hot topic and, in the future, it is worth to keep working on
rvr@Spark and rvr@Hive in order to exploit their potential and to explore further distri-
buted technologies integration (e.g., rvr@Kafka). Moreover, it is worth to keep working
on comparison by broadening the range of the involved system (e.g., CQELSCloud [70],
Strider [72], etc.) and exploiting well known benchmark (e.g. Yahoo! benchmark).

8.3 Reflections

In this thesis, we proposed a complete set of instruments to enable reactive decision
making through the visual analysis of a variety of spatio-temporal data. The results of
the formal and empirical evaluations show that FraPPE conceptual model, RI VE Rstrea-
ming computational model and its implementations (Natron, rvr@Spark and rvr@Hive)
represent valid, effective and feasible solutions to the research questions and improve
the state of the art.

From the data modeling point of view the presented conceptual model propose an
holistic perspective on the spatio-temporal data in order to enable data visualization
and different analysis. From the data computation perspective, the proposed computa-
tional model with its implementation represent a valid solution to ingest, analyze and

124

i
i

“thesis” — 2019/1/25 — 17:04 — page 125 — #137 i
i

i
i

i
i

8.3. Reflections

emit a variety of streaming data. Moreover, we validated the proposed solutions in five
different urban use cases.

However, our approach presents different limitations from both the perspectives, such
as the missing axiomatizations of the terms from the imported ontologies in the con-
ceptual model and the missing definition of a formal cost-model for the computational
model. Those limitations open the door to further investigations and optimizations.

125

i
i

“thesis” — 2019/1/25 — 17:04 — page 126 — #138 i
i

i
i

i
i

i
i

“thesis” — 2019/1/25 — 17:04 — page 127 — #139 i
i

i
i

i
i

Bibliografia

[1] Rob Kitchin. The real-time city? big data and smart urbanism. GeoJournal, 79(1):1–14, 2014.
[2] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang, Tony Kyung-il Lee,

Seon-Ho Kim, and Volker Tresp. BOTTARI: an augmented reality mobile application to deliver personalized
and location-based recommendations by continuous analysis of social media streams. J. Web Sem., 16:33–41,
2012.

[3] Freddy Lécué, Simone Tallevi-Diotallevi, Jer Hayes, Robert Tucker, Veli Bicer, Marco Luca Sbodio, and
Pierpaolo Tommasi. Smart traffic analytics in the semantic web with STAR-CITY: scenarios, system and
lessons learned in dublin city. J. Web Sem., 27:26–33, 2014.

[4] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User movement in location-based
social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’11, pages 1082–1090, New York, NY, USA, 2011. ACM.

[5] Marco Balduini, Emanuele Della Valle, Daniele Dell’Aglio, Mikalai Tsytsarau, Themis Palpanas, and Cristian
Confalonieri. Social listening of city scale events using the streaming linked data framework. In International
Semantic Web Conference (2), volume 8219 of Lecture Notes in Computer Science, pages 1–16. Springer,
2013.

[6] Nathan Eagle and Alex Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous
Computing, 10(4):255–268, 2006.

[7] Richard A. Becker, Ramón Cáceres, Karrie Hanson, Ji Meng Loh, Simon Urbanek, Alexander Varshavsky,
and Chris Volinsky. A tale of one city: Using cellular network data for urban planning. IEEE Pervasive
Computing, 10(4):18–26, 2011.

[8] Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and Carlo Ratti. Real-time urban
monitoring using cell phones: A case study in rome. IEEE Trans. Intelligent Transportation Systems,
12(1):141–151, 2011.

[9] Desislava Hristova, David Liben-Nowell, Anastasios Noulas, and Cecilia Mascolo. If you’ve got the money,
i’ve got the time: Spatio-temporal footprints of spending at sports events on foursquare. In CitiLab@ ICWSM,
2016.

[10] Marco Balduini, Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, Yi Huang, Tony Kyung-il Lee,
Seon-Ho Kim, and Volker Tresp. Reality mining on micropost streams - deductive and inductive reasoning
for personalized and location-based recommendations. Semantic Web, 5(5):341–356, 2014.

[11] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intelligent Systems, 24(6):83–89, 2009.

