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Abstract

Monitoring a datastream to detect whether the incoming data departs from
normal conditions is a problem encountered in many important applica-
tions, ranging from quality control in industrial process to health moni-
toring. Many solutions in the literature adopt a model that describes nor-
mal data and check whether this model is not able to describe new data,
detecting anomalous instances or permanent changes affecting the data-
generating process. Pursuing this approach is challenging when data have
high dimensions or feature complex structures (as in case of images or sig-
nals), and these are the settings we consider in this thesis.

We address this problem from two different perspectives. At first, we
model data as realization of a random vector, i.e., we assume that data can
be described by a smooth probability density function. In these settings we
focus on the change-detection problem, where the goal is to detect perma-
nent changes affecting the data-generating process. In particular, we prove
the detectability loss phenomenon, namely that performance of a popular
change-detection algorithm that monitors the likelihood decreases when the
data dimension increases. We also propose QuantTree, a novel algorithm
to define histograms as density models for high dimensional data that are
perfectly suit for change detection purposes. In fact, we prove that adopt-
ing QuantTree leads to an important property, i.e., that the distribution of
any statistic computed over histograms generated by QuantTree does not
depend on the distribution of the data-generating process. This enables
non-parametric monitoring of multivariate datastreams with any statistic.
Our experiments also show that combining several histograms computed
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by QuantTree into an ensemble can effectively mitigate the detectability
loss phenomenon.

In the second part we focus on data that feature complex structures, that
cannot be described by a smooth probability density function. We adopt
dictionaries yielding sparse representations to characterize normal data and
propose a novel anomaly-detection algorithm that detects as anomalous any
data that do not conform to the learned dictionary. To make our anomaly-
detection algorithm effective in practical application, we propose two do-
main adaptation algorithms that adapt the anomaly detector when the pro-
cess generating normal data changes. The proposed algorithms have been
successfully tested in two real world applications: a quality inspection sys-
tem monitoring the production of nanofibrous materials through the analy-
sis of Scanning Electron Microscope (SEM) images, and ECG monitoring
using wearable devices. Finally, we investigate convolutional sparse repre-
sentations, translation invariant extensions of traditional sparse representa-
tions that are gaining much attention in the last few years. In particular our
analysis focuses on image denoising and show that convolutional sparse
representations outperform their traditional counterparts only when the im-
age admits an extremely sparse representation.
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CHAPTER1
Introduction

A primary concern in many applications is to detect whether a process de-
parts from its normal conditions, since this could indicate a problem that
has to be promptly alarmed and solved. Most often, changes have to be
detected by monitoring a datastream generated by the process of interest.
In this thesis, we investigate change and anomaly-detection problems from
both theoretical and practical perspectives. In particular, we formally study
the intrinsic difficulty of monitoring a datastream when the data dimen-
sion increases and propose novel algorithms to perform monitoring in two
real world scenarios: industrial quality inspection and ECG monitoring. In
what follows we describe these scenarios to better illustrate the challenges
we have addressed along with our contributions.

Figure 1.1 shows some Scanning Electron Microscope (SEM) images
acquired by a quality inspection system monitoring a prototype machine
that produces nanofibrous materials. In normal conditions (Figure 1.1(a)),
the produced materials are composed by tiny filaments randomly disposed,
and problems affecting the production process might impair the normal
structure, by creating defects such as films and beads, as those shown in
Figure 1.1(b). Automatic detection of these defects allows to raise alerts
as soon as the amount/size of defects exceeds a given tolerance level and
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(a) (b)

Figure 1.1: Four details from SEM images depicting nanofibrous material acquired by
the considered quality inspection system. (a) Two samples of good quality material.
(b) The top image contains two sorts of localized defects: a small speck of dust at the
bottom right and a bead, namely a fiber clot, at the bottom left. The bottom image
contains a film, which is a thin layer of material among the fibers.

guarantee a satisfactory production quality. Moreover, the quantitative as-
sessment of the defects can be used to accurately design/tune the production
process to both optimize the physical properties and control the defective-
ness of the produced material.

While humans can easily identify the defects in images like that in Fig-
ure 1.1, thus distinguish between normal and defective regions, this is not
a simple task for a machine. In fact, both normal and defective regions are
far from being regular: fibers follow different orientations and randomly
overlap, and defects can be very different in appearance and shape.

The other scenario considered is the monitoring of ECG signals using
wearable devices. Wearable devices have a huge potential in health and
fitness scenario, since they ease the transitioning from hospital to home/-
mobile health monitoring. However, performing anomaly detection directly
on these devices is far from being trivial. Figure 1.2 shows two segments
of few seconds of ECG signals acquired from different users, containing
both normal and anomalous heartbeats. Normal heartbeats feature a spe-
cific morphology, while anomalous ones, that can be due to acquisition
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errors, device displacements or dangerous arrhythmias, can have very dif-
ferent shapes. Designing rules to describe normal heartbeats and detect
anomalous one is challenging because the morphology of normal heartbeats
depend on the user (see Figure 1.2) and the position of the sensing device.
Therefore, to be effective in online monitoring, an anomaly detector has to
be customized on the specific user. This customization is even more impor-
tant when the anomaly detector is embedded in a wearable device, since the
user places the device by himself.

When monitoring this kind of datastreams we have to face several chal-
lenges. At first, data feature complex structures and are characterized by a
high dimension (to locate defects in SEM images we analyze 15×15 patch,
thus containing 225 pixel, while an heartbeat contains about 150 samples),
and there does not exist any analytical model to describe them. Therefore,
to perform successful monitoring, we have to resort to data-driven mod-
els, that are learned directly from data. However, we can acquired only
data in normal conditions, since collecting data in alternative conditions is
difficult, when not impossible. For example, in case of ECG monitoring
it is not possible to collect a large number of anomalous heartbeats of the
same user, since these might be due to potentially dangerous arrhythmias.
This limitation prevents the use of supervised models, such as classifiers to
address this kind of problem, since we do not have training data for both
normal and anomalous classes. The only viable solution is to resort to un-
supervised learning techniques to learn a data-driven model that describes
only normal data.

The second challenge to be addressed is the design of specific indicators
and decision rules that allow to successfully detect whether data are gener-
ated in alternative conditions. Moreover, the amount of false detections has
to be controlled and kept under a given tolerance level to make the detector
effective in practical applications.

Finally, the third challenge to be addressed is domain adaptation since
normal conditions might change overt time. Thus, a model learned during
the training phase, i.e., on data in the source domain, might not be able to
describe new incoming data in the target domain. For example, in case of
ECG monitoring, the heartbeats of a user get transformed when the heart
rate increases, thus the morphology of heartbeats acquired during everyday
activity is not the same of training ones, acquired in resting conditions.

In this thesis, we investigate these challenges from two different per-
spectives, which corresponds to two different modeling assumptions on the
data-generating process. At first, we model data as a realizations of random
vectors, thus we assume that there exists a sufficiently smooth probability
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Figure 1.2: Example of few seconds of ECG signals acquired by two different users. Both
segments contain 4 normal heartbeats and an anomalous one (highlighted in the figure,
with green and red boxes, respectively). From these plots, we also observe that the
morphology of normal heartbeats depend on the user.

density function describing data, as it is customary in the statistical process
control and machine learning literature. Then, we consider the case when
such probability density functions would not be easy to describe and we
adopt models that provide meaningful representations to data. Such mod-
els have been firstly proposed in the signal and image processing literature,
and are now the main object of the research on deep learning.

1.1 Original contribution

In the first part of the thesis, we model data as realization of a random
vector and we focus on the change-detection problem, where the goal is
to determined whether data-generating process permanently departs from
normal to alternative conditions.

At first, we investigate the intrinsic difficulty of performing change de-
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tection when the data dimension increases. To this purpose, we formally de-
fine two measures to asses the change-magnitude, that depends only on the
data distributions before and after the change, and the change-detectability,
namely how perceivable the change is by a specific change-detection al-
gorithm. In particular, we consider a popular change-detection algorithm
based on the monitoring of the log-likelihood w.r.t. a learned model. We
show the detectability loss problem [1], namely a decay in the change-
detectability when the data dimension increases as the change-magnitude
is kept fixed. We analytically prove this result in case of Gaussian datas-
treams, and empirically in case of real world data.

To perform our empirical analysis on the detectability loss, we develop
CCM (Controlling Change Magnitude) [2, 3], a framework to manipulate
real world datasets and introduce changes having a controlled magnitude.
The framework can operate both in parametric settings, by approximating
the stationary distribution as a Gaussian mixture, and in non-parametric
ones. The developed framework enables a fair comparison between differ-
ent change-detection algorithms on different datasets, and has been made
publicly available for download.

Finally, we propose QuantTree [4], a novel algorithm to learn histograms
for change-detection purposes. Peculiarity of the adaptive splitting scheme
adopted by QuantTree is that it enables the non-parametric monitoring of
datastreams. In particular, we theoretically prove that any statistic defined
over such histograms does not depend on the data-generating distributions.
This allows to control the false positive rate disregarding the data generat-
ing distribution. Moreover, to mitigate the effect of detectability loss, which
affects also QuantTree, we propose an ensemble method that combines
multiple histograms. Our experiments show that the non-deterministic na-
ture of QuantTree increases the diversity of the computed histograms, im-
proving the detection capability of the ensemble.

In the second part of the thesis we adopt a different modeling assump-
tion: we assume that normal data can be well described by a dictionary
yielding sparse representations, which is a model that have been success-
fully used in several signal and image processing applications. Moreover,
we consider the anomaly detection problem, where the alternative condi-
tions are not persistent, but affect only sporadic samples in the datastream.

We propose a novel anomaly-detection algorithm, which has at the core
a data-driven dictionary that is learned on a training set of normal data. This
dictionary provides sparse representation only to normal data, and we de-
sign low-dimensional indicators upon this representation to assess whether
new data conform or not to normal ones, thus detect anomalies. Moreover,
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we propose two domain adaptation techniques to adapt these dictionaries
when the process generating normal data changes. This general approach
has been applied to ECG monitoring and the quality inspection system pre-
sented in the previous section.

We develop an anomaly detector for ECG signals that can be embed-
ded in a wearable device to perform online and long-term monitoring. Our
solution leverages a user-specific dictionary describing the morphology of
normal heartbeats of the user [5]. This dictionary is learned during a user-
configuration phase and on heartbeats acquired in resting conditions. Since
during everyday activities the heart rate changes and thus normal heart-
beats get transformed, we address the domain adaptation challenge by user-
independent transformations that depends only on the heart rate [6]. These
transformations can adapt both the user-specific dictionaries and the deci-
sion rule adopted to detect anomalous heartbeats [7], and are learned from
public datasets containing long ECG signals of several users. We opti-
mize our solution to be compatible with the limited resources available on
a wearable device, and implement it on the Bio2Bit Dongle, a prototype
wearable device produced by STMicroelectronics. We develop a demo im-
plementing our solution [8] and fill a patent application [9, 10].

We customize the proposed anomaly detector for the quality inspection
system described above [11]. Also in this scenario we have to face the
domain adaptation problem, since novel images to be analyzed might be
acquired at a magnification level that is different from training ones. In this
case the structure of normal images would not be the same of that featured
by training ones affecting the performance of the anomaly detector. To
avoid the expensive, and often infeasible, acquisition of training images
at different magnification levels, we propose a procedure to learn scale-
invariant dictionaries from artificially generated normal training images at
different scale. This is not sufficient to successfully detect anomalies, thus
we design a specific sparse coding procedure by enforcing group sparsity
in the representations [12]. By doing so, we can compute more powerful
indicators to describe normal data and make our anomaly detector scale
invariant.

Finally, we investigate the use of convolutional sparse representations
as a powerful and very promising image model. These representations are
gaining much attention in the literature and can be interpreted as the synthe-
sis dual of popular convolutional neural networks (the corresponding anal-
ysis models). Our study [13] focuses on natural image denoising, which
is the reference task to quantitatively assess the effectiveness of imaging
models. In particular, we compare convolutional sparse representations
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with cycle spinning, a traditional image processing algorithm to compute
translation-invariant representations. We show that the two approaches at-
tain comparable performance in case of natural images and convolutional
sparse representations outperform the cycle spinning only when the input
image admits an extremely sparse representation.

The results presented in this thesis are partially presented in the follow-
ing papers:

• Cesare Alippi, Giacomo Boracchi, Diego Carrera, Manuel Roveri.
Change Detection in Multivariate Datastreams: Likelihood and De-
tectability Loss. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2016, New York, New York, USA,
July 9-15.

• Diego Carrera, Beatrice Rossi, Daniele Zambon, Pasqualina Frag-
neto, Giacomo Boracchi. ECG Monitoring in Wearable Devices by
Sparse Models. In Proceedings of the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery
(ECML-PKDD), 2016, Riva del Garda, Italy, September 19-23.

• Diego Carrera, Giacomo Boracchi, Alessandro Foi, Brendt Wohlberg.
Scale-invariant anomaly detection with multiscale group-sparse mod-
els. In Proceedings of the IEEE International Conference on Image
Processing (ICIP), 2016, Phoenix, Arizona, USA, September 25-28.

• Cesare Alippi, Giacomo Boracchi, Diego Carrera. CCM: Controlling
the Change Magnitude in High Dimensional Data. In Proceedings
of the INNS Conference on Big Data, 2016, Thessaloniki, Greece,
October 23-25.

• Diego Carrera, Fabio Manganini, Giacomo Boracchi, Ettore Lanzarone.
Defect Detection in SEM Images of Nanofibrous Materials. IEEE
Transactions on Industrial Informatics, Volume 13, Issue 2, April 2017.

• Diego Carrera, Giacomo Boracchi, Alessandro Foi, Brendt Wohlberg.
Sparse overcomplete denoising: aggregation versus global optimiza-
tion. IEEE Signal Processing Letters, Volume 24, Issue 10, October
2017.

• Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Giacomo Borac-
chi. Domain Adaptation for Online ECG Monitoring. In Proceedings
of the IEEE International Conference on Data Mining (ICDM), 2017,
New Orleans, Louisiana, USA, November 18-21.
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• Diego Carrera, Giacomo Boracchi. Generating High-Dimensional Datas-
treams for Change detection. Big Data Research, Elsevier, Volume 11,
March 2018.

• Giacomo Boracchi, Diego Carrera, Cristiano Cervellera, Danilo Mac-
ciò. QuantTree: Histograms for Change Detection in Multivariate
Data Streams. In Proceedings of the International Conference Ma-
chine Learning (ICML), 2018, Stockholm, Sweden, July 10-15.

• Marco Longoni, Diego Carrera, Beatrice Rossi, Pasqualina Fragneto,
Marco Pessione, Giacomo Boracchi. A Wearable Device for Online
and Long-Term ECG Monitoring. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) - Demo Track,
2018, Stockholm, Sweden, July 13-19.

• Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Giacomo Borac-
chi. Online anomaly detection for long-term ECG monitoring using
wearable devices. Pattern Recognition, Volume 88, April 2019.

1.2 Structure of the thesis

The thesis is structured as follows. Chapter 2 presents a formal formulation
to main problems addressed in the thesis. Then, we start the first part of the
thesis, composed by Chapters 3-6, where data are modeled as realization of
random vectors. Chapter 3 presents the related literature, while Chapter 4
is devoted to prove the detectability loss phenomenon. Then, Chapter 5
presents CCM, our framework to generate datastreams having changes of
a given magnitude at a known location. Finally, Chapter 6 is devoted to
QuantTree: here we introduce the algorithm and prove its theoretical prop-
erties. Moreover, we show how it can be combined in ensembles to mitigate
the detectability loss.

In the second part of the thesis (Chapters 7-11) we focus on model-
ing data using sparse representations. The related literature is summarized
Chapter 7, while 8 introduce our base anomaly detector and its applications
to the considered application scenario. The two domain-adaptation algo-
rithms are proposed in Chapter 9, and our complete monitoring solution
is detailed in Chapter 10. Finally, Chapter 11 is devoted to investigate the
convolutional sparse representations model, while Chapter 12 report our
concluding remarks and future research directions.
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CHAPTER2
Problem Formulation

Let us consider a multivariate datastream {st}t=1,..., where st ∈ Rd. We as-
sume that in normal condition, each st is an i.i.d. realization of an unknown
stochastic process PN . We are interested in monitoring the datastream and
determine whether new data st are drawn from PN or from an alternative
stochastic process PA, that is completely unknown. As described in the
previous chapters, we consider two different modeling assumptions on st.
At first, we model st as a realization of a random vector and address the
change-detection problem (Section 2.1). Then, we consider the case when
st features a complex structure thus PN is not conveniently modeled as a
random vector, and address the anomaly-detection and domain adaptation-
problems, introduced in Sections 2.2 and 2.3, respectively. In both cases,
we assume that a training set of normal data is available to learn a model
that describes PN .

2.1 Change Detection

In this section we focus on the case when st is modeled as the realization
of a continuous random vector S. In particular, we assume that stochastic
processes PN and PA admit smooth probability density functions φ0 and
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φ1, respectively. This assumption might seem too strict, but it is usually
met in the statistical process control literature and in traditional supervised
and unsupervised machine learning settings. In particular, when the datas-
tream undergoes a feature extraction process, the extracted features can be
modeled as realization of a continuous random vector.

Here we address the problem of detecting abrupt change in the data-
generating process. More precisely, our goal is to detect if there is a change
point τ ∈ N in the datastreams such that

st ∼

{
φ0 t ≤ τ,

φ1 t > τ.
(2.1)

For sake of simplicity, we analyze the datastream in batchesW = {s1, . . . , sν}
of ν samples. We detect changes by performing the following hypothesis
test:

H0 : W ∼ φ0

H1 : W � φ0

(2.2)

As customary in statistical hypothesis testing, a rejection region for (2.2) is
defined by means of a test statistic T defined over W . We reject the null
hypothesis H0 if T (W ) > γ, where γ is defined to guarantee a desired
probability of type I error, also called False Positive Rate (FPR), namely

Pφ0(T (W ) > γ) ≤ α. (2.3)

The statistic T is typically defined upon the model that approximate the
density φ0.

Analyzing data in a batch-wise manner is not a genuine monitoring
scheme. However, this mechanism is at the core of several online change-
detection methods [14–17]. Moreover, the statistical power of test (2.2),
namely the probability of rejecting the null hypothesis when the alternative
holds, indicates the effectiveness of the test statistic T when the same is
used in sequential-monitoring techniques.

Our goal is twofold: i) propose a new change-detection algorithm per-
forming hypothesis test (2.2) and ii) investigate the impact of the dimension
d on change detection performance.

2.2 Anomaly Detection

In the second part of the thesis we focus on data featuring a specific struc-
ture, such as signals and images. In particular, we consider the anomaly
detection problem, namely we analyze data st ∈ Rd independently, and
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2.2. Anomaly Detection

detect whether they are normal or anomalous, namely they are drawn from
PN or PA, respectively. Since there is no strict correlation with time, we
will omit the subscript t.

The assumption that s is drawn from a random vector having a smooth
probability density function φ0 is not met. In fact, complex data s ∈
Rd do not cover the entire high-dimensional space Rd, but live in a low-
dimensional manifold embedded in Rd. In practice, this manifold is the
support of the probability density function φ0 generating such data, thus φ0

cannot be smooth.
Here, we consider dictionary yielding sparse representations to approx-

imate PN , i.e., we model s ∼ PN as

s ≈ Dx, (2.4)

where D ∈ Rd×n is a matrix called dictionary and the coefficient vector
x ∈ Rn is sparse [18], namely it has few of nonzero components. This is
equivalent to assume that the manifold where normal data live is a union of
low-dimensional subspaces.

The anomaly detection problem boils down to defining a decision rule
to determine whether s conforms or not to the learned dictionary. Our goal
is to define a function T : Rd → R and a threshold γ such that

s is anomalous ⇐⇒ T (s) > γ, (2.5)

where T (s) is defined using the sparse representation x of s.
In what follows, we detail the anomaly detection problem in both appli-

cation scenarios described in Chapter 1, i.e., the defect detection in SEM
images, and the monitoring of ECG signals.

2.2.1 Defect Detection in SEM images

Let us denote by s : X → R+ the SEM image depicting the nanostructure
to be analyzed, where X ⊂ Z2 is the regular pixel grid corresponding to the
image domain. The object our analysis are small squared patches defined
as

s = {s(c+ v), v ∈ V}, (2.6)

where c is the center of patch and V is a 2-D squared neighborhood of√
d×
√
d pixels, where d is the cardinality of V . Some examples of patches

extracted by normal images are shown in Figure 2.1(a). Although we ad-
dress the anomaly detection problem in a patch-wise manner, our ultimate
goal is to locate all the anomalous region in s; as such, the problem can be
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(a) (b)

Figure 2.1: (a) Examples of 15× 15 patches extracted from the normal images in (b).

formulated as estimating an unknown anomaly mask

Ω(c) =

{
0 if c falls inside a normal region
1 if c falls inside a defective region

, (2.7)

where c ∈ X denotes a pixel in the image s. Therefore, once we have
detected all the anomalous patches in an image, we have to aggregate all
these detections in single estimate of the anomaly mask Ω.

2.2.2 Anomaly detection in ECG signals

We denote by s : N→ R the ECG signal which has been uniformly sampled
in time and preprocessed to remove the baseline wander due to respiration
and attenuate high-frequency noise, as in [19]. An heartbeat is a small
segment of ECG signal that contains all the waveforms related to a single
contraction of the heart, i.e., the P wave, the QRS complex and the T wave,
as shown in Figure 2.2. More formally, we define an heartbeat s as

s = {s(t+ v), u ∈ V}, (2.8)

where t is the location of the R-peak in the ECG signal, and V is a 1-D
neighborhood of the origin that containing d samples. The location of the
R-peaks in ECG signals can be found using standard methods, e.g., the Pan-
Tompkins algorithm [20]. Our goal is to perform online ECG monitoring
by analyzing each heartbeat s as soon as it is acquired to detect whether it
is normal or anomalous.

As shown in Figure 2.2, the heartbeats of each user feature a very spe-
cific morphology, which also depends on the sensing apparatus and the
electrodes position [21]. As such, to successfully classify or detect anoma-
lies in ECG signals, a single data-driven model is not able to accurately
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Figure 2.2: Examples of heartbeats acquired at different heart rates measured in beats per
minute (bpm) from two users. Letters indicate the waveforms in an ECG [24], namely
the P wave, the QRS complex and the T wave, while the heart rates are reported over
each plot. The heartbeats get transformed when the heart rate increases: the T-waves
approach the QRS complexes, the QT intervals narrow down and the support of each
heartbeat contracts (Figures (b), (c), (e), (f)). These heartbeats from different users
seem to undergo a similar transformation, which does not seem to be simple dilation /
contraction, since peaks change their intensities and shapes.

describe all the users (even when trained on large datasets), and has to be di-
rectly learned / customized from the heartbeats of the specific user [22,23].
Therefore, we will denote the user-specific data generating process as PNu
and learn a user-specific dictionary Du to approximate it.
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2.3 Domain Adaptation

As described in Chapter 1, the process generating normal data PN may
change over time. Therefore, a dictionary learned on training data (i.e.,
in the source domain), might not be able to describe normal data during
test (i.e., in the target domain). To avoid a degradation in the anomaly-
detection performance we have to adapt our dictionary to track variations
in PN . Our main assumption is that training data are available only in the
source domain, as these are the settings that we faced in the considered
scenarios, as described in what follows.

2.3.1 Defect Detection in SEM Images

Consider, for example, the images in Figure 2.3, acquired from different
specimens of a nanofibrous material. While patches in these images are
perceptually similar, their content is very different because the images are
acquired at different magnification levels (i.e. scales). This means that an
anomaly detector trained on an image like Figure 2.3(a) would possibly
detect as anomalous patches from images like Figure 2.3(d), which should
instead be considered as normal since only the scale has changed.

We assume that training images contain only patches generated by PN
and that these have been acquired at the maximum scale available. Thus,
test images are acquired at the same or at a lower magnification. This is not
a restrictive assumption in applications where the maximum magnification
level is known beforehand.

Our goal is to increase the capabilities of model (2.4) by designing i)
multiscale dictionaries D that can describe data acquired at multiple mag-
nification levels, ii) a specific sparse coding procedure to compute repre-
sentations that exploit the multiscale property of the dictionary, and iii)
more powerful indicators computed over these representations that make
the anomaly detector scale invariant.

2.3.2 ECG Monitoring

As shown in Figure 2.2, heartbeats get transformed when the heart rate
changes, thus the stochastic process generating normal heartbeats actually
depends on the heart rate r, thus will be indicated byPNu,r . We cannot learn
a user-specific dictionary for each heart rate, since this would require to col-
lect training heartbeats for every possible heart rate, that is impractical and
potentially dangerous. Therefore, we have to modify the anomaly-detection
algorithm to correctly operate at different heart rates at a controlled FPR.
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(a) (b) (c) (d)

Figure 2.3: Example of normal images acquired at different magnification levels. Patches
extracted from images are perceptually similar, but their content is very different.

In our case this requires adapting both the user-specific dictionary and the
decision rule.

Our modeling assumption is that normal heartbeats acquired at heart
rate r0 admit a sparse representation w.r.t. to a dictionary Du,r0 ∈ Rd(r0)×n,
where the number of samples in each heartbeat is d(r0) which also depends
on the heart rate. We formulate dictionary adaptation as the problem of
learning, for each target heart rate r, a user-independent transformation
Fr,r0 : Rd(r0)×n → Rd(r)×n that operates as follows

Du,r = Fr,r0(Du,r0) ∀u, (2.9)

and such that Du,r can properly approximate PNu,r .
To adapt the decision rule (2.5) we tackle the problem of learning a

set of user-independent transformations fr,r0 : R → R to control the FPR.
Considering (2.5), this consists in transforming the threshold γu,r0:

γu,r = fr,r0(γu,r0). (2.10)

The user-independent transformations {Fr,r0} and {fr,r0} have to be learned
from a collection {Su,r} of sets of normal heartbeats acquired at several
heart rates from L � 1 users. We extract this collection from large pub-
licly available datasets containing long ECG signals.

15





Part I

Random Vectors

17





CHAPTER3
Related Literature

In this chapter we present an overview of the change-detection literature.
We start by considering algorithms designed for univariate datastreams
(Section 3.1), then we move to the multivariate case (Section 3.2), that
is the main object of our analysis. Finally, we present the main methods
that are strictly related to QuantTree, i.e., histograms in Section 3.3 and
ensembles in Section 3.4.

3.1 Univariate Datastreams

The change-detection problem was firstly introduced in the statistical pro-
cess control (SPC) literature [25], where data are modeled as i.i.d. real-
izations of a random variable. In SPC this problem was addressed in two
phases, called Phase I and Phase II. In the Phase I, a fixed-size batch is ana-
lyzed to determine whether it contains a change point. In Phase II, the batch
has no fixed size, but new samples are collected over time and a hypothesis
test is performed at each time instant.

The first univariate change detection algorithms, such as CUSUM [26],
EWMA [27], and Shewhart [28] charts, are designed to address the Phase
II problem and detect shifts in the mean of the process PN . Although these
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algorithms are simple and well studied, their main drawback is that they are
parametric, i.e., they assume that the pre-change distribution φ0 belongs to
a known family, typically Gaussian distributions. There have been some
works addressing the problem to detect shift in the variance of the moni-
tored process [29,30] as well as changes in non-Gaussian distributions [31],
but they all require the knowledge of φ0.

A meaningful scenario of known φ0 is classification in non-stationary
environments, where changes are typically known as concept drift [32]. In
this case, the monitored datastream is the sequence of classification error
of a classifier, thus φ0 is known to be a Bernoulli distribution. In these
settings many change-detection tests [16, 33–35] have been proposed in
combination with an adaptation phase to avoid the performance degradation
of the classifier.

There are two major approaches to make a change-detection test distri-
bution free, and control the false positive rate without knowing φ0. The first
one is to perform a data transformation that guarantees that data follows a
known distribution. This approach is adopt in [36], where the Box-Cox
transformation [37] is pursued to make data approximately Gaussian dis-
tributed. Another approach directly uses non-parametric statistics [17, 38],
such as the Kolmogorov-Smirnov [38], Mann-Whitney [39], Lepage [40],
and order statistics [41].

3.2 Multivariate Datastreams

Several extensions of univariate change-detection tests to multivariate case
have been presented in the literature, such as [42], [43] and [44], that ex-
tend the Shewart, the CUSUM and the EWMA, respectively. As in the
univariate case, the main drawbacks of these tests is that they require the
full knowledge of the pre-change distribution φ0. This assumption is re-
laxed in [45,46], where it is required that φ0 is Gaussian, but with unknown
parameters.

The general approach to monitor multivariate datastreams when φ0 is
completely unknown is to learn a model that approximate φ0 from a train-
ing set of data drawn from φ0, and then monitoring a test statistic defined
upon the learned model, such as the likelihood (or the loglikelihood to avoid
numerical issues). Therefore, the problem boils down to monitoring uni-
variate datastreams. Some works use a parametric model such as Hidden
Markov Models [47] and Gaussian Processes [48] that are very powerful
model able to approximate a broad range of distributions. One of the most
popular non-parametric approximation of φ0 is given by Kernel Density Es-
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timation (KDE) [15, 49], that however becomes intractable when the data
dimension increases.

In [14] φ0 is approximated by a Gaussian mixture Model, since these are
flexible density models able to approximate even skewed and multi-modal
distributions. Then, [14] monitors an upper bound of the log-likelihood
computed w.r.t. the Gaussian mixture. Using this upper bound in place
of the exact log-likelihood has two advantages: it avoids numerical prob-
lems, and makes the monitored statistic approximately distributed as a χ2

random variable. For these reasons, we also adopt Gaussian mixture in our
experiments on detectability loss (see Chapter 4).

Other change-detection tests directly comnpute a multivariate statistics,
such as [50, 51], that however depend on φ0, and threshold has to be esti-
mated through bootstrap or permutation tests to properly control the FPR.
Unfortunately, extending non-parametric change-detection tests to the mul-
tivariate case is far from being trivial. In fact, non-parametric statistics are
all based on the natural order defined over real numbers, that is not well
defined over Rd. There are a few works in this direction: in [52] a bi-
variate Kolmogorov-Smirnov test is presented, but the extension to larger
dimension is not trivial, as reported by the authors. An extension of the
Mann-Whitney statistic based on multirank is presented in [53], but the
computational complexity of this test is prohibitive in large dimension. Fi-
nally, [54] uses k-nearest neighbor distance to introduce an order in Rd and
defines a test statistic, but it is not distribution free and thresholds have to
be set using an asymptotic approximation.

