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Abstract

This thesis regards the development of semi-parametric mixed-effects models

and their application to administrative educational databases for the analysis of

student, class, school and university performances. The research aims go in two

directions: the former is to develop novel statistical models and methods that

represent a novelty and an improvement both in the statistical and in the edu-

cational literature; the latter is to investigate statistical methods that have the

potential of being applied to educational data for addressing new and interesting

research questions in the context of learning analytics. Being the hierarchical

structure (e.g. students are nested within classes, that are in turn nested within

schools. . . ) the main characteristic of educational data, mixed-effects models,

that are able to take into account the nested nature of the data, constitute the

cross-sectional methodological core of the entire work. Our proposed approach

consists in relaxing the parametric assumptions, both on fixed and random ef-

fects, of mixed-effects models in order to develop innovative and advanced statis-

tical methods with the aim of improving the research about school or university

effectiveness and of addressing new and unexplored issues in the educational

research context.
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Sommario

La tesi riguarda lo sviluppo di modelli a effetti misti semi-parametrici e la loro

applicazione a dataset amministrativi educativi per l’analisi delle performance di

studenti, classi, scuole e università. Gli obiettivi della ricerca sono due: il primo

è di sviluppare modelli e metodi statistici innovativi che rappresentino un valore

aggiunto sia nella letteratura statistica che in quella del campo dell’educazione;

il secondo è di identificare metodi statistici che abbiano il potenziale, se appli-

cati a dati educativi, di rispondere a nuove e interessanti domande di ricerca

nel contesto del learning analytics. Dato che la principale caratteristica dei dati

educativi è la loro struttura gerarchica (per esempio, gli studenti sono annidati

nelle classi, che a loro volta sono annidate nelle scuole), il cuore metodologico

di tutto il lavoro si basa sui modelli a effetti misti, che sono in grado di model-

lizzare la natura annidata dei dati. In particolare, ci proponiamo di rilassare le

assunzioni parametriche di questi modelli, sia sugli effetti fissi, che su quelli casu-

ali. I metodi non-parametrici cos̀ı sviluppati, oltre ad essere metodologicamente

innovativi, rappresentano un importante contributo alla ricerca sull’efficacia ed-

ucativa di scuole e università e permettono di affrontare nuove tematiche nel

contesto dell’apprendimento scolastico e universitario.
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Introduction

Student learning is a long and complex process that sees many different factors

acting on it. During their careers, students receive inputs from their peers as

well as from the school and class they are attending. Also personal motivation,

family, friends and the geographical context play a fundamental role in student

learning. All these aspects contribute to the education of each pupil, making

the educational activity a complex process whereby inputs are converted into

outputs. Moreover, the way in which various inputs affect the output is likely to

vary substantially across the education systems that operate in different coun-

tries or contexts.

Learning Analytics has been defined as “the measurement, collection, anal-

ysis and reporting of data about learners and their contexts, for purposes of un-

derstanding and optimizing learning and the environments in which it occurs”

(https://tekri.athabascau.ca/analytics/ ) and, in the last decades, it is receiving

increasing attention. Dedicated programs test students in their scholastic skills

and collect information about classes and schools they are attending, both at na-

tional and international levels, in many countries. These data are then stored in

administrative databases that constitute rich ensembles of information. Many

researchers analyze educational administrative data, as well as other type of

educational data, both to identify the determinants of student learning and ed-

ucational providers effectiveness, and to develop policy implications aimed at

improving education systems across the world.

Within this context, the aim of the thesis is twofold: the former is to de-

velop novel statistical models and methods that represent an improvement both

in the technical and in the educational literature; the latter is to investigate

statistical methods that have the potential of being applied to educational data

for addressing new and interesting research questions in the context of learning

analytics.

The education system can be characterized as a hierarchical system in which

different levels of grouping are nested within each others. In primary or sec-

ondary education, students are nested within classes, that are in turn nested

within schools, that are in turn nested within districts and so on so forth. In the

same way, in higher education, students are nested within degree programs, that
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are in turn nested within universities and so on so forth. Each one of these levels

has a role in the learning process of students. Measuring how much of student

education is due to each grouping level is not trivial, but is of extreme interest.

Disentangling the effects given to the levels of grouping on the student learn-

ing process is important in the perspective of identifying the most influential

level on which it is possible to act with the aim of improving education systems

and, consequently, student education level. In this perspective, the hierarchical

structure of educational data represents the main characteristic that drives our

choice about the statistical models and methods to be developed and used. This

is the reason why our modeling approach, cross-sectional to the entire work, is

based on mixed-effects (or multilevel) models (Pinheiro and Bates, 2000), that,

to the best of our knowledge, are one of the most appropriate tools to fit nested

data (Bock, 2014; Agasisti et al., 2017a).

From a modeling point of view, the application of hierarchical models to edu-

cational data is straightforward. In Raudenbush (1988), the author explains the

advantages of applying these models in an educational context. He states that

two primary goals motivate the application of hierarchical models in education:

first, the inclusion of data from many groups strengthens estimation of random

effects for each group (a researcher, for instance, seeks to estimate a regression

equation for a particular school), and second it improves inference about the

fixed effects (a researcher, for instance, asks why some kinds of schools have

smaller regression slopes than others). The application of hierarchical linear

modeling enables researchers to go beyond the classical questions, such as why

do students in some schools have higher achievements than others, to ask about

why structural relationships vary across groups. These models also offer advan-

tages in dealing with aggregation bias associated with nested data structure.

Being multilevel models able to quantify the part of variability in the re-

sponse variable that is due to each level of grouping, when applied to educational

data, they are useful to measure the “school effect”, intended as the impact that

the school the student is attending has on his/her achievements with respect

to other schools (Bryk and Raudenbush, 1988; Coleman et al., 1966; Hanushek

et al., 1996; Raudenbush and Bryk, 1986). In Bryk and Raudenbush (1988),

the authors state the importance of considering the “unit-of-analysis” (students,

classes, schools), when speaking about educational research, and they argue

that hierarchical models should constitute the basic paradigm for quantitative

research on student learning. Moreover, in Raudenbush and Bryk (1986), the

authors, given the hierarchical structure of educational data, underline the im-

portance of measuring school effects, as intended before, and present different

approaches to analyze nested data. In Coleman et al. (1966), the authors view

education as a process in which student performance (output) is produced from

inputs including school resources, teacher quality, family attributes, and peer

quality. In their perspective, policy attention should be focused on inputs that
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are both directly controlled by policymakers (characteristics of schools, teach-

ers, curricula, etc.) and those that are “uncontrolled” (family, friends, learning

capacities of the student, etc.). Also in Hanushek et al. (1996), the authors show

that schools’ characteristics are important for determining student outcomes.

For these reasons, multilevel approaches have been broadly applied in the

educational literature. Raudenbush himself applies hierarchical models in vari-

ous educational studies (Bryk and Raudenbush, 1988; Willms and Raudenbush,

1989; Raudenbush and Bryk, 1986). Other examples are given by Goldstein

(1987); Rumberger (1995); Grilli and Rampichini (2007); Plewis (2011); Sani

and Grilli (2011); Shen et al. (2012); Sun et al. (2012); Mart́ınez (2012); Masci

et al. (2016b, 2017a); Agasisti et al. (2017b), that apply multilevel linear or

logit models considering different levels of grouping, such as class, school, Local

Education Authority (LEA), degree programs or geographical areas.

Even where these approaches do indeed model the hierarchical structure of

data, however, their parametric modellistic assumptions are in general too re-

strictive due to the complexity, the interactions and the heterogeneity that char-

acterize educational data. In this perspective, our innovative approach consists

in relaxing some of the parametric assumptions of mixed-effects models, both on

fixed and random effects respectively, in order to develop innovative and flexible

statistical methods able to address new and interesting research questions and

to extract major information from complex data. The literature about the de-

velopment of non-parametric mixed-effects models for educational applications

is very limited and we will enter in its merit in the following chapters of the

thesis. Figure 1 summarizes the scenario about mixed-effects models in educa-

tion, distinguishing our novel contribution from the state of the art, both from

a methodological and an educational point of view.

We distinguish models with parametric fixed or random effects from models

with non-parametric effects, as well as univariate from multivariate models (i.e.

models in which the answer variable is univariate or multivariate). This last

modeling distinction is worthwhile in educational applications. In a multivari-

ate setting, student skills in different fields (e.g. reading, mathematics, science)

can be modeled as multiple responses of the same model and, consequently, their

structural correlation can be properly investigated. The interactions among dif-

ferent school subjects, indeed, are often stronger than what we expect, especially

at class level, where the dynamics of learning processes in different school sub-

jects are particularly intertwined. As shown in Figure 1 and as anticipated in

previous paragraphs, univariate and multivariate parametric mixed-effects mod-

els have already been applied in the literature. Also our first approach to the

topic was by means of parametric mixed-effects models (Masci et al., 2016a,b,

2017a). In Masci et al. (2016b) and Agasisti et al. (2017b), we apply univariate

three-levels linear models to Italian administrative data, considering students

nested within classes, in turn nested within schools. We estimate class and
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Figure 1: Scenario of mixed-effects models in education. Grey box represents existing
statistical models already applied in the educational field while green boxes represent
our novel contribution to the literature, both in the methodology and in the application.

school value-added, modeled as random intercepts of the multilevel model and

intended as the contribution that the class and the school give to their student

achievements, for mathematics and reading student achievements respectively.

In Masci et al. (2017a), we apply the same model but extended to the case of a

bivariate response variable, for jointly modeling the class and school value-added

on mathematics and reading student achievements.

The new contributions of the thesis regard the development of mixed-effects

models with non-parametric fixed effects (that fulfills the bottom left box in

the table of Figure 1) and of mixed-effects models with non-parametric random

effects (that fulfills the top right box in the table of Figure 1) to be applied

to educational data to address new issues in the educational research. About

mixed-effects models with non-parametric fixed effects, we propose two studies.

In the former, our methodological approach is based on mixed-effects regression

trees (Sela and Simonoff, 2012) and boosted regression trees (Friedman, 2001).

This methodology is not new in the statistical literature, but what we will prove

to be innovative is its effective and revealing application to the educational field.

In the latter, we propose a new method that extends the classification tree model

(Friedman et al., 2001) to handle clustered data structures. Regarding the case

of mixed-effects models with non-parametric random effects, our contribution

is again both methodological and novel in the educational research field, since

we propose a new statistical method, a mixed-effects linear model, that can also

handle a multivariate response, where the random effects follow a discrete distri-

bution with an unknown number of support points, that, applied to educational
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data, represents an improvement in the research about educational providers

effectiveness.

In particular, all these concepts, that correspond to the contribution boxes

in Figure 1, are developed as the cores of four different research lines, that are

described in four chapters of the thesis in the following way:

• Chapter 1: The first research line regards the application of random-

effects regression trees and boosted regression trees to international edu-

cational data. In a methodological perspective, the parametric assumption

on the fixed effects of linear mixed-effects models are relaxed, being the

linear functional form of the fixed effects replaced by a regression tree. The

flexibility of this model results to be of great advantage in easily modelling

both non-linearities and interactions among the variables. When applied

to worldwide educational data, this methodology allows the identification

of complex patterns across the variables and gives an improved descrip-

tion of the structurally different educational production functions across

countries, leading to new and interesting insights in a policy implication

perspective. Applying mixed-effects regression trees, we identify student

level characteristics associated to student performances and we estimate

school value-added, that, in a second step, can be characterized in terms

of school level variables by means of boosted regression trees. The re-

sults explained in this chapter are gathered in Masci et al. (2018b). It

is worth noting that the work that we present in this chapter is not our

first attempt of using regression trees in educational application. We also

applied tree-based methods to analyze Hungarian educational data in a

work (Schiltz et al., 2018) that is part of the H2020 Education Economics

Network (EdEN) project (www.edenproject.eu). We do not include this

work in the thesis since the methodology is for a large part overlapped to

the one that we propose in this chapter.

• Chapter 2: The second research line regards the proposal of an innova-

tive statistical method, that is a generalization of mixed-effects trees for

a response variable in the exponential family, Generalized Mixed-Effects

Trees (GMET), and its application to higher education data for modeling

student dropout. We perform a simulation study in order to validate the

performance of our proposed method and to compare GMET to classi-

cal models. Given that the analysis of university careers and of student

dropout prediction is one of the most studied topics in the area of learning

analytics, in the case study, we apply GMET to model bachelor student

dropout in different degree programs of Politecnico di Milano. The model

is able to identify discriminating student characteristics and estimate the

degree program effect on the probability of student dropout. The results

explained in this chapter are gathered in Fontana et al. (2018).
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• Chapter 3: The third research line regards the development of a novel

semi-parametric mixed-effects linear model, together with an EM algo-

rithm to estimate its parameters, and its application to Italian educational

data as a tool to perform an unsupervised classification of Italian schools.

We relax the parametric assumption on the distribution of the random

effects of mixed-effects models and we assume them to follow a discrete

distribution with an a priori unknown number of support points. This

modelling induces an automatic clustering of the higher level of hierarchy

(enabling the identification of subpopulations) and can be used in multiple

classification problems. Among being an innovative method in the statis-

tical scenario and representing a significant improvement in the context of

mixed-effects models, this model contributes to the research about school

effectiveness since, when applied to educational data considering students

nested within schools, it identifies subpopulations of schools that differ in

terms of distribution of student outcomes and that can be characterized a

posteriori by school level variables. The results explained in this chapter

are gathered in Masci et al. (2017b).

• Chapter 4: The last research line evolves as an extension of the model

presented in Chapter 3, since it regards the development of a multivariate

semi-parametric mixed-effects linear model, i.e. a model that handles a

multivariate response variable. In this proposed model, the random effects

are assumed to follow a multivariate discrete distribution where the num-

bers of support points are unknown and allowed to be different between

multiple responses. This modelling enables to jointly model the presence

of subpopulations in the higher level of hierarchy and it is totally new to

the literature both from a technical/statistical point of view and for the

potential that modelling the joint behaviors of the identified subpopula-

tions has from an interpretative point of view. When applied to Italian

educational data considering students nested within classes, this model al-

lows to identify subpopulations of classes that differ in their joint effect on

reading and mathematics student achievements. The results explained in

this chapter are gathered in Masci et al. (2018a).

We are interested in analyzing three different databases: two of them regard

lower education institutions (from primary to upper secondary schools), while

one regards higher education institutions (universities). The two lower education

databases of our interest are the Programme for International Student Assess-

ment (PISA) database and the Italian Institute for the Educational Evaluation

of Instruction and Training (INVALSI) database.

PISA (www.oecd.org/pisa) was initiated by the OECD and it is a triennial

international survey (started in 2000) which aims to evaluate worldwide edu-

cation systems by testing the skills and knowledge of 15-year-old students. At
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each survey, over half a million students, representing 28 million 15-year-olds

in 72 countries and economies, take the internationally agreed two-hour test.

Students are assessed in science, mathematics, reading, collaborative problem

solving and financial literacy. Moreover, a wide array of data concerning a set of

student and school levels characteristics are available, thanks to questionnaires

completed by students and school principals.

INVALSI (www.invalsi.it), following a procedure similar to OECD-PISA,

tests Italian students all over the country since 2004, both in their mathematics

and reading skills. These tests are administered at several grades, starting from

primary schools up to the end of secondary schools, producing data that collect

multiple observations for each student. Students are tested at grades II and

V of primary school, at grade III of junior secondary school and at grade II

of upper secondary school1. Moreover, INVALSI, by means of questionnaires,

collects information about students themselves, teachers, classes, schools and

school principals. By doing this, it creates a dataset that contains a rich picture

of the personal and scholastic situation of each student.

Both these datasets allow to compare the performances of students com-

ing from heterogeneous education systems and that attend different classes, in

different schools, in diverse geographical areas, but with the same yardstick.

The higher education database is taken from the Student Profile for Enhanc-

ing Engineering Tutoring (SPEET) project, an Erasmus+ project started in 2017,

whose objective can be stated as determine and categorize the different profiles

for engineering students across Europe. Partners of the project are Politecnico

di Milano (Italy), Universidad Autonoma de Barcelona (Spain), Universidad de

Leon (Spain), Instituto Politécnico de Bragança (Portugal), Opole University of

Technology (Poland) and Dunarea de Jos University of Galati (Romania). The

aim of the project is to collect engineering students performances and collateral

data from partner organizations and to apply data mining techniques in order

to get a characterization of students profile, identifiable by labels and features.

The results can be used to generate an information technology (IT) tool as a

support of tutoring activities.

These three datasets are characterized by very high dimensions: they contain

information about a huge number of students (hundred thousand observations)

and the features collected about each student are most of the time extracted by

questionnaires composed by hundreds of singular questions. For this reason, a

big effort in data preprocessing is required to obtain the final dataset to be used

in the analysis. Moreover, the big size of data implies a series of computational

issues that need to be faced, regarding, for example, the convergence timing of

the algorithms.

1In Italy, students attend five years of primary school, three years of junior secondary school
and five years of upper secondary school.
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All analyses undertaken in this thesis are conducted using the statistical

software R (R Core Team, 2014) and the main functions of the code will be soon

released in dedicated R packages.

8



Chapter 1

Student and school
performance across countries:
a machine learning approach
via random-effects regression
trees and boosting

The educational activity involves a complex process whereby inputs (such as

human and financial resources) are converted into outputs. By analogy with

the type of production function that is typically used to analyse the technology

of a firm, the labour and capital inputs used by a school are likely to influence

its output. But, since students themselves form both an input and output, and

since they themselves are transformed by the experience of education, such a

simple framework fails adequately to capture some key salient features of the

process. This is a very well-known challenge in the existent literature about Ed-

ucational Production Function (EPF). Indeed, the learning process of students

is influenced by students’ own characteristics, those of their family, their peers,

the neighbourhood in which they live, as well as by the characteristics of the

school that they are attending. Moreover, the way in which various inputs (at

different levels) affect output is likely to vary substantially across the educational

systems that operate in different countries. A common characteristic of all edu-

cational systems is the hierarchical structure in which students are nested within

classes, that are nested within schools, that are in turn nested within cities and

so forth. Establishing the structure of such a hierarchy is a non-trivial exercise,

not least because this structure may be different across countries. Exploring

international datasets which contain information about students’ performance

in more countries can be a rational approach to understand how the differences

among educational systems can have an impact on students’ results, all else

9



CHAPTER 1. STUDENT AND SCHOOL PERFORMANCE: A ML
APPROACH

equal (Hanushek and Woessmann, 2010).

Our aim in this chapter is to analyze the OECD-PISA 2015 database in

order to identify which are the student and school level characteristics that are

related to students’ achievement, with the aim of investigating the impact of

these characteristics on the outcome. We analyze the school systems of nine

large developed countries: Australia, Canada, France, Germany, Italy, Japan,

Spain, UK, USA. Specifically, our research questions are:

• Which student level characteristics are related to student achievement?

• How much of the total variability in student achievement can be explained

by the difference between schools and how can we estimate the school

value-added?

• Which school level characteristics are related to school value-added and in

what way?

• How do co-factors interact with each other in determining outcomes simul-

taneously?

• How do these relationships between inputs/covariates and outputs/test

scores vary across countries?

In order to address these issues, we run a two stage-analysis, that departs

from traditional EPFs approach and embraces a Machine Learning strategy:

1. In the first stage, we apply multilevel regression trees (RE-EM tree, Sela

and Simonoff (2012)) in which we consider students (level 1) nested within

schools (level 2). By means of this model we can both analyse which are

the student level variables that are related to student achievements and

estimate the school value-added, as a random effect (grouping factor in the

hierarchical model).

2. In the second stage, we apply regression trees and boosting to identify

which are the school level characteristics related to school value-added

(estimated at first stage), how they are related with the outcome and how

they interact among each other.

The set of analytical tools that we use to examine these issues is new to

the literature, but is quickly gaining in popularity. Tree-based methods can be

classified as a Machine Learning (ML) approach. The main difference between

statistical and ML approaches is that while the former starts by assuming an

appropriate data model and then estimates the parameters from the data, the

latter avoids starting with a data model and rather uses an algorithm to learn the

relationships between the response and the predictors (in our setting, students’

10
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test scores and their determinants, respectively). Furthermore, ML approach

assumes that the data-generating process is complex and unknown and tries to

identify the dominant patterns by observing inputs and the responses (Elith

et al., 2008).

Tree-based methods (extended to accommodate the multilevel context) fit

the problem in hand well for several reasons. First of all, this methodology

takes into account the hierarchical structure of data. The two levels of analysis

are students (level 1) that are nested within schools (level 2) and it is worth dis-

entangling the portions of variability explained at each level. Multilevel models

are well suited to this. Secondly, our tree-based methodology does not force any

particular functional form on the input-output relationship, and it allows for

interactions among the predictors. This point is essential because the functional

form of the relationships between the covariates and the outcome is unknown a

priori and forcing it to be linear can considerably bias the results and, critically,

it does not allow discovery of the most likely relationships between the variables.

Moreover, there are reasons to believe that the educational context is intrinsi-

cally characterised by interactions among variables, since inputs are various and

coexist in the same environment. So, tree-based models, that are able to let the

variables interact and that identify which interactions are relevant in influenc-

ing the outcome, are definitely attractive (Mullainathan et al., 2017). Thirdly,

the method allows a clear graphical representation of the results that helps in

communicating them to policy practitioners. Alongside the deep interrogation

of interactive effects, we consider this to be a major benefit of this approach.

The remainder of the chapter is organised as follows: in Section 1.1 we review

the existing literature and, in so doing, motivate our model choice; in Section

1.2 we present the PISA dataset and the countries that we analyse; Section

1.3 discusses the methodological approach (multilevel trees and boosting); in

Section 1.4 we report the results and in Section 1.5 we derive conclusions and

policy implications.

1.1 Background and previous literature

In recent decades, many researchers have studied the determinants of student

achievement, in order to develop policy implications aimed at improving ed-

ucational systems across the world. The statistical methods proposed by the

literature in this perspective are various - including linear regression, multilevel

linear models and stochastic frontier analysis - in each case aimed at parame-

terising the educational production function (EPF). While a complete literature

review of previous studies that use a EPF approach is beyond the scope of this

chapter, we report important points from existing contributions that can be

considered as relevant for interpreting our approach. Specifically, we focus on
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those studies which adopt a cross-national perspective in modelling the deter-

minants of students’ educational performance by means of economic models and

statistical and econometric empirical tools. Indeed, our main contribution to the

academic literature stems from the relevance of the innovations brought by the

ML strategy to explore differences in educational production across countries.

The Programme for International Student Assessment (PISA) was initiated

by the OECD, and has been running since 2000. It involves standardised test-

ing of 15 year olds across a large number of countries. Over the 15 years for

which data are now available, PISA results have revealed that there are big

discrepancies across education systems. The data allow direct comparisons of

student performance in science, reading and mathematics, leading to a rank-

ing of the countries and identifying those that score the best results (OECD,

2016). PISA2015 data, for example, show that Singapore achieves the best re-

sults in the scientific area, followed by Japan, Estonia, Finland and Canada.

For our purposes, the most interesting aspect of the PISA data is the possibil-

ity that they offer to compare the marginal effects of student and school levels

variables on students’ performance. Gender, immigrant status, socio-economic

status (SES), proportion of disadvantaged students, school size and character-

istics of the school principal are all variables that have been found to be very

important in some countries but less so in others (Owens, 2013; Stacey, 2015).

For example, in almost all countries boys perform on average better than girls

in the scientific subjects, with the notable exception of Finland, where girls have

on average higher results than boys. As another example, after accounting for

socio-economical status, immigrant students have a double probability compared

to their not immigrant counterparts to achieve low results in scientific subjects

(Peña-López et al., 2016). Focusing on mathematics, four Asian countries out-

perform all other economies - Singapore, Hong Kong (China), Macao (China)

and Chinese Taipei - and Japan is the strongest performer among all the OECD

countries.

Policy responses to internationally reported PISA results have differed among

participating countries. For example, in some country groups PISA deficits have

been associated with a push towards more centralised control, while others have

responded with much more focused reforms implemented with the specific aim

of raising PISA (or similar) test scores over time (Wiseman et al., 2013).

What is clear to experts and analysts worldwide, therefore, is that the ed-

ucational systems, in their structural, internal complexity and in their various

aspects, vary within and across countries. Different variables play a role and

sometimes with different impacts in influencing educational results in different

contexts. Analysing international datasets like PISA therefore calls for the use

of a flexible model, able to identify the significant variables within each system

and to fit data with different patterns. Indeed, imposing the same coefficient

on the correlation between covariates and educational results in all countries is
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inappropriate and even the inclusion of country fixed-effects - shifting only the

intercept - is not obviously an adequate solution. Therefore, it is necessary to

employ more flexible instruments for the analysis of patterns that go beyond the

simply “fixed-effects” which impose homogeneity of the interactions between key

variables within countries.

The EPF literature builds upon the work of Coleman, Hanushek, and oth-

ers by viewing education as a process in which students’ performance or output

(attainment or years of schooling completed) is produced from inputs including

school resources, teacher quality, family attributes, and peer quality. Because

outcomes cannot be changed by fiat, policy attention has focused on inputs.

These include inputs that are both directly controlled by policymakers (charac-

teristics of schools, teachers, curricula, etc.) and those that are not so controlled

(family, friends, the learning capacities of the student, etc.) (Hanushek, 2008).

While a large part of the effect on students’ attainments is due to these “un-

controlled” characetristics of students (Coleman et al., 1966), many researchers

have found that schools’ and teachers’ characteristics are also of importance in

determining outcomes (Hanushek et al., 1996; Angrist and Lavy, 1999; Rivkin

et al., 2005; Word et al., 1990).

In this chapter, we try to find out which are the inputs that are related with

students’ performances (output) and in our perspective, three main points need

to be taken into account when modelling the educational production functions:

• Data levels of grouping : educational data have a hierarchical structure and

it is important to distinguish and disentangle the portion of variability in

student achievements due to different levels of grouping ( between and

within classes and schools).

• Realistic assumptions: since the educational system is a complex and un-

known process, the model assumptions are a sensitive issue and are one of

the main weak points of the parametric approaches to the problem. Most

of the statistical approaches force the data to be explained through a func-

tional form chosen a priori, but the imposition of such a functional form

may be inappropriate - either because it does not reflect the underlying

technology in some contexts (countries) or, even in none. Therefore, there

is the need of a flexible approach that does not force any functional rela-

tionships among the variables, where the functional form is not known and

that admits the eventuality that the relationship between a covariate (for

instance, school resources) and educational results (for example, students’

test scores) may be non linear.

• Interactions: interactions between cofactors (both within and between lev-

els) are inevitable, as, for example, the relationship between average so-

cioeconomic status of students and class/school size. In such a perspective,
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modelling the educational production function would require the inclusion

of interaction factors that better describe how covariates combine to influ-

ence educational performances.

Most of the classical statistical techniques used in the literature to model ed-

ucational data do not fulfill these requirements. As we state in the Introduction,

the application of hierarchical models to educational data is straightforward and

multilevel approaches have been broadly applied in the literature. Even where

all the approaches that we list in the Introduction do indeed model the hierar-

chical structure of data, however, they still force the covariates to have a linear

(or a defined functional form) relationship with the outputs, without allowing

possible heterogeneous interactions among the predictors.

The innovation of the present study involves the combination of the EPF ap-

proach with a multilevel approach to estimation using a machine learning (ML)

method. This allows us to relax the parametric assumptions and to discover

the data generating process that lies behind our data. The fundamental insight

behind ML approaches is as much statistical as computational and its success

is largely due to its ability to discover complex structure that does not need to

be imposed by the researcher in advance. It manages to find complex and very

flexible functional forms in the data without simply overfitting: it finds functions

that work well out-of-sample (Mullainathan et al., 2017).

Spurred by the need to relax the parametric assumptions and to explain

complex systems, some researchers have already adopted a ML approach for

studying some key economic and social relevant issues. Varian (Varian, 2014)

states that

“conventional statistical and econometric techniques such as regression often

work well, but there are issues unique to big datasets that may require differ-

ent tools. First, the sheer size of the data involved may require more powerful

data manipulation tools. Second, we may have more potential predictors than

appropriate for estimation, so we need to do some kind of variable selection.

Third, large datasets may allow for more flexible relationships than simple linear

models. Machine learning techniques such as decision trees, support vector ma-

chines, neural nets, deep learning, and so on may allow for more effective ways

to model complex relationships.”

Various studies on the comparison of the performance of regression and clas-

sification trees and conventional statistical methods have already been done:

Fitzpatrick & Mues (Fitzpatrick and Mues, 2016), for example, apply differ-

ent modelling approaches for future mortgage default status and they show

that boosted regression trees significantly outperform logistic regression. Savona

(Savona, 2014) realizes an early warning system for hedge funds based on specific

red flags that help detect the symptoms of impending extreme negative returns

and the contagion effect. He uses regression tree analysis to identify a series of
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splitting rules that act as risk signals and he compares these results with the

ones obtained applying logistic regression, showing that they are consistent.

The work proposed in this chapter is not the first in which regression trees

have been applied in an educational context. Thomas & Galambos (Thomas

and Galambos, 2004) apply regression and decision trees to investigate how

students’ characteristics and experiences affect satisfaction. The data mining

approach is able to identify the specific aspects of students’ university experience

that most influence students’ satisfaction, in a survey of students in Iowa city

(IA). Ma (Ma, 2005) analyses students’ performances at middle and high schools

employing a two-stage analysis, the first stage of which involves estimation of

the rate of growth in mathematics achievements of each student, by means of

a hierarchical linear model (HML), while the second stage applies classification

and regression trees (CART) to students’ characteristics. Cortez & Silva (Cortez

and Silva, 2008) apply some Data Mining (DM) methods such as regression trees

and random forests to relate Portuguese secondary school students’ scores in

mathematics and reading to students’ characteristics. Grayson (Grayson, 1997)

merges results of students at York University in Toronto that were surveyed at

the end of the first year with information on grades from administrative records,

by means of regression trees.

