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Abstract 

The numerical simulation of penetration into rock is an important tool to gain in-

sights into rock drilling mechanisms, since it can be exploited as an alternative to the 

expensive field testing in the pertinent fields of engineering. Developing a reliable nu-

merical modelling technique able to deal with the dynamic bit-rock interaction pro-

cess, is considered as an important challenge for fracture assessment of the geological 

materials. This research aims to present an innovative computer simulation of rock 

penetration process on the basis of a finite element method (FEM) coupled to smooth 

particle hydrodynamics (SPH).  

The mechanical behavior of a quasi-brittle material, namely Pietra Serena sand-

stone, are investigated both numerically (Finite Element Method) and experimentally 

in order to build a reliable numerical modelling environment aimed to be transferred 

to more complex cases. Karagozian and Case Concrete (KCC) model is exploited as ma-

terial constitutive law. A method which demonstrates the utilization of this model to 

simulate quasi-brittle materials with efficiency and accuracy is discussed in this thesis. 

The capability of this model is critically evaluated by comparing the results of numer-

ical simulations and the corresponding experimental results and a critical assessment 

of the method is reported. 

Several experimental tests are exploited within this research work on a medium 

range sandstone for material parameter identification and validating the numerical 

method.  The comparison of the numerical and experimental results obtained led to 

the conclusion that the FEM-coupled to-SPH method in conjunction with the fully cal-

ibrated KCC material model is a reliable method for the study of rock penetration un-

der extreme condition due to its ability to deal with large deformations and its realistic 

constitutive modelling. 

The modelling approach was then applied to estimate the required force to pene-

trate a given (offshore) reservoir rock block under the in-situ confining pressure with 

a double conical tool up to a certain depth. Finally, a percussive drilling problem was 

simulated with a triple button-bit on a rock specimen at different drilling depth below 

seabed. The effect of several design parameters was investigated, which can be used 

further in the research and development sectors of the petroleum industries.  
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Part I 

I Introduction 





 

Chapter 1 

1 Background and motivation 

Extensive knowledge of the mechanical behaviour of quasi-brittle material is cru-

cial in many scientific and industrial industries, e.g. deep well drilling (Hu and 

Randolph, 1998; Pepper, 1954), underground mining (Lacy and Lacy, 1992), etc. Alt-

hough this knowledge has been boosted by the fast development of numerical analyses 

and computer resources, the analysis of these materials’ failure modes is still a crucial 

problem (Chen and Egger, 1999; Santarelli and Brown, 1989). The term quasi-brittle 

is dedicated to the material such as rock (Labuz et al., 1985), concrete (Cornelissen et 

al., 1986) and most ceramics, since they express moderate strain hardening (before 

reaching their ultimate strength) comparable with metallic material, and sharp soften-

ing responses reminiscent of brittle material (Huang and Karihaloo, 1993). Among 

these quasi-brittle materials, investigation of the mechanical behaviour of rock mate-

rials in sub-aqueously deep well drilling applications is the mandatory task of the pe-

troleum science (Brady and Brown, 2013).  

The mechanical behaviour of rock at a material scale is generally controlled by the 

geometric arrangements of the mineral particles and voids together with the mi-

crocracks structures. However, also the micro flaws often significantly influence the 

mechanical behaviour (Åkesson et al., 2004; Basu et al., 2009; Szwedzicki, 2007). The 

failure modes of brittle crystalline rock materials are complex and difficult to predict 

(Santarelli and Brown, 1989). The complexity comes from various analytical proce-

dures represented in the general field of applied mechanics, such as sensitivity to con-

fining pressure, associativity flow, strength and post failure deformations, localization, 

etc. (Brady and Brown, 2013; Jaeger et al., 2007; Li et al., 2003; Malvar and Crawford, 

1998; Martin, 1993). Therefore, the investigation of the mechanical properties of a 

rock material is aimed to promote the understanding and the future design demands 

of this domain. 

Numerical modelling is considered as an alternative to expensive field testing, es-

pecially in the petroleum industry. Several constitutive equations have been proposed 

to analyse the nonlinear response of rock material (Bai et al., 1999; Jing and Hudson, 

2002). The common frameworks for geological constitutive modelling is based on the 

theoretical concepts of continuum mechanics, i.e. elasticity, plasticity (Huang and 



4 Chapter 1  
 

Karihaloo, 1993), damage (Rots and De Borst, 1987), visco-plasticity (Winnicki et al., 

2001) and different combinations of these (Brannon and Leelavanichkul, 2009; 

Fossum and Brannon, 2004; Jiang and Zhao, 2015; Malvar et al., 2000b; Saksala, 

2010a). 

The Lagrangian Finite Element Method (FEM) is still one of the foremost numerical 

techniques to solve problems in solid mechanics. High accuracy and acceptable com-

puting time are two noteworthy features of this method. However, as a mesh-based 

method, one of its main drawbacks is the low performance in dealing with large defor-

mations and highly distorted solid elements, which is often unavoidable in the contin-

uum mechanics based numerical modelling of fractured rock. The Smooth Particles 

Hydrodynamics (SPH) introduced by Monaghan (Monaghan, 1988), on the other hand, 

is a mesh-less method which discretizes a system into several grid-points at which the 

field variables are evaluated (Liu and Liu, 2010). The capability and performance of 

the SPH in dealing with large deformation problems, stems mainly from the fact that 

the nodal connectivity is not fixed in this method, as demonstrated e.g. in (Anghileri et 

al., 2011; Bresciani et al., 2016; Olleak and El-Hofy, 2015). However, the performance 

of SPH in terms of accuracy and computation time is often lower in comparison to the 

FEM. Therefore, looking for a scientific path to overcome these drawbacks is a chal-

lenging task. 

 The penetration of a tool into rock by indentation is the basic process in various 

excavation machines, such as roller disc cutters and percussive drills (Chen and Labuz, 

2006; Kahraman et al., 2012; Kalyan et al., 2015). Depending on the rock strength, 

there are two basic procedures for rock excavation: shearing for soft to medium 

strength rocks, and indentation for medium to hard rocks (Fowell, 1993). The oil and 

gas reservoir rocks, e.g. Berea sandstone, are classified as medium strength rocks (UCS 

ranges from 40 to 80 MPa). Therefore, exploiting numerical modelling to investigate 

the indentation process is an interesting case of study in petroleum industries. 

The conceptual model for percussive rock drilling by a drill bit with multiple button 

bits is illustrated in Figure 1 (Saksala et al., 2014). Drilling deep holes in bedrock poses 

challenges to the efficiency of rock excavation methods due to severe stress conditions 

prevailing in the bedrock induced by gravity (overburden stress) and tectonic activity 

(Zang and Stephansson, 2009). High pressure conditions are faced also in seafloor 

drilling (Bar-Cohen and Zacny, 2009). In-situ confining stresses lead to substantial 

drops in the rate of penetration of percussive drilling (Cunningham and Eenink, 1959). 

Therefore, it is instructive to study numerically the penetration of a bit into the rock 
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specimen under confining pressures conditions similar to those in deep hole drilling 

under the seabed. 

 

Figure 1. Schematic representation of the principle of percussive drilling. 

Percussive drilling is one of the most widely used rock drilling technique in the pe-

troleum industries. In this type of drilling, an impact which is induced by the stress 

wave forces the high strength multiple button-bits metal to penetrate into the rock. 

Increasing demands for higher quality and efficiency with lower costs have been al-

ways an inevitable fact, hence, the fracture, fragmentation and penetration prediction 

of rock materials are the problems required persistent investigations. The coalescence 

of the side cracks or the lateral chipping plays the most significant role in the fracture 

mechanism related to the percussive drilling.  

Several numerical investigations of the rock penetration problem are limited to ac-

count for some details related to the fracture systems. The simulation of subsurface 

fractures are reported in (Tan et al., 1997) by applying a tensile splitting failure model 

in the rock indentation. The same author proposed a fracture mechanism based on 

displacement discontinuity method (DDM) in another study (Tan et al., 1998) to sim-

ulate the side crack formation. Liu et al. (Liu, 2004; Liu et al., 2008; Liu et al., 2002) 

developed a more general method to study the rock fragmentation mechanism based 

on a continuum scalar damage model. In all of the beforementioned studies, the inden-

tation was considered by quasi-static loading conditions. 
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The interaction of drill bit-rock in the percussive drilling is a transient (and dy-

namic) problem, that deals with high local strain rate enhancement and propagation 

of the stress wave. In this regard, the impact indentation into rock material is investi-

gated by Saksala in (Saksala, 2006) by implementing a pure scalar damage model. The 

same author studied a rate-independent damage plasticity model in (Saksala, 2008), 

and a damage-viscoplastic consistency model with a parabolic cap in (Saksala, 2010a). 

In a study of (Camacho and Ortiz, 1996), cohesive elements are used to investigate the 

impact fracture of brittle material. An orthotropic damage model in conjunction with 

an statistical approach for material parameters are proposed by (Denoual and Hild, 

2000). Beside the previous research studies, which are developed by Finite Element 

Method (FEM), there are also studies of rock fracture in percussive drilling action by 

developing particle-based numerical methods, e.g. (Thuro and Schormair, 2008). 

However, all these studies were performed based on 2D numerical methods (the plain 

strain conditions). 

An example of 3D simulation of percussive drilling action is provided in (Han et al., 

2005) by implementing a modified Mohr-Coulomb strain softening model in the 

FLAC3D code. The unrealistic impact rates (0.2 m/impact) in the former study can be 

observed as the result of limitation of computational power for 3D modelling, and ac-

cordingly using coarse meshes. Another 3D simulation has been studied in 

(Rossmanith et al., 1996) by developing an elastic-brittle damage model implemented 

in a 3D finite difference method. The discrete blocks which are forming the computa-

tional grid of the latter study may have different elastic properties, hence, rigid indent-

ers are modelled as boundary conditions for displacements with time dependent 

prescribed contact area (Saksala, 2010b). Therefore, the presence of some simplifying 

assumptions concerning the complexity of percussive rock drilling problem can be ob-

served in these studies (Saksala, 2010b).  

In view of the above discussion, it is concluded that providing a numerical method 

to be highly capable to deal with the complex nature of the rock material, and to ac-

commodate all the essential phenomena involved in rock-drill bit dynamic interaction 

process, is an instructive task. This numerical method can be further exploited to pre-

dict the effectiveness of deep hole drilling projects and consequently as a design tool 

for the research and development sectors of the petroleum industries. 

 

 



 

Chapter 2 

2 Goals and outline of the thesis 

This PhD thesis presents experimental and numerical investigations in the rock me-

chanics domain with the focus on the oil and gas requirements. The first objective of 

this PhD project is to develop a numerical method that is able to predict precisely all 

the failure types occurring in the dynamic drill bit-rock interaction problems involved 

mostly in the field of petroleum engineering.  

The outline of this thesis is as follows: The part II of this thesis, called “state-of-the-

art”, considers the rock strength and failure criteria. A full description regarding the 

geotechnical constitutive modelling which are implemented in the numerical simula-

tions of this research work is then provided in the second chapter of part II. An intro-

duction about different numerical modelling technique, i.e. FEM and SPH is then 

presented in the last chapter of this part. 

Berea sandstone is widely recognized by the petroleum industry as a standard rock 

type in oil & gas reservoir engineering (Busetti et al., 2012; Cheon et al., 2016; Hart 

and Wang, 1995; Menéndez et al., 1996). This rock is a highly porous and permeable 

sedimentary rock which is deposited sub-aqueously as an offshore bed in many well 

drilling applications (Hamilton, 1979; Khodja et al., 2010; Pepper, 1954). However, it 

is not a highly accessible material resulting in a relatively high expense for testing pur-

poses. An extensive literature review (Coli et al., 2002; Coli et al., 2003; Coli et al., 

2006) revealed the presence of another rock material, called Pietra Serena sandstone, 

with mechanical properties similar to Berea sandstone. These properties lead the au-

thors to carry out extensive studies of the geotechnical investigations to obtain the 

mechanical response of Pietra Serena under: the uniaxial compression test 

(Mardalizad et al., 2018b), the Brazilian (quasi-static) tensile splitting test (Mardalizad 

et al., 2017a), the Flexural test (Mardalizad et al., 2017c), the triaxial compression test, 

the punch penetration test and the dynamic Brazilian disk test. These experimental 

tests are exploited either for the material parameter identification or validation of the 

numerical results. The experimental procedures are explained in detail in part III of 

this PhD thesis, so that they may also provide a useful validation problem for scientists 

and engineers who are developing a numerical model in this field.   
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The material model chosen for the numerical simulation of this study is the Kara-

gozian & Case Concrete (KCC) model which is originally developed by Malvar et al. 

(Malvar et al., 1996; Malvar et al., 2000b; Malvar et al., 1994; Malvar et al., 1997). The 

KCC is an advance material model, which is implemented in LS-DYNA software. It con-

sists of three-fixed strength surfaces and an experimental-tabular damage function in 

conjunction with an equation of state.  

A recent feature provided in the third release of this material model which is the 

automatic input parameter generation capability based solely on the unconfined com-

pression strength (Malvar et al., 2000b). This makes the use of the KCC model easier 

and accessible to most users, since there is no need to carry out extensive material 

characterization tests. This automatic method was used initially within this PhD pro-

ject and the results are published in (Mardalizad et al., 2016; Mardalizad et al., 2017a; 

Mardalizad et al., 2017b), however, the numerical results related to these studies are 

not reported in this PhD thesis. The KCC model was originally developed to analyse 

the mechanical behaviour of concrete, and although the response of sandstone is ex-

pected to be similar to concrete, the results of the automatic input generation mode 

are only a rough estimation for sandstones. 

A mixed experimental-numerical approach for the calibration of this material 

model for other types of quasi-brittle material, i.e. sandstone is proposed in the first 

chapter of part IV of this PhD thesis. For this purpose, two experimental tests, i.e. tri-

axial compression and Brazilian disk tests, were performed. Inspired by the studies of 

(Wu et al., 2017), a modification resulting in tabular damage function of the KCC model 

is also presented in this chapter. Although the suggested tabular damage function is 

provided for Pietra Serena, the suggested method can be used to find these tabular 

damage data for the other materials. The proposed formulation by (Malvar and Craw-

ford, 1998) is considered in this PhD research to determine the effect of strain rate 

enhancement. To find the parameters of this model, the Curve Fitting Toolbox of 

MATLAB software is implemented to the corresponding experimental results of the 

dynamic Brazilian disk test (which is described in Part III). 

Several numerical models developed in the second chapter of the part IV by consid-

ering the fully calibrated-modified KCC material model. The numerical results are then 

critically discussed by compared with other numerical models, i.e. Mohr-Coulomb 

plasticity model and extended (linear) Drucker-Prager model, and also with the exper-

imental results. These critical comparisons prove that this material modelling tech-

nique provide a precise framework to describe constitutive behavior of rock material 

under several loading conditions (triaxial load, failure, dynamic indentation, etc).  The 
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capability of a constitutive model to deal with a wide range of loading condition is an 

important aspect for the transferability of the methods in numerical analyses; this as-

pect is also addressed in the present part.  

In the last chapter of part IV, inspired by the study of (Bresciani et al., 2016), an 

innovative approach was implemented which is called here the FEM-coupled to-SPH 

method. This method, which takes advantages of both the FEM and the SPH methods, 

erodes the elements who meet a certain failure criterion and subsequently replaces 

them with a specific number of SPH particles. Three different numerical techniques 

were applied to simulate the rock material during the penetration test: (a) constant 

stress FEM, (b) fully integrated FEM, and (c) coupled FEM-SPH method. The investiga-

tion provided in this chapter prove that the FEM-SPH method can clearly be consid-

ered the most realistic one among the tested methods. Hence, it can be considered as 

an adequate numerical technique to study the rock-bit interaction problems. 

The part V is dedicated to the numerical studies which focus on practical issues in 

designing offshore deep hole drilling of real projects in the field of oil and gas indus-

tries. In the first chapter of part V a double button-bit penetration problem into a rock 

specimen at a certain depth below the seabed is investigated. The effect of two design 

parameters are studied in these simulations, which are: the effect of two button dis-

tances, and the effect of different in-situ pressures. Then, the percussive rock drilling 

at a certain depth below the seabed is investigated numerically in the last chapter, with 

focus on three different designing parameters, i.e. impact velocity, drilling in different 

depth and effect of in-situ pressures.  

The part IV contains the last chapter of this PhD thesis and provides a conclusion 

by summing up the contents of this research work and debating the major achieve-

ments. Some possible future research topics are also proposed in this chapter. Finally, 

the full experimental results of the dynamic Brazilian disk test are presented in Appen-

dix A.    
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II State of the art 





 

Chapter 3 

3 Rock strength and failure criteria 

The general mechanical response of a rock under a compression loading test is in-

dicated in Figure 2. As can be seen the stress-strain diagram is divided into five sec-

tions. The first inelastic (concave-upward) section corresponds to the pores and 

fissures closing phase after applying the initial deviatoric stress. This section is fol-

lowed in most of rocks by a linear trend related to the elastic behavior of the material. 

By further loading, at point B, the initiation of new cracks at high stressed areas (usu-

ally close to the middle section of the specimen) as well as the extension of the old 

cracks (parallel to the loading direction) cause the increase of Poisson’s ratio. In the 

third section of Figure 2 (between points B and C) the crack propagation is stable 

which means the crack length increases after each stress increment to a certain level 

and then stops.  Eventually after point C, which is called the yield strength, the density 

of microcracks is increased and a semi-continuous rupture surface is developed due 

to the unstable crack propagation, which is the reason of non-linear (convex-upward) 

behavior in fourth section.  

 

Figure 2. Typical stress-strain curve of unconfined compression test (Goodman, 1989) 

The point D is considered as the ultimate strength of rocks which is usually studied 

by most of the failure criterions (Goodman, 1989). The post-peak behavior of brittle 
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rock under unconfined compression test is often observed to stop after a sudden rup-

ture due to creation of macrocracks by joining the microcracks. However, in case of 

using a very stiff testing machine, the test may proceed to point E or beyond (Hudson 

and Harrison, 2000). 