3.3 Histograms for Change Detection

In this section we focus on histograms, which are perhaps the most nat-
ural candidates for describing densities, and, differently from likelihood
based monitoring solutions, allow a comparison among distributions [55,
56]. However, they are often implemented over regular grids and require
a number of bins that grows exponentially with the data dimension. As a
consequence, many change-detection algorithms based on histograms are
limited to the univariate setting [57], or resort to dimensionality-reduction
techniques, such as PCA [58].

An alternative scheme that better scales in larger dimensions is pre-
sented in [56], where it is shown that histograms built on uniform-density
partitions rather than regular grids provide superior detection performance.
In [59] a recursive partitioning scheme based on tree (called kqd-tree) shows
good change-detection performance also in high dimension. In particu-
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lar, kqd-trees are introduced as a variant of kd-trees [60] to guarantee that
all the leaves contain a minimum number of training samples and have a
minimum size. The use of trees mitigates dimensionality issues, and of-
fer efficient solutions to compute test statistics, which is a crucial aspect
in high-throughput applications. However, trees have received very little
attention in the change-detection literature, even though they have been
widely used in data mining and machine learning. In particular, trees pro-
vide very efficient solutions to classical problems such as nearest-neighbor
search [60,61], classification and regression [62] as well as density estima-
tion [63], even in high-dimensional data. The proposed QuantTree algo-
rithm brings these successful models in the change-detection framework,
providing solid theoretical foundations.

3.4 Ensembles of Change-Detection Algorithms

Ensembles of histograms can be referred to the ensemble literature, which
concerns techniques to combine different models to address a specific task.
From a purely statistical point of view, the use of ensembles of histograms
for change detection can be framed in the context of multiple hypotheses
testing, where a collection of statistical tests is simultaneously performed
to answer a given question. Here a key issue is to control the Family-Wise
Error Rate, namely the probability of one or more false positives in the
individual tests. This is typically performed by adequately adjusting the
thresholds (or the confidence) of every individual test, e.g., by the Bonfer-
roni correction or the Holm method [64, Chapter 9]. From the machine-
learning perspective, this approach can be generally ascribed to the family
of ensemble learning algorithms. These techniques generate a predictive
model through the combination of a collection of different base models (in-
dividuals). The generality of this approach has led to many different meth-
ods proposed in the literature (for a comprehensive description refer to [65]
and references therein). Two major categories in the context of ensemble
approaches are bagging [66] and boosting [67].

Thanks to their efficiency, trees have been widely used in ensemble
methods. For instance, random forests [68] can be seen as an evolution
of bagging trees that operates by constructing a collection of de-correlated
trees with a random selection of features at every iteration. Ensemble mod-
els has been successfully employed in many classical learning problems,
such as regression, classification and density estimation. The kd-trees [60]
have been widely employed in ensemble methods for data mining and com-
puter vision [69], where a collection of kd-trees is built exploiting various
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forms of randomization, to enable an approximate but very efficient imple-
mentation of k-nearest neighbor (k-NN) search.

It is important to remark that, even if ensembles of histograms and of
trees in particular, have shown impressive success in the aforementioned
learning problems, none of the examples reported above address the change-
detection problem. The only few papers adopting ensemble methods for
change-detection purposes [70, 71] do not concern histograms, as they are
based on parametric models, such as Hidden Markov Models [70], or they
are limited to aggregating multiple decisions from univariate change detec-
tors monitoring each component of the input independently [71].
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CHAPTER4
Detectability Loss

In this chapter we investigate the intrinsic challenges of change-detection
problem in high-dimensional datastreams. In particular, we show that,
when the change magnitude is kept fixed, the change detectability decreases
as the data dimension increases. We focus on a rather general change model
and a popular change-detection approach, described in Sections 4.1 and 4.2,
respectively. In these settings, we formally define the change magnitude,
which measures the difference between the pre- and the post-change dis-
tributions, and the change detectability, which assesses how the change is
perceivable by the considered change-detection algorithm. Our theoreti-
cal analysis (Section 4.3) shows that, when the change magnitude is kept
fixed, the change detectability decreases as the data dimension increases.
The same phenomenon affects also real world datasets, as we show in our
experimental analysis in Section 4.4.

4.1 The Change Model

We assume that the random vector S in normal conditions admits a prob-
ability density function φ0 : Rd → R which is continuous, strictly pos-
itive over all Rd and bounded. This assumption it is necessary to en-
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sure the existence of all the integrals in the chapter. We consider changes
φ0 → φ1 affecting the expectation and/or the correlation of S. In particular,
φ1 : Rd → R has the following form:

φ1(s) = φ0(Qs + v) , (4.1)

v ∈ Rd changes the location of φ0, and Q ∈ O(d) ⊂ Rd×d is an orthogonal
matrix, i.e., QQT = QTQ = Id, that modifies the correlation among the
components of S. This rather general change-model requires a truly mul-
tivariate monitoring scheme: changes affecting only the correlation among
components of S cannot be perceived by analyzing each component indi-
vidually, or by extracting straightforward features (such as the norm) out of
st. Here, we do not consider changes affecting data dispersion as these can
be easily detected by monitoring the Euclidean norm of st.

4.2 The Considered Change-Detection Approach

We consider the popular change-detection approach that consists in moni-
toring the log-likelihood of st with respect to φ0 [14, 15, 72]:

L(st) = log(φ0(st)). (4.2)

We denote by L = {L(st), t = 1, . . . } the sequence of log-likelihood
values, and observe that in stationary conditions, L contains i.i.d. data
drawn from a scalar random variable. When S undergoes a change, the dis-
tribution of L(·) is also expected to change. Thus, changes φ0 → φ1 can be
detected by comparing the distribution of L(·) over WP and WR, two non-
overlapping batches of L, where WP refers to past data (that we assume
are generated from φ0), and WR refers to most recent ones (that are possi-
bly generated from φ1). In practice, a suitable test statistic T (WP ,WR) is
computed to compare WP and WR. When T (WP ,WR) > γ we can safely
consider that the log-likelihood values over WP and WR are from two dif-
ferent distributions, indicating indeed a change in S. The threshold γ > 0
controls the probability of type I error, i.e., the FPR.

As described in Chapter 2, φ0 in (4.2) is unknown and has to be prelim-
inarily estimated from a training set of stationary data. Then, φ0 is simply
replaced by its estimate φ̂0. We consider this quite simple change-detection
approach since it makes easy to analyze how its performance is affected by
the data dimension d.
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4.3 Theoretical Analysis

This section sheds light on the relationship between change detectability
and d. To this purpose, we introduce: i) a measure of the change magnitude,
and ii) an indicator that quantitatively assesses change detectability, namely
how difficult is to detect a change when monitoring L(·) as described in
Section 4.2. Afterward, we can study the influence of d on the change
detectability provided that changes φ0 → φ1 have a constant magnitude.

4.3.1 Change Magnitude

The magnitude of φ0 → φ1 can be naturally measured by the symmetric
Kullback-Leibler divergence between φ0 and φ1 (also known as Jeffreys
divergence):

sKL(φ0, φ1) := KL(φ0, φ1) + KL(φ1, φ0)

=

∫
Rd

log
φ0(s)

φ1(s)
φ0(s)ds +

∫
Rd

log
φ1(s)

φ0(s)
φ1(s)ds .

(4.3)

This choice is supported by the Stein’s Lemma [73], which states that
KL(φ0, φ1) yields an upper-bound for the power of parametric hypothesis
tests that determine whether a given sample population is generated from
φ0 (null hypothesis) or φ1 (alternative hypothesis). In practice, large values
of sKL(φ0, φ1) indicate changes that are very apparent, since hypothesis
tests designed to detect either φ0 → φ1 or φ1 → φ0 can be very powerful.

4.3.2 Change Detectability

We define the following indicator to quantitatively assess the detectability
of a change when monitoring L(·).

Definition 4.1. The signal-to-noise ratio (SNR) of the change φ0 → φ1 is
defined as:

SNR(φ0, φ1) :=

(
E

s∼φ0
[L(s)]− E

s∼φ1
[L(s)]

)2

var
s∼φ0

[L(s)] + var
s∼φ0

[L(s)]
, (4.4)

where var[·] denotes the variance of a random variable.

In particular, SNR(φ0, φ1) measures the extent to which φ0 → φ1 is
detectable by monitoring the expectation of L(·). In fact, the numerator
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of (4.4) corresponds to the shift introduced by φ0 → φ1 in the expectation
of L(·) (i.e., the relevant information, the signal) which is easy/difficult
to detect relatively to its random fluctuations (i.e., the noise), which are
assessed in the denominator of (4.4). Note that, if we replace the expecta-
tions and the variances in (4.4) by their sample estimators, we obtain that
SNR(φ0, φ1) corresponds – up to a scaling factor – to the squared statistic of
a Welch’s t-test [74], that detects changes in the expectation of two sample
populations. This is another argument supporting the use of SNR(φ0, φ1)
as a measure of change detectability.

The following proposition relates the change magnitude sKL(φ0, φ1)
with the numerator of (4.4).

Proposition 4.1. Let us consider a change φ0 → φ1 such that

φ1(s) = φ0(Qs + v) (4.5)

where Q ∈ Rd×d is orthogonal and v ∈ Rd. Then, it holds:

sKL(φ0, φ1) ≥ E
s∼φ0

[L(s)]− E
s∼φ1

[L(s)] (4.6)

Proof. From the definition of sKL(φ0, φ1) in (4.3) it follows

sKL(φ0, φ1) = E
s∼φ0

[log(φ0(s))]− E
s∼φ0

[log(φ1(s))]+

+ E
s∼φ1

[log(φ1(s))]− E
s∼φ1

[log(φ0(s))] .
(4.7)

Since L(·) = log (φ0(·)), (4.6) holds if and only if

E
s∼φ1

[log(φ1(s))]− E
s∼φ0

[log(φ1(s))] ≥ 0. (4.8)

From (4.5) it follows that φ0(s) = φ1(QT (s − v)), thus, by replacing the
mathematical expectations with their integral expressions, (4.8) becomes∫

log(φ1(s))φ1(s)ds−
∫

log (φ1(s))φ1(QT (s− v))ds ≥ 0 (4.9)

Let us define y = QT (s − v), then s = Qy + v and ds = |det(Q)|dy =
dy, since Q is orthogonal. Using this change of variables in the second
summand of (4.9) we obtain∫

log(φ1(s))φ1(s)ds−
∫

log (φ1(Qy + v))φ1(y)dy ≥ 0. (4.10)
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Finally, defining φ2(y) := φ1(Qy + v) turns (4.10) into∫
log(φ1(s))φ1(s)ds−

∫
log (φ2(y))φ1(y))dy ≥ 0, (4.11)

which holds since the left-hand-side of (4.11) is KL(φ1, φ2), that is always
non-negative.

4.3.3 Detectability Loss

It is now possible to investigate the intrinsic challenge of change-detection
problems when data dimension increases. In particular, we study how
the change detectability (i.e., SNR(φ0, φ1)) varies when d increases and
changes φ0 → φ1 preserve constant magnitude (i.e., sKL(φ0, φ1) = const).
Unfortunately, since there are no general expressions for the variance of
L(·), we have to assume a specific distribution for φ0 to carry out any ana-
lytical development. As a relevant example, we consider Gaussian random
variables, which enable a simple expression of L(·). The following theo-
rem demonstrates the detectability loss for Gaussian distributions, namely
that SNR(φ0, φ1) decays as d increases.

Theorem 4.1. Let φ0 = N (µ0,Σ0) be a d-dimensional Gaussian pdf and
φ1 = φ0(Qs + v), where Q ∈ Rd×d is orthogonal and v ∈ Rd. Then, it
holds

SNR(φ0, φ1) ≤ C

d
(4.12)

where the constant C depends only on sKL(φ0, φ1).

Proof. Basic algebra leads to the following expression for L(s) when φ0 =
N (µ0,Σ0):

L(s) = −1

2
log
(
(2π)ddet(Σ0)

)
− 1

2
(s− µ0)TΣ−1

0 (s− µ0) . (4.13)

The first term in the right-hand-side of (4.13) is constant, while the second
term is distributed as a chi-squared having d degrees of freedom. Therefore,

var
s∼φ0

[L(s)] = var
[
−1

2
χ2(d)

]
=
d

2
. (4.14)

Then, from the definition of SNR(φ0, φ1) in (4.4) and Proposition 4.1, it
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Chapter 4. Detectability Loss

follows that

SNR(φ0, φ1) ≤ sKL(φ0, φ1)2

var
s∼φ0

[L(s)] + var
s∼φ1

[L(s)]
≤ sKL(φ0, φ1)2

var
s∼φ0

[L(s)]
=

=
sKL(φ0, φ1)2

d/2
=
C

d
.

Theorem 4.1 shows detectability loss for Gaussian distributions. In fact,
when d increases and sKL(φ0, φ1) remains constant, SNR(φ0, φ1) is upper-
bounded by a function that monotonically decays as 1/d. The decaying
trend of SNR(φ0, φ1) indicates that detecting changes becomes more dif-
ficult when d increases. Moreover, the decaying rate does not depend on
sKL(φ0, φ1), thus this problem equally affects all possible changes φ0 →
φ1 defined as in (4.1), disregarding their magnitude.

Theorem 4.1 implicates detectability loss only when sKL(φ0, φ1) is kept
constant. Assuming constant change magnitude is necessary to correctly
investigate the influence of the sole data dimension d on the change de-
tectability. In fact, when the change magnitude increases with d, changes
might become even easier to detect as d grows. This is what experiments
in [75, Section 2.1] show, where outliers become easier to detect when d
increases. However, in that experiment, the change-detection problem be-
comes easier as d increases, since each component of s carries additional
information about the change, thus increases sKL(φ0, φ1).

Detectability loss can be also proved when φ0 is non Gaussian, as far
as its components are independent. In fact, if φ0(s) =

∏d
i=0 φ

(i)
0 (s(i)),

where (·)(i) denotes either the marginal of a pdf or the component of a
vector, thus

log (φ0(s)) = log

(
d∏
i=0

φ
(i)
0 (x(i))

)
=

d∑
i=0

log
(
φ

(i)
0 (x(i))

)
, (4.15)

from which we deduce the following:

var[L(s)]
s∼φ1

= var
s∼φ0

[
d∑
i=0

log
(
φ

(i)
0 (x(i))

)]
=

d∑
i=0

var
s∼φ0

[
log
(
φ

(i)
0 (x(i))

)]
,

(4.16)
since log(φ

(i)
0 (s(i))) are independent. Clearly, (4.16) increases with d, since

its summands are positive. Thus, also in this case, the upper bound of
SNR(φ0, φ1) decays with d when sKL(φ0, φ1) is kept constant.
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Remarkably, detectability loss does not depend on how the change φ0 →
φ1 affects S, as far as sKL(φ0, φ1) = const. Our results hold, for instance,
when either φ0 → φ1 affects all the components of S or some of them
remain irrelevant for change-detection purposes. Moreover, detectability
loss occurs independently of the specific change-detection method used on
the log-likelihood (e.g. sequential analysis, or window comparison), as our
results concern SNR(φ0, φ1) only.

In the next section we show that detectability loss affects also real-world
change-detection problems. To this purpose, we design a rigorous empiri-
cal analysis to show that the power of customary hypothesis tests actually
decreases with d when data are non Gaussian and possibly correlated.

4.4 Empirical Analysis

Our empirical analysis has been designed to show that:

• SNR(φ0, φ1), which is the underpinning element of our theoretical
result, is a suitable measure of change detectability. In particular, we
show that the power of hypothesis tests able to detect both changes in
mean and in variance of L(·) also decays.

• Detectability loss is not due to density-estimation problems, but it be-
comes a more serious issue when φ0 is estimated from training data.

• Detectability loss occurs also in Gaussian mixtures, and also on high-
dimensional real-world datasets, which are far from being Gaussian
or having independent components.

We address the first two points in Section 4.4.1, while the third one in Sec-
tions 4.4.2 and 4.4.3.

In our experiments, the change-detection performance is assessed by nu-
merically computing the power of two customary hypothesis tests, namely
the Lepage [40] and the one-sided t-test on data batchesWP andWR which
contains 500 data each. The choice of a one-sided test over a two sided one
is motivated by the fact that we can assume that φ0 → φ1 decreases the
expectation of L since

E
s∼φ0

[log(φ0(s))]− E
s∼φ1

[log(φ0(s))] ≥ 0 (4.17)

follows from (4.8). As we discussed in Section 4.3.2, the t-statistic on
the log-likelihood is closely related to SNR(φ0, φ1), while the Lepage is a
nonparametric statistic that detects both location and scale changes, as it is
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defined as the sum of the squares of the Mann-Whitney and Mood statistics,
see also [17]. To compute the power, we set γ to guarantee a significance
level α = 0.05. In case of the Lepage statistic the value of γ is given by the
asymptotic approximation of the statistic in [40], as such approximations
is very precise in our case, where we consider two batches of 500 samples
each.

We synthetically introduce changes φ0 → φ1 using CCM, a theoretically
grounded framework to generate datastreams affected by changes that we
will be presented in the next chapter. CCM allows to control sKL(φ0, φ1),
that is set to 1 in all our experiments. In the univariate Gaussian case, this
change magnitude corresponds to v equals to the standard deviation of φ0.

4.4.1 Gaussian Datastreams

We generate Gaussian datastreams having dimension d ∈ {1, 2, 4, . . . , 128}
and, for each value of d, we prepare 10000 runs, with φ0 = N (µ0,Σ0)
and φ1 = N (µ1,Σ1). The parameters µ0 ∈ Rd and Σ0 ∈ Rd×d have
been randomly generated, while µ1 ∈ Rd and Σ1 ∈ Rd×d have been
set to yield sKL(φ0, φ1) = 1. In each run we generate 1000 samples:
{st, t = 1, . . . , 500} from φ0, and {st, t = 501, . . . , 1000} from φ1. Then,
we compute the datastream L = {L(st), t = 1, . . . , 1000}, and define
WP = {L(st), t = 1, . . . , 500} and WR = {L(st), t = 501, . . . , 1000}.

We repeat the same experiment replacing φ0 with its estimate φ̂0(s),
where µ̂0 and Σ̂0 are computed using the sample estimators over an addi-
tional training set S0 whose size grows linearly with d, i.e. #S0 = 100 · d.
We denote by L̂ = {L̂(s(t)), t = 1, . . . , 1000} the sequence of estimated
log-likelihood values. Finally, we repeat the whole experiments keeping
#S0 = 100 for any value of d, and we denote by L̂100 the corresponding
sequence of log-likelihood values.

Figure 4.1(a) shows that the power of both the Lepage and one-sided
t-test substantially decrease when d increases. This result is coherent with
our theoretical analysis of Section 4.3, and confirms that SNR(φ0, φ1) is a
suitable measure of change detectability. While it is not surprising that the
power of the t-test decays, given its connection with the SNR(φ0, φ1), it is
remarkable that the power of the Lepage test also decays, as this fact indi-
cates that it becomes more difficult to detect both changes in the mean and
in the dispersion of L. The decaying power of both tests indicates that the
corresponding test statistics decrease with d, which imply larger detection
delays when using this statistics in sequential monitoring schemes.

Note that detectability loss is not due to density-estimation issues, but
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Figure 4.1: (a) Power of the Lepage and one-sided t-test empirically computed on se-
quences generated as in Section 4.4.1. Detectability loss clearly emerges when the
log-likelihood is computed using φ0 (denoted by L) or its estimates fitted on 100 · d
samples (L̂) or from 100 samples (L̂100). (b) The sample variance of Lu(·) (4.19) and
Ll(·) (4.20) computed as in Section 4.4.2. As in the Gaussian case, both these vari-
ances grow linearly with d and similar results hold when using φ̂0, which is estimate
from 100 · d training data.

rather to the fact that the change-detection problem becomes intrinsically
more challenging, as it occurs in the ideal case where φ0 is known (solid
lines). WhenL is computed from an estimated φ̂0 (dashed and dotted lines),
the problem becomes even more severe, and worsens when the number of
training data does not grow with d (dotted lines).

We interpret this result as a consequence of the intrinsic worsening of
change detectability when d increases. Moreover, detectability loss is not
due to density-estimation issues, as it occurs also in the ideal case where
φ0 is known (solid lines). In the more realistic cases where L is computed
from an estimated φ̂0 (dashed and dotted lines), the problem become more
severe, in particular when the number of training data does not increase
with d (dotted lines).

4.4.2 Gaussian mixtures

We now consider φ0 and φ1 as Gaussian mixtures, to prove that detectabil-
ity loss occurs also when datastreams are generated/approximated by more
general distribution models. Mimicking the proof of Theorem 4.1, we
show that when d increases and sKL(φ0, φ1) is kept constant, the upper-
bound of SNR(φ0, φ1) decreases. To this purpose, it is enough to show that
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var
s∼φ0

[L(s)] increases with d.

The pdf of a mixture of k Gaussians is

φ0(s) =
k∑
i=1

λ0,iN (µ0,i,Σ0,i)(s) =

=
k∑
i=1

λ0,i

(2π)d/2det(Σ0,i)1/2
e−

1
2

(s−µ0,i)TΣ−1
0,i (s−µ0,i),

(4.18)

where λ0,i > 0 is the weight of the i-th Gaussian N (µ0,i,Σ0,i). Unfor-
tunately, the log-likelihood L(s) of a Gaussian mixture does not admit an
expression similar to (4.13) and two approximations are typically used to
avoid severe numerical issues when d� 1.

The first approximation consists in considering only the Gaussian of the
mixture yielding the largest likelihood, as in [14] i.e.,

Lu(s) = −kλ0,i∗

2

(
log
(
(2π)ddet(Σ0,i∗)

)
+

+ (s− µ0,i∗)TΣ−1
0,i∗(s− µ0,i∗)

) (4.19)

where i∗ is defined as

i∗ = argmax
i=1,...,k

(
λ0,i

(2π)d/2det(Σ0,i)1/2
e−

1
2

(s−µ0,i)TΣ−1
0,i (s−µ0,i)

)
.

The second approximation we consider is:

Ll(s) = −1

2

k∑
i=1

λ0,i

(
log
(
(2π)ddet(Σ0,i)

)
+ (s− µ0,i)

TΣ−1
0,i (s− µ0,i)

)
,

(4.20)
that is a lower bound of L(·) due to the Jensen inequality:

L(s) = log

(
k∑
i=1

λ0,iN (µ0,i,Σ0,i)(s)

)
≥

≥
k∑
i=1

λ0,i log (N (µ0,i,Σ0,i)(s)) = Ll(s).

We consider the same values of d as in Section 4.4.1 and, for each of
these, we generate 1000 datastreams each containing 500 data drawn from
the Gaussian mixture φ0. We assume k = 2 and λ0,1 = λ0,2 = 0.5, while
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Figure 4.2: Detectability loss on the Particle Dataset (a) and Wine Dataset (b), approximated by

a mixture of 2 and 4 Gaussians, respectively, using both L̂u (4.19) and L̂l (4.20). The powers
of both Lepage and t-test decay, confirming the detectability loss. The tests based on L̂u out-
perform the corresponding ones based on L̂l because this latter approximation yields a larger
variance, as can be seen in Fig 4.1(b).

the parameters µ0,1, µ0,2, Σ0,1, Σ0,2 are randomly generated. We then com-
pute the sample variance of both Lu and Ll over each datastream and report
their average in Figure 4.1(b). As in Section 4.4.1, we repeat this experi-
ment estimating φ̂0 from a training set containing 200·d additional samples,
then computing L̂u and L̂l.

Figure 4.2(b) shows that the variances of Lu and Ll grow linearly with
respect to d, as in the Gaussian case (4.14). This result indicates that also in
this case, where datastreams are generated by correlated and bimodal dis-
tributions, detectability loss occurs, since the SNR(φ0, φ1) decreases when
d increases. As in Section 4.4.1, we experienced the same trend when the
log-likelihoods L̂u and L̂l are computed with respect to fitted models φ̂0.
We further observe that Ll exhibits a much larger variance than Lu, thus we
expect this to achieve lower change-detection performance than Lu. Prob-
ably, this is why Lu was used in [14] instead of Ll.

4.4.3 Real-World Data

To investigate detectability loss in real-world datasets, we design a change-
detection problem on the Wine Quality Dataset and the MiniBooNE Particle
Identification Dataset from the UCI repository [76]. The Wine dataset has
12 dimensions: 11 corresponding to numerical results of laboratory anal-
ysis (such as density, Ph, residual sugar), and one corresponding to a final
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grade (from 0 to 10) for each different wine. We consider the vectors of
laboratory analysis of all white wines having a grade above 6, resulting in a
11-dimensional dataset containing 3258 data. The Particle dataset contains
numerical measurements from a physical experiment designed to distin-
guish electron from muon neutrinos. Each sample has 50-dimensions and
we considered only data from muon class, yielding 93108 data.

Since in either datasets φ0 is completely unknown, we need to estimate
it for both introducing changes having constant magnitude and computing
the log-likelihood. We adopt Gaussian mixtures and estimate k by 5-fold
cross validation over the whole datasets, obtaining k = 4 and k = 2 for
Wine and Particle dataset respectively.

We process each dataset as follows. Let us denote by D the dataset
dimension and for each value of d = 1, . . . , D we consider only d com-
ponents of our dataset that are randomly selected. We then generate a
d-dimensional training set of 200 · d samples and a test set of 1000 sam-
ples (datastream), which are extracted by a bootstrap procedure without
replacement. The second half of the datastream is perturbed by the change
φ0 → φ1, which is defined using CCM. Then, we estimate φ̂0 from the
training set and we compute T (ŴP , ŴR), where ŴP , ŴR are defined as in
Section 4.4.1. This procedure is repeated 5000 times to numerically com-
pute the test power. Note that the number of Gaussians in both φ̃0 and φ̂0 is
the value of k estimated from whole d-dimensional dataset, and that φ̃0 is
by no means used for change-detection purposes.

Figure 4.2 reports the power of both Lepage and one-sided t-tests on
the Particle dataset and Wine dataset, considering L̂u (4.19) and L̂l (4.20)
as approximated expressions of the likelihoods. The power of both tests is
monotonically decreasing, indicating an increasing difficulty in detecting
a change among ŴP and ŴR when d grows. This result is in agreement
with the claim of Theorem 4.1 and the results shown in the previous sec-
tions. In contrast of Gaussian datastreams, the Lepage here turns to be more
powerful than the t-test. This fact indicates that it is important to monitor
also the dispersion of L(·) in case of Gaussian mixture, where L(·) can
be multimodal. The decay of the power of the Lepage test also indicate
that monitoring both expectation and dispersion of L(·) does not prevent
the detectability loss. Figure 4.2 indicates that L̂u(·) guarantees superior
performance than L̂l(·) and this is a consequence of the lower variance of
L̂u(·). This fact also underlines the importance of considering the variance
of L(·) in measures of change detectability, as in (4.4).
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CHAPTER5
Controlling the Change Magnitude

As shown in the previous chapter, assessing the performance of a change-
detection algorithms requires datastreams affected by changes at known
locations. Unfortunately, there are not many real-world datasets satisfying
this requirement, and when the exact change-location is unknown, change-
detection performance has to be interpreted by visualizing the analyzed
datastream [17]. While visual inspection can indicate whether the algo-
rithm was successful or not, it does not provide a statistically sound as-
sessment, and it is definitively not a viable option when data dimension in-
creases. Therefore, experiments are more conveniently performed on real-
world datasets that have been manipulated to contain a change at a known
location.

Most of the papers in the literature resort to introducing arbitrary shifts,
scaling or swapping few components of the original dataset [14,77]. Changes
can be also introduced by rotations and other linear transformations in mul-
tivariate data [55, 77], by mixing different datasets [78] or by swapping
the classes of labeled data [15, 79]. Moreover, there are a few frameworks
designed for generating datastreams containing changes [80–82]. Unfortu-
nately, none of these approaches control the magnitude of the introduced
changes, namely to which extent φ1 differs from φ0.
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In this chapter we present “Controlling Change Magnitude” (CCM), a
rigorous method to generate real-world datastreams affected by changes
at known locations. We illustrate our design choices in Section 5.1, while
CCM is presented in Section 5.2 together with two Theorems that guarantee
its convergence. An extension to NP-CCM that does not require parametric
assumptions on the pre-change distribution φ0 is presented in Section 5.3.
We discuss the computational complexity of CCM and NP-CCM in Sec-
tion 5.4, while experiments are shown in Section 5.5, and the MATLAB
framework implementing CCM (including NP-CCM) is described in Sec-
tion 5.6.

5.1 Settings

Let us consider a dataset S0 containing stationary data, which we assume
are i.i..d. realizations of a d-dimensional random vectors S ∈ Rd having
probability density function φ0. We manipulate S0 to generate a datastream
S = {st, t = 1, . . . , T} affected by an abrupt change φ0 → φ1 at location
t = τ as in (2.1). We consider the change model introduced in Chapter 4,
i.e., we assume that

φ1(s) = φ0(Qs + v), (5.1)

where Q ∈ O(d) ⊂ Rd×d is an orthogonal matrix, i.e. QTQ = QQT = Id,
and v is a shift in the location of φ0.

