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“Penso che la matematica sia una delle manifestazioni più significative dell’amore per la sapienza,

e ha forse una capacità unica tra tutte le scienze di passare dalla osservazione delle cose visibili

all’immaginazione delle cose invisibili. Questo forse è il segreto della forza della matematica.”
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Abstract

The objective of this thesis is the investigation of inverse problems related to semilinear boundary

value problems involved with the mathematical description of the cardiac electrical activity. The

long-term purpose which motivates the research in this field is to discuss the possibility of identifying

ischemic areas within the cardiac tissue only by means of non-invasive measurements. We tackle this

issue within the mathematical framework of the theory of Inverse Problems, pursuing an approach

which focuses both on analytical and on numerical aspects.

Mathematical models allowing for a satisfactory description of the cardiac electrophysiology

have been developed since the late 70s, and consist in coupled systems of nonlinear parabolic partial

differential equations and ordinary differential equations. When considering the presence of ischemic

areas within the tissue, discontinuous alterations of the coefficients are entailed: we consider the

inverse problem of determining such inhomogeneities from the knowledge of the electrical potential

on the boundary of the domain. Despite some contributions have been recently given in this field,

a complete theoretical investigation of this inverse problem has not yet been carried out. The main

guidelines of our study are both the extension of the existing theoretical results and the development

of effective and rigorous numerical reconstruction algorithms. We proceed by formulating simplified

versions of the problem of interest, and then extending the results on subsequent refinements of the

model. We also rely on the introduction of regularization hypotheses, namely, a priori assumptions

regarding the inhomogeneity to be identified, which help in restoring the well-posedness of the inverse

problem: particular attention is given to the task of localizing ischemic areas of small size.

Regarding the identification of small inclusions (both in a semilinear elliptic and parabolic pro-

blem), we rely on the formulation of an asymptotic expansion of the boundary voltage with respect

to the size of the inclusion in order to analyze the well-posedness of the inverse problem and also to

introduce a reconstruction algorithm, based on a Topological Optimization approach.

When removing any a priori assumption and tackling the detection of arbitrarily large inclusions,

no theoretical result regarding the well-posedness of the inverse problem is known; we instead focus

on the rigorous deduction of a reconstruction algorithm for the approximation of its solution. The

devised technique, which relies both on the regularization theory for inverse problems and on a

relaxation strategy, allows for satisfactory reconstructions.

We finally move towards the application of the introduced techniques on the full complexity of

the application model. We hence investigate the well-posedness of the direct problem, extending the

existing results in the literature. An additional aspect which is taken into account, from a numerical

perspective, is the a posteriori error analysis of the discrete solver of the direct problem, which is

preliminary for an efficient application of the developed reconstruction algorithms.
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Sommario

Lo scopo del presente lavoro di tesi è l’analisi di un problema inverso relativo ad un problema

al contorno semilineare per la descrizione matematica dell’attività elettrica del cuore. L’obiettivo

di lungo termine che motiva la ricerca in questo campo è la possibilità di identificare la presenza di

regioni ischemiche nel tessuto cardiaco attraverso misurazioni non invasive. La tematica è affrontata

nel contesto della teoria dei Problemi Inversi, focalizzandosi sia su aspetti analitici che numerici.

Modelli matematici per la descrizione dell’elettrofisiologia cardiaca sono stati sviluppati dagli anni

70, e si articolano in sistemi che presentano equazioni paraboliche alle derivate parziali accoppiate

con equazioni differenziali ordinarie. La presenza di aree ischemiche nel tessuto implica di considerare

un’alterazione discontinua dei parametri: ci occupiamo pertanto del problema inverso di determinare

tali inomogeneità dalla conoscenza del potenziale elettrico sulla superficie del dominio. Nonostante

si siano registrati diversi contributi in questo campo negli ultimi anni, non è ancora stata condotta

una completa analisi teorica del problema inverso. Le linee guida di questo studio sono perciò sia

l’estensione di risultati teorici esistenti sia lo sviluppo di algoritmi di ricostruzione numerici che

siano efficaci e rigorosi. Procediamo formulando versioni semplificate del problema di interesse, per

estendere poi i risultati a raffinamenti successivi del modello. Ci basiamo inoltre sull’introduzione

di ipotesi di regolarizzazione, ossia assunzioni a priori circa le inomogeneità da identificarsi, le quali

aiutano a ripristinare la buona posizione del problema inverso: un’attenzione particolare è fornita

al problema di localizzare aree ischemiche di piccole dimensioni.

Per quanto riguarda l’identificazione di piccole inclusioni (sia in problemi ellittici che parabolici),

il risultato cruciale è la formulazione di uno sviluppo asintotico per la perturbazione del potenziale

elettrico di bordo rispetto alle dimensioni dell’inclusione, che permette di analizzare la buona posi-

zione del problema inverso e anche di dedurre un algoritmo di ricostruzione basato su un approccio

di Ottimizzazione Topologica.

Se si rimuove invece ogni ipotesi a priori e si affronta la ricerca di inclusioni arbitrariamente

grandi, non esiste alcun risultato circa la buona posizione del problema inverso; ci concentriamo

invece sulla deduzione rigorosa di un algoritmo di ricostruzione per l’approssimazione della soluzione.

La tecnica approntata, che si basa sia sulla teoria della regolarizzazione per problemi inversi sia sul

rilassamento del problema di ottimizzazione associato, permette di ottenere risultati soddisfacenti.

Infine, ci accingiamo ad applicare le tecniche introdotte sul modello applicativo nella sua comples-

sità. A questo scopo, è prima necessario studiare la buona posizione del problema diretto, estendendo

i risultati presenti in letteratura. Un ulteriore aspetto che viene considerato, da un punto di vista

numerico, è l’analisi a posteriori dell’errore commesso nell’approssimazione numerica del problema

diretto, studio preliminare per incrementare l’efficienza degli algoritmi di ricostruzione.
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Chapter 1

Introduction

1.1 Motivation: mathematical models of the electrical acti-

vity of the heart

Mathematical models of the electrical activity of the heart represent a research field of growing

interest. During the last decades, thanks to the development of non-invasive techniques allowing to

observe and measure inner properties of the organ, even at a cellular scale, it has been possible to

develop and validate several accurate and comprehensive models. Moreover, the implementation of

effective numerical techniques associated with such models has increased the interest in their regards

from a clinical and predictive standpoint. The heart functioning is a multi-physics and multi-scale

phenomenon: only to recall its main features, the description of a single heartbeat requires to deal

with models for the propagation of an electrical stimulus throughout the tissue, for the nonlinear

elastic deformation of the muscle and for the fluid dynamics of blood in the cavities (see [119]).

All such phenomena are strictly coupled, and each of them is characterized by a strong correlation

between the behavior of the tissue at a cellular scale and at an organ scale.

In this introductory section, we provide an overview on the mathematical description of the

cardiac electrophysiology, namely, we focus on the process according to which it is possible to

propagate an electrical stimulus within the heart. The main instrument which has enabled to

perform experimental observations regarding the cardiac electrical activity is the electrocardiogram,

ECG, introduced by A. D. Waller [139] in 1887. As it was experimentally deduced, the propagation

of an electrical signal in the cells of the heart, and in particular the active response of the myocardium

cells to an electrical stimulus, is the trigger for the contraction and deformation of the tissue. The

most relevant physical quantity involved in the phenomenon is the transmembrane potential, namely

the difference between the internal and the external electrical potential across the cell membrane,

caused by the ability of such membrane to keep ionic species within the cell. The resting value of the

transmembrane potential is denoted with urest, and typically ranges between −100mV and −70mV .

When an electrical stimulation occurs, the transmembrane potential increases: if the growth stops

below a threshold uthresh, the cell quickly returns to the resting potential, whereas if the threshold is

exceeded the membrane changes its behavior, allowing for the motion of positive ions. This process

is known as depolarization (phase 0), after which the transmembrane potential reaches its maximum

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Action potential in a ventricular myocardial cell

value umax of about 40mV . After the depolarization, the potential returns to its negative resting

state through a slower process of repolarization. A first quick decrease (phase 1) is followed by a

slow plateau phase (2), sustained by a balance between the inward movement of positive ions and

outward movement of negative ones. After the closure of the channels responsible for the income

of positive ions, the cell undergoes a final step of complete repolarization (phase 4), going back to

the initial resting state. The complete process of depolarization and repolarization is called action

potential of the cardiac cells, and is depicted in Figure 1.1 A mathematical model describing the

cardiac electrophysiology must be able to reproduce such a nonlinear behavior at a cellular scale.

Moreover, the interaction between neighboring cells must be taken into account, entailing a diffusive

effect at a macroscopic scale. Several factors affect this phenomenon, such as the complex geometry

of the organ and the presence of preferred directions for the propagation of the electrical signal

(fibers). Finally, also the generation of the electrical stimulus should be addressed, together with its

fast propagation through the net of Purkinje fibers: this last topic is outside the present discussion.

1.1.1 The bidomain and the monodomain models

We depict here one of the most widely-used model in cardiac electrophysiology, the bidomain

model, proposed by Tung in 1978 [135]: for an exhaustive discussion, we refer to [132]. The model

is based on a continuum approach: namely, when describing the physical quantities involved in the

model, we neglect the fine structure of the tissue (namely, the complexity induced by the presence of

cells at a microscopic scale), and do not distinguish between a point in the domain and another one.

This is possible according to a homogenization process and can be intended as a suitable averaging

strategy on a mesoscale, allowing to preserve the main local features of the physical quantities and to

disregard the fine scale inhomogeneities. The bidomain model, in particular, envisages the presence

of two domains, an intracellular and an extracellular one: as an outcome of the homogenization,

both of them are present in each point of the tissue.
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According to the second Maxwell’s law, applied in the quasi-stationary case, the electrical field ~E

satisfies

rot ~E = 0; (1.1)

this implies the existence of an electrical potential u, s.t. ~E = −∇u. In order to distinguish between

the internal and external domain, we address to the intracellular electrical potential as ui, whereas

ue is the extracellular potential. Let ~J be the electrical current density: the following conservation

law holds:

−div ~J = s, (1.2)

where the term s denotes the (possible) presence of current sources within the tissue. Distinguis-

hing between internal and external currents, we introduce the linear constitutive laws for the ones

appearing in the left-hand side: ~Ji(x) = Ki(x)∇ui(x), ~Ji(x) = Ke(x)∇ue(x). Disregarding external

applied currents, the source terms can be determined by taking into account the accumulation of

charges on both sides of the membrane (namely, in both the domains), and a possible interchange

represented by a transmembrane ionic current, Iion:

si =
∂qi
∂t

+ σIion,

se =
∂qe
∂t
− σIion,

(1.3)

being σ the area of the cell membrane per unit volume. By total charge conservation,

∂qi(x)

∂t
+
∂qe(x)

∂t
= 0 ∀x ∈ Ω.

The last constitutive law we need to invoke is the following one:

u(x) := ui(x)− ue(x) =
qi(x) + qe(x)

2σCm
, (1.4)

being Cm the electrical capacity of the membrane. Collecting all the terms, we finally get the

expression of the bidomain model:
div(Ki∇ui) + div(Ke∇ue) = 0 in Ω× (0, T ),

div(Ki∇ui) = σCm
∂(ui − ue)

∂t
+ σIion in Ω× (0, T ).

(1.5)

A set of initial data for the system can be introduced, e.g. by specifying the values of ui and ue at

time 0. As a result of a faster propagation of an activation stimulus throughout a parallel network

of fibers, we can impose that at an initial time some regions of the tissue have a higher value of

transmembrane potential ui−ue. As a boundary condition, we can impose a homogeneous Neumann

condition for the potential, prescribing null current flows outside the organ:

Ji = −∇ui · ν = 0 on ∂Ω× (0, T ),

Je = −∇ue · ν = 0 on ∂Ω× (0, T ).
(1.6)

This condition can be related also to a natural conormal derivative for the differential operators

appearing in (1.5), by considering the structure of the conductivity tensors Ki and Ke. In particular,
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the heart tissue is usually modeled as an anisotropic conductor, characterized by the presence of

fibers and sheets or laminas. As a result, both Ki and Ke possess in each point three orthogonal

eigenvectors: one parallel to the fibers, one lying on the lamina (and orthogonal to the fiber) and

the third one, denoted as transmural, which coincides with the normal direction when restricted

to the boundaries; hence, on the boundary of the domain the normal and the conormal derivative

coincide. The choice of a constitutive law for the ionic current Iion is the object of study in the next

subsection. In any case, Iion nonlinearly depends on the transmembrane potential u. The bidomain

model reported in (1.5) thus consists in a system of two coupled evolutive equation with nonlinear

reaction terms.

A well-established simplification of the bidomain system consists in the so-called monodomain

model, based on the assumption (not supported by any experimental evidence) that the conductivity

properties of the interior and exterior domains are proportional, i.e.

Ke = λKi.

Under this assumption, defining K = λ
1+λKi we can reformulate (1.5) in terms of the single variable

u, obtaining: 
div(K∇u) = σCm

∂u

∂t
+ σIion(u) in Ω,

K∇u · ν = 0 on ∂Ω,

u(x, 0) = u0(x) in Ω.

(1.7)

Another typical assumption allowing for the introduction of the monodomain model consists in

approximating both Ki and Ke by a suitable average tensor K̃ = (KeKi)
−1(Ke +Ki), yielding the

same expression as in 1.7.

1.1.2 Constitutive laws for the ionic current

As anticipated in the previous subsection, the choice of a suitable constitutive law for the ionic

current represents a crucial aspect of the formulation both of the monodomain and of the bidomain

model. In order to correctly describe the current induced by the motion of ions through the mem-

brane, the expression of Iion must in principle take into account several variables: first of all the

transmembrane potential u, secondly the concentration of each ionic species involved in the process

(which are in the order of tens), and finally a number of gating variables, describing the properties

of the ion gates present on the membrane and allowing for the transition of charges. Models based

on similar laws for Iion are referred to as physiological models: according to experimental evidence

and conjectures, several scientists proposed many of them in the last decades. We recall here the

Hodgkin-Huxley model, the Beeler-Reuter and the Luo-Rudy one. For a more detailed overview, we

refer to [132].

Another important class of models is represented by the phenomenological ones, whose aim is it

to provide a mathematical formula for Iion allowing for a satisfactory description of the evolution of

u, with the introduction of the lowest number of additional variables. A preliminary model, entailing

only the dependence of Iion on u, is represented by the following cubic function: Iion = f(u),

f(u) = A(u− urest)(u− uthresh)(u− umax); (1.8)
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according to this choice, nevertheless, the monodomain system is only able to capture the fast depo-

larization phase of the active potential (see phase 0 of Figure 1.1). More refined phenomenological

models require the introduction of a second variable w, denoted as recovery variable, which does

not possess a specific physical meaning. Such models are hence characterized by a formula such as

Iion = f(u,w); the evolution of the recovery variable w needs also to be described, and is typically

modeled by means of a nonlinear ordinary differential equation

∂w

∂t
(x, t) + g(u(x, t), w(x, t)) = 0,

together with an initial datum w0(x). When prescribing the expression of f and g, one may obtain

several different models. We report here some of them, under the assumption that the transmem-

brane potential is rescaled so that urest = 0, umax = 1, uthresh = a ∈ (0, 1):

• Fitzhugh-Nagumo (see [77] and [110])

f(u,w) = Au(u− a)(u− 1) + w g(u,w) = ε(v − γw);

• Rogers-MacCulloch (see [123])

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(v − γw);

• Aliev-Panfilov, first version (as it was initially proposed in [7])

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) =

(
ε0 +

µ1w

u+ u2

)
(Au(u− 1− a) + w);

• Aliev-Panfilov (the version usually employed in literature; see, e.g., [41])

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(Au(u− 1− a) + w);

• Mitchel-Schaeffer (see [108], and [39] for a regularized version)

f(u,w) =
1

τin
u2(u− 1)w − 1

τout
g(u,w) =


1

τopen
(w − 1) if w ≤ wgate,

1

τclose
w if w > wgate.

In Figure 1.2, we report the numerical simulation of the active potential in a cell by means of two

phenomenological models, in order to allow for a comparison with the expected shape reported in

Figure 1.1.

1.1.3 Modeling the presence of an ischemic region

The introduced models allow also to describe some pathological behaviors of the heart, by taking

into account modifications of the main parameters. In particular, we focus our attention on the

case of myocardial ischemia, characterized by severely reduced blood perfusion in a specific region

of the tissue. According to biological observations, the conductivity properties of the cells in an

ischemic region are altered, and in particular, the cells are no longer excitable. As a consequence,

when supposing that a region ω ⊂ Ω is ischemic, we consider two main modifications of the equation

in (1.7):



6 CHAPTER 1. INTRODUCTION

(a) Linearized Aliev-Panfilov model (b) Original Aliev-Panfilov model

Figure 1.2: Simulated action potential in a single cell

• the conductivity tensor is supposed to have a discontinuous transition between the healthy

reference value K0 and the ischemic value K1: K is replaced by Kω given by

Kω = K0 + (K1 −K0)χω,

being χω the indicator function of ω. This is in accordance with the discussion in [112];

• the ionic current is switched off inside the ischemic region. Namely, Iion is replaced with

(1− χω)Iion. This is in accordance with the model proposed in [129].

Alternative approaches are possible, among which we cite the modification of the parameters of the

ionic gates comparing in the expression of the Mitchell-Schaeffer method proposed in [8].

1.1.4 Measuring the electrical activity of the heart

The main application purpose of the present work of thesis is the identification of an ischemic

region within the myocardium by means of data acquired through non-invasive measurements. The

routine non-invasive physical exam associated with the cardiac electrophysiology is the electrocardio-

gram (ECG), which is performed by placing electrodes on the patient skin, mainly on the torso. Such

electrodes allow registering the propagation of the small electric waves continuously generated by

the heart functioning. In particular, from the evolution of the acquired voltage in the electrodes, one

may distinguish a P-wave, associated to the fast depolarization of the atria, a QRS-complex, genera-

ted by ventricular depolarization, and a T-wave, due to the process of polarization of the ventricles.

Deviations from the standard pattern can help clinicians diagnosing an arrhythmia, previous heart

attacks, as well as pathologies related to the electrical conduction. Unfortunately, the information

deriving from ECG measurements is affected by noise and errors due to both the instrumentation

and the complexity of the phenomenon under investigation, which involves electrical conduction in

a non-homogeneous and non-stationary medium. As a consequence, ECG measurements are not

sufficient for reliable diagnosis, and it is often necessary to couple them with other exams and tests.
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More detailed data can be obtained through invasive techniques, such as intracardiac catheter

recording along the endocardium, the inner wall of the heart. In this physical exam, a catheter

enables to carry small electrodes on the surface of the heart cavities, in order to locally monitor the

cardiac electric potential behavior.

Throughout the analysis presented in this thesis, we aim to recover information on ischemic

portions of the tissue by means of the knowledge of the value of the electrical potential on the

surface of the heart, or on a portion of the surface. According to what previously outlined, this

information can in principle be acquired through invasive techniques such as an intracardiac catheter.

In perspective, moreover, this consists in a first step towards the identification problem by means of

ECG data, which would require an additional coupling with a model for the propagation of electric

signals within the torso.

1.2 Identification of ischemic regions from boundary measu-

rements: an inverse problem

We are finally able to formulate the main goal of the thesis in terms of an inverse problem. We now

formulate the following initial and boundary value problem, associated with the phenomenological

model presented in Subsection 1.1:

∂u

∂t
− div(Kω∇u) + (1− χω)f(u,w) = 0 in Ω,

∂w

∂t
+ g(u,w) = 0 in Ω,

Kω∇u · ν = 0 on ∂Ω,

u(x, 0) = u0(x) w(x, 0) = w0(x) in Ω.

(1.9)

We introduce the following couple of problems:

Definition 1.1 (Direct problem). Knowing the ischemic region ω, determine the electrical potential

u associated to ω through (1.9);

Definition 1.2 (Inverse problem). Knowing the electrical potential, and in particular only the

boundary measurement umeas = u|∂Ω×(0,T ), determine the inclusion ω associated to umeas through

(1.9).

The notation of direct and inverse problem is in accordance with classical definitions and can

be compared to many examples arising from various application contexts, see e.g. [90], [95]. As it

will be outlined in the sequel, the main difficulties which characterize the presented inverse problem

from a mathematical standpoint are twofold:

i) on the one side, the initial and boundary value problem (1.9) consists of a coupled system

involving the presence of nonlinear terms;

ii) on the other side, the boundary potential umeas (which represents the datum according to which

we aim at identifying ω) is associated to a single measurement of the standard electrical activity

of the heart. Conversely, analogous inverse problems tackle the reconstruction of coefficients
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of a boundary value problem by virtue of a large set of data, associated, e.g., to boundary

measurements acquired in several experiments with different settings.

Coherently with the above-outlined difficulties, during the thesis we follow a stepwise approach,

introducing simpler problems which can be analyzed in details, and extending the obtained results

on progressively more complicated problems. We also rely on additional a priori knowledge on the

ischemic regions to be identified.

1.2.1 Model simplification

The monodomain model, as depicted in Section 1.1, allows to describe the evolution of the

cardiac transmembrane potential u throughout the heartbeat via a semilinear parabolic equation

coupled with a nonlinear ordinary differential equation taking into account the evolution of a suitable

recovery variable w.

A possible simplification of the model consists in considering a less refined constitutive law for

the ionic current. In (1.8) we outlined that, describing Iion as a cubic function of u alone we may be

able to track the evolution of u at least in the first phase of the action potential cycle. This allows

dealing only with a parabolic (semilinear) equation, disregarding any coupling effect.

Nevertheless, our first approach to the inverse problem relies instead on a more radical simplifica-

tion. In particular, we consider the stationary case of the monodomain model and replace the initial

stimulus given by u0, w0 by an external current f applied in each point of the domain. Moreover,

we disregard the anisotropic behavior of the tissue. Such a simplified model can be considered as a

blueprint, useful to tackle the main mathematical challenges of the original problem and to set the

starting point for the successive analysis: indeed, we still keep track of the nonlinear feature of the

original model. In particular, we will deal with the following problem:{
−div(kω∇u) + (1− χω)u3 = f in Ω,

kω∇u · ν = 0 on ∂Ω,
(1.10)

where kω = k0 + (k1 − k0)χω and k0, k1 are two positive scalars (for the sake of simplicity, one may

rescale it to 1 and k < 1 respectively). In case we consider a simplified version of the monodomain

model, we do not refer to ω as an ischemic region, but simply as an inhomogeneity in the coefficient

or, more frequently, an inclusion.

1.2.2 Regularization hypotheses

When dealing with an inverse problem characterized by few data at disposal, the most important

mathematical issues are represented by the analysis of the uniqueness and of the stability of the

solution. Namely, we want to ensure that, for a fixed boundary measurement, there exists an unique

ischemia associated to it, and moreover, if we consider small perturbations of the boundary datum,

small perturbations of the associated solution are entailed. This requirement is typically not satisfied

by inverse problems as the ones stated above, unless some regularization hypotheses are introduced.

Such hypotheses can be intended as further a priori knowledge of the solution: namely, if we know

in advance that the solution we want to identify (in our case, the ischemic region) satisfies some

particular assumptions, we may introduce them in the problem by restricting the space in which
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we look for the solution. When doing so, uniqueness and stability of the inverse problem might be

restored.

In the thesis, the main regularization hypothesis we rely on, at a preliminary stage, is the small-

size assumption: namely, we suppose that the ischemia we want to detect is small with respect to

the size of the heart. The modeling assumption on the small size of the inclusion, instrumental to

the derivation of several theoretical results, is verified in practice in the case of residual ischemias

after myocardial infarction (see [19]).

Nevertheless, a fundamental task of the foreseen application of our analysis is the detection from

ECG data of ischemias without any constraint: ischemic regions might be of any size and shape,

and can even consist of a finite number of disjoint connected components. For this reason, in the

thesis we also consider the case of the detection of larger inclusions, aiming at removing any possible

a priori knowledge on ω.

1.3 A brief bibliographical review

The problem of identifying the coefficient a conductivity coefficient from boundary data is strictly

related to one of the most relevant and studied inverse problems of the last decades, the inverse

conductivity problem, also referred as the Calderón problem. In [46], Calderón posed the following

issue: given the boundary value problem{
−div(γ∇u) = 0 in Ω,

γ∇u · ν = f on ∂Ω,
(1.11)

decide whether the coefficient γ can be uniquely determined by the knowledge of the Neumann-

to-Dirichlet map Λγ , being Λγ : H−
1
2 (∂Ω) → H

1
2 (∂Ω) such that, for each f ∈ H−

1
2 (∂Ω), then

Λγ(f) = u|∂Ω, where u the solution of 1.11 with Neumann datum f . Additional requirements

involve investigating the stability of γ with respect to perturbation of the data Λγ , as well as

the development of a reconstruction procedure for identifying γ. Throughout the years, several

mathematicians have tackled the proposed problem, developing numerous strategies yielding a great

class of results.

We now provide a short overview of some of the most relevant breakthroughs. The task of

uniqueness was initially tackled by assuming that the coefficient γ satisfies (piecewise) analytic

regularity: a global uniqueness result was obtained in [96]. In the case of dimension n ≥ 3, extending

the strategy developed in [133], a global uniqueness result is valid under the assumption γ ∈W 2,∞.

Recently, in [48] global uniqueness has been proved in dimension n ≥ 3 only under the assumption

that the coefficient to be reconstructed is a Lipschitz function. Regarding the two-dimensional

case, we cite the global uniqueness property obtained in [109] in case γ ∈ W 2,p, together with the

breakthrough result from [20], concluding for global uniqueness only under the assumption that

γ ∈ L∞. In respect of the stability issue, we report the results from [3] in dimension n ≥ 3 as

well as [25] in n = 2, both yielding global logarithmic stability, i.e., the continuity modulus in the

stability estimate is of logarithmic type. In [106] it has been proved that, despite regularity a priori

assumption, the logarithmic stability estimate cannot be improved, and it is hence optimal

In order to move towards a problem which is closer to our application, we should consider a

family of results obtained by the analysis of the Calderón problem under the assumption that the
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coefficient to be identified is discontinuous, and in particular piecewise constant (which is shared

with our purpose). Regarding a result of uniqueness in such a context, we refer to [71], whereas

Lipschitz stability results are contained in [6] in case the coefficient to be determined belongs to a

finite-dimensional space, and in [4] (logarithmic) stability results are derived for the reconstruction

of an inclusion along which the coefficient γ is discontinuous.

We moreover briefly investigate the possibility of reconstructing a coefficient according to the

knowledge of a finite number of measurements (i.e., couples of Neumann and Dirichlet data), instead

of the full map Λγ . In the context of identification of piecewise constant coefficient, such a task is

possible only under the knowledge of further information regarding the inclusion to be identified,

namely by introducing suitable a priori assumptions: finitely many measurements are sufficient to

determine uniquely and in a stable (Lipschitz) way the inclusion, e.g., when it belongs to a specific

class of domains with prescribed shape, or when the volume of the inclusion is small compared to

the volume of the domain (see [13] for an extended review). In particular, in [93] the identification

of cylinders or discs is tackled with a single measurements, whereas in [87] a strategy for a class

of star-shaped domains is developed, and [24] covers the reconstruction of polyhedra and polygons:

all this works, unfortunately, deeply rely on the linear structure of the direct problem, and such

strategies prove to be difficultly extendable to the electrophysiological problem. Moreover, the last

two presented works also rely on a suitable choice of the (unique) measurement at disposal: this is

in contrast with our case, in which it is not possible to select convenient boundary data, since they

are associated with the standard electrical activity of the heart and not on a prescribed stimulus.

Conversely, the techniques allowing for a unique reconstruction of inclusions of small size (see [78],

[51]), are more feasible to be adapted on the nonlinear problem of interest: for this reason, they will

be preliminarily included in the present dissertation.

Regarding the purpose of outlining a strategy capable of identifying the solution γ associated with

the measured data, several reconstruction algorithms have been proposed. We remark an important

distinction between direct and variational methods. The algorithms belonging to the first class

typically provide an explicit formula for the computation of the solution, whereas the variational

methods rely on an optimization problem associated to the inverse problem, namely by minimizing

a misfit functional with suitable regularization terms.

Among the direct methods allowing for the reconstruction of arbitrary inclusions, we report

the D-bar method (see [130]), the factorization method (see [42]), the enclosure method (see [89])

and the monotonicity method (see [134]). All these techniques deeply rely on the linear expression

of the direct problem, entailing the availability of closed formulas for some particular solutions or

potentials, and moreover on the possibility to arbitrarily choose the boundary currents associated

to the reconstruction data. These features discourage us from the extensions of such methods on

the nonlinear problem of interest: as a consequence, our strategy focuses on the development of

variational reconstruction algorithms. Among the existing ones, we cite the NOSER method [56],

which tackle the minimization of the misfit functional through Newton iterations. Furthermore, the

shape-optimization approach, with suitable regularization, prescribes a strategy allowing to deform

an initial guess of the inclusion according to the shape sensitivity of the functional: see [97] [87],

[2] and [10]; in [88] this approach is coupled with topology optimization. The level set technique,

based on an alternative representation of the shape of the inclusion, also allows for topological
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perturbations: see [128] and [44], as well as [53]. A related strategy is represented by the augmented

Lagrangian approach developed in [55]. In [22], Levenberg-Marquardt and Landweber algorithms

are proposed, which are able to deal also with nonlinear direct problems. Moreover, a relaxation

strategy for the optimization problem has been explored by means of Modica-Mortola and Mumford-

Shah functionals in [124] and recently in [66]. Finally, we recall also the approach related to Bayesian

statistical inversion, see [94].

Concerning the reconstruction algorithms in the case of small inclusions, both direct and variati-

onal methods usually rely on an asymptotic formula for the perturbation of the boundary potential

to identify the location and additional features of the shape of the inclusions. For an extended

review, we refer to [13, Chapter 5]). We only recall, among the direct approaches, the constant

current projection algorithm in [14], together with the linear sampling method ([63]) and the MU-

SIC algorithm ([68]), developed for an inverse scattering problem, which inspired several techniques

also for the inverse conductivity problem, see [43]. Although these algorithms have proved to be

effective, they strictly depend on the linearity of the direct problem, especially concerning explicit

formulas for single and double layer potentials, and the analytic expression of some particular so-

lutions. Variational techniques involved in the reconstruction of small inclusions, usually involving

tools from topological optimization, have been developed for linear problems in several contexts (see

for instance [18] and [70] for crack detection, [15] and [50] for the detection of sound obstacles, [100]

and [32] for image processing ,[21] for image segmentation), and have been successfully applied for

the inverse (linear) conductivity problem ([52], [17]) to identify the position of the center of small

conductivity inclusions. For the nonlinear problem at hand, a preliminary result in this direction

has been achieved in [30] and motivates our study.

As a final remark, we report that the inverse problem of identifying ischemias from measurements

of surface potentials has been tackled in an optimization framework for numerical purposes in a

significant number of recent papers, see in particular [8, 40, 54, 85, 105, 112, 126]. Nevertheless,

a detailed mathematical analysis of the inverse problem has never been performed, mainly due to

outlined difficulties involving the small number of measurement at disposal and the nonlinearity

both of the inverse and of the direct problem.

1.4 Main contributions of the thesis

The goal of the thesis is to pave the way for a rigorous analysis of the inverse problem defined

in 1.2 both from a theoretical and a reconstruction standpoint. In a stepwise fashion, we focus on

the following main objectives:

• Identification of small inclusions in an elliptic semilinear boundary value problem

We first tackle the inverse problem associated with problem (1.10) under the assumption that

the inclusions to be detected are of small size. In this context, exploiting theoretical results

recently achieved in [30], we are able to prove a (local) Lipschitz stability results for the

inverse problem, which consists in the first theoretical result achieved in this field. Moreover,

we develop a reconstruction algorithm for the identification of the solution by means of few

measurements (or even a single one), based on the computation of the topological gradient

of a suitable cost functional. Several numerical experiments associated to various test cases
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assess the accuracy of the proposed technique, as well as its robustness with respect to noisy

and partial measurements. This analysis, which is the object of Chapter 2, has been published

in [33], except for the stability estimate.

• Identification of small inclusions in a parabolic semilinear initial and boundary

value problem

The successive step is to consider the identification of small inclusions in a more complicated

boundary value problem, namely when the evolutive monodomain model is considered with

the simplest phenomenological law for the ionic current, reported in (1.8). We first focus on

the development of a novel theoretical result involving this inverse problem, i.e. an asymptotic

formula for electrical potential perturbations caused by internal conductivity inhomogeneities

of low volume fraction. Exploiting this result, we implement a reconstruction procedure based

on the computation of the topological gradient of a suitable cost functional, involving the

solution of an adjoint problem. Numerical results obtained on a three-dimensional idealized

left ventricle geometry for different measurement settings assess the feasibility and robustness

of the proposed algorithm. This discussion is the object of Chapter 3 and has been published

in [28].

• Reconstruction of large inclusions in an elliptic semilinear problem: a shape deri-

vative approach

We afterward consider the identification of inclusions again in the stationary case, but removing

the assumption of small size. As a first approach, we develop a shape derivative reconstruction

algorithm. Such a method only requires a priori knowledge of the topology of the inclusion

to be reconstructed, and aims at detecting it by updating an initial guess, according to the

shape gradient of a suitable misfit functional. In order to derive a rigorous expression for the

shape gradient, we need to theoretical investigate the asymptotic perturbation of the boundary

voltage (and associated quantities) under small perturbations of a large inclusion. After pro-

ving such results, we formulate the algorithm in details and provide a satisfactory numerical

validation. This is object of Chapter 4.

• Reconstruction of large inclusions in an elliptic semilinear problem: a phase-field

approach

Focusing on the same problem, we develop a novel approach for the presented inverse problem,

which allows removing any a priori assumption on the inclusion. We formulate a constraint

minimization problem involving a quadratic mismatch functional enhanced with a regulari-

zation term which penalizes the perimeter of the inclusion to be identified. We introduce a

phase-field relaxation of the problem, employing a Modica-Mortola functional and assessing

the Γ-convergence of the relaxed functional to the original one. After computing the optimality

conditions of the phase-field optimization problem and introducing a discrete Finite Element

formulation, we propose an iterative algorithm and prove convergence properties. Several nu-

merical results are reported, assessing the effectiveness and the robustness of the algorithm

in identifying arbitrarily-shaped inclusions. Finally, we compare our approach to a couple of

alternative methods, in particular focusing on shape-derivative based technique, comparing it

to the sharp interface limit of the proposed relaxed problem. This discussion, which is the
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object of Chapter 5, has been published in [35]

• Towards the identification of ischemias in the monodomain model: analysis of the

direct problem

The last part of the thesis is dedicated to preliminary results which are required in order to

extend the presented discussion to the case of the monodomain model for the full heartbeat

description. When dealing with the initial and boundary value problem (1.9), before tackling

the goal of detecting small ischemic areas (by means of topology optimization tools) or ar-

bitrarily large ones, it is necessary to extend the results available in the present literature

involving the well-posedness of the direct problem itself. In Chapter 6, we state and prove an

existence, uniqueness and comparison result of classical solutions of the monodomain model

without ischemias, as well as a result of existence and uniqueness of weak solutions in the

perturbed case. We can eventually prove additional regularity for the perturbed potential, in

view of a useful comparison result. This discussion is also the object of a paper in preparation,

[29]

• Towards the identification of ischemias in the monodomain model: a posteriori

numerical error analysis

The final step of our study is devoted to the numerical analysis of a Newton-Galerkin solver

for the monodomain problem. In fact, when aiming at extending to the monodomain case

the developed reconstruction algorithms (and in particular the ones for large inclusions, which

requires the solution of the direct problem several times), it is necessary to tackle the task

of reducing the computational cost. One strategy is represented by the introduction of an

adaptive algorithm, allowing for a speedup in the computation of the approximated solution

of the direct problem. Such an approach requires to perform a numerical a posteriori error

analysis of the problem, in particular deriving computable error estimators. This is the object

of Chapter 7, and also of a work under review, [120].
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Chapter 2

Identification of small inclusions in

a semilinear elliptic boundary

value problem

In this chapter, we focus on the detection of small inclusions in the semilinear elliptic problem

introduced in Chapter 1 as a simplified version of the monodomain problem. We start by briefly

outlining the formulation of the problem and the related assumptions. According to the expression

provided in Section 1.2.1, we consider the following boundary value problem:{
−∆U + U3 = f in Ω

∂νU = 0 on ∂Ω,
(2.1)

which is related to the case in which no inhomogeneity in the coefficients is present. We assume that

the background value of the scalar conductivity coefficient is 1, that f is a known forcing term, and

that Ω is an open connected subset of Rn, n = 2, 3. Problem (2.1) is addressed as the background

problem, and its solution U is defined the unperturbed potential. We now consider an alteration

of the coefficients of the problem induced by the presence of an inclusion ω ⊂ Ω. Throughout this

chapter, we deal with inclusions ωε of small size which are well separated from the boundary, i.e.

such that:

|ωε| → 0 as ε→ 0 (2.2)

∃K̃0 ⊂ Ω compact s.t. ωε ⊂⊂ K̃0, dist(∂Ω, K̃0) ≥ d0 > 0. (2.3)

In addition, the majority of the results formulated in the chapter assume that ωε satisfy more specific

conditions, namely that

ωε = (z + εD) = {x ∈ Ω s.t. ∃d ∈ D : x = z + εd}, s.t. dist(z, ∂Ω) ≥ d0 > 0 (2.4)

being D an open, bounded and regular domain containing the origin. The inclusion ωε therefore

consists of a single connected set, with center z, prescribed shape D and small size. When an

inhomogeneity ωε is introduced in Ω, the coefficients of the semilinear elliptic problem are altered

15
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as described in Section 1.1.3. As a result, the perturbed potential uε is the solution of the following

problem: {
−div(kε∇uε) + (1− χωε)u3

ε = f in Ω

∂νuε = 0 on ∂Ω,
(2.5)

where χωε is the indicator function of the set ωε and kε = 1− (1− k)χωε , k < 1. According to the

introduced boundary value problems, we define:

Definition 2.1 (Direct problem). Knowing the inclusion ωε, determine the perturbed potential uε

associated to ωε through (2.5);

and conversely

Definition 2.2 (Inverse problem). Knowing the perturbed potential, and in particular only the

boundary measurement umeas = uε|∂Ω, determine the inclusion ωε associated to umeas through

(2.5)

As deeply analyzed in Section 1.3, the well-posedness of the stated inverse problem is an open

issue, i.e. according to the present literature, it is impossible to assess that for a fixed datum umeas

the solution ωε exists, is unique, and continuously depends on the datum. In this chapter, although,

we assume that the inhomogeneity to be identified satisfies also (2.2), and in particular (2.4). These

assumptions are referred to as regularization hypotheses: indeed, if we a priori restrict the search

for the solution within the class of inclusions satisfying them, we are able to recover some results of

well-posedness. We remark that this restricts the class of problems which are the object of discussion:

in particular, if (2.4) is considered, we suppose to know in advance the shape D of the inclusion,

and the inverse problem 2.2 reduces to the individuation of its center z.

The main results of this chapter, except for Section 2.2, are published in [33]. In particular, in

Section 2.1 we report the most relevant results regarding the well-posedness of the direct problem

and further properties of its solution, which are already available in the literature, see [30]. In

Section 2.2, we instead focus on the analysis of the inverse problem. In particular, we exploit the

asymptotic expansion of the perturbation of boundary potential derived in [30] in order to prove a

local Lipschitz stability result for the solution of the inverse problem under the assumption (2.4).

In Section 2.3, we introduce a Topological Optimization framework for the inverse problem, by

formulating a minimization problem on a suitable functional, for which we introduce the concept

of topological gradient. We then exploit the introduced asymptotic expansion in order to provide

a representation formula for the gradient, and we use it to formulate a rigorous reconstruction

algorithm. In Section 2.4, we show through several numerical experiments the effectiveness and

feasibility of the introduced algorithm.

2.1 Analysis of the direct problem

We start by recalling the well-posedness results available for the direct problem. The weak

formulation of the Neumann homogeneous problem (2.5) reads as follows: find u ∈ V = H1(Ω) s.t.

< T (u)− F, v >∗= 0 ∀v ∈ V, (2.6)
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where < ·, · >∗ is the duality pairing between V and its dual space V ∗ and F, T (u) ∈ V ∗ are defined

by:

< T (u), v >V ∗,V =

∫
Ω

k(x)∇u · ∇v +

∫
Ω

(1− χω)u3v,

< F, v >V ∗,V =

∫
Ω

fv, f ∈ Lp(Ω), p ≥ 2.

(2.7)

We refer to those inclusions ωε of small dimensions which are well separated from the boundary,

i.e. satisfying (2.2) and (2.3).

Proposition 2.1. For every forcing term f ∈ Lp(Ω), p ≥ 2, and every admissible inclusion ωε,

problem (2.6) admits an unique solution uε ∈ V .

The proof of Proposition 2.1 can be found in [30] and relies on the properties of the operator T

previously defined, and in particular on the fact that it is strictly monotonic. The argument also

relies on the following Poincarè inequality, which is derived from [102, Theorem 8.11]: ∀v ∈ H1(Ω),

‖v‖H1(Ω) ≤ C
(
‖∇v‖L2(Ω) + ‖v‖L2(Ω\ωε)

)
, (2.8)

where the constant C can be chosen s.t. it is independent of ε.

In order to derive further results which will be useful for the analysis of the inverse problem, we

make use of the unperturbed potential U introduced in (2.1). The existence and uniqueness of U

is assessed by [30, Proposition 4.2], where it is also proved that U and ∇U are Hölder continuous

functions and the norm of U in the space W 1,∞(Ω) is bounded by a suitable norm of f , namely:

‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)),

Moreover, further regularity can be proved also for the perturbed potential, exploiting the interior

estimates from [82] and extending them up to the boundary, concluding that uε is Hölder continuous

on Ω (see [30, equation (4.14)]). Furthermore, the following energy estimates hold for the difference

between unperturbed and perturbed solutions:

‖uε − U‖H1(Ω) ≤ |ωε|
1
2

‖uε − U‖L2(Ω) ≤ |ωε|
1
2 +η, 0 < η <

1

5

(2.9)

The proof of these estimates is carried out under an additional assumption on the forcing term f ,

namely that

∃m > 0 s.t. f(x) ≥ m ∀x ∈ Ω. (2.10)

This restriction can be avoided, as it is possible to weaken (2.10) by only assuming that f does not

identically vanish, i.e.

‖f‖Lp(Ω) 6= 0 (2.11)

Indeed, in the proofs delivered in [30], hypothesis (2.10) is only required in order to prove that the

following estimate from below holds:

∃C = C(|Ω \ ωε| ,m) > 0 s.t

∫
Ω\ωε

qε > C, where qε = U2 + Uuε + u2
ε.
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Hence, we can substitute it as follows: if f ∈ Lp(Ω) satisfies (2.11), then ∃C = C(|Ω \ ωε| , f) > 0

s.t.
∫

Ω\ωε qε > C. Indeed, if f satisfies (2.11), then also U cannot identically vanish, otherwise it

could not solve (2.1). Hence, denoting M = ‖U‖∞, we can ensure that M > 0. Consider

Ω0 = {x ∈ Ω : |U(x)| ≤M/2} and Ω1 = {x ∈ Ω : |U(x)| > M/2} :

as U is continuous in Ω (see Proposition 4.2 in [30], independent of hypothesis (2.10)), we conclude

that |Ω1| > 0. We introduce Ũ defined as follows:

Ũ(x) =

{
M/2 x ∈ Ω1

0 x ∈ Ω0.

By definition, U2(x) ≥ Ũ2(x) ∀x ∈ Ω; hence, we obtain:∫
Ω\ωε

qε ≥
∫

Ω\ωε

3

4
U2 ≥

∫
Ω\ωε

3

4
Ũ2 ≥ C̃M2|Ω1| = C > 0.

We remark that hypothesis (2.10) allows to write an estimate for the quantity qε (and therefore for

‖uε − U‖H1(Ω)) which is independent of U and ultimately from the choice of the forcing term f ,

whereas the weakened one, (2.11), entails an estimate which depends on M and Ω1 and hence on f .

Nevertheless, this allows to use (2.9) and its consequences in the proposed weaker hypothesis, and

does not compromise the effectiveness of such estimate in the case of our application.

2.2 Analysis of the inverse problem

The crucial result contained in [30] is the asymptotic expansion of the perturbation induced in

the boundary potential by the introduction of an inclusion of small size. We report here the result

in the general case: the proof can be found in [30].

Theorem 2.1. Let ωε be a family of subdomains satisfying (2.2) and (2.3), f ∈ Lp(Ω), p > n, and

let f satisfy (2.10) (or (2.11)). Then, there exist a subsequence {uεn}, a Radon measure µ and a

symmetric matrix-valued function M∈ L2(Ω;µ) s.t. wε = uε − U satisfies, for any y ∈ ∂Ω:

wε(y) = |ωε|
∫

Ω

[
(1− k)M∇U · ∇xNU (·, y) + U3(z)NU (·, y)

]
dµ+ o(|ωε|). (2.12)

The function NU appearing in the first order term of the expansion is the Neumann function

related to the operator −∆ + 3U2, i.e. the solution, for each y ∈ Ω, of{
−∆xNU (x, y) + 3U2(x)NU (x, y) = δ(x− y) in Ω

∂νxNU (x, y) = 0 on ∂Ω.
(2.13)

We now restrict ourselves to a more specific class of inclusions, namely those of the form (2.4). In

this case, the expansion in Theorem 2.1 can be written as

wε(y) = εn
[
(1− k)∇U(z)TM∇xNU (z, y) + U3(z)NU (zi, y)

]
+ o(εn). (2.14)
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The matrix M ∈ Rn×n is called polarization tensor and depends only on the coefficient k and

on the shape D of the inclusion. Moreover, it can be explicitly computed for some specific shapes

(see, e.g., [13] for a detailed derivation): for instance, if n = 2 and the inclusion has circular shape,

the following expression holds:

M =
2

1 + k
|D| I2×2. (2.15)

If the inclusion has elliptical shape with major axis aligned in the direction b and ratio r between

the axes,

M = M(k, b, r) = RT M̃R, (2.16)

being

M̃ = (k − 1) |D|

(
1+r
1+kr 0

0 1+r
r+k

)
, R =

(
bx −by
by bx

)
.

Remark 2.1. Exploiting the enhanced energy estimate ‖U − uε‖L2(Ω) ≤ C|ωε|
1
2 +η, η ∈

(
0, 1

5

]
(see

[30, Theorem 4.3]) together with the estimate
∥∥∥v(j)
ε − v(j)

∥∥∥
L2(Ω)

≤ C|ωε|
1
2 +η, η ∈

(
0, 1

max{d,2}

)
(see

[47, Lemma 1]), we can conclude that the remainder term appearing in (2.12) satisfies:

o(|ωε|) ≤ C|ωε|1+β , β ∈
(

0,
1

5

]
.

In this section, we aim at exploiting the asymptotic expansion in (2.14) in order to derive the

unique well-posedness result available for the inverse problem under consideration: a (local) stability

estimate of the solution z (the center of the inclusion to be detected) with respect to a suitable norm

of the datum, umeas = uε|∂Ω. The analysis performed in this section is valid under more restrictive

assumptions on the source term and the unperturbed potential, namely:

Assumption 1. Consider f ∈ Cα(Ω) and require ∇U(z) 6= 0 ∀z ∈ Ω.

The requirements on f in particular imply, by elliptic regularity results, that U ∈ C2+α(Ω).

The main result we aim to prove is the following one:

Theorem 2.2. There exist some constants ε0, δ0, C1 and C2 such that, ∀ε < ε0 and ∀z, z′ s.t.

ε−n‖uε − u′ε‖L∞(∂Ω) ≤ δ0 where uε and u′ε are the solutions of (2.5) in presence of an inclusion of

the form {z + εD} and {z′ + εD} respectively, it holds:

|z − z′| ≤ C1ε
−n‖uε − u′ε‖L∞(∂Ω) + C2ε

βn,

for all β ∈ (0, 1/5).

In order to prove Theorem 2.2, we first need to derive preliminary results regarding the Neumann

function NU . First of all, it is possible decompose NU (x, y) = N(x, y) + Z(x, y), where N is the

Neumann function associated to the Laplace operator and Z a regular reminder, i.e., they solve the

following problems: 
−∆xN(x, y) = δy(x) in Ω

∂νxN(x, y) =
1

|∂Ω|
on ∂Ω.

(2.17)
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
−∆xZ(x, y) + 3U2(x)Z(x, y) = −3U2(x)N(x, y) in Ω

∂νxZ(x, y) = − 1

|∂Ω|
on ∂Ω.

(2.18)

Moreover, the Neumann function N can be decomposed as N(x, y) = Φ(x− y) +R(x, y), where

Φ(x− y) =


− 1

2π
ln|x− y| n = 2

1

n(n− 2)αn
|x− y|2−n n ≥ 3

(2.19)

is the fundamental solution of the Laplace operator (being αn the volume of the unit ball in Rn),

and the residual R satisfies
−∆xR(x, y) = 0 in Ω

∂νxR(x, y) =
1

|∂Ω|
− ∂νxΦ(x− y) on ∂Ω.

(2.20)

According to the results in [78], the following properties hold:

• N(x, y) = N(y, x) (symmetry of the Neumann function)

• N(·, y), N(x, ·) ∈W 1,p(Ω) ∀p ∈
[
1, n

n−1

)
• ∇xN(x, ·) · α ∈ Lp(Ω) ∀α ∈ Rn,∀p ∈

[
1, n

n−1

)
• D2

xN(x, ·)α · β /∈ L1(Ω) ∀α, β ∈ Rn, α, β 6= 0.

We now show that the same results hold on NU :

Proposition 2.2. Consider NU defined as in (2.13), NU (x, y) = Φ(x−y)+R(x, y)+Z(x, y). Then,

• NU (x, y) = NU (y, x) (symmetry of the Neumann function)

• NU (·, y), NU (x, ·) ∈W 1,p(Ω) ∀p ∈
[
1, n

n−1

)
• ∇xNU (x, ·) · α ∈ Lp(Ω) ∀α ∈ Rn,∀p ∈

[
1, n

n−1

)
• D2

xNU (x, ·)α · β /∈ L1(Ω) ∀α, β ∈ Rn, α, β 6= 0.

Proof. We first of all remark that according to (2.18), Z(·, y) is the solution of an elliptic problem with

continuous coefficients and source term in Lp(Ω): via elliptic regularity results (see e.g. [84, Lemma

2.4.1.4]), Z(·, y) ∈ W 2,p(Ω) and moreover, according to local Hölder estimates for the gradient (see

e.g. [82, Theorem 4.15]), we can ensure that ∇Z(·, y) is Hölder continuous away from y.

In order to prove that NU is symmetric, we can adapt the proof of [74, Theorem 13, Chapter

2]. Take x, y ∈ Ω and denote v(z) = NU (z, x) and w(z) = NU (z, y): we remark that, away from x,
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∇v + 3U(z)2v = 0 and away from y ∇w + 3U(z)2w = 0. Moreover ∂v
∂ν = ∂w

∂ν = 0 for z ∈ ∂Ω. Define

V = Ω \B(x, ε) \B(y, ε), for 0 < ε < min{ 1
2dist(x, y), dist(x, ∂Ω), dist(y, ∂Ω)}. It holds that∫

∂B(x,ε)

∂v

∂ν
w +

∫
∂B(y,ε)

∂v

∂ν
w

=

∫
∂V

∂v

∂ν
w −

∫
∂Ω

∂v

∂ν
w =

∫
V

div(∇vw) =

∫
V

∇v · ∇w +

∫
V

∆vw

=

∫
V

∇v · ∇w −
∫
V

3U2vw =

∫
V

∇v · ∇w +

∫
V

∆wv =

∫
V

div(∇wv) =

∫
∂V

∂w

∂ν
v

=

∫
∂B(x,ε)

∂w

∂ν
v +

∫
∂B(y,ε)

∂w

∂ν
v

We now aim at considering ε → 0. On ∂B(x, ε) since w is a smooth function on away from y and
∂v
∂ν = ∂NU (·,x)

∂ν = ∂Φ(x−z)
∂ν + ∂R

∂ν + ∂Z
∂ν , where both R and Z are smooth functions: hence, for a suitable

continuous function c,∫
∂B(x,ε)

∂v

∂ν
w =

∫
∂B(x,ε)

∂Φ(x− z)
∂ν

w(z) +

∫
∂B(x,ε)

c(z)

=

∫
∂B(x,ε)

1

nαnεn−1
w(z) +

∫
∂B(x,ε)

c(z) =

∫
∂B(x,ε)
− w(z) +

∫
∂B(x,ε)

c(z)→ w(x).

Conversely, since v(z) = Φ(z − x) + R(z, x) + Z(z, x) and Φ(z − x) = o(εn−1) when z ∈ ∂B(x, ε),

we conclude ∫
∂B(x,ε)

∂w

∂ν
v → 0.

With analogous arguments, one can show∫
∂B(y,ε)

∂w

∂ν
v → v(y) and

∫
∂B(y,ε)

∂v

∂ν
w → 0.

Finally we conclude that, letting ε→ 0, w(x) = v(y), namely N(x, y) = N(y, x).

From the fact that Z(·, y) ∈ W 2,p(Ω) and N(·, y) ∈ W 1,p(Ω), we immediately have NU (·, y) ∈
W 1,p(Ω) ∀p ∈

[
1, n

n−1

)
, ∇xNU (x, ·) · α ∈ Lp(Ω) ∀α ∈ Rn, whereas D2

xNU (x, ·)α · β /∈ L1(Ω)

∀α, β ∈ Rn, α, β 6= 0.

We now move towards the stability result. Analogously to what performed in [78, Lemma 3.3],

it is possible to extend formula (2.14) to all y ∈ Ω̄ s.t. dist(y, z) ≥ d0. Denote with Fz(y) the first

order term in expansion (2.14) for an inclusion centered in z, and DFz[dz](y) its (Fréchet) differential

with respect to z:

Fz(y) = (1− k)M∇U(z) · ∇xNU (z, y) + U3(z)NU (z, y)

DFz[dz](y) = (1− k)MD2U(z)dz · ∇xNU (z, y) + (1− k)M∇U(z) ·D2
xNU (z, y)dz

+ 3U2(z)∇U(z) · dzNU (z, y) + 3U2(z)∇xNU (z, y) · dz.

When considering two different inclusions centered in z and z′, we let

H(z, z′) = ‖Fz − Fz′‖L∞(∂Ω)

The following two results allow to prove the stability of the center z of the inclusion with respect

to perturbations of the boundary data, measured in the L∞ norm.
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Lemma 2.1. For every pair of sequences {zm}, {z′m} such that dist({zm} ∪ {z′m}, ∂Ω) ≥ d0 and

H(zm, z
′
m)→ 0 as m→ +∞, we have that |zm − z′m| → 0

Proof. The thesis can be thoroughly rewritten as

∀{zm}, {z′m}, if ∀ζ > 0 ∃M1 > 0 s.t. H(zm, z
′
m) ≤ ζ ∀m ≥M1

then ∀η > 0 ∃M2 > 0 s.t. |zm − z′m| ≤ η ∀m ≥M2;

by contradiction, suppose

∃{zm}, {z′m} s.t. ∀ζ > 0 ∃M1 > 0 s.t. H(zm, z
′
m) ≤ ζ ∀m ≥M1

and ∃η > 0 s.t. |zm − z′m| ≥ η ∀m

In particular, select the subsequences (still referred as {zm}, {z′m}) such that, e.g.,

H(zm, z
′
m) ≤ 1

m
and |zm − z′m| > η.

Since {zm}, {z′m} ⊂ Ω are bounded, ∃z, z′ ∈ Ω s.t., possibly up to a subsequence,

zm → z, z′m → z′, |z − z′| > η, (2.21)

and as a consequence of the hypothesis, dist(z, ∂Ω), dist(z′, ∂Ω) ≥ d0. Fix now y ∈ ∂Ω and consider

the Neumann function NU (·, y): by the regularity of N far from y and the regularity of Z everywhere,

we can ensure that NU (·, y) and ∇xNU (·, y) are continuous functions far from the boundary: in

particular, the function Fz(y) with y ∈ ∂Ω is continuous with respect to z, if z is sufficiently far

from the boundary. Since dist(zm, ∂Ω) ≥ d0, dist(z′m, ∂Ω) ≥ d0 and since H(zm, z
′
m)→ 0,

Fz(y) = lim
m
Fzm(y) = lim

m
Fz′m(y) = Fz′(y) ∀y ∈ ∂Ω.

Consider the expression of G(y) = Fz(y)− Fz′(y):

G(y) = (1− k)M∇U(z) · ∇xNU (z, y) + U3(z)NU (z, y)

− (1− k)M∇U(z′) · ∇xNU (z′, y)− U3(z)NU (z′, y)
(2.22)

We observe that G(y) is the solution of the following Cauchy problem:
−∆yG(y) + 3U2(y)G(y) = 0 in Ω \ {z, z′}

∂νyG(y) = 0 on ∂Ω

G(y) = 0 on ∂Ω,

Indeed, taking advantage of the symmetry of NU and since z, z′ are well separated from ∂Ω,

∂νyNU (z, y) = ∇yNU (z, y) · ν = ∇xNU (y, z) · ν = ∂νxNU (y, z) = ∂νxNU (z, y) = 0

∂νy∇xNU (z, y) = ∇x∂νyNU (z, y) = ∇x∂νyNU (y, z) = 0

and moreover, ∀z 6= y,

(−∆y + 3U2(y))NU (z, y) = (−∆x + 3U2(z))NU (y, z) = (−∆x + 3U2(z))NU (z, y) = 0

(−∆y + 3U2(y))∇xNU (z, y) = ∇y(−∆x + 3U2(z))NU (y, z) = ∇y(−∆x + 3U2(z))NU (z, y) = 0.
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According to the unique continuation property for the Cauchy problem for elliptic equations with

regular coefficients [5, Theorem 1.9], we conclude that G = 0 in Ω \ {z, z′}. This entails a con-

tradiction: indeed, due to the definition of N and to the regularity of Z, the terms NU (z, y) and

NU (z′, y) show a singularity when approaching z and z′, of the kind ln |y− z| if n = 2 or |y− z|−1 if

n = 3. Those singularity cannot cancel with the terms ∇xN(z, y), which grow with a different rate

(namely, as |y− z|d−1); according to the expression of G in (2.22), the coefficient appearing in front

of NU (z, y) and NU (z′, y) do not vanish because of Assumption 1: the only solution to guarantee

G(y) = 0 would be to put z = z′, which is in contrast with (2.21).

Lemma 2.2. There exist two positive constants δ and C depending on d0, Ω, D, k, such that

∀z, z′ s.t. H(z, z′) ≤ δ ⇒ |z − z′| < CH(z, z′)

Proof. The proof is done by contradiction, by supposing that

∀δ, ∀C∃z, z′ s.t. H(z, z′) ≤ δ and |z − z′| > CH(z, z′),

which is equivalent to

∀δ, ∀C ∃z, z′ s.t. H(z, z′) ≤ δ and
H(z, z′)

|z − z′|
<

1

C
.

Consider the sequences {zm}, {z′m} associated with the values, e.g., δm = 1
m and Cm = m: we

immediately remark that

H(zm, z
′
m)→ 0 and

H(zm, z
′
m)

|zm − z′m|
→ 0.