The geological materials reveal a very complex mechanical behaviour due to sev-

eral issues; i.e. pressure (first invariant) dependency, hardening (and/or softening), 

yield failure, different tension-compression behaviour, complex volumetric strain, 

high dependency on environment condition (i.e. confining pressure), etc. 

The Figure 3 indicates the failure surface of a typical geological material in the com-

pressive meridional. As can be seen, the curve of failure surface behaves significantly 

different in tension and compression regimes, so that the compressive strength is of-

ten one order of magnitude higher than the tensile strength. 

 

Figure 3. the failure surface for different state of stress of geomaterials; (a)  − plane and (b) 

1 3 − plane. 

The variations of load arrangements are such than it is difficult to find a single mode 

of rock failure predominates. However, in order to investigate the mixed failure 

modes, it is essential to study single failure modes separately. The different failure 

modes are also represented in the Figure 3, where the flexure, compressive and shear 

failure mode are related to the tension, unconfined compression and triaxial compres-

sion loadings, respectively. The following represents three common failure mode of 

geomaterials (Goodman, 1989). 

• Flexural (or tensile splitting) failure mode: This mode refers to bending 

failure with tensile cracks propagation. It can also occur in rock slopes with 

steeply dipping layers as the layers’ overturn toward the free space. This 

mode is predominant in Brazilian and Flexural test (see Figure 4). 
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Figure 4. flexure failure mode in rock mechanics. 

• Shear: It refers to formation of a surface of rupture where the shear 

stresses have become critical, followed by release of the shear stress as the 

rock suffers a displacement along the rupture surface. This mode is pre-

dominant in triaxial compression test (see Figure 5). 

 

Figure 5. shear failure mode in rock mechanics. 

• Crushing or compression failure mode: This type of failure occurs in in-

tensely shortened volumes or rock penetrated by a stiff punch. However, 
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examination of processes of crushing shows it to be a highly complex mode, 

including formation of tensile cracks and their growth and interaction 

through flexure and shear. This mode is predominant in uniaxial compres-

sion test (see Figure 6) 

 

Figure 6. compression failure mode in rock mechanics.  
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4 Constitutive modelling of geomaterials 

The constitutive models in geomaterial plasticity are often based on an initial yield 

surface which is coupled with a hardening rule. The subsequent yield surfaces will ex-

pand as the loading increases, so that finally match with the failure surface. There are 

many research studies to investigate and define the failure function, which accordingly 

leads to describe the failure surface of the geomaterial. The key feature of yielding of 

cohesive-frictional soil and rock materials is their mean pressure dependence. The ex-

perimental studies show that the failure surfaces of rock materials are curved and 

have smooth meridians. It is more convenient to define the failure surfaces in the 

Haigh-Westergaard 3D stress space due to its cylindrical coordinate system. It is pos-

sible to use the equation (1) to transform the cartesian coordinate system of principal 

stress into the Haigh-Westergaard system. 
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Where, the ξ, ρ and θ are the Haigh-Westergaard coordinates defined as equation 

(2).  
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Where, 1I   is the first principal invariant of the Cauchy stress, 2J  and 3J  are the 

second and third principal invariants of the deviatoric part of the Cauchy stress, re-

spectively. 
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4.1 Mohr-Coulomb Plasticity model 

The yield function of this material model is based on the conventional Mohr-Cou-

lomb (MC) which is one of the most widely used constitutive laws to deal with brittle 

materials, and in particular rock mechanics (see Figure 7). The implementation of 

Mohr-Coulomb material model was investigated by ABAQUS/Explicit software within 

this study. The conventional yield criterion which is proposed by (Coulomb, 1773) is 

in terms of shear stress τ and normal stress n  acting on a plane. This model suggests 

that the yielding begins if the shear stress and the normal stress satisfy the equation 

(3). 

tannc  = +   (3) 

  
Where, c and 𝜑 are the cohesion and internal friction angle of geomaterials, respec-

tively. Equation (4) expresses the MC’s yield criterion in terms of the principal 

stresses, when 1 2 3    . 

tannc  = +   (4) 

  
It is possible to use the matrices of equation (1) to transform the equation (4) from 

principal coordinate system into Haigh-Westergaard one, according to equation (5). 

 

 

Figure 7. The Mohr-Coulomb failure surface; (a) deviatoric plane, (b) Rendulic plane, and (c) 3D 

stress space. 
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The Mohr-Coulomb plasticity implemented in ABAQUS takes advantage of an iso-

tropic cohesion hardening model. It is possible to define the unconfined compressive 

stress uc as a function of the absolute plastic strain p by the tabular data from the 

compression post-yield stress-strain diagram. Accordingly, the cohesion yield stress 

( )pc   values can be computed by equation (6).  
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Where, γ is a parameter to adjust the value of the cohesion for improving the accu-

racy of the numerical models. The projection of Mohr-Coulomb model on the Rendulic   

plane ( ) − and the deviatoric plane ( ) − are indicated in Figure 8a and Figure 

8b, respectively. Because of Lode effect, this model has an irregular hexagonal surface 

in the deviatoric plane. This surface can be defined by 
0c and 

0t
 , which are the max-

imum magnitude (at yield) of the deviatoric stresses in uniaxial compression and ten-

sion, respectively. These two values are given by equations (7) and (8). 
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Where, cf  is the unconfined compression strength. As can be seen in Figure 8, the 

internal friction angle 𝜑 can vary from 0° to 90°. These two limiting cases correspond 

to Tresca and Rankine yield functions, respectively. The experimental tests show that 

the results obtained by Mohr-Coulomb criterion are usually overestimated than the 

experimental data in the tensile regime. Therefore, ABAQUS provides the opportunity 

to optionally define a Rankine yield function tf  as the tension cut-off criterion accord-

ing to equation (9). 

( ) ( ) ( ), , 2 cos 3 0t c
t

pf t     = − − =   (9) 

  
Where, ct is the value of tension cut-off, which is equal to the value of the yield 

stress in the uniaxial tension. ABAQUS allows to define an optional softening (or 
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hardening) of Rankine yield surface by providing the values of tension cut-off ct as a 

function of tensile equivalent plastic strain t
p (in the form of tabular data). 

 

Figure 8. Comparison of MC and Rankine criteria; (a) Rendulic plane, (b) deviatoric plane, and 

(c) 3D stress space. 

Both Mohr-Coulomb yield surface and Rankine tension cut-off have corners in the 

stress space that causes numerical complications. Two smooth elliptic functions are 

implemented in ABAQUS as the flow potential rules of these models. The plastic flow 

of Mohr-Coulomb is constructed by means of a continuous flow potential function  

mwG proposed in (Menetrey and Willam, 1995), which is characterised as a hyperbolic 

and smooth elliptic function in the Rendulic and deviatoric planes, respectively (see 

Figure 9). The Menétrey and Willam’s flow, which ensures the direction of the plastic 

strain flow can be always uniquely defined, is given by equation (10). 

( ) ( )
2 2

0 tan tanmw mwG c R q p =  + −   (10) 

  
Where, ψ is the friction angle, 0c  is the initial cohesion yield stress and the param-

eter ∈, called meridional eccentricity, expresses how much the hyperbolic function of 

this flow potential tends to the asymptote. The ABAQUS default value (∈=0.1) was 

used in all the models of this research study. The parameter  mwR q , termed as Men-

étrey and Willam’s equivalent stress, can be described as equation (11). 
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The parameter e, known as deviatoric eccentricity, indicates how much the elliptic 

function is out of roundness. Indeed, this parameter considers the ratio between the 
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shear stress along the extension and compression meridians and can be calculated ac-

cording to the equation (12). 

3 sin
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It is also possible to define “e” as an independent material parameter by directly 

providing its value into ABAQUS. To keep the Menétrey and Willam elliptic function in 

the deviatoric plane, the value of “e” is required to be limited between 0.5 and 1. It is 

worth to mention that these two values refer to two extreme cases of Rankine triangle 

(𝜑 = 90°) and Mises circle (𝜑 = 0°) in the deviatoric plane. However, in this study, the 

deviatoric eccentricity doesn’t consider as an input parameter and it is determined 

automatically by ABAQUS. 

 

Figure 9. The Menétrey-Willam flow potential; (a) mwR q p− plane, (b) deviatoric plane 

(Menetrey and Willam, 1995). 

The plastic flow provided by this model is always non-associative in the deviatoric 

plane. Although the plastic flow in the meridional is generally non-associative, it is 

possible to obtain the associativity by setting ψ = β and very small meridional eccen-

tricity. A nearly associative plastic flow is considered in ABAQUS for the Rankine sur-

face by means of a modified Menétrey and Willam flow potential function tG according 

to the equation (13). 

( ) ( )
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2 2

t t t tG R q p=  + −   (13) 

  
The parameter t  has similar definition to ∈ (with the same default value ∈=0.1, 

which is used in all the models of this study). The parameter tR  is calculated by equa-

tion (14). 
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Where, te  has the same meaning as e, while the default values of ABAQUS for these 

parameter ( 0.6te =  ) are different. In this study, both the Mohr-Coulomb plasticity 

and the Linear Drucker-Prager failure criteria are intended as a yield surface, i.e. the 

plastic flow occurs when equations (5) and (18) are satisfied. Hardening (intended as 

hardening followed by softening) of the yield function is described by the equation 

proposed by (Lubliner et al., 1989) for concrete as defined in equation (15). 

( ) (1 ) exp ) e p( )( x 2uc pyp pa b a b   = +  −  −  −    (15) 

  
Equation (15) expresses the unconfined compressive stress uc  as a function of the 

axial plastic strain p . The parameter y is the yield strength and the parameters a 

and b can be defined according to the equations (16) and (17), respectively. 

2

1 2c c c

y y y

f f f
a

  

       
= − + −     
     
     

  (16) 

1
lnp

a
b

a

+ 
= − 

 
 (17) 

  

The plastic strain at equation (17), p (to define the parameter b) is determined 

when the derivative of equation (15) is equal to zero. This plastic strain corresponds 

to the experimental data at which the maximum stress is reached. 

 

4.2 Drucker-Prager extended model 

This is an advanced material model implemented by ABAQUS, which is based on 

the conventional Drucker-Prager constitutive law. There are three forms of the ex-

tended Drucker-Prager material model developed in ABAQUS which are the linear, the 

hyperbolic and the general exponential forms (Manual, 2009). Within this research 

work, the linear form of this model was investigated. The linear Drucker-Prager (LDP) 

model consists of a pressure-dependent three-invariant failure surface which pro-

vides the opportunity of having the non-circular yield surface (unlike the conventional 
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Drucker-Prager) in the deviatoric plane (see Figure 10). This model also takes ad-

vantage of the associated inelastic flow and hardening (or softening) rules, and differ-

ent dilation and friction angles. The general form of the failure surface in the Haigh-

Westergaard coordinate system is given by equation (18). 

tan
( , , ) ( , ) ( )

3
pf f t d


     = = − −   (18) 

  

 

Figure 10. The Linear Drucker-Prager failure surface; (a) deviatoric plane, (b) Rendulic plane, 

and (c) 3D stress space. 

The effect of the Lode angle θ is considered by ( , )t   according to the equation (19). 

3 1 1
( , ) 1 1 cos3

8
t

K K
   

    
= + − −    

    
  (19) 

  
Where, the material parameter K is defined as the ratio of yield stresses at triaxial 

tension to triaxial compression, which means it controls the shape of the linear 

Drucker-Prager yield function at the deviatoric plane. As can be seen in Figure 11b, a 

circular failure function presents in the deviatoric plane when K=1.0, which is the same 

as the conventional Drucker-Prager. It is proved that to verify the convexity of the 

yield function, the value of parameter K should be in the range of 0.778 to 1.0. By 

means of an approach to match the parameters of the Mohr-Coulomb and linear 

Drucker-Prager (for materials with low friction angles), K can be defined according to 

equation (20). 
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3 sin

3 sin
K





−
=

+
  (20) 

  
where, φ is the internal friction angle used in the Mohr-Coulomb model. The pa-

rameter β is commonly termed as the friction angle (in case of dealing with the 

Drucker-Prager theory), which can be computed as the slope of the yield function in 

the t – p meridian plane (see Figure 11a). By a similar computing approach for K, it is 

possible to derive the parameter β according to equation (21). 

6sin
arctan

3 sin






 
=  

− 
  (21) 

  
It is worth mentioning that both these parameters can be defined in ABAQUS as a 

function of temperature and other field variables (e.g. temperature, etc.). However, 

they are considered as constant variables in this study because of the negligible effect 

of the other fields. 

 

Figure 11. The linear Drucker-Prager criterion; (a) t – p plane, (b) deviatoric plane. 

The parameters cr  and tr  in Figure 11a are the distances of Drucker-Prager failure 

surface from the hydrostatic pressure axis at compressive and tensile meridians, re-

spectively. The parameter d, called the cohesion of the material (in case of dealing with 

the Drucker-Prager model), is defined automatically by ABAQUS according to equation 

(22). 

( ) ( )
1

1 tan
3

u pcpd  
 

= − 
 

  (22) 
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Where, uc is the unconfined (uniaxial) compression stress. An isotropic hardening 

is implemented for this model in ABAQUS by a sub-option called “Drucker-Prager 

Hardening” at the property module. Therefore, the tabular data from the compression 

post-yield stress-strain diagram can be used to define uc (and accordingly d) as a 

function of the absolute plastic strain p . The plastic flow of the linear Drucker-Prager 

is considered by means of a flow potential function LDPG  given by equation (23). 

tanLDPG t p = −   (23) 

  
The parameter ψ, called dilation angle, specifies the direction of the plastic strain 

flow. As can be seen in Figure 11a, the plastic flow is associative if ψ = β, otherwise it 

is non-associative. The same hardening function, equation (15), described in Mohr-

Coulomb material model is developed for the Linear Drucker-Prager model as well. 

 

4.3 Karagozian and Case Concrete model 

This material model, also known as the “Karagozian and Case Concrete (KCC or 

K&C)” model, was developed by Malvar et al. from 1994 to 2000 (Malvar et al., 2000a; 

Malvar et al., 1996; Malvar et al., 1994; Malvar et al., 1997). The failure function of the 

KCC material model, implemented in LS-DYNA, is characterized by a pressure-depend-

ent yield surface ( ), , ,     formulated as equation (24) in terms of the Haigh-

Westergaard stress invariants. 

( ) ( ), , , 3 2 , ,         = −   (24) 

  
Where, the λ is the KCC – damage parameter. Based on the equation (24), it is pos-

sible to categorize the KCC material model as the constitutive models with hybrid for-

mulation ( ) ( ) ( ) ( ), , ,       =  −  , since the deviatoric function is decoupled 

(and discussed below, the shape of the Lode function is changed in a different range of 

the hydrostatic pressure). 

The failure surface of the KCC model ( ), ,     is a dynamic function of the current 

values computed for a specific set of state variables that specify the strength of the 

material. The term dynamic means the failure surface is computed by means of the 

linear interpolation functions that uses a pair of fixed- and independent- strength 
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surfaces which are defined by the user. These interpolation functions are different for 

hardening and softening. The pair for hardening and softening is denoted as the yield-

maximum and maximum-residual strength surfaces, respectively. Therefore, the 

( ), ,    function can be described by the equation (25). 

( )

  ( )

  ( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( )

0

0

ˆ ˆ; ( ),

ˆ ˆ ˆ ˆ, , ; ( ),

ˆ ˆ ˆ ˆ; ( ),

f y

m f m y y

m f m r r

if r r p p

if r r p p p p

if r r p p p p

   

            

       

     
   =    − +   


     − +  

  (25) 

  
The parameters 0  and m  corresponds to the points at which the hardening and 

softening regime are started, respectively. The parameter fr  considers the strain rate 

enhancement. The parameters ( )ˆ
y p , ( )ˆ

m p  and ( )ˆ
r p  correspond with the three 

fixed strength surfaces in the triaxial compression state of stress, when the Lode angle 

θ is equal to 60 (see Figure 12). The ( )   is the interpolation damage function, and 

the non-dimensional function ˆ[ ( ), ]r p   is the ratio between the current radius of the 

failure surface ( )r  (see Figure 13b) and the compressive meridian. 

 

Figure 12. The KCC fixed – strength surfaces; (a) deviatoric plane, (b) Rendulic plane, and (c) 3D 

stress space. 

As written in equation (25), the KCC material model considers the effect of the third 

invariant, i.e. the Lode angle θ, by means of the function ˆ[ ( ), ]r p  . This function was 
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originally derived from equation (26), which is the shape of the failure criterion in the 

deviatoric plane, proposed by (Willam and Warnke, 1975). 

2 2 2 2 2 2

2 2 2 2

2 ( )cos (2 ) 4( )cos 5 4
( )

4( )cos (2 )

c c t c t c c t t t c

c t t c

r r r r r r r r r r r
r

r r r r

 




− + − − + −
=

− + −
  (26) 

  

Where, ( )r  determines the distance of the failure surface at the deviatoric section 

by considering the effect of the Lode angle θ. The parameters cr and tr  express the dis-

tances of the failure surfaces from the hydrostatic axis at the compressive and tensile 

meridian, respectively. The deviatoric plane of a Willam-Warnke failure model is indi-

cated in Figure 13b.  

The ˆ[ ( ), ]r p  , which is the ratio between the current radius of the failure surface 

( )r  and the distance of the failure surfaces from the hydrostatic axis at the compres-

sive meridian cr , is computed by means of the equation (27). This equation was ob-

tained by dividing both sides of equation (26) by cr . In order to present the term ( )p

, which is a strength index of the brittle material related to the confining pressure that 

a material is subjected to it (and equal to t c   - in the KCC model also equal to

t cr r  ), both the numerator and the denominator of the right-hand side of equation are 

divided by 2
cr . 