[12] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus.
C-SPARQL: a continuous query language for RDF data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

[13] Marco Balduini, Alessandro Bozzon, Emanuele Della Valle, Yi Huang, and Geert-Jan Houben. Recom-
mending venues using continuous predictive social media analytics. IEEE Internet Computing, 18(5):28–35,
2014.

127

i
i

“thesis” — 2019/1/25 — 17:04 — page 128 — #140 i
i

i
i

i
i

Bibliografia

[14] Jeffrey R. Lacasse and Eileen Gambrill. Making assessment decisions: Macro, mezzo, andmicro perspectives.
In Critical Thinking in Clinical Assessment and Diagnosis, pages 69–84. Springer, 2015.

[15] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246. ACM, 2002.
[16] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo. Methontology: from ontological art

towards ontological engineering. 1997.
[17] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge sharing? Int. J.

Hum.-Comput. Stud., 43(5-6):907–928, 1995.
[18] FrankMcSherry, Michael Isard, and Derek GordonMurray. Scalability! but at what cost? InHotOS. USENIX

Association, 2015.
[19] Fabrizio Antonelli, Matteo Azzi, Marco Balduini, Paolo Ciuccarelli, Emanuele Della Valle, and Roberto Lar-

cher. City sensing: visualising mobile and social data about a city scale event. In AVI, pages 337–338. ACM,
2014.

[20] Marco Balduini and Emanuele Della Valle. Frappe: A vocabulary to represent heterogeneous spatio-temporal
data to support visual analytics. In ISWC (2), volume 9367 of LNCS, pages 321–328. Springer, 2015.

[21] Emanuele Della Valle and Marco Balduini. Listening to and visualising the pulse of our cities using social
media and call data records. In BIS (Workshops), volume 228 of LNBIP, pages 3–14. Springer, 2015.

[22] Marco Balduini, Emanuele Della Valle, and Riccardo Tommasini. SLD revolution: A cheaper, faster yet
more accurate streaming linked data framework. In ESWC (Satellite Events), volume 10577 of LNCS, pages
263–279. Springer, 2017.

[23] Marco Balduini, Emanuele Della Valle, Matteo Azzi, Roberto Larcher, Fabrizio Antonelli, and Paolo
Ciuccarelli. Citysensing: Fusing city data for visual storytelling. IEEE MultiMedia, 22(3):44–53, 2015.

[24] Marco Balduini, Sivam Pasupathipillai, and Emanuele Della Valle. Cost-aware streaming data analysis:
Distributed vs single-thread. In DEBS, pages 160–170. ACM, 2018.

[25] Marco Balduini, Marco Brambilla, Emanuele Della Valle, Christian Marazzi, Tahereh Arabghalizi, Behnam
Rahdari, and Michele Vescovi. Models and practices in urban data science at scale. Big Data Research, 2018.

[26] Marco Balduini. On the continuous and reactive analysis of a variety of spatio-temporal data. Submitted to
ISWC 2018 DC.

[27] Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors. Data Stream Management - Processing
High-Speed Data Streams. Data-Centric Systems and Applications. Springer, 2016.

[28] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. http://www.w3.org/
TR/rdf-sparql-query/.

[29] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus.
Incremental Reasoning on Streams and Rich Background Knowledge. In ESWC, 2010.

[30] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A native and adaptive
approach for unified processing of linked streams and linked data. In International Semantic Web Conference
(1), volume 7031 of Lecture Notes in Computer Science, pages 370–388. Springer, 2011.

[31] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray. Enabling ontology-based access to streaming
data sources. In International Semantic Web Conference (1), volume 6496 of Lecture Notes in Computer
Science, pages 96–111. Springer, 2010.

[32] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for event processing and
stream reasoning. In WWW2011, pages 635–644, 2011.

[33] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language: semantic
foundations and query execution. VLDB J., 15(2):121–142, 2006.

[34] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura M. Haas, Renée J. Miller, and Nesime Tatbul. SE-
CRET: A model for analysis of the execution semantics of stream processing systems. PVLDB, 3(1):232–243,
2010.

[35] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012.