In this chapter, we relax the assumption of linear effects of student-level

covariates on their performance, instead modelling this relationship by means of

flexible regression trees. In the first stage of the analysis, we therefore combine

multilevel models with regression trees. In the second stage, when exploring

the factors associated to the school value-added, we again employ regression

trees, combining this method with a boosting procedure, so gaining more precise

estimates of determinants of school performance. This type of research is very

much in its infancy. We are aware of only one other study, Gabriel et al. (2017),

- conducted concurrently with and independently of the present research - that

uses regression trees in an education context. That study also draws on PISA

data, but focuses specifically on mathematics achievement in Australia.

1.2 The OECD-PISA dataset

The Programme for International Student Assessment (PISA) data assesses stu-

dent performance, on a triennial basis, in science, mathematics, reading, col-

laborative problem solving and financial literacy. In our analysis, we use PISA

data for 2015, focusing on 9 countries: Australia, Canada, France, Germany,

Italy, Japan, Spain, UK and USA. The selection of countries is motivated by

the attempt of representing different “types” of educational systems: Anglo-

Saxon, Asian, Continental-Europe and Southern Europe. Future research will

be realized to extend the analysis to other educational regimes, such as Nordic
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countries, South America and Africa. We also need to keep the number of

countries quite limited, for favoring easy interpretation of results and their com-

parison. PISA requires both students and school principals to compile a ques-

tionnaire. We therefore have information both at student and school levels.

The school questionnaire contains around 30 multiple choice questions about (i)

school background information, (ii) school management, (iii) teaching staff, (iv)

assessment and evaluation, (v) targeted groups (eg how schools might organise

instruction differently for students with different abilities) and (vi) school cli-

mate. Meanwhile the student questionnaire contains around 50 multiple choice

questions about the (i) student, student’s family and student’s home (home re-

sources, parents support), (ii) student’s view about his/her life (anxiety, effort,

collaboration, perception of school climate), (iii) student’s school, (iv) student’s

school schedule and learning time and (v) student’s view on science. In addition,

students are required to undertake tests in several subjects, and, upon comple-

tion, is awarded ten scores for each subject, measuring different abilities within

each subject. For example, in science, these scores measure students’ ability to

explain phenomena scientifically, to evaluate and design scientific enquiry, and

to interpret data and evidence scientifically; in reading, they measure student’s

ability in retrieving information, forming a broad understanding, developing an

interpretation, reflecting on and evaluating the content of a text, reflecting on

and evaluating the form of a text, etc.; and in mathematics, they measure stu-

dents’ ability in identifying the mathematical aspects of a problem situated in a

real-world context and identifying the significant variables, recognising mathe-

matical structure (including regularities, relationships and patterns) in problems

or situations, simplifying a situation or problem in order to make it amenable

to mathematical analysis and so on. The ten scores are very highly correlated

within each subject (coefficient of correlation ' 0.8/0.9). In each country, test

scores have been standardised in order to have mean = 500 and standard devi-

ation = 100. Some other variables, noted in the following tables, are indicators

built by PISA and have been standardised so that the mean = 0 and standard

deviation = 1. An example is ESCS, which is a weighted average of measures of

parental education, wealth, home educational resources and cultural possessions.

In our analysis, we focus on mathematics test scores, choosing just one of the ten

scores (the same one for each country) as answer variable. We report in Tables

1.1 and 1.2 the variables used in our two-stage analysis, with full definitions1.

1We report here the students’ score in mathematics, since this will be our response variable
in the model. We do not consider students’ scores in other educational subjects in the analysis.
In order to have a complete overview of the data collected by PISA, refer to the PISA 2015
technical report in http://www.oecd.org/pisa/data/2015-technical-report/.
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Variable name Type Explanation

MATH SCORE num Mathematics PISA test score
(mean = 0, sd = 1)

GENDER 0/1 0=male
1=female

ESCS num Socio-economical status
(mean = 0, sd = 1)

IMMIGRANT cat 0 = not immigrant student
1 = first generation immigrant
2 = second generation immigrant

TIME HOMEWORK int Number of hours of student
homework per week

HISCED cat Highest level of education of
parents (levels from 0 to 6)

VIDEO GAME 0/1 Whether the student plays
video games or not

SPORT 0/1 Whether the student plays
sport or not

DISCIPLIN CLIMATE num How is the disciplinary climate
in class

TEACHER SUPPORT num Teacher support in class
MMINS num Hours of mathematics lessons/week
BELONG num Subjective well-being:

sense of belonging to school
MOTIVAT num Student Attitudes, Preferences and

Self-related beliefs: motivation
ANXTEST num Personality: test anxiety
COOPERATE num Collaboration and teamwork

dispositions: Enjoy cooperation
PARENTS SUPPORT num Parents emotional support
CULTURAL POSSESSION num Cultural possession at home
HOME EDUCAT RESOURC num Home educational resources

Table 1.1: List of student level variables of PISA2015 survey used in the analysis, with
the relative explanations. Note: we report here only the test score in mathematics
that we use as answer variable in the first stage of the analysis. In each country, we
standardize the test score in order to have mean = 0 and sd = 1. All variables from
“DISCIPLIN CLIMATE” to the end are indicators built by PISA and have mean = 0
and sd = 1.
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Variable name Type Explanation

# STUDENTS num Number of students in the school
RATIO-COMPUTER-STUD num Number of available computers

per student
MANAGEMENT1 1/6 How much the school principal uses

student performance results to
develop school’s educational goals

MANAGEMENT2 1/6 How much the school principal
discusses schools’ academic goals
with teachers at faculty meetings

STUD-ADMIT-RECORD 0/1 Whether the students are admitted
to the school depending on their
previous scores or not

PRIVATE 0/1 0 = Public school
1 = Private school

% GOVERN FUNDS num Percentage of school funds
given by the government

TEACHERS-INADEQ 1/4 How much the principal thinks
that teachers are inadequate
(on a 1 to 4 scale)

MATERIALS-INADEQ 1/4 How much the principal thinks
that materials are inadequate
(on a 1 to 4 scale)

INFRASTRUCT-INADEQ 1/4 How much the principal thinks
that infrastructures are inadequate
(on a 1 to 4 scale)

RATIO-STUDENTS-TEACHER num Student-teacher ratio
RATIO-STUDENTS-TEACHER5 num Student-teacher with level 5 ratio
% STUD SPECIAL NEEDS num Proportion of students with

special needs
% DISADVANT STUDENTS num Proportion of disadvantaged students

in terms of socio-economical index
STUDENTS TRUANCY 1/4 Students truancy (on a 1 to 4 scale)
STUD-NO-RESPECT-TEACH 1/4 Students lack respect for teachers

(on a 1 to 4 scale)
TEACHER ABSENTEEISM 1/4 Teacher absenteeism

(on a 1 to 4 scale)
% PARENTS SPEAK num Proportion of students’ parents
TEACHERS speaking with teachers at the meeting
% PARENTS IN SCHOOL num Proportion of students’ parents
GOVERN participating at the school government

Table 1.2: List of school level variables of PISA2015 survey used in the analysis, with the
relative explanations. Note: all variables of type n1/n2 assume integer values ranging
from n1 to n2, with the maximum value corresponding to n2.

Table 1.3 reports the sample size in the different countries, specifying the

number of students and the number of schools that participated in the PISA
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survey. The sample sizes vary somewhat across countries, but we have chosen the

countries used in our analysis so as to ensure that there are sufficient observations

in each to allow robust conclusions to be drawn.

Lastly, it is worth noting that the percentage of missing data at student level

is very low (about 2 to 5 % among countries), while at school level it is slightly

higher (about 10 to 25 % among countries). We note, however, that a major

advantage of tree-based algorithms concerns their performance in the presence

of missing data - see for example Breiman et al. (1984) and Loh et al. (2016).

Country # Students # Schools

Australia 14, 530 758
Canada 20, 058 759
France 6, 108 252
Germany 6, 504 256
Italy 11, 583 474
Japan 6, 647 198
Spain 6, 736 201
UK 14, 157 550
USA 5, 712 177

Table 1.3: Sample size in the 9 selected countries.

1.3 Model and methods

We develop and employ a two-stage procedure. In the first stage, we apply a

mixed-effects regression tree (RE-EM tree), with only random intercept, in which

we consider two levels of grouping: students (level 1) nested within schools (level

2). The response variable of the mixed-effects model is the student PISA test

score in maths, this being regressed against a set of student level characteristics

(fixed coefficients), plus a random intercept that describes the school effect. By

means of this model, we can both estimate the fixed coefficients of the student

level predictors on the outcome and the school value-added (corresponding to

the random intercept). In the second stage, we regress the estimated school

value-added against a set of school level characteristics, by means of regression

trees and boosting.

1.3.1 An introduction to tree-based methods

Given an outcome variable and a set of predictors, tree-based methods for regres-

sion (James et al., 2013) involve a segmentation or stratification of the predictors

space into a number of regions. In order to make a prediction for a given obser-
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vation, we typically use the mean of the observations in the region to which it

belongs. Building a regression tree involves two steps:

1. We divide the predictor space - that is, the set of possible values for

X1, X2 . . . , XP - into M distinct and non-overlapping regions, R1, R2 . . . , RM .

For simplicity, we consider these regions as high-dimensional rectangles (or

boxes);

2. For every observation that falls into the region Rm, we make the same

prediction, which is the mean of the response values for the observations

in Rm.

The regions are chosen in order to minimize the Residual Sum of Squares

(RSS):

M∑
m=1

∑
i∈Rm

(yim − ŷRm
)2 (1.1)

where ŷRm
is the mean of the observations within the m-th box and yim is

the i-th observation within the m-th box.

It is useful to contrast this approach with the more conventional methods

typically used in the education economics literature - namely a linear functional

form imposed on the education production function. In particular, a linear

regression model assumes the following functional form:

f(X) = β0 +
P∑
p=1

Xpβp; (1.2)

(where P is the total number of predictors) whereas regression trees assume

a model of the form:

f(X) =
M∑
m=1

cmI(X∈Rm) (1.3)

where M is the total number of distinct regions and R1, . . . , RM represent

the partition of feature space.

Determining which model is more appropriate depends on the problem: if the

relationship among the features and the response is well approximated by a linear

model, then an approach such as linear regression will likely work well, and will

outperform a method such as a regression tree that does not exploit this linear

structure (Varian, 2014). If instead there is a highly non-linear and complex

relationship between the features and the response, then decision trees may

outperform classical approaches. The complex nature of educational production

renders this an ideal candidate for exploring the ability of trees-based methods

to interrogate non-linearities and interactions in the data.
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In order to give an example of how to read the result of a regression tree,

let us imagine that we want to regress stadardised student test scores (that

is a continuous variable with mean = 0 and standard deviation = 1) against

three covariates: Economic Social and Cultural Status (ESCS, an indicator of

socio-economic status defined to be a continuous variable with mean = 0 and

standard deviation = 1), number of siblings (variable assuming integer values)

and time spent on homework (variable assuming integer values) and that Figure

1.1 reports the result of the regression.

Figure 1.1: Example of the result of a regression tree. The answer variable is students’
tests scores (continuous variable with mean = 0 and sd = 1) and the three covariates
are: (i) socioeconomic index (ESCS, continuous variable with mean = 0 and sd = 1),
(ii) number of siblings (integer variable) and (iii) time of homework (integer variable
counting the hours of homework at home). The image on the left represents the partition
of the covariate space into three regions, computed by the regression tree. The image on
the right represents the regression tree. Variable “number of siblings” does not appear
in either the two images, since it does not result to be statistically relevant.

First, we notice that the number of siblings does not appear in the tree.

This means that this variable is not able to catch any variability in students’

test scores and therefore, the tree excludes it from the splits. When reading

the tree, every time the condition at the split point is satisfied, we follow the

left branch, otherwise, we follow the one on the right. On the left side of the

figure, we see the regression tree while on the right, we see the partition of the

covariate space into three regions. The most important variable turns out to be

ESCS: a student with an ESCS less than 0.3 follows the left branch yielding a

predicted student test score of −0.3; instead, if the student’s ESCS exceeds 0.3,

he/she goes in the right branch and, at this point, if he/she studies less than 5

hours per week, his/her predicted score is 0.3, while if he/she studies more, it is

0.8. The algorithm itself identifies the threshold values in order to minimize the

Residual Sum of Squares (RSS). Focusing on the interaction between the two
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covariates, it is noteworthy that the variable “time of homework” matters if the

ESCS is higher than 0.3, while it is irrelevant if the ESCS is lower than 0.3.

This brief and simplified explanation serves as a foundation for the methods

that we discuss in the following two subsections: RE-EM trees and Boosting,

which are the ones used in the empirical analysis of this chapter.

1.3.2 Multilevel models and RE-EM trees

RE-EM trees (Sela and Simonoff, 2012) work in a similar fashion to random ef-

fects (or multilevel) linear models (Snijders, 2011) but relax the linearity assump-

tions of the fixed covariates with the response. Given J =
∑N

i=1 ni individuals,

nested within N groups, a two-level linear model takes the form:

yij = β0 +
P∑
p=1

βpxpij + bi + εij (1.4)

where

j = 1, . . . , ni is the index of the j−th individual within group i;

i = 1, . . . , N is the index of the i−th group;

yij is the answer variable of the individual j within group i;

β is the (P+1)-dimensional vector of fixed coefficients;

x1ij, . . . , xPij are the P (fixed) predictors;

bi is the (random) effect of the group i on the answer variable (value-added

of group i)

and ε is the vector of the residuals.

Both b and ε are assumed to be normally distributed with mean 0 and

variance σ2
b and σ2

ε respectively. The vector of fixed coefficients β is the same

for all the N groups, while the random intercept bi changes across groups (bi is

the value-added, positive or negative, of the i−th group). The larger is σ2
b the

larger are the differences across groups.

RE-EM trees merge multilevel models with regression trees, substituting the

linear regression of the fixed covariates with a regression tree. So, in place of

a linear regression, a regression tree is built to model the relationship between

the output (test scores) and the inputs (student characteristics). In our case,

the individuals are the students and the groups are the schools. If we consider

students (level 1) nested within schools (level 2), the two-levels model (with

only random intercept), for pupil j, j = 1, . . . , ni, N =
∑N

i=1 ni, in school i, i =

1, . . . , N takes the form:

yij = f(xij1, . . . , xijP ) + bi + εij (1.5)
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with

b ∼ N(0, σ2
b ), (1.6)

ε ∼ N(0, σ2
ε ) (1.7)

where f(X) takes the form in (3) and

yij is the maths PISA test score of student j within school i;

xij1, . . . , xijP are the P predictors at student level;

bi is the random effect of school i, which in this chapter is interpreted as a

school-specific value-added (VA) to the educational performance of the student;

and

εij is the error.

It is generally assumed that the errors ε are independent across objects and

are uncorrelated with the effects b. Note, however, that autocorrelation structure

within the errors for a particular object is allowed; to do this, we allow the

variance/covariance matrix of errors to be a non-diagonal matrix. The random

effect bi is still linear with the outcome, while the fixed covariates, that do

not change across groups (schools) are related to the outcome by means of a

regression tree.

Moreover, one of the advantages of multilevel models is that we can compute

the Proportion of Variability explained by Random Effects (PVRE):

PV RE =
σ2
b

σ2
b + σ2

ε

. (1.8)

PVRE measures how much of the variability of test scores can be attributed

to students’ characteristics or to structural differences across schools - in other

words, PVRE disentangles the variability of test scores between students from

that between schools. Applying RE-EM trees to data of each of the 9 countries,

we can both (i) analyse which are the student level variables that are related

with students’ achievements and in which way and (ii) estimate the school value-

added (random effect bi) to students’ achievements and compute the proportion

of student scores’ variability given by differences across schools (PVRE). With

the aim of adequatly considering the structural differences between countries,

we estimate the educational production function as specified in the equation (5)

separately for each country.

1.3.3 Regression trees and Boosting

Regression trees have a series of advantages: they do not force any functional

relationship between the response variable and the covariates; they can be dis-
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played graphically and are easily interpretable; they can handle qualitative pre-

dictors; they allow interactions among the variables and they can handle missing

data. Nevertheless, they suffer from high variance in the estimation of the rela-

tionship between covariates and test scores and they are sensitive to outliers. For

these reasons, methods have been developed that serve to reduce variance and

increase predictive power; these include bagging, random forests and boosting

(James et al., 2013).

Boosting (Elith et al., 2008) is a method for improving model accuracy, based

on the idea that it is easier to find and average many rough rules of thumb, than

to find a single, highly accurate prediction rule (Schapire, 2003). Related tech-

niques - including bagging, stacking and model averaging - also build and merge

results from multiple models, but boosting is unique amongst these in that it is

sequential: it is a forward, stagewise procedure. In boosting, models (e.g. regres-

sion trees) are fitted iteratively to the data, using appropriate methods gradually

to increase emphasis on observations that are modelled poorly by the existing

collection of trees. Boosting algorithms vary in exactly how they quantify lack

of fit and select settings for the next iteration. In the context of regression trees

and for regression problems, boosting is a form of “functional gradient descent”.

Consider a loss function - in this case, a measure (such as deviance) that repre-

sents the loss in predictive performance of the educational production function

due to a suboptimal model. Boosting is a numerical optimisation technique for

minimising the loss function by adding, at each step, a new tree that is chosen

from the available trees on the basis that it most reduces the loss function. In

applying the Boosting Regression Tree (BRT) method, the first regression tree

is the one that, for the selected tree size, maximally reduces the loss function.

For each subsequent step, the focus is on the residuals: on variation in the re-

sponse that is not so far explained by the model. For example, at the second

step, a tree is fitted to the residuals of the first tree, and that second tree could

contain quite different variables and split points compared with the first. The

model is then updated to contain two trees (two terms), and the residuals from

this two-term model are calculated, and so on. The process is stagewise (not

stepwise), meaning that existing trees are left unchanged as the model is en-

larged. The final BRT model is then a linear combination of many trees (usually

hundreds or thousands) that can be thought of as a regression model where each

term is a tree. A number of parameters control the model-building process: the

learning rate (lr), that drives the velocity with which the tree is learning, that

is, it shrinks the contribution of each tree; the maximum number of trees to be

considered; the distribution of response variable; and the tree complexity (tc),

that is the maximum level of interaction among variables (Elith et al., 2008).

The increase in predictive power obtained by adopting a BRT approach

comes at a cost in terms of ease of interpretation. Indeed, with boosting it is no

longer possible to display the tree graphically. But the results can nonetheless
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be represented quite simply. BRT provides a ranking of the variables, based on

their ability to reduce the node purity in the tree (Breiman, 2001), that is the

significance of each variable. In order to measure the marginal impact of each

predictor, Friedman (Friedman, 2001) has proposed the use of partial dependence

plots. These plots are based on the following idea: consider an arbitrary model

obtained by fitting a particular structure (e.g., random forest, support vector

machine, or linear regression model) to a given dataset. This dataset includes N

observations yk of a response variable y, for k = 1, 2, . . . , N , along with P covari-

ates denoted xik for i = 1, 2, . . . , P and k = 1, 2, . . . , N . The model generates

predictions of the form:

ŷk = F (x1k, x2k, . . . , xPk) (1.9)

for some mathematical function F (. . .). In the case of a single covariate xj,

Friedman’s partial dependence plots are obtained by computing the following

average and plotting it over a useful range of x values:

Φj(x) =
1

N

N∑
k=1

F (x1,k, . . . , xj−1,k, x, xj+1,k, . . . , xP,k) (1.10)

The idea is that the function Φj(x) tells us how the value of the variable xj
influences the model predictions ŷ after we have “averaged out” the influence of

all other variables.

It is possible to visualise also the joint effect of two predictors on the re-

sponse variable. The multivariate extension of the partial dependence plots just

described is straightforward: the bivariate partial dependence function Φi,j(x, y)

for two covariates xi and xj is defined analogously to Φj(x) by averaging over all

other covariates, and this function is still relatively easy to plot and visualise.

In particular:

Φi,j(x, y) =
1

N

N∑
k=1

F (x1,k, . . . , xi−1,k, x, xi+1,k, . . . , xj−1,k, y, xj+1,k, . . . , xp,k)

(1.11)

We therefore apply BRT in each country, in the second stage of our analysis,

using the estimated school value-added (first stage) as response variable and a

set of school-level characteristics as predictors.

1.4 Results

We begin by comparing the results of PISA test in mathematics across the 9

selected countries. Table 1.4 reports descriptive statistics and Figure 1.2 shows

their distributions.
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Country Mean Median sd

Australia 481.587 480.903 94.443
Canada 505.021 504.813 85.757
France 496.997 503.998 94.647
Germany 509.170 511.604 87.814
Italy 500.235 501.275 89.483
Japan 532.66 536.96 89.256
Spain 491.361 493.681 83.519
UK 490.765 492.591 85.577
USA 467.383 467.286 88.089

Table 1.4: Descriptive statistics of students’ PISA2015 test scores in mathematics in
the 9 selected countries.
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Figure 1.2: Histograms of PISA students test scores in mathematics in the 9 selected
countries. Red line refers to the mean, green one to the median. Note: by construction,
PISA test scores are standardized at the international level for having mean = 500 and
standard deviation = 100.

Japan is the country where students, on average, perform higher test scores,

followed by Germany, while USA is the country where students report the lowest

scores. In almost all the countries, the mean and median are quite close, sug-

gesting that the distributions are symmetric; France and Japan are exceptions,

where in both cases the mean is somewhat smaller than the median, suggesting

that there is a slightly higher proportion of students with relatively low test

scores.
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Country σ2ε σ2b PVRE PV

Australia 0.690 0.125 15.41% 33.59%
Canada 0.724 0.143 16.49% 29.93%
France 0.464 0.419 47.47% 55.28%
Germany 0.525 0.437 45.44% 50.17%
Italy 0.568 0.395 41.04% 45.57%
Japan 0.510 0.437 46.13% 50.32%
Spain 0.706 0.068 0.08% 30.11%
UK 0.695 0.162 18.97% 32.51%
USA 0.689 0.132 16.15% 33.45%

Table 1.5: RE-EM trees results in the nine selected countries.

1.4.1 First stage: Estimating the determinants of students’ test
scores and school value-added by using RE-EM trees

RE-EM trees are fitted, separately for each country, using the standardised stu-

dents’ PISA test score in maths as response (in each country students’ scores

have been standardized, having mean 0 and standard deviation 1) and the en-

tire set of student level variables shown in Table 1.1 as predictors. A random

intercept is given by the grouping factor of students within schools (identified

by school ID). Results of this first stage comprise the regression tree with the

coefficients for the inputs of individual students’ characteristics, the proportion

of explained variability by the multilevel model (PV) and the PVRE, within

each country.

Figure 1.3 shows the trees of fixed student level covariates in each country2,

while Table 1.5 shows the estimated variance of errors, estimated variance of

random effects, PV and PVRE of the RE-EM trees models.

The ability of student features to explain students’ achievements varies markedly

across countries. In some countries, a quite substantial proportion of the differ-

ences in students’ achievements are explained by student level variables such as

socio-economic index, immigrant status, anxiety in dealing with the scholastic

life, self-motivation and so on. France, Japan and Germany, that have high PVs

(55.28%,50.32% and 50.17% respectively), are examples of this kind. In other

countries, such as Canada and Spain, it seems that these student characteristics

are not sufficient to explain much of the variability in outcomes. Despite these

differences, Figure A.1 in Appendix A shows that the impact of several types

of student characteristics are coherent across countries. In almost all the coun-

tries, the grape of the most important variables includes (1) the indicator that

2We only report here the figure for Australia, while the figures for other countries are
reported in Appendix A in Figure A.1.
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Figure 1.3: Fixed effect tree of first stage analysis (RE-EM tree in model 1.5) in Aus-
tralia.
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measures students’ self-reported anxiety toward tests, (2) socio-economic index

(ESCS) and (3) the indicator measuring the self-reported motivation. In partic-

ular, the ESCS turns out to be the most important variable within five countries

out of the nine (Australia, France, Spain, UK and USA). In Canada, Germany

and Italy, the most significant variable is ANXTEST: students that feel anxious

in their studies have on average lower test scores than more confident students.

Japan is the only country where students’ self-motivation is the most important

variable: if a student has an index of self-motivation less than a certain threshold

(in this case, less than −0.9017), then no other variables matter in predicting

achievement; otherwise, parents’ education and anxiety matter. Other recurrent

variables are the highest educational level of parents (HISCED), the educational

resources at home, the disciplinary climate and the number of minutes in the

maths lesson. Parental education is a particularly relevant variable in Australia,

Italy and Japan. Higher levels of parental education are associated with bet-

ter student achievement. While in Australia and Italy, the different impact of

parental education is between parents with less or more than ISCED2 (lower

secondary), in Japan the difference is between students with parents with less

or more than ISCED4 (post-secondary). Disciplinary climate results to be an

important factor in UK and USA: apparently, students that perceive a good

disciplinary climate in the class, perform on average better than others.

When tuning to the estimation of school value-added, it differs across coun-

tries, with some countries showing a stronger role of schools in affecting test

scores than others. In France, for example, almost the 50% (PVRE = 47.47%)

of the unexplained variability among students is captured by the “school effect”.

This means that results of students attending different schools also differ, prob-

ably due to heterogeneity in schools’ quality. By way of contrast, Spain is a

country in which students’ achievements are quite homogeneous across schools

(PVRE = 0.08%). In general, schools have a clear role to play in explaining

the variability of students’ scores in France, Japan, Germany and Italy (about

40/45%); in Australia, Canada, UK and the USA, a smaller - but still non-

negligible - portion of variability is explained at school level (about 15/20%).

This is a finding with very clear policy implications - policies aimed at schools

(rather than, say, families) are likely to have much more potency in the former

group of countries than in the latter.

Different students’ achievements across schools may be the consequence of

different school policy and teaching programmes or of the socio-economic com-

position of the school body (Orfield et al., 2012). While the available data and

the proposed methodology do not allow investigation of the channels that drive

the causal relationships between schools’ characteristics and test scores, the next

section uses regression trees and boosting to show correlations between schools’

features and their estimated “value-added”.
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1.4.2 Second stage: Modelling the determinants of school value-
added through regression trees and boosting

In the second stage of the analysis, we run, within each country, a regression

model based on trees and boosting. The response variable is the school value-

added, as estimated at the first stage, while the predictors are the school level

variables described in previous section and contained in the questionnaire filled

by school principals. Figure 1.4 and Table 1.6 show the variable importance

ranking within each country3 and the proportion of total variability explained

by the model, respectively.

Figure 1.4: School level variables importance ranking in the second stage of the analysis
in Australia. Boosting creates a ranking of the relative influences of the covariates on
the outcome variable (school value-added). To lighten the reading, we report here only
the first ten most important variables (where the most important variable is the one
able to catch the biggest part of variability in the outcome).

Australia Canada France Germany Italy

PV 40.36% 28.09% 59.13% 53.08% 28.09%

Japan Spain UK USA

PV 30.87% 14.15% 39.12% 35.81%

Table 1.6: Proportion of explained variability (PV) of the second stage boosting model,
in the 9 selected countries.

3We only report here the figure for Australia, while the figures for other countries are
reported in Appendix A in Figure A.2.
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We report in the figures only the ten most important variables within each

country, both because the remaining variables are statistically irrelevant and to

lighten the reading. School size (“# students”), proportion of disadvantaged

students, proportion of students with special needs, students’ truancy and the

ratio of computers to students are typically the most important variables in each

country (see Figure A.2 in Appendix A). This means that the school value-added

is mainly associated with students’ socioeconomic composition and to school

size, more so than with managerial characteristics or proxies for resources, as

inadequacy of materials and infrastructure. Besides these four main variables,

participation of parents, measured both as proportion of parents speaking with

teachers and participating in school governance, and the percentage of funds

given by the government are also important in some countries to qualify the

estimated schools value-added.

Describing the patterns of the impact of school variables on schools
value-added

After identifying the important variables, in order to detect the magnitude and

the way in which these predictors are associated with the response, we visualise

in Figure 1.5 the partial plots of the four most significant variables within each

country4, noting that these differ across countries.

The proportion of disadvantaged students is one of the four most important

variables in all the countries except for Japan. Schools with higher proportions

of disadvantaged students are those with lower estimated value-added. On aver-

age, schools with a high proportion of disadvantaged students suffer a negative

impact on performances. In particular, in almost all countries, the impact of this

variable on schools value-added is negative in its range from 0% to 30/40%. By

way of contrast, in the USA, schools in which the proportion of disadvantaged

students lies between 0 and 20 tend not to differ in terms of outcomes ceteris

paribus, while there is a monotonic negative association between the covariate

and the response in the covariate range between 20 and 100. Thus, there are

countries in which the substantial difference is between schools composed by only

advantaged students and schools with a minimum proportion of disadvantaged

ones, while there are countries, such as the USA, in which the the proportion of

disadvantaged students is influential only if it is quite high (more than 20%).

Another important determinant of outcomes in all countries, with the excep-

tion of Australia, is school size. In general, bigger schools are associated with

higher school value-added. The impact of this variable is highly nonlinear and

this can be an explanation about why some previous literature fails to find any

statistical (linear) correlation between performances and size. In all countries,

4We only report here the figure for Australia, while the figures for other countries are
reported in Appendix A in Figure A.3.
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Figure 1.5: Partial plot of the four most important school level variables in the as-
sociation with school value-added, in Australia. Note: the selection of the four most
significant variables is taken from Figure 1.4 and the explanation of each school level
covariate is given in Table 1.2.
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except for Australia and USA, the school value-added rapidly increases when

the school size ranges between about 500 and 1, 000 students. Schools smaller

than 500 students perform in a quite similar way to schools larger than about

1, 000 students. The USA provides an interesting exception: very small schools

(with fewer than 500 students) are associated with very high school value-added,

while there is a negative peak corresponding to schools attended by about 500

students, that is the value associated with the lowest school value-added. Again,

from 500 on, larger schools are estimated to have higher value-added.