Our goal is to identify suitable Q and v such that the change φ0 → φ1

features a specific magnitude, measured by the symmetric Kullback-Leibler
divergence (sKL) between φ0 and φ1 (see Section 4.3.1). In practice, given
φ0 and the desired magnitude κ, our goal is to compute Q ∈ Rd×d and
v ∈ Rd such that

sKL (φ0, φ1) = sKL (φ0, φ0(Q ·+v)) = κ . (5.2)

Choosing roto-translations in our change-model is particularly advanta-
geous first of all because the datastream S can be assembled without hav-
ing to synthetically generate any sample from φ1. In fact, stationary data
(i.e. st, t < τ ) can be randomly selected from S0, while changed data can
be obtained by directly roto-translating other randomly selected samples
s ∈ S0, i.e. st = QT (s − v) for t > τ . Second, as discussed in Chapter 4,
assuming φ1(·) = φ0(Q · +v) is quite a general change model, which en-
compasses changes in the mean as well in the correlation among the data
components. As we will show in Section 5.5, changes obtained by “com-
ponent swap” or “adding an offset”, which are typically encountered in
the change-detection literature, correspond to particular roto-translations.
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Algorithm 5.1 CCM: an overview

Input: S0 the stationary dataset, κ the desired change magnitude, ε the tolerance for the
change magnitude, N the number of datastreams to generate, T the length of the
generated datastreams, τ the change location.

Output: S1, . . . ,SN , generated datastreams.
1: Fit a Gaussian mixture φ̃0 to S0

2: for i = 1, . . . , N do
// Estimation of roto-translation parameters

3: Run Algorithm 5.2 to initialize Q(0) and v(0), yielding sKL(φ̃0, φ̃0(Q(0) ·
+v(0))) > κ

4: Run Algorithm 5.3 to compute Q and v yielding |sKL(φ̃0, φ̃0(Q ·+v))− κ| < ε
// Generation of the datastream

5: for t = 1, . . . , T do
6: Randomly draw w from S0.
7: if t < τ then
8: Set st = w.
9: else

10: Set st = QT (w − v).
11: end if
12: end for
13: Set Si = {st, t = 1, . . . , T}.
14: end for

Third, the matrix Q and the vector v themselves can be easily parametrized
with respect to planes / angles of rotation, and to vector length and direc-
tion, respectively.

5.2 The CCM Method

In this section we first provide an overview of CCM and then describe in
detail the algorithms and techniques used to generate datastreams affected
by changes φ0 → φ1 having a desired magnitude κ. An important issue
in CCM is that to compute sKL(φ0, φ1) we need φ0, which is typically
unknown when manipulating real-world datasets. We solve this issue by
replacing φ0 with an empirical estimate, and in particular we adopt a Gaus-
sian mixture φ̂0 to approximate φ0.

Figure 5.1 illustrates the data manipulation performed by CCM, which
is overviewed in Algorithm 5.1. At first, we start by fitting a Gaussian
mixture φ̂0 to stationary data S0 (line 1 and Section 5.2.1), which is used
for computing our target function sKL(φ̃0, φ̃0(Q · +v)). The same Gaus-
sian mixture φ̂0 is used to generate an arbitrary number N of datastreams
S, each corresponding to a different roto-translation. The parametrization
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Figure 5.1: An illustration of the overall CCM procedure. Solid blue dots and shaded
gray dots indicate the output and the input of each step, respectively. (a) At first, a
Gaussian mixture φ̂0 is fitted on the stationary dataset S0. Then, Algorithm 5.2 is used
to initialize CCM by (b) randomly choosing a matrix Q(0) that defines an arbitrary ro-
tation of Rd, (c) computing random translation direction u and (d) doubling the length
of the translation vector v(0) until sKL(φ0, φ0(Q(0) ·+v(0))) > κ. The value ofQ and
v are then adjusted by the bisection method in Algorithm 5.3 until the corresponding
roto-translation yields a change having the desired magnitude.

adopted to define the roto-translation is described in Section 5.2.3. For
each datastream to be generated we initialize the values of Q(0) and v(0)

by Algorithm 5.2 (described in Section 5.2.4). Such initialization is meant
to yield a change having a magnitude larger than the target value κ and
is illustrated in Figure 5.1(b-d). Then, the bisection method described in
Algorithm 5.3 and in Section 5.2.5 is used to iteratively adjust Q(0) and
v(0) to achieve the desired change-magnitude κ with an approximation er-
ror smaller than a given ε > 0. Finally, the computed Q and v are used
to generate the datastream S (lines 5-13) by randomly sampling data from
S0, and transforming those to be placed after the change location τ . Since
Algorithm 5.2 randomly initialize the change parameters, we can generate
multiple datastreams S from the same S0 by using the same φ̂0.

5.2.1 Fitting Pre-Change Distribution:

The pdf φ̃0 of a Gaussian mixture is a convex combination of k Gaussian
functions, which we express as

φ̃0(s) =
k∑
i=1

λ0,iN (µ0,i,Σ0,i)(s) =
k∑
i=1

λ0,i · e−
1
2

(s−µ0,i)TΣ−1
0,i (s−µ0,i)

(2π)d/2det(Σ0,i)1/2
,

(5.3)
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where
∑k

i=1 λ0,i = 1 and λ0,i ≥ 0, i ∈ 1, . . . , k is the weight of the Gaus-
sian having mean µ0,i and covariance Σ0,i.

We fit the Gaussian mixture to S0 by traditional statistical techniques. In
particular, we test different values of k and select the best number of Gaus-
sians by 5-fold cross-validation, by analyzing the distribution of the aver-
age likelihood over the test sets. Once having defined k, we estimate the
parameters {λ0,i}, {µ0,i} and {Σ0,i} using the Expectation-Maximization
(EM) algorithm [83].

We have adopted Gaussian mixtures since these are rather flexible mod-
els that can approximate skewed and multimodal distributions. Most im-
portantly, sKL(φ̂0, φ̂0(Q · +v)) is always defined and finite when φ̂0 is a
Gaussian mixture, and there exist approximated and fast expressions for
computing the log-likelihood w.r.t. a Gaussian mixture, which we describe
next.

5.2.2 Computing sKL

When running CCM, we have to repeatedly compute sKL(φ̂0, φ̃1), where
both φ̂0 and φ̃1(·) = φ̂0(Q · +v) are Gaussian mixtures. Since there are
no analytical expressions to compute the symmetric Kullback-Leibler di-
vergence between two Gaussian mixtures, we approximate the integrals
in (4.3) via Montecarlo simulations.

More precisely, we synthetically generate two sets S̃0 and S̃1 containing
a sufficient number of i.i.d. realizations drawn from φ̂0 and φ̃1, respectively,
and compute the following approximation:

sKL(φ̃0, φ̃1) ≈ 1

#S̃0

∑
s∈S̃0

log
φ̃0(s)

φ̃1(s)
+

1

#S̃1

∑
s∈S̃1

log
φ̃1(s)

φ̃0(s)
, (5.4)

where #S̃0 and #S̃1 denote the cardinality of S̃0 and S̃1, respectively.
Since the computation of φ̃0(s) (resp. of φ̃1(s)) and of its logarithm

in (5.4) might rise severe numerical issues when d is large, we further ap-
proximate the likelihood of a Gaussian mixture by considering only the
Gaussian of the mixture yielding the largest likelihood, as in Section 4.4.2.
In particular, this yield to the following upper bound of log φ0(s)

ψ0(s) = −1

2

[
log
(
(2π)d det(Σ0,i∗)

)
+

+ (s− µ0,i∗)TΣ−1
0,i∗(s− µ0,i∗)

]
+ log(kλ0,i∗),

(5.5)
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where i∗ is defined as

i∗ = argmax
i=1,...,k

λ0,i · e−
1
2

(s−µ0,i)TΣ−1
0,i (s−µ0,i)

(2π)d/2det(Σ0,i)1/2
. (5.6)

The upperbound of log φ̃1(s), namely ψ1(s), is similarly defined. Then, the
Montecarlo estimate of sKL(φ̃0, φ̃1) is obtained by computing

sKL(φ̃0, φ̃1) ≈ 1

#S̃0

∑
s∈S̃0

(ψ0(s)− ψ1(s)) +
1

#S̃1

∑
s∈S̃1

(ψ1(s)− ψ0(s)) .

(5.7)

5.2.3 Parametrization

To ease calculations, we express Q with respect to its planes and angles of
rotation. We store m := bd/2c angles θ1, . . . , θm in a vector θ, and define
the matrix G(θ) ∈ Rd×d as

G(θ) =


R(θ1) · · · 0 0

... . . . ...
...

0 · · · R(θm) 0
0 · · · 0 1

 ,
R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
.

(5.8)

where R(θi) defines a counterclockwise rotation of angle θi around the ori-
gin in R2. When d is even, the last column and the last row of G(θ) are
dropped. The matrix G(θ) defines a rotation in Rd whose planes of rota-
tion are generated by the coordinate axes: rotation matrices Q referring to
different coordinate axes can be obtained by multiplying G(θ) against an
orthogonal matrix P ∈ Rd×d. Thus, we parametrize the rotation matrix Q
as

Q(θ, P ) = PG(θ)P T . (5.9)

The translation vector v is parameterized by its norm and direction:

v(ρ,u) = ρu, where ‖u‖2 = 1, ρ = ‖v‖2. (5.10)

5.2.4 Initialization

CCM initialization is described in Algorithm 5.2 and it is meant to set
Q(0) and v(0) yielding sKL(φ0, φ0(Q(0) · +v(0))) > κ. This is a neces-
sary condition for the bisection procedure described in Section 5.2.5 to
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Algorithm 5.2 CCM: initialization

Input: φ̃0 and κ, the target value of sKL(φ̃0, φ̃1).
Output: Initial roto-translation parameters θ(0), P, ρ(0), u.

1: Set ρ(0) = 1.
2: Randomly generate m angles θ(0) in [−π/2, π/2]m and a unitary vector u.
3: Generate a matrix A ∈ Rd×d having Gaussian entries.
4: Set P as the orthogonal matrix of the QR decomposition of A.
5: Set Q(0)(θ(0), P ) = PG(θ(0))PT and v(ρ(0),u) = ρ(0)u.
6: repeat
7: Compute s(0) = sKL(φ̃0, φ̃1), where φ̃1 = φ̃0(Q(0) ·+v(0)).
8: ρ(0) = 2ρ(0).
9: until s(0) > κ

work. Given a stationary dataset (Figure 5.1(a)), we randomly define the
angles of rotation θ(0) in [−π/2, π/2]m (line 2) and randomly select an
orthogonal matrix P (lines 3-4). The rotations angles are drawn from a
multivariate uniform distribution, and the matrix P is conveniently defined
by computing the QR decomposition [84] of a matrix A having random
Gaussian entries. The rotation matrix Q(0) is defined according to (5.9) as
Q(0) = Q(0)(θ(0), P ) = PG(θ(0))P T (line 5), being G(θ) as in (5.8). This
is a very general procedure, that can generate any rotation preserving the
orientation of the coordinate system. The matrix Q(0) defines the rotation
around the origin of the dataset, as show in Figure 5.1(b).

Then, we randomly generate a vector u having unitary norm (line 2)
as described in [85, Algorithm 11]. The vector u actually defines the
translation direction, as illustrated in Figure 5.1(c). If the corresponding
sKL(φ̃0, φ̃0(Q(0) · +u)) is larger than κ, the algorithm terminates and re-
turns Q(0) and v(0) = u. Otherwise, the length of v(0) is increased by dou-
bling ρ(0) (Figure 5.1(d)), which controls the extent of the shift in the data
(line 8). This procedure is repeated until the above condition is satisfied.
Convergence of Algorithm 5.2 is guaranteed by the following theorem.

Theorem 5.1. Let φ̃0 be a Gaussian mixture. Then, for any κ > 0 and
tolerance ε > 0, Algorithm 5.2 converges in a finite number of iterations.

Proof. It is enough to show that sKL(φ̃0, φ̃0(Q(0) · +v)) → ∞ as ‖v‖2 →
∞, or that it admits a lower bound that diverges as ‖v‖2 → ∞. We here

43



Chapter 5. Controlling the Change Magnitude

pursue the latter approach and define the lower bound as follows

sKL(φ̃0, φ̃0(Q(0) ·+v)) ≥ KL(φ̃0, φ̃0(Q(0) ·+v))

=

∫
Rd
φ̃0(s) log

(
φ̃0(s)

φ̃0(Q(0)s + v)

)
ds

=

∫
Rd
φ̃0(s) log(φ̃0(s))ds+

−
∫
Rd
φ̃0(s) log(φ̃0(Q(0)s + v))ds

≥
∫
Rd
φ̃0(s) log(φ̃0(s))ds+

− log

(∫
Rd
φ̃0(s)φ̃0(Q(0)s + v)ds

)
.

(5.11)

which follows from the fact that the KL is nonnegative and from the Jensen’s
inequality.

The first term
∫
Rd φ̃0(s) log(φ̃0(s))ds is finite, since the following upper

bound1

| log(φ̃0(s))| ≤ c1 + c2‖s‖2
2, ∀ s s.t. ‖s‖2 > r. (5.12)

holds for suitable constants c1, c2, r > 0.
Then, we have to prove that the second term in the last row of (5.11)

diverges, thus that the integral∫
Rd
φ̃0(s)φ̃0(Q(0)s + v)ds (5.13)

converges to 0 as ‖v‖2 → ∞. To this purpose, we split the integral in in
the sum of two integrals and show that each of these converges to 0.

Let us fix ε > 0. Since φ̃0 is integrable, there exists R1 > 0 such that∫
{s : ‖s‖2>R1}

φ̃0(s)ds < ε. (5.14)

Moreover, φ̃(s)→ 0 as ‖s‖2 →∞, therefore there exists R2 > 0 such that

φ̃0(s) < ε ∀ s : ‖s‖2 > R2. (5.15)

1This bound is trivial for Gaussian pdfs and follows from basic algebra in case of Gaussian Mixtures.
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Let us now define R = 2 max(R1, R2) and pick v such that ‖v‖2 > R. We
split (5.13) as∫

Rd
φ̃0(s)φ̃0(Q(0)s + v)ds =

∫
{s : ‖s‖2>R}

φ̃0(s)φ̃0(Q(0)s + v)ds +

+

∫
{s : ‖s‖2≤R}

φ̃0(s)φ̃0(Q(0)s + v)ds.

(5.16)

Since φ̃0 is bounded over Rd, the first integral in the sum can be upper
bounded as∫
{s : ‖s‖2>R}

φ̃0(s)φ̃0(Q(0)s + v)ds ≤
∫
{s : ‖s‖2>R}

φ̃0(s)φ̃0(Q(0)s + v)ds ·

· sup
s∈Rd

φ̃0(s) ≤

≤ ε · sup
s∈Rd

φ̃0(s),

(5.17)
where the last inequality holds for (5.14).

To upper bound the second integral in (5.16), we note that ∀ s such that
‖s‖2 ≤ R, the inverse triangle inequality and the fact that ‖Q(0)s‖2 = ‖s‖2

imply that

‖Q(0)s + v‖2 ≥ ‖v‖2 − ‖Q(0)s‖2 = ‖v‖2 − ‖s‖2 ≥
≥ 2R−R = R,

(5.18)

where the last inequality holds since we pick ‖v‖2 > 2R. We can derive
the upper bound∫

{s : ‖s‖2≤R}
φ̃0(s)φ̃0(Q(0)s + v)ds ≤ ε

∫
Rd
φ̃0(s)ds ≤ ε, (5.19)

where the first inequality follows from (5.15) and (5.18). Combining (5.17)
and (5.19) we obtain∫

Rd
φ̃0(s)φ̃0(Q(0)s + v)ds ≤

(
1 + sup

s∈Rd
φ̃0(s)

)
· ε, (5.20)

that completes the proof.
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Algorithm 5.3 CCM: iterations to compute the roto-translation yielding the desired change
magnitude

Input: θ(0), P , ρ(0), u from Algorithm 5.2, φ̃0, κ, and the tolerance ε.
Output: Q and v defining the roto-translation yielding sKL(φ̃0, φ̃0(Q ·+v)) ≈ κ.

1: Set the lower bounds θ(1)
l = 0, ρ(1)l = 0.

2: Set the upper bounds θ(1)
u = θ(0), ρ(1)u = ρ(0).

3: Set j = 1.
4: repeat
5: Compute θ(j) = (θ

(j)
l + θ(j)

u )/2, and Q(j)(θ(j), P ) as in (5.9).
6: Compute ρ(j) = (ρ

(j)
l + ρ

(j)
u )/2, and v(j)(ρ(j),u) as in (5.10).

7: Compute s(j) = sKL(φ̃0, φ̃
(j)
1 ), where φ(j)1 (·) = φ̃0(Q(j) ·+v(j)).

8: if s(j) < κ then
9: θ

(j+1)
l = θ(j), ρ(j+1)

l = ρ(j).
10: else
11: θ(j+1)

u = θ(j), ρ(j+1)
u = ρ(j).

12: end if
13: j = j + 1.
14: until |s(j) − κ| < ε

5.2.5 Iterations

The initial values of Q(0) and v(0) are iteratively adjusted in Algorithm 5.3
until the corresponding change achieves the target magnitude κ with the
desired tolerance ε (Figure 5.1(e)). In particular Algorithm 5.3 implements
a bisection procedure that starts from Q(0) = PG(θ(0))P T and v(0) =
ρ(0)u, and that iteratively adjusts the rotation angles θ and the translation
extent ρ. The rotation planes defined by P and the translation direction u
are instead kept fixed.

In what follows, we use the subscripts l and u to denote the parameters
yielding change magnitudes that are smaller and larger than κ, respectively.
Initially, we set both θl and ρl to 0 (line 1), while θu = θ(0) and ρu = ρ(0)

(line 2). As typical in bisection methods, we set θ(j) to the average of θ(j)
l

and θ(j)
u (line 5), and ρ(j) to the average of ρ(j)

l and ρ(j)
u (line 6).

We denote by s(j) the change magnitude induced by a roto-tranlsation
parametrized by θ(j) and ρ(j) (line 7), which we compute as described in
Section 5.2.2. When s(j) < κ, we replace both θl and ρl with θ(j) and ρ(j),
respectively (line 9), otherwise we similarly update θu and ρu (line 11).

These steps are iterated until the sKL achieves the target value κ up to
the desired tolerance ε. Convergence of Algorithm 5.3 is guaranteed by the
following theorem.
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Theorem 5.2. Let φ̃0 be a Gaussian mixture. Then, for any κ > 0 and
tolerance ε > 0, Algorithm 5.3 converges in a finite number of iterations.

Proof. The thesis follows from the Intermediate Value Theorem [86] (The-
orem 4.23) applied to the function used in the bisection procedure, i.e.

skl(a) := sKL(φ̃0, φ̃0(Q(θ(a), P ) ·+ρ(a)u)), (5.21)

where θ(s) = (1 − s)θ(1)
l + sθ(1)

u and ρ(s) = (1 − s)ρ(1)
l + sρ

(1)
u are con-

vex combinations of the initialization parameters (defined in Algorithm 5.3,
lines 1-2). We observe that skl(0) = 0 < κ since θ

(1)
l = 0 and ρ(1)

l = 0,
thus the corresponding roto-translation is the identity transformation and
sKL(φ̂0, φ̂0) = 0. Moreover, skl(1) > κ, thus it is enough to show that
skl(·) is continuous in [0, 1] to prove that the bisection method converges
(see [87], Theorem 2.1) to a value of s̄ such that skl(s̄) = κ. Thus, θ(s̄)

and ρ(s̄) yield sKL(φ̃0, φ̃1) equal to κ.
To show that skl(·) in (5.21) is continuous, we show that both summands

of sKL are continuous, which can be proved by defining

kl(·) =

∫
Rd
g(·, s)ds (5.22)

where

g(a, s) := φ̃0(s) log

(
φ̃0(s)

φ̃0(Q(θ(a), P )s + v(ρ(a),u))

)
. (5.23)

The function g(·, ·) in (5.22) is continuous in [0, 1]×Rd, thus g(·, s) is con-
tinuous in [0, 1]. Then, to prove that kl(·) is also continuous, we leverage
Lemma 16.1 in [88] and prove that |g(a, s)| admits a dominant integrable
function that does not depend on s. To this purpose, we exploit (5.12) and,
for a sufficiently large r,

|g(a, s)| = φ̃0(s)
∣∣∣log

(
φ̃0(s)

)
+

− log
(
φ̃0(Q(θ(a), P )s + v(ρ(a),u))

)∣∣∣
≤ φ̃0(s)

(
c1 + c2‖s‖2

2 + c1 + c2

∥∥Q(θ(a), P )s+

+ v(ρ(a),u)
∥∥2

2

)
.

(5.24)
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The exponential decay of Gaussian mixture implies that√
φ̃0(s)

(
2c1 + c2

(
‖s‖2

2+

+ ‖Q(sθ(0), P )s + v(sρ(0),u)‖2
2)

)
< c

for some c > 0. Thus, the function that dominates |g(·, s)| for ‖s‖2 > r is

c

√
φ̃0(s) which obviously belongs2 to L1(Rd) .

5.3 Non Parametric CCM (NP-CCM)

The main assumption in CCM is that φ0 can be well approximated by a
Gaussian mixture φ̂0. Although this is quite a reasonable assumption, there
are cases where, e.g. due to the lack of training data, it is not possible to
accurately approximate S0 using a Gaussian mixture. However, CCM uses
Gaussian mixture only in Algorithms 5.2 and 5.3 to estimate the symmetric
Kullback-Leibler divergence, and we can relax this technical assumption if
an alternative method for computing sKL(φ̃0, φ̃1) is provided. The ratio-
nale behind Non Parametric CCM (NP-CCM) is that the parameters Q and
v yielding the desired value of sKL(φ0, φ0(Q · +v)) can be directly com-
puted by comparing stationary and transformed data, avoiding fitting any
distribution φ̂0.

The problem of estimating the Kullback-Leibler divergence from two
populations have been recently investigated in the literature [89–92], and
we adopt the method in [89] that is based on the computation of the k-
nearest neighbor (k-nn) distance (as recommended in [89] we use 1-nn dis-
tance). In particular KL(φ0, φ1) can be estimated as

K̂L(B0, B1) =
d

n0

∑
s∈B0

log
r0(s)

r1(s)
+ log

n1

n0 − 1
, (5.25)

where B0 and B1 are two sets drawn from φ0 and φ1 that contain n0 and n1

samples, respectively. In (5.25), r0(s) denotes the distance between s and
its nearest neighbor in B0\{s} and similarly r1(s) in B1. It was shown [89]
that K̂L(B0, B1) converges almost surely to KL(φ0, φ1) as n0, n1 → ∞.
Moreover, we have experienced that a better estimate can be obtained by
setting n0 < n1.

2There is no need to find a dominant function for ‖s‖2 ≤ r since there g(·, s) is bounded.
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Algorithm 5.4 NP-CCM: estimation of the symmetric Kullback-Leibler without fitting φ̂0
Input: Dataset S0 sampled accordingly to φ0, roto-translation parameters Q and v.
Output: Estimate of sKL(φ0, φ0(Q ·+v)).

1: Randomly extracts B0 ⊂ S0 and B1 ⊂ S such that B0 ∩ B1 = ∅ and #B0 = n0,
#B1 = n1.

2: Apply the roto-translation given by Q and v to each element of B1, obtaining B̃1.
3: Estimate K̂L(φ0, φ0(Q ·+v)) = K̂L(B0, B̃1) as in (5.25).
4: Repeat 1-3 to estimate K̂L(φ0(Q ·+v), φ0) = K̂L(B̃1, B0).
5: Set the estimate of sKL(φ0, φ0(Q·+v)) to K̂L(φ0, φ0(Q·+v))+K̂L(φ0(Q·+v), φ0).

Thus, NP-CCM develops as CCM, provided that the change-magnitude
is estimated by approximating sKL as in (5.25) rather than (5.7). In Algo-
rithm 5.4 we precisely describe how to estimate sKL(φ0, φ0(Q ·+v)) from
a stationary dataset S0, provided Q and v. At first, we randomly extract
two subsets B0 and B1 from S0 (line 1) and we roto-translate samples in
B1 using Q and v (line 2). These sets are used to estimate the Kullback-
Leibler divergence between φ0 and φ0(Q · +v) using (5.25) (line 3). The
same procedure is repeated to estimate the Kullback-Leibler divergence be-
tween φ0(Q ·+v) and φ0 (line 4); then sKL(φ0, φ0(Q ·+v)) is obtained by
summing these two estimates (line 5).

Thus, the differences between CCP and NP-CCM are in Algorithm 5.2
line 7, and Algorithm 5.3 line 7, where sKL is estimated by using Algo-
rithm 5.4. Obviously, in NP-CCM there is also no need to estimate the
Gaussian mixture φ̂0 in Algorithm 5.1 line 1. We comment that removing
the Gaussian-mixture assumption implies that Theorems 5.1 and 5.2 do not
hold, thus the convergence of Algorithms 5.2 and 5.3 cannot be guaran-
teed. In fact, both theorems rely on the assumption that φ̂0 is a Gaussian
mixture. When using (5.25), we need additional assumptions on φ0 to prove
CCM convergence. More precisely, Theorem 5.1 holds if we assume that
φ0 is bounded over Rd and vanish at infinity. In fact, in this case we can
prove that the integral in (5.13) converges to 0 as ‖v‖2 → ∞. In case of
Theorem 5.2, we have to assume the existence of a function h ∈ L1(Rd)
such that for every rotation matrixQ and translation vector v, the following
condition holds: ∣∣∣∣φ0(s) log

φ0(s)

φ0(Qs + v)

∣∣∣∣ ≤ h(s). (5.26)

In this case the g(a,x) in (5.23) is dominated by h(s) and the function kl(·)
in (5.22) is continuous. The assumption in (5.26) holds when the data-
generating distribution is a Gaussian mixture, but it is difficult to verify for
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a more general class of distributions.

5.4 Computational Complexity

The computational complexity of CCM is dominated by the cost of estimat-
ing the symmetric Kullback-Leibler divergence, that has to be performed at
each iteration of Algorithms 5.2 and 5.3. In fact, fitting a Gaussian mixture
or performing the QR decomposition (which are invoked in the initial steps
of CCM), are not iterated in CCM. Estimating sKL(φ̂0, φ̃1) through (5.7)
involves the computation of ψ0(s) and ψ1(s), which requires computing
the Mahalanobis distance between s and the mean vector of each Gaussian
in φ̂0 for each of the k numerators in (5.6). Therefore, computing ψ0(s)
and ψ1(s) requires O(d2k) operations that have to be computed for each
s ∈ S̃0 ∪ S̃1. This yields the computational complexity of (5.7) to O(d2kn)
for each iteration of Algorithms 5.2 and 5.3, being 2n the number of sam-
ples in S̃0 ∪ S̃1.

The computational complexity of NP-CCM is determined by the cost of
estimating sKL through (5.25). When the 1-nn distances r0 and r1 in (5.25)
are computed by straightforward comparisons between all the elements of
S0 and S1, the cost of estimating sKL isO(d(n0+n1)2). However, the com-
plexity can be reduced by adopting advanced searching techniques, which
rely for instance on the k-d tree structures [61], as we did in our MATLAB
implementation.

5.5 Experiments

Experiments are meant to demonstrate the effectiveness of CCM and the
limitations of the experimental practices adopted in the literature (Sec-
tion 5.5.1). More precisely, in our experiments we inject changes in both
synthetically generated and real world datasets, and then measure the mag-
nitude of the changes introduced by all the different methods.

We first perform experiments on Gaussian datastreams (Section 5.5.2),
where we can exactly measure the symmetric Kullback-Leibler divergence
between the pre- and post-change distributions, then, we introduce changes
in two real world datasets (Section 5.5.3). Section 5.5.4 is devoted to the
empirical analysis of the convergence of CCM and NP-CCM. To avoid nu-
merical issues, in all our experiments we standardize the components of
each datasets by subtracting the sample mean and dividing by the sample
standard deviation.
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5.5.1 Considered Methods

We compare CCM and NP-CCM against other methods that used in the
change-detection literature to introduce changes in real world datasets [14,
59, 77]:

• CCM is configured to identify roto-translation parameters yielding
sKL(φ̂0, φ̃1) = 1.

• NP-CCM, where sKL is estimated using the method described in [89],
configured to yield changes of magnitude 1.

• Offset: a 1-sigma offset is added to each component of the input data.
This change model corresponds to roto-translations whereQ = Id and
v = [σ1, . . . , σd]

T , being σi the sample standard deviation of the i-th
component.

• Normalized Offset: an offset, having magnitude that decreases as d
increases, is added to each component of the input data. This change
model corresponds to roto-translations having v = [σ1/

√
d, . . . , σd

√
d]T

and Q = Id. When φ0 is a Gaussian distribution having independent
components, this change model yields sKL(φ0, φ1) = 1.

• Swap: two randomly chosen components of the input data are swapped.
This change model corresponds to a roto-translation where Q is a per-
mutation matrix and v = 0.

While these are the most commonly adopted methods, the literature
presents other solutions, such as mixing different datasets [78] or swap-
ping classes of labeled datasets [15, 79]. These methods, however, depend
on many degrees of freedom, which would yield a large variance in the
results, and as such have not been considered in our analysis.

5.5.2 Gaussian Datastreams

We consider Gaussian datastreams generated by φ0 = N (µ0,Σ0). The
post-change distribution φ1(·) = φ0(Q·+v) is still a Gaussian having mean
µ1 = QT (µ0−v) and covariance matrix Σ1 = QTΣ0Q. For each dimension
d ∈ {1, 2, 4, . . . , 128} we generate 1000 datasets containing 20000 i.i.d.
realizations of φ0 each, where the values of µ0 and Σ0 have been randomly
defined in each dataset. From each dataset, we generate a datastream using
the all the methods described above to introduce a change at τ = 1000.
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Figure 5.2: Values of sKL(φ0, φ1) obtained on Gaussian datasets using different methods
to inject changes at dimension d ∈ {1, 2, 4, 8, 16, 32, 64, 128}. Solid lines represent
the median values, while dashed lines represent the first and the third quartiles.

On Gaussian datastreams we can exactly compute the magnitude of the
introduced changes, since the sKL is given by

sKL(φ0, φ1) =
1

2

[
tr(Σ−1

1 Σ0) + tr(Σ−1
0 Σ1)+

+ (µ1 − µ0)T (Σ−1
1 + Σ−1

0 )(µ1 − µ0)− 2d
]
.

(5.27)

This expression is used as a reference to assess the magnitude of the intro-
duced changes.