2 2 2 2

2 2 2

2(1 )cos (2 1) 4(1 )cos 5 4( )
ˆ[ ( ), ]

4(1 )cos (1 2 )c

r
r p

r

 




− +  − − +  − 
 = =

− + − 
  (27) 

  

2
cr  

Figure 13. (a) KCC failure surfaces in a compressive meridian, (b) deviatoric section proposed by 

the Willam-Warnke model. 
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The fact that r̂  is just a function of ( )p and θ, and that the lode angle can be de-

termined based on the loading conditions, implies the role of ( )p for computational 

purposes. It means that the implementation of the failure surface is completed by 

means of this parameter ( )p . This parameter generally depends on the hydrostatic 

stress and can be obtained empirically. Malvar et al. in (Malvar et al., 1997) defined 

this parameter as a linear piecewise function on the full range of pressure according 

to equation (28). 
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  (28) 

  
Where, cf   is the unconfined compression strength, tf  is the principal tensile 

strength and α is an experimental parameter related to the biaxial compression test. 

According to equation (28), ( )p varies from 1∕2 to 1, which is in accordance with the 

experimental data previously obtained. It also indicates that 8.45 cp f =  is the transi-

tion point in which the compression meridian is equal to tension one, and accordingly 

from this point onwards, there is a circular failure surface on the deviatoric plan sec-

tion. Moreover, it considers a value equal to 1∕2 for the negative range of pressures. It 

is worth mentioning that this function was implemented in LS-DYNA and no input is 

required of the users. 

 

Figure 14. Investigation of the experimental data on; (a) ( )p p − , and (b) ˆ[ ( ), ]r p p −  dia-

grams. 
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As a simple investigation, the experimental data of one of the triaxial compression 

tests (second test of 28 MPa confining pressure) is first calculated by equation (28) 

(see Figure 14a). Based on the corresponding value of ( )p , the ˆ[ ( ), ]r p  function 

was calculated and it reached to unity for the whole hardening and softening regime, 

as expected ( 60 =  ) (see Figure 14b). 

The Karagozian and Case concrete model takes advantage of the three-fixed inde-

pendent failure surfaces in the compressive meridian ( −  plane), which correspond 

to the yield, the ultimate and the residual strength of the material. The ( )ˆ
y p , ( )ˆ

m p  

and ( )ˆ
r p pressure-sensitive strength surfaces are defined as equations (29), (30) 

and (31), respectively (Mardalizad et al., 2018b). 
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Where, the ai – parameters are the user-defined input parameters to define the fail-

ure surfaces in the compressive meridian. The  in equation (24) is related to the pres-

sure p which is calculated by the equation of state (EOS) to represent the volumetric 

responses. The damage evolution imparted by the KCC model to the material is de-

picted in the damage parameter λ, which reflects the magnitude of the plastic flow. In 

general, the plastic flow can be described as equation (32). 

( ), , ,p g    
 




=


  (32) 

  
The comprehensive expression of the parameter  , which is the plasticity con-

sistency parameter, can be found in detail in (Wu and Crawford, 2015). The partial-

associative plastic potential of the KCC model ( ), , ,g      can be expressed by equa-

tion (33). 

( ) ( ), , , 3 2 , ,g         = −   (33) 

The parameter ω in equation (33) is the associativity parameter that serves a sig-

nificant role in identifying the proportionality between the deviatoric and volumetric 
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components of the plastic strain. This parameter is limited between the critical values 

of 0 and 1, which provides associative (normal to the failure surface) and Prandtl-

Reuss (plastic volume strain is precluded) forms of plasticity, respectively. 

 

  

 

 

 

 



 

Chapter 5 

5 Numerical modelling techniques 

The numerical modelling problems involved in the petroleum industries are mainly 

investigated by The Lagrangian Finite Element Method (FEM) due to its accuracy, ma-

turity and computational efficiency. However, because of the mesh-based nature of 

this method, the performance of FEM in dealing with problems involving large defor-

mation, and severe element distortion and fragmentation, are limited (Salagame and 

Belegundu, 1994). The fragmentation of quasi-brittle material and large deformations 

are widely existing phenomena in rock mechanics applications, such as rock cutting 

and blasting. Therefore, it is expected that particle-based methods can offer better per-

formance in such applications.  

One of these particle-based methods is the Smooth Particle Hydrodynamics (SPH) 

method (Monaghan, 1992), which has an inherent ability to deal with large defor-

mation problems and complex physical phenomena. A significant feature of meshless 

methods is that they can be exploited to represent highly distortions in a Lagrangian 

framework, since a discrete set of disordered points is implemented to approximate 

the state variables and material properties (Limido et al., 2007).  

Although the implementation of SPH particle method seems to be an adequate way 

to solve the problems of rock mechanics domain, its accuracy and computation time 

efficiency is significantly lower than the FEM. In the followings, the basics of both the 

FEM and the SPH methods are presented briefly. Then an innovative numerical tech-

nique is introduced which can take advantageous of both methods and, in the same 

time, is able to highly avoid their drawbacks. 

 

5.1 Finite Element Method (FEM) 

The equation of motion of a system can be described with an ordinary differential 

equation. Since there are no analytical methods to deal with nonlinear ordinary differ-

ential equations, a numerical technique should be implemented. The Finite Element 

Method is almost the most common numerical technique implemented in research 

fields as well as industrial applications. The implementation of Finite Element Method 
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(FEM) for solving the solid mechanics problems which are analysed in continuum do-

main, is still one of the most accurate numerical simulation techniques.  

The approximate solutions of differential equations can be provided by FE method 

in order to cope with boundary value problems. Within this method, first the problem 

should be discretised with respect to time. For this purpose, there are generally two 

mathematical methods were developed, which are explicit and implicit direct integra-

tion. An explicit technique, namely the central difference method, is executed in this 

research program, which means that the velocity and acceleration vectors are as-

sumed to be approximated as equations (34) and (35), respectively.  

2

t t t t
t

u u
u

t

+ −−
=


  (34) 

2

2t t t t t
t

u u u
u

t

+ −− +
=


  (35) 

  
The domain of the problem is divided into simple-geometry and smaller sub-do-

mains by means of mesh generation. The differential equations are then considered 

for each one of these finite elements and solved approximately by an interpolation 

function. These local approximations are assembled into global matrices for the whole 

domain later. 

 

5.2 Smooth Particle Hydrodynamics (SPH) 

The Smooth Particles Hydrodynamics method was originally developed to cope 

with the astrophysics problems. After observing the similar movements of particles in 

astrophysics and fluid flows, this method is modified to be implemented in fluid me-

chanics (Monaghan, 1988). The SPH has been improved significantly within last decay, 

and nowadays, it can be applied to most of the continuum mechanics problems, i.e. 

solid mechanics. 

The SPH is a mesh-less Lagrangian method which discretises a system as a number 

of particles (or “mesh-points”) carrying the field variables.  These particles move and 

interact with each other. The SPH particles (in a 2D domain) are represented in Figure 

15 as a series of red spheres. Let’s consider any given particle in the problem domain 

Ω (i.e. the green sphere located in the center of the grid in Figure 15); this particle 

interacts with all the other neighbour particles within a given distance which is deter-

mined by the smoothing length “h”. The area of the smoothing function at the problem 

domain, also called support domain, is controlled by a smoothing or kernel function 
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“W” (the blue surface). The interaction of the particles is weighted by means of this 

smoothing kernel. This function which is based on random distributing interpolation 

points, is implemented to calculate the spatial derivatives equations of the system. The 

SPH simulations are carried out by solving the three fundamental conservation laws, 

i.e. conservation of mass, momentum and energy, in conjunction with the material con-

stitutive rule (and equation of state). 

 

 

Figure 15. SPH particles in a 2D problem domain 

SPH method is formulated by two fundamental steps. The first step, called kernel 

approximation, is the integral representation of a function f (and its derivatives) in the 

continuous form. This step is followed by discretisation of the continuous form of this 

kernel approximation into a finite number of particles. The kernel approximation 

(Monaghan, 1992) for any two given particles, i and j, is determined by equation (36). 

( ) ( ) ( ),i j i j jf x f x W x x h dx



= −   (36) 

  
Where, the smooth function W is given by equation (37). 

( )
( )

( )
1

,i j i jd

i j

W x x h x x
h x x

− = −
−

  (37) 

  
Where, “d” is number of space dimension and “θ” is an auxiliary function. Generally 

speaking, the higher order of the kernel function brings greater accuracy for the SPH 

scheme. However, due to time computation cost, it is not convenient to use very high 
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order kernel functions. Therefore, the most widely used kernel function is called cubic 

spline which can be defined by means of an auxiliary function θ according to the equa-

tion (38). 
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  (38) 

  
The parameter “κ” in equation (38) is a normalization constant, relies upon the 

number of space dimensions, so that the effective regime (and accordingly, the com-

putation time) is increased by means of higher values of this parameter. The equation 

(36), which is written in discrete notation, then should be transformed into a continu-

ous form as equation (39). 

( ) ( ) ( )
1

,
N

j

i j i j

jj

m
f x f x W x x h

=

= −   (39) 

  
The equation (39) is called the “particle approximation” and its summation is over 

all the finite number of particles “N”. In this equation, jm  and j  are the mass and 

density of any given particles inside the problem domain, respectively. 

 

5.3 FEM-coupled to-SPH  

Although the SPH method is generally more suitable, efficient and robust for prob-

lems involving severe distortions, its accuracy and efficiency is not as good as that of 

the FEM for problems with mild distortions (Johnson et al., 2002). Therefore, the idea 

of combining the advantages of these two numerical methods by using the FEM for the 

mildly distorted regions and the SPH for the highly distorted regions arises. The con-

cept of linking particle elements with a standard grid was originally represented by 

(Johnson et al., 1986). The same author proposed in (Johnson, 1994) an algorithm that 

demonstrates how the SPH particles interact with Lagrangian finite elements on a slid-

ing interface. A similar contact-like algorithm aiming to couple SPH elements to the 

quadrilateral finite elements was developed by (Attaway et al., 1994). Finally, an 
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algorithm able to automatically convert distorted finite elements into SPH particles 

was proposed in (Johnson et al., 2002).   

In the present study, the commercial software LS-DYNA was employed. The (auto-

matic) node-to-surface contact algorithm in LS-DYNA can govern the normal interac-

tion between finite elements and SPH particles, since both methods are based on the 

Lagrangian formulation (Xu and Wang, 2014). Inspired by the study presented in 

(Bresciani et al., 2016), in which a ceramic tile was modelled with an adaptive conver-

sion of solid elements to SPH particles technique, a similar approach was chosen to 

simulate the rock specimen in the present study. The keyword *Define_ADAP-

TIVE_SOLID_TO_SPH was implemented in LS-DYNA to adaptively transform a Lagran-

gian solid element into a certain number (1, 8 or 27 – see Figure 16) of SPH particles 

(Mardalizad et al., 2018b).  

The newly generated SPH particle(s) inherit all the mechanical properties of the 

eroded solid element, i.e. the mass, kinematic and constitutive properties. Therefore, 

the constitutive relationship of the damaged material (expressed by SPH particles) is 

the same as the initial material model specified for the intact meshed part. 

There are two user-input parameters related to this LS-DYNA keyword that defines 

the coupling approach (ICPL and IOPT). When both of these parameters are set equal 

to 1, the SPH particles are bonded with the solid elements as a single part (Xu and 

Wang, 2014). Finally, it is noted that either an automatic or an external eroding algo-

rithm (i.e. MAT_ADD_EROSION in LS-DYNA) should be used to define the element ero-

sion criteria (e.g. effective plastic strain, etc.). 

 

 

Figure 16. the SPH particles which are converted from a hexahedral 3D solid element. 
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Chapter 6 

6 Unconfined Compression Test 

The boreability, strength and deformability of rocks all have a great influence on 

deep hole drillings. The unconfined compressive strength (UCS) is one of the most sig-

nificant parameters to characterize the rock materials. It plays an important role to 

predict the boreability of the material (Ceryan et al., 2013; Kahraman, 2001). Bore-

ability is used widely in the design and classification of rocks. It is expressed by the 

maximum principal stress that the material can sustain under a uniaxial compression 

test. Since the UCS is a fundamental property of rock materials, a precise approach for 

its measurement is a necessary tool. A cylindrical specimen loaded by two compres-

sive platens in parallel to its main axis is considered conventionally as the configura-

tion of UC test. This conventional test, which is also suggested by the ASTM (ASTM, 

2004), presents a drawback. This negative feature is mainly due to the radial shearing 

forces generated at the contact interface after applying the load. These undesired ra-

dial forces are appeared because of the different elastic properties of the rock speci-

men and the steel of the testing apparatus. Another arrangement is suggested by Mogi 

(Mogi, 1966; Mogi, 2007) to design a specimen in order to reduce these drawbacks. 

The experimental and numerical analyses presented in this PhD project demonstrate 

that the Mogi’s suggested method, which is not tough and effortful to be prepared, lead 

to measure the unconfined compression strength more precisely. The experimental 

tests express that the variability of the results obtained by the Mogi’s method are sig-

nificantly lower than the ones of ASTM configuration. The assessments exploited 

based on numerical simulations justifies this issue when the existence of stress con-

centration will be considered at the rock-steel interface of conventional configuration. 

In this chapter, the methods and the results obtained during the experimental tests 

are reported. Both the ASTM and the Mogi configurations were implemented to per-

form these tests, and the results are discussed to highlight the differences. 

The unconfined compression test is conventionally performed by applying axial 

load to a cylindrical specimen with a specific length to diameter ratio. Different con-

figurations which have been studied to perform the unconfined compression test are 

expressed in Figure 17. The short and right cylindrical specimen represented as type 

1 is the configuration suggested by the ASTM standard. This configuration is in direct 

contact with the compressive platens of the apparatus. The different mechanical 
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behaviour of the rock specimen and the steel of compressive platens results in pro-

ducing radial shear forces at their interfaces. The two arrangements which are ex-

pressed as type 2 and type 3 in Figure 17 were developed to overcome the 

shortcomings of the type 1.  

Several lubricants have been applied at the interfaces to eliminate the friction 

forces presents in the type 2 arrangement. Initially it may seem that this type 2 con-

figuration is the preferred one because of the frictionless boundaries. Since the end 

conditions are principal planes, the deformation is homogeneous, and the state of 

stress doesn’t vary throughout the specimen. However, several vertical cracks propa-

gate, starting from the outer surfaces of the rock, after performing the test. The reason 

behind this crack formation is the intrusion of soft lubricator into the specimen (Mogi, 

2007). Therefore, it was concluded that the idea of type 2 configuration (using lubri-

cation to have frictionless boundaries) is not practical.  

The dog-bone specimen, which was suggested by Brace (Brace et al., 1966), is indi-

cated in type 3. Brace designed this method to avoid extending the effect of a mismatch 

at the both ends of the specimen into the region of the specimen where fracture occurs. 

This dog-bone specimen also yields to unsuitable for performing the UC test. It is 

mainly because of two drawbacks: first, the rough fabrication procedure, and second, 

the presence of the bending stresses. Therefore, Mogi in (Mogi, 2007) suggested an-

other configuration (which is expressed in type 4) to overcome the drawbacks of all 

the other configurations. Table 1 summarized the pros and cons of these configura-

tions.  

 

 

Figure 17. The configurations of rock specimens under a UC test (Mogi, 2007). 
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Table 1. the pros and cons of different arrangement types under an unconfined compression test 

(Mogi, 2007). 

 Type 1 Type 2 Type 3 Type 4 

Pros - easy fabrication - easy fabrication 
- no stress concentra-

tion 

- low clamping effect 

- No end effects 

- No bending 

- Easy fabrication 

Cons 
- stress concentration 

- clamping effect 

- vertical cracking 

at the end sur-

face 

- bending 

- difficult fabrication 
 

 

Two different experimental programs are performed within this PhD project by 

considering the type 1 and the type 4 as the methods of testing rock samples. The 

Mogi’s arrangement (Type 4) is aimed to counteract the major drawbacks of the con-

ventional configuration, which is the stress intensification presents at the interface of 

the specimen and steel plates of apparatus. Therefore, the Mogi’s configuration is ex-

pected to bring two main advantages, which are the precise determination of material 

strength; and the increase the re-producibility of the UC strength. 

 

 

Figure 18. Schematic representation of possible failure modes under the unconfined compres-

sion test; (a) axial splitting, (b) shearing along single plane, (c) double shear, (d) multiple frac-

turing, (e) along foliation, (f) Y-shaped  (Basu et al., 2013). 

Prediction of rock failure modes is a complex and challenging task. Several research 

studies were carried out; however, the understanding of this phenomena is still under 

investigation(Basu et al., 2013). It is suggested in (Bieniawski, 1984) that investigation 

of the physical models of the rock materials may provide useful information, especially 

when the failure modes are studied at laboratory scale, since there is no straightfor-

ward mathematical or numerical analyses model that can strongly ascertain the na-

ture of fracture development. In (Santarelli and Brown, 1989), the failed rock 

specimens of dolomite and sandstones under triaxial compression tests have been 

studied. Based on these investigations, it was concluded that failure can manifest itself 
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in various ways, which is depend on the microstructure of the rocks. A survey provided 

by (Basu et al., 2013) on granite (brittle crystalline rock), schist (anisotropic metamor-

phic rock), and sandstones (sedimentary rocks) claims that the failure mode under a 

UCT may be one of the types indicated in Figure 18. 

The uniaxial loading condition imposes both tensile stresses at the specimens so 

that the cracks initiate and propagate from the tip of the microcracks and other defects 

when these stresses exceed the local tensile strength at that tip. These propagating 

cracks are called wing cracks. The predominant failure mode of the ASTM arrange-

ment is expected to be axial splitting since wing cracks cannot be tolerated and even-

tually will be aligned parallel to the maximum principal stress (Basu et al., 2013). 

However, the failure mode of the Mogi’s configuration is supposed to be yet another 

type. When the wing crack propagation is inhibited, the coalescence of adjacent wing 

cracks, or of wing cracks in close proximity generated from the tips of suitably ori-

ented microcracks, takes place in order to release the strain energy in the form of a 

shear fracture. Therefore, it is assumed that the presence of the epoxy cap stops the 

propagation of the wing cracks and so, the specimen fails by the shear mode (Mogi, 

2007). 