The proportion of students with special needs is important as a determinant

of outcomes in all countries, except Canada and Japan. Schools with a higher

proportion of students with special needs are associated to lower school value-

added. Again, there is a gap in the response value when the covariate ranges

between 0% and 20%. The number of schools with more than 20% of students

with special needs is small, but still we have observations in this range that do

not differ in their impact on the response.

Another recurrent important variable is the one measuring the students tru-

ancy. Students truancy is an indicator about how much students take seriously

their presence at school and therefore, their education. In Australia, Canada,

Japan and USA it is one of the four most important variables. Schools with

higher proportion of students that tend to skip school days are associated to

lower school value-added, in a quite intuitive way, with strong effects after a

threshold when the number of days skipped is > 2.5.

The percentage of funds given to the school from the government is a key

determinant of schools’ effectiveness in both Australia and Japan. In Australia,

the trend is very well defined: when the percentage of funds given by the govern-

ment increases, the school value-added decreases. From the literature (Margin-

son, 1993; Anderson, 1993), we know that in Australia, private schools, which

receive less funds from the government respect to public schools, are more likely

to perform better than public ones and therefore these two aspects are probably

strongly connected. Even if a dummy variable for public/private schools is con-

sidered, the percentage of funds given by the government still reflects some of the

public/private heterogeneities and it is actually able to catch more variability in

the response than the dummy variable. Also in Japan the partial effect of the

percentage of funds given by the government on the school value-added is re-

lated to the difference between private and public schools. In Japan, contrary to

Australia, PISA2015 data indicate that private schools have, on average, lower

performance when compared with public schools. Moreover, private schools usu-

ally receive about 40/50% of their funds from the government. The trend of the

impact of the covariate on the response is less clear than the one in Australia.

Lastly, in Canada and in Italy the percentage of parents speaking with teach-

ers or participating in school governance are important. An increase in cofactor

values is positively associated with the school value-added: schools in which
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parents are actively interested in their children’s education experience more

favourable outcomes than do others. Likewise, in Spain the percentage of par-

ents participating in school governance, when in the range from 0 to 50%, has a

positive effect on outcomes.

The last variable that appears in the four most important variables of France,

Germany, Japan and UK is the number of computers per student (“ratio comp

/ stud”). This covariate has a counterintuitive association with school value-

added. In Japan and UK (see Japan and UK panels in Figure A.3 in Appendix

A), an increase of number of computers per student is associated with a de-

crease in school value-added. In Germany (see Germany panel in Figure A.3 in

Appendix A), there is a peak around 0.4 and a trough around 0.6. Lastly, in

France (see France panel in Figure A.3 in Appendix A), the highest value-added

corresponds to zero computers, but there is a peak around 1, maybe suggesting

that one computer per person is the right balance. A possible interpretation of

these trends is that too many computers (more than one per person) may be

sign of inefficient management of school funds. Alternatively it might be the

case that national policies have concentrated the IT facilities in less advantaged

schools with lower test scores - in this case, the statistical relationship would be

biased.

Describing the impact of joint variables on schools value-added

Up to this point, we have investigated the partial effect of predictors one by one,

on a ceteris paribus basis. But one of the main strengths of the regression tree

approach is that it allows consideration of circumstances in which more than

one cofactor changes simultaneously, so affecting simultaneously the dependent

variable (in our case, school value-added). We now turn, therefore, to focus on

the visualisation of the joint effect of two predictors on the response, and in so

doing investigate the interaction effect of the most significant variables within

each country (Figure 1.6)5. Again, the choice of the variables to be included in

the graphical illustration is based on the variables that, in the different countries,

turned out to be most important in affecting the estimated schools value-added.

In several countries, the impact on outcomes of the joint association be-

tween the proportion of disadvantaged students and school size is of interest.

From Australia and USA panels, we know that in most countries larger schools

perform better than smaller ones and schools with a high proportion of disad-

vantaged students perform less successfully than others. The extent to which

differences in school size affect outcomes depends critically on how high is the

proportion of disadvantaged students, however. In Italy and Spain, the propor-

tion of disadvantaged students seems to have a clear negative impact even in the

5We only report here the figure for Australia, while the figures for other countries are
reported in Appendix A in Figure A.4.
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Figure 1.6: Joint partial plot of the most important school level variables in association
with school value-added, in Australia. Notes: 1. Colors represent the scale of the values
of the response (school value-added). 2. The selection of variables is based on the group
of the variables that turn out to be significant in previous steps.

big schools, while small schools with a low proportion of disadvantaged students

are not associated with negative effect on value-added. In UK and USA, the in-

teraction is much weaker in the sense that the high proportion of disadvantaged

students has a negative impact, almost independently from the school size. The

difference between these two countries is that while in UK the threshold value of

proportion of disadvantaged students to have a negative impact on the response

is about 20/30%, in the USA is much higher, around 70/80%.

Interaction between two variables about the students’ socioeconomic compo-

sition - namely the proportion of socioeconomically disadvantaged students and

proportion of students with special needs - is also interesting and instructive.

In France, schools in which both percentages are low perform better than the

average while schools where both percentages are high perform worse. However,

schools with a high proportion of disadvantaged students nevertheless manage

average performance if they have a very small proportion of students with spe-

cial needs (and vice versa). In Germany and Italy, schools with a low proportion

of disadvantaged students perform better than the average and the increasing

proportion of students with special needs does not affect this performance. On

the contrary, schools with a high proportion of disadvantaged students perform

worse than the average and the increasing proportion of students with special

needs worsens the results even more. In UK, the increase in both proportions

contributes to lower school value-added in an almost symmetric way.

Truancy is another variable whose interaction with school size and school

body composition is worthy of investigation. “Truancy” is defined by OECD

as the propensity for students to skip classes without justification. In Japan,

36



CHAPTER 1. STUDENT AND SCHOOL PERFORMANCE: A ML
APPROACH

truancy is associated with very low school value-added only when considering

small schools, while, even if it has again a negative impact, we still have positive

school value-added in big schools with high students truancy. In USA, schools

with low levels of truancy perform better than the average while schools with

high truancy rates perform worse than the average, but there is an important

interaction with school size - truancy has a more negative association to test

scores in smaller rather than in larger schools. In Australia and in Canada, the

interaction between students truancy and proportion of disadvantaged students

is similar: schools with both high (low) truancy and high (low) proportion of dis-

advantaged students are associated with negative (positive) school value-added.

But, schools with high truancy rates and a low proportion of disadvantaged

students (and vice versa), are still able to achieve average performance.

In Australia and Japan, truancy and percentage of funds given by the govern-

ment are very important variables but they interact in an heterogeneous way to

affect schools’ performance. In Australia, schools with both high (low) students

truancy and high (low) percentage of funds given by the government are associ-

ated with negative (positive) effects on school value-added, but, in all the other

cases, this relationship doen not hold. Instead in Japan, schools with low (high)

students truancy perform worse (better) than the average, almost independently

from the percentage of funds given by the government.

The last interaction that deserves attention is the one between school size

and percentage of parents participating in school governance in Spain: the size of

the school is associated with positive school value-added, but only if parents ac-

tively participate at the school government and are interested in their children’s

education.

The visualization of joint partial plots to characterise the determinants of

schools value-added proves to be a powerful tool for analysts and decision makers.

Indeed, these figures provide an immediate sense of which are the variables with

more or less influence on schools value-added, while simultaneously providing

information covering the whole distribution of the impacting variables, without

forcing to concentrate on average correlations.

1.5 Discussion, concluding remarks and policy impli-
cations

The availability of large scale datasets allowing comparative analysis of edu-

cational performance has been a major boost to researchers interested in the

educational production function. In this chapter, we have applied new methods

of analysis, drawn from the machine learning literature, to examine the deter-

minants of students’ test scores and schools value-added. The results confirm

many of the relationships we knew already from statistical analysis, but provide
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a new and enriched understanding of how both nonlinearities amongst and in-

teractions between cofactors determine educational performance. These insights

come from a recognition that the education process is complex, unknown in its

specific mechanisms and heterogeneous across countries. The tree-based meth-

ods that we use represent an inductive and non deductive way to explain the

associations among variables, having two main advantages respect to the classi-

cal statistical methods: they do not force any functional relationships between

the response (students’ results) and the covariates (students’ characteristics) and

they allow for interactions among the variables.

The first stage of our analysis shows that student-level variables are able

to explain part of the variability in their achievements: socio-economic index,

anxiety, motivation, gender, and parental education are some of the most in-

fluential variables. Their association to test scores and their ability in explain-

ing variability in students’ achievements differ substantially across countries.

The percentage of variability in students’ achievements explained at school level

(schools value-added in our terminology here) also varies across countries. Those

countries in which the estimated variance of schools value-added is high are char-

acterised by heterogeneity at school level. On the contrary, countries where the

variance of schools value-added is limited in magnitude offer a more homoge-

neous experience across schools. There are clear policy implications in noting,

for example, that the ratio of students to teachers has high relative influence in

Canada, Japan and Spain, but not elsewhere. In many countries, the actions that

can most effectively improve educational outcomes are not educational policies

per se, but rather social policies.

After estimating the school value-added in the first stage, we correlate it to

school level characteristics in the second stage. Again, we find different school

level variables associated to school value-added across countries. The main focus

in this stage is the effect of interactions between cofactors, which is modelled

by means of joint partial plots. As we have seen, the impact on performance of

changes in one variable often depends crucially on the value of other explanatory

variables.

Tree-based methods complement linear regression models of educational per-

formance by augmenting them with a richer interrogation of the data. The

impact of student and school level variables are often not simply linearly asso-

ciated with students’ achievements; we have uncovered evidence in the data of

considerably more complex (and intuitively plausible) patterns. The strength of

the machine learning method, in this perspective, is that they literally “learn

from the data”, finding the dominant patterns without any assumption. Armed

with the refined understanding of how different policies can impact differently

on schools in various circumstances, policy-makers can better implement change

aimed at improved performance.

Several policy implications can be drawn from our analysis. The results show
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the relationship between test scores and both school and individual factors to be

quite complex, and this presents a challenge to näıve interpretations of school

performance tables. A particularly salient aspect of this complexity relates to

differences across countries in the impact on educational performance of variables

that are not usually thought to pertain to educational policy. Notably in several

countries in this study (but not in others), the first branch of the regression

tree is defined by ESCS - indicating that (in these countries, but not elsewhere)

issues in the sphere of education might most effectively be addressed using social

rather than educational policies. The machine learning tools used thus highlight

in sharp relief some issues with high policy relevance.

The results obtained in the present chapter should be viewed alongside other

research drawn from the literature on educational production functions. In com-

mon with much contemporary applied economic research, these studies place

emphasis on causality. Further research is needed to introduce sophisticated

analysis of causality in the machine learning context, specifically as it applies in

the sphere of education.
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Chapter 2

Performing learning analytics
via generalized mixed-effects
trees

The work presented in this chapter is part of the international SPEET project

(Student Profile for Enhancing Engineering Tutoring), an ERASMUS+ project

aiming to open a new perspective to university tutoring systems. It intends to

extract useful information from academic data provided by its partners1 and

to identify different Engineering students profiles across Europe (www.speet-

project.com/the-project). Here, our goal is to find out which indicators may

discriminate between two different student profiles: dropout students, who per-

manently finish their career for any reason other than the achievement of the

Bachelor of Science (BSc) degree, and graduate students, who complete their

career with the achievement of academic qualification. This choice is motivated

by the fact that, across all SPEET partners, almost a student out of two leaves

his/her Engineering studies before obtaining the BSc degree. If it was possible

to know as soon as possible to which profile a student belongs, it would be of

valuable help for tutors to improve counseling actions.

Data provided by universities usually includes indicators about the socio-

economic background and both current and previous performance of the stu-

dents. However, academic success depends on different factors, both internal

and external (Barbu et al., 2017). The dataset we use in our analysis includes

more than 18,000 BSc careers from Politecnico di Milano: it essentially consists

of student record data, so it just partially covers these factors. Similar dataset

structures have already been used in recent developments oriented to the predic-

tion of performance and detection of dropouts or students at risk (Romero and

1Universitat Autonoma de Barcelona (UAB) - Spain; Instituto Politecnico de Braganca
(IPB) - Portugal; Opole University of Technology - Poland; Politecnico di Milano (PoliMi) -
Italy; Universidad de Leon - Spain; University of Galati Dunarea de Jos - Romania.
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Ventura, 2010). The hypothesis is that both background and career indicators

are enough to identify the students at risk and to draw the attention of tutors,

who should complete the student profile with further information.

In our situation, students are naturally nested within the degree programme

they are attending. In addition, further levels of hierarchy are possibile, such

as programmes within faculties, faculties within universities and finally univer-

sities within countries. While investigating the learning process, it is necessary

to disentangle the effects given by each level of hierarchy (Bock, 2014). Indeed,

if the clustered aspect of the data is not inspected, it may result in a loss of

likely valuable information. Multilevel models take into account the hierarchical

nature of data and are able to quantify the portion of variability in the response

variable that is attributable to each level of grouping (Goldstein, 2011). Gener-

alized Linear Mixed Models (GLMM) fit a multilevel model on a binary response

variable, but they impose a linear effect of covariates on a transformation of the

response variable (Agresti, 2003). On the contrary, tree-based methods such as

the CART model learn the relationship between the response and the predictors

by identifying dominant patterns in the training data (Breiman et al., 1984). In

addition, these methods allow a clear graphical representation of the results that

is easy to communicate. The goal of our study is to propose a novel method able

to preserve the flexibility of the CART model and to extend it to a clustered data

structure, where multiple observations can be viewed as being sampled within

groups.

In the literature this is not the first time in which tree-based methods are

adopted to deal with longitudinal and clustered data. In Sela and Simonoff

(2012) a regression tree method for longitudinal or clustered data is proposed.

This method is called Random Effects Expectation-Maximization (RE-EM) tree.

Independently, in Hajjem et al. (2011) a Mixed-Effect Regression Tree (MERT)

model is proposed. If clustered observations are considered, these are extensions

of a standard regression tree to the case of individuals nested within groups.

These methods use observation-level covariates in the splitting process and can

deal with the possible random effects associated to those covariates. However,

they both deal with a Gaussian response variable and they are not suitable to a

classification problem.

In Hajjem et al. (2017) the MERT approach is extended to non-gaussian

data and a generalized mixed effects regression tree (GMERT) is proposed. This

algorithm is basically the PQL algorithm used to fit GLMMs where the weighted

linear mixed-effect pseudo-model is replaced by a weighted MERT pseudo-model.

Lastly, the most recent work is proposed in Speiser et al. (2018), where the

authors develop a decision tree method for modeling clustered and longitudinal

binary outcomes. Even if the aim of the model is very similar to ours, their

model only handles binary outcomes using a Bayesian GLMM.

Following a different strategy, our proposed method intends to generalize
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the RE-EM tree approach. In particular, in this chapter we expand its use to

different classes of response variables from the exponential family: this would

allow to extend it to a classification setting. At the same time this method can

deal with the grouped data structure, similarly to traditional multilevel models.

As in RE-EM tree estimation, we develop an algorithm that disentangles the

estimation of fixed and random effects. That is, an initial tree is built ignoring

the grouped data structure, a mixed-effects model is fitted based on the resultant

tree structure, and a final mixed-effects tree is reported.

In this chapter, we apply this model to the Politecnico di Milano dataset.

In this specific case, we can identify which fixed-effects covariates discriminate

between dropout and graduate students. Through a GMET model, we can relax

the assumption of linear effects of student-level covariates on their performance

and we can identify which interactions relevantly influence the career status. In

addition, the choice of a multilevel model allows to estimate the degree pro-

gramme effect on the predicted probability of obtaining the degree.

The chapter is organized as follows. In Section 2.1 we describe model and

methods - generalized mixed tree algorithm (GMET) - and in Section 2.2 we

show a simulation study. In Section 2.3 we describe the PoliMi dataset, we

report the application of the proposed algorithm to the case study and outline

the results. Finally, in Section 2.4 we draw our conclusions.

2.1 Model and methods

In this section, we present the proposed generalized mixed-effects tree model

(Subsection 2.1.1) and the algorithm for the estimation of its parameters (Sub-

section 2.1.2).

2.1.1 Generalized mixed-effects tree model

We start considering a generic GLMM. This model is an extension of a gen-

eralized linear model that includes both fixed and random effects in the linear

predictor (Agresti, 2003). Therefore, GLMMs handle a wide range of response

distributions and a wide range of scenarios where observations are grouped in

groups rather than completely independently. For a GLMM with a two-level

hierarchy, each observation j, for j = 1, . . . , ni, is nested within a group i, for

i = 1, . . . , I. Let yi = (y1i, . . . , ynii) be the ni-dimensional response vector for

observations in the i-th group. Conditionally on random effects denoted by bi, a

GLMM assumes that the elements of yi are independent, with density function

from the exponential family, of the form

fi(yij|bi) = exp

[
yijηij − a(ηij)

φ
+ c(yij, φ)

]
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where a(·) and c(·) are specified functions, ηij is the natural parameter and φ is

the dispersion parameter. In addition, we have

E[yij|bi] = a′(ηij) = µij

V ar[yij|bi] = φa′′(ηij)

A monotonic, differentiable link function g(·) specifies the function of the

mean that the model equates to the systematic component. Usually, the canon-

ical link function is used, i.e., g = a′ −1. From now on, without loss of generality

the canonical link function is used. In this case, the model is the following

(McCulloch and Searle, 2004):

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = Xiβ + Zibi

bi ∼ Nq(0,Ψ) ind.

(2.1)

where i is the group index, I is the total number of groups, ni is the number

of observations within the i-th group and
∑I

i=1 ni = J , ηi is the ni-dimensional

linear predictor vector. In addition, Xi is the ni× (p+ 1) matrix of fixed-effects

regressors of observations in group i, β is the (p+ 1)-dimensional vector of their

coefficients, Zi is the ni × q matrix of regressors for the random effects, bi is

the (q + 1)-dimensional vector of their coefficients and Ψ is the q × q within-

group covariance matrix of the random effects. Fixed effects are identified by

parameters associated to the entire population, while random ones are identified

by group-specific parameters.

Our proposed Generalized Mixed-Effects Tree (GMET) method expands the

use of tree-based mixed models to different classes of response variables from

the exponential family. At the same time the method can deal with the grouped

data structure as GLMMs do. We now specify the GMET model. The random

component of this model consists of a response variable Y from a distribution

in the exponential family. The fixed part in the GMET is not linear as in (2.1)

but it is replaced by the function f(Xi) that is estimated through a tree-based

algorithm. Thus, the matrix formulation of the model is the following:

µi = E[Yi|bi] i = 1, . . . , I

g(µi) = ηi

ηi = f(Xi) + Zibi

bi ∼ Nq(0,Ψ) ind.

(2.2)

where i is the group index, I is the total number of groups, ni is the number

of observations within the i-th group and
∑I

i=1 ni = J . In addition, ηi is the
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ni-dimensional linear predictor vector and g(·) is the link function. Finally, Xi is

the ni× (p+ 1) matrix of fixed-effects regressors of observations in group i, Zi is

the ni×q matrix of regressors for the random effects, bi is the (q+1)-dimensional

vector of their coefficients and Ψ is the q × q within-group covariance matrix of

the random effects. As in a GLMM, bi and bi′ are independent for i 6= i′. Fixed

effects are identified by a non-parametric CART tree model associated to the

entire population, while random ones are identified by group-specific parameters.

Without loss of generality, let us now specify model (2.2) for the case of a

binary random variable and univariate random effect. The logit function is the

canonical link function:

g(µij) = g(pij) = log

(
pij

1− pij

)
= logit(pij).

Here, the random-effects structure simplifies to a random intercept. The model

formulation for observation yij may therefore be written as:

Yij ∼ Bernoulli(pij) i = 1, ..., I j = 1, ..., ni

pij = E[Yij|bi]
logit(pij) = f(xij) + bi

bi ∼ N(0, σ2) ind.

(2.3)

where we observe xij = (x1ij, .., xijp)
T , a (p + 1)-dimensional vector of fixed-

effects covariates for each observation j in group i.

2.1.2 Generalized mixed-effects tree estimation

In this subsection we show the algorithm for the estimation of the parameters of

the GMET model (2.2). The basic idea behind the algorithm is to disentangle

the estimation of fixed and random effects. The structure of the algorithm is

the following:

1. Initialize the estimated random effects bi to zero.

2. Estimate the target variable µij through a generalized linear model (GLM),

given fixed-effects covariates xij = (xij1, ..., xijp)
T for i = 1, ..., I and j =

1, ..., ni. Get estimate µ̂ij of target variable µij.

3. Build a regression tree approximating f using µ̂ij as dependent variable

and xij = (xij1, ..., xijp)
T as vector of covariates. Through this regression

tree, define a set of indicator variables I(xij ∈ R`) where the index ` ranges

over all of the terminal nodes in the tree.

4. Fit the mixed effects model (2.2), using yij as response variable and the set

of indicator variables I(xij ∈ R`) as fixed-effects covariates. Specifically,

for i = 1, ..., I and j = 1, ..., ni, we have g(µij) = I(xij ∈ R`)γ` + zTijbi.

Extract b̂i from the estimated model.
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5. Replace the predicted response at each terminal node R` of the tree with

the estimated predicted response g(γ̂`) from the mixed-effects model fitted

in Step 4.

The GLM in Step 2 is fitted through maximum likelihood. The maximum like-

lihood estimates can be found using an iteratively reweighted least squares al-

gorithm or a Newton-Raphson method (McCullagh and Nelder, 1989).

The fitting of the tree in Step 3 can be achieved using any tree algorithm,

based on any tree-growing rules that are desired. Here, tree building is based on

the CART tree algorithm (Breiman et al., 1984). After building a large tree T0,

pruning is advised to avoid overfitting on training data. In principle, any tree-

pruning rule could be used; here, we propose cost-complexity pruning (Friedman

et al., 2001). It considers a sequence of nested trees indexed by a nonnegative

tuning parameter α which controls the trade-off between the subtree’s complexity

and its fit to the training data. For each value of α exists a subtree T ⊂ T0 to

minimize

|T |∑
`=1

∑
xi∈R`

(yi − ŷR`
)2 + α|T |. (2.4)

Here, |T | indicates the number of terminal nodes of tree T . When α = 0, then

the subtree T will simply be equal to T0. However, as α increases, the quantity

(2.4) will tend to be minimized for a smaller subtree. We can select a value of α

using a validation set or using K-fold cross-validation: for example, we can pick

α̃ to minimize the average CV error. Tree building and pruning is implemented

in R library rpart (Therneau et al., 2017), according to the CART tree-building

algorithm and cost-complexity pruning. In order to ensure that initial trees are

sufficiently large, we set the complexity parameter to zero. Thus, the largest

tree is grown then pruned based on ten-fold cross-validation error. Instead of

choosing the tree that achieves the lowest CV error, we use the so-called 1-SE

rule: any CV error within one standard error of the achieved minimum is marked

as being equivalent to the minimum. Among all these equivalent models in terms

of CV error, the simplest one is chosen as final tree model.

The generalized linear mixed model in Step 4 can be estimated using fitting

techniques that were previosly described. Different statistical packages can es-

timate those type of models: the glmer function of the R library lme4 (Bates

et al., 2014) is used here. It fits a generalized linear mixed model via maxi-

mum likelihood. For a GLMM the integral must be approximated: the most

reliable approximation is adaptive Gauss-Hermite quadrature, at present imple-

mented only for models with a single scalar random effect, otherwise Gaussian

quadrature is used.
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Prediction for new observations

After estimating a GMET it is possible to make out-of-sample predictions for

new observations. Suppose the tree is estimated on data from groups i = 1, .., I

for observations yij, j = 1, ..., ni. Given a new observation xij′ we are able to

output its corresponding response since we know the estimation of the fixed-

effects function f(·), of the random effects bi and of the associated covariance

matrix Ψ. We may look for two types of prediction:

• predict response yij′ given a new observation xij′ for a group in the sample

i ∈ {1, ..., I}. We define it a group-level prediction.

• predict response yi′j′ given an observation xi′j′ for a group i′ for which

there are no observations in our current sample, or for which we do not

know the group it belongs to. We define it a population-level prediction.

For the first type of prediction, we estimate f(xij′) using the estimated tree

and attributes xij′ and then add zTij′bi on the linear predictor scale, and get back

to the response scale through the inverse link function g−1(·). As we underlined

before, random-effects coefficients bi are known from the estimation process.

For the second type of prediction, we have no information to evaluate bi. A

possible solution is to set it to its expected value of 0, yielding the value f̂(xi′j′),

and transform it back to the response scale through the inverse link function. As

noted in Sela and Simonoff (2012), in this case we might expect that methods

that do not incorporate random effects would have comparable performance to

those that do, as long as the sample is large enough so that the fixed-effects

function f(xij′) is well-estimated by both types of methods.

2.2 Simulation study

In this section we compare the performance of the proposed GMET method to

standard classification trees on different simulated binary outcomes datasets.

We first use a variation of a simulation design proposed in Hajjem et al.

(2017). It has a two-level data structure of I = 50 groups with ni = 60 observa-

tions each: 10 observations in each group are included in the training sample, and

the other 50 observations constitute the test sample. Therefore, Ntrain = 500,

while Ntest = 2500. Setting i = 1, ..., I and j = 1, ..., ni, the response values yij
are simulated according to a Bernoulli distribution with conditional probability

of success µij. Both fixed and random effects are used to generate µij. Overall,

we consider 10 different Data Generating Processes (DGP) outlined in Table 2.1

by combining different fixed- and random-effect specifications.

Let us define the fixed-effect structure. Eight random variables X1, ..., X8, in-

dependent and uniformly distributed in the interval [0, 10], are generated. While
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X1

X3

µij = g−1
(
g(ϕ6) + zTijbi

)
X5

µij = g−1
(
g(ϕ5) + zTijbi

)
µij = g−1

(
g(ϕ4) + zTijbi

)

X2

X4

µij = g−1
(
g(ϕ3) + zTijbi

)
µij = g−1

(
g(ϕ2) + zTijbi

)
µij = g−1

(
g(ϕ1) + zTijbi

)

> 5

> 5
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> 5

≤ 5

≤ 5 > 5

> 5
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≤ 5

Figure 2.1: Mixed-effects tree structure used to generate the conditional probability of
success µij in the simulation study.

all of them are being used as predictors, only five of them are actually used to

generate µij, based on the tree rule summarized in Figure 2.1. Each observation

is classified into one of the six terminal nodes according to the values xij1, ..., xij5.

Within each leaf, values ϕ1, ..., ϕ6 denote the probabilities of success when the

random effects bi are equal to zero:

Leaf 1: if x1ij ≤ 5 ∧ x2ij ≤ 5 then µij = g−1
(
g(ϕ1) + zTijbi

)
;

Leaf 2: if x1ij ≤ 5 ∧ x2ij > 5 ∧ x4ij ≤ 5 then µij = g−1
(
g(ϕ2) + zTijbi

)
;

Leaf 3: if x1ij ≤ 5 ∧ x2ij > 5 ∧ x4ij > 5 then µij = g−1
(
g(ϕ3) + zTijbi

)
;

Leaf 4: if x1ij > 5 ∧ x3ij ≤ 5 ∧ x5ij ≤ 5 then µij = g−1
(
g(ϕ4) + zTijbi

)
;

Leaf 5: if x1ij > 5 ∧ x3ij > 5 ∧ x5ij > 5 then µij = g−1
(
g(ϕ5) + zTijbi

)
;

Leaf 6: if x1ij > 5 ∧ x3ij > 5 then µij = g−1
(
g(ϕ6) + zTijbi

)
;

where g(·) is the logit link function. Two different possibilities are specified for

the fixed effects: in the large fixed-effects specification, the standard deviation

of the typical probabilities across the leaves is higher than in the small one (0.37

versus 0.24).

The random component bi ∼ N(0,Ψ) is generated according to three different

possibilities:

• No random effects: Ψ = 0;

• Random intercept: zij = 1 ∀i,∀j and Ψ = ψ11;
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• Random intercept and slope, which add a linear random effect for the fixed-

effect covariate X1, uncorrelated from the random effect on the intercept.

That is, zij = [1 x1ij]
T ∀i,∀j and Ψ =

[
ψ11 0

0 ψ22

]
.

Within each fixed effects scenario with random effects, we consider two spec-

ifications (low and high) for the covariance matrix Ψ to account for different

levels of magnitude of the between-group variability.

DGP
Random component Fixed component

Structure Effect ψ11 ψ22 Effect ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

1 No random
effect

–
– –

Large 0.10 0.20 0.80 0.20 0.80 0.90
2 – Small 0.20 0.40 0.70 0.30 0.60 0.80

3

Random
Intercept

Low 4.00 –
Large 0.10 0.20 0.80 0.20 0.80 0.90

4 High 10.00 –

5 Low 0.50 –
Small 0.20 0.40 0.70 0.30 0.60 0.80

6 High 4.00 –

7 Random
Intercept

and
Slope

Low 2.00 0.05
Large 0.10 0.20 0.80 0.20 0.80 0.90

8 High 5.00 0.25

9 Low 0.25 0.01
Small 0.20 0.40 0.70 0.30 0.60 0.80

10 High 2.00 0.05

Table 2.1: Data Generating Processes (DGP) for the simulation study.

Simulation results

We fit four different models for each one of the 10 DGPs: a standard binary

classification tree model (Std), a random intercept GMET model (RI ), a ran-

dom intercept and slope GMET model (RIS ), a parametric mixed-effects logistic

regression model (MElog) that uses the true model leaves’ indicators as fixed co-

variates. As noted in Hajjem et al. (2011) the MElog model could not be a real

competitor of any other model. Indeed, it is not possible in practice to specify

this parametric structure without knowing the underlying data generating pro-

cess. This model only serves as a reference to compare the performance of the

other models. In tree-based models, we fix to 10 the maximum depth parameter

and to 20 the minimum number of observations necessary to attempt a split.