Figure 5.2 shows that CCM generates changes yielding sKL(φ0, φ1)
equals to 1 (the target value) for each dimension d. This result is not sur-
prising, since we set k = 1 and the assumption that φ0 can be well approx-
imated by a Gaussian mixture is here perfectly met. In contrast, NP-CCM
cannot successfully control the change magnitude, which reaches 2 when
d = 4. This is due to the fact that 20000 samples are not sufficient to obtain
an accurate estimate of sKL by (5.25) when d increases, as noted in [89].
Other experimental practices can not preserve the change magnitude, since
sKL steadily increases with d. Remarkably, also the magnitude of nor-
malized offset increases, and this indicates that a coarse approximation of
φ0, which in this case ignores the correlation among components, does not
allow to control the change magnitude. Figure 5.2 shows that also the dis-
persion of the change magnitude increases (note the logarithmic scale in
the axis) thus that the introduced changes have considerably different mag-
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Figure 5.3: Values of sKL(φ0, φ1) obtained on (a) Particle dataset and (b) Protein dataset
using different methods to introduce changes in datastreams having different dimension
d. Solid lines represent the median values, while the dashed lines represent the first
and the third quartiles.

nitudes when d increases.
Such an increasing magnitude prevents the use of these techniques to

correctly study the change-detection performance when data dimension
scales. In practical applications, in fact, it is not expected that the change
magnitude necessarily increases with d. For instance, when the dimension
of the change-detection problem increases because of components that i)
are not affected by the change, and ii) are independent from components
that change, the change magnitude does not increase with d.

5.5.3 Real World Datastreams

In the second experiment we generate datastreams from two real world
datasets from the UCI repository [76]. The MiniBooNE Particle dataset
is the same one used in previous chapter and has dimension dmax = 50. We
adopt a mixture of k = 4 Gaussians to approximate φ0. The second dataset
is the Physicochemical Properties of Protein Tertiary Structure (Protein)
dataset, which has dimension dmax = 9. By analyzing the marginal distri-
bution over components and pairs of components, we conclude that a GM
seems not to properly fit this latter dataset, and we have adopt NP-CCM
with a maximum of d = 4 components. Larger values of d would have re-
quired too many samples for correctly estimating the symmetric Kullback-
Leibler divergence by (5.25).

In this experiment we cannot exactly compute the symmetric Kullback-
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Leibler divergence between the pre- and post- change distributions, since
φ0 is unknown. Therefore, we resort to estimating the change magnitude
as follows. We split each dataset S0 in two set S0,1 (training) and S0,2 (val-
idation): the set S0,1 contains approximately one third of the samples of
S0 and it is used for estimating the roto-translation parameters by all the
methods, while S0,2 is exclusively used for estimate the sKL corresponding
to the identified changes. From S0,1 we generate 1000 datastreams for each
dimension d = 1, . . . , dmax by randomly choosing d components out of the
dmax available and compute Q and v using the considered methods3. Then
we estimate the corresponding sKL(φ̂0, φ̂0(Q · +v)) over S0,2. More pre-
cisely, in the experiments on the Particle dataset we fit φ̂0 on §0,1, and we
split the set S0,2 in two subsets V0 and V1. Then we estimate the symmetric
Kullback-Leibler divergence using (5.7), where the ψ0 and ψ1 are defined
from φ̂0 (which is fitted on S0,1) and φ̂0(Q ·+v), respectively. In the exper-
iments on the Protein dataset, the symmetric Kullback-Leibler divergence
is estimated using Algorithm 5.4, where B0 and B1 in (5.25) are extracted
exclusively from S0,2.

Figures 5.3 shows the values sKL obtained when increasing d, and demon-
strates that CCM and NP-CCM can generate changes having controlled
magnitude. The Swap, Offset and Normalized Offset do not preserve the
change magnitude, and yield changes that are more apparent when d in-
creases. These results are consistent with those emerging from the exper-
iments on the Gaussian dataset, and further indicate that controlling the
change magnitude is very important when manipulating real-world datasets.

5.5.4 Execution times

To estimate the execution times of CCM and NP-CCM, we count the num-
ber of iterations that are required to CCM and NP-CCM to converge on
the Particle and Protein datasets, respectively. These numbers are shown in
Figure 5.4(a) and 5.4(b) as function of d. We observe that, in general, less
than 20 iterations are enough to converge to the target value κ = 1 with a
tolerance of ε = 0.01. This translates in execution times that are reported
in Figure 5.5 and show that CCM can be used to generate a large number of
datastreams for the evaluation of change-detection algorithms. This times
are measured using our MATLAB implementation of CCM and NP-CCM
on a PC mounting an Intel Core i5 2.30 GHz CPU and 12 GB RAM. Com-
putational times of the other approaches are not reported even though these
are substantially smaller since the Swap and Offset methods do not require

3Note that the swap method does not need training data to define the permutation matrix.
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Figure 5.4: Number of iterations required for the convergence of Algorithm 5.3 for (a)
CCM and (b) NP-CCM, in case of the Particle and the Protein dataset, respectively.
For each considered dimension, less the 20 iterations are sufficient to achieve conver-
gence, with a tolerance ε = 0.01, i.e. 1% of the target sKL. The solid lines represent
the median computed over 50 realizations, while the dashed lines represents the first
and the third quartiles.

any computation, while Normalized Offset method has only to compute the
standard deviation of each components over the entire dataset.

5.6 MATLAB Framework

We have implemented CCM in a MATLAB package that is publicly avail-
able for download4. This package allows to import any numerical dataset
S0 and generates an arbitrarily number of datastreams of the same length,
containing a change of a desired magnitude at a given location. The main
class of the framework is CCMframework, which implements all the func-
tionalities used in Algorithm 5.1, namely: fitting of the Gaussian mixture
φ̂0 to the whole dataset S0, computation of the roto-translation, and prepa-
ration of the datastreams. The CCMframework class has two methods:
the constructor and generateDatastreams.

The constructor of CCMframework takes as input the dataset S0 and a
flag parameter that specifies which version of the framework to use (CCM
or NP-CCM). In case of CCM, the constructor fits a Gaussian mixture to the
dataset (Algorithm 5.1, line 1) for a given number k of Gaussians, which
has to be defined by the user, for instance through the procedure described
in in Section 5.2.1. Then an object of the class gmDistr is accordingly

4home.deib.polimi.it/carrerad
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Figure 5.5: Execution times of (a) CCM and (b) NP-CCM required to compute the roto-
translation parameters on the Particle and Protein datasets, respectively. The solid
lines represent the median computed over 50 realizations, while the dashed lines rep-
resents the first and the third quartiles. CCM requires an additional step to fit the
Gaussian mixture φ̂0. Although this step is more computationally demanding than the
computation of the rotation matrixQ and the shift vector v, it has to be performed only
once when computing several change parameters for the same dataset.

instantiated. When the flag parameter indicates NP-CCM, the constructor
instantiates an object of the class empiricalDistr, which relies on an
KDTreeSearcher MATLAB object to efficiently compute the 1-nn dis-
tance in (5.25). Both of gmDistr and empiricalDistr implement the
method symmetricKullbackLeibler, which is used to estimate the
symmetric Kullback-Leibler divergence between the pre- and post-change
distributions. The gmDistr class implements the procedure described
in Section 5.2.2, while the class empiricalDistr implements Algo-
rithm 5.4.

The method generateDatastreams implements Algorithm 5.2 to
initialize the roto-transalation parameters, and then runs the bisection method
in Algorithm 5.3 until the matrix Q and the vector v provide the desired
change magnitude or when the number of iterations reaches a maximum
value. Finally, the datastream is assembled by randomly selecting samples
from S0 and by applying the computed roto-translation to samples that are
located after the specified change-point location.
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CHAPTER6
QuantTree

In this chapter we introduce QuantTree, a novel change-detection algo-
rithm pursuing histograms to approximate φ0. QuantTree uses an itera-
tive splitting scheme that adaptively defines the histogram bins to ease the
detection of of any distribution change. We theoretically prove that the
distribution of any statistics computed over histograms defined by Quant-
Tree does not depend on φ0, thus we can compute thresholds for these test
statistics using Monte Carlo simulations. Moreover, since QuantTree is a
non-deterministic algorithm, we can exploit the diversity of the computed
histograms by combining them in an ensemble and show that this approach
mitigate the effect of detectability loss investigated in Chapter 4.

In Section 6.1 we formally define the histograms, and in Section 6.2 we
introduce QuantTree. Section 6.3 is devoted to the demonstration of our
main results, while in Section 6.4 we show how to aggregate histograms
computed by QuantTree in ensembles. Finally, we show the results of our
experimental campaign in Section 6.5 and discuss them in Section 6.6.
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6.1 Histograms for Change Detection

We consider histograms to approximate the unknown stationary distribution
having probability density function φ0, whose support is Ω ⊂ Rd. We
define a histogram as:

h = {(Bk, πk)}k=1,...,K , (6.1)

where the K subsets (bins) Bk ⊆ Ω form a partition of Ω, i.e.,
⋃K
k=1Bk =

Ω and Bj ∩ Bi = ∅, for j 6= i, and each πk ∈ [0, 1] corresponds to the
probability for data generated from φ0 to fall inside Bk. Both the bins
{Bk}k and probabilities {πk}k can be adaptively defined from training data
S0, and in particular πk is typically estimated as π̂k = Lk/N , i.e. the
number of training samples Lk belonging to Ak over the number of points
in S0.

As described in Section 2.1, we analyze the incoming data in batches
W = {s1, . . . , sν} of ν samples and perform the hypothesis tests in (2.2).
We focus on hypothesis tests that are based on a test statistic Th defined
over the histogram h, like for instance the Pearson statistic [64]. Thus, Th
uniquely depends on {yk}k=1,...,K , where yk denotes the number of samples
in W falling in Bk. We detect a change in the incoming W when

Th(W ) = Th(y1, . . . , yK) > δ, (6.2)

where δ ∈ R is a threshold that controls the FPR.
Our goal is two-fold: i) learn a histogram h from S0 to be used for

change-detection purposes and ii) for each given test statistic Th and refer-
ence FPR value α, define a threshold δ such that

Pφ0(Th(W ) > δ) ≤ α, (6.3)

where Pφ0 denotes the probability under the null hypothesis thatW contains
samples generated from φ0. We observe that in classical statistical hypothe-
sis settings, the threshold δ is set such that the equality holds in (6.3). How-
ever, when the statistic Th assume discrete values, as for statistics computed
over the histogram, equality might not hold, thus α becomes an upper-
bound for the probability of type I errors.

6.2 The QuantTree Algorithm

Here we introduce QuantTree, an algorithm to define histograms h through
an iterative binary splitting of the input space Ω. This algorithm takes as
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Algorithm 6.1 QuantTree

Input: Training set S0 containing N stationary points in Ω; number of bins K; target
probabilities {πk}k.

Output: The histogram h = {(Bk, π̂k)}k.
1: Set N0 = N , L0 = 0.

// Iterative split of the bins
2: for k = 1, . . . ,K do
3: Set Nk = Nk−1 − Lk−1, Ωk = Ω \

⋃
j<k Bj , and Lk = round(πkN).

4: Choose a random component i ∈ {1, . . . , d}.
5: Define zn = [sn]i for each sn ∈ Ωk.
6: Sort {zn}: z(1) ≤ z(2) ≤ . . . z(Nk).
7: Draw β ∈ {0, 1} from a Bernoulli(0.5).
8: if β = 0 then
9: Define Bk = {s ∈ Ωk [s]i ≤ z(Lk)}.

10: else
11: Define Bk = {s ∈ Ωk [s]i ≥ z(Nk−Lk+1)}.
12: end if
13: Set π̂k = Lk/N .
14: end for

input a training set S0 containing N stationary points, the number of bins
K in the histogram, and the target probabilities on each bin {πk}k=1,...,K ,
and returns a histogram h = {(Bk, π̂k)}k=1,...,K , where each π̂k represents
an estimate of the probability for a sample drawn from φ0 to fall in Bk.

Algorithm 6.1 presents in detail QuantTree, which constructs a new bin
of h at each step k. We denote by Ωk ⊆ Ω the subset of the input space that
still has to be partitioned (i.e., Ωk = Ω\

⋃
j<k Bk) and by Nk the number of

points of S0 belonging to Ωk. We compute (line 3) the number of training
points that has to fall insideBk as Lk = round(πkN). The subsetBk is then
defined by splitting Ωk along a component i ∈ {1, . . . , d} that is randomly
chosen with uniform probability (line 4). The splitting point is defined by
sorting zn = [sn]i, i.e., the values of the i-th component for each sn ∈ Ωk

(lines 5). We thus obtain z(1) ≤ z(2) ≤ · · · ≤ z(Nk) (line 6) and we define
Bk by splitting Ωk w.r.t. z(Lk) or z(Nk−Lk+1) (lines 7-11). In both cases Bk

contains Lk points among the N in S0, thus the estimated probability of
Bk is π̂k = Lk/N (line 13). This procedure is iterated until K subsets are
extracted.

QuantTree divides Ω in a given number of subsets, where each set Bk

has an estimated probability π̂k ' πk, and the equality holds when πkN is
integer. Since the probabilities πk are set a priori, in what follows we use
πk in place of π̂k. Indexes i and parameter β are randomly chosen to add
variability to the histogram construction. Figure 6.1 shows a tree obtained

59



Chapter 6. QuantTree

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

B1

B2

B3
B4

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

B1

B2

B3
B4

Figure 6.1: Two examples of histograms withK = 4 bins computed by QuantTree to yield
uniform density on the bins.

from a bivariate Gaussian training set, defined by K = 4 bins, each having
probability πk = N/4.

6.2.1 Computation of Distribution-Free Test Statistics

A key feature of a histogram computed by QuantTree is that any statistic
Th built over it has a distribution that is independent from φ0. This result
follows from Theorem 6.1, that is proved in Section 6.3.

Theorem 6.1. Let Th(·) be defined as in (6.2) over the histogram h com-
puted by QuantTree. When W ∼ φ0, the distribution of Th(W ) depends
only on ν, N , K and {πk}k.

Theorem 6.1 implies that we can numerically compute the thresholds
for any statistic Th defined on histograms, provided ν, N , K and {πk}, thus
disregarding φ0 and the data dimension d. To this end, we synthetically
generate data from a conveniently chosen distribution ψ0, and we follow
the procedure outlined in Algorithm 6.2 to estimate the threshold δ for the
hypothesis test in (2.2) yielding a desired FPR α. At first we generate
M training sets {Sm}m=1,...,M , sampling N points from ψ0 and, for each
training set, we build a histogram hm using QuantTree (lines 2-3). Then, for
each hm we generate a batch Wm of ν points drawn from ψ0, and compute
the value of the statistic δm = Th(Wm) (lines 4-5). Finally, we estimate
δ (line 7) from the set TM = {δ1, . . . , δM} as the 1 − α quantile of the
empirical distribution of Th over the generated batches, i.e.

δ = min
{
t ∈ TM : #{v ∈ TM : v > t} ≤ αM

}
, (6.4)
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Algorithm 6.2 Numerical procedure to compute thresholds

Input: Test statistic Th; arbitrarily chosen ψ0; the number M of datasets and batches
to compute the threshold; the number of points ν in each batch; N ,K, and π̂k as in
Algorithm 6.1; the desired FPR α.

Output: The value δ of the threshold
1: for m = 1, . . . ,M do
2: Draw from ψ0 a training set Sm of N samples.
3: Use QuantTree to compute the histogram hm with K bins and target probabilities
{πk}k over Sm.

4: Draw a batch Wm containing ν points from ψ0.
5: Compute the value δm = Th(Wm).
6: end for
7: Compute the threshold δ as in (6.4).

where #A denotes the cardinality of a set A.
To take full advantage of the distribution-free nature of the procedure,

we set ψ0 to a univariate uniform distribution U(0, 1). This allows to obtain
high accuracy on the estimation of the thresholds, since we can use very
large values of M with limited computational cost.

6.2.2 Considered Statistics

We consider two meaningful examples of statistics Th that can be employed
for batch-wise monitoring through histograms: the Pearson statistic and the
total variation [64]. The Pearson statistic is defined as

T Ph (W ) =
K∑
k=1

(yk − νπk)2

νπk
, (6.5)

while the total variation is defined as

T TVh (W ) =
1

2

K∑
k=1

|yk − νπk| . (6.6)

It is well known that, when {πk}k are the true probabilities of the bins
{Bk}k, under the null hypothesis the statistic T Ph (W ) is asymptotically
distributed as a χ2

K−1. However, when the πk are estimated, the threshold
obtained from the χ2

K−1 distribution does not allow to properly control the
FPR, and this effect is more evident when yk is small. In contrast, thresh-
olds defined by Algorithm 6.2 hold also in case of limited sample size, since
they are not based on an asymptotic result.
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α
Pearson Total Variation

K = 32 K = 128 K = 32 K = 128 N ν

0.001 64 192 25 43 4096 64
62.75 187 52 85 16384 256

0.01 54 172 23 42 4096 64
53.25 171 47 81 16384 256

0.05 46 156 21 41 4096 64
45.75 157 44 78 16384 256

Table 6.1: Examples of thresholds δ that guarantee FPR below α using a uniform his-
togram h, i.e. by settings πk = 1/K, k = 1, . . . ,K. The thresholds are computed by
Algorithm 6.2 using U(0, 1) as ψ0 and different values of N , ν and K.

We report in 6.1 the thresholds for these two statistics computed for dif-
ferent values ofN ,K, ν and choosing πk = 1/K, k = 1, . . . , K. These val-
ues have been computed applying the procedure described in Algorithm 6.2
with M = 2.5 · 106. We note that both statistics T Ph and T TVh assume only
discrete values, therefore it is not always possible to set the threshold δ
yielding the FPR exactly equal to α, but only to ensure that the FPR does
not exceed α.

6.2.3 Computational Remarks

We remark that since the histogram h computed by QuantTree is exclu-
sively defined on the marginal probabilities of single components, the di-
mensionality of the input data d does not impact the overall computational
cost. In fact, the computational cost of QuantTree is dominated by sort-
ing the covariates (Algorithm 6.1 line 6), which is performed K times on
an progressively smaller number of samples at each iteration. Therefore,
the overall complexity of constructing a QuantTree is O(KN logN). In
case of univariate distribution (i.e., d = 1), the complexity is reduced to
O(N logN), since the partition {Bk}k can be defined through a single sort-
ing operation.

Since any histogram h computed by QuantTree can be represented as a
tree structure, it is very efficient to identify the bin where any testing point
belongs to. In fact, during monitoring, at mostK IF-THEN operations (that
reduces to logK when d = 1) have to be performed for each input sample
s. Moreover, in contrast with histograms based on regular grids, the number
of bins K is here a priori defined, and does not need to grow exponentially
with d.
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Figure 6.2: Examples of values assumed by L̃k in three different configurations, when
N = 9 and L1 = L2 = L3 = 3. In these cases L̃1 = L1, while in (a) L̃2 = 3, in
(b) L̃2 = 5, and in (c) L̃2 = 6. Note that when QuantTree chooses always the same
component, we have that L̃2 = L1 + L2, as in (c).

6.3 Theoretical Analysis

We prove Theorem 6.1 showing that the distribution of any test statistic Th
defined over an histogram h computed by QuantTree does not depend on
φ0. To this end, we first prove some preliminary propositions to character-
ize the distribution of the true probability of each bin Bk under φ0:

pk = Pφ0(Bk), (6.7)

which is also a random variable as it depends on the training set S0.
For the sake of simplicity, we assume that QuantTree always splits with

respect to the left tail, i.e., β = 0 in line 8 of Algorithm 6.1 (proofs hold
when β ∼ Bernoulli(0.5)) and, to simplify the notation, we will omit the
subscript φ0 from Pφ0 , thus P denotes the probability computed w.r.t. φ0.
The following proposition will be used to derive the distributions of pk.

Proposition 6.1. Let s1, . . . , sM be i.i.d. realizations of a continuous ran-
dom vector S defined over D ⊆ Rd. Let us define the i-th component of
s as z = [s]i, and denote with z(1) ≤ z(2) ≤ · · · ≤ z(M) the M sorted
components of s1, . . . , sM . For any L ∈ {1, . . . ,M} we define the set

Qi,L := {s ∈ D : [s]i ≤ z(L)}. (6.8)

Then, for each i ∈ {1, . . . , d}, the random variable p = PS(Qi,L) is dis-
tributed as a Beta(L,M − L+ 1).

Proof. The proof consists of showing that p is an order statistic of the uni-
form distribution, which in turns follows a Beta distribution. For this pur-
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pose, we consider S defined over Rd and PS(Rd \ D) = 0, thus p can be
expressed as

p = PS(Qi,L) = PS(s ∈ Rd : [s]i ≤ z(L)) =

= PZ(z ∈ R : z ≤ z(L)),
(6.9)

where PZ denotes the marginal probability ofZ = [S]i, namely the marginal
of S w.r.t. the component i. We denote with FZ the cumulative distribution
of Z and define U = F−1

Z (Z) and un = F−1
Z (zn), n = 1, . . . ,M , where

F−1
Z (z) = inf{t ∈ R : FZ(t) > z}. (6.10)

The function F−1
Z (·) is monotonically nondecreasing, thus it preserves the

order and theL-th sorted value of {un} can be computed as u(L) = F−1
Z (z(L)).

Then, (6.9) becomes

p = PZ(z ∈ R : z ≤ z(L)) =

= PU(u ∈ [0, 1] : u ≤ u(L)) = FU(u(L)) = u(L).
(6.11)

Since U follows a uniform distribution over [0, 1], it follows that p is the
L-th order statistic of the uniform distribution, that is a distributed as a
Beta(L,M − L+ 1) [93].

Thus, p1 in (6.7), namely the probability of B1 under φ0, is distributed
as a Beta(L1, N − L1 + 1). To derive the distribution of the remaining pk,
k ≥ 2, we define the conditional probability

PB1(s ∈ A) = Pφ0(s ∈ A | s /∈ B1), (6.12)

where A is any Borel subset of Ω. Then, from the definition of conditional
probability and the fact that s1, . . . , sN are i.i.d. according to φ0, it can
be easily proved that the N − L1 points that do not belong to B1 are i.i.d.
according to PB1 . Therefore, we can apply Proposition 6.1 to the subset
of the N − L1 points that do not fall in S1 by setting D = Rd \ S1 and
considering PS1 in place of PS. Thus, the random variable p̃2 = PS1(S2) is
distributed as Beta(L2, N2 − L2 + 1), where N2 = N − L1. Iterating the
above procedure, we obtain that all the random variables p̃k, k = 1, . . . , K,
defined as1

p̃k = P⋃k−1
j=1 Bj

(Bk), (6.13)

are distributed as Beta(Lk, Nk − Lk + 1), where Nk = N −
∑k−1

j=1 Lj .
1We adopt the following conventions: an empty union of sets is the empty set, an empty sum is zero, and an

empty product is 1.
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We remark the different roles of pk and p̃k. While pk in (6.7) the measure
of the bin Bk under φ0, p̃k in (6.13) is the ratio between pk and the measure
under φ0 of Ωk = Rd \

⋃k−1
j Bj , namely the space that remains to be

partitioned at step k. As an example, for a tree with K = 3 leaves, if we
set target probabilities π1 = π2 = π3 = 1/3, we obtain p̃1 ≈ 1/3, p̃2 ≈ 1/2
and p̃3 = 1. To prove Theorem 6.1 we need to derive the distribution of pk,
that are expressed in terms of p̃k by the following proposition.

Proposition 6.2. In case of histograms defined by QuantTree, the following
relation holds between pk and p̃k:

pk = p̃k · (1−
k−1∑
j=1

pj) = p̃k

k−1∏
j=1

(1− p̃j). (6.14)

Proof. From the law of total probability we have that

pk = Pφ0(s ∈ Bk) =

= Pφ0
(
s ∈ Bk | s /∈ ∪k−1

j=1Bj

)
· Pφ0

(
s /∈ ∪k−1

j=1Bj

)
+

+ Pφ0
(
s ∈ Bk | s ∈ ∪k−1

j=1Bj

)
· Pφ0

(
s ∈ ∪k−1

j=1Bj

)
.

(6.15)

Since sets {Bk} defined by QuantTree are disjoint, it follows that Bk and⋃k−1
j=1 Bj are also disjoint, thus the second term in the sum in (6.15) is equal

to 0. The first equality in (6.14) follows from the definition of p̃k = Pφ0(s ∈
Bk | s /∈

⋃k−1
j=1 Bj) and the fact that Pφ0(s /∈

⋃k−1
j=1 Bj) = 1−

∑k−1
j=1 pj .

The second equality in (6.14) can be proved by induction over k.

The following proposition allows us to express pk as a product of inde-
pendent Beta distributions.

Proposition 6.3. The random variables p̃k defined over histograms com-
puted by QuantTree are independent.

Proof. To prove the independence of the p̃k, k = 1, . . . , K, we show that
p̃k is independent from p̃j , j = 1, . . . , k − 1. In particular, we prove that

Pφ0(p̃k ≤ tk | p̃j = tj, j = 1, . . . , k − 1) = Pφ0(p̃k ≤ tk). (6.16)

To this end, we follow the proof of Proposition 6.1, and express p̃k as an
order statistic of the uniform distribution.

At iteration k, QuantTree randomly selects a dimension ik and performs
a split w.r.t. the Lk-th order statistic of the ik components over the remain-
ing Nk points (line 9 of Algorithm 6.1). Let L̃k be the position of this split-
ting point in {zn = [sn]ik , n = 1, . . . , N}, namely the sequence of ordered
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ik components of all the points in S0. The value of L̃k ∈ N depends on
realizations s1, . . . , sN , and is a random variable ranging in {Lk, . . . ,Mk},
whereMk =

∑k
j=1 Lj . Obviously, at the first iteration L1 = L̃1 but then the

two may differ, as shown in Figure 6.2. Let us now consider the splitting
point with respect to L̃k, i.e., z(L̃k). From the definition of p̃k we have that

p̃k = P⋃k−1
j=1 Bj

(Bk) = P⋃k−1
j=1 Bj

(z ≤ z(L̃k)). (6.17)

As in the proof of Proposition 6.1, we denote with FZ the cdf of Z = [S]ik ,
and define U = F−1

Z (Z), that has a uniform distribution on [0, 1]. Therefore
it holds that

p̃k = P⋃k−1
j=1 Bj

(z ≤ z(L̃k)) = P⋃k−1
j=1 Bj

(u ≤ u(L̃k)) =

= FU(u(L̃k)) = u(L̃k).
(6.18)

We use the law of total probability w.r.t. the events {L̃k = a}, a ∈
{Lk, . . . ,Mk}, to decompose the left hand side in (6.16):

Pφ0(p̃k ≤ tk | p̃j = tj, j = 1, . . . , k − 1) =

= Pφ0(u(L̃k) ≤ tk | p̃j = tj, j = 1, . . . , k − 1) =

=

Mk∑
a=Lk

Pφ0(u(L̃k) ≤ tk | L̃k = a, p̃j = tj, j = 1, . . . , k − 1) · Pφ0(L̃k = a)

=

Mk∑
a=Lk

Pφ0(u(a) ≤ tk | p̃j = tj, j = 1, . . . , k − 1) · Pφ0(L̃k = a).

(6.19)
Since the distribution of u(a) does not depend on p̃j , we have that

Pφ0(u(a) ≤ tk | p̃j = tj, j = 1, . . . , k − 1) = Pφ0(u(a) ≤ tk), (6.20)

therefore it follows
Pφ0(p̃k ≤ tk | p̃j = tj) =

=

Mk∑
a=Lk

Pφ0(u(a) ≤ tk) · Pφ0(L̃k = a)

=

Mk∑
a=Lk

Pφ0(u(L̃k) ≤ tk | L̃k = a) · Pφ0(L̃k = a) =

= Pφ0(u(L̃k) ≤ tk) = Pφ0(p̃k ≤ tk),

(6.21)

and (6.16) is proved.
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The proof of Theorem 6.1 follows from Proposition 6.3.

Proof of Theorem 6.1. For any stationary distribution φ0, the random vector
[y1, . . . , yK ] conditioned on p1, . . . , pK follows a Multinomial distribution
with parameters (ν, p1, . . . , pK) [94]. From Proposition 6.3 each pk is a
product of independent Beta distributions, thus depends only on {Lk} and
it is independent from φ0. Therefore any statistic Th that is a function of
{yk} depends only on ν, and on N and {πk} which determines {Lk}.

6.4 Ensemble of Histograms

Histograms generated by QuantTree might not be able to detect changes
that affect single components of the datastream. In fact, at each iteration
QuantTree randomly selects a component to perform the split and generate
a new bin, thus the components affected by the change might not be chosen,
making the histogram unable to detect the change. To guarantee that each
component is chosen at least once with high probability, it is necessary to
perform a large number of iteration, especially when the data dimension d
is large, and generate histograms with a lot of bins. The main drawback of
such histograms is that each bin contains very few training samples, which
leads to a large variance in the test statistic.

We address this issue by using ensembles of histograms. In particular,
we consider histograms having few bins to control the variance of the test
statistic, and combine them to eventually partition the data space Ω in many
bins.

6.4.1 Ensemble of histograms

An ensemble E of histograms is a collection of R individual histograms
hi = {(Bi,k, π̂i,k)}k=1,...,Ki , each estimated from the training set S0, yield-
ing different partitions. The number Ki of bins can be different for each
histogram. In this way, we can define hierarchies of partitions, to approx-
imate φ0 using histograms at different resolutions. For simplicity here we
consider a fixed K, but our analysis can be easily extended to different
settings.

The most important feature for a successful ensemble is the diversity
among the single individuals [95]. This is a typical requirement in ensemble
methods and multiple hypothesis testing, and it holds also in the change-
detection context, as shown in Figure 6.1 that depicts an example of two
different histograms computed by QuantTree. If we consider only the his-
togram (a), any change occurring for value of s1 smaller than −0.6 would
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not be detected. The same issue arises in the histogram (b) which would
not be able to detect changes occurring only in region where s2 < −0.8.
Yet, the combination of the two histograms allows to detect both changes.

QuantTree provides variability to individual histograms in the ensemble
by construction, since it randomly selects a component w.r.t. perform the
split. Therefore it can be used straightforwardly to build powerful ensem-
bles for change detection.