In view of Lemma 2.2, zm → z, z′m → z′ and z = z′. Consider now the sequence {dzm} =
{
zm−z′m
|zm−z′m|

}
:

since |dzm| = 1, there exists a converging subsequence (still denoted as dzm):

dzm → dz ∈ Rn, |dz| = 1. (2.23)

By the definition of the Fréchet derivative and by linearity:

0 = lim
m

∥∥Fzm − Fz′m∥∥L∞(∂Ω)

|zm − z′m|
= lim

m

‖DFzm [zm − z′m]‖L∞(∂Ω)

|zm − z′m|
= lim

m
‖DFzm [dzm]‖L∞(∂Ω),

whence

lim
m
DFzm [dzm] (y) = 0 ∀y ∈ ∂Ω.

Since ∀y ∈ ∂Ω

DFzm [dzm] (y)−DFz [dz] (y) = DFzm [dzm − dz] (y) + (DFzm [dz] (y)−DFz [dz] (y)). (2.24)

Notice that, by elliptic regularity results applied to U and NU , in view of Assumption 1 and since

y ∈ ∂Ω, the function DFz[dz](y) is continuous with respect to z. Hence the first term in the left-

hand side vanishes as m→ +∞ since dzm → dz and DFzm is uniformly bounded. Also the second
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term in (2.24) vanishes by the continuity of DFz. In conclusion, DFzm [dzm](y) → DFz[dz](y) and

DFz[dz](y) = 0 ∀y ∈ ∂Ω. Again by the expression of DFz[dz], and by the symmetry of NU (x, y), as

in the proof of Lemma 2.1, it is easy to verify that
−∆yDFz[dz](y) + 3U2(y)DFz[dz](y) = 0 in Ω \ {z}

∂νyDFz[dz](y) = 0 on ∂Ω

DFz[dz](y) = 0 on ∂Ω,

which entails (again via [5, Theorem 1.9]) that DFz[dz](y) = 0. Together with the fact that |dz| = 1

and that ∇U does not vanish (due to Assumption 1), this is a contradiction with the fact that

D2
xNU (z, y)α · β /∈ L1(Ω).

It is finally possible to prove Theorem 2.2.

Proof. From the asymptotic expansion (2.12), we can ensure that ∃ε0 : ∀ε ≤ ε,

uε(y)− U(y) = εnFz(y) + η1(ε, y) ∀y ∈ ∂Ω

u′ε(y)− U(y) = εnFz′(y) + η2(ε, y) ∀y ∈ ∂Ω

being η1(ε, y), η2(ε, y) = o(εn), and according to Remark 2.1,

‖η1(ε, y)‖L∞(∂Ω) + ‖η2(ε, y)‖L∞(∂Ω) ≤ Cε
(1+β)n.

Computing the difference between the expansions and taking the L∞(∂Ω), we obtain

H(z, z′) ≤ ε−n‖uε − u′ε‖L∞(∂Ω) + Cεβn ≤ δ0 + Cεβn.

By choosing δ0 and ε s.t. δ0 + Cεβn ≤ δ appearing in Lemma 2.2, we can apply such result and

conclude the thesis.

By following the same approach as in [78], we can extend the result of Theorem 2.2 to the case

of inclusions of the kind:

ωε =

K⋃
k=1

(zk + ερkD), (2.25)

consisting of K different connected components of the same shape with relative ratios ρk; zk and ρk

satisfying

|zk − zj | ≥ d0 > 0 ∀k 6= j, dist(zk, ∂Ω) ≥ d0, d0 ≤ ρk ≤ D0.

In this case, the (local) stability result assumes the form:

Theorem 2.3. There exist some positive constants ε0, δ0, C1, C2 s.t. if ε < ε0 and ε−n‖uε − u′ε‖L∞(∂Ω) <

δ0, being uε and u′ε associated to inclusions ωε, ω
′
ε satisfying (2.25), then:

(i) K = K ′ and, after appropriate reordering,

(ii) |zk − z′k|+ |ρk − ρ′k| < C1ε
−n‖uε − u′ε‖L∞(∂Ω) + C2ε

βn for k = 1, . . . ,K.

The proof is analogous to the one of [78, Theorem 1.1], adapting the argument to the semilinear

problem in consideration as performed in the proofs of the previous results.
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2.3 A topological gradient-based reconstruction algorithm

In this section, we describe a topological optimization framework which we can exploit to tackle

the solution of the inverse problem. In particular, let us introduce the following objective functional:

J(Ωε) =

∫
∂Ω

(uε − umeas)2dσ, (2.26)

where Ωε denotes the domain Ω in which a small inclusion ωε is inserted, and uε the corresponding

solution of the direct problem (2.5) in Ωε. Hence, we can rephrase the inverse problem in Definition

2.2 as follows: given the boundary datum umeas, find ωε satisfying (2.3) and (2.4) such that

J(Ωε)→ min . (2.27)

In order to solve problem (2.27), we need to describe the variation of the functional J from the

unperturbed case (associated to a domain Ω without inclusions and to the corresponding potential

U , the solution of (2.1)) to the case where an inclusion is present. This calls into play the topological

gradient of the functional J , although with some differences with the original definition in [45] (see

[52], [17]): in the case at hand, indeed, we are perturbing the topology of the domain by inserting

inclusions instead of holes.

In particular, hypothesis (2.4) prescribes that the introduced inclusion is uniquely described

by two variables: the position z of the center and the dimension ε. Hence, we can introduce the

following simplified notation: hereon we will refer to J(Ωε) as j(ε; z). Moreover, we notice that,

when ε = 0, the function j does not depend on z. Hence we define, for the case in consideration, the

topological gradient of J evaluated in Ω as the function G : Ω→ R yielding the following expansion

as ε→ 0:

j(ε; z) = j(0) + εnG(z) + o(εn), z ∈ Ω. (2.28)

Therefore, at a first-order approximation, the value of G(z) describes the variation of the functional

j when introducing a small inclusion of center z. This entails that the best strategy to reduce j is

to introduce the inclusion in the point where G attains its negative minimum value, provided that

this latter exists.

In order to exploit for the sake of reconstruction the topological gradient, it is important to

compute it in an alternative way with respect to the one described by the definition (2.28); this

would indeed require the solution of several direct problems for each position z ∈ Ω where we want

to estimate the topological gradient G(z). We are able to prove a useful representation formula for

the topological gradient G in every z ∈ Ω which only requires to solve two differential problems. We

first of all need to prove the following ancillary result, which exploits the expansion in (2.14):

Lemma 2.3. In the same hypotheses of Theorem 2.1, there exists a positive constant C = C(k, d0, f,Ω)

such that the perturbation on the boundary datum (uε − U)|∂Ω fulfills:

‖uε − U‖L2(∂Ω) ≤ Cε
2n. (2.29)

Proof. The Neumann function NU of the operator −∆ + 3U2 can be written as:

NU (x, y) = Φ(x, y) + z̃(x, y) ∀x, y ∈ Ω, x 6= y, (2.30)
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where Φ is the fundamental solution of the operator −∆ (see (2.19)) and z̃ = Z+R defined in (2.18)

and (2.20) respectively; moreover, for every y 6= x, z̃(x, y) is the solution of{
−∆xz̃(x, y) + 3U2z̃(x, y) = −3U2Φ(x− y) in Ω

∂νx z̃(x, y) = −∂νΦ(x− y) on ∂Ω.
(2.31)

Consider an inclusion ωε satisfying (2.4), hence centered in a point z s.t. dist(z, ∂Ω) ≥ d0. Then,

the function y 7→ Φ(y−z) ∈ L2(Ω) and also y 7→ ∂νΦ(y−z)|∂Ω ∈ H1/2(∂Ω). By regularity results on

elliptic equations (see e.g. [74], [1]) one may conclude that z̃(·, z) ∈ H2(Ω) and z̃(·, z)|∂Ω ∈ H3/2(∂Ω).

In particular, ‖z̃(·, z)|∂Ω‖L2(∂Ω) and ‖∇xz̃(·, z)|∂Ω‖L2(∂Ω) are bounded by a constant C̃1 = C̃1(d0,Ω).

Moreover, as already reported, according to Proposition 4.2 in [30], it holds:

‖U‖L∞(Ω), ‖∇U‖L∞(Ω) ≤ C̃(‖f‖Lp(Ω) + ‖f‖3Lp(Ω)) ≤ C̃2 = C̃2(‖f‖Lp(Ω)). (2.32)

Hence, from the expansion (2.14),

‖uε − U‖2L2(∂Ω) =

∫
∂Ω

|uε(y)− U(y)|2dσ

≤ 2(1− k)2ε2n

∫
∂Ω

(M∇U(z) · ∇xNU (z, y))2dσ + 2ε2n

∫
∂Ω

U6(z)N2
U (z, y)dσ + o(ε2n)

≤ Cε2n(‖∇NU‖2L2(∂Ω) + ‖NU‖2L2(∂Ω)) + o(ε2n) (exploiting (2.32))

≤ Cε2n

(∫
∂Ω

|∇Φ(z − y)|2 +

∫
∂Ω

|∇xz̃(z, y)|2 +

∫
∂Ω

|Φ(z − y)|2 +

∫
∂Ω

|z̃(z, y)|2
)

+ o(ε2n).

Thanks to (2.3), the regularity of Φ guarantees that the first and the third boundary integrals in

the previous sum are controlled by a constant, whereas the second and the fourth ones are bounded

thanks to elliptic regularity, as stated above. Therefore, we can infer that

‖uε − U‖2L2(∂Ω) ≤ Cε
2n + o(ε2n), where C = C(d0,Ω, f, k, |∂Ω|).

Before expressing the desired result regarding the topological gradient, we need to prove a general

representation formula of the following kind:

Lemma 2.4. Consider a function w solving the auxiliary problem{
−∆w + 3U2w = 0 in Ω

∂νw = h on ∂Ω,
(2.33)

being h ∈ H−1/2(∂Ω) a generic function. Then,∫
∂Ω

NU (z, y)h(y)dσ(y) = w(z), (2.34)

Proof. We proceed analogously to what done for the proof of Proposition 2.2. Since w is a solution

of an elliptic problem with regular coefficients, according to [84, Theorem 2.4.2.6] w ∈ H2(Ω) and
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moreover, according to local Hölder estimates [82, Theorem 4.15] w and ∇w are continuous in Ω.

Consider a ball B = B(z, η), being η < δ0, and define V = Ω \B; taking into account the problems

solved by w and NU and exploiting the symmetry of NU ,∫
∂B

∂νyNU (z, y)w(y)dσ(y) =

∫
∂V

∂νyNU (z, y)w(y)dσ(y) =

∫
V

divy(∇yNU (z, y)w(y))dy

=

∫
V

∇yNU (z, y) · ∇w(y)dy +

∫
V

∆yNU (z, y)w(y)dy

=

∫
V

∇yNU (z, y) · ∇w(y)dy +

∫
V

∆xNU (y, z)w(y)dy

=

∫
V

∇yNU (z, y) · ∇w(y)dy +

∫
V

3U(y)2NU (y, z)w(y)dy

=

∫
V

divy(NU (z, y)∇w(y))dy −
∫
V

NU (z, y)∆w(y)dy +

∫
V

3U(y)2NU (y, z)w(y)dy

=

∫
∂V

∂νw(y)NU (z, y)dσ(y) =

∫
∂B

∂νw(y)NU (z, y)dσ(y).

As done in the proof of Proposition 2.2, when the radius η of B tends to 0, it follows that∫
∂B

∂νyNU (z, y)w(y)dσ(y)→ w(z), whereas
∫
∂B

∂νwNU (z, y)→ 0.

Remark 2.2. As a consequence, it also holds∫
∂Ω

∇xNU (z; y)h(y)dσ(y) = ∇
(∫

∂Ω

NU (z; y)h(y)dσ(y)

)
= ∇w(z). (2.35)

It is now possible to obtain a representation formula for the topological gradient G appearing in

(2.28).

Theorem 2.4 (Representation formula for the topological gradient). Under the assumptions of

Theorem 2.1, the topological gradient G of the functional J fulfills, for any acceptable z ∈ Ω:

G(z) = (1− k)∇U(z)TM(z)∇W (z) + U3(z)W (z), (2.36)

where W is the solution of the following adjoint problem:{
−∆W + 3U2W = 0 in Ω

∂νW = U − umeas on ∂Ω.
(2.37)

Proof. Recall the expression of the reduced cost functional: if ωε satisfies the assumption (2.4), then

J(Ωε) = j(ε; z) =
1

2
‖uε − umeas‖2L2(∂Ω).

By direct computation,

j(ε; z)− j(0) =
1

2
‖uε − umeas‖2L2(∂Ω) − ‖U − umeas‖

2
L2(∂Ω)

=
1

2
‖uε‖2L2(∂Ω) −

∫
∂Ω

uεumeas −
1

2
‖U‖2L2(∂Ω) +

∫
∂Ω

Uumeas

=
1

2
‖uε − U‖2L2(∂Ω) − ‖U‖

2
L2(∂Ω) +

∫
∂Ω

uεU −
∫
∂Ω

uεumeas +

∫
∂Ω

Uumeas

=
1

2
‖uε − U‖2L2(∂Ω) +

∫
∂Ω

(uε − U)(U − umeas).
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Thanks to Lemma 2.3, the first term of the last expression can be estimated as follows:

‖uε − U‖2∂Ω ≤ Cε
2n = o(εn).

The second term, exploiting (2.14), can be written as:∫
∂Ω

(uε − U)(U − umeas) =εn
∫
∂Ω

(1− k)∇U(z)TM(z)∇NU (z; y)(U(y)− umeas(y)))dσ(y)

+ εn
∫
∂Ω

U3(z)NU (z; y)(U(y)− umeas(y))dσ(y) + o(εn).

Consider h(y) = U(y)− umeas(y) and apply the representation formulae (2.34) and (2.35) using the

solution W of the auxiliary problem (2.33) (which in this case is exactly the adjoint problem (2.37)):∫
∂Ω

(uε − U)(U − umeas) =

∫
∂Ω

(uε(y)− U(y))h(y)dσ(y)

= εn
∫
∂Ω

(1− k)∇U(z)TM(z)∇NU (z; y)h(y))dσ(y)

+ εn
∫
∂Ω

U3(z)NU (z; y)h(y)dσ(y) + o(εn)

= εn
[
(1− k)∇U(z)TM(z)∇W (z) + U3(z)W (z)

]
+ o(εn),

and thus the formula (2.36).

Remark 2.3. An extension of the problem discussed so far which is indeed of interest for the sake

of the application we have in mind is the reconstruction of inclusions provided that a set of measured

data are available only on a portion of the boundary. This approximates the actual procedure of

measuring the electrical potential, recovering information by means of a finite number of electrodes.

Let Γ ⊂ ∂Ω, |Γ| 6= 0 be the portion of boundary on which uΓ
meas is known. The results provided so

far for the inverse problem can be also recovered in this case, starting from the definition of the cost

functional

JΓ(Ωε) =

∫
Γ

(uε − uΓ
meas)

2dσ,

which leads to a similar definition of topological gradient G. It is possible to prove that the same

representation formula in (2.36) holds in this case, except for the definition of the adjoint state W ,

which is instead given by the following adjoint problem:
−∆W + 3U2W = 0 in Ω

∂νW = (U − uΓ
meas) on Γ

∂νW = 0 on ∂Ω.

(2.38)

Remark 2.4. Another important extension suggested by the biological application consists in con-

sidering the effect of anisotropic conductivity coefficients, which may describe in a more accurate

way the electrical properties of the heart tissue. Extending the dissertation of Remark 5.2 in [30],

we can compute the representation formula for the topological gradient also in the case when the



2.3. A TOPOLOGICAL GRADIENT-BASED RECONSTRUCTION ALGORITHM 29

coefficient kε(x) = 1− (1− k)χωε(x) is replaced with Kε(x) = K1(x)χΩ\ωε(x) +K2(x)χωε(x), being

K1 and K2 matrix-valued regular coefficients satisfying, ∀x ∈ Ω: K1(x),K2(x) are symmetric and

|ξ|2 ≤ ξTK1(x)ξ ≤ β1|ξ|2 α2|ξ|2 ≤ ξTK2(x)ξ ≤ β2|ξ|2 ∀ξ ∈ Rn,

with 0 < α2 ≤ β2 < 1 and β1 ≥ 1. The expression of the topological gradient of the cost functional

J in the anisotropic case reads as follows:

G(z) = Mij (K1(z)−K2(z))ik
∂U

∂xk
(z)

∂W

∂xj
(z) + U3(z)W (z) (2.39)

Taking advantage of the assumptions made so far and of the theoretical results that have been

proved, we are now ready to set up a topological gradient-based reconstruction algorithm for the

inverse problem. In particular, we remark that, under the hypothesis (2.4), we restrict ourselves to

the identification of the position of the center of a small inclusion of prescribed shape. This can be

performed by exploiting the formula (2.28) as explained before: if the topological gradient G attains

its (negative) minimum in z̄ ∈ Ω,

G(z̄) < 0 ⇒ j(ε; z̄) < j(0)

G(z̄) ≤ G(z) ∀z ∈ Ω ⇒ j(ε; z̄) ≤ j(ε; z) ∀z ∈ Ω,

which means that the introduction of a small inhomogeneity at z = z̄ yields the maximum negative

variation of the functional J . Finally, thanks to the adjoint approach, we have obtained the repre-

sentation formula (2.36) for the topological gradient, which allows to compute G(z) by solving two

boundary value problems.

The boundary datum, when dealing with a practical application, is derived from a measure-

ment. Instead, for the sake of testing the algorithm, we suppose in the sequel to know a priori

the exact shape and location of the inclusion and we solve the direct problem (2.5) to compute the

corresponding potential on the whole domain, from which we extract the boundary datum umeas.

2.3.1 Identification in presence of a single measurement

According to the strategy proposed in [52], a one-shot algorithm based on the topological gradient

can be implemented (see Algorithm 1). The numerical approximation of problems (2.5), (2.1) and

Require: domain Ω, forcing term f , boundary datum umeas

Ensure: approximated centre of the inclusion, z̄

compute U by solving (2.1);

compute W by solving (2.37);

determine G according to (2.36);

find z̄ s.t. G(z̄) ≤ G(z) ∀z ∈ Ω.
Algorithm 1: Reconstruction of a single inclusion of small dimensions

(2.37) is performed through the Galerkin-Finite Element Method. To this purpose, we introduce a

discretization Th of the domain Ω, e.g. made of triangular elements if n = 2, and define the discrete

subspace Vh = Xr
h ∩ V , where

Xr
h(Ω) = {v ∈ C(Ω̄) : v|K ∈ Pr(K) ∀K ∈ Th},
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being Pr the space of polynomials of degree r.

When applying the finite element method on problem (2.5), whose weak formulation is reported

in (2.6), we must tackle the solution of a nonlinear system of equations. Indeed, introducing the

operator S : V → V ∗, S(u) = T (u) − F , the discrete approximation of the direct problem (2.5)

reads:

find uh ∈ Vh s.t. < S(uh), vh >∗= 0 ∀vh ∈ Vh. (2.40)

By denoting the basis {ϕi}Nhi=1 of Vh (where Nh = dim(Vh)) by

uh(x) =

Nh∑
i=1

uiφi(x), x ∈ Ω,

(2.40) can be equivalently rewritten as the following algebraic system:

find u ∈ RNh s.t. S(u) = 0,

being Si(u) =< S(uh),ϕi >∗ and (u)i = ui,
(2.41)

which is a nonlinear system (due to nonlinearity of T ) of Nh equations in Nh unknowns. One of

the most common strategies to tackle the nonlinearity is the Newton method, which generates a

sequence {u(k)} to approximate the solution u as follows:{
u(0) given

u(k+1) = u(k) + δu(k), k = 0, 1, . . . ,
(2.42)

where δu(k) is the solution of the linearized system

J(u(k))δu(k) = −S(u(k)), (2.43)

and J(u(k)) is the Jacobian matrix of the vectorial function S, evaluated at u(k). The sequence

{u(k)} converges to the solution u of (2.41) if u(0) is chosen sufficiently close to u (according to

the Newton-Kantorovich theorem, see e.g. [140]). We remark that problem (2.43) is the algebraic

counterpart of the following linear problem: find δu
(k)
h ∈ Vh s.t.

< dS(u
(k)
h )[δu

(k)
h ], vh >∗= − < S(u

(k)
h ), vh >∗ ∀vh ∈ Vh, (2.44)

where dS(w)[·] : V → V ∗ is the Frechét derivative of S evaluated at w. Hence, the possibility to

invert the matrix J(u(k)) ∈ RNh×Nh is equivalent to the well-posedness of (2.44), for which we now

provide a detailed numerical analysis.

First consider the linearized problem (2.43), which we have to solve at each step, or equivalently

(2.44), which explicitly reads: find uh ∈ Vh such that∫
Ω

kε(x)∇δuh · ∇vh +

∫
Ω\ω

3
(
u

(k)
h

)2

δuhvh =

=

∫
Ω

fvh−
∫

Ω

k∇u(k)
h · ∇v −

∫
Ω\ωε

(
u

(k)
h

)3

vh ∀vh ∈ Vh.
(2.45)

Such a problem is indeed well-posed, according to the following result:
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Proposition 2.3. If u
(0)
h ∈ Vh ∩ L∞(Ω), problem (2.45) admits an unique solution u

(k)
h in Vh ⊂

V = H1(Ω) for every k. Moreover,

∃Ck > 0 s.t.
∥∥∥u(k)

h

∥∥∥
H1(Ω)

≤ Ck
(
‖f‖H−1(Ω) +

∥∥∥u(0)
h

∥∥∥3

H1(Ω)

)
.

Proof. Consider the first iteration: for a fixed initial point u
(0)
h in Vh ∩ L∞(Ω), the linear operator

−s(u(0)
h , ·) = − < S(u

(0)
h ), · >∗ and the bilinear form ds[u

(0)
h ](·, ·) =< d

u
(0)
h

S·, · >∗ are continuous:

for all uh, vh ∈ Vh, it holds:∣∣∣ds[u(0)
h ](uh, vh)

∣∣∣ ≤ ‖∇uh‖L2(Ω)‖∇vh‖L2(Ω) + 3
∥∥∥u(0)

∥∥∥2

L∞(Ω)
‖uh‖L2(Ω)‖vh‖L2(Ω)

≤ max
{

1, 3
∥∥∥u(0)

h

∥∥∥2

L∞(Ω)

}
‖uh‖H1(Ω)‖vh‖H1(Ω);∣∣∣s(u(0)

h , vh)
∣∣∣ ≤ ‖f‖L2(Ω)‖vh‖L2(Ω) + ‖∇vh‖L2(Ω)

∥∥∥∇u(0)
h

∥∥∥
L2(Ω)

+
∥∥∥u(0)

h

∥∥∥3

L6(Ω)
‖vh‖L2(Ω)

≤
(
‖f‖L2(Ω) +max

{
1, C2

Sob

∥∥∥u(0)
h

∥∥∥3

H1(Ω)

})
‖vh‖H1(Ω).

Nevertheless, the bilinear form is not coercive in Vh, indeed:

ds[u
(0)
h ](uh, uh) =

∫
Ω

kε∇uh · ∇uh +

∫
Ω

3χΩ\ωε

(
u

(k)
h

)2

u2
h

and a lower bound of the latter quantity in terms of the H1-norm of uh cannot be obtained because

of the presence of the indicator function over Ω \ ωε in the reaction term. The weak coercivity is

instead guaranteed, with constant k > 0:

ds[u
(0)
h ](uh, uh) + k‖uh‖2L2(Ω) =

∫
Ω

kε∇uh · ∇uh +

∫
Ω

3χΩ\ωε

(
u

(0)
h

)2

u2
h +

∫
Ω

ku2
h

≥
∫
ωε

k∇uh · ∇uh +

∫
Ω\ωε

∇uh · ∇uh +

∫
Ω

ku2
h

≥ k‖∇uh‖2L2(Ω) + k‖uh‖2L2(Ω) = k‖uh‖H1(Ω).

Hence, it is possible to apply the Neças theorem (or the Fredholm Alternative), see e.g. [74], Chapter

6, which entails the well-posedness of the problem (2.45) for k = 0 only if the homogeneous problem

has an unique solution, i.e.:

ds[u
(0)
h ](uh, vh) = 0 ∀vh ∈ Vh ⇔ uh = 0. (2.46)

To prove it, consider that, if w ∈ Vh ⊂ V = H1(Ω) solves (2.46), then it also satisfies:∫
Ω

k∇w · ∇vh +

∫
Ω\ωε

3
(
u

(0)
h

)2

wvh = 0 ∀vh ∈ Vh.

Hence, with vh = w,

∇w = 0 in Ω, w = 0 in Ω \ ωε. (2.47)
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According to the Poincarè inequality (2.8), this is sufficient to guarantee that w = 0 in Ω, and this

entails the uniqueness of the solution of (2.46) and thus the well-posedness of (2.45) for k = 0.

The stability estimate is guaranteed by Neças’ theorem, yielding∥∥∥u(1)
h

∥∥∥
H1(Ω)

≤ 1

k

∥∥∥g(u
(0)
h , ·)

∥∥∥
H−1
≤ Ck(‖f‖L2(Ω) +

∥∥∥u(0)
h

∥∥∥3

H1(Ω)
).

Hence, the solution δu
(0)
h of (2.45) with k = 0 exists and is unique in Vh, and with a procedure

similar to the one used on the homogeneous problem, one may prove that δu
(0)
h ∈ C0,α ⊃ L∞(Ω).

Moreover, also u
(1)
h ∈ H1(Ω) ∩ L∞(Ω), and this can be iterated to prove the thesis on each k > 0,

by induction.

We have therefore set the numerical strategy for the approximate solution of problem (2.6): the

well-posedness of the algebraic problems (2.43) to be solved at each step is entailed by the latter

proposition, whereas the convergence of the sequence {uh}h>0 is guaranteed by the Kantorovich

theorem (see [140]), which exploits the Lipschitz-continuity of the functional S(u) = T (u)− F .

Through this strategy, it is possible to solve the direct problem (2.5) with the exact inclusion in

order to obtain the boundary data, as well as the unperturbed problem (2.1) required by Algorithm 1.

Differently, the approximation of the adjoint problem (2.37), which is a linear problem, immediately

leads to the solution of a linear algebraic system, for which a well-posedness is guaranteed via the

Lax-Milgram lemma. Once U and W have been computed, the expression of the topological gradient

G(z) of the function j is given by (2.36), where one has to exploit the a priori knowledge on the

shape of the inclusion to choose the proper polarization tensor. For example, while looking for

circular-shaped inclusions, we obtain (see (2.15)):

G(z) =
2(1− k)

1 + k
|D|∇U(z) · ∇W (z) + U3(z)W (z). (2.48)

Thanks to the discretization introduced, the approximation of the value of the topological gradient

G is known in each node of the triangulation Th. Hence, the search for its minimum point z̄ is

performed by a simple inspection between the nodal values of G. This, of course, requires the usage

of a sufficiently fine mesh Th; otherwise, one may use any finite-dimensional optimization algorithm

but entailing the evaluation of G (and possibly its derivative, namely the Hessian of j) in points

where the values of U and W have not been computed.

2.3.2 Identification in presence of multiple measurements

The proposed Algorithm 1 allows to reconstruct the position of the exact inclusion with a sin-

gle measurement of the boundary datum. However, it exploits a first-order expansion of the cost

functional, and this can affect the precision of the reconstruction, due to the disregarded higher-

order terms. In order to overcome this drawback, similarly to the approach proposed in [52], it is

possible to take advantage of multiple measurements. Consider Nf > 1 different non zero forcing

terms fi, i = 1, . . . , Nf , and suppose to know the respective boundary data umeas,i, that is, the

solutions of the direct problem (2.5) with the same inclusion ωε and the corresponding source term

fi. Introduce the cost functional

J(Ωε) =

N∑
i=1

αiJi(Ωε), where Ji(Ωε) =

∫
∂Ω

(uε − umeas,i)2
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and {αi}N
f

i=1 is a set of weights such that

αi > 0,

Nf∑
i=1

αi = 1.

Then, the minimum point z̄ of the topological gradient G(z) =
∑
i αiGi(z) provides a better ap-

proximation of the inclusion’s center than the minima z̄i of each Gi, the topological gradient of Ji,

filtering possible errors induced by the asymptotic analysis carried out on each functional Ji. Hence,

we perform a slight variation of Algorithm 1, in the case where multiple observations are available:

Require: domain Ω, forcing terms fi, boundary data umeas,i, i = 1, . . . , Nf

Ensure: approximated center of the inclusion, z̄

for i = 1, . . . , Nf do

compute Ui by solving (2.1) with forcing term fi;

compute Wi by solving (2.37) with Neumann datum Ui − umeas,i;
determine Gi according to (2.36);

end for

compute G(z) =
∑Nf

i=1 αiGi(z);

find z̄ s.t. G(z̄) ≤ G(z) ∀z ∈ Ω.
Algorithm 2: Reconstruction of a single inclusion, many measurements

A possible way to define the weights {α1, . . . , αNf } is to take

αi =
ji(0)/|minΩGi|∑Nf

i=1 ji(0)/|minΩGi|
, i = 1, . . . , Nf , (2.49)

which entails that the information provided by the topological gradient Gi associated to a large

value of the cost functional ji(0) is considered to carry more significant information than the one

associated to a smaller value Gj , j 6= i. We remark that this requires the calculation (for each

i = 1, . . . , Nf ) of ji(0) =
∫

Γi
(uΓ
meas − U)2, which does not yield a significant computational cost,

once the unperturbed problem (2.1) has been solved.

2.3.3 Partial measurements

We describe another alternative to Algorithm 1, related to Remark 2.3, which is more interesting

for the sake of application. Suppose to have information on the boundary potential on a portion Γ

of ∂Ω of the form:

Γ =

NΓ⋃
i=1

Γi, (2.50)

with Γi open, connected, |Γi| 6= 0 for all i = 1, . . . , NΓ. This configuration can model the presence of

NΓ different measurement devices on the boundary of the domain, on which we recover information

of the potential uΓ
meas. Moreover, as in Algorithm 2, we set up the optimization of an averaged cost

functional

J(Ωε) =

NΓ∑
i=1

αiJi(Ωε), where now Ji(Ωε) =

∫
Γi

(uε − umeas)2
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is the cost functional related to the single portion Γi of the boundary. This yields an alternative

reconstruction procedure, involving multiple partial measurements obtained with the same forcing

term f , as reported in Algorithm 3.

Require: domain Ω, forcing term f , boundary data uΓ
meas

Ensure: approximated centre of the inclusion, z̄

compute U by solving (2.1) with forcing term f ;

for i = 1, · · · , NΓ do

compute Wi by solving (2.37) with Neumann datum (U − uΓ
meas)χΓi ;

determine Gi according to (2.36);

end for

compute G(z) =
∑Nf

i=1 αiGi(z);

find z̄ s.t. G(z̄) ≤ G(z) ∀z ∈ Ω.
Algorithm 3: Reconstruction of a single inclusion, partial measurements

We remark that, since the formula (2.36) for the topological gradient and the adjoint problem

(2.37) are linear with respect to W , using homogeneous weights αi = 1/NΓ would be equivalent to

rely on Algorithm 1 with boundary data acquired on the whole Γ. Instead, the choice of weights pro-

posed in (2.49) allows to assign a better predictive value to the information derived by measurements

on the portions Γi which correspond to larger values of the cost functionals ji.

2.4 Numerical results

We now show some numerical results obtained by applying Algorithms 1, 2 and 3 in several

2-dimensional benchmark cases. The goal is manifold:

i) first of all (in section 2.4.1) we verify the effectiveness of the reconstruction, introducing a small

inhomogeneity of circular shape in a two-dimensional domain Ω, simulating the associated

boundary potential umeas (or umeas,i for i = 1, . . . , Nf , in the case of multiple measurements),

and computing the distance between the center of the exact inclusion and the detected one;

ii) in section 2.4.2 we assess the feasibility of the algorithms when the shape of the inclusion to

detect is unknown, and the reconstruction is performed with the polarization tensor of the circle.

Indeed, we exploit hypothesis (2.4) to assimilate an inclusion of small dimension to a circle, at

a first approximation;

iii) in section 2.4.3, we test the reconstruction of circular inclusion in the case of measures performed

on portions of the boundary, according to Algorithm 3, considering a source term which is

significant for the foreseen application;

iv) in section 2.4.4, we test the reconstruction of multiple circular inclusions, exploiting Algorithm

3 and reporting the presence of multiple local minima in the topological gradient;

v) in section 2.4.5, we assess the performance of Algorithm 3 in the case where the polarization

tensor features anisotropic effects, exploring in different benchmark cases the effect of different

rates of anisotropy on the reconstruction results;
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vi) finally, in section 2.4.6, we verify the stability of the procedure proposed in Algorithms 2 and 3

with respect to the presence of a measurement noise on the datum umeas.

In each experiment, the solution of the differential problems is performed via the Galerkin-Finite

Element Method, as explained in Section 2.3. In order to properly consider inhomogeneities of small

dimensions (diam(Ω)/diam(ωε) ≤ 0.05), a triangulation of Ω made by a large number of elements

(≈ 30, 000) is considered. Indeed, since the position of the inclusion is unknown, it is impossible to

perform a local refinement of the mesh (which would increase the quality of the mesh without yielding

a large cost due to the greater size of the linear system to solve). However, thanks to the one-shot

approach, the reconstruction procedure is not expensive at all, and the overall computational time

is in general of the order of the minute ∗(e.g. when applying Algorithm 2 with Nf = 2 sources on

a mesh of about 30, 000 elements, the computational time is about 10′′, whereas Algorithm 3 on a

mesh of about 100, 000 elements with NΓ = 16 takes almost 100′′).

In the case of multiple observations, we use the source terms proposed in [52] for the linear

problem: f1(x, y) = x, f2(x, y) = y, f3(x, y) = xy, f4(x, y) = 0.5(x2 − y2), for all (x, y) ∈ Ω. This

allows to assess the effectiveness of our reconstruction procedure in a benchmark case which is similar

to the ones proposed in the literature for the linear problem. Similarly e.g. to the results shown in

[52], also in our case it is not necessary to use more than Nf = 4 forcing terms: in particular, each

simulation is carried out with Nf = 1, · · · , 4 and, if the reconstructed position does not undergo

a significant change after the introduction of a new measurement, the procedure is stopped. The

weights αi in the averaged functional are chosen as in (2.49). When testing Algorithm 3, instead,

the chosen source term is inspired by the foreseen application.

2.4.1 Circular-shaped inclusion detection

We report the numerical results obtained for the detection of the center of small circular inclusions

in different positions of the domain Ω = B(0, 1). In Figure 2.1 we plot the topological gradient G(z),

superimposing its negative minimum (white cross) and the boundary of the exact inclusion (white

circle of radius 0.04). The minima detected in all the cases are reported in Table 2.1, where we also

compute the Euclidean distance between the reconstructed position and the exact inclusion’s center.

In the column Nf we specify how many measurements were needed for finding the minima.

Real inclusion Detected inclusion Nf Error

(0, 0.1) (0.014,0.106) 2 0.016

(0.4, 0.3) (0.363, 0.296) 3 0.037

(−0.65, 0) (-0.603,0.005) 2 0.047

(0.4,−0.5) (0.431,-0.500) 3 0.031

Table 2.1: Detection of a circular-shaped inclusion: results

We observe that the algorithm detects the position of the inclusion with an average error of 0.04

in Euclidean norm, which is comparable to the size of the inclusion itself. Moreover, significant

differences can be observed according to the position of the inclusion. Except for the inclusions

∗We performed the simulations with a laptop with CPU frequency of 2.10GHz, RAM 8GB
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(a) Real inclusion: (0,0.1) (b) Real inclusion: (0.4,0.3)

(c) Real inclusion: (-0.6,0) (d) Real inclusion: (0.4,-0.5)

Figure 2.1: Detection of a circular-shaped inclusion

located very close to the center, it holds that the closer the inclusion to the boundary, the more

accurate the reconstruction. However, if the inclusion is excessively close to boundary, the minimum

is detected along the boundary itself, which is of course in contrast with hypothesis (2.4).

2.4.2 Inclusion of unknown shape

Whether cannot rely on a priori knowledge on the shape of the inclusion to be identified, the

expression of the polarization tensor is in general not available. Nevertheless, even in this case, we

can apply the proposed algorithm for the reconstruction of small circular inclusions to identify the

position of inclusions with small size and unknown shape. In this section, we show that formula

(2.48), related to circular-shaped inclusions, can be successfully applied to detect (at some extent)

inclusions whose shape is unknown. In a first case, we reconstruct the center of an inclusion of

elliptic shape both with the exact polarization tensor (2.16) and with the one related to the circular

shape, given (2.15): see Figure 2.2 and Table 2.2. Then, we test the identification of inclusions

with more involved shapes, for which the polarization tensor is unknown. We report the qualitative

results of the detection of an L-shaped inclusion obtained by means of the polarization tensor of the
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circle (see Figure 2.3).

(a) Exact polarization tensor (b) Circular-shape tensor

Figure 2.2: Elliptic-shaped inclusion detection with different tensors

M Real inclusion center x and y real semi-axis Detected center Error

Ellipse (0.3, 0.2) (0.07, 0.03) (0.302, 0.196) 0.005

Circle (0.3, 0.2) (0.07, 0.03) (0.320, 0.181) 0.028

Ellipse (0.5, 0) (0.04, 0.02) (0.487, -0.013) 0.018

Circle (0.5, 0) (0.04, 0.02) (0.549, 0.009) 0.050

Table 2.2: Elliptic-shaped inclusion detection with different tensors: results

(a) Inclusion (b) Topological gradient

Figure 2.3: L-shaped inclusion detection using the tensor corresponding to the circular shape

In the case of inclusions of elliptic shape, we remark that the reconstruction error using the

polarization tensor of the circle is actually higher than, but comparable to, the one with the correct

tensor. Hence, the proposed one-shot algorithm can be used when dealing with the reconstruction

of inclusions of unknown shape and small dimensions, to provide a first approximation of the center
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by using the topological gradient associated to the polarization tensor of the circle. This can consist

in an initial guess for an iterative scheme, based e.g. on the level-set technique or on the evaluation

of the shape gradient of the functional J , if a shape optimization procedure is exploited for the

complete reconstruction of the geometry of the inclusion.

2.4.3 Partial measurements

In this section, we test Algorithm 3 for the reconstruction of a small circular inhomogeneity in

the domain Ω = B(0, 1) using measurements of the potential on a portion Γ of the boundary. In

particular, we consider a source term f(x, y) = 1−exp(−r2
s/((x−xs)2 +(y−ys)2)), which attains its

maximum value in (xs, ys) ∈ Ω and exponentially decays outside a circular neighborhood of radius

rs, approximating the electrical stimulus originated in a specific region. Moreover, the region Γ is

of the form prescribed by (2.50), where Γi are equivalent arcs of length 2π`.

We report some results of the reconstruction algorithm in the case where the exact inclusion has

center (0.5, 0.4), the forcing stimulus is centered in (0,0) with radius rs = 0.3, ` = 1/48 and we

consider different numbers of portions NΓ: see Table 2.3 for the quantitative results and Figure 2.4,

where Γ is marked with a thick black line.

NΓ Detected inclusion Error

8 (0.629, 0.530) 0.183

12 (0.482, 0.346) 0.057

16 (0.508, 0.423) 0.025

24 (0.489,-0.398) 0.011

Table 2.3: Reconstruction with partial measurements: results

2.4.4 Identification of multiple inclusions

We now test the effectiveness of the reconstruction algorithm when applied to data related to

multiple inclusions. We point out that, as reported in [30], the generalization of the asymptotic

expansion (2.14) to the case when ωε =
∑L
l=1 zl + εDl reads as follows:

(uε − U)(y) = εn
L∑
l=1

[
(1− k)∇U(zl)

TM(zl)∇xNU (zl, y) + U3(zl)NU (zl, y)
]

+ o(εn), as ε→ 0, ∀y ∈ ∂Ω.

(2.51)

It is possible to deduce from (2.51) a reconstruction formula for the topological gradient, and

to devise a (possibly) iterative reconstruction algorithm to reconstruct L different inclusions of

arbitrarily different shapes. In the present work, however, we consider the case in which all the

inclusions to be identified are supposed to be of circular shape. Moreover, according to the results

reported in subsection 2.4.2, this may be the natural choice in order to avoid the requirement of a

priori knowledge on the different shapes Dl. In Figure 2.5 we show that the topological gradient

computed as in Algorithm 3 identifies different local minima in presence of multiple inclusions. The

global minimum, in particular, is found to be very close to one of the inclusions; the subregion where
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(a) NΓ = 8 (b) NΓ = 12

(c) NΓ = 16 (d) NΓ = 24

Figure 2.4: Reconstruction with partial measurements: results

the topological gradient is under a given threshold (say, τ = (1−α)G(z̄), being z̄ the global minimum

point, for a small, chosen α ∈ (0, 1/2)), would contain all the inclusions. Only if the inclusions are

too close each other, the algorithm may fail in distinguish them.

2.4.5 Identification of inclusions in presence of anisotropy

In this subsection, we show some results related to the case of an anisotropic medium. We suppose

the expressions of the anisotropic conductivity matrices K1 and K2 to be known, and exploit them

in the application of Algorithm 3, in the formulation of the background and adjoint problem as well

as in the computation of the polarization tensor, according to Remark 2.4 and formula (2.39). Given

the spectral decomposition of K1:

K1(x) = λ1(x)v1(x)⊗ v1(x) + λ2(x)v2(x)⊗ v2(x),

where λi(x) are the (positive real) eigenvalues of K1(x) and vi(x) the respective eigenvectors, we

consider two benchmark cases. We suppose the eigenvalues λ1, λ2 to be constant within Ω and

the eigenvectors in each point to be either parallel to the Cartesian axes (Test A), or to the radial
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Figure 2.5: Identification of multiple circular inclusions

and the tangential directions with respect to the center of the domain (Test B). We assume that

K2(x) = κK1(x), with κ� 1: dealing with inclusions of small size, the expression of the conductivity

inside ωε is not the object of the present investigation. In Figure 2.6 and Table 2.4 we report

some qualitative and quantitative results of the reconstruction algorithm, in presence of different

parameters λx, λy (the eigenvalues associated to the principal directions in Test A) or λρ, λθ (in

Test B).

Test Detected inclusion Error

Test A: λx = 1, λy = 2 (0.444, 0.251) 0.064

Test A: λx = 1, λy = 3 (0.474, 0.230) 0.102

Test A: λx = 2, λy = 1 (0.438, 0.272) 0.047

Test A: λx = 3, λy = 1 (0.436, 0.218) 0.090

Test B: λρ = 1, λθ = 2 (0.470, 0.360) 0.092

Test B: λρ = 1, λθ = 3 (0.467,-0.378) 0.103

Table 2.4: Reconstruction in the anisotropic case: results with real inclusion in (0.4,0.3)
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(a) Test A: λx = 1, λy = 2 (b) Test A: λx = 3, λy = 1

(c) Test B: λρ = 1, λθ = 2 (d) Test B: λρ = 1, λθ = 2

Figure 2.6: Results in the anisotropic case

The position of the exact inclusion is detected in all the proposed configurations, although the

accuracy seems to decrease when the ratio between the eigenvalues increases.

2.4.6 Effect of experimental noise

In this last subsection, we show the stability of Algorithms 2 and 3 with respect to possible

experimental or measurement noise on the boundary data. We neglect in this case possible aniso-

tropic effects, aiming at identifying a single inclusion. We perturb the value of the exact solution

computed on the boundary up to a fixed percentage p (ũmeas(x) = umeas(x)(1 − p/2 + rand(x)p),

where rand(x) is a random number between 0 and 1 for each x ∈ Ω), assessing the performances

of the reconstruction procedures. Some results in the case of the reconstruction of circular-shaped

inclusions with multiple measurements are reported in Figure 2.7 and in Table 2.5. We conducted

the simulation 100 times with different realizations of the random experimental noise, reporting the

average error obtained; the cases where the inclusion was detected on the boundary (and thus the

reconstruction fails) are not taken into account, but are reported in Table 2.5 as “failure” cases. In

Table 2.6 and in Figure 2.8, instead, we report the results obtained in the case of partial measu-
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rements affected by noise, in the case of NΓ = 12, 16, 24 portions of the boundary of length 2π`,

` = 1/48. Each simulation was conducted 20 times with different random errors; the average results

are then reported.

Percentage Real inclusion’s center Failure Mean error

1% (0.2,-0.2) 0% 0.026

2% (0.2,-0.2) 0% 0.034

5% (0.2,-0.2) 0% 0.082

10% (0.2,-0.2) 33% 0.212

Table 2.5: Results under experimental errors: multiple measurements

(a) Error: 1% (b) Error: 2%

(c) Error: 5% (d) Error: 10%

Figure 2.7: Results under experimental errors: multiple measurements

We point in the first case, i.e. the reconstruction with many measurements, that the detected

position is stable under small perturbations of the data (namely, the error in reconstruction grows

almost linearly with respect to the experimental noise), but there exists a threshold value (e.g., in

the first case, below 10%) above which the information provided by the topological gradient is too

noisy to be meaningful for the sake of reconstruction. The same happens in the second case, for each
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NΓ = 12 NΓ = 16 NΓ = 24

p = 1% 0.087 0.030 0.021

p = 2% 0.103 0.087 0.040

p = 5% 0.254 0.170 0.138

Table 2.6: Results under experimental errors: partial measurements

(a) p = 1%, NΓ = 12 (b) p = 1%, NΓ = 16 (c) p = 1%, NΓ = 24

(d) p = 2%, NΓ = 12 (e) p = 2%, NΓ = 16 (f) p = 2%, NΓ = 24

(g) p = 5%, NΓ = 12 (h) p = 5%, NΓ = 16 (i) p = 5%, NΓ = 24

Figure 2.8: Results under experimental errors: partial measurements

number NΓ of portions Γi considered. This consists in a numerical validation of the local stability

result proved in Section 2.2 for the inverse problem under discussion.
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Chapter 3

Detection of small inclusions in a

semilinear parabolic boundary

value problem

In this chapter, we develop theoretical analysis and numerical reconstruction techniques for the

solution of an inverse boundary value problem dealing with a semilinear parabolic equation, which

consists in a significant intermediate problem in order to tackle the full complexity of the evolution

of the electric potential in the myocardial tissue.

The determination of diffusion coefficients as well as of reaction terms for parabolic equations

and, to a lesser extent, also the identification of unknown inclusions in the spatial domain is an

extensively studied class of inverse problems (see, e.g., [91] [36], [90], [111] and references therein).

Even when dealing with boundary value problems involving linear partial differential equations, the

corresponding inverse problems turn out to be nonlinear, and this entails severe difficulties both for

the well-posedness analysis and for the development of reconstruction algorithms. The problem we

consider in this chapter is a mathematical challenge itself, never considered before from a rigorous

analytical viewpoint. Indeed, here the difficulties include the nonlinearity of both the direct and the

inverse problem, as well as the lack of measurements at disposal.

Our approach in tackling this problem is to develop a rigorous theoretical investigation both for

the analysis and the numerical approximation of this inverse problem, inspired by the results obtained

in a simpler stationary case in [30] and in Chapter 2. In particular, additional assumptions are needed

to obtain rigorous theoretical results, namely by considering small-size conductivity inhomogeneities.

We thus model ischemic regions as small inclusions ωε where the electric conductivity is significantly

smaller than the one of healthy tissue and there is no ion transport. We establish a rigorous

asymptotic expansion of the boundary potential perturbation due to the presence of the inclusion

adapting to the parabolic nonlinear case the approach introduced by Capdeboscq and Vogelius in

[47] for the case of the linear conductivity equation. A similar approach has also been used in

Thermal Imaging (see, e.g., [12]).

We use these results to set a reconstruction procedure for detecting the inclusion. To this aim,

45
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as in Chapter 2, we propose a reconstruction algorithm based on topological optimization, where a

suitable quadratic functional is minimized to detect the position of the inclusion under a small size

assumption (see also [52]). This requires the solution of two initial and boundary value problems, the

background problem and the adjoint one, which are discretized by means of a Galerkin finite element

method. Numerical results obtained on an idealized left ventricle geometry assess the feasibility of

the proposed procedure. Several numerical test cases also show the robustness of the reconstruction

procedure with respect to measurement noise, unavoidable when dealing with real data.

The chapter is organized as follows. In Section 3.1 we briefly describe the model and the direct

and inverse problems which are the object of study. In Section 3.2 we show some suitable well-

posedness results concerning the direct problems, in the unperturbed (background) and perturbed

cases. In Section 3.3 we prove useful energy estimates of the difference of the solutions of the two pre-

vious problems. The asymptotic expansion formula is derived in Section 3.4 and the reconstruction

algorithm in Section 3.5. Numerical results are finally provided in Section 3.6.

3.1 The monodomain model of cardiac electrophysiology

Throughout the chapter we consider the following (background) initial and boundary value pro-

blem 
νCmut − div(k0∇u) + νf(u) = 0, in Ω× (0, T ),
∂u

∂n
= 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

(3.1)

where Ω ⊂ R3 is a bounded set with boundary ∂Ω, and k0 ∈ R, k0 > 0.

As outlined in Chapter 1, this problem consists in a particular version of the monodomain model

describing the macroscopic electric activity of the heart [132, 61]. This equation yields a macroscopic

model of the cardiac tissue, arising from the superposition of intra and extra cellular media, both

assumed to occupy the whole heart volume (bidomain model), making the hypothesis that the

extracellular and the intracellular conductivities are proportional quantities. Here Ω is the domain

occupied by the ventricle, u is the (transmembrane) electric potential, f(u) is a nonlinear term

modeling the ionic current flows across the membrane of cardiac cells, k0 is the conductivity tensor

of the healthy tissue, Cm > 0 and ν > 0 are two constant coefficients representing the membrane

capacitance and the surface area-to-volume ratio, respectively. For the sake of simplicity, in the

following sections we fix Cm = 1 and ν = 1. We deal with an insulated heart, namely, we do

not consider the effect of the surrounding torso, which behaves as a passive conductor, whence the

Neumann boundary conditions. The initial datum u0 represents the initial activation of the tissue,

arising from the propagation of the electrical impulse in the cardiac conduction system.

Throughout this chapter we assume (as performed, e.g., in [61, Sect. 4.2] and [132, Sect. 2.2])

that f(u) is a cubic function,

f(u) = A2(u− u1)(u− u2)(u− u3), ui ∈ R, u1 < u2 < u3; (3.2)

this yields a phenomenological model which is capable of describing only the first part of the evolution

of the heart electrical potential during the heartbeat: namely, the fast propagation of the initial

stimulus, and not the slow plateau and repolarization phase. Phenomenological models allowing for
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an accurate description of the whole heartbeat require the ionic current to be described as a function

of u and at least a gating variable w: such models are not the object of study in this chapter.

Consider now a small inhomogeneity located in a measurable bounded domain ωε ⊂ Ω, such that

there exists a compact set K0, with ωε ⊂ K0 ⊂ Ω, and a constant d0 > 0 satisfying

dist(ωε,Ω\K0) ≥ d0 > 0. (3.3)

Moreover, we assume
|ωε| > 0, lim

ε→0
|ωε| = 0. (3.4)

In the inhomogeneity ωε the conductivity coefficient and the nonlinearity take different values with

respect the ones in Ω\ωε. Indeed, according to biological observations, cells in an infarcted area are

no longer excitable, and the electrical conductivity in this portion of tissue is much smaller than

the one of healthy tissue. As a matter of fact, we incorporate the presence of an ischemia into the

model (3.5) by diverting (forcing) the ion transport to go around the infarcted areas, and by varying

the conductivity in such regions, similarly to what proposed in [105]. The problem we consider is

therefore 
uεt − div(kε∇uε) + χΩ\ωεf(uε) = 0, in Ω× (0, T ),
∂uε

∂n
= 0, on ∂Ω× (0, T ),

uε(0) = u0, in Ω,

(3.5)

where χD stands for the characteristic function of a set D ⊂ R3. Here

kε = (k0 − k1)χΩ\ωε + k1 =

 k0 in Ω\ωε,

k1 in ωε,
(3.6)

with k0, k1 ∈ R, k0 > k1 > 0.

The purpose of this chapter is to deal with the following problems:

Definition 3.1 (Direct problem). Knowing the inclusion ωε, determine the perturbed potential

uε(x, t) associated to forall x ∈ Ω, t ∈ (0, T ) it through (3.5);

and conversely

Definition 3.2 (Inverse problem). Knowing the perturbed potential, and in particular only the

boundary measurement umeas = uε|∂Ω on ∂Ω × (0, T ), determine the inclusion ωε associated to it

through (3.5)

The assumption made on the inclusion ωε (namely, (3.3) and (3.4)) must be considered as regu-

larization hypotheses: i.e., we aim at exploiting them in order to derive rigorous analytical results

involved both in the analysis of the inverse problem and in the deduction of a reconstruction algo-

rithm. In order to embed information about prior knowledge on the shape of the ischemia, several

different strategies can be considered, especially from an algorithmic point of view. For instance, in

[105, 126] the parameters of a level set function are used to describe a non-homogeneous conductivity

tensor and the related ionic current. A different approach is taken into account in [8, 54], where the

presence of an ischemia is instead described in terms of two (non-homogeneous in space) parameters
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of the ionic model; see also, e.g., [40] for similar considerations. Our approach is instead to assume

(3.3), (3.4) and proceed analogously as in [30], [33]. In the final sections, we in particular focus on

the identification of ischemias which can be assimilated to small spheres, whose position is unknown;

note that the whole setting can be extended also to non connected ischemias – recent experimental

measurements indeed show that ischemic regions are neither monolithic nor simply localized, see,

e.g., [19] – described by a finite number of (small) well-separated inhomogeneities.

3.2 Well posedness of the direct problem

Concerning the mathematical analysis of both the monodomain and the bidomain models, several

crucial results have been obtained for instance in [27, 39, 41, 61] in a general context. In the case we

are considering, it is possible to prove analogous results and even additional properties both in case

of healthy and ischemic tissue. Problem (3.1) hereon will be referred to as the background problem;

we devote Section 3.2.1 to the analysis of its well-posedness. The well-posedness of the perturbed

problem modeling the presence of a small inclusion in the domain will be instead analyzed in Section

3.2.2.

3.2.1 Well posedness of the background problem

We make the following assumptions:

Ω ∈ C2+α, α ∈ (0, 1),

u0 ∈ C2+α(Ω), u1 < u0(x) < u3 ∀x ∈ Ω,
∂u0(σ)

∂n
= 0 ∀σ ∈ ∂Ω.

(3.7)

Moreover, since f has the form (3.2), let us set

M1 := ‖f‖C([u1,u3]), M2 := ‖f ′‖C([u1,u3]). (3.8)

The following well posedness result holds.

Theorem 3.1. Let us assume (3.2), (3.7). Then problem (3.1) admits a unique solution u ∈
C2+α,1+α/2(Ω× [0, T ]) such that

u1 ≤ u(x, t) ≤ u3, (x, t) ∈ Ω× [0, T ], (3.9)

‖u‖C2+α,1+α/2(Ω×[0,T ]) ≤ C, (3.10)

where C is a positive constant depending (at most) on k0, T,Ω,M1,M2, ‖u0‖C2+α(Ω).

Proof. The proof of (3.9) can be obtained using the results in [116] and [104]. In particular, [116,

Theorem 4.1, Chapter 2] provides an existence-comparison result for a rather general class of semili-

near parabolic boundary value problems, to which problem(3.1) belongs, as we demonstrate. First of

all, we remark that the constants û = u1 and ũ = u3 can be considered respectively as an upper and

a lower solution of (3.1): they both identically satisfy the equation in Ω× (0, T ), together with the

Neumann boundary condition; whereas thanks to assumption (3.7) it holds that u1 ≤ u0(x) ≤ u3 in

Ω. Moreover, the function f appearing in (3.1) satisfies

−λ(u− v) ≤ f(u)− f(v) ≤ λ(u− v) ∀u, v ∈ [u1, u3], (3.11)
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with c a positive constant depending on A, u1, u2, u3. Indeed, since f is differentiable, Lebesgue’s

mean value theorem ensures that, ∀u, v ∈ [u1, u3] there exists ξ ∈ [u1, u3] such that

f(u)− f(v) = f ′(ξ)(u− v)

and being f ′(u) = 3u2 − 2(u1 + u2 + u3)u + (u1u2 + u2u3 + u3u1) a continuous function, we can

surely find λ > 0 s.t. |f ′(u)| ≤ λ by taking, e.g., λ = M2. Then, according to [116, Theorem 4.1,

Chapter 2] there exists an unique solution u of (3.1), u ∈ C2+α,1+α/2(Ω× (0, T )) and u1 ≤ u ≤ u3.

Since u is also continuous on Ω× [0, T ], it is also possible to recover u ∈ C2+α,1+α/2(Ω× [0, T ]) by

a combination of [104, Theorem 5.1.17 (ii), pag. 201] and [104, Theorem 5.1.20, pag. 205], setting

q(x, t) = −f(u(x, t)) as a right-hand side. We also have

‖u‖C2+α,1+α/2(Ω×[0,T ]) ≤ C
(
‖u0‖C2+α(Ω) + ‖q‖Cα,α/2(Ω×[0,T ])

)
.

Finally, (3.10) follows from the definitions of q and f and from the bound u1 ≤ u ≤ u3.

3.2.2 Well posedness of the perturbed problem

Hereon, for the sake of brevity, we will omit in all the integrals the dependence on the space

variable and/or on the time variable of the integrated functions, unless it is necessary to avoid

misunderstandings. Moreover, all inequalities depending on t are valid for t ∈ (0, T ).

The well-posedness of the perturbed problem (3.5) is provided by the following theorem.

Theorem 3.2. Assume (3.2), (3.6), (3.7). Then problem (3.5) admits a unique weak solution, i.e.

a function uε with distributional derivative uεt such that

uε ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ∩ L4(Ω∗ × (0, T )),

uεt ∈ L2(0, T ;H∗) + L4/3(Ω× (0, T )),
(3.12)

where Ω∗ = Ω \ ωε and H∗ = (H1(Ω))′, satisfying∫
Ω

uεtv +

∫
Ω

kε∇uε · ∇v +

∫
Ω

χΩ\ωεf(uε)v = 0 (3.13)

for all v ∈ H1(Ω), and distributionally in time. In addition, uε ∈ Cα,α/2(Ω× [0, T ]) and u1 ≤ uε ≤
u3.

Proof. Recalling the definition of f , there exist k ≥ 0, α1 > 0, α2 > 0, λ > 0 such that

α1u
4 − k ≤ f(u)u ≤ α2u

4 + k, f ′(u) ≥ −λ. (3.14)

Consider problem (3.5) in the weak form as in (3.13) Setting f̃(u) = f(u)− u, (3.13) becomes∫
Ω

uεtvdx+

∫
Ω

kε∇uε · ∇vdx+

∫
Ω

χΩ\ωεu
εvdx+

∫
Ω

χΩ\ωε f̃(uε)vdx = 0, ∀ v ∈ H1(Ω). (3.15)

Observe that, thanks to following the Poincaré type inequality in [30, formula (A.4)]

‖z‖2H1(Ω) ≤ S(Ω)
(
‖∇z‖2L2(Ω) + ‖z‖2L2(Ω\ωε)

)
, ∀ z ∈ H1(Ω), (3.16)
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the bilinear form aε(u
ε, v) =

(∫
Ω
kε∇uε · ∇vdx+

∫
Ω\ωε u

εv
)

is coercive. Indeed

aε(u
ε, uε) =

∫
Ω

kε|∇uε|2dx+

∫
Ω\ωε

(uε)2dx ≥ S‖uε‖2H1(Ω), (3.17)

where S is a positive constant depending on Ω and k1. Through the Faedo-Galerkin approximation

scheme it is possible to prove that problem (3.5) admits a unique weak solution uε satisfying (3.12).