After fitting each model on the training set, we can compute the corresponding

predicted probability µ̂ij and the predicted class ŷij of observation j in group i

in the test dataset. While the former is directly estimated by the algorithm, the

latter depends on the threshold value µ∗k used to classify subjects in the test set:

µ̂ij ≥ µ∗k ⇒ ŷij = 1 where (i, j) ∈ test. There are at most K distinct fitted values

µk, with K ≤ I|T |. We use each of them to classify observations in the training
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set and we fix the threshold µ∗k as the one that yields the closest proportion of

class 1 to the actual proportion of class 1 in the training set.

We measure the predictive performance by:

• the predictive mean absolute deviation (PMAD) of the estimated proba-

bility

PMAD =
1

Ntest

I∑
i=1

ntest
i∑
j=1

|µij − µ̂ij|

• the predictive misclassification rate (PMCR)

PMCR =
1

Ntest

I∑
i=1

ntest
i∑
j=1

|yij − ŷij|.

The mean, standard deviation, minimum and maximum of the PMAD and the

PMCR over 50 runs were calculated and are reported in Table 2.2.

We observe that when there is no random effect (DGPs 1 and 2), the standard

classification tree algorithm performs better, specifically when the fixed effect

is large. However, when random effects are present (DGPs 3 to 10), the mixed

effects classification tree performs better than the standard classification tree

in terms of average PMAD. The highest improvement in PMAD using a mixed

tree model is observed when both the fixed and the random effects are large

(16.50% in DGP4 - Std vs RI and 16.78% in DGP8 - Std vs RIS ). The lowest

improvement is observed when both the fixed and the random effects are small

(2.35% in DGP5 - Std vs RI and 2.34% in DGP9 - Std vs RIS ). Analogous

considerations can be made about PMCR. In addition, GMETs perform better

than standard trees even when we fit a mixed tree whose random component is

over-specified (like in DGPs 3-6, Std vs RIS ) or under-specified (like in DGPs

7-10, Std vs RI ) in relation to the true data generating process.

Next, we compare the performance of the GMET approach to the results

of the MElog reference model. If the DGP does not include random effects,

the difference in PMAD and PMCR is higher when the fixed effects are large

(DGP1). When random effects are large and fixed effects are small (DGPs 6 and

10), the GMET model performs closer to the MElog model. In terms of PMAD,

this difference equals to 4.75% and 4.41% in DGPs 6 and 10 respectively; in

terms of PMCR it equals to 3.38% and 2.95% respectively. The difference in

predictive accuracy between the two models reaches the maximum when random

effects are small and fixed effects are large (DGPs 3 and 7). In terms of PMAD,

this difference equals to 9.69% and 9.28% in DGPs 3 and 7 respectively; in terms

of PMCR it equals to 7.46% and 7.92% respectively.
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DGP
Random

effect
Fixed
effect

Fitted
model

PMAD (%) PMCR (%)

mean sd min max mean sd min max

1
NO

RANDOM
EFFECT

Large

Std 5.35 1.53 2.71 8.79 17.20 1.40 14.64 20.52
RI 20.22 2.31 15.15 24.72 31.09 2.63 26.04 37.68
RIS 20.36 2.36 13.14 24.88 31.03 2.40 24.24 35.48
MElog 3.11 0.88 1.42 4.95 17.79 3.18 14.52 24.24

2 Small

Std 12.93 2.78 7.01 19.28 33.16 2.18 28.92 38.60
RI 13.99 1.78 9.84 17.19 37.57 1.88 32.72 41.64
RIS 14.08 1.82 9.93 17.81 37.33 1.79 33.16 41.56
MElog 4.16 1.30 1.02 6.45 29.32 1.63 26.96 33.16

3

INTERCEPT

Large

Std 23.83 2.94 17.53 29.88 30.53 3.13 23.32 38.20

Low
RI 18.28 1.47 15.07 22.67 26.80 1.86 22.84 31.92
RIS 18.43 1.31 15.28 21.89 26.84 1.73 22.72 30.76
MElog 8.59 0.87 6.02 10.56 19.34 1.29 16.08 22.48

4

Std 32.05 2.37 26.90 37.59 37.80 2.65 32.08 44.96

High
RI 15.55 1.28 12.49 18.71 21.62 1.88 16.32 26.56
RIS 15.66 1.27 12.52 18.91 21.71 1.87 16.56 26.40
MElog 8.09 0.76 6.04 10.06 16.32 1.53 13.32 19.80

5

Small

Std 17.89 2.32 13.28 22.48 35.30 2.23 31.40 41.40

Low
RI 15.54 1.58 12.52 19.12 35.89 2.18 30.76 41.20
RIS 15.76 1.56 12.76 19.63 36.12 2.14 31.20 41.32
MElog 8.63 0.92 6.49 10.53 28.90 0.95 27.20 31.84

6

Std 29.47 2.22 24.56 35.08 41.42 2.36 36.36 45.48

High
RI 14.11 1.46 10.17 17.38 26.23 2.35 21.40 30.96
RIS 14.25 1.49 10.39 17.81 26.27 2.40 21.28 31.20
MElog 9.36 0.98 7.07 11.25 22.85 1.70 19.12 26.08

7

INTERCEPT
& SLOPE

Large

Std 23.24 2.49 18.54 29.68 29.61 2.91 23.44 38.44

Low
RI 19.59 1.37 15.42 22.51 27.89 1.98 22.16 31.20
RIS 19.29 1.40 15.15 22.22 27.84 1.82 22.08 31.08
MElog 10.01 1.02 8.07 11.91 19.92 1.37 17.20 24.04

8

Std 32.89 2.61 27.47 38.04 38.69 3.67 31.64 46.32

High
RI 17.52 1.57 14.29 20.85 22.03 2.04 17.48 26.08
RIS 16.11 1.41 12.90 18.93 21.26 1.92 17.04 25.48
MElog 9.86 1.02 7.82 13.16 16.59 1.48 13.20 20.36

9

Small

Std 18.15 2.25 13.36 24.73 35.34 2.56 31.36 42.64

Low
RI 15.84 1.17 12.37 18.61 35.83 1.92 30.84 40.48
RIS 15.81 1.24 12.41 19.05 35.76 1.92 31.28 39.80
MElog 9.31 0.86 7.95 11.06 29.11 0.94 26.76 30.96

10

Std 29.09 2.06 24.21 33.51 41.64 2.45 37.16 49.76

High
RI 15.88 1.26 13.60 19.77 27.66 1.97 23.00 32.76
RIS 15.21 1.15 13.20 18.32 27.20 1.93 21.96 31.64
MElog 10.80 1.02 9.20 13.06 24.25 1.69 20.32 28.04

Table 2.2: Results of the 50 simulation runs in terms of predictive probability mean ab-
solute deviation (PMAD) and predictive misclassification rate (PMCR). In bold, DGPs
in which the performance gap between MElog and GMET is the largest or the smallest
are marked.
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2.3 Case study: application of mixed-effects tree al-
gorithm to education PoliMi data

In this section, we describe the PoliMi dataset and we apply the generalized

mixed-effects tree algorithm to these data. Using a GMET model, we can iden-

tify discriminating fixed-effects covariates and estimate the degree programme

effect on the predicted success probability. In addition, we also analyse the

accuracy of this model in predicting dropout careers.

The PoliMi dataset consists of 18,612 careers in Bachelor of Science (BSc)

that began between A.Y. 2010/2011 and 2013/2014. Students are nested within

I = 19 degree programmes.2 A descriptive analysis shows that a high percentage

of students leaves the Politecnico before obtaining the degree. Therefore, our

goal is to find out which student-level indicators could discriminate between two

different profiles: dropout and graduate students.

We assume the binary GMET model (2.3) where student j is nested within

degree programme i. The response variable Y is the career status, a two-level

factor we code as a binary variable:

• status = 1 for careers definitely completed with graduation;

• status = 0 for careers definitely concluded with a dropout.

We would like to make predictions at the very early stage of the academic career.

So, we choose as predictors five variables available at the time of enrollment and

three more variables collected just after the first semester of studies. The list and

explanation of student-level variables to be included as covariates is reported in

Table 2.3. In addition we choose as grouping variable the degree programme at

the time of the enrollment (factor DegreeProgramme) which has 19 levels. The

influence of the grouping factor on the predictor is modeled through a group-

level intercept bi. We randomly split the dataset into training and test subsets,

with a ratio of 80% for training and 20% for evaluation. Thus, the training

subset equals to 14,890 careers while the test subset amounts to 3,722 careers.

While growing the tree, we fix to 10 the maximum depth parameter and to

20 the minimum number of observations necessary to attempt a split. Figure

2.2 shows the estimated mixed-effects tree for the graduating probability. Ev-

ery internal node has its corresponding condition that splits it into two sons:

if the condition is true, observations are sent down the tree through the left

son, while through the right son if the condition is false. In addition, all nodes

report two values: the estimated graduating probability and the percentage of

observations in the node over the total training set. We remind that variable

2We are considering the following Engineering programmes: Aerospace, Automation,
Biomedical, Building, Chemical, Civil, Civil and Environmental, Electrical, Electronic, Energy,
Computing Systems, Environmental and Land Planning, Industrial Production, Management,
Materials and Nanotechnology, Mathematical Mechanical, Physics, Telecommunications.
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Variable Description Type of variable

Sex gender factor (2 levels: M, F)

Nationality nationality factor (Italian, foreigner)

PreviousStudies high school studies factor (Liceo Scientifico, Isti-
tuto Tecnico, Other)

AdmissionScore PoliMi admission test result real number

AccessToStudiesAge age at the beginning of the BSc
studies at PoliMi

natural number

WeightedAvgEval1.1 weighted average of the evalu-
ations during the first semester
of the first year

real number

AvgAttempts1.1 average number of attempts to
be evaluated on subjects dur-
ing the first semester of the
first year (passed and failed ex-
ams)

real number

TotalCredits1.1 number of ECTS credits
obtained by the student dur-
ing the first semester of the
first year

natural number

Table 2.3: List and explanation of variables at student level to be included as covariates
in the GMET model.

PreviousStudies has been coded as a three-level factor with levels S (Liceo

Scientifico), T (Istituto Tecnico) and O (other high school studies). The number

of ECTS obtained in the first semester of the first year is used as first split: stu-

dents who obtained less than 13 ECTS are associated to lower success probability

(0.16 versus 0.86). Then, students are further classified using other explainatory

variables: we can notice that Italian students who obtained more than 24 ECTS

have the highest predicted success probability (0.95). Other variables actually

used to split smaller internal nodes are Nationality and PreviousStudies:

in these nodes, students who attended Istituto Tecnico and foreign students have

lower predicted success probability than the others. Through this model, it is

possible to point out significant interactions among the covariates: for exam-

ple, variable Nationality is used to split the group of students that obtained

at least 13 ECTS, while this same variable does not appear in the comple-

mentary branch of the tree. Finally, covariates Sex, AdmissionScore and

AvgAttempts1.1 do not compare in the trees, so they do not appear to have

strong influence on how a career ends.

Using the tree structure in Figure 2.2, we can get a population-level pre-

diction for new observations that do not include the effect of the programme.

However, if we also specify the level of the random effect covariate, our model

is able to adjust this prediction to account for this effect and make a group-

53



CHAPTER 2. STUDENT DROPOUT: GENERALIZED MIXED-EFFECTS
TREES

TotalCredits1.1 < 13

WeiAvgEval1.1 < 20

TotalCredits1.1 < 4 PrevStudies = O,T

Nationality = foreigner

TotalCredits1.1 < 24

PrevStudies = T

0.63
100%

0.16
33%

0.07
25%

0.044
22%

0.27
3%

0.45
8%

0.32
3%

0.44
5%

0.86
67%

0.44
3%

0.88
64%

0.75
17%

0.69
3%

0.76
14%

0.95
47%

yes no

Figure 2.2: Estimated mixed-effects tree of model (2.3) for the graduating probability.

specific prediction. Indeed, we can extract coefficients b̂i from the full estimated

mixed model (2.3) and provide different predictions for different programmes

within each leaf of the tree structure. Figure 2.3 shows the estimated random

effects for all 19 groups in the dataset. The coefficients bi are rearranged by

their point estimate. In many groups, the 95% confidence interval does not

overlap the vertical line at zero, underlining substantial differences between the

groups. If we use this model to estimate the graduating probability, in many of

the groups it is significantly different from the average one. After fixing all other

covariates, levels Environmental and Land Planning Engineering and Civil and

Environmental Engineering have higher positive effect on the intercept: being a

student from one of these programmes improves the log odds by 1.051 and 0.705

respectively. On the contrary, studying either Civil Engineering or Electrical

Engineering penalizes the log odds by 0.680 and 0.546 respectively.

Since we are using a multilevel model we can account for the interdependence

of observations by partitioning the total variance into different components due

to the clustered data structure in model (2.3). The Variance Partition Coeffi-

cient (VPC) is a possible measure of intraclass correlation: it is equal to the

percentage of variation that is found at the higher level of hierarchy over the

total variance (Goldstein et al., 2002). The idea of VPC was extended using

the latent variable approach, to define a method to partition the total variance

in the case of a binary response and group-specific intercept as random effects
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DegreeName.out

Civil Engineering

Electrical Engineering

Engineering of Computing Systems

Building Engineering

Chemical Engineering

Mechanical Engineering

Telecommunications Engineering

Materials and Nanotechnology Engineering

Aerospace Engineering

Energy Engineering

Biomedical Engineering

Mathematical Engineering

Electronic Engineering

Physics Engineering

Automation Engineering

Management Engineering

Industrial Production Engineering

Civil and Environmental Engineering

Environmental and Land Planning Engineering

−0.5 0.0 0.5 1.0

(Intercept)

Figure 2.3: Estimated random intercept for each degree programme in model (2.3). For
each Engineering programme, the blue dot and the horizontal line marks the estimate
and the 95% confidence interval of the corresponding random intercept.

structure (Browne et al., 2005). In this case, the Variance Partition Coefficient

is constant across all individuals and it can be estimated as:

VPC =
σ̂2
b

σ̂2
b + σ2

lat

=
0.2988

0.2988 + π2/3
= 0.0612

where σ̂2
b is the estimated variance of the random intercept and σ2

lat is the residual

variability that can neither be explained by fixed effects, nor through the group

features that are represented by the random intercept. In this case, it is equal to

the variance of the standard logistic distribution. This VPC value means that

6.12% of variation in the response is attributed to the classification by degree

type. This value underlines the need to use a mixed model.

We can now evaluate the performance of the model and its predictive quality

using the test data. For each test observation, we are given a full set of covariates:

therefore, we are able to compute an estimate p̂ of the probability of successfully

concluding the BSc and getting the degree. We use this estimate to define a

binary classifier based on model (2.3): we choose p0 = 0.6 as optimal cutoff

value through ROC curve analysis. For 20 iterations, we randomly split the

observations in training and test set, we fit a GMET model on the training

set and we classify test observations using the optimal threshold value. At
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the end, we compute the average accuracy, sensitivity and specificity and their

standard deviation, reported in Table 2.4. High values of accuracy, sensitivity

and specificity point to a good effectiveness of the model. In addition, the

model performance is robust, as highlighted by the low standard deviation of

mean performance indexes.

It is interesting to compare these average performance indexes against those

obtained using different methods. This approach has similar accuracy to a stan-

dard classification tree (0.878 versus 0.879), but its accuracy shows less variabil-

ity across the iterations. For example, its standard deviation of accuracy is 0.5%

against 2.8% for a classification tree. Since we are interested in the detection

of dropout careers, we should compare mean sensitivity using different models.

Using mixed-effects trees, we get higher sensitivity than using standard classi-

fication trees (0.835 versus 0.800). Thus, the choice of a mixed-effects model

seems appropriate: the degree programme is a meaningful covariate for the pre-

diction of career status. A mixed-effects tree is slightly less sensitive than a

classifier build through a GLMM (0.835 versus 0.850), suggesting that a tree-like

structure for fixed effects might not be as suitable as the GLMM one. However,

it has other advantages like offering an easily interpretable model that could be

graphically displayed and understood.

Index Mean Std deviation

Accuracy 0.860 0.006
Sensitivity 0.816 0.012
Specificity 0.886 0.008

Table 2.4: Performance indexes of a classifier based on the mixed-effects tree of model
(2.3).

2.4 Conclusions

This chapter proposes a multilevel tree-based model for a non-gaussian response

(GMET algorithm), shows a simulation study and applies the GMET algorithm

to the PoliMi careers dataset as a tool to find discriminating student-level vari-

ables between two different student profiles (graduate and dropout) and to esti-

mate the degree programme effect on the predicted success probability.

The GMET model can deal with a grouped data structure, while provid-

ing easily interpretable models that can outline complex interactions among the

input variables. In the simulation study, the performance of the proposed mixed-

effects tree method is a marked improvement over the CART model when the

data generating process (DGP) includes random effects, even if of small magni-
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tude. In addition, the performance of the GMET model is closer to the one of

the benchmark logistic model that is fitted assuming the whole specification of

the DGP. Although our study focuses on the binary response case, the mixed-

effects tree approach could be extended to other types of response variables.

Using a suitable link function, we could study if the method is appropriate to

model different outcomes such as counts data or a multinomial factor response.

Moreover, ensemble methods which use a mixed-effects tree as base learner may

be developped.

In our case study, the effectiveness of the GMET model in dropout predic-

tion is comparable to the ones of more established classification methods. A

GMET model with high accuracy and sensitivity has been obtained by consid-

ering information available at the time of the admission and the career of the

first semester of studies. In addition, our study identifies a significant effect of

the Engineering programme on dropout probability.

In the context of the SPEET project, a future development could be the

extension of our analysis to the other project partners in order to compare the

programme effect at country level. This would allow us to relate this effect to

programme-level variables and we could establish if the same profiles of students

with dropout risk arise at country level. Moreover, in accordance to the validity

and the potential of GMET method when applied to model student dropout

prediction, our future perspective goes in the direction of major applications in

the Learning Analytics area. This method, when applied to educational data,

can be a useful tool to support the definition of best practices and new tutor-

ing programmes aimed at enhancing student performances and reducing student

dropout. A worthwhile aspect regards also the approach that teachers and stu-

dents have with respect to its results. Indeed, this method is also valuable in

the perspective of recommendation systems, since, if its results are interpreted

and communicated in the right way, they can be used to drive students in their

career choices.
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Chapter 3

Semi-parametric mixed-effects
models for the clustering of
Italian schools

The nature and the magnitude of the school impact on student attainments

strongly depend on the type of school system and related regulations. There are

countries where the education system is totally centralized and, therefore, school

programs and practices are very homogeneous across the territory. On the other

hand, in the last years the dynamics of education systems are changing and

more and more countries are decentralizing the power on decision about educa-

tion, giving more autonomy to schools (Sarrico et al., 2012). This phenomenum

leads to differences across schools that are reflected on differences across stu-

dent achievements. Studies on PISA data show that Italy is a country where

the percentage of variability in student achievements due to the grouping factor

(i.e. schools) is quite high with respect to other countries (Masci et al., 2018b).

This means that in Italy the value-added, seen as the positive or negative im-

pact, that schools give to their students is relevant: in other words, attending

a certain school instead of another might lead to different results in student’s

skills. Schools differ under many aspects: size, location, school body compo-

sition, teachers, school principal management style and much more. All these

aspects contribute to the student learning process, creating heterogeneity within

their achievements.

Focusing on the Italian context, many studies confirm that the magnitude of

the school effect, intended as the positive or negative value-added of the school,

on student attainments is substantial. In Agasisti et al. (2017b); Masci et al.

(2016b, 2017a) the authors observe that the percentage of variability in student

attainments in INVALSI tests explained by the random effect depends on the

geographical macro-area and differs between mathematics and reading perfor-

mances. In particular, this percentage is higher in mathematics and especially in
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Southern Italy, reaching peaks of 20%. Moreover, results of PISA data in Italy

report that, in mathematics, the Percentage of Variability explained by Random

Effects - PVRE- exceeds the 40% (Masci et al., 2018b).

The aim of this study is to identify latent subpopulations of Italian schools

that differ in the evolution of their student attainments across different years.

The goal is to reduce the set of numerous Italian schools into a series of sub-

populations, each of which contains schools with a similar impact on student

achievements and across which these impacts differ. To this aim, we need a

model that takes into consideration the hierarchical structure of data, but that

also identifies a latent structure among the higher level of hierarchy. There-

fore, we apply a multilevel model in which we model the subpopulations by

choosing as random effects a discrete distribution P ∗ with an unknown finite

number of mass points, that is able to detect a latent structure among the Ital-

ian schools, the higher level of hierarchy. This model can be interpreted as an

in-built unsupervised classification tool, since it identifies a clustering structure

among groups, without knowing a priori nor the clusters of belonging neither

their size. From a practical point of view, in Italy students must attend five

years of primary school, three years of junior secondary school and five years

of upper secondary school. We are aware of the challenges that estimating the

pure school effect implies (Goldstein and Spiegelhalter, 1996; Raudenbush and

Willms, 1995), indeed, we will not refer to “school effect” in the classic way.

Rather, since we focus on junior secondary schools, our “school effect” can be

interpreted as the ability of these schools in receiving students from the primary

schools with certain skills and give them new and possibly increased skills at the

end of the three years, aware of the fact that students might not be randomly

assigned to schools. So our research mainly aims at identifying subpopulations

of schools, standing on the relationship between their students test scores at

the beginning and at the end of the three years (grades 6 and 8 respectively).

Supposing that we can model the relationship between students test scores at

different grades by means of linear models, which means that student scores at

different grades are assumed to be linearly correlated, the regression line between

the two grades test scores might be characterized by different parameters across

schools. In other words, we try to identify subpopulations of Italian junior sec-

ondary schools, characterized by different trends in their student achievements,

where the number of subpopulations is unknown a priori.

In the methodological literature, two lines of research about the identifica-

tion of subpopulations are (a) Growth Mixture Models (GMM) (Muthén, 2004;

Muthén and Shedden, 1999) and (b) Latent Class Mixture Models (McCulloch

et al., 2002; Nagin, 1999; Vermunt and Magidson, 2002; Asparouhov and Muthen,

2008; Vermunt, 2011). Conventional growth modelling is applied to longitudi-

nal data and it is used to estimate the average growth, the amount of variation

across individuals in growth intercept and slopes and the influence of covariates
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on this variation. It can be described as a random effect model where intercept

and slope vary across individuals. However, conventional growth models assume

that individuals come from a single population and that a single growth trajec-

tory can approximate the entire population. Growth mixture models relax this

assumption and assume that there are differences in growth parameters across

unobserved subpopulations. They allow for the existence of latent trajectory

classes where different groups of individual growth trajectories vary around dif-

ferent behaviors. In other words, the average association between covariates and

the outcome varies across latent classes and also, within classes, individuals also

vary randomly in their coefficients. The results are separate growth models for

each latent class. Latent Class Growth Analysis (LCGA) is a special case of

GMM where the variance and covariance estimates for the growth factors are

assumed to be fixed at zero, assuming that all the individuals within a latent

class are homogeneous. Individuals within a latent classes are assumed to have

identical random effects. Conceptually, these methods are very similar to the

one that we propose, especially the special case of LCGA, since we also assume

that individuals within latent classes have identical random effects. Nonetheless,

there are two main differences between our approach and the one of GMM and

LCGA. The former is that GMM/LCGA are thought for modelling longitudinal

changes and not regression1. The latter is that GMM/LCGA need to fix a priori

the number of latent classes, while our approach estimates it together with the

other unknown parameters. There are numerous extensions and applications of

GMM (Lin et al., 2000; Proust-Lima et al., 2007), but none of them includes the

estimation of the number of latent classes. They rather estimate the parame-

ters fixing different number of masses and they choose the best one comparing

goodness of fit indices. Latent class mixture models are even more related to

our approach since they consider linear mixed models where the assumption of

normality of random effects is relaxed. They also assume a discrete distribution

for the random effect coefficients and they are used to uncover distinct subpop-

ulations (latent classes) and classify individuals. But also this approach requires

a fixed number of latent classes, chosen a priori. In the framework of latent

structure analysis, an other branch of research related to ours is the one about

Latent Trait Analysis (LTA) (Bock and Aitkin, 1981; Heinen, 1996). LTA, also

called Item Response Theory (IRT), is used for the analysis of categorical data.

It performs the reduction of a set of binary or ordered-category variables into a

smaller set of factors and it is mainly used for data exploration or theory con-

firmation. The common aspect of this method with the ones described above

and, at the same time, the main difference with our method is, again, the fact

that they need to fix a priori the number of latent factors. The choice of the

1One of the characteristics of the models for longitudinal data is that the set of time instants
in which the dependent variable is evaluated is the same within each group/individual, meaning
that the covariate is fixed across the groups/individuals.
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number of latent classes (mass points) is not trivial when the sample is very big

or the knowledge about possible different trends across the individuals (groups)

is limited. Our case study represents a clear example of a sample composed by

hundreds of groups, within which we do not know how many different subpop-

ulations exist. For this reason, in the perspective of performing dimensionality

reduction without any assumption about the final dimension, we need to develop

an approach that estimates, together with the other parameters, also the num-

ber of existing subpopulations. In this sense, our approach brings a significant

improvement with respect to the existing literature.

In particular, we develop and apply an EM algorithm for semi-parametric

mixed-effects models (Bock and Aitkin, 1981), for hierarchical data (students

nested within schools), in order to perform an in-built classifier of the group-

ing factor (schools). The algorithm is inspired by the ones proposed in Aitkin

(1996) and Azzimonti et al. (2013), but with substantial changes. The idea is

that we perform a linear two-level model, in which we consider students nested

within schools, where the random effect (school effect) is semi-parametric since

it follows a discrete distribution with an unknown number of support points.

The algorithm itself identifies the number of support points, that is the number

of subpopulations in which schools are grouped, standing on the achievements

trend of their students. In the educational literature, multilevel linear models

have already been applied to INVALSI data, with a view to estimating school

value-added, modeled by means of parametric distributions, after adjusting for

student characteristics (Agasisti et al., 2017b; Masci et al., 2016b, 2017a; Sani

and Grilli, 2011). Nonetheless, our method has a different scope since it does

not seek to estimate individual value-added for each school, but it looks for sub-

populations of schools with homogeneous value-added. Both the algorithm and

its application to the educational context are new to the literature.

From an interpretative point of view, the consequence of the identification of

subpopulations of schools is that we can recognize how many and which different

behaviors characterize Italian schools and, therefore, identify a latent structure

within them. In particular, the distribution of schools across subpopulations

reveals which is the most common trend (the most numerous subpopulation)

and identifies subpopulations of anomalous schools, that are those subpopula-

tions containing less schools with different impact on student achievements. In

a second stage, this enables the profiling of subpopulations by means of school

level variables. The idea is that there could be variables at school level that

influence the different student achievements trends across schools. Therefore, in

the second part of the analysis we explore the presence of patterns of school char-

acteristics among subpopulations of schools by means of multinomial regression

models.

This chapter is organized as follows: in Section 3.1 we describe the model and

methods - SPEM algorithm - and we present a simulation study; in Section 3.2 we
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describe the INVALSI dataset and report the application of SPEM algorithm to

INVALSI data, show the results and explore the relation between subpopulations

and school characteristics; in Section 3.3 we draw our conclusions.

The code for SPEM algorithm is available upon request to the authors.

3.1 Model, methods and simulation study

In this section, we present the semi-parametric mixed-effects model (Subsection

3.1.1), the EM algorithm for the estimation of its parameters (Subsection 3.1.2)

and a simulation study (Subsection 3.1.3). Since we learn from previous learning

analytics on Italian data that there exist patterns of student achievements across

different Italian schools (Agasisti et al., 2017b; Masci et al., 2016b, 2017a), we

are interested in evaluating how the association between previous and current

student test scores does change across different Italian schools and, in partic-

ular, in identifying subpopulations of schools within which this association is

identical. Therefore, the model that we develop is a two-level linear model (in

the application, students represent level 1 and schools represent level 2) with

a discrete distribution with a finite number of support points on the random

effects. This modelling allows to identify a latent structure of subpopulations in

the higher level of grouping (in the application, schools).

3.1.1 Semi-parametric mixed-effects model

We start considering a general mixed-effects (two-level) linear model, where each

observation j, for j = 1, . . . , ni, is nested within a group i, for i = 1, . . . , N . The

model takes the following form:

yi = Xiβ + Zibi + εi i = 1, . . . , N

εi ∼ N (0, σ2
1ni

) ind.
(3.1)

where i is the group index, N is the total number of groups, ni is the number

of observations within the i-th group and
∑N

i=1 ni = J . yi = (y1i, . . . , ynii) is

the ni-dimensional vector of response variable within the i−th group, Xi is the

ni× (p+ 1) matrix of covariates having fixed effects, β is the (p+1)-dimensional

vector of fixed coefficients, Zi is the ni × (r + 1) matrix of covariates having

random effects, b is the (r+1)-dimensional vector of random coefficients and εi
is the vector of errors. Fixed effects are identified by parameters associated to the

entire population, while random ones are identified by group-specific parameters.

In the parametric framework of mixed-effects linear models, random coeffi-

cients are assumed to be distributed according to a Normal distribution with

unknown parameters that, together with the coefficients of fixed effects and σ2,

can be estimated through methods based on the maximization of the likelihood

or the restricted likelihood functions (Pinheiro and Bates, 2000).
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The main novelty introduced here is that we move to a semi-parametric

framework, assuming the coefficients bi to be distributed according to a dis-

crete distribution P ∗, assuming M sets of values (c0l, . . . , crl) for l = 1, . . . ,M ,

where M ≤ N . This means that each group i, for i = 1, . . . , N , is assigned

to a subpopulation l, that is characterized by random parameters (c0l, . . . , crl).

