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Abstract

There is an increasing interest in Reinforcement Learning to solve new and
more challenging problems. We are now able to solve moderately complex
environments thanks to the advances in Policy Search methods and Deep
Reinforcement Learning, even when using low-level data representations as
images or raw sensor inputs. These advances have widened the set of appli-
cation contexts in which machine learning techniques can be applied, bring-
ing in the near future the application of these techniques in other emerging
fields of research, such as robotics and unmanned autonomous vehicles. In
these applications, autonomous agents are required to solve very complex
tasks, using information taken from low-level sensors, in uncontrolled, dan-
gerous, and unknown scenarios.

However, many of these new methods suffer from major drawbacks: lack
of theoretical results, even when based on sound theoretical frameworks,
lack of interpretability of the learned behavior, instability of the learning pro-
cess, domain knowledge not exploited systematically, extremely data hungry
algorithms.

The objective of this thesis is to address some of these problems and pro-
vide a set of tools to simplify the design of Reinforcement Learning agents,
particularly when it comes to robotic systems that share some common char-
acteristics. Most of these systems use continuous state and action variables
that may need a fine-grained precision, making a good variety of deep learn-
ing approaches ineffective. They may exhibit different dynamics between
different parts of the system, leading to a natural division based on differ-
ent time scales, variable magnitudes, and abstraction levels. Finally, some
of them are even difficult to formalize as a Reinforcement Learning task,
making it difficult to define a reward function, while some human (or non-
human) experts may be able to provide behavioral demonstrations.

Based on these assumptions, we propose two approaches to improve the
applicability of Reinforcement Learning techniques in these scenarios: hi-
erarchical approaches to Reinforcement Learning, to exploit the structure of
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the problem, and Inverse Reinforcement Learning, which are a set of tech-
niques able to extract the reward function i.e., the representation of the ob-
jective pursued by the agent, and the desired behavior from a set of experts’
demonstrations.

From these ideas follow the two major contributions of this work: a new
Hierarchical Reinforcement Learning framework based on the Control The-
ory framework, which is particularly well-suited for robotic systems, and a
family of Inverse Reinforcement Learning algorithms that are able to learn
a suitable reward function for tasks (or subtasks) difficult to formalize as a
reward function, particularly when demonstrations come from a set of dif-
ferent suboptimal experts. Our proposals make it possible to easily design
a complex hierarchical control structure and learn the policy either by inter-
acting directly with the environment or providing demonstrations for some
subtasks or for the whole system.
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Sommario

C’¢ un crescente interesse nel settore dell’ Apprendimento per Rinforzo per
la risoluzione di problemi nuovi e impegnativi. Siamo ora in grado di ri-
solvere problemi moderatamente complessi, grazie ai nuovi progressi nei
metodi di ricerca nello spazio delle politiche e di Apprendimento per Rin-
forzo Profondo, anche quando vengono utilizzati dati di basso livello, quali
immagini o letture dirette dai sensori. Questi progressi hanno ampliato 1’in-
sieme dei contesti applicativi nei quali ¢ possibile applicare le tecniche di
apprendimento automatico, portando nel prossimo futuro all’applicazione di
queste tecniche in altri contesti emergenti, quali la robotica e i veicoli au-
tonomi senza conducente. In queste applicazioni, ¢ richiesto che gli agenti
autonomi risolvano problemi molto complessi, usando le informazioni di
basso livello provenienti dai sensori, in contesti non controllati, sconosciuti
e pericolosi.

Tuttavia, la maggior parte di questi metodi hanno alcuni lati negativi:
mancano di proprieta teoriche, anche quando basati su basi teoretiche so-
lide, mancano di interpretabilita del comportamento appreso, hanno un ap-
prendimento instabile, non viene sfruttata sistematicamente la conoscenza di
dominio, richiedono una mole considerevole di dati.

L’obbiettivo di questa tesi ¢ affrontare alcuni di questi problemi e fornire
un insieme di strumenti per rendere semplice la progettazione di agenti per
I’ Apprendimento per Rinforzo in particolare quando si ha a che fare con si-
stemi robotici, che hanno alcune caratteristiche comuni. La maggior parte
di questi sistemi usano spazi di stato e azione continui che potrebbero aver
bisogno di una precisione fine, rendendo inefficaci una buona parte degli
approcci basati sull’ Apprendimento per Rinforzo Profondo. Generalmen-
te, esibiscono dinamiche differenti tra diverse parti del sistema, portando
a una naturale suddivisione basata su scale temporali, ampiezze dei segna-
li e astrazioni differenti. Infine, alcuni di questi problemi sono difficili da
formalizzare come problemi di Apprendimento per Rinforzo, poiche ¢ dif-
ficile definire la funzione di rinforzo, mentre alcuni esperti (umani o non)
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potrebbero fornire dimostrazioni sub-ottime.

Basandoci su queste assunzioni, proponiamo due approcci per rendere
maggiormente applicabili le tecniche di Apprendimento per Rinforzo in que-
sti scenari: approcci gerarchici all’ Apprendimento per Rinforzo, per sfrutta-
re la struttura del problema, e I’ Apprendimento per Rinforzo Inverso, che ¢
un insieme di tecniche per estrarre la funzione di rinforzo, che ¢ la rappre-
sentazione dell’obbiettivo che I’agente sta perseguendo, e il comportamento
desiderato dalle dimostrazioni degli esperti.

Da queste idee nascono i due maggiori contributi di questo lavoro: un
nuovo framework per I’ Apprendimento per Rinforzo gerarchico basato sulla
teoria del controllo, che ¢ particolarmente adatto ai sistemi robotici, € una
famiglia di algoritmi di Apprendimento per Rinforzo Inverso che sono in
grado di imparare una funzione di rinforzo adeguata per obbiettivi (o sotto-
obbiettivi) che sono difficili da formalizzare in termini di funzione di rinfor-
70, soprattutto nel caso in cui le dimostrazioni provengano da un gruppo di
esperti sub-ottimi.

Le nostre proposte rendono possibile progettare facilmente un sistema di
controllo gerarchico complesso e imparare la politica di controllo sia inte-
ragendo direttamente con 1’ambiente, sia fornendo dimostrazioni per alcuni
sotto obbiettivi o per I’intero sistema.
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Chapter 1

Introduction

The exponential growth of Artificial Intelligence (AI) has made possible the
development of multiple successful applications in different fields e.g., fi-
nance, social networks and robotics.

The growing interest in robotics is due to the new and promising applica-
tions in the field of Unmanned Autonomous Vehicles (UAVs), in particular
the ones related to autonomous car driving. These domains are extremely
difficult and represent a hard challenge for classical Al and control theory,
as they give rise to new issues that are not considered in this literature. One
of the most prominent issues is that some environments can be highly dy-
namic, and the agent has to deal with different and unattended scenarios.
Agents must behave well even in non-standard scenarios and must ensure
the safety of others vehicles and people in any working condition. Safety
is one of the most important, and discussed, requirements of this kind of
applications [1, 2].

Another issue is that they often require to process data directly from low-
level sensors, such as laser scanners, cameras, proximity sensors. These
complex input signals were not commonly considered by classical Al and
control theory: indeed, control theory often works with vectors of scalar
signals, while classical Al is based on an abstract high-level representation
of the system to be controlled. While there exist some algorithms to treat
these types of signals [3, 4] and to ground semantic knowledge on low-level
sensory data, the intrinsic complexity of the environment, the required ro-
bustness with respect to errors and unexpected scenarios, and the real-time
computational requirements make classical approaches not viable.

To face these scenarios, Machine Learning (ML) techniques have been
adopted massively, in particular to solve the perception issue [5, 6]. For
tasks such as image recognition and segmentation, scene understanding, and
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Chapter 1. Introduction

others similar problems, Deep Neural Networks have been shown to be ex-
tremely successful and are now a basic building block for most complex
robotic systems. Thanks to these approaches, it is now possible to accu-
rately and reliably perceive the environment, interpret it, and build a high-
level, compressed, representation. Classic algorithms from planning and
control theory can then be applied by the agent to solve the requested tasks
autonomously e.g., an autonomous car can pick up some passengers and
transport them safely to the desired destination in an urban environment, or
a robotic pallet can move goods in a warehouse to the appropriate shelf.

There are many strengths of these classical approaches: they can be care-
fully designed by exploiting domain knowledge, their behavior can be easily
predicted and can be analyzed, often with theoretical tools, in particular,
but not only, when dealing with control theory methods. In particular, this
feature suits the requirement of the safety of the application, at least in the
scenarios considered by the developers. Classical approaches, however, have
major drawbacks. They are often difficult to build, as the design complex-
ity scales up with the complexity of the system. Even when it is possible
to build reliable control systems, their computational requirements may be
too demanding and, often, approximate solutions rather than exact solutions
to problems must be used. Finally, even if it is possible to design and im-
plement an efficient solution, it may happen that the agent is forced to face
unexpected situations. If the control system is not designed to face the new
issue specifically, then the system is extremely likely to fail and this event
could have catastrophic consequences.

Recent advances in Reinforcement Learning (RL), in particular Deep Re-
inforcement Learning, have focused on the control of complex (robotics)
systems [7, 8]. These approaches are exactly on the other side of the spec-
trum w.r.t. classical control and Al approaches. They are able to learn poli-
cies that can be applied to previously unseen scenarios. They can change the
control policy online to adapt to slow and abrupt changes of the environment
e.g., wear of mechanical parts or unattended failures of actuators. The com-
plexity of the design does not depend extremely on the complexity of the task
to be solved, but all the effort is put on the design of the appropriate learning
algorithm and approximator structure. For this reason, the required expert
domain knowledge is reduced, at the cost of a sufficient, often large, amount
of data, obtained both from simulations and from direct interaction with the
environment. The major drawbacks, particularly affecting the most success-
ful Deep RL control systems, are that the learned control policy is extremely
difficult to study and verify, and that often their learning performance is un-
stable. However, the applications of these innovative Al and ML techniques
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in this field are still far from being adopted in commercial applications, for
the two main reasons mentioned above and for other further reasons, such
as the huge amount of data required by the learning process, the difficulties
in exploiting the domain knowledge, and the lack of reproducibility of the
results [9], particularly in the Deep RL approaches.

A line of research that tries face some of the problems of the RL algo-
rithms described above is Hierarchical Reinforcement Learning (HRL). Hi-
erarchical Reinforcement Learning consists in designing hierarchical agents
that are able to perform temporally extended actions i.e., actions that are
composed of several control cycles, in which the objective is to reach a sub-
goal or implement a specified behavior. There is a wide research literature
on HRL, which tackles the above problems in different ways and with differ-
ent objectives. Some frameworks focus on integrating domain knowledge,
while others focus on making more efficient the learning process. This field,
which had previously lost some interest, has again gained popularity in the
community, particularly in combination with the new Deep RL methods.
However, recent approaches, while trying to boost performance, particularly
when considering transferring knowledge to new tasks, do not directly tackle
the issues highlighted above, as was done by the original HRL approaches.
Classic HRL approaches, instead, are particularly suitable and designed for
classic RL tasks and they do not scale well for the new challenging problems
arising from robotics applications.

In this work, we propose a novel framework for HRL, whose objective
is to trade off some of the benefits and disadvantages of both classical and
deep hierarchical methods. Although there exist already some frameworks
able to face problems with continuous action and state spaces, there is no
framework that is able to describe in a general and elegant way the design
of a hierarchical agent by decoupling the design of the hierarchy structure
from the learning algorithm. This concept is fundamental in order to be
able to design complex control structures that exploit the designer’s domain
knowledge, but can also exploit the new and powerful tools taken from the
vast literature about RL algorithms. The approach that we describe in this
work is strongly inspired by the control theory framework: we believe that
the design methodologies used by classical engineering are a powerful tool
that naturally fits the design of complex agents, particularly when facing the
new challenges coming from the new modern applications of robotics and
UAVs.



Chapter 1. Introduction

While the formalization of a control problem in terms of RL problem
s may be beneficial to create agents that can perform well even in the ex-
tremely challenging environments described above, sometimes it is not
enough. There is a vast variety of tasks that are easier to demonstrate than
to define or, more formally, using the RL terminology, tasks for which it is
easier to provide optimal (or suboptimal) trajectories rather than defining the
actual reward function i.e., the performance metric that describes the task.
This kind of problem can easily arise in a wide variety of robotics applica-
tions. For instance when transporting passengers, it is difficult to describe a
metric that defines how “good” is the driving style of the autonomous driver,
however, it is easy to provide demonstrations of a driving style considered
acceptable by showing demonstrations by a set of human experts. Some-
times, while task performance can be easily measured with a reward func-
tion, some of the subtasks that need to be solved by the agent to complete
the original task can be difficult to express or difficult to learn e.g., the re-
ward function is very sparse and the algorithm may need reward shaping to
learn efficiently. When facing this kind of problems, there are two types of
possible solutions: the first is Imitation Learning, the second Inverse Rein-
forcement Learning (IRL). Imitation learning is a powerful tool for learning
the policy of the demonstrator, however the learned policy may be not able to
generalize to different tasks (or subtasks). Inverse Reinforcement Learning
is a much more powerful tool.

With IRL it is possible not only to learn the policy of the demonstrators,
but also to extract the reward function that “explains” the demonstrations
i.e., the reward function w.r.t. which the agent is optimal. As the design of a
reward function is extremely difficult and often a crucial point in designing
subtasks, particularly when dense reward functions are used, it is important
to study and design IRL algorithms as they provide a viable alternative to in-
corporate domain knowledge in an automated way. For this reason, IRL al-
gorithms should be considered as one of the building blocks of any complex
learning system, in particular when considering hierarchical frameworks.

IRL is a relatively young field [10], but a wide variety of approaches
have been developed. Most approaches have the major drawback of hav-
ing to solve the direct learning problem multiple times in order to identify
the reward function. Some more recent works have proposed methods to
retrieve the reward function from demonstration without solving the direct
problem multiple times [11, 12, 13, 14]. These algorithms are interesting
for our application scenario, since solving the direct problem is often dif-
ficult, as solvers are not available and interaction with the environment is
often expensive. Among the IRL algorthms that do not need to solve the
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direct RL problem multiple times, the GIRL algortihm, proposed by Pirotta
& al. [14] is of particular interest for our applicative scenario. The main
reason for considering this algorithm is that it is based on the policy gra-
dient framework, which makes it particularly fit for the continuous action
space problems. However, this algorithm has some drawbacks: the frame-
work considers a single and stochastic expert, the retrieved reward function
can be a local minimum, it requires a fair amount of data to reliably identify
the reward function.

To improve the above-mentioned work and overcome these drawbacks,
we propose a multiple-expert IRL algorithm, which exploits multiple, possi-
bly suboptimal and deterministic, experts while improving the performance
of the previous method. The main reason for preferring the proposed IRL
method is not only that it has better performance that to the previous one,
but also that the multiple expert framework is more appropriate in our sce-
nario: indeed, it is extremely difficult to find a human expert who behaves
optimally, while performing a good exploration to explore sufficiently the
state space. Since each expert has a fixed, suboptimal policy, it is reason-
able to consider different experts to gather different information from the
environment.






Chapter 2

State Of The Art

2.1 Policy search and robotics

Policy search and actor critic approaches are particularly useful when deal-
ing with continuous action spaces, that are one of the main issues of robotics
tasks. Policy search algorithms are both model based i.e., they try to learn
a model of the environment, and model free. Model based approaches are
very similar to adaptive control approaches that can be found in control the-
ory. In this work, we will focus on model free approaches, as learning a good
model can be generally unfeasible for an arbitrary task. We extensively use
policy search approaches, as we focus only on tasks with continuous action
variables.

Model free approaches can be divided in three macro categories: Policy
Gradient (PG), Expectation Maximization (EM) and information-theoretic
methods.

PG methods are one of the first policy search methods that have been
developed. The first basic algorithm is REINFORCE [15], where is shown
that the gradient of the objective function w.r.t. the policy parameters can be
computed without any transition model when the policy is stochastic. An
improved version of this gradient algorithm is the Gradient of a Partially
Observable Markov Decision Process (GPOMDP) [16, 17] algorithm. The
main idea behind this algorithm is that the past reward doesn’t depend on fu-
ture actions. This algorithm reduces the variance of the gradient estimation,
resulting in better updates and faster convergence.

The policy gradient theorem [18] fills the gap between policy search and
actor critic approaches, by highlighting the relation between policy gradient
and the state-action value function. Also, this work describes compatible
function approximators, that are function approximators for the state-action
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Chapter 2. State Of The Art

value function such that, when used instead of the actual value function
in the gradient computation, the obtained gradient estimation is unbiased.
A function approximator is compatible with the policy if the derivative of
the function approximator w.r.t. the approximator’s weights is equal to the
derivative of the logarithm of the policy w.r.t. the policy weights. It can be
shown that, when using compatible function approximators, the actor critic
algorithm resulting from the policy gradient theorem is exactly equivalent to
the GPOMDP algorithm [19]. Other actor critic approaches have been de-
veloped for both the on policy [20] and off policy [21] scenario. Furthermore
in [22] the authors propose an actor critic approach that computes the gra-
dient of a deterministic policy, while learning off policy using a stochastic
version of the previous one.

The traditional gradient methods are not representation invariant i.e., if a
linear transformation on the policy parameter is applied, also the resulting
gradient is changed. This may cause issues when the scales of the parame-
ters are different. To overcome this issue, instead of the vanilla gradient, it
can be used the natural gradient. The natural gradient instead of using the
euclidean metric to compute the gradient, uses the Fisher information ma-
trix as metric for the space. As the Fisher information matrix is a second
order approximation for the Kullback-Leibler Divergence (KL), by bound-
ing the update on the natural gradient we have an (approximate) bound on
the KL between two policy distributions. One algorithm exploiting both the
natural gradient and the actor critic scheme suggested by the policy gradient
theorem is the Episodic Natural Actor-Critic (eNAC) [23].