[36] Nathan Marz and James Warren. Big Data: Principles and best practices of scalable real-time data systems.
New York; Manning Publications Co., 2015.

[37] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed messaging system for log processing. In
Proceedings of the NetDB, pages 1–7, 2011.

128

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

i
i

“thesis” — 2019/1/25 — 17:04 — page 129 — #141 i
i

i
i

i
i

Bibliografia

[38] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, ShivaramVenkataraman,Michael J. Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker,
and Ion Stoica. Apache spark: a unified engine for big data processing. Commun. ACM, 59(11):56–65, 2016.

[39] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[40] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: fault-tolerant streaming computation at scale. In Michael Kaminsky and Mike Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 423–438. ACM, 2013.

[41] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi,
Ion Stoica, and Matei Zaharia. Structured streaming: A declarative API for real-time applications in apache
spark. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-
15, 2018, pages 601–613. ACM, 2018.

[42] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive - A warehousing solution over a map-reduce framework. PVLDB,
2(2):1626–1629, 2009.

[43] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[44] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge sharing? Int. J.
Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[45] Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intelligence. Morgan Kaufmann,
1988.

[46] Richard Cyganiak, David Wood, Markus Lanthaler, Graham Klyne, Jeremy J Carroll, and Brian McBride.
Rdf 1.1 concepts and abstract syntax. W3C recommendation, 25(02), 2014.

[47] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. Sparql 1.1 query language. W3C recommendation,
21(10), 2013.

[48] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of SPARQL. ACM Trans.
Database Syst., 34(3):16:1–16:45, 2009.

[49] Mari Carmen Suárez-Figueroa. NeOn methodology for building ontology networks: specification, scheduling
and reuse. PhD thesis, Technical University of Madrid, 2012.

[50] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

[51] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic architecture for storing and
querying RDF and RDF schema. In International Semantic Web Conference, volume 2342 of Lecture Notes
in Computer Science, pages 54–68. Springer, 2002.

[52] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient OWL reasoner. In OWLED, volume
432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[53] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. Rdfox: A highly-scalable
RDF store. In International SemanticWebConference (2), volume 9367 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2015.

[54] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. Incremental update of datalog
materialisation: the backward/forward algorithm. In AAAI, pages 1560–1568. AAAI Press, 2015.

[55] Raphael Volz, Steffen Staab, and BorisMotik. Incrementally maintainingmaterializations of ontologies stored
in logic databases. J. Data Semantics, 2:1–34, 2005.

[56] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Ma-
riano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering SPARQL queries over relational databases.
Semantic Web, 8(3):471–487, 2017.

[57] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga, and Alessandro Campi. A
first step towards stream reasoning. In FIS, volume 5468 of Lecture Notes in Computer Science, pages 72–81.
Springer, 2008.

129

i
i

“thesis” — 2019/1/25 — 17:04 — page 130 — #142 i
i

i
i

i
i

Bibliografia

[58] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus.
Incremental reasoning on streams and rich background knowledge. In ESWC (1), volume 6088 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2010.

[59] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continuous schema-enhanced pattern matching
over RDF data streams. In DEBS, pages 58–68. ACM, 2012.

[60] Yuan Ren and Jeff Z. Pan. Optimising ontology stream reasoning with truth maintenance system. In CIKM,
pages 831–836. ACM, 2011.

[61] Fredrik Heintz and Patrick Doherty. Dyknow: An approach to middleware for knowledge processing. Journal
of Intelligent and Fuzzy Systems, 15(1):3–13, 2004.

[62] Fredrik Heintz. DyKnow : A Stream-Based Knowledge Processing Middleware Framework. PhD thesis,
Linköping University, Sweden, 2009.

[63] Daniel de Leng and Fredrik Heintz. Qualitative spatio-temporal stream reasoning with unobservable
intertemporal spatial relations using landmarks. In AAAI, pages 957–963. AAAI Press, 2016.

[64] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic. Stream reasoning and complex event
processing in ETALIS. Semantic Web, 3(4):397–407, 2012.

[65] Emanuele Della Valle, Daniele Dell’Aglio, and Alessandro Margara. Taming velocity and variety
simultaneously in big data with stream reasoning: tutorial. In DEBS, pages 394–401. ACM, 2016.