6.4.2 Statistic over the Ensemble

For each incoming batch W to be tested, we compute the ensemble statis-
tic TE by aggregating the statistics {Thi(W )}hi∈E computed over each his-
togram in E . We consider two relevant aggregation schemes. The first
one consists in averaging all the statistics from the individual histograms
Thi(W ):

TE,avg(W ) =
1

R

R∑
i=1

Thi(W ). (6.22)

Such aggregation recalls the bagging [66] and is used to reduce the variance
of the statistic, that in principle yields an improvement in the power of the
hypothesis testing.

Another aggregation scheme, that is strictly related to the multiple statis-
tical hypothesis settings, is obtained by computing the maximum of {Thi(W )}:

TE,max(W ) = max
i=1,...,R

Thi(W ). (6.23)

In both cases, we reject the null hypothesis if TE,max(W ) > δE , the threshold
δE has to be properly set to control probability of type I errors.

6.4.3 Setting the threshold

To use the statistic TE in the hypothesis test (2.2), we have to set the thresh-
old δE that controls the FPR as in (6.3). Even if the distribution of each
individual statistic Thi is known, the distribution of the aggregated statistic
TE in stationary conditions is typically unknown. In fact, the distribution
of TE(W ), W ∼ φ0 is difficult to model, since partitions of individuals
hi obviously overlap, and the statistics Thi are not independent. Thus, it is
typically not possible to obtain a closed-form expression for δE . To over-
come this problem, we can resort to bootstrap and estimate the distribution
of TE,avg(W ) or TE,max(W ), W ∼ φ0, empirically from bootstrap samples
W from S0.
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In the case of the statistic TE,max, another viable option consists in es-
timating the threshold directly from the thresholds of the individual his-
tograms {δi, i = 1, . . . , R}, as long as these are known. For instance,
thresholds for the Pearson statistic are provided by asymptotic approxima-
tion [64] while, in case of histograms constructed via the QuantTree algo-
rithm, δi is known since any statistic Thi does not depend on φ0, and the
quantiles can be efficiently precomputed through a Monte Carlo procedure.
In these circumstances, it is possible to adopt some multiple hypothesis
testing procedure [64]. The most well known of such techniques is perhaps
the Bonferroni correction, which defines δ as the (1−α)/R-quantile of Thi
in stationary conditions. In fact, it can be easily shown that this δ satisfies
(6.3) for TE,max.

6.5 Experiments

We quantitatively assess the advantages of change-detection tests based on
QuantTree w.r.t. other general-purpose tests able to detect any distribution
change φ0 → φ1. In particular, we show that: i) thresholds provided by Al-
gorithm 6.2 can better control the FPR w.r.t. alternatives based on asymp-
totic results or bootstrap, ii) hypothesis tests based on histograms provided
by QuantTree yielding a uniform-density partition of Rd achieve higher
power than other partitioning schemes, and iii) ensembles of histograms
provided by QuantTree mitigate the detectability loss for large value of d.

6.5.1 Datasets and Change Models

We employ both synthetic and real-world datasets: we consider several
dimensions for the synthetic datasets, from d = 2 to d = 128. For each
dimension d, 250 pairs (φ0, φ1) of Gaussians, where φ0 has a randomly
defined covariance, and φ1 = φ0(Q · +v) is a roto-transalation of φ0 such
that the symmetric Kullback-Leibler divergence sKL(φ0, φ1) = 1, as in
Chapter 4. The parameters Q and v of the roto-translations are computed
using CCM.

We also employ four real-world high-dimensional sets: MiniBooNE Par-
ticle (“particle”, d = 50), Physicochemical Properties of Protein Tertiary
Structure (“protein”, d = 9), Sensorless Drive Diagnosis (“sensorless”,
d = 48) from the UCI Machine Learning Repository [76], and Credit
Card Fraud Detection (“credit”, d = 29) from [96]. We standardize these
datasets and add to each component of the “particle” and “sensorless” an
imperceivable amount of noise η ∼ N(0, 0.001) to scramble the many re-
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peated values, which harms histogram construction. For each dataset we
simulate 150 changes φ0 → φ1 by randomly selecting S0 and defining a
random shift drawn from a normal distribution.

6.5.2 Change Detection Methods

Four of the considered methods rely on the same histogram computed through
QuantTree (Algorithm 6.1) to provide a uniform density partition ofRd, i.e.
the target probabilities are πk = 1/K, ∀k. These methods differ only for
the threshold adopted and have been considered mainly to investigate the
control over false positives.

• Pearson Distribution Free / TV Distribution Free: thresholds are
computed by Algorithm 6.2 for the Pearson T Ph (6.5) and the total
variation T TVh statistics (6.6), respectively. The adopted thresholds
are reported in Table 6.1.

• Pearson Asymptotic: thresholds for T Ph are provided from the clas-
sic χ2 goodness-of-fit test [64], which provides an asymptotic control
over the FPR.

• TV Bootstrap: thresholds for T TVh are computed empirically by boot-
strapping S0.

Three other methods built on different density models have been considered
to assess the advantages – also in terms of statistical power – of histograms
providing uniform density.

• Voronoi: a histogram where the {Bk}k are defined as Voronoi cells
around K randomly chosen centers in S0. Here we compute T TVh and
use thresholds estimated by bootstrapping over S0.

• Density Tree: A binary tree aiming at approximating φ0, where splits
are defined by a maximum information-gain criterion, in a similar
fashion to random density trees like [97]. We use T TVh with thresholds
empirically computed by bootstrap over S0.

• Parametric: in the synthetic experiments we consider also an hypoth-
esis test based on a parametric density model. In particular, we fit a
Gaussian density on S0, compute the log-likelihood [14, 15] of each
incoming batch W , and detect changes by means of the t-test. Since
this method exploits the true density model, it has to be considered as
an ideal reference.
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All the methods are configured and tested on the same S0 and tested on
the same batches W . We perform a PCA transformation, estimated from
S0, to all the methods based on trees as density models. We have in fact
experienced that this improves the change-detection performance, since it
aligns the coordinate axes – along which splits are performed – with the
principal components that become parallel to the bin boundaries.

6.5.3 Performance Measures

We assess the change detection performance by empirically measuring, for
each change φ0 → φ1 the statistical power (or true positive rate, TPR) of
the test and the FPR, where thresholds have been set as described in Sec-
tion 6.4.3 to yield a target value α = 0.05. Both the FPR and the TPR are
computed considering 100 batches W with and without changes, respec-
tively. Since both the FPR and the TPR depend on the threshold δ, which is
subject to estimation errors, we build the Receiver Operating Characteristic
(ROC) curve by plotting the measured FPR and TPR for different values
of the threshold. We then measure the Area Under the ROC Curve (AUC)
to get a single figure of merit of the change-detection performance, which
does not depend on δ. We recall that the AUC ranges in [0, 1], and that
higher values indicate better performance.

6.5.4 Experiments using Individual Histograms

In these experiments we focus on the evaluation of change-detection algo-
rithms based on a individual histograms. We consider a small configuration,
where N = 4096 and ν = 64, and a large configuration, where N = 16384
and ν = 256. Both configurations have been tested with a number of bins
K = 32 and K = 128, leading to 4 different combinations (N, ν,K). Here
we show the results obtained using the small configurations. The results
on the large configuration are qualitatively similar and are reported in Ap-
pendix A.

Figure 6.3 and Figure 6.4 shows the FPR and the power of all the meth-
ods in synthetic and real world datasets, respectively. In particular, Fig-
ures 6.3(a-b) and Figures 6.4(a-b) confirm that QuantTree effectively con-
trols the FPR, for both the Pearson and total variation statistics, which is
very important in change-detection. The peculiar QuantTree construction
and Algorithm 6.2 provide very accurate thresholds resulting in FPR be-
low the reference value α = 0.05. Moreover, even if histograms defined
by QuantTree feature a small number of bins, they are able to effectively
monitor high-dimensional datastreams. In case of large configuration, the
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Figure 6.3: Results on synthetic (a)-(d) datasets using the small configuration. In (a) and
(b) we report the FPR computed on the Gaussian datasets usingK = 32 andK = 128
bins, respectively, while (c) and (d) reports the corresponding powers. Thresholds
computed by Algorithm 6.2 successfully yield averaged FPR values smaller than the
desired value α disregarding the data dimension d, as expected by Theorem 6.1. More-
over, histograms computed QuantTree yield the highest power.
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histograms are better estimated, and this yield a larger power for all meth-
ods.

The FPRs of the total variation statistic are typically lower than others:
this is due to the discrete nature of the statistics, which affects both testing
and quantile estimation. The same problem occurs, but to a lesser extent, in
the Pearson statistic, since the expression (6.5) contains a square that allows
this statistic to assume a larger number of distinct values. Clearly, increas-
ing K attenuates this problem, bringing the FPR closer to α. Thresholds
used in the traditional Pearson test achieve larger FPR values, as the number
of training samples in each bin is too low for the asymptotic approximation
to hold: in the large configuration (see Appendix A), the problem atten-
uates. Since the likelihood values do not follow a Gaussian distribution,
the FPR are not properly controlled in the t-test of the Parametric method
either. In all these tests, smaller values of K provide a better control over
FPR, since the number of samples in each bin is larger.

Concerning the power, Figures 6.3(c-d) and Figures 6.4 show a clear
decay when d increases: this is consistent with the detectability loss. In
general, all the methods on Synthetic datasets achieve satisfactory perfor-
mance, and uniform histograms obtained through the QuantTree appear a
better choice than Density Tree and Voronoi. There are minor differences
among methods based on QuantTree which are nevertheless consistent with
the FPR in Figures 6.3(a-b) and 6.4(a-b). Uniform density histograms out-
performs others on real world datasets, see Figures 6.4(c-d), indicating that
their partitioning scheme is better at detecting changes. Obviously, increas-
ing N and ν provides superior performance (see the results reported in the
supplementary materials).

6.5.5 Experiments on Ensemble of Histograms

We construct our ensemble using histograms computed by QuantTree and
for simplicity we consider only the Pearson’s statistics, that outperforms
the total variation, as justified also by Theorem 14.3.2 in [64]. We design
two types of experiments: exhaustive tests, where we consider many possi-
ble combinations of number of individuals R and number of bins for each
individuals K, and constrained budget tests, where the overall number of
bins in the ensembles is set to a constant. As in the previous experiments,
we consider a small and large configurations, where the training set size
is N = 4096 and N = 16384, while each batch W contains ν = 64 and
ν = 256 samples, respectively. In what follows we report the results ob-
tained on the small configuration, while those on the large configuration are
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Figure 6.4: Results on real world datasets using the small TR configuration. The FPR
values are shown in (a) and (b), forK = 32 andK = 128, respectively, and the powers
are reported in (c) and (d). Also in this cases Algorithm 6.2 provides thresholds that
successfully control the FPR and, as on Gaussian datasets, methods based on uniform
histograms outperform the other in terms of power.

reported in Appendix A.
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Exhaustive Tests. We test ensembles of histograms by considering all the
possible combinations ofR ∈ {1, 2, 4, 8, 16, 32} andK ∈ {2, 4, 8, 16, 32, 64}.
For each ensemble, we compute the average AUC over the 200 changes
φ0 → φ1, and display these values in Figures 6.5 for different dimensions
d of the Gaussian dataset.

Max aggregation achieved AUC results that qualitatively are in line with
the average aggregation, even though slightly less performing. Moreover,
the performance improves for when N = 16384 since more training points
are used to construct histograms.

Constrained Budget Tests. This experiment was designed to determine whether
advantages of ensembles are merely due to the larger number of bins with
respect to an individual histogram, or indicate a superior detection perfor-
mance. We thus constrain all the ensembles to use the same number of bins
R · K = 64 (i.e., the budget). Since the budget is somehow related to the
operations to be performed on each batch W , this test enables a fair com-
parison among ensembles and single histograms. We investigate both the
performance in terms of AUC, as well as in terms of Power and FPR.

While the average AUC values computed at constantR·K = 64 settings
are along the upper-left to lower-right diagonals of images in Figure 6.5, to
ease the comparison and portray their distribution, we draw the boxplots of
the AUC values in Figures 6.6 and 6.7.

For the real-world datasets, we report the AUC from average aggrega-
tion for all the types of histograms in both the small and large settings,
see Figures 6.4. To determine whether ensembles are advantageous or not,
we perform a statistical test to assess whether, for each dimension d and
for each considered type of histogram, differences in the AUC of different
ensemble configurations (i.e., values of R) are statistically significant or
not. To rigorously compare multiple methods over multiple datasets, we
follow the approach in [98] and perform i) a preliminary Friedman test to
determine whether differences among the tested ensembles are statistically
significant and, ii) a Nemenyi test in a post hoc analysis to rank the dif-
ferent ensembles according to their performance. More specifically, when
the Friedman test is rejected (being the null hypothesis that there is no per-
formance difference among the methods), we assign each ensemble to a
performance group A, B or C. Group A contains the best ensembles whose
performances are all comparable and all statistically different with respect
to group C, which contains the worst ones, while group B collects ensem-
bles that are not statistically different from all the elements in A or C, and
thus cannot be ascribed to those groups. Performance groups are reported
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Figure 6.5: Results of the exhaustive tests over a mesh of (R,K) pairs for the synthetic
datasets, suing the small configuration. We report the AUC obtained using both the
Max Aggregation (top figures) and the Average Aggregation (bottom figures) schemes
for the tested dimension d. Lighter squares correspond to better AUC performance. For
a given value of K, increasing R always improves the AUC, confirming the advantage
of the ensemble approach, and this effect is more evident as d grows. However, for
any level of R there is an optimal number of K fo histograms, after which the AUC
deteriorates, meaning that the bins contain too few points to correctly estimate the
associated probabilities.
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Figure 6.6: Results on the constrained budget tests for the ensemble of histograms with
the synthetic datasets in all the tested dimension d, using the small configuration and
the Max Aggregation scheme. Plot (a) report the AUC, together with the labels that
illustrate the results of the test for multiple comparisons described in Section 6.5.5. In
(b) and (c) the power and the FPR are presented. The AUC and power plots indicate
that it is better to spend the budget of total bins on ensemble of histograms with fewer
but more populated bins, with respect to a single histograms made of many small bins
(R = 1). However, increasingK too much arms the performance, since it leads to bins
having too few points. The FPR plot shot that the Bonferroni correction guarantees the
desired FPR, as the number of individuals grows it becomes over-conservative and the
FPR is too small.

below the boxplots in Figures 6.6(a) and 6.7(a). We further investigate how
the ensemble performance varies in terms of test power and FPR, when con-
sidering the two aggregation strategies proposed in Section 6.4.2. These are
reported in Figures 6.6(b-c), Figures 6.7 (b-c), Figure 6.8 (b-c). It is impor-
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Figure 6.7: Results on the constrained budget tests for the ensemble of histograms with
the synthetic datasets in all the tested dimension d, using the small configuration and
the Max Aggregation scheme. Plots (a) and (b) report the AUC and the power and are
qualitatively similar to the plots obtained using the Max Aggregation scheme (see Fig-
ure 6.6). (c) FPR plot points out that it is difficult to find threshold for the aggregated
statistic that guarantee the desired FPR.

tant to determine whether ensembles can reliably control the FPR to the
target level, which in our case is set to α = 0.05. In particular, we pursue
the approaches described in Section 6.4.3, and set thresholds of the statistic
TE,avg by bootstrapping S0. Thresholds for the statistic TE,max have been set
by Bonferroni correction.
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6.6 Discussions

Our experiments show the effectiveness of QuantTree to compute histograms
for change detection. In particular, our thresholds (estimated using samples
drawn from a univariate uniform distribution) enable a better control of the
FPR than asymptotic ones or those estimated by bootstrap, which is no
longer necessary when using such histograms. Moreover, the boxplots for
the real datasets in Figure 6.4 indicate that the histograms computed using
QuantTree are the most effective in the high-dimensional settings, in terms
both of power and AUC.

Our experiments show that, ensembles of histograms are beneficial for
change detection purposes, and in particular, they mitigate the detectability
loss phenomenon. In fact, by comparing results on small and large configu-
rations (reported in Appendix A) we see that the performance gap between
ensembles and individual histograms is larger when few training samples
are provided. Experiments on constrained budget further indicate that, as-
suming a maximum number of binsR ·K is available, it is often convenient
to adopt multiple histograms having a few bins.

The main drawback of ensembles of histograms is that it becomes more
difficult to set δE in (6.3), either by bootstrap or Bonferroni correction.
In fact, large ensembles might contain very similar histograms, thus the
statistics {Thi}i can be highly correlated, making the ensemble less effec-
tive. In particular, in such cases, the Bonferroni correction becomes over-
conservative and the FPR becomes too small for large values of d (see, for
instance, Figures 6.6(c) and 6.7(c)). Yet, it is also worth remarking that,
in all these plots, for a suitable value of R > 1, the FPR values of the
ensemble matches the target values α = 0.05.
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Figure 6.8: Results on the constrained budget tests with the real world datasets, using the
small configuration and R ·K = 64 using both Max and Aggregation schemes. Plot
(a) reports together with the labels that illustrate the results of the test for multiple
comparisons described in Section 6.5.5. Plots (b) and (c) report the power and the
FPR boxplots for the same above-defined settings. The plots show similar behavior
w.r.t. the synthetic datasets in Figures 6.6 and 6.7.
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CHAPTER7
Related Literature

In this chapter we presents an overview of the algorithm designed to handle
complex data in the scenarios we considered. At first we focus on algo-
rithms designed to learn meaningful representations for data (Section 7.1),
then in Section 7.2 we summarize transfer learning algorithms that are
mostly related to our modeling assumption, namely that data can be de-
scribed by a dictionary yielding sparse representations. Finally, we presents
the main algorithms that address the specific real world problems we con-
sidered in the thesis, i.e. anomaly detection in images (Section 7.3) and
ECG monitoring (Section 7.4).

7.1 Learning Representations for Complex Data

Complex data such as signal and images are expected to live close to a
low-dimensional manifold embedded in a high-dimensional space [99]. To
successfully perform any task on this king of data, e.g., anomaly detection
and classification, it is necessary to learn meaningful representations that
allows to extract useful feature. These representations can be learned in an
unsupervised manner to provide a parametrization of the low-dimensional
manifold where data live, or in a supervised framework [100], where repre-
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sentation are learned to solve a specific task, e.g., classification. Our focus
is on unsupervised learning algorithms, as these allow to address the detec-
tion problems we consider.

The simplest unsupervised algorithm to learn representations is proba-
bly Principal Component Analysis, that assumes that the low-dimensional
manifold is a linear subspace. This assumption is hardly met in prac-
tice, since the correlations between data components are typically nonlin-
ear. An extension of PCA that is able to handle nonlinear correlation is
Kernel PCA [101], that uses kernel trick to map data on a higher dimen-
sional space, where correlations become linear. Other approaches are based
on the computation of the k-nearest neighbor graph over training data.
Among these some compute a low-dimensional embedding of this graph
that preserves certain properties of the neighborhood [102,103], while spec-
tral methods diagonalize the Laplacian of this graph to capture nonlineari-
ties [104].

As described in Chapter 2, we model complex data using dictionaries
yielding sparse representations, i.e., we assume that data can be approxi-
mate as a sparse linear combination of atoms in a dictionary. These mod-
els approximate the nonlinear manifold where data live as a union of low-
dimensional subspace.

Sparse representations w.r.t. an orthonormal dictionary have success-
ful history in signal and image processing, stretching back to the classical
wavelet shrinkage denoising technique [105]. More recently, dictionary
learning algorithm have been proposed [106] to learn more powerful rep-
resentation than dictionary corresponding to fixed transforms, such as the
Discrete Cosine Transform and Wavelet Transform. The first data-driven
dictionaries were learned in an unsupervised manner [106, 107] to address
image processing tasks such as denoising [106, 108], inpainting [109] and
demosaicking [110]. Recently, several method have been proposed to learn
dictionary specifically designed to solve a specific task [111], in particular
classification [112, 113].

Various attempts to extend sparse representations have been made in the
literature, in particular to compute representations that are multiscale [114–
118] or translation-invariant [119]. Among these, we cite Convolutional
Sparse Representations, that are translation invariant and directly support
the use of multiscale dictionaries [120]. These representations have re-
cently begun to attract attention for solving image restoration problems [121–
125], however their properties are still not thoroughly understood. In partic-
ular, white noise denoising, arguably the simplest image restoration prob-
lem, has never been addressed using Convolutional sparse representations.
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7.2 Transfer learning

Domain adaptation can be seen as a particular instance of transfer learn-
ing [126], which have been widely investigated in the machine learning
literature as a way to mitigate the performance degradation that algorithms
trained in the source domain would encounter when testing data from a dif-
ferent, target domain. The typical scenario where these methods are used
is the classification: the goal is to learn a classifier from labeled data in
the source domain that is able to operate also on the a target domain. To
this purpose, the classifier is adapted using a set of unlabeled data in the
target domain [127, 128], and in some cases also additional labeled data in
the target domain [129]. Other approaches instead assume that few labeled
data are available only in the target domain, while a lot of unlabeled can
be collected in the source domain [130]. An excellent categorization of
transfer learning algorithms have been proposed in [126]. Here, we focus
on the transductive transfer learning (also known as domain adaptation),
where labeled data are available only in the source domain.

Transfer learning techniques specifically designed for dictionaries yield-
ing sparse representation have been also widely investigated, mainly to ad-
dress the image classification tasks [131–134], and go under the name of
dictionary adaptation. In this scenario training images are acquired under
different conditions than the test ones, e.g. different lightning and view an-
gles, and therefore live in a different domain. The framework in [131] trans-
forms dictionaries while maintaining a domain-invariant sparse representa-
tion of the data. In [132] dictionary adaptation is performed by learning
a sequence of intermediate dictionaries to gradually adapt source to target
data, while in [134] a shared discriminative dictionary is learned to provide
group-sparse representations to both source and target domain data. Fi-
nally, [133] performs dictionary adaptation by learning representations for
both source and target data in a common low-dimensional subspace. The
orthogonal projections from source and target domains to the common sub-
space are jointly learned with a dictionary yielding sparse representations
of the projected data.

7.3 Anomaly Detection in Images

Algorithms for detecting anomalies [135,136] in images can be categorized
w.r.t. the model adopted to characterize normal data [137]. A first class of
algorithms does not use data-driven models, but adopt a probabilist model
to describe raw patches, such as Gaussian distribution [138] or Gaussian
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mixture [139], or low-dimensional hand-crafted features extracted from the
image [140].

Other algorithms are based on the non-local self-similarity prior, that
has been shown to be very effective in natural images [141]. In practice, a
small patch is detected as anomalous if the distance between other patches
in its neighborhood [142] or in a reference image [143] is above a threshold.
The distance can be defined either on raw patches or feature extracted from
them.

In the last few years, generative models [144, 145] have shown impres-
sive performance in several computer vision tasks, such as inpainting [146],
video prediction [147,148] and style transfer [149]. These model allows to
learn the low-dimensional manifold where complex data live and perform
sampling directly on it. Anomaly detection using generative models have
been performed by computing the distance between each new sample and
the learned manifold [150], where the distance is computed by solving an
optimization problem. In [151] a variational autoencoder is used to estimate
the probability of test data to be drawn from the probability distribution
generating normal data.

Finally, sparse representations have been successfully for anomaly de-
tection purposes. In particular, in [152] a specific sparse coding procedure
is proposed to computed an anomaly score together with the sparse repre-
sentation w.r.t. a dictionary learned on normal data. Other solutions moni-
tor instead the value of the functional minimized during the sparse coding
to detect unusual events in video sequences [153, 154].

7.4 ECG Monitoring

Since the introduction of Holter devices in 1940s, cardiac monitoring has
helped physicians to determine whether users are experiencing anomalous
heartbeats. Over the past few years, ECG monitoring devices have evolved
from large, wired systems, as the original Holter, to small, wire-free wear-
ables that allow users to perform everyday activities with minimal distur-
bance. Most of ECG monitoring devices typically do not implement on
board anomaly-detection and heartbeat-classification functionalities, and
ECG signal are sensed, processed and transferred to caregivers that re-
motely monitor the users [155, 156]. The challenge we address here is to
integrate anomaly-detection capabilities directly on a low-power wearable
device, as this could raise timely alarms and prevent massive data-transfer
that would reduce the device battery lifetime.

Pattern recognition and machine learning techniques have been widely
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exploited for anomaly-detection and heartbeat-classification purposes. A
first class of solutions addressing these tasks are the so called feature-
driven methods [157, 158], which exploit hand-crafted morphological fea-
tures that mimic the criteria used by clinicians to analyze ECG signals.
Typical examples of features are the RR interval, namely the distance be-
tween two consecutive R-peaks, the amplitude and the width of QRS com-
plex, as well as shape descriptors for the local waveforms like P-wave, T-
wave, and ST-segment. Other features can be extracted from the vectorcar-
diogram [159], computed through a linear transformation of the 12 leads
ECG, or in wavelet domain [160] or through Hermite transform [161]. In
the last few years, feature-driven approaches are being replaced or com-
bined with data-driven methods, which do not reproduce any clinical cri-
terion, but are directly learned from training data. Data-driven methods
typical leverage a model yielding meaningful representations of the ECG
signals [5,22,23,162], and often refer to the time series literature [163–166]
and detect anomalies by monitoring the prediction error. Others resort to
clustering [22,167] or Gaussian mixture Models [162,163] to describe nor-
mal heartbeats. The main drawbacks of these methods is that they pro-
cess the global ECG signal offline, and are not suitable for online mon-
itoring. Recently, deep neural networks have shown very good perfor-
mance in heartbeats classification [23, 168] and the 1-dimensional Convo-
lutional Neural Network (CNN) in [23] reaches an accuracy of 98.6% on 24
recordings of the MIT-BIH database. The deep Long Short Term Memory
(LSTM) network in [169] detects anomalies in time series where the pat-
tern duration is unknown. Unfortunately, the computational requirements
of deep neural networks are not compatible with the limited resources avail-
able on most wearable device: the CNN in [23] classifies a single heartbeat
in few milliseconds on a 2.4 GHz CPU with 16 GB of RAM, while the CPU
frequency of most wearable devices is in the order of tens of MHz.

As discussed in Chapter 2, to successfully perform long-term ECG mon-
itoring it is necessary to adapt the learned model to track heart-rate varia-
tions. This problem has been so far ignored in ECG monitoring, includ-
ing [170, 171], which are examples of ECG monitoring algorithms meant
for wearable devices.
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CHAPTER8
Sparse Representations for Anomaly

Detection

In this chapter we address the problems of anomaly detection when data are
signals characterized by a complex structure. In Section 8.1 we introduce
dictionaries yielding representations to model such data in Section 8.1 and
we present our anomaly-detection algorithm in Section 8.2. Then we cus-
tomize this algorithm to address the problem of detecting defects in SEM
images (8.3) and monitoring ECG signals (Section 8.4).

8.1 Modeling Normal Signals

Our modeling assumption is that normal signals s ∼ PN can be well ap-
proximated by the following linear model

s ≈ Dx, (8.1)

where D ∈ Rd×n is a matrix called dictionary and the coefficient vector
x ∈ Rn is sparse [18]. Sparsity means that x ∈ Rn has few of nonzero
components, thus in practice that the `0 “norm” ‖x‖0, which is the number
of nonzero components of x, is small. Although ‖·‖0 is not properly a norm,
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since it does not satisfy the homogeneity property, we adopt this notations
as it is customary in the literature [18]. The sparsity of the coefficient vector
x implies that each normal signal s can be well approximated by a linear
combinations of few columns (atoms) of D. This is equivalent to assume
that s lives close to union of low-dimensional subspaces D, where each
subspace is generated by few atoms of D.

The coefficients of the sparse representation x of the signal s are com-
puted by solving the sparse coding problem, that can be formulated in sev-
eral ways, by pursuing different norms to assess the sparsity of the coeffi-
cient vector x. The first formulation we consider is the following:

x = arg min
x̃∈Rn

‖s−Dx̃‖2

such that ‖x̃‖0 ≤ κ,
(8.2)

where κ denotes the maximum number of nonzero coefficients allowed in
the representations. The problem (8.2) is NP-Hard and suboptimal solu-
tions are computed by greedy algorithms, such as the Orthogonal Matching
Pursuit (OMP) algorithm [172].

Another formulation of the sparse coding problem is based on the `1

norm of the coefficient vector, that is known to promote sparsity [105,173],
and is known as Basis Pursuit DeNoising (BPDN) in the literature:

x = arg min
x̃∈Rn

1

2
‖s−Dx‖2

2 + λ‖x‖1, (8.3)

where ‖x‖1 =
∑n

i=1 |xi| promotes the sparsity of x while the first term
assess the reconstruction error that we commit when recovering s using its
sparse representation x and the dictionary D. Problem (8.3) is convex, thus
its solution can be efficiently computed via convex optimization algorithms,
such as the Alternating Direction Method of Multipliers (ADMM) [174]
and Least Angle Regression (LARS) [175].

If the parameters κ and λ are properly chose and D satisfy some hy-
potheses [176], the two sparse coding problems are equivalent, namely they
have the same solution x. The advantage of solving (8.3) instead of (8.2)
is that the former is convex, and the solution can be found using fast algo-
rithms. However, the equivalence between the two problems does not hold
in practice, and we choose the sparse coding formulation depending on the
application scenario.

The OMP, that addresses problem (8.2), is computationally cheap, espe-
cially for small κ, that is also the number of iterations required to compute
the suboptimal solution. Moreover, when D ∈ Rd×n is undercomplete,
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i.e., d < n the OMP can be further accelerated, as we will show in Sec-
tion 8.4. For these reason, we adopt (8.2) in ECG monitoring, since the
anomaly-detection algorithm has to be run on a wearable devices having
limited computational capabilities.

In contrast, problem (8.3) is computationally more demanding, but its
unconstrained formulation allows the computation of more powerful indi-
cators for anomaly detection, as described in Section 8.2. Therefore, we
adopt (8.3) in the defect detection in SEM images, where it is possible to
use more powerful hardware than in ECG monitoring.