While most of the PG approaches are based on differentiable and stochas-
tic policies, there are also black box approaches that, instead of exploring by
adding noise to the actions, use a distribution of policies, exploring at param-
eter level. The main advantages for these approaches are the possibility to
use non differentiable policies and the small variance of the gradient estima-
tion. Two of this approaches are the Policy Gradients with Parameter-Based
Exploration (PGPE) [24] and the Natural Evolution Strategy (NES) [25] ap-
proaches.

Another class of policy search algorithms are the EM approaches. Here,
the policy search problem is seen as an inference problem where the re-
ward is treated as an improper probability distribution, and the observed
trajectories as latent variables. In order to use the reward as a degenerate
probability distribution, the reward must be transformed to be strictly pos-
itive. There are many ways to obtain this property, one is to subtract the
minimum reward, if the reward is bounded. However, the most useful and
generic reward transformation is the exponential transformation, where a
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2.2. Deep Learning approaches

temperature parameter [ is multiplied by the actual reward. The tempera-
ture parameter is useful to give more (or less) relative importance to high
rewards. The most important EM approaches are the Reward-Weighted Re-
gression (RWR) [26] and the Policy learning by Weighting Exploration with
Returns (POWER) [27]. In particular, RWR is the simplest black box EM
approach that updates the policy distributions by weighted maximum likeli-
hood estimate, using as weights the sum of the discounted returns, after the
exponential transformation.

The last class of policy search approaches are the information theoretic
approaches, where the problem is formulated as an optimization problem
subject to a KL bound. The KL bound is used to mitigate the problems that
may occur when the update changes abruptly the policy: this issue, typical of
EM techniques, may cause instability during the learning and, if a real robot
is used, damages to the agent and the environment. The most important al-
gorithm in this class is the Relative Entropy Policy Search (REPS) [28, 26]
algorithm. There are many versions of the REPS algorithm, but in this work
we will use the black box formulation. An interesting variant is the Hierar-
chical REPS (Hi-REPS) [29] algorithm. Despite the name Hi-REPS use an
extremely limited hierarchical structure: the algorithm indeed tries to learn
different modes of the reward distribution, and selects one of the learned
modes at the beginning of each episode. This algorithm is designed to learn
multiple solutions for a task more than a hierarchical structure, although
future extensions may exploit the same approach to learn a more complex
hierarchy.

2.2 Deep Learning approaches

Neural networks have been used in RL since the TD-Gammon [30] algo-
rithm, that exploits a neural function approximator to learn to play the
backgammon game. However, neural networks as function approximators
have not been used extensively in RL until the success achieved by the Deep
Q-Network (DQN) algorithm [31] in solving Atari games using as inputs raw
images. After this work, the research has focused in finding network archi-
tectures and algorithms to have a faster and more stable training procedure
for deep neural approximators for state-action value functions. One of the
relevant works on this direction is the Double DQN (DDQN) approach [32],
that takes inspiration from the Double Q-Learning [33] algorithm. However
the deep approach does not maintain the same theoretical properties of the
vanilla Double Q-Learning algorithm, while still improving the performance
w.r.t. the DQN algorithm by reducing the overestimation of the state-action
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value function. Other variants of the DQN approach have been proposed to
face different issues, such as the exploration [34] or the state-action value
function estimate [35, 36]. To face also continuous actions environments,
actor-critic approaches have been developed. One of these approaches is the
Deep Deterministic policy gradient [37] algorithm, based on the previous
work on deterministic policy gradient actor critic [22]. Another approach is
the Asyncronous Advantage Actor-Critic (A3C) [38], that uses the advantage
function for the critic and runs in parallel multiple learning instances. How-
ever, a synchronous version, the Advantage Actor-Critic (A2C) has been
shown to achieve similar performances, highlighting that the asynchronous
learning is not needed to achieve that performance. More recent works have
focused on finding efficient policy search algorithms to train deep networks.
The most successful approaches are the Trust Region Policy Optimization
(TRPO) [39], and the Proximal Policy Optimization (PPO) approach [40].

2.3 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is based on the idea that the
solution for complex tasks can be found by decomposing the original task in
simpler subtasks. The assumption is that a complex task is easier to solve
if it is seen as a set of high-level actions, rather than learning the low-level
actions.

There are several approaches, methodologies and issues related to
HRL [41]. The fundamental issue is how to model the decomposition in
subtasks. The principal frameworks we ca found in literature are three: Hier-
archy of Abstract Machines (HAM) [42], MAX-Q [43] and the Options [44]
framework.

The HAM framework is one of the first approaches in HRL. In this ap-
proach, the hierarchical policy is composed by a set of abstract machines.
An abstract machine is a finite state machine with four different types of
states: action, call, choice and stop. The action states are states where an
action is applied to the environment. The call states suspend the execution
of the current machine, and starts the execution of another machine. The
stop states terminate the execution of the current machine, and the execu-
tion of the machine that called the current one is resumed. The choice states
are states in which the next state of the machine is chosen nondeterministi-
cally. Every abstract machine H, is defined by the state set .S;, an initial state
function /; that, given an environment state x € X, returns in which state
each called machine starts, and a stochastic transition function ¢; that de-
fines the transition probability to the next machine state s, € S; given the
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current environment state = and the current machine state s;. A Hierarchy
of Abstract Machines H is the closure of all the states of all the machines
reachable by the initial machine H,. The initial machine H, should not have
a stop state. If M is an Markov Decision Process (MDP), the only relevant
states of the composition H o M are the ones where a choice state of H is
reached, as all the other states has a well defined policy forced by the execu-
tion of the HAM. Thus, reduce(H o M) is a Semi-Markov Decision Process
(SMDP) derived from the original MDP, that considers only the states where
a choice state of H is reached, and standard algorithms for SMDPs can be
used. The objective of the HAM framework is to restrict the set of policies
that could be learned, by exploiting domain knowledge of the machine de-
signer. Indeed, while the optimal policy for the SMDP can be learned, it can
be different from the optimal policy for the original MDP: the performance
of the hierarchical policy highly depend on the ability of the designer.

The MAX-Q approach is principally used to solve finite MDPs and is
based on the decomposition of the root task in subtasks. The original MDP
is decomposed in a hierarchy of SMDPs by means of a direct acyclic graph
called task graph. Each subtask is defined by the tuple M; = (T}, A;, R;)
where T is a termination predicate i.e., a function that discriminates whether
the current state is an absorbing state for the subtask or not; A; is the set of
admissible actions for the subtask, which can be either primitive actions or
other subtasks; R; is the pseudo-reward function of the subtask, that typi-
cally is a reward function that returns a negative value for every state except
the desired subtask terminal state, where the reward is 0. Solving the root
subtask )M, means solving the whole task. In MAX-Q the subtasks are exe-
cuted as subroutines, following a stack discipline. The objective of MAX-Q
is to learn the projected value function V™ (u, x) at each level of the hierarchy
i.e., the expected cumulative reward of each subtask. The learning algorithm
is based on the following decomposition of the state-action value function:

Q" (i,x,u) =V™(u,z) + C"(i,u, ),

Here, the value function of a primitive action is considered to be the expected
reward obtained by using such action, while the completion function C™ is
the expected discounted cumulative reward of completing subtask M, after
the termination of the selected subtask A, in state x. In order to exploit the
pseudo-reward function, as the completion function is needed to compute the
projected value function of each subtask, two different completion function
are learned at each level of the hierarchy. One completion function is learned
by considering only the original MDP reward function, and the other one
uses the pseudo value function. The first completion function is the one
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that is propagated at the upper levels of the hierarchy, while the second is
used locally to compute the subtask’s best action. This is done to avoid the
propagation of the pseudo-reward function to other levels of the hierarchy.
An important remark is that, when this approach is used in finite MDPs, the
number of parameters to learn increases with the number of subtasks, as a
projected value function for each subtask must be learned. This lead to a
structured and useful representation of the value function, that is particularly
useful for transfer learning, but can slow down the learning process. To
face this issue state, abstraction is applied to group together states that are
indistinguishable from the point of view of the considered subtask, reducing
the number of parameters to learn at each level. The MAX-Q algorithm is
not able to learn globally optimal policy, but it is proven to learn a recursive
optimal policy, that is a hierarchical policy where the policy of every subtask
is optimal, by assuming fixed the policy of its subtasks. A recursive optimal
policy can be a optimal policy for the MDP if the subtask decomposition
is done properly for the problem, but it is different w.r.t. the optimal one in
general e.g., when concurrent subtasks can be optimized together.

The option framework is the most successful HRL approach. Option are
temporally extended actions defined as the tuple o = (I, 7, 3), where I is the
initiation set i.e., the set of states when the option o can be executed; 7 is the
option policy; f is the termination condition. When an option is executed,
the policy option is followed to select actions until the option terminates
according to (5. If the option is Markovian, then the termination condition
must be a probability distribution over the states i.e., 5(s) is the termina-
tion probability of the option in the state s. Also the option policy must
be a policy over primitive actions. A more useful family of options are the
semi-Markov options. These options can terminate after a specified number
of steps, using the whole history for the termination condition. An option is
semi-Markov also if its policy is defined over the set of options instead of the
set of actions. Normally, option policies and termination conditions are built
exploiting domain knowledge. However it is possible to learn meaningful
options policies by designing option-specific reward functions. As the op-
tions induce a SMDP over the original MDP, all the theory for SMDPs can
be applied to this framework. In particular, it is quite easy to extend the basic
RL algorithms, such as Q-Learning and SARSA, to the options framework.

More advanced algorithms have been developed for learning with op-
tions, such as intra-option learning. The idea is to exploit the information
before the option terminates and to share the information between multiple
options. The most simple example is the one-step intra-option Q-Learning
algorithm [45]. The objective of this framework is not to restrict the possi-
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ble actions performed by the agent, but to enrich the action set to improve
exploration. Primitive actions can be seen as one-step options. In this way,
the optimal policy over the set of primitive actions is the same as the policy
over options. Options are then a way to speed-up learning, particularly in
the initial learning phase.

While the first HRL algorithms focus mostly on value based approaches
for RL, in [46] Ghavamzadeh & al. have described a hierarchical policy
gradient formulation. Furthermore, the authors describe also an hybrid algo-
rithm, where the high-level algorithm is a value based, while the lower level
is a policy gradient algorithm.

Some works on RL also tried to learn the task decomposition by learning
to extract and find subgoals in the environment. There are several approaches
to this problem: some approaches [47, 48, 49, 50] are based on finding bot-
tlenecks states i.e., states that are connections between different partitions
of the MDPs, such that is difficult to move between two partition without
visiting such states, e.g., all states near a doorway in a building environment.
An approach that achieves similar results is described in [51], however in-
stead of searching structural bottlenecks, the subgoals are extracted using
an information theory criterion. Others approaches are based on clustering
states [52, 53] to generate meaningful subgoals. The last relevant approach
in sub-goal discovery is the skill chaining approach [54]. Here, the options
are learned sequentially. When a target event is reached, an option to reach
that target is learned. After a period of off-policy option learning, also the
initiation set for that option is learned. Finally, the new option is added to
the list of available options and its initiation set is considered as new tar-
get event. This procedure, given an initial target event e.g., the initial goal,
grows a tree of skills towards the initial target event.

Automatic subgoal discovery is a very promising and appealing field,
however, the algorithms described above are either only meaningful when
dealing with finite state environments or need external signals and domain
knowledge from the expert or extract meaningful subgoals only in well-
defined types of environments. Due to this issue, it is difficult to use one of
the existing methods to design hierarchies from scratch in real-world envi-
ronments, where the handcrafted design of agent’s hierarchy is fundamental.

More recent approaches have tried to apply some concepts of HRL in
the Deep Learning framework. Feudal Networks [55] are based on one of
the first approaches of HRL, the Feudal Q-Learning algorithm [56], where a
higher level controller is producing objectives to the lower level controllers.
While the original work focuses on state space and abstractions on multiple
levels, in this work the authors focus on a two levels approach, where the
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high-level exploits a special learning algorithm called transition policy gra-
dient, that is able to boost the learning of the high-level controller when the
low-level controller is not yet able to reach the target.

In [57] the authors presents a policy gradient formulation that is able to
learn options policy and termination condition without an explicit sub-goal
discovery algorithm. The learning is only driven by the extrinsic reward,
however an intrinsic reward signal can be used to characterize the learned
skills and improve learning.

A very promising Deep Learning approach is the Hindsight Experience
Replay (HER) [58]. This method tries to exploit the knowledge of bad trajec-
tories to improve learning, particularly in the case of sparse reward signals.
In this work, subgoals are sampled from reached states and are used to learn
a Universal Value Function Approximator i.e., a neural network that tries to
learn a value function for every possible sub-goal in the environment. The
key idea is that learning to reach already known states can be helpful by gen-
eralizing the policy for unseen ones, as the underling dynamics of the MDP
doesn’t change while changing the reward function.

The Hierarchical Actor-Critic [59] algorithm exploits the HER formal-
ism, by generalizing to a multiple level structure, where the subgoals for the
low-level algorithm are produced by a higher level controller. Differently
from [57], where the termination condition is learned, in the Hierarchical
Actor Critic algorithm the focus is to learn fixed horizon subgoals.

The focus of this Deep Learning approaches is to improve the learning
performances in difficult environments. These algorithms are designed to
scale better when the complexity of the task increases, but they do not miti-
gate the issues of flat Deep Learning approaches, such as policy interpretabil-
ity, data hungriness, reproducibility, learning stability. Also, they do not
allow to exploit easily domain knowledge.

Other Deep HRL methods are based on pre-training the low-level skills.
In [60] a pre-training environment is build and then the skills are learned by
a single stochastic neural network. In [61], the authors perform high-level
planning on a latent trajectory representation learned using an extension of
the Variational Auto Encoder [62]. In [63], a hierarchical architecture for
lifelong learning is presented. Skills are learned by pre-training, then each
network is stored into an array, in order to be reused. To reduce the growth
of the memory usage, in order to achieve the lifelong learning objective, a
single network model is proposed, where all the skill share the hidden layers,
having different output layers trained by policy distillation. At each time
step, a high-level controller chooses whether to use an already learned skill
or a low-level action.
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Deep learning approaches have been used also in control tasks. In [64],
the authors propose a two level hierarchical controller, where a simulated
two-legs robot is trained to navigate through obstacles and narrow passages,
and also to dribble a soccer ball. Here the high-level and low-level controller
work at different time scales: the high-level actions, that are the low-level
goals, are produced with a frequency lower than the low-level actions, that
are the control efforts applied to the simulator. This approach shares some
small similarities with the work presented in this thesis however, they do not
propose a general framework for the design of HRL agents.

2.4 Inverse Reinforcement Learning

Learning from demonstration is a relatively young, but quickly growing
field, that finds application in those domains, such as robotics [65], where
learning from scratch is usually unfeasible. Inverse Reinforcement Learn-
ing (IRL) is a subfield of learning from demonstration, where the reward
function is learned rather than defined a priori.

The approaches presented in literature can be roughly classified into two
categories: model-based and model-free. Model-based approaches [10, 66,
67] require the MDP model or the possibility to solve the MDP given a
reward function. Since these approaches are sample-inefficient and expen-
sive, focus shifted to the design of model-free approaches that do not require
to solve MDPs [68, 69, 14]. The Gradient Inverse Reinforcement Learn-
ing (GIRL) algorithm [14], tries to recover the reward function that makes
the gradient of the expert’s policy vanish. This approach requires that the
expert policy is known or that it can be estimated from the expert’s sam-
ples. Boularias et al. [11] proposed to recover the reward function by min-
imizing the relative entropy between the empirical distribution of the state-
action trajectories demonstrated by the expert and their distribution under the
learned policy. Although their approach does not need to solve any MDP,
it requires samples collected by an exploratory (possibly non-expert) policy.
The Classification-based approaches can produce nearly-optimal results un-
der mild assumptions. To this category belong the Structured Classification-
based Inverse Reinforcement Learning (SCIRL) [12] and the Cascaded Su-
pervised Inverse Reinforcement Learning (CSI) [13] algorithms. They re-
quire the expert to behave deterministically and need to use heuristics to
learn when only experts’ trajectories are provided. In general settings, they
require exploratory trajectories in order to generalize over the system dynam-
ics. Furthermore, they are designed for problems with finite action spaces.

The common property of the mentioned approaches is that they assume
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the demonstrations to be provided by a single expert, but this assumption is
hard to guarantee in practice. In particular, this assumption can be very lim-
iting in real-world applications where it is common to have multiple experts
aiming at the same goal, but behaving differently. A few notable exceptions
have addressed this problem in literature mainly focusing on the case of mul-
tiple reward functions. For instance, [70] have combined EM clustering with
IRL. The experts’ behaviors are directly inferred from the provided trajec-
tories and reward functions are defined per clusters. This algorithm, named
Maximum Likelihood Inverse Reinforcement Learning (MLIRL), general-
izes several IRL approaches [71, 66], but, like the approach described in [72],
it needs to compute the optimal action-value function through gradient as-
cent. While MLIRL requires the definition of the number of clusters in ad-
vance, the nonparametric Bayesian approach presented in [73] automatically
infers such number. It exploits a Dirichlet process mixture model to solve the
IRL problem with multiple reward functions. In [74], the authors present a
Bayesian approach able to generalize between multiple-intent and multiple-
expert scenarios. While this approach is extremely general, as it covers all
possible IRL instances, it does not provide an efficient solution to the specific
problems, as it is based on approximated sampling techniques.