[66] Davide Francesco Barbieri and Emanuele Della Valle. A proposal for publishing data streams as linked data
- A position paper. In Proceedings of the WWW2010 Workshop on Linked Data on the Web, LDOW 2010,
Raleigh, USA, April 27, 2010, 2010.

[67] Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte, and Óscar Corcho. RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems. Int. J. Semantic Web Inf.
Syst., 10(4):17–44, 2014.

[68] Jean-Paul Calbimonte, Hoyoung Jeung, Óscar Corcho, and Karl Aberer. Enabling query technologies for the
semantic sensor web. Int. J. Semantic Web Inf. Syst., 8(1):43–63, 2012.

[69] Mikko Rinne, Esko Nuutila, and Seppo Törmä. INSTANS: high-performance event processing with standard
RDF and SPARQL. In International Semantic Web Conference (Posters & Demos), volume 914 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

[70] Danh Le Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, and Manfred Hauswirth. Elastic and scalable pro-
cessing of linked stream data in the cloud. In International Semantic Web Conference (1), volume 8218 of
Lecture Notes in Computer Science, pages 280–297. Springer, 2013.

[71] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper: Wait-free coor-
dination for internet-scale systems. In USENIX Annual Technical Conference. USENIX Association,
2010.

[72] Xiangnan Ren and Olivier Curé. Strider: A hybrid adaptive distributed RDF stream processing engine. In
International Semantic Web Conference (1), volume 10587 of Lecture Notes in Computer Science, pages
559–576. Springer, 2017.

[73] Danh Le Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and Manfred Hauswirth. A middleware
framework for scalable management of linked streams. J. Web Sem., 16:42–51, 2012.

[74] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far. Int. J. Semantic Web Inf.
Syst., 5(3):1–22, 2009.

[75] Juan F. Sequeda and Óscar Corcho. Linked stream data: A position paper. In SSN, volume 522 of CEUR
Workshop Proceedings, pages 148–157. CEUR-WS.org, 2009.

[76] TomHeath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures
on the Semantic Web. Morgan & Claypool Publishers, 2011.

[77] Jim Gray, editor. The Benchmark Handbook for Database and Transaction Systems (2nd Edition). Morgan
Kaufmann, 1993.

[78] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey, Esther Ryvkina, Michael
Stonebraker, and Richard Tibbetts. Linear road: A stream data management benchmark. In VLDB, pages
480–491. Morgan Kaufmann, 2004.

130

i
i

“thesis” — 2019/1/25 — 17:04 — page 131 — #143 i
i

i
i

i
i

Bibliografia

[79] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo Liu,
Kyle Nusbaum, Kishorkumar Patil, Boyang Peng, and Paul Poulosky. Benchmarking streaming computation
engines: Storm, flink and spark streaming. In IPDPS Workshops, pages 1789–1792. IEEE Computer Society,
2016.

[80] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and VolkerMarkl.
Benchmarking distributed stream processing engines. CoRR, abs/1802.08496, 2018.

[81] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, JigneshM. Patel, Sanjeev Kulkarni,
Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy V.
Ryaboy. Storm@twitter. In SIGMOD Conference, pages 147–156. ACM, 2014.

[82] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[83] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara, Emanuele Della Valle, and Abraham Bernstein.
Seven commandments for benchmarking semantic flow processing systems. InESWC, volume 7882 of Lecture
Notes in Computer Science, pages 305–319. Springer, 2013.

[84] Daniele Dell’Aglio, Jean-Paul Calbimonte, Marco Balduini, Óscar Corcho, and Emanuele Della Valle. On
correctness in RDF stream processor benchmarking. In International Semantic Web Conference (2), volume
8219 of Lecture Notes in Computer Science, pages 326–342. Springer, 2013.

[85] Ying Zhang, Minh-Duc Pham, Óscar Corcho, and Jean-Paul Calbimonte. Srbench: A streaming RDF/SPAR-
QL benchmark. In International Semantic Web Conference (1), volume 7649 of Lecture Notes in Computer
Science, pages 641–657. Springer, 2012.