6.1 ASTM configuration 

The first series of the unconfined compression tests have been performed based on 

the protocols of the ASTM standard (ASTM, 2004). According to the specifications pro-

vided by the standard, the rock specimens should have cylindrical shape with a length 

to diameter ratio, 0L D  between 2 and 2.5. The dimeter of these specimens should be 

greater than ten times the maximum grain size. Sandstone is a medium-grained sedi-

mentary rock which has a sand size between 0.06 to 2 mm. The geometry data of the 

specimens are reported in Table 2 (Mardalizad et al., 2018b). 

Table 2. Dimension of the specimens - the ASTM standard (Mardalizad et al., 2018b). 

Specimen  Length, L0 [mm] Diameter, D [mm] ≅ L0/D 

A1 41.3 20.4 2 

A2 40.9 20.4 2 

A3 40.8 20.4 2 

B1 44.8 20.5 2.25 

B2 44.9 20.4 2.25 

C1 49.9 20.4 2.5 

C2 49.8 20.4 2.5 
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The testing machine which is used for the ASTM standard configuration is indicated 

in Figure 19. The cylindrical specimen is compressed between the two platens and the 

upper compressive platen is spherically seated. This upper platen is displacement con-

trolled, while the lower platen is fixed. The seating sphere has been properly lubri-

cated and centred on the specimen faces. Its diameter should be higher or equal as the 

specimen’s diameter and less than its double. The platens should have a diameter of 

at least the same as the specimen’s diameter and a minimum of thickness to diameter 

ratio equal to 0.5. The upper platen should be displaced vertically at a constant speed 

of 0.1 mm/min. In this way, the failure of specimens may occur between 2÷15 min as 

prescribed by the standard. An axial extensometer is placed at the mid height of the 

specimen to measure the axial strain. Due to the presence of friction forces, the state 

of stress can vary throughout the specimen and the deformation is not completely ho-

mogenous. Therefore, the gauge length of the axial extensometer used for the ASTM 

configuration is equal to 8 mm (less than 50% of the length of shortest specimen) in 

order to be sure that the axial deformation at this span remains homogenous. The ap-

plied loading amounts as well as the crosshead displacement were measured automat-

ically by the testing apparatus (Mardalizad et al., 2018b). 

 

Figure 19. UC test apparatus – the ASTM configuration (Mardalizad et al., 2018b). 

According to the protocols of ASTM standard (ASTM, 2004), the Young’s modulus 

can be obtained from this experimental test by considering the stress-strain diagram 

according to one of the following methods:  

• The tangent modulus at a percentage of the failure stress E%, i.e. E25 and E50.  
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• The average slope of the straight line of the stress-strain curve Eav. 

• The secant modulus from zero to the failure stress Es. 

The uniaxial compressive strength, σuc of a material can be calculated as P/A, where 

P is the maximum load measured by the testing machine and A is the cross-sectional 

area of the specimen. Each experimental result of this study is reported as an average 

value and a repeatability limit. The repeatability limit, r is equal to 2√2∙Sr, where Sr is 

the repeatability standard deviation (the standard deviation of the values was ob-

tained with the same testing apparatus and the same material). By definition, the prob-

ability of two identical tests which do not differ from one another by more than the 

repeatability limit, should be about 95%. The stress-strain diagrams for the ASTM 

standard configuration specimens are shown in Figure 20. As can be seen in Figure 20, 

the post-failure behaviour is not recorded in the stress-strain diagrams due to the lim-

itation of testing apparatus. As discussed in (Hudson and Harrison, 2000), it may be 

possible to obtain the complete stress-strain curve (i.e. the post-failure behaviour) for 

the rock materials, if the stiffness of the apparatus is greater than the absolute value 

of the slope at any point on the descending portion of the stress-strain diagram. In this 

case, the system is continuously stable which permits reaching the post-failure area. 

It seems that the stiffness of testing apparatus used for this experimental campaign is 

not high enough to capture these data (Mardalizad et al., 2018b). 

 

Figure 20. The stress-strain curves of an unconfined compression test; the ASTM’s layout 

(Mardalizad et al., 2018b). 
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The uniaxial compressive strength and the different extrapolation of the elastic 

modulus for each specimen, reported in Table 3, were obtained from the experimental 

data expressed in Figure 20. 

Table 3. Uniaxial compressive strength and the elastic modulus for the standard configuration 

specimen (Mardalizad et al., 2018b). 

Specimen σuc [MPa] E25 [MPa] E50 [MPa] Eav [MPa] Es [MPa] 

A1 62.72 12587 15679 15522 11050 

A2 72.73 8663 13224 12804 10121 

A3 72.34 9411 15039 14525 9400 

B1 61.20 13809 16349 16046 13778 

B2 59.443 15925 18766 18534 17309 

C1 70.94 14664 16575 16308 13260 

C2 48.73 15549 17648 17339 15351 

 

Since the ratio between the repeatability limit and the average value of a parameter 

can be considered as a benchmark to measure its variability, some of the experimental 

data (and their corresponding r/average values) obtained for the Pietra Serena by 

both the ASTM and the Mogi configurations are expressed in Table 6.  

The high amount of E25 variability (r/average = 0.38) of the Pietra Serena (which 

was measured in this research work) demonstrates an undesired issue. This issue can 

be explained by Figure 20, where a nonlinear regime is present at the beginning of 

almost all the stress-strain diagrams. Moreover, the results of experimental tests on 

different specimens at this regime are not the same and differ significantly. It is con-

cluded that this response may have two main causes: (1) very smooth surface finishing 

on rock specimens is difficult to obtain and the upper compressive platen therefore 

needs to be adjusted automatically and aligned to the surface of the specimens at the 

beginning of the test; (2) the presence of the high amount of pre-existence micro-

cracks in the specimens created during their fabrication process. It is worth mention-

ing that the density of these micro-cracks is much higher near the outer edges of the 

specimens than in the middle region. 

It has been tried to reduce the effect of this phase (that is more related to specimen 

issue) by means of a post-processing step. For this purpose, first the linear elastic re-

gime was determined. Then the E50 elastic modulus of each specimen was measured. 

The elastic regime then was expanded with the same elastic modulus up to the null 

stress level. Finally, the whole curve was shifted along the strain axis to be started 
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from the origin. The conclusive results of the post-processing procedure are expressed 

in Figure 21 (Mardalizad et al., 2018b).  

The fractured specimens of the ASTM arrangement are shown in Figure 22 exhib-

iting an almost identical failure mode for all the specimens. A crack initiates at the edge 

of the specimen and propagates mainly in the vertical direction (parallel to the axis) 

demonstrating that the failure mode of the ASTM configuration test is in accordance 

to the definition of the axial splitting failure mode which is schematically represented 

in Figure 18. 

 

Figure 21. The standard configuration results of an unconfined compression test after post pro-

cessing (Mardalizad et al., 2018b). 

 

Figure 22. The broken specimens – the ASTM configuration (Mardalizad et al., 2018b). 

       

 

A1 A2 A3 B1 C1 B2 C2 
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6.2 Mogi’s configuration 

Due to the different elastic properties of the steel of the testing machine platen and 

the rock specimen, radial shearing forces are generated at the contact interface after 

applying the compressive load. These forces produce an undesired clamping effect at 

the end of specimen. This issue raises two potential problems: (a) due to the unex-

pected and sudden shearing stress mutation, the stress concentration occurs at the 

specimen outer edge near the interface, (b) if a crack propagates into this area, the 

corresponding fracture growth is potentially prevented. These two issues may affect 

the realistic strength of a rock. As the stress concentration tends to decrease the 

strength, the fracture growth prevention tends to increase it, however the factors al-

most never cancel each other’s effect (Mogi, 2007). 

The drawback caused by these undesirable forces can be strongly reduced by an 

enhanced arrangement designed by Mogi (see Type 4 in Figure 17). It consists of a 

cylinder connected to two aluminium end pieces by epoxy. The thickness of the epoxy 

is gradually decreased towards the middle of the specimens to form a smooth fillet in 

order to eliminate the stress concentration at the contact interface of rock and steel. 

However, it is not critical to obtain an exact surface of the fillet since the epoxy has an 

elastic property lower than most rocks. 

The main disadvantage of Mogi’s configuration is since the state of stress varies 

through the specimen. Due to this issue, the deformation is not homogenous along the 

entire length of the specimen. However, this non-homogeneity is more observed near 

the end surfaces and in a large span around the mid-height of the specimen the dis-

placement is almost homogenous. Therefore, during this research study it was tried to 

overcome this drawback by using an axial extensometer (located around the mid-

height) that its gauge length is much shorter than the length of specimens. In this way, 

it is expected that what extensometer measures will be the (almost) homogenous dis-

placement. 

An alignment cover was designed and fabricated in order to perfectly adjust the 

axis of the cylinders, i.e. the specimen and each of the steel end pieces assuring also 

that the two ending surfaces are parallel. The structural adhesive 3M Scotch Weld 

DP490 was used to attach the end bases to the specimens. Figure 23 indicates the pro-

cedures for preparing the specimens of the Mogi’s configuration. The outer edges were 

smoothed initially by sandpaper and then by a fine rasp and then cleaned with acetone 

(see Figure 23a). The primary configuration was fixed by using the alignment cover 

and one drop of the acrylic glue between the end pieces and the specimen (see Figure 
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23b and Figure 23c).  The specimens remained untouched for two days. Then the sec-

ondary gluing was performed using the structural adhesive 3M Scotch Weld (see Fig-

ure 23d). Again, the specimens remained untouched for one week, in order to reach 

the full curing period of Scotch Weld. 

The specimen dimensions are listed as the average of the three measurements and 

their 0L D  in Table 4. It should be noted that the L0 parameter for the Mogi configu-

ration is the distance between the two-inner sides of the epoxy layers and thus differs 

from the ASTM parameter. The specimen of class C has a slightly lower 0L D  ratio and 

was used to investigate if any differences occur between the two tests. The minimum 

suggested 0L D  ratio should be greater than 2, according to (Mogi, 2007). As reported 

below, the experimental result of specimen C3 was unacceptable, was therefore not 

considered for further investigation (Mardalizad et al., 2018b). 

Table 4. Dimensions of the specimens - Mogi’s layout (Mardalizad et al., 2018b). 

Specimen  Length, L0 [mm] Diameter, D [mm] L0/D 

C3 37.2 20.4 1.8 

D1 46.8 20.4 2.3 

D2 45.2 20.4 2.2 

D3 49.1 20.4 2.4 

E1 65.0 20.5 3.2 

E2 68.7 20.3 3.4 
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Figure 23. The pre-processing preparation of the Mogi’s layout specimen; (a) the outer edges 

were smoothed initially by a fine rasp; (b) one drop of an acrylic glue was applied to the end 

piece and the specimen interface; (c) the primary configuration was fixed via an alignment 

cover; (d) the structural adhesive 3M Scotch Weld was applied for the secondary gluing; (e) the 

specimens remained untouched for one week (Mardalizad et al., 2018b). 

The testing apparatus for the improved configuration is shown in Figure 24 (which 

is identical with the standard configuration). However, the diameter of upper platen 

is larger because the diameter of the steel end base of the Mogi’s specimen has larger 

diameter than the one used in the standard configuration. An axial extensometer with 

a longer gauge length (20 mm) was used for specimen E. 

 

 

Figure 24. UC test apparatus - the Mogi’s configuration (Mardalizad et al., 2018b). 

The stress-strain diagrams of the Mogi’s specimens are shown in Figure 25. The 

unconfined compressive strengths and different extrapolation of elastic modulus for 

each specimen are also given in Table 5. Identical mechanical properties which were 

provided for the ASTM configuration (reported in Table 3) can be measured for the 

Mogi’s arrangement and are reported in Table 6. The stress strain diagram and the 

mechanical properties of specimen C3, expressed in Figure 25 and Table 5, respec-

tively, show inappropriate responses and approve the Mogi’s suggestion about the 

range of the 0L D  ratio ( 0L D  ratio of specimen C3 is equal to 1.8). Therefore, the 



50 Chapter 6  
 
 

experimental data related to this specimen is not considered for computing the aver-

age values in Table 6. 

 

Figure 25. The stress-strain curves of an unconfined compression test; the Mogi’s layout 

 

Table 5. Uniaxial compressive strength and the elastic modulus for the Mogi’s specimen 

(Mardalizad et al., 2018b). 

Specimen σuc [MPa] E25 [MPa] E50 [MPa] Eav [MPa] Es [MPa] 

C3 60.66 11303 12195 12012 8980 

D1 69.83 15954 21452 21105 18721 

D2 72.66 15342 17055 16798 12994 

D3 66.85 13474 15355 15123 12321 

E1 72.32 15022 17220 17196 13776 

E2 76.19 16094 17943 17657 12873 

 

Table 6. The mechanical response of the Mogi’s layout under an unconfined compressive test 

(Mardalizad et al., 2018b). 

  σuc [MPa] E25 [MPa] E50 [MPa] 

 average 64.02 12944 16183 

Pietra Serena r [MPa] 24.7 8191 5075 

(ASTM) r/average 0.38 0.63 0.31 
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 average 71.57 15177 17805 

Pietra Serena r [MPa] 9.84 2966 6360 

(Mogi) r/average 0.14 0.19 0.35 

 

The fractured specimens of the Mogi arrangement are shown in Figure 26. Unlike 

the specimen of the ASTM configuration, shear planes are observed, and the crack 

propagates through them. The fracture pattern of all the specimens are very similar 

and in accordance to the shearing along single (or double) plane failure mode which 

is schematically represented in Figure 18. 

 

Figure 26. The broken Mogi’s configuration specimens (Mardalizad et al., 2018b). 

6.3 Comparison of Mogi and ASTM results 

As can be seen in Table 6, the average unconfined compressive strength of the 

Mogi’s arrangement is almost equal to (slightly higher than) the one obtained with the 

ASTM standard configuration. The variability of the 25% tangent modulus of the ASTM 

configuration, E25 is significantly higher than the Mogi variability, while the variability 

of their 50% tangent modulus, E50 are almost equal. The Mogi’s approach, therefore 

prevents the undesired effects of the pre-existence micro-cracks close to the ends of 

the specimens. The Mogi specimens do not show the initial non-linear behaviour, 

mainly, due to their higher length. The Mogi’s layout consists in longer specimens; 

therefore, the measurement of the displacement is less affected by the presence of the 
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micro-cracks, which are concentrated near the end bases of the specimen (where the 

glue fillet is also present). If the specimen is long enough, the cracks due to the ma-

chining at the bases are not present in the zone where the extensometer is applied. 

Therefore, the non-linear deformation due to the presence of the cracks is not rec-

orded by the extensometer. In addition, the glue fillet covers partially the zone where 

these cracks are present. Indeed, also longer ASTM specimens (B and C) show lower 

initial non-linear phase. Moreover, due to the utilization of steel end pieces at the 

Mogi’s layout and their significant surface finishing, the upper compressive platen is 

almost perfectly aligned from the beginning of the test. The effects of these features 

are clearly visible in the comparison of Figure 27a and Figure 27b, where the post-

processed stress-strain curves of the ASTM configuration exhibit an almost identical 

behaviour as the Mogi’s arrangement. 

As previously remarked, the two types of specimens show different failure modes. 

The Mogi’s specimens have a shear failure mode (see Figure 26), while the compres-

sive failure mode (vertical crack propagation parallel to the loading axis) was ob-

served for the standard arrangement (see Figure 22). 

 

 

Figure 27. Comparison of the Mogi’s configuration with; (a) the original results and; (b) the post-

processed results of the ASTM layout (Mardalizad et al., 2018b). 

 

(a) (b) 



 

Chapter 7 

7 Quasi-static Brazilian disk test 

The maximum principal tensile stress is one of the key parameters in the descrip-

tion of the mechanical behaviour of rocks. Due to several issues, including the poor 

tensile resistance of rocks, performing a conventional direct tensile test is particularly 

difficult. However, the tensile strength of a brittle material can be measured indirectly 

by means of the Brazilian test. The test consists of a compressive loading applied to a 

cylindrical disk periphery. This loading condition initiates a fracture along the com-

pressive diametral direction, where the maximum principal tensile stress is dominant. 

Therefore, the splitting tensile strength measured by the Brazilian test is representa-

tive of the maximum principal tensile strength of a material. Different failure modes of 

a rock material under Brazilian disk test was studied by (Basu et al., 2013). This study 

suggests categorizing the failure modes by four classes: (a) fracture is located in the 

central part, (b) non-central fracture which are mainly curved lines, (c) layer activa-

tion that is mainly formed as a combination of central and non-central fracture modes 

and (d) central multiple fracture that develops to release the high amount of stored 

fracture energy. The investigation of the fracture pattern of sandstones, which is car-

ried on (Basu et al., 2013), consider the first type (fracture in central part) as the often 

fracture pattern. It is due to the fact that the compression-induced tensile stress is not 

strong enough to exploit the foliations for the strain energy, so that it will be released 

before it can form non-central or multiple central fractures.  

 

Figure 28. Schematic representation of different failure modes of rock materials under Brazilian 

disk test (Basu et al., 2013). 

The identification of the location where the maximum tensile strain takes place is 

another challenging issue. It can be described by a transition failure mode between a 
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tensile failure mode that refers to the diametral splitting fracture, and a shear failure 

mode, associated to the parts close to the loading platens (Li and Wong, 2013). 

Table 7. The geometrical data corresponding to different classes of Brazilian disk test samples. 

 [ ]mmmd  [ ]mmmt    [ ]mmmd  [ ]mmmt  

G1 39.7 16.1 H1 39.8 20.6 

G2 39.7 15.4 H2 39.8 20.7 

G3 39.7 16.2 H3 39.5 20.9 

 H4 39.7 20.8 

H5 39.7 20.3 

 

 [ ]mmmd  [ ]mmmt    [ ]mmmd  [ ]mmmt  

I1 39.6 23.9 J1 39.6 27.6 

I2 39.8 24.0 J2 39.6 27.7 

I3 39.7 23.9 J3 39.7 28.3 

 J4 39.6 27.7 

 

The Brazilian disk tests were performed according to the protocols of the ASTM 

standard (Standard, 2008). According to the standard, the cylindrical specimens 

should have a thickness to diameter ratio ( m mt d ) between 0.2 and 0.75. Also, the 

specimen diameter should be greater than (at least) ten times the maximum grain size. 