This semi-parametric modelling enables to identify a latent structure among the

groups, that are clustered by the model into an unknown number of discrete

masses. Therefore, the two main advantages are that, first of all, we can identify

how many latent subpopulations exist within the groups of data and, second,

we can estimate the parameters associated to each subpopulation, pointing out

their differences.

Under these assumptions, the semi-parametric mixed-effects model takes the

following form:

yi = Xiβ + Zicl + εi i = 1, . . . , N l = 1, . . . ,M

εi ∼ N (0, σ2
1ni

) ind.
(3.2)

In particular, from now on, without loss of generality, we consider the case with

one random intercept, one random effect and one fixed effect2:

yi = xiβ + 1c0l + zic1l + εi i = 1, . . . , N l = 1, . . . ,M

εi ∼ N (0, σ2
1ni

) ind.
(3.3)

where 1 is the ni-dimensional vector of 1, M ≤ N is the number of subpop-

ulations (mass points) unknown a priori. Coefficients cl, for l = 1, . . . ,M , are

distributed according to a probability measure P∗ that belongs to the class of all

probability measures on R2. P∗ is a discrete measure with M support points that

can then be interpreted as the mixing distribution that generates the density of

the stochastic model in (3.3). The ML estimator P̂∗ of P∗ can be obtained fol-

lowing the theory of mixture likelihoods in Lindsay et al. (1983a,b), where the

author proves the existence, discreteness and uniqueness of the semi-parametric

maximum likelihood estimator of a mixing distribution, in the case of exponential

family densities. In particular, the author faces statistical problems (existence,

discreteness, support size characterization and uniqueness) transforming them

in geometrical problems, concerning support hyperplanes of the convex hull of

the likelihood curve. So, the ML estimator of the random effects distribution

can be expressed as a set of points (c1, . . . , cM), where M ≤ N and cl ∈ R2

for l = 1, . . . ,M , and a set of weights (w1, . . . , wM), where
∑M

l=1wl = 1 and

wl ≥ 0 for each l = 1, . . . ,M . Given this, we propose an algorithm for the joint

estimation of σ2, β, (c1, . . . , cM) and (w1, . . . , wM), that is performed through

2This choice is due to the case considered in the application to INVALSI dataset, in Section
3.

64



CHAPTER 3. SPEM FOR SCHOOLS CLASSIFICATION

the maximization of the likelihood, mixture by the discrete distribution of the

random effects,

L(β, σ2|y) = p(y|β, σ2) =

M∑
l=1

wl

(2πσ2)
J
2

exp

{
− 1

2σ2

N∑
i=1

ni∑
j=1

(yij − βxij − c0l − c1lzij)2
}
,

(3.4)

with respect to the fixed coefficient β, the error variance σ2 and the random

effects distribution (cl, wl), for l = 1, . . . ,M . For each l = 1, . . . ,M , cl represents

the group-specific parameters and wl the corresponding weight in the mixture

equation (3.3).

The algorithm that we propose is inspired by the one proposed in Azzimonti

et al. (2013), but it considers the linear functional dependence between response

and predictors and it makes three main improvements: (i) the optimization of

the Maximization step is computed in closed form, (ii) the covariates can be

group specific3 and (iii) the initialization of the parameters is done in a more

efficient and flexible way. The first point directly derives from the linearity

assumption. The idea at the base of the algorithm is also similar to the one

proposed in Aitkin (1996), but while in Aitkin (1996) the authors need to fix

a priori the number of discrete points of the mixing distribution, our algorithm

identifies itself the number of support points M, standing on given tolerance

values that we fix depending on the problem.

3.1.2 The SPEM algorithm

The proposed EM algorithm is an iterative algorithm that alternates two steps:

the expectation step (E step) in which we compute the conditional expectation of

the likelihood function with respect to the random effects, given the observations

and the parameters computed in the previous iteration; and the maximization

step (M step) in which we maximize the conditional expectation of the likelihood

function. The observations are the values of the answer variable yij and of the

covariates zij and xij, for j = 1, . . . , ni and i=1,. . . ,N. The parameters to be

estimated are the random coefficients cl with their weights wl, for l=1,. . . ,M,

the fixed coefficient β and the variance σ2. The algorithm allows the number

ni, for i = 1, . . . , N , of observations to be different across groups, but, within

each group missing data are not handled, i.e. missing values of y, z and x for

the ni units are not allowed. At each iteration, the EM algorithm updates the

parameters in order to increase the likelihood in (3.4) and it continues until the

convergence or until a fixed number of iterations (it) is reached. In particular,

the update is given by:

3With the term “group specific covariates” we mean individual level covariates that are
allowed to vary in terms of number of observations and assumed values across the groups.
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w
(up)
l =

1

N

N∑
i=1

Wil for l = 1, . . . ,M (3.5)

(β(up), c
(up)
1 , . . . , c

(up)
M , σ2(up)) = arg max

β,cl,σ2

M∑
l=1

N∑
i=1

Wil ln p(yi|β, σ2, cl) (3.6)

where

Wil =
wl p(yi|β, σ2, cl)∑M
k=1wk p(yi|β, σ2, ck)

(3.7)

and

p(yi|β, σ2, c) =
1

(2πσ2)
ni
2

exp

{
− 1

2σ2

ni∑
j=1

(yij − βxij − c0l − c1lzij)2
}
. (3.8)

The weight w
(up)
l is the mean over the N groups of their weights related to the

l−th subpopulation. Coefficients Wil represent the probability of bi being equal

to cl conditionally to observations yi and given the fixed coefficient β and the

variance σ2.

The maximization (M step) in equation (3.6) involves two steps and it is

done iteratively. In the first step, we compute the arg-max with respect to the

support points cl, keeping β and σ2 fixed to the last computed values. In this

way, we can maximize the expected log-likelihood (computed in the E step) with

respect to all support points cl separately, that means

c
(up)
l = arg max

c

N∑
i=1

Wil ln p(yi|β, σ2, c) l = 1, . . . ,M. (3.9)

Since we are considering the linear case, it is possible to perform this maxi-

mization step in closed-form. With regard to model (3.3), the estimates of the

random effects are obtained by means of the weighted least squares method and

are the following:

ĉ0l =

∑N
i=1wil

∑ni

j=1(yij − β̂xij − ĉ1lzij)
ni
∑N

i=1wil
(3.10)

and
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ĉ1l =

∑N
i=1wil

∑ni

j=1 yijzij −
(
∑N

i=1 wil

∑ni
j=1 yij)(

∑N
i=1 wil

∑ni
j=1 zij)

ni

∑N
i=1 wil∑N

i=1wil
∑ni

j=1 z
2
ij −

(
∑N

i=1 wil

∑ni
j=1 zij)

2

ni

∑N
i=1 wil

+

β̂(
∑N

i=1 wil

∑ni
j=1 zij)(

∑N
i=1 wil

∑ni
j=1 xij)

ni

∑N
i=1 wil

− β̂
∑N

i=1wil
∑ni

j=1 xijzij∑N
i=1wil

∑ni

j=1 z
2
ij −

(
∑N

i=1 wil

∑ni
j=1 zij)

2

ni

∑N
i=1 wil

.

(3.11)

In the second step, we fix the support points of the random effects distri-

bution computed in the previous step and we compute the arg-max in equation

(3.6) with respect to β and σ2. Again, this step can be done in closed-form and

the estimates of the parameters, with regard to model (3.3), obtained by means

of the weighted least squares method, are:

β̂ =

∑M
l=1

∑N
i=1wil

∑ni

j=1(yijxij − ĉ0lxij − ĉ1lzijxij)∑M
l=1

∑N
i=1wil

∑ni

j=1 x
2
ij

(3.12)

and

σ̂2 =

∑M
l=1

∑N
i=1wil

∑ni

j=1(yij − β̂xij − ĉ0l − ĉ1lzij)2

ni
∑M

l=1

∑N
i=1wil

. (3.13)

Notice that, since wl = p(bi = cl), then

Wil =
wl p(yi|β, σ2, cl)∑M
k=1wk p(yi|β, σ2, ck)

=
p(bi = cl) p(yi|β, σ2, cl)

p(yi|β, σ2)
=

=
p(yi,bi = cl|β, σ2)

p(yi|β, σ2)
= p(bi = cl|yi, β, σ2).

(3.14)

Therefore, in order to compute the point cl for each group i, for i = 1, . . . , N ,

we maximize the conditional probability of bi given the observations yi, the

coefficient β and the error variance σ2. So that, the estimation of the coefficients

bi of the random effects for each group is obtained maximizing Wil over l, that

is

b̂i = cl̃ where l̃ = arg max
l

Wil i = 1, . . . , N. (3.15)

As anticipated before, the initialization of the support points is done in a robust

and generalizable way. The algorithm starts considering N support points for

the coefficients of random effects and a starting estimate for the coefficients of

fixed effects. In particular, the initialization of all these parameters is done in

the following way:
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• random effects: the starting N support points are obtained fitting a simple

linear regression within each group and estimating the couple of parameters

(both the intercept and the slope) for each one of the N groups. The

weights are uniformly distributed on these N support points4;

• fixed effects: the starting values of β and σ2 are estimated by fitting

a unique linear regression on the entire population (without distinction

among the groups).

Nonetheless, if the number of starting support points N is extremely large, the

algorithm is relatively slow and using N starting support points becomes not

strictly necessary. In this case, the initialization of the support points of the

random effect distribution is done in the following way:

• we choose a number N* < N of support points;

• we extract N* points from a uniform distribution with support on the

entire range of possible values, that is estimated by fitting N distinct linear

regressions for each one of the N groups, as before, and identifying the

minimum and the maximum values;

• we uniformly distribute the weights on these N* support points.

During the iterations, the EM algorithm performs the support reduction of the

discrete distribution, in order to identify M < N mass points in which the N

groups are clustered. The support reduction is made standing on two criteria.

The former is that we fix a threshold D and if two points cl and ck are closer

than D, in terms of euclidean distance, they collapse to a unique point cl,k, where

cl,k = cl+ck

2
with weight wl,k = wl + wk. The first two masses collapsing to a

unique point are the two masses with the minimum euclidean distance, among

the couples of masses with euclidean distance less than D, and so on so forth.

The latter is that, starting from a given iteration up to the end, we fix a threshold

w̃ and we remove mass points with weight wl ≤ w̃ or that are not associated to

any subpopulation. D and w̃ are two tuning parameters that tune the estimates

of the subpopulations. The choice of D depends on how much we want to be

sensitive to the differences among subpopulations: the higher is D, the lower is

the number of subpopulations and the less homogeneous are the groups within

subpopulations. D depends also on the order of magnitude of the data. The

choice of w̃ depends on the minimum number of groups that we allow within

each subpopulation. When one or more mass points are deleted, the remaining

weights are reparameterized in such a way that they sum up to 1:

4This is not the only possibility to estimate the starting support points. A valuable alter-
native is to fit a classical multilevel model, with N groups, where both the intercept and the
slope are random coefficients.
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Sw =
Mnew∑
l=1

woldl

wnewl =
woldl
Sw

∀l = 1, . . . ,Mnew

(3.16)

where Mnew is the total number of masses after deleting the ones associated to

weight wl ≤ w̃ or not associated to any subpopulation, wold are the old remaining

weights and wnew are the new reparameterized weights.

The sketch of the algorithm is shown in Algorithm 1 in Appendix. At each

iteration k, the algorithm, given the estimated number of mass points, estimates

all the parameters in (3.3) in an iterative way, updating the coefficients of both

fixed and random effects, until convergence or until it reaches the maximum

number of sub-iterations fixed a priori for this stage (itmax). At the beginning

of the iterative process, the algorithm performs the dimensional reduction of the

mass points standing only on the distance between the mass points. When the

estimates are stable, meaning that all the differences between the estimates of the

parameters at two consecutive iterations are smaller than fixed tolerance values,

or after a given number of iterations it1, the algorithm continues performing the

dimensional reduction of the support points standing also on the criterion of the

minimum weight w̃ . The final convergence is reached when all the differences

between the estimates of the parameters at two consecutive iterations are smaller

than fixed tolerance values. In particular, we fix the tolerance values for the

estimates of both the parameters of fixed and random effects to tollF and

tollR respectively, which depend on the scale of the parameters.

The introduction of the maximum number of iterations it, it1 and itmax

(as just explained in this section) depends on the complexity of the data and on

the consequent convergence rate and its use is merely to avoid an infinite loop.

It is worth noting that since the optimization steps are done in closed-form,

the algorithm is not particularly time-consuming and, in both the simulation

study and in the application, it converges in less than 20 iterations.

In the presentation of the algorithm, as well as in the simulation study that

will be presented in the next subsection, we focus on the case of a linear model

with two covariates, where both one slope and the intercept are considered as

random effects. This is due to the upcoming application of the algorithm to

the case study of INVALSI dataset, in which we make this choice of fixed and

random parameters. Nonetheless, the SPEM algorithm allows to consider as

random effects both the intercept and one slope, as well as only one of them.

Moreover, its extension to the case with p covariates among the random effects,

i.e. c ∈ Rp+1, is analytically straightforward and it implies only a computational

issue.
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3.1.3 Simulation study

In order to validate the proposed estimation algorithm, we perform two simu-

lation studies: the former considers the case of a population containing three

latent subpopulations and the latter considers the case of a population with no

latent subpopulations. In this way, we can test the algorithm in the presence of

clear subpopulations and also in the case in which there are no clear subpopula-

tions. We apply the algorithm considering different values of D, in order to test

how the results do change by changing the threshold parameter and we provide

a measure of the uncertainty of classification by computing the entropy in the

weights matrix W. We consider a linear model with two covariates.

For the first simulation study, we generate a dataset containing 100 groups of

variables (100 level 2 units), where each group is composed by an answer variable

and two covariates. We sample the variables in order to have 3 different latent

subpopulations within the 100 groups, that is, in order to create 100 cohorts of

data characterized by three different linear correlations. For this purpose, we

generate 100 response variables as the result of 3 distinct linear combinations of

3 couples of covariates, plus some errors. The three subpopulations contain 40,

25 and 35 groups respectively. The data are simulated in the following way:
yi = βx1 + c01 + c11z1 + εi i = 1, . . . , 40

yi = βx2 + c02 + c12z2 + εi i = 41, . . . , 65

yi = βx3 + c03 + c13z3 + εi i = 66, . . . , 100

(3.17)

where coefficients β and cl, for l = 1, . . . , 3 are reported in Table 3.1, εi ∼
N (0, 3) and the covariates are sampled by Normal distributions with different

parameters. In particular,

x1 ∼ N (0.30, 0.16), z1 ∼ N (50, 100),

x2 ∼ N (0.28, 0.16), z2 ∼ N (51, 100),

x3 ∼ N (0.27, 0.16), z3 ∼ N (49, 100),

(3.18)

where z1 and x1 have 100 observations, z2 and x2 have 90 observations and

z3 and x3 have 95 observations (9, 575 level 1 units in total). Therefore, the

dimensional choices of the generated data are the following:

• Number of groups = 100

• Number of subjects within groups =


100 ∀ group i ∈ {1, . . . , 40}
90 ∀ group i ∈ {41, . . . , 65}
95 ∀ group i ∈ {66, . . . , 100}
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The choice of the size, of the parameters and of the distribution is arbitrary.

Our choice for the values of x and z is driven by the case study. We sample x

and z in order to obtain values in the same range of the ones in the INVALSI

application. Other choices are possible and do not affect the validity of results.

c0 c1 β

l=1 20 1.00 1.50

l=2 30 0.05 1.50

l=3 40 0.50 1.50

Table 3.1: Coefficients used for data simulation in Eq. (3.17). Each row corresponds to
a subpopulation l. The intercept and the coefficient of z differ across subpopulations
(c0 and c1 respectively), while the coefficient of x (β) is fixed.

Also the choice of the coefficients in Table 3.1 is arbitrary. This choice of param-

eters is driven by the case study, since we choose values for cl, for l = 1, . . . , 3

and β in the same range of the ones obtained in the INVALSI application. For

coherence with the upcoming INVALSI case study, that considers both the slope

and the intercept as random, we choose different values for both the intercept

and the coefficient of variable z across the three subpopulations, while we main-

tain the coefficient of x fixed. Figure 3.1 shows the 3d image of one simulated

dataset.

Looking at Figure 3.1, it is possible to recognize three different linear correla-

tions among the data, identified by the three distinct “clouds” of points. Groups

of points characterized by similar linear correlations are automatically associated

to similar colors by the software R and this helps in the visual inspection of the

3 subpopulations.

The model that we fit takes the following form:

yi = βxi + c0l + c1lzi + εi, (3.19)

where i = 1, . . . , 100 and l = 1, . . . ,M where M is unknown a priori to the

algorithm. We apply the algorithm 100 times, to different simulated datasets for

the same model, for each different value of D = {0.5, 0.8, 1, 2, 3} and considering

the following choice of the other parameters: w̃ = 0.05, it=30, it1=20, itmax

= 20 and toolF=tollR= 10−4. The following box summarizes the simulation

study.

∀ D ∈ {0.5, 0.8, 1, 2, 3} and for (k in 1:100)

• generate x1,x2,x3, z1, z2, z3 according to Eq. (3.18) and y according

to Eq. (3.17);

• apply the SPEM algorithm to the generated data.
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Figure 3.1: Plot of the simulated data obtained by Eq. (3.17) and (3.18). Each one
of the 100 groups has a different color. Data with similar behaviors are automatically
assigned to similar colors by software R.

The number of times, out of the 100 runs, in which the algorithm allocates

the right subpopulation to each one of the 100 groups, for different values of

D, is shown in Table 3.2 (in all the runs, the algorithm converges before the

maximum number of iterations).

D = 0.5 D = 0.8 D = 1 D = 2 D = 3

34 84 92 98 68

Table 3.2: Number of times, out of the 100 runs, in which the algorithm allocates the
right subpopulation to each one of the 100 groups for different values of D.

In the case in which D is equal to 0.5, the algorithm correctly assigns the be-

longing of the groups to the three subpopulations 34 times out of 100. In the

remaining 66 cases, the algorithm identifies more than three subpopulations.

This means that the threshold value D = 0.5 is too small and the algorithm

is, consequently, too sensitive to the variations among the data. On the other

side, in the case in which D is equal to 3, the algorithm correctly assigns the

belonging of the groups to the three subpopulations 68 times out of 100 (iden-

tifying less than three subpopulations in the remaining 32 cases). This means
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that for values of D higher than 3, the algorithm is not perfectly sensitive to

the differences among the groups and it sometimes collapses groups presenting

different trends into the same subpopulation. In the cases of D={0.8, 1, 2} the

algorithm correctly assigns the subpopulations 84, 92 and 96 times out of 100,

respectively, that represents a good proportion. The results of the estimates of

the parameters for the two “best” choices of D are shown in Table 3.3.

ĉ0 ĉ1 β̂
ŵ

Mean sd Mean sd Mean sd

D=1
l=1 20.034 0.170 0.999 0.003

1.477 0.005
0.40

l=2 40.001 0.197 0.500 0.003 0.25
l=3 30.032 0.292 0.049 0.005 0.35

D=2
l=1 20.011 0.154 1.000 0.003

1.505 0.004
0.40

l=2 40.038 0.176 0.499 0.004 0.25
l=3 29.987 0.236 0.050 0.004 0.35

Table 3.3: Distribution of the parameters of model in Eq. (3.19), estimated by the SPEM
algorithm, obtained in the runs in which three populations are identified. Results are
shown both for D = 1 and D = 2. Within each choice of D, each row corresponds to
a subpopulation l. The intercept and the coefficient of z differ across subpopulations
(c0 and c1 respectively), while the coefficient of x (β) is fixed. ŵ represents the weight
estimated for each subpopulation.

Starting from 100 distinct groups, the SPEM algorithm, in most of the cases,

identifies three subpopulations (M = 3) that are represented by the estimates

(ĉl, ŵl), for each l = 1, . . . ,M , and β̂ shown in Table 3.3. The estimates obtained

with D=1 and D=2 are coherent. The mean of each parameter distribution is

centered very close to the real value of the parameter used to simulate the

data and standard deviations are very small5. Moreover, masses’ volumes are

proportional to the percentage of data that belongs to each mass. In this case,

the algorithm correctly assigns the 100 groups to the three subpopulations, so

that, the three volumes are proportional to 0.40, 0.25 and 0.35, respectively.

For one of the 100 simulated datasets in which the algorithm identifies the three

clusters, data with the three identified regression planes are shown in Figure 3.2.

In Figure 3.2, observations that belong to the same subpopulation are associated

to the same color and, in this simulation, the algorithm associates each obser-

vation to the correct subpopulation. The three identified regression planes are

able to fit the three distinct clouds of data in a precise way. In order to have

a measure of the uncertainty of classification of the SPEM algorithm, we can

observe the matrices of the weights W that we obtain in each run and evaluate

5In order to test the equality of the mean of each parameter distribution to the parameters
shown in Table 3.1, we test the normality of each parameter distribution by means of Shapiro
test, obtaining p-values > 0.1 for all of them, and we perform a t-test for each parameter (c0,
c1 ad β), obtaining p-values > 0.2 for all the tests.
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Figure 3.2: Result of the SPEM algorithm applied to a simulated dataset according
to Eq. (3.17) and (3.18). Colors represent the three subpopulations that the algorithm
identifies and planes are the estimated linear regression planes within each subpopula-
tion. Each group is painted with the color of the subpopulation to which it belongs.

the level of uncertainty with which the algorithm assigns each group to a cluster.

This uncertainty of classification can be evaluated by measuring the entropy of

the rows of the matrix W. In the best case, that is when the algorithm assigns

each group i to a cluster l with probability 1, each row of the matrix W would be

composed by M-1 values equal to zero and a value equal to 1. In this scenario,

the entropy Ei = −
∑M

l=1Willn(Wil) of each row i of the matrix W would be

equal to 0. The more the distribution of the weights is uniform on the M mass

points, the higher is the entropy. The worst case when M = 3 is the one in which

the distribution of the weights of a group i is uniform on the 3 clusters (wil = 1/3

for l = 1, 2, 3), that corresponds to an entropy Ei = −3× (1/3)ln(1/3) = 1.098.

We compute the entropy of each row of W for the 100 runs and we show here

the distribution of the mean on the 100 runs of the entropy measured for each

group i, in the cases of D = 0.8, D = 1 and D = 2.

The mean and the standard deviation of the entropy estimated whenD = 0.8,

D = 1 and D = 2 are shown in Table 3.4.

These very low values of the entropy (see Figure 3.3 and Table 3.4) suggests

that the level of uncertainty of classification, for these three values of D, is very

low, since the distribution of the weights wil, for i = 1, . . . , N and l = 1, . . . , 3
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Figure 3.3: Boxplots of the entropy computed in the 100 runs, for D=0.8, D=1 and
D=2 . Each boxplot represents the distribution of the entropy measured for each group,
obtained by mediating the entropy in the 100 runs.

mean sd

D=0.8 0.019 0.012

D=1 0.013 0.008

D=2 9.7× 10−13 9.6× 10−12

Table 3.4: Mean and standard deviation of the entropy estimated when D=0.8, D=1
and D=2 on the 100 runs of the simulation, for the choice of data in Eq. (3.18) and
coefficients in Table 3.1.

results to be very concentrated on single mass points. In particular, the case in

which D = 2 has the lowest entropy and results to be the case with the lowest

level of uncertainty of classification.

We can conclude that, in this simulation study, the SPEM algorithm is able

to identify the latent structure that elapses within the 100 groups of data. In par-

ticular, it can identify which is the effective number of subpopulations in which

the data are nested and it can characterize each one of these subpopulations by

means of the estimates of the associated parameters.

In the second simulation study, we generate a population without latent sub-

populations and we analyze the performance of the SPEM algorithm. We choose
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one of the previous set of parameters and we generate 100 response variables in

the following way:

yi = 20 + 1.5xi + 1zi + εi, i = 1, . . . , 100, (3.20)

where εi ∼ N (0, 3) and xi and zi are defined as in Eq. (3.18). Again, we apply

the algorithm 100 times to 100 different simulated datasets and this process

is repeated for values of D = {0.5, 0.8, 1, 2, 3} and considering the following

choice of the other parameters: w̃ = 0.05, it=30, it1=20, itmax = 20 and

toolF=tollR= 10−4. The number of times, out of the 100 runs, in which the

algorithm identifies only one subpopulation, for different values of D, is shown

in Table 3.5.

D = 0.5 D = 0.8 D = 1 D = 2 D = 3

52 74 90 100 100

Table 3.5: Number of times, out of the 100 runs, in which the algorithm identifies only
one subpopulation, for different values of D.

For D = 2 and D = 3, the algorithm always recognizes that there are no

subpopulations. For smaller values of D, sometimes the algorithm catches het-

erogeneities among the 100 groups of data and identifies the presence of latent

subpopulations. For D = 2, Table 3.6 shows the distribution of the estimated

coefficients in the 100 runs.

ĉ0 ĉ1 β̂
ŵ

Mean sd Mean sd Mean sd

l=1 20.012 0.099 0.999 0.002 1.493 0.081 1

Table 3.6: Distribution of the parameters of model in Eq. (3.20), estimated by the
SPEM algorithm, obtained in the 100 runs. Results are shown for D = 2, but are
coherent with any other choice of D ≥ 2.

Regarding the uncertainty of classification, the entropy in the simulations done

with D = 2 and D = 3 is zero, since 100 times out of 100 the algorithm identifies

one population and each group has probability 1 to be assigned to it. In the

cases of lower values of D, the algorithm sometimes identifies more than one

population and the distribution of the entropy related to these cases are shown

In Figure 3.4.
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Figure 3.4: Boxplots of the entropy computed in the 100 runs, for D = 0.8 and
D = 1. Each boxplot represents the distribution of the entropy measured for each
group, obtained by mediating the entropy in the 100 runs.

The mean and the standard deviation of the entropy estimated when D = 0.8

and D = 1 are shown in Table 3.7.

mean sd

D=0.8 0.032 0.008

D=1 0.012 0.007

Table 3.7: Mean and standard deviation of the entropy estimated when D=0.8 and D=1
on the 100 runs of the simulation, for the choice of coefficients in Eq. (3.20).

Also in this case, the estimates of the parameters result to be significantly equal

to the parameters used to generate the data6.

In general, by changing the value of D, we make the algorithm more or less

sensitive to the heterogeneity among the groups of data, that is given both by

the clustering induced by construction and by the remaining randomness in the

model (e.g. by the error term). From this perspective, a graphical visualization

of the results can help in the choice of D.

6Again, we test the normality of each parameter distribution, obtaining p-values of the
Shapiro test ¿ 0.1 for all of them, and the t-tests for the null hypotheses c0 = 5, c1 = 3 and
β = 10 give p-values ¿ 0.2.
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3.2 Case study: application of SPEM algorithm to
education INVALSI data

In this section, we describe the INVALSI dataset (Subsection 3.2.1) and we

apply the SPEM algorithm to these data, in order to identify subpopulations of

Italian schools (Subsection 3.2.2). In a second step, we characterize the identified

subpopulations by means of school level variables (Subsection 3.2.3).

3.2.1 The INVALSI 2013/2014 dataset

INVALSI is an Institute that tests Italian students at different grades and at

different years. The data that we analyze in this chapter are taken from the

INVALSI survey of 2013/2014. Among others, the survey provides several in-

formation both at student and at school level. Students, in addition to solve

tests in different school subjects, have to fill out a questionnaire about their-

selves, their family situations and their habits. Moreover, also school principals

have to fill out a questionnaire about himself/herself, his/her school practices

and management, school body composition and school size, school structures,

infrastructures and school climate. The dataset collects information about 8, 946

students nested within 586 schools. The aim of applying the SPEM algorithm

to INVALSI data is that we are interested in exploring the different relations

between student performances at grade 6 and 8, across Italian junior secondary

schools, adjusting for the student socio-economical index. For this reason, we

select only three variables at student level to employ in the analysis:

• MATH8: student mathematics test score at grade 8 (students attending

the last year of junior secondary school in the year 2013/2014);

• MATH6: student mathematics test score at grade 6 (students attending

the first year of junior secondary school in the year 2011/2012);

• ESCS: student socio-economical index.

Student test scores range between 0 and 100, while the ESCS is an indica-

tor built by INVALSI as a continuous variable with mean = 0 and variance =

1. This indicator considers (i) parents’ occupation and educational qualifica-

tions, and (ii) whether the student owns certain items at home (for instance,

the number of books). In general, pupils with an ESCS greater than or equal to

2 are socially and culturally highly advantaged. Figure 3.5 and Table 3.8 show

variables distributions and descriptive statistics respectively.
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Figure 3.5: Histograms of students’ INVALSI test scores at grade 8, at grade 6 and
socio-economical index (ESCS). Red lines refer to the means, green ones to the medians.

Mean sd Median IQR

MATH8 59.73 16.49 60.98 23.29

MATH6 48.69 16.83 48.26 24.55

ESCS 0.30 1.02 0.38 1.40

Table 3.8: Descriptive statistics of student level variables employed in the analysis.

Moreover, we have information about the macro-area of localization of schools.

About 59% of schools is in Northern Italy, 18% is in Central Italy and 23% is in

Southern Italy. Geographical information is a very relevant aspect since many

studies in Italy confirm that there are significant discrepancies between student

and school performances across the three geographical macro-areas (Agasisti and

Vittadini, 2012; Agasisti et al., 2017b; Masci et al., 2016b, 2017a).

Since, in a second stage of the analysis, we will look for a characterization

of the identified school subpopulations, Table 3.9 reports the school level vari-

ables that we are interested in, with their descriptive statistics. In particular,

variables concern three aspects of schools. The first one concerns the school

body composition: school mean socio-economical index, percentage of females,

immigrants, late/early-enrolled students7, school size and the dummy for pri-

vate/public school. The second one is about the school principal’s features:

7Late/early-enrolled students are those students who started the school grade later or earlier
respect to their peers.
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gender, age, education and years of experience. Lastly, we have three composite

indicators8 about (i) school climate and human relations, (ii) managerial prac-

tices and principal’s strategy and (iii) structures and resources of the school.