[86] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. Citybench: A configurable benchmark to evaluate
RSP engines using smart city datasets. In International Semantic Web Conference (2), volume 9367 of Lecture
Notes in Computer Science, pages 374–389. Springer, 2015.

[87] Maxim Kolchin, Peter Wetz, Elmar Kiesling, and A Min Tjoa. Yabench: A comprehensive framework for
RDF stream processor correctness and performance assessment. In ICWE, volume 9671 of Lecture Notes in
Computer Science, pages 280–298. Springer, 2016.

[88] Riccardo Tommasini, Emanuele Della Valle, Marco Balduini, and Daniele Dell’Aglio. Heaven: A framework
for systematic comparative research approach for RSP engines. In ESWC, volume 9678 of Lecture Notes in
Computer Science, pages 250–265. Springer, 2016.

[89] Christoph Boden, Tilmann Rabl, and Volker Markl. Distributed machine learning-but at what cost? Private
Communication, 2018.

[90] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. Urban sensing using mobile phone network data:
A survey of research. ACM Comput. Surv., 47(2):25:1–25:20, 2014.

[91] Marta C Gonzalez, Cesar A Hidalgo, and A-L Barabasi. Understanding individual human mobility patterns.
arXiv preprint arXiv:0806.1256, 2008.

[92] Julián Candia, Marta C González, Pu Wang, Timothy Schoenharl, Greg Madey, and Albert-László Barabási.
Uncovering individual and collective human dynamics from mobile phone records. Journal of physics A:
mathematical and theoretical, 41(22):224015, 2008.

[93] GavinMcArdle, Giusy Di Lorenzo, Fabio Pinelli, Francesco Calabrese, and Erik Van Lierde. Analyzing social
events in real-time using big mobile data. IEEE COMSOC MMTC E-Letter, 2015.

[94] Ramón Cáceres, James Rowl, Christopher Small, and Simon Urbanek. Exploring the use of urban greenspace
through cellular network activity, 2012.

[95] Carlo Ratti, Dennis Frenchman, Riccardo Maria Pulselli, and Sarah Williams. Mobile landscapes: using
location data from cell phones for urban analysis. Environment and Planning B: Planning and Design,
33(5):727–748, 2006.

[96] Marco De Nadai, Jacopo Staiano, Roberto Larcher, Nicu Sebe, Daniele Quercia, and Bruno Lepri. The death
and life of great italian cities: a mobile phone data perspective. In Proceedings of the 25th International Con-
ference onWorldWideWeb, pages 413–423. InternationalWorldWideWeb Conferences Steering Committee,
2016.

[97] Jane Jacobs. The death and life of American cities. 1961.
[98] Amy Wesolowski, Nathan Eagle, Abdisalan M Noor, Robert W Snow, and Caroline O Buckee. The impact

of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society Interface,
10(81):20120986, 2013.

131

i
i

“thesis” — 2019/1/25 — 17:04 — page 132 — #144 i
i

i
i

i
i

Bibliografia

[99] Myeong Lee, Rosta Farzan, and Brian S Butler. This is not just a café: Toward capturing the dynamics of
urban places. In CitiLab@ ICWSM, 2016.

[100] Achilleas Psyllidis, Alessandro Bozzon, Stefano Bocconi, and Christiaan Titos Bolivar. A platform for urban
analytics and semantic data integration in city planning. In CAAD Futures, pages 21–36. Springer, 2015.

[101] Vivek K. Singh, Mingyan Gao, and Ramesh Jain. Social pixels: genesis and evaluation. In ACMMultimedia,
pages 481–490. ACM, 2010.

[102] Federico Botta, Helen Susannah Moat, and Tobias Preis. Quantifying crowd size with mobile phone and
twitter data. Royal Society open science, 2(5):150162, 2015.

[103] Daniele Quercia, Giusy Di Lorenzo, Francesco Calabrese, and Carlo Ratti. Mobile phones and outdoor
advertising: measurable advertising. Institute of Electrical and Electronics Engineers, 2011.