The sandstone is a medium-grained clastic sedimentary rock, with a sand size between 

0.06 to 2 mm. The geometry data of the specimens are reported in Table 7. 

According to Table 7, the specimens were grouped into four classes, named; G, H, I 

and J, based on their thickness, while their diameters were almost identical. As shown 

in Figure 29a, the testing apparatus consists of an upper compressive platen which is 

displacement controlled and a lower steel platen which is rigid. The upper platen is 

moved downwards to apply a compressive load. The velocity of this platen is set to 

0.15 mm/min to assure that failure occurs between 1 and 10 min as prescribed by the 

standard. 

Figure 29b indicates a steel bearing block with a curved surface that is designed 

and fabricated within this experimental campaign. This block is positioned in between 

the upper platen and the specimen to decrease the contact stresses as suggested by 

the standard. Since the splitting tensile strength measured by the Brazilian test is com-

puted based on a line load, the applied load should be limited to a narrow band. How-

ever, the narrow strip loading may create extremely high contact stresses which cause 

premature cracking. Investigations provided in the standard indicate that if the arc of 

contact remains smaller than 15°, the error in deriving the principal tensile strength 
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is less than 2 %, while the chance of the premature cracking existence is decreased 

dramatically. Therefore, the curvature radius of this supplementary bearing plate was 

designed so that its arc of contact with the specimen does not exceed 15° and the width 

of contact is less than 6.5 mm (which refers to 40 ⁄ 6 ≅6.5). 

 

 

Figure 29. The Brazilian disk test; (a) apparatus, based on the ASTM configuration, (b) curved 

bearing block. 

According to the standard, grease should be used to decrease the friction between 

the specimen and the testing apparatus. It can also provide a better self-adjustment of 

the specimens during the loading. The applied load of the compressive platen was 

measured automatically by the load cell of the apparatus. The measurement of the dis-

placement of the specimen is not described in the ASTM standard. It was decided to 

measure the displacement of the specimen by means of a displacement gauge contact-

ing extensometer. As can be seen in Figure 29a, the flexible tip of the extensometer is 

located at the center of the lower face of a curved bearing block. However, since the 

extensometer itself is fixed to the fixture of the testing machine, the displacements of 

all the components in between are measured. Therefore, in the configuration ex-

pressed in Figure 29a, the experimental data provided by the extensometer contains 

the displacements of both the specimen and the cylindrical steel blocks (which is 

placed between the specimen and the fixture of the apparatus). This set of data there-

fore doesn’t represent the actual displacement of the specimen, but since the mechan-

ical properties of the steel blocks are known, they can be replicated in the numerical 

simulations as well. This set up is thus a convenient way to record the experimental 

data of the Brazilian disk test in terms of displacement. 

The tensile splitting strength is defined by means of equation (40). 
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Where, maxF is the maximum load recorded during the tests, md  and mt  are the di-

ameter and thickness of the specimens, respectively. The standard suggests reporting 

the repeatability limit as well. The experimental results of the Brazilian disk test in 

terms of maximum force and its corresponding displacement, the average tensile split-

ting strength and repeatability limit are listed in Table 8. The ratio between the re-

peatability limit and the tensile splitting strength is also reported as a measure of the 

variability of the results. 

The variability of the tensile splitting strength of all the four classes of specimens 

is acceptable and in agreement with the results provided by other experimental pro-

grams, i.e. (Standard, 2008). The force – displacement diagrams of each classes are 

shown in Figure 30, separately.  

Figure 31 illustrates the broken specimens of the Brazilian test performed within 

this research work. The black lines and the dashed red lines represent the diametral 

loading direction and the fracture pattern, respectively. The tensile failure mode is ob-

served for all types of specimens. The fracture pattern was independent of the thick-

ness-to-diameter ratio and the crack initiated near the interface between the specimen 

and the bottom steel plate and propagated along the loading direction. The failure 

modes observed during the experimental tests are also in agreement with the re-

ported results for sandstones under a Brazilian test in (Basu et al., 2013); where the 

specimen failed by a central crack mainly parallel to the loading direction. 

Table 8. The experimental results of the Brazilian disk test for the four different samples. 

 [ ]kNmaxF  [ ]mmmaxl  [ ]ˆ MPabt  

G1 5.835 0.198 5.80 

G2 6.155 0.177 6.39 

G3 5.266 0.235 5.21 

Average   5.80 

Repeatability   1.67 

Repeatability/Average  0.28 

 

 [ ]kNmaxF  [ ]mmmaxl  [ ]ˆ MPabt  

H1 7.153 0.191 5.55 

H2 6.708 0.182 5.19 

H3 6.445 0.203 5.22 

H4 7.108 0.157 5.49 

H5 7.294 0.182 5.48 
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Average   5.39 

Repeatability   0.48 

Repeatability/Average  0.09 

 

 [ ]kNmaxF  [ ]mmmaxl  [ ]ˆ MPabt  

I1 7.889 0.220 5.28 

I2 10.324 0.264 6.90 

I3 9.145 0.283 6.15 

Average   6.11 

Repeatability   2.29 

Repeatability/Average  0.37 

 

 [ ]kNmaxF  [ ]mmmaxl  [ ]ˆ MPabt  

J1 8.513 0.320 4.94 

J2 8.772 0.279 5.09 

J3 9.762 0.294 5.527 

J4 7.666 0.254 4.45 

Average   5.01 

Repeatability   1.25 

Repeatability/Average  0.25 

 

 

Figure 30. The force-displacement diagrams of the Brazilian disk test for the four different clas-

ses of specimens.  
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Figure 31. The broken specimens of the Brazilian disk test. 
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8 Flexural test 

Rock engineers perform the Brazilian and the Flexural (four-point bending) test to 

investigate the tensile behaviour of rock materials. These tests are designed to inves-

tigate indirectly a normal tensile stress state (at least) in a specific portion of the spec-

imen. The numerical and experimental investigation of the mechanical behaviour of a 

middle strength rock material which is subjected to a Four-Point Bending (or Flexural) 

test is the aim of this research study. 

The Four-Point Bending test is an indirect way to estimate the tensile strength, 

which consists of a beam in flexure. The strength of the beam, in this test, is expressed 

mainly in terms of modulus of rupture, which usually tends to overestimate the tensile 

strength up to one-hundred percent (Biolzi et al., 2001). This overestimation is mainly 

caused by the hypothesis of the test which assumes that the mechanical characteris-

tics, i.e. the stress-strain behaviour, are linear all the way through the critical cross-

sectional area of the beam (Jaeger and Cook, 1979). Due to the sensitivity of this test 

to the boundary conditions, it may be inaccurate in large displacement (which is sim-

ilar to the direct tensile test) (Cattaneo and Rosati, 1999). In addition to these difficul-

ties, the strength of quasi-brittle materials, e.g. rock, is considered to be dependent on 

their size and scale (Bažant and Kazemi, 1990; Biolzi and Labuz, 1993; Labuz and 

Biolzi, 1991). However, the Flexural test is considered as the simplest method to in-

vestigate the creep (time-dependent behaviour) of rock (Price, 1964), and accordingly, 

represents an interesting alternative for the investigation of the stress-strain relation-

ships (Laws, 1981; Mayville and Finnie, 1982). The experimental campaign designed 

for this research study follows the protocols of the ASTM standard and the results can 

therefore be easily compared with similar studies, i.e. on other materials (Mardalizad 

et al., 2017c). 

The experimental configuration for the Flexural test is designed based on the pro-

tocols of the ASTM standard (ASTM, 1998). This configuration consists of a rectangu-

lar cubic specimen which is supported by two fixed rollers near the end of its length 

span (see Figure 32a). Thus, the specimen is loaded vertically by means of two com-

pressive rollers at a certain distance from the center of the specimen. This symmetrical 

configuration causes nominally zero shear forces, and accordingly constant bending 

moment between the two compressive rollers. The normal tensile and compressive 
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stresses appear at the top and bottom of this middle span, respectively. According to 

the beam theory, the maximum principal stress corresponding to the ultimate loading 

value can be determined, which is called the flexural strength and gives a rough ap-

proximation of the principal tensile strength.  

The flexural strength tends to overestimate the tensile strength, because the meas-

uring process considers a linear relationship (as the stress-strain behaviour of the ma-

terial) at the beam critical cross-section. Furthermore, all the materials have a certain 

amount of anisotropic level in their structure (Biolzi et al., 2001). The flexural strength

flex [MPa], which is given by the equation (41), can be considered as a parameter to 

validate the numerical models. 

2

3

4
flex

WL

bd
 =   (41) 

  
Where, W was measured as the maximum applied force. The experimental tests 

within this study were performed on five specimens of Pietra Serena sandstone with 

the same geometries. The span length L, width b and height d of all the specimens were 

equal to 318, 102 and 32 [mm], respectively. However, the total length of the specimen 

was measured as 381 [mm]. 

Two pairs of steel rods were embedded to the testing apparatus (see Figure 32). 

The axes of lower rods were fixed to the bed of testing machine while the upper rods 

were displacement controlled by means of a compressive platen. According to (ASTM, 

1998) the speed was set to 0.2 [mm/min] in order to apply the load at a uniform stress 

rate of 4.14 [MPa/min]. 

 

Figure 32. (a) ASTM arrangement of Flexural test (ASTM, 1998); (b) corresponding experimental 

layout of this research work (Mardalizad et al., 2017c). 

 

Specimen 

𝐿

2
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This study is aimed to investigate the mechanical response of the rock based on 

both the maximum loading and the displacement. The applied load of the compressive 

platen was measured automatically by the load cell of the apparatus. It is not men-

tioned how to measure the displacement of the specimen on the ASTM standard. It 

was decided to measure the displacement of the specimen by means of a displacement 

gage contacting extensometer. As can be seen in Figure 33, the flexible tip of the ex-

tensometer is located at the center of the lower face of specimen. However, since the 

extensometer, itself, is fixed to the fixture of the testing machine, the displacements of 

all the components in between are measured. Therefore, in the configuration ex-

pressed in Figure 33, the experimental data provided by the extensometer contains 

the displacements of the specimen, the fixed rollers and the steel blocks between the 

rollers and the fixture of the apparatus. This set of data therefore doesn’t represent 

the actual displacement of the specimen, but since the mechanical properties of the 

rollers and the steel blocks are known, they can be replicated in the numerical simu-

lations as well. This set up is thus a convenient way to record the experimental data of 

the flexural test in terms of displacement. 

 

 

Figure 33. The extensometer set up on the flexural test configuration (Mardalizad et al., 2017c). 
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The broken specimens after performing the flexural test are indicated in Figure 34. 

In all of the specimens, cracks initiate at the lower part, which is subjected to tension 

stresses and then propagate in an upward manner through the depth. Also, the cracks 

are located under (and close to) the section of the specimens which are in contact with 

the moving rods. 

 

Figure 34. The broken specimens after performing the flexural test; (a) front view; (b) isometric 

view (Mardalizad et al., 2017c). 

The maximum load, displacement and the flexural strength are reported in Table 9, 

separately for each specimen and then as average values, 95% Confidence Interval 

(“95% CI”) and standard deviations. Figure 35 also expresses the load-mid span dis-

placement diagram of the all specimens. 

Table 9. the experimental results of the flexural test (Mardalizad et al., 2017c) 

 
Maximum Load 

[kN] 

Maximum 

displacement 

Flexural 

Strength [MPa] 

Specimen K1 3.59 0.502 8.3124 

Specimen K2 4.258 0.662 10.024 

Specimen K3 2.963 0.313 6.831 

Specimen K4 4.16 0.669 9.7927 

Specimen K5 4.206 0.628 9.9576 

    

Average value 3.8354 0.5548 8.9836 

“95% CI” of average value [3.1433; 4.5275] [0.36737; 0.74223] [7.2530; 10.7140] 

Standard deviation 0.55736 0.15095 1.3937 

 

Specimen of Test #2 

Specimen of Test #1 

Specimen of Test #5 

Specimen of Test #4 

Specimen of Test #3 

Specimen of Test #2 

Specimen of Test #1 

a) b) 
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Figure 35.  The load-displacement diagram of the flexural test (Mardalizad et al., 2017c). 

The shape of the load-mid span displacement, represented in Figure 35, indicates a 

significant non-linear behaviour until the failure. The failure is denoted by a sudden 

drop of the loading level. A study by (Meda, 2003), investigated Pietra-Serena sand-

stone under a flexural test. They performed the tests on specimens with different 

shapes and considered a notch in the middle-span of the specimens to assure that the 

crack takes place at the center. The experimental data provided by Meda et al. are in a 

good agreement with the results obtained during this research work where the geom-

etries are similar to each other; i.e. the flexural strength and the load-displacement 

diagrams of the Meda’s work were reported as 9.1 MPa and 3.4 mm, respectively. 





 

Chapter 9 

9 Triaxial Compression test 

This experimental program includes a series of triaxial tests at increasing confining 

pressures. These tests were carried out with a triaxial apparatus available at geotech-

nical division of the Material Testing Laboratory, Politecnico di Milano (Cividini et al., 

1992) by employing the protocols of the ASTM standard (ASTM, 2004). This apparatus 

is mainly composed of a cell and a loading frame (see Figure 36). The cell is designed 

to perform tests on 100 mm diameter samples up to 200 mm height, and to withstand 

a confining pressure up to 50 MPa. 

 

 

Figure 36. The triaxial testing apparatus (Cividini et al., 1992). 
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The cell rests on the circular bottom plate of the loading frame which moves up-

wards to increase the axial load. The loading frame in conjunction with the load cell it 

is equipped with, allow a maximum loading capacity of 2200 kN. Both the confining 

pressure and the load frame are driven by two independent servo-hydraulic system, 

with a close loop control managed by a dedicated controller. The equipment allows 

the performance of either pressure/load-controlled or displacement-controlled tests 

or a combination of the two. 

The feedback control for the confining pressure includes a pressure transducer 

HBM - Model P3M (measuring range: 0÷50 MPa, accuracy: 0.2%), while the applied 

force is measured by a load cell BLH - Model CP21 (capacity 2225 kN, accuracy 0.05% 

RO). The axial displacements are measured by means of a system which refers the 

measurement on the axial distance between the upper and the lower surface of the 

sample. This is achieved by means of an external frame, which lies on an aluminium 

rod, in contact with the top surface of the specimen through a top cap hole, and which, 

at its bottom, holds an LVDT (NE – Model SE375 – Class A). The LVDT, in its turn, main-

tains the contact with the specimen bottom base (with the help of a second aluminium 

rod inserted into a bottom hole) thanks to its return spring. Therefore, any changes in 

the specimen height cause a correspondent change in the transducer rod position.  

The triaxial tests of this experimental campaign was performed on 5 cylindrical 

specimens, with an identical nominal diameter and a height equal to 100 mm and 200 

mm, respectively. Each sample was jacketed with a reinforced 3 mm thick rubber 

membrane. After being placed on the cell base plate, the top cap was applied to the 

upper base and the membrane was tightened to both the top piston and the bottom 

base, by mean of two worm gear hose clamps, to prevent the hydraulic oil from pene-

trating the rock during the test. Finally, the cell was assembled and inserted into a load 

frame with all hydraulic lines properly connected. 

All specimens were subjected to a stress state (see Figure 37) assumed to be iso-

tropic, which increased at an average constant rate of 0.3 MPa/s (AB) up to the re-

quired value   for each test (10, 20 or 28 MPa). In fact, to accurately control the 

isotropic stage and prevent any test failure, each increase stress consisted of two 

steps: an initial increase of s1 followed by a s3 increase at constant s1. The maximum 

difference between s1 and s3 was always maintained below 0.1 MPa. The samples were 

then sheared under displacement control settings at a constant rate of 0.001 mm/s up 

to failure (BC).  
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Figure 37. The diagram of the stress path for the triaxial compression test. 

The test results are summarized in Figure 38 and Figure 39 for the isotropic stress 

and the shear stages, respectively. Figure 38a clearly shows the isotropic stress state 

increase procedure as previously described. Figure 38b presents the specimen defor-

mations during this increment, showing the almost similar behaviour of all specimen 

except for specimen B2 which differed slightly from the others.  

 

 

Figure 38. The confining pressure-axial strain diagrams; (a) isotropic stage, (b) deviatoric stage. 

A similar difference can also be identified in Figure 39 and Figure 40, in which all 

the shear stages of all the performed tests are compared. The maximum deviatoric 

sample B2 differs from the other test results since the maximum deviatoric load rose 

to a value comparable with the 28 MPa tests (see Table 10). Also, the initial stiffness 
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appeared to be comparable with the 28MPa tests. The reason of this undesired re-

sponse of specimen B2 (lower compressibility in the isotropic stage and a higher re-

sistance in the shear stage) is probably due to both the specimen arrangement in the 

load cell and the mechanical locking along the failure surface, which also caused an 

immediate decrease of the deviatoric stress after failure. A comparison of the failure 

mode of each specimen is also presented in Figure 41. 

 

 

 

 

Figure 39. The experimental results of the triaxial compression tests, in terms of deviatoric 

stress-axial strain. 
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Figure 40. The experimental results of the triaxial compression tests, in terms of deviatoric 

stress-hydrostatic pressure. 

Table 10. The experimental results of the triaxial compression test for three levels of confining 

pressures. 