Variable Name Mean sd Median IQR

Mean ESCS 0.26 0.54 0.27 0.58
Female percentage 50.11 10.83 50.00 14.28
Immigrant percentage 10.52 11.15 8.01 16.66
Early-enrolled student percent 1.21 4.13 0.00 0.00
Late-enrolled student percent 8.52 8.02 6.66 13.04
Number of classes 20.15 3.77 21.00 5.01
Number of school complexes 5.37 2.81 6.01 5.00
Private 8.21% − − −

Principal features:

Gender(Female=1) 70.01% − − −
Age 55.13 7.49 56.00 11.00
Master after degree(yes=1) 22% − − −
Scientific education(yes=1) 14.62% − − −
Year of experience 9.23 7.79 7.00 10.00
Year of experience in the 5.08 5.18 3.00 5.00
actual school
Experience in an other district 25.37% − − −
Experience with INVALSI 51.34% − − −

Composite indicators:

Ind 1: school climate 0.96 0.09 1 0
and human relations
Ind 2: managerial practices 0.86 0.11 0.83 0.12
and principal’s strategy
Ind 3: structures and resources 0.94 0.09 1 0.11
of the school

Table 3.9: School level variables of the database used in the analysis, with their descrip-
tive statistics.

3.2.2 SPEM algorithm applied to INVALSI data

The aim of this subsection is to apply the EM algorithm for semi-parametric

mixed-effects models to INVALSI database of 2013/2014 as a tool for clustering

8The computation of these three composite indicators is shown in Masci et al. (2016a).
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Italian schools standing on their student attainments. The correlation between

previous student scores (grade 6) and current student scores (grade 8) changes

across schools, in the sense that the effects that schools give to student attain-

ments are heterogeneous and depend on different school characteristics. From

this perspective, student scores at grade 8 can be seen as the result of student

scores two years before (grade 6) combined with the effect of having attended a

particular school for two years. The idea is to find out how student test scores

at grade 6 and grade 8 are related to each other in different schools and in which

schools these relationships are similar. In other words, we look for how many and

which different trends exist in the scores of students attending Italian schools

and, standing on the results, we group schools into different subpopulations. In

this perspective, the SPEM algorithm works as an in-built classifier, since it

performs the grouping of schools into subpopulations, without knowing a priori

the number of subpopulations.

Standing on previous literature, it is reasonable to think that there is a linear

correlation between student scores at grade 6 and at grade 8 (Agasisti et al.,

2017b; Masci et al., 2016b, 2017a). We therefore consider a semi-parametric

two-level linear model (where students represent the first level and schools the

second one), with student test scores at grade 6 and student socio-economical

index as random and fixed effects respectively, allowing both the intercept and

the coefficient of student test scores at grade 6 to be random/school-specific.

For each student j, j = 1, . . . , ni, and each school i, i = 1, . . . , N , given that N is

the total number of schools, J is the total number of students and
∑N

i=1 ni = J ,

the model takes the following form:

yi = xiβ + 1b0i + zib1i + εi i = 1, . . . , N

εi ∼ N (0, σ2
1ni

) ind.
(3.21)

where the answer variable yi = (y1i, . . . , ynii) is the mathematics test score

at grade 8 (MATH8) of the ni students within school i, while the covariate

zi = (z1i, . . . , znii) and the covariate xi = (x1i, . . . , xnii) are respectively the

mathematics test score at grade 6 (MATH6) and the socio-economical index

(ESCS) of the ni students within the i-th school. The choice of considering

ESCS as fixed effect and MATH6 as random one is due to the fact that we are

interested in exploring how the correlation between MATH6 and MATH8, seen

as the reflex of schools ability in training students to achieve certain results,

given their students starting potential, varies among schools.

In order to have robust estimates, we select, from the dataset presented in

Section 3.1, only the schools that have at least ten students. The resulting

dataset consists of 6, 188 students nested within 363 schools.

The SPEM algorithm is applied, considering w̃ = 0.015, D = 0.8, it=30,

itmax=it1=20 and tollR=tollF=10−4. Given these parameters, the algo-

81



CHAPTER 3. SPEM FOR SCHOOLS CLASSIFICATION

rithm identifies M = 5 distinct subpopulations, whose estimates of parameters

are shown in Table 3.10.

Subpopulation β̂ ĉ0 ĉ1 ŵ

Subpopulation 1 1.417 46.028 0.454 12.2%
Subpopulation 2 1.417 22.579 0.707 39.6%
Subpopulation 3 1.417 30.293 0.648 37.5%
Subpopulation 4 1.417 31.207 0.393 8.8%
Subpopulation 5 1.417 25.359 0.027 1.9%

Table 3.10: ML estimates of coefficients of model (3.21) obtained applying the SPEM
algorithm to a selection of INVALSI data of 2013/2014.

The coefficient β in Table 3.10 is the coefficient related to ESCS (fixed ef-

fect). Its positive value (1.417) suggests that, on average, students with high

socio-economical index are associated to high performances, in line with pre-

vious literature (Sirin, 2005). The estimated ŵl, for l = 1, . . . ,M , express the

percentage of Italian schools belonging to each subpopulation l, for l = 1, . . . ,M .

We identify two main subpopulations (subpopulation 2 and subpopulation 3 in

Table 3.10), that contain about the 77% of the total population, while the re-

maining 23% is distributed across the three other subpopulations. Regarding

the analysis of the coefficients of random effects, Figure 3.6 helps us in their

visualization.

Looking at Figure 3.6, it is immediately evident that there is a quite anoma-

lous subpopulation, identified by lilac color, characterized by a very low slope

(subpopulation 5 in Table 3.10). From an interpretative point of view, this

subpopulation contains the “worse” set of Italian schools. Indeed, it is charac-

terized by both low intercept and slope and this means that students in these

kind of schools have on average low results at grade 8, even if they had good

results at grade 6. In other words, students have on average low scores, without

variability depending on their previous performances: students that had good

results at grade 6, after attending two years in a secondary school belonging to

subpopulation 5, have on average low performances, similar to the ones of those

students that performed worse than them two years before. On the other side,

the best scenario is represented by the subpopulation on the top of Figure 3.6,

identified by red color (subpopulation 1 in Table 3.10), that is characterized by a

very high intercept (46.028) and a still high slope (0.454). These values suggest

that even students that had very low scores at grade 6, obtain high scores at

grade 8 with respect to their counterparts attending schools belonging to other

subpopulations. Moreover, the value of the slope suggests that, even if students

had on average an improvement on their performances, there is still heterogene-

ity across students that performed differently two years before, in the sense that
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Figure 3.6: Plot of INVALSI data with the five regression planes identified by the SPEM
algorithm , for model (3.3). Parameters are shown in Table 3.10. Colors represent the
five subpopulations.

best students continue to perform the best with respect to the average.

Thanks to the multilevel structure, we can also compute the Percentage

of Variability explained by Random Effects (PVRE), that, in our case, is the

percentage of variability in student test scores explained at school level:

PV RESchool =
σ2
School

σ2
School + σ2

Residuals

.

Given the two-level semi-parametric model:

yi = βxi + c0l + c1lzi + εi,

the variance of random effects is given by

σ2
School = σ2

c0
+ 2Cov(c0, c1)z̄ + σ2

c1
z̄2.

Computing the empirical values of σ2
c0

, Cov(c0, c1) and σ2
c1

from the estimated

parameters, we obtain a PVRE equal to 70.48%. This quantity confirms the

significance of the random effects in explaining the answer, since about the 70%

of the explained variability at student level is explained by differences across

schools.

In order to provide an index for the goodness of fit of the model, we provide

a leave-one-out cross-validation, we compute the Mean Square Error (MSE) and
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we compare it with the ones obtained considering (i) the same model but with

all the parameters as fixed effects and (ii) the parametric mixed-effects models

with the same choice of random and fixed effects. Table 3.11 reports the three

MSE computed on the student test scores.

Parametric Parametric SPEM random
FE model RE model intercept/slope

MSE 155.91 111.55 118.69

Table 3.11: Mean Square Error (MSE) computed in three models: (i) parametric fixed-
effects model (Parametric FE model); (ii) parametric mixed-effects models with both
intercept and covariate as random effects (Parametric RE model); (iii) Semi-parametric
mixed-effects model with both intercept and slope as random effects (SPEM random
intercept/slope).

The MSE obtained with the fixed-effects model is the highest one (155.91)

and it departs from the ones obtained by both the parametric and semi-parametric

mixed-effects models (111.55 and 118.69 respectively). Standing on the nature

of the problem, we expect the parametric mixed-effects model to perform the

best, since it fits the trend of the data within each school. Nonetheless, the

semi-parametric mixed-effects model produces a slightly bigger MSE, but it ex-

trapolates a new kind of information from the data. Indeed, while the para-

metric approach is able to estimate the parameters of a model, that is based on

an already known structure of the data, the semi-parametric approach makes a

further step, since it is able to identify a new structure within the data, that is

the existence of a new, latent level of grouping. From an interpretative point

of view, the identification of subpopulations is highly informative in the per-

spective of identifying those groups that depart from the common behavior.

Indeed, among the identification of subpopulations itself, what really matters

is the identification of the minority subpopulations, that are those subpopula-

tions containing a small percentage of the entire population, characterized by

different properties with respect to the majority. In our application to INVALSI

database, subpopulations 2 and 3, that are very close to each other and con-

tain almost the 80% of the schools, represent the most common trend, but the

subpopulations that deserve more attention are subpopulations 1,4 and 5, that

are the ones containing a smaller percentage of schools that behave differently

from the majority. Moreover, the relatively small difference between the MSEs

of the two approaches suggests that the subpopulations structure identified by

the SPEM algorithm catches almost all the heterogeneity across the impacts of

Italian schools, meaning that the subpopulations are quite homogeneous.

The further consequence of the identification of a latent structure within

the data is that subpopulations likely derive from some unknown characteristics
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of schools, that lead to these differences. In a general perspective, the inter-

pretation a posteriori of subpopulations of data is important per se, especially

when speaking about Big Data, where the identification of patterns within a big

amount of data, marked by a complex and unknown structure, is particularly

relevant. For this reason, in the next subsection, we try to find out whether

there are patterns of school level variables that characterize the estimated sub-

populations.

3.2.3 Association between school characteristics and school sub-
populations

Applying the SPEM algorithm to INVALSI data, we discover a structure of

subpopulations that clearly reflects heterogeneities among the impacts of Ital-

ian schools. In particular, we identify five different subpopulations, that emerge

from five different behaviors of schools in affecting the evolution of their student

achievements. We are interested in exploring a posteriori these subpopulations,

in order to investigate whether there are school characteristics that are associ-

ated to them. Actually, among these five subpopulations, subpopulation 2 and

subpopulation 3 in Table 3.10, that are characterized by similar parameters and

that contain almost the 80% of the entire set of schools, represent the majority

of schools. Consequently, we consider the union of subpopulation 2 and 3 as the

reference subpopulation Sref , that represents the reference trend. Our interest is

to see how the school characteristics of the other three subpopulations (subpop-

ulation 1,4 and 5 in Table 3.10) differ from the reference subpopulation. To this

end, we apply a multinomial logit model by treating all the school level charac-

teristics shown in Table 3.9 as covariates and as outcome variable the belonging

to the four subpopulations.

For each group (school) i = 1, . . . , N and each subpopulation l = {1,4,5},
the model takes the following form:

ln
( P (Yi = l)

P (Yi = Sref )

)
= β0l +

Q∑
q=1

βlqXiq. (3.22)

where X is the N×Q matrix of school level covariates shown in Table 3.9, where

Q is the total number of school level covariates. The results of the model in Eq.

(3.22) are shown in Table 3.12.
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Variable Name subpop 1 subpop 4 subpop 5

Intercept −2.287 −0.560 −23.363
Mean ESCS −0.335 −0.043 0.087
Female percentage 0.013 −0.016 −0.011
Immigrant percentage −0.069. −0.077. −0.246
Early-enrolled student percent −0.095 0.030 0.014
Late-enrolled student percent 0.013 0.034 −0.012
Number of classes −0.035 −0.008 0.067
Number of school complexes 0.078 −0.126 0.086
Private 0.884 −9.187∗∗∗ −6.147∗∗∗

Principal features:

Gender (Female=1) −0.192 −0.043 0.211
Age 0.018 −0.048 0.020
Master after degree (yes=1) 0.478 −0.577 0.981
Scientific education (yes=1) −0.135 0.171 −6.019∗∗∗

Year of experience 0.013 0.035 0.046
Year of experience in the −0.096 −0.034 −0.048
actual school
Experience in an other district 0.004 0.583 −1.390
Experience with INVALSI −0.155 0.384 1.525

Composite indicators:

Ind 1: school climate and 0.327 −0.083 1.864
human relations
Ind 2: managerial practices and 2.899 −0.626 −5.762
principal’s strategy
Ind 3: structures and resources −3.588 2.726 6.553
of the school

Geographical area:

Center 0.744 0.648 15.691∗∗∗

South 1.201. 1.200. 14.687∗∗∗

Table 3.12: Results of the multinomial logit model in Eq. (3.22). Coefficients are com-
puted considering Sref , the union of subpopulations 2 and 3, as the reference. Asterisks
denote different levels of significance: . 0.01 < p-val < 0.1; * 0.001 < p-val < 0.01; **
0.0001 < p-val < 0.001; *** p-val < 0.0001.

Among the big amount of school level variables, only four variables result to be

associated to the belonging of schools to the four subpopulations: the percent-
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age of immigrants, the dummy for public/private school, the kind of education

of the school principal (humanistic/scientific) and the geographical area (North-

ern, Central and Southern Italy). With respect to the reference subpopulation,

subpopulation 1 and 4 are more likely to contain schools with low percentages

of immigrant students; Cluster 4 and 5 are less likely to contain private schools;

subpopulation 5 is more likely to contain schools managed by school principals

with a humanistic education rather than a scientific one; subpopulation 1 and

4 are more likely to contain schools in Southern Italy and subpopulation 5 is

most likely to contain schools both in Central and Southern Italy. The fact that

subpopulations 1 and 4 are more likely to contain schools with low percentages

of immigrant students and are also more likely to contain schools in Southern

Italy is actually an expected result since the majority of immigrant students in

Italy live in Northern Italy. Subpopulations 1 and 4 are also the subpopula-

tions with the highest intercepts and high positive slopes (see Table 3.10), being

the best scenario of schools standing on our interpretation, and those schools

result to be associated to Southern Italy and to low percentages of immigrant

students. The fact that both subpopulations 4 and 5 are less likely to contain

private schools reveals that private schools tend to be associated neither to the

worst set of schools (subpopulation 5 of Table 3.10) nor to a very good set of

schools (subpopulation 4 of Table 3.10).

Geographical differences represent an interesting aspect in the Italian educa-

tional context. Figure 3.7 reports the proportion of schools belonging to the five

subpopulations, in the three geographical Italian macro-areas: Northern, Cen-

tral and Southern Italy. Comparing Northern and Southern Italy, we can notice

that the distribution of schools among subpopulations is different. In Northern

Italy, we do not have any school belonging to subpopulation 5 and we have very

few schools belonging to subpopulations 1 and 4: almost all schools belong to

subpopulations 2 and 3. In Southern Italy, the distribution of schools among

subpopulations is more uniform and it is possible to count a good quantity of

schools belonging to each subpopulation.

The fact that, among the entire set of school level variables at our disposal,

only four variables result to be significantly associated to the presence of sub-

populations does not imply that there is no explanation for the presence of

subpopulations of schools, but, most likely, these subpopulations derive from

other dynamics, that we are not able to observe or to measure.
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Figure 3.7: Proportion of schools belonging to the five subpopulations, within the three
geographical Italian macro-areas: Northern, Central and Southern Italy.

3.3 Conclusions

This chapter proposes an EM algorithm for semi-parametric mixed-effects mod-

els (SPEM algorithm), shows a simulation study and applies the SPEM algo-

rithm to INVALSI data of 2013/2014 as a tool for clustering Italian schools. The

SPEM algorithm places itself in the literature branch concerning the algorithms

proposed in Aitkin (1996); Azzimonti et al. (2013). In particular, our algorithm

is inspired by the one proposed in Azzimonti et al. (2013) but it introduces the
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major improvement, among the others, that the covariates are group specific,

meaning that they can vary both in number of observations and range of as-

sumed values across groups. Moreover, with respect to the algorithm proposed

in Aitkin (1996) and the literature about Growth Mixture Models and Latent

Class Analysis, the advantage of SPEM algorithm is that it does not need to

fix a priori the number of discrete masses (subpopulations), but, standing on

certain parameters, the algorithm itself identifies the number of discrete support

points. This aspect has a great value in the applications where the number of

subpopulations is not known a priori and the aim is therefore to find out how

many and which different trends exist within the data. This concept is partic-

ularly relevant in the hera of Big Data, where there is the need of identifying

latent structures within big and complex databases.

The SPEM algorithm, when applied to INVALSI data, is able to identify sub-

populations of schools, within which student achievements trends differ. Among

the identification of the number of subpopulations, that reveals how many dif-

ferent trends exist within the sample of Italian schools, the weights associated to

the subpopulations, give a further information of the clustering. In a context in

which we do not know a priori which is the expected trend, the subpopulations

associated to higher weights represent the most common behavior, while the less

numerous subpopulations (the ones associated to lower weights) represent those

schools whose impact differs from the majority. This draws the attention on

the determinants that bring schools to belong to the minority subpopulations.

In particular, the algorithm identifies five school subpopulations that represent

different school associations to their student achievements trends, seen as the

ability of junior secondary schools in training students to obtain certain skills

at the end of the three years, given their skills at the beginning of the school,

adjusting for their socio-economical index (ESCS). In the INVALSI framework,

schools are associated to a positive or negative impact, standing on the final per-

formances of their students and given their students initial skills. Among these

five subpopulations, the presence of a subpopulation containing schools with a

negative impact is immediately evident. This subpopulation contains schools

that have students which tend to underperform, with respect to their perfor-

mance two years before, since they have on average very low scores, even if two

years before, when they started to attend these schools, they obtained higher

scores. Regarding positive impacts, we interpret the subpopulation with the

highest intercept and positive slope (subpopulation 1) as the best one, in terms

of school effect, since it contains schools able to train students to obtain high

performances, even if they had low performances at the beginning of the school.

It is worth to say that, from a policy perspective, the definition of the best school

effect is currently debated. Indeed, it is reasonable to consider a school in which

all students obtain very high scores, without heterogeneity, as a school with a

good effect, but, on the other hand, a different point of view emphasizes the
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advantages of having heterogeneity within the school. In this perspective, the

role of the school is to continuously increase the student goals in order to stress

the pupils to perform even better, using competition and variation to motivate

them.

After the identification of school subpopulations, the chapter focuses on an

other actual and interesting topic, that is their interpretation a posteriori. In

particular, we explore the associations between school subpopulations and school

level characteristics, showing that only geographical areas, percentage of immi-

grants, dummy for private/public school and school principal education result to

be significantly associated. This evidence suggests that the school level variables

at our disposal do not explain the differences in school impacts. Standing on

the fact that the school subpopulations are clearly different in their effect on

student attainments, the lack of a stratification of school level variables across

subpopulations might means that the observed school level variables do not re-

flect the real school characteristics (i.e. they are not measured in the right way)

or there are other latent aspects, that we are not able to measure, that might

explain the different effects of schools on their students.

In a future perspective, our aim is to deepen the analysis on the character-

ization of the estimated school subpopulations, considering other information

about the school environment, that we have not been able to measure until now.

Moreover, from a methodological point of view, we aim at relaxing the linear-

ity assumptions, to consider also the case of other functional forms. Lastly, in

the next chapter, we develop the multivariate version of the SPEM algorithm,

to consider two (or more) response variables. In the framework of INVALSI,

since the dataset contains both the student scores in reading and mathematics,

it would be possible to apply the multivariate version, in which the response

variable would be the bivariate vector of reading and mathematics scores, and,

consequently, to cluster schools or classes standing on both their effects on read-

ing and mathematics student attainments, analyzing the interactions between

these two fields.
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Appendix

Algorithm 1: EM algorithm for semi-parametric mixed-effects models

input : Initial estimates for (c
(0)
1 , . . . , c

(0)
M ) and (w

(0)
1 , . . . , w

(0)
M ), with M = N ;

Initial estimates for β(0) and σ2(0);
Tolerance parameters D, w̃, tollR, tollF, it, it1, itmax.

output: Final estimates of c
(it)
l , w

(it)
l , for l = 1, . . . ,M , β(it) and σ2(it).

k=1; conv1=0; conv2=0;
while (conv1 == 0 or conv2 == 0 & k < it) do

compute the distance matrix DIST (where
DISTst =

√
(c0s − c0t)2 + (c1s − c1t)2 is the euclidean distance between

each couple of mass points s, t ∀s, t = 1, . . . ,M, s 6= t);
if (DISTst < D & DISTst = min(DIST ) (∀s, t = 1, . . . ,M, s 6= t))
then

collapse masses s and t to a unique mass point;
compute the new distance matrix DIST;

if conv1 == 1 or k ≥ it1 then

if w
(k)
l ≤ w̃ (∀l = 1, . . . ,M) then
delete mass point l;
reparameterize the weights according to Eq. (3.16);

if no changes are done then
conv2=1;

given c
(k−1)
l , w

(k−1)
l for l = 1, . . . ,M , β(k−1) and σ2(k−1), compute the

matrix W according to Eq. (3.7);

update the weights w
(k)
1 , . . . , w

(k)
M according to Eq. (3.5);

β(k,0) = β(k−1);
σ2(k,0) = σ2(k−1);

c
(k,0)
l = c

(k−1)
l ;

w
(k,0)
l = w

(k−1)
l ;

keeping β(k,0) and σ2(k,0) fixed, update the M support points

c
(k,1)
1 , . . . , c

(k,1)
M according to Eq. (3.10) and (3.11);

keeping c
(k,1)
l , w

(k,0)
l for l = 1, . . . ,M fixed, update β(k,1) and σ2(k,1)

according to Eq. (3.12) and (3.13);
j=1;
while (|β(k,j−1) − β(k,j)| ≥ tollF or |σ2(k,j−1) − σ2(k,j)| ≥
tollF or |c(k,j−1)l − c

(k,j)
l | ≥ tollR) & j ≤ itmax do

j=j+1;
keeping β(k,j−1) and σ2(k,j−1) fixed, update the M support points

c
(k,j)
1 , . . . , c

(k,j)
M according to Eq. (3.10) and (3.11);

keeping c
(k,j)
l , w

(k,j−1)
l for l = 1, . . . ,M fixed, update β(k,j) and σ2(k,j)

according to Eq. (3.12) and (3.13);

set c
(k)
l = c

(k,j)
l for l = 1, . . . ,M , β(k) = β(k,j), σ2(k) = σ2(k,j);

estimate subpopulation l for each group i according to Eq. (3.15);
if (β(k) − β(k−1) < tollF ) & (σ2(k) − σ2(k−1) < tollF ) &

(c
(k)
l − c

(k−1)
l < tollR) then

conv1=1;

k= k+1;
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Chapter 4

Multivariate semi-parametric
mixed-effects models for the
joint clustering of Italian
classes

In the previous chapter, we develop a semi-parametric two-level model able

to identify a latent structure among the higher level of grouping, that in the

educational application - in which we consider students nested within schools -

is the school. With respect to similar methods present in the literature, the main

advantage of our method is that it does not need to fix a priori the number of

latent subpopulations, that is estimated by the algorithm together with the other

parameters of the model. This aspect is of great value when analyzing big dataset

where we do not have any prior about the number of existent subpopulations.

Applying this method to INVALSI data, we classify schools standing on the

evolution of their student achievements across years. In this sense, our concept

of “school effect” is the effect that a school has on the evolution of its student

achievements at different grades. In particular, we identify subpopulations of

schools within which student mathematics test scores trends (measured by the

linear relation of INVALSI test scores at different grades) are similar and, in a

second step, we characterize a posteriori the identified subpopulations of schools

by means of school level characteristics.

As stated in the Introduction, the INVALSI dataset has been previously

studied by researchers interested in investigating the determinants of student,

class and school performances. In some of our previous works (Agasisti et al.,

2017b; Masci et al., 2016b, 2017a), considering the hierarchical nature of edu-

cational data, we apply mixed-effects linear models (Pinheiro and Bates, 2000)

to INVALSI data in order to identify which are the student characteristics as-

sociated to student performances and to estimate how much of the variability
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in student performance is due to their grouping in different classes and schools.

These are the first attempts that aim at separating and estimating the effects

of different levels of grouping on Italian student achievements. In Masci et al.

(2016b, 2017a), we apply a three-level hierarchical linear model in which stu-

dents are nested within classes that are in turn nested within schools and we

measure the contribute of each of these levels on student INVALSI achievements

variability. Results show that, after adjusting for student characteristics, the

variability among student achievements explained at class level is much higher

that the one explained at school level. Moreover, we find that this proportion

changes across geographical areas and across educational subjects, i.e. reading

and mathematics. By means of parametric mixed-effects linear models, we es-

timate the school or class effect, that, in these cases, is the value-added that

each school or class gives to the performances of its students. Among the fact

that the class effect results to be stronger than the school one, an other rele-

vant result presented in Masci et al. (2017a) is that the correlation between the

school effects on reading and mathematics student achievements is positive and

statistically significant, while the correlation between some effects at class level

is null. This result suggests that the effect of the school is usually coherent on

the students performances in the two school subjects, driven by certain school

characteristics, school principal practices, school body composition and school

peers that result to have a similar impact on both the reading and mathematics

learning processes. On the other way, the fact that the correlation among class

effects in reading and mathematics is null suggests that there is not a strong

common effect of the class environment on student performances in different

school subjects, but the effect of the class on the school subject is uncorrelated

across school subjects. One of the most likely interpretation of this result is

that the class effect, rather than on class body composition or peers, mainly

depends on teacher practices, that might be strongly different between reading

and mathematics.

In this chapter, exploiting the results in the educational context shown in

Masci et al. (2016b, 2017a) and in the light of the potential of the SPEM

algorithm presented in the previous chapter, we propose an extension of the

SPEM algorithm that is innovative both from a methodological and an inter-

pretative point of view. We develop the multivariate SPEM algorithm, i.e. a

semi-parametric linear mixed-effects model with a multivariate response, and we

apply it in a case study that faces the new issue of the identification of subpopu-

lations of Italian classes, whose effect results to be stronger than the school one.

Inspired by the fact that in Masci et al. (2016b, 2017a) emerges that the biggest

part of unexplained variability among student performances is explained at class

level, we precisely focus our attention on the class level. We are interested in

estimating the impact that attending different classes has on student perfor-

mance trends, i.e. student performance evolution over time, and, in particular,
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in jointly modeling these effects in reading and mathematics. Driven by this

purpose, we modify the semi-parametric mixed-effects linear model presented in

the previous chapter to allow a multivariate response variable and we apply it

to INVALSI data, considering students nested within classes, for a joint analysis

of the Italian class effect on student achievement trends in reading and math-

ematics. The model that we propose is a multivariate two-level linear model

where the coefficients of random effects, under non-parametric assumptions, fol-

low a multivariate discrete distribution with an unknown number of mass points.

Each group (observation of the second level of hierarchy) is assigned to a sub-

population of groups, that is represented by specific values of the parameters of

the multivariate mixed-effects linear model. The distribution of the coefficients

of random effects is a multivariate discrete distribution where each dimension

is allowed to have a different finite number, unknown a priori, of mass points.

This formulation permits to estimate the marginal distribution of the random

effects related to each one of the multiple response variables and, moreover, to

estimate the joint distribution of random effects related to the multiple response

variables, investigating the correlation among them. Again, the great advantage

of this formulation is that the model also estimates the number of latent sub-

popualations and, moreover, the flexibility of the multivariate model that allows

the number of mass points of the marginal distributions of random effects to be

different across the multiple response variables constitutes a further important

plus. Together with the model, we propose the Expectation-Maximization (EM)

algorithm to estimate its parameters.

This methodology is totally new to the literature. In Chapter 3, we state that

the semi-parametric mixed-effects linear model, on which we base our multivari-

ate model, enters in the research line about the identification of subpopulations

of the Growth Mixture Models and of Latent Class Mixture Models, but with

the novelty and the advantage that, contrarily to these existing methods, it

does not need to fix a priori the number of latent subpopulations to be identi-

fied. Numerous extensions and applications of GMM and LCMM has been done

(Lin et al., 2000; Muthén and Asparouhov, 2015), but none of them include

the modeling of a multivariate answer variable, where the latent subpopulations

structure of groups (higher level of hierarchy) are allowed to differ across the

responses, i.e. are response-specific. This means that our method represents the

unique extension to the multivariate case of a method that is already innovative

by itself.

Our case study consists in the application of the multivariate semi-parametric

two-level linear model to the INVALSI data, considering students as first level

and classes as second one. The model that we propose aims at identifying a

latent clustering structure of classes where, within each subpopulation, the effect

of the classes on their student achievement trends across years are similar. The

model estimates a bivariate effect for each class, i.e. the effect of the class on
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mathematics student achievement trends and the one on the reading ones. The

aim is to identify how many different trends exist in student performances across

classes, for both mathematics and reading, i.e. to identify how many and which

are the mass points of the distribution of random effects (class effects) for both

the first and the second response. Moreover, by looking at the joint distribution

of the random effects, we are able to investigate the correlation between the class

effects on reading and mathematics.

The presence of subpopulations among Italian classes, related to each re-

sponse variable, is the consequence of student performance trends that differ

across classes. These differences might be due to different class body compo-

sitions, peers or class climates. Moreover, the fact that the subpopulations of

classes differ between reading and mathematics might be due to something that

is not class specific, but that is school subject specific, like different teacher

practices. Since the year 2012/2013, INVALSI submits questionnaires to teach-

ers about their personal information, their education, their teaching practices

and the environment of the class and school in which they work, creating an in-

formative and new dataset that, until now and in this context, has been poorly

explored. In this perspective, in order to investigate whether the different stu-

dent achievement trends across classes are related to these teacher characteris-

tics, in a second stage of the analysis, we look for associations between class and

teacher level characteristics and the identified subpopulations.