Later advances in IRL have focused on automatic features construction,
focusing on the single expert problem. Some approaches are based on Deep
Neural Networks to retrieve the unknown reward function and are based on
the Maximum Entropy Framework [66]. For this reason, they require to
interact with the environment to provide samples. In particular, the Maxi-
mum Entropy Deep Inverse Reinforcement Learning [75] is a Deep Learning
extension of the original Maximum Entropy Framework, while the Guided
Cost Learning [76] propose a similar framework where learning the expert’s
policy is interleaved with the learning of the reward function, exploiting
the guided Policy Search algorithm [77]. One of the advantages of this
approach is that there is no need to solve the direct problem from scratch
multiple times, as done in the firsts IRL algorithms. However, it is still nec-
essary to solve the direct learning problem. It was later shown that there is
a strong connection between this algorithm and Generative Adversarial Net-
works [78]. The work proposed in [79], is based on the GIRL framework and
exploits linearly parametrized features. As in GIRL, and differently from the
Maximum Entropy approaches [75, 76], there is no need to solve the direct
problem to extract the reward function. The feature construction problem is
solved by considering the agent policy structure: features are built by com-
puting the orthogonal space of the gradient of the policy, such that every
possible linear combination of the features makes the gradient of the expert
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policy vanish.

Some recent advances in IRL have focused on scenarios different from
the mentioned ones. Multi agent IRL, in the particular case of two players
zero-sum discounted stochastic games, has been explored in [80], where the
reward function is retrieved even in the case of suboptimal agents. In [81] the
repeated IRL problem is introduced. This problem consist in an autonomous
agent that solves multiple tasks, while supervised by a human expert that
corrects the agent only when its performance is considered not acceptable.
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Chapter 3

Foundations of Reinforcement
Learning and notation

In this chapter we outline some of the fundamental concepts in Reinforce-
ment Learning and define the notation that we use in this work.

3.1 The interaction model

In the RL problem is modeled using two main components:

- the agent i.e., the decision maker and the learner;
- the environment i.e., everything outside the agent.

The agent interacts with the environment as in Fig. 3.1 by selecting an ac-
tion according to the perception of the state of the environment, while the en-
vironment reacts to the agent action by evolving to a possibly different state.

oY

Observation
Reward

Environment

Figure 3.1: The interaction between the agent and the environment
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The agent observes the state of the environment and the interaction repeats
again. It is important to notice that the agent in Reinforcement Learning is
just the decision maker, and everything outside it is the environment, e.g.,
the state of a robotic agent, such as position, velocity or other state variables
are part of the environment, and not of the RL agent. The agent can have
an internal state, e.g., when using a non-Markovian policy, and the environ-
ment can be partially observable i.e., the observations of the agent are not a
complete representation of the state of the environment.

3.2 Markov Decision Process

A Markov Decision Process (MDP) is a tuple M = (X, U,P,R,v,¢),
where:

- X is the state space;

- U is the action space;

- P is a Markovian transition model where P(z'|z, u) defines the tran-
sition density for reaching state 2/, starting from state x and applying
action u;

- R is the reward function: R(z,u,z’) is the reward obtained by the
agent when it takes the action u in state x, reaching the state z/;

- v € [0,1) is the discount factor;

- ¢ is the distribution of the initial state.

In this work, we always consider the state space tobe XY C R" or X C N,
and the action space tobe X C R" or X C N.

3.3 Markov Decision Process without Reward

A Markov Decision Process without Reward (MDP\R) is defined similarly
to an MDP as a tuple M\r = (X, U, P,~, D). The only difference w.r.t. an
MDP is the absence of the reward function.

3.4 Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a tuple Mpo =
(X, U,0,P,Q,R,~,t), where:

- O is the observation space;

- Q) is a the observation model, where Q2(o|x, u) is the conditional prob-
ability of getting the observation o while reaching state x by taking
action u.
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3.5 Semi-Markov Decision Process

A Semi-Markov Decision Process (SMDP) [82, 43] is a tuple
Ms = (X, U, P,R,~,t) where:

- ‘P is a transition model where P(z’, N|z, u) defines the transition den-
sity for reaching the state 2’ in IV time steps starting from state x and
applying action u;

- R is the reward function where R(x,u,z’, N) is the expected dis-
counted reward obtained by the agent when it takes the action « in state
x, reaching the state 2’ in N time steps.

SMDP are MDPs where an action can take different time steps to be com-
pleted.

3.6 Obijective Function

The objective of an RL agent is to maximize an objective function that mea-
sures the performance of the agent in an environment. In RL there are two
main objective functions. The first is the average return objective function:

T
o1
Jm 7 Z“fﬁ“tw?)]

t=0

J=E

The second is the expected discounted reward objective function:

Z ’yt’l“(l’t, Uy, l';)]

t=0

J=E

In this work, we use the latter for every experiment, however most of the al-
gorithms can be easily reformulated in terms of the average reward objective
functions.

It is often useful to consider the return of a specified trajectory 7. We
define the average return as:

T
-1
J = 7 ;R(xt,ut, )
And the discounted return as:
T
J = thR(xt, Uy, Ty)
t=0
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3.7 Policy

A (stochastic) policy is defined by a density distribution 7(+|z) that specifies
for each state = the density distribution over the action space U/. Determinis-
tic policies can be seen as a limit case for stochastic policies, where the prob-
ability density function is degenerate. In this work we will use principally
three kinds of policies. The first two policies are based on the state-action
value functions, and are the e-greedy and the Boltzmann policy. This two
policy are used only when the action space is discrete or when discretizing a
continuous action space.
The e-greedy policy is defined as follows:

I —e+

: u = arg max,, Q(z,u)
W(U‘I) — 6 Nactions

otherwise

Nactions

where ¢ is the parameter that specifies the probability of taking a random
action and n,.0ns 15 the number of possible discrete actions.
The Boltzmann policy is defined as follows:

JEIERD
m(ulz) =

where 7 is the inverse temperature parameter. When 7 — oo, the policy
is equivalent to a random policy. Decreasing the value of 7 towards 0, the
probability mass tends to concentrate around the greedy action.

We define a parametric policy as 7g(+|x), where 6 are the policy param-
eters. A parametric policy used in this work is the Gaussian policy, particu-
larly useful in continuous actions environments. This policy uses a Gaussian
noise exploration. The Gaussian policy is defined as follows:

mo(ulz) ~ N (uo(z), Xo(x)),

where 1 is any function approximator that maps the state space into the mean
action value, and X is a function approximator that maps the state in the state
dependent covariance matrix.

There are several ways to implement a Gaussian policy, depending on the
parameterization chosen for the covariance matrix, as the covariance matrix
must be positive definite by definition. One possible option is to have a fixed
covariance matrix i.e., the policy parameters have no effect on the covariance
matrix. Another option is to parametrize the covariance matrix as a diago-
nal covariance matrix, i.e., the Gaussian noise is independent for each action
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dimension. There are many parametrizations for diagonal covariance ma-
trices. One possible solution is to learn a vector of standard deviations and
take the square root of this vector to obtain the diagonal of the matrix. We
will refer to a Gaussian policy with this parametrization as diagonal Gaus-
sian policy. Another possibility is that the standard deviations are learned
with a regressor and again the value is squared to compute the variance of
each action dimension. We will refer to the policies using this parametriza-
tion as diagonal state dependent Gaussian policies. These parametrizations
have the drawback that the standard deviation may be negative, as nothing
in the parametrization prevents this to happen. It is not a problem as the re-
sulting covariance matrix will be well defined, however may be undesirable.
One possible solution is to parametrize the logarithm of the variance instead
of learning the standard deviations. The last useful parametrization for the
covariance matrix is the Cholesky parametrization, where a full covariance
matrix is learned by learning the elements of a triangular matrix. The result-
ing covariance matrix is computed by multiplying the triangular matrix by
its transpose.

3.8 Value Function

The value function is a function that measures the performance of a given
policy in a state. Formally, the value function of a policy 7 in a given state is
the expected discounted return obtained by following the policy 7, starting
from the considered state:

Vi(z) =E Z’Ykrwrk Ty =2,
k

where 7; = R(x;, u;, ¢;41) and u; ~ 7(-|x;). Value functions can be defined
in a recursive way as follows:

Vi(z) =E[r + vV (241) |2 = 2]

This expression can be written in an extensive form, to highlight the depen-
dency of the value function with the policy, the transition model, and the
reward function of the MDP.

V™ (x) :/uw(u|x)/X73(x’|x,u) (R(z,u,z") +~+V7™(2)) dz'du.

While state value functions are useful to evaluate how good a state is un-
der a policy 7, they are not straightforward to use when we need to evaluate
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which is the best action to perform in every state. In order to evaluate the best
action in every state, we define the state-action value function as follows:

t
E Y Ttk
k

The value function and the state-action value function are related by the fol-
lowing equation:

Q(z,u) =E

xt:x,ut:u] .

V(x):LW(u|x)Q(x,u)du

In any MDP, a policy 7* that is greedy w.r.t. the state-action value func-
tion i.e., performs in every state the action with highest value, is an opti-
mal policy. Thus V* is the optimal value function and Q* is the optimal
state-action value function. The optimal value function is the solution of the
Bellman equation:

V*(x) = mgx/XP(x']x, u) (R(z,u,z') + yV*(2')) da'. (3.1)
The same can be written for the state-action value function:
Q" (z,u) = / P(x |z, u) (R(:c,u, a') 4y max Q*(q:’,u’)) da’.  (3.2)
Py u
Notice that the following equality holds:

V*(z) = max Q" (x, u).

3.9 Policy search

Policy search algorithms are RL algorithms that, instead of learning a state-
action value function to solve an MDP, directly learn a policy. The policy
search approach can be formalized as this optimization problem:

7 = argmax J (7),
where 7* is the optimal policy and 7 (7) is the expected discounted return
where the actions are sampled according to the policy 7.
Most of policy search algorithms are based on parametrized policies.
These algorithms try to maximize the objective function w.r.t. the policy
parameters to find the optimal policy:

0" = argmax J(0),
)
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where @™ are the optimal policy parameters.

Some policy search algorithms use a distribution of parametrized policies
instead of a single parametrized policy. Generally, a parametric distribution
is used. We define a parametric distribution D,, where p are the distribution
hyperparameters. These algorithms try to maximize the objective function
w.r.t. the policy distribution hyperparameters to find the optimal policy dis-
tribution:

p" =argmax E [7(0)],
p  6~Dp

where p* are the optimal policy distribution parameters.

3.9.1 Adaptive gradient steps

To improve the convergence of PG algorithms, an adaptive learning rate can
be used. Adaptive learning rates can be defined in multiple ways. One option
is to constrain the parameters update to be limited in norm, given a metric
M, instead of moving proportional to the gradient, as in [83].

AO = arg max AY'VgJ
AY

st AVTMAY < ¢

where ¢ is the norm bound. This update technique prevents undesired pa-
rameter jumps, avoiding to use other techniques such as gradient clipping.
In this work we use the euclidean metric i.e., the identity matrix, however
another good metric can be the Fisher information matrix.

3.10 Learning in SMDPs

When dealing with SMDPs, there are some minor details that must be taken
in consideration in order to learn the correct solution of the problem. Dif-
ferently from version for MDPs, reported in Eq. (3.2), the Bellman equation
becomes:

* — / / N x BN WA d l.
Q" (z,u) /X%:P(x,]\ﬂx,u) (R(x,u,$,N)+’y ma Q (x,u)) x

It is important to notice that the discount factor v has been raised to the
power of V. This will have a major impact in the development of this work.
Indeed, this is the main reason why it is not possible to solve an SMDP with
plain MDP algorithms, as this will lead to bad policies: we are not taking
in account the fact that the actions may lead to the same state, but with a
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different amount of steps. It is easy to derive an SMDP version of most
MDP algorithms e.g., the Q-Learning update rule for SMDPs becomes the
following:

N
Qz,u) < Qz,u) +a (Z i+ max Q2 ) — Q(a, U))
It is possible also to derive policy gradient algorithms in the same way e.g.,
the gradient computation of the GPOMDP algorithm can be defined as:

T T J N
Vej = Z Z (Z Vg log W(Ut|$t)> <Z '7j+krj+k - bj)
j t k

Notice that, for most of PG algorithms the only difference between the
SMDP and the MDP is that the reward of each step is the sum discounted
reward of the intermediate time steps.

While deriving SMDP versions of already known algorithms is not a ma-
jor issue, it may be convenient to use off-the-shelf MDP algorithms to solve
in an approximate way an SMDP. We will further discuss this point in detail
in the next chapter.

3.11 Features

The use of features is extremely important in RL, in particular when dealing
with classical (not Deep) RL approaches to continuous state problems. Most
of the time linear policies and action value function approximators on state
variables are not sufficiently expressive. With features such as Radial Basis
Functions and Tiles, it is possible to work in a space with higher dimension-
ality, and to represent properly similar states, improving generalization. In
this work we will use mainly four types of features: the polynomial features,
the tiles, the radial basis functions and the Fourier basis. We describe here
below the features as used in our experiments.

3.11.1 Tile coding

Tile coding is one of the most popular feature construction algorithms in
classical RL. Each state space variable is discretized in a defined number of
partitions. The most simple discretization, and the one used in this work, is
the uniform one, where each state variable is discretized in a fixed number of
segments of equal length in the range. This results in a discretized version of
the state space, where each resulting hypercube, called tile, is indexed. The
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Figure 3.2: Example of tiling in a 2 dimensional space. here 3 tilings, each composed by
4 x 4 tiles, covers the full state space with uniform displacement. The state space is
delimited by the bold black line.

resulting feature vector is a vector of zeros, except a one, corresponding to
the index of the active tile. Normally, more than one tiling is used. If more
tilings are used, as in Fig. 3.2, they are generated such that there is an offset
between each tiling. This offset can be uniform in every dimension, or it can
follow a different policy, e.g., use the first odd numbers as proposed in [84].

3.11.2 Radial Basis Functions

Radial Basis Functions (RBFs) are non binary features that measure the dis-
tance of the current element w.r.t. the prototype that the feature represents,
returning a value in the interval [0, 1]. If the current element is exactly the
prototype the considered basis represents, then the feature will provide a
value of 1, whereas if the distance between the prototype and the considered
element tends to infinity, the feature value will approach 0. In this work, we
will use Gaussian RBFs that use bell-shaped membership functions with the
following form:
o;—py)?
pr(w) = e & s
where p 1s the prototype feature and o is the scale parameter that describe
the “width” of the feature i.e., how fast the feature will go towards zero. In
order to cover all the state space, the prototype features are generated over
a uniform grid with n = [[, n,; prototypes point, where n; is the number of
distinct prototype points projected in the i-th element dimension. The scale
is calculated in order to have 25% of overlapping between each feature. This
behavior is obtained by computing the scale of the i-th dimension with the
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wr(x)

o M1 M2

Figure 3.3: Example of one dimensional Gaussian RBFs. Here 3 RBFs are represented,
where (1, (41 and po are the three prototype features.

following formula:
(max z; — min z;)?

3
n;

An example of one dimensional Gaussian RBFs is shown in Fig. 3.3

g; =

3.11.3 Fourier Basis

Fourier basis are very well known function approximators for periodic func-
tions. Their use in RL has been introduced in [85]. Their properties can be
easily exploited when state variables are bounded to create an universal func-
tion approximator on a well specified hypercube of the state space. This is
done using the fact that the cosine Fourier basis can approximate every even
periodic function on an interval v. Then, if we focus on the semi interval %
we can approximate any possible function. For building these features, we
consider the interval v = 2, and we map the state vector on the interval [0, 1].
The normalization is performed as follows:
T — Tlow
Tnorm = ———

Lhigh — Llow
where Zpign is the vector of maximum values for each state variable while
T1ow 1S the vector of minimum values.

Each feature is defined by a frequency vector ¢, that contains the (inte-
ger) frequency selected for each state element for the k£ — th feature. The
feature is then defined as follows:

() = cos(ﬂc;‘gxnorm)

A feature vector is the set of all possible basis with all possible ¢, vectors,
where ¢, is composed by all the possible combinations of frequencies for
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each state variable, given a maximum frequency n e.g., if n = 2 and the
state is composed of 2 state variables, the c; vectors are:

co=10,01" ¢ =1[0,1]" ¢ =0,2]

cs =[1,07 ey =[1,17 ¢ =11,2]"
Ce [270]T 672[271]T C8 [272]T

T

It must be noted that the vector ¢, corresponds to the constant function i.e.,
the constant 1.

3.11.4 Polynomial Basis

These features are built such that the resulting linear combination of features
is a polynomial of fixed degree. Each feature is obtained by multiplying state
variables, each one raised to a given power. The constant feature is always
included. Suppose that we want a second order set of polynomial features
for the following state vector:

In general, a set of polynomial features of degree n is built by taking all
the features built for the degree n — 1 and adding all the possible polynomials
of degree n that uses all the state variable. Each k — th feature of degree n

is built as follows:
d(i
or(w) = [

where d(7) is the degree of the i-th component of the state vector, and is
constrained as follows:
> d(i) =n
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3.12 Gradient Inverse Reinforcement Learning

We now briefly outline the GIRL algorithm, as it is a very important algo-
rithm for some of the topics presented in this work.

The objective of the GIRL algorithm is to recover an unknown parametric
reward function R, (x, u, z) given a differentiable parametric expert policy
me and a set of expert’s trajectories 7 = {m,...,7n}. Here, 0 denotes
the vector of parameters of the expert’s policy, and w denotes the vector of
parameters of the reward function.