 [ ]MPa y  [ ]MPau  [ ]MPar   [ ]GPa25E  [ ]GPa50E  [ ]GPasE  [ ]GPaavE  

A1 89.48 133.61 61.84 20.46 23.62 16.80 23.63 

B1 116.58 266.13 78.70 24.48 25.52 16.89 25.59 

B2 132.75 187.14 86.87 27.88 30.22 23.43 29.70 

C1 128.36 189.43 96.12 28.01 27.83 17.35 26.55 

C2 131.97 190.58 101.31 27.65 27.51 17.45 26.79 

 

 

Figure 41. The broken specimen of the triaxial compression test. 
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10 Punch penetration test 

The penetration of a tool into rock by indentation is the basic process in various 

excavation machines, such as roller disc cutters and percussive drills (Chen and Labuz, 

2006; Kahraman et al., 2012; Kalyan et al., 2015). Depending on the rock strength, 

there are two basic procedures for rock excavation: shearing for soft to medium 

strength rocks, and indentation for medium to hard rocks (Fowell, 1993). The oil and 

gas reservoir rocks, e.g. Berea sandstone, are classified as medium strength rocks (UCS 

ranges from 40 to 80 MPa). Therefore, exploiting numerical modelling to investigate 

the indentation process is an interesting case of study in petroleum industries. 

Figure 42 illustrates schematically the indentation process by a conical tool 

(Fowell, 1993). This process can be divided into different phases: (a) creation of a rock 

crushed zone, (b) formation of a cracked zone, (c) crack propagation and chipping 

(Heiniö, 1999). When the tip of the tool initiates the penetration, the stress at the rock 

surface increases due to the increasing load on the tool. This progressive local defor-

mation underneath the tool tip develops a crushed zone consisting of highly micro-

fractured and irreversibly deformed rock. As the loading increased and the tool pene-

trates deeper, the micro-cracks in the crushed zone propagate and coalesce to form 

the primary cracks across the rock. The location of these cracks depends on the shape 

of the tool tip (Zou, 2017). The concentrated energy at the crack tip is increased be-

cause of further penetration and once it reaches a certain limit, the crack grows ab-

ruptly and, upon reaching the rock surface, forms chips or spalls. These fractures cause 

a sudden drop of the applied force and further penetration requires the applied force 

to be increased to a higher level (Anemangely et al., 2018). 

 

 

Figure 42. The phases of rock breakage; (a) creation of the crushed zone, (b) crack formation, 

and (c) chipping and crack propagation (Heiniö, 1999). 
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The indentation process illustrated in Figure 42 is well attested in the Punch Pene-

tration test (PPT) and, hence, many studies have considered this experimental test as 

an adequate mean to evaluate the drillability of rock materials (Copur, 2003; Dollinger 

et al., 1998; Jeong et al., 2016; Yagiz, 2009; Yagiz and Rostami, 2012). The punch pen-

etration test was originally designed by (Handewith, 1970) to investigate the brittle-

ness behaviour of rock materials.  

This is a non-standard test and different approaches were proposed for the appa-

ratus, data analysis method and procedures of this test (Dollinger et al., 1998). Gener-

ally, the procedures of this test consist of a conical punch loaded vertically against a 

rock sample that is confined by a casing material into a steel ring (Yagiz, 2009). The 

outcome of this test can be reported as the force-penetration depth diagram. There 

are many research studies that tried to relate this diagram with the mechanical prop-

erties of a rock by different indices, such as brittleness index, Rock Drillability index 

(RDI), UCS, BTS and fracture toughness, etc. (Anemangely et al., 2018; Copur, 2001; 

Kahraman, 2001; Ramezanzadeh et al., 2008; Yagiz, 2009). 

 

 

 

Figure 43. Schematic representation of the punch penetration test; (a) sample, (b) punch, and (c) 

3D configuration. 
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Since the goal of this PhD project is to critically discuss the comparison between 

numerical simulations and experimental results, hence, it is not focused on performing 

various experimental tests on different rock samples. Figure 43 represents the sche-

matic of the PPT sample investigated in this study. The corresponding dimensions of 

the sample and the punch were designed by considering the recommendations ob-

tained from (Yagiz, 2009) and (Jeong et al., 2016). 

The experimental sample consists of four parts: rock specimen, concrete, steel tube 

and punch (see Figure 43c). The rock specimen has a cylindrical shape (with a 156 mm 

diameter and a 60 mm length) made of Pietra-Serena sandstone. The material of the 

punch is 52SiCrNi5, a tempered steel with the ultimate tensile strength (UTS) in the 

range of 1450 to 1750 MPa. A heat treatment (quenching and tempering) was applied 

to the punch to increase the Rockwell toughness up to 40 Rc. The quenching of the 

punch was performed at a temperature close to 850℃ with a polymer air cooling, 

while the tempering at a temperature ranging from 400℃ to 450℃ was exploited with 

air cooling. The steel tube is made of steel Fe360, with the inner diameter and the 

thickness equal to 296 mm and 12.5 mm, respectively. The casing material used to 

avoid the dislocation of rock sample against the tube, is a high-strength concrete com-

posed of a mixture of 750 g of sand (maximum aggregate size equal to 15 mm), 250 g 

of R52.5 cement (UCS=52.5 MPa) and 400 cc of water. The tests were executed on two 

samples that underwent a seven-day ageing period (hydration) for the concrete to 

reach the maximum compressive strength. The penetration load was applied with a 

servo-control loading machine at a constant rate of about 0.02 mm/s. The normal force 

and penetration depth were measured automatically by the apparatus. The loading 

capacity of this machine is about 200 kN±10. 

The indentation processes are shown in Figure 44, Figure 45 and Figure 46. The 

initial cracks were propagated underneath the loading spot. A dense grid of radial 

cracks was developed due to the generation of additional cracks between the initial 

ones. Afterwards, an obvious chipping process could be observed upon increasing the 

loading. The gradual propagation of these additional cracks produced rock chips or 

spalls and induced radial cracks even in the concrete. The crack propagation in the 

concrete means that the confinement on the rock sample decreased so that the normal 

load applied to the rock can reach a maximum value eventually. 

It should be noted that failure of the rock under the punch is related to initiation of 

chipping and subsequently brittleness feature of rock. It is known that rock must ab-

sorb enough energy before chipping and broken; and then, it suddenly loss its strength 

with little or no plastic deformation under the punch. This behavior of rock could be 
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monitored from the beginning of the test to the end by observing the force–penetra-

tion data chart. On obtained chart, high brittle rock demonstrates fluctuated force–

penetration relationship due to the both large forces drop and large chips (Yagiz, 

2009). 

 

 

Figure 44. First punch penetration test; the figures were captured at; a) 0.2 mm, b) 1.5 mm, c) 5.3 

mm, d) 9.5 mm, e) 14.6 mm, and f) 15.7 mm. 

 

Figure 45. Second punch penetration test; the figures were captured at; a) 0.3 mm, b) 2.5 mm, c) 

7.2 mm, d) 10.5 mm, e) 14.5 mm, and f) 16 mm 

 

Figure 47 shows the normal force-penetration depth graphs measured during the 

experimental tests. Utilizing the punch penetration test, the obtained force-penetra-

tion graph has three distinct phases. In the first phase, there is elastic deformation and 

very fine crushing of rock surface. In the second phase, there is crushing of rock fabric 

as in the third phase chips of rock are formed. Elastic deformation and very fine 
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crushing are represented by a linear relation. Crushing in represented by “steps” on 

the profile and chipping of the rock fragments is represented by peaks (Yagiz and 

Rostami, 2012). 

Based on the normal force-penetration depth diagram obtained from the PPT, 

(Yagiz, 2009) suggested an experimental rock brittleness index (in kN/mm) defined 

as the ratio of the maximum applied force (kN) to the corresponding penetration 

depth (mm). By means of the diagrams reported in Figure 47, the average experi-

mental brittleness index for Pietra-Serena is 12.6 kN/mm. Table 11 presents the brit-

tleness index of three rock materials with relevant mechanical properties close to 

those of Pietra-Serena. Yagiz concluded in (Yagiz, 2009) that these mechanical prop-

erties, which are unconfined compressive strength (UCS), uniaxial tensile strength 

(UTS) and density, have a significant effect on the brittleness of rock materials. 

 

 

Figure 46. Fracture pattern on the surface after removing debris from the crater; (a) first and (b) 

second PP test. 

By inserting the mechanical properties of Pietra-Serena into equation Error! Ref-

erence source not found., the predicted brittleness index pBI  is 13.8 kN/mm, which 

has an 8% relative error in comparison to the experimentally measured brittleness 

index mBI . Thus, the experimental results of the PPT on Pietra-Serena are in accord-

ance with the Yagiz model. 

 

Table 11. Comparison of the mechanical properties and the brittleness index of some intact rock 

provided by (Yagiz, 2009) vs. Pietra-Serena sandstone studied within this study. 

Project name Rock class Rock type ( )3/kN m
r

  ( )MPa
c

  ( )MPa
t

  ( )/BI kN mm
m  
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Metrowest Water 
Supply, Boston, USA 

Metamor-
phic 

Argillite 24.6 52 4.7 13.0 

Plateau Creek Pipe-
line, Colorado, USA 

Sedimentary Siltstone 22.1 82 8.7 13.0 

Rock Saw Project, 
Mexico 

Volcanic 
Basalt-ve-
sicular 

22.9 73 5.9 12.7 

 

Pietra-Serena Sedimentary Sandstone 20.1 71 6.8 12.6 

 

 

Figure 47. The load-penetration depth diagram of the punch penetration test performed on 

Pietra-Serena sandstone. 
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11 Dynamic Brazilian disk test by SHPB 

The high strain rates tests were carried out using a Split Hopkinson Pressure Bar 

(SHPB) device at Tampere University of Technology. Flat-ended pressure bars of AISI 

4340 steel with diameter of 22 mm and the length of 1200 mm were used as well as a 

striker bar of the same materials with the length of 300 mm. The bars were resting on 

adjustable stanchions and were supported by bearings to allow the accurate alignment 

of the bars in z- and y-directions. As the striker bar impacts the free end of the incident 

bar, three optical IR sender-receiver pairs measure the velocity of the impact. Two ac-

tive strain gages in the middle of the incident and transmitted bar were used to meas-

ure strains in the stress bar. The strain gage signals were amplified by a Kyowa CDV 

700A series signal conditioner and recorder on a 12-bit 10MSample Yokogawa digital 

oscilloscope. All the functions of the device, including loading of the striker bar, pres-

surizing, shooting of the striker, and reading the recorded data from the oscilloscope, 

are controlled by a computer. For more details about the instrument, the readers are 

referred to (Hokka, 2008). A numerical dispersion correction based on the work of 

Gorham and Wu (Wu and Gorham, 1997) was used to correct any changes in the sig-

nals due to the dispersion of the stress waves as they propagate in the steel bars. 

 The use of a pulse shaper in the Brazilian disc test is important, especially for the 

materials, which have a low tension to compression strength ratio, as the stress state 

is two-dimensional, and the force balance does not necessarily guarantee the dynamic 

equilibrium all over the sample.  Dai et al. (Dai et al., 2010) have proven that dynamic 

force balance can be achieved using a pulse shaper. In this work, a disk of soft and 

deformable rubber with a thickness of 1 mm was used to increase the rise of time of 

the incident pulse and to improve the reaching of the dynamic stress equilibrium. Each 

test was repeated five times at the impact speeds of 10, 15, and 20m/s, with the geo-

metrical data reported in Table 12. The specimens are prepared by the abrasive water-

jet cutting method at the water jet laboratory of the mechanical engineering depart-

ment of Politecnico di Milano (see Figure 48).  

Figure 49 expresses schematically the high strain rate testing equipment. Two Pho-

tron SA-X2 high-speed cameras were used to record images during the high strain rate 

deformation of the samples. Moreover, Digital Image Correlation (DIC) was used to 

study the fracture of the samples during the tests. Unfortunately, the rock surface itself 
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does not provide enough contrast for the correlation algorithm. Therefore, the sur-

faces of the samples were painted with a white base coat and black spackles were ap-

plied on the surface using a permanent marker. The images were recorded at 160 kfps 

with the image size of 272 x 211 pixels. The recorded images were analysed with the 

LaVision StrainMaster (DaVis) 3D-DIC software using a subset of 9 pixels and stepsize 

of 3 pixels. 

Table 12. The geometrical data of dynamic Brazilian disk test. 

  Thickness [mm] Diameter [mm] 

10 m/s 

Test 1 15.4 29.9 

Test 2 15.3 28.9 

Test 3 15.1 30.0 

Test 4 15.2 29.9 

Test 5 15.3 29.8 

15 m/s 

Test 1 15.1 29.9 

Test 2 15.2 30.0 

Test 3 15.2 29.9 

Test 4 15.3 29.8 

Test 5 15.0 29.8 

20 m/s 

Test 1 15.1 29.9 

Test 2 15.0 29.9 

Test 3 15.0 29.8 

Test 4 15.1 30.0 

Test 5 15.0 29.9 

 

 

Figure 48. The prepared specimen of Pietra serena sandstone by abrasive water jet technique 

for dynamic Brazilian disk test. 

The experimental incident stress pulses are converted from the voltages and illus-

trated in Figure 50 for tests 10 m/s, 15 m/s and 20 m/s. These stress pulses are not 
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plotted in the real time scale and shifted to the origin. The diagrams of incident strain 

i , reflected strain r  and transmitted strain t , as well as the diagram of forces, both 

at the front and the back surfaces, of all the specimens (all as the function of time) are 

reported in “Appendix A: Dynamic Brazilian disk test”. The dynamic forces which are 

acting on the both sides of the Brazilian dynamic test can be calculated based on the 

dispersion corrected strain according to equation (42). 

1 2( ),b b i r b b tP A E P A E  = + =   (42) 

  
Where, P1 and P2 are the dynamic forces acting on the front surface and the back 

surface (transmitted pulse), respectively. The parameters Ab and Eb are the cross-sec-

tion area and the elastic modulus of the bars. 

 

Figure 49. the schematic representation of the SHPB device. 

 

Figure 50. the incident stress pulses which are converted from the measured voltage in the ex-

perimental dynamic Brazilian disk test. 
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The indirect tensile strength can be calculated at the center of the disk based on the 

linear elastic theory of a cylindrical disk under diametral compression loading accord-

ing to equation (43).  

2t P ld =   (43) 

  

 

Figure 51. Experimental tensile stresses at the BD center at the striker velocity of 10m/s. 
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Where, the l and d are the length and the diameter of the specimens (reported in 

Table 12). The experimental diagrams of the indirect tensile strength-time for all the 

samples at 10 m/s, 15 m/s and 20 m/s striking velocities are indicated in Figure 51, 

Figure 52 and Figure 53, respectively, while the transmitted pulses are considered as 

the dynamic force P of the equation (43). 

 

Figure 52. Experimental tensile stresses at the BD center at the striker velocity of 15m/s. 
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Figure 53. Experimental tensile stresses at the BD center at the striker velocity of 20m/s. 

The loading rate dependency of the indirect tensile strength of the Pietra-Serena 

sandstone is investigated by considering the peak stresses obtained from the diagrams 

indicated in Figure 51, Figure 52 and Figure 53. Four different indexes are measured 

as the loading rate parameter, according to: 

• The tangent modulus at a percentage of the tensile stress, i.e. S25 and S50.  
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• The average slope of the straight line of the stress-trim curve Sav. 

• The secant modulus from zero to the failure stress Ss. 

As can be seen in Figure 51, Figure 52 and Figure 53, the parameters S50 and Sav 

have almost the same values and represent a more realistic value corresponding to the 

loading rate dependency. Therefore, the average slope of the straight line of the stress-

trim curve Sav are considered for further analyses as the loading rate parameter 

[GPa/s]. The strain rates of these tests are also calculated by diving this loading rate 

parameter Sav by the elastic modulus of the specimens. The experimental mechanical 

characteristics obtained from these tests are reported in Table 13.  

Table 13. The experimental results of the dynamic Brazilian test for three levels of striker bar 

velocities. 

 Indirect tensile 

strength [MPa] 

Loading rate 

[Gpa/s] 

Strain rate 

[1/s] 

Dynamic Increase 

Factor (DIF) 

10m/s – test 1 17.067 612.252 34.386 2.8927 

10m/s – test 2 18.943 666.298 37.422 3.2107 

10m/s – test 3 19.268 682.578 38.336 3.2658 

10m/s – test 4 17.821 644.337 36.188 3.0204 

10m/s – test 5 17.918 574.950 32.291 3.0369 

15m/s – test 1 20.711 890.854 50.034 3.5102 

15m/s – test 2 22.035 1075.023 60.377 3.7347 

15m/s – test 3 21.184 1012.554 56.869 3.5905 

15m/s – test 4 18.329 832.732 46.769 3.1065 

15m/s – test 5 22.349 907.969 50.995 3.7879 

20m/s – test 1 22.350 978.112 54.934 3.7882 

20m/s – test 2 19.769 981.271 55.112 3.3506 

20m/s – test 3 25.481 1290.667 72.489 4.3188 

20m/s – test 4 21.927 1073.474 60.291 3.7164 

20m/s – test 5 23.299 1300.189 73.024 3.9490 

 

The high-speed camera snapshots which are obtained from the experimental dy-

namic Brazilian disk test by a striking velocity of 20 m/s is indicated in Figure 54. The 

snapshots express the presence of axial splitting tensile failure mode which is followed 

by the secondary shear failure mode at the contact of the disc and bar ends. These 

secondary fractures lead to fragmentation and chipping of the rock. 
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Figure 54. The snapshots of the high-speed camera expressing the failure of the dynamic Brazil-

ian disk test by a striking velocity of 20 m/s. 
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Chapter 12 

12 Calibration of material models 

12.1 Calibration of Concrete Damage Model (Karagozian and 

Case Concrete – KCC or K&C) 

The Karagozian and Case Concrete (KCC or K&C) model is implemented in the nu-

merical code LS-DYNA. This material model, currently at its 3rd release, includes an 

option for automatic mechanical parameter generation based on the unconfined com-

pression strength (UCS). This feature makes the model friendlier for users without la-

boratory data. However, since this estimation was originally designed for the 

concretes, using this option for other quasi-brittle materials (i.e. sandstone) may not 

yield precise results. An improved calibration method of the KCC material model was 

suggested in (Mardalizad et al., 2018a) based on triaxial compression test and static 

Brazilian disc test. 