The work presented in this chapter is innovative for two aspects. First, it

proposes a novel statistical method to perform in-built, unsupervised cluster-

ing of the higher level of grouping of a multivariate multilevel model, without

knowing a priori the number of subpopulations. Second, the case study that we

propose, that consists in identifying subpopulations of Italian classes standing

on their effects on INVALSI student achievements, is able to face an interesting

research question, never addressed before.

The chapter is organized as follows: in Section 4.1 we present the multivariate

semi-parametric two-level linear model and the EM algorithm to estimate its

parameters (MSPEM algorithm) and we show a simulation study; in Section 4.2

we present the INVALSI 2016/2017 dataset, we apply the MSPEM algorithm

to it, showing the results, and, in a second step, we characterize the identified

subpopulations by means of class and teacher levels characteristics; in Section

4.3 we draw our conclusions.

4.1 Model, methods and simulation study

In this section, we present the multivariate semi-parametric mixed-effects linear

model and the EM algorithm for the estimation of its parameters. For the sake

of simplicity, we consider the case of a bivariate semi-parametric mixed-effects
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linear model, i.e. the case of a response variable in R2, but the generalization

to the case of a response variable in Rp, for p > 2, is straightforward.

4.1.1 Bivariate semi-parametric mixed-effects model

Consider a bivariate two-level linear model, where each bivariate observation j,

for j = 1, . . . , ni, is nested within a group i, for i = 1, . . . , N . The model takes

the following form:

Yi =

(
y1,i

y2,i

)
=

(
β1

β2

)
Xi +

(
b1,i

b2,i

)
Zi + εi i = 1, . . . , N

εi =

(
ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

(4.1)

where i is the group index, N is the total number of groups, ni is the number of

bivariate observations within the i-th group and J =
∑N

i=1 ni is the total number

of bivariate observations1. The components of model (4.1) are the following:

• Yi =

(
y1,1i, . . . , y1,nii

y2,1i, . . . , y2,nii

)
is the 2×ni-dimensional matrix of response variable

within the i-th group2,

• Xi is the (p+ 1)× ni-dimensional matrix of covariates of fixed effects,

• β =

(
β1

β2

)
is the 2× (p+ 1)-dimensional matrix of coefficients of X,

• Zi is the (r + 1)× ni-dimensional matrix of covariates of random effects,

• bi =

(
b1,i

b2,i

)
is the 2× (r + 1)-dimensional matrix of coefficients of Zi,

• εi =

(
ε1,i
ε2,i

)
is the 2 × ni-dimensional matrix of errors and Σ is its vari-

ance/covariance matrix.

Fixed effects are identified by parameters associated to the entire population,

while random ones are identified by group-specific parameters. In the parametric

framework of bivariate linear mixed-effects models, the coefficients of random

effects are assumed to be distributed according to a Normal distribution with

mean vector equal to 0 and a variance/covariance matrix that is estimated,

1In subscript of each variable, we indicate by the number before the coma whether the
variable is referred to the first or the second response variable (for example, y1,ij and y2,ij are
the j-th first and second response variables within group i, respectively).

2We consider the case in which the number of observations of the two response variables is
the same within each group, but is allowed to be different across the groups.
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together with the other parameters of the model, through methods based on the

maximization of the likelihood or the restricted likelihood functions (Pinheiro

and Bates, 2000). This parametric distribution implies that, for each group i, the

model estimates the coefficients bi = (bi1, . . . , bi(r+1)) for the (r + 1) covariates

of the random effects, meaning that the covariates of random effects are allowed

to have N different associations to the response variables across the N groups.

Following the idea presented in the previous chapter, we relax the paramet-

ric assumptions about the coefficients of the random effects and we assume the

bivariate coefficients bi to follow a bivariate discrete distribution P ∗, assuming

M×K mass points (c11, . . . , cMK), where each cmk is the 2×(r+1)-dimensional

matrix of coefficients of random effects for the bivariate mass point related to the

index (m, k), for each m = 1, . . . ,M and k = 1, . . . ,K, where both M and K are

smaller than N. The total number of mass points, that is M ×K, is unknown a

priori and it is estimated together with the other parameters of the model. This

modeling allows the identification of a bivariate clustering distribution among

the N groups, where each group i is associated to a subpopulation, standing

on the linear relationships between the two response variables and their covari-

ates. In other words, the model identifies a bivariate latent structure among the

groups, that also reveals the dependence among the two response variables. Un-

der these assumptions, the semi-parametric bivariate mixed-effects model takes

the following form3:

i = 1, . . . , N

Yi =

(
y1,i

y2,i

)
=

(
β1

β2

)
Xi +

(
c1,m

c2,k

)
Zi + εi m = 1, . . . ,M (4.2)

k = 1, . . . ,K

εi =

(
ε1,i
ε2,i

)
∼ N2(0,Σ) ind.

Without loss of generality, we consider the case of a semi-parametric bivariate

two-level linear model, with one random intercept, one random covariate and

one fixed covariate4. Model (4.2) reduces to:

3Also for the parameters, we indicate by c1,∗ and c2,∗ the coefficients related to the first
and second response variables, respectively.

4This choice is driven by the application in the case study shown in Section 4.2.
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i = 1, . . . , N

Yi =

(
y1,i

y2,i

)
=

(
c1,1m
c2,1k

)
1 +

(
β1

β2

)
xi +

(
c1,2m
c2,2k

)
zi + εi m = 1, . . . ,M

k = 1, . . . ,K

εi =

(
ε1,i
ε2,i

)
∼ N2(0,Σ) ind. (4.3)

where 1 is the ni-dimensional vector of 1, M is the total number of mass points

for the first response and K is the total number of mass points for the sec-

ond response and both of them are not known a priori. Coefficients cmk, for

m = 1, . . . ,M and k = 1, . . . ,K are distributed according to a discrete probabil-

ity measure P ∗ that belongs to the class of all probability measures on R4. P ∗

can then be interpreted as the mixing distribution that generates the density of

the stochastic model in (4.3). The ML estimator P̂ ∗ of P ∗ can be obtained fol-

lowing the theory of mixture likelihoods in Lindsay et al. (1983a,b), as explained

in the previous chapter. The ML estimator of the random effects distribution can

be expressed as a set of points (c11, . . . , cMK) and a set of wights (w11, . . . , wMK),

where
∑M

m=1

∑K
k=1wmk = 1 and wmk ≥ 0, for m = 1, . . . ,M and k = 1, . . . ,K.

Each group i, for i = 1, . . . , N , is assigned to a subpopulation (m, k), stand-

ing on the fact that the first response belongs to subpopulation m and the

second one to subpopulation k. Indeed, the marginal distribution given by

(c1,1, . . . , c1,M) and (w1,1, . . . , w1,M) represents the first response-specific latent

structure among groups, while the marginal distribution given by (c2,1, . . . , c2,K)

and (w2,1, . . . , w2,K) represents the second response-specific one. The estima-

tion of the parameters β, (c11, . . . , cMK), (w11, . . . , wMK) and Σ is performed

through the maximization of the likelihood function , mixture by the discrete

distribution of random effects,

L(β, cmk,Σ|y) =
M∑
m=1

K∑
k=1

wmk√
|det(2πΣ)|J

×

× exp

{
N∑
i=1

ni∑
j=1

−1

2

(
y1,ij − c1,1m − βx1,ij − c1,2mz1,ij
y2,ij − c2,1k − βx2,ij − c2,2kz2,ij

)T
(4.4)

Σ−1
(
y1,ij − c1,1m − βx1,ij − c1,2mz1,ij
y2,ij − c2,1k − βx2,ij − c2,2kz2,ij

)}

with respect to β, the distribution of the coefficients of random effects (cmk, wmk),

for m = 1, . . . ,M and k = 1, . . . ,K, and Σ, respectively.
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4.1.2 The MSPEM algorithm

The EM algorithm that we propose to estimate the parameters of the model in

(4.3) is the generalization for the bivariate case of the SPEM algorithm, pre-

sented in the previous chapter. It alternates two steps: the expectation step (E

step) in which we compute the conditional expectation of the likelihood function

with respect to the random effects, given the observations and the parameters

computed in the previous iteration; and the maximization step (M step) in

which we maximize the conditional expectation of the likelihood function. At

each iteration, the EM algorithm updates the parameters in order to increase

the likelihood in Eq. (4.4) and it continues until the convergence. The update

of the parameters is the following:

w
(up)
mk =

1

N

N∑
i=1

Wimk for m = 1, . . . ,M, k = 1, . . . ,K (4.5)

and

(β(up), c
(up)
mk ,Σ

(up)) =

arg max
β,cmk,Σ

M∑
m=1

K∑
k=1

N∑
i=1

Wimk ln p(yi|β,Σ, cmk)
(4.6)

where

Wimk =
wmk p(yi|β,Σ, cmk)∑M

m=1

∑K
k=1wmk p(yi|β,Σ, cmk)

(4.7)

and

p(yi|β,Σ, cmk) =
1√

|det(2πΣ)|ni

×

× exp

{
ni∑
j=1

−1

2

(
y1,ij − c1,1m − βx1,ij − c1,2mz1,ij
y2,ij − c2,1k − βx2,ij − c2,2kz2,ij

)T
(4.8)

Σ−1
(
y1,ij − c1,1m − βx1,ij − c1,2mz1,ij
y2,ij − c2,1k − βx2,ij − c2,2kz2,ij

)}
.

The coefficient Wimk represents the probability of bi being equal to cmk con-

ditionally to observations yi and given the fixed coefficient β and the vari-

ance/covariance matrix Σ. Indeed, since wmk = p(bi = cmk), then
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Wimk =
wmk p(yi|β,Σ, cmk)∑M

m=1

∑K
k=1wmk p(yi|β,Σ, cmk)

=
p(bi = cmk) p(yi|β,Σ, cmk)

p(yi|β,Σ)
=

=
p(yi,bi = cmk|β,Σ)

p(yi|β,Σ)
= p(bi = cmk|yi,β,Σ). (4.9)

Therefore, in order to compute the point cmk for each group i, for i = 1, . . . , N ,

we maximize the conditional probability of bi given the observations yi, the

coefficient β and the error variance/covariance matrix Σ. So that, the estimation

of the coefficients bi of the random effects for each group i is obtained maximizing

Wimk over m and k, that is

b̂i = cm̃k where m̃k = arg max
m,k

Wimk i = 1, . . . , N. (4.10)

The maximization in Eq. (4.6) involves two steps and it is done iteratively.

In the first step, we compute the arg-max with respect to the support points

cmk, keeping β and Σ fixed to the last computed values. In this way, we can

maximize the expected log-likelihood with respect to all support points cmk
separately, that means

c
(up)
mk = arg max

c

N∑
i=1

Wimk ln p(yi|β,Σ, cmk) m = 1, . . . ,M

k = 1, . . . ,K. (4.11)

Since we are considering the linear case, the maximization step is done in closed-

form5. In the second step, we fix the support points of the random effects

distribution computed in the previous step and we compute the arg-max in Eq.

(4.6) with respect to β and Σ. Again, this step is done in closed-form.

The initialization of the support points of the discrete distribution P ∗ and

the criteria for the convergence of the EM algorithm are the direct extension of

the ones chosen in the SPEM algorithm for the bivariate case. In particular,

the algorithm starts considering N support points for the coefficients of random

effects and a starting estimate for the coefficient of the fixed effects, for both the

response variables. These parameters are chosen in the following way:

• random effects: for each response variable, the starting N support points

are obtained fitting a simple linear regression within each group and es-

timating the couple of parameters (both the intercept and the slope) for

each one of the N groups. The weights are uniformly distributed on these

N ×N support points;

5Closed-form calculations of model parameters can be found in the previous chapter.
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• fixed effects: the starting values of β and Σ are estimated by fitting a

unique bivariate linear regression on the entire population (i.e. without

considering the nesting of the observations within groups).

Nonetheless, if the number of starting support points N is extremely large, the

algorithm is relatively slow and using N starting support points becomes not

strictly necessary. In this case, the initialization of the support points of the

random effects distribution is done in the following way:

• we choose a number N* < N of support points, that is the same for both

the two response variables;

• for each response variable, we extract N* points from a uniform distribution

with support on the entire range of possible values for each parameter, that

is estimated by fitting N distinct linear regressions for each one of the N

groups, as before, and identifying the minimum and the maximum values;

• we uniformly distribute the weights on these N∗ ×N∗ support points.

The M ×K matrix of weights, that is composed by the elements wmk previously

described, represents the joint distribution of groups across the subpopulations

and, by summing over rows and columns respectively, it represents the marginal

distribution of the groups across the subpopulations, for each single response

variable.

During the iterations, the EM algorithm performs the support reduction of the

discrete distribution of random effects, in order to identify M ×K mass points

(starting from N ×N mass points), where both M and K are smaller than N .

The support reduction is made standing on two criteria. The former is that we

fix a threshold value D and if two mass points are closer, in terms of euclidean

distance, than D, they collapse to a unique point. This procedure is separately

applied to the subpopulations related to the first and second response variable

respectively. In particular, considering, for example, the case of the first response

variable, if two mass points c1,h and c1,g, for h, g = 1, . . . ,M , are closer than D,

they collapse to a unique point c1,(hg), where c1,(hg) = c1,h+c1,g

2
. Consequently,

Mnew = M old − 1, the new marginal weight is obtained as w1,(hg) = w1,h + w1,g

and the joint weights w(hg)k = whk + wgk, for k = 1, . . . ,K. The same criterion

applies to the subpopulations related to the second response variable. The first

two masses collapsing to a unique point are the two masses with the minimum

euclidean distance, among the couples of masses with euclidean distance less

than D, and so on so forth. Note that the threshold parameter D can be settled

equal to different values D1 and D2 when considering the first and the second

response variable respectively. Anyway, even if D1 is equal to D2, the procedure

might lead to different number of mass points M and K. The latter is that,

starting from a given iteration up to the end, we fix a threshold value w̃ and
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we remove mass points with marginal weights w1,m ≤ w̃, for m = 1, . . . ,M and

w2,k ≤ w̃, for k = 1, . . . ,K or that are not associated to any subpopulation.

Again, w̃ can be settled equal to different values w̃1 and w̃2when considering

the first and the second response variable respectively. D and w̃ are two tuning

parameters that tune the estimates of the subpopulations. Further insights on

the choice of these parameters are discussed in the previous chapter.

The sketch of the MSPEM algorithm is shown in Algorithm 2 in Appendix.

At each iteration a, the algorithm, given the estimated number of mass points,

estimates all the parameters in Eq. (4.3) in an iterative way, updating the

coefficients related to both fixed and random effects, until convergence or until

it reaches the maximum number of sub-iterations fixed a priori for this stage

(itmax). At the beginning of the iterative process, the algorithm performs

the dimensional reduction of the mass points standing only on the distance D

between the mass points. When the estimates are stable, meaning that all the

differences between the estimates of the parameters at two consecutive iterations

are smaller than fixed tolerance values, or after a given number of iterations it1,

the algorithm continues performing the dimensional reduction of the support

points standing also on the criterion of the minimum weight w̃ . The final

convergence is reached when all the differences between the estimates of the

parameters at two consecutive iterations are smaller than fixed tolerance values,

or after a given number of iterations it. In particular, we fix the tolerance

values for the estimates of both the parameters of fixed and random effects to

tollF and tollR respectively, which depend on the scale of the parameters.

The usage of the maximum number of iterations it, it1 and itmax is merely

to avoid an infinite loop and their values depend on the complexity of the data

and on the consequent convergence rate.

4.1.3 Simulation study

In this section, we test the performance of the MSPEM algorithm simulating

four situations in which the two response variables are related to each other in

four different ways, facing both structural correlation/uncorrelation between the

subpopulations distribution and correlation/uncorrelation between the errors of

the linear model.

We generate 1, 000 bivariate observations that are nested within 100 groups in

the following way:
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i = 1, . . . , 100(
y1,i

y2,i

)
=

(
c1,1m
c2,1k

)
+

(
β1

β2

)
xi +

(
c1,2m
c2,2k

)
zi + εi m = 1, . . . ,M

k = 1, . . . ,K

εi =

(
ε1,i
ε2,i

)
∼ N2(0,Σ) ind. (4.12)

in which we set M = 3 and K = 2. Without loss of generality, we set ni = 100,

for i = 1, . . . , 100, and we make the following choice of parameters6 cmk, for

m = 1, . . . , 3 and k = {1, 2}:

First response parameters Second response parameters

c1,11 = 5 c2,11 = 3
i = 1, . . . , 33 c1,21 = 10 c2,21 = 1

β1 = 3 β2 = 2

c1,12 = 2 c2,11 = 3
i = 34, . . . , 66 c1,22 = 5 c2,21 = 1

β1 = 3 β2 = 2

c1,13 = 0 c2,12 = 0
i = 67, . . . , 100 c1,23 = −2 c2,22 = −3

β1 = 3 β2 = 2

Table 4.1: Coefficients used to simulate data in Eq. (4.12). The intercepts and the
coefficients of z differ across subpopulations, while the coefficients of x (β) are fixed.
Colors highlight the different subpopulations related to each response variable. We
impose a structure with three subpopulations in the first response (M=3) and two
subpopulations in the second one (K=2).

Besides the coefficients, we sample the observations of the variables x, z and ε

in the following way7:

zi ∼ N (0.10, 0.42) i = 1, . . . , 33

zi ∼ N (0.12, 0.42) i = 34, . . . , 66

zi ∼ N (0.08, 0.42) i = 67, . . . , 100

(4.13)

6Note that this choice of parameters is finalized to the simulation study and it is driven only
from the aim of a simple and clear visualization of the results. Any other choice of parameters
is possible.

7Again, different choices of values for variables x and z are possible and they are also allowed
to be different between first and second response variables (i.e. x1,i 6= x2,i).
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xi ∼ N (0.30, 0.42) i = 1, . . . , 33

xi ∼ N (0.28, 0.42) i = 34, . . . , 66

xi ∼ N (0.27, 0.42) i = 67, . . . , 100

(4.14)

and

εi ∼ N2

(
0,Σ =

(
1 0

0 1

))
i = 1, . . . , 100. (4.15)

Since we choose three different sets of parameters (c,β) to generate the data

of the first response and two different sets to generate the ones of the second

response, the data related to the first response are clustered within three sub-

populations (M=3), while the ones related to the second one are clustered within

two subpopulations (K=2). Figure 4.1 shows the data simulated with the set of

parameters in Table 4.1.

Figure 4.1: Data simulated with the set of parameters shown in Table 4.1 and values of
x, z and ε shown in Eq. (4.13), (4.14) and (4.15) respectively. Figure on the left panel
represents the first response and figure on the right panel represents the second one. It
is possible to identify the presence of three and two subpopulations in the first and in
the second response respectively. Colors are automatically assigned by the software R.

The eventual correlation among the two response variables depends on the sub-

populations distribution that we use to generate them (i.e. on the choice of cmk)

and on the correlation/uncorrelation between the errors. In this perspective,

the parameters distribution shown in Table 4.1 imposes a structural correlation

among the subpopulations of the two response variables, since the bivariate dis-

tribution of cmk follows a precise structure among the groups. Regarding the

distribution of the errors, the covariance of the errors ε1 and ε2 in Eq. (4.15)

is set to zero, implying the absence of any further correlation among the two

responses.
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We apply the MSPEM algorithm 100 times to the simulated dataset, choosing

D1 = D2 = 1, w̃1 = w̃2 = 0.01 and tollR = tollF = 10−2. On average, the

algorithm converges in 6 iterations and it always identifies the correct number of

subpopulations for both the two response variables, whose estimated parameters,

averaged on the 100 runs of the simulation, are shown in Table 4.2.

First response parameters

ĉ1,1m ĉ1,2m β̂1 ŵ1

m=1 4.997 10.014
2.999

0.33
m=2 2.011 4.922 0.33
m=3 0.010 −2.023 0.34

Second response parameters

ĉ2,1k ĉ2,2k β̂2 ŵ2

k=1 3.010 1.013
1.994

0.66
k=2 −0.007 −2.983 0.34

Table 4.2: Coefficients of Eq. (4.12) estimated by the MSPEM algorithm, averaged on
the 100 runs of the simulation. Colors represent the different subpopulations identified
by the algorithm. The algorithm identifies three subpopulations (M=3) for the first
response and two subpopulations for the second one (K=2).

Figure 4.2 shows the data with the regression planes identified by the algorithm,

for both the two response variables.

Figure 4.2: Simulated data with the regression planes identified by the MSPEM algo-
rithm in one of the 100 runs. Colors represent the different subpopulations: three for
the first response (figure on the left panel) and two for the second response (figure on
the right panel). Coefficients of the regression planes are shown in Table 4.2.
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The algorithm assigns the correct subpopulation to both the response variables

of each group i, for i = 1, . . . , 100, that means that assigns to each group i, for

i = 1, . . . , 100, the correct subpopulation (m, k). The estimates of the (M ×K)-

dimensional matrix of weights W and of Σ, averaged on the 100 runs, are the

following:

Ŵ =

0.33 0.00

0.33 0.00

0.00 0.34

 Σ̂ =

(
1.016 0.001

0.001 0.969

)
. (4.16)

By looking at the matrix Ŵ , we can identify the distribution of the groups

on the support, composed by the 6 mass points (of which 3 have zero weight).

Since we impose a structural correlation between the subpopulations distribution

of the two response variables (see the coefficients in Table 4.1), the estimated

distribution of the weights wmk is not uniform on the M ×K masses, but it is

possible to recognize the pattern that we used to generate the data. Regarding

the variance/covariance matrix Σ̂, the covariance is correctly estimated as null

and the two estimated variances are also close to 1.

The case just shown represents only the particular situation in which the

subpopulations distribution is not uniform on the mass points and the errors are

not correlated, but it can also be the case that the two response variables do not

present correlated subpopulations or even present correlated errors ε1 and ε2.

In order to test the performance of the MSPEM algorithm in these other cases,

we modify the values of cmk and ε in order to simulate four different situations:

• Case 1: structural correlation among subpopulations of the two response

variables and independence between the errors ε1 and ε2 (case seen above);

• Case 2: structural correlation among subpopulations of the two response

variables and dependence between the errors ε1 and ε2;

• Case 3 : not structural correlation among subpopulations of the two re-

sponse variables and independence between the errors ε1 and ε2;

• Case 4: not structural correlation among subpopulations of the two re-

sponse variables and dependence between the errors ε1 and ε2.

In order to not impose a structural correlation among the subpopulations of

the two response variables (Case 3 and 4), i.e. in order to have a subpopulations

distribution uniform on the mass points, we randomly shuffle the order of the

parameters shown in Table 4.1 across the 100 groups, so that there are no definite

patterns on the parameters cmk between the two responses. In order to impose

the dependence among the errors ε1 and ε2 (Case 2 and 4), we set the covariance
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of the variance/covariance matrix Σ equal to 0.5. In particular, we set Σ =(
0.5 0.5

0.5 0.5

)
.

We apply the MSPEM algorithm 100 times to these four different types of

simulated dataset, with the same choice of parameters D1 = D2 = 1, tollR

= tollF = 10−2. The algorithm is able to identify the correct subpopulations

distribution in all the four situations. The visualizations of the results in all

the four cases are similar to the one shown in Figure 4.2 and the estimates of

the parameters cm,k, for m = 1, . . . , 3 and k = 1, 2 and β in the four cases are

in line with the ones shown in Table 4.2. What changes across the four cases

are the estimates of the weights matrices W and of Σ, that are shown in Table

4.3. The weights matrix W that we use to generate the data in the case of the

not structural correlation among subpopulations are W =

0.25 0.08

0.21 0.12

0.20 0.14

 and

W =

0.23 0.10

0.21 0.12

0.22 0.12

 for ε1 ⊥6⊥ ε2 and ε1 ⊥⊥ ε2 respectively.

Structural correlation Not structural correlation
among subpopulations among subpopulations

ε1 ⊥6⊥ ε2 Ŵ =

0.33 0.00
0.33 0.00
0.00 0.34

 Ŵ =

0.25 0.08
0.21 0.12
0.20 0.14


Σ̂ =

(
0.506 0.506
0.506 0.507

)
Σ̂ =

(
0.499 0.499
0.499 0.499

)

ε1 ⊥⊥ ε2 Ŵ =

0.33 0.00
0.33 0.00
0.00 0.34

 Ŵ =

0.23 0.10
0.22 0.12
0.21 0.12


Σ̂ =

(
1.016 0.001
0.001 0.969

)
Σ̂ =

(
0.993 0.009
0.009 1.023

)
Table 4.3: Estimates of the weights matrix W and of the variance/covariance matrix Σ
of model in Eq. (4.12) for the four different cases of values of cmk and ε.

From Table 4.2, we see that the model is identifiable, it is able to distinguish

the correlation among the two response variables that is given by a structural

correlation among subpopulations distribution (showed in W ) from the correla-

tion imposed by dependent errors (showed in Σ). In cases 3 and 4 (last column

in Table 4.2), where we do not impose a structural correlation among subpop-
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ulations, the distribution of the weights , less than small variations, uniformly

distributed on the mass points.is

The only parameter that significantly influences the results of the MSPEM

algorithm is the threshold distance D. In order to give an idea of the sensitivity

of the algorithm to the values of D, in the cases seen above, the algorithm gives

the same result for each value of D1 and D2 between 0.5 and 2. For values of D1

and D2 less than 0.5, the MSPEM algorithm is too sensitive to the variability

among the data and identifies more that 6 mass points, while for values of D1 and

D2 bigger than 2, the algorithm does not entirely catch the variability among

the data and it identifies less than 6 mass points.

4.2 Case study: application of the MSPEM algo-
rithm to INVALSI data

In this section, we present the INVALSI 2016/2017 dataset and we apply the

MSPEM algorithm to it in order to identify subpopulations of classes, standing

on their different effects on mathematics and reading student achievements.

4.2.1 The INVALSI 2016/2017 dataset

During the academic year 2016/2017, INVALSI tested Italian students at grades

II and V of primary school (grade 2 and 5 respectively), at grade III of junior

secondary school (grade 8) and at grade II of upper secondary school (grade 10),

both in their skills in reading and mathematics. In this case study, we consider

students attending grade III of junior secondary school in year 2016/2017. About

these students, besides their results of the INVALSI tests in reading and math-

ematics at grade 8 (read8 and math8 respectively), we consider other three

variables: the socio-economic index (ESCS) that is an index built by INVALSI

by considering parents’ occupation and educational titles and the possession of

certain goods at home (for instance, computer or the number of books); the

INVALSI test scores in reading and mathematics of these students three years

before, i.e. at the last year of primary school (read5 and math5 respectively).

The INVALSI test score is a continuous variable that takes values between 0 and

100, while the ESCS is built as a continuous variable with mean equal to 0 and

variance equal to 1. Table 4.4 reports the five student level variables at student

level used in the analysis with their descriptive statistics.

In addition to the information at student level, INVALSI collects information

about the class and the teachers by means of a questionnaire. This questionnaire

collects information about the class body composition and the approach of the

teachers to INVALSI tests, personal information of teachers (age, education,

gender), teaching practices and available materials in the class. Among the
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Variable Mean sd Median IQR

math8 53.2001 20.036 52.489 29.322
read8 64.491 17.278 66.392 23.001
math5 68.475 16.641 70.000 26.001
read5 66.608 16.736 68.965 24.138
ESCS 0.1473 0.991 0.069 1.323

Table 4.4: Student level variables of the INVALSI database used in the analysis with
their explanation.

entire set of variables, we select for the analysis the ones that are reported in

Tables 4.5 and 4.6.
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Variable Type Explanation

Teachers general questions (for both maths and reading teachers)

updated techniques y/n the teacher applies new techniques
learned at refreshment courses

team work or research y/n the teacher organizes team work or
research in groups for students

extra activities y/n the teacher organizes extra scholastic
activities for student reinforcement

computer/internet y/n the teacher uses media support in class
refresher courses num number of refreshment courses the teacher

had in the last two years
contacts among teachers y/n teacher exchanges views with other teachers

Teacher’s personal information (for both maths and reading teachers)

num years of teaching here 1 : 4 since how many years the teacher teaches
in the actual school. 1: one year or less;
2: 2-3 years; 3: 4-5 years; 4: > than 5 years.

permanent job y/n the teacher has a permanent contract
gender y/n y= male; n = female.
age num age of the teacher
education 1 : 3 higher level of education of the teacher

1: less than degree; 2: degree; 3: phd/master

Questions about school principals (for both maths and reading teachers)

princ refreshment courses y/n the school principal encourages teachers to
follow refreshment courses

princ lineup teach y/n the school principal organizes lineup
meetings for teachers

princ evaluate y/n the school principal evaluates the teachers
in their job

Only for mathematics teachers

num mathematics hours num number of hours of maths lesson per week
main teaching method cat ‘a’: teach definitions and theorems so that

students can apply to new problems
‘b’: favor the maths language and the capacity
of using formulas written in symbols
‘c’: favor meanings of maths symbols
‘d’: favor the capacity of build concepts,
models and theories
‘e’: follow only the book

oral individ exam y/n the teacher tests students by means
of oral individual exams

oral group exam y/n the teacher tests students by means
of oral exams for groups of students

Table 4.5: Teacher and class level variables of the INVALSI database used in the analysis
with their explanation.
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Variable Type Explanation

teacher written exam y/n the teacher tests students by means
of written exam made by him/herself

book written exam y/n the teacher tests students by means
of written exam taken by the book

calculations alone y/n the teacher teaches students to make
calculations without the support of the
calculator

table diagram graph y/n the teacher teaches students to interpret
tables, diagrams and graphs

maths memory y/n the teacher asks students to memorize
maths rules and theorems

graphs for problems y/n the teacher teaches students to analyze
graphs to solve maths problems

Only for reading teachers

num reading hours num number of hours of reading lesson per week
programmed oral exam y/n the teacher tests students by means

of programmed oral exam
not programmed oral exam y/n the teacher tests students by means

of not programmed oral exam
grouped oral exam y/n the teacher tests students by means

of oral exam for groups of students
teacher close test y/n the teacher tests students by means of written

close questions tests made by him/herself
teacher open test y/n the teacher tests students by means of written

open questions tests made by him/herself
teacher book test y/n the teacher tests students by means

of written tests taken by the book
summarize text y/n the teacher trains students to

summarize texts
write reflections y/n the teacher trains students to write

texts about their reflections and thinking
read newspaper y/n the teacher trains students to

read newspapers and journals

Class information and body composition

area geo cat Northern/Central/Southern Italy
Nstud num number of students
% stud antic num percentage of early-enrolled students
% stud postic num percentage of late-enrolled students
% stud S1 num percentage of first generation immigrants
% stud S2 num percentage of second generation immigrants

Table 4.6: Teacher and class level variables of the INVALSI database used in the analysis
with their descriptive statistics.