Given a reward function, if the expert policy is stochastic, it is possible to
compute the policy gradient w.r.t. the objective function 7 (0, w):

Vo (0.w) = [ p(rl6)Valozp(r10) . ()
where p(7|0) is the probability of the trajectory T given the policy mg, and
J(7) is the discounted return accumulated by the agent along the trajectory
7. This quantity can be easily estimated using policy gradient methods such
as REINFORCE [15] or GPOMDP [19].

The key idea of the GIRL algorithm is the fact that if the expert is optimal
w.r.t. a reward function parametrized by w, then the vector of policy param-
eters that describe the expert behaviour is a stationary point for the reward
function R, i.e., the gradient V7 (0, w) will be the null vector.

As the actual gradient is not known and must be estimated, the GIRL
algorithm leverages the following optimization to retrieve the expert’s pa-
rameters:

2

w = arg min vaf(G, w) )
w

The GIRL algorithm recovers the reward function that produces the min-
imum norm gradient i.e., the reward that induces the minimum change in
the policy parameters. The main idea behind this algorithm is to recover the
reward weights in the chosen space that better explain the behavior of the
expert’s policy. This assumption holds reasonably well if the magnitude of
the gradient is small enough.

A particular interesting scenario is the linear parametrized reward func-
tion. In this case, the reward function can be written as:

R(z,u,2') = o(z,u,2') w,

where ¢(x, u, 2’) is an arbitrary feature vector that depends only on the cur-
rent state, the current action, and on the next state. If the reward is linearly
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parametrized, the optimization problem is ill-posed, as it is invariant to scalar
factors and admits a trivial solution (the null vector). As commonly done in
the literature [10], the issue is solved by constraining the reward weights in
the simplex. In this scenario, the IRL problem can be seen as an inverse
multi-objective optimization problem, where each component of the feature
vector represent an objective that the expert is trying to maximize, and the
parameter vector w represents the weight given by the agent for each ob-
jective. When using a linear reward parametrization, the optimization is
particularly simple, as it becomes a convex quadratic programming problem
with linear constraints. This makes the resulting implementation particularly
simple and computational efficient.
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Chapter 4

Hierarchical Reinforcement
Learning

In this chapter, we describe a novel approach to Hierarchical Reinforcement
Learning. Most of the current approaches are based on the concept of sub-
tasks: the original task is decomposed in a set of smaller tasks. The decom-
position can be done using a hierarchical structure such as the task graph of
the MAX-Q algorithm, or by creating structured policies as in the option or
in the HAM frameworks.

These approaches work particularly well when dealing with MDPs with
finite action and state space. However, they are really difficult to adapt to
more complex scenarios, particularly when dealing with complex robotics
systems. The main issues are that not all the systems can be modeled easily
with a simple hierarchical structure, such as the one proposed by the afore-
mentioned methods, particularly when we want to exploit particular aspects
of the environment such as symmetry or translation-invariance. Furthermore,
in most cases, it is not possible to write a generic hierarchical algorithm,
but each task must be solved by a particularly hand-made algorithm, that
exploits all the relevant characteristics of the environment and encodes the
prior knowledge in the learning process.

In the following, we present how we exploit some basic ideas from con-
trol theory that can solve these issues and support the creation of a flexible,
generic, and well defined framework.

4.1 A control theoretic approach

One of the fundamental building blocks of control theory is the block di-
agram. Block diagrams can model complex systems composed by plants,
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sensors, controllers, actuators and signals. With block diagrams, it is easy
to describe the control architecture of any kind of control system, from the
simple control of an electrical motor, to a complex industrial plant.

The block diagram is based on blocks and connections. A block can
represent a dynamical system or a function, and a connection represents the
flow of the input and output signals from and towards other blocks.

Our approach is based on the same core idea, with some modifications in
order to fully describe an HRL system. We believe that such representation
is beneficial in general for an HRL system, but in particular for robotics
applications, where the control system is often already structured (totally or
partially) as a block diagram. We will call this approach Hierarchical Control
Graph Learning (HCGL).

4.1.1 Formal definition

In order to describe the formal structure of HCGL, we modify the standard
interaction model for RL. Instead of having a system composed only by
agent and environment we describe the interaction by a Control graph.

The Control Graph is defined as follows:

G=(,B,D,C,A) “4.1)
where:

- B is the node set;

- D is the data edges set;

- ('is the reward edges set;
- A is the alarm edges set;
- £ is the environment.

Each node b € B represents a subsystem of the control structure. We
refer to the nodes in the set B as blocks. Each block can contain either a
dynamical system, a function, or an RL agent.

Each block is characterized by a set of input and output signals, that can
come from other blocks or from the environment. The input signals are
represented in the graph by the data edges d € D. For each block, at each
control cycle, we call state the vector of the input signals, and action the
vector of the output signals.

If a block contains an RL agent, then it needs a reward signal in order to
measure its performance and to optimize its objective function. The reward
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signal can be produced either by the environment or by another block. Every
edge ¢ € C represents a reward signal connection.

Finally, each block can produce an auxiliary output called alarm. The
alarm signal can be read by other blocks. Every edge a € A represents an
alarm signal connection.

We call the environment £ everything that is outside the set of blocks B,
that represents, along with the edges, the hierarchical agent. The environ-
ment is modeled in the graph by three special blocks, called interfaces:

- The state interface, that contains the current observation from the envi-
ronment.

- The action interface, that contains the action to be applied of the envi-
ronment at the beginning of each cycle, but can be used by other blocks,
e.g., to compute a quadratic penalty over the last action used.

- The reward interface, that contains the last reward produced by the en-
vironment.

All the edges of G are directed, and the graph must be acyclic, when con-
sidering all edges except the ones that are connected to the action interface.
At least one block must be connected to the action interface.

The Control Cycle is the cycle of interaction of the control system with
the environment. Each cycle starts by reading an observation from the envi-
ronment into the state interface. Then, each block of the graph is evaluated
by concatenating all their inputs into the state vector, and producing an ac-
tion, the vector of outputs of the block. Also the information coming from
the reward and alarm connections are read, if they exists. Every block must
be evaluated after all its inputs, reward and alarm signals have been already
computed. This means that the blocks must be evaluated following a topo-
logical ordering, where the last block to be evaluated must be the action
interface. After the action interface has been updated, the action is applied
to the environment and a new control cycle starts. The action interface main-
tains the stored value until the end of the next control cycle.

The same structure can be used for a continuous time systems, as it is
often done in control theory, by defining the control cycle in an appropriate
way. However, we focus in this work just on discrete time systems. The
temporal evolution of the system is not depending on a fixed clock, but we
consider the environment as an event generator that triggers the control cycle
when the new state is ready.
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4.1.2 Connections

In this model it is very important to have three different types of connection,
both theoretically and from the point of view of the practical implementation
of the model.

The data connection provides to the model the control input, and must
be differentiated from the reward connection, because they have different
semantics. Indeed the reward connections carry a signal about the perfor-
mance of the (sub)system, and they are not needed by the control system
to interact with the environment. This semantic difference is also helpful in
the implementation, because it makes immediately clear what signals are the
ones the algorithm needs to optimize, avoiding any ambiguity with the other
input signals.

The last type of connections is the alarm connection. This type of con-
nection is really important to implement control systems that have different
time scales. Indeed, in every control cycle, all blocks are evaluated, and
this behavior makes impossible to have controllers that work with a different
time scale. However, every block can maintain the previous output signal
until an event occurs. Events can be notified to others blocks by the use of
alarm signals. Every block can generate alarm signals and can exploit the
information of the alarm in any useful way. In our model, alarm signals are
binary signals that notify the occurrence of an event, but they can be easily
extended to carry any type of information needed.

With alarms, event based control can be implemented, e.g., wake one
of the RL agents in the control graph only when a particular state of the
environment is reached. Also it is possible to create temporally extended
actions by raising an event from a lower level agent whenever its episode
terminates. By doing so, the higher level agent can only choose different
actions when the effect of the related temporally extended action is finished.

4.1.3 Blocks and Induced Environments

Blocks contain the subsystems of the hierarchical agent. In this model, we
can look at the single block as an isolated agent and as the remaining part
of the graph as a part of the environment. The observations from the envi-
ronment are represented by the input vector, and the actions applied to the
environment are represented by the output vector. We call the environment
&; seen by each block b; induced environment. The nature of each &; depends
on the structure of the control graph, but in general it can be a partially ob-
servable, time variant, stochastic, non-Markov environment. This makes it
impossible to derive general convergence results for arbitrary control graphs,
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as the theoretical characteristics of the induced environment for each block
are arbitrary. This consideration is particularly important, and makes both
a careful design of the graph structure, the RL agents, and the performance
metrics crucial. A bad design can lead to bad convergence properties. To
mitigate this issue, specific learning algorithms can be used, or a multi block
algorithm could be exploited.

Blocks are a very general and versatile tool as they can contain either a
function, a dynamical system, or an RL agent. When considering blocks
that contain a learning algorithm, it is important to consider their induced
environments. Induced environments differ from the original environment
not only for the different state and input variables but also in the way they
evolve: the steps of an induced environment depend on the block activation;
furthermore, it is possible to define episodes for the induced environments
e.g., after a fixed number of steps or when a particular set of state is reached.

We will introduce some of the most useful blocks we have developed,
that are the basic building blocks of most control graphs.

Interface Block is the basic interface to the environment. The environment
can read and write data from this type of blocks. The interface block is really
important to define a common interface with the environment. In this way,
everything is represented by nodes of a graph.

Function Block has the only task of computing a function from the input
vector. No learning algorithm is present. All mathematical operations over
vectors are function blocks. Function blocks can be used also to compute
features vectors from state vectors. Function blocks are generally stateless
blocks; however, it is possible to use them with objects in order to build a
stateful block.

Control Block is the most important type of block, as it contains a learning
algorithm. The purpose of the control block is to interface a generic learning
algorithm to the control graph. The control block applies the policy of the
agent on the incoming state, and produces the output action. It also collects
the transition dataset and feeds it to the learning algorithm when needed.
Control blocks also handle the environment absorbing states. The control
block can also consider a termination condition, that can be either a fixed
number of steps or a locally absorbing state, i.e., an absorbing state for the
subtasks. However, in this framework local absorbing states are fundamen-
tally different w.r.t. environment absorbing states. This is due to the control
cycle behavior. Indeed at every control cycle, each block is evaluated, and
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has to return an action. This implies that in a locally absorbing state, the
control block has to provide an action, even if the subtask has been termi-
nated. This behavior is fundamentally different from others HRL methods.
This means that a policy for terminal state must be defined for subtasks. This
may be a problem when considering finite states MDPs that are often object
of interest of most of hierarchical frameworks. However it is not a problem if
we do not consider subtasks with absorbing states or when dealing with con-
tinuous environments with fine-grained time discretization, where the effect
of a single action is not affecting heavily the general behavior. As we will
focus on this kind of environments, this is not a major drawback of HCGL.

The final purpose of the control block is to handle signals and synchro-
nization with others blocks. In order to do so, it raises the alarm signal when-
ever the episode terminates, either if a locally absorbing state or the horizon
has been reached. The control has two synchronization behaviors: If there is
no alarm connection, the agent policy will be called at every control cycle.
If any alarm signal is connected to the agent, then the agent policy will be
executed only when one of the connected alarms has been raised. Only the
states when the alarm is raised (or the initial environment state) are consid-
ered in the collected dataset. The control block maintains the last selected
output value until the next event occurs.

Reward Accumulator Block is a particularly important stateful block.
This is very important when used in conjunction with cascade control sys-
tems that operates at a different timescale. It is possible to accumulate the
discounted reward, the sum of the reward, or the mean reward. It is important
to notice that for some algorithms, e.g., some PG approaches, it is possible to
substitute the discount performed inside the algorithm, with an appropriate
accumulator block i.e., use v = 1 in the algorithm and discount the reward
accumulated with the appropriate discount factor, computed by raising the
discount factor of the environment to the number of steps performed until
that point. The same is not possible when dealing with value-based algo-
rithms for learning in SMDP, that needs to discount the reward from the
last action, and also needs to know how many steps have been performed
between the decision points.

Selector Block is a very particular block that allows to select one chain
from a list of chains of blocks. The selection is done by the first input of
the block, that must be an integer value. Further inputs are passed as inputs
of the first block of the selected chain. The output of the selector block is
the output of the last block in the chain. The blocks in the chain can be

38



4.2. Comparison with others frameworks

connected to others blocks through the alarm and reward connections. This
enables the conditional computation of blocks, allowing to have different
low-level RL agents that represent different temporally extended actions.

4.2 Comparison with others frameworks

Existing approaches are mostly based on the concept of macro actions. This
is a really important concept of all information technology and it is at the
basis of the vast majority of programming languages. The execution of
a macro is done following the stack principle, where each macro can call
another macro, until a primitive action is called. After the macro (or the
primitive action) has been executed, the control returns to the one that acti-
vated it. This description particularly fit, at least from the point of view of
the RL algorithm, for the options and the MAX-Q frameworks. The HAM
framework is also based on this idea, but the learning is performed on the
“reduced” SMDP, while the actions are performed by the abstract machine,
so the stack discipline does not affect the learning algorithm, as it does when
dealing with the other frameworks.

Although this is a powerful approach, at the basis of the exponential
growth of information technology in the last century, it is not the most nat-
ural approach, neither the most used in control systems. Most of control
systems for robotics and automation consist in decentralized controllers that
work in parallel, where each controller regulates a specific part of the sys-
tem. Information about the environment is retrieved by a set of signals. Most
of the controllers are driven by the error of a specified state variable w.r.t. a
setpoint e.g., the distance to a specified target or the relative orientation of a
joint w.r.t. a desired setpoint.

These ideas are fundamentally different from the macro concept. There
are two main concepts that must be considered when comparing our frame-
work to other existing frameworks. The first consideration is that the hier-
archy is formed by the structure of the control system, and not by the stack
discipline. At every time step, data flow following the direction of the con-
nection, into the next block, propagating through the whole graph. This has
a major impact on how subtasks are defined. Indeed, in our framework, a
subtask is not anymore a function call that executes until termination, but
can be better seen as a setpoint to be reached by a lower level controller.
While in general it is not a problem, this different view has a major im-
pact on subtask absorbing states. Indeed, no state, excluding the last state
of the environment, where no action is required, can be a state in which the
subtask terminates. At every control cycle, a controller can either hold the
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last value or produce a new one, as the data flow is mono directional and
there is no way to give back the control to a upper level controller. As it
is extremely useful to terminate the episodes of a controller when a particu-
lar state is reached, there is the possibility to define task specific absorbing
states, however they do not behave as normal absorbing states, as the se-
mantics of the task graph prescribes the generation of an action. This makes
the implementation of temporally extended actions with termination a bit
problematic, particularly when applying this framework on finite MDPs. We
believe that is not a major issue in a continuous environment, if the sub-
task is seen in an appropriate way e.g., as a setpoint to be reached within
a specified threshold, where another action that brings the system closer to
the setpoint is not harmful. Another option can be to define dummy, random
or fixed actions for this states. The second consideration is on the differ-
ent approach for the state representation. In most HRL approaches the state
seen by each level of the hierarchy is the environment state itself. Some
approaches, adopt state abstraction [43] or ad hoc state transformation for
subtasks [46]. HCGL is fundamentally different on this point as we consider
each block as an independent RL agent. State and action are then related
to the induced environment. This makes it possible to use any suitable RL
agent e.g., algorithms for SMDPs, POMDPs, non-stationary environment or
even classical approaches for simple MDPs. Furthermore, using HCGL the
definition of parametrized continuous subtasks is straightforward, and does
not need any deviation from the framework definition or special handling.
Differently from the Feudal Q-Learning [56], its deep learning version [55]
and other deep approaches, we do not add a sub-goal specification as in-
put, with the current state, to the system. We suggest instead of provide a
state that contains the interesting information to describe the current state of
the system. This is fundamental in order to reuse the classical theory and
algorithms of RL into HRL.

All classical HRL frameworks are designed to exploit domain knowl-
edge; however, this is achieved in very different ways. With the MAX-Q
approach, the designer’s knowledge can be exploited by specifying the de-
composition of each subtask in the system and by defining state abstraction:
the first is useful to prescribe a structure of the policy, the latter is useful to
speedup learning and reduce memory requirements. In the option framework
it is possible to specify partially, or totally, the policy of the options. Both
HCGL and the HAM framework are based on constraining the structure of
the controllers. However, the HAM framework is based on finite state ma-
chines. HCGL is extremely powerful, but it may fail in continuous state and
actions environments, where the objective could be, e.g., a robot pose. Also,
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we believe that a block diagram design is more similar than the state ma-
chine design to what is already done in this kind of systems e.g., robotics. In
most of the HRL frameworks, including ours, it is possible to exploit domain
knowledge to specify the subtasks reward functions.

HCGL has been developed with a slightly different objective w.r.t. clas-
sical and deep HRL frameworks. The options framework objective is to
enrich the MDPs action set in order to improve exploration by following a
sub-policy for an extended period of time. The possibility of achieving op-
timal performance is one of the major selling points of this framework, as
it is always possible to take a low-level action instead of the high-level one.
Intra-option learning [45] is a further step on this direction. The objective
of the MAX-Q framework is not to achieve optimal performances, but to
have a factored representation of the state-action value function, in order to
reuse the information for different high-level tasks and for transfer learning.
The objective of the HAM framework is to exploit the expert knowledge to
constrain the policy, improving learning speed by reducing exploration and
parameters to learn and imposing the desired behavior. The objective of our
framework is twofold: simplify the design of hierarchical agents, by provid-
ing a flexible design tool, and favor the reuse of existing RL algorithms. We
believe that these two characteristics are particularly suitable for industrial
applications and fast prototyping of complex robotics applications, such as
e.g., UAVs.