Since the dictionary D is typically unknown, it has to be learned from
a training set of normal signals drawn from PN that we collect column-
wise in the matrix S0 ∈ Rd×m. The dictionary learning problem actually
corresponds to learn both the dictionary D ∈ Rd×n and the sparse repre-
sentations X ∈ Rn×m for all the signals in the training set. In practice, we
consider two formulations of dictionary learning, each one corresponding
to a sparse coding problem. The first formulation pursues the `0 norm:

D,X = arg min
D̃∈Rd×n,X̃∈Rn×m

‖S0 − D̃X̃‖2,

such that ‖xi‖0 ≤ κ, i ∈ 1, . . . , n,

(8.4)

where the sparsity constraint applies to each column of the matrix X ∈
Rn×m, which stacks the coefficient vectors of all the signals in S0. Here, we
consider the K-SVD algorithm [106] to address (8.4), an iterative algorithm
that alternates the optimization over X̃ by keeping fixed the dictionary D̃
and the optimization over D̃ by keeping fixed the coefficient matrix X̃ .
The optimization over X̃ is performed using the OMP algorithm, while
the optimization over D is addressed by means of a specifically designed
procedure that exploits the sparsity of X̃ .

The second formulation is the dictionary learning Basis Pursuit DeNois-
ing problem, that is based on the `1 norm:

D,X = arg min
D̃∈Rd×n,X̃∈Rn×m,

1

2
‖S0 − D̃X̃‖2

2 + λ‖X‖1, (8.5)

where ‖X̃‖1 denoted the sum of the `1 norm of the columns of X̃ . Prob-
lem (8.5) is not convex, but a local minimum can be computed using the
ADMM algorithm, that also alternates the calculation of the dictionary
atoms and the sparse representations. In our experiments we use the MAT-
LAB implementation of the ADMM provided in the SPORCO library [177].
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(a) (b)

Figure 8.1: (a) Atoms of a dictionary learned from normal heartbeats of a user by the
KSVD algorithm. (b) Atoms of the dictionary learned by the ADMM algorithm from
15× 15 patches extracted from normal SEM images.

Figure 8.1 shows two example of learned dictionaries in the two consid-
ered scenario. We use the dictionary learning formulation corresponding
to the sparse coding used in each application, thus the dictionary in (a) is
learned by solving (8.4), while the one in (b) is learned by solving (8.5).

8.2 Detecting Anomalous Signals

To detect whether s ∈ Rd is anomalous or not, we determine if it conforms
or not to the learned dictionary D. To this purpose, we pursue the sparse
representation x of s w.r.t. D to compute a low dimensional indicator vector
f(s) ∈ Rp, and adopt a decision rule over f :

s is anomalous ⇐⇒ T (f) > γ, (8.6)

where T : Rp → R and γ ∈ R controls the FPR. To guarantee a desired
FPR equal to α, the threshold γ can be estimated as the 1−α sample quan-
tile of T over an additional training set of normal signals. In what follows
we focus on the design of both the indicator vector f and the decision func-
tion T depending on the specific sparse coding problem considered.

Let us first focus on (8.2). This problem has a clear geometrical inter-
pretation: its solution can be used to compute Dx, that is the projection of
s onto D, i.e., the union of κ-dimensional subspaces generated by the dic-
tionary D. Since our modeling assumption is that normal signals live close
to D, we consider as feature the distance between s and D, thus1

f(s) = [‖s−Dx‖2]. (8.7)
1In this case f is a scalar and not a vector, but we will keep the vector notation for f for coherence with the

rest of the section.
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Then, we detect as anomalous any signal that is sufficiently far from D, i.e.,
we define the decision function T as the identity function T (f) = f .

In case of (8.3) we compute a bivariate indicator vector f which jointly
accounts for the reconstruction error and the sparsity of the representations:

f(s) =

[
‖s−Dx‖2

‖x‖1

]
(8.8)

Anomalous signal are expected to substantially deviate from normal ones
in either their sparsity or reconstruction error (or possibly both). Thus, the
corresponding indicator vectors would be outliers w.r.t. the distribution φ0

of indicator vectors extracted by normal signals. Here, we estimate φ0 by
kernel density estimation (KDE), adopting a kernel based on linear diffu-
sion with automatic bandwidth selection [178]. Then, a signal s is consid-
ered anomalous if f(s) falls in a low-density region of φ0, i.e., we define T
as the negative log-likelihood w.r.t. φ0:

T (f) = − log(φ0(v)). (8.9)

8.3 Defect Detection in SEM Images

In this section we show how the proposed anomaly-detection algorithm can
be used in the considered quality inspection system to estimate an anomaly
mask Ω̂ for each acquired SEM image, as described in Section 2.2.1.

At first, we need a training set of normal patches to learn the dictionary
D and the threshold γ. To this end, we assume that a set of defect-free
images are available. These images can be easily obtained by manually
cropping areas of SEM images that do not contain any defects.

Then we have to perform a preliminary preprocessing to each patch. In
fact, to effectively capture the structure that characterizes normal filaments,
we consider quite small patches; thus, there might be patches that do not
overlap with any filament and are completely dark. Patches that are en-
tirely zero can be perfectly reconstructed by any linear model, and achieve
a (very) sparse representation, having all coefficients in (2.4) equal to zero.
Unfortunately, null indicator vectors can impair the estimation of φ0, and it
is safer to remove them from both the training patches. Thus, we consider
for training only patches in the set S0:

S = {s |median(s) > ε}, (8.10)

where ε > 0 is a manually tuned parameter. The median in (8.10) was used
to remove also dark patches that marginally overlap with a filament.
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Then we split the training set S0 in two subsets of patches: we learn the
dictionaryD from the first subset using (8.5), and we estimate the threshold
γ from the second subsets as described in Section 8.2.

During test phase, we extract all the patches from each new image and
preprocess them as in (8.10). It is worth mentioning that nanofibrous mate-
rials having too large holes might yield porosity values that are far from the
normal ones. However, this sort of anomalies can be detected by straight-
forward morphological operations on the whole image and certainly do not
require any learning method.

We analyze each patch suing our anomaly-detection algorithms and com-
pute an initial estimate Ω̃ of the anomaly mask by setting

Ω̃(c) =

{
0 if s(c) is normal
1 if s(c) is anomalous

, (8.11)

where c denotes the pixel and s(c) is the patch centered in c. Since patches
centered in neighboring pixels largely overlap, we aggregate the decisions
of the anomaly detector in all those patches that overlap with c. We perform
such aggregation by post-processing the anomaly mask (8.11) by majority
voting:

Ω̂(c) =

{
0 if #Ac < #Nc

1 if #Ac ≥ #Nc

, (8.12)

where Ac = {u ∈ U | Ω̃(c+ u) = 1} denotes the set of pixels in sc that are
considered anomalous and Nc = {u ∈ U | Ω̃(c + u) = 0} the set of pixels
that are considered normal.

Finally, to smooth the borders of anomalous regions in Ω̂ we perform
an additional post-processing by customary morphological operators [179].
More precisely, we apply an erosion followed by a dilation, which are non-
linear filters based on order statistics: the minimum and the maximum over
a given support, respectively. We experienced that adopting these binary
operations over a neighborhood smaller than U can improve the coverage
of anomalous regions.

8.4 Anomaly Detection in ECG signals

In this section, we show how our anomaly-detection algorithm can be cus-
tomized to be more efficient in case of ECG monitoring. We have expe-
rienced that undercomplete dictionary D ∈ Rd×n, i.e., n < d, can suc-
cessfully characterized normal heartbeats of a specific user, capturing all
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the variability of normal heartbeats. These settings are quite different from
those traditionally used in image and signal processing, where dictionaries
are redundant, i.e., n > d. However, as we will show in our experiments,
the use of undercomplete dictionaries yields to good anomaly-detection
performance.

In case of undercomplete dictionaries it is possible to optmize the OMP
algorithm. This is a critical aspect for wearable devices: since the sparse-
coding has to be solved for each acquired heartbeat, a reduction in the num-
ber of calculations performed can meaningfully extend the battery life of
the device.

An undercomplete dictionary D does not span the entire space Rd, but
only a subspace U having dimension n that includes the union of low di-
mensional subspaces D identified by D. Since solving the sparse cod-
ing (8.2) corresponds to computing the projection of s onto D, we can
reduce the number of operations performed in the OMP by first project-
ing s onto U , and then solving the sparse coding problem on the projected
heartbeat. To this end, we select an orthonormal basis of U by computing
the QR decomposition of D = QR, being R ∈ Rn×n an upper-triangular
matrix, and Q ∈ Rd×n such that QTQ = In, where In is the n × n iden-
tity matrix. Then, we address the following sparse-coding problem through
OMP instead of (8.2)

x̂ = arg min
x
‖QT s−Rx‖2

2, s.t. ‖x‖0 ≤ κ, (8.13)

where QT s is the projection of s onto U .
In what follows, we prove that problems (8.2) and (8.13) have the same

solution. However, (8.13) is much cheaper than (8.2) since the computa-
tional complexity of OMP is determined by the target sparsity κ and the
number of atoms n. Solving (8.2) with a dictionary D ∈ Rd×n yields a
complexity O(κdn) [180]. In contrast, solving (8.13) (where R ∈ Rn×n)
requires yields a complexity O(κn2), thus the computational complexity
of OMP is dominated by the cost of the matrix product QT s, i.e. O(dn)2.
In practice, we reduce the overall cost of the OMP algorithm by a factor
κ, from O(κdn) to O(dn). The following proves the equivalence of (8.2)
and (8.13).

Proposition 8.1. Let Q ∈ Rd×n and R ∈ Rn×n define the QR decomposi-
tion of the dictionary D ∈ Rd×n. Then, for every s ∈ Rd and x ∈ Rn it
holds:

‖s−Dx‖2
2 = ‖QT s−Rx‖2

2 + ‖s‖2
2 − ‖QT s‖2

2. (8.14)
2In our experiments we set n = 8 and κ = 3, while d ≈ 150, thus d > κn.
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Proof. Let us first remark that the columns of Q form an orthonormal basis
of the n-dimensional subspace U ⊂ Rd spanned by the columns of D.
Since n < d, it is always possible to define a set of (d − n) orthonormal
vectors to extend Q to an orthonormal basis of the entire Rd. In particular,
we define P = [Q,Q⊥], where Q⊥ ∈ Rd×n−d is such that QT

⊥Q = 0 and
QT
⊥Q⊥ = Id−n. Since P is an orthogonal matrix, for each v ∈ Rp we have

that:
‖v‖2

2 = ‖P Tv‖2
2 = ‖QTv‖2

2 + ‖QT
⊥v‖2

2. (8.15)

Substituting D = QR in ‖s−Dx‖2
2 and applying (8.15) to v = s−Dx we

obtain:

‖s−Dx‖2
2 = ‖s−QRx‖2

2 = ‖P T (s−QRx)‖2
2 =

= ‖QT s−QTQRx‖2
2 + ‖QT

⊥s−QT
⊥QRx‖2

2 =

= ‖QT s−Rx‖2
2 + ‖QT

⊥s‖2
2,

(8.16)

where the last equality holds since QT
⊥Q = 0 and QT

⊥Q⊥ = Id−n. Proposi-
tion is proven by substituting v = s in (8.15), yielding ‖QT

⊥s‖2
2 = ‖s‖2

2 −
‖QT s‖2

2, and replacing this expression in (8.16).

Proposition 8.1 confirms that we can substitute the functional in (8.2)
with the right-hand side of (8.14). The last two terms of (8.14) do not de-
pend on x and can be ignored in the minimization, thus the problems (8.2)
and (8.13) are equivalent.

8.5 Experiments

In this section we assess the performance of our anomaly-detection algo-
rithm on both SEM images and ECG signals. We describe the figures of
merit and the datasets used in our experiments in Sections8.5.1 and Sec-
tion 8.5.2, respectively, while in Section 8.5.3 we presents the alternative
solutions considered. Finally, we show our results on SEM images and
ECG signals in Sections 8.5.4 and 8.5.5, respectively.

8.5.1 Figures of merit

To assess the anomaly detection performance in both scenarios we consider
the following figures of merit:

• False Positive Rate (FPR), namely the percentage of normal data (pixel
or heartbeats) identified as anomalous.
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• True Positive Rate (TPR), namely the percentage of pixel or heartbeats
correctly identified as anomalous.

Since both FPR and TPR depend on the threshold γ > 0 in (8.6), we con-
sider the Receiving Operating Characteristic (ROC) curve, which are ob-
tained by varying γ and plotting the corresponding TPR against the FPR.
An example of ROC curve is provided in Figure 8.3: the closer the curve to
the point (0,1), the better. To get a quantitative assessment of the anomaly-
detection performance, we measure the area under the curve (AUC), which
for the ideal detector (namely the one having no false positives and no false
negatives) is 1.

Moreover, in experiments on SEM images we consider an additional
figure of merits. In fact, the AUC is mainly influenced by large defects,
while our goal is to detect all of them disregarding their size. Therefore, to
quantitatively assess the coverage of all defects, we extract the connected
components [179] of the ground truth Ω, thus assigning a blob to each de-
fect. Then, we measure the Defect Coverage as the percentage of pixels
covered by the output Ω̂ of a detector yielding FPR = 0.05. Of course,
each defect yields one Defect Coverage value, and performance have to be
evaluated by considering the distribution of Defect Coverage values.

8.5.2 Datasets

SEM Images Dataset. Our SEM images are acquired with the FE-SEM
(Carl Zeiss Sigma NTS, Gmbh Öberkochen, Germany). A sample of 4 ×
4 cm from the produced material is placed on a metallic support, and a thin
gold coating of 5 nm is applied on the sample surface to guarantee satisfac-
tory electrical conduction. All images are acquired in the same conditions
and with the same parameters, i.e., magnification of 8000x, extra high ten-
sion of 5 kV , working distance of 7 mm, brightness of 45%, and contrast
of 52%.

Our dataset contains 45 SEM images (dimension 1024× 696 pixels): 5
images are anomaly-free, while 40 images contain anomalies of different
size. For each image, we manually select all defects, defining the anomaly
mask Ω that is used as a ground truth in our tests. Overall defects in these
images are very small: on average they cover the 1.3% of the image, and
only the 0.5% of the anomalies exceed the 2% of the image size.

ECG Datasets. We consider two different datasets of ECG signal. The
first one is acquied using the Pulse Device, a prototype wearable device
produced by STMicroelectronics, while the second one is a benchmark
datasets acquired using Holter device.
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The Pulse dataset contains 20 ECG signals lasting from 40 minutes up
to 2 hours, recorded from 10 healthy users (two signals per user). The two
acquisitions from each user have been performed in different times, repo-
sitioning the Pulse Sensor such that the morphology of heartbeats changes.
Due to motion artifacts or temporary device detachments, these signals
sometimes contain low-quality segments, which have been discarded by
an experienced cardiologist with the aid of a commercial software. While
these heartbeats are not anomalous from a clinical point-of-view, we ex-
clude them as they to not show the same morphology of others. These
heartbeats could be possibly removed also by monitoring recordings from
MEMS accelerometers.

The MIT-BIH Arrhythmia Dataset [181] contains 48 ECG signals last-
ing around 30 minutes each, that have been extracted from long-term Holter
recordings. These segments have been selected by expert cardiologists
which discarded the low-quality parts of the signal. Each ECG signal con-
tains a few arrhythmias, and every heartbeat is provided with annotations
by the cardiologists.

8.5.3 Alternative Solutions

The first alternative anomaly-detection algorithm we consider is [152], de-
noted as Coding. This general purpose algorithm employs dictionaries
yielding sparse representations and embeds the anomaly-detection phase
in a ad-hoc sparse coding procedure. More precisely, the sparse coding for-
mulation includes an additional term a which gathers signals (patches or
heartbeats) that cannot be sparsely represented by D. Anomalies are de-
tected controlling whether the magnitude of a exceeds a fixed threshold.
To enable a fair comparison with our anomaly detector, the two solutions
use the same dictionary and have been manually configured to achieve their
best performance.

In case of SEM images, we consider other four anomaly-detection solu-
tions specifically designed for images. The first three (Variance, Gradient,
Grad&Var) are baseline solutions that implement hand-crafted features to
distinguish between normal and anomalous patches. In particular, the in-
dicator vectors associated to these baseline solutions are suggested by the
fact that defects are often flat, whereas normal regions are characterized by
prominent edges (see Figure 2.1). The fourth solution (STSIM) is based on
the structural texture similarity measure proposed in [182], which achieves
state-of-the-art performance in texture classification.

Baseline solutions follow the same framework of the proposed algo-
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rithm: more precisely, during the training phase, we compute an indicator
vector f(c) for all of the patches extracted from training images. Then, we
fit the distribution φ0 on the computed indicators by KDE [178] and set a
suitable threshold γ. During operations, the anomaly mask Ω̃ is computed
as in (8.11). The only difference between the baseline solutions is the indi-
cator vector f used:

• Variance: the indicator vector f(c) corresponds to the sample variance
v(c) computed over the patch s(c).

• Gradient: the indicator vector f(c) corresponds to g(c), the average
magnitude of the gradients in the patch s(c). More precisely, we com-
pute at first the image of gradient magnitude e as

e =
√

(s~ dx)2 + (s~ dy)2, (8.17)

where dx = [−1, 1] and dy = [−1; 1] are the horizontal and vertical
derivative filters [179], respectively, and ~ denotes the 2-dimensional
convolution. If we denote by e(c) the patch centered at c extracted
from e, then g(c) is the average value of the patch e(c).

• Grad&Var: this solution stacks the indicators v(c) and g(c) in a two-
dimensional indicator vector

f(c) =

[
g(c)
v(c)

]
. (8.18)

The STSIM solution is based on structural texture similarity metric [182],
which assesses the similarity between different textures. More precisely, a
texture image s is decomposed into steerable-filter subbands [183], and a
feature vector h(c) is obtained by computing subband statistics over s(c).
In [182] this is used for texture classification: each feature vector is as-
signed to the closest class in terms of Mahalanobis distance. In our sce-
nario there is only one texture corresponding to normal images, and we
perform anomaly detection using feature vectors as follows: during the
training phase we compute the feature vectors from the training images,
their mean h and their covariance. Then, during operations, we compute
h(c) for each patch and consider s(c) anomalous when the Mahalanobis
distance between h(c) and h exceeds a fixed threshold γ. This is equiva-
lent to consider as anomalous any patch having an indicator falling outside
a confidence region around h, defined by the Chebyshev inequality.
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Figure 8.2: Values of the AUC for the considered methods obtained by varying the patch
size. The solid triangles indicate the points where the AUC is maximized and in the
legend the optimal patch size popt is reported.

8.5.4 Experiments on SEM Images

All solutions have been tested in the same setting: they are trained from
a set of 5 anomaly-free images, they preliminary remove dark patches as
in (8.10), and the anomaly mask Ω̂ is computed from the indicator vectors
f(c) as described in Section 8.3. Of course, choosing the right patch size is
very important, since small patches might not exhibit the typical structure
of normal data, while large patches might prevent the detection of small
anomalies. To fairly compare different methods, each one has to be tested
using its optimal patch size. Therefore, we choose the best value of p for
baseline and STSIM solutions by testing d ∈ {42, 82, 122, . . . , 1202} over a
validation set of 5 images containing anomalies. Figure 8.2 shows the av-
erage AUC values obtained for each solution, and reports the optimal patch
sizes dopt that are used in our experiments. As far as the Coding and the
Proposed solution are concerned, we manually set the patch size d = 152,
since using larger patches would require too many training data to avoid
overfitting in model (2.4) and would substantially increase the computa-
tional costs. The same 5 validation images are used to set the other param-
eters for all of the considered solutions, using cross-validation to maximize
the AUC: λ in (8.5) and (8.3), ε in (8.10), as well as the parameters in the
Coding solution. The Defect Coverage is computed by configuring the pa-
rameter γ in each method to yield FPR = 0.05 in these 5 validation images.
Finally, these 5 images used for validation are not considered for perfor-
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Figure 8.3: ROC curves for all solutions considered in Section 8.5.3, with the corre-
sponding AUC values reported in the legend. Proposed and Coding solutions use a
patch size d = 152, while the others the optimal patch size dopt selected in Figure 8.2.
The Proposed solution outperforms by far all of the others.

mance assessment, thus our experiments involve the remaining 35 images.

The proposed solution is compared in two experiments against the five
solutions described in Section 8.5.3. At first, we test each solution over the
entire dataset, and we assess the overall anomaly-detection performance by
the ROC curves averaged over 35 images. These curves are reported in
Figure 8.3, together with the corresponding AUC values in the figure leg-
end. ROC curves clearly indicate that the Proposed solution outperforms
all of the others, achieving AUC values that are at least superior of 0.2. In
particular, the proposed solution outperforms the Coding, which uses the
same dictionary D. Thus, we can conclude that (at least in this specific
application) it is not convenient to embed the anomaly detection into the
sparse-coding stage, while it is better to separately compute the indicators
and then identify anomalies as outliers. The STSIM solution achieves the
worse performance, probably because the anomalies in these images are
very small and cannot be detected when using large patch sizes. However,
as observed in [182] and in Figure 8.2, the performance of STSIM solu-
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Figure 8.4: Box-plots reporting the distribution of the Defect Coverage. All the considered
solutions have been configured to yield at a fixed FPR = 0.05. The proposed algorithm
achieves the best performance, as it covers at least 50% of the anomalies for more than
60% of their area.

tion degrades when considering smaller patches, since the local subband
statistics cannot capture the texture structure.

In the second experiment we compare the Defect Coverage values of
all these solutions, to make sure that the superior performance achieved by
the proposed solution is not due to a superior coverage of few large defects
(like the film in Figure 8.5). The box-plots in Figure 8.4 confirm that the
proposed solution guarantees a Defect Coverage that is often better than
others, having most of the defects covered more than the 60%. Thus, con-
sidering that small anomalies far outnumber the large ones (as described in
Section 8.5.2), we can safely conclude that the proposed solution provides
superior detection performance also of small defects. We also provide a vi-
sual comparison of the anomaly-detection performance. Figure 8.5 reports
the masks Ω̂ over three meaningful images for the three most effective so-
lutions (according to Figures 8.3 and 8.4), generated by setting the same
values γ to compute the Defect Coverage values. These masks confirm that
the proposed solution provides a superior coverage of very small anomalies,
as it clearly emerges in the second image. The large film in the first image
is successfully detected by all methods (and in particular by the Coding so-
lution). However, the tiny anomalies in the second image are much better
detected by the Proposed solution. Also, the Coding solution completely
misses a large bead in the third image. Finally, most of the false alarms in
the Proposed solution appears at junctions and pairs of filaments that are
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Original Grad&Var Proposed Coding

Figure 8.5: Examples of anomaly detection on three meaningful SEM images. The first
column reports the three original images, while the following ones present the detec-
tions obtained from Grad&Var, Proposed and Coding solutions, respectively. These
solutions have been chosen as the best performing ones, according to Figures 8.3
and 8.4. The threshold γ has been set as in Figure 8.4, to yield FPR = 0.05. Pix-
els correctly identified as anomalous are marked in green, false positives in red, and
false-negatives in blue.

very close to each other (see third image), which however correspond to
very few patches.

8.5.5 Experiments on ECG monitoring

We show that dictionaries yielding sparse representations are effective model
to characterize normal heartbeats acquired using the Pulse device, and that
the proposed anomaly detector successfully detects arrhythmias on the MIT-
BIH Dataset

Experiments on the Pulse Dataset. We design two anomaly-detection
experiments to detect heartbeats having a different morphology. In partic-
ular, we consider as anomalous those heartbeats acquired from a different
user or from the Pulse Sensor in a different position. In practice, we use
the KSVD algorithm to learn a dictionary D for each of these 20 ECG sig-
nals, using a training set of 500 randomly selected heartbeats. We then
consider as normal those heartbeats belonging to the same signal used to
learn D (namely the same pair user-position), and as anomalous heartbeats
from any different signal. This procedure is performed 20 ·19 = 380 times,
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Figure 8.6: ROC curves computed on Pulse dataset. (a) Inter-user and intra-user anomaly
detection. This curves confirm that the morphology of the heartbeat depend on both
user and position of the sensing device and the dictionaries yielding sparse representa-
tion can model normal morphology. (b) We consider the inter-user anomaly detection
problem when the training set is corrupted by different percentage of outliers. The pro-
posed algorithm can tolerate small percentage of outliers, as its performance clearly
degrades when outliers reach 8% of training data.

one for each pair of ECG signals. Figure 8.6(a) shows the performance on
inter-user anomalies, where normal and anomalous heartbeats come from
different users. More precisely, we average ROC curve computed over the
380 combinations. Overall, the AUC value is quite large and this indicates
that the considered algorithm can model the user-specific morphology and
discriminate between users. In Figure 8.6(a) we also report the ROC curves
on intra-user anomalies, where the anomalous heartbeats come from the
same user having the Pulse Sensor in a different position. These curves are
averaged over all the possible 20 combinations of the ECG signals. Still,
the algorithm is able to successfully detect anomalies, although the AUC
values are typically lower than in the inter-user case. This indicates that
in this dataset, intra-user differences are more subtle than inter-user differ-
ences.

From these two experiments we conclude that dictionaries yielding sparse
representations can successfully describe the morphology of normal heart-
beats. Moreover, we show that the our anomaly detection algorithm pro-
vides an effective user-specific and position-specific monitoring solution.

Finally, we remark that in ECG signals acquired from wearable de-
vices, user’s movements can introduce low quality heartbeats, i.e., out-
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Figure 8.7: ROC curves of the Proposed and Coding anomaly detection algorithms on the
MIT-BIH dataset. These curves are obtained by averaging all the ROC curves com-
puted for each user in the MIT-BIH dataset. The Coding algorithm (AUC = 0.9935)
slightly outperforms the Proposed one (AUC = 0.992), but both of them achieve good
performances on this dataset, containing several types of arrhythmias.

liers, that might impair dictionary learning. Thus, we repeat the inter-user
anomaly-detection experiment to assess whether the considered algorithm
can tolerate small percentage of outliers in the training data. In partic-
ular, we consider the best configuration and introduce in the training sets,
1%, 2%, 4%, 8% of outliers, which are selected among those heartbeats that
were initially discarded. This experiment is repeated 15 times, and the av-
erage ROC curves are reported in Figure 8.6(b). It can be seen that the
performance of the anomaly detection are stable when including only 1%
and 2% of outliers, but dramatically decreases when outliers are 8%. This
suggests that it is necessary to reduce the number of outliers from the train-
ing set, e.g., by some prescreening method that analyzes MEMS recordings
that are embedded on wearable devices such as the Pulse device.

Experiments on the MIT-BIH Dataset. For each user in the dataset,
we compute the ROC curves and the AUC values obtained using our algo-
rithm and Coding algorithm [152]. The average ROC curves are plotted in
Figure 8.7. The coding algorithm achieves a median AUC equal to 0.9935
and outperforms our algorithm (median AUC equal to 0.992), as confirmed
by a two-samples sign rank test performed over the populations of AUC
values (p-value = 0.002). However, our algorithm achieves a very good
performance with a computational complexity of O(κpn), that is signifi-
cantly lower than Coding algorithm, which is O(n3t + pnt) [152], where
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t is the number of iterations required by the algorithm to achieve conver-
gence, that is typically several tens.
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CHAPTER9
Domain Adaptation for Sparse

Representations

In this chapter we presents two domain-adaptation solutions to adapt our
anomaly-detection algorithm when the process generating normal data changes.
At first we adapt our anomaly-detection algorithm to make it scale-invariant
(Section 9.1) and show that it successfully detect defects in SEM images ac-
quired at different magnification levels (Section 9.2). Then, in Section 9.3
we consider ECG monitoring, and propose to learn user-independent trans-
formations to adapt our user-dependent anomaly-detection algorithm. Fi-
nally, we show the results of our experiments on publicly available datasets
of ECG signals in Section 9.4.

9.1 Multiscale Anomaly Detection

For simplicity, we illustrate the proposed scale-invariant anomaly detec-
tion algorithm assuming a single training image s is provided, even though
multiple training images can be easily handled. In the following we explain
how to compute the multiscale dictionaryD and the coefficient vector x for
a given patch s, then we illustrate the anomaly-detection algorithm.
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(a) Series A (b) Series B (c) Series C (d) Series D

Figure 9.1: Example of normal images acquired at different magnification levels. Patches
extracted from images are perceptually similar, but their content is very different.

9.1.1 Multiscale Dictionary

The dictionary D is expected to provide suitable representations of normal
images acquired at different scales. Various algorithms for learning multi-
scale dictionaries have been proposed in the literature [114–118]. However,
to better investigate the role of the sparse coding and the choice of suitable
indicators to achieve scale-invariance, we adopt a simple design of the mul-
tiscale dictionary.

Let us denote by sσ the image s with support rescaled by a factor σ.
Consider now a set of L scaling factors σi, i ∈ {1, . . . , L} and construct,
for each image s, a set of rescaled images sσi to simulate normal data at
different scales. Since we assume the scale of the training image is higher
than in test images, we consider scaling factors σ ≤ 1. For each rescaled
images sσi we extract a suitable set of patches, then assemble them as the
columns of matrix Si ∈ Rd×m. The dictionary Di ∈ Rd×ni corresponding
to the scale σi is thus learned solving the dictionary learning problem (8.5)
(BPDN) [184, 185] problem.

The multiscale dictionary D ∈ Rd×n representing the training image at
multiple scales is constructed by collecting all the learned dictionaries Di

into a single matrix

D = [D1 | D2 | · · · | DL] . (9.1)

In principle, the dictionaries Di may have different number of columns ni,
however here we consider Di having the same size d · n/L.

9.1.2 Multiscale Sparse Coding

The sparse coding of each patch s with respect to the dictionary D corre-
sponds to computing a sparse vector x ∈ Rn of coefficients that properly
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approximate s. Given the specific form of D, each coefficient vector has
the form:

x =
[
xT1 xT2 · · · xTL

]T
, (9.2)

where xi is a column vector that collects the coefficients corresponding to
dictionary Di learned from the image at scale σi. For anomaly-detection
purposes, it is not desirable to approximate a patch s by mixing atoms from
different dictionaries Di, as this mixture could possibly match anomalous
structures. Therefore, we expect that in each sparse representation x, only
one, or possibly a few, groups xi are active, i.e. x should be group sparse.
This goal is achieved by formulating the sparse coding as a BPDN problem
that includes an `2,1-norm regularization term [186]

x̂ = arg min
x

1

2
‖s−Dx‖2

2 + λ‖x‖1 + ξ
L∑
j=1

‖xj‖2 . (9.3)

When solving (9.3), the group-sparsity term penalizes representations in-
volving atoms belonging to different dictionaries. This problem is convex
and can be solved via ADMM [174].