[104] Francesco Calabrese, Francisco C Pereira, Giusy Di Lorenzo, Liu Liang, and Carlo Ratti. The geography
of taste: Analyzing cell-phone mobility and social events. In Pervasive, volume 10, pages 22–37. Springer,
2010.

[105] Daniele Quercia, Neal Lathia, Francesco Calabrese, Giusy Di Lorenzo, and Jon Crowcroft. Recommen-
ding social events from mobile phone location data. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 971–976. IEEE, 2010.

[106] Kaoutar Ben Ahmed, Mohammed Bouhorma, and Mohamed Ben Ahmed. Smart citizen sensing: a proposed
computational system with visual sentiment analysis and big data architecture. IJCA, 152(6), 2016.

[107] Bartosz Hawelka, Izabela Sitko, Euro Beinat, Stanislav Sobolevsky, Pavlos Kazakopoulos, and Carlo Ratti.
Geo-located twitter as proxy for global mobility patterns. Cartography and Geographic Information Science,
41(3):260–271, 2014.

[108] Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. Human mobility prediction based on individual and
collective geographical preferences. In Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on, pages 312–317. IEEE, 2010.

[109] UNHabitat. Urbanization and development: emerging futures; world cities report 2016. Nairobi, UNHabitat,
2016.

[110] Matthew R Sanderson, Ben Derudder, Michael Timberlake, and Frank Witlox. Are world cities also world
immigrant cities? an international, cross-city analysis of global centrality and immigration. International
Journal of Comparative Sociology, 56(3-4):173–197, 2015.

[111] Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R Stevens, Andrea E Gaughan,
Vincent DBlondel, and Andrew J Tatem. Dynamic populationmapping usingmobile phone data. Proceedings
of the National Academy of Sciences, 111(45):15888–15893, 2014.

[112] Jakob RE Leimgruber. The management of multilingualism in a city-state. Multilingualism and language
diversity in urban areas: Acquisition, identities, space, education, 1:227, 2013.

[113] Ofelia García and Joshua A Fishman. The multilingual apple: languages in New York City. Walter de Gruyter,
2001.

[114] Guus Extra and Kutlay YaÇ§mur. Urban multilingualism in Europe: Immigrant minority languages at home
and school, volume 130. Multilingual matters, 2004.

[115] Dan Tasse, Jennifer T Chou, and Jason I Hong. Generating neighborhood guides from social media. In
CitiLab@ ICWSM, 2016.

[116] Michela Arnaboldi, Marco Brambilla, Beatrice Cassottana, Paolo Ciuccarelli, Davide Ripamonti, Simone
Vantini, and Riccardo Volonterio. Studying multicultural diversity of cities and neighborhoods through social
media language detection. In CitiLab@ ICWSM, 2016.

[117] Eszter Bokányi, Dániel Kondor, László Dobos, Tamás Sebők, József Stéger, István Csabai, and Gábor Vattay.
Race, religion and the city: twitter word frequency patterns reveal dominant demographic dimensions in the
united states. 2015.

[118] Marco Quaggiotto, Donato Ricci, Gaia Scagnetti, Giorgio Caviglia, Daniele Guido, Michele Graffieti, and
Samuel Granados Lopez. New maps from the media-city. citymurmur as a tool for the visualization of urban
space. In Nouvelles cartographies, nouvelles villes. HyperUrbain.2. Europia Production, 2010.

[119] ShlomoYitzhaki. On an extension of the gini inequality index. International economic review, pages 617–628,
1983.

132

i
i

“thesis” — 2019/1/25 — 17:04 — page 133 — #145 i
i

i
i

i
i

Bibliografia

[120] Emanuele Della Valle, Irene Celino, Daniele Dell’Aglio, Ralph Grothmann, Florian Steinke, and Volker Tresp.
Semantic traffic-aware routing using the larkc platform. IEEE Internet Computing, 15(6):15–23, 2011.

[121] Dieter Fensel, Frank van Harmelen, Bo Andersson, Paul Brennan, Hamish Cunningham, Emanuele Della
Valle, Florian Fischer, Zhisheng Huang, Atanas Kiryakov, Tony Kyung-il Lee, Lael Schooler, Volker Tresp,
Stefan Wesner, Michael J. Witbrock, and Ning Zhong. Towards larkc: A platform for web-scale reasoning.
In ICSC, pages 524–529. IEEE Computer Society, 2008.