We nevertheless report the main steps of the proof.

1. Discrete problems

Since aε is a coercive bilinear form, it associated to an operator Aε : H1(Ω) → H1(Ω) such

that aε(u, v) = (A(u), v)H1 , and Aε is compact. According to the spectral theory of the

compact (self-adjoint) operators, there exists a basis of H1(Ω), orthonormal with respect to the

L2(Ω) norm, composed by eigenfunctions of A, {Ψi}i∈N associated to eigenvalues {λi}i∈N(see

[Raviart-Thomas]). Consider the basis {Ψi}i∈N of eigenfunctions of B and fix a positive m ∈
N. Define Vm = span{Ψi, i = 1, . . . ,m} ⊂ H1(Ω) and the orthogonal projection operator

Pm : H1(Ω)→ Vm

Pm : v 7→ vm, vm =

m∑
i=1

viΨi vi =

∫
Ω

vΨi.

One can easily prove that ‖Pmv‖L2(Ω) ≤ ‖v‖L2(Ω), ‖Pmv‖H1(Ω) ≤
(

1 + k0

k1

)
‖v‖H1(Ω). Intro-

duce the functions ũm, wm ∈ Vm s.t.

um(x, t) =

m∑
i=1

uim(t)Ψi(x)

where the components uim : R→ R are the solutions in of the system of ordinary differential

equations: 
u̇im(t) + λiuim(t) +

∫
Ω

(1− χω)f̃(um(t))Ψi = 0 i = 1, . . . ,m

um(0) = Pm(u0)

(3.18)

The integral terms in the system are well posed due to properties (3.14). According to Cauchy-

Peano local existence theorem, since f and f̃ are continuous functions with respect to u, the

solution of system (3.18) exists unique in C1(0, tm), where tm may depend on m. In order to

conclude that tm > T ∀m, we need to show that um(t) and wm(t) are bounded in L∞(0, T ;L2)

independently of m, which will be done in the next step.

2. A priori estimates

We state and prove the following a priori uniform estimates regarding um; i.e., if its components

are solutions of system (3.18), they satisfy

‖um‖L∞(0,T ;L2) ≤ c1, (3.19)

‖um‖L2(0,T ;H1), ‖um‖L4(Q∗T ) ≤ c2, (3.20)

‖u̇m‖L2(0,T ;H∗)+L4/3(QT ) ≤ c3, (3.21)
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where u̇m =
∑m
i=1 u̇imψi and c1, c2, c3 are positive constants depending on |Ω|, T , k1, f ,

‖u0‖L2 . In order to prove them, take the m equations in (3.18), multiply them times uim and

sum together. Exploiting the eigenvalue and eigenvector properties, we obtain:

1

2

d

dt
‖um(·, t)‖L2(Ω) + aε(um(·, t), um(·, t)) +

∫
Ω

(1− χωε)f̃(um(·, t))um(·, t) = 0. (3.22)

Taking advantage of the coercivity of aε and of the estimate from below (3.14), via Young

inequality we get

1

2

d

dt
‖um(·, t)‖2L2(Ω) + S‖um(·, t)‖2H1(Ω) + α1

∫
Ω∗
|um(·, t)|4 ≤ k

2
|Ω|+

(
1 +

k

2

)
‖um(·, t)‖2L2(Ω);

integrating from 0 to t ≤ T and using the fact that ‖um(0)‖L2 = ‖Pm(u0)‖L2 ≤ ‖u0‖L2 , we

obtain the following important estimate:

1

2
‖um(·, t)‖2L2(Ω) + S

∫ t

0

‖um(·, s)‖2H1(Ω) + α1‖um‖4L4(Ω∗×(0,t))

≤ k

2
|Ω|t+

(
1 +

k

2

)∫ t

0

‖um(·, t)‖2L2(Ω) +
1

2
‖u0‖2L2(Ω).

(3.23)

As a consequence of (3.23), thanks to Gronwall’s inequality

‖um(·, t)‖2L2(Ω) ≤
(
k|Ω|T + ‖u0‖2L2(Ω)

)
e(2+k) := c21, (3.24)

which proves (3.19).

Moreover, taking (3.23) with t = T via (3.24), we have

S‖um‖2L2(0,T ;H1) + α1‖um‖4L4(Ω∗×(0,T )) ≤
k

2
|Ω|T +

(
1 +

k

2

)
Tc21 +

1

2
‖u0‖2L2(Ω) =: c̃2,

hence (3.20) holds with c2 = max(
√

c̃2
S ,

4

√
c̃2
α1

).

Instead, in order to prove (3.21), we need to consider u̇m(·, t) as a sum of two operators: one

in the dual of H1(Ω) a.e. in (0, T ) (and with square integrable H∗-norm), and one in the dual

of L4(Ω× (0, T )). Let v ∈ H1(Ω):

〈u̇m(·, t), v〉∗ =

m∑
i=1

〈u̇im(t)Ψim, v〉∗ =

m∑
i=1

∫
Ω

u̇imΨiv =

∫
Ω

u̇m(·, t)vm,

where vm = Pmv. Taking the m equations of (3.18), multiplying each of them by vi and

summing up, we obtain∫
Ω

u̇m(·, t)vm = −aε(um(·, t), vm)−
∫

Ω∗
f̃(um(·, t))vm;

Consider now u̇
(1)
m s.t. 〈u̇(1)

m , v〉∗ = −aε(um(·, t), vm):

|〈u̇(1)
m (·, t), v〉∗| = |B(um(·, t), vm)| ≤ k0‖um(·, t)‖H1(Ω)

(
1 +

k0

k1

)
‖v‖H1(Ω)
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hence
∥∥∥u̇(1)

m

∥∥∥
L2(0,T ;H∗)

is controlled by ‖u‖L2(0,T ;H1) whence by c2. Instead, consider u̇(2)

s.t.〈u̇(2)
m , v〉∗ = −

∫
Ω∗
f̃(um(·, t))vm: for each v ∈ H1(Ω),Φ ∈ D(0, T ),∣∣∣〈〈u̇(2)

m (·, t), v〉∗,Φ(t)〉
∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω∗
f̃(um)vmΦ

∣∣∣∣∣ ≤ ∥∥∥f̃(um)
∥∥∥
L4/3(Ω∗×(0,T ))

‖vmΦ‖L4(Ω×(0,T )).

Hence, using also (3.14),

∥∥∥u̇(2)
m

∥∥∥
L4/3(Ω×(0,T ))

≤
(

1 +
k0

k1

)∥∥∥f̃(um)
∥∥∥
L4/3(Ω∗×(0,T ))

= c

(∫ T

0

∥∥∥f̃(um(·, t))
∥∥∥4/3

L4/3(Ω∗)

)3/4

≤ c

(∫ T

0

∫
Ω∗

(
α1|um(·, t)|4 + k + |um(·, t)|

)4/3
dt

)3/4

≤ a1‖um‖3L4(Ω∗×(0,T )) + a2|Ω|3/4T 3/4 ≤ a1c
3
2 + a2|Ω|3/4T 3/4.

We hence conclude that u̇m ∈ L2(0, T ;H∗) + L4/3(QT ) and that (3.21) is verified with a

suitable c4.

3. Convergence to a solution

According to estimate (3.19), the solution of the discrete problem (3.18) is well defined globally

in C1(0, T ;Rm) for each m. Thanks to the provided a priori estimates, we know that the

sequences {um}, {u̇m} are bounded (uniformly inm) in the spaces L2(0, T ;H1)∩L4(Ω∗×(0, T ))

and L2(0, T ;H∗) + L4/3(Ω× (0, T )) respectively. According to compactness results, we know

that ∃u ∈ L2(0, T ;H1) ∩ L4(Ω∗ × (0, T )), u∗ ∈ L2(0, T ;H∗) + L4/3(Ω× (0, T )) s.t.

um
L2(0,T,H1)−−−−−−−⇀ u, u̇m

L2(0,T ;H∗)+L4/3

−−−−−−−−−−−⇀ u∗.

Moreover, since L2(0, T ;H∗)+L4/3(Ω×(0, T )) ⊂ L4/3(0, T ;H∗), {um} is such that ‖um‖L2(0,T ;H1)

and ‖∂tum‖L4/3(0,T ;H∗) are bounded independently of m, and by [103, Theorem 5.1, Chapter

1] this implies that, up to a subsequence, um
L2(Ω×(0,T ))−−−−−−−−→ ũ.

We now study the asymptotic behaviour when m→ +∞ of the terms of

〈u̇m, v〉∗ + aε(um, v) +

∫
Ω

(1− χωε)f̃(um)v = 0, (3.25)

which is equivalent to (3.18) if v, ψ ∈ Vm and in particular for v = Ψi.

• consider v ∈ H1(Ω), Φ ∈ D(0, T )

〈 lim
m→∞

〈u̇m, v〉∗,Φ〉 = −〈 lim
m→∞

〈um, v〉∗,Φ′〉 = −〈
∫

Ω

uv,Φ′〉 = 〈〈ut, v〉∗,Φ〉,

which implies that limm→∞〈u̇m, v〉∗ = 〈ut, v〉∗ in a distributional sense. Moreover, since

vΦ ∈ L2(0, T ;H1) ∩ L4(Ω∗ × (0, T )) we also have

lim
m→∞

〈〈u̇m, v〉∗,Φ〉 = 〈〈u∗, v〉∗,Φ〉,

hence in addition ut = u∗ ∈ L2(0, T ;H∗) ∩ L4/3(Ω× (0, T ));
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• consider v ∈ H1(Ω) and Φ ∈ D(0, T ): by weak convergence,

lim
m→∞

〈aε(um, v),Φ〉 =

∫ T

0

lim
m→∞

aε(um, vΦ) =

∫ T

0

aε(u, vΦ) = 〈aε(u, v),Φ〉;

• recall the expression f̃(u) = f(u)− u: one easily proves that, by weak convergences∫ T

0

∫
Ω

(1− χωε)umvΦ→
∫ T

0

∫
Ω

(1− χωε)umvΦ. (3.26)

Nevertheless, also∫ T

0

∫
Ω

(1− χωε)f(um)vΦ→
∫ T

0

∫
Ω

(1− χωε)f(u)vΦ; (3.27)

indeed, since um
L2

−−→ u, then (up to a subsequence) the convergence is also pointwise

almost everywhere, and this, together with the bound

‖(1− χωε)f(um)vΦ‖L1(Ω×(0,T )) ≤ ‖f(um)‖L4/3(Ω∗×(0,T ))‖v‖L4(Ω)‖Φ‖∞ ≤ c‖v‖L4(Ω)‖Φ‖∞

(with c = c(|Ω|, T, c2, k, α1)) allows to apply the Lebesgue’s theorem of dominated con-

vergence.

Combining all the results that are previously listed, according to (3.25) we obtain that u

satisfies distributionally in time

〈ut, v〉∗ + aε(u, v) +

∫
Ω

(1− χωε)f̃(u)v = 0

for all v ∈ Vm, ∀m, and since {Ψm} is dense in H1(Ω), the equation is satisfied for all

v ∈ H1(Ω). This finally allows to conclude that u is a weak solution of problem (3.5). Moreover,

u ∈ C([0, T ];L2(Ω)]): indeed, it holds that 〈ut(·, t), u(·, t)〉∗ = 1
2
d
dt‖u(·, t)‖2L2(Ω) in the sense of

distributions, and hence

1

2

d

dt
‖u(·, t)‖2L2(Ω) = −

∫
Ω

aε(u(·, t), u(·, t))−
∫

Ω

(1− χωε)f(u(·, t))u(·, t),

where the right-hand side surely belongs to L1(0, T ). By the fundamental theorem of calculus,

one obtains that u ∈ C([0, T ];L2(Ω)]).

4. Uniqueness

Consider two different solutions u, u′ of (3.5). By testing the weak form of (3.5) both for u

and u′ with w = u− u′ and subtracting, we get

1

2

d

dt
‖w(·, t)‖2L2(Ω) +

∫
Ω

kε|∇w(·, t)|2 +

∫
Ω

(1− χωε)(f(u(·, t))− f(u′(·, t)))w(·, t) = 0.

Using (3.16) and (3.11),

1

2

d

dt
‖w(·, t)‖2L2(Ω) + S‖w(·, t)‖2H1(Ω) ≤ (1 + λ)‖w(·, t)‖2L2(Ω),
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and integrating from 0 to T (since u(·, 0) = u′(·, 0) = u0)

1

2
‖w(·, t)‖2L2(Ω) + S‖w(·, t)‖2L2(0,t;H1) ≤ (1 + λ)

∫ t

0

‖w(·, s)‖2L2(Ω);

this entails (via Gronwall’s inequality) that ‖w(·, t)‖L2(Ω) = 0 for all t ∈ (0, T ). Analogously

one proves that ‖w(·, t)‖L2(0,T ;H1) = 0 and ‖wt(·, t)‖L2(0,T ;H∗)+L4/3(Ω×(0,T )) = 0 and eventually

that u and u′ are the same solution.

Denote now the unique weak solution of (3.5) as uε. In order to obtain further regularity for uε,

let {φn} be a sequence such that

φn ∈ C1(Ω), 0 ≤ φn(x) ≤ 1, ∀x ∈ Ω, and φn → χΩ\ωε in L2(Ω), (3.28)

and formulate the approximating problems
unt − div(((k0 − k1)φn + k1)∇un) + φnf(un) = 0, in Ω× (0, T ),
∂un

∂n
= 0, on ∂Ω× (0, T ),

un(0) = u0, in Ω.

(3.29)

Using the same arguments as in the proof of Theorem 3.1, since the coefficients of (3.29) are suffi-

ciently smooth, we can prove that, ∀n ∈ N, problem (3.29) admits a unique solution un such that

un ∈ C2+α,1+α/2(Ω× [0, T ]), u1 ≤ un(x, t) ≤ u3, (x, t) ∈ Ω× [0, T ].

Regarding the sequence of regularized solutions {un} we can derive uniform estimates similar to the

ones for uε, and even more restrictive, exploiting the uniform bound un ∈ [u1, u3]:

‖un‖L∞(0,T ;L2) ≤ c1, (3.30)

‖un‖L2(0,T ;H1) ≤ c2, (3.31)

‖unt ‖L2(0,T ;H∗) ≤ c3, (3.32)

with constants c1, c2, c3 independent of n. Indeed, the weak formulation of problem (3.29) is∫
Ω

unt v +

∫
Ω

((k0 − k1)φn + k1)∇un · ∇v +

∫
Ω

φnf(un)v = 0, ∀ v ∈ H1(Ω). (3.33)

By considering v = un, exploiting the coercivity of the bilinear form and (3.11),

1

2

d

dt
‖un(·, t)‖L2(Ω) + k1‖un(·, t)‖H1(Ω) ≤ (k1 + λ)‖un(·, t)‖L2(Ω);

integrating in time and applying Gronwall’s inequality we conclude (3.30) and (3.31). Instead,∫
Ω

unt v = −
∫

Ω

((k0 − k1)φn + k1)∇un · ∇v −
∫

Ω

φnf(un)v

hence ‖unt ‖L2(0,T ;H∗) ≤ ‖unt ‖L2(Ω×(0,T )) ≤ k0‖un‖L2(0,T ;H1) +M1|Ω|
1
2T

1
2 .

From (3.31) and (3.32) we can argue that ∃ζ ∈ L2(0, T ;H1), ζ∗ ∈ L2(0, T ;H∗) s.t. un
L2(0,T ;H1)−−−−−−−⇀ ζ

and unt
L2(0,T ;H∗)−−−−−−−⇀ ζ∗, and via [122, Theorem 8.1], we conclude also that (up to a subsequence)

un
L2(Ω×(0,T ))−−−−−−−−→ ζ and pointwise almost everywhere. Consider now problem (3.33) solved by un and

take the limit of each term as ε→ 0:
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• for any v ∈ H1(Ω), Φ ∈ D(0, T )

〈 lim
n→∞

〈unt , v〉∗,Φ〉 = −〈 lim
n→∞

〈un, v〉∗,Φ′〉 = −〈
∫

Ω

ζv,Φ′〉 = 〈〈ζt, v〉∗,Φ〉,

which implies that limn→∞〈ut, v〉∗ = 〈ζt, v〉∗ in a distributional sense. Moreover, since vΦ ∈
L2(0, T ;H1), by weak convergence we also have

lim
n→∞

〈〈unt , v〉∗,Φ〉 = 〈〈ζ∗, v〉∗,Φ〉,

hence in addition ζt = ζ∗ ∈ L2(0, T ;H∗).

• We now prove that ∫
Ω

((k0 − k1)φn + k1)∇un · ∇v →
∫

Ω

kε∇ζ · ∇v, (3.34)

by means of the following splitting: assuming the notation kn = ((k0 − k1)φn + k1),∫
Ω

(kn∇un − kε∇ζ) · ∇v =

∫
Ω

kn∇(un − ζ) · ∇v +

∫
Ω

(kn − kε)∇ζ) · ∇v.

The first term in the right-hand side tends to 0 due to the weak convergence of un and the

uniform bound kn ≤ k0; whereas the second term converges to 0 due to dominated convergence

theorem.

• Finally, the convergence of the last term holds: for all v ∈ H1(Ω) and in a distributional sense

in time, ∫
Ω

φnf(un)v →
∫

Ω

(1− χωε)f(ζ)v.

This can be proved invoking the dominated convergence theorem, since φn and un converge

pointwise (a.e.) and the uniform bound un ∈ [u1, u3] implies that |f(un)| ≤M1 in Ω× (0, T ).

Collecting all the results, we can assess that ζ is a weak solution of (3.5), and by uniqueness of the

weak solution we conclude that ζ = uε. Moreover, by (a.e.) pointwise convergence, uε satisfies

u1 ≤ uε(x, t) ≤ u3, a.e.in Ω× [0, T ]. (3.35)

Eventually, the additional (Hölder) regularity on uε can be recovered via [99, Theorem 10.1, Chapter

3]. Indeed, uε satisfies

uε − div(kε∇uε) = −(1− χωε)f(uε);

the hypothesis of the theorem hold since kε ∈ L∞(Ω), uε ∈ L∞(Ω× (0, T )) and hence also f(uε) ∈
L∞(Ω× (0, T )). We can extend the results up to the boundary due to the assumptions on ∂Ω and

u0, and conclude uε ∈ Cα,α/2(Ω× [0, T ]).

3.3 Energy estimates for uε − u

In this section we prove some energy estimates for the difference between uε and u, solutions to

problem (3.5) and problem (3.1), respectively, that are crucial to establish the asymptotic formula

for uε − u of Theorem 3.3 in Section 3.4.
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Proposition 3.1. Assume (3.2), (3.6), (3.7). Setting w := uε − u, then

‖w‖L∞(0,T ;L2(Ω)) ≤ C|ωε|1/2, (3.36)

‖w‖L2(0,T ;H1(Ω)) ≤ C|ωε|1/2. (3.37)

Moreover, there exists 0 < β < 1 such that

‖w‖L2(Ω×(0,T )) ≤ C|ωε|
1
2 +β . (3.38)

Here C stands for a positive constant depending (at most) on k0, k1,Ω, T,M1,M2, ‖u0‖C2+α(Ω).

Proof. Throughout the proof C will be as in the statement of the Theorem. According to the

hypotheses, Theorems 3.1 and 3.2 hold. Then w solves the problem
wt − div(kε∇w) + χΩ/ωεpεw = −div(k̃χωε∇u) + χωεf(u), in Ω× (0, T ),
∂w

∂n
= 0, on ∂Ω× (0, T ),

w(0) = 0, in Ω,

(3.39)

where we have set k̃ := k0 − k1 > 0 and

pεw := f ′(zε)w = f(uε)− f(u), (3.40)

zε satisfying uε(x, t) ≤ zε(x, t) ≤ u(x, t). By means of (3.9), (3.35) and recalling (3.8), we have

u1 ≤ zε ≤ u3, |pε| = |f ′(zε)| ≤M2, in Ω× [0, T ]. (3.41)

Multiplying the first equation in (3.39) by w and integrating by parts over Ω, we get

1

2

d

dt

∫
Ω

w2dx+

∫
Ω

kε|∇w|2dx+

∫
Ω

χΩ/ωεpεw
2dx =

∫
Ω

k̃χωε∇u · ∇wdx+

∫
Ω

χωεf(u)wdx.

Adding and subtracting

∫
Ω

χΩ\ωε(x)w2(x)dx and applying (3.17) we obtain

1

2

d

dt

∫
Ω

w2dx+ S‖w‖2H1(Ω) ≤
∫
ωε

k̃∇u · ∇wdx+

∫
ωε

f(u)wdx−
∫

Ω

χΩ/ωε(pε − 1)w2dx.

Recalling (3.8) and (3.41), thanks to Young’s inequality we deduce

1

2

d

dt

∫
Ω

w2dx+ S‖w‖2H1(Ω)

≤ k̃

(
k̃

2S

∫
ωε

|∇u|2dx+
S

2k̃

∫
Ω

|∇w|2dx

)
+

1

2

∫
ωε

(f(u))2dx+

∫
Ω

(
M2 +

3

2

)
w2dx,

so that

1

2

d

dt

∫
Ω

w2dx+
S

2
‖w‖2H1(Ω) ≤

(k̃)2

2S

∫
ωε

|∇u|2dx+
1

2

∫
ωε

M2
1 dx+

(
M2 +

3

2

)∫
Ω

w2dx, (3.42)

and finally, see (3.10),
d

dt
‖w(·, t)‖2L2(Ω) ≤ C

(
|ωε|+ ‖w(·, t)‖2L2(Ω)

)
.
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Recalling that w(·, 0) = 0, an application of Gronwall’s Lemma implies

‖w(·, t)‖2L2(Ω) ≤ C|ωε|, t ∈ (0, T ), (3.43)

and (3.36) follows. Integrating now inequality (3.42) on (0, T ) we get∫
Ω

w2(·, T )dx+ C

∫ T

0

‖w(·, t)‖2H1(Ω)dt ≤ C

(
|ωε|+

∫ T

0

‖w(·, t)‖2L2(Ω)dt

)
,

and a combination with (3.43) gives (3.37).

In order to obtain the more refined estimate (3.38), observe that w also solves problem
wt − div(k0∇w) + χΩ/ωεpεw = −div(k̃χωε∇uε) + χωεf(u), in Ω× (0, T ),
∂w

∂n
= 0, on ∂Ω× (0, T ),

w(·, 0) = 0, in Ω.

(3.44)

Let us now introduce the auxiliary function w, solution to the adjoint problem
wt + div(k0∇w)− χΩ/ωεpεw = −w, in Ω× (0, T ),
∂w

∂n
= 0, on ∂Ω× (0, T ),

w(·, T ) = 0, in Ω.

(3.45)

By the change of variable t→ T − t, problem (3.45) is equivalent to
zt − div(k0∇z) + χΩ/ωε p̂εz = ŵ, in Ω× (0, T ),
∂z

∂n
= 0, on ∂Ω× (0, T ),

z(·, 0) = 0, in Ω,

(3.46)

where we have set z(x, t) = w(x, T − t), p̂ε(x, t) = pε(x, T − t), ŵ(x, t) = w(x, T − t).
Since the coefficient k0 is regular, |χΩ/ωε p̂ε| is bounded in Ω × [0, T ] and even w ∈ Cα,α/2(Ω ×

[0, T ]), via [99, Theorem 9.1, Chapter 4] we can assess that

z ∈W 2,1
2 (Ω× (0, T )) :=

{
z ∈ L2(Ω× (0, T )) | z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω))

}
.

Moreover, multiplying the first equation in (3.46) by z and integrating over Ω, we get

1

2

d

dt

∫
Ω

z2dx+ k0

∫
Ω

|∇z|2dx+ k0

∫
Ω

z2dx =

∫
Ω

ŵzdx−
∫

Ω

χΩ/ωε p̂εz
2dx+ k0

∫
Ω

z2dx.

By means of Young’s inequality and recalling (3.41), we have

1

2

d

dt
‖z(·, t)‖2L2(Ω) +

k0

2
‖z(·, t)‖2H1(Ω) ≤

1

2k0
‖ŵ(·, t)‖2L2(Ω) + (M2 + k0)‖z(·, t)‖2L2(Ω),

and then
d

dt
‖z(·, t)‖2L2(Ω) ≤

1

k0
‖ŵ(·, t)‖2L2(Ω) + 2(M2 + k0)‖z(·, t)‖2L2(Ω).

Recalling that z(·, 0) = 0, an application of Gronwall’s Lemma gives

‖z(·, t)‖2L2(Ω) ≤ C‖ŵ(·, t)‖2L2(Ω). (3.47)
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Since z ∈ W 2,1
2 , surely zt ∈ L2(0, T ;H1(Ω)): let us now multiply the first equation in (3.46) by zt

and integrate over Ω. We get∫
Ω

z2
t dx+

k0

2

d

dt

∫
Ω

|∇z|2dx =

∫
Ω

ŵztdx−
∫

Ω

χΩ/ωε p̂εzztdx.

An application of Young’s inequality gives

1

2

∫
Ω

z2
t dx+

k0

2

d

dt

∫
Ω

|∇z|2dx ≤
∫

Ω

(ŵ)2dx+

∫
Ω

χΩ/ωε(p̂ε)
2z2dx,

and then

1

2
‖zt(·, t)‖2L2(Ω) +

k0

2

d

dt
‖∇z(·, t)‖2L2(Ω) ≤ ‖ŵ(·, t)‖2L2(Ω) +M2

2 ‖z(·, t)‖2L2(Ω). (3.48)

Combining (3.48) and (3.47), integrating in time on (0, t), and using ∇z(·, 0) = 0 we deduce

‖∇z(·, t)‖2L2(Ω) ≤ C‖ŵ‖
2
L2(Ω×(0,t)), t ∈ (0, T ),

so that

‖z‖2L∞(0,T ;H1(Ω)) ≤ C‖ŵ‖
2
L2(Ω×(0,T )). (3.49)

The same computations also give

‖zt‖2L2(Ω×(0,T )) ≤ C‖ŵ‖
2
L2(Ω×(0,T )).

Consider now problem (3.46), and in particular, rewriting the equation as follow:

−div(k0∇z) + χΩ/ωε p̂εz = ŵ − zt,

we can interpret (a.e. in (0,T)) z(·, t) as the solution of an elliptic problem with regular coefficient

k0 and square integrable right-hand side, whose norm in L2(Ω) is bounded by ‖ŵ(·, t)‖L2(Ω). Then,

an application of standard elliptic regularity results to problem (3.46) (see [84, Theorem 2.4.2.6])

implies

‖z(·, t)‖H2(Ω) ≤ C(‖ŵ(·, t)‖L2(Ω) + ‖z(·, t)‖L2(Ω)) ≤ C‖ŵ(·, t)‖L2(Ω)

and eventually

‖z‖2L2(0,T ;H2(Ω)) ≤ C‖ŵ‖
2
L2(Ω×(0,T )). (3.50)

Recalling the definition of z and ŵ, by estimates (3.49) and (3.50) we get

‖w‖2L∞(0,T ;H1(Ω)) + ‖w‖2L2(0,T ;H2(Ω)) ≤ C‖w‖
2
L2(Ω×(0,T )), (3.51)

Finally, we want to prove that there exists p > 2 such that

‖w‖Lp(Ω×(0,T )) + ‖∇w‖Lp(Ω×(0,T )) ≤ C‖w‖L2(Ω×(0,T )). (3.52)

To this aim, on account of (3.51) and Sobolev immersion theorems, we deduce

‖w‖2L6(Ω×(0,T )) ≤ C‖w‖
2
L∞(0,T ;H1(Ω)) ≤ C‖w‖

2
L2(Ω×(0,T )).

Moreover, again from (3.51) we have

∇w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)).
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From well-known interpolation estimates (cf. [113]) we infer

‖∇w‖10/3

L10/3(Ω×(0,T ))
≤ C‖∇w‖2L2(0,T ;L6(Ω))‖∇w‖

4/3

L4/3(0,T ;L2(Ω))

and therefore, using (3.51),

‖∇w‖10/3

L10/3(Ω×(0,T ))
≤ C‖w‖2L2(Ω×(0,T ))‖w‖

4/3
L2(Ω×(0,T )) ≤ C‖w‖

10/3
L2(Ω×(0,T )),

so that (3.52) holds for any p ∈ (2, 10
3 ].

Let us now multiply the evolution equation in (3.44) by w and the evolution equation in (3.45)

by w, respectively. Integrating on Ω we obtain

∫
Ω

wtwdx+ k0

∫
Ω

∇w · ∇wdx+

∫
Ω

χΩ/ωεpεwwdx = k̃

∫
ωε

∇uε · ∇wdx+

∫
ωε

f(u)wdx, (3.53)

∫
Ω

wtwdx− k0

∫
Ω

∇w · ∇wdx−
∫

Ω

χΩ/ωεpεwwdx = −
∫

Ω

w2dx. (3.54)

Summing up (3.53) and (3.54) we get∫
Ω

(wtw + wtw)dx = k̃

∫
ωε

∇uε · ∇wdx+

∫
ωε

f(u)wdx−
∫

Ω

w2dx,

subsequently, an integration in time on (0, T ) gives

∫ T

0

∫
Ω

w2dxdt = −
∫ T

0

∫
Ω

(wtw+wtw)dxdt+ k̃

∫ T

0

∫
ωε

∇uε ·∇wdxdt+

∫ T

0

∫
ωε

f(u)wdxdt. (3.55)

Recalling the conditions at time t = 0 for w and at time t = T for w, we get

∫
Ω

dx

∫ T

0

(wtw + wtw) dt =

∫
Ω

(
(ww)(·, T )− (ww)(·, 0)−

∫ T

0

(wwt + wtw)dt
)
dx = 0

So that (3.55) becomes∫ T

0

∫
Ω

w2dxdt = k̃

∫ T

0

∫
ωε

∇uε · ∇wdxdt+

∫ T

0

∫
ωε

f(u)wdxdt. (3.56)

Using now Hölder inequality we deduce

‖w‖2L2(Ω×(0,T )) ≤ ‖∇u
ε‖Lq(ωε×(0,T ))‖∇w‖Lp(ωε×(0,T )) + ‖f(u)‖Lq(ωε×(0,T ))‖w‖Lp(ωε×(0,T )),

where p and q are conjugate indexes and therefore q ∈ [10/7, 2).

By means of (3.52) and (3.8), from the previous inequality we get

‖w‖2L2(Ω×(0,T )) ≤ C‖w‖L2(Ω×(0,T ))

(
‖∇uε‖Lq(ωε×(0,T )) + |ωε|

1
q

)
,

and therefore

‖w‖L2(Ω×(0,T )) ≤ C
(
‖∇uε‖Lq(ωε×(0,T )) + |ωε|

1
q

)
. (3.57)
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Thanks to (3.10) we also have

‖∇uε‖Lq(ωε×(0,T )) ≤ ‖∇uε −∇u‖Lq(ωε×(0,T )) + ‖∇u‖Lq(ωε×(0,T ))

≤ ‖∇w‖Lq(ωε×(0,T )) + C|ωε|
1
q .

Finally, using again Hölder inequality and (3.37), we obtain

‖∇w‖Lq(ωε×(0,T )) ≤

(∫ T

0

(∫
ωε

|∇w|q
2
q dx

) q
2
(∫

ωε

1dx

) 2−q
2

dt

) 1
q

≤ |ωε|
1
q−

1
2

(∫ T

0

‖∇w‖2L2(Ω)dt

) 1
q

≤ |ωε|
1
q−

1
2 ‖∇w‖Lq(0,T ;L2Ω))

≤ C(Ω)|ωε|
1
q−

1
2 ‖∇w‖L2(Ω×(0,T )) ≤ C|ωε|

1
q .

Combining the previous estimate with (3.57), since 1
q ∈ ( 1

2 ,
7
10 ] we can conclude that (3.38) holds

with β ∈ (0, 1
5 ].

3.4 The asymptotic formula

In this section we derive and prove an asymptotic representation formula for w = uε − u in

analogy with [30] and [47]. Let Φ = Φ(x, t) be any solution of Φt + k0∆Φ− f ′(u)Φ = 0, in Ω× (0, T ),

Φ(T ) = 0, in Ω.
(3.58)

Our main result is the following

Theorem 3.3. Assume (3.2), (3.6), (3.7). Let uε and u be the solutions to (3.5) and (3.1) and Φ

a solution to (3.58), respectively. Then, there exist a sequence ωεn satisfying (3.3) and (3.4) with

|ωεn | → 0, a regular Borel measure µ and a symmetric matrix M with elements Mij ∈ L2(Ω, dµ)

such that, for ε→ 0,∫ T

0

∫
∂Ω

k0
∂Φ

∂n
(uε − u)dσdt = |ωεn |

{∫ T

0

∫
Ω

(
k̃M∇u · ∇Φ + f(u)Φ

)
dµdt+ o(1)

}
. (3.59)

To prove Theorem 3.3, we need to state some preliminary results. Let v
(j)
ε and v(j) be the

variational solutions (depending only on x ∈ Ω) to the problems

(PVε)


div(kε∇v(j)

ε ) = 0, in Ω,
∂v(j)
ε

∂n = nj , on ∂Ω,∫
∂Ω
v

(j)
ε dσ = 0,

(PV0)


div(k0∇v(j)) = 0, in Ω,
∂v(j)

∂n = nj , on ∂Ω,∫
∂Ω
v(j)dσ = 0,

(3.60)

nj being the j − th coordinate of the outward normal to ∂Ω. It can be easily verified that

v(j) = xj −
1

|∂Ω|

∫
∂Ω

xjdσ. (3.61)

The following results hold
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Proposition 3.2. Let v
(j)
ε and v(j) solutions to (3.60), then there exists C(Ω) > 0 such that

‖v(j)
ε − v(j)‖H1(Ω) ≤ C(Ω)|ωε|

1
2 . (3.62)

Moreover, for some η ∈ (0, 1
2 ), there exists C(Ω, η) > 0 such that

‖v(j)
ε − v(j)‖L2(Ω) ≤ C(Ω, η)|ωε|

1
2 +η. (3.63)

Proof. See Lemma 1 in [47].

Proposition 3.3. Let u and uε be the solutions to problems (3.1) and (3.5), respectively. Consider

v
(j)
ε and v(j) as in (3.60). Then, ∀Φ ∈ C1(Ω× [0, T ]) s.t. Φ(x, T ) = 0, it holds∫ T

0

∫
Ω

1

|ωε|
χωε∇u · ∇v(j)

ε Φdxdt =

∫ T

0

∫
Ω

1

|ωε|
χωε∇uε · ∇v(j)Φdxdt+ o(1), ε→ 0. (3.64)

Proof. We follow the ideas in [30] and [47]. Since w = uε − u, then we obtain the identity∫
Ω

k0∇w · ∇
(
v(j)Φ

)
dx = −

∫
Ω

k0w∇v(j) · ∇Φdx+

∫
∂Ω

k0wnjΦdσ +

∫
Ω

k0∇w · ∇Φv(j)dx. (3.65)

Moreover, we have∫ T

0

∫
Ω

kε∇w · ∇
(
v(j)
ε Φ

)
dxdt =

∫ T

0

∫
Ω

kε

(
∇w · ∇v(j)

ε Φ +∇w · ∇Φv(j) +∇w · ∇Φ(v(j)
ε − v(j))

)
dxdt

=

∫ T

0

(
−
∫

Ω

kεw∇v(j)
ε · ∇Φdx+

∫
∂Ω

k0wnjΦdσ +

∫
Ω

k0∇w · ∇Φv(j)dx

+

∫
Ω

(kε − k0)∇w · ∇Φv(j)dx+

∫
Ω

kε∇w · ∇Φ(v(j)
ε − v(j))dx

)
dt

=

∫ T

0

(
−
∫

Ω

kεw∇v(j) · ∇Φdx+

∫
∂Ω

k0wnjΦdσ +

∫
Ω

k0∇w · ∇Φv(j)dx

+

∫
ωε

(k1 − k0)∇w · ∇Φv(j)dx+

∫
Ω

kε∇w · ∇Φ(v(j)
ε − v(j))dx−

∫
Ω

kεw∇(v(j)
ε − v(j)) · ∇Φdx

)
dt.

A combination with (3.65) gives∫ T

0

∫
Ω

kε∇w · ∇(v(j)
ε Φ)dxdt =

∫ T

0

(∫
Ω

k0∇w · ∇
(
v(j)Φ

)
dx+

∫
ωε

(k1 − k0)∇w · ∇Φv(j)dx

+

∫
ωε

(k0 − k1)w∇v(j) · ∇Φdx+

∫
Ω

kε∇w · ∇Φ(v(j)
ε − v(j))dx−

∫
Ω

kεw∇(v(j)
ε − v(j)) · ∇Φdx

)
dt.

Then, on account of (3.36), (3.37), (3.62), (3.63) and Schwarz inequality, we get∫ T

0

∫
Ω

kε∇w ·∇(v(j)
ε Φ)dxdt =

∫ T

0

(∫
Ω

k0∇w · ∇(v(j)Φ)dx−
∫
ωε

k̃∇w · ∇Φv(j)dx

)
dt+o(|ωε|). (3.66)

Let us consider now problems (3.39) and (3.44). Multiplying the first equation in (3.39) by v
(j)
ε Φ

and the first equation in (3.44) by v(j)Φ, an integration by parts on Ω× (0, T ) gives∫ T

0

∫
Ω

[
wtv

(j)
ε Φ + kε∇w · ∇(v(j)

ε Φ) + χΩ/ωεpεwv
(j)
ε Φ

]
dxdt =

∫ T

0

∫
ωε

[
k̃∇u · ∇(v(j)

ε Φ) + f(u)v(j)
ε Φ

]
dxdt,
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∫ T

0

∫
Ω

[
wtv

(j)Φ + k0∇w · ∇(v(j)Φ) + χΩ/ωεpεwv
(j)Φ

]
dxdt =

∫ T

0

∫
ωε

[
k̃∇uε · ∇(v(j)Φ) + f(u)v(j)Φ

]
dxdt.

By a combination of the previous three identities we obtain, for ε→ 0,∫ T

0

∫
ωε

k̃∇u · ∇(v(j)
ε Φ)dxdt+

∫ T

0

∫
ωε

f(u)v(j)
ε Φdxdt−

∫ T

0

∫
Ω

wtv
(j)
ε Φdxdt−

∫ T

0

∫
Ω

χΩ/ωεpεwv
(j)
ε Φdxdt

=

∫ T

0

∫
ωε

k̃∇uε · ∇(v(j)Φ)dxdt+

∫ T

0

∫
ωε

f(u)v(j)Φdxdt−
∫ T

0

∫
Ω

wtv
(j)Φdxdt

−
∫ T

0

∫
Ω

χΩ/ωεpεwv
(j)Φdxdt−

∫ T

0

∫
ωε

k̃∇w · ∇Φv(j)dxdt+ o(|ωε|),

from which we deduce∫ T

0

∫
ωε

k̃∇u·∇(v(j)
ε Φ)dxdt =

∫ T

0

∫
Ω

wt(v
(j)
ε −v(j))Φdxdt+k̃

∫ T

0

∫
ωε

(
∇uε·∇(v(j)Φ)−∇uε·∇Φv(j)

)
dxdt

+

∫ T

0

∫
ωε

k̃∇u·∇Φv(j)dxdt−
∫ T

0

∫
Ω

χΩ/ωεpεw(v(j)
ε −v(j))Φdxdt+

∫ T

0

∫
ωε

f(u)(v(j)−v(j)
ε )Φdxdt+o(|ωε|).

By means of (3.57), (3.38), (3.62) and (3.63), and recalling also (3.8) and (3.41), an application of

the Hölder inequality both in space and time gives, for ε→ 0,

k̃

∫ T

0

∫
ωε

∇u·∇(v(j)
ε Φ)dxdt =

∫ T

0

∫
Ω

wt(v
(j)
ε −v(j))Φdxdt+k̃

∫ T

0

∫
ωε

(
∇uε·∇v(j)Φ+∇u·∇Φv(j)

)
dxdt+o(|ωε|),

and then

k̃

∫ T

0

∫
ωε

∇u · ∇v(j)
ε Φdxdt =

∫ T

0

∫
Ω

wt(v
(j)
ε − v(j))Φdxdt

+ k̃

∫ T

0

∫
ωε

∇uε · ∇v(j)Φdxdt+ k̃

∫ T

0

∫
ωε

∇u · ∇Φ(v(j) − v(j)
ε )dxdt+ o(|ωε|)

=

∫ T

0

∫
Ω

wt(v
(j)
ε − v(j))Φdxdt+ k̃

∫ T

0

∫
ωε

∇uε · ∇v(j)Φdxdt+ o(|ωε|). (3.67)

Consider the first term in the last line of (3.67). Integrating by parts in time and recalling that

Φ(T ) = 0, w(0) = 0, (v(j) − v(j)
ε )t = 0, we finally have (cf. also (3.38), (3.63)), for ε→ 0,∫ T

0

∫
Ω

wt(v
(j)
ε − v(j))Φdxdt =

∫
Ω

[w(v(j)
ε − v(j))Φ](T )dx−

∫
Ω

[w(v(j)
ε − v(j))Φ](0)dx (3.68)

−
∫ T

0

∫
Ω

(
w(v(j)

ε − v(j))tΦ + w(v(j)
ε − v(j))Φt

)
dxdt = −

∫ T

0

∫
Ω

w(v(j)
ε − v(j))Φtdxdt = o(|ωε|).

Combining (3.67) and (3.68) we get

k̃

∫ T

0

∫
ωε

∇u · ∇v(j)
ε Φdxdt = k̃

∫ T

0

∫
ωε

∇uε · ∇v(j)Φdxdt+ o(|ωε|), ε→ 0, (3.69)

then formula (3.64) is true.
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Proof of Theorem 3.3. Following [47, Sec.3], there exist a regular Borel measure µ, a symmetric

matrix M with elements Mij ∈ L2(Ω, dµ), a sequence ωεn with |ωεn | → 0 such that

|ωεn |−1χωεndx→ dµ, |ωεn |−1χωεn
∂v

(j)
εn

∂xi
dx→Mijdµ, (3.70)

in the weak∗ topology of C0(Ω). On account of (3.10), we deduce also

|ωεn |−1χωεn
∂u

∂xi

∂v
(j)
εn

∂xi
dx→Mij

∂u

∂xi
dµ, ∀ t ∈ (0, T ), (3.71)

in the weak∗ topology of C0(Ω). Moreover, recalling (3.10), (3.38) and (3.61), we get∣∣∣∣∣
∫ T

0

dt

∫
Ω

χωεn
|ωεn |

∂uεn

∂xi

∂v(j)

∂xi
dx

∣∣∣∣∣ ≤ C, (3.72)

where C is independent of εn. Hence

|ωεn |−1χωεn
∂uεn

∂xi

∂v(j)

∂xi
dxdt→ dνj (3.73)

in the weak∗ topology of C0(Ω× [0, T ]). Combining (3.71), (3.73) and Proposition 3.3, we obtain

dνj =Mij
∂u

∂xi
dµ, ∀ t ∈ (0, T ). (3.74)

Now, let us multiply the first equation in (3.58) by w and the first equation in (3.44) by Φ.

Integrating on Ω× (0, T ) and then by parts, we get∫ T

0

∫
Ω

Φtwdxdt+

∫ T

0

∫
Ω

k0∇Φ · ∇wdxdt−
∫ T

0

∫
Ω

f ′(u)Φwdxdt+

∫ T

0

∫
∂Ω

k0
∂Φ

∂n
wdσdt = 0,

and ∫ T

0

∫
Ω

wtΦdxdt+

∫ T

0

∫
Ω

k0∇w · ∇Φdxdt+

∫ T

0

∫
Ω

χΩ/ωεpεwΦdxdt

=

∫ T

0

∫
ωε

k̃∇uε · ∇Φdxdt+

∫ T

0

∫
ωε

f(u)Φdxdt.

Summing up the two previous equations, we have∫ T

0

∫
Ω

(wtΦ + Φtw)dxdt−
∫ T

0

∫
Ω

f ′(u)Φwdxdt+

∫ T

0

∫
∂Ω

k0
∂Φ

∂n
wdσdt

+

∫ T

0

∫
Ω

χΩ/ωεpεwΦdxdt =

∫ T

0

∫
ωε

k̃∇uε · ∇Φdxdt+

∫ T

0

∫
ωε

f(u)Φdxdt. (3.75)

Observe that the following identities hold∫ T

0

∫
Ω

(wtΦ + Φtw)dxdt =

∫
Ω

∫ T

0

(wΦ)tdtdx =

∫
Ω

(Φ(·, T )w(·, T )− Φ(·, 0)w(·, 0)) dx
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and then, from (3.75) we infer∫ T

0

∫
Ω

(
χΩ/ωεpεwΦ− f ′(u)Φw

)
dxdt+

∫ T

0

∫
∂Ω

k0
∂Φ

∂n
wdσdt

=

∫ T

0

∫
ωε

k̃∇uε · ∇Φdxdt+

∫ T

0

∫
ωε

f(u)Φdxdt. (3.76)

Moreover, on account of (3.38), we have∫ T

0

∫
Ω

(
χΩ/ωεpεwΦ− f ′(u)Φw

)
dxdt

=

∫ T

0

∫
Ω

(
χΩ/ωεpεwΦ− χΩ/ωεf

′(u)Φw
)
dxdt−

∫ T

0

∫
ωε

f ′(u)Φwdxdt

=

∫ T

0

∫
Ω

χΩ/ωε(pε − f
′(u))wΦdxdt+ o(|ωε|) = o(|ωε|). (3.77)

The last equality in (3.77) is a consequence of the regularity of f (see (3.40), from which |pε−f ′(u)| ≤
C|w| follows) and (3.38). Combining (3.76) and (3.77) we obtain∫ T

0

∫
∂Ω

k0
∂Φ

∂n
wdσdt = |ωε|

∫ T

0

∫
Ω

(
k̃|ωε|−1χωε∇uε · ∇Φ + χωε |ωε|−1f(u)Φ

)
dxdt+ o(|ωεn |).

And finally, by means of (3.70), (3.73) and (3.74), formula (3.59) holds. �

Remark 3.1. We highlight that, with minor changes, the asymptotic expansion (3.59) extends to

the case of piecewise smooth anisotropic conductivities of the form

Kε =

{
K0 in Ω \ ωε,
K1 in ωε,

(3.78)

where K0,K1 ∈ C∞(Ω) are symmetric matrix valued functions satisfying

α0|ξ|2 ≤ ξTK0(x)ξ ≤ β0|ξ|2, α1|ξ|2 ≤ ξTK1(x)ξ ≤ β1|ξ|2, ∀ ξ ∈ R3,∀x ∈ Ω,

with 0 < α1 < β1 < α0 < β0. Then, the asymptotic formula (3.59) becomes∫ T

0

∫
∂Ω

K0∇Φ · n(uε − u)dσdt = |ωε|
∫ T

0

∫
Ω

(
Mi j(K0 −K1)ik

∂u

∂xk

∂Φ

∂xj
+ f(u)Φ

)
dµdt+ o(|ωε|)

where Φ solves  Φt + div(K0∇Φ)− f ′(u)Φ = 0, in Ω× (0, T ),

Φ(T ) = 0, in Ω,
(3.79)

and u is the background solution of
ut − div(K0∇u) + f(u) = 0, in Ω× (0, T ),

K0∇u · n = 0, on ∂Ω× (0, T ),

u(0) = 0, in Ω.

(3.80)

The matrix M is called the polarization tensor associated to the inhomogeneity ωε. Indeed, all the

results of the previous sections can be extended to the case of constant anisotropic coefficients using,

for instance, the regularity results contained in [99].
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Remark 3.2. Let us observe that the asymptotic expansion derived in Theorem 3.3 can be extended

to the case of a finite number of small well-separated inhomogeneities. Compare Section 6 of [30]

for the elliptic case.

3.5 A topological gradient-based reconstruction algorithm

We now take advantage of the asymptotic expansion (3.59) to set a numerical reconstruction

procedure for the inverse problem of detecting a spherical inhomogeneity ωε from boundary measu-

rements of the electric potential. Following the approach of [33],[52] but taking now into account

the time-dependent nature of the problem, we introduce the mismatch functional

J(ωε) =
1

2

∫ T

0

∫
∂Ω

(uε − umeas)2dσdt, (3.81)

where uε is the solution of the perturbed problem (3.5) in presence of an inclusion ωε satisfying

hypotheses (3.3), (3.4). Then, the inverse problem can be reformulated as the following minimization
problem

J(ωε)→ min (3.82)

among all the small inclusions, well separated from the boundary. We introduce the following

additional assumption on the exact inclusion

ωε = z + εD = {x ∈ Ω s.t. x = z + εd, d ∈ D}, (3.83)

where z ∈ Ω and D is an open, bounded, regular set containing the origin. We remark that we

prescribe the geometry of the inclusion to be fixed throughout the whole observation time. The

restriction of the functional J to the class of inclusions satisfying (3.83) is denoted by j(ε; z). We

can now define the topological gradient G : Ω → R of j as the first order term appearing in the

asymptotic expansion of the cost functional with respect to ε, namely

j(ε; z) = j(0) + |ωε|G(z) + o(|ωε|), ε→ 0, (3.84)

where j(0) =
∫ T

0

∫
∂Ω

(u − umeas)
2dσdt and u is the solution of the unperturbed problem (3.1).

Observe that j(0) does not depend on z.

Under the assumptions that the exact inclusion has a small size and satisfies hypothesis (3.83),

a reconstruction procedure consists in identifying the point z̄ ∈ Ω where the topological gradient G

attains its minimum. Indeed, the cost functional achieves the smallest value when it is evaluated in

the center of the exact inclusion. Thanks to the hypothesis of small size, we expect the reduction of

the cost functional j to be correctly described by the first order term G, up to a remainder which is

negligible with respect to ε.

Nevertheless, in order to define a reconstruction algorithm, the efficient evaluation of the topo-

logical gradient G is required. According to the definition above,

G(z) = lim
ε→0

j(ε; z)− j(0)

|ωε|
.

Evaluating G in a single point z ∈ Ω would require to solve the direct problem several times in

presence of inclusions centered at z with decreasing volume. This procedure can be indeed avoided

thanks to a useful representation formula that can be deduced from the asymptotic expansion (3.59).

To show this latter, we need the following preliminary
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Proposition 3.4. Consider the problem
Φt + k0∆Φ− f ′(u)Φ = 0, in Ω× (0, T ),
∂Φ

∂n
= uε − u, on ∂Ω× (0, T ),

Φ(T ) = 0, in Ω.

(3.85)

Given a compact set K ⊂ Ω such that d(K, ∂Ω) ≥ d0 > 0 the following estimate holds

‖Φ‖L1(0,T ;W 1,∞(K)) ≤ C‖uε − u‖L2(0,T ;L2(∂Ω)). (3.86)

Proof. Setting Z(t) = Φ(T − t), t ∈ (0, T ), we get an equivalent problem to (3.85)
Zt − k0∆Z + f ′(u)Z = 0, in Ω× (0, T ),
∂Z

∂n
= uε − u, on ∂Ω× (0, T ),

Z(0) = 0, in Ω.

(3.87)

We aim at proving that Z ∈ L2(0, T ;H3(K)), in view of the continuous embedding of such space in

L2(0, T ;W 1,∞(K)) (hence in L1(0, T ;W 1,∞(K))). Multiplying the first equation in (3.87) by Z, by

Young’s inequality it holds

1

2

d

dt
‖Z(·, t)‖2L2(Ω) +

k0

2
‖∇Z(·, t)‖2L2(Ω) ≤ C(‖Z(·, t)‖2L2(Ω) + ‖(uε − u)(·, t)‖2L2(∂Ω)), (3.88)

where C = C(k0,M2,Ω) > 0. An application of Gronwall’s lemma gives

‖Z(·, t)‖2L2(Ω)) ≤ C‖u
ε − u‖2L2(0,t;L2(∂Ω)), t ∈ (0, T ),

so that

‖Z‖2L∞(0,T ;L2(Ω)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)) (3.89)

and also

‖∇Z‖2L2(0,T ;L2(Ω)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)), (3.90)

where C is a positive constant depending on k0,M2,Ω, T . We remark that, by standard regularity

results, Z is smooth on E × [0, T ], for any compact E ⊂ Ω: indeed, via [99, Theorem 9.1, Chapter

4], Z ∈W 2,1
2 (Ω× (0, T )) ⊂ C(Ω× (0, T )). Consider now two compact sets K1 and K2 such that

K ⊂ K2 ⊂ K1 ⊂ Ω, d(K1, ∂Ω) ≥ d1 > 0.

It is possible to construct two functions ξ1, ξ2 and two constants b1, b2 satisfying

ξi ∈ C2(Ω), 0 ≤ ξi ≤ 1, ξi(x) = 1 ∀x ∈ Ki, ξi(x) = 0 ∀x ∈ Bi i = 1, 2,

Bi = {x ∈ Ω : d(x, ∂Ω) ≤ bi}, 0 < b1 < b2 < d1, K ⊂⊂ Supp ξ2 ⊂⊂ K1 ⊂ Supp ξ1 ⊂ Ω.

Let us multiply the first equation of (3.85) by −∆Z. Then it holds

d

dt

(
1

2
|∇Z|2

)
+ k0(∆Z)2 − f ′(u)Z∆Z = div (Zt∇Z). (3.91)
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Multiplying (3.91) by ξ1, integrating on Ω× (0, T ) and using the definitions of Z, we get∫
Ω

1

2
|∇Z(·, T )|2ξ1dx+ k0

∫ T

0

∫
Ω

(∆Z)2ξ1dxdt =

∫ T

0

∫
Ω

f ′(u)Z∆Zξ1dxdt−
∫ T

0

∫
Ω

Zt∇Z · ∇ξ1dxdt;

(3.92)

we remark that the integral terms are well defined thanks to the additional regularity z ∈W 2,1
2 (Ω×

(0, T )) ⊂ L2(0, T ;H2(Ω)) Combining (3.92) and the first equation in (3.87), applying Young’s ine-

quality and taking into account (3.41) and the fact that 0 ≤ ξ ≤ 1, we obtain∫
Ω

|∇Z(·, T )|2ξ1dx+k0

∫ T

0

∫
Ω

(∆Z)2ξ1dxdt ≤ 2M2

∫ T

0

∫
Ω

Z2dxdt−2

∫ T

0

∫
Ω

(k0∆Z−f ′(u)Z)∇Z·∇ξ1dxdt.

Integrating by parts the term
∫ T

0

∫
Ω

∆Z∇Z · ∇ξ1dxdt, we easily deduce∫
Ω

|∇Z(·, T )|2ξ1dx+

∫ T

0

∫
Ω

(∆Z)2ξ1dxdt ≤ C
(
‖Z‖2L2(0,T ;L2(Ω)) + ‖∇Z‖2L2(0,T ;L2(Ω))

)
, (3.93)

where C is a positive constant depending on M2, k0, ξ1. Hence, since ξ1 = 1 in k0, we get

‖∆Z‖2L2(0,T ;L2(K1)) ≤ C
(
‖Z‖2L2(0,T ;L2(Ω)) + ‖∇Z‖2L2(0,T ;L2(Ω))

)
. (3.94)

Observe that, replacing T by t ∈ (0, T ] in (3.93), we deduce also

‖∇Z‖L∞(0,T ;L2(K1)) ≤ C
(
‖Z‖2L2(0,T ;L2(Ω)) + ‖∇Z‖2L2(0,T ;L2(Ω))

)
. (3.95)

Combining (3.89), (3.94) and (3.95), we obtain

‖Z‖2L2(0,T ;H2(K1)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)), (3.96)

where C is a positive constant depending on k0,M2,Ω, T, ξ1.

On account of the first equation in (3.87) and the previous estimates, we get

‖Zt‖2L2(0,T ;L2(K1)) ≤ C(‖Z‖2L2(0,T ;L2(Ω)) + ‖∇Z‖2L2(0,T ;L2(Ω))) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)), (3.97)

where C is a positive constant depending on k0,M2,Ω, T, ξ1.

Now, let us multiply the first equation of (3.87) by −∆Zt. We obtain

−Zt∆Zt +
k0

2

d

dt
(∆Z)2 − f ′(u)Z∆Zt = 0.

Multiplying the previous equation by ξ2 and integrating on Ω × (0, T ), then a suitable integration

by parts in space implies ∫ T

0

∫
Ω

|∇Zt|2ξ2dxdt+
k0

2

∫ T

0

∫
Ω

d

dt
(∆Z)2ξ2dxdt

+

∫ T

0

∫
Ω

ξ2Zf
′′(u)∇u · ∇Ztdxdt+

∫ T

0

∫
Ω

ξ2f
′(u)∇Z · ∇Ztdxdt

=

∫ T

0

∫
Ω

div

(
1

2
∇((Zt)

2)

)
ξ2dxdt+

∫ T

0

∫
Ω

div
(
∇(f ′(u)ZZt)dxdt− Zt∇(f ′(u)Z)

)
ξ2dxdt.
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Integrating by parts in time the second term of the left-hand side and by parts in space the terms

in the right-hand side, by an application of Young’s inequality we finally get∫ T

0

∫
K2

|∇Zt|2dxdt ≤
∫ T

0

∫
Ω

|∇Zt|2ξ2dxdt ≤ C

(∫ T

0

∫
Ω

|Z|2dxdt+

∫ T

0

∫
Ω

|∇Z|2dxdt+

∫ T

0

∫
K1

(Zt)
2dxdt

)
,

where the constant C > 0 depends on ξ2,M2. A combination with (3.89), (3.90), (3.97) gives

‖∇Zt‖2L2(0,T ;L2(K2)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)),

where the constant C > 0 depends on k0,M2,Ω, T, ξ1, ξ2. In order to prove the desired regularity, we

need to take into account also the third-order derivatives, in particular the operator ∇∆Z. Observe

that from the first equation in (3.87) we get

∇∆Z =
1

k0
(∇Zt + Zf ′′(u)∇u+ f ′(u)∇Z) . (3.98)

Hence, we can conclude

‖∇∆Z‖2L2(0,T ;L2(K2)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)),

where C is a positive constant depending on k0,
1
k0
,M2,Ω, T, ξ1, ξ2.

Recalling (3.96) and the fact that K ⊂ K2 ⊂ K1, standard regularity results imply

‖Z‖2L2(0,T ;H3(K)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)). (3.99)

Finally, from (3.96) and (3.99), by Sobolev immersion theorems, we get

‖Z‖2L1(0,T ;W 1,∞(K)) ≤ C(T )‖Z‖2L2(0,T ;W 1,∞(K)) ≤ C‖u
ε − u‖2L2(0,T ;L2(∂Ω)), (3.100)

where C is a positive constant depending on k0,
1
k0
,M2,Ω, T, ξ1, ξ2.

Recalling the relation between Z and Φ we get (3.86).

By Proposition 3.4, we deduce a representation formula for the topological gradient by introdu-

cing a suitable adjoint problem, according to the following

Proposition 3.5. The topological gradient of the cost functional j(ε, z) can be expressed by

G(z) =

∫ T

0

(
k̃M∇u(z) · ∇W (z) + f(u(z))W (z)

)
dt, (3.101)

where W is the solution of the adjoint problem:
Wt + k0∆W − f ′(u)W = 0, in Ω× (0, T ),

k0
∂W

∂n
= u− umeas, on ∂Ω× (0, T ),

W (T ) = 0, in Ω.