4.3 Experiments

We evaluated HCGL in three different domains: the Ship Steering environ-
ment, the Segway environment, and the Prey-predator environment. For each
environment, we provide a graphical representation of the task graph. Each
box represents a block. The environment is represented by a block contain-
ing the three interfaces: the action interface u, the reward interface r and
the state interface x. The solid line represents an input connection. The
dotted line represents a reward connection. The dot-dash line represents an
alarm connection. The selector block is represented by a block containing
the block chains. The selector signal is connected to the external block,
while the signal that is provided to the block chains is connected to all block
chains.

For every experiment, all the parameters of the algorithm are hand-tuned,
in order to get the best performance possible. We call an epoch a fixed
amount of environment episodes, where a number of episodes are used for
training, while the others are used only for evaluating the performances i.e.,
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Figure 4.1: Control Graph used in the ship steering environment experiment

no learning is performed, the policy is applied as is on the environment.
For the sake of brevity, we refer to non-hierarchical RL algorithms as flat
algorithms.

4.3.1 Ship steering

This problem consists of driving a ship through a gate, without going outside
a defined region (see [46] and Appendix A.3 for details).

For these experiments we use two different versions of the ship steering
environment: the small and the big environment. In these environments the
action is applied for three iteration steps.

Small environment

We use this version of the environment to show how a hierarchical formal-
ization of the environment with our framework is beneficial for learning also
in environments that are easy to learn with flat policy search methods.

For each algorithm, the experiment consists in 25 epochs of 200 episodes.
After every train epoch an evaluation run (with no learning) of 50 episodes
is performed.

The hierarchical structure we devised is shown in Fig. 4.1. The high-level
controller Cy selects a position setpoint for the ship. The function block ¢
transforms this position setpoint into the error of the heading of the ship and
the distance of the current position and orientation of the ship w.r.t. the given
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setpoint. The low-level controller C;, learns a policy to drive the ship to-
wards the selected setpoint, and its output is the desired turning rate of the
ship, that is the imposed control action to the environment. The high-level
control change its setpoint only when a low-level environment episode ter-
minates. The low-level environment episode terminates after 100 steps or
when the distance to the setpoint is less than 0.2m. The high-level controller
uses the reward function of the environment as performance metric. The
reward between each different setpoint is accumulated by the reward accu-
mulator block R, which properly discounts the reward at each step using
the discount factor v = 0.99 of the environment. The low-level reward is
provided by the function block R ;, that computes the cosine of the heading
error.

For this experiment, the high-level controller uses the GPOMDP algo-
rithm and a diagonal Gaussian policy. The policy is a constant mean policy
with initial mean p = [75,75] and initial standard deviation o = [40, 40],
1.e., the initial policy is a Gaussian centered in the center of the map, and the
sampled setpoints are distributed across all the map. The learning rate used
for this controller is the adaptive learning rate with parameter € = 10.

The low-level controller uses the PGPE algorithm. The policy family is
a deterministic proportional controller, with forced positive gain parameter,
i.e., u = |k|x. The initial policy parameters distribution is a Gaussian dis-
tribution with mean p = 0 and standard deviation o = 1073, Also for this
controller the selected learning rate is the adaptive learning rate with param-
eter ¢ = 5 - 1074, The high-level controller updates the parameters every
20 episodes of the environment, while the low-level controller updates the
parameters after 10 episodes of its induced environment.

All the flat algorithms use tiles as features over the state. A single tiling of
5 x 5 x 8 tiles over the first three dimensions of the state space (x, y and 6 co-
ordinates i.e., position and orientation of the ship) is adopted. The GPOMDP
algorithm uses a diagonal Gaussian policy that is linear in the state features,
with initial standard deviation o = 0.1. The other algorithms (PGPE, RWR
and REPS) are episodic black box algorithms and use a diagonal Gaussian
distribution, with initial standard deviation o; = 0.4. The policy family is a
deterministic linear policy over the features. The flat GPOMDP algorithm
uses an adaptive learning rate with ¢ = 107°. Also the flat PGEP algo-
rithm uses the adaptive learning rate with ¢ = 1.5. REPS uses a KL bound
e = 1.0. RWR uses as temperature for the exponential reward transfor-
mation S = 0.7. The GPOMDP algorithm updates the parameters every 40
episodes. The black box algorithms update the parameters every 20 episodes.

Results are shown in Fig. 4.2. By looking at Fig. 4.2a it is clear that
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Figure 4.2: Learning curves for the ship steering small environment

the policy gradient approaches, PGPE and GPOMDP are the slowest and
achieve the worst performance. RWR and PGPE quickly converge to good
performances, however they may get stuck to slightly suboptimal policies.
RWR converges faster than REPS, but it is slightly more prone to prema-
ture convergence, as the distribution variance converges to zero too rapidly.
HCGL achieves the best performance on this task, and the results are much
less variant, particularly at the end of training. The performance gain and
the reduced variance of the learning curve is due to the fact that the HCGL
approach can represent a more structured policy, with fewer parameters and
more expressiveness in terms of possible behaviors. The hierarchical de-
composition splits in two the problem by decomposing the high-level prob-
lem (reach a point) from the low-level control task (steer the ship), making
possible to reuse the low-level control policy from each point and each ori-
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entation of the ship. This results in a policy that is more interpretable and
can be easily used in other contexts e.g., the low-level policy learned in the
small environment may be used also in the big ship steering environment; the
learned high-level policy is a good policy for most of the possible alternative
starting points of the environment.

The learning curve behavior can be easily understood by looking
at Fig. 4.2b. Flat algorithms tend to increase the episode length progres-
sively, to avoid going outside the bounds. As the gate is located at the end of
the diagonal, they will find the gate tending to produce longer trajectories.
The HCGL approach, instead, behaves very differently: at the beginning
most of the trajectories loop around the center of the environment, increas-
ing the episode length, while the low-level starts to learn to reach the setpoint
appropriately and the high-level learns to avoid the map boundaries. When
some trajectories are able to cross the gate, the high-level starts to learn the
position of the gate and the variance of the high-level policy reduces towards
0. This, jointly with the learning of the optimal low-level policy, reduces the
episode length until the optimal performance is reached.

The hierarchical method has some disadvantages w.r.t. the other methods.
The first is that the number of steps needed to learn is greater than the other
methods, by reducing, however, the number of failed episodes (going outside
the bounds). The second is that the learning algorithms and policy must be
chosen carefully. Indeed, the low-level policy of the hierarchical algorithm is
forced to be stable by computing the absolute value of the proportional gain
parameter. This is needed because the induced environment of the low-level
policy is partially observable: this causes some ambiguities in interpreting
the results of the selected behavior. Without the forced stability, the low-level
algorithm can converge to a suboptimal behavior of selecting an unstable
policy to force the ship to go out of bounds and terminate the episodes earlier.
If this happens, the high-level controller could learn to move the setpoint in
the opposite direction w.r.t. the actual goal, which is an undesired behavior.

The possibility of strange interactions between learning processes are a
major issue of the framework. To avoid this, a careful design of the pol-
icy, good initialization for the policies from expert knowledge could be ex-
ploited. While policy initialization is often straightforward e.g., using con-
trol theory or prior knowledge, it is not so easy to design a proper control
structure and reward function, as it is necessary to analyze the characteristics
of the block’s induced environment, taking in account possible suboptimal
undesired behaviors that may occur. A further step can be done by consid-
ering multi-block learning algorithms, in order to let the low and high-level
algorithm know the context under which are operating. This could be done
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by exploiting context based policy search algorithms [86] e.g., by adding as
context the current parameters of others controller blocks.

Big environment

With this version of the environment, we aim at showing how our method is
able to scale to bigger and more complex problems and to compare it, from
both the point of view of the performances and the design of the hierarchi-
cal agent, with an existing state of the art method, the hierarchical policy
gradient approach shown by Ghavamzadeh & al. [46]. We focus our exper-
imental comparison on this approach as it is the most successful approach
that is designed to consider both continuous and state spaces, and consider
a control structure totally designed by an expert. More recent works such as
the option-critic framework [57], focus instead on learning both the policies
and the control structure: this approach may indeed yield better results, par-
ticularly for simple problems, but it may fail in real-world scenarios, where
the expert knowledge is crucial. For this reason, we focus primarily on the
modeling point of view, thus comparing the modeling expressivity of the
hierarchical policy gradient approach with HCGL. In this environment, the
state space dimension (1000 x 1000m) makes difficult to build generic fea-
tures that allows for both a complete coverage of the state space and a fine
discretization needed to have a fine-grained action selection.

For each algorithm, the experiment consists in 50 epochs of 800 episodes.
After every epoch an evaluation run (with no learning) of 50 episodes is
performed. It must be noticed that, differently from the small environment,
the initial state of the environment is sampled uniformly from X'.

For our method we will use the same control graph used for the small
environment (Fig. 4.1). The Ghavamzadeh’s method is implemented using
our framework. This has a minor impact, as our framework is not able to
represent absorbing states of local controller as real absorbing states, this
implies that the policy must be defined also in these states. However, given
the dimension of the environment, the properties of the policy and of the low-
level task, and the irrelevance of a single isolated action in the environment
make these differences negligible.

The control graph used to implement the Ghavamzadeh method is shown
in Fig. 4.3. The function block ¢ discretizes the state of the environment
using a 20 x 20 tiling discretization over the first two state variables (the
position of the ship in the environment). The high-level controller Cp; takes
as input the discretized state and selects one of the 8 possible direction to
reach. The function block S transforms one of the possible direction in a
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Figure 4.3: Control Graph used to implement the Ghavamzadeh algorithm

binary value, to select the straight/diagonal subtask of the connected selec-
tor block. This is done because in the original work, instead of learning each
subtask independently, symmetry is exploited to group together the subtasks.
The function block H is used to hold the value of the starting position of the
subtask. The H is needed because the I' block performs the needed trans-
formation to map the state of the original environment in the subtask by
rototranslating appropriately the current state w.r.t. the position in which the
subtask has begun. For the straight subtask the initial state is mapped into
[40, 75], while for the diagonal is mapped into [40, 40]. All straight subtask
are rotated into the “right” subtasks, while the diagonal subtasks are rotated
into the “up-right” subtask. The two control blocks C, and Cy are the two
controllers that learns the straight and horizontal subtask respectively. The
reward for the high-level block is the sum of the additional reward computed
by the function block Ry, that gives a reward of 100 for crossing the gate,
and the reward accumulator block R, that computes the sum of every re-
ward during the low-level episodes. The reward for the low-level controller
is computed by the function block R, that gives -100 for going outside
the low-level environment area (a squared region of 150m), +100 for being
close less than 10 meters to the objective of the low-level task ([140, 75] for
the straight and [140, 140] for the diagonal), plus the following penalty 7ex
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for each step:

T ex ( A@Q) 1
extra p (%)2 )
where A# is the current heading error of the ship w.r.t. the objective of the
low-level task. The low-level episodes terminates when the ship reaches the
goal or goes outside the low-level task region.

We have used the same Q(\) algorithm described in [46], with v = 0.99,
A = 0.9 and e-greedy policy. In this implementation of the Ghavamzadeh
approach the epsilon parameter is fixed to 0.1 for the first 4 epochs, then
decays by 1% every 50 episodes. Instead of using the step based gradient
algorithm of Ghavamzadeh, we have used the GPOMDP algorithm, that is
able to learn rapidly both the subtasks. We have used a tiling 5 x 5 x 10
as features, and a Gaussian diagonal policy with mean linear in the features
and initial standard deviation o = 0.03. The learning rate for the GPOMDP
algorithm is fixed at 0.08.

The settings for our framework are the same of the small environment
experiment. The difference is the initialization of the high-level controller,
that is initialized with initial mean p = [500, 500] and initial standard de-
viation o = [255,255] and the learning rate for the high-level PGPE and
low-level GPOMDP algorithms, that are both adaptive learning rates with
bounds e = 50 for the high-level and ¢ = 5 - 10~ for the low-level.

The results of this experiment are shown in Fig. 4.4. As it can be seen
from Fig. 4.4a, the hierarchical agent learning is slower than the
Ghavamzadeh approach in the beginning. This is due to the time spent by
the ship moving around the map, while the position of the gate is learned
and the optimal proportional gain for the low-level is found. After the po-
sition of the gate is found by the high-level controller, the length of the
trajectories quickly decreases and the algorithm converges rapidly to good
performances. This is due to the fact that the position of the gate is an in-
formation that does not depends on the current position of the ship, thus,
learning this information results in a policy that generalize to the whole
state space, instead of being useful only locally, as the policy learned by the
Ghavamzadeh’s approach is. From Fig. 4.4b we can see that Ghavamzadeh’s
system converge to shorter trajectories, and this is due to suboptimal behav-
ior learned by the agents along the borders, where the agent prefers to go
outside of the map instead of going towards the center of the environment.
This is due to the fact that the Q values must be propagated from the center
of the map towards the boundaries, and this propagation is affected nega-
tively by several factors. One issue is the dimensionality of the state space
and that most of the trajectory samples are concentrated toward the objec-
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Figure 4.4: Learning curves for the ship steering environment

tive, that is in the center of the map. Another problem is the exploration
behavior of the e-greedy policy, that may affect the mean length of the paths
towards the goal, slowing down the learning process; this can be an issue
even in an off-policy setting such as Q(\), as it may increase the number
of samples needed to learn a good trajectory. Finally, the low-level perfor-
mances at the beginning of the learning process can affect the initial updates
of the Q-function. HCGL, instead, learns the general objective, leading to
a good generalization in almost any state, which is particularly convenient
when starting in new unseen states.

Another important aspect that should be analyzed is the design of the al-
gorithm. Our framework allows to easily design a hierarchical system by
defining just the needed function blocks, to exploit expert domain knowl-
edge. The learning algorithm can be any off-the-shelf learning algorithm
taken from the state of art, there is no need for custom versions of the al-
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gorithm. Thus, the domain experts only need to focus on the structure of
the problem and not on the learning algorithms. This is instrumental to
bring RL tools to industrial applications. Furthermore, the design tool, the
block diagram, is closer to what engineers of other system designers use,
as it is inspired by control theory block diagrams. The Ghavamzadeh’s ap-
proach, instead, cannot be implemented in a generic fashion, but must be
re-implemented for any problem instance, in order to exploit domain knowl-
edge. Furthermore, while the Ghavamzadeh’s approach looks extremely in-
tuitive from the point of view of RL researchers, which are used to work with
options and SMDPs, it is not intuitive from the point of view of a control
system. This can be easily seen by trying to implement the Ghavamzadeh’s
approach in our framework: it is still possible to implement it with minor
changes, but it is clear that the resulting design looks overly complicated,
particularly if comparing it with HCGL. We believe that, particularly for
robotic tasks, our tool is helpful also during the design phase of a hierarchi-
cal algorithm, leading to simple and natural design of hierarchical (robotic)
agents.

4.3.2 Segway

This problem consists of balancing a 2D Segway and moving it towards a
fixed point. This environment is similar to the one described in [87], but we
added also the position control w.r.t. the ground, and not only the balancing
problem. See Appendix A.4 for details.

The experiment for this environment shows how HCGL can be suitable
in the design of classical control applications, and that there are some ad-
vantages in using such hierarchical learning approach instead of using black
box optimization on a complex non-differentiable equivalent policy.

The control scheme is reported in Fig. 4.5; it is extremely simple, as it
matches existing control schemes for similar platforms. The high-level con-
troller Cy is a simple proportional controller over the linear position that
computes the angular setpoint. The function block ¢ takes in input this set-
point and the current state, returning the state without the linear component
and with the error w.r.t. the desired setpoint instead of the actual angle. The
low-level controller is another proportional controller over the full state com-
puted by the function block ¢. Also in this situation, like in the ship steering
environment, we compute the absolute value of the selected parameters be-
fore multiplying them to the state. The reward performance of the high-level
controller is the reward coming from the environment, while the reward of
the low-level controller is the sum of a quadratic cost on diagonal weight ma-
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Figure 4.5: Control Graph used in the Segway experiments

trix M = diag([3.0,0.1,0.1]) and a fall punishment of —10000. Notice that
in this experiment we do not have alarm signals, thus we do not have any
synchronization between low and high-level environment, both controllers
run independently at each step of the environment. During learning we keep
the high-level controller blocked for the first epoch, since the low-level task
is particularly difficult to learn from scratch.

The black box agent uses a parametric non-differentiable policy that is
equivalent to the one proposed by our approach.

We tested four configurations, two flat algorithms, RWR and REPS, and
two hierarchical agents, one with RWR for both low and high-level agent,
and one with REPS for the high-level agent and RWR for the low-level one.
For HCGL, the learning of the high-level controller starts at the third epoch
i.e., the policy for the high level is not updated for the first two epochs.

For every black box algorithm we used a deterministic policy and a di-
agonal Gaussian distribution as parameter distribution. Flat black box algo-
rithms have a standard deviation o; = 2 for each component. The KL. bound
for REPS is set to € = 5 - 1072, The exponential reward transformation tem-
perature for RWR is set to 3 = 2 - 1073. For HCGL, the high-level initial
standard deviation is opnigy = 0.02 and the low-level standard deviation is
010w = 2. For the double RWR approach the parameters are (., = 0.002
and Syign = 0.01. The RWR and REPS approach uses Shign = 0.01 and
Ehigh = 0.05.