[122] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Materializing and querying learned
knowledge. Proc. of IRMLeS, 2009, 2009.

[123] Yi Huang, Volker Tresp, Markus Bundschus, Achim Rettinger, and Hans-Peter Kriegel. Multivariate predic-
tion for learning on the semantic web. In International Conference on Inductive Logic Programming, pages
92–104. Springer, 2010.

[124] Kristin A Cook and James J Thomas. Illuminating the path: The research and development agenda for visual
analytics. 2005.

[125] Jackie Moyes and Patrick W Jordan. Icon design and its effect on guessability, learnability, and experienced
user performance. People and computers, (8):49–60, 1993.

[126] Robert Battle and Dave Kolas. Geosparql: enabling a geospatial semantic web. Semantic Web Journal,
3(4):355–370, 2011.

[127] Jerry R. Hobbs and Feng Pan. Time Ontology in OWL, September 2006.
[128] Yves Raimond and Samer Abdallah. The event ontology, 2007. http://motools.sf.net/event.
[129] Khalid Belhajjame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and

Jun Zhao. PROV-O: The PROV Ontology. Technical report, W3C, 2012.
[130] John G. Breslin, Stefan Decker, Andreas Harth, and Uldis Bojars. SIOC: an approach to connect web-based

communities. IJWBC, 2(2):133–142, 2006.
[131] Mehdi Jazayeri, Rüdiger Loos, and David R. Musser, editors. Generic Programming, International Seminar

on Generic Programming, Dagstuhl Castle, Germany, April 27 - May 1, 1998, Selected Papers, volume 1766
of Lecture Notes in Computer Science. Springer, 2000.

[132] Gautier Krings, Francesco Calabrese, Carlo Ratti, and Vincent D Blondel. Urban gravity: a model for inter-
city telecommunication flows. Journal of Statistical Mechanics: Theory and Experiment, 2009(07):L07003,
2009.

[133] Charu C Aggarwal. Outlier analysis. In Data mining, pages 237–263. Springer, 2015.
[134] Alex Pentland. Social signal processing [exploratory dsp]. IEEE Signal ProcessingMagazine, 24(4):108–111,

2007.
[135] Marco Balduini and Emanuele Della Valle. A restful interface for RDF stream processors. In International

Semantic Web Conference (Posters &Demos), volume 1035 ofCEURWorkshop Proceedings, pages 209–212.
CEUR-WS.org, 2013.

[136] Prajakta S Kalekar. Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi School
of Information Technology, 4329008:1–13, 2004.

[137] Marco Brambilla, Stefano Ceri, Florian Daniel, and Gianmarco Donetti. Temporal analysis of social media
response to live events: The milano fashion week. In Jordi Cabot, Roberto De Virgilio, and Riccardo Tor-
lone, editors, Web Engineering: 17th International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017,
Proceedings, pages 134–150, Cham, 2017. Springer International Publishing.

[138] Marco Brambilla, Stefano Ceri, Florian Daniel, and Gianmarco Donetti. Spatial analysis of social media
response to live events: The case of the milano fashion week. In Proceedings of the 26th International Con-
ference on World Wide Web Companion, WWW ’17 Companion, pages 1457–1462, Republic and Canton of
Geneva, Switzerland, 2017. International World Wide Web Conferences Steering Committee.

[139] Thomas Eiter, Josiane Xavier Parreira, and Patrik Schneider. Spatial ontology-mediated query answering over
mobility streams. In ESWC (1), volume 10249 of Lecture Notes in Computer Science, pages 219–237, 2017.

[140] Thomas Eiter, Thomas Krennwallner, Matthias Prandtstetter, Christian Rudloff, Patrik Schneider, and Mar-
kus Straub. Semantically enriched multi-modal routing. Int. J. Intelligent Transportation Systems Research,
14(1):20–35, 2016.

[141] RomanKontchakov, Laura Pandolfo, Luca Pulina, Vladislav Ryzhikov, andMichael Zakharyaschev. Temporal
and spatial OBDA with many-dimensional halpern-shoham logic. In IJCAI, pages 1160–1166. IJCAI/AAAI
Press, 2016.