(3.102)
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Proof. Consider the difference

j(ε; z)− j(0) =
1

2
‖uε − umeas‖2L2(0,T ;L2(∂Ω)) −

1

2
‖u− umeas‖2L2(0,T ;L2(∂Ω))

=

∫ T

0

∫
∂Ω

(uε − u)(u− umeas)dσdt+
1

2
‖uε − u‖2L2(0,T ;L2(∂Ω)).

(3.103)

According to (3.59) and to the definition of the adjoint problem (3.102), we can express∫ T

0

∫
∂Ω

(uε − u)(u− umeas)dσdt = |ωε|

{∫ T

0

∫
Ω

k̃M∇u · ∇Wdµdt+

∫ T

0

∫
Ω

f(u)Wdµdt+ o(1)

}
.

Since we assume (3.83), the measure µ associated to the inclusion is the Dirac mass δz centered in

point z (see [47]). Hence∫ T

0

∫
∂Ω

(uε − u)(u− umeas)dσdt = |ωε|
∫ T

0

{
k̃M∇u(z) · ∇W (z) + f(u(z))W (z)

}
dt+ o(|ωε|).

(3.104)

Moreover, by (3.59), the second term in the left-hand side of (3.103) can be expressed as∫ T

0

∫
∂Ω

(uε − u)(uε − u)dσdt = |ωε|
∫ T

0

{
k̃M∇u(z) · ∇Φ(z) + f(u(z))Φ(z)

}
dt+ o(|ωε|),

where Φ is the solution to (3.85). Thanks to regularity results on u (see Theorem 3.1) and using

Proposition 3.4 with K = Ωd0 = {x ∈ Ω s.t. d(x, ∂Ω) ≥ d0}, we obtain∫ T

0

∫
∂Ω

(uε − u)(uε − u)dσdt ≤ C|ωε|

{∫ T

0

|∇Φ(z)|dt+

∫ T

0

|Φ(z)|dt

}
+ o(|ωε|)

≤ C|ωε|‖uε − u‖L2(0,T,L2(∂Ω)) + o(|ωε|) ≤ C|ωε|‖uε − u‖L2(0,T,H1(Ω)) + o(|ωε|)

≤ C|ωε|
3
2 + o(|ωε|) = o(|ωε|).

(3.105)

Replacing (3.104) and (3.105) in (3.103), we finally get

j(ε; z)− j(0) = |ωε|

{∫ T

0

k̃M∇u(z) · ∇W (z)dt+

∫ T

0

f(u(z))W (z)dt

}
+ o(|ωε|).

Thanks to the representation formula (3.101), evaluating the topological gradient of the cost

functional requires just the solution of two initial and boundary value problems. This yields the

definition of a one-shot algorithm for the identification of the center of a small inclusion satisfying

hypothesis (3.83) (see Algorithm 4).

Guided by the application in electrophysiological we have in mind, we consider also the case of

partial boundary measurements where the support of umeas is given by a subset Γ ⊂ ∂Ω. In this case,

it is possible to formulate a slightly different optimization problem than (3.82), in which the mismatch

uε − umean is minimized just on the portion Γ of the boundary. The same reconstruction algorithm

can be devised for this problem by simply considering non-homogeneous Neumann conditions in the

adjoint problem (3.85) only on Γ.
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Require: u0(x, 0)∀x ∈ Ω, umeas(x, t) ∀x ∈ ∂Ω, t ∈ (0, T ).

Ensure: approximated centre of the inclusion, z̄

1. compute u by solving (3.1);

2. compute W by solving (3.102);

3. determine G according to (3.101);

4. find z̄ s.t. G(z̄) ≤ G(z) ∀ z ∈ Ω.

Algorithm 4: Reconstruction of a single inclusion of small dimensions

3.6 Numerical results

We rely on the Galerkin finite element method for the numerical approximation of the background

problem (3.1) and the adjoint problem (3.102), as well as to compute the solution to the perturbed

problem (3.5) in presence of the exact inclusion when considering synthetic data umeas. The one-shot

procedure makes the reconstruction algorithm very efficient, only requiring the solution of an adjoint

problem for each acquired measurement over the time interval, without entailing any iterative (e.g.

descent) method for numerical optimization.

3.6.1 Finite Element approximation

The background problem (3.1) can be cast in weak form as follows: ∀ t ∈ (0, T ), find u(t) ∈ V =

H1(Ω) such that u(0) = u0 and∫
Ω

utvdx+

∫
Ω

k1∇u · ∇vdx+

∫
Ω

f(u)vdx = 0, ∀ v ∈ V. (3.106)

By introducing a finite-dimensional subspace Vh of V , dim(Vh) = Nh < ∞, the Galerkin (semi-

discretized in space) formulation of problem (3.106) reads: ∀ t ∈ (0, T ), find uh(t) ∈ Vh such that

uh(0) = uh,0 and ∫
Ω

(uh)tvhdx+ b(uh(t), vh) + F (uh(t), vh) = 0, ∀ vh ∈ Vh, (3.107)

where b(u, v) =
∫

Ω
k1∇u · ∇vdx, F (u, v) =

∫
Ω
f(u)vdx, f is defined as in (3.2) and uh,0 is the

H1-projection of u0 onto Vh.

To obtain a full discretization of the problem, we introduce a finite difference approximation in

time. According to the strategy reported in [61], we rely on a semi-implicit scheme which allows an

efficient treatment of the nonlinear terms. Let us consider an uniform partition {tn}Nn=0 of the time

interval [0, T ] of step τ = T
N s.t. t0 = 0, tN = T . Then, the fully discrete formulation of (3.1) is

given by: ∀n = 0, . . . N − 1, find un+1
h ∈ Vh such that u0

h = u0,h and∫
Ω

un+1
h vhdx−

∫
Ω

unhvhdx+ τb(un+1
h , vh) + τF (unh, vh) = 0, ∀ vh ∈ Vh. (3.108)

With the same discretization strategy one may describe a numerical scheme for the approximate

solution of the perturbed problem, using the weak form reported in (3.13) and introducing the forms

bε(u, v) =

∫
Ω

kε∇u · ∇vdx, Fε(u, v) =

∫
Ω

χΩ\ωεf(u)vdx.
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The adjoint problem, instead, requires the introduction of the form dF (u, v;w) =
∫

Ω
f ′(w)uvdx,

which is bilinear with respect to u and v. Thanks to the linearity of the adjoint problem, we can

consider a fully implicit Crank-Nicolson scheme: ∀n = 0, . . . N − 1, find wnh ∈ V = H1(Ω) such that

wNh = 0 and∫
Ω

wn+1
h vhdx−

∫
Ω

wnhvhdx+
τ

2

(
b(wn+1

h , vh) + b(wnh , vh)+

dF (wn+1
h , vh;un+1

h ) + dF (wnh , vh;unh)
)

=

τ

2

(∫
∂Ω

(un+1
h − umeas(tn+1))vhdσ +

∫
∂Ω

(unh − umeas(tn))vhdσ

)
, ∀ vh ∈ Vh.

(3.109)

Existence and uniqueness of the solution to the fully-discrete problems (3.108) and (3.109) follow

by the well-posedness of the continuous problems, since Vh is a subspace of H1(Ω); see, e.g., [76],

[127] and [61] for a detailed stability and convergence analysis of the proposed schemes.

The numerical setup for the simulation is represented in Figure 3.1. We consider an idealized

geometry of the left ventricle (which has been object of several studies, see e.g. [61]), and define

a tetrahedral tessellation Th of the domain. The discrete space Vh is the P1-Finite Element space

over Th, i.e. the space of the continuous functions over Ω which are linear polynomials when re-

stricted on each element T ∈ Th. The mesh we use for all the reported results consists of 24924

tetrahedral elements and Nh = 5639 nodes. We report also the anisotropic structure considered in

all the reconstruction tests, according to [125, 118] and [61]. The conductivity matrix K0 for the

monodomain equation is given by K0(x) = Ke(x)(Ke(x) + Ki(x))−1Ki(x), where Ki and Ke are

orthotropic tensors with three constant positive real eigenvalues, namely

Ke(x) = kef ~ef (x)⊗ ~ef (x) + ket ~et(x)⊗ ~et(x) + ker ~er(x)⊗ ~er(x)

Ki(x) = kif ~ef (x)⊗ ~ef (x) + kit~et(x)⊗ ~et(x) + kir ~er(x)⊗ ~er(x)

The eigenvectors ~ef , ~et and ~er are associated to the three principal directions of conductivity in

the heart tissue: respectively, the fiber centerline, the tangent direction to the heart sheets and the

transmural direction (normal to the sheets).

(a) Domain (b) Mesh (section) (c) Fiber directions

Figure 3.1: Setup of numerical test cases

For the direct problem simulations, we consider the formulation reported in (3.1), specifying

realistic values for the parameters Cm and ν. We have rescaled the values of u1, u2, u3 and A2 in

order to simulate the electric potential in the adimensional range [0, 1]. The rescaling is given by

ũ = (α + u)/β, where α = 0.085mV and β = 0.125mV , whereas for the sake of simplicity we will
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still denote by u the rescaled variable ũ. We consider the initial datum u0 to be positive on a band

of the endocardium, representing the initial stimulus provided by the heart conducting system. The

most relevant parameters, chosen according to [80], [132], are reported in Table 3.1.

ν Cm A2 u1 u2 u3 kif kit kir kef ket ker
500mA 0.1mA ms

cm2 0.2 0 0.15 1 3 1 0.315 2 1.65 1.351

Table 3.1: Numerical values of physical coefficients

In Figure 3.2 we report the solution of the discrete background problem (3.108) at different time

instants, comparing the isotropic and the anisotropic cases.

(a) Isotropic case, t = 0.2 T (b) Isotropic case, t = 0.5 T (c) Isotropic case, t = 0.8 T

(d) Anisotropic case, t = 0.2 T (e) Anisotropic case, t = 0.5 T (f) Anisotropic case, t = 0.8 T

Figure 3.2: Background problem simulation: isotropic case (top) and anisotropic case (bottom) at different

time instants

3.6.2 Reconstruction of small inclusions

We now tackle the problem of reconstructing the position of a small inhomogeneity using the

knowledge of the electric potential on a portion Γ of the boundary. In particular, we assume that

umeas is known on the endocardium, i.e. the inner surface of the heart cavity. In each numerical

experiment, we consider the presence of a spherical inclusion of small size ( the ratio ρisch/ρventr

between the radius of the inhomogeneity and the radius of the horizontal section of the ventricle

is 0.05) and consider a contrast of two orders of magnitude in the conductivity tensor between the

ischemic and healthy tissue: K1 = 0.01 ·K0. We generate synthetic data on a more refined mesh and

test the effectiveness of Algorithm 1 in the reconstruction of a small spherical inclusion in different
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positions. In Figure 3.3 we report the value of the topological gradient and superimpose the exact

inclusions (that is, the ones corresponding to the conductivity fields which have generated synthetic

data): we observe a negative region in proximity of the position of the real inclusion. The algorithm

precisely identifies the region where the inclusion is present, whereas the minimum may in general

be found along the endocardium also when the center of the real inclusion is not located on the

heart surface. Nevertheless, due to the domain thinness, the reconstructed position is found to be

close to the real one.

Figure 3.3: Reconstruction of small inclusions: topological gradient for different configurations

This slight loss in accuracy seems to be an intrinsic limit of the topological gradient strategy

applied to the problem at hand. We point out that the reconstruction is performed by relying on a

single measurement acquired on the boundary. This latter is a constraint imposed by the physical

problem at hand, for which multiple measurements corresponding to different sources cannot be

retrieved. As a matter of fact, all the techniques based on several measurements in order to increase

the quality of the reconstruction are impracticable. A different strategy, as proposed in several works

focusing on steady problems, may consist in introducing a modification to the cost functional J . In

[11] and related works the authors introduce a cost functional inherited from imaging techniques,

whereas in [52], [117] different strategies involving the Kohn-Vogelius functional or similar ones are

explored. Nevertheless, the nonlinearity of the direct problem considered in this thesis prevents the

possibility to apply these techniques, since the analytical expressions of the fundamental solution,

single and double layer potentials would not be available in practice.

3.6.3 Reconstruction in presence of experimental noise

We then test the stability of the algorithm in presence of experimental noise on the measured

data umeas. We consider different noise levels, according to the formula

ũmeas(x, t) = umeas(x, t) + pη(x, t),
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where η(x, t) for each x, t is a Gaussian random variable with zero mean and standard deviation

equal to u3 − u1, whereas p ∈ [0, 1] is the noise level. In Figure 3.4 the results of the reconstruction

in presence of different noise levels are compared. The algorithm shows to be robust with respect to

large noise levels and increasingly accurate as the noise level reduces.

(a) p = 1% (b) p = 5% (c) p = 10%

Figure 3.4: Reconstruction of small inclusions: results in presence of different noise levels

3.6.4 Reconstruction from partial discrete data

A further test case to assess at which extent the proposed procedure is effective deals with

the reconstruction of small inclusions starting from the knowledge of partial data. These latter

are provided by single measurements of the electric potential in a discrete set of points on the

endocardium, possibly simulating the procedure of intracavitary electric measurements. Figure 3.5

shows that the algorithm is able to detect the presence of a small inclusion from the knowledge of the

potential on Np = 246, 61, 15 different points, shown in the bottom part of Figure 3.5. The position

of the reconstructed inclusion is slightly affected by the reduction of sampling points; nevertheless,

reliable reconstructions can be obtained even with a very small (compared to the number of mesh

vertices lying on that boundary) number of points.

For the same purpose, we have tested the capability of the reconstruction procedure to avoid

false positives: the algorithm is able to distinguish the case where inclusions are either present or

absent, also in the case where the data are recovered only at a finite set of points and are affected

by noise. We compare the value of the cost functional J and of the minimum of the topological

gradient G obtained through Algorithm 4 on data generated when (i) a small inclusion is present

or (ii) no inclusion is considered. The measurement is performed on a set of Np = 100 points and

is affected by different noise levels. The results are reported in Table 3.2.

The presence of a small noise on measured data causes a great increase of J : with 5% noise,

e.g., the value of J is two orders of magnitude greater than the value assumed in presence of a

small inclusion without noise. Nevertheless, the topological gradient G allows to distinguish the

false positive cases, since (at least in the case of small noise level) the value attained by its minimum

in presence of a small inclusion is considerably lower than the random oscillations of G due to noise.
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(a) Np = 246 (b) Np = 61 (c) Np = 15

Figure 3.5: Reconstruction of small inclusions in presence of partial data. Top: topological gradient;

bottom: mesh elements containing sampling points

Error Np J minΩG

0% 100 0.275 -0.5793

1% 100 1.235 -0.589

2% 100 4.128 -0.530

5% 100 24.429 -0.589

(a) Results in presence of an inclusion

Error Np J minΩG

0% 100 0.000 0.000

1% 100 0.964 -0.044

2% 100 3.864 -0.105

5% 100 24.148 -0.189

(b) Results with no inclusion present

Table 3.2: False positive test. Comparison between reconstructions obtained from data measured in pre-

sence of an inclusion (left table) and data measured with no inclusion present (right table). The

null results in the first row of Table (b) are due to the usage of synthetic data.

3.6.5 Reconstruction of larger inclusions

We finally assess the performance of Algorithm 1, developed for the reconstruction of small

inclusions well separated from the boundary, in detecting the position of extended inclusions. This

case is of great potential interest in view of the problem of detecting ischemic regions∗. The most

important assumption on which the one-shot procedure above relies is that the variation of the cost

functional when passing from the background case value (J(0)) to the value corresponding to the

exact inclusion can be correctly described by the first order term of its asymptotic expansion, namely

the topological gradient G. Removing the hypothesis of small size extension, we cannot rigorously

assess the accuracy of the algorithm; however, the proposed procedure still allows us to identify the

∗Total occlusion of a major coronary artery generally causes the entire thickness of the ventricular wall to become

ischemic (transmural ischemia) or, alternatively, a significant ischemia only in the endocardium, that is, the inner layer

of the myocardium (subendocardial ischemia). See, e.g., [60] for a detailed investigation of the interaction between the

presence of moderate or severe subendocardial ischemic regions and the anisotropic structure of the cardiac muscle.
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location of the inclusion.

We report the results of some numerical experiments conducted in presence of an inclusion of

larger size, i.e., ρisch/ρventr = 0.25, not even separated from the boundary. As depicted in Figure

3.6, the minimum of the topological gradient is close to the position of the inclusion and attains

lower values with respect to the previously reported cases. When considering very extended ischemic

regions (e.g. ρisch/ρventr = 0.5), though, the information given by the topological gradient is less

accurate – nevertheless, showing lower values close to the position of the inclusion.

(a) radius = 1 (b) radius = 1 (c) radius = 2

Figure 3.6: Reconstruction of larger inclusions, with ρisch/ρventr = 0.25 (left and center plot),

ρisch/ρventr = 0.5 (right plot). Top: exact inclusion; bottom: topological gradient

Moreover, in Figure 3.7 we assess the stability of the reconstruction with respect to the presence

of noisy data and partial measurements, as done in the case of small inclusions. Also in this case,

reliable reconstructions can be obtained even in presence of noise, and/or data measured in a small

number of points.

(a) Exact inclusion (b) Topological gradient,

2% noise

(c) Topological gradient,

2% noise, measurements

on 100 points

Figure 3.7: Larger ischemic regions: stability of the reconstruction



Chapter 4

A Shape Optimization approach

for the reconstruction of large

inclusions in a semilinear elliptic

problem

This chapter tackles the problem of detecting large inhomogeneities in the coefficients of a se-

milinear elliptic equation by means of an approach inspired by the shape derivative technique. In

particular, we consider the following Neumann problem, defined over Ω ⊂ R2:{
−div(kω∇u) + χΩ\ωu

3 = f in Ω,

kω∇u · ν = 0 on ∂Ω,
(4.1)

where

kω(x) =

{
1 if x ∈ ω

k if x ∈ Ω \ ω,
k < 1.

We want to tackle the following inverse problem: knowing the source term f and the measured data

umeas on the boundary of Ω, determine the inclusion ω such that it holds: u|∂Ω = umeas, being u the

solution of (4.1) with inclusion ω. This consists in a natural continuation of the purposes of Chapter

2: we rely on the same model tackled in that chapter, but removing the regularization hypotheses

which allowed to perform an extended analysis. Namely, we do not assume that the inclusion to be

identified is of small size.

As outlined in Section 1.3, even on the linear counterpart of the problem the purpose of recon-

structing a piecewise constant coefficient from a finite number of measurements (or even a single

one) entails severe issues unless further assumptions on the inclusion are introduced. Moreover,

several reconstruction algorithms developed for the inverse conductivity problem fail to be applied

in the nonlinear context at hand, except for a restricted selection of variational methods.

In particular, the task of this chapter is to rigorously introduce a shape derivative approach for

the nonlinear inverse problem in consideration. This strategy allows to deal with the reconstruction

77
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of a discontinuous parameter, by starting with a reasonable initial guess of the inclusion (i.e., the

region in which the parameters assume a different value with respect to the reference one) and

perturbing its boundary. In order to do so, we aim at minimizing a suitable misfit functional,

endowed with a regularization term penalizing the perimeter of the inclusion. A deeper discussion

both on the motivation and on the main results involved with the introduction of the regularization

term can be found in Chapter 5. In order to study the sensitivity of the functional with respect to

perturbations of an existing inclusion, it is necessary to rigorously derive an asymptotic expansions

of suitable integral terms involving the boundary voltage. Finally, in view of these results and of the

tools of the Shape Optimization theory, an iterative algorithm for the reconstruction of the inclusion

is implemented.

The described strategy allows for the reconstruction of inclusions whose boundary is sufficiently

smooth; nevertheless, it is possible to extend the same results also in the case of polygonal inclusions.

In particular, we refer to [31] for the sensitivity analysis and to [34] for the shape-derivative based

reconstruction algorithm.

The outline of the chapter is the following one: in Section 4.1 we provide an accurate asymptotic

analysis of the solution of the direct problem associated to a large inclusion when small perturbations

of the boundary are made. In Section 4.2, instead, we exploit those results within to formulate a

reconstruction algorithm for the inverse problem based on the shape gradient of the cost functional.

4.1 Small perturbations of a large inclusion

As previously outlined, this chapter is focused on the reconstruction of inclusions of arbitrarily

large size, removing the assumption of small size. Nevertheless, we still assume some a priori

information regarding the solution we want to reconstruct: in particular, we look for inclusions ω

which can be obtained as a smooth deformation of an initial shape ω0 (such that the boundary ∂ω0

is of class C2), and well separated from the boundary. More precisely, our analysis focuses on small

regular perturbations ωε of a fixed inclusion ω0 of the form:

∂ωε = {y + εh(y)ν(y), y ∈ ∂ω0}, (4.2)

being ε > 0, ν(·) : ∂ω0 → R2 the outward unit normal vector of ∂ω0 and h(·) ∈ C2(∂ω0;R). Large

deformations of the original shape might be obtained by recursively applying small perturbations as

the one reported in (4.2).

Notation: in the sequel, we will recall 4ω = ω04ωε, ε \ 0 = ωε \ ω0, 0 \ ε = ω0 \ ωε, Ωr =

Ω \ (ω0 ∪ ωε), and the functions χ0 = χω0
, χε = χω0

, χε\0 = χωε\ω0
, χ0\ε = χω0\ωε χr = χΩr ,

k0 = 1− (1− k)χ0, kε = 1− (1− k)χε.

4.1.1 The direct problem in presence of an inclusion: a review

The well-posedness of the direct problem in presence of ω0 has already been investigated in

Chapter 2, Proposition 2.1: indeed, no assumption on the size of the inclusion is required in the

proof. Hence, the solution u0 of (4.1) with ω = ω0 exists and is unique in H1(Ω). By the same

argument, proceeding as in [30, equation (4.14)] we can also prove that u0 ∈ Cα(Ω).
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We remark, as it will be useful in the sequel, that the following transmission conditions hold in

a trace sense for u0:

ui0 =ue0 on ∂ω0,

∇τui0 =∇τue0 on ∂ω0,

k∇νui0 =∇νue0 on ∂ω0,

(4.3)

where ue0 = u0|Ω\ω0
, ui0 = u0|ω0 , ∇τu = ∇u · τ , ∇νu = ∇u · ν and ν, τ are the (outward) normal and

tangential unit versors of the boundary of ω0. The same conditions hold on uε across ∂ωε. More

refined interior regularity results can be obtained:

Lemma 4.1. If the forcing term f ∈ L∞(Ω), then there exists a positive exponent 0 < α < 1 and a

constant C > 0 independent of ε such that:

‖u0‖C1+α(ω0)∩C1+α(Ωδ\ω0) ≤ C

‖uε‖C1+α(ωε)∩C1+α(Ωδ\ωε) ≤ C,
(4.4)

being Ωδ = {x ∈ Ω s.t. dist(x, ∂Ω) ≥ δ}, δ < d0.

Proof. From well-posedness results for the direct problem, we know that u0 ∈ H1(Ω) satisfies the

equation:

−div(k0∇u0) = f − (1− χ0)u3
0.

As previously outlined, by the same argument used in [30, formula (4.14)] for inclusions of small

dimensions, we can exploit the interior estimates of [82, Theorem 8.24] to conclude that ‖u0‖Cα(Ω) ≤
C, where C depends on Ω, k, ‖f‖Lp(Ω). In particular, the term (1− χ0)u3

0 belongs to L∞(Ω), hence

we can apply the result from Li and Nirenberg (see [101], Theorem 1.1) to obtain

‖u0‖C1+α(ω0) ≤ C(‖u0‖L2(Ω) + ‖f‖L∞(Ω) + ‖u0‖3L∞(Ω))

‖u0‖C1+α(Ωδ\ω0) ≤ C(‖u0‖L2(Ω) + ‖f‖L∞(Ω) + ‖u0‖3L∞(Ω)),

where C = C(k,Ω, ω0, d0, α). Exploiting the bounds on the norm of u0 in C(Ω) stated above, one

may conclude that

‖u0‖C1+α(ω0)∩C1+α(Ωδ\ω0) ≤ C

with C = C(Ω, k, ω0, d0, α, ‖f‖L∞(Ω)).

We point out that all the results stated in the present Section are valid also on ωε, since by the

assumption (4.2) the boundary of the perturbed inclusion has the same regularity as the initial one.

4.1.2 Energy estimates

This section is devoted to some estimates involving the difference between uε and u0, which are

useful for the proof of the fundamental results in the sequel. We first of all remark that, by trivial

computation, it holds:

Lemma 4.2. Defined ωε as in (4.2) and being ∆ω = ωε∆ω0, there exists a positive constant C

depending on h and ω0 such that:

|4ω| ≤ Cε. (4.5)
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We now state and prove two important energy estimates regarding the difference uε − u0.

Lemma 4.3.

‖uε − u0‖H1(Ω) ≤ C|4ω|
1
2 (4.6)

Proof. Consider the problem which are solved by uε and u0:

−div(kε∇uε) + (1− χε)u3
ε = f

−div(k0∇u0) + (1− χ0)u3
0 = f ;

recalling wε = uε−u0 and observing that kε−k0 = (k−1)χε\0 +(1−k)χ0\ε and 1−χε = χr+χ0\ε,

1− χ0 = χr + χε\0, one obtains the following problem for wε:

−div(kε∇wε) + χrqεwε = −div((1− k)χε\0∇u0) + χε\0u
3
0 − div((k − 1)χ0\ε∇u0)− χ0\εu

3
ε, (4.7)

where qε = u2
ε + uεu0 + u2

0. Using the strategy outlined in the Appendix of [30] in order to obtain a

Poincarè inequality for wε, we write:

wε = w̃ε + aε, aε =
1∫

Ωr
qε

∫
Ωr

qεwε.

Hence, it follows that
∫

Ωr
w̃εqε = 0, and it holds:

‖w̃ε‖L2(Ω) ≤ Cp‖∇w̃ε‖L2(Ω) = Cp‖∇wε‖L2(Ω).

Moreover, exploiting the homogeneous Neumann boundary conditions satisfied by uε and u0, by the

divergence theorem,∫
Ω

div(kε∇wε) = 0;

∫
Ω

div(χε\0∇u0) =

∫
Ω

div(χ0\ε∇u0) = 0.

Thus, integrating equation (4.7) over Ω one obtains:∫
Ωr

qεwε =

∫
ε\0

u3
0 −

∫
0\ε

u3
ε,

and ultimately:

|aε| =
1∣∣∣∫Ωr qε∣∣∣

∣∣∣∣∣
∫
ε\0

u3
0 −

∫
0\ε

u3
ε

∣∣∣∣∣ ≤ Q(‖u0‖2L6(Ω) + ‖uε‖2L6(Ω)

)
|4ω| 12 ,

being Q s.t.
∣∣∣∫Ωr qε∣∣∣ > 1

Q , which can be proved in the hypothesis that f ≥ m (according to the

discussion in Chapter 2). This entails that the following inequality holds for wε:

‖wε‖H1(Ω) ≤ ‖w̃ε‖H1(Ω) + |aε||Ω| ≤ (1 + Cp)‖∇wε‖L2(Ω) + C2|4ω|
1
2 . (4.8)

In order to estimate ‖∇wε‖L2(Ω), we integrate equation (4.7) using wε as a test function: after

integration by parts, we obtain:∫
Ω

kε|∇wε|2 +

∫
Ωr

w2
εqε = (k − 1)

∫
0\ε
∇u0 · ∇wε + (1− k)

∫
ε\0
∇u0 · ∇wε +

∫
ε\0

u3
0 −

∫
0\ε
∇u3

ε.
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k‖∇wε‖2L2(Ω) ≤
∫

Ω

kε|∇wε|2 +

∫
Ωr

w2
εqε ≤ (exploiting estimates (4.4))

≤ (1− k)
(
‖∇u0‖L∞(ε\0)‖∇wε‖L2(ε\0) + ‖∇u0‖L∞(0\ε)‖∇wε‖L2(0\ε)

)
|4ω| 12 +(∥∥u3

0

∥∥
L∞(ε\0)

‖wε‖L2(ε\0) +
∥∥u3

ε

∥∥
L∞(0\ε)‖wε‖L2(0\ε)

)
|4ω| 12 ≤

≤
{

(1− k)‖∇u0‖L∞(4ω)‖∇wε‖L2(Ω) +
(∥∥u3

ε

∥∥
L∞(4ω)

+
∥∥u3

0

∥∥
L∞(4ω)

)
‖wε‖L2(Ω)

}
|4ω| 12 .

Hence, it holds (since ‖wε‖L2(Ω) ≤ ‖wε‖H1(Ω) ≤ C1‖∇wε‖L2(Ω) + C2|4ω|
1
2 ):

A‖∇wε‖2L2(Ω) −B|4ω|
1
2 ‖∇wε‖L2(Ω) − C|4ω| ≤ 0, (4.9)

with A,B,C positive constants depending on k,
∥∥u3

ε

∥∥
L∞(4ω)

,
∥∥u3

0

∥∥
L∞(4ω)

, ‖∇u0‖L∞(4ω). Solving

the second order inequality, one gets:

‖∇wε‖L2(Ω) ≤
B +

√
B2 − 4AC

2A
|4ω| 12 ,

which can be inserted in (4.8) to obtain the thesis.

Lemma 4.4.

‖uε − u0‖L2(Ω) ≤ C|4ω|
1
2 +η, η > 0. (4.10)

Proof. As reported in the proof of Lemma 4.3, wε ∈ H1(Ω) is the solution of problem (4.7) with

homogeneous Neumann boundary conditions, whose weak formulation reads:∫
Ω

kε∇wε · ∇ϕ+

∫
Ωr

qεwεϕ =

∫
ε\0

(
(1− k)∇u0 · ∇ϕ+ u3

0ϕ
)

−
∫

0\ε

(
(1− k)∇u0 · ∇ϕ+ u3

εϕ
)

∀ϕ ∈ H1(Ω).

(4.11)

Moreover, we introduce wε, the solution of the problem:∫
Ω

kε∇wε · ∇ϕ+

∫
Ωr

qεwεϕ =

∫
Ω

wεϕ ∀ϕ ∈ H1(Ω). (4.12)

By the same argument exposed in [30], problem (4.12) is well-posed and it holds

‖wε‖H1(Ω) ≤ ‖wε‖L2(Ω). (4.13)

By Meyers inequalities ([107]), ∇wε ∈ Lp
′
(4ω) and

‖∇wε‖Lp′ (4ω) ≤ C
(
‖∇wε‖L2(4̃ω)

+ ‖wε‖Lp′ (4̃ω)

)
,

being 4̃ω ⊃ 4ω. Using (4.13) and the Sobolev immersions we conclude that:

‖∇wε‖Lp′ (4ω) ≤ C‖wε‖H1(Ω). (4.14)

Substituting ϕ = wε in (4.11) and ϕ = wε in (4.12) and exploiting Hölder inequality (with 1 ≤ p < 2),

one obtains:∫
Ω

w2
ε =

∫
ε\0

(
(1− k)∇u0 · ∇wε + u3

0wε
)
−
∫

0\ε

(
(1− k)∇u0 · ∇wε + u3

εwε
)

≤ C
(
‖∇u0‖Lp(4ω)‖∇wε‖Lp′ (4ω) +

(∥∥u3
0

∥∥
Lp(4ω)

+
∥∥u3

ε

∥∥
Lp(4ω)

)
‖wε‖Lp′ (4ω)

)
.

(4.15)
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Thanks to Lemma 4.1, we can ensure that ‖∇u0‖L∞(4ω),
∥∥u3

0

∥∥
L∞(4ω)

and
∥∥u3

ε

∥∥
L∞(4ω)

are control-

led by a positive constant C. Hence,

‖∇u0‖Lp(4ω),
∥∥u3

0

∥∥
Lp(4ω)

,
∥∥u3

ε

∥∥
Lp(4ω)

≤ C|4ω|
1
p . (4.16)

Thanks to Sobolev immersions,

‖wε‖Lp′ (4ω) ≤ ‖wε‖Lp′ (Ω) ≤ C‖wε‖H1(Ω),

and exploiting (4.13)

‖wε‖Lp′ (4ω) ≤ C‖wε‖H1(Ω) (4.17)

Hence, thanks to (4.16), (4.17), (4.14), we conclude from (4.15):

‖wε‖2L2(Ω) ≤ C|4ω|
1
p ‖wε‖H1(Ω) ≤ C|4ω|

1
p+ 1

2

which entails that

‖wε‖L2(Ω) ≤ C|4ω|
1
2 +η,

with η = 2−p
4p > 0.

Lemma 4.5. The following estimates hold on the boundary of ωε:

‖∇(ueε − ue0)‖L∞(∂ωε∩ω0) + ‖∇(ueε − ue0)‖L∞(∂ωε\ω0) ≤ Cε
α

2α+2∥∥u3
ε − u3

0

∥∥
L∞(∂ωε∩ω0)

+
∥∥u3

ε − u3
0

∥∥
L∞(∂ωε\ω0)

≤ Cε 1
4

(4.18)

Proof. The function wε = uε − u0 is the solution of (4.7), which means that in Ωr = Ω \ (ω0 ∪ ωε)
it satisfies:

−∆wε + qεwε = 0 in Ωr,

whereas its gradient θ = ∇wε satisfies:

−∆θ + qεθ = −wε∇qε in Ωr.

Exploiting the local estimates in [82, Theorem 8.17], we obtain that in Ωdr = {x ∈ Ωr : dist(x, ∂Ωr) >

d} it holds:

‖∇wε‖L∞(Ωdr) ≤ Cd
−1
(
‖wε‖L2(Ω) + ‖qε‖H1(Ω)‖wε‖L2(Ω)

)
and, exploiting the energy estimate (4.6), we obtain:

‖∇wε‖L∞(Ωdr) ≤ Cd
−1ε

1
2 . (4.19)

Consider now y ∈ ∂ωε \ ω0 and let yd be the point of Ωdr which is closest to y: thanks to the Hölder

continuity of the restriction ∇ueε of ∇uε in Ωδ \ ωε and to the regularity of ∇ue0 (see Lemma 4.1),

we can ensure:
|∇ueε(y)−∇ueε(yd)| ≤ Cdα,

|∇ue0(y)−∇ue0(yd)| ≤ Cdα;
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hence:

|∇ueε(y)−∇ue0(y)| ≤ |∇ueε(y)−∇ueε(yd)|+ |∇ueε(yd)−∇ue0(yd)|+ |∇ue0(y)−∇ue0(yd)|

≤ Cdα + d−1ε
1
2 .

One may choose d = εβ , β > 0: substituting in the previous inequality, we obtain that |∇ueε(y) −
∇ue0(y)| ≤ Cεσ, being σ = min{αβ, 1

2 − β}. We select d = ε
1

2α+2 , which entails that:

|∇ueε(y)−∇ue0(y)| ≤ Cε
α

2α+2 (4.20)

for every y ∈ ∂ωε \ ω0. Similar arguments allow to conclude that the same inequality holds on

∂ωε ∩ ω0. The proof of the other inequalities is similar, exploiting the interior estimates for wε:

‖wε‖L∞(Ωdr) ≤ Cd
−1‖wε‖L2(Ω) ≤ Cd

−1ε
1
2

(we remark that the result could be improved by considering ε
1
2 +η, but it will not be useful in the

sequel). Moreover, as ueε, u
e
0 ∈ C1+α(Ωδ \ ω0),

|∇ueε(y)−∇ueε(yd)| ≤ Cd

|∇ue0(y)−∇ue0(yd)| ≤ Cd;

hence

‖wε‖L∞(∂ωε\ω0) ≤ C(d+ d−1ε
1
2 ) ≤ Cε 1

4 .

With analogous arguments it is possible to show that the same inequality holds on ∂ωε ∩ ω0.

4.1.3 Asymptotic expansion

The main achievement of this Section is the following asymptotic expansion, which will be a

crucial result for the introduction of a shape-gradient based reconstruction algorithm.

Proposition 4.1. For every g ∈ Lp(∂Ω), p ≥ 2, it holds:∫
∂Ω

g(uε − u0) = ε

∫
∂ω0

{(1− k)[∇τue0 · ∇τwe +
1

k
∇νue0 · ∇νwe] + u3

0w}h+ o(ε), (4.21)

being w the solution of the auxiliary problem:{
−div(k0∇w) + 3χΩ\ω0

u2
0w = 0 in Ω

∂νw = g on ∂Ω.
(4.22)

Proof. We first remark that the results in Lemma 4.1 and Lemma 4.5 can be extended to w.

Exploiting the expression of the auxiliary problem, we write:∫
∂Ω

(uε − u0)g =

∫
Ω

k0∇(uε − u0)w +

∫
Ω

3(1− χ0)u2
0(uε − u0)w =

= −
∫

Ω

(kε − k0)∇uε · ∇w +

∫
Ω

kε∇uε · ∇w −
∫

Ω

k0∇u0 · ∇w

+

∫
Ω

3(1− χ0)u2
0(uε − u0)w.
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Moreover, being 3u2
0(uε − u0) = u3

ε − u3
0 − 3u0(uε − u0)2 − (uε − u0)3,∫

∂Ω

(uε − u0)g = −
∫

Ω

(kε − k0)∇uε · ∇w +

∫
Ω

kε∇uε · ∇w −
∫

Ω

k0∇u0 · ∇w

+

∫
Ω

(1− χ0)(u3
ε − u3

0)w −
∫

Ω

(1− χ0)3u0(uε − u0)2w −
∫

Ω

(1− χ0)(uε − u0)3w.

Thanks to estimate 4.4 and 4.2, we can assess that∫
Ω

(1− χ0)3u0(uε − u0)2w ≤ 3‖u0‖L∞(Ω)‖w‖L∞(Ω)‖uε − u0‖2L2(Ω) = O(ε1+2η) = o(ε)∫
Ω

(1− χ0)(uε − u0)3w ≤
∥∥(uε − u0)3

∥∥
Lp(Ω)

‖w‖Lp′ (Ω) ≤ C‖uε − u0‖3L3p(Ω)

≤ C‖uε − u0‖3H1(Ω) = O(ε
3
2 ) = o(ε).

Exploiting the expression of the state equation,∫
Ω

kε∇uε · ∇w +

∫
Ω

(1− χε)u3
ε =

∫
Ω

fw =

∫
Ω

k0∇u0 · ∇w +

∫
Ω

(1− χ0)u3
0.

Hence, we obtain:∫
∂Ω

(uε − u0)g = −
∫

Ω

(kε − k0)∇uε · ∇w +

∫
Ω

(χε − χ0)(u3
ε)w + o(ε). (4.23)

In order to analyze the right hand side of (4.23), we follow the strategy described in [10]. Since

(kε − k0) = (k − 1)χε\0 + (1− k)χ0\ε, we have:∫
Ω

(kε − k0)∇uε · ∇w =

∫
ε\0

(k − 1)∇uiε · ∇we +

∫
0\ε

(1− k)∇ueε · ∇wi. (4.24)

Consider the first term in (4.24): recalling ∂ω+
0 = ∂ω0 ∩ {h > 0}∫

ε\0
(k − 1)∇uiε·∇we =

(via Lemma 4.1) =

∫ ε

0

∫
∂ω+

0

(k − 1)h∇uiε(xε) · ∇we(xε) +O(ε1+2α)

(via (4.3) =

∫ ε

0

∫
∂ω+

0

(k − 1)h

[
∇τueε(xε) · ∇τwe(xε) +

1

k
∇νueε(xε) · ∇νwe(xε)

]
+ o(ε)

(via Lemma 4.5) =

∫ ε

0

∫
∂ω+

0

(k − 1)h

[
∇τue0(xε) · ∇τwe(xε) +

1

k
∇νue0(xε) · ∇νwe(xε)

]
+O(ε1+ 2α

2α+2 )

(via Lemma 4.1) = ε

∫
∂ω+

0

(k − 1)h

[
∇τue0(x) · ∇τwe(x) +

1

k
∇νue0(x) · ∇νwe(x)

]
+ o(ε).

Through the same computation, one may obtain, for the second term in (4.24):∫
0\ε

(1− k)∇ueε · ∇wi = −
∫ ε

0

∫
∂ω−0

(1− k)h

[
∇τue0(x) · ∇τwe(x) +

1

k
∇νue0(x) · ∇νwe(x)

]
+ o(ε),
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where ∂ω−0 = ∂ω0 ∩ {h < 0}, on which it holds that |h| = −h. Hence, it holds∫
Ω

(kε − k0)∇uε · ∇w =ε

∫
∂ω+

0

(k − 1)h

[
∇τue0(x) · ∇τwe(x) +

1

k
∇νue0(x) · ∇νwe(x)

]
− ε

∫
∂ω−0

(1− k)h

[
∇τue0(x) · ∇τwe(x) +

1

k
∇νue0(x) · ∇νwe(x)

]
+ o(ε)

. =− ε
∫
∂ω0

(1− k)h

[
∇τue0(x) · ∇τwe(x) +

1

k
∇νue0(x) · ∇νwe(x)

]
+ o(ε).

(4.25)

Next, we have to prove a similar result for the second term in the right hand side of (4.23). By an

analogous procedure, we consider:∫
Ω

(χε − χ0)u3
εw =

∫
ε\0

u3
εw −

∫
0\ε

u3
εw. (4.26)

The first term in (4.26) can be rewritten as:∫
ε\0

u3
εw =

(through Lemma 4.1)∗ =

∫ ε

0

∫
∂ω+

0

u3
ε(xε)w(xε)h+O(ε2)

(using Lemma 4.5) =

∫ ε

0

∫
∂ω+

0

u3
0(xε)w(xε)h+O(ε

3
2 )

(again via Lemma 4.1) =ε

∫
∂ω+

0

u3
0(x)w(x)h+ o(ε).

With the same argument we can find a similar expression for the second term in (4.26), where

|h| = −h. Thus, from (4.26) we recover the expression:∫
Ω

(χε − χ0)u3
εw = ε

∫
∂ω0

u3
0(x)w(x)h+ o(ε). (4.27)

Substituting the expressions (4.25) and (4.27) in (4.23) we obtain the thesis.

Remark 4.1. The first term of the asymptotic expansion in the right-hand side of (4.21) can be

rewritten as ∫
∂ω0

{(1− k)M(y)∇ue0(y) · ∇we(y) + u0(y)3w(y)}h(y)dσ(y),

where for each y ∈ ∂ω0 M(y) is a symmetric positive definite matrix with eigenvalues 1 and 1
k

associated respectively to eigenvectors τ(y) and ν(y), the tangent and outward normal unit vectors of

∂ω0 in y. This formula reveals several similarity to the one derived in Chapter 2 for the perturbation

of the boundary voltage when a small inclusion is inserted.

As a corollary of 4.1, we get the following estimate:

Lemma 4.6.

‖uε − u0‖2L2(Ω) = o(ε) (4.28)

∗One should consider that uε(xt) ≤ uε(xε) + Cε ⇒ u3
ε(xt) ≤ u3

ε(xε) +O(ε)
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Proof. Let Wε be the solution of{
−div(k0(x)∇Wε) + 3χΩ\ω0

u2
0Wε = 0 in Ω

∂νWε = uε − u0 on ∂Ω.
(4.29)

Hence, in Ω \ ω0, Wε satisfies

−∆Wε + 3u2
0Wε = 0,

whereas µ = ∇Wε satisfies

−∆µ+ 3u2
0µ = −6Wεu0∇u0.

In both cases, it is possible to use the interior regularity estimates as in the proof of Lemma 4.5 (see

[82], Theorem 8.17): being d > 0 and Ωd = {x ∈ Ω s.t dist(x, ∂(Ω \ ω0)) > d} then

‖Wε‖L∞(Ωd) ≤ Cd
−1‖Wε‖L2(Ω)

‖∇Wε‖L∞(Ωd) ≤ Cd
−1(‖∇Wε‖L2(Ω) + ‖6u0Wε∇u0‖L2(Ω)) ≤ Cd

−1‖Wε‖H1(Ω).

Since Wε is the solution of (4.29), it holds that

‖Wε‖H1(Ω) ≤
1

k
‖uε − u0‖L2(∂Ω) ≤ C‖uε − u0‖H1(Ω) ≤ Cε

1
2 ;

hence, ‖Wε‖L∞(Ωd), ‖∇Wε‖L∞(Ωd) ≤ Cd−1ε
1
2 ∀d > 0. Moreover, exploiting Li-Nirenberg regularity

estimates (see [101], Theorem 1.1), we have (for every δ > 0, being Ωδ = {x ∈ Ω s.t. dist(x, ∂Ω) >

δ})

‖Wε‖C1+α(Ωδ\ω0) ≤ C.

Thus, chosen δ = d and defined, for each y ∈ ∂ω0, yd = arg min dist(y,Ωd),

|Wε(y)| ≤ |Wε(yd)|+ Cd (thanks to Lipschitz-continuity of Wε)

≤ Cd−1ε
1
2 + Cd

and, chosen d = ε
1
4 , one obtains ‖Wε‖L∞(∂ω0) ≤ Cε

1
4 . Instead, by the Hölder-continuity of ∇Wε,

|W e
ε (y)| ≤ |∇Wε(yd)|+ Cdα ≤ Cd−1ε

1
2 + Cdα,

and chosen d = ε
1

2(α+1) , one obtains ‖∇W e
ε ‖L∞(∂ω0) ≤ Cε

α
2(α+1) . Hence, exploiting Proposition 4.1,

‖uε − u0‖2L2(∂Ω) =

∫
∂Ω

(uε − u0)(uε − u0)

= ε

∫
∂ω0

{
(1− k)[∇τue0 · ∇τW e

ε +
1

k
∇νue0 · ∇νW e

ε ] + u3
0Wε

}
h+ o(ε)

= ε(Cε
α

2(α+1) )C̃ + o(ε) (with C̃ = C̃(‖h‖C(∂ω0), ‖u0‖C1+α(Ωd\ω0), |∂ω0|)).
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4.2 A shape-derivative based reconstruction algorithm

In this section we describe how the results previously outlined can be employed in order to formu-

late a reconstruction algorithm for the inverse problem based on techniques from shape optimization.

We start introducing the following cost functional associated with the reconstruction problem:

J(Ωε) =

∫
∂Ω

(uε − umeas)2, (4.30)

where uε is the solution of problem (4.1) with inclusion ωε. We thus consider the constraint opti-

mization problem of finding the minimum of the functional J among the possible deformations of

the initial guess ω0. We remark that, although all the computations are performed on the initial

guess ω0 and on its perturbations ωε, they can be easily replicated on a general domain ω of class

C2, whose boundary is perturbed as in (4.2).

We attain an iterative method for the solution of the optimization problem, which relies on the

definition of the shape derivative of the functional J , defined as:

DJ(Ω0)[h] = lim
ε→0

J(Ωε)− J(Ω0)

ε
. (4.31)

We define the shape gradient as the function ∇SJ(Ω0) which allows to write:

DJ(Ω0)[h] =

∫
∂ω0

∇SJ(Ω0)h ∀h ∈ C2(∂ω0;R). (4.32)

The computation of the shape gradient ∇SJ allows to perform an approximated reconstruction of

the position, size and shape of the inclusion through an iterative algorithm which will be described

in the sequel.

4.2.1 Representation formula for the shape gradient

Taking advantage of Proposition 4.1, we derive a representation formula for the shape gradient,

which allows to easily compute it, circumventing the fact that definition (4.32) is not constructive.

Proposition 4.2. The following representation formula holds for the shape gradient of J evaluated

in Ω0:

∇SJ(Ω0) = (1− k)[∇τue0 · ∇τW e +
1

k
∇νue0 · ∇νW e] + u3

0W (4.33)

being W the solution of the adjoint problem:{
−div(k0(x)∇W ) + χΩ\ω0

u2
0W = 0 in Ω

∂νW = u0 − umeas on ∂Ω.
(4.34)

Proof of Proposition 4.2. It holds that:

J(Ωε)− J(Ω0) =
1

2
‖uε − umeas‖2L2(∂Ω) − ‖u0 − umeas‖2L2(∂Ω)

=
1

2
‖uε‖2L2(∂Ω) −

∫
∂Ω

uεumeas −
1

2
‖u0‖2L2(∂Ω) +

∫
∂Ω

u0umeas

=
1

2
‖uε − u0‖2L2(∂Ω) − ‖u0‖2L2(∂Ω) +

∫
∂Ω

uεu0 −
∫
∂Ω

uεumeas +

∫
∂Ω

u0umeas

=
1

2
‖uε − u0‖2L2(∂Ω) +

∫
∂Ω

(uε − u0)(u0 − umeas).
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The first term of the last summation, thanks to Lemma 4.6, is o(ε), whereas the second term can be

described through formula (4.21) with g = (u0− umeas), which leads to the definition of the adjoint

problem as in (4.34) and ultimately entails the thesis.

Remark 4.2. As it will be outlined in Chapter 5, the minimization problem associated to (4.30)

shows severe stability issues; namely, small perturbations in the boundary data umeas might imply

large deviations in the associated solutions ω. This can be avoided by adding a regularization term

to the functional, penalizing the perimeter of the inclusion to be identified. For a fixed parameter

λ > 0, the expression of the regularized cost functional is the following one:

Jreg(Ωε) =

∫
∂Ω

(uε − umeas)2 + λ|∂ωε|. (4.35)

Under the assumption that the boundary of the inclusion is of class C2, it is possible to obtain a

representation formula analogous to the one in (4.33), taking into account the penalization term:

∇SJreg(Ω0) = (1− k)

(
∇τue0 · ∇τW e +

1

k
∇νue0 · ∇νW e

)
+ u3

0W + λH, (4.36)

where H is the curvature of the boundary ∂ω0. A detailed proof can be found in Section 9.4.3 in

[67].

4.2.2 Algorithm formulation and implementation

Exploiting the representation formula for the shape gradient, it is possible to devise an algorithm

which allows to find a critical point of the cost functional. We focus in particular to the minimi-

zation of Jreg with a fixed regularization parameter λ > 0. Inspired by the concept of minimizing

movements introduced by De Giorgi in [65], we aim at modifying the initial guess of the inclusion

according to the a gradient flow, driven by the expression of the shape gradient. In particular, we

define a sequence of inclusions {ωk} obtained as follows: fix an initial ω0 s.t. ∂ω0 is of class C2 and,

for k ≥ 0, take

hk = −∇SJreg(Ωk);

∂ωk+1 = {y + τkhk(y)νk(y), y ∈ ∂ωk}.
(4.37)

We define a local descent direction for the functional Jreg in a configuration Ωk each scalar field

h : ∂ωk → R such that DJreg(Ωk)[h] ≤ 0: thence, we easily verify that −∇SJreg(Ωk) is a descent

direction. Indeed, inserting h = −∇SJreg(Ωk) in the expression of the shape differential of Jreg,

computed in Ωk (which is analogous to the one for J in Ω0 reported in (4.32)), we get:

DJreg(Ωk)[−∇SJreg(Ωk)] =

∫
∂ωk

−|∇SJreg(Ωk)|2 ≤ 0.

Since we only prescribe that the first-order variation of the cost functional is non-positive, such

a descent direction is only local: by continuity of the functional we can ensure that there exists a

positive τk such that ∀τ ≥ τk, defining Ωk+1 as in (4.37), then Jreg(Ωk+1) ≤ Jreg(Ωk). The following
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backtracking strategy allows to find a suitable value for τk:

Data: Inclusion Ωk, descent direction hk, reference step τ

Result: Ωk+1 such that Jreg(Ωk+1) ≤ Jreg(Ωk); uk+1 associated to Ωk+1

Set τk = α; Jreg(Ω∗) = +∞;

while Jreg(Ω∗) > J(Ωk) do

Reduce the step τk = τk/2 ;

Perturb ∂ω∗ = {y + τkhk(y)νk(y), y ∈ ∂ωk } ;

Compute u∗ solving (4.1) with ω = ω∗ ;

end

Set Ωk+1 = Ω∗.
Algorithm 5: Backtracking strategy

This finally allows to write a complete algorithm for the search of a critical point of the functional

Jreg:

Data: Initial guess for the inclusion ω0, measured boundary data umeas

Result: Ω, the limit of the discrete gradient flow

Set k = 0; convergence criterion= +∞ ;

Compute u0 solving the direct problem (4.1) with ω = ω0;

while convergence criterion ≥ tolerance do

Compute Wk solving (4.34) with ω = ωk;

Select a local descent direction hk as hk = −∇SJreg(Ωk), using (4.36) ;

Backtracking (see Algorithm 5): obtain Ωk+1 and uk+1 ;

end

Set Ω = Ωk+1.
Algorithm 6: Descent algorithm

4.2.3 Numerical results

When implementing Algorithm 6, we resort to a Finite Element scheme for the solution both of

the direct and the adjoint problems, see Chapter 2. In particular, in order to accurately capture the

discontinuous behavior of the gradient across the interface ∂ωk, we aim to include a finite set of points

discretizing the boundary ∂ωk within the vertices of the mesh. This entails some implementation

issues for Algorithm 6: in particular, when computing an updated version of the inclusion ωk+1, we

need to ensure that also the new boundary can be approximated by means of a suitable number of

vertices of the mesh. The strategy we adopt in order to overcome this difficulty is to create a new

mesh at each iteration, considering ∂ωk+1 as an inner boundary.

In this Section, we report some results of the application of the algorithm based on the shape

derivative. In all the simulations reported, the initial guess is a disc centered in the origin with

radius 0.2. As in the case of Chapter 2, we take advantage of Nf = 2 measurements, associated to

the source terms f1(x, y) = x and f2(x, y) = y. The iterative algorithm stops when the following

criterion is fulfilled: ∥∥χωk+1
− χωk

∥∥
L1(Ω)

= |ωk+14ωk| ≤ tol.

The main parameters of this set of simulations are reported in Table 4.1

In Figure 4.1 and 4.2 we show the quality of the reconstruction with the shape gradient algorithm

both in the case of a circular and an elliptical inclusion. The boundary of the exact shape is outlined
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λ τ tol

10−3 10−3 10−6

Table 4.1: Values of the main parameters

in black, whereas in order to illustrate the inclusions ωk in selected iterations we report the contour

plot of their indicator functions.

(a) Initial guess (b) Iteration 10 (c) Iteration 70

(d) Iteration 150 (e) Last iteration, Ntot = 250 (f) Evolution of the cost functional

Figure 4.1: Shape gradient algorithm: result comparison
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(a) Initial guess (b) Iteration 10 (c) Iteration 60

(d) Iteration 170 (e) Last iteration, Ntot = 342 (f) Evolution of the cost functional

Figure 4.2: Shape gradient algorithm: result comparison
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Chapter 5

A phase-field approach for the

identification of arbitrary

inclusions in a semilinear elliptic

boundary value problem

This chapter is devoted to the analysis of the same inverse problem as the one introduced in

Chapter 2, although in a more general framework and with different purposes. We briefly report the

boundary value problem which is the object of study, which is set in Ω ⊂ R2{
−div(kω∇u) + χΩ\ωu

3 = f in Ω

kω∇u · ν = 0 on ∂Ω,
(5.1)

where χΩ\ω is the indicator function of Ω \ ω and

kω(x) =

{
k if x ∈ ω

1 if x ∈ Ω \ ω,

being 0 < k < 1 and f ∈ L2(Ω). The homogeneous Neumann problem (5.1) consists of a semilinear

diffusion-reaction equation with discontinuous coefficients across the interface of an inclusion ω ⊂
Ω, in which the conducting properties are different from the background medium. The value of

the coefficient k is supposed to be known. We refer to the determination of the solution u from

the knowledge of the inclusion ω as the direct problem; whereas the inverse problem consists in

determining the inclusion associated to the measurements umeas on the boundary of Ω. More

precisely, given the measured data umeas on the boundary, we search for ω ⊂ Ω such that the

corresponding solution u of (5.1) satisfies

u|∂Ω = umeas. (5.2)

In Chapter 2 we tackled the same problem by introducing a strong regularization hypothesis, namely

that the size of ω is significantly smaller than the size of the domain Ω. Although this assumption

93
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allowed to obtain both theoretical results and an effective reconstruction algorithm, motivated by

the biological application, we now aim at removing the hypothesis of small size an investigate the

problem of reconstructing arbitrarily large inclusions ω. In Chapter 4, we already developed a

rigorous analysis for the case in which the small-size assumption is removed, but the shape-gradient

based strategy proposed there is only capable of reconstructing inclusions ω which consists in a

smooth deformation of an original shape ω0. Thence, some a priori knowledge is still required

regarding the topology and the regularity of the inclusion to be identified. Conversely, throughout

this chapter, we assume a different approach, which allows to tackle the inverse problem (5.2) with

minimal assumptions on ω.

In order to give a sense of the theoretical and numerical issues related to this approach, it is

useful to recall the results which can be achieved in the context of the inverse conductivity problem,

or Calderón problem, as in Section 1.3. When dealing with the reconstruction of a piecewise constant

coefficient, from [71], [92], [6] and references therein we know that infinitely measurements are needed

to ensure the uniqueness of the solution, as well as its (Lipschitz) dependence from the boundary

data. A finite number of measurements is sufficient to determine uniquely and with Lipschitz stability

the inclusion only introducing additional information either on the shape of the inclusion or on its

size.

Several reconstruction algorithms have been developed for the solution of the inverse conductivity

problem, and it is beyond the purposes of this introduction to provide an exhaustive overview of

the topic. When dealing with the reconstruction of arbitrary inclusions in the linear case, several

variational algorithms are available. A shape-optimization approach, with suitable regularization, is

explored in [97] [87], [2] and [10]; in [88] this approach is coupled with topology optimization; whereas

the level set technique has been applied in [128] and in [44]. Recently, several specific schemes have

been employed to deal with the minimization of misfit functional endowed with a Total-Variation

regularization: along this line, we mention the Levenberg-Marquardt and Landweber algorithms

in [22], the augmented Lagrangian approach in [55] and the regularized level set technique in [53].

Finally, the phase field approach has been explored for the linear inverse conductivity problem e.g.

in [124] and recently in [66].

Concerning inverse problems related to nonlinear PDEs, only a few theoretical results and nu-

merical strategies are available, especially regarding the electrophysiological problem of interest. We

remark that the level-set method has been implemented for the reconstruction of extended inclu-

sions in the nonlinear problem of cardiac electrophysiology (see [112] and [54]), by evaluating the

sensitivity of the cost functional with respect to a selected set of parameters involved in the full

discretization of the shape of the inclusion.

In this chapter, we propose a rigorous reconstruction algorithm of inclusions of arbitrary shape

and position by relying on the minimization of a suitable functional, enhanced with a perimeter

penalization term, and by following a relaxation strategy relying on the phase field approach. The

outline of the chapter is as follows: in Section 5.1 we recall some results regarding the direct pro-

blem, extending them (when necessary) to the case of large inclusions in consideration. In Section

5.2 we introduce an optimization problem related to the inverse problem and analyze the issue of

stability, concluding for the necessity to introduce a suitable regularization term. Section 5.3 is

devoted to the phase-field relaxation, discussing its well-posedness, the Γ-convergence of the relaxed
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functional to the original one, and the derivation of necessary optimality conditions. In Section 5.4

we propose an iterative reconstruction algorithm allowing for the numerical approximation of the

solution and prove its convergence properties. The power of this approach is twofold: on the one

hand, it allows to consider conductivity inclusions of arbitrary shape and position which is the case

of interest for our application and, on the other, it leads to good reconstructions as shown in the

numerical experiments in Section 5.5. Finally, the lasts two Sections are devoted to the compa-

rison between the proposed approach and to two different techniques which can be considered as

alternative approaches. In particular, in Section 5.6 we compare our technique to the shape op-

timization based approach introduced in Chapter 4: after showing that the optimality conditions

derived for the relaxed problem converge to the ones corresponding to the sharp interface case, we

show numerical results obtained by applying both the algorithms on the same benchmark cases. In

Section 5.7, instead, a Lagrangian approach is considered for the optimization problem introduced

in Section 5.2, yielding the introduction of a correlated saddle-point problem which can be tackled

with an Uzawa-type algorithm: a formal expression of such algorithm is reported, and we compare

its effectiveness with the phase-field relaxation strategy.