9.1.3 Anomaly Detection

We use the learned dictionary D and the sparse coding procedure in (9.3)
to define, for each patch s, an indicator vector f(s) that assesses the extent
to which s is consistent with PN .

The vector f(s) stacks all the summands of the cost function minimized
during the sparse coding (9.3) of s: the reconstruction error ‖s−Dx‖2, the
sparsity ‖x‖1, and the group sparsity

∑
i ‖xi‖2. The group-sparsity term is

used to assess the spread of significant coefficients among different scales
of the dictionary atoms. Since normal patches are expected to involve atoms
from one or few scales σi, this term is expected contribute to discriminate
normal ad anomalous patches. Therefore, for each patch s we obtain an
indicator vector having three components:

f(s) =

‖s−Dx‖2

‖x‖1∑
i ‖xi‖2

 . (9.4)

To detect whether a patch s is normal or anomalous we proceed as in
Section 8.2 and adopt the following decision function T : R3 → R:

T (f) = (f − f)TΣ−1(f − f), (9.5)
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where f and Σ are the average and the sample covariance matrix of f com-
puted on additional normal patches, respectively. Using (9.5) is equiva-
lent to build a confidence region from the values of f computed on normal
patches. We do not use KDE as in Section 8.3, since in this case the indi-
cator vector is trivariate and we experience that using a confidence region
yields more stable performance than density estimation.

Since we analyze test images in a patch-wise manner and we consider
overlapping patches, in practice we assign to each pixel one label (nor-
mal/anomalous) for each patch including it. To aggregate all these labels,
we consider the same majority-voting scheme described in Section 8.3: a
pixel is considered anomalous when the majority of the patches containing
that pixel are labeled anomalous.

9.2 Experiments on Images at Multiple Scale

In this section we assess the performance of the proposed scale-invariant
anomaly-detection algorithm. We consider 20 SEM images acquired at dif-
ferent magnification levels, and we group them into 4 series, each sharing
the same magnification. An example of a normal image from each series is
shown in Figure 9.1. It can be seen that images from Series A have been ac-
quired at the highest scale (maximum magnification), thus they are used to
train the proposed anomaly detector. In the test phase, we consider images
containing anomalies from all these series, thus from different scales. The
performance of the anomaly-detector can be assessed thanks to a binary
mask that labels each pixel as normal or anomalous and that is provided for
each image.

In this experiment we use patches having size 32× 32 and, to speed up
the dictionary learning (8.5) and the sparse coding (9.3) stages, we project
patches in the Discrete Cosine Transform (DCT) domain and consider only
the first 225 coefficients, ordered in a zig-zag fashion, so that s in (8.1) is a
vector of 225 DCT coefficients.

We consider the usual figures of merits to assess the performance of the
anomaly detector: FPR and TPR, that are plotted in the ROC curves, and
AUC. We consider the following anomaly detection techniques:

• Multiscale Group-Sparse Coding and Indicator: this is our scale-
invariant algorithm. The multiscale dictionary D is learned by scaling
the training images of a factor σ ∈ {1, 0.75, 0.5}. This method dif-
fers from the following ones because it is multiscale in all its parts:
dictionary learning, sparse coding and computed indicators.
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Figure 9.2: ROC curves for all methods presented in Section 9.2. (a) the ROC curves of
solutions based on the multiscale dictionary D (9.1); (b) the ROC curves of solutions
based on single scale dictionary Di. There are 4 ROC curves for single scale dictio-
naries: one for each series of images used in the training phase. The area under the
curve (AUC) of each ROC curve is reported in the legend.
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• Multiscale Group-Sparse Indicator: here we perform the sparse
coding via the standard BPDN without the group sparsity term, i.e.
we set ξ = 0 in (9.3). We use the same multiscale dictionary D (9.1),
learned in the above solution. Then, we monitor the whole indica-
tor vector (9.4) that includes also the group sparsity term, which is
however ignored in the sparse coding.

• Multiscale All-in-one-bag: this is the solution we present in Sec-
tion 8.3 and here it uses the multiscale dictionary D. In practice, the
group sparsity is neither taken into account in the sparse coding nor in
the indicator vector.

• Multiscale Coding: we use the same multiscale dictionary D (9.1) as
in the above solutions, and we perform the sparse coding following
the Coding algorithm [152], described in Section 8.5.3.

• Oracle Scale: we learn 4 different dictionaries, one for each series,
and process test images using the dictionary learned from images ac-
quired at the same (correct) scale. This is considered ideal solution
since the correct scale is rarely known, exactly. This algorithm is the
one proposed in the previous chapter, which does not consider a group
sparsity term.

• Oracle Scale Coding: as in the Oracle Scale, we use the dictionary
learned from training images at the same scale of the test images, but
the sparse coding and the anomaly detection using the Coding algo-
rithm [152].

• Single Scale: we learn 4 dictionaries, one from each series, and use
each of them to detect anomalies in images from all the series. Anoma-
lies are detected using the anomaly detector proposed in 8, which is
not multiscale. Obviously, the performance of this solution might vary
according to the series used for training.

The ROC curves in Figure 9.2 and the corresponding AUC values indicate
that using multiscale dictionaries is beneficial, as these provide better per-
formance than single scale dictionaries in all the considered solutions. As
expected, the Oracle Scale solution outperforms all the others, since test
images are analyzed by a dictionary that was learned on normal images
acquired at the same scale. However, these settings might not be realis-
tic in all the practical applications. The Multiscale Group-Sparse Coding
and Indicator achieves the best performance. In particular, it outperforms
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Multiscale All-in-one-bag and Multiscale Coding, demonstrating that sim-
ple sparsity with respect to a multiscale dictionary is not enough to handle
test images at a different scales, and that the group sparsity term is instead
necessary in the design of the anomaly detector. Moreover, the compar-
ison between Multiscale Group-Sparse Coding and Indicator and Multi-
scale Group-Sparse Indicator confirms that is not enough to measure the
group sparsity in the indicator vector, but this has to be taken into account
also during the sparse coding.

9.3 Domain Adaptation in ECG Monitoring

In this section we address the domain-adaptation problem in ECG moni-
toring, and present a solution to adapt our user-specific anomaly-detection
algorithm by means of user-independent transformations that depend only
on the source and target heart rates. In particular, we show that these trans-
formations can be successfully learned from datasets containing heartbeats
of several users at different heart rates, like [187]. While the anomaly-
detection algorithm has to be configured every time the device is positioned,
these transformations have to be learned offline and only once, and used
during the online monitoring. In the following, we tackle the problem of
learning transformations to adapt both the dictionary Du,r0 (Section 9.3.1),
and threshold γu,r0 (Section 9.3.2) to control the false positive rate.

9.3.1 Dictionary Adaptation

Our goal is to learn a collection of user-independent transformations {Fr,r0}
that maps each subspace in Dr,r0 into a subspace in Du,r. To preserve the
subspace property, we set each Fr,r0 to be a linear function from Rd(r0)×n

to Rd(r)×n. A linear function between two such vector spaces has in gen-
eral d(r0)d(r)n2 degrees of freedom, which is quite a large number when
the heartbeats are composed of hundred samples (d ≈ 150). To reduce the
number of parameters, thus the risk of overfitting, we constrain the linear
transformation Fr,r0 to have a specific shape that reflects our modeling as-
sumption (8.1). More precisely, these transformations have to map each
atom of Du,r0 to an atom of Du,r, thus each generator of the subspaces in
Du,r0 is mapped to a generator of the subspaces in Du,r. In this case, Fr,r0
is described by a matrix Fr,r0 ∈ Rd(r)×d(r0):

Du,r = Fr,r0(Du,r0) = Fr,r0Du,r0 , (9.6)

and the number of degrees of freedom of Fr,r0 reduces to d(r)d(r0) which
is the number of entries of the matrix Fr,r0 . We point out that the dictionary-
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adaptation solution in (9.6) follows from the simple geometrical interpreta-
tion of dictionary yielding sparse representation. More complex models of
heartbeats might not be straightforwardly adapted to track heart rate varia-
tions.

We learn Fr,r0 from the datasets in [187] by extracting pairs of train-
ing sets {Su,r0} and {Su,r} for many users u ∈ {1, . . . , L} and solve the
following optimization problem:

Fr,r0 = arg min
F,{Xu}u

1

2

L∑
u=1

‖Su,r − FDu,r0Xu‖2
2 + µ

L∑
u=1

‖Xu‖1+

+
λ

2
‖W � F‖2

2 + ξ‖W � F‖1,

(9.7)

where the columns of Xu ∈ Rn×m contain the sparse w.r.t. FDu,r0 of the
corresponding heartbeats in Su,r, and the symbol � denotes the Hadamard
product. All the norms in (9.7) are vector norms, rather than matrix norms.

In what follows we describe the role of each term in (9.7): ‖Su,r −
FDu,r0Xu‖2

2 assesses how good the transformed dictionary is at approxi-
mating the heartbeats of the user u. This term sums up the reconstruction er-
ror over training heartbeats for the L users, and guarantees that dictionaries
transformed by Fr,r0 can properly describe heartbeats in the target domain.
We adopt three regularization terms controlled by the non-negative regular-
ization parameters λ, µ, ξ, and a suitable weight matrix W ∈ Rd(r)×d(r0).
The first two regularization terms guarantee that the each transformed dic-
tionary FDu,r0 provides sparse representations to the heartbeats in the tar-
get domain, for each user u. We adopt an `1 regularization to enforce spar-
sity as a customary choice in the literature [173] since the `1 norm is convex.
The other two terms represent a weighted elastic net penalization over F ,
which improves the stability of the optimization problem, and the weight-
ing matrixW introduces some a priori information about the transformation
Fr,r0 in the minimization. In our case, we expect Fr,r0 to be local, namely
that each sample of a transformed atom is determined by only few neigh-
boring samples in the input atom in Du,r. Therefore, W features larger
weights in positions far from the diagonal of F , and small weights close
to the diagonal. In particular, we define the entries of W using Gaussian
weights:

wij = 1− c · e−
(j−i)2
σ , i ∈ {1, . . . , d(r)}, j ∈ {1, . . . , d(r0)}, (9.8)

where σ > 0 determines the width of the Gaussian and c > 0 is a constant to
ensure that 0 ≤ wij ≤ 1, ∀ i, j. An example ofW is shown in Figure 9.3(a).
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Solving (9.7) is not straightforward since it is not jointly convex in Xu

and F . However, the functional to be minimized is convex with respect
to each variable when the other one is fixed. Therefore, we solve it by
ADMM [174], which has been shown to enjoy good convergence proper-
ties in these settings [188]. The rationale behind the ADMM is to split the
optimization problem in easier sub-problems, and alternate their optimiza-
tion. To this purpose, we reformulate (9.7) in an equivalent form, where it
is easier to derive the equations of ADMM sub-problems:

arg min
F,{Xu},G,{Yu}

1

2

L∑
u=1

‖Su,r − FDu,r0Xu‖2
2 + µ

L∑
u=1

‖Yu‖1+

+
λ

2
‖W �G‖2

2 + ξ‖W �G‖1,

s.t. F −G = 0, Xu − Yu = 0, ∀u (9.9)

where G ∈ Rd(r)×d(r0) and Yu ∈ Rn×m are auxiliary variables. Accord-
ing to the ADMM framework, we define the Augmented Lagrangian [174]
of (9.9) and solve it by alternating the optimization of the following sub-
problems:

X(k+1)
u = arg min

Xu

1

2
‖Su,r − FDu,r0Xu‖2

2 +
ρ

2
‖Xu + Y (k)

u + Z(k)
u ‖2

2,

(9.10)

Y (k+1)
u = arg min

Yu

µ‖Yu‖1 +
ρ

2
‖X(k+1)

u − Yu + Z(k)
u ‖2

2, (9.11)

F (k+1) = arg min
F

1

2

L∑
u=1

‖Su,r − FDu,r0X
(k+1)
u ‖2

2 +
ρ

2
‖F +G(k) +H(j)‖2

2,

(9.12)

G(k+1) = arg min
G

λ

2
‖W �G‖2

2 + ξ‖W �G‖1 +
ρ

2
‖F (k+1) −G+Hk‖2

2,

(9.13)

Z(k+1)
u = Z(k)

u +X(k+1)
u − Y (k+1)

u , (9.14)

H(k+1) = H(k) + F (k+1) −G(k+1), (9.15)

where Zu ∈ Rn×m and H ∈ Rd(r)×d(r0) are the scaled Lagrange multipliers
of the constraints in (9.9), that are updated in (9.14) and (9.15), respec-
tively. Sub-problems (9.10) and (9.12) are quadratic expressions which can
be efficiently solved by Gaussian elimination. Problem (9.11) admits a
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Figure 9.3: (a) The weight matrix W used in (9.7) to learn the matrix Fr,r0 . The elements
of W are set according to (9.8) to enforce the learned transformation to be local: the
elements on the diagonal are small, while the ones far from the diagonal are large. (b)
Example of learned Fr,r0 for r = 90, r0 = 70 using the weight matrixW shown in (a).
The learned transformation is local, since nonzero elements of Fr,r0 are concentrated
around the diagonal.

closed-form solution which corresponds to the proximal mapping [189] of
the function (µ/ρ)|| · ||1[

Y (k+1)
u

]
ij

= Sµ/ρ
([
X(k+1)
u + Z(k)

u

]
ij

)
, (9.16)

where [·]ij denotes a matrix entry, and Sη : R→ R:

Sη(x) = sign(x) ·max{0, x− η}, (9.17)

is the soft-thresholding operator. From Theorem 4 in [189] and simple
algebra, it follows that also (9.13) can be solved by soft thresholding:[

G(k+1)
]
ij

=
1

1 + λw2
ij

Sξwij/ρ
([
F (k+1) +H(k)

]
ij

)
. (9.18)

To initialize the ADMM algorithm, we set to zero the values of all the vari-
able but F (0), which is initialized to uniformly distributed random values to
avoid trivial solutions. Then, we iteratively solve (9.10–9.15) until a maxi-
mum number of iterations is reached or the primal and dual residuals [174]
fall below given thresholds.

Figure 9.3(b) shows an example of learned Fr,r0 , which, as expected, is
local, since the nonzero elements of Fr,r0 are concentrated at the diagonal.

The same optimization problem is solved for several pairs (r, r0) to learn
the collection {Fr,r0} that is used to adapt the user-specific dictionaryDu,r0

to any target heart rate r during the online monitoring.
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9.3.2 Threshold Adaptation

Adapting the dictionary Du,r0 when the heart rate changes is not enough to
enable long-term ECG monitoring. In fact, also the threshold γu,r0 in the
decision rule (8.6) has to be adapted. To this purpose, we learn a set {fr,r0}
of user-independent transformations by solving the following optimization
problem:

γu,r = fr,r0(γu,r0) = γu,r0 · exp(a(r − r0)), (9.19)

where a ∈ R is the only parameter that has to be learned.
The choice of transformation in (9.19) is justified by an empirical con-

sideration. Boxplots from Figure 9.4 report the empirical distribution of
log eu,r for two different users at heart rates r, being eu,r the random vari-
able corresponding to e(su,r) when su,r is drawn from the stochastic process
Nu,r and the sparse coding is performed w.r.t. the adapted dictionary Du,r.
The trend of these boxplots suggests that (log eu,r−log eu,r0) is proportional
to (r − r0). This observation implies the following relation:

log eu,r = log eu,r0 + a(r − r0), (9.20)

where a > 0 ∈ R is the parameter yielding the first order approximation to
the trend of such distributions. To maintain a fixed false positive rate (FPR)
when the heart rate changes, we need to set γu,r to guarantee a constant
probability of considering a normal heartbeat su,r as anomalous:

P (eu,r > γu,r) = P (eu,r0 > γu,r0). (9.21)

Combining (9.20) and (9.21), we can derive the relation between γu,r0 and
γu,r:

P (eu,r0 > γu,r0) = P (eu,r > γu,r) = P (log eu,r > log γu,r) =

= P (log eu,r0 + a(r − r0) > log γu,r) =

= P (eu,r0 > γu,r exp(−a(r − r0))) .

(9.22)

The last equation implies that γu,r0 = γu,r exp(−ar,r0(r− r0)), thus (9.19).
We now address the problem of estimating such transformations from a

training set containing heartbeats of multiple users. Figure 9.3(c) suggests
that the distribution of log eu,r is symmetric, thus we write

log eu,r = bu,r + ηu, (9.23)

where bu,r is the expected value of log eu,r, while ηu is a stochastic term
that has a symmetric distribution w.r.t the origin. Taking the expected value
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Figure 9.4: Boxplot of the log e(su,r) computed on normal heartbeats acquired at different
the heart rate r. In both cases the distribution of log e(su,r) seems to shift of a value
that increases linearly with the heart rate r. This support pour choice of transformation
in (9.19).

in (9.20), we have that bu,r = bu,r0 + a(r − r0), which we can substitute
in (9.23) and obtain:

log eu,r = bu,r0 + a · (r − r0) + ηu, (9.24)

which is a linear regression model for log eu,r w.r.t. the heart rate r. The
parameter bu,r0 is user-dependent and can be estimated from Su,r0 , while
we can estimate a via least squares over multiple users by solving

a = arg min
ã

1

2

L∑
u=1

R∑
j=1

m∑
i=1

(
log
(
e(su,rj(i))

)
− bu,r0 − ã · (rj − r0)

)2
,

(9.25)
where bu,r0 , u ∈ {1, . . . , L} is the average value of e(su,r0) over {Su,r0}.
We estimate a by setting to 0 the derivative of the functional in (9.25):

a =

∑L
u=1

∑R
j=1

∑m
i=1

(
log
(
e(su,rj(i))

)
− bu

)
· (rj − r0)

mL
∑R

j=1(rj − r0)2
. (9.26)

The estimated a defines the user-independent transformation in (9.19), to
adapt the decision rule. Our anomaly-detection algorithm can thus per-
form long-term ECG monitoring by transforming the user specific dictio-
nary Du,r0 and the threshold γr0 by means of the transformations in (9.6)
and (9.19), respectively.
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Table 9.1: Datasets from Physionet [187] used in the experiments

Dataset Number of users Average duration (h) Heart rate resolution (bpm)
LTSTDB 80 22 5
LTAFDB 84 24 5

LTDB 7 16 5
EDB 45 2 10

9.4 Experiments on ECG signals

The goal of our experiments it to show that learned user-independent trans-
formations can successfully adapt our anomaly-detection algorithm. To
this purpose we consider 4 datasets publicly available from Physionet [187]
which have been acquired using Holter devices. All the dataset from Phys-
ionet have been manually annotated using an automatic tool and corrected
by cardiologists. Table 9.1 reports the number of users in each dataset and
the durations of the ECG signals recorded. We use different resolution for
heart rate quantization (see Table 9.1) on the duration of the ECG signal,
to guarantee a sufficient number of heartbeats for each quantized heart rate.
We consider as anomalous heartbeats all the annotated arrhythmias.

Figures of Merit. To assess how good the adapted dictionaries are at
modeling the heartbeats, we select as figure of merit the distance e of the
heartbeats from the transformed union of low dimensional subspaces, that
can be also interpreted as the reconstruction error yielded by the sparse
approximation. Moreover, we adopt the usual figures of merit to asses the
anomaly detection performance, i.e., FPR, TPR and AUC.

Alternative Solutions. As alternative anomaly-detection algorithm we
consider Coding [152], described in Section 8.5.3. Moreover, we consider
the following dictionary-adaptation solutions:

• Cut: since the support of each heartbeat contracts as the heart-rate
increases (see Figure 2.2), the simplest form of adaptation consists in
removing the first and the last samples of each column of Du,r0 , thus
“cutting” the support of each atom in the dictionary. This baseline
solution transforms each dictionary Du,r0 using a pre-defined trans-
formation which does not require training data.

• DTW: this solution is based on dynamic time-warping [190], an es-
tablished signal-processing algorithm to align two vectors and mea-
sure their similarity. Given v0 ∈ Rd0 and v1 ∈ Rd1 where d0 6= d1,
dynamic time-warping performs a non uniform resampling of v0 and
v1 to obtain two aligned vectors ṽ0, ṽ1 ∈ Rda that have a common
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Figure 9.5: The median reconstruction error over all users. As expected, in the Oracle
solution the reconstruction error is nearly constant w.r.t. the heart rate r, and increases
with r in all domain adaptation solutions, confirming that the change in the heartbeat
morphology becomes more evident for large heart rates. Among such solutions, the
Proposed one achieves the lowest reconstruction error.

support da, such that da ≥ d0 and da ≥ d1. The resampling pat-
terns are estimated by minimizing the Euclidean distance between ṽ0

and ṽ1 through dynamic programming. Since resampling is a lin-
ear operation, it is always possible to express DTW by two matrices
Ai ∈ Rda×pi , i = 0, 1, such that ṽi = Aivi. The matrices define
the transformation for each pair of heartbeats. In particular, we com-
pute Ar0 and Ar by aligning the first principal components of Su,r0
and Su,r. To obtain user-independent transformations, the resampling
patterns are computed to minimize the sum of the Euclidean distance
between the aligned first principal components of Su,r0 and Su,r over
many users u. The corresponding transformation Fr,r0 to map dictio-
naries is linear as in (9.6) and is defined by Fr,r0 = A+

r Ar0 , begin A+
r

the pseudo-inverse of Ar.

• SDDL: Shared Domain-adaptive Dictionary Learning is a domain-
adaptation algorithm specifically designed for dictionaries [133]. For
each source-target domain pairs, SDDL jointly learns two projections
from these domains into a common subspace, as well as a shared dic-
tionary providing sparse representations of the projected data. While
this solution is claimed to be general in [133], it has been primarily
developed for classification purposes, as it learns class-wise mutually
incoherent dictionaries. We adapt [133] by learning the projection
from the LTSTDB and LTAFDB datasets, and the dictionaries in the

120



9.4. Experiments on ECG signals

75 85 95 105 115
0.7

0.8

0.9

1

Heart Rate (bpm)
(b)

AUC

Proposed
DTW
Cut
SDDL
Oracle

Figure 9.6: The median AUC computed over all the users. As in case of the reconstruction
error (see Figure 9.5), the Proposed solution leads to the best performance in case of
domain adaptation, although the DTW achieves similar AUC.

shared subspace by means of the KSVD [106] in place of the dis-
criminative dictionary-learning algorithm in [133]. Thus, during the
user-specific configuration, we project Su,r0 onto the low-dimensional
subspace using the learned projection, then we learn a user-specific
(but heart rate independent) dictionary Du. During online monitor-
ing, we project each heartbeat onto the subspace, then we compute
the sparse representation w.r.t. Du and back-project the obtained re-
construction. The `2 norm of the difference between the original and
the back-projected heartbeats yield the reconstruction error used for
anomaly detection.

• Oracle: this ideal solution directly learns a dictionary Du,r from a
training set Su,r using KSVD in the target domain.As such, this can-
not be pursued in practical monitoring, but represents a performance
reference for domain-adaptation algorithms.

These domain-adaptation solutions have been trained on all ECG sig-
nals in LTSTDB and LTAFDB datasets, which present a large variability
both in term of users and heart rates, and tested on all other datasets. More-
over, to assess the performance on all Physionet datasets we learn a set
of transformations from LTSTDB dataset and test it on LTAFDB dataset,
and viceversa. Finally, since all the domain-adaptation solutions depend
on several hyper-parameters, we adopt a 5-fold cross-validation procedure
during the training phase, and use random search [191] to select the hyper-
parameters that achieve the best heartbeats reconstruction performance on
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Figure 9.7: Median TPR and FPR computed over all the users in Physionet datasets by
setting the threshold γu,r0 to achieve a desired FPR α = 0.01.

a validation set.
Experiments. We perform three domain adaptation experiments. The

first experiment aims to assess the normal heartbeats reconstruction when
adapting dictionaries to track heart rate changes. More precisely, for each
test user u we learn a dictionary Du,r0 from heartbeats at heart rate r0 = 70
bpm and then we analyze the reconstruction error on normal heartbeats
w.r.t. the dictionary obtained by adapting Du,r0 on different heart rates.
Figure 9.5 shows the median reconstruction error over all the test users
and heart rates (the lower the better). Our dictionary adaptation solution
outperforms all the alternatives (except for the Oracle), in particular at the
high heart rates. A signed-rank test confirms that our solution achieves
lower reconstruction error than both DTW and CUT (p-value < 0.00001),
except for low heart-rates (r = 75, 80), where Proposed and Cut solutions
achieve similar performance.

In the second experiment we assess the anomaly-detection performance
when the algorithm is adapted to operate at different heart rates on each
specific user. Figure 9.6 reports the median AUC computed over all test
user for each considered solution. The Proposed one achieves similar per-
formance of DTW for low heart rates, and is the best when r ≥ 100, al-
though a signed rank test does not report enough statical evidence that the
two solutions perform differently. This is not in conflict with results on the
reconstruction error. Some anomalous heartbeats can be better perceived
at low heart rates and be detected even when the reconstruction w.r.t. the
adapted dictionaries is slightly worse.

Finally, in the third experiment we simulate an online monitoring sce-
nario, where we set a desired FPR α = 0.01 and assess the TPR achieved
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when the Du,r0 and γu,r0 using the learned transformations. Figure 9.7
shows the median FPR and TPR computed over all the users. The learned
transformation successfully maintain the FPR below the target value α for
each heart rate. The TPR is large for small heart rates, but decreases when
the heart rate becomes significantly larger than r0. This is probably due to a
quality degradation of heartbeats because of user movements which affects
the capability of the detector to distinguish between normal and anomalous
heartbeats.
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CHAPTER10
Online ECG Monitoring

In this chapter we present a prototype wearable device able to perform on-
line and long-term monitoring of ECG signals that embeds the anomaly-
detection and domain adaptation algorithms presented in the previous chap-
ters. We describe the device in Section 10.1 and the user-configuration that
has to be performed every time the device is placed in Section 10.2. Finally,
we present the results of online monitoring experiments in Section 10.3.

10.1 The Bio2Bit Dongle

The Bio2Bit-Dongle (Figure 10.1) is a wearable device developed by STMi-
croelectronics that is composed by the Bio2Bit Move [192], which is plugged
on an adjustable chest strap and acquires and transmits via Bluetooth Low
Energy (BLE) the ECG signals, and a low-power dongle that analyzes in
real time the received signals.

The Bio2Bit Move is a prototype device placed in a 55x40x14 mm en-
velope, even though the final product sizes can be significantly reduced to
yield a non-invasive wearable device. Its battery allows to steadily sense
and transmit via BLE the ECG signals for up to 20 hours. The dongle
has been replaced by a development board NUCLEO-L476RG [193] which
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Figure 10.1: The user wears Bio2Bit Move (on a chest strap) and the dongle (in a bracelet,
or hanged on a belt), which communicate over a Bluetooth connection. The user con-
figuration requires a few minutes of ECG signals acquired in resting conditions, which
the dongle segments into heartbeats. These represent the training set that is sent to
the user’s smartphone, where the dictionaryDu,r0 and the threshold γu,r0 are learned.
These are adapted for each heart rate r and the QR decomposition of each dictionary
is computed. The dongle sends back the adapted thresholds {γu,r} and the decompo-
sitions {(Qu,r, Ru,r)} to the dongle. During online monitoring, the dongle receives
the ECG signal from by the Bio2Bit Move, segments each heartbeats and estimates the
heart rate. For each heartbeat, it performs the sparse coding w.r.t. the dictionary that
matches the current heart rate. Finally the dongle computes the reconstruction error,
and raises an alert when it is above the selected threshold.

embeds an ultra-low-power microcontroller unit (MCU) based on the high-
performance ARM Cortex-M4 32-bit RISC core, operating at a frequency
of 80 MHz. This MCU is a likely reference for low-power dongles. The
board is also equipped by a BLE evaluation board (X-NUCLEO-IDB05A1)
to communicate with the Bio2Bit Move.

10.2 User Configuration

Algorithm 10.1 describes the user-configuration phase, which has to be per-
formed every time the Bio2Bit Move is positioned. User configuration in-
cludes learning Du,r0 and estimating γu,r0 , from the training set Su,r0 , as
described in Section 9.3.

We experienced that 10 minutes of ECG signals acquired in resting con-
ditions are typically enough for the user configuration: acquired signals are
initially segmented by detecting R peaks by means of the Pan-Tompkins
algorithm [20]. The heart rate r̄ associated to each heartbeat is the median
of the inverse of distances between two consecutive R peaks over the last
10 seconds, quantized to a resolution of 10 bpm (beats per minute). The
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Algorithm 10.1 User Configuration

Input: Training set Su,r0 , source heart rate r0, user-independent transformations {Fr,r0},
{fr,r0}, desired false positive rate α.

Output: Matrices {Qu,r}, {Ru,r}, thresholds {γu,r}.
1: Split the training set Su,r0 in two sets T and V .
2: Learn the user specific dictionary Du,r0 by solving problem (8.4), using T in place of
Su,r0 as training set.

3: Compute e(su,r0) for each heartbeat su,r0 in V .
4: Set γu,r0 as the (1− α) quantile of the empirical distribution of e(·) over V .
5: for each r in the range [70, 120] do
6: Adapt the dictionary Du,r0 by computing Du,r = Fr,r0(Du,r0).
7: Compute the QR decomposition of the adapted dictionary: Du,r = Qu,rRu,r.
8: Adapt the threshold γu,r0 by computing γu,r = fr,r0(γu,r0).
9: end for

most frequent heart rate in these 10 minutes is selected as r0, and only the
heartbeats associated to r0 belong to the training set Su,r0 . The next opera-
tions to configure the device are more computationally demanding than the
online monitoring, and can be conveniently performed on a host, such as a
smartphone.

The host receives the training set Su,r0 and r0, and divides Su,r0 into a
set used to learn Du,r0 and a set to estimate γu,r0 . The host pre-computes
Du,r = Fr,r0(Du,r0) and γu,r = fr,r0(γr0) for a range of admissible heart
rates r (e.g., [70, 120]), as well as the QR decomposition of each trans-
formed dictionary {Du,r}r. The matrices Qu,r and Ru,r are then sent back
to the dongle that stores them for the optimized sparse coding (see Sec-
tion 8.4).