Results are shown in Fig. 4.6. By looking at Fig. 4.6a, it is clear that the
REPS algorithm is outperformed by the others in this task. This is due to the

51



Chapter 4. Hierarchical Reinforcement Learning

-10%

-
T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26
epoch
(a) Objective Function
1,500 |
=ttt
1,000 | —REPS
g —— RWR
—— H_RWR_RWR
500 | —— H_REPS_RWR
01— T T T T T T T T T T T T T
0 2 4 6 8§ 10 12 14 16 18 20 22 24 26
epoch
(b) Episode length

Figure 4.6: learning curves for the Segway experiment

fact that the updates of the algorithm are bounded by the KL, and between the
initial parametrization (that is the null vector) and the optimal one there are
many suboptimal parametrizations; this makes extremely difficult to reach a
good configuration by bounded updates. The RWR method is able to reach
good performances as it rapidly jumps away from the initial parametrization.
Our method does the same as the low-level algorithm is RWR, and the low-
level stabilization loop causes the stability issues. While the performance of
our method is comparable or slightly better than the flat approach, we can
see from Fig. 4.6a that the performance of our method is considerably less
variant than the performance of the flat RWR algorithm, while the adopted
policy is exactly the same. The improved stability of our method can be seen
also by looking at Fig. 4.6b, where, keeping in mind that this environment
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Figure 4.7: Control Graph used to implement the Prey-Predator environment experiment

has no target terminal states, but only failure terminal states, it is clear that
our method reaches the horizon more frequently and with less variance w.r.t.
the flat RWR algorithm. In this environment, the double RWR approach is
able to learn slightly better than the REPS+RWR approach, but the latter is
still able to get good performances on this task.

4.3.3 Prey-predator

The Prey-predator environment consists in learning the most efficient way to
catch a prey in an environment with obstacles (see Appendix A.5 for details).
The objective of this experiment is to show that HCGL scales well also with
more complex systems and can be used jointly with Deep RL methods.

The control scheme is reported in Fig. 4.7; it is possible to notice that
it is similar to the control graphs already presented for the other problems.
The function block ¢; takes as input the state and feeds to the high-level
controller a reduced state with only the position of the prey and the preda-
tor. The high-level controller C selects one of the possible actions, that
can be either to go in the direction of the target or to move in eight possi-
ble directions around the current point. The function block ¢, transforms
the action setpoint into a target position setpoint: if the selected action is
to go towards the prey, it returns the current position of the prey, otherwise
the target position is computed by adding to the position stored by the hold
block H a vector of length 1.0m in the selected direction i.e., the targets
points are computed around a circle of radius 1m. The hold block activates
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synchronously with the high-level controller, so the stored state is the state
where the temporal extended action is activated. The low-level controller Cy,
learns a policy to drive the predator towards the selected setpoint, its output
is the desired linear and angular velocity of the robot. High-level control
changes its setpoint only when a low-level environment episode terminates.
The low-level environment episode terminates after 10 steps. The high-level
controller uses the reward function of the environment as performance met-
ric. The reward between each different decision point is accumulated by the
reward accumulator block R, which computes the mean reward accumulated
during the low-level episodes. This is done to consider the task as an MDP,
and not as an SMDP. This makes sense if we want to use off-the-shelf Deep
RL algorithms for the high-level, as there is not a wide literature for Deep
RL algorithms for SMDPs. Indeed the high-level controller discount factor
1s accommodated to consider that the next action will be taken after 10 steps.
Even if this is an approximation, we believe that is a reasonable one. The
low-level reward is provided by the function block R, and it is computed
as follows:
Tow = COS(Af) — p

For this experiment, the high-level controller uses the DQN or the DDQN
algorithm and a Boltzmann policy. The temperature parameter of the policy
decreases as follows:

The initial replay memory size is set to 5000, the maximum dimension of
the replay memory is set to 100000. The target is updated every 200 steps.
The batch size used at every DQN update is 500.

The low-level controller uses the GPOMDP algorithm. The policy is a
diagonal Gaussian policy, linear in a Fourier basis features, with maximum
frequency n = 10. The initial policy parameters distribution is a Gaussian
distribution with initial standard deviation o = 2.5-10~L. For this controller
the selected learning rate is the adaptive learning rate with parameter 2 -
10~%. Parameters are updated after 10 episodes of the low-level controller’s
induced environment.

To prove that the learning framework works also in this scenario, we com-
pared it with a baseline where the high-level agent always uses the “follow
the prey” action at every step. We selected a very general low-level policy
to demonstrate that the hierarchical framework is beneficial even in the set-
tings where a complex controller may be needed e.g., because the dynamics
of the subsystem are not known. Better results for the low-level controller
can be achieved if a specific low-level controller for the differential drive
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Figure 4.8: learning curves for the Prey-predator experiment

is selected. The high-level controller has been designed with discrete ac-
tions because learning a continuous setpoint, in this environment, can be ex-
tremely sample-inefficient, as the environment presents strong nonlinearities
e.g., due to the presence of physical obstacles. By using discrete actions it
is also possible to define the basic action that selects as target the prey itself.
Learning this behavior from scratch can be extremely difficult with a generic
approximator such as a neural network, without inserting prior knowledge.
Results are shown in Fig. 4.8. As it can be easily seen from Fig. 4.8a, both
hierarchical agents are able to outperform the baseline agent. Indeed the
baseline agent performance degrades along time, this is probably due to the
fact that the induced environment is partially observable, and following the
prey may cause the predator to get stuck into obstacles. This may lead to
unexpected learning behaviors, as the subtasks and the policy do not take in
consideration this aspect. As Fig. 4.8b highlights, the performance gain is
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due not only to the fact that the predator learns to stay closer to the prey, but
also to catch the prey sooner as learning goes on.

It is also interesting to compare the behavior of DQN and DDQN. The
learning of DDQN seems to be more stable than the one of the DQN ap-
proach. Indeed, we can see that the performance of DQN does not increase
smoothly at the beginning of the learning. This may be caused by the in-
teraction between the two learning algorithms that is mitigated by the more
conservative DDQN updates.
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Inverse Reinforcement Learning

In this chapter we describe a multiple expert, model-free, IRL approach.
As already discussed in the introduction, IRL is a powerful tool that can be
useful in practical applications in general, but in particular for hierarchical
systems, when it is difficult to design a reward function for a sub-task, or
when the reward function provided is not sufficiently informative e.g., when
it is a step constant cost, or when the reward is sparse i.e., when the only
reward value different than zero is either for task success or failure. In this
scenarios, IRL can be an alternative method to shape the reward, as the re-
ward function is optimal w.r.t. the desired behavior.

We focus, as in [14], on reward recovery instead of behavior cloning, as
learning a reward function is more general: with a reward function it is possi-
ble to learn the optimal policy even if the underlying environment dynamics
changes w.r.t. the environment used by the experts. This is also useful when
a sub-task needs to be solved in different parts of the state space, where
the dynamics, and thus the experts’ policy may change. Also, sometimes
the imitator may not be able to exactly reproduce the behavior of a human
demonstrator, but can share the same goals, e.g., a humanoid robot.

To improve both the applicability and the performance of IRL methods,
we focus on the multiple expert scenario. We assume that the experts share
the same reward function, but their policies may be different due to sub-
optimal learning. We call this algorithm Single-Objective Multiple-Expert
Inverse Reinforcement Learning (SOME-IRL).

5.1 Algorithm outline

The high-level structure of the SOME-IRL approach is reported in Algo-
rithm 1. The input of the algorithm are the experts’ trajectories. Also, a

57



Chapter 5. Inverse Reinforcement Learning

Algorithm 1 Single Objective-Multiple Experts IRL
function SOME_IRL(T = {71,...,7n})

p < fom(T) > Phase 1: distribution matching

W « argming, |V,J (p, w|T)|? > Phase 2: gradient minimization
s.t. constraints

return &

parametric family of policies for the experts and a parametric distribution
must be provided. The algorithm can be divided in two steps. The first step
is to find both the policy parameters for each expert and the hyper-parameters
of the experts’ distribution. Once the hyper-parameters of the density func-
tion defined over the experts’ policy parameters have been directly estimated
using the observed demonstrations, we search for the reward function that
better explains the experts’ behaviors. To accomplish this, we use an ap-
proach inspired by the one proposed in [14] for the single expert case. Since
the gradient of the expected return of the optimal policy w.r.t. the policy
parameters is zero, the proposal of [14] is to find a reward function that min-
imizes such gradient. In our case, instead of considering the gradient of the
expected return w.r.t. policy parameters, we want to minimize the norm of
gradient of the expected return obtained from the experts’ policies w.r.t. the
hyper-parameters of the density function. The estimation of such gradient
is a well-known problem in reinforcement learning literature, since it is the
core of the Policy Gradients with Parameter-Based Exploration (PGPE) [24].
PGPE-like methods have been successfully employed in many reinforcement
learning problems showing better performance than classical policy gradient
approaches thanks to a reduction of the variance of exploration, that allows
to perform good gradient estimates even with a limited number of trajecto-
ries. This is a key point even for our IRL approach, since it allows to learn
good reward functions even with a few demonstrations. Furthermore, since
the nullity of the gradient is only a necessary condition for a policy to be
optimal, in order to guarantee to find a maximum we constrain the Hessian
matrix to be negative definite. Other constraints can be imposed over the
reward function parametrization to eliminate undesired degrees of freedom.

5.2 Estimating the Distribution of the Experts’ Policies

The gradient minimization faced by SOME-IRL leverages on the assumption
that the distribution of the experts’ policies p(8|p) is known, which is often
not the case in practice. We show that the distribution parameters p can be
directly recovered from the experts’ demonstrations even though the policy

58



5.2. Estimating the Distribution of the Experts’ Policies

OT0O—0

P 0, Ti N

Figure 5.1: Plate notation for the Maximum likelihood for distribution matching.

parameters 6 are never observed. We formulate this problem as a distribu-
tion matching problem with hidden variables and we describe two solution
methods.

Given a family of parametric policies describing the experts’ behaviors,
we estimate from the available demonstrations the parameters p of the prob-
ability density function p(€|p) representing the distribution of the experts’
policies. We discuss both the naive Maximum Likelihood Estimation (MLE)
approach, using a simple hierarchical model, and a more complex Bayesian
approach. Both formulations exploit hidden variables to represent the unob-
served policy parameters.

5.2.1 Maximum Likelihood Estimation

The computation of the maximum likelihood solution is straightforward when
we consider the simple hierarchical model reported in Fig. 5.2 (dashed red
box). Given the policy parameters, each trajectory 7; is independent from
the parameters p leading to the following likelihood formulation:

N

N
L=p(r,....,7v|p,0) = Hp(Ti’P, 0;) = Hp(ﬁwi)-
i=1

=1

The worst case scenario is obtained when each trajectory is generated by
a different policy parametrization, thus leading to a number of policy param-
eters to be estimated equal to the number of demonstrated trajectories. As
a consequence, the maximum likelihood estimate reduces to a simple two-
step procedure. First, for each trajectory compute the maximum likelihood
for each expert’s policy parameters, then compute the maximum likelihood
distribution w.r.t. the estimated policy parameters.

MLE can be done in closed form, if the policy is a multivariate Gaussian
with state-dependent mean that linearly depends on state features. Assuming
fixed covariance matrix, we first write the log likelihood and we compute the
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Figure 5.2: Plate notation for the Maximum a posteriori model for distribution matching.

derivative:
1 & T
logp(7]6) = =5 > (#(x)"0 — )" T (p(2)70 — s) + k.
t=1
0 = T
%0 logp(8]7) = = > (e(x)"0 —us)” £ ()"
t=1

By forcing the derivative to be the null vector and solving for 8 we obtain:

Ovie = (Z Sﬁ(xt)E_l@(xt)T) (Z 90(%)2_1%) :

Then, the distribution can be estimated in the canonical way.

5.2.2 Maximum A Posteriori

By adding a prior to the distribution parameters p we obtain the hierarchical
Bayesian model reported in Fig. 5.2. In this scenario it is not possible to
exploit the two-step algorithm since the estimate of the parameters no longer
depends only on the expert’s policy.

In the MAP framework, the parameters p and 6 are obtained by maxi-
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mizing the log posterior that is given by:

N
logp(p, 0|71, ..., ) =logp(p) + » logp(7i|6;)
=1 (5.1)

N
+ Y logp(6ilp) + C
=1

In the general case, this posterior cannot be exactly optimized, but we can
resort to approximated methods, like Monte Carlo Markov Chain or varia-
tional inference [88]. However, we can derive a more efficient algorithm for
particular cases. Consider the following property:

Property 1. If the likelihood of trajectories w.r.t. parameters 0, p is Gaus-
sian and we use a Normal-Wishart prior, Eq. (5.1) is a continuous and dif-
ferentiable multi-convex function w.r.t. 0, p.

Proof. The MAP posterior probability can be computed as:
p(p79|7—17"‘)TN)O<p(T17" TN|p7 )p(p70)

—Hp (7P, 0)p(0]p)p(p)

’,:]z

p(7lp. 6, H (6i]p)

]:1 =1

p(7i|0:)p(0:i|p).

”::2

Computing the logarithm of the posterior we obtain:

N N
logp(p, Bl71, ..., 7) =logp(p) + Y logp(7:|6:) + Y logp(8i|p) + C
=1 =1

Notice that this function is non convex in general. If a Normal-Wishart
prior [88] is used for p, then it follows that:

e if the mean and the precision matrix of the distribution are fixed, then
the log posterior is a sum of positive definite quadratic functions w.r.t.
the policy parameters.

e if the precision matrix of the distribution and the policy parameters
are fixed, then the log posterior is a sum of positive definite quadratic
functions w.r.t. the mean of the distribution.
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o if the mean of the distribution and the policy parameters are fixed, then
the log posterior is a sum of linear terms plus the logarithm of the
Wishart probability density function, which is a convex function w.r.t.
the precision matrix of the distribution.

Then, the function is multi-convex. It is also trivial to prove that the function
is continuous and differentiable in the whole domain of the policy distribu-

tion and the policy parameters. [

Accordingly to Property 1, it is possible to use block coordinate ascent [89]
to attain the global optimum of the posterior in Eq. (5.1).

This approach, reported in Algorithm 2, is iterative, but can exploit closed-
form parameter updates. First, the fitting of 8 is solved via MAP estimate by
considering as fixed both the precision matrix and the mean of the distribu-
tion. To derive the closed form, first we write the log posterior and compute

its derivative:
log p(0|7) =log p(7]0) + log p(6)
T,
1 T
T2 Z (o(z)"0 — Ut)T D (go(xt)TH — uy)
=1

1

5 (0= 11,)" 5,1 (0 — i) + &,

Algorithm 2 Coordinate ascend MAP Algorithm
function CA_MAP(u, ., Xp,. T = {71,...,7n})
t<0
Po < [Hey Zp, ]
repeat
tt+1
for i < 1, N do
0, < argmaxlog p(0;,7;)
p; < argmaxp(p|0)
until p(p,, 0:|T) = p(ps_1,0:-1|T)
return 6, p

> Initialize the parameters p to the prior mode

> Optimize 8; with fixed p
> Optimize p with fixed 0
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Mﬁ

o(a)70)" S p(2)” + (1, — 0)" %,

0 log p(0|7) p

00

t=1

——HTZSD )X ()"

- Zu?E’lgo( OTZ —|—,uTZ L

Forcing the derivative to be the null vector and solving for 8 we obtain:

Omar = (Z SO(Z‘t)E_l(P(xt)T + 2;1> <Z @(xt)z_lut + E;lﬂp) .

The other updates to perform are a Gaussian MAP mean estimation with
known precision matrix, and a Wishart MAP estimation with known mean,
w.r.t. the @ parameters. Note that this algorithm can be naturally parallelized,
since the policy parameters 6; can be independently estimated.

As the MAP approach is jointly estimating the parameters of the policies
under a common prior, this method is more robust and less prone to over-
fitting than the MLE approach, especially if the experts’ trajectories explore
only a small subspace of the state-action space.

5.2.3 Selecting the Appropriate Representation

The considered probabilistic inference approaches (MLE and MAP) per-
form well when the chosen policy representation sufficiently matches the
experts’ one. In real-world applications, the experts’ policies are only par-
tially known. For instance, we can guess which are the features exploited by
an expert to draw his decision, but we are not certain that such information
is complete or even used by the expert. Usually, a richer space is created by
combining a set of basic features.

Unfortunately, when using a policy representation that is highly expres-
sive, i.e., it has more degrees of freedom than those actually needed to rep-
resent the expert’s policy, the recovery of the rewards may fail. The main
reason for this behavior is that the “useless” parameters may have a very
low variance, resulting in a very noisy gradient estimate. Fortunately, the
property mentioned here below allows the use of dimensionality reduction
techniques to select the most appropriate representation.

Property 2. If the distribution p(0|p) is Gaussian, SOME-IRL is invariant
to affine transformations.
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Proof. From the definition of the policy gradient estimate:

Vo (pyw) = / / p(710)p(6]p)V , log p(6]p) Ju.(7)drdo,

we can notice that an affine transformation, only affects the V, log p(8|p)
component. Thus, it is sufficient to show that V,log p(8|p) is invariant to
the desired transformations.

Let K and b denote the matrices involved in the linear transformation,
where K is a matrix that incorporates the rotation and the stretch and b de-
notes the translation. Let p = N (p, X) be the original distribution whose
gradient is:

V,logp(8lp) =7 (6 — p).

By applying the mentioned affine transformation to the distribution parame-
ters p and X, we obtain a new distribution p,y = N (K p — b, KX KT) with
gradient:

V,log pui(KO —b|Kp —b) =K' K 'S K™ (KO —b— (Kp — b))
=YK 'K (@ —p)=%"1(0 - p)
=V, logp(6]p).