12.1.1  Fixed – strength surfaces of KCC 

The ai – parameters of KCC material model are the user-defined input parameters 

to define the failure surfaces in the compressive meridian by means of the equations 

(29), (30) and (31). These parameters can be calibrated based on the experimental 

data of the triaxial compression test by means of a curve-fitting approach. The ai – pa-

rameters of the KCC material model for the Pietra-Serena sandstone (based on the tri-

axial compression test data) is reported in Table 14. These curves were obtained by 

the Curve Fitting Toolbox of MATLAB software, in which the Levenberg-Marquardt ap-

proach is considered as its fitting algorithm. The KCC failure surfaces and their corre-

sponding experimental data are indicated in Figure 55. 

Table 14. The calibrated KCC ai – parameters of Pietra-Serena based on the TXC. 

  1a MPa   1a −  
1a MPa− 

 2  

Yield surface 38.771 0.55108 6.679 e-4 

Maximum surface 22.645 0.50016 2.2652e-3 

Residual surface 0 0.38488 3.9888e-3 
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Figure 55. Calibration of the KCC ai – parameters based on the triaxial compression tests on 

Pietra Serena sandstone. 

12.1.2  Equation-of-State 

One of the most noteworthy features of the KCC model is decoupling the shear and 

the compaction behaviour of the materials, which means that this model treats the 

deviatoric and volumetric responses separately. The deviatoric response is character-

ized by the migration of the current stress state between the fixed failure surfaces, 

while the response to pressure is defined by an equation of state as a function of the 

volumetric strain increments. The keyword *EOS_TABULATED_COMPACTION in LS-

DYNA provides a piecewise relationship between the pressure and the volumetric 

strain (for loading), or the bulk modulus and the volumetric strain (for unloading) ac-

cording to equation (44). 

EOS e
vp p K = +    (44) 

  

Where, EOSp  is the pressure from the EOS, K is the bulk modulus and e
v  is the in-

cremental elastic volumetric strain. Both the EOSp and e
v  can be determined by 

means of experimental test data, as a function of the volumetric strain. The elastic vol-

umetric response at current step , 1
e
v n +  in KCC is calculated according to the equation 

(45). 
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, 1 1 0 ,ln ( )e p
v n n v nV V + += −   (45) 

  

Where, V0 and Vn+1 are the original and the current volume, respectively, and ,
p
v n  is 

the plastic volumetric strain at the previous step. The bulk modulus in equation (44) 

is considered differently for loading and unloading scenarios. The unloading is beyond 

the scope of this study, but the loading bulk modulus is obtained based on equation 

(46). 

1
,min 1
, 1 , ,1

, ,

L eEOS EOS
v n v EOS v EOS

v EOS v EOS

p p
K

 
 

 
  

 

+
+

++

−
 =  −

  (46) 

  
The subscript EOS in equation (46) expresses that the values related to the pres-

sure and the volumetric strain are taken from the equation of state input. The 

*EOS_TABULATED_COMPACTION keyword provides 10 pairs of pressure-volumetric 

strain data, and the superscript δ indicates the sequence on the EOS input so that 

,min 1
, 1 , ,

e
v n v EOS v EOS

   +
+

   . Therefore, the equation (44) can be represented for loading 

pressure according to equation (47). 

( ),min
, 1 ,

L L e
EOS v n v EOSp p K  += − −   (47) 

  
The keyword *EOS_TABULATED_COMPACTION in LS-DYNA provides a piecewise 

relationship between the pressure and the volumetric strain (for loading), or the bulk 

modulus and the volumetric strain (for unloading) according to equation (44). Due to 

the lack of a radial strain gauge device during the compression test, the experimental 

pressure-volumetric strain data could not be measured and recorded for Pietra-

Serena sandstone. The author of this PhD thesis was also unable to find any other ex-

perimental study of the EOS of Pietra-Serena. However, an extensive literature review 

(Coli et al., 2002; Coli et al., 2003; Coli et al., 2006) revealed the presence of another 

sandstone, called Berea, with similar mechanical properties to the Pietra-Serena. The 

blue curve in Figure 56, obtained from (Christensen and Wang, 1985), indicates the 

relationship between the bulk modulus and the hydrostatic pressure of Berea sand-

stone. 

The nonlinear Least-Squares curve fitting of MATLAB is exploited to consider the 

bulk modulus as a natural logarithmic function of the hydrostatic pressure, so
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( )K f p= . By means of this function and considering 
dp

K V
dV

= − , the volumetric 

strain values can be derived according to equation (48). 

( )

1

1
, ,

1EOS

EOS

p

v EOS v EOS
p

dp
f p





  
+

+ = − +   (48) 

  
To solve the equation (48), the initial condition should be imposed as 

0 0
, 0v EOS EOSp = = . Therefore, the user input data of EOS as a series of pressure-volu-

metric strain are tabulated in Table 15. 

 

Figure 56. The bulk modulus-hydrostatic pressure diagram of Berea sandstone (Christensen and 

Wang, 1985). 

 

Table 15. Equation-of-State (EOS_TABULATED_COMPACTION) for the KCC material model. 

  v
   p MPa  

1 0 0 

2 -0.0001 1.4501 

3 -0.0002 3.7687 

4 -0.0005 9.0867 

5 -0.0010 19.8859 

6 -0.0015 30.0015 

7 -0.0019 40.3782 

8 -0.0024 50.7179 

9 -0.0032 71.0554 

10 -0.0069 159.8497 
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12.1.3  Modified Damage function 

In the KCC model, the damage accumulation is imposed based on a tabular damage 

function, consisting of 13-pairs of η – λ parameters. The original tabular function, 

which can be found in (Malvar et al., 2000a), and also the articles presented some mod-

ifications for this function such (Markovich et al., 2011) and (Kong et al., 2017), fo-

cused on the concrete material. (Wu et al., 2017) expressed a modified tabular function 

of the KCC model for asphalt concrete structures, since the corresponding strain to the 

peak stress of normal concretes and asphalt structures are significantly different. In-

spired by the research of (Wu et al., 2017), a new modified damage accumulation func-

tion for sandstones based on the experimental results of the triaxial compression test 

is presented in this PhD thesis. 

 

 

Figure 57. The schematic representation of the KCC model; (a) the linear interpolation between 

the failure surfaces, b) the damage function, c) a typical TXC stress-strain diagram. 

The damage accumulation of the KCC model, and accordingly the current failure 

surfaces are expressed schematically in Figure 57. As can be seen in Figure 57a, the 

state of stress is determined by a linear interpolation between the three failure sur-

faces. The stress-strain diagram corresponding to a typical triaxial compression test is 

indicated in Figure 57c, which is determined by association of a damage accumulation 

function, shown in the Figure 57b. The response of the material to the initial loading 



92 Chapter 12 

(phase I), is considered as a linear elastic deformation before reaching point 1. The 

current failure surface is therefore the same as the yield strength level ˆ
y  at this range. 

A hardening plasticity response occurs after yielding and before reaching the maxi-

mum strength ˆ
m . Based on the level of the confining pressure, a softening response 

occurs after reaching the maximum strength and before obtaining a residual strength

ˆ
r .  

As can be seen in Figure 57b, the damage function is imposed so that initially and 

prior to the occurrence of any plasticity responses, the value of η is equal to zero. It 

increases up to unity at a user-defined value m , corresponding to point 2 (maximum 

strength ˆ
m ). The KCC model considers the hardening plasticity by means of this lin-

ear-piecewise function of η - λ. After point 2, where the softening takes place, η de-

creases to zero at end  corresponding to point 3, which indicates that after this point 

the current failure surface is the same as the residual strength level ˆ
r . Hence, as a 

first requirement to determine the tabulated damage function of the KCC model, the 

variation of η and λ should be in accordance to Table 16. 

Table 16. The KCC damage evaluation parameters. 

    Current failure surface position   

0 ≤ η < 1 0 ≤ λ < λ m y m         

η = 1 λ = λ m m  =   

1 ≥ η > 0 λ m ≤ λ ≤ λ end m r        

 

The next step to define the modification is related to determine corresponding ex-

perimental data for each one of the η and λ parameters, separately. By definition, it is 

possible to decompose the rate of the strain tensor  into an elastic part e and a plas-

tic part p , so that e p  = + . The evolution of the damage parameter rate  is com-

puted by equation (49) as a function of the plastic strain rate tensor (Wu and 

Crawford, 2015). 

( ) ph p =   (49) 

  

Where, p  is the rate of equivalent plastic strain, and ( )h p  is the damage evolution 

factor which is given by equation (50). 
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  (50) 

  
The parameters 1b and 2b in equation (50) are material parameters calibrated from 

test data, in which the first parameter governs compression and the second affects 

uniaxial tension. By neglecting the effect of the strain rate ( 1fr = ), the damage param-

eter λ, can be obtained just for the compressive (positive) range of the hydrostatic 

pressure, according to equation (51). 

1

1
0

1

p

b

t

if p
p

f

  → =
 
+ 

 

  
(51) 

  
The experimental data of the Brazilian test is used to determine the tf , and three 

triaxial compression test data (the ones that have reasonable hardening-softening be-

havior; 20 MPa and the two 28 MPa confining pressures) are used for the hydrostatic 

pressure p and the equivalent plastic strain p . The parameter p is the one that com-

monly used for a Von Mises isotropic hardening model (i.e. metals) which can be ex-

pressed by equation (52). 

2
:

3

p p p  =   (52) 

  
 

The equation (52) for an axisymmetric loading application can be simplified as 

equation (53). 

( ) ( )
2 22

2
3

p p p
axial lateral   = +

  
  (53) 

  
Due to the absence of a radial strain gauge device, the experimental data of lateral 

displacements was not measured during the triaxial compression tests, and only the 

test data of the axial strain was obtained. However, the lateral strain was estimated by 

the equation (54), proposed by (Binici, 2005) for concrete materials.  
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e
axial axial lateral axial

e
axial axial lateral s axial

if

if

   

    

  → = −


 → = −

  (54) 

  
Where,   is the Poisson’s ratio in elastic range of 0.29 (ASTM, 2004) that was con-

sidered to be identical for Pietra Serena and Berea sandstone. The parameter s  is the 

secant Poisson’s ratio that was determined by (Binici, 2005) for normal concrete ac-

cording to equation (55). 

( )
2

exp
e

axial axial
s l l

 
   



  −
 = − − −     

  (55) 

  
With,  

( )
@
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e
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 


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+  
   

  
(58) 

  
The parameter 

p
  in the previous equations is the ratio of the lateral strain and the 

axial strain at the peak strain which was assumed to be 0.5.  

To obtain experimental values for the parameter η, firstly equation (24) was con-

sidered; when the pressure-dependent surface ( ), , ,     meets the yield condition, it 

is zero and accordingly equation (59) can be derived. 

( )3 2 , ,      = =   (59) 

  
The modification of damage function suggested in this PhD thesis requires the ex-

perimental data of triaxial compression test, which is basically a quasi-static experi-

mental procedure. Hence, it is possible to cancel out the effect of strain rate 

enhancement by setting the value of fr  parameter equal to 1. Moreover, as it is men-

tioned in Figure 14, the amount of function ˆ[ ( ), ]r p   for the triaxial compression 

tests (when Lode angle is 60 =  ), is equal to 1. Therefore, it is possible to re-write 

the equation (25) as the equation (60). 



Chapter 12  95 

 
 

( )

  ( )

  ( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( )

ˆ ˆ; ( ),

ˆ ˆ ˆ ˆ, , ; ( ),

ˆ ˆ ˆ ˆ; ( ),

y

m y y

m r r

for Elastic r p p

for Hardening r p p p p

for Softening r p p p p

 

         

     

    
   =  − +   


    − +  

  (60) 

  

By substituting the ( ), ,    function of equation (59) by the equation (60), the val-

ues related to the parameter η can be obtained, based on the deviatoric stress and 

three fixed strength surfaces according to equation (61).  

( )
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 

  −
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−


 −
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  (61) 

  
Therefore, it is possible to transform the experimental data of the triaxial compres-

sion test from the   − diagram into the η – λ diagram, by means of equations (51) 

and (61). The parameter 1b  in equation (51) was used to adjust the tabular damage 

function rendering the results of the numerical simulation in accordance with the ex-

perimental ones.  
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Figure 58. The experimental representation of η – λ diagrams based on the b1 parameter and; (a) 

1st test with 20 MPa confining pressure; (b) 1st test with 28 MPa confining pressure; (c) 2nd test 

with 28 MPa confining pressure, (d) comparison of all experimental data based on the b1 only. 

It should be noted that due to some limitations, the size of the samples for the ex-

perimental tests are the same. Therefore, the sample which is used here should not be 

interpreted as a representative elementary volume (rev). The effect of the 1b  parame-

ter to obtain the KCC damage function is expressed in Figure 58a, Figure 58b and Fig-

ure 58c for the triaxial compression test data of the 1st test of 20 MPa, the 1st test of 28 

MPa and the 2nd test of 28 MPa confining pressure, respectively. These diagrams were 

merged in Figure 58d for comparison. As visible in this figure, the behaviour of all 

three tests (for all the 1b  parameters) are highly similar between each other indicating 

the validity of the proposed approach. 

 

Figure 59. The comparison of experimentally evaluated and suggested KCC tabular damage func-

tions for rock materials.  

The diagram of “experimentally obtained values of η – λ” (by considering 1b ) for 

Pietra-Serena sandstone is expressed in Figure 59. Although the values of this diagram 

yields to a very precise response in the hardening regime, the softening gradient was 

found to be lower compared to the empirical formula. Therefore, a new set of η – λ is 

presented in Figure 59 as the “suggested values of η – λ”, that consists of the same data 

as the “experimentally obtained values of η – λ” in the hardening regime, and an in-

creased softening gradient. Further substantial proof was obtained by exploiting the 

present calibration in numerical simulations of the tests (virtual tests) and by 
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comparing the results with the experimental data. These comparisons (which are also 

illustrated in Figure 82) imply that the numerical results are shown to be in a reason-

able agreement with the experimental data when the 1b  parameter is equal to 0.75.  

It should be noted that the suggested tabular damage function was originally ob-

tained based on equation (51) that governs only the compressive pressure. According 

to equation (50), the same damage evolution factor presented here, and accordingly 

the damage function, can be adjusted in the tensile regime by setting the 2b  (and also 

3b ) parameter. These b-parameters can be determined by iteration until the value of 

the fracture energy, fG , converges for a specified characteristic length, which is asso-

ciated with the localization width (i.e. the width of the localization path transverse to 

the crack advance). 

The parameters RSIZE and UCF in the *MAT_072R3 keyword of LS-DYNA are unit 

conversion factors and the NOUT is called the “output selector for effective plastic 

strain”. According to (Hallquist, 2014), when NOUT=2, the quantity labelled as “plastic 

strain” by the LS-PrePost is actually the quantity that describes the “scaled damage 

measure, δ” which varies from zero to two. When the amount of δ is still lower than 

one, the elements of the part modelled by the KCC, fail to reach the yield limit. These 

corresponding elements reached the yield strength at δ =1 and when δ =2 they meet 

their ultimate residual failure level. 

12.1.4  Strain rate enhancement  

The strain rate effects are realized through the parameter fr  that modified the fail-

ure surface of the KCC model ( ), ,     according to the equation (25). The parameter 

fr  of KCC material model is the same as the dynamic increase factor (DIF) which was 

specified as a function of strain rate   (Malvar and Crawford, 1998). The proposed 

formulation by (Malvar and Crawford, 1998) is considered in this PhD research to de-

termine the parameter fr in the tensile regime as equation (62). 
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Where, the s is the static strain rate (equal to 6 110 [ ]s− − ) and   is the strain rate in 

the range of 6 110 [ ]s− − up to 1140[ ]s− . The parameters β and δ are the Malvar-Crawford 

parameters that can be calibrated based on the experimental values. To find these pa-

rameters, first the average experimental values for the dynamic Brazilian disk test are 

calculated (see Table 17). Then, the second part of the equation (62), where the 

6 110 [ ]s − − , was fitted by means of these average values. This curve was obtained by 

the Curve Fitting Toolbox of MATLAB software, in which the Levenberg-Marquardt ap-

proach is considered as its fitting algorithm. Therefore, the parameter β was calculated 

based on this procedure to be equal to 0.009568. According to (Malvar and Crawford, 

1998), the log 6 2 = − , so the parameter δ is equal to 0.016614. The calibrated ten-

sile DIF – strain rate diagram for Pietra-Serena sandstone is indicated in Figure 60 in 

a semi-logarithmic scale. 

Table 17. The average experimental results for the dynamic Brazilian test for three levels of 

striker bar velocities. 

 
Indirect tensile 

strength [MPa] 

Loading rate 

[Gpa/s] 

Strain 

rate [1/s] 
DIF 

10m/s – average 18.204 636.08 35.725 3.0854 

15m/s – average 20.922 943.83 53.009 3.5460 

20m/s – average 22.565 1124.7 63.17 3.8246 

 

 

Figure 60. the tensile dynamic increase factor – strain rate diagram in the semi-logarithmic 

scale, calibrated for Pietra-Serena sandstone. 
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It is not possible to get experimental data related to compressive DIF by the dy-

namic Brazilian disk test. Hence, the parameter fr in the compressive regime is ob-

tained from (béton and précontrainte, 1991). The full set of dynamic increase factor – 

strain rate diagram, which is used in this study is expressed in Figure 61. 

 

Figure 61. the full set of dynamic increase factor – strain rate diagram calibrated for Pietra-

Serena sandstone. 

The full user input parameters of the KCC material model are reported in Table 18. 

Table 18. The full calibrated KCC material model for Pietra Serena sandstone. 