5.1 Direct problem analysis

In this Section, the analysis of the well-posedness of the direct problem is reported in details, and

consists in an extension of the results previously obtained in [30]. We formulate the boundary value

problem (5.1) in terms of the indicator function of the inclusion, χ = χω. We assume a minimal a

priori hypothesis on the inclusion, namely that it is a subset of Ω of finite perimeter: χ belongs to

BV (Ω) = {v ∈ L1(Ω) : TV (v) <∞}, being

TV (v) = sup

{∫
Ω

vdiv(φ); φ ∈ C1
0 (Ω;R2), ‖φ‖L∞ ≤ 1

}
,

endowed with the norm ‖·‖BV = ‖·‖L1 + TV (·). Moreover, we formulate particular restrictions on

the inclusion and on the source f .

Assumption 2. Given a positive number d0 we assume that

χ ∈ X0,1 = {χ ∈ BV (Ω) : χ(x) ∈ {0, 1} a.e. in Ω , χ = 0 a.e. in Ωd0 }, (5.3)

where Ωd0 = {x s.t. dist(x, ∂Ω) ≤ d0}.

This also entails that the inclusion is well separated from the boundary ∂Ω. Moreover,

Assumption 3. Given a positive constant m, we require

f ≥ m a.e. in Ω. (5.4)

The weak formulation of the direct problem (5.1) in terms of χ reads: find u in H1(Ω) s.t.,

∀ϕ ∈ H1(Ω), ∫
Ω

a(χ)∇u∇ϕ+

∫
Ω

b(χ)u3ϕ =

∫
Ω

fϕ, (5.5)

being a(χ) = 1 − (1 − k)χ and b(χ) = 1 − χ. Define S : X0,1 → H1(Ω) the solution map: for all

χ ∈ X0,1, S(χ) = u is the solution to problem (5.5) with indicator function χ.

Recall the generalized Poincaré inequality:
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Lemma 5.1. ∃C > 0, C = C(Ω, d0) s.t., ∀w ∈ H1(Ω),

‖w‖2H1(Ω) ≤ C
(
‖∇w‖2L2(Ω) + ‖w‖2L2(Ωd0 )

)
. (5.6)

The proof of the Lemma 5.1 is given in the Appendix of [30] and follows by Theorem 8.11 in

[102].

Thanks to Lemma 5.1, we can prove the following well-posedness result for the direct problem.

Proposition 5.1. Consider f ∈
(
H1(Ω)

)∗
and a function χ ∈ X0,1. Then there exists an unique

solution S(χ) ∈ H1(Ω) of∫
Ω

a(χ)∇S(χ) · ∇v +

∫
Ω

b(χ)S(χ)3v =

∫
Ω

fv ∀v ∈ H1(Ω),

where a(χ) = 1− (1− k)χ and b(χ) = 1− χ.

Proof. The proof is analogous to the analysis performed in [30, Theorem 4.1], but generalizes that

result to the case of inclusions of finite perimeter. The strategy consists in applying the Minty-

Browder theorem on the direct operator T : H1(Ω)→
(
H1(Ω)

)∗
s.t.

〈T (S), v〉∗ =

∫
Ω

a(χ)∇S · ∇v +

∫
Ω

b(χ)S3v,

which shows to be continuous, coercive and strictly monotone. In particular

• Local Lipschitz continuity:

|〈T (S)− T (S0), v〉∗| =
∣∣∣∣∫

Ω

a(χ)∇(S − S0) · ∇v +

∫
Ω

b(χ)(S − S0)qv

∣∣∣∣
≤ ‖∇(S − S0)‖L2‖∇v‖L2 + ‖S − S0‖L6‖q‖L3‖v‖L2 ,

(being q = S2 + SS0 + S2
0). If S and S0 belong to a bounded subset of H1(Ω), then (thanks

to the Sobolev Embedding of H1(Ω) in L6(Ω)) we can assess that ‖q‖L3 ≤ M and moreover

∃K = K(χ) > 0 s.t.

|〈T (S)− T (S0), v〉∗| ≤ K‖S − S0‖H1‖v‖H1 ∀v ∈ H1(Ω).

• Coercivity: we show that 〈T (S), S〉∗ → +∞ as ‖S‖H1(Ω) → +∞. Since χ = 0 a.e. in Ωd0 ,

b(χ) ≥ χΩd0 , the indicator function of Ωd0 . Then,

〈T (S), S〉∗ ≥ k
∫

Ω

|∇S|2 +

∫
Ωd0

S4 ≥ k‖∇S‖2L2(Ω) +
1

|Ω|
‖S‖4L2(Ωd0 )

= k
(
‖∇S‖2L2(Ω) + ‖S‖2L2(Ωd0 )

)
+R,

where R = 1
|Ω|‖S‖

4
L2(Ωd0 ) − k‖S‖

2
L2(Ωd0 ) can be bounded by below independently of S: R ≥

−k
2|Ω|
4 . Together with Poincaré inequality in Lemma 5.1, we conclude that

〈T (S), S〉∗ ≥
k

C
‖S‖2H1(Ω) −

k2|Ω|
4

.
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• (Strict) monotonicity: we claim that 〈T (S)−T (R), S−R〉∗ ≥ 0 and 〈T (S)−T (R), S−R〉∗ =

0⇔ S = R. Indeed,

〈T (S)− T (R), S −R〉∗ ≥
∫

Ω

k|∇(S −R)|2 +

∫
Ωd0

(S2 + SR+R2)(S −R)2 ≥ 0.

Moreover, since S2 + SR+R2 ≥ 1
4 (S −R)2,

〈T (S)− T (R), S −R〉∗ = 0⇒ ‖∇(S −R)‖L2(Ω) = 0 and

∫
Ωd0

(S −R)4 = 0,

and from the latter equality it follows that S = R a.e. in Ωd0 , hence also ‖S −R‖L2(Ωd0 ) = 0,

and via Lemma 5.1 ‖S −R‖H1(Ω) = 0.

It is possible to prove additional properties of the solution S(χ) of the direct problem. In

particular, we provide an uniform bound on ‖S(χ)‖H1(Ω) independent of χ.

Proposition 5.2. There exists a constant C = C(Ω, d0, k) s.t., ∀χ ∈ X0,1,

‖S(χ)‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖f‖3L2(Ω)

)
. (5.7)

This can be proved as in [30, Proposition 4.1], where we take advantage of the bound

‖S(χ)‖4L2(Ωd0 ) ≤ |Ω
d0 |
∫

Ωd0

S(χ)4 ≤ |Ω|
∫

Ω

b(χ)S(χ)4,

and hence the constant appearing in (5.7) only depends on Ω, d0, k.

Moreover, we prove a Hölder regularity result on S(χ):

Proposition 5.3. Let S(χ) be the solution of (5.5) associated to χ ∈ X0,1 and let f ∈ L2(Ω). Then,

S(χ) ∈ Cα(Ω̄) and

‖S(χ)‖Cα(Ω̄) ≤ C(Ω, k, ‖f‖L2(Ω), d0).

Proof. The proof is analogous to the one in [30]. An application of [82, Theorem 8.24] ensures that

∀Ω′ ⊂⊂ Ω, ‖S(χ)‖Cα(Ω′) ≤ C
(
‖S(χ)‖L2(Ω) + ‖S(χ)‖3L6(Ω) + ‖f‖L2(Ω)

)
≤ C,

where C = C(Ω′, k, ‖f‖L2(Ω)). By taking Ω′ ⊃ Ωd0 , since the conductivity is constant in Ωd0
and

the normal derivative on the boundary is zero, we can apply standard regularity results up to the

boundary, obtaining:

‖S(χ)‖Cα(Ω) ≤ C = C(Ω, d0, k, ‖f‖L2(Ω)).

Finally, we prove an estimate which occurs many times in the proof of various results.
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Proposition 5.4. Suppose that f ∈ L2(Ω) s.t. f ≥ m > 0 a.e. in Ω. Consider S(χ) the solution

of problem (5.5) associated to χ ∈ X0,1. Then, S(χ) ≥ m1/3.

The proof is an immediate consequence of the following Lemma:

Lemma 5.2. Let S1 and S2 be a sub- and supersolution of (5.5) with χ ∈ X0,1, namely S1, S2 ∈
H1(Ω) s.t., ∀ϕ ∈ H1(Ω), ϕ ≥ 0 a.e., it holds:∫

Ω

a(χ)∇S1 · ∇ϕ+

∫
Ω

b(χ)S3
1ϕ−

∫
Ω

fϕ ≤ 0, (5.8)∫
Ω

a(χ)∇S2 · ∇ϕ+

∫
Ω

b(χ)S3
2ϕ−

∫
Ω

fϕ ≥ 0. (5.9)

Then, S1 ≤ S2 a.e. in Ω.

Proof. Subtract the equations (5.9) - (5.8) and define W = S2 − S1: it holds, ∀ϕ ∈ H1(Ω), ϕ ≥ 0

a.e., ∫
Ω

a(χ)∇W · ∇ϕ+

∫
Ω

b(χ)QWϕ ≥ 0,

where Q = (S2
1 + S1S2 + S2

2) ≥ 0. Take ϕ = W−, the negative part of W . We remark that W+ =

max{0,W}, W− = max{0,−W}, W = W+ − W−; moreover W+,W− ∈ H1(Ω), W+W− = 0,

and in view of [75, Theorem 4.4] we refer to ∇W− as the gradient of the negative part W− or

equivalently as the vector of the negative parts of the components of ∇W . Thus, it holds∫
Ω

a(χ)∇W− · ∇W− +

∫
Ω

b(χ)Q(W−)2 ≤ 0,

which implies that S2 ≥ S1 a.e. Indeed, k‖∇W−‖L2(Ω) ≤ 0 implies ∇W− = 0 a.e. in Ω; moreover,

both S1 and S2 are continuous, and hence also W and W−, which entails W− = c, c ≥ 0 by

definition. In order to guarantee that W− = max{0,−W} = c is continuous, either c = 0 or

W = −c < 0 in Ω. The latter case, though, would imply that S2 = S1 − c and, by simple

computation, Q = 3S2
1 − 3cS1 + c2 ≥ c2

4 , which is incompatible with
∫

Ω
b(χ)Q(W−)2 ≤ 0. Hence

W− = 0, and so W = W+ ≥ 0.

Proof of Proposition 5.4. Taking S2 = S(χ) and S1 = m1/3 (which is a subsolution since b(χ)m−f ≤
0), we obtain the uniform bound S(χ) ≥ m1/3.

Remark 5.1. We could extend all the previous results to a class of more general functions f , namely

f not vanishing in Ωd0 , but that would entail that the lower bound in Proposition 5.4 might depend

on χ. On the other hand, when applying the previous estimates in the proofs of following results (in

particular, Proposition 5.5, 5.14, 5.19 and Lemma 5.3), we always invoke Proposition 5.4 on a fixed

indicator function χ.

Another crucial property satisfied by the solution map S is the continuity with respect to the L1

norm, which requires an accurate treatment due to the nonlinearity of the direct problem.

Proposition 5.5. Let f ∈ L2(Ω) satisfy assumption (5.4). If {χn} ⊂ X0,1 s.t. χn
L1

−−→ χ ∈ X0,1,

then S(χn)|∂Ω
L2(∂Ω)−−−−−→ S(χ)|∂Ω.
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Proof. Define wn = S(χn)−S(χ); then, subtracting (5.5) evaluated at χn and the same one evaluated

at χ, wn is the solution of:∫
Ω

a(χn)∇wn∇ϕ+

∫
Ω

b(χn)qnwnϕ =

∫
Ω

(1− k)(χn − χ)∇S(χ)∇ϕ−
∫

Ω

(χn − χ)S(χ)3ϕ, (5.10)

where qn = S(χn)2 +S(χn)S(χ)+S(χ)2. Considering ϕ = wn and taking advantage of the fact that

a(χn) ≥ k and (by simple computation) qn ≥ 3
4S(χ)2, we can show, via Cauchy-Schwarz inequality,

that

k‖∇wn‖2L2(Ω) +
3

4

∫
Ω

b(χn)S(χ)2w2
n ≤(1− k)‖(χn − χ)∇S(χ)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(χn − χ)S(χ)3

∥∥
L2(Ω)

‖wn‖L2(Ω).

We remark that (χ : n−χ)S(χ)3 ∈ L2(Ω) since S(χ) ∈ H1(Ω) ⊂⊂ L6(Ω). Moreover, as b(χn) ≥ χΩd0

and using Proposition 5.4,

k‖∇wn‖2L2(Ω) +
3

4

∫
Ωd0

m2/3w2
n ≤(1− k)‖(χn − χ)∇S(χ)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(χn − χ)S(χ)3

∥∥
L2(Ω)

‖wn‖L2(Ω),

from which we deduce

k‖∇wn‖2L2(Ω) +
3

4
m2/3‖wn‖2L2(Ωd0 ) ≤ (q1 + q2)‖wn‖H1(Ω),

where q1 = ‖(χn − χ)∇S(χ)‖L2(Ω) and q2 =
∥∥(χn − χ)S(χ)3

∥∥
L2(Ω)

, which implies, thanks to the

Poincaré inequality in Lemma 5.1,

‖wn‖H1(Ω) ≤ C(q1 + q2),

being C = C(d0,Ω,m, k). Consider

q1 =

(∫
Ω

(χn − χ)2|∇S(χ)|2
) 1

2

;

since χn
L1

−−→ χ, then (up to a subsequence) χn → χ pointwise almost everywhere. Thus also the

integrand (χn−χ)2|∇S(χ)|2 converges to 0. Moreover, |χn−χ| ≤ 1, hence ∀n (χn−χ)2|∇S(χ)|2 ≤
|∇S(χ)|2 ∈ L1(Ω), and thanks to Lebesgue convergence theorem, we conclude that q1 → 0. Analo-

gously, q2 → 0 and eventually ‖wn‖H1(Ω) → 0, i.e. S(χn)
H1

−−→ S(χ) and by the trace inequality also

S(χn)|∂Ω
L2(∂Ω)−−−−−→ S(χ)|∂Ω.

Remark 5.2. Being X0,1 a closed subspace of the Banach space BV (Ω), it is compact with respect

to its weak topology; moreover, the weak BV convergence implies the strong L1 convergence, and

in view of Proposition 5.5 we can assess that the map F = τ ◦ S, τ being the trace operator in

H1(Ω), is compact from X0,1 to L2(∂Ω). It is immediate to conclude that, if the inverse F−1 exists,

it cannot be continuous: hence, the inverse problem (5.11) is ill-posed.

For example, consider the inclusions ω = B1(0) = {(r, ϑ) : 0 ≤ ϑ ≤ 2π, 0 ≤ r ≤ 1} and ωn = {(r, ϑ) :
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0 ≤ ϑ ≤ 2π, 0 ≤ r ≤ 1 + 1
nsin(nϑ)} and define χ = χω, χn = χωn . Then, it holds that χn

L1

−−→ χ,

and hence S(χn)
H1

−−→ S(χ) and S(χn)|∂Ω
L2(∂Ω)−−−−−→ S(χ)|∂Ω, but χn

BV9 χ. Indeed,

‖χn − χ‖L1(Ω) =

∫ 2π

0

∫ 1+ 1
n |sin(nϑ)|

1

ρdρdθ =

∫ 2π

0

(
1

2n2
sin2(nϑ) +

1

n
|sin(nϑ)|

)
dθ

=
π

2n2
+

4

n
→ 0 as n→ +∞,

whereas

TV (χn) = P (ωn) =

∫ 2π

0

√
1 + cos2(nϑ)dϑ =

√
2

∫ 2π

0

√
1− 1

2
sin2(nϑ)dϑ

= 2π
√

2

(
1

2π

∫ 2π

0

√
1− 1

2
sin2t

)
dt→ 2π

√
2

1

2π

∫ 2π

0

√
1− 1

2
sin2tdt =

√
2E

(
2π,

1

2

)
,

where E
(
2π, 1

2

)
is an elliptic integral of second kind and

√
2E
(
2π, 1

2

)
6= 2π = TV (χ), hence surely

χn
BV9 χ.

5.2 Optimization problem and its regularization

When reformulated in terms of the indicator function χ, the inverse problem (5.2) becomes:

find χ ∈ X0,1 s.t. S(χ)|∂Ω = umeas. (5.11)

We now introduce the following constraint optimization problem:

arg min
χ∈X0,1

J(χ); J(χ) =
1

2
‖S(χ)− umeas‖2L2(∂Ω), (5.12)

which shares the same property of non-stability and (possibly) non-uniqueness as problem (5.11).

Nevertheless, a well-known strategy to recover well-posedness for problem (5.12) is available and con-

sists in introducing a Tikhonov regularization term in the functional to minimize, e.g. a penalization

term for the perimeter of the inclusion. The regularized problem reads:

arg min
χ∈X0,1

Jreg(χ); Jreg(χ) =
1

2
‖S(χ)− umeas‖2L2(∂Ω) + αTV (χ), (5.13)

For the regularized problem (5.13), it is possible to prove several desirable properties:

• for every α > 0 there exists at least one solution to (5.13) (existence);

• small perturbations on the data umeas in L2(∂Ω)-norm imply small perturbation on the solu-

tions of (5.13) in BV -intermediate convergence (stability);

• the sequence of solutions of problem (5.13) associated to the regularization parameters {αk}
(s.t. αk → 0) converges in the BV -intermediate convergence to a minimum-variation solution

of problem (5.12).
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We recall that a sequence {χn} ⊂ BV (Ω) converges to χ ∈ BV (Ω) in the sense of the intermediate

convergence iff χn
L1

−−→ χ and TV (χn)→ TV (χ). The proof of the previous properties follows from a

careful application of the results in [72, Chapter 10]. Since BV (Ω) is a non-reflexive Banach space,

we believe it is useful to report a detailed version of such proofs.

Proposition 5.6. For every α > 0 there exists a solution of (5.13)

Proof. Let {χn} be a minimizing sequence: then {S(χn)|∂Ω} is bounded in L2(∂Ω) and {χn} is

bounded in BV (Ω) (since {TV (χn)} is bounded and ‖χn‖L1(Ω) ≤ |Ω| for all χn ∈ X0,1). Thanks to

the result of compactness for the BV space (see [9], Theorem 3.23), there exists a subsequence χnk
weakly converging to an element χ̄ ∈ BV (Ω). Moreover, being D(S) weakly closed, χ̄ ∈ D(S). Since

the weak BV−convergence implies the L1−convergence, thanks to Proposition 5.5 we can assess that

S(χnk) → S(χ̄) in H1(Ω) and in L2(∂Ω). Eventually, this proves that ‖S(χnk)− umeas‖L2(∂Ω) →
‖S(χ)− umeas‖L2(∂Ω). Analogously, by semi-continuity of the total variation with respect to the

weak convergence in BV, TV (χ̄) ≤ lim infk TV (χnk), and it is possible to conclude that

1

2
‖S(χ)− umeas‖2L2(∂Ω) + αTV (χ) ≤ lim inf

k
(
1

2
‖S(χnk)− umeas‖2L2(∂Ω) + αTV (χnk)),

thus χ is a minimum of the functional.

Even if the existence of the solution is ensured by the previous result, uniqueness cannot be

guaranteed since the functional is neither linear nor convex (in general). We now investigate the

stability of the minimizer of the regularized cost functional with respect to small perturbations of

the boundary data. We point out that, due to the non-reflexivity of the Banach space BV , it is not

possible to formulate a stability result with respect to the strong BV convergence; nevertheless, we

can perform the analysis with respect to the intermediate convergence of BV functions.

Proposition 5.7. Fix α > 0 and consider a sequence {uk} ⊂ L2(∂Ω) such that uk → umeas in

L2(∂Ω). Consider the sequence {χk}, where χk is a solution of (5.13) with datum uk. Then there

exists a subsequence {χkn} which converges to a minimizer χ̄ of (5.13) with datum umeas in the

sense of the intermediate convergence.

Proof. For every χk, we have that

1

2
‖S(χk)− uk‖2L2(∂Ω) + αTV (χk) ≤ 1

2
‖S(χ)− uk‖2L2(∂Ω) + αTV (χ) ∀χ ∈ D(S).

Hence, {‖S(χk)‖L2(∂Ω)} and {TV (χk)} (and therefore {‖χk‖BV (Ω)}) are bounded, and there exists

a subsequence {χkn} such that both χkn ⇀ χ̄ in BV (Ω) and S(χkn)→ S(χ̄) in L2(∂Ω). Thanks to

the continuity of the map S with respect to the convergence (in L1) of χkn and to the weak lower

semi-continuity of the BV (Ω) norm,

1

2
‖S(χ̄)− umeas‖2L2(∂Ω) + αTV (χ̄) ≤ lim inf

n

(
1

2
‖S(χkn)− ukn‖

2
L2(∂Ω) + αTV (χkn)

)
≤ lim

n

(
1

2
‖S(χ)− ukn‖

2
L2(∂Ω) + αTV (χ)

)
∀χ ∈ D(S)

=
1

2
‖S(χ)− umeas‖2L2(∂Ω) + αTV (χ) ∀χ ∈ D(S).

(5.14)
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Hence, χ̄ is a solution of problem (5.13). In order to prove that also TV (χkn) → TV (χ̄), first

consider that, according to (5.14),

Jreg(χ̄) ≤ lim inf
n

(
1

2
‖S(χkn)− ukn‖

2
L2(∂Ω) + αTV (χkn)

)
≤ lim

n

(
1

2
‖S(χkn)− ukn‖

2
L2(∂Ω) + αTV (χkn)

)
= Jreg(χ̄),

hence

lim
n

(
1

2
‖S(χkn)− unk‖

2
L2(∂Ω) + αTV (χkn)

)
=

1

2
‖S(χ̄)− umeas‖2L2(∂Ω) + αTV (χ̄).

In addition, thanks to the continuity of S, the first term in the sum admits a limit, i.e.:

lim
n

1

2
‖S(χkn)− ukn‖

2
L2(∂Ω) =

1

2
‖S(χ̄)− umeas‖2L2(∂Ω),

which eventually implies that also TV (χkn)→ TV (χ̄).

We finally state and prove the following result regarding asymptotic behavior of the minimum

of Jreg when α→ 0.

Proposition 5.8. Consider a sequence {αk} s.t. αk → 0, and define the sequence {χk} of the

solutions of (5.13) with the same datum umeas but different weights αk. Suppose there exists (at

least) one solution of the inverse problem (5.11). Then, {χk} admits a convergent subsequence with

respect to the L1(Ω) norm and the limit χ is a minimum-variation solution of the inverse problem,

i.e. S(χ)|∂Ω = umeas and TV (χ) ≤ TV (ũ) ∀χ̃ s.t. S(χ̃)|∂Ω = umeas.

Proof. Let χ† be a solution of the inverse problem. By definition of χk,

1

2
‖S(χk)− umeas‖2L2(∂Ω) + αkTV (χk) ≤ 1

2

∥∥S(χ†)− umeas
∥∥2

L2(∂Ω)
+ αkTV (χ†) = αkTV (χ†).

Hence, {TV (χk)} is bounded, and since ‖χk‖L1(Ω) ≤ |Ω|, χk is also bounded in BV (Ω) and there

exists a subsequence (still denoted as χk) and χ ∈ X0,1 s.t. χk
BV−−⇀ χ. Moreover, it holds

‖S(χk)|∂Ω − umeas‖L2(∂Ω) → 0, which implies that χ is a solution of the inverse problem (5.11),

and

TV (χk) ≤ TV (χ†) ⇒ lim sup
k

TV (χk) ≤ TV (χ†).

The lower semicontinuity of the BV norm with respect to the weak convergence, together with the

continuity of the L1 norm, implies that

TV (χ) ≤ lim inf
k

TV (χk) ≤ lim sup
k

TV (χk) ≤ TV (χ†)

for each solution χ† of the inverse problem, which eventually implies that χ is a minimum-variation

solution.

Notice that, if the minimum-variation solution of problem (5.12) is unique, then the sequence

{χk} converges to it.

The latter result can be improved by considering small perturbation of the data. By similar

arguments as in proof of Proposition 5.8, one can prove the following
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Proposition 5.9. Let uδ ∈ L2(∂Ω) s.t.
∥∥uδ − umeas∥∥L2(∂Ω)

≤ δ and let α(δ) be such that α(δ)→ 0

and δ2

α(δ) → 0 as δ → 0. Suppose there exists at least one solution of the inverse problem (5.11).

Then, every sequence {χδkαk}, with δk → 0, αk = α(δk) and χδkαk solution of (5.13) corresponding

to αk and uδk , has a converging subsequence with respect to the L1(Ω) norm. The limit χ of every

convergent subsequence is a minimum-variation solution of the inverse problem.

Proof. Consider a solution χ† of the inverse problem. By definition of χδkαk ,

1

2

∥∥S(χδkαk)− uδk
∥∥2

L2(∂Ω)
+ αkTV (χδkαk) ≤ 1

2

∥∥S(χ†)− uδk
∥∥2

L2(∂Ω)
+ αkTV (χ†) ≤ δ2

k + αkTV (χ†)

(5.15)

In particular,

TV (χδkαk) ≤ δ2
k

αk
+ TV (χ†), (5.16)

hence {χδkαk} is bounded in BV (Ω) and admits a subsequence (denoted by the same index k) such

that ∃χ ∈ X0,1: χδkαk
BV−−⇀ χ. Passing to the limit in (5.15) as k → +∞,∥∥S(χδkαk)− uδk

∥∥2

L2(∂Ω)
→ 0,

hence also ∥∥S(χδkαk)− umeas
∥∥2

L2(∂Ω)
≤
∥∥S(χδkαk)− uδk

∥∥2

L2(∂Ω)
+
∥∥uδk − umeas∥∥2

L2(∂Ω)
→ 0

and by continuity of the solution map, we have that S(χ)|∂Ω = umeas, which implies that χ is

a solution of the inverse problem. By lower semi continuity of the BV norm (hence of the total

variation) with respect the weak convergence and from inequality (5.16),

TV (χ) ≤ lim inf
k

TV (χδkαk) ≤ lim sup
k

TV (χδkαk) ≤ TV (χ†),

which allows to conclude that χ is also a minimum-variation solution of the inverse problem.

5.3 Relaxation: a phase-field approach

According to the results of the previous Section, a good approximation of a minimum-variation

solution of the inverse problem (5.11) can be achieved by solving the regularized constraint mini-

mization problem (5.13) with a sufficiently small parameter α > 0. Although the stability of the

problem is guaranteed, its numerical solution may raise difficulties, namely the non-convexity both

of the functional Jreg and of the space X0,1, as well as the non-differentiability of the functional. To

overcome these difficulties, in this Section we propose a phase-field relaxation of the optimization

problem (5.13) inspired by [66], with the additional difficulty of the nonlinearity of the direct pro-

blem. The relaxation strategy consists in defining a minimization problem in a space of more regular

functions, associated to a differentiable cost functional (which in our case is achieved by replacing the

Total Variation term with a Modica-Mortola functional, representing a Ginzburg-Landau energy).

Consider χ ∈ K = {χ ∈ H1(Ω) : 0 ≤ χ ≤ 1 a.e. in Ω, χ = 0 a.e. in Ωd0} and, for every ε > 0,

introduce the optimization problem:

arg min
χ∈K

Jε(χ); Jε(χ) =
1

2
‖S(χ)− umeas‖2L2(∂Ω) + α

∫
Ω

(
ε|∇χ|2 +

1

ε
χ(1− χ)

)
. (5.17)
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The well-posedness result for the direct problem in Proposition 5.1, together with the additional

stability and regularity results can be easily extended to the case χ ∈ K. In the next two propositions,

we prove existence and stability of the solutions of the relaxed minimization problem (5.17) for fixed

ε.

Proposition 5.10. For every fixed ε > 0, the minimization problem (5.17) has a solution χε ∈ K.

Proof. Fix ε > 0 and consider a minimizing sequence for the functional Jε, {χk} ⊂ K (we omit

the dependence of χk on ε). By definition of minimizing sequence, Jε(χk) ≤ M independently of

k, which implies that also ‖∇χk‖2L2(Ω) is bounded. Moreover, being χk ∈ K, 0 ≤ χk ≤ 1 a.e., thus

‖χk‖L2(Ω) and ‖χk‖H1(Ω) are bounded independently of k. Thanks to weak compactness of H1,

there exist χε ∈ H1(Ω) and a subsequence {χkn} s.t. χkn
H1

−−⇀ χε, hence χkn
L2

−−→ χε. The strong

L2 convergence implies (up to a subsequence) pointwise convergence a.e., which allows to conclude

(together with the Lebesgue’s dominated convergence theorem, since χkn(1− χkn) ≤ 1/2) that∫
Ω

χkn(1− χkn)→
∫

Ω

χε(1− χε).

Moreover, by the lower semicontinuity of the H1 norm with respect to the weak convergence, and

by the compact embedding in L2,

‖χε‖2H1(Ω) ≤ lim inf
n
‖χkn‖

2
H1(Ω)

‖χε‖2L2(Ω) + ‖∇χε‖2L2(Ω) ≤ lim
n
‖χkn‖

2
L2(Ω) + lim inf

n
‖∇χkn‖

2
L2(Ω)

‖∇χε‖2L2(Ω) ≤ lim inf
n
‖∇χkn‖

2
L2(Ω).

Moreover, using the continuity of the solution map S with respect to the L1 convergence, we can

conclude that

Jε(χε) ≤ lim inf
n

Jε(χkn).

Finally, by pointwise convergence, 0 ≤ χε ≤ 1 a.e. and χε = 0 a.e. in Ωd0 , hence χε is a minimum

of Jε in K.

Proposition 5.11. Fix α, ε > 0 and consider a sequence {uk} ⊂ L2(∂Ω) such that uk
L2(∂Ω)−−−−−→ umeas.

For each k, let χkε be a solution of (5.17), where umeas is replaced by uk. Then, up to a subsequence,

χkε
H1

−−→ χε, where χε is a solution of (5.17).

Proof. Consider a solution χ∗ of (5.17): by definition of χkε , it holds

1

2

∥∥S(χkε)− uk
∥∥2

L2(∂Ω)
+ αε

∥∥∇χkε∥∥2

L2(Ω)
+
α

ε

∫
Ω

χkε(1− χkε)

≤ 1

2

∥∥S(χ∗)− uk
∥∥2

L2(∂Ω)
+ αε‖∇χ∗‖2L2(Ω) +

α

ε

∫
Ω

χ∗(1− χ∗)

≤ 1

2

∥∥umeas − uk∥∥2

L2(∂Ω)
+

1

2
Jε(χ

∗).

Hence
∥∥∇χkε∥∥L2(Ω)

is bounded independently of k, and so is
∥∥χkε∥∥L2(Ω)

(since χkε ∈ K). This implies

that, up to a subsequence, χkε
H1

−−⇀ χε ∈ H1(Ω), from which it follows that χkε
L2

−−→ χε and in
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particular S(χkε)
H1

−−→ S(χε) (thanks to Proposition 5.5) and χkε → χε almost everywhere in Ω,

and by Lebesgue’s convergence theorem also
∫

Ω
χkε(1 − χkε) →

∫
Ω
χε(1 − χε). Finally, by lower

semi-continuity of the H1 norm with respect to the weak convergence, we conclude that

Jε(χε) ≤ lim inf
k

(
1

2

∥∥S(χkε)− uk
∥∥2

L2(∂Ω)
+ αε

∥∥∇χkε∥∥2

L2(Ω)
+
α

ε

∫
Ω

χkε(1− χkε)

)
≤ Jε(χ∗) +

1

2
lim
k

∥∥umeas − χk∥∥2

L2(∂Ω)
,

hence Jε(χε) = Jε(χ
∗) and χε is a solution of (5.17). Moreover, this implies that ‖∇χε‖L2(Ω) =

limk

∥∥∇χkε∥∥L2(Ω)
; and since H1 is an Hilbert space, together with the weak convergence, this implies

that χkε
H1

−−→ χε.

The asymptotic behavior of the phase-field relaxation when ε → 0 is reported in the next two

propositions and is related to the notion of Γ-convergence.

Proposition 5.12. Consider the space X of the Lebesgue-measurable functions over Ω endowed

with the L1(Ω) norm and the following extension of the cost functionals on X

J̃(χ) =

{
Jreg(χ) if χ ∈ X0,1

∞ otherwise,
J̃ε(χ) =

{
Jε(χ) if χ ∈ K

∞ otherwise.

Then, the functionals J̃εk associated to {εk} s.t. εk → 0 converge to J̃ in X in the sense of the

Γ−convergence.

We proceed as in [66, Theorem 2.2]. After decomposing the cost functionals J̃ε(χ) = G(χ)+Fε(χ)

and J̃(χ) = G(χ) + F (χ), being G(χ) = 1
2‖S(χ)− umeas‖2L2(Ω), the main task is to prove that

Fε
Γ−→ F in X, which is done in [66, Theorem 6.1].

Finally, from the compactness result in [23, Proposition 4.1] and applying the definition of Γ-

convergence, it is easy to prove the following convergence result for the solutions of (5.17).

Proposition 5.13. Consider a sequence {εk} s.t. εk → 0 and let {χεk} be the sequence of the

respective minimizers of the functionals {Jεk}. Then, there exists a subsequence, still denoted as

{εk} and a function χ ∈ X0,1 such that χεk → χ in L1 and u is a solution of (5.13).

Proof. Thanks to the compactness result exposed in Proposition 4.1 in [23], it is possible to extract

a subsequence (still denoted as {εk}) s.t. χεk
L1

−−→ χ ∈ X. Thanks to the definition of the Γ

convergence, it easy to prove that χ is a minimum of the sharp functional J̃ : indeed, consider a

generic ξ ∈ X; then by the Γ convergence,

∃{ξk} ⊂ X s.t. ξk
L1

−−→ ξ and lim
n
J̃εk(ξk) = J̃(ξ).

For each k, by definition of the minimizers χεk , J̃εk(χεk) ≤ J̃εk(ξk), and passing to the limit, again

by definition of Γ convergence,

J̃(χ) ≤ lim inf
k

J̃εk(χεk) ≤ lim
k
J̃εk(ξk) = J̃(ξ),

and since this holds for each ξ ∈ X, we conclude that the limit χ is a minimizer of J̃ . Moreover,

clearly J̃(χ) <∞, hence χ ∈ X0,1 and is indeed a solution of the optimization problem (5.13).
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5.3.1 Optimality conditions

We can now provide an expression for the optimality condition associated with the minimization

problem (5.17), which is formulated as a variational inequality involving the Fréchet derivative of

Jε.

Proposition 5.14. Consider the solution map S : K → H1(Ω) and let f ∈ L2(Ω) satisfy assumption

(5.4): for every ε > 0, the operators S and Jε are Fréchet-differentiable on K ⊂ L∞(Ω) ∩ H1(Ω)

and a minimizer χε of Jε satisfies the variational inequality:

J ′ε(χε)[ξ − χε] ≥ 0 ∀ξ ∈ K, (5.18)

being

J ′ε(χ)[ϑ] =

∫
Ω

(1− k)ϑ∇S(χ) · ∇p+

∫
Ω

ϑS(χ)3p+ 2αε

∫
Ω

∇χ · ∇ϑ+
α

ε

∫
Ω

(1− 2χ)ϑ; (5.19)

where ϑ ∈ K − χ = {ξ s.t. χ+ ξ ∈ K} and p is the solution of the adjoint problem:∫
Ω

a(χ)∇p · ∇ψ +

∫
Ω

3b(χ)S(χ)2pψ =

∫
∂Ω

(S(χ)− umeas)ψ ∀ψ ∈ H1(Ω). (5.20)

Proof. First of all we need to prove that S is Fréchet differentiable in L∞(Ω): in particular, we claim

that for ϑ ∈ L∞(Ω) ∩ (K − χ) it holds that S′(χ)[ϑ] = S∗, where S∗ is the solution in H1(Ω) of∫
Ω

a(χ)∇S∗∇ϕ+

∫
Ω

b(χ)3S(χ)2S∗ϕ =

∫
Ω

(1− k)ϑ∇S∇ϕ+

∫
Ω

ϑS(χ)3ϕ ∀ϕ ∈ H1(Ω), (5.21)

namely, that

‖S(χ+ ϑ)− S(χ)− S∗‖H1(Ω) = o(‖ϑ‖L∞(Ω)). (5.22)

First we show that if ϑ ∈ L∞(Ω) ∩ (K − χ), then ‖S(χ+ ϑ)− S(χ)‖H1(Ω) ≤ C‖ϑ‖L∞(Ω). Indeed,

the difference w = S(χ+ ϑ)− S(χ) satisfies∫
Ω

a(χ+ ϑ)∇w∇ϕ+

∫
Ω

b(χ+ ϑ)qwϕ =−
∫

Ω

(a(χ+ ϑ)− a(χ))∇S(χ)∇ϕ

−
∫

Ω

(b(χ+ ϑ)− b(χ))S(χ)3ϕ ∀ϕ ∈ H1(Ω),

(5.23)

with q = S(χ + ϑ)2 + S(χ)S(χ + ϑ) + S(χ)2. Substituting a(χ + ϑ) − a(χ) = −(1 − k)ϑ and

b(χ+ ϑ)− b(χ) = −ϑ, and taking ϕ = w in (5.23), as in the proof of Proposition 5.5, we obtain

k‖∇w‖2L2 +
3

4

∫
Ω

b(χ+ ϑ)S(χ)2w2 ≤ ‖ϑ‖L∞‖∇S(χ)‖L2‖∇w‖L2 +
∥∥S(χ)3

∥∥
L2‖w‖L2‖ϑ‖L∞

and again by Proposition 5.4

k‖∇w‖2L2 +
3

4
m2/3‖w‖2L2(Ωd0 ) ≤‖ϑ‖L∞‖∇S(χ)‖L2‖∇w‖L2 + ‖ϑ‖L∞

∥∥S(χ)3
∥∥
L2‖w‖L2 .

By (5.6) and the Sobolev inequality, eventually

‖w‖2H1(Ω) ≤ C‖S(χ)‖H1(Ω)‖w‖H1(Ω)‖ϑ‖L∞ ,
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hence ‖S(χ+ ϑ)− S(χ)‖H1(Ω) = O(‖ϑ‖L∞(Ω)).

Take now (5.23) and subtract (5.21). Define r = S(χ+ ϑ)− S(χ)− S∗: it holds that∫
Ω

a(χ)∇r∇ϕ+

∫
Ω

b(χ)3S(χ)2rϕ =

∫
Ω

(a(χ+ ϑ)− a(χ))∇w · ∇ϕ

+

∫
Ω

(b(χ+ ϑ)q − 3b(χ)S(χ)2)wϕ ∀ϕ ∈ H1(Ω).

The second integral in the latter sum can be split as follows:∫
Ω

(b(χ+ ϑ)q − 3b(χ)S(χ)2)wϕ =

∫
Ω

(b(χ+ ϑ)− b(χ))qwϕ+

∫
Ω

(q − 3S(χ)2)b(χ)wϕ,

and in particular q−3S(χ)2 = S(χ+ϑ)2+S(χ+ϑ)S(χ)−2S(χ)2 = hw, where h = S(χ+ϑ)+2S(χ) ∈
H1(Ω). Hence, chosen ϕ = r and exploiting again Proposition 5.4, the Poincaré inequality in Lemma

5.1 and the Hölder inequality:

1

C
‖r‖2H1 ≤k‖∇r‖2L2 +m2/3‖r‖L2(Ωd0 ) ≤ (1− k)‖ϑ‖L∞‖∇w‖L2‖∇r‖L2

+ ‖ϑ‖L∞‖q‖L4‖w‖L2‖r‖L4 + ‖h‖L4‖w‖2L4‖r‖L4

≤
(

(1− k)‖ϑ‖L∞‖w‖H1 + ‖q‖H1‖ϑ‖L∞‖w‖H1 + ‖h‖H1‖w‖2H1

)
‖r‖H1 .

It follows eventually that ‖r‖H1(Ω) ≤ C‖ϑ‖
2
L∞ = o(‖ϑ‖L∞), which guarantees that S∗ = S′(χ)[ϑ].

The last step is to provide an expression of the Fréchet derivative of Jε. Exploiting the fact that

S is differentiable, we can compute the expression of J ′ε(χ) through the chain rule:

J ′ε(χ)[ϑ] =

∫
∂Ω

(S(χ)− umeas)S′(χ)[ϑ] + α

∫
Ω

(
2ε∇χ∇ϑ+

1

ε
(1− 2χ)ϑ

)
. (5.24)

Finally, thanks to the expression of the adjoint problem,∫
∂Ω

(S(χ)− umeas)S′(χ)[ϑ] =

∫
∂Ω

(S(χ)− umeas)S∗ =

∫
Ω

a(χ)∇p · ∇S∗ +

∫
Ω

3S(χ)2pS∗ =

(by definition of S∗) =

∫
Ω

(1− k)ϑ∇S(χ) · ∇p+

∫
Ω

ϑS(χ)3p,

and hence:

J ′ε(χ)[ϑ] =

∫
Ω

(1− k)ϑ∇S(χ) · ∇p+

∫
Ω

ϑS(χ)3p+ α

∫
Ω

(
2ε∇χ · ∇ϑ+

1

ε
(1− 2χ)ϑ

)
.

Finally, it is a standard argument that, being Jε a continuous and Frechét differentiable functional

on a convex subset K of the Banach space H1(Ω), the optimality conditions for the optimization

problem (5.17) are expressed by the variational inequality (5.18).

5.4 Discrete framework and reconstruction algorithm

For a fixed ε > 0, we now introduce a Finite Element formulation of problem (5.17) in order to

define a numerical reconstruction algorithm and compute an approximated solution of the inverse

problem.
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In what follows, we consider Ω to be polygonal, in order to avoid a discretization error involving

the geometry of the domain. Let Th be a shape regular triangulation of Ω and define Vh ⊂ H1(Ω):

Vh = {vh ∈ C(Ω̄), vh|K ∈ P1(K) ∀K ∈ Th}; Kh = Vh ∩ K.

For every fixed h > 0, we define the solution map Sh : K → Vh, where Sh(χ) solves∫
Ω

a(χ)∇Sh(χ)∇vh +

∫
Ω

b(χ)Sh(χ)3vh =

∫
Ω

fvh ∀vh ∈ Vh.

5.4.1 Convergence analysis as h→ 0

The present section is devoted to the numerical analysis of the discretized problem: the con-

vergence of the approximated solution of the direct problem is studied, taking into account the

difficulties implied by the nonlinear term. Moreover, the existence and convergence of minimizers of

the discrete cost functional is analyzed. The following result, which is preliminary for the proof of

the convergence of the approximated solutions to the exact one, can be proved by resorting to the

techniques of [57, Theorem 2.1].

Lemma 5.3. Let f ∈ L2(Ω) satisfy assumption (5.4); then, for every χ ∈ K, Sh(χ)→ S(χ) strongly

in H1(Ω).

Proof. As in the proof of Proposition 5.1, for a fixed χ ∈ K we define the operator T : H1(Ω) →
(H1(Ω))∗ such that

〈T (u), ϕ〉 =

∫
Ω

a(χ)∇u∇ϕ+

∫
Ω

b(χ)u3ϕ;

then uh = Sh(χ) and u = S(χ) are respectively the solutions of the equations

〈T (uh), ϕh〉 =

∫
Ω

fϕh ∀ϕh ∈ Vh; 〈T (u), ϕ〉 =

∫
Ω

fϕ ∀ϕ ∈ H1(Ω). (5.25)

The ellipticity of the operator T follows by Lemma 5.1 and Proposition 5.4, indeed:

〈T (uh)− T (u), uh − u〉 =

∫
Ω

a(χ)|∇(uh − u)|2 +

∫
Ω

b(χ)(uh − u)2(u2
h + uhu+ u2)

≥ k‖∇(uh − u)‖2L2(Ω) +
3

4
m2/3‖uh − u‖2L2(Ωd0 ) ≥ C‖uh − u‖

2
H1(Ω),

where C = C(k,m,Ω, d0) is independent of h. Consider now an arbitrary wh ∈ Vh and exploit the

orthogonality 〈T (uh)− T (u), ϕh〉 = 0 ∀ϕh ∈ Vh, which follows by (5.25).

C‖uh − u‖2H1 ≤ 〈T (uh)− T (u), uh − u〉 = 〈T (uh)− T (u), wh − u〉

≤ K‖wh − u‖H1‖uh − u‖H1 ,

where K is the Lipschitz constant of T (see Proposition 5.1). We point out that, in view of Propo-

sition 5.2, the constant K does not depend on u nor on h, but only on ‖f‖L2(Ω),Ω, d0, k. Hence:

‖uh − u‖H1 ≤
K

C
‖wh − u‖H1 ,

and since the latter inequality holds for each wh ∈ H1(Ω), it holds:

‖uh − u‖H1(Ω) ≤
K

C
inf

wh∈Vh
‖wh − u‖H1(Ω),

and the thesis follows by the interpolation estimates of H1(Ω) functions in Vh.
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The convergence of the solution of the discrete direct problem to the continuous one is an im-

mediate consequence of Lemma 5.3 and of the continuity of the map Sh in the space Vh, which can

be assessed analogously to the proof of Proposition 5.5.

Proposition 5.15. Let {hk}, {χk} be two sequences such that hk → 0, χk ∈ Khk and χk
L1

−−→ χ ∈ K.

Then Shk(χk)
H1

−−→ S(χ).

Define the discrete cost functional, Jε,h : Kh → R

Jε,h(χh) =
1

2
‖Sh(χh)− umeas,h‖2L2(∂Ω) + α

∫
Ω

(
ε|∇χh|2 +

1

ε
χh(1− χh)

)
, (5.26)

being umeas,h the L2(Ω)-projection of the boundary datum umeas in the space of the traces of Vh

functions. The existence of minimizers of the discrete functionals Jε,h is stated in the following

proposition, together with an asymptotic analysis as h→ 0. Taking advantage of Proposition 5.15,

the proof is analogous to the one of [66, Theorem 3.2].

Proposition 5.16. For each h > 0, there exists χh ∈ Kh such that Jε,h(χh) = minξh∈KhJε,h(ξh).

Every sequence {χhk} s.t. limk→∞ hk = 0 admits a subsequence that converges in H1(Ω) to a

minimum of the cost functional Jε.

The strategy we adopt in order to minimize the discrete cost functional Jε,h is to search for a

function χh satisfying discrete optimality conditions, which can be obtained as in section 5.3.1:

J ′ε,h(χh)[ξh − χh] ≥ 0 ∀ξh ∈ Kh (5.27)

where for each θh ∈ Kh − χh := {θh = ξh − χh; ξh ∈ Kh} it holds

J ′ε,h(χh)[ϑh] =

∫
Ω

(1− k)ϑh∇Sh(χh) · ∇ph +

∫
Ω

ϑhSh(uh)3ph + 2αε

∫
Ω

∇χh · ∇ϑh

+
α

ε

∫
Ω

(1− 2χh)ϑh,

(5.28)

where ph is the solution in Vh of the adjoint problem (5.20) associated to χh.

It is finally possible to prove the convergence of critical points of the discrete functionals Jε,h

(i.e., functions in Kh satisfying (5.27)) to a critical point of the continuous one, Jε. The proof can

be adapted from the one of [66, Theorem 3.2].

Proposition 5.17. Consider a sequence {hk} s.t. hk → 0 and for every k denote as χk a solution

of the discrete variational inequality (5.27). Then there exists a subsequence of {χk} that converges

a.e and in H1(Ω) to a solution χ of the continuous variational inequality (5.19)

5.4.2 Reconstruction algorithm: a Parabolic Obstacle Problem approach

The necessary optimality conditions that have been stated in Proposition 5.14, together with

the expression of the Fréchet derivative of the cost functional reported in (5.19) allow to define

a Parabolic Obstacle problem, which consists of a very common strategy in order to search for a

solution of optimization problems in a phase-field approach. In this section, we give a continuous
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formulation of the problem and provide a formal proof of its desired properties. We then introduce

a numerical discretization of the problem and rigorously prove the main convergence results.

The core of the proposed approach is to rely on a parabolic problem whose solution χ(·, t)
converges, as the fictitious time variable tends to +∞, to an asymptotic state χ∞ satisfying the

continuous optimality conditions (5.19). The problem can be formulated as follows, for a fixed

ε > 0: let χ be the solution of
∫

Ω

∂tχ(ξ − χ) + J ′ε(χ)[ξ − χ] ≥ 0 ∀ξ ∈ K, t ∈ (0,+∞)

χ(·, 0) = χ0 ∈ K.
(5.29)

The theoretical analysis of the latter problem is beyond the purposes of this work, and would require

to deal with the severe nonlinearity of the expression of J ′ε(χ); consequently, we provide a complete

discretization of the Parabolic Obstacle Problem and assess its convergence properties. This is

performed by setting (5.29) in the discrete spaces Kh and Vh, and by considering a semi-implicit

one-step scheme for the time updating, as in [66]: i.e., by treating explicitly the nonlinear terms and

implicitly the linear ones. We obtain that the approximate solution {χnh}n∈N ⊂ Vh, χ
n
h ≈ χ(·, tn) is

computed as:

χ0
h = χ0 ∈ Kh (a prescribed initial datum)

χn+1
h ∈ Kh :

∫
Ω

(χn+1
h − χnh)(ξh − χn+1

h ) + τn

∫
Ω

(1− k)∇Sh(χnh) · ∇pnh(ξh − χn+1
h )

+ τn

∫
Ω

Sh(χnh)3pnh(ξh − χn+1
h ) + 2τnαε

∫
Ω

∇χn+1
h · ∇(ξh − χn+1

h )

+ τnα
1

ε

∫
Ω

(1− 2χnh)(ξh − χn+1
h ) ≥ 0 ∀ξh ∈ Kh, n = 0, 1, . . .

(5.30)

The following preliminary result is necessary for the proof of the convergence of the algorithm:

Lemma 5.4. For each n > 0, there exists a positive constant Bn = Bn(Ω, h, k, ‖pnh‖H1 , ‖unh‖H1 ,
∥∥un+1

h

∥∥
H1)

such that, provided that τn ≤ Bn it holds that:∥∥χn+1
h − χnh

∥∥2

L2 + Jε,h(χn+1
h ) ≤ Jε,h(χnh) n > 0. (5.31)

Proof. In the expression of the discrete parabolic obstacle problem (5.30), consider ξh = χnh: via

simple computation, we can point out that

1

τn

∥∥χn+1
h − χnh

∥∥2

L2 + J(χn+1
h )− J(χnh) + αε

∥∥∇(χn+1
h − χnh)

∥∥2

L2 +
α

ε

∥∥χn+1
h − χnh

∥∥2

L2

≤
∫

Ω

(
a(χn+1

h )− a(χnh)
)
∇unh∇pnh +

∫
Ω

(
b(χn+1

h )− b(χnh)
)

(unh)3pnh

+
1

2

∥∥un+1
h − unh

∥∥2

L2(∂Ω)
+

∫
∂Ω

(un+1
h − unh)(un+1

h − umeas,h),

where unh = Sh(χnh) and un+1
h = Sh(χn+1

h ). Moreover, by the expression of the adjoint problem,

RHS =
1

2

∥∥un+1
h − unh

∥∥2

L2(∂Ω)
+ I + II ,
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where

I =

∫
Ω

(
a(χn+1

h )− a(χnh)
)
∇unh · ∇pnh +

∫
Ω

a(χnh)∇pnh · ∇(un+1
h − unh)

=

∫
Ω

(
a(χnh)− a(χn+1

h )
)
∇(un+1

h − unh) · ∇pnh +

∫
Ω

a(χn+1
h )∇un+1

h · ∇pnh

−
∫

Ω

a(χnh)∇unh · ∇pnh;

II =

∫
Ω

(
b(χn+1

h )− b(χnh)
)

(unh)3pnh + 3

∫
Ω

b(χnh)(unh)2pnh(un+1
h − unh) =

=

∫
Ω

b(χn+1
h )

(
(unh)3 − (un+1

h )3
)
pnh + 3

∫
Ω

b(χnh)(unh)2pnh(un+1
h − unh)

+

∫
Ω

b(χn+1
h )(un+1

h )3pnh −
∫

Ω

b(χnh)(unh)3pnh =

(by the expansion (un+1
h )3 =

(
unh + (un+1

h − unh)
)3

)

= 3

∫
Ω

(
b(χnh)− b(χn+1

h )
)

(unh)2pnh(un+1
h − unh)− 3

∫
Ω

b(χn+1
h )(χnh)pnh(un+1

h − unh)2

−
∫

Ω

b(χn+1
h )pnh(un+1

h − unh)3 +

∫
Ω

b(χn+1
h )(un+1

h )3pnh −
∫

Ω

b(χnh)(unh)3pnh.

Collecting the terms and taking advantage of the expression of the direct problem, we conclude that

RHS =
1

2

∥∥un+1
h − unh

∥∥2

L2(∂Ω)
+

∫
Ω

(
a(χnh)− a(χn+1

h )
)
∇(un+1

h − unh) · ∇pnh

+ 3

∫
Ω

(
b(χnh)− b(χn+1

h )
)

(unh)2pnh(un+1
h − unh)

− 3

∫
Ω

b(χn+1
h )(unh)pnh(un+1

h − unh)2 −
∫

Ω

b(χn+1
h )pnh(un+1

h − unh)3.

We now employ the Cauchy-Schwarz inequality and the regularity of the solutions of the dis-

crete direct and adjoint problems (in particular the equivalence of the W 1,∞ and H1 norm in Vh:

‖uh‖W 1,∞ ≤ C1‖uh‖H1 , C1 = C1(Ω, h)):

RHS ≤ C2

∥∥χn+1
h − χnh

∥∥
L2

∥∥un+1
h − unh

∥∥
H1 + C3

∥∥un+1
h − unh

∥∥2

H1

with C2 = (1−k)C1‖pnh‖H1 +C1‖unh‖H1‖pnh‖H1 and C3 = 3C2
1‖unh‖H1

‖pnh‖H1
+C3

1‖pnh‖H1
(‖unh‖H1

+∥∥un+1
h

∥∥
H1

) + 1
2C

2
tr, being Ctr the constant of the trace inequality in H1(Ω). Eventually, similarly to

the computation included in the proof of Proposition 5.14, one can assess that∥∥un+1
h − unh

∥∥
H1 ≤ C4

∥∥χn+1
h − χnh

∥∥
L2 ,

with C4 = C4(k,C1, ‖unh‖H1 ,Ω). Hence, we can conclude that there exists a positive constant

Cn = C2C4 + C3C
2
4 such that

1

τn

∥∥χn+1
h − χnh

∥∥2

L2 + J(χn+1
h )− J(χnh) ≤ Cn

∥∥χn+1
h − χnh

∥∥2

L2 ,

and choosing τn < Bn := 1
1+Cn we can conclude the thesis.

We are finally able to prove the following convergence result for the fully discretized Parabolic

Obstacle Problem:
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Proposition 5.18. Consider a starting point χ0
h ∈ Kh. Then, there exists a collection of timesteps

{τn} s.t. 0 < γ ≤ τn ≤ Bn ∀n > 0. Corresponding to {τn}, the sequence {χnh} generated by (5.30)

has a converging subsequence (which we still denote with χnh) such that χnh
W 1,∞

−−−−→ χh ∈ Vh, which

satisfies the discrete optimality conditions (5.27).

Proof. Consider a generic collection of timesteps τ̃n satisfying τ̃n ≤ Bn ∀n > 0. Hence, by Lemma

5.4,
∞∑
n=0

∥∥χn+1
h − χnh

∥∥2

L2 ≤ Jε,h(χ0
h) and sup

n
Jε,h(χnh) ≤ Jε,h(χ0

h)

which implies that
∥∥χn+1

h − χnh
∥∥
L2 → 0 and hence χnh is bounded in H1(Ω), and this implies that

also {unh} and {pnh} are bounded in H1(Ω). According to the definition of the constants Cn and

Bn reported in the proof of Lemma 5.4, this entails that there exists a constant M > 0 such that

Cn ≤M ∀n > 0, and equivalently there exists a positive constant γ s.t. γ ≤ Bn. Hence, it is possible

to choose, for each n > 0, γ ≤ τn ≤ Bn.

Eventually, we conclude that there exists χh ∈ Kh such that, up to a subsequence, χnh → χh a.e. and

in W 1,∞(Ω) (and unh → uh := Sh(χh), pnh → ph in H1 and in W 1,∞ as well, as in the discrete space

Vh the L∞ norm is equivalent to the L2(Ω)). We exploit the expression of the discrete Parabolic

Obstacle Problem (5.30) to show that∫
Ω

(1− k)∇unh · ∇pnh(ξh − χn+1
h ) +

∫
Ω

(unh)3pnh(ξh − χn+1
h ) + 2αε

∫
Ω

∇χn+1
h · ∇(ξh − χn+1

h )

+α
1

ε

∫
Ω

(1− 2χnh)(ξh − χn+1
h ) ≥ − 1

τn

∫
Ω

(χn+1
h − χnh)(ξh − χn+1

h ) ∀ξh ∈ Kh,

and since - 1
τn
> − 1

γ ∀n, when taking the limit as n→∞, the right-hand side converges to 0, which

entails that uh satisfies the discrete optimality conditions (5.27).

In order to solve (5.30) we resort the Primal-Dual Active Set method, introduced in [37]. Thus,

the final formulation of the reconstruction algorithm is the following:

1: Set n = 0 and χ0
h = χ0, the initial guess for the inclusion ;

2: while
∥∥χnh − χn−1

h

∥∥
L∞(Ω)

> tolPOP do

3: solve the direct problem (5.5) with χ = χnh;

4: solve the adjoint problem (5.20) with χ = χnh;

5: compute χn+1
h solving (5.30) via PDAS algorithm ;

6: update n = n+ 1;

7: end while

8: return χnh
Algorithm 7: Solution of the discrete Parabolic Obstacle Problem

Remark 5.3. It is a common practice to increase the performance of a reconstruction algorithm

taking advantage of multiple measurements. In this context, it is possible to suppose the know-

ledge of Nf different measurements of the electric potential on the boundary, umeas,j j = 1, · · · , Nf ,

associated to different source terms fj . Therefore, instead of tackling the optimization of the mis-

match functional J as in (5.12), it is possible to introduce the averaged cost functional JTOT (χ) =
1
Nf

∑Nf
j=1 J

j(χ), where Jj(χ) = 1
2‖Sj(χ)− umeas,j‖2L2(∂Ω), being Sj(χ) the solution of the direct
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problem (5.5) with source term f = fj . The process of regularization, relaxation and computation

of the optimality conditions is exactly the same as for J , and yields the same reconstruction algo-

rithm as in Algorithm 7, where at each timestep the solution of Nf direct and adjoint problem must

be computed.