Note also that the evaluation point 6 is transformed according to the affine
transformation. U

Given Property 2, it is possible to use Principal Component Analysis
(PCA) [88] as a pre-processing step to remove the useless degrees of free-
dom by projecting the parameters of each policy into a smaller, but suffi-
ciently expressive subspace. This pre-processing step significantly increases
the performance of the algorithm.

5.3 Learning the reward function

In order to recover the reward R, we follow a gradient minimization ap-
proach similar to the one used by GIRL, [14]:

w* = arg min Hij<p7 LU)H;

2

(5.2)

/@ AP(T|9)p(9|p)Vplogp(9|p)Jw(T)de9

= arg min
w 2
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GIRL method leverages on the policy gradient formulation in order to re-
cover the reward function that makes the observed expert to behave opti-
mally. Similarly, our approach seeks for the reward parameter vector w* that
makes all the experts (nearly) optimal w.r.t. the same objective. It exploits
the optimization framework defined by the PGPE [24] in order to model the
distribution of the experts’ policies. The resulting SOME-IRL algorithm,
can be seen as a generalization of GIRL where instead of minimizing the
policy gradient, we search to minimize the PGPE gradient i.e., the gradient
of the policy distribution described in Eq. (5.2). The advantages of PGPE
w.r.t. the policy gradient are:

1. the possibility to consider also deterministic and non-differentiable poli-
cies;

2. a significant reduction in the variance of the gradient estimates, thus
requiring less samples and iterations to attain good performances.

As we will see in the experimental section, such advantages are inherited
by the SOME-IRL approach. However, the nullity of the gradient is only
a necessary condition for the optimality and, in practice, may be poorly in-
formative. Differently from GIRL, we propose and show how to extend the
minimization problem in Eq. (5.2) to consider the constraint that the Hessian
of J(p,w) is negative definite.

5.3.1 Distribution gradient minimization

Using the approaches described in the previous section, we are able to esti-
mate the experts’ distribution parameters p and the policy parameters {6}
associated to the N trajectories. Given these three elements (p, 6, {7;} Y ),
we can empirically estimate the gradient (minimized in Eq. (5.2)) of the ex-
pected return w.r.t. the distribution parameters:

. 1 X
VoT (pw) = 5 > Velogp(Bilp) (Ju(r) = 1), (5.3)

=1

where b is an arbitrary baseline that can be chosen in order to minimize
the variance of the gradient estimate, see [90, 91]. In order to recover the
reward function optimized by the experts, we search for the reward function
parameters w that minimize the norm of the estimated gradient in Eq. (5.3):

& = arg min vaj(p, w)Hz. (5.4)
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One of the key properties of SOME-IRL, that is inherited from GIRL, is
that the objective function in Eq. (5.4) is convex whenever the parametric
reward model is linear w.r.t. w.

Proof. Let ®(0) be the feature expectations under policy 7g:

®(0) :% Z i:¢<xtaut;xt+l>'

T, =1

When linear parametrization of the reward is used, the optimal baseline can
be expressed as:
by, = bl w,

where b is the matrix of the optimal baselines w.r.t. the single features. The
optimal PGPE baseline of each single feature can be computed as shown
in [26]. The objective function is:

~

[9odp.0)||, = Vo (p.) Vo (. w)

= (Z Vo logp(6ilp) (©(8:) —b)" w) <Z Vo logp(6ilp) (©(8:) —b)" w)

=1 1=1

=w’ <Z (©(6:) —b) Vp logp(Gz'IP)T) <Z Vo logp(6ilp) (2(6:) — b)T> w

i=1 i=1
=wl VeIVdw,

that is convex, as it is a quadratic dyadic form. ]

The optimization reduces to a quadratic programming problem as the ma-
trix Vo = Zf\il (®(6;) — b) V, logp(0;|p)" needs to be calculated only
once.

5.4 Optimization Constraints

Estimating only the gradient magnitude is not always sufficient to extract a
good reward function. We discuss in this section the additional constraints
that are needed by the optimization algorithm.

5.4.1 Expert distribution constraints

When dealing with MDPs, the optimal distribution of policies expert may
coincide with a distribution that gives probability mass only to the optimal
policy parametrization. This may not be always the case, because even if
the optimal policy of an MDP is always deterministic, the policy distribu-
tion may be over a policy parametrization such that a subset of policies may
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be equivalent. However, in practical scenarios e.g., reasonable parametriza-
tions and Gaussian experts’ distribution, this can be an issue. It is impor-
tant to constrain the policy distribution in order to exclude unwanted dis-
tributions from the considered distribution space. This can be easily done
by a reparametrization of the distribution. The most effective and simple
reparametrization for Gaussian expert distributions is to consider the vari-
ance of the distribution fixed, thus removing all the parameters related to
the variance from the optimization problem, obtaining a gradient that only
depends on the mean value.

5.4.2 Simplex Constraint

Although the formulation in Eq. (5.4) is sound, in practice it is useful to
constrain the shape of the reward function on a bounded set or to chose a
representation that is scale-invariant. Particularly, when the reward func-
tion is linear we must introduce a constraint in order to avoid the ambiguity
problem [10], e.g., by constraining the weights in the simplex (see [14] for
an extensive analysis). Despite the need of an additional constraint, the lin-
ear reward representation is interesting since it can be efficiently solved and
can be theoretically analyzed in order to derive guarantees on the recovered
weights (as done in [14]).

5.4.3 Second Order Constraint

In general, the nullity of the gradient is only a necessary condition for op-
timality. If the expected return of the expert’s policy is concave (or log-
concave) w.r.t. the policy parameters, then the gradient-minimization ap-
proach is sound, as all the stationary points of the expected return w.r.t. the
reward function parameters are global optima. However, in many situations,
it is possible to have a reward function that has multiple stationary points.
The problem is that these points may not be exclusively maxima, but they
may be also saddle points or local minima. Such points are unstable points
in the learning process and the behavior induced by the retrieved reward
function diverges from the one demonstrated by the experts.

Negative Definite Constraint

In order to discard local minima and saddle points, we need to add a second
order constraint. Specifically, the Hessian (#,) of the expected return w.r.t.
the reward parameters must be (strictly) negative definite. This is the same
as requiring that the maximum eigenvalue (\;) of the Hessian is negative.
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Given an estimate of the Hessian [92]:

N
- 1
HpJ (p.w) = D, (Vo logp(6i|p)V, log p(6ilp)"

=1
+H, 108 p(0,1p)) (Ju(8:) — ba) . (5.5)

where b,, is a baseline that depends on w, the negative definite constraint is
given by:
max A(H,J (p, w)) = max VIH,T (p,w)v < 0. (5.6)
v\t rv=
As seen before, the linear reward function induces nice properties in the
problem. In the linear case, the fact that the Hessian matrix is linearly de-
pendent on the parameter vector w induces a convex constraint. Formally,
such constraint is equivalent to the maximum of a set of linear constraints.
In practical cases, the constraint in Eq. (5.6) may not be sufficient as the
Hessian estimate is noisy. Instead of requiring that the largest eigenvalue
is strictly less than zero, we introduce a soft threshold e (positive and small
enough). The value of such threshold is problem-dependent, and should be
selected such that the true Hessian is negative definite with high probability.

Local Curvature Heuristic

Since an accurate estimate of the eigenvalues of the Hessian matrix usually
requires a large amount of samples, we define the following alternative con-
straint:

fo(p,w)T”pr(p,w)fo(p,w) <K, K<O. (5.7)

This constraint is equivalent to requiring that the curvature of the objective
function in the direction of the gradient is negative. When a small amount of
data is available, the evaluation of the constraint in Eq. (5.7) is more reliable
than the evaluation of constraint Eq. (5.6). On the other hand, the constraint
in Eq. (5.7) (differently from the constraint in Eq. (5.6)) does not represent a
sufficient condition for local maxima. Another drawback of this constraint is
that it is a cubic, non-convex function of the reward parameters w. However,
in practice, the optimization under this constraint does not pose particular
issues.

5.5 Expectation-maximization approach

We propose an alternative method to gradient minimization in order to re-
trieve the reward function parameters, that does not require Hessian con-
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straints. The main idea of the gradient-based inverse reinforcement learning
algorithms is to find a policy that is optimal by exploiting the fact that the op-
timal policy is a policy for which the gradient of policy parameters w.r.t. the
reward function is the null vector. Thus, we can say that the (locally) optimal
parametrization can be seen as an attractor for any policy gradient algorithm.
Policy Gradient algorithms are not the only policy search methods that con-
verge to optimal policies or distributions. Expectation Maximization (EM)
methods are methods that exploit the EM update, and they converge to a
locally optimal parametrization. We can exploit the same idea of policy gra-
dient IRL methods in the EM framework. The basic idea of this approach is
to minimize the “distance” between the original expert distribution and the
distribution after the EM update.

The first issue to face is the selection of an appropriate metric. When con-
sidering the gradient it is straightforward to use the L2 norm i.e., the gradient
magnitude, as metric. This metric may not be reasonable to measure the dis-
tance between two distributions. We propose the KL divergence as (pseudo)
metric to be minimized. The reward weights are retrieved by solving the
following optimization problem:

w* = argmin KL(D,, || Dp(w))- (5.8)

where D, is the expert distribution with probability density function p(6|p),
and Dy.,) is the same distribution after the EM update, given that the reward
function is parametrized by w.

We propose an instance of this method where the EM update is the up-
date performed by the RWR [26] algorithm. This update is a weighted max-
imum likelihood estimate, where the samples from the experts distribution
are weighted using an exponential transformation of the trajectories return.
We define the weights d; for each sample 8, of the reward function as:

di _ eJ“,(Bi)—mlg)‘xJ“,(Gk,)7 (59)
where J,,(8;) is the return of the i-th expert under the reward function parametrized
by w. We call the vector of weights for every policy as d.

A practical implementation of this algorithm can be obtained when con-
sidering a Gaussian expert distribution with mean g and variance ». We
make the assumption that the expert covariance matrix is fixed under the EM
update i.e., the distribution parameters p is just the mean vector p. This
constraint on the distribution update is due to the same reasons highlighted
for the SOME-IRL algorithm. Under these assumptions, the minimization
problem in Eq. (5.8) can be written as:

w* = argmin((w) — u)" S (A(w) — p), (5.10)

69



Chapter 5. Inverse Reinforcement Learning

where /i(w) is the mean vector of the distribution after the EM update:

Eq. (5.10) shows that, when using a Gaussian experts distribution, the
resulting optimization problem is a norm minimization problem, with the
inverse of the covariance matrix > as metric. When X is a multiple of the
identity matrix, this problem reduces to the L2-norm minimization of the
difference between the original mean vector and the updated mean vector.

It can be easily seen, by looking at Egs. (5.10) and (5.11), that the re-
sulting function to be minimized is a continuous and differentiable function
w.r.t. w (notice that the max operation in Eq. (5.9), that is not differentiable,
is factored out in the division). However, it is not linear w.r.t. w. This is
a major issue of this approach, as the optimization may become impracti-
cal for large dataset and complex reward function parametrizations. Notice
that, differently from the gradient-based approach, there is no practical way
to reduce the optimization problem to a quadratic programming constrained
problem, even when the reward function is linearly parametrized. However,
at least for simple problems, the optimization is not problematic, and the re-
ward function retrieved is close to the one obtained by the gradient approach,
without using the Hessian constraints.

This approach may appear similar to the Relative Entropy Inverse Rein-
forcement Learning proposed in [11], however there are major differences,
both practical and conceptual, between the two. This approach can be used
to replace the gradient approach described above, and thus faces the multiple
expert problem, instead of the single expert one. Another major difference
is that the Relative Entropy approach is computing an approximate gradi-
ent of the exact objective function, while we use an exact gradient (or any
other optimization technique) on an approximate objective function. This is
a major difference as our approach does not need further samples from the
environment, thus being fully batch. In our framework the objective function
is approximate as we suppose known the policy distribution, while this as-
sumption does not always hold and the distribution must be estimated using
the techniques described above.

5.6 Experimental results

We evaluate the approach in three different domains: the Linear Quadratic
Regulator (LQR) domain [14], the 2-dimensional Non Linear System (NLS)
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defined in [93] and the Ship Steering problem [46]. All the experiments
consider 100 runs for each setting.

5.6.1 LQR

This environment corresponds to the task of solving the optimal control for
a linear time invariant discrete system. We consider the same experimen-
tal setting as in [14]. We used this environment with 2 and 3 states vari-
ables. The task is to find the optimal parameters for the linear control rule
under a quadratic cost function. In this experiment we will consider the re-
ward function of this environment, described in Appendix A.1, to be linearly
parametrized with parameter vector w. This can be expressed in terms of the
R and @) matrices as follows:

Rw)=> Rwi,  Qw) =Y Quwi,
k K

where the (i,j)-th component of matrices Iy, and () are:

01 i=j5=k 09 i=j5=k
Rilij =409 i=j , Qrliy=1401 i=j#Fk.
0 otherwise 0 otherwise

In this experiment, the parametric reward function contains the experts’
reward function. The expert parametrization is indicated as w*.

The distribution of the experts’ policies is a normal distribution whose
mean is the optimal linear policy parameters, that can be found by solving
the associated Riccati equation, and diagonal covariance matrix, with 1le — 3
variance for each parameter.

When the distribution of the policy parameters p(6|p) is known, the
SOME-IRL approach outperforms the GIRL algorithm, as can be seen in
Figures 5.3 and 5.4 (note different scale on y-axes).! This is mainly due to
the low variance of the PGPE gradient estimates.

When the distribution and the policy parameters are not known, they must
be estimated: either the faster MLE approach, or the MAP approach, more
robust when the experts’ policies are stochastic, can be used. In Figures 5.5
and 5.6 is shown the performance of the two methods, tested with stochastic
expert policies where the actions are sampled from Gaussian distributions
with standard deviation of 0.01. The performance of the MAP method is,

I'The double lines in some of the plots are used to break the y-axis in order to improve visualization when there
are some points that are out of scale.
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Figure 5.3: 2D LQR. Error of the reward parameters found by SOME-IRL and by GIRL
with exact policy.
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Figure 5.4: 3D LQR. Error of the reward parameters found by SOME-IRL and by GIRL
with exact policy.

in this scenario, better than that of MLE, even when the number of trajecto-
ries grows. The reason for this is that the MAP method takes into account
the inter-policy similarity to avoid overfitting when the experts’ policies are
stochastic.

We also investigated the performance of the SOME-IRL algorithm when
the policy model is not known: in this scenario, when the considered para-
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Figure 5.5: 2D LQR. Error of the reward parameters found by SOME-IRL with MAP and

MLE estimation of p.
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Figure 5.6: 3D LQR. Error of the reward parameters found by SOME-IRL with MAP and
MLE estimation of p.

metric policy model is not sufficiently expressive, the algorithm does not
obtain good results. When the policy model is sufficiently expressive, then
SOME-IRL achieves good performance with enough samples and with PCA
post-processing of distributions. However, when the policy becomes too ex-
pressive, the performance of the algorithm degrades significantly, as it can
be noticed in Fig. 5.7 (right). This is not a major drawback, as the quality
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Figure 5.7: LQR. Performance of SOME-IRL with MLE and policies approximated using
polynomials of different degrees (from 0 to 3).

of the reward function is correlated with the magnitude of the estimated gra-
dient that can be quickly computed offline. In practice, the batch nature of
SOME-IRL allows to perform an optimization of the meta parameters, i.e.,
it is possible to test several policy approximators and choose the best one.

5.6.2 Non Linear System

This problem is similar to the LQR problem, but with a more complex dy-
namics and reward function. NLS is the nonlinear system described in [93].
See Appendix A.2 for further details.

The features of the reward function are 25 (5 x 5) Gaussian RBFs dis-
tributed evenly in the range [—3,3]%. The real reward function cannot be
exactly represented by this approximator, however the nearest reward func-
tion is the one that gives maximum weight to the central feature.

The distribution of the experts’ policies is a normal distribution of linear
policies with parameters 8 = [6.5178, —2.5994]7 and identity covariance
matrix with 0.1 variance for each parameter. This sub-optimal policy was
obtained via REINFORCE [26].

In this domain, the simple minimization of the gradient is not enough,
because the solution with minimum gradient corresponds to a saddle point,
thus the feature expectations of the policy learned with the recovered reward
function diverge w.r.t. the ones of the observed experts.

We can see in Fig. 5.8 that the best performance is achieved by imposing
the Hessian to be negative definite, but it has higher variance due to the dif-
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Figure 5.8: NLS. Error of the reward parameters found by different versions of
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Figure 5.9: NLS. Mean reward functions after 20000 trajectories.

ficulty of the Hessian estimation. The curvature constraint recovers a biased
reward function, as it can be seen in Fig. 5.9, but the estimate is less variant,
and the feature expectations match comparably with the exact solution, as
shown in Fig. 5.10. Notice that the GIRL algorithm cannot recover a good
reward function, as it does not consider any second order constraint to en-
force the maximum condition. An implementation of the Hessian constraint
in the GIRL setting is not feasible, as the large variance of the estimate of the
Hessian makes the number of needed samples intractable. Refer to Fig. 5.11
for examples of recovered trajectories.
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5.6.3 Ship Steering

This problem consists of driving a ship through a gate, without going outside
a defined region (see [46] and Appendix A.3 for details). For these experi-
ments we have used the difficult version of the environment i.e., the version
with control action computed at every step.