We include in the analysis only classes that have at least ten students. The

dataset of interest regards 18, 242 students nested within 1, 082 classes.
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4.2.2 MSPEM algorithm applied to INVALSI data

The semi-parametric two-level linear model applied to INVALSI data, consider-

ing students (level 1) nested within classes (level 2), takes the following form:

i = 1, . . . , N

Yi =

(
c1,1m
c2,1k

)
1 +

(
β1

β2

)
xi +

(
c1,2m
c2,2k

)
zi + εi m = 1, . . . ,M

k = 1, . . . ,K

εi =

(
ε1,i
ε2,i

)
∼ N2(0,Σ) ind. (4.17)

where i is the class index and N is the total number of classes. Yi =

(
math8i
read8i

)
is the bivariate vector of the INVALSI test scores of students attending grade

8, in mathematics and reading, x is the ESCS and z is the INVALSI test score

of the same students three years before (at grade 5), that differs across the

two response variables, being math5 for the first response variable (math8) and

read5 for the second one (read8). In particular, we standardize the variables

math8, read8, math5, read5 and ESCS, so that they all have mean equal to

0 and variance equal to 1. Our interest is to see how the association between

the INVALSI test score at the end of the primary school/beginning of the junior

secondary school and the INVALSI test score at the end of the junior secondary

school does change across students attending different classes, adjusting for the

socio-economic index, both in reading and mathematics. The period between

grade 5 and grade 8 is the entire period of the junior secondary school and this

association represents a kind of class effect, seen as the impact that the class has

on the evolution of its student achievements. With this modeling, we identify

subpopulations of classes within which class impacts are similar and across which

they are different. The bivariate nature of the modeling allows to do that both

for reading and mathematics achievements, considering also the joint effect of

the class on the two school subjects. We apply the MSPEM algorithm with

the following choice of parameters: D1 = D2 = 0.5, w̃1 = w̃2 = 0.01, tollR

= tollF = 10−2, it=40, itmax=20, it1=20. The algorithm converges in 20

iterations and identifies M = 3 mass points for the random effects distribution

related to the first response (mathematics) and K = 4 mass points for the one

related to the second response (reading). Estimates of the identified parameters

are shown in Table 4.7.

In Table 4.7, ŵ1 and ŵ2 are the estimated weights related to the marginal distri-

butions of the two random effects; β̂1 and β̂2 are the coefficients of fixed effects

(variable ESCS) and therefore their estimates are stable across the subpopu-

lations; ĉ1,m, for m = 1, . . . , 3 and ĉ2,k, for k = 1, . . . , 4 are the estimates of
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First response variable

ĉ1,1 ĉ1,2 ŵ1 β̂1

m=1 −1.652 0.113 0.037
0.106m=2 0.251 0.628 0.675

m=3 −0.354 0.387 0.288

Second response variable

ĉ2,1 ĉ2,2 ŵ2 β̂2

k=1 0.233 0.572 0.712

0.095
k=2 −1.199 0.213 0.029
k=3 −0.270 0.405 0.239
k=4 −2.696 −0.099 0.020

Table 4.7: Estimates of the coefficients of Eq. (4.17) obtained by the MSPEM algorithm.

the coefficients of random effects. In order to visualize these results, Figure

4.3 reports the regression planes identified for both the two response variables,

projected on the 2-dimensional plane identified by the answer variable and the

random covariate.

By looking at the estimated parameters in Table 4.7 and the regression lines in

Figure 4.3, it is possible to make considerations about the identified subpopu-

lations of classes. Let start considering the results of mathematics (left panel

of Figure 4.3). The three subpopulations are well identified and they almost do

not cross, except for a small overlap between two subpopulations in correspon-

dence of small values of z. Subpopulation 1 (m = 1 in Table 4.7), that contains

3.7% of the classes, can be interpreted as the subpopulation of the worst set of

classes. Indeed, it is represented by a low intercept and a very low slope with

respect to the others. This means that students in these classes have on average

very low predicted score at grade 8, even if they had higher results at grade 5.

On the other side, subpopulation m = 2, that contains 67.5% of the classes,

represents the subpopulation of the best classes, since, for almost each value of

previous score z, students within this subpopulation have the highest predicted

value of y. Regarding the results of reading, the four identified subpopulations

are also very well distinct. The subpopulation of the worst classes corresponds

to subpopulation k = 4 (containing 2% of the classes), that is characterized by

a very low intercept and a slightly negative slope: students attending classes

that belong to this subpopulation have a low predicted value of INVALSI score,

regardless of the fact that they had high or low scores at grade 5. On the oppo-

site, subpopulation k = 1 (containing 71.2% of the classes) contains the set of

the best classes since for all values of previous score z between -3 and 2, i.e. for
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Figure 4.3: Regression planes projected on the 2-dimensional plane identified by the
answer variable and the random covariate, identified by the parameters of Eq. (4.17)
estimated by the MSPEM algorithm and whose parameters are shown in Table 4.7.
Panel on the left reports the results for the first response, while panel on the right
reports the results for the second one. The algorithm identifies M = 3 mass points for
the first response and K = 4 mass points for the second one. For a better visualization,
we do not represent all the observations but only the identified regression planes. Line
widths are proportional to the marginal weights w1 and w2.

almost the entire range of values of the random covariate, the predicted value of

y is higher that the ones of the other subpopulations of classes. Subpopulation

k = 3 (containing 23.9% of the classes) is the second one in terms of high values

of predicted score y, while subpopulation k = 2 (containing 2.9% of the classes)

have predicted values of y lower than the ones of subpopulations k = 1 and k = 3

but higher than the ones of subpopulation k = 4.

The interpretations of these subpopulations are also supported by the average

values of the standardizes variables across them, reported in Table 4.8. Regard-

ing mathematics, subpopulation 1 contains classes where the average score of

math5 is the highest (math51 = 0.344), but where the average score of math8

is the lowest (math81 = −1.683), confirming the negative effects of the classes

that belong to this subpopulation. Subpopulation 2, interpreted as the sub-

population containing classes with the best positive effect, is characterized by

the lowest average score of math5 (math52 = −0.052), but with the highest

average score of math8 (math82 = 0.223). This subpopulation is the one with

the highest average ESCS of students. Speaking about reading, subpopulation

1, interpreted as the one containing the best classes, is indeed characterized by

the lowest average value of read5 (read51 = −0.065) and the highest average

score of read8 (read81 = 0.207). Also here, this subpopulation is character-

ized by the highest average value of ESCS. On the other side, subpopulation

4, associated to a negative class effect, has the highest average value of read5
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(read54 = 0.391) and the lowest average score of read8 (read84 = −2.78).

First response variable

math8 math5 ESCS

m=1 −1.683 0.344 −0.360
m=2 0.223 −0.052 0.045
m=3 −0.374 0.026 −0.144

Second response variable

read8 read5 ESCS

k=1 0.207 −0.065 0.026
k=2 −1.166 0.271 −0.213
k=3 −0.289 0.056 −0.153
k=4 −2.78 0.391 −0.085

Table 4.8: Average values of the standardized variables used in the model within the
identified subpopulations, for mathematics and reading.

The M ×K matrix of the joint weights W and the variance/covariance matrix

Σ are estimated as follows:

Ŵ =

0.009 0.011 0.010 0.007

0.606 0.010 0.053 0.006

0.097 0.008 0.176 0.007

 Σ̂ =

(
0.479 0.175

0.175 0.448

)
. (4.18)

The covariance and the correlation among the errors ε1 and ε2 are 0.175 and

0.377, respectively. Considering the two marginal distributions of the class ef-

fects, we observe from Table 4.7 that, in the case of mathematics (first response

variable), classes are divided into three subpopulations, one containing more

than half of the total number of classes (67.5%), one a bit smaller containing the

28.8% of the classes and a very small one containing the 3.7% of the classes. The

distribution of the class effects in reading on the four subpopulations also sees a

very numerous subpopulation containing the 71.2% of the classes, followed by a

subpopulation containing about the 23.9% of the classes and by two very small

subpopulations containing the remaining 4.9% of the classes. By looking at the

matrix W of the joint weights, we see that the joint distribution of the class

effects on reading and mathematics is not uniform on the 12 mass points, even

if we adjust for the two marginal distributions, but it is mainly concentrated on

certain mass points. This result further highlights the utility and the advantage

of the bivariate modeling. The subpopulation (2, 1) contains the 60.6% of the

classes. This subpopulation is characterized by a coherent effect of the class in
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mathematics and reading since both subpopulation 2 for mathematics and sub-

population 1 for reading are interpreted as the best subpopulations, that are the

ones in which the predicted values of student achievements are very high. Being

this subpopulation the most numerous one and the one containing classes with

high positive effects, it can actually be interpreted as the reference subpopula-

tion. The algorithm identifies the deviations from this reference subpopulation

of groups of classes that perform poorly, considering both their effects in math-

ematics and reading. In particular, the reference subpopulation is followed, in

terms of frequency, by the subpopulation (3, 3), with the 17.6% of classes, where

the trend of student achievements between mathematics and reading is still sim-

ilar and the predicted scores at grade 8 are still high, but lower than the ones of

the reference subpopulation. Therefore, subpopulations (2, 1) and (3, 3) do not

present substantial differences, but, both of them are characterized by positive

effects of the classes in mathematics and reading. What deserves attention are

the subpopulations of classes that significantly differ from the reference subpop-

ulation in their effect, because they are characterized by negative class effects

on both maths and reading or by opposite effects on the two school subjects. In

this perspective, subpopulations (1, 2) and (1, 4), containing 1.3% of the classes,

are associated to classes that have both negative effects on mathematics and

reading. Regarding the subpopulations with incoherent effects, subpopulation

(1, 1) (with about 1% of the classes) contains classes with a very positive effects

in reading, but a very negative one in mathematics, while subpopulations (2, 2)

and (2, 4) (with 1.6% of the classes) contain those classes that have a very posi-

tive effects in mathematics, but a negative effect in reading. In particular, since

we are interested in identifying the behaviors that significantly differ in their

effects on student achievements from the reference subpopulation, we select 4

subpopulations that deserve attention:

• Sref = subpopulation (2,1) - the reference subpopulation. It contains

classes with positive impacts both in mathematics and reading.
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Figure 4.4: Regression planes projected on the 2-dimensional plane identified by the
answer variable and the random covariate, identified by the parameters of Eq. (4.17)
estimated by the MSPEM algorithm and whose parameters are shown in Table 4.7.
Colored lines identify the subpopulation (m = 2, k = 1).

• S2 = union of subpopulations (1,2) and (1,4). It contains classes with

negative impacts both in mathematics and reading.

Figure 4.5: Regression planes projected on the 2-dimensional plane identified by the
answer variable and the random covariate, identified by the parameters of Eq. (4.17)
estimated by the MSPEM algorithm and whose parameters are shown in Table 4.7.
Colored lines identify the subpopulations (m = 1, k = {2, 4}).

• S3 = union of subpopulations (2,2) and (2,4). It contains classes with a

positive impact in mathematics and a negative one in reading.
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Figure 4.6: Regression planes projected on the 2-dimensional plane identified by the
answer variable and the random covariate, identified by the parameters of Eq. (4.17)
estimated by the MSPEM algorithm and whose parameters are shown in Table 4.7.
Colored lines identify the subpopulations (m = 2, k = {2, 4}).

• S4 = subpopulation (1,1). It contains classes with a negative impact in

mathematics and a positive one in reading.

Figure 4.7: Regression planes projected on the 2-dimensional plane identified by the
answer variable and the random covariate, identified by the parameters of Eq. (4.17)
estimated by the MSPEM algorithm and whose parameters are shown in Table 4.7.
Colored lines identify the subpopulation (m = 1, k = 1).

The correlation among the class effects in mathematics and reading that

emerges in this analysis is, in some way, in contrast with the results obtained

in Masci et al. (2017a), where the class effects in the two school subjects result

to be not correlated. Nonetheless, while in this analysis we consider only one

level of grouping, i.e. students nested within classes, in Masci et al. (2017a),

we consider two levels of grouping, i.e. students nested within classes, in turn

nested within schools. Therefore, the school effects in the two schools subjects
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that in Masci et al. (2017a) are disentangled by the class ones and that result to

be correlated, in this case are not disentangled by the class ones, meaning that

part of the correlation that we identify here among the class effects migth be

due to the schools in which classes are nested.

4.2.3 Characterization of the subpopulations of classes

The presence of subpopulations of classes that differ in their effect on mathe-

matics and reading student achievements might be the consequence of different

class body-compositions, peers, teachers or teaching practices. These aspects

may influence the class effect in reading, mathematics or both of them. More-

over, having a disadvantaged situation in one school subject learning may favor

student learning in the other school subject and viceversa. Therefore, we are

interested in investigating whether there are some class and teacher level vari-

ables associated to the 4 heterogeneous identified subpopulations. To this end,

we apply a multinomial logit model by treating the class and teacher levels char-

acteristics as covariates and the belonging of classes to the 4 subpopulations

(Sref , S2, S3, S4) as outcome variable.

Considering Sref as the reference subpopulation, for each class i = 1, . . . , N

and each subpopulation l = {S2, S3, S4}, the model takes the following form:

ln
( P (Yi = l)

P (Yi = Sref )

)
= β0l +

Q∑
q=1

βqlXiq. (4.19)

Yi represents the cluster of belonging of class i, for i = 1, . . . , N , X is the N ×Q
matrix of class and teacher levels covariates shown in Tables 4.5 and 4.6, where

Q is the total number of covariates. Since the number of class and teacher levels

covariates is very high and we do not expect all of them to be significant, we

perform a lasso multinomial logit regression (Tibshirani, 1996; Lokhorst, 1999)

in order to select the significant covariates, addressing multicollinearity issues,

and to estimate their association with the response variable. By using cross-

validation, we select the penalization term λ of the lasso regression in order to

minimize the mean-squared error.

The results of the lasso multinomial logit model, with the best selected choice

of λ, are obtained by using the R package glmnet (Friedman et al., 2010) and

are shown in Table 4.98.

8We do not report in the Table all the covariates shown in Tables 4.5 and 4.6, but only the
ones whose coefficient is not shrinked to zero in the lasso regression.
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Variable name S2 S3 S4

Reading teacher general questions

extra activities 0.075
refresher courses 0.042

Maths teacher’s personal information

age 0.043

Reading teacher’s personal information

permanent job −0.150
gender 0.560

Questions about school principals (reading teachers)

princ evaluate −0.087

Only for mathematics teachers

main teaching method ‘e’ 2.392
main teaching method ‘d’ −0.098
teacher written exam −1.275

Only for reading teachers

num reading hours 0.064
teacher open test −0.053
read newspaper 0.308

Class information and body composition

area geo South 0.453

Table 4.9: Results of the lasso multinomial logit regression in Eq. (4.19). We report in
the table only the variables at class and teacher levels that result to be significant in
the model.

According to the results of the multinomial logit model shown in Table 4.9,

classes in which the reading teacher organizes extra scholastic activities for stu-

dent reinforcement (variable extra activities) and asks students to read

newspapers or journals in class (variable read newspaper), the mathematics

teacher follows the teaching method ‘e’ (i.e. follows only the book) and

does not choose by him/herself the questions of the written exams for students

(variable teacher written exam) and that are in Southern Italy (variable

area geo South) are more likely to belong to subpopulation S2 (negative class

effect both in reading and mathematics). Classes in which the reading teacher

121



CHAPTER 4. BSPEM FOR CLASSES CLASSIFICATION

does not have a permanent job in the school in which he/she teaches (variable

permanent job) and does not test students by means of open questions tests

are more likely to belong to subpopulation S3 (classes with a positive effect on

mathematics and a negative one in reading). Lastly, classes in which the reading

teacher is a male (variable gender) and follows refresher courses for improv-

ing his/her teaching skills (variable refresher courses), the school principal

does not evaluate the work of reading teachers, the mathematics teacher does

not follow the teaching method ’d’ (i.e. does not favor the capacity of

build concepts, models and theories) and is elder (variable age) and the num-

ber of hours of reading lessons per week is high are more likely to belong to

subpopulation S4 (classes with a positive effect in reading and a negative one in

mathematics). Besides the geographical area or the number of hours of lesson

per week, these results reflect the fact that personal and working characteristics

of teachers are in some way associated to student learning. For instance, being

a “not proactive” teacher, who simply follows the book and who does not make

personalized tests in mathematics, or who does not ask students to articulate

their answers by means of open questions tests in reading, has a negative effect

in both the school subjects. Also not having a permanent job, with the likely

consequence of not teaching to the same students for consequent years, has a

negative impact on student performances. On the contrary, attending refresher

courses for teachers improves the positive effect of a teacher on student skills.

4.3 Conclusions

In this chapter, we develop a multivariate, i.e. that allows a multivariate response

variable, semi-parametric mixed-effects model, together with an EM algorithm

for estimating its parameters (MSPEM algorithm), for hierarchical data and we

apply it to INVALSI data 2016/2017 for performing a classification of Italian

classes. The MSPEM algorithm is the extension to the multivariate case of the

SPEM algorithm presented in the previous chapter. We assume the random

coefficients of the mixed-effects model to follow a discrete distribution, where

the numbers of support points of the coefficients distribution related to the

multiple responses are unknown and are allowed to be different. In doing so,

the algorithm identifies a latent structure among the higher level of hierarchy.

Each group, i.e. observation at the higher level of hierarchy, is assigned to one of

the subpopulations identified, that characterizes the effect of the group related

to the multiple response variables. Considering the case of a bivariate response,

the novelty and the advantage of this modeling is twofold. First, the MSPEM

algorithm identifies two latent structures among the higher level of hierarchy,

one related to the first response and one related to the second one. As stated in

the previous chapter, identifying patterns within complex data where we do not
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have any prior about the number of existing latent subpopulations is already a

big advantage. Second, the joint modeling reveals two natures of the correlation

between the two response variables: one is the correlation among the distribution

of the subpopulations, that can be seen in the matrix of weights W , that tells us

how groups are distributed on the M ×K mass points; the second correlation is

among the unexplained variance of the two response variables, i.e. Σ12, that tells

us whether in the variance of the two response variables that we are unable to

explain with the model there is still correlation or not. In this perspective, the

algorithm, as shown in the simulation study, is completely identifiable, in the

sense that it is able to disentangle the correlation related to these two sources.

The MSPEM algorithm is unique in the literature and can be applied in many

classification problems, with the aim of individuating latent patterns within

data or also for confirming the presence of a theoretically known number of

subpopulations.

Applying the MSPEM algorithm to INVALSI data, considering students as

level 1 and classes as level 2, we jointly model the impact of the class on both

mathematics and reading student achievements. In this case, we interpret the

impact of a class as the linear relation between previous (grade 5) and current

(grade 8) INVALSI test scores of students within a class, adjusting for the stu-

dents socio-economic index. The algorithm reveals the presence of 4 different

trends in mathematics and 3 different ones in reading. The distribution of classes

on these 4×3 mass points is not uniform but it is possible to identify some more

common behaviors. In particular, we distinguish classes that have a positive

impacts on student achievements in both maths and reading, from the ones that

have a negative one, from the ones that have opposite impacts on the two school

subjects. Interested in characterizing the identified subpopulations of classes, we

apply, in a second step, a lasso multinomial logit model to explain the belonging

of classes to the subpopulations by means of teacher and class levels variables. It

emerges that, more than the classical information about class body composition

or peers, there are certain teacher practices or characteristics that are associated

to different class impacts. In particular, the attitude, the pro-activeness and the

preparation of teachers result to be effective on student learning.
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Appendix

Algorithm 2: EM algorithm for bivariate semi-parametric mixed-
effects models

input : Initial estimates for (c
(0)
11 , . . . , c

(0)
MK) and (w

(0)
11 , . . . , w

(0)
MK), with M = N and

K = N ;
Initial estimates for β(0) and Σ(0);
Tolerance parameters D1, D2, w̃1, w̃2, tollR, tollF, it, it1, itmax.

output: Final estimates of c
(a)
mk, w

(a)
mk, for m = 1, . . . ,M , k = 1, . . . ,K, β(a) and Σ(a).

a=1; conv1=0; conv2=0;
while (conv1 == 0 or conv2 == 0 & a < it) do

compute the distance matrices DIST1 and DIST2 for both the subpopulations
distribution (where, e.g.,for the first response variable,
DIST1st =

√
(c1,1s − c1,1t)2 + (c1,2s − c1,2t)2 is the euclidean distance between

each couple of mass points s, t ∀s, t = 1, . . . ,M, s 6= t);
if (DIST1st < D1 & DIST1st = min(DIST1) (∀s, t = 1, . . . ,M, s 6= t)) then

collapse marginal masses s and t to a unique mass point;

if (DIST2st < D2 & DIST2st = min(DIST2) (∀s, t = 1, . . . ,K, s 6= t)) then
collapse marginal masses s and t to a unique mass point;

compute the new distance matrices DIST1 and DIST2;
if conv1 == 1 or a ≥ it1 then

if w
(a)
1,m ≤ w̃1 (∀m = 1, . . . ,M) then
delete marginal mass point m;
reparameterize the weights;

if w
(a)
2,k ≤ w̃2 (∀k = 1, . . . ,K) then
delete marginal mass point k;
reparameterize the weights;

if no changes are done then
conv2 = 1;

given c
(a−1)
mk , w

(a−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K, β(a−1) and Σ(a−1),

compute the matrix W according to Eq. (4.9);

update the weights w
(a)
11 , . . . , w

(a)
MK according to Eq. (4.5);

β(a,0) = β(a−1);
Σ(a,0) = Σ(a−1);
c
(a,0)
mk = c

(a−1)
mk ;

w
(a,0)
mk = w

(a−1)
mk ;

keeping β(a,0) and Σ(k,0) fixed, update the M ×K support points c
(a,1)
11 , . . . , c

(a,1)
MK

according to Eq. (4.6);

keeping c
(a,1)
mk , w

(a,0)
mk for m = 1, . . . ,M and k = 1, . . . ,K fixed, update β(a,1) and

Σ(a,1) according to Eq. (4.6);
j=1;
while (|β(a,j−1) − β(a,j)| ≥ tollF or |Σ(a,j−1) − Σ(a,j)| ≥
tollF or |c(a,j−1)

mk − c
(a,j)
mk | ≥ tollR) & j ≤ itmax do

j=j+1;
keeping β(a,j−1) and Σ(a,j−1) fixed, update the M ×K support points
c
(a,j)
11 , . . . , c

(a,j)
MK according to Eq. (4.6);

keeping c
(a,j)
mk , w

(a,j−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K fixed, update

β(a,j) and Σ(a,j) according to Eq. (4.6);

set c
(a)
mk = c

(a,j)
mk for m = 1, . . . ,M and k = 1, . . . ,K, β(a) = β(a,j), Σ(a) = Σ(a,j);

estimate subpopulation mk for each group i according to Eq. (4.10);

if (β(a) − β(a−1) < tollF ) & (Σ(k) − Σ(k−1) < tollF ) & (c
(a)
mk − c

(a−1)
mk < tollR)

then
conv1 = 1;

a= a+1;
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The content of this thesis contributes both to the statistical literature about

mixed-effects models and to the research about student learning and educa-

tional providers effectiveness. We proposed novel statistical methods with the

aim of applying them to educational administrative databases in order to address

new and interesting research questions. Relaxing the parametric assumptions

on both fixed and random effects of mixed-effects models, we delineated new

models able to identify unexplored and interesting patterns within the complex

educational data. These models represent an innovative contribution in learning

analytics. The common strength of the semi-parametric mixed-effects models

that we proposed in the four chapters is their flexibility. They are suited to be

applied to several problems in which data have such a complex structure that

parametric assumptions would be inadequate or restrictive and where the a pri-

ori knowledge about the patterns within data is very limited. When applied to

educational data, that collect a huge amount of features about a huge number

of individuals and that are characterized by a hierarchical structure where nu-

merous variables interact among each others, these models resulted to be highly

informative, to well adjust the data and to extract worthwhile information. In

particular, the results that emerged in the four chapters are of extreme inter-

est in a policy perspective. Stressing the importance of disentangling the levels

of the data hierarchical structure and of the interactions among the variables,

the models outcomes give a new gateway to determine students, classes, schools

or universities performances, that can be easily interpreted and drive effective

policy implications.

The first topic we covered in this thesis (presented in Chapter 1 and Chapter

2) regards the development of mixed-effects regression and classification trees

and their application to educational data. Inspired by the flexibility and the

capability in modeling the interactions among the variables of tree-based meth-

ods, we started applying the existing mixed-effects regression trees (see Sela and

Simonoff (2012)) to OECD-PISA data and, in view of its potential, we con-

tinued in the framework of tree-based methods for clustered data developing a

method that extends classification trees to handle clustered data, the GMET

algorithm, and applying it to the ERASMUS+ SPEET data. Our proposed
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GMET algorithm is new in the literature, it can handle any answer variable in

the exponential family and it can be applied in many classification problems

when data are nested within groups. Its predictive accuracy resulted to be com-

parable to similar well established statistical methods, but having the advantage

of providing easily interpretable results, outlining complex interactions among

the input variables.

We showed that regression and classification mixed-effects models where the

classical linear function of the fixed-effects is substituted by a tree structure,

when applied to educational data, give new insights in the framework of stu-

dent learning. The main advantage consists in their flexible structure of fixed

effects, that allows them to reveal complex patterns within data, pointing out

non-linear relationships and individuating the range of values of the inputs asso-

ciated to different outputs, and, mostly, to model interactions among the input

variables. These qualities lead to the identification of both student and school

level variables interactions that affect the output, finding out patterns otherwise

not identifiable. Moreover, the fact that mixed-effects regression and classifica-

tion trees are graphically displayable and easy to be interpreted is a worthwhile

advantage in a policy perspective, when results need to be communicated to

stakeholders with the aim of improving educational systems.

The second topic we covered in this thesis (presented in Chapter 3 and Chap-

ter 4) regards the development of univariate and multivariate linear mixed-effects

models where the random effects coefficients follow a discrete distribution with

an a priori unknown number of support points, together with EM algorithms

to estimate their parameters (SPEM and MSPEM algorithms, respectively).

These methods represent a novelty in the context of mixed-effects models and

their ability in identifying a latent structure, without knowing a priori the num-

ber of latent subpopulations, among the higher level of grouping of a two-levels

structure data is completely new in the literature. Moreover, when considering

a multivariate response variable, the MSPEM algorithm models the correlation

among the latent subpopulations related to the multiple responses, extracting

further new information from the data. When applied to INVALSI data, the

SPEM algorithm identifies latent subpopulations of schools (when considering

students nested within schools) that differ in their effect on student achievements

in one school subject, i.e. mathematics. The MSPEM algorithm, additionally,

models the effect of classes (when considering students nested within classes) on

their student achievements in two school subjects, i.e. reading and mathematics,

investigating also the correlation among the subpopulations related to the two

effects. In this perspective, a model that identifies clusters of schools or classes

standing on their heterogeneous effect on student achievements is new to the

literature and enriches the research about school and classes effectiveness. The

identified subpopulations are useful in a policy perspective when their character-

ization is able to suggest the variables on which it is possible to act to improve
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the school or class effectiveness.

These algorithms are of great utility when applied to any type of data hav-

ing a hierarchical structure, especially when they are complex and the a priori

knowledge about them is very limited, with the aim of classifying the groups at

the higher level of hierarchy. The identification of subpopulations within which

data have different behaviors, in the era of the performance assessment, can be

of interest for measuring the effectiveness or the performance of firms, schools,

universities, hospitals and so on so forth, being of impact in real life.

Therefore, the thesis gives evidences that the presented semi-parametric

mixed-effects models, besides being innovative in the statistical scenario, en-

riching the literature about mixed-effects models, when applied to real world

educational data, give informative insights that describe educational processes

and that, especially, can be used to make policy implications to improve the

effectiveness of educational providers.
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Figure A.1: Fixed effect trees of first stage analysis (RE-EM tree in model 1.5) in the 9
countries.
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Figure A.2: School level variables importance ranking in the second stage of the analysis.
For each country, Boosting creates a ranking of the relative influences of the covariates on
the outcome variable (school value-added). To lighten the reading, we report here only
the first ten most important variables within each country (where the most important
variable is the one able to catch the bigger part of variability in the outcome).
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Figure A.3: Partial plot of the four most important school level variables in the asso-
ciation with school value-added, in each country. Note: the selection of the four most
significant variables within each country is taken from Figure A.2 and the explanation
of each school level covariate is given in Table 1.2.
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Figure A.4: Joint partial plot of the most important school level variables in association
with school value-added, in each country. Notes: 1. Colors represent the scale of the
values of the response (school value-added). 2. The selection of variables is based on
the group of the variables that turn out to be significant in previous steps.
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