MID RO PR      

-- 2e-9 0.29      

        

FT A0 A1 A2 B1 OMEGA A1F  

5.9 40.771000 0.5511 6.680e-4 0.75 0.9 0.38488  

        

Slambda NOUT EDROP RSIZE UCF LCRATE LOCWIDTH NPTS 

-- 2 1 0.03937 145 -- 1.35 13 

        

lambda1 lambda2 lambda3 lambda4 lambda5 lambda6 lambda7 lambda8 

0 1.94e-4 3.19e-4 4.6e-4 5.93e-4 7.26e-4 8.37e-4 8.685e-4 

        

lambda9 lambda10 lambda11 lambda12 lambda13 B3 A0Y A1Y 

9.005e-4 9.72e-4 10.83e-4 1 1000 0.5 22.645 0.50016 
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eta1 eta2 eta3 eta4 eta5 eta6 eta7 eta8 

0 0.498757 0.713508 0.867684 0.949989 0.988934 1 0.993539 

        

eta9 eta10 eta11 eta12 eta13 B2 A2F A2Y 

0.978281 0.917932 0 0 0 3.21 0.0039890 0.002260 

 

12.2 Calibration of MC Plasticity and Linear DP 

The procedure of material identification related to these two material models has 

been explained in a master thesis (which was defined in conjunction with this PhD 

thesis) which can be found in (SCAZZOSI and MAIOLANI, 2015-2016). However, the 

description is discussed briefly in the followings. 

The parameters to identify these material models are reported in Table 19. The 

ABAQUS software automatically computes the cohesion by giving the yield stress in 

compression as a function of the plastic strain allowing the isotropic hardening of the 

yield function. 

Table 19. The MC plasticity and Linear DP models’ parameters. 

E [MPa] PR 𝛃 [°] K [-] 𝚿[°] 

15374 0.28 65.38 0.778 16.35 

 

The elastic properties are taken from (Mardalizad et al., 2016). The Mohr-Coulomb 

friction angle is obtained through the procedure described in (Sivakugan et al., 2014) 

using the properties reported in Table 20. To assure convexity of the yield function, 

the value of the flow-stress ratio is limited by a minimum value of 0.778. Since the 

obtained value is lower, the minimum value allowable is used instead resulting in the 

criterion obtained not being equivalent to the starting Mohr-Coulomb criterion but 

being its best approximation (Manual, 2009). 

Table 20. The experimental data of the Pietra-Serena sandstone for MC and DP. 

UCS, cf   

[MPa] 
Tensile splitting strength [MPa] Yield stress, y  [MPa] 

p   

67.99 5.66 53.79 0.00057 

 

A good approximation of the dilation angle for rock showing brittle behavior is 

equal to 1/4 times the friction angle (Hoek and Brown, 1997). These failure criteria 

are intended as the yield surfaces, i.e. when equations (5) and (18) are satisfied, plastic 

flow occurs. Hardening of the yield function follows until the maximum strength is 

reached, afterwards failure is modelled by softening. Hardening (intended as 
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hardening followed by softening) of the yield function (see Figure 62) is described by 

the equation proposed by (Lubliner et al., 1989) for concrete as defined in equations 

(15). 

 

Figure 62. The post-yield stress-strain diagram used for MC and DP. 

In Table 20, the parameters to define the curve of equation (15) are reported. The 

parameters a and b, which are obtained using equations (16) and (17), are determined 

equal to 2.68 and 665.32, respectively. 
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13 Numerical analyses of experimental tests 

13.1 Unconfined compression test 

13.1.1  Material model: KCC  

Two numerical models were developed in LS-DYNA to replicate the unconfined 

compressive test in both the ASTM and the Mogi configurations (see Figure 63). All the 

geometry parts were generated, assembled and meshed by ABAQUS/Explicit software 

and then imported in LS-PrePost to specify the required keywords. The mesh conver-

gence studies were performed based on the elements’ sizes of the specimens, and 1 

mm was considered for these elements. The mesh sizes of the other components were 

determined by considering the requirements of the contact treatments, i.e. the ele-

ment size of the slave parts was considered lower than the master ones.  The numeri-

cal models of rock, replicated the ASTM and The Mogi configurations, have the same 

geometries as the specimens of class C and class D, respectively (Mardalizad et al., 

2018b). 

 

Figure 63. Numerical models developed in LS-DYNA to replicate; (a) the ASTM configuration; (b) 

the Mogi configuration (Mardalizad et al., 2018b) 

 

(a) (b) 
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The numerical model of the ASTM configuration consists of five parts including two 

rigid platens (representing the compressive platens), one elastic sphere, one elastic 

cylinder (representing spherical seat) and the specimen. The displacement-controlled 

compressive loading was imposed by the upper platen and the lower platen was fixed 

(zero degree of freedom). The numerical model of the Mogi configuration consists of 

nine parts, five of them identical with the ASTM configuration, plus further two Alu-

minium cylinders and two round profiles (representing the profile of the epoxy). Dis-

placement-control loading is applied to the upper compressive platen (for both 

models) by a rate of 0.45 mm/ms, and the simulations are terminated after 5 ms. This 

loading rate (0.45 mm/ms) has been considered, since it is more convenient to reduce 

the computation cost in the quasi-static analyses by the time-scaling approach. How-

ever, in this case the kinetic energy should be monitored to ensure the ratio of kinetic 

energy to internal energy does not get too large (typically less than 10%). Figure 64 

expresses the diagrams of kinetic energy-time and internal energy-time of the both 

ASTM and Mogi configurations. As can be seen, the amount of kinetic energy in both 

cases is negligible (less than 1 percent), therefore, the loading rate is acceptable 

(Mardalizad et al., 2018b). 

 

Figure 64. Comparison of the kinetic energy-time and internal energy-time diagrams of; (a) the 

ASTM configuration, (b) the Mogi configuration (Mardalizad et al., 2018b). 

The material keywords and their corresponding mechanical properties for both 

models are reported in Table 21. The combination of CMO, CON1 and CON2 expressed 

in Table 21 determines the degree of freedom of a rigid body in LS-DYNA. The rigid 

body considered for the upper compressive platen has only one translational degree 

of freedom in z-direction, while, the lower compressive platen has no degree of free-

dom.  
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Table 21. Material keywords and their corresponding mechanical properties for both the ASTM 

and Mogi models (Mardalizad et al., 2018b) 

 

upper 

compressive 

platen (ASTM 

and Mogi) 

Lower 

compressive 

platen (ASTM 

and Mogi) 

sphere and 

the spherical 

seat (ASTM 

and Mogi) 

Aluminium 

cylindrical 

end pieces 

(Mogi) 

epoxy profile 

Material 

keyword 
MAT_RIGID MAT_RIGID MAT_ELASTIC MAT_ELASTIC MAT_ELASTIC 

Density, RO 

[ton/mm3] 
7.85 e-9 7.85 e-9 7.85 e-9 2.4 e-9 1.4 e-9 

Elastic 

modulus, E 

[MPa] 

2.1 e5 2.1 e5 2.1 e5 7.0 e4 2.8 e4 

Poisson 

ratio, PR 
0.3 0.3 0.3 0.3 0.35 

CMO 1.00 1.00 --- --- --- 

CON1 4 7 --- --- --- 

CON2 7 7 --- --- --- 

 

The hexagonal solid elements, with constant stress element formulation, were im-

plemented for all the FEM’s geometry parts. The SPH section was set by the default 

values of LS-DYNA. The automatic penalty-based contact was applied to both the solid-

solid and the SPH-solid contacts. The static friction coefficient was considered equal 

to 0.4 for all the contact keywords contain the rock specimen (as their slave segment). 

The static friction coefficient of the contact between the spherical seated cylinder and 

the upper Aluminium end piece of the Mogi configuration was set to 0.45. Since the 

seating sphere was covered by grease during the experimental tests, the static friction 

coefficients of all the contact keywords contain this sphere were set to 0.05. However, 

the constraint-based contact was considered as the contact treatment between the 

sections related to the epoxy profile. 

The adaptive conversion of meshed elements to the SPH particles was applied only 

to the specimens. The maximum effective strain at failure (EFFEPS), which is consid-

ered as the conversion limit should be defined as the final step for the numerical sim-

ulation. For this purpose, first the simulation should be run without the 

MAD_ADD_EROSION implementation to examine the presence of highly distorted ele-

ments and to identify the EFFEPS at that time step. Within this study, the EFFEPS was 

set to 0.03. 

In order to obtain the numerical stress-strain diagram, the stress was calculated 

from the reaction force between platens and the specimen. The axial strain data was 
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computed starting from the axial displacements were measured at an 8 mm and 20 

mm length spans (in the middle cross section of the specimens) for the ASTM and the 

Mogi configurations, respectively (similar to the gauge lengths of their extensome-

ters). The distribution of scaled damage measure, δ of the calibrated (full input) model 

for both the ASTM and Mogi configurations are captured one-time step after failure 

and indicated in Figure 65 to express the crack propagation patterns. 

 

Figure 65. Distribution of the scaled damage parameter after failure; (a) the ASTM configuration; 

(b) the Mogi configuration (unit of time is ms) (Mardalizad et al., 2018b). 

The SPH particles which are in charge of dealing with severe deformation in Figure 

65 represent the crack propagation pattern. The critical parts of the specimens in Fig-

ure 65 are magnified in Figure 66 to indicate more clearly the crack pattern. As can be 

seen in Figure 66a, the numerical model results replicated the ASTM configuration 

does not demonstrate any ordered crack pattern. This failure is caused by the lack of 

nodes either at the top or bottom of the specimens fixed in tangential direction. This 

is one of the conditions that yields to disordered crack patterns in detail described in 

(Murray et al., 2007). However, the presence of some vertical cracks can be considered 

as an acceptable agreement to the crack propagation pattern obtained by the experi-

mental tests. 

As can be seen in Figure 66b, a series of X-pattern cracks follow the double diagonal 

damage bands which proves the presence of shear failure planes. Therefore, the failure 

of the Mogi configuration model represents the double shear failure mode in Figure 

18. Although this is not the same as the failure mode obtained from the experimental 

tests (which is shearing along single plane failure mode), the divergence can be 

 

(a) (b) 
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justified based on the (ideal) symmetrical condition, e.g. loading, contact interfaces, 

boundary conditions, etc., exerted by numerical modelling. It has been tried to over-

throw the full symmetry of the system, but it either didn’t change the failure mode, or 

didn’t reach to stable results. Therefore, the precise failure mode obtained from the 

experimental tests cannot be reproduced by this numerical simulation technique. 

 

Figure 66. Magnified distribution of the scaled damage parameter after failure; (a) the ASTM 

configuration; (b) the Mogi configuration (Mardalizad et al., 2018b). 

The stress distribution along the axial direction (compressive stress) for both the 

ASTM and the Mogi configuration are expressed in Figure 67. The presence of the 

stress concentration at the outer edge of the specimen, which was expected based on 

the Mogi’s research in (Mogi, 2007), is visible in the ASTM model, however, the Mogi 

model exhibits a more uniform stress distribution. 

 

Figure 67. The distribution of the axial compressive stress of; (a) the ASTM configuration; (b) the 

Mogi configuration (Mardalizad et al., 2018b) 

  

(a) (b) 
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13.1.2 Material model: MC and DP 

The ASTM configuration of UC test is just simulated by MC and DP material model 

(in the software Abaqus). All the simulations reported in this PhD thesis that are ob-

tained by either MC or DP materials models, are explained in details in (SCAZZOSI and 

MAIOLANI, 2015-2016), which is a master thesis defined in conjunction to this PhD 

thesis. However, the results are necessary to be reported here in order to critically 

discuss the capability of the KCC material model.  

These models consist of a specimen and two rigid platens as shown in Figure 68. 

The geometry of the specimen is the same as the one modelled in LS-DYNA for ASTM 

configuration. The material parameters are the same as the ones explained in the pre-

vious chapter related to MC and DP models. The rock specimen is discretised by 1mm 

meshed elements after performing the mesh sensitivity analyses. The axial displace-

ment is measured in between points A and B in Figure 68b, which are basically located 

in the same position where the extensometer was set during the experimental test. 

The loading was applied by a smooth step function that reaches a maximum of 0.3 mm 

in 0.01s. 

 
Figure 68. Numerical models developed in Abaqus to replicate the ASTM configuration; (a) 

model assembly, (b) 1-mm meshed specimen and (c) 1-mm meshed (rigid) platen. 

The numerical results obtained by MC and DP models are indicated in Figure 69. 

Both of these models predict the shear failure mode similar to the failure mode of the 

Mogi’s configuration, and not similar to the ASTM configuration. 

 
Figure 69. Distribution of the effective plastic strain after failure for the ASTM configuration; (a) 

the MC plasticity model and (b) the Linear DP model. 
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13.1.3  Comparison of the numerical and experimental results 

The stress-strain diagrams of the numerical models are compared to the experi-

mental results according to Figure 70 and Table 22. All the numerical results obtained 

show significant agreement with the experimental data. It should be mentioned that 

both the MC and DP models are calibrated mainly based on the experimental data of 

unconfined compression test. However, the KCC material model is calibrated based on 

the experimental data of triaxial compression test and Brazilian disk tests. Therefore, 

it can be concluded that the calibrated KCC proves to be an adequate material model 

to predict the unconfined compression test. 

 

Figure 70. Comparison of experimental data and numerical results. 

 

Table 22. comparison of the UCS values obtained by numerical simulation and the experimental 

tests (Mardalizad et al., 2018b) 

 exp( )u erimental   ( )u Numerical   error 

ASTM – KCC 64.0 [MPa] 66.9 [MPa] -1.6 % 

ASTM – MC 64.0 [MPa] 65.9 [MPa] -3.0 % 

ASTM – DP 64.0 [MPa] 67.4 [MPa] -5.3 % 

Mogi – KCC 71.6 [MPa] 67.2 [MPa] 6.1 % 
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13.2 Quasi-Static Brazilian disk test 

13.2.1 Material model: KCC  

The numerical model developed to analyse the Brazilian disk test consists of four 

geometry parts (see Figure 71), which are: a rigid upper compressive platen, an elastic 

curved bearing block, the specimen and an elastic cylindrical (steel) lower platen. The 

simple elastic material model (*MAT_ELASTIC in LS-DYNA) was used for the bearing 

block and the lower platen, by considering the elastic modulus equal to 210 GPa. Since 

the axial deflectometer used to measure the displacement was fixed to the bed of the 

apparatus, this cylindrical lower platen was modelled by its real dimensions. The 

curved bearing block was also modelled in order to avoid excessive stress concentra-

tion within the numerical simulations (the same logic as in the experimental proce-

dure). 

 

Figure 71. Numerical model developed in LS-DYNA to replicate Brazilian disk test. 

The part representing the sandstone specimen has the same geometry as the spec-

imens of class H; with a diameter of 40 mm and a thickness of 20 mm. Similar numer-

ical analyses were performed for the specimens with other geometries, however they 
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are not reported here due to similar characteristics. This part is discretized by using 

one-integration point hexagonal solid elements. Mesh convergence analyses (similar 

to what was indicated for UC test) showed that solid elements with a side dimension 

of lower than 1.5 mm did not influence the results. Therefore, the specimen discretized 

with 1 mm mesh size was considered for the numerical simulations of this chapter. 

The displacement-control compressive loading was imposed by the upper platen and 

the bottom surface of the cylindrical lower platen was fixed (i.e., zero degree of free-

dom). Again, due to the quasi-static nature of this simulation, a time-scaling approach 

was exploited to save the computation time. Therefore, the upper compressive platen 

was pushed down by a smooth-step function at an average velocity of 0.1 mm/ms. The 

automatic surface to surface contact treatment was defined for all the contacts. The 

same method used for the UC test simulations has been considered here for adaptive 

conversion of distorted elements to the SPH particles. The maximum effective strain 

at failure (EFFEPS) is considered as the conversion. For this purpose, first the simula-

tion should be run without the MAD_ADD_EROSION implementation to examine the 

presence of highly distorted elements and to identify the EFFEPS at that time step. 

Within this study, the EFFEPS was set to 0.03. 

The fully calibrated KCC material model and the equation-of-state which are ex-

pressed in Table 18 and Table 15, respectively, were used for the numerical simula-

tions. However, the sensitivity analyses were exploited based on the 2b - parameter. 

 

Figure 72. Distribution of the numerical stress solutions at the surface of the Brazilian disk spec-

imen obtained by the KCC material model; (a) horizontal stresses, and (b) vertical stresses. 

The stress distribution at the surface of Brazilian disk specimen in both the hori-

zontal (perpendicular to the loading direction) and the vertical (parallel to the applied 
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load) directions are shown in Figure 72. The stress concentration due to local contacts 

are located near the upper bearing surface as well as the lower compressive platen. 

The contours of the horizontal stresses (see Figure 72a) are almost uniformly distrib-

uted, in particular in the diametral direction of the disk. However, the vertical stresses 

in this direction are increased from the center of the disk towards the loading points. 

The stress contours shown in this figure are in accordance to the distribution of the 

stress analytic solution based on the Hondros equations reported in (Jianhong et al., 

2009). 

The distribution of the “scaled damage parameter” (after failure) of a Brazilian disk 

model is indicated in Figure 73. As can be seen, the crack is propagated almost along 

the diametral direction, where the principle tensile stress reaches its maximum values. 

The same is true for the numerical results shown in Figure 73b, which is captured just 

one step after the failure. The shear failure mode located near the bottom contact point 

is shown in Figure 73c as well. This failure mode, central part fracture pattern (type a 

in Figure 28), is the same the one reported in (Basu et al., 2013). 

 

 

Figure 73. The crack propagation patterns; (a) after experimental test, (b) and (c) one- and two-

time steps after the failure of the numerical model (KCC), respectively. 

13.2.2  Material model: MC and DP 

The Brazilian disk test is again simulated by MC and DP material model (in the soft-

ware Abaqus) in order to critically discuss the capability of the KCC material model. 

These models consist of a specimen and two rigid platens as shown in Figure 74. The 

geometry of the specimen is the same as the one modelled in LS-DYNA. Both the upper 

and lower platens are rigid shell parts. However, the upper platen is modelled as a 

curved part with a radius of curvature equal to 30 mm. The material parameters are 

the same as the ones explained in the previous chapter related to MC and DP models. 

The lower platen is kept fixed while the axial displacement is applied by the upper 
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platen. The loading was applied by a smooth step function that reaches a maximum of 

0.3 mm in 0.01s. 

 

Figure 74. Numerical models developed in Abaqus to replicate the Brazilian disk test; (a) model