5.5 Numerical results

In this section we report various results obtained applying Algorithm 7. In all the numerical

experiments, we consider Ω = (−1, 1)2 and we introduce an uniform and shape regular tessellation

Th of triangles. Due to the lack of experimental measures of the boundary datum umeas, we make use

of synthetic data, i.e., we simulate the direct problem via the Finite Element method, considering

the presence of an ischemic region of prescribed geometry, and extract the value on the boundary of

the domain. In order to avoid to incur an inverse crime (i.e. the performance of the reconstruction

algorithm are improved by the fact that the exact data are synthetically generated with the same

numerical scheme adopted in the algorithm) we introduce a more refined mesh T exh on which the

exact problem is solved, and interpolate the resulting datum umeas on the mesh Th.

5.5.1 Reconstruction of inclusions of arbitrary shape and topology

In the following test cases, we apply Algorithm 7 for the reconstruct inclusions of different

geometries, in order to investigate the effectiveness of the introduced strategy. We use the same

computational mesh Th (mesh size h = 0.04, nearly 6000 elements) for the numerical solution of

the boundary value problems involved in the procedure, except for the generation of each synthetic

data which is performed on different finer meshes T exh . According to Remark 5.3, we make use of

Nf = 2 different measurements, associated to the source terms f1(x, y) = x and f2(x, y) = y. The

main parameters for all the simulations lie in the ranges reported in Table 5.1. We make use of the

same relationship between ε and τ as in [66]. The initial guess for each simulation is u0 ≡ 0.

α ε τ tolPOP

10−4 ÷ 10−3 1/(8π) (0.01÷ 0.1)/ε 10−4

Table 5.1: Range of the main parameters

In Figure 5.1 we report some of the iterations of Algorithm 7 for the reconstruction of a circular

inclusion (α = 0.0001, τ = 0.01/ε). The boundary ∂ω is marked with a black line, which is

superimposed to the contour plot of the approximation of the indicator function unh at different

timesteps n. The algorithm converged after Ntot = 568 iterations, corresponding to a final (fictitious)

time Ttot = 1427.54. In Figure 5.2 we investigate the effectiveness of the algorithm to reconstruct

inclusions of rather complicated geometry. For each test case, we show the contour plot of the

final iteration of the reconstruction (the total number of iterations N and the final time T are

reported in the caption), and the boundary of the exact inclusion is overlaid in black line. Moreover,

each result is equipped with the graphic (in semilogarithmic scale) of the evolution of the cost

functional Jε, split into the components JPDE(χ) = 1
2‖S(χ)− umeas‖2L2(∂Ω) and Jregularization(χ) =

αε‖∇χ‖2L2(Ω) + α
ε

∫
Ω
χ(1 − χ). The reported results consist in approximations of minimizers of Jε
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(a) n = 30 (b) n = 90 (c) n = 568

Figure 5.1: Reconstruction of a circular inclusion: successive iterations

(a) Ntot = 3491, Ttot = 3509.54,

α = 0.001, τ = 0.02/ε

(b) Ntot = 1537, Ttot = 772.58,

α = 0.0001, τ = 0.02/ε

(c) Ntot = 4670, Ttot = 2347.40,

α = 0.0001, τ = 0.02/ε

(d) Ellipse: evolution of Jε (e) Rectangle: evolution of Jε (f) Two circles: evolution of Jε

Figure 5.2: Reconstruction of various inclusions

in K: they are smooth function and range between 0 and 1. They show large regions in which they

attain the limit values 0 and 1, and a region of diffuse interface between them, whose thickness is

about ε/2. As Figures 5.1 and 5.2 show, the algorithm is able to reconstruct inclusion of rather

complicated geometry. The identification of smooth inclusion is performed with higher precision,

whereas it seems that the accuracy is low in presence of sharp corners. We point out that we do

not need to have any a priori knowledge on the topology of the inclusion ω, i.e., the number of

connected components is correctly identified.
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5.5.2 Initial guess

We now assess that the final result of the reconstruction is independent of the initial guess imposed

as a starting point of the Parabolic Obstacle problem. In Figure 5.3 we compare the behavior of the

algorithm applied to the reconstruction of a circular inclusion (the same as in Figure 5.1), where we

impose a different initial datum with respect to the constant zero function. In the first experiment,

we start from an initial datum which is the indicator function of an arbitrarily chosen region. In

the second one, we impose as a starting point the indicator function of a sublevel of the topological

gradient of the cost functional J . As investigated in [33], the topological gradient is a powerful tool

for the detection of small-size inclusions, which yield a small perturbation in the cost functional with

respect to the background (unperturbed) case. The position of a small inclusion is easily identified

by searching for the point where the topological gradient of J attains its (negative) minimum. As the

information given by the topological gradient G has shown to be useful even in the case of large-size

inclusions (see, e.g., [28], [49]), we take advantage of it by computing G (see Theorem 3.1 in [33]),

setting a threshold Gthr and defining u0 = χ{G≤Gthr}. The results reported in Figure 5.3 show the

(a) Initial guess: arbitrary (b) Intermediate: n = 60 (c) Final: Ntot = 661, Ttot = 1661.27

(d) Initial guess: topological (e) Intermediate: n = 50 (f) Final: Ntot = 489, Ttot = 1228.99

Figure 5.3: Reconstruction of a circular inclusion with different initial conditions

starting point of the algorithm, an intermediate iteration and the final reconstruction. In both cases

we set α = 0.001, ε = 1/(8π) and τ = 0.1/ε. We underline that the result in each case is similar to

the one depicted in Figure 5.1, but through the second strategy it was possible to perform a smaller

number of iterations.
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5.5.3 Mesh size and adaptation

Another interesting investigation is the comparison of the results obtained when perturbing the

relaxation parameter ε. In Figure 5.4 we report the final reconstruction of an ellipse-shaped inclusion

when setting ε = 1
4π ,

1
8π ,

1
8π . As expected, it is possible to remark that the thickness of the diffuse

(a) ε = 1
4π

: Ntot = 358, Ttot = 224.94 (b) ε = 1
8π

: Ntot = 1500, Ttot = 753.98(c) ε = 1
16π

: Ntot = 3514, Ttot =

1766.33

Figure 5.4: Reconstruction of a circular inclusion with different ε

interface region decreases as ε decreases. Nevertheless, one must take into account the size of the

computational mesh Th: in the last test of Figure 5.4, the thickness of the region in which the final

iteration χNtoth increases from 0 to 1 is of the same order of magnitude as hmax. This is rather

likely the reason why the edge of the reconstructed inclusion appears to be irregular and jagged.

A natural strategy to avoid the problem would be to make use of a finer mesh, e.g., ensuring that

hmax < ε/10; however, that could result in an extremely high computational effort. It is possible to

overcome this drawback by introducing an adaptive mesh refinement strategy, i.e., by locally refining

the mesh close to the region of the detected edges. In Figure 5.5 we compare the result obtained

when approximating a rectangular and a circular inclusion with ε = 1
16π on the reference mesh

or through a process of mesh adaptation. We invoked a goal-oriented mesh adaptation algorithm

each Nadapt = 50 iterations, requiring for a higher refinement of the grid in proximity to higher

values of |∇χnh| and for a lower refinement in the regions where χnh is approximately constant. This

allows to have more precise reconstruction even for small ε, almost without increasing the global

number of elements of the mesh. In Figure 5.5, we also report the final configuration of the refined

computational mesh.

5.5.4 Robustness with respect to measurements

We finally verify the stability result obtained in Proposition 5.11, by testing the reconstruction

algorithm when the measured boundary data are perturbed by a small amount of noise. In particular,

we consider uη = umeas + ηζ, being ζ a Gaussian random variable with null mean and standard

deviation equal to maxΩ umeas −minΩ umeas and η ∈ [0, 1] the noise level. In Figure 5.6 we report

the final results of the reconstruction algorithm when applied to the boundary measurements related

to an elliptical inclusion perturbed with different noise level. For each simulation, we fix α = 0.001

and ε = 1
8π . In Figure 5.7, instead, we investigate the effect of the regularization parameter α in
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(a) No adaptation, Ntot = 2442, Ttot =

2454.97

(b) Adaptation, Ntot = 2189, Ttot =

2200.62

(c) Final adapted mesh

(d) No adaptation, Ntot = 2210, Ttot =

2221.73

(e) Adaptation, Ntot = 2306, Ttot =

2318.24

(f) Final adapted mesh

Figure 5.5: Mesh adaptation: result comparison

(a) η = 0.01; Ntot = 430 (b) η = 0.05; Ntot = 503 (c) η = 0.1; Ntot = 1120

Figure 5.6: Reconstruction of an elliptical inclusion with noisy measurements

the reconstruction from noisy data, fixing η = 0.1. We observe that a higher value of α may help in

filtering the information coming from the noise, avoiding to let it spoil the reconstruction, although

it might result in an overall loss of precision.

5.6 Comparison with the Shape Derivative approach

In the previous sections, we have analyzed in detail the phase-field relaxation of the minimization

problem expressed in (5.13). We now aim at describing the relationship between this method and
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(a) α = 0.001; Ntot = 1120 (b) α = 0.003; Ntot = 751 (c) α = 0.01; Ntot = 462

Figure 5.7: Reconstruction of an elliptical inclusion with noisy measurements

a shape derivative based approach analogous to the one proposed in Chapter 4, which consists

in updating the shape of the inclusion to be reconstructed by perturbing its boundary along the

directions of the vector field which causes the greatest descent of the cost functional. Such a direction

can be deduced by computing the shape derivative of the functional itself. In this section, we first

theoretically investigate the relationship between the shape derivative of the cost functional Jreg

and the Fréchet derivative of Jε and then report a comparison between the numerical results of the

two algorithms in a set of benchmark cases.

5.6.1 Sharp interface limit of the Optimality Conditions

In order to study the relationship between the optimality conditions in the phase-field approach

and the ones derived in the sharp case, we follow an analogous approach as in [38]. First of all, in

Proposition 5.19 we introduce the necessary optimality condition for the sharp problem (5.13), taking

advantage of the computation of the material derivative of the cost functional. Such a derivative

consists in a generalization of the one computed in Chapter 4. We then define in Proposition 5.21

similar optimality conditions for the relaxed problem (5.17), which are related but not equivalent to

the one stated in (5.18)-(5.19) through the Fréchet derivative. In Proposition 5.22 we finally assess

the convergence of the phase-field optimality condition to the sharp one when ε→ 0.

For the sake of simplicity, in this section, we will refer to Jreg as J . Consider the minimization

problem (as in (5.13)):

arg min
χ∈X0,1

J(χ); J(χ) =
1

2
‖S(χ)− umeas‖2L2(∂Ω) + αTV (χ). (5.32)

Since χ ∈ X0,1 implies that χ = χω, being ω a finite-perimeter subset of Ω, we can perturb χ by

means of a vector field φt : Ω→ R2, φt(x) = x+ tV (x), being

V ∈ C1(Ω) s.t. V (x) = 0 in Ωd0 = {x ∈ Ω s.t. dist(x, ∂Ω) ≤ d0}. (5.33)

Consider the family of functions {χt}: χt = χ ◦ φ−1
t : we can compute the shape derivative of the

functional J in χ along the direction V (see [67]) as

DJ(χ)[V ] := lim
t→0

J(χt)− J(χ)

t
, (5.34)
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where J(χt) is the cost functional evaluated in the deformed domain Ωt = φt(Ω) but, according to

(5.33), Ωt and Ω are the same set, thus we do not adopt a different notation. We prove the following

result:

Proposition 5.19. If χ is a solution of (5.32) and f ∈ L2(Ω) satisfies assumption (5.4), then

DJ(χ)[V ] = 0 for all the smooth vector fields V . (5.35)

The shape derivative is given by:

DJ(χ)[V ] =

∫
∂Ω

(S(χ)− umeas)Ṡ(χ)[V ] +

∫
Ω

(divV −DV ν · ν)d|Dχ|, (5.36)

where d|Dχ| = δ∂ωdx, ν is the generalized unit normal vector (see [83]) and Ṡ(χ)[V ] =: Ṡ, the

material derivative of the solution map, solves∫
Ω

a(χ)∇Ṡ · ∇v +

∫
Ω

b(χ)3S(χ)2Ṡv =−
∫

Ω

a(χ)A∇S(χ) · ∇v −
∫

Ω

b(χ)S(χ)3vdivV+∫
Ω

div(fV )v ∀v ∈ H1(Ω),

(5.37)

being A = divV − (DV +DV T ).

Proof. We start by deriving the formula of the material derivative of the solution map. Define

S0 = S(χ) and St : Ω→ R, St = S(χt) ◦ φt. Then, applying the change of variables induced by the

map φt, it holds that∫
Ω

a(χ)A(t)∇St · ∇v +

∫
Ω

b(χ)S3
t v|detDφt| =

∫
Ω

(f · φt)v|detDφt| ∀v ∈ H1(Ω), (5.38)

where A(t) = Dφ−Tt Dφ−1
t |detDφt|. By computation,

d

dt
A(t) = A = (divV )I − (DV t +DV ) and

d

dt
|detDφt| = divV.

Subtract (5.5) from (5.38) and divide by t: then wt = St−S0

t is the solution of∫
Ω

a(χ)A(t)∇wt · ∇v +

∫
Ω

b(χ)qtwtv|det(Dφt)| = −
∫

Ω

a(χ)
A(t)− I

t
∇S0 · ∇v

−
∫

Ω

|det(Dφt)| − 1

t
b(χ)S3

0v +

∫
Ω

1

t
(f ◦ φt)v|det(Dφt)| −

∫
Ω

1

t
fv

(5.39)

∀v ∈ H1(Ω), where the norm of the right-hand side in the dual space of H1(Ω) is bounded by∥∥∥∥A− It
∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω) +

∥∥∥∥ |det(Dφt)| − 1

t

∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω)

+

∥∥∥∥ |det(Dφt)| − 1

t

∥∥∥∥
L∞(Ω)

‖f‖L2(Ω) + C(‖V ‖C(Ω))‖f‖H1(Ω) ≤ CF ,

being CF independent of t. Moreover, the matrix A(t) is symmetric positive definite: (A(t)y) · y ≥
1
2‖y‖

2 ∀y ∈ R2,∀t. Together with the property that qt = χ2
t + χtχ + χ2 ≥ 3

4χ
2, and thanks to

Proposition 5.4 and to the Poincaré inequality in Lemma 5.1,

‖wt‖2H1 ≤ C
(
k‖∇wt‖2L2 +

3

4
m2/3‖wt‖2L2(Ωd0 )

)
≤ CF ‖wt‖H1 .
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Thus, ‖wt‖H1 is bounded independently of t, from which it follows that ‖St − S0‖H1(Ω) ≤ Ct and

that every sequence {wn} = {wtn , tn → 0} is bounded in H1(Ω), thus wt
H1

−−⇀ w ∈ H1(Ω). We aim

at proving that w is also the limit of wt in the strong convergence, which entails that

Ṡ(χ)[V ] := lim
t→0

St − S0

t
= w.

First of all, we show that w is the solution of problem (5.37). It follows from (5.39), since qtwt =
1
t (S

3
t − S3

0) = 1
t ((S0 + twt)

3 − S3
0) = 3S2

0wt + 3tS0w
2
t + t2w3

t , that∫
Ω

a(χ)A(t)∇wt · ∇v +

∫
Ω

b(χ)3S2
0wtv|detDφt| = −

∫
Ω

a(χ)
A(t)− I

t
∇S0 · ∇v

−
∫

Ω

|detDφt| − 1

t
b(χ)S3

0v −
∫

Ω

b(χ)3tS0w
2
t v|detDφt| −

∫
Ω

b(χ)t2w3
t v|detDφt|

+

∫
Ω

(f ◦ φt)
|detDφt| − 1

t
v −

∫
Ω

(f ◦ φt)− f
t

v ∀v ∈ H1(Ω).

(5.40)

Taking the limit as t→ 0 and by the weak convergence of wt in H1, we recover the same expression

as in (5.37). One may eventually show that wt
H1

−−→ w. In order to do this we start proving that∫
Ω

a(χ)A(t)|∇wt|2 +

∫
Ω

b(χ)|detDφt|3S2
0w

2
t →

∫
Ω

a(χ)|∇w|2 +

∫
Ω

b(χ)3S2
0w

2. (5.41)

Indeed, take (5.40) and substitute v = wt: using the weak convergence of wt in the right-hand side,

we obtain that∫
Ω

a(χ)A(t)|∇wt|2 +

∫
Ω

b(χ)|detDφt|3S2
0w

2
t → −

∫
Ω

a(χ)A∇S0 · ∇w −
∫

Ω

divV b(χ)S3
0w

+

∫
Ω

fw divV −
∫

Ω

∇f · V w (5.37)
=

∫
Ω

a(χ)|∇w|2 +

∫
Ω

b(χ)3S2
0w

2.

We then compute:∫
Ω

a(χ)A(t)|∇(wt − w)|2 +

∫
Ω

b(χ)3S2
0(wt − w)2|detDφt| =∫

Ω

a(χ)A(t)|∇wt|2 +

∫
Ω

a(χ)A(t)|∇w|2 − 2

∫
Ω

a(χ)A(t)∇wt · ∇w

+

∫
Ω

b(χ)3S2
0w

2
t |detDφt|+

∫
Ω

b(χ)3S2
0w

2|detDφt| − 2

∫
Ω

b(χ)3S2
0wtw|detDφt|.

(5.42)

Using (5.41), the convergence of A to I and of |detDφt| to 1, and the fact that wt
H1

−−⇀ w, we derive

that ∫
Ω

a(χ)|∇(wt − w)|2 +

∫
Ω

b(χ)3S2
0(wt − w)2 → 0

A combination of the Proposition 5.4 and of the Poincaré inequality in Lemma 5.1 allows to conclude

that also ‖wt − w‖H1 → 0.

We now prove the necessary optimality conditions for the optimization problem (5.32). The

derivative of the quadratic part of the cost functional J can be easily computed by means of the
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material derivative of the solution map:

lim
t→0

1

2

∫
∂Ω

(S(χt)− umeas)2|det(Dφt)| − (S0 − umeas)2

t
(since S(χt) = St on ∂Ω)

= lim
t→0

1

2

∫
∂Ω

(St − umeas)2 |det(Dφt)| − 1

t
+ lim
t→0

1

2

∫
∂Ω

(St − umeas)2 − (S0 − umeas)2

t

=
1

2

∫
∂Ω

(S0 − umeas)2divV +

∫
∂Ω

Ṡ(χ)[V ](S0 − umeas),

(5.43)

and the first integral in the latter expression vanishes since V = 0 on Ωd0
. On the other hand, using

Lemma 10.1 of [83] and the remark 10.2, we recover the expression for the derivative of the Total

Variation of χ, which is the same reported in (5.36).

The optimality conditions reported in (5.35) are, at the best of our knowledge, the most general

result which can be obtained in this case, i.e. by simply assuming that χ = χω and ω is a set of finite

perimeter. We point out that, assuming more a priori information on χ, it is possible to recover

from (5.36) the expression of the shape gradient of the cost functional J . By assuming that ∂ω is of

class C2, we come back to the main result proved in Chapter 4:

Proposition 5.20. Suppose that ω ⊂ Ω is open, connected, well separated from the boundary ∂Ω

and regular (∂ωis at least of class C2), and χ = χω. Then, the expression of the shape derivative of

the cost functional J along a smooth vector field V is:

DJ(χ)[V ] =

∫
∂ω

[
(1− k)

(
∇τS(χ) · ∇τw +

1

k
∇νS(χ)e · ∇νwe

)
+ S(χ)3w +H

]
V · ν, (5.44)

where w is the solution of the adjoint problem (see (5.20)). The gradients ∇S(χ) and ∇w are

decomposed in the normal and tangential component with respect to the boundary ∂ω, and due to

the transmission condition of the direct problem their normal components are discontinuous across

∂ω: the valued assumed in Ω \ω is marked as ∇νS(χ)e. The term H is instead the curvature of the

boundary.

For the sake of completeness, we point out that the latter result can be easily generalized to the

case in which ω is the union of Nc disjoint, well separated, components, each of them satisfying the

expressed hypotheses. Thanks to the results recently obtained in [31], we expect formula (5.44) to

be valid also under milder assumption, in particular for polygons.

We aim at demonstrating that the expression of the shape derivative reported in (5.35) is the

limit, as ε → 0, of the shape derivative of the relaxed cost functional Jε (defined as in (5.34),

replacing χ by χε and J by Jε). In order to accomplish this result, we need to introduce necessary

optimality conditions for the relaxed problem (5.17) which are different from the ones reported in

Proposition 5.14 and can be derived by the same technique as in Proposition 5.19 as shown in the

following result.

Proposition 5.21. If χε is a solution of (5.17), then

DJε(χε)[V ] = 0 for all the smooth vector fields V , (5.45)
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The expression of the derivative is given by:

DJε(χε)[V ] =

∫
∂Ω

(S(χε)− umeas)Ṡ(χε)[V ] + αε

∫
Ω

|∇χε|2divV

− 2αε

∫
Ω

DV∇χε · ∇χε +
α

ε

∫
Ω

χε(1− χε)divV
(5.46)

where Ṡ(χε)[V ] solves the same problem as in (5.37), replacing χ with χε.

Proof. The same strategy as in the proof of Proposition 5.19 can be adapted to compute Ṡ(χε)[V ] and

the derivative of the first term of the cost functional. We now derive with the same computational

rules the relaxed penalization term. Recall

Fε(χε) = αε

∫
Ω

|∇χε|2 +
α

ε

∫
Ω

ψ(χε),

being ψ : R → R, ψ(x) = x(1 − x). After the deformation from χε to χε ◦ φ−1
t and applying the

change of variables induced by φt,

Fε(χε ◦ φ−1
t ) = αε

∫
Ω

A(t)∇χε · ∇χε +
α

ε

∫
Ω

ψ ◦ χε ◦ φ−1
t .

Hence,

Ḟε(χε)[V ] = lim
t→0

Fε(χε ◦ φ−1
t )− Fε(χε)
t

= αε

∫
Ω

A∇χε · ∇χε + αε
α

ε

∫
Ω

ψ(χε)divV =

= αε

∫
Ω

|∇χε|2divV − αε
∫

Ω

(DV +DV T )∇χε · ∇χε +
α

ε

∫
Ω

χε(1− χε)divV,

which is the same expression as in (5.46), since DV T∇v · ∇v = DV∇v · ∇v.

We point out that the optimality conditions deduced in the latter proposition are not equivalent

to the ones expressed in Proposition 5.14 via the Fréchet derivative of Jε. Nevertheless, if χε

satisfies (5.18)-(5.19), then it also satisfies (5.45) (it is sufficient to consider in (5.18) v = χε ◦ φ−1
t ,

which belongs to K thanks to the regularity of V ), whereas the contrary is not valid in general. In

particular, due to the regularity of the perturbation fields V , the optimality conditions (5.45) do not

take into account possible topological changes of the inclusion: for example, the number of connected

components of ω cannot change. We remark that this holds also for the optimality conditions (5.35)

for the sharp problem, and consists in a limitation for the effectiveness of the reconstruction via a

shape derivative approach: the initial guess of the reconstruction algorithm and the exact inclusion

must be diffeomorphic.

We are now able to show the sharp interface limit of the expression of the shape derivative of

the relaxed cost functional Jε as ε→ 0, which is done in the following proposition.

Proposition 5.22. Consider a family χ̄ε s.t. χ̄ε ∈ K ∀ε > 0 and χ̄ε
L1

−−→ χ̄ ∈ BV (Ω) as ε → 0.

Then,

DJε(χ̄ε)[V ]→ DJ(χ̄)[V ] for every smooth vector field V .
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Proof. We follow a similar argument as in the proof of [38, Theorem 21]. Thanks to Proposition

5.5, χ̄ε
L1

−−→ χ̄ ⇒ S(χ̄ε)
H1

−−→ S(χ̄). Also Ṡ(χ̄ε)[V ]
H1

−−→ Ṡ(χ̄)[V ]: the proof is done by subtracting the

equations of which Ṡ(χ̄ε)[V ] and Ṡ(χ̄)[V ] and verifying that the norm of their difference is controlled

by the norm of S(χ̄ε)− S(χ̄) in H1(Ω). Thanks to these results, surely∫
Ω

(S(χε)− umeas)Ṡ(χ̄ε)[V ]→
∫

Ω

(S(χ)− umeas)Ṡ(χ̄)[V ].

Eventually, the convergence

αε

∫
Ω

|∇χ̄ε|2divV − 2αε

∫
Ω

DV∇χ̄ε · ∇χ̄ε +
α

ε

∫
Ω

χ̄ε(1− χ̄ε)divV →
∫

Ω

(divV −DV ν · ν)d|Dχ̄|

is proved in [79], Theorem 4.2 (see also annotations in [38], proof of Theorem 21).

In particular, we point out that this implies, together with Proposition 5.13, that the expression

of the optimality condition for the phase field problem converges, as ε→ 0, to the one in the sharp

case.

5.6.2 Comparison with the shape derivative algorithm

In this section, we report some results of the application of the algorithm based on the shape

derivative. In the implementation, we take advantage of the Finite Element method to solve the

direct and adjoint problems and compute the shape gradient as in (5.44). We consider an initial

guess for the inclusion (in all the simulations reported, the initial guess is a disc centered in the

origin with radius 0.02) and discretize its boundary with a finite number of points, which always

coincide with vertices of the numerical mesh. We iteratively perturb the inclusion by moving the

boundary with a normal vector field V which is the projection in the Finite Element space of the

shape gradient reported in (5.44) (see e.g. [69] for more details). After the descent direction is

determined, a backtracking scheme is implemented (see [114]), in order to guarantee the decrease

of the cost functional J at each iteration. As in the case of Algorithm 7, we start from the initial

guess χ0 ≡ 0 and take advantage of Nf = 2 measurements, associated to the same source terms.

The main parameters of this set of simulations are reported in Table 5.2.

α maxstep tol

10−3 10 10−6

Table 5.2: Values of the main parameters

In Figure 5.8 we report the results of the reconstruction with the shape gradient algorithm com-

pared to the ones of the Parabolic Obstacle problem (with ε = 1
16π and with mesh adaptation).

Each result is endowed with a plot of the evolution of the cost functional throughout time (in par-

ticular, of JPDE(u) = 1
2‖S(u)− umeas‖L2(∂Ω)). The reconstruction achieved by the shape gradient

algorithm is qualitatively as accurate as the phase-field one. The first method is less expensive in

terms of number of iterations. Nevertheless, it requires a priori knowledge about the topology of

the unknown inclusion.
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(a) Shape gradient, evolution of the cost

functional

(b) Shape gradient, Ntot = 1494 (c) Phase field, ε = 1
16π

, Ntot = 1869

(d) Shape gradient, evolution of the cost

functional

(e) Shape gradient, Ntot = 301 (f) Phase field, ε = 1
16π

, Ntot = 1503

Figure 5.8: Shape gradient algorithm: result comparison

5.7 Alternative: a saddle-point problem

In this section, we present a reconstruction algorithm for the solution of the inverse problem

which consists in an alternative with respect to the phase-field approach. We develop an algorithm

for the minimization of the cost functional Jreg, see (5.13), which involves the Lagrangian strategy

reported in [26, Chapter 10] for an image reconstruction problem. As expressed in Section 5.3,

the main difficulties which required the introduction of a relaxation of the cost functional are the

non-convexity of the space X0,1 and the non-differentiability of Jreg (especially the TV-part). An

alternative, which is explored in this section, is to look for a minimizer of Jreg within the space

BV (Ω, [0, 1]), which is indeed convex. In order to overcome the non-differentiability of Jreg, we

exploit the definition of the Total Variation of a BV-function to formulate the minimization problem

(5.13) in an alternative way: since

TV (χ) = sup

{∫
Ω

χ div(p) : p ∈ C1
C(Ω;Rd), ‖p‖L∞ ≤ 1

}
,

we introduce the Lagrangian functional L(χ, p):

L(χ, p) =
1

2
‖S(χ)− ymeas‖2L2(∂Ω) +

∫
Ω

χ div(p). (5.47)

We consider χ ∈ BV (Ω; [0, 1]) and p ∈ P = {q s.t. q ∈ L2(Ω;Rd), div(q) ∈ L2(Ω), p · ν =

0 on ∂Ω, |p| ≤ 1 a.e.}; P is the closure of C1
C(Ω;Rd) with respect to the norm ‖·‖L2 + ‖div(·)‖L2 .
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After introducing L, instead of searching for a minimum point χ ∈ BV (Ω; [0, 1]) of Jreg we might

look for a couple (χ, p) ∈ BV (Ω; [0, 1])× P which solves the following saddle-point problem:

find (χ, p) ∈ BV (Ω; [0, 1])× P s.t.

{
L(χ, p) ≤ L(ξ, p) ∀ξ ∈ BV (Ω; [0, 1])

L(χ, p) ≥ L(χ, q) ∀q ∈ P
(5.48)

5.7.1 Reconstruction algorithm: Uzawa Total Variation flow

In order to define a numerical algorithm for the approximation of the solution of (5.48), we

introduce a discretization of the spaces in which the problem is set: defined a tessellation Th of

the domain Ω, we look for χh ∈ Kh, being Kh the Finite Element space introduced in Section 5.4;

whereas ph ∈ Ph, the space of vectorial functions which are element-wise constant on Th and such

that |ph| ≤ 1. The discretized Lagrangian can be rewritten as

Lh(χh, ph) =
1

2
‖S(χh)− umeas,h‖2L2(∂Ω) +

∫
Ω

∇χh · ph. (5.49)

The numerical algorithm for the research of a saddle point of Lh in Kh × Ph that we propose is an

Uzawa iterative algorithm, allowing to define a sequence of approximations (χkh, p
k
h) which consists

in a descent flow for Lh with respect to χ and in an ascent flow for Lh with respect to p.
χ0
h, p

0
h given. For k = 0, 1, · · · ,

find χk+1
h s.t. (χk+1

h − χkh, ξh − χk+1
h ) + ∂χLh(χkh, p

k
h)[ξh − χk+1

h ] ≥ 0 ∀ξh ∈ Kh
find pk+1

h s.t. (pk+1
h − pkh, qh − pk+1

h )− ∂pLh(χk+1
h , pk+1

h )[qh − pk+1
h ] ≥ 0 ∀ph ∈ Ph.

(5.50)

where ∂χLh and ∂pLh are the Frechét derivatives of the Lagrangian functional with respect to its

first and second variable respectively. We remark that, in the first variational inequality, we would

prefer to evaluate ∂χLh in (χk+1
h , pk+1

h ), but that would yield the presence of terms which are highly

non linear with respect to χk+1
h and would require expensive algorithm for the solution. Indeed, the

expression of the derivative is deduced by formal computations and is the following one:

∂χLh(χh, ph)[ϑh] = 2S′(χh)[ϑh] +

∫
Ω

ph · ∇ϑh

∂pLh(χh, ph)[ψh] =

∫
Ω

ψh · ∇χh,

where the expression of the Frechét derivative of the solution map S′(χh)[ϑh] can be derived, as in

(5.19), by introducing an adjoint problem.

This allows to formulate an algorithm for the implementation of the Uzawa iterations: as ex-

plained before, we avoid a full-implicit scheme, and treat explicitly all the (non-linear) terms within

S′(χh). Moreover, we decouple the update of χk+1
h and pk+1

h : we first compute χk+1
h making use of

χkh and pkh, then we exploit also χk+1
h for the computation of pk+1

h . For the latter step, it is possible

to give an explicit expression of the update, since the condition in (5.50) is equivalent to minimizing

a quadratic functional in the L∞-unitary ball: as in [26], Remark 10.11,

pk+1
h =

pkh + τ∇χk+1
h

max{1, |pkh + τ∇χk+1
h |}

. (5.51)
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Instead, the variational inequality for the update of χk+1
h is∫

Ω

(χk+1
h − χkh)(ξh − χk+1

h ) + τ

∫
Ω

(1− k)∇S(χkh) · ∇p(χkh)(ξh − χk+1
h )

+ τ

∫
Ω

S(χkh)3p(χkh)(ξh − χk+1
h ) + τ

∫
Ω

pkh · ∇(ξh − χk+1
h ) ≥ 0 ∀ξh ∈ Kh,

(5.52)

where p(χh) is the solution of the adjoint problem (5.20) with χ = χh. The solution of the inequality

is performed via a PDAS strategy as in Algorithm 7, in order to fulfill the requirement that 0 ≤
χk+1
h ≤ 1. We remark that this results in a fully explicit evolution step, which entails more restrictive

bounds on the choice of the timestep τ in order to preserve stability. Eventually, we implement the

following Algorithm:

Data: Initial guess for the inclusion u0
h

Set k = 0 ;

while
∥∥χkh − χk−1

h

∥∥
∞ > tol do

compute S(χkh) solving the direct problem (5.5);

compute p(χkh) solving the adjoint problem (5.20);

update χk+1
h solving (5.52) via PDAS Algorithm;

update pk+1
h according to (5.51);

set k = k + 1;

end
Algorithm 8: Uzawa algorithm for the minimization of Jreg

5.7.2 Numerical results and comparison with the phase-field relaxation

We now report some results of the application of Algorithm 8, which implements the Uzawa

flow for the research of the saddle point of the Lagrangian functional. This allows also to perform

a comparison with the main proposed algorithm, which is based on a phase-field approach to the

problem and motivates future further investigation in this field. Indeed, the identification of the

ischemic region seems to be effective. The parameters for this set of simulations are reported in

Table 5.3 We considered Nf = 2 different measurements associated to f1 = x and f2 = y and the

α τ tolPDAS tolPOP

10−4 1 10−16 10−4

Table 5.3: Values of the main parameters

starting guess is u0 ≡ 0. In Figure 5.9 we report the results of the reconstruction with the Uzawa

flow compared to the ones of the Parabolic Obstacle problem (on the same mesh, with ε = π
4 and

ε = π
8 ) in two different configurations. The reconstruction achieved by the saddle-point method

seems to be as accurate as the phase-field one, and even more sharp in presence of non-smooth

geometry. The computational cost of the former, indeed, is considerably higher than the one of the

latter, as depicted by the total number of iterations required.
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(a) Phase field, ε = π
4

, Ntot = 451,

Ttot = 566.74

(b) Phase field, ε = π
8

, Ntot = 568,

Ttot = 1427.54

(c) Uzawa algorithm: Ntot = 5609,

Ttot = 5609

(d) Phase field, ε = π
4

, Ntot = 492,

Ttot = 618.27

(e) Phase field, ε = π
8

, Ntot = 461,

Ttot = 1158.62

(f) Uzawa algorithm: Ntot = 4761,

Ttot = 4761

Figure 5.9: Uzawa algorithm: result comparison
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Chapter 6

Well-posedness results for the

monodomain problem

This chapter is entirely devoted to the extension of the results regarding existence, uniqueness

and regularity of the solutions of the monodomain problem. Particular attention is given both to

the unperturbed case (i.e., when no ischemia is present) and to the perturbed one. The results

obtained in this chapter are of crucial importance in order to extend to the monodomain case the

methods developed in the previous chapters of the thesis for reconstructing discontinuous coefficients

in semilinear elliptic and parabolic equations.

The well-posedness analysis of the monodomain system has been the object of several studies,

mainly as a by-product of the discussion on the more complicated bidomain model: we refer to

[61, Chapter 3] for a general overview. Existence and uniqueness of weak solutions of the system

have been tackled via various techniques: in [62], e.g., such results have been obtained on the Fitz-

Hugh Nagumo model (see Chapter 1 for the expression of f, g) by applying a theory for abstract

evolution inequalities based on semi-discretization in time, a-priori error estimates and compactness

properties. In [41] a result of existence and uniqueness of weak solution is proved for the Fitz-Hugh

Nagumo, the Aliev Panfilov and the Rogers MacCulloch models by means of a Faedo-Galerkin

argument. A result of existence of strong solutions, local in time, is also derived. In [136], instead,

results of well-posedness are obtained on a wider range of models, by resorting on a fixed point

argument.

Regarding the regularity of the solutions of the monodomain problem, we report a result in

[64] for Fitz-Hugh Nagumo, Aliev Panfilov and Rogers MacCulloch models: if the coefficient of the

system are sufficiently regular, thanks to arguments from [131] and [86], existence and uniqueness of

solutions of the monodomain system in a classical sense is guaranteed, locally in time. A comparison

principle is also provided, by means of the tool of invariant sets, allowing for the extension to global

solutions. We also report a result of local existence of classical solutions for the bidomain model,

recently obtained in [81].

The aim of this chapter is to first state and prove a result of existence and uniqueness of classical

solutions of the monodomain problem in the case of regular coefficients. In order to do so, we design

a strategy (according to the approach contained in [116]) which enables us to derive such a result

129
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together with a comparison principle, which can be extended to a wider class of models. In the case

of discontinuous coefficients, we prove that the Faedo-Galerkin strategy developed in [41] is valid,

although the switch-off of the nonlinear reaction term within the ischemic region. We hence derive a

result of existence of weak solutions, global in time. Regarding the uniqueness argument, we resort

on the technique developed by [98], which is suitable to be extended to a wider class of models.

As a conclusion, we prove a result ensuring more regularity (namely, Hölder continuity) of the

weak solutions even in the case of the perturbed coefficient, by relying on a suitable approximating

sequence.

All the results proved in this chapter are referred to Aliev Panfilov model. We report as a remark

the minimal hypotheses required for the proof of each proposition.

6.1 Assumptions and statement of the main results

The initial and boundary value problem associated to the monodomain system in a healthy heart

is the following one: 

∂tu− div(K0∇u) + f(u,w) = 0 in Ω× (0, T ),

K0∇u · ν = 0 on ∂Ω× (0, T ),

∂tw + g(u,w) = 0 in Ω× (0, T ),

u(·, 0) = u0 w(·, 0) = w0 in Ω.

(6.1)

In presence of an ischemia ω, we consider the following system:

∂tu− div(K(χω)∇u) + (1− χω)f(u,w) = 0 in Ω× (0, T ),

K(χω)∇u · ν = 0 on ∂Ω× (0, T ),

∂tw + g(u,w) = 0 in Ω× (0, T ),

u(·, 0) = u0 w(·, 0) = w0 in Ω,

(6.2)

where χω is the indicator function of ω and K(χω) = K0 − (K0 −K1)χω.

Assumption 4. We specify the following requirements for the coefficients and source terms:

• K0 ∈ C1+α(Ω). Hence, define the differential operator L =
∑n
j,l=1 ajl

∂2

∂xj∂xl
+
∑n
j=1 bj

∂
∂xj

s.t.

Lu = div(K0∇u): we ensure that implies that ajl = [K0]jl and bj =
∑n
l=1

∂[K0]lj
∂xl

are both of

class Cα(Ω);

• K0 is strongly elliptic: ∃λ > 0 : (K0ξ) ·ξ ≥ λ|ξ|2 for all ξ ∈ R3. This implies that K0 is definite

positive;

• K0 is symmetric and K0|∂Ω admits the unit normal outward vector ν as an eigenvector. This

allows to consider the oblique boundary condition in (6.1) as an homogeneous Neumann con-

dition on u: K0∇u · ν = ∇u · K0ν = λ1∇u · ν = λ1∂νu. As explained in Chapter 1, these

hypotheses are surely satisfied by typical tensors involved in physiological application;

• K1, the conductivity tensor within the ischemia, satisfies the same hypotheses on K0. Moreo-

ver, pointwise in Ω, the three positive eigenvalues of K1, λ
(1)
1 < λ

(1)
2 < λ

(1)
3 are associated to
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the same eigenvectors as the eigenvalues λ
(0)
1 < λ

(0)
2 < λ

(0)
3 of K0 respectively. It also holds

that k1 := λ
(1)
1 ≤ λ(0)

1 and kmax := λ
(0)
3 ;

• ∂Ω ∈ C2+α;

• u0 ∈ C2+α(Ω), w0 ∈ Cα(Ω), and the compatibility condition holds: K0∇u0 · ν = 0 on the

boundary of Ω;

• the functions f, g are the ones from the Aliev Panfilov model, namely:

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(Au(u− 1− a) + w). (6.3)

In particular, the function f, g (as well as many nonlinear terms associated to phenomenological

monodomain models) have a particular property. Indeed, there exists a rectangle S := [u, u]× [w,w]

such that f, g satisfy the Nagumo condition on S: let ~p be a generalized outward normal on ∂S (for

ξ0 ∈ ∂S, ~p(ξ0) s.t. ~p(ξ0) · ξ0 ≥ ~p(ξ0) · ξ ∀ξ ∈ S): then,

~p(ξ0) ·

(
−f(ξ0)

−g(ξ0)

)
≤ 0 ∀ξ0 ∈ ∂S; (6.4)

We easily verify that f, g defined as in (6.3) satisfy the Nagumo condition (6.4) for example on the

rectangle S = [0, 1]× [0, A(a+1)2

4 ]:

• on the left side, (6.4) prescribes f(u,w) ≤ 0 ∀w ∈ [w,w], and this is true since f(0, w) = 0 ∀w;

• on the lower side, (6.4) prescribes g(u,w) ≤ 0 ∀u ∈ [u, u], and this is true since g(u, 0) =

εAu(u− 1− a) and u ∈ [0, 1]⇒ u(u− 1− a) ≤ 0;

• on the right side, (6.4) prescribes f(u,w) ≥ 0 ∀w ∈ [w,w], and this is true since f(1, w) = w

and w ∈ [0, A(a+1)2

4 ]⇒ w ≥ 0;

• on the upper side, (6.4) prescribes g(u,w) ≥ 0 ∀u ∈ [u, u], and this is true because g(u, A(a+1)2

4 ) =

ε(Au(u−1−a)+ A(a+1)2

4 ) ≥ 0 as we can immediately verify that the minimum of the parabola

Au(u− 1− a) is attained at its vertex and has value −A(a+1)2

4 .

Moreover, by the expression in (6.3), we stress the fact that the functions f, g are Lipschitz continuous

on S with constants Mf ,Mg ≤M .

We now outline the main results of the chapter, reporting also the minimal assumptions under

which we may deduce them.

Theorem 6.1. Let the hypotheses of Assumption 4 hold, and suppose the initial data are such that,

∀x ∈ Ω, (u0(x), w0(x)) ∈ S, being S a rectangle satisfying (6.4). Then, the unperturbed problem

(6.1) admits a unique classical solution (u,w), namely u ∈ C2+α,1+α/2(QT ), w ∈ Cα,1+α/2(QT ).

Moreover, (u(x, t), w(x, t)) ∈ S for each x, t ∈ QT .

Remark 6.1. This result can be proven by assuming any expression for the functions f, g satisfying

the Nagumo conditions (6.4) on a rectangle S and such that f, g are Lipschitz continuous on S.
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Regarding the perturbed problem, we first introduce the following definition of weak solutions:

Definition 6.1. A couple (u,w), u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T, L2(Ω)), u ∈ L4(Q∗T ), w ∈
L∞(0, T, L2(Ω)), with distributional derivatives ∂tu ∈ L2(0, T ;H∗)+L4/3(QT ), ∂tw ∈ L1(0, T ;L2(Ω))

(being Q∗T = Ω∗ × (0, T ) = (Ω \ ω)× (0, T )) is a weak solution of (6.2) if, ∀ϕ ∈ H1(Ω), ψ ∈ L2(Ω),

〈∂tu, ϕ〉∗ +

∫
Ω

K(χω)∇u · ∇ϕ+

∫
Ω

(1− χω)f(u,w)ϕ = 0,∫
Ω

∂twψ +

∫
Ω

g(u,w)ψ = 0

(6.5)

are satisfied in D′(0, T ) and u(·, 0) = u0, w(·, 0) = w0.

We denote by 〈·, ·〉∗ the duality pairing between H∗ = (H1(Ω))∗ and H1(Ω), whereas 〈·, ·〉 denotes

the pairing between a distribution and a test function in D(0, T ). It is now possible to state the

following result:

Theorem 6.2. Under Assumption 4, there exists a unique weak solution (u,w) of the perturbed

problem (6.2).

Remark 6.2. For the Aliev-Panfilov model, existence of weak solutions can be proved also by the

weaker assumption that u0 ∈ L2(Ω), w0 ∈ L2(Ω) and disregarding the compatibility conditions at

the initial time. In order to obtain a uniqueness result, we need to require at least w0 ∈ L3(Ω).

Analogous results can be obtained for the Fitz-Hugh Nagumo and the Rogers MacCulloch models.

The final result we report infers additional regularity for the weak solutions previously defined,

in particular:

Theorem 6.3. Let the hypotheses of Assumption 4 hold, and suppose the initial data are such that,

∀x ∈ Ω, (u0(x), w0(x)) ∈ S, being S a rectangle satisfying (6.4). Then, the unique weak solution

(u,w) of (6.2) is such that u ∈ Cα,α/2(QT ), w ∈ Cα,α/2(QT ) and (u(x, t), w(x, t)) ∈ S for each

x, t ∈ QT .

6.2 Proof of Theorem 6.1

The strategy we adopt to prove Theorem 6.1 is based on the results of [116, Chapter 8, Sections

9 and 11].

Consider a couple of functions (f̃ , g̃) which are Lipschitz globally on R2 with constants respecti-

vely Mf and Mg and such that

f̃(u,w) = f(u,w), g̃(u,w) = g(u,w) ∀(u,w) ∈ S. (6.6)

Of course there exist more than one couple (f̃ , g̃) satisfying (6.6): nevertheless, we select one of

them and show that the argument of the proof is independent of that choice. Replace f̃ , g̃ in (6.1)
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and define (ũ, w̃) as the solution of the following system:

∂tũ− div(K0∇ũ) + f̃(ũ, w̃) = 0 in QT ,

K0∇ũ · ν = 0 on ∂Ω× (0, T ),

∂tw̃ + g̃(ũ, w̃) = 0 in Ω× (0, T ),

ũ(·, 0) = u0 w̃(·, 0) = w0 in Ω.

(6.7)

Consider now the change of variable: v1 = e−γtũ, v2 = e−γtw̃, with γ > 0. Then, (v1, v2) solves the

problem: 

∂tv1 − div(K0∇v1) + γv1 + f∗(v1, v2) = 0 in QT ,

K0∇v1 · ν = 0 on ∂Ω× (0, T ),

∂tv2 + γv2 + g∗(v1, v2) = 0 in Ω× (0, T ),

v1(·, 0) = u0 v2(·, 0) = w0 in Ω,

(6.8)

where f∗(v1, v2) = e−γtf̃(eγtv1, e
γtv2) and g∗(v1, w̃) = e−γtg̃(eγtv1, e

γtv2). Observe that, for each

(v1, v2), (v′1, v
′
2) ∈ R2,

|f∗(v1, v2)− f∗(v′1, v′2)| ≤ e−γt|f̃(eγtv1, e
γtv2)− f̃(eγtv′1, e

γtv′2)|

≤ e−γtM
(
|eγtv1 − eγtv′1|+ |eγtv2 − eγtv′2|

)
= M (|v1 − v′1|+ |v2 − v′2|) ,

hence f∗ is globally Lipschitz continuous with constant less than or equal to M , and the same holds

for g∗.

In order to study the well-posedness of (6.8), we introduce the sequence {v(k)}defined by the

following iterative scheme:

∂tv
(k)
1 − div(K0∇v(k)

1 ) + γv
(k)
1 = −f∗(v(k−1)

1 , v
(k−1)
2 ) in Ω× (0, T ),

K0∇v(k)
1 · ν = 0 on ∂Ω× (0, T ),

∂tv
(k)
2 + γv

(k)
2 = −g∗(v(k−1)

1 , v
(k−1)
2 ) in Ω× (0, T ),

v
(k)
1 (·, 0) = u0 v

(k)
2 (·, 0) = w0 in Ω,

(6.9)

which can be written in operatorial form as follows:

Av(k) = F(v(k−1)), (6.10)

being v(k) =

v(k)
1

v
(k)
2

, F(v) =

(
−f∗(v1, v2)

−g∗(v1, v2)

)
, A =

(
A1 0

0 A2

)
,

A1 : v1 7→ ∂tv1 − Lv1 + γv1, A2 : v2 7→ ∂tv2 + γv2.

The domains of the functionals A1 and A2 are defined as follows:

D(A1) =
{
v1 ∈ C2+α,1+α/2(QT ) : v1(·, 0) = u0 in Ω, K0∇v1 = 0 on ∂Ω× (0, T )

}
,

D(A2) =
{
v2 ∈ Cα,1+α/2(QT ) : v2(·, 0) = w0 in Ω

}
,

D(A) = D(A1)×D(A2).
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We consider problem (6.10) in the functional space X = X1 × X1, being X1 = Cα,α/2(QT ).

In particular, we immediately notice that F maps X into itself, since the composition of a Hölder

continuous function (of exponent α) with a Lipschitz one is a Hölder continuous function with the

same exponent. In order to prove that problem (6.10) is well-posed it is sufficient to verify that for

each b ∈ X there exists a unique v ∈ D(A) such that Av = b. Since A is diagonal, we study the two

equations separately:

find v1 ∈ D(A1) s.t. A1v1 = b1, (6.11)

find v2 ∈ D(A2) s.t. A2v2 = b2. (6.12)

According to the definition of D(A1), (6.11) is equivalent to finding a classical solution v1 ∈
C2+α,1+α/2(QT ) of the following initial boundary value problem:

∂tv1 − Lv1 + γv1 = b1 in QT ,

K0∇v1 · ν = 0 on ∂Ω× (0, T ),

v1(·, 0) = u0 in Ω.

The existence of v1 is ensured by [104, Theorem 5.1.20], which we can apply to our problem in view

of the regularity of the coefficients in L, the C2+α regularity of the initial datum, the compatibility

condition on it and the fact that b1 ∈ X1 = Cα,α/2(QT ). Hence (6.11) admits a unique solution

∀b1 ∈ X1. Problem (6.12) is instead equivalent to finding a solution v1 ∈ Cα,1+α/2(QT ) of the

following initial value problem: {
∂tv2 + γv2 = b2 in QT ,

v2(·, 0) = w0 in Ω;

in particular, the solution can be expressed in closed form, i.e.

v2(x, t) = e−γtw0(x) +

∫ t

0

e−γ(t−s)b2(x, s)ds.

We immediately verify that since b2 ∈ Cα,α/2(QT ) and w0 ∈ Cα(Ω), then v2 ∈ Cα,α/2(QT ). Moreo-

ver, by

∂tv2(x, t) = −γe−γtw0(x)− γ
∫ t

0

e−γ(t−s)b2(x, s)ds+ b2(x, t),

we can easily conclude that v2 ∈ Cα,1+α/2(QT ); whence problem (6.11) admits a unique solution

∀b2 ∈ X1. In conclusion, A is a bijective operator from D(A) to X , and the inverse operator A−1 is

well defined in X . Equation (6.10) can be rewritten as

v(k) = A−1F(v(k−1)), (6.13)

where A−1F is a well defined operator from X to D(A) ⊂ X .

It is now possible to prove that A−1F is a contraction in X with respect to the norm ‖v‖0 =

‖v1‖0 + ‖v2‖0 = max{v1(x, t) : (x, t) ∈ QT } + max{v2(x, t) : (x, t) ∈ QT }. First of all notice that,

by the properties of f∗, g∗ and by the definition of F ,

‖F(v)−F(v′)‖0 ≤M‖v − v
′‖0 ∀v, v′ ∈ X . (6.14)
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Moreover, we want to verify that∥∥A−1v −A−1v′
∥∥

0
≤ 1

γ
‖v − v′‖0 ∀v, v′ ∈ X . (6.15)

This is equivalent to prove that

‖Av −Av′‖0 ≥ γ‖v − v
′‖0 ∀v, v′ ∈ D(A1)×D(A2). (6.16)

Observe that by the diagonal expression of A, if

‖A1v1 −A1v
′
1‖0 ≥ γ‖v1 − v′1‖0 ∀v1, v

′
1 ∈ D(A1), (6.17)

‖A2v2 −A2v
′
2‖0 ≥ γ‖v2 − v′2‖0 ∀v2, v

′
2 ∈ D(A2), (6.18)

then (6.16) is satisfied. Both (6.17) and (6.18) can be proved by [116, Chapter 8, Lemma 9.1] and

[116, Chapter 8, Lemma 11.1] respectively.

Proof of (6.17): define w = v1− v′1 and take x0, t0 such that ‖w‖0 = |w(x0, t0)|. Then, we claim

that if x0 ∈ Ω, it holds

w(x0, t0) (∂tw − Lw) (x0, t0) ≥ 0. (6.19)

Property (6.19) is trivially verified if w(x0, t0) = 0: otherwise, (x0, t0) is a positive maximum

point or a negative minimum point for w. For sure, t0 > 0 (because v1(·, 0) = v′1(·, 0) = u0):

hence ∂tw(x0, t0)w(x0, t0) ≥ 0 is verified (since w ∈ C1(QT ), the Kuhn-Tucker optimality condition

holds). Moreover, if x0 ∈ Ω, w(x0, t0)(Lw)(x0, t0) ≤ 0: indeed, Lw = K0 : H(w) + div(K0) · ∇w
(where H(w) is the Hessian matrix of w, div(K0) must be intended row-wise and we considered

the Frobenius scalar product between matrices :). Being (x0, t0) a local internal extreme point,

∇w(x0, t0) = 0 and (wH(w))(x0, t0) is negative definite, hence, since K0 is positive definite, we

conclude w(x0, t0)(Lw)(x0, t0) ≤ 0. The case x0 ∈ ∂Ω is more delicate; nevertheless, for each ε > 0

it is possible to find a point (xε, tε) ∈ QT such that

w(x0, t0)∂tw(xε, tε) ≥ −
ε

3
‖w‖20,

w(x0, t0)

n∑
j=1

bj∂xjw(xε, tε) ≤
ε

3
‖w‖20,

w(x0, t0)

n∑
j,l=1

ajl∂xj ,xlw(xε, tε) ≤
ε

3
‖w‖20,

whence

∀ε > 0, ∃(xε, tε) : w(x0, t0) (∂tw − Lw) (xε, tε) ≥ −ε‖w‖20. (6.20)

In both cases, if (6.19) or (6.20) is verified, we can conclude (6.17), since

‖w‖0‖A1v1 −A1v
′
1‖0 ≥ |w(x0, t0)(∂tw − Lw + γw)(x0, t0)| ≥ γ‖w‖20.

Proof of (6.18): define w = v2 − v′2 and take x0, t0 such that ‖w‖0 = w(x0, t0). If w(x0, t0) 6= 0,

then t0 > 0 and by Kuhn-Tucker optimality condition w(x0, t0)∂tw(x0, t0) ≥ 0, hence it holds that

|w(x0, t0)(∂tw(x0, t0) + γw(x0, t0))| ≥ γw(x0, t0)2, and this concludes (6.18).
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Via (6.14) and (6.15), we assess that the operator A−1F is Lipschitz continuous in X with

respect to ‖·‖0, with constant M
γ . Choosing γ > M , the operator is a contraction in X with

respect to ‖·‖0. This easily entails that {v(k)} ⊂ X is a Cauchy sequence, with respect to ‖·‖0: thus,

∃v∗ ∈ C(QT )×C(QT ). This does not immediately allow to conclude that v∗ is a fixed point solution

of (6.9), since it might not belong to X . We now apply some results from the analytic semigroup

theory for parabolic equations from [104] to recover the desired regularity. First of all, being v
(k)
1

the solution of the first equation in (6.9), it admits the following representation:

v
(k)
1 (·, t) = etLu0 +

∫ t

0

e(t−s)Lf∗(v
(k−1)
1 (·, s), v(k−1)

2 (·, s))ds,

where Lu = Lu − γu = div(K0∇u) − γu. Since v
(k)
1 → v∗1 , v

(k)
2 → v∗2 uniformly in QT , also

f(v
(k)
1 , v

(k)
2 )→ f(v∗1 , v

∗
2) uniformly. Define now v# ∈ C(QT ) such that

v#(·, t) = etLu0 +

∫ t

0

e(t−s)Lf∗(v∗1(·, s), v∗2(·, s))ds;

by linearity,

v
(k)
1 (·, t)− v#(·, t) =

∫ t

0

e(t−s)L(f∗(v
(k−1)
1 (·, s), v(k−1)

2 (·, s))− f∗(v∗1(·, s), v∗2(·, s)))ds,

and according to [104, equation (4.1.3)] (which relies on equation (4.0.2) and Proposition 2.2.9

therein), we can ensure that for 0 ≤ t ≤ T∥∥∥v(k)
1 (·, t)− v#(·, t)

∥∥∥
C(Ω)

≤M0

∫ t

0

∥∥∥f∗(v(k−1)
1 (·, s), v(k−1)

2 (·, s))− f∗(v∗1(·, s), v∗2(·, s))
∥∥∥
C(Ω)

,

whence ∥∥∥v(k)
1 − v#

∥∥∥
0
≤M0T

∥∥∥f∗(v(k−1)
1 , v

(k−1)
2 )− f∗(v∗1 , v∗2)

∥∥∥
0
.

Eventually, we conclude that v
(k)
1 → v# uniformly in QT , and by the uniqueness of the uniform limit

we have that v∗1 = v# and also

v∗1(·, t) = etLu0 +

∫ t

0

e(t−s)Lf∗(v∗1(·, s), v∗2(·, s))ds. (6.21)

An application of [104, Theorem 5.1.17, point ii)] guarantees that v∗1 ∈ Cα,α/2(QT ).

Consider now the equation for v∗2 : each v
(k)
2 admits the representation

v
(k)
2 (x, t) = etγw0(x) +

∫ t

0

e(t−s)γg∗(v
(k−1)
1 (x, s), v

(k−1)
2 (x, s)),

and passing to the limit, thanks to the continuity of g∗, v∗2 satisfies

v∗2(x, t) = etγw0(x) +

∫ t

0

e(t−s)γg∗(v∗1(x, s), v∗2(x, s)). (6.22)

From (6.22), we compute the expression of time derivative:

∂tv
∗
2(x, t) = −γ

(
etγw0(x) +

∫ t

0

e(t−s)γg∗(v∗1(x, s), v∗2(x, s))

)
+ g∗(v∗1(x, t), v∗2(x, t))
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and we can conclude that ∂tv
∗
2 ∈ C(QT ) by the assumptions on w0 and g∗. We now show that v∗2 is

Hölder continuous with respect to the space variable x with coefficient α: for every (x1, t), (x2, t) ∈
QT ,

e−γt|v∗2(x1, t)− v∗2(x2, t)|

≤ |w0(x1)− w0(x2)|+
∫ t

0

e−γs|g∗(v∗1(x1, s), v
∗
2(x1, s))− g∗(v∗1(x2, s), v

∗
2(x2, s))|ds

≤ c0|x1 − x2|α +

∫ t

0

Me−γs|v∗1(x1, s)− v∗1(x2, s)|ds+

∫ t

0

Me−γs|v∗2(x1, s)− v∗2(x2, s)|ds

≤ c0|x1 − x2|α + c1|x1 − x2|α
∫ t

0

Me−γsds+

∫ t

0

Me−γs|v∗2(x1, s)− v∗2(x2, s)|ds

≤
(
c0 +

M

γ
c1(1− e−γt)

)
|x1 − x2|α +

∫ t

0

Me−γs|v∗2(x1, s)− v∗2(x2, s)|ds.

By an application of Gronwall’s inequality,

e−γt|v∗2(x1, t)− v∗2(x2, t)| ≤ eMt

(
c0 +

M

γ
c1(1− e−γt)

)
|x1 − x2|α,

and we can conclude the uniform estimate

|v∗2(x1, t)− v∗2(x2, t)| ≤ e(M+γ)T

(
c0 +

M

γ
c1(1− e−γT )

)
|x1 − x2|α.