133

i
i

“thesis” — 2019/1/25 — 17:04 — page 134 — #146 i
i

i
i

i
i

Bibliografia

[142] Gulnar Mehdi, Sebastian Brandt, Mikhail Roshchin, and Thomas A. Runkler. Semantic framework for
industrial analytics and diagnostics. In IJCAI, pages 4016–4017. IJCAI/AAAI Press, 2016.

[143] Evgeny Kharlamov, Theofilos Mailis, Gulnar Mehdi, Christian Neuenstadt, Özgür L. Özçep, Mikhail Ro-
shchin, Nina Solomakhina, Ahmet Soylu, Christoforos Svingos, Sebastian Brandt, Martin Giese, Yannis E.
Ioannidis, Steffen Lamparter, Ralf Möller, Yannis Kotidis, and Arild Waaler. Semantic access to streaming
and static data at siemens. J. Web Sem., 44:54–74, 2017.

[144] Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Zakharyaschev.
Theoretically optimal datalog rewritings for OWL 2 QL ontology-mediated queries. In Description Logics,
volume 1577 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[145] Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Ontology-based data access with a horn fragment of metric temporal logic. In AAAI, pages
1070–1076. AAAI Press, 2017.

134

	Introduction
	Relevancy
	Problem Statement and Research Question
	Approach
	Outline
	Publications

	Preliminary Concepts: Taming Velocity and Variety
	Velocity
	Models and Languages
	Stream Processing
	CQL
	SECRET

	Information Flow Processing and Architectures
	Open Source Solutions
	ESPER & EPL
	Apache Kafka & KSQL
	Apache Spark
	Apache Hive
	Apache Flink

	Variety
	Models, Languages and Methodologies
	RDF & SPARQL
	R2RML
	OWL
	Ontology Engineering
	OBDI & OBDA

	Open Source Solutions

	Velocity and Variety
	Models and Languages
	Stream Reasoning & RDF Stream Processing
	RSP-QL

	Open Source Solutions

	RSP Middleware
	Streaming Linked Data (SLD)
	Linked Stream Middleware

	Benchmarking
	Domain-Specific Benchmarks
	Benchmarking Velocity Oriented Systems
	Cost-Aware approach

	Urban Data analysis
	Relevance and Motivation
	Urban Data Analysis Dimensions
	Content Analysis
	Spatial Analysis
	Temporal Analysis
	Combined Time and Space Analysis

	Existing Semantic Web-Based Solutions
	Monitoring Traffic Using Semantic and Stream Technologies
	Semantic Traffic-Aware Routing
	Monitoring Crowd Movement During London 2012 Olympics Games
	Bottari

	Conceptual Model
	Introduction and Problem Statement
	FraPPE 1.0
	The Conceptual Model
	Adherence to the Tom Gruber's Principles
	Working Example

	FraPPE 2.0
	FraPPE 2.0 and Urban Data Analysis
	Conclusion

	Computational Model
	Introduction and Problem Statement
	RIVER
	Preliminaries
	RIVER's Operators and the Pipeline Definition Language

	Reference Architecture
	Conclusion

	RIVER Implementations and Evaluations
	Introduction and Problem Statement
	Implementations
	Natron - A Vertically Scalable Implementation
	rvr@Spark - A Horizontally Scalable Implementation Based on Spark
	rvr@Hive - A Horizontally Scalable Implementation Based on Hive

	Validation of the Lazy Transformation Approach
	Problem Settings
	Solution Design and Experimental Settings
	Results and Discussion

	COST-Aware Evaluation: Distributed vs. Single-Threaded
	Problem Settings
	Solution Design
	Experimental Settings
	Results and Discussion

	Conclusion

	Case Studies
	Milano Design Week
	MDW2013 - Understanding the Data
	MDW2014 - CitySensing Public Installation
	MDW2016 - Advanced Visualizations

	Milano Fashion Week
	Como Smart City for Smart Citizens
	Conclusion

	Conclusion
	Review of the Contributions
	Limitations and Future Directions
	Reflections

	Bibliografia