The approximate reward function is a linear reward function that uses as
features a set of 400 (20 x 20) tiles in the two spatial dimensions. The ex-
ploited policy is a linear policy w.r.t. a grid of 108 (3 x 3 x 6 x 2) Gaussian
RBFs with 25% of overlapping. The distribution of the experts’ policies is
a normal distribution with diagonal covariance matrix with 0.1 variance for
each parameter and mean represented by the sub-optimal parameters learned
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Figure 5.12: Ship Steering. Error in the features expectations of different versions of
SOME-IRL and CSI.

via REINFORCE. The matching of the features expectation is calculated
from an expert trained with REINFORCE, using the same policy family of
the experts on the recovered reward function, and then compared to the fea-
tures expectations of the experts.

This last domain is designed to test the proposed algorithms against two
batch IRL algorithms, Structured Classification-based Inverse Reinforce-
ment Learning (SCIRL) [12] and Cascaded Supervised Inverse Reinforce-
ment Learning (CSI) [13], on a more complex problem. Since CSI and
SCIRL are not able to deal with continuous actions, we have used 10 uni-
formly spaced actions bins. The experts’ policies are modeled as a Gaussian
distribution around the parameters of the policy found using REINFORCE
and variance 0.1 /.

Fig. 5.12 shows that SOME-IRL variants perform comparably to CSI,
and, if a sufficient number of samples is given, SOME-IRL with the Hessian
constraint performs similarly to CSI. However, we have empirically noticed
that SOME-IRL requires much less computational resources (both time and
memory) than CSI, since the CSI algorithm works with matrices that de-
pends on the number of steps performed, while our approach is episode
based. This is particularly true if the dimensionality of the action space
increases, due to the “curse of dimensionality”. We have not reported the
performance of SCIRL since it was completely unable to match the feature
expectation of the expert. We guess that the issue of SCIRL in this setting is
the heuristic used by the algorithm.

We performed another experiment on the ship steering domain to high-
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light the advantages of the curvature heuristic when the Hessian estimate is
difficult. In this experiment a 20 x 20 RBFs grid is considered. Examples of
trajectories recovered by SOME-IRL using RBFs are reported in Fig. 5.13.
We can clearly see that omitting the Hessian constraint, it is possible that the
obtained behavior diverges w.r.t. experts’ demonstration. The trajectories
obtained by adding the Hessian constraint are better, but they fail to describe
the real objective of the environment. This can be due to an inaccurate eigen-
velues estimate. Curvature heuristic, while showing demonstration that does
not match exaclty the expert ones, probably due to the bias added in the op-
timization that makes impossible to obtain zero gradient solutions, is able to
capture more closely the objective of the environment.
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Figure 5.13: Ship steering trajectories, with RBFs as reward features.
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Chapter 6

Conclusions

We have presented a set of techniques to face one of the most important
issues in Reinforcement Learning: the design of hierarchical agents. Hierar-
chical agents are an extremely important approach to reduce the gap between
RL research and practical industrial applications.

While the model-free RL algorithms are now able to learn moderately
complex tasks without any prior knowledge, for real world environments
these algorithms are still not applicable, as they require a lot of interactions
to learn. The exploitation of prior knowledge, both by manually inserting
it in the system, or by inferring it automatically from the demonstration, is
one of the key methods to face complex tasks, and the literature often lacks
on this aspect as, at least in recent years, the focus has shifted towards com-
pletely automatic learning systems. These systems, mostly based on neural
approximators, are really appealing, as their objective is to design agents
that are able to learn tasks without any human intervention and are having
an outstanding success for solving simulated tasks e.g., electronic and board
games [31, 94, 95]. However, while the algorithms are improving year by
year, we are still far from learning algorithms that can run without careful
preprocessing and parameter tuning. We believe that it is not reasonable, at
the present time, to run one of this algorithms in most real world scenarios:
not only the amount of data required to learn is not compatible with real
world applications, but also the instability of the learning process, the possi-
bility of undesired behavior in unexplored regions of the state space and the
amount of preprocessing and implementation details to make the learning
work, can have catastrophic consequences.

While in this work we do not provide a complete and definitive solution
to any of the problems highlighted in the literature and above, we have put
the focus on one of the possible ways towards the application of RL in the
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real world: the structure of the agent.

In the first part of the thesis we discussed the structure of the agent, in
particular in the framework of HRL, and what are the key issues raised by
its design. We believe that the design and the implementation of an agent
are tightly coupled, and it is important to provide a framework in which it
is natural and easy to design a complex control structure. For this reason,
we have presented HCGL, a novel HRL framework, inspired by the block
diagram used in control theory, that not only provides an easy way to spec-
ify the design of the hierarchical agent, but also represents directly both the
policy and the learning structure. Our idea is strongly opposed to the idea of
procedure, that is one of the fundamental ideas of classical HRL, in most of
the previous frameworks. While procedures and macros are one of the fun-
damental building blocks of information technology and Al, they might not
be the best framework for control systems that live in a continuous world,
where states cannot be easily described by an abstract, high-level represen-
tation, at least at the actuator level. We propose a decentralized learning
framework, where each subsystem is learned independently, as opposed to
the centralized learning view of classical HRL systems.

The centralized view that characterizes in particular the option framework
and the intra-option learning, has major advantages, as it can coordinate dif-
ferent parts of the systems and subtasks towards the goal. However, in most
branches of engineering it has been shown that centralized approaches do
not scale well with the complexity of the system to be controlled. Decentral-
ized approaches may give rise to problems due to the complex interaction
between different subsystems and learning algorithms, but they have major
advantages both during the design and the implementation of the systems.
With a decentralized approach it is possible to decouple different parts of
the problem, and use the best solution for each component. Decentralized
approaches are easier to train, as it is possible to train each part of the sub-
system separately or initialize the subsystem policy using prior knowledge
e.g., using control theory and models of the environment to initialize the pa-
rameters and then let the system to automatically tune them in a model-free
fashion, by overcoming issues related to poor model and parameter identifi-
cation. Decentralized approaches make easier to analyze both the learning
and the behavior of isolated subsystems, thus it is easier to spot which are
the problematic parts of the agent structure. For this reason, the concept
of induced environment i.e., the environment seen by a single subsystem, is
important to study the properties and the design of the proposed distributed
learning algorithm.

An important part of HRL is the definition of the reward function each
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subtask should optimize. Every RL system must optimize the expected dis-
counted return computed from the extrinsic reward function that measures
how well a given agent behaves in the considered environment. However, in-
trinsic reward functions are one of the most important parts of HRL systems
as they are useful to characterize a given subtask. It is possible to learn tem-
porally extended actions and sub-policies even without any intrinsic reward
functions, as done in some recent works [57], however it is impossible to
impose or suggest a specified behavior without specifying this performance
metric. For this reason, the computation of reward signals is a key part of
HCGL, and in our framework they are considered as an important part of the
control system: autonomous systems should be able to compute the intrin-
sic reward signals using just the information available from the measures of
their sensors, and this is the main reason why the computation of intrinsic
reward functions is tightly coupled with the interaction of the control system
with the environment.

As the design of the reward function is one of the key elements of hi-
erarchical agents, in the second part of this work we focused on Inverse
Reinforcement Learning, with the main objective of retrieving the reward
function, instead of learning the expert policy from demonstrations. With
IRL, it is possible to automatically encode the expert knowledge about a
task, or a subtask, into a reward function that specifies what is the objective
the expert is trying to maximize. This property is particularly useful when
we need to specify a subtask. The SOME-IRL approach we developed takes
inspiration from previous works presented in the literature, extending the
gradient based method to the framework of multiple experts. The reason for
this extension is twofold: it is a more reasonable setting w.r.t. the stochastic
expert framework presented in the original GIRL algorithm, and it is more
sample efficient. The latter feature of SOME-IRL, allows to estimate more
accurately second order constraints, that were missing in the original algo-
rithm. Without these constraints it is possible to obtain reward functions that
the expert is trying to minimize instead of maximize. This extremely unde-
sirable behavior cannot happen in HCGL, at least if a sufficient number of
samples is used to estimate the hessian constraint. We argue that the mul-
tiple, suboptimal, deterministic, expert model is more reasonable than the
optimal stochastic expert one, as human demonstration are rarely optimal,
and often humans, while not behaving always consistently, do provide nor
good neither sufficient exploration in order to compute a stochastic gradient
accurately. We believe, instead, that is reasonable that the expert distribution
is concentrated around the optimal policy. In this work, we assume that the
expert distribution is defined by the parameters distribution: this is a strong
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assumption, that however could hold in general, by defining an appropriate
parameter space and an appropriate distribution.

The ideas proposed in this thesis could be extended in various directions.
It would be interesting to study the interaction between different RL algo-
rithms in the distributed learning scenario we have presented. We believe
that, by assuming some properties of each induced environment, it is possible
to derive some theoretical properties about the convergence of the described
system, and for distributed learning algorithm in general. This analysis could
be interesting also in other frameworks, such as the multi-agent RL.

Another interesting aspect of the HCGL framework that should be ana-
lyzed is the off-policy learning scenario, where multiple controllers produce
an action, but only part of them is actually considered by the rest of the
system. Currently, HCGL does not support this type of learning, but a fur-
ther extension, that considers if the signals are effectively applied at each
time step, can be developed, and the implications of this model on off-policy
learning can be analyzed. The work on IRL can be easily extended to con-
sider automatic features construction either by using deep neural networks
or a method similar to the one proposed in [79].

It would be also interesting to study empirically the effect of IRL in the
HRL framework, particularly when we want to transfer the knowledge of a
known subtask from a toy, limited, scenario, into a more realistic one: an
objective can be specified as a target set of states, by a sparse reward func-
tion, in an easy-to-solve environment, and then the learned reward function,
extracted with IRL techniques, could be transferred to learn a dense reward
function in a more complex scenario. In the setting described above, the
agent’s policy is known, thus the behavior cloning phase is not needed. This
makes the techniques described in this work more applicable, together with
other related algorithms. Another possible extension for the SOME-IRL al-
gorithm is to consider the multiple objective scenario. This scenario could
possibly be modeled by a multimodal expert distribution, where each mode
is optimal w.r.t. a different mode of the objective function resulting from the
reward function and the environment transition model. The performance of
SOME-IRL is not completely clear in this scenario, however, it is possible,
whenever each distribution mode is described by different parameters e.g.,
when considering Gaussian mixture models, to compute a different reward
function for every mode. However, the properties of the extension to the
general case, in particular when we want to extract a single reward function
for all the experts, are difficult to highlight and more investigation is needed.
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Appendix A

Description of the environments

In this appendix, we will summarize all the details regarding all the environ-
ments used in the experiments of this work.

A.1 LQR

The Linear Quadratic Regulator (LQR) domain is the classical control theory
task of stabilizing a linear system (with a linear feedback controller) under a
quadratic cost objective function. The system dynamics are:

z(t +1) = Az(t) + Bu(t).

In our experiments we used the identity matrix for A and B. The reward
function is:

r(t) = —x(t)" Qx(t) — u(t)” Ru(t).
The discount factor for every experiment using this environment is set to

~v = 0.9. This environment has no absorbing states, but we set a horizon of
50 steps for each episode.

A.2 NLS

The NLS environment is a 2D nonlinear system defined in [93]. The system
dynamics are:

1

Tt +1) = x2(t) + 1 + exp(—uf(t))

—0.5+n.

where 1 ~ N (0,0.02).
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Appendix A. Description of the environments

The reward function is:

o) = {1 ol < 0.1

0 otherwise

The trajectories have a horizon of 80 control steps. The discount factor
used in the experiment involving this non-linear system is v = 0.95.

A.3 Ship Steering

The ship steering problem consists in driving a ship towards a gate. Similar
environments have been used both in control theory [96] and reinforcement
learning [46]. The state dynamics for the environment is the following:

8

~ T+ T+ T

x(t) +vsin(6(t))dt
= y(t) +vcos(0(t))dt
= 0(t) +w(t)dt

= w(t) + (u—w(t))dt/T

With v = 3.0m/s, dt = 02s, T = 5.0 and v € [—75, {5] (radians/s).

The transition model applies the above dynamics for n steps. The reward
function is:

> <
++ + +
oo
|

(
(
(
(

w

Touw outOfBounds
r(t) =10  throughGate ,
—1 otherwise

where throughGate is true if the ship crossed the gate in the last transition,
and outOfBounds is true if the ship goes out of the environment bounds. If
the ship crosses the gate or goes outside the field, the trajectory ends. The
trajectory horizon is set to 5000 control steps. The discount factor used in
the experiments on all variants of this environment is v = 0.99.

Variable Min Max

T 0 150
y 0 150
0 —T T
u 13 12

Table A.1: State and action ranges for small and difficult environment
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A.4. Segway

Variable Min Max

T 0 1000
y 0 1000
0 - T
A R
u 12 12

Table A.2: State and action ranges for big environment

Three different versions of this environment are used in this work: the
small environment, the big environment (both used in Chapter 4), and the
difficult environment (used in Chapter 5). Both the small and the difficult en-
vironment share the same state and action space, reported in Table A.1. The
gate is a line connecting the two points gs = (100, 120) and g. = (120, 100).
The difference between these two environments are the reward and the inte-
gration steps. In the small environment, we have n = 3 and 7o, = —100,
while in the difficult environment n» = 1 and 7., = —10000.

The state bounds for the ship steering environment are reported in Ta-
ble A.2. The integration steps and the out of bounds penalty for this version
of the environment are the same as the small environments i.e., n = 3 and
Tour = —100.

A.4 Segway

The Segway is a balancing wheeled robot, that can be described as an in-
verted pendulum mounted on a wheel, as shown in Appendix A.4. The ob-
jective of this environment is to drive the Segway towards the goal position
while maintaining vertical the inverted pendulum as much as possible. This

1 S

Figure A.1: The Segway environment and state variables
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Appendix A. Description of the environments

Parameter value

M, 0.3%2

Mp 2.55

I, 2.6-1072

I, 4.54-107* % 2
l 13.8-10—2

r 5.5-1072

dt 1072

g 9.81

Table A.3: Parameters used in the Segway environment

environment is very similar to the Segway described in [87], however dif-
ferently from the previous work, we added the position control. The system
dynamics are the following:

O = Wy

. .

5 = —wgr

, hol Myrw? sin o — ghyIM, sina + (hg + hy)u
Wy = —

Toihs — 2

, hal Myrw? sina — ghol M, sin a + (hs + ha)u

u)g = 3
hohss — 12

hiy = (M,+ M,)r*+1,
hy = Myrlcos(a)
hy = IPM,+ I,

The control action u is constrained such that the applied torque falls in the
interval [—5, 5]. The discount factor used in the experiments involving this
environment is v = 0.99. The values for the parameters of the system can
be found in Table A.3.

The transition model is obtained by integrating the system dynamics, ap-
plying constant torque action u, for At = 0.02. The initial state is xq =
[—1.0, %,0,0]. The discount factor for every experiment using this environ-
ment is set to v = 0.9. All the states where o & [—7, 7] or s € [—2,2] are

2
absorbing states. All trajectories that doesn’t reach an absorbing state are cut
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A.5. Prey-Predator

using a horizon of 1500 control steps. The reward function is the following:

~10000 fall
r(t) = ¢ —10000 out ,
—z(t)Qz(t)T, otherwise
where () = diag([10, 3,0.1,0.1]) is a diagonal weights matrix for the quadratic

cost penalty, fall and out are true when the pendulum angle « and the posi-
tion variable s go outside their bounds.

A.5 Prey-Predator

The prey-predator environment consists of two differential drive robots,
where the objective of the learning agent, the predator, is to catch the other
robot, the prey, inside a square environment with obstacles. Both robots are
considered as points, with no footprint. The prey has a higher maximum an-
gular velocity than the predator but they have the same turning radius (0.6m).
The differential drive dynamics used are the following:

z(t + 1) = z(t) + cos(0(t))v(t)dt
y(t+1) = y(t) +sin(0(¢))v(t)dt
O(t+1) =0(t) + w(t)dt.

In our experiments we set dt = (.1. State and action are bounded as de-
scribed in Table A.4. The orientation is computed w.r.t. the = axis. The envi-
ronment includes the following obstacles: the segment (1, 3.48) — (5, 3.48)
and the polygonal chain (—3.0,—1.5) — (=3.0,1.25) — (—1.48,1.25) —
(—1.48,—1.5). In Fig. A.2 a graphical representation of this environment
is shown.

Variable Min Max
T prey, predator -5 5
Yprey, predator -5 5
eprey, predator - s
Uprey 0 1.3
Upredator 0 1.0
Worey  -2.1666  2.1666

Wopredator -1.666 1.666

Table A.4: State and action ranges for prey-predator environment
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[ A)

Figure A.2: The prey-predator environment. Predator is shown in red, prey in blue. The
white area around the predator represents the catch radius.

The prey is considered captured if the predator distance is less than 0.4m
and there is no obstacle between the two robots. If the prey has been cap-
tured, then the episode ends. All episodes are cut when they reach a horizon
of 500 steps.

The evasion policy of the prey is a complex policy. The linear velocity is
calculated as follows:

0 distance > 3.0
Uprey(t) = ¢ 1.3 distance < 1.5
0.65 otherwise

To compute the angular velocity, first is computed the difference between
the current prey orientation and the angle of attack the predator i.e., the an-
gle w.r.t. the x axis of the segment connecting prey and predator. Then the
value of the angular velocity is computed by multiplying the error by a pro-
portional gain k = % If a potential collision is detected within 1.5m, the
prey rotates in the direction of the biggest angle at maximum angular ve-
locity. If following this rotation, the prey is closer than 0.9m to another
obstacle, the rotation is inverted. This last behavior is implemented in order
to maneuver properly near the corners, avoiding to get easily trapped.

The reward function for this environment is computed by multiplying by
-1 the distance between the prey and the predator after applying the action
1.e., it is computed using the next state. For every experiment using this
environment, the discount factor is set to v = 0.99.
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