Even though these regularity results are sufficient to continue the proof, we remark that v∗2 is also

of class Cα,1+α/2 since ∂tv
∗
2 is Hölder continuous with respect to t with coefficient α

2 . Indeed,

∂v∗2 = −γv∗2 + g∗(v∗1 , v
∗
2), being v2 a differentiable function w.r.t. the variable t, g∗ Lipschitz

continuous and v∗1 Hölder continuous with coefficient α/2.

In conclusion, we have proved that for every initial guess v(0) ∈ X the sequence recursively defined in

(6.13) uniformly converges to a unique v∗, which in principle would only belong to C(QT )×C(QT ).

We have moreover shown additional regularity on v∗, and in particular that it belongs to X : this

allows to conclude that v∗ is a fixed point solution of (6.13), i.e.,

v∗ = A−1F(v∗),

and this immediately entails that v∗ ∈ D(A) and hence is a classical solution of (6.8). We point out

that such a solution is unique: otherwise, taking another classical solution v′ of (6.8), then it would

necessarily be also a fixed point for A−1F , and satisfy

‖v∗ − v′‖0 =
∥∥A−1F(v∗)−A−1F(v′)

∥∥
0
≤ M

γ
‖v∗ − v′‖0,

which implies (since γ > M) that v∗ = v′.

We now aim at showing that the solution of problem (6.8) does not depend on the extension of f̃

and g̃, by proving that it stays within the set S throughout time. In order to do so, it is necessary to

define another iterative scheme associated to (6.8): starting from w(0) ∈ X , for each k ≥ 1 introduce
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w(k) = (w
(k)
1 , w

(k)
2 ) such that

∂tw
(k)
1 − div(K0∇w(k)

1 ) + γw
(k)
1 +Mw

(k)
1 = Mw

(k−1)
1 − f∗(w(k−1)

1 , w
(k−1)
2 ) in Ω× (0, T ),

K0∇w(k)
1 · ν = 0 on ∂Ω× (0, T ),

∂tw
(k)
2 + γw

(k)
2 +Mw

(k)
2 = Mw

(k−1)
2 − g∗(w(k−1)

1 , w
(k−1)
2 ) in Ω× (0, T ),

w
(k)
1 (·, 0) = u0 w

(k)
2 (·, 0) = w0 in Ω,

(6.23)

which can be written in operatorial form as: find w(k) ∈ D(B) such that

Bw(k) = G(w(k−1)), (6.24)

being G(w) =

(
Mw1 − f∗(w1, w2)

Mw2 − g∗(w1, w2)

)
, B =

(
B1 0

0 B2

)
,

B1 : w1 7→ ∂tw1 − Lw1 + γv1 +Mw1, B2 : w2 7→ ∂tw2 + γw2 +Mw2,

and D(B) = D(A). Analogously to the analysis performed on A−1F , we may prove that the operator

B is invertible from D(B) to X , and that B−1G : X → X is a Lipschitz operator with respect to

the norm ‖·‖0 with constant 2M
M+γ . Hence, we can guarantee that, ∀w(0) ∈ X , the sequence {w(k)}

uniformly converges in C(QT )×C(QT ). We can immediately prove that the limit is exactly v∗, the

classical solution of (6.8), since for sure v∗ satisfies v∗ = B−1G(v∗), and this implies that

∥∥∥w(k) − v∗
∥∥∥

0
=
∥∥∥B−1G(w(k))− B−1G(v∗)

∥∥∥
0
≤ 2M

M + γ

∥∥∥w(k−1) − v∗
∥∥∥

0
≤
(

2M

M + γ

)k ∥∥∥w(0) − v∗
∥∥∥

0
,

and since 2M
M+γ < 1 we conclude that w(k) → v∗ uniformly in QT . Take now the sequence {w(k)}

with starting point w(0) = (e−γtu0, e
−γtw0), and perform the change of variables {z(k)} = eγt{w(k)}:

we immediately remark that z(k) uniformly converges to z∗ = eγtv∗, and z∗ is a solution of (6.7)

in a classical sense. Such a solution is also unique: indeed, being z∗, z′ two solution of (6.7), then

eγtz∗ and eγtz′ are solutions of (6.7), thus they must coincide. Moreover, each z(k) is the solution

of the following problem:

∂tz
(k)
1 − div(K0∇z(k)

1 ) +Mz
(k)
1 = Mz

(k−1)
1 − f̃(z

(k−1)
1 , z

(k−1)
2 ) in Ω× (0, T ),

K0∇z(k)
1 · ν = 0 on ∂Ω× (0, T ),

∂tz
(k)
2 +Mz

(k)
2 = Mz

(k−1)
2 − g̃(z

(k−1)
1 , z

(k−1)
2 ) in Ω× (0, T ),

z
(k)
1 (·, 0) = u0 z

(k)
2 (·, 0) = w0 in Ω.

(6.25)

We now show that

∀k, z(k)(x, t) ∈ S ∀(x, t) ∈ QT . (6.26)

According to the choice of z(0)(x, t) = eγtw(0)(x, t) = (u0(x), w0(x)), property (6.26) is surely

valid for k = 0 thanks to Assumption 4. Suppose now by induction hypothesis that z(k−1) ∈ S.

We shall now make use of the Nagumo property (see (6.4)), which we assume is valid for (f, g)

but holds true also for any possible extension (f̃ , g̃) since they coincide with (f, g) on S. On the
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right-hand side of ∂S, {(u,w), w ≤ w ≤ w}, the Nagumo condition (6.4) can be rewritten as

f̃(u,w) = f(u,w) ≥ 0, ∀w ∈ [w,w]. Define z+
1 = u− z(k)

1 : since u is constant, we have

∂tu− div(K0∇u) ≥ −f̃(u,w),

and subtracting the first equation in (6.25) we get that

∂tz
+
1 −div(K0∇z+

1 ) ≥Mz
(k)
1 −Mz

(k−1)
1 + f̃(z

(k−1)
1 , z

(k−1)
2 )− f̃(u,w) in Ω× (0, T ) ∀w ∈ [w,w].

Take in particular w = z
(k−1)
2 : by Lipschitz continuity of f̃ ,

f̃(z
(k−1)
1 , z

(k−1)
2 )− f̃(u, z

(k−1)
2 ) ≥ −M |z(k−1)

1 − u| = −M(u− z(k−1)
1 ),

where we exploited the induction hypothesis on z
(k−1)
1 . It follows that

∂tz
+
1 − div(K0∇z+

1 ) +Mz+
1 ≥ 0 in Ω× (0, T ). (6.27)

Moreover, z+
1 (·, 0) = u − u0 ≥ 0 and this, together with (6.27) and [116, Chapter 2, Lemma 2.1]

allows to conclude that z+
1 ≥ 0, hence z

(k)
1 ≤ u in QT . Analogously one can prove that z

(k)
1 ≥ u.

Consider instead the upper side of ∂S, {(u,w), u ≤ u ≤ u}: the Nagumo condition (6.4) in this case

reduces to g̃(u,w) = g(u,w) ≥ 0, ∀u ∈ [u, u]. Define z+
2 = w − z(k)

2 : since ∂tw = 0, by the third

equation in (6.25) we get that

∂tz
+
2 ≥Mz

(k)
2 −Mz

(k−1)
2 + g̃(z

(k−1)
1 , z

(k−1)
2 )− g̃(u,w) in Ω× (0, T )

holds ∀u ∈ [u, u]. Take in particular u = z
(k−1)
1 : by Lipschitz continuity of g̃,

∂tz
+
2 +Mz+

2 ≥ 0 in Ω× (0, T ). (6.28)

Taking advantage of the fact that z+
2 = w−w0 ≥ 0 and applying the Gronwall inequality on (6.28),

we conclude that z+
2 ≥ 0, hence z

(k)
1 ≤ w in QT . Analogously, one can prove that z

(k)
2 ≥ w: in

conclusion, property (6.26) is verified via induction. Since z(k) → z∗ uniformly in QT , we can also

ensure that z∗ ∈ S ∀(x, t) ∈ QT , but this implies, together with (6.6), that f̃(z∗1(x, t), z∗2(x, t)) =

f(z∗1(x, t), z∗2(x, t)) and g̃(z∗1(x, t), z∗2(x, t)) = g(z∗1(x, t), z∗2(x, t)) for each (x, t) in QT . Hence, z∗

is also a solution (in classical sense) of the original system (6.1). The solution is unique because

otherwise (6.7) would not have unique solution; we point out that the whole procedure is independent

of the choice of the Lipschitz extensions f̃ , g̃.

6.3 Proof of Theorem 6.2

We first observe that the bilinear form
∫

Ω
K(χω)∇u ·∇v is not coercive in H1(Ω), but it is weakly

coercive. We hence introduce

B(u, v) =

∫
Ω

K(χω)∇u · ∇v + k1

∫
Ω

uv,

which is coercive with constant k1 > 0, being k1 the minimum eigenvalue of the tensor K1. Accor-

ding to the spectral theory of the compact self-adjoint operators (see [121, Theorem 6.2-1]), there
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exists an orthonormal basis of L2(Ω), orthonormal with respect to the L2(Ω) norm, composed by

eigenfunctions of B, {Ψi}i∈N associated to positive eigenvalues {λi}i∈N.

Before applying the Faedo-Galerkin technique, we need to prove some preliminary results invol-

ving upper and lower bounds on the nonlinear terms f, g. We make use of the following Young-type

estimates:

xn−1 ≤ n− 1

n
xn +

1

n
∀n > 1, ∀x > 0; (6.29)

xn−1 ≤ εn− 1

n
xn +

1

nεn−1
∀n > 1, ∀x > 0, ∀ε > 0. (6.30)

The following estimates hold, as in [41]:

• the term f(u,w) is bounded from above,

|f(u,w)| ≤ A|u|3 +A(a+ 1)|u|2 +Aa|u|+ |u||w|

≤ A|u|3 +A(a+ 1)|u|2 +
1

2
Aa|u|2 +

1

2
Aa+

1

3
|u|3 +

2

3
|w|3/2

=

(
A+

1

3

)
|u|3 +

(
3

2
Aa+A

)
|u|2 +

1

2
Aa+

2

3
|w|3/2

≤
[
A+

1

3
+

3

4

(
3

2
Aa+A

)]
|u|3 +

1

4

(
3

2
Aa+A

)
+

1

2
Aa+

2

3
|w|3/2

≤ A1|u|3 +A2 +A3|w|3/2,

(6.31)

and this also allows to conclude that, if u(·, t) ∈ L4(Ω) and w(·, t) ∈ L2(Ω),

‖f(u(·, t), w(·, t))‖L4/3(Ω) ≤ A1

∥∥|u(·, t)|3
∥∥
L4/3(Ω)

+A2|Ω|3/4 +A3

∥∥∥|w(·, t)|3/2
∥∥∥
L4/3(Ω)

≤ A1‖u(·, t)‖3L4(Ω) +A2|Ω|3/4 +A3‖w(·, t)‖3/2L2(Ω);
(6.32)

• the term g(u,w) is bounded from above,

|g(u,w)| ≤ εA|u|2 + εA(1 + a)|u|+ ε|w|

≤
[
εA+

1

2
εA(1 + a)

]
|u|2 +

1

2
εA(1 + a) + ε|w|

≤ B1|u|2 +B2 +B3|w|,

(6.33)

and this also allows to conclude that, if u ∈ L4(Ω) and w ∈ L2(Ω),

‖g(u(·, t), w(·, t))‖L2(Ω) ≤ B1

∥∥|u(·, t)|2
∥∥
L2(Ω)

+B2|Ω|1/2 +B3‖w(·, t)‖L2(Ω)

≤ B1‖u(·, t)‖2L4(Ω) +B2|Ω|1/2 +B3‖w(·, t)‖L2(Ω);
(6.34)
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• if u ∈ L4(Ω) and w ∈ L2(Ω), the following estimate from below holds

uf(u,w) + wg(u,w) ≥ A|u|4 −A(1 + a)|u|3 +Aa|u|2 − |u|2|w|

− εA|u|2|w| − εA(1 + a)|u||w|+ ε|w|2

≥ A|u|4 −A(1 + a)

[
3ε1

4
|u|4 +

1

nε3
1

]
+Aa|u|2

− (1 + εA)

[
ε2

2
|u|4 +

1

2ε2
|w|2

]
− (1 + a)Aε

[
ε3

2
|u|2 +

1

2ε3
|w|2

]
≥
[
A−A(1 + a)

3ε1

4
− (1 + εA)

ε2

2

]
|u|4 +

[
Aa− 1

2
(1 + a)Aε3

]
|u|2

+

[
ε− (1 + εA)

1

2ε2
− (1 + a)Aε

1

2ε3

]
|w|2 − A(1 + a)

nε3
1

,

and with a suitable choice of ε1, ε2 and ε3, it is possible to conclude that

uf(u,w) + wg(u,w) ≥ C1|u|4 − C2 − C3(|u|2 + |w|2). (6.35)

Consider the following change of variables: ũ = e−k1tu (which implies ∂tũ = e−k1t∂tu − k1ũ).

The weak formulation of (6.2) thus becomes what follows:

〈∂tũ, ϕ〉∗ + B(ũ, ϕ) +

∫
Ω

(1− χω)f̃(ũ, w)ϕ = 0 ∀ϕ ∈ H1(Ω),∫
Ω

∂twψ +

∫
Ω

g̃(ũ, w)ψ = 0 ∀ψ ∈ L2(Ω),

(6.36)

where f̃(ũ, w) = e−Ktf(eKtũ, w) and g̃(ũ, w) = g(eKtũ, w). The same estimates as in (6.32), (6.34)

and (6.35) hold for f̃ with small modifications; indeed,

|f̃(ũ, w)| = |e−k1tf(ek1tũ, w)| ≤ A1e
2k1t|ũ|3 +A2e

−k1t +A3e
−k1t|w|3/2,

|g̃(ũ, w)| = |g(ek1tũ, w)| ≤ B1e
2k1t|ũ|2 +B2 +B3|w|,

and also
ũf̃(ũ, w) + wg̃(ũ, w) = e−k1tũf((ũek1t), w) + wg((ũek1t), w)

≥ e−2k1t
(
ek1tũf(ek1tũ, w) + wg((ũek1t), w)

)
≥ e2k1tC1|ũ|4 − e−2k1tC2 − C3(|ũ|2 + |w|2).

When considering a switch-off of the nonlinear term f within the ischemic region ω, the following

modifications must be considered: if ũ(·, t) ∈ L4(Ω), w(·, t) ∈ L2(Ω), then∥∥∥(1− χω)f̃(ũ(·, t), w(·, t))
∥∥∥
L4/3(Ω)

≤ A1e
2k1t‖ũ(·, t)‖3L4(Ω∗) +A2e

−k1t|Ω|3/4 +A3e
−k1t‖w(·, t)‖3/2L2(Ω),

‖g̃(ũ(·, t), w(·, t))‖L2(Ω) ≤ B1e
2k1t‖ũ(·, t)‖2L4(Ω) +B2|Ω|3/4 +B3‖w(·, t)‖L2(Ω),

(6.37)

and also

(1− χω)ũf̃(ũ, w) + wg̃(ũ, w) ≥ (1− χω)(ũf̃(ũ, w) + wg̃(ũ, w))

≥ (1− χω)
(
e2k1tC1|ũ|4 − e−2k1tC2 − C3(|ũ|2 + |w|2)

)
≥ (1− χω)e2k1tC1|ũ|4 − e−2k1tC2 − C3(|ũ|2 + |w|2).

(6.38)
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We follow the Faedo-Galerkin procedure. In particular, the steps 1-4 are analogous to the ones

in [41] (with careful handling of the vanishing nonlinear term in ω). Steps 5 and 6 are obtained by

analogous arguments as in [98].

1) Discrete problems

Consider a basis {Ψi}i∈N of eigenfunctions of B corresponding to positive eigenvalues {λi}i∈N
and fix a positive m ∈ N. Define Vm = span{Ψi, i = 1, . . . ,m} ⊂ H1(Ω) and the orthogonal

projection operator Pm : H1(Ω)→ Vm

Pm : v 7→ vm, vm =

m∑
i=1

viΨi vi =

∫
Ω

vΨi.

One can easily prove that ‖Pmv‖L2(Ω) ≤ ‖v‖L2(Ω), ‖Pmv‖H1(Ω) ≤
(

1 + kmax
k1

)
‖v‖H1(Ω), where

kmax is the maximum between the eigenvalues of K0 and K1. Introduce the functions ũm, wm ∈
Vm such that

ũm(x, t) =

m∑
i=1

ũim(t)Ψi(x) wm(x, t) =

m∑
i=1

wim(t)Ψi(x)

where the components ũim, wim : R → R are the solutions of the system of ordinary differential

equations:

˙̃uim(t) + λiũim(t) +

∫
Ω

(1− χω)f̃(ũm(·, t), wm(·, t))Ψi = 0 i = 1, . . . ,m

ẇim(t) +

∫
Ω

g̃(ũm(·, t), wm(·, t))Ψi = 0 i = 1, . . . ,m

ũm(0) = Pm(ũ0) wm(0) = Pm(w0).

(6.39)

The integral terms in the system are well defined due to properties (6.37) and since it holds

thatũm(·, t), wm(·, t) ∈ Vm ⊂ H1(Ω). According to Cauchy-Peano local existence theorem, since

f̃ and g̃ are continuous functions with respect to ũ and w, the solution of system (6.39) exists

unique in C1(0, tm), where tm may depend on m. In order to conclude that tm ≥ T ∀m, we need

to show that ũm(·, t) and wm(·, t) are bounded in L∞(0, T ;L2) independently of m, which will

be done in the next step.

2) A priori estimates

We state and prove the following a priori estimates regarding ũm and wm; i.e., if their components

are solutions of system (6.39), they satisfy

‖ũm‖L∞(0,T ;L2), ‖wm‖L∞(0,T ;L2) ≤ c1, (6.40)

‖ũm‖L2(0,T ;H1), ‖ũm‖L4(Q∗T ) ≤ c2, (6.41)∥∥ ˙̃um
∥∥
L2(0,T ;H∗)+L4/3(QT )

≤ c3, (6.42)

‖ẇm‖L1(0,T ;L2(Ω)) ≤ c4, (6.43)

where ˙̃um =
∑m
i=1

˙̃uimψi, ẇm =
∑m
i=1 ẇimψi and c1, c2, c3, c4 are positive constants depending

on |Ω|, T , k1, f , g, ‖u0‖L2(Ω), ‖w0‖L2(Ω). In order to prove them, take the 2m equations in
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(6.39), multiply them times ũim (the first m components) and times wim (the others) and sum

together. Exploiting the eigenvalue and eigenvector properties, we obtain:

1

2

d

dt
‖ũm(·, t)‖L2(Ω) +

1

2

d

dt
‖wm(·, t)‖L2(Ω) + B(ũm(·, t), ũm(·, t))

+

∫
Ω

(1− χω)f̃(ũm(·, t), wm(·, t))ũm(·, t) +

∫
Ω

g̃(ũm(·, t), wm(·, t))wm(·, t) = 0.
(6.44)

Taking advantage of the coercivity of B, of the estimate from below (6.38), and eventually the

fact that ek1s ≥ 1, we get

1

2

d

dt
‖ũm(·, t)‖2L2(Ω) +

1

2

d

dt
‖wm(·, t)‖2L2(Ω) + k1‖ũm(·, t)‖2H1(Ω) + C1

∫
Ω∗
|ũm|4

≤ C2e
−2k1t|Ω|+ C3(‖ũm(·, t)‖2L2(Ω) + ‖wm(·, t)‖2L2(Ω));

integrating from 0 to t ≤ T and using the fact that
∫ t

0
e−2k1sds = 1−e−2k1t

2k1
≤ 1

2k1
, ‖ũm(·, 0)‖L2(Ω) =

‖Pm(u0)‖L2(Ω) ≤ ‖u0‖L2(Ω) and ‖wm(·, 0)‖L2(Ω) = ‖Pm(w0)‖L2(Ω) ≤ ‖w0‖L2(Ω), we obtain the

following important estimate:

1

2
‖ũm(·, t)‖2L2(Ω) +

1

2
‖wm(·, t)‖2L2(Ω) + k1

∫ t

0

‖ũm(·, s)‖2H1(Ω) + C1

∫ t

0

‖ũm(·, s)‖4L4(Ω∗)

≤ C2
|Ω|
2k1

+ C3

∫ t

0

(‖ũm(·, s)‖2L2(Ω) + ‖wm(·, s)‖2L2(Ω)) +
1

2
‖u0‖2L2(Ω) +

1

2
‖w0‖2L2(Ω).

(6.45)

As a consequence of (6.45), it holds

‖ũm(·, t)‖2L2(Ω) + ‖wm(·, t)‖2L2(Ω) ≤
(
C2
|Ω|
k1

+ ‖u0‖2L2(Ω) + ‖w0‖2L2(Ω)

)
+ 2C3

∫ t

0

(‖ũm(·, s)‖2L2(Ω) + ‖wm(·, s)‖2L2(Ω))

and thanks to Gronwall’s inequality

‖ũm(·, t)‖2L2(Ω) + ‖wm(·, t)‖2L2(Ω) ≤
(
C2
|Ω|
k1

+ ‖u0‖2L2(Ω) + ‖w0‖2L2(Ω)

)
e2C3T := c1, (6.46)

which proves (6.40).

Moreover, taking (6.45) with t = T , via (6.46) we have

k1‖ũm‖2L2(0,T ;H1) + C1‖ũm‖4L4(Q∗T ) ≤ C2
|Ω|
2k1

+ C3Tc1 +
1

2
‖u0‖2L2(Ω) +

1

2
‖w0‖2L2(Ω) =: c̃2,

hence (6.41) holds with c2 = max(
√

c̃2
k1
, 4

√
c̃2
C1

).

Instead, in order to prove (6.42), we need to consider ∂t ˙̃u(·, t) as a sum of two operators: one in

the dual of H1(Ω) a.e. in (0, T ) (and with square integrable H∗-norm), and one in the dual of

L4(QT ). Let v ∈ H1(Ω):

〈 ˙̃um(·, t), v〉∗ =

m∑
i=1

〈 ˙̃uim(t)Ψi, v〉∗ =

m∑
im=1

∫
Ω

˙̃uim(t)Ψiv =

m∑
i=1

˙̃uim(t)vi,
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and since the vectors {Ψi}mi=1 are orthogonal, the latter expression is equivalent to
∫

Ω
˙̃um(·, t)vm,

where vm = Pmv. Taking the first m equations of (6.39), multiplying each of them by vi and

summing up, we obtain∫
Ω

˙̃um(·, t)vm = −B(ũm(·, t), vm)−
∫

Ω∗
f̃(ũm(·, t), wm(·, t))vm;

Consider now ˙̃u
(1)
m such that 〈 ˙̃u(1)

m (·, t), v〉∗ = −B(ũm(·, t), vm):

|〈 ˙̃u(1)
m (·, t), v〉∗| = |B(ũm(·, t), vm)| ≤ kmax‖ũm(·, t)‖H1(Ω)

(
1 +

kmax
k1

)
‖v‖H1(Ω),

hence
∥∥∥ ˙̃u

(1)
m

∥∥∥
L2(0,T ;H∗)

is controlled by ‖ũ‖L2(0,T ;H1). Instead, consider ˙̃u(2) such that 〈 ˙̃u(2)
m (·, t), v〉∗ =

−
∫

Ω∗
f̃(ũm(·, t), wm(·, t))vm: for each v ∈ H1(Ω),Φ ∈ D(0, T ),

∣∣∣〈〈 ˙̃u(2)
m (·, t), v〉∗,Φ(t)〉

∣∣∣ =

∣∣∣∣∣
∫
Q∗T

f̃(ũm, wm)vmΦ

∣∣∣∣∣ ≤ ∥∥∥f̃(ũm, wm)
∥∥∥
L4/3(Q∗T )

‖vmΦ‖L4(QT ).

Hence, using also (6.37) and the fact that e−k1t ≤ 1,

∥∥∥ ˙̃u(2)
m

∥∥∥
L4/3(QT )

≤
(

1 +
kmax
k1

)∥∥∥f̃(ũm, wm)
∥∥∥
L4/3(Q∗T )

= c

(∫ T

0

∥∥∥f̃(ũm, wm)
∥∥∥4/3

L4/3(Ω∗)

)3/4

≤ c

(∫ T

0

(
A1e

2k1t‖ũm(·, t)‖3L4(Ω∗) +A2|Ω|3/4 +A3‖wm(·, t)‖3/2L2(Ω)

)4/3

dt

)3/4

≤ a1e
2k1T ‖ũm‖3L4(Q∗T ) + a2|Ω|3/4T + a3‖wm‖3/2L2(QT )

≤ a1e
2k1T c32 + a2|Ω|3/4T + a3Tc

3/2
1 .

We hence conclude that ˙̃um ∈ L2(0, T ;H∗) +L4/3(QT ) and that (6.42) is verified with a suitable

c4. Eventually, by analogous arguments, we have that ∀ψ ∈ L2(Ω)∫
Ω

ẇm(·, t)ψ = −
∫

Ω

g(eKtum(·, t), wm(·, t))ψm,

with ψm = Pmψ. Hence, in view of (6.34),

‖ẇm(·, t)‖L2(Ω) ≤ B1e
2k1t‖ũm(·, t)‖2L4(Ω) +B2|Ω|3/4 +B3‖wm(·, t)‖L2(Ω)

and

‖ẇm‖L1(0,T ;L2(Ω)) ≤ B1e
2k1T ‖ũm‖2L2(0,T ;H1(Ω)) +B2T |Ω|3/4 +B3T

1/2‖w‖L2(QT ).

3) Convergence to a weak solution

According to estimate (6.40), the solution of the discrete problem (6.39) is well defined globally in

C1(0, T ;R2m) for each m. Thanks to the provided a priori estimates, we know that the sequences

{ũm}, { ˙̃um}, {wm},{ẇm} are bounded (uniformly in m) in the spaces L2(0, T ;H1) ∩ L4(Q∗T ),

L2(0, T ;H∗) + L4/3(QT ), L2(QT ) and L1(0, T ;L2(Ω)), respectively. According to compactness
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results, we know that ∃ũ ∈ L2(0, T ;H1) ∩ L4(Q∗T ), ũ∗ ∈ L2(0, T ;H∗) + L4/3(QT ), w ∈ L2(QT )

such that

ũm
L2(0,T,H1)−−−−−−−⇀ ũ, ˙̃um

L2(0,T ;H∗)+L4/3(QT )−−−−−−−−−−−−−−−⇀ ũ∗, wm
L2(QT )−−−−−⇀ w.

Moreover, since L2(0, T ;H∗)+L4/3(QT ) ⊂ L4/3(0, T ;H∗), {ũm} is such that ‖ũm‖L2(0,T ;H1) and

‖∂tũm‖L4/3(0,T ;H∗) are bounded independently of m, and by [103, Theorem 5.1, Chapter 1] this

implies that, up to a subsequence, ũm
L2(QT )−−−−−→ ũ.

We now study the limit as m→ +∞ of each term of the equations

〈 ˙̃um(·, t), v〉∗ + B(ũm(·, t), v) +

∫
Ω

(1− χω)f̃(ũm(·, t), wm(·, t))v = 0,∫
Ω

ẇm(·, t)ψ +

∫
Ω

g̃(ũm(·, t), wm(·, t))ψ = 0,

(6.47)

which are equivalent to (6.39) if v, ψ ∈ Vm.

• Consider v ∈ H1(Ω), Φ ∈ D(0, T )

〈 lim
m→∞

〈 ˙̃um(·, t), v〉∗,Φ〉 = 〈 lim
m→∞

∫
Ω

(
m∑
i=1

˙̃uim(t)Ψi

)
v,Φ〉 = −〈 lim

m→∞

∫
Ω

(
m∑
i=1

ũim(t)Ψi

)
v,Φ′〉

= −〈
∫

Ω

ũv,Φ′〉 = 〈〈∂tũ, v〉∗,Φ〉,

which implies that limm→∞〈 ˙̃um, v〉∗ = 〈∂tũ, v〉∗ in a distributional sense. Moreover, since

vΦ ∈ L2(0, T ;H1) ∩ L4(Q∗T ) we also have

lim
m→∞

〈〈 ˙̃um, v〉∗,Φ〉 = 〈〈u∗, v〉∗,Φ〉,

hence in addition ∂tũ = u∗ ∈ L2(0, T ;H∗) + L4/3(QT ).

• Consider v ∈ H1(Ω) and Φ ∈ D(0, T ): by weak convergence,

lim
m→∞

〈B(ũm, v),Φ〉 =

∫ T

0

lim
m→∞

B(ũm, vΦ) =

∫ T

0

B(ũ, vΦ) = 〈B(ũ, v),Φ〉.

• Recalling the expression f̃(ũ, w) = e2k1tAũ3−(1+a)ek1tAũ2+aAũ+ũw, we prove separately

that ∫ T

0

∫
Ω

(1− χω)
(
e2k1tAũ3

m − (1 + a)ek1tAũ2
m + aAũm

)
vφ→∫ T

0

∫
Ω

(1− χω)
(
e2k1tAũ3 − (1 + a)ek1tAũ2 + aAũ

)
vφ

(6.48)

and ∫ T

0

∫
Ω

(1− χω)ũmwmvφ→
∫ T

0

∫
Ω

(1− χω) (ũw) vφ. (6.49)

The limit in (6.48) is proved by Lebesgue dominated convergence theorem: since ũm
L2(QT )−−−−−→

ũ, ũm → ũ a.e. in QT , and hence the pointwise convergence of the integrand is guaranteed
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almost everywhere. Moreover,∥∥(1− χω)
(
e2k1tAũ3

m − (1 + a)ek1tAũ2
m + aAũm

)
vΦ
∥∥
L1(Q∗T )

≤
∥∥∥(Ã1|ũm|3 + Ã2

)
vΦ
∥∥∥
L1(Q∗T )

≤
∥∥∥Ã1|ũm|3 + Ã2

∥∥∥
L4/3(Q∗T )

‖vΦ‖L4(Q∗T ) ≤
(
Ã1‖ũm‖3/4L4(Q∗T ) + Ã2|Ω|3/4

)
‖vΦ‖L4(Q∗T ),

which is bounded independently of m. Instead, regarding (6.49),∫
Q∗T

(1−χω)(ũmwm− ũw)vΦ =

∫
Q∗T

(1−χω)(wm−w)ũvΦ+

∫
Q∗T

(1−χω)(ũm− ũ)wmvΦ→ 0;

the first term of the right-hand side vanishes thanks to the weak convergence of wm (since

ũ ∈ L4(Q∗T ) and also vΦ). Regarding the second one, it holds that

‖(1− χω)(ũm − ũ)wmvΦ‖L1(Q∗T ) ≤ ‖(ũm − ũ)vΦ‖L2(Q∗T )‖wm‖L2(QT ),

and in particular ‖wm‖L2(QT ) is uniformly bounded, whereas and the other term, which can

be expressed as

‖(ũm − ũ)vΦ‖2L2(Q∗T ) =

∫
Q∗T

(ũm − ũ)2v2Φ2,

tends to 0 via Lebesgue’s dominated convergence theorem. Indeed the integrand pointwise

converges to 0 a.e. and the uniform bound holds∥∥(ũm − ũ)2v2Φ2
∥∥
L1(Q∗T )

≤ (c2 + ‖ũ‖L4(Q∗T ))‖vΦ‖L4(Q∗T ).

• Analogously to the previous points, one shows that ∀ψ ∈ L2(Ω), ∀Φ ∈ D(0, T )

〈 lim
m→∞

∫
Ω

ẇm(·, t)ψ,Φ〉 = −〈 lim
m→∞

∫
Ω

wm(·, t)ψ,Φ′〉 = −〈
∫

Ω

w(·, t)ψ,Φ′〉 = 〈
∫

Ω

∂tw(·, t)ψ,Φ〉,

By now, we can only say that ∂tw(·, t) ∈ D′(0, T ), but further regularity will be inherited

in the sequel.

• Finally, recalling the expression g̃(ũ, w) = εAe2k1tũ2 − εA(1 + a)ek1tũ+ εw, we prove sepa-

rately that∫
QT

(
εAe2k1tũ2

m − εA(1 + a)ek1tũm
)
ψΦ→

∫
QT

(
εAe2k1tũ2 − εA(1 + a)ek1tũ

)
ψΦ (6.50)

and ∫ T

0

∫
Ω

εwmψΦ→
∫ T

0

∫
Ω

εwψΦ. (6.51)

The limit (6.50) is proved as before by Lebesgue’s dominated convergence theorem, taking

advantage of the (a.e.) pointwise convergence of ũm and of the bound∥∥(e2k1tεAũ2
m − εA(1 + a)ek1tũm

)
ψΦ(t)

∥∥
L1(QT )

≤
∫ T

0

∫
Ω

(C1ũ
2
m + C2)ψΦ

≤ ‖ψ‖L2(Ω)‖Φ‖L∞(0,T )

∫ T

0

∥∥C1ũ
2
m(·, t) + C2

∥∥
L2(Ω)

≤ ‖ψ‖L2(Ω)‖Φ‖L∞(0,T )

(
C1

∫ T

0

‖ũm(·, t)‖2L4(Ω) + C2T

)
≤ ‖ψ‖L2(Ω)‖Φ‖L∞(0,T )

(
C1‖ũm‖2L2(0,T ;H1) + C2T

)
.

The limit in (6.51) immediately follows by the weak convergence of wm.
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Combining all the results that are previously listed, according to (6.47) we obtain that (ũ, w)

satisfies distributionally in time

〈∂tũ(·, t), v〉∗ + B(ũ(·, t), v) +

∫
Ω

(1− χω)f̃(ũ(·, t), w(·, t))v = 0,∫
Ω

∂tw(·, t)ψ +

∫
Ω

g̃(ũ(·, t), w(·, t))ψ = 0,

for all v, ψ ∈ Vm, ∀m, and since {Ψm} is a basis both for H1(Ω) and L2(Ω), the equation is

satisfied for all v ∈ H1(Ω), ψ ∈ L2(Ω). Eventually, since∫
Ω

∂tw(·, t)ψ = −
∫

Ω

g̃(ũ(·, t), w(·, t))ψ ∀ψ ∈ L2(Ω),

then, taking ψ = ∂tw(·, t) (which belongs to L2(Ω) for a.e. t),

‖∂tw(·, t)‖L2(Ω) ≤ ‖g̃(ũ(·, t), w(·, t))‖L2(Ω) ≤ B1 +B2‖ũ(·, t)‖2L4(Ω) +B3‖w(·, t)‖L2(Ω)

and hence ‖ẇ‖L1(0,T ;L2(Ω)) is bounded. This finally allows to conclude, after the change of variable

u = eKtũ, that (u,w) is a weak solution of problem (6.2) in the sense of Definition 6.1.

4) Gain of regularity on u and w

We first prove that u ∈ C([0, T ];L2(Ω)): indeed, it holds that 〈∂tu, u〉∗ = 1
2
d
dt‖u(·, t)‖2L2(Ω) in the

sense of distributions, and hence

1

2

d

dt
‖u(·, t)‖2L2(Ω) = −

∫
Ω

K(χω)|∇u|2 −
∫

Ω

(1− χω)f(u,w)u,

where the right-hand side surely belongs to L1(0, T ). By the fundamental theorem of calculus,

one obtains that u ∈ C([0, T ];L2(Ω)]). Analogously, we show that 1
2
d
dt‖w‖L2(Ω) =

∫
Ω
g(u,w)w ∈

L1(0, T ): indeed,∫ T

0

∣∣∣∣∫
Ω

g(u(x, t), w(x, t))w(x, t)dx

∣∣∣∣ dt ≤ ∫ T

0

‖g(u(·, t), w(·, t))‖L2(Ω)‖w(·, t)‖L2(Ω)dt

≤ ‖w‖L∞(0,T ;L2(Ω))

∫ T

0

(
B1‖u(·, t)‖2L4(Ω) +B2|Ω|1/2 +B3‖w(·, t)‖L2(Ω)

)
≤ ‖w‖L∞(0,T ;L2(Ω))

(
B1‖u‖L2(0,T ;H1(Ω)) +B2T |Ω|1/2 +B3T‖w‖L∞(0,T ;L2(Ω))

)
,

whence w ∈ C([0, T ];L2(Ω)). By the explicit expression of the solution of the third line in (6.2),

w(x, t) = e−εtw0(x) + εAe−εt
∫ t

0

((1 + a)u− u2)eεsds. (6.52)

If we assume that w0 ∈ L3(Ω), we obtain that w ∈ L∞(0, T ;L3(Ω)):

‖w(·, t)‖L3(Ω) ≤ ‖w0‖L3(Ω) + c

(∫
Ω

(∫ t

0

|u(x, s)|+ |u(x, s)|2
)3
) 1

3

≤ ‖w0‖L3(Ω) + c

∫ t

0

(∫
Ω

|u(x, s)|3 +

∫
Ω

|u(x, s)|6
) 1

3

≤ ‖w0‖L3(Ω) + c‖u‖L1(0,T ;L3(Ω)) + c‖u‖2L2(0,T ;L6(Ω))

≤ ‖w0‖L3(Ω) + c‖u‖L2(0,T ;H1(Ω)) + c‖u‖2L2(0,T ;H1(Ω)),

(6.53)
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where we have used the generalized Minkowski inequality, proved e.g. in [141, Chapter 1, formula

9.12].

5) Further a priori estimates

Consider now the weak formulation of (6.2) as in (6.5) and use ϕ = u, ψ = w as test functions:

1

2

d

dt
(‖u(·, t)‖2L2(Ω) + ‖w(·, t)‖2L2(Ω)) +

∫
Ω

K(χω)|∇u(·, t)|2 +

∫
Ω∗
f(u(·, t), w(·, t))u(·, t)

+

∫
Ω

g(u(·, t), w(·, t))w(·, t) = 0

and by the estimates from below

1

2

d

dt
(‖u(·, t)‖2L2(Ω) + ‖w(·, t)‖2L2(Ω)) + k1‖u(·, t)‖2H1(Ω) + C1

∫
Ω∗
|u(·, t)|4

≤ C2 + (C3 + k1)(‖u(·, t)‖2L2(Ω) + ‖w(·, t)‖2L2(Ω)).

Since both d
dt‖u(·, t)‖2L2(Ω) and d

dt‖w(·, t)‖2L2(Ω) belong to L1(0, T ), we may apply the fundamental

theorem of calculus and obtain

1

2

(
‖u(·, t)‖2L2(Ω) + ‖w(·, t)‖2L2(Ω)

)
+

∫ t

0

k1‖u(·, s)‖H1(Ω)ds+ C1

∫
Q∗T

|u|4

≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω)

)
+ C2t+ (C3 + k1)

∫ s

0

(
‖u(·, s)‖2L2(Ω) + ‖w(·, s)‖2L2(Ω)

)
ds.

By Gronwall inequality, we have

1

2

(
‖u(·, t)‖2L2(Ω) + ‖w(·, t)‖2L2(Ω)

)
≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω) + C2t

)
e(C3+k1)t,

hence ‖u‖L∞(0,T ;L2(Ω)) is bounded by a constant depending on ‖u0‖2L2(Ω), ‖u0‖2L2(Ω), T,Ω, f, g

and k1 only. Analogous bounds can be proved for ‖u‖L2(0,T ;H1(Ω)) and ‖u‖L4(Q∗T ). This implies

that also the bound in (6.53) only depends on ‖u0‖2L2(Ω), ‖w0‖2L2(Ω), T,Ω, f, g and k1.

6) Uniqueness

We now follow the argument of [98, Theorem 1.1]. Consider two weak solutions (u1, w1) and

(u2, w2) of (6.2) in the sense of Definition 6.1. Testing both the equations for u1 and u2 with

ϕ = u1 − u2 and subtracting, we get:

1

2

d

dt
‖u1 − u2‖2L2(Ω) + k1‖u1 − u2‖2H1(Ω) +

∫
Ω

(1− χω)(f(u1, w1)− f(u2, w2))(u1 − u2)

≤ k1‖u1 − u2‖2L2(Ω)

Moreover, according to the expression of f in the Aliev Panfilov model (6.3), it holds

f(u1, w1)− f(u2, w2) = (u1 − u2)(u2
1 + u1u2 + u2

2 − (a+ 1)(u1 + u2) + a)

+ (u1 − u2)w1 + u2(w1 − w2)

and eventually, since |1− χω| ≤ 1,

1

2

d

dt
‖u1 − u2‖2L2(Ω) + k1‖u1 − u2‖2H1(Ω) ≤ k1‖u1 − u2‖2L2(Ω)

+ (a+ 1)

∫
Ω

|u1 + u2|(u1 − u2)2 +

∫
Ω

|w1|(u1 − u2)2 +

∫
Ω

|u2||u1 − u2||w1 − w2|
(6.54)
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Consider the second term at right-hand side: via Young inequality (with coefficient ε1 which

might depend on time)∫
Ω

|u1 + u2|(u1 − u2)2 ≤ cε1(t)‖(u1 − u2)(u1 + u2)‖2L2(Ω) +
c

ε1(t)
‖u1 − u2‖2L2(Ω)

≤ cε1(t)‖(u1 − u2)‖2L4(Ω)‖(u1 + u2)‖2L4(Ω) +
c

ε1(t)
‖u1 − u2‖2L2(Ω)

≤ cε1(t)(1 + ‖u1‖2L4(Ω) + ‖u2‖2L4(Ω))‖(u1 − u2)‖2L4(Ω) +
c

ε1(t)
‖u1 − u2‖2L2(Ω).

Selecting ε1(t) = ε1
1+‖u1‖2L4(Ω)

+‖u2‖2L4(Ω)

we can conclude that∫
Ω

|u1 + u2|(u1 − u2)2 ≤ c

ε1
(1 + ‖u1‖2L4(Ω) + ‖u2‖2L4(Ω))‖u1 − u2‖2L2(Ω)

+ cε1‖(u1 − u2)‖2L4(Ω).

(6.55)

Consider now the following term in (6.54): applying Hölder and Young inequalities,∫
Ω

|w1|(u1 − u2)2 =

∫
Ω

(
w

2/3
1 (u1 − u2)

)(
w

1/3
1 (u1 − u2)

)
≤ cε2

(∫
Ω

w
4/3
1 (u1 − u2)2

)
+

c

ε2

(∫
Ω

w
2/3
1 (u1 − u2)2

)
≤ cε2

(∫
Ω

w
8/3
1

) 1
2

‖u1 − u2‖2L4(Ω) +
c

ε2

(∫
Ω

w
4/3
1 (u1 − u2)2

) 1
2

‖u1 − u2‖L2(Ω)

≤ cε2‖w1‖4/3L8/3(Ω)
‖u1 − u2‖2L4(Ω)+

c

ε2

[
ε̃2‖w1‖4/3L8/3(Ω)

‖u1 − u2‖2L4(Ω) +
1

ε̃2
‖u1 − u2‖2L2(Ω)

]
≤ c

(
ε2 +

ε̃2

ε2

)
‖w1‖4/3L∞(0,T ;L3(Ω)‖u1 − u2‖2L4(Ω) +

c

ε2ε̃2
‖u1 − u2‖2L2(Ω).

(6.56)

Regarding the last term in (6.54), we derive∫
Ω

(w1 − w2)u2(u1 − u2) ≤ cε3(t)

∫
Ω

(u2)2(u1 − u2)2 +
c

ε3(t)
‖w1 − w2‖2L2(Ω) ≤

≤ cε3(t)‖u2‖2L4(Ω)‖u1 − u2‖2L4(Ω) +
c

ε3(t)
‖w1 − w2‖2L2(Ω)

and selecting ε3(t) = ε3
1+‖u2‖2L4(Ω)

, we conclude∫
Ω

(w1 − w2)u2(u1 − u2) ≤ cε3‖u1 − u2‖2L4(Ω) +
c

ε4
(1 + ‖u2‖2L4(Ω))‖w1 − w2‖2L2(Ω). (6.57)

Collecting (6.55), (6.56) and (6.57) in (6.54),

1

2

d

dt
‖u1 − u2‖2L2(Ω) + k1‖u1 − u2‖2H1(Ω) ≤ k1‖u1 − u2‖2L2(Ω)

+ c

(
ε1 +

(
ε2 +

ε2

ε̃2

)
‖w1‖L∞(0,T ;L3(Ω)) + ε3

)
‖u1 − u2‖2L4(Ω)

+ c

(
1

ε1
(1 + ‖u1‖2L4(Ω) + ‖u2‖2L4(Ω)) +

1

ε2ε̃2

)
‖u1 − u2‖2L2(Ω)

+
c

ε3
(1 + ‖u2‖2L4(Ω))‖w1 − w2‖2L2(Ω),
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and selecting ε1, ε2, ε̃2 and ε3 such that c
(
ε1 +

(
ε2 + ε2

ε̃2

)
‖w1‖L∞(0,T ;L3(Ω)) + ε3

)
= k1

2 (which is

possible also thanks to the fact that the estimate in (6.53) does not depend on w1 as previously

proved), we conclude

d

dt
‖u1 − u2‖2L2(Ω) + k1‖u1 − u2‖2H1(Ω)

≤ c(1 + ‖u1‖2L4(Ω) + ‖u2‖2L4(Ω))(‖u1 − u2‖2L2(Ω) + ‖w1 − w2‖2L2(Ω)).
(6.58)

Analogously to what done in (6.54), testing both the equations for w1 and w2 with ψ = w1 −w2

and subtracting, we obtain

1

2

d

dt
‖w1 − w2‖2L2(Ω) = ε‖w1 − w2‖2L2(Ω) + εA(1 + a)

∫
Ω

(u1 − u2)(w1 − w2)

− εA
∫

Ω

(u1 + u2)(u1 − u2)(w1 − w2)

≤ c‖w1 − w2‖2L2(Ω) + ‖u1 − u2‖2L2(Ω) + ε4(t)‖u1 + u2‖2L4(Ω)‖u1 − u2‖2L4(Ω)

+
c

ε4(t)
‖w1 − w2‖2L2(Ω)

and we select ε4(t) = ε4
1+‖u1‖2L4(Ω)

+‖u2‖2L4(Ω)

. Collecting together the latter inequality with (6.58),

we finally conclude that

d

dt

(
‖u1 − u2‖2L2(Ω) + ‖w1 − w2‖2L2(Ω)

)
+ k1‖u1 − u2‖2H1(Ω)

≤ A(t)
(
‖u1 − u2‖2L2(Ω) + ‖w1 − w2‖2L2(Ω)

) (6.59)

with A(t) = c(1 + ‖u1(·, t)‖2L4(Ω) + ‖u2(·, t)‖2L4(Ω)). By Gronwall’s inequality, it holds that

‖u1(·, t)− u2(·, t)‖2L2(Ω) + ‖w1(·, t)− w2(·, t)‖2L2(Ω)

≤ eÃ
(
‖u1(·, 0)− u2(·, 0)‖2L2(Ω) + ‖w1(·, 0)− w2(·, 0)‖2L2(Ω)

)
,

being Ã bounded independently of u1, u2 because

Ã =

∫ T

0

A(t)dt ≤ c(T + ‖u1‖2L2(0,T ;H1(Ω)) + ‖u2‖2L2(0,T ;H1(Ω)))

and because of the a priori estimates for the L2(0, T ;H1(Ω)) norm previously proved. Since

u1(·, 0) = u2(·, 0) = u0 and w1(·, 0) = w2(·, 0) = w0 we have that

‖u1 − u2‖L∞(0,T ;L2(Ω)), ‖w1 − w2‖L∞(0,T ;L2(Ω)) = 0.

Again from (6.59), integrating from 0 to T ,

k1‖u1 − u2‖2L2(0,T ;H1(Ω)) ≤
∫ T

0

A(t)
(
‖u1 − u2‖2L2(Ω) + ‖w1 − w2‖2L2(Ω)

)
dt = 0.

Analogously, one immediately notices that ‖∂tu1 − ∂tu2‖L2(0,T ;H∗)+L4/3(QT ) = 0 and also that

‖∂tw1 − ∂tw2‖L1(0,T ;L2(Ω)) = 0, hence the weak solution is unique.
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6.4 Proof of Theorem 6.3

Since χω is an indicator function, surely χω ∈ L2(Ω) and by density arguments

∃{φk} ⊂ C2(Ω) : φk → χω in L2(Ω) and a.e., 0 ≤ φk(x) ≤ 1 ∀x ∈ Ω. (6.60)

Define (uk, wk) the solution of problem (6.2) when χω is replaced with φk. We observe that, for any

fixed k, an application of Theorem 6.1 ensures the existence and uniqueness of a classical solution

of the problem: indeed, the conductivity tensor is again a smooth function of x, and one should

replace the function f with (1 − φk)f , and the assumptions on φk ensure that if f, g satisfy the

Nagumo condition on S, the same holds for (1−φk)f and g. Observe that (uk, wk) ∈ 〈û, ũ〉 provides

a uniform bound both from above and from below.

We now prove that the limit φk
L2

−−→ χω implies the convergence of (uk, wk) to a weak solution

(u,w) of (6.2). We start by proving some a priori estimate. Consider the weak form of the problem

solved by (uk, wk) and take the classical solutions uk, wk as test functions:

1

2

d

dt

(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+

∫
Ω

K(φk)∇uk(·, t) · ∇uk(·, t)

= −
∫

Ω

(1− φk)f(uk(·, t), wk(·, t))uk(·, t)−
∫

Ω

g(uk(·, t), wk(·, t))wk(·, t).

Recall now that k1 is the minimum between the eigenvalues of K1 and K0, whereas kmax is the

maximum among them (see Assumption 4). Moreover, since φk, uk, wk are bounded indepen-

dently of k (indeed, φk ∈ [0, 1] and (uk, wk) ∈ S) and f, g are continuous, we can introduce

Mf = max(x,t)∈QT |(1− φk)f(uk, wk)| and Mg = max(x,t)∈QT |g(uk, wk)| which are independent

of k. Hence, by Hölder and Young inequalities,

1

2

d

dt

(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+ k1‖uk(·, t)‖2H1(Ω)

≤
(
k1 +

1

2
max{Mf ,Mg}

)(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+

1

2
|Ω|(Mf +Mg).

Integrating from 0 to t and using Gronwall’s inequality, we get(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω) +

1

2
|Ω|(Mf +Mg)t

)
e(kmin+ 1

2max{Mf ,Mg})t,

whence

‖uk‖2L∞(0,T ;L2(Ω)), ‖uk‖
2
L∞(0,T ;L2(Ω))

≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω) +

1

2
|Ω|(Mf +Mg)T

)
e(kmin+ 1

2max{Mf ,Mg})T := c21.

It also follows that

‖uk‖2L2(0,T,H1(Ω)) ≤
1

k1

(
k1 +

1

2
max{Mf ,Mg}

)
c21T +

1

2k1
|Ω|(Mf +Mg)T =: c22.
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Regarding the derivatives, in these hypothesis we can prove that ∂tuk ∈ L2(0, T,H∗); indeed, for

each ϕ ∈ H1(Ω),

|〈∂tuk(·, t), ϕ〉∗| ≤ kmax‖∇uk(·, t)‖L2(Ω)‖∇ϕ‖L2(Ω) +Mf |Ω|
1
2 ‖ϕ‖L2(Ω)

≤ max{kmax,Mf |Ω|
1
2 }‖uk(·, t)‖H1(Ω)‖ϕ‖H1(Ω)

and computing the L2 norm in time

‖uk‖L2(0,T,H∗) ≤ max{kmax,Mf |Ω|
1
2 }2c22 =: c23.

Analogously, one proves that ‖∂twk‖L2(QT ) ≤ c4.

As a consequence of the uniform bounds (the constants c1, c2, c3, c4 do not depend on k), we can

ensure that ∃u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), ∃w ∈ L∞(0, T ;L2(Ω)), ∃u∗ ∈ L2(0, T ;H∗),

∃w∗ ∈ L2(QT ) such that

uk
L2(0,T,H1)−−−−−−−⇀ u, ∂tuk

L2(0,T,H∗)−−−−−−−⇀ u∗, wk
L2(QT )−−−−−⇀ w, ∂twk

L2(QT )−−−−−⇀ w∗.

We immediately remark that this implies in particular that uk
L2(QT )−−−−−→ u (see [122, Theorem 8.1]),

hence uk → u a.e. in QT . A pointwise convergence result could be stated also for wk by considering

the additional regularity of g: nevertheless, taking into the account the expression of f and g

we do not need it in the sequel. Consider now the expression of the problem solved by (uk, wk):

∀ϕ ∈ H1(Ω), ψ ∈ L2(Ω).

〈∂tuk, ϕ〉∗ +

∫
Ω

K(φk)∇uk · ∇ϕ+

∫
Ω

(1− φk)Auk(uk − a)(uk − 1)ϕ+

∫
Ω

(1− φk)ukwkϕ

+

∫
Ω

∂twkψ +

∫
Ω

Aε(u2
k − (1 + a)uk)ψ +

∫
Ω

εwkψ = 0.

(6.61)

We proceed term by term:

• by the weak convergence of ∂tuk,

lim
k→+∞

〈∂tuk, ϕ〉∗ = 〈∂tu, ϕ〉∗

in the sense of the distributions. Moreover, for each Φ ∈ D(0, T ),

〈 lim
k→+∞

〈∂tuk, ϕ〉∗,Φ〉 = −〈 lim
k→+∞

〈uk,Φ′〉, ϕ〉∗ = −〈〈u,Φ′〉, ϕ〉∗ = 〈〈∂tu, ϕ〉∗,Φ〉, (6.62)

whence ∂tu = u∗ ∈ L2(0, T ;H∗) ⊂ L2(0, T ;H∗) + L4/3(Q∗T ).

• For any ϕ ∈ H1(Ω), Φ ∈ D(0, T ), consider the difference

〈
∫

Ω

K(φk)∇uk · ∇ϕ,Φ〉 − 〈
∫

Ω

K(χω)∇u · ∇ϕ,Φ〉

= 〈
∫

Ω

K(φk)∇(uk − u) · ∇ϕ,Φ〉+ 〈
∫

Ω

(K(φk)−K(χω))∇u · ∇ϕ,Φ〉.

The first term in the latter expression converges to 0 due to weak convergence of u and since

K(φk) is bounded in L∞(Ω); whereas the second term tends to 0 according to the Lebesgue’s

theorem, because of the pointwise (a.e.) convergence of φk to χω and since the integrand is

uniformly bounded by K0∇u · ∇ϕΦ, which is an integrable function. Thus,

〈
∫

Ω

K(φk)∇uk · ∇ϕ,Φ〉 → 〈
∫

Ω

K(χω)∇u · ∇ϕ,Φ〉. (6.63)
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• Using the theorem of dominated convergence, we can assess

〈
∫

Ω

(1− φk)Auk(uk − a)(uk − 1)ϕ,Φ〉 → 〈
∫

Ω

(1− χω)Au(u− a)(u− 1)ϕ,Φ〉, (6.64)

indeed the (a.e.) pointwise convergence is guaranteed and the quantity

‖(1− φk)Auk(uk − a)(uk − 1)ϕ‖L1(QT ) ≤ ‖Auk(uk − a)(uk − 1)ϕ‖L1(QT )

is bounded independently of k since uk ∈ [u, u].

• Consider the term
∫

Ω
(1− φk)ukwkϕ:

〈
∫

Ω

(1− φk)ukwkϕ,Φ〉 − 〈
∫

Ω

(1− χω)uwϕ,Φ〉

= 〈
∫

Ω

(1− φk)uk(wk − w)ϕ,Φ〉+ 〈
∫

Ω

((1− φk)uk − (1− χω)u)wϕ,Φ〉.

The first addend in the summation vanishes due to weak L2(QT ) convergence of wk, because

‖(1− φk)uk‖L∞(Ω) is bounded independently of k and ϕ ∈ L2(QT ). The latter term instead

vanishes due to Lebesgue’s theorem, since φk and uk have pointwise limit almost everywhere,

and
‖((1− φk)uk − (1− χω)u)wϕΦ‖L1(QT ) ≤

‖((1− φk)uk − (1− χω)u)Φ‖L∞(QT )‖ϕ‖L2(QT )‖w‖L2(QT ).

We finally conclude

〈
∫

Ω

(1− φk)ukwkϕ,Φ〉 → 〈
∫

Ω

(1− χω)uwϕ,Φ〉. (6.65)

• By the weak convergence of ∂twk in L2(QT ),

lim
k→+∞

∫
Ω

∂twkψ =

∫
Ω

∂twψ

in the sense of the distributions. Moreover, for each Φ ∈ D(0, T ),

〈 lim
k→+∞

∫
Ω

∂twkψ,Φ〉 = −
∫

Ω

lim
k→+∞

〈wk,Φ′〉ψ = −
∫

Ω

〈w,Φ′〉ψ = 〈
∫

Ω

∂twψ,Φ〉, (6.66)

thus ∂tw = w∗ ∈ L2(QT ) ⊂ L1(0, T ;L2(Ω)).

• The convergence

〈
∫

Ω

Aε(u2
k − (1 + a)uk)ψ,Φ〉 → 〈

∫
Ω

Aε(u2 − (1 + a)u)ψ,Φ〉 (6.67)

can be deduced by Lebesgue’s theorem.

• Finally,

〈 lim
k→+∞

∫
Ω

εwkψ,Φ〉 =

∫
Ω

lim
k→+∞

ε〈wk,Φ〉ψ = 〈
∫

Ω

εwψ,Φ〉 (6.68)

is an immediate consequence of the weak convergence of wk in L2(QT ).
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Combining (6.62),(6.63),(6.64),(6.65),(6.66), (6.67), and (6.68), we can ensure that the limit (u,w) is

a weak solution of (6.2). Moreover, by expressing w in closed formula we can conclude that wk → w

pointwise (a.e.) in QT , hence also (u(x, t), w(x, t)) ∈ S a.e. in QT .

Eventually, the additional (Hölder) regularity on u can be recovered via Theorem 10.1 of [115,

Chapter 3]. Indeed, consider the first equation in (6.2):

∂tu− div(K(χω)∇u) = −(1− χω)f(u,w);

the hypothesis of the theorem hold since K(χω) ∈ L∞(Ω), f(u,w) ∈ L∞(QT ), and u ∈ L∞(QT ).

We can extend the results up to the boundary due to the hypothesis on ∂Ω and u0 contained in

Assumption 4, and conclude u ∈ Cα,α/2(QT ). Regarding w, again by exploiting the representation

in (6.52) we can recover the expected regularity, namely w ∈ Cα,1+α/2(QT ).



Chapter 7

A posteriori error analysis for the

monodomain model

This final chapter is devoted to the numerical analysis of the monodomain model. This is a

preliminary study for the development of efficient techniques for the inverse problem which motivates

the present thesis. In fact, the reconstruction algorithms proposed in Chapter 2 and 5 respectively

for the detection of small and large inclusions in simplified models strictly rely on the solution of the

associated direct problem (once or several times). The main issue of the numerical analysis of the

monodomain problem is not only to formulate an algorithm for the approximation of the solution of

the problem, but also to provide suitable convergence estimates for the error between the discrete

and the exact solution as the discretization parameters tend to 0. In this context, the development

of a posteriori error estimates (i.e., estimates based on indicators which can be computed by the

knowledge of the discrete solution) is a key result for the introduction of an adaptive numerical

scheme, allowing for a significant speedup of the computation.