10.3 Experiments

We use the Biot2Bit-Dongle to collect a dataset of 15 ECG signals. 12
ECG signals are from healthy users, while 3 are from patients affected by
a cardiovascular disease and has been annotated by a cardiologist. Each
ECG signal in the dataset lasts at least 1 hour and is acquired following a
protocol including normal-life activities (e.g. resting, lying down, walking,
resting after a small effort), thus the heart-rate significantly varies in each
ECG signal. We restrict our analysis to the most frequent heart rates, i.e.
{70, 80, 90, 100}. Due to the limited number of leads and their reduced
distance, heartbeats in the B2B dataset are very different from those in the
datasets from Physionet used in Chapter 9. Low-quality heartbeats have
been discarded by an automatic tool and the supervision of a cardiologist.
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Figure 10.2: Boxplots of the reconstruction error computed over all the user in the
datasets. The proposed solution achieves the best performance, especially in case of
r = 100.

The goal of our experiments is to show that the transformations learned
from Physionet datasets can successfully adapt dictionaries learned from
other devices, such as Bio2Bit Dongle, which is completely different from
the Holter used to acquire the ECG signals in the Physionet datasets. This
is necessary for our solution to enable long-term monitoring. Therefore,
we repeat the experiments in Section 9.4 using the same transformations
on the B2B dataset to assess both heartbeat reconstruction and anomaly
detection performance. The alternative solutions considered are the same
as in Section 9.4, except for Oracle one, that cannot be used in this case,
since we do not have enough heartbeats to learn a dictionary for each heart
rate. For each user u we learn Du,r0 and γu,r0 from the first 10 minutes of
ECG signal, and perform domain adaptation to heart rate r ∈ {80, 90, 100}.

Figure 10.2 shows the boxplots of the reconstruction error computed
on normal heartbeats of each user for different r. This plot show that the
median reconstruction error of the Proposed solution is lower the others
even for large heart rates. As in the experiments on the Physionet datasets,
we assess the performance in the online monitoring scenario by setting a
desired FPR α = 0.01, and computing the actual FPR and TPR score for
each heart rate r. Figure 10.4(a) shows the performance of our solution
on the 3 patients affected by cardiovascular diseases: the FPR exceeds the
desired value of α = 0.01, but it is maintained constant. The TPR is very
large for one patient, but it is smaller in case of the other two, where the
number of arrhythmias is low, thus the estimate of the TPR is subject to a
large variance.
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Figure 10.3: Boxplots of the AUC achieved by all solutions to detect inter-user anomalous
heartbeats. The AUC achieved by the Proposed algorithm is the highest among all the
considered domain-adaptation solutions.

To increase the number of anomalous heartbeats, we pursue the ap-
proach described in Section 8.5.5 and artificially introduce inter-user anoma-
lies. More precisely, for each healthy user u we consider as anomalous any
heartbeat from a different healthy user, which indeed features a morphol-
ogy that is different from training ones. Figure 10.3 shows the boxplot of
the AUC: again, the proposed solution outperforms the others, although
DTW performs comparably, as confirmed by a signed rank test (p-value
≈ 0.6). Finally, we assess the anomaly detection performance in the online
monitoring scenario also on the inter-user anomalies. Figure 10.4(b) shows
the median FPR and TPR, confirming that our solution successfully detects
anomalous heartbeats when the heart rate increases while maintaining con-
stant FPR.

Finally, to determine whether our algorithm can be executed online on
the Bio2Bit-Dongle in a long term monitoring scenario, we measure the ex-
ecution time and the power consumption. Our optimized OMP [6] requires
on average 1.360 ms to compute the reconstruction error of an heartbeat,
which is way below the acquisition time of each heartbeat, and is 48%
less than the computing time of a standard OMP implementation. Dictio-
nary adaptation has no overheads, since dictionaries can be pre-transformed
during training and stored in memory. The average current absorbed by the
dongle during 20 minutes of online monitoring is 10.01 mA. Thus, when
the dongle is equipped with a 592 mWh battery such as the one adopted on
the Bio2Bit Move, it has 16 hours monitoring autonomy.
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Figure 10.4: Results of online monitoring experiments, where the threshold γu,r0 has
been set to achieve a desired FPR α = 0.01. (a) FPR and TPR computed on the
3 patients affected by cardiovascular diseases in the B2B dataset. Different colors
correspond to different users. (b) Median FPR and TPR in the inter-user anomaly
detection experiments on the B2B dataset.
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CHAPTER11
Convolutional Sparse Representations

Convolutional sparse representations [120] are translation-invariant repre-
sentations that extend traditional sparsity. In this chapter we investigate the
use these representations as image models, and in particular we address the
denoising task, as it is a customary testbed in image-processing literature.
In particular, we compare two denoising approaches performed by comput-
ing a sparse representation of the noisy image w.r.t. a translation-invariant
dictionary. The classical approach is cycle spinning [119], which aggre-
gates partial estimates each of which is sparse w.r.t. a different translate
of the basis. In contrast, convolutional sparse representations involves a
global optimization over the entire dictionary. Intuitively, the global opti-
mization might be expected to yield representations that are better suited for
denoising. Consider the case of an image that admits a very sparse repre-
sentation w.r.t. one of the orthonormal bases among the shifted copies in the
dictionary: the global optimization would yield a very sparse estimate by
activating only few atoms from that particular basis, while cycle spinning
would aggregate all partial estimates from other shifted bases too, which
might not be as sparse. Our goal is to address this absence by investigat-
ing the recent convolutional sparse representations in a careful comparison
against the now-classical method of wavelet cycle spinning.
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We formulate the denoising problem in Section 11.1, then we describe
in details the two considered solutions in Section 11.2. Finally, we presents
the results of our experimental campaign in Section 11.3.1.

11.1 Image Denoising

The input noisy image s ∈ Rd corrupted by additive white Gaussian noise
(AWGN) is modeled as

s = y + η , η∼N (0, σ2) , (11.1)

where y∈Rd denotes the unknown noise-free image.
We consider denoising methods that approximate y as a linear combi-

nation ŷ of atoms from a redundant set of generators of Rd that is formed
by the union of all shifted copies D1, . . . , Dd of a given orthonormal basis
D1∈Rd×d:

ŷ = Dx̂ , D = (D1 · · · Dd) ∈ Rd×d
2

, (11.2)

where x̂∈Rd2 is the coefficient vector. Such redundant systems are typi-
cally used for building translation-invariant approximations of signals and
images. There are two major approaches for solving (11.2), described be-
low.

11.1.1 Aggregation of Partial Estimates

Techniques such as cycle-spinning [119] seek sparsity w.r.t. each orthonor-
mal basis Di, solving a penalized problem

x̂i = arg min
u∈Rd

1

2
‖Diu− s‖2

2 + λR(u) , i ∈ {1, . . . , N}, (11.3)

where R(·) is a regularization term promoting sparsity of the solution.
Since each Di is orthonormal, problem (11.3) is equivalent to

x̂i = arg min
u∈Rd

1

2
‖u−DT

i s‖2
2+λR(u) , i ∈ {1, . . . , N}, (11.4)

so that the solution x̂i is given by the proximal map [194] of the regulariza-
tion function λR(·).

The final estimate ŷaggr is obtained aggregating the N estimates Dix̂i:

ŷaggr =
1

d

d∑
i=1

Dix̂i = D

(
x̂T0 · · · x̂Td

)
T

d
= Dx̂aggr . (11.5)

We refer to (11.5) as the aggregation of partial estimates.
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11.1.2 Global Optimization

An obvious, but more computationally expensive alternative defines a sin-
gle estimate by solving a global optimization that jointly considers all the
possible shifts of D1 :

x̂glob = arg min
x∈Rd2

1

2
‖Dx− s ‖2

2 + λR(x) . (11.6)

This problem can be also formulated in a convolutional form [195], replac-
ing Dx by convolutions against M ≤ N filters:

x̂glob = arg min
x∈Rd2

1

2
‖

M∑
m=1

dm ∗ x[m] − s ‖2
2 + λR(x) , (11.7)

where ∗ denotes the convolution operator, dm denotes the mth column of
D1 that is used as a linear filter in the convolution, x[m]∈Rd is a subvector
of x with x[m](j) = x(m+(j−1)N), j ∈ {1, . . . , N}, and x[m] ≡ 0 for
m > M . The number of filters, M , involved in the convolutional repre-
sentation (11.7) can be smaller than N in cases where D1 contains shifted
versions of the same column, e.g. when DT

1 is a wavelet basis. In these
cases, we keep only those M ≤ N columns of D1 that are distinct mod-
ulo shifts, thus that correspond to different convolutional filters. The final
estimate is then given by

ŷglob = Dx̂glob =
M∑
m=1

dm ∗ x̂[m] , (11.8)

where the coefficient map x̂[m] is the subvector gathering the representation
coefficients associated with dm, i.e. x̂[m](j) = x̂glob(m+(j−1)N), j ∈
{1, . . . , N}.

11.1.3 Our Analysis

Our goal is to compare these two approaches, determining whether global
sparsity is a desirable property, and under what conditions the global op-
timization provides a better solution to the denoising problem. First, we
primarily consider convex optimization problems, adopting the `1-norm as
sparsity-promoting prior, for which a global minimum can be computed.
Second, while the global optimization approach in the form of convolu-
tional sparse representations has typically been applied with learned dic-
tionaries, to fairly compare the two approaches we consider a wavelet dic-
tionary D1, which is fixed and not adaptively learned from training data.
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Third, to further investigate problems (11.3) and (11.6), we decompose the
mean squared error (MSE) of the obtained solutions into their squared bias
and variance components. The former indicates how well the approxima-
tion fits the underlying data y in expectation, while the latter indicates how
stable this approximation is w.r.t. different realizations of the random noise
η. Finally, our analysis is performed both on natural images and syntheti-
cally generated images admitting an extremely sparse representation w.r.t.
D.

11.2 Optimization

11.2.1 Regularization Term

To promote sparsity in the solution of (11.3) and (11.6), one typically
adopts R(x) = ‖x‖0 or R(x) = ‖x‖1 as the regularization term. In these
cases, the proximal maps of λR admit closed form expressions, given
by hard- and soft-thresholding [194] respectively. Since Di is orthonor-
mal, applying these proximal maps directly solves (11.3). Therefore, when
R(x) = ‖x‖0, the solution of (11.3) is x̂i = Hλ(D

T
i s), where the hard-

thresholding operatorHλ is defined as

[Hλ(u)]j = uj · 1{|uj |>λ}, j ∈ {1, . . . , N} . (11.9)

Similarly, when R(x) = ‖x‖1, the solution of (11.3) is obtained as x̂i =
Sλ(DT

i s), where the soft-thresholding operator Sλ is

[Sλ(u)]j = sign(uj) ·max(|uj| − λ, 0), j ∈ {1, . . . , N}. (11.10)

Problem (11.6) can be approached via the Iterative Thresholding Algo-
rithm [196], which alternates the thresholding operator corresponding to
the specific regularization term R, with a gradient descent step, where the
gradient is computed on the data-fidelity term in (11.6).

We primarily consider R(x)=‖x‖1 since it makes problem (11.6) con-
vex and algorithms like [196] converge to a global minimum. In contrast,
when R(x) = ‖x‖0 the problem is non-convex, so the Iterative Threshold-
ing Algorithm [196] is guaranteed to converge only to a local minimum.

11.2.2 High-pass filtering

In cycle spinning, as in other wavelet approximations, coefficients from
the coarsest level are not sparse [197]. Therefore, one typically shrinks
only the detail coefficients [119, 198]. This corresponds to not regularizing
the approximation coefficients in (11.3). This is not a viable solution for
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the convolutional case, since if we remove the coefficient map x[1] corre-
sponding to the approximation filter d1 from R(x) in (11.7), then x̂[1] is
the deconvolution of the noisy s w.r.t. to d1. Since this solution leads to a
poor estimate ŷglob, we do not perform convolutional sparse coding (11.7)
directly on s but rather on a high-pass filtered sh (which is common practice
in convolutional sparse coding [199, Sec. 3]), computed by setting to 0 the
approximation coefficients of the overcomplete wavelet transform DT of s.
This is equivalent to setting

sh = s− d1 ∗ (d̄1 ∗ s) , (11.11)

where d̄1 denote the conjugate filter of d1. Hence, we exclude d1 and x[1]

from the data-fidelity and regularization terms in (11.7), and add s−sh back
to ŷglob in (11.8). However, the noise affecting the high-pass filtered sh is
no longer white, but rather coloured by v = δ − d1 ∗ d̄1, where δ is the
Dirac impulse, so the power spectrum of v∗η should be taken into account
when denoising sh in (11.6-11.7).

11.3 Experiments

We perform denoising experiments on natural images as well as on syn-
thetic data that we specifically generated to admit an extremely sparse rep-
resentation w.r.t.D. We corrupt each image y according to (11.1) and com-
pute both ŷglob and ŷaggr. Experiments are conducted with several noise
variances σ2, and for each σ2 we separately tune the penalty parameter λ
for both methods to achieve the lowest MSE, averaged over all the consid-
ered images.

In our experiments the matrix D1 corresponds to the orthonormal ba-
sis of the Daubechies db3 wavelet transform with 4 decomposition levels.
In case of R(x) = ‖x‖1, the convolutional sparse coding problem (11.6-
11.7) can be efficiently solved by means of a formulation of the Alternating
Directions Method of Multipliers (ADMM) in the Fourier domain [200].
In our experiments we used the MATLAB implementation of the ADMM
algorithm provided in the SPORCO library [177].

11.3.1 Experiments on Natural Images

We consider five test images (Lena, Barbara, Man, Peppers, Cameraman),
corrupted by noise with standard deviation σ ∈ {5, 10, . . . , 40}. Each
marker in Figure 11.1(a) represents the PSNR (average over 50 noise re-
alizations) achieved by ŷaggr (vertical coordinate) and ŷglob (horizontal co-
ordinate) for each image and σ pair. The markers are very close to the
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Figure 11.1: Denoising results on natural images for R(x) = ‖x‖1. (a) Comparison
between the PSNR of ŷglob and ŷaggr. Equal PSNR on the diagonal. Each marker
corresponds to results for a given image y and noise level σ. At low noise level (top-
right corner) ŷaggr outperforms ŷglob, while the two achieve similar performance as the
noise gets stronger. (b) Bias-Variance decomposition of the MSE of ŷglob and ŷaggr.
Dashed anti-diagonals are the MSE level lines. The relative position of linked circles
and crosses shows that although ŷglob and ŷaggr perform similarly, ŷglob features lower
bias and higher variance than ŷaggr.

diagonal, indicating that the two methods attain very similar PSNR val-
ues, and we can see that only at low noise levels, i.e. where PSNR values
are highest, the aggregation of partial estimates slightly outperforms global
optimization.

In Figure 11.1(b) we decompose the MSE into its squared bias (hori-
zontal coordinate) and variance (vertical coordinate) components. In these
plots, anti-diagonals (dashed lines) are level lines of the MSE, and the blue
circles © correspond to ŷglob, while the green ×-marks to ŷaggr; markers
corresponding to the same pair (y, σ) are linked by a segment. The relative
position of linked circles and crosses confirms that the estimates of the two
methods achieve similar PSNR. Most importantly, ŷglob features a lower
bias than ŷaggr, but has a higher variance.

11.3.2 Experiments under Extreme Sparsity

Since the marginal performance gap between ŷglob and ŷaggr may appear
unexpected given that global optimization should intuitively be more suc-
cessful on sparse signals, we investigate how sparse the image really needs
to be for our intuition to be correct, and whether the SNR plays any role
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Results usingR(x) = ‖x‖0
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Figure 11.2: Denoising results on natural images for R(x) = ‖x‖0 (compare with Fig-
ure 11.1). (a) Comparison between the PSNR of ŷglob and ŷaggr on natural images. In
this case, ŷglob is clearly outperformed by ŷaggr, especially under stronger noise. (b)
Bias-Variance decomposition of the MSE of ŷglob and ŷaggr. Here ŷglob suffers from a
much larger variance than ŷaggr.

in this question. We synthesize a 128×128 noise-free image y = Dx by
generating x with L nonzero components at random positions. Then we
corrupt y with AWGN with standard deviation σ such that the SNR of the
noisy image s achieves a target value τ . We consider L∈{20, 21, . . . , 212}
and τ ∈ {−25,−22.5, . . . , 25}, and generate 50 realizations of y for each
pair (L, τ), and 50 realizations of s for each such y.

Figure 11.1(c) shows the output SNR difference between ŷglob and ŷaggr
when varying the number of nonzero coefficients L and the input SNR τ .
These plots indicate that when L is small, ŷglob can achieve much larger
SNR than ŷaggr thanks to its lower bias and lower variance. However, when
L increases, the SNR gap shrinks and the variance of ŷglob becomes larger
than that of ŷaggr, especially at high noise levels. This is consistent with the
results on natural images, where the two methods attain comparable PSNR
and ŷglob features a larger variance. In fact, natural images arguably do not
admit extremely sparse representations w.r.t. to D, and the two methods
perform similarly to large L in the plots of Figure 11.1(c).

11.3.3 Results using `0 Regularization

Figure 11.2 reports the denoising results for natural and for extremely sparse
images using R(x) = ‖x‖0 regularization. On natural images, ŷglob suf-
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Results usingR(x) = ‖x‖1
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−10

−5

0

Results usingR(x) = ‖x‖0

20

26

212

L

SNR(ŷglob)− SNR(ŷaggr)
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Figure 11.3: Comparison on extremely sparse synthetic images using (a) R(x) = ‖x‖1
and (b)R(x) = ‖x‖0. The horizontal axis reports the SNR of noisy image s, while the
vertical axis the number of nonzero coefficients L. The advantage of ŷglob is greatest
on very sparse y (small L) and low noise (large SNR(s)).

fers from a much larger variance than ŷaggr, which clearly achieves highest
PSNR despite its typically higher bias. Not surprisingly, the performance
gap increases with the noise level. By comparing the vertical positions of
the markers in Figure 11.1(b) with those in Figure 11.2(b), we can see that
the variance of ŷaggr and, especially, of ŷglob is larger when R(x) = ‖x‖0

than whenR(x)=‖x‖1.
The experiments on synthetic images that admit an extremely sparse

representation are summarized in Figure 11.2(c). To deal with the lack of
convexity, we initialize the iterative hard-thresholding algorithm [196] with
the extremely sparse coefficient vector xinit that was used to generate y. At
least when L is small and the noise is weak, the much lower variance of
ŷglob suggests that the estimate x̂glob is very close to xinit and that [196]
practically approaches the global minimum. Thus, on the extremely sparse
images, the global optimization is confirmed to be superior to the aggrega-
tion of partial estimates also when employingR(x)=‖x‖0.
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11.4 Discussions

We investigate the benefit of global optimization w.r.t. overcomplete dictio-
naries over aggregation of partial optimizations w.r.t. each orthogonal sub-
basis, specifically comparing the modern convolutional sparse representa-
tions with the classical cycle spinning. On the one hand, our experiments
confirm that solving the global optimization problem leads to estimates that
are characterized by a lower bias than the traditional aggregation of par-
tial estimates. On the other hand, we show that the solution of the global
optimization are characterized by a larger variance, which makes the two
approaches comparable when the input images are not very sparse w.r.t. the
dictionary D. We speculate that the high redundancy of D, which in case
of convolutional sparse representations always contains shifted atoms that
are highly correlated, is the primary cause of the larger variance.

Our results indicate that solving the computationally demanding global
optimization problem only has a clear advantage when D can provide a
very sparse representation of the original image. It is unclear to us whether
an adaptively learned dictionary can boost the sparsity enough to guarantee
an advantage to the global optimization. When the representation is not
very sparse, global optimization provides comparable performance to ag-
gregation in the case of `1 regularization, and slightly inferior performance
in the case of `0 regularization. This increased performance gap with `0

regularization highlights a practical advantage of the aggregation with or-
thogonal dictionaries: while switching from `1 to `0 regularization makes
global optimization much more difficult, such a change does not increase
the difficulty of optimizing the partial problems involving orthogonal dic-
tionaries. Similarly, the much higher variance for the global solution on
natural images when switching from `1 to `0 regularization is probably due
to the non-convex nature of the optimization problem: the solutions we ob-
tain are typically local minima, which can be expected to contribute to the
overall increase in the variance. Finally, it should be pointed out that, while
to simplify the comparisons we aggregate with uniform weights (11.5) as
in classical cycle spinning, the practical advantage of aggregation can be
augmented by using sparsity-adaptive weighting [201].
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CHAPTER12
Concluding Remarks

In this thesis we address the problem of monitoring a datastream to detect
whether the data generating process departs from normal conditions. In
practical applications data are high dimensional and feature complex struc-
tures, and this raises both theoretical and practical challenges. We address
these challenges from two different perspectives, depending on the model-
ing assumption made on the data generating process.

In the first part of the thesis we model data as realization of random vec-
tors and focus on the change-detection problem. We provide the first rigor-
ous study of the challenges that change-detection algorithms have to face
when data dimension scales. Our theoretical and empirical analyses reveal
that the popular approach of monitoring the log-likelihood of a multivariate
datastream suffers detectability loss when data dimension increases. Re-
markably, our analysis and experiments confirm that detectability loss is
not a consequence of density-estimation errors – even though these fur-
ther reduce detectability – but it rather refers to an intrinsic limitation of
this change-detection approach. Our theoretical results demonstrate that
detectability loss occurs independently on the specific statistical tool used
to monitor the log-likelihood and does not depend on the number of in-
put components affected by the change. Our empirical analysis confirms
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detectability loss also on real-world datastreams.
To investigate the detectability loss problem we propose CCM, a rigor-

ous method to introduce changes in real-world datastreams by roto-translating
stationary data. We prove that CCM can successfully control the magnitude
of the introduced changes when data can be approximated by a Gaussian
mixture. Moreover, our experiments show that experimental practices com-
monly adopted in the literature for introducing changes cannot control the
change magnitude and prevent a fair performance assessment of change-
detection algorithms, especially when data become high-dimensional.

To perform change detection we propose QuantTree, an algorithm to
build histograms for change detection through an iterative binary splitting
of the input space. The specific splitting criteria allows to compute the
probability of each bin defined by QuantTree and our theoretical analysis
shows that this probability is independent from the distribution of the data
in the training set. This fact has the important consequence that statistics
defined over QuantTrees are non parametric and thresholds can be esti-
mated through numerical simulation on synthetically generated data. Ex-
periments show that our thresholds (estimated using samples drawn from
a univariate uniform distribution) enable a better control of the FPR than
thresholds defined by asymptotic approximation of the Pearson statistic, or
those estimated by bootstrap on the training set. Moreover, we show that
ensembles of histograms can mitigate the detectability loss problem, and
can be successfully use for change detection also in high dimensions.

In the second part of the thesis we consider data that feature a com-
plex structure, in particular images acquired by a quality inspection system
and ECG signals. We design an anomaly-detection algorithm that learns a
dictionary yielding sparse representations of normal data and use these rep-
resentations to extract low-dimensional indicators to assess whether new
data conform or not to the learned dictionary, thus the normal conditions
of the process. We remark the importance of a good design of these low-
dimensional indicators. In fact, indicator vectors can be modeled as real-
ization of a random vector and increasing their dimension using indicators
that do not bring any useful information about data would lead to detectabil-
ity loss also in anomaly-detection problems. Figure 12.1 shows the ROC
curves obtained in an anomaly-detection experiment on SEM images for
different dimensions of the indicator vectors. More precisely, we increase
the indicator vector computed from the `1 norm based sparse coding de-
scribed in Section 8.2 (that corresponds to d = 2) by adding hand-crafted
features computed on patch, i.e., the sample mean, the sample variance and
the average manigtude of the gradient. The best performance are achieved
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Figure 12.1: Detectability loss experiences in the anomaly detection experiments on the
SEM images. We include additional features (sample mean, sample variance and av-
erage gradient of the patch) in the bivariate indicators vector (8.8), that contains only
the reconstruction error and the `1 norm of the representations. For each d we plot the
average ROC computed over all the combinations of d indicators among the 5 consid-
ered, by always keeping the original indicators. The best performance are achieved by
d = 2, meaning we are experiencing the detectability loss, as the detectability of the
anomalies decreases due to alarger d.

when d = 2. This means that the additional features do not increase the in-
formation carried by our original indicators, thus the (change) detectability
of the anomaly decreases, as the anomalies, this the (change) magnitude,
remain the same.

We propose two domain adaptation algorithms to adapt the anomaly de-
tector, namely both the learned model and the decision rule, when the pro-
cess generating normal data changes over time, as this happens in practical
scenarios. In particular, we customize our general anomaly-detection algo-
rithm to perform online and long term monitoring of ECG signals directly
on a wearable device. We have shown that dictionaries modeling normal
heartbeats can be successfully adapted when the heart rate – thus the heart-
beat morphology – changes. Moreover, while dictionaries used to detect
anomalies have to be user-specific, they can be successfully adapted by
user-independent transformations, learned from large and publicly avail-
able datasets. Thus, a few minutes of ECG signals acquired in resting
conditions are enough to configure the device for long-term monitoring.
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Chapter 12. Concluding Remarks

Our algorithms have been implemented and successfully tested in a demo
device performing online ECG monitoring.

We show that our anomaly-detection algorithm that can also success-
fully in a quality inspection system to detect defects in nanofibrous materi-
als. Moreover, we make our algorithm scale-invariant by using a multiscale
dictionary that aggregates atoms learned from synthetically resized normal
images, and performing sparse coding by enforcing the group sparsity of
the representations. This regularization term turns to be essential to achieve
superior anomaly-detection performance. Our experiments conducted on
a large dataset of SEM images show that the proposed algorithm can ef-
fectively detect also tiny defects and demonstrate it can effectively handle
changes in magnification level that typically occurs in industrial imaging
applications.

Finally, we investigate the use of convolutional sparse representation
as image model and in particular in white noise denoising. In particular,
we show that these translation-invariant representations outperform the tra-
ditional sparse representations only when the image admits an extremely
sparse representation, while the two approaches attain comparable perfor-
mance in case of natural images. We explain this phenomenon by sepa-
rately studying the bias and variance of these solutions, and by noting that
the variance of the global solution increases very rapidly as the original
signal becomes less and less sparse.

12.1 Future works

The work presented in this thesis can be extended along different direc-
tions. At first, the proposed QuantTree algorithm is very promising as it
is one of the very few non-parametric and multivariate change detection
algorithms, but many aspects have still to be investigated. While we have
shown that ensembles of histograms computed by QuantTree mitigate the
detectability loss problem, it is not clear which design is the best one for
these ensembles. For simplicity we consider histograms having all the same
number of bins, but using histograms with different resolutions might boost
the change-detection performance. Another possible extension of our work
regards the development of truly sequential monitoring algorithm based on
QuantTree and to determine whether this histogram construction scheme
has some important implications / consequences to control the false alarm,
namely the average run length of the test as in [38].

A research directions that we do not explore in this thesis and is also
rather unexplored in the literature is the design of representation learning
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12.1. Future works

algorithms specifically targeted for the anomaly-detection task. In fact, al-
most all anomaly-detection algorithms meant for complex data in the litera-
ture resort to unsupervised representations or the extraction of hand-crafted
features from data. The recent successes of deep learning in classifications
and other supervised tasks suggest that the best performance are achieved
when the representations are learned to solve the specific task. To the best
of our knowledge the only attempt in this direction is presented in the very
recent work [202]. However, several challenges have still to be addressed
to make representations learned for anomaly detection effective in practical
applications.
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APPENDIXA
Additional Results on QuantTree

This appendix provides additional results that were not included in Chap-
ter 6. In particular, we report the results we obtain in the experiments per-
formed in 6 on the large configuration.
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Appendix A. Additional Results on QuantTree

2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 640.00

0.05

0.10

0.15

0.20Pearson Dist. FreePearson Asym TV Dist. Free TV Bootstrap Voronoi Density Tree Parametric

d
(a)

FP
R

Gaussian Datasets: FPR, K = 32, ν = 256, N = 16384

2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 640.00

0.05

0.10

0.15

0.20Pearson Dist. FreePearson Asym TV Dist. Free TV Bootstrap Voronoi Density Tree Parametric

d
(b)

FP
R

Gaussian Datasets: FPR, K = 128, ν = 256, N = 16384

2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 640

0.2

0.4

0.6

0.8

1Pearson Dist. FreePearson Asym TV Dist. Free TV Bootstrap Voronoi Density Tree Parametric

d
(c)

Po
w

er

Gaussian Datasets: Power, K = 32, ν = 256, N = 16384

2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 64 2 8 32 640

0.2

0.4

0.6

0.8

1Pearson Dist. FreePearson Asym TV Dist. Free TV Bootstrap Voronoi Density Tree Parametric

d
(d)

Po
w

er

Gaussian Datasets: Power, K = 128, ν = 256, N = 16384

Figure A.1: Results on synthetically generated datasets using the large configuration. The
larger values of N and ν guarantee higher power and a better control of the FPR than
in small configuration. Qualitatively, we see the same trends as in in Figure 6.3.
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Figure A.2: Results on real world datasets using the large configuration. As in case of
the synthetic datasets, the large configuration guarantees higher power and a better
control of the FPR than in small one (see Figure 6.4).
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Appendix A. Additional Results on QuantTree
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Figure A.3: Results of the exhaustive tests over a mesh of (R,K) pairs for the synthetic
datasets, suing the large configuration. Qualitatively, these plots are similar to those
obtained using the small configuration (Figure 6.5), although in this case we obtain a
better AUC.
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Figure A.4: Results on the constrained budget tests for the ensemble of histograms with
the synthetic datasets in all the tested dimension d, using the large configuration and
the Max Aggregation scheme. Results are qualitatively similar to those in Figures 6.6

.
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Figure A.5: Results on the constrained budget tests for the ensemble of histograms with
the synthetic datasets in all the tested dimension d, using the large configuration
and the Average Aggregation scheme.Results are qualitatively similar to those in Fig-
ures 6.7

.
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