Regarding the numerical analysis of models for the electrical activity of the heart, we remark that

the bidomain model has been the subject of numerous studies from a numerical standpoint. Several

works in the recent years have tackled the numerical approximation of this model, by employing,

e.g., the Finite Element Method (FEM) for the spatial discretization, as well as an implicit scheme

for the temporal discretization, endowed with a suitable Newton algorithm for the treating of the

nonlinearities (see [61, Chapter 7] and references therein). In [127], a careful a priori analysis of the

Galerkin semidiscrete space approximation of this system is performed, investigating convergence

properties and stability estimates for the semidiscrete solution. This result, coupled with the argu-

ment regarding the time-discretization analysis provided in [62], allows for an exhaustive a priori

error analysis for the bidomain model. In [59] the authors introduce a space-time adaptive algorithm

for the solution of the bidomain model by resorting to a stepsize control for the temporal adaptivity,

whereas spatial adaptivity is performed by virtue of a posteriori local error estimators. However, a

complete a posteriori error analysis is missing.

The purpose of this chapter is to propose an a posteriori error analysis for the monodomain

model. In particular, we consider a Newton-Galerkin approximation of the monodomain system,

possibly in presence of an ischemic region. Inspired by the seminal work [137] and by the recent

155
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papers [73, 16] we derive a posteriori error bounds by providing a suitable splitting of the total

residual into three operators, accounting for different sources of error entailed by the discretization

process. Specifically, we introduce a linearization residual, a time discretization residual, and a space

discretization residual, with the additional difficulty with respect, e.g., to [16] represented by the

coupled structure of the system of differential equations.

The chapter is organized as follows: in Section 7.1 we introduce the Newton-Galerkin full dis-

cretization of the monodomain model. In Section 7.2 we introduce the residual operators associated

with the discrete solution and prove the equivalence between the error and the residual (in suitable

norms). In Section 7.3 we define three a posteriori estimators and employ them to prove an upper

bound for the approximation error. We also provide a lower estimate for the error in terms of the

same indicators, assessing their efficiency. Finally, Section 7.4 reports some numerical experiments

assessing the validity of the derived estimates and investigating convergence rates both of the error

and of the estimators as the discretization parameters are reduced.

Notation: we use the symbol . to denote that an inequality holds up to a positive multiplicative

constant.

7.1 A Newton-Galerkin scheme for the approximation of the

monodomain model

Consider the coupled problem

∂tu− div(k(χ)∇u) + (1− χ)f(u,w) = 0 in Ω× (0, T ),

k(χ)∂νu = 0 on ∂Ω× (0, T ),

u|t=0 = u0 in Ω,

∂tw + g(u,w) = 0 in Ω× (0, T ),

w|t=0 = w0 in Ω,

(7.1)

being u the transmembrane electrical potential in the cardiac tissue, k the conductivity coefficient,

altered by the presence of an ischemic area ω ⊂ Ω. Let χ = χω, k(χ) = k0− (k0−k1)χ, k0 > k1 > 0.

The nonlinear term f(u,w) (which is switched off in the ischemic area) models the current induced

by the motion of ions across the membrane, and is addressed as ionic current. According to a well

established phenomenological approach, f is a function of the potential u and of a recovery variable

w, whose dynamics is governed by a coupled nonlinear ordinary differential equation involving a

nonlinear term g. We focus in particular on the Aliev-Panfilov model of the cardiac tissue, according

to linearized version reported, e.g., in [41]; namely, the nonlinear terms f and g are as follows:

f(u,w) = Au(u− a)(u− 1) + uw, g(u,w) = ε(Au(u− 1− a) + w), (7.2)

with A, ε0, µ1, µ2 > 0, 0 < a < 1. Such a problem is mathematically well-posed: in [41] the existence

of a weak solution globally in time is proved by a Faedo-Galerkin technique in the case no ischemic

area is present. For the same result in the case of the ischemic heart, we refer to a preliminary result

contained in Chapter 6:
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Proposition 7.1. Let the initial data u0, w0 ∈ Cα(Ω̄) satisfy the bound 0 ≤ u0 ≤ 1 and 0 ≤
w0 ≤ A(1+a)2

4 , and consider the compatibility conditions u0 ∈ C1(Ω), ∂νu0 = 0, being ∂Ω ∈ C2+α.

Then, there exists a unique weak solution (u,w) of (7.1), u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

∂tu ∈ L2(0, T ;H∗), w ∈ L∞(0, T ;L2(Ω)), ∂tw ∈ L2((0, T ) × Ω), where H∗ = (H1(Ω))∗. Moreover,

u ∈ Cα,α/2(Ω× (0, T )), w ∈ Cα,1+α/2(Ω× (0, T )) and it holds

0 ≤ u(x, t) ≤ 1, 0 ≤ w(x, t) ≤ A(1 + a)2

4
∀(x, t) ∈ Ω× (0, T )

We will extensively take advantage of the fact that the functions f, g in (7.2) are continuously

differentiable on the rectangle [0, 1]×
[
0, A(1+a)2

4

]
.

The weak formulation of (7.1) reads
∫

Ω

∂tuϕ+

∫
Ω

k∇u · ∇ϕ+

∫
Ω

(1− χ)f(u,w)ϕ = 0 ∀ϕ ∈ H1(Ω),∫
Ω

∂twψ +

∫
Ω

g(u,w)ψ = 0 ∀ψ ∈ L2(Ω).

(7.3)

For each time interval (ta, tb) ⊂ (0, T ), we introduce the following functional spaces:

X(ta, tb) = {u s.t. u ∈ L2(ta, tb;H
1(Ω)) ∩ L∞(ta, tb;L

2(Ω)), ∂tu ∈ L2(ta, tb;H
∗)}

Y (ta, tb) = {w s.t. w ∈ L∞(ta, tb;L
2(Ω)), ∂tw ∈ L2((ta, tb)× Ω)},

which are Banach spaces endowed with the norms:

‖u‖X(ta,tb)
=
(
‖u‖2L2(ta,tb;H1(Ω)) + ‖u‖2L∞(ta,tb;L2(Ω)) + ‖∂tu‖2L2(ta,tb;H∗)

) 1
2

‖w‖Y (ta,tb)
=
(
‖w‖2L∞(ta,tb;L2(Ω)) + ‖∂tw‖2L2((ta,tb)×L2(Ω))

) 1
2

.

We denote only with X and Y the spaces X(0, T ) and Y (0, T ), respectively.

We now consider a semidiscretization of the problem in time by means of an implicit Euler scheme

(see [61]): consider a partition of the time interval

{tn}Nn=0 ⊂ [0, T ]; t0 = 0, tN = T ; tn − tn−1 = τn > 0,

and define the semidiscrete solution as a couple ({un}, {wn}), {un}Nn=0 ⊂ H1(Ω), {wn}Nn=0 ⊂ L2(Ω)

such that

u0 = u0; w0 = w0;∫
Ω

un − un−1

τn
ϕ+

∫
Ω

k(χ)∇un · ∇ϕ+

∫
Ω

(1− χ)f(un, wn)ϕ = 0 ∀ϕ ∈ H1(Ω),∫
Ω

wn − wn−1

τn
ψ +

∫
Ω

g(un, wn)ψ = 0 ∀ψ ∈ L2(Ω).

(7.4)

(7.5)

(7.6)

Consider the operators F1 : H1(Ω)× L2(Ω)→ (H1(Ω))∗, F2 : H1(Ω)× L2(Ω)→ L2(Ω), which are

defined interval-wise as follows: if t ∈ (tn−1, tn]

〈F1(u,w), ϕ〉 =

∫
Ω

u− un−1

τn
ϕ+

∫
Ω

k(χ)∇u · ∇ϕ+

∫
Ω

(1− χ)f(u,w)ϕ

〈F2(u,w), ψ〉 =

∫
Ω

w − wn−1

τn
ψ +

∫
Ω

g(u,w)ψ;
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both F1 and F2 are (Fréchet) differentiable with respect to the H1(Ω) norm in the variable u

and L2(Ω) norm in the variable w. This allows to define a Newton scheme for the solution of the

nonlinear system (7.5)-(7.6):

1: Set un0 = un−1, wn0 = un−1, k = 1;

2: while exit criterion is not satisfied do

3: compute δu, δw by solving[
F1
u(unk−1, w

n
k−1) F1

w(unk−1, w
n
k−1)

F2
u(unk−1, w

n
k−1) F2

w(unk−1, w
n
k−1)

][
δu

δw

]
=

[
−F1(unk−1, w

n
k−1)

−F2(unk−1, w
n
k−1)

]
in H∗ × L2 (7.7)

4: update: unk = unk−1 + δu, wnk = wnk−1 + δw, k = k + 1;

5: end while

6: return un = unk , wn = wnk

Computing the expression of the derivatives of F1 and F2, and substituting δu = unk − unk−1,

δw = wnk − wnk−1, the system (7.7) can be rewritten as∫
Ω

1

τn
unkϕ+

∫
Ω

k(χ)∇unk · ∇ϕ+

∫
Ω

(1− χ)
[
fu(unk−1, w

n
k−1)unk + fw(unk−1, w

n
k−1)wnk

]
ϕ

=

∫
Ω

(1− χ)
[
fu(unk−1, w

n
k−1)unk−1 + fw(unk−1, w

n
k−1)wnk−1 − f(unk−1, w

n
k−1)

]
ϕ+

∫
Ω

un−1

τn
ϕ

(7.8)

∫
Ω

1

τn
wnkψ +

∫
Ω

[
gu(unk−1, u

n
k−1)unk + gw(unk−1, u

n
k−1)wnk

]
ψ

=

∫
Ω

[
gu(unk−1, w

n
k−1)unk−1 + gw(unk−1, w

n
k−1)wnk−1 − g(unk−1, w

n
k−1)

]
ψ +

∫
Ω

wn−1

τn
ψ

(7.9)

For each instant tn, we introduce a regular triangular tessellation T nh satisfying the following

assumptions, as in [137]:

i) ∀n > 0, ∃T̃ nh s.t. T̃ nh is a refinement of both T nh and T n−1
h ;

ii) ∃ρ∗, ρ∗ > 0 independent of n and h s.t., defined

ρ(K ′,K) =

{
diam(K ′)

diam(K)
, K ′ ∈ T nh , K ∈ T̃ nh : K ⊂ K ′

}
,

it holds ρ∗ ≤ ρ(K ′,K) ≤ ρ∗ ∀K ∈ T nh , ∀n = 1, · · · , N ;

iii) the mesh is conforming to ω, i.e., defined ωnh =
⋃
K∈T nh

K : K ⊂ ω, ωnh ≡ ω.

Taking advantage of T̃ nh , we introduce the Finite Element discrete space V nh ⊂ H1(Ω)

V nh = {vh ∈ C(Ω̄), vh|K ∈ P1(K) ∀K ∈ T̃ nh }

and the L2 orthogonal projection Πn
H : L2(Ω)→ V nh .

The fully discrete solution of (7.1) consists in the pair ({unh,k}, {unh,k}), with n = 0, . . . , N and

k = 0, . . . ,Kn, being Kn the maximum number of iterations performed in each timestep: such

number may vary with n. In particular, {unh,Kn} and {wnh,Kn} are such that:
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• u0
h = Π0

Hu0, w0
h = Π0

Hw0, the projections of the initial data on T 0
h ;

• for each n = 1, · · · , N , unh,0 = Πn
Hu

n−1
h,Kn−1

, the last iteration associated to the previous times-

tep;

• for each n = 1, · · · , N , for each k = 1, · · · ,Kn, unh,k and wnh,k solve (7.8), (7.9) for all ϕh, ψh ∈
Vh.

7.2 Residual operators

For a fixed fully discrete solution ({unh,k}, {wnh,k}) as above, collecting all the final indices Kn

in a multi-index k = [Kn]Nn=1, the associated linear interpolated solution (u
(k)
h,τ , w

(k)
h,τ ) is a couple of

continuous functions on (0, T ), defined timestep-wise as follows: for each t ∈ (tn−1, tn], n = 1, . . . , N ,

u
(k)
h,τ =

t− tn−1

τn
unh,Kn +

tn − t
τn

un−1
h,Kn−1

, w
(k)
h,τ =

t− tn−1

τn
wnh,Kn +

tn − t
τn

wn−1
h,Kn−1

. (7.10)

We now define for almost each instant t the residual operator R(t) in the product space (H1(Ω)×
L2(Ω))∗ = H∗ × L2(Ω), being H∗ the dual space of H1(Ω):

〈R(t), (ϕ,ψ)〉 =〈R1(t), ϕ〉+ 〈R2(t), ψ〉 ∀ϕ ∈ H1(Ω), ψ ∈ L2(Ω)

〈R1(t), ϕ〉 =−
∫

Ω

∂tu
(k)
h,τϕ−

∫
Ω

k(χ)∇u(k)
h,τ · ∇ϕ−

∫
Ω

(1− χ)f(u
(k)
h,τ , w

(k)
h,τ )ϕ

〈R2(t), ψ〉 =−
∫

Ω

∂tw
(k)
h,τψ −

∫
Ω

g(u
(k)
h,τ , w

(k)
h,τ )ψ.

(7.11)

It is possible to prove a result of equivalence between the X,Y norms of the error and the dual

norms of the residual operators. More precisely, it holds:

Theorem 7.1. The operators R1(t) and R2(t) are s.t. the functions ‖R1(t)‖H∗ and ‖R2(t)‖L2(Ω)

are square integrable on each interval (ta, tb) ⊂ (0, T ), and moreover

{
‖R1‖2L2(ta,tb,H∗)

+ ‖R2‖2L2((ta,tb)×Ω)

} 1
2 ≤ c∗

{∥∥∥u− u(k)
h,τ

∥∥∥2

X(ta,tb)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

Y (ta,tb)

} 1
2

(7.12a)

c∗

{∥∥∥u− u(k)
h,τ

∥∥∥2

X(0,t)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

Y (0,t)

} 1
2

≤
{∥∥u0 −Π0

Hu0

∥∥2

L2(Ω)
+
∥∥w0 −Π0

Hw0

∥∥2

L2(Ω)

+ ‖R1‖2L2(0,t,H∗) + ‖R2‖2L2((0,t)×Ω)

} 1
2

,

(7.12b)

where c∗ and c∗ depend on Ω, k0, k1, f, g and T .

Proof. By summing and subtracting the expression of 〈R1(t), ϕ〉 and 〈R2(t), ψ〉 to equation (7.3) we

obtain, ∀ϕ ∈ H1(Ω), ∀ψ ∈ L2(Ω), a.e. t ∈ (0, T )∫
Ω

∂t(u− u(k)
h,τ )ϕ+

∫
Ω

k(χ)∇(u− u(k)
h,τ ) · ∇ϕ+

∫
Ω

(1− χ)(f(u,w)− f(u
(k)
h,τ , w

(k)
h,τ ))ϕ

+

∫
Ω

∂t(w − w(k)
h,τ )ψ +

∫
Ω

(g(u,w)− g(u
(k)
h,τ , w

(k)
h,τ ))ψ = 〈R1(t), ϕ〉+ 〈R2(t), ψ〉.

(7.13)



160 CHAPTER 7. A POSTERIORI ANALYSIS FOR THE MONODOMAIN MODEL

Fixing ψ = 0 and employing the Cauchy-Schwarz inequality and the mean value theorem for Banach

spaces ∗

|〈R1(t), ϕ〉| ≤
∥∥∥∂t(u− u(k)

h,τ )
∥∥∥
H∗
‖ϕ‖H1(Ω) + k0

∥∥∥∇(u− u(k)
h,τ )

∥∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)

+
∥∥∥fu(ξ, η)(u− u(k)

h,τ ) + fw(ξ, η)(w − w(k)
h,τ )

∥∥∥
L2(Ω)

‖ϕ‖L2(Ω)

≤
(∥∥∥∂t(u− u(k)

h,τ )
∥∥∥
H∗

+ k0

∥∥∥u− u(k)
h,τ

∥∥∥
H1(Ω)

+ cfu

∥∥∥u− u(k)
h,τ

∥∥∥
L2(Ω)

+cfw

∥∥∥w − w(k)
h,τ

∥∥∥
L2(Ω)

)
‖ϕ‖H1(Ω).

Computing the L2 norm on (ta, tb) we obtain

‖R1‖L2(ta,tb;H∗)
≤
(∥∥∥∂t(u− u(k)

h,τ )
∥∥∥
L2(ta,tb;H∗)

+ k0

∥∥∥u− u(k)
h,τ

∥∥∥
L2(ta,tb;H1)

+ cfu

∥∥∥u− u(k)
h,τ

∥∥∥
L2((ta,tb)×Ω)

+ cfw

∥∥∥w − w(k)
h,τ

∥∥∥
L2((ta,tb)×Ω)

)
.

(7.14)

Analogously, when taking ϕ = 0, we recover:

‖R2‖L2((ta,tb)×Ω) ≤
(∥∥∥∂t(w − w(k)

h,τ )
∥∥∥
L2((ta,tb)×Ω)

+ cgu

∥∥∥u− u(k)
h,τ

∥∥∥
L2((ta,tb)×Ω)

+ cgw

∥∥∥w − w(k)
h,τ

∥∥∥
L2((ta,tb)×Ω)

)
,

(7.15)

and summing (7.14) and (7.15) we prove (7.12a).

Vice versa, consider (7.13) and take ϕ = u − u(k)
h,τ , ψ = w − w(k)

h,τ ; by mean value theorem † it

holds that

1

2

d

dt

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+

∫
Ω

k(χ)∇(u− u(k)
h,τ ) · ∇(u− u(k)

h,τ )

+

∫
Ω

(1− χ)(fu(ξ1, η1)(u− u(k)
h,τ ) + fw(ξ1, η1)(w − w(k)

h,τ ))(u− u(k)
h,τ )

+

∫
Ω

(gu(ξ2, η2)(u− u(k)
h,τ ) + gw(ξ2, η2)(w − w(k)

h,τ ))(w − w(k)
h,τ )

= 〈R1, u− u(k)
h,τ 〉+ 〈R2, w − w(k)

h,τ 〉.

Consider now the quadratic form Q : H1(Ω)× L2(Ω)→ R,

Q(m,n) =

∫
Ω

−(1− χ)fu(ξ1, η1)m2 − ((1− χ)fw(ξ1, η1) + gu(ξ2, η2))mn− gw(ξ2, η2)n2,

∗Applying Theorem 4.A in [140] on the Banach space H1 × L2 we have
∥∥∥f(u,w)− f(u

(k)
h,τ , w

(k)
h,τ )

∥∥∥
L2
≤

sup0≤τ≤1

∥∥∥fu(u+ τ(u
(k)
h,τ − u), w + τ(w

(k)
h,τ − w))(u

(k)
h,τ − u) + fw(u+ τ(u

(k)
h,τ − u), w + τ(w

(k)
h,τ − w))(w

(k)
h,τ − w)

∥∥∥
L2

,

whereas by the continuity of the derivatives of f and via the boundedness of the solutions of (7.3) we assess that

‖fu(ξ, η)‖L∞ ≤ cfu , ‖fw(ξ, η)‖L∞ ≤ cfw . Analogous procedure holds on g.
† in this case we consider the Lagrange mean value theorem on the real valued function h : τ ∈ R → h(τ) =∫

Ω(1− χ)f(u+ τ(u
(k)
h,τ − u), w + τ(w

(k)
h,τ − w))(u

(k)
h,τ − u): there exists τ∗ ∈ [0, 1] s.t. h(1)− h(0) = h′(τ∗).
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which allows to rewrite the previous equation as

1

2

d

dt

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+

∫
Ω

k(χ)∇(u− u(k)
h,τ ) · ∇(u− u(k)

h,τ )

= Q(u− u(k)
h,τ , w − w

(k)
h,τ ) + 〈R1, u− u(k)

h,τ 〉+ 〈R2, w − w(k)
h,τ 〉.

It holds that |Q(m,n)| ≤ λmax(‖m‖H1(Ω)+‖n‖L2(Ω)), being λmax a continuous function of fu, fw, gu, gw,

hence bounded from above on Ω× (0, T ) by a positive constant Λ. Via Cauchy-Schwartz and Young

inequalities,

1

2

d

dt

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+ k1

∥∥∥u− u(k)
h,τ

∥∥∥2

H1(Ω)
≤ k1

∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)

+ Λ

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+

1

2k1

(
‖R1‖2H∗ + ‖R2‖2L2(Ω)

)
+
k1

2

(∥∥∥u− u(k)
h,τ

∥∥∥2

H1(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
,

hence

1

2

d

dt

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+
k1

2

∥∥∥u− u(k)
h,τ

∥∥∥2

H1(Ω)

≤ (Λ + k1)

(∥∥∥u− u(k)
h,τ

∥∥∥2

L2(Ω)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L2(Ω)

)
+

1

2k1

(
‖R1‖2H∗ + ‖R2‖2L2(Ω)

)
Take now a fixed t ∈ (0, T ) and integrate from 0 to t, obtaining(∥∥∥(u− u(k)

h,τ )(t)
∥∥∥2

L2(Ω)
+
∥∥∥(w − w(k)

h,τ )(t)
∥∥∥2

L2(Ω)

)
+ k1

∥∥∥u− u(k)
h,τ

∥∥∥2

L2(0,t;H1)
≤∫ t

0

2(Λ + k1)

(∥∥∥(u− u(k)
h,τ )(s)

∥∥∥2

L2(Ω)
+
∥∥∥(w − w(k)

h,τ )(s)
∥∥∥2

L2(Ω)

)
ds

+

∫ t

0

1

k1

(
‖R1(s)‖2H∗ + ‖R2(s)‖2L2(Ω)

)
ds+

(∥∥∥u0 − u(k)
h,τ (0)

∥∥∥2

L2(Ω)
+
∥∥∥w0 − w(k)

h,τ (0)
∥∥∥2

L2(Ω)

)
.

(7.16)

Via Gronwall’s inequality, we obtain(∥∥∥u(t)− u(k)
h,τ (t)

∥∥∥2

L2(Ω)
+
∥∥∥w(t)− w(k)

h,τ (t)
∥∥∥2

L2(Ω)

)
≤e2(Λ+k1)t

(∥∥u0 −Π0
Hu0

∥∥2

L2(Ω)
+
∥∥w0 −Π0

Hw0

∥∥2

L2(Ω)

+
1

k1

(
‖R1‖2L2(0,t;H∗) + ‖R2‖2L2((0,t)×Ω)

))
,

whence the bound on
∥∥∥u− u(k)

h,τ

∥∥∥
L∞(0,t,L2(Ω))

,
∥∥∥w − w(k)

h,τ

∥∥∥
L∞(0,t,L2(Ω))

. It also holds by (7.16) that

k1

∥∥∥u− u(k)
h,τ

∥∥∥2

L2(0,t;H1)
≤ 2(Λ + k1)t

(∥∥∥u− u(k)
h,τ

∥∥∥2

L∞(0,t,L2(Ω))
+
∥∥∥w − w(k)

h,τ

∥∥∥2

L∞(0,t,L2(Ω))

)
+

1

k1

(
‖R1‖2L2(0,t;H∗) + ‖R2‖2L2((0,t)×Ω)

)
+

(∥∥∥u0 − u(k)
h,τ (0)

∥∥∥2

L2(Ω)
+
∥∥∥w0 − w(k)

h,τ (0)
∥∥∥2

L2(Ω)

)
.

Finally, taking ψ = 0 in (7.13), by Cauchy-Schwarz inequality we get∥∥∥∂t(u− u(k)
h,τ )(t)

∥∥∥
H∗
≤ k0

∥∥∥(u− u(k)
h,τ (t))

∥∥∥
H1(Ω)

+ cfu

∥∥∥(u− u(k)
h,τ )(t)

∥∥∥
L2(Ω)

+ cfw

∥∥∥(w − w(k)
h,τ )(t)

∥∥∥
L2(Ω)
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thus ∥∥∥∂t(u− u(k)
h,τ )

∥∥∥
L2((0,t)×Ω)

≤k0

∥∥∥u− u(k)
h,τ

∥∥∥
L2(0,t;H1(Ω))

+ cfu
√
t
∥∥∥u− u(k)

h,τ

∥∥∥
L∞(0,t;L2(Ω))

+ cfw
√
t
∥∥∥w − w(k)

h,τ

∥∥∥
L∞(0,t;L2(Ω))

.

A similar strategy allows to conclude that an analogous bound holds for ∂t(w − w(k)
h,τ ), hence every

part of the norms
∥∥∥u− u(k)

h,τ

∥∥∥
X(0,t)

,
∥∥∥w − w(k)

h,τ

∥∥∥
Y (0,t)

is bounded as in the thesis.

It is now possible to perform a decomposition of the residual operators: according to the strategy

proposed in [16], we distinguish the contribution of space discretization, time discretization and

linearization as follows :

〈Rh1 (t), ϕ〉 = −
∫

Ω

unh,Kn − u
n−1
h,Kn−1

τn
ϕ−

∫
Ω

k(χ)∇unh,Kn · ∇ϕ

−
∫

Ω

(1− χ)
[
f(unh,Kn−1, w

n
h,Kn−1) + fu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

+fw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)

]
ϕ;

(7.17a)

〈Rτ1(t), ϕ〉 = −
∫

Ω

k(χ)∇(u
(k)
h,τ − u

n
h,Kn) · ∇ϕ−

∫
Ω

(1− χ)
[
f(u

(k)
h,τ , w

(k)
h,τ )

−f(unh,Kn , w
n
h,Kn)

]
ϕ;

(7.17b)

〈Rk1(t), ϕ〉 = −
∫

Ω

(1− χ)
[
f(unh,Kn , w

n
h,Kn)− fu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

−fw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)− f(unh,Kn−1, w

n
h,Kn−1)

]
ϕ

(7.17c)

〈Rh2 (t), ψ〉 = −
∫

Ω

wnh,Kn − w
n−1
h,Kn−1

τn
ψ −

∫
Ω

[
g(unh,Kn−1, w

n
h,Kn−1)

+ gu(unh,Kn−1, w
n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

+gw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)

]
ψ;

(7.18a)

〈Rτ2(t), ψ〉 = −
∫

Ω

[
g(u

(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

]
ψ; (7.18b)

〈Rk2(t), ψ〉 = −
∫

Ω

[
g(unh,Kn , w

n
h,Kn)− gu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

−gw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)− g(unh,Kn−1, w

n
h,Kn−1)

]
ψ

(7.18c)

It is immediate to verify that Rh1 (t)+Rτ1(t)+Rk1(t) = R1(t) in H∗ and Rh2 (t)+Rτ2(t)+Rk2(t) = R2(t)

in L2(Ω); moreover, according to the expression of the discrete problem (7.8), (7.9), it holds the

orthogonality:

〈Rh1 (t), ϕh〉 = 0 ∀ϕh ∈ Vh
〈Rh2 (t), ψh〉 = 0 ∀ψh ∈ Hh.

(7.19)
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7.3 A posteriori estimators

We now provide a posteriori estimators for the residual operators. In order to do so, we adopt

the following notation: for each element K ∈ T̃ nh , the common refinement of T nh and T n−1
h , recall hK

its diameter, χK = χ|K (i.e., according to the assumptions on χ, χK = 1 if K ⊂ ω and 0 otherwise),

kK = k(χK). Moreover, each face of the tessellation E ∈ Ẽnh has diameter hE , and, apart from the

edges on the external boundary, belong to two distinct elements KE,1 and KE,2: we recall

[kEνE · ∇uh]E =
(
kKE,1νE,1 · ∇uh|KE,1 − kKE,2νE,2 · ∇uh|KE,2

)∣∣
E
,

where νE,1 and νE,2 are outer the normals of E with respect to KE,1 and KE,2, hence νE,1 = −νE,2.

Instead, each face E of the external boundary belongs to a single element K of the tessellation, and

we define

[kEνE · ∇uh]E = (kKEνE · ∇uh|KE )|E ,

We now introduce the a posteriori quantities which will be involved in estimates from above and

from below for the residual error.

ηnk =

 ∑
K∈T̃ nh

h2
K‖RK,1‖

2
L2(K) +

∑
E∈Ẽnh

hE‖RE‖2L2(E) +
∑
K∈T̃ nh

‖RK,2‖2L2(K)

 1
2

RK,1 =
(
−
unh,Kn − u

n−1
h,Kn−1

τn
+ kK∆unh,Kn − (1− χK)(f(unh,Kn−1, w

n
h,Kn−1)

− fu(unh,Kn−1, w
n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)− fw(unh,Kn−1, w

n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1))

)∣∣∣
K

RE = [kEνE · ∇unh]E

RK,2 =
(
−
wnh,Kn − w

n−1
h,Kn−1

τn
− (g(unh,Kn−1, w

n
h,Kn−1)− gu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

− gw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1))

)∣∣∣
K
.

ϑnk =

(
1

3

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥2

L2(Ω)
+

1

τn
‖P1(t)‖2L2((tn−1,tn)×Ω) +

1

τn
‖P2(t)‖2L2((tn−1,tn)×Ω)

) 1
2

P1(t) = −(1− χ)(f(u
(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn))

)
P2(t) = −(g(u

(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn))

)
.

γnk =
(
‖Q1‖2L2(Ω) + ‖Q2‖2L2(Ω)

) 1
2

Q1 = −(1− χ)
(
f(unh,Kn , w

n
h,Kn)− fu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

− fw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)− f(unh,Kn−1, w

n
h,Kn−1)

)
.

Q2 = −
(
g(unh,Kn , w

n
h,Kn)− gu(unh,Kn−1, w

n
h,Kn−1)(unh,Kn − u

n
h,Kn−1)

− gw(unh,Kn−1, w
n
h,Kn−1)(wnh,Kn − w

n
h,Kn−1)− g(unh,Kn−1, w

n
h,Kn−1)

)
.

The fundamental result we prove in this section is the following bound from above of the error

involving the introduced a posteriori estimators:
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Theorem 7.2. For each discrete solution ({unh,k}, {wnh,k} with n = 1, . . . , N , k = 1, . . . ,Kn, col-

lecting all Kn in the multi-index k = [Kn]Nn=1 and defining u
(k)
h,τ , w

(k)
h,τ as in (7.10), it holds that for

each n = 1, . . . , N :{∥∥u− ukh,τ∥∥2

X(0,tn)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

Y (0,tn)

} 1
2

.
{∥∥u0 −Π0

V u0

∥∥2

L2(Ω)
+
∥∥w0 −Π0

Hw0

∥∥2

L2(Ω)

+

n∑
m=1

τn((ηmk )2 + (ϑmk,U )2 + (γmk,U )2)
} 1

2

(7.20)

In order to prove Theorem 7.2, we need a preliminary results involving the spatial residual

operators alone. First, we remark that Rk1(t) and Rk2(t) are constant in time within each interval

(tn−1, tn). Hence, as remarked in [137] and [16], upper and lower estimates of their norms in each

instant t ∈ (tn−1, tn) involving the a posteriori estimator ηnk can be proved by similar arguments as

the ones for elliptic problems. This allows to conclude that

Lemma 7.1. There exist two positive constants c†, c
† independent of n s.t., for almost every t ∈

(tn−1, tn) and for each n = 1, . . . , N , it holds:

1

c†
ηnk ≤

(∥∥Rh1 (t)
∥∥2

H∗
+
∥∥Rh2 (t)

∥∥2

L2(Ω)

) 1
2 ≤ c†ηnk . (7.21)

Proof. Throughout the computation, we consider t ∈ (tn−1, tn) and neglect the dependence of Rh1 ,

Rh2 on t. First we prove the upper bound. Integrating by parts the expression of Rh1 and exploiting

assumption iii) on the tessellation, which ensures that each kK is a constant scalar on each K, we

obtain that for each ϕ ∈ H1(Ω)

〈Rh1 , ϕ〉 =
∑
K∈T̃ nh

∫
K

RK,1ϕ+
∑
E∈Ẽnh

∫
E

REϕ.

Introduce now the Clément interpolation operator Ih : H1(Ω)→ V nh : by the orthogonality result in

(7.19), and by the properties of Ih (see [58],[138]),

|〈Rh1 , ϕ〉| =
∣∣〈Rh1 , Ihϕ〉+ 〈Rh1 , ϕ− Ihϕ〉

∣∣ ≤ ∑
K∈T̃ nh

∣∣∣∣∫
K

RK,1(ϕ− Ihϕ)

∣∣∣∣+
∑
E∈Ẽnh

∣∣∣∣∫
E

RE(ϕ− Ihϕ)

∣∣∣∣
≤ c1

∑
K∈T̃ nh

hK‖RK,1‖L2(K)‖∇ϕ‖L2(ω̃K) + c2
∑
E∈Ẽnh

h
1
2

E‖RE‖L2(E)‖∇ϕ‖L2(ω̃E),

where ω̃K (ω̃E) is the union of all the elements of T̃ nh containing at least a vertex of K (E). This

entails that ∥∥Rh1∥∥H∗ . ∑
K∈T̃ nh

hK‖RK,1‖L2(K) +
∑
E∈Ẽnh

h
1
2

E‖RE‖L2(E).

By an application of Cauchy-Schwartz inequality the upper bound on Rh2 immediately follows:∥∥Rh2∥∥L2(Ω)
≤
∑
K∈T̃ nh

‖RK,2‖L2(Ω).
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In order to prove the lower bound, we construct

Wn = α
∑
K∈T̃ nh

h2
KφKRK,1 − β

∑
E∈Ẽnh

hEφERE ,

with α, β > 0, φK , φE the barycentric bubble functions respectively on K and ωE = KE,1 ∪KE,2.

Analogously to [137, Lemma 5.1], we can show that

〈Rh1 ,Wn〉 ≥

 ∑
K∈T̃ nh

h2
K‖RK‖

2
L2(K) +

∑
E∈Ẽnh

hE‖RE‖2L2(E)


and

‖Wn‖H1(Ω) ≤ c†

 ∑
K∈T̃ nh

h2
K‖RK‖

2
L2(K) + c2

∑
E∈Ẽnh

hE‖RE‖2L2(E)

 1
2

.

Regarding Rh2 , the following equality holds∥∥Rh2∥∥2

L2(Ω)
=
∑
K∈T̃ nh

〈Rh2 , RK,2〉 =
∑
K∈T̃ nh

‖RK,2‖2L2(K),

and this concludes the proof of the lower bound.

It is now possible to prove the upper estimate (7.20).

Proof of Theorem 7.2. We impose k0 = 1 and ω = ∅ for the sake of simplicity. In view of (7.12a),

we only aim at proving that, for each n = 1, . . . , N , it holds

‖R1‖2L2(tn−1,tn,H∗)
+ ‖R2‖2L2((tn−1,tn)×Ω) ≤ τn

(
(ηmk )2 + (ϑmk )2 + (γmk )2

)
(7.22)

According to Lemma 7.1,∥∥Rh1 (t)
∥∥2

H∗
+
∥∥Rh2 (t)

∥∥2

L2(Ω)
. (ηnk )2 ∀t ∈ (tn−1, tn),

and since by definition both Rh1 and Rh2 are constant in each interval (tn−1, tn), we conclude that∥∥Rh1∥∥2

L2(tn−1,tn,H∗)
+
∥∥Rh2∥∥2

L2((tn−1,tn)×Ω)
. τn(ηnk )2. (7.23)

Moreover, it is immediate to verify via Cauchy-Schwarz inequality that∥∥Rk1(t)
∥∥2

H∗
+
∥∥Rk2(t)

∥∥2

L2(Ω)
. (γnk )2 ∀t ∈ (tn−1, tn),

and by integration ∥∥Rk1∥∥2

L2(tn−1,tn,H∗)
+
∥∥Rk2∥∥2

L2((tn−1,tn)×Ω)
. τn(γnk )2. (7.24)

Eventually, again by Cauchy-Schwarz inequality, for each t ∈ (tn−1, tn)

‖Rτ1(t)‖H∗ + ‖Rτ2(t)‖L2(Ω) ≤
∥∥∥∇(u

(k)
h,τ − u

n
h,Kn)

∥∥∥
L2(Ω)

+
∥∥∥f(u

(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn)

∥∥∥
L2(Ω)

+
∥∥∥g(u

(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

∥∥∥
L2(Ω)

≤ tn − t
τn

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥
L2(Ω)

+
∥∥∥f(u

(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn)

∥∥∥
L2(Ω)

+
∥∥∥g(u

(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

∥∥∥
L2(Ω)
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Since
∫ tn
tn−1

(
tn−t
τn

)2

= τn
3 , we get

‖Rτ1‖
2
L2(tn−1,tn,H∗)

+ ‖Rτ2‖
2
L2((tn−1,tn)×Ω) .

τn
3

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥2

L2(Ω)

+
∥∥∥f(u

(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn)

∥∥∥2

L2((tn−1,tn)×Ω)

+
∥∥∥g(u

(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

∥∥∥2

L2((tn−1,tn)×Ω)
. τn(θnk )2

(7.25)

By means of the triangular inequality, (7.23), (7.24) and (7.25) allow to conclude (7.22), and hence

(7.20).

7.3.1 Efficiency of the estimators

The upper estimate provided in (7.20) holds for any choice of k, i.e., the total number of Newton

iterations Kn computed in each interval (tn−1, tn) can be selected arbitrarily. We now prove a

result of efficiency (namely, an estimate from below for the error in terms of the introduced a

posteriori estimators), which can be stated when a specific condition is satisfied by the indices Kn.

In particular, for each n ≥ 1, we assume there exists Kn such that

γnk ≤ σηnk , (7.26)

being σ ≤ 1
c†

, where c† is the constant appearing in Lemma 7.1. Such an hypothesis can be compared

to the one introduced in [73, equation (3.12)].

Moreover, we need to introduce the following assumption on the nonlinear terms f and g:

∃λ > 0 s.t ∀u1, u2, w1, w2 ∈ R

(f(u1, w1)− f(u2, w2)) (u1 − u2) + (g(u1, w1)− g(u2, w2)) (w1 − w2)

≥ λ
(
(u1 − u2)2 + (w1 − w2)2

)
.

(7.27)

This assumption is verified under small modifications of the original problem by a large class of

models including Aliev-Panfilov, see Remark 7.1.

Theorem 7.3. Let f, g satisfy (7.27) and let ({unh,k}{wnh,k}), n = 0, . . . , N , k = 0, . . . ,Kn be the

fully discrete solution of (7.1) obtained by the Newton scheme (7.8), (7.9), satisfying assumption

(7.26) on the choice of Kn. Then,

√
τn((ηnk )2 + (ϑnk )2 + (γnk )2)

1
2 .

{∥∥∥u− u(k)
h,τ

∥∥∥2

X(tn−1,tn)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

Y (tn−1,tn)

} 1
2

, (7.28)

being u
(k)
h,τ , w

(k)
h,τ the interpolants defined in (7.10).

Proof. First of all, we exploit the assumption (7.27) on f, g to obtain a useful inequality. Consider

the temporal residual operators Rτ1 , Rτ2 with test functions ϕ1 = u
(k)
h,τ − unh,Kn , ψ1 = w

(k)
h,τ − wnh,Kn :

〈Rτ1 , ϕ1〉+ 〈Rτ2 , ψ1〉 ≥
∥∥∥∇(u

(k)
h,τ − u

n
h,Kn)

∥∥∥2

L2(Ω)
+ λ

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥2

L2(Ω)
+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥2

L2(Ω)

)
≥ λ

(
t− tn−1

τn

)2(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

H1(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

)
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Since

〈Rτ1 , ϕ1〉+ 〈Rτ2 , ψ1〉 = 〈R1, ϕ1〉+ 〈R2, ψ1〉 − 〈Rh1 , ϕ1〉 − 〈Rh2 , ψ1〉 − 〈Rk1 , ϕ1〉 − 〈Rk2 , ψ1〉,

integrating in time and making use of (7.21), (7.12a) and of the Jensen inequality A+B ≤
√

2(A2 +

B2)
1
2 we get

λ
τn
3

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

H1(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

) 1
2

≤ 2
√
τnc
∗‖err‖XY + 2τnc

†ηnk + 2τnγ
n
k ,

(7.29)

where we denote ‖err‖XY =

(∥∥∥u− u(k)
h,τ

∥∥∥2

X(tn−1,tn)
+
∥∥∥w − w(k)

h,τ

∥∥∥2

Y (tn−1,tn)

) 1
2

for the sake of simpli-

city.

We focus now on the spatial estimator ηnk . According to the proof of Lemma 7.1, there exists a

couple of test functions ϕ2, ψ2 such that

〈Rh1 , ϕ2〉+ 〈Rh2 , ψ2〉 ≥ (ηnk )2,
(
‖ϕ2‖2H1(Ω) + ‖ψ2‖2L2(Ω)

) 1
2 ≤ c†ηnk

whence
1

c†
ηnk

(
‖ϕ2‖2H1(Ω) + ‖ψ2‖2L2(Ω)

) 1
2 ≤ 〈Rh1 , ϕ2〉+ 〈Rh2 , ψ2〉.

By the decomposition of the residual, Rh1 = R1 −Rτ1 −Rk1 and Rh2 = R2 −Rτ2 −Rk2 . Moreover,

|〈Rτ1 , ϕ2〉+ 〈Rτ2 , ψ2〉| ≤
∫

Ω

∣∣∣∇(u
(k)
h,τ − u

n
h,Kn) · ∇ϕ2

∣∣∣+

∫
Ω

∣∣∣[f(u
(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn)

]
ϕ2

∣∣∣
+

∫
Ω

∣∣∣[g(u
(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

]
ψ2

∣∣∣
≤
∥∥∥∇(u

(k)
h,τ − u

n
h,Kn)

∥∥∥
L2(Ω)

‖∇ϕ2‖L2(Ω)

+Kf

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥
L2(Ω)

+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥
L2(Ω)

)
‖ϕ2‖L2(Ω)

+Kg

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥
L2(Ω)

+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥
L2(Ω)

)
‖ψ2‖L2(Ω)

≤ Kfg

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥
H1(Ω)

+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥
L2(Ω)

)(
‖ϕ2‖H1(Ω) + ‖ψ2‖L2(Ω)

)
,

where Kf and Kg are the Lipschitz constants of f and g (which are obviously related to the constants

cfu , cfw ,cgu ,cgw previously introduced) and Kfg = max{1,Kf ,Kg}. Exploiting (7.12a), the Cauchy-

Schwarz and the Jensen inequalities and the definition of γnk ,

1

c†
ηnk ≤2

(
‖R1‖2H∗ + ‖R2‖2L2(Ω)

) 1
2

+ 2γnk + 2Kfg

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥2

H1(Ω)
+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥2

L2(Ω)

) 1
2

,

and since u
(k)
h,τ − unh,Kn = tn−t

τn
(unh,Kn − u

n−1
h,Kn−1

),

1

c†
ηnk ≤2

(
‖R1‖2H∗ + ‖R2‖2L2(Ω)

) 1
2

+ 2γnk

+ 2
tn − t
τn

Kfg

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

H1(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

) 1
2

.

(7.30)
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We take advantage of the strategy used in the proof of the lower bound in [137], in particular,

choosing a positive α, we multiply the inequality (7.30) by (α + 1)
(
t−tn−1

τn

)α
and integrate from

tn−1 to tn. We observe that∫ tn

tn−1

(α+ 1)

(
t− tn−1

τn

)α
= τn;∫ tn

tn−1

(
t− tn−1

τn

)α
(α+ 1)

(
tn − t
τn

)
= τn

1

α+ 2
;∫ tn

tn−1

(α+ 1)

(
t− tn−1

τn

)α (
‖R1‖2H∗ + ‖R2‖2L2(Ω)

) 1
2 ≤

√
τn

α+ 1√
2α+ 1

(
‖R1‖2L2(tn−1,tn;H∗) + ‖R2‖2L2((tn−1,tn)×Ω)

) 1
2

.

We obtain (applying (7.12a) and (7.29)):

1

c†
τnη

n
k ≤
√
τn

α+ 1√
2α+ 1

c∗‖err‖XY + τnγ
n
k

+ τn
2

α+ 2
Kfg

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥
L2(Ω)

+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥
L2(Ω)

) 1
2

≤
√
τn

α+ 1√
2α+ 1

c∗‖err‖XY + τnγ
n
k

+
1

α+ 2

12Kfg

λ

(√
τnc
∗‖err‖XY + τnc

†ηnk + τnγ
n
k

)
Taking advantage of the assumption (7.26) and dividing by

√
τn,

1

c†

√
τnη

n
k ≤ c∗

(
α+ 1√
2α+ 1

+
12Kfg

λ(α+ 2)

)
‖err‖XY +

√
τn

(
12Kfg(σ + c†)

λ(α+ 2)
+ σ

)
ηnk . (7.31)

Now ηnk appears on both sides of the estimate, but we can require that

12Kfg(σ + c†)

λ(α+ 2)
+ σ <

1

c†
,

by selecting (according to the assumption on σ)

α >
12Kfg(c

† + σ)c†
λ(1− c†σ)

− 2.

Thus, we deduce
√
τnη

n
k . ‖err‖XY ; (7.32)

from now on, we omit the explicit expression of the constants in front of each term in the inequality.

As an immediate consequence, again by (7.26), we conclude that also

√
τnγ

n
k ≤
√
τnση

n
k . ‖err‖XY . (7.33)
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We now aim at estimating the last a posteriori estimator, θnk . By definition,

(ϑnk )2 =
1

3

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥2

L2(Ω)
+

1

τn

∥∥∥f(u
(k)
h,τ , w

(k)
h,τ )− f(unh,Kn , w

n
h,Kn)

∥∥∥2

L2((tn−1,tn)×Ω)

+
1

τn

∥∥∥g(u
(k)
h,τ , w

(k)
h,τ )− g(unh,Kn , w

n
h,Kn)

∥∥∥2

L2((tn−1,tn)×Ω)

≤ 1

3

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥2

L2(Ω)
+
K2
fg

τn

∫ tn

tn−1

(∥∥∥u(k)
h,τ − u

n
h,Kn

∥∥∥2

L2(Ω)
+
∥∥∥w(k)

h,τ − w
n
h,Kn

∥∥∥2

L2(Ω)

)
≤ 1

3

∥∥∥∇(unh,Kn − u
n−1
h,Kn−1

)
∥∥∥2

L2(Ω)
+
K2
fg

3

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

L2(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

)
≤
K2
fg

3

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

H1(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

)
Therefore, in view of (7.29)

ϑnk ≤
K2
fg

3

(∥∥∥unh,Kn − un−1
h,Kn−1

∥∥∥2

H1(Ω)
+
∥∥∥wnh,Kn − wn−1

h,Kn−1

∥∥∥2

L2(Ω)

) 1
2

≤
K2
fg

λτn

(
2
√
τnc
∗‖err‖XY + 2τnc

†ηnk + τnγ
n
k

)
,

and eventually (using (7.32) and (7.33))

√
τnϑ

n
k ≤

K2
fg

λ

(
2c∗‖err‖XY + 2

√
τnc
†ηnk +

√
τnγ

n
k

)
. ‖err‖XY (7.34)

Eventually, collecting the results (7.32), (7.33), (7.34) we conclude that

√
τn
(
(ηnk )2 + (θnk )2 + (γnk )2

) 1
2 ≤
√
τn (ηnk + θnk + γnk ) . ‖err‖XY . (7.35)

Remark 7.1. Assumption (7.27) is in general not satisfied by f and g as in (7.2). In particular,

inequality (7.27) holds with a possibly negative constant, −K̃. This can be deduced by mean

value theorem, exploiting the fact that f, g in (7.2) are continuously differentiable and take values

on a bounded subset of R2 due to the uniform a priori bounds on the solutions prescribed in

Proposition 7.1. We can thus perform an alteration of the original problem (7.1): for a positive λ,

consider a change of variable in the original problem: ũ = e−(K̃+λ)tu, w̃ = e−(K̃+λ)tw. It holds

∂tũ = −(K̃ + λ)ũ+ e−(K̃+λ)t∂tu, hence (ũ, w̃) is the solution of{
∂tũ− div(k(χ)∇ũ) + (1− χ)f̃(ũ, w̃) = 0 in Ω× (0, T )

∂tw̃ + g̃(ũ, w̃) = 0 in Ω× (0, T ),

where f̃ = e−(K̃+λ)tf(e(K̃+λ)tũ, e(K̃+λ)tw̃) + (K̃ + λ)ũ and g̃ analogously defined satisfy (7.27).

Remark 7.2. In the particular case where the source of error coming from the linearization process

is disregarded, the simplified counterpart of Theorem 7.1 holds with the only estimators ηn, θn
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defined as

ηn =

( ∑
K∈T̃ nh

h2
K

∥∥∥∥unh − un−1
h

τn
+ kK∆unh + (1− χK)f(unh, w

n
h)

∥∥∥∥2

L2(K)

+
∑
E∈Ẽnh

hK‖[∇unh · nE ]‖2L2(E)

+
∑
K∈T̃ nh

∥∥∥∥wnh − wn−1
h

τn
+ g(unh, w

n
h)

∥∥∥∥2

L2(K)

) 1
2

ϑn =

(
1

3

∥∥∇(unh − un−1
h )

∥∥2

L2(Ω)
+

1

τn
‖(1− χK)(f(uh,τ )− f(unh))‖2L2((tn−1,tn)×Ω)

+
1

τn
‖(g(uh,τ )− g(unh))‖2L2((tn−1,tn)×Ω)

) 1
2

,

(7.36)

being uh,τ = tn−t
τn

un−1
h + t−tn−1

τn
unh and wh,τ = tn−t

τn
wn−1
h + t−tn−1

τn
wnh . An efficiency result analogous

to Theorem 7.3 holds with the same estimators, without any further assumption on the discretization.

7.4 Numerical experiments

We now assess the validity of the derived a posteriori estimates of Theorem 7.2 via numerical

experiments. We consider the following two-dimensional setup: the domain Ω is the square (0, 1)2,

whereas the time interval in consideration is (0, 16). All the experiments are performed in a healthy

tissue, whence χ = 0. We consider the initial data

u0 = e−
(x−1)2+y2

0.25 , w0 = 0,

whereas the value of the constants of the problem are reported in Table 1. We report in Figure

k1 A ε0 µ1 µ2 a

1 8 0.04 0.2 0.3 0.15

Table 7.1: Values of the main parameters of the model

7.1 several snapshots of the evolution of the electrical potential u throughout time. The results

are obtained via the Newton-Galerkin scheme in (7.8)-(7.9), making use of the same computational

mesh Th for each instant, with maximum diameter h = 0.0125 and a fixed timestep τ = 0.025. As

an exit criterion for the Newton iterations we assess if the distance between two following iterations

(measured in H1 and L2 norm respectively for u and w) is below a suitable tolerance, which we

set as tol = 10−14. In accordance with experimental observations (see, e.g., [61]), the nonlinear

dynamics shows a first quick propagation of the stimulus in the tissue and, after a plateau phase, a

slow decrease of the electrical potential.

7.4.1 Spatial and temporal analysis

We now verify the validity of the estimates stated in Theorem 7.1. Due to the lack of an analytical

expression for the solution of (7.1), we need to build a high-fidelity numerical solution (ũ, w̃). In
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(a) t1 = 0 (b) t2 = 0.5 (c) t3 = 2.5

(d) t4 = 7 (e) t5 = 10 (f) t6 = 14

(g) Evolution at a specific point P

Figure 7.1: Snapshots of the evolution of the electrical potential. In Figures (a)-(f) the contour plots

are shown in some selected instants t1, . . . , t6. Figure (g) reports the value of the electrical

potential in a specific point P ; the instants t1, . . . , t6 are remarked.

particular, we employ a reference fine mesh with href = 4 · 10−3 and a time step τref = 2 · 10−3

to solve the Newton scheme (7.8)-(7.9), where tol = 10−15 is employed to make negligible the

linearization error (see Remark 7.2). Employing (ũ, w̃) it is possible to compute the error associated

to different discrete solutions, obtained with different values of h and τ , and to assess the validity

of the a posteriori error estimates introduced in Theorem 7.1 employing the estimators defined in

(7.36).

In Figure 7.2 we report the numerical verification of the upper bound (7.20) for two different
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choices of the discretization parameters h and τ . Each line is piecewise constant on every interval

(tn−1, tn). The red line represents the X,Y norm of the error (computed with respect to the

high-fidelity solution) on the interval (0, tn), whereas the blue line shows the sum of the estimator

contributions in each interval until tn. In this case the upper bound holds with constant 1.

(a) h = 0.05, τ = 0.1 (b) h = 0.0125, τ = 0.025

Figure 7.2: Assessment of the upper bound

Moreover, in Figure 7.3 we investigate the convergence rates for both the estimator and the error

norm with respect to the mesh size h and the timestep τ . The results are obtained by linearly

reducing both h and τ at the same time. The convergence history reported in Figure 7.3 shows that

the error and the a posteriori estimator decay with the same (linear) rate.

7.4.2 Linearization analysis

We now numerically assess the validity of the estimates concerning the linearization error. In

order to reduce as much as possible the numerical error induced by spatial and temporal approximati-

ons, we perform the numerical experiments with the same discretization parameters (href = 4 ·10−3,

τref = 2 · 10−3) employed to build the high-fidelity numerical solution. Selecting an instant tn, we

compute several iterations of the Newton scheme (7.8)-(7.9) until the convergence criterion is sa-

tisfied with tol = 10−15. The iterative scheme produces a sequence {unh,Kn , w
n
h,Kn
}k=0,...,K . Then,

for each k we compute γnk and compare it with the error. In Figure 7.4 we report the described

comparison at tn = 2.5 and tn = 10. We observe that for each k = 1, . . . ,K the estimator is above

the error, and they decrease with the same rate.
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h τ tol

0.1 0.2 10−14

0.05 0.1 10−14

0.025 0.05 10−14

0.0125 0.025 10−14

0.00625 0.0125 10−14

Figure 7.3: Convergence analysis in h and τ

(a) tn = 2.5; accepted at iteration 5 (b) tn = 10; accepted at iteration 4

Figure 7.4: Assessment of the a posteriori indicator γnk for the linearization error
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Conclusions

In this thesis, we have tackled the inverse problem of detecting discontinuous coefficients in semili-

near elliptic and parabolic problems. The purpose of reconstructing inhomogeneities in the electrical

activity of the heart (modeled via a system of coupled nonlinear equations) by means of a single

boundary measurement has motivated our study. In particular, due to the lack of measurements at

disposal, we had to deal with ill-posed inverse problems, for which suitable regularization hypothe-

ses have been introduced. Moreover, the nonlinearity of the direct problem has implied significant

restrictions on the application of existing techniques. As a consequence, it has been necessary to

extend and design novel methods for the problem of interest, both for analytical and reconstruction

purposes. In particular, we have achieved the following results:

• Localization of small inclusions in semilinear boundary value problems: under the

regularization hypothesis that the inclusion to be identified is of small size, we have been able

to prove rigorous results regarding the analysis of the inverse problem. Specifically, both in

a simplified elliptic and parabolic case (see Chapter 2 and 3 respectively), we have derived

an asymptotic expansion of the boundary potential with respect to the size of the inclusion,

also entailing a local stability estimate for the inverse problem in the elliptic case. We have

employed such results also for reconstruction purposes, deriving a variational algorithm based

on the topological optimization of a suitable cost functional.

• Detection of large inclusions in semilinear boundary value problems: without any

a priori assumption on the inclusion to be identified, we have been able to devise a recon-

struction algorithm, based on a phase-field approach, allowing for satisfactory reconstructions.

In Chapter 5 we have investigated the convergence of the proposed algorithm, and we have

reported a detailed comparison with some state-of-the-art alternative approaches. We point

out that, due to its generality and feasibility, this technique is likely to be extended to a wider

class of identification problems.

• Introduction of preliminary results for the analysis of the monodomain case: in

order to extend the outlined approach to the complexity of the monodomain model for the full

heartbeat, some preliminary studies have been performed. The well-posedness results obtained

in Chapter 6 pave the way for further analytical results regarding the inverse problem: in

particular, we expect to be able to deduce an asymptotic expansion of the boundary voltage in

presence of small ischemias. Moreover, the a posteriori error analysis performed in Chapter 7

allows to efficiently extend the reconstruction algorithm (especially in the assumption of large

inclusions) to the case in which the monodomain model is considered.
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[25] J.A. Barceló, T. Barceló, and A. Ruiz. Stability of the inverse conductivity problem in the

plane for less regular conductivities. Journal of Differential Equations 173.2 (2001), 231–270.

[26] S. Bartels. Numerical methods for nonlinear partial differential equations. Vol. 47. Springer,

2015.

[27] M. Bendahmane and K. H. Karlsen. Analysis of a class of degenerate reaction-diffusion sys-

tems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (2006), 185–218.

[28] E. Beretta, C. Cavaterra, M.C. Cerutti, A. Manzoni, and L. Ratti. An inverse problem for a

semilinear parabolic equation arising from cardiac electrophysiology. Inverse Problems 33(10)

(2017).

[29] E. Beretta, C. Cavaterra, and L. Ratti. Asymptotic expansion of boundary voltage perturba-

tion in presence of small ischemic regions in the monodomain model of cardiac electrophysi-

ology. in preparation (2018).

[30] E. Beretta, M. C. Cerutti, A. Manzoni, and D. Pierotti. An asymptotic formula for boundary

potential perturbations in a semilinear elliptic equation related to cardiac electrophysiology.

Math. Mod. Meth. Appl. S. (2014).



BIBLIOGRAPHY 179

[31] E. Beretta, E. Francini, and S. Vessella. Differentiability of the Dirichlet to Neumann Map

Under Movements of Polygonal Inclusions with an Application to Shape Optimization. SIAM

Journal on Mathematical Analysis 49.2 (2017), 756–776.

[32] E. Beretta, M. Grasmair, M. Muszkieta, and O. Scherzer. A variational algorithm for the

detection of line segments. Inverse Probl. Imag. 8(2) (2014).

[33] E. Beretta, A. Manzoni, and L. Ratti. A reconstruction algorithm based on topological gra-

dient for an inverse problem related to a semilinear elliptic boundary value problem. Inverse

Problems 33.3 (2017).

[34] E. Beretta, S. Micheletti, S. Perotto, and M. Santacesaria. Reconstruction of a piecewise

constant conductivity on a polygonal partition via shape optimization in EIT. Journal of

Computational Physics 353 (2018), 264–280.

[35] E. Beretta, L. Ratti, and M. Verani. Detection of conductivity inclusions in a semilinear

elliptic problem arising from cardiac electrophysiology. to appear in Commun. Math. Sci.

(2018).

[36] Elena Beretta and Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-

diffusion equation. Inverse Problems and Imaging 5.2 (2011), 285–296.

[37] M. Bergounioux and K. Kunisch. Augemented Lagrangian Techniques for Elliptic State Con-

strained Optimal Control Problems. SIAM Journal on Control and Optimization 35.5 (1997),

1524–1543.

[38] L. Blank, H. Garcke, C. Hecht, and C. Rupprecht. Sharp interface limit for a phase field

model in structural optimization. SIAM J. Control Optim. 54.3 (2016), 1558–1584.

[39] M. Boulakia, M. A. Fernández, J.F. Gerbeau, and N. Zemzemi. A coupled system of PDEs

and ODEs arising in electrocardiograms modeling. Applied Math. Res. Exp. 2008 (2008).

[40] M. Boulakia, E. Schenone, and J-F. Gerbeau. Reduced-order modeling for cardiac electrophy-

siology. Application to parameter identification. Int. J. Numer. Meth. Biomed. Engng. 28.6–7

(2012), 727–744.

[41] Y. Bourgault, Y. Coudiere, and C. Pierre. Existence and uniqueness of the solution for the

bidomain model used in cardiac electrophysiology. Nonlinear Anal Real World Appl 10.1

(2009), 458–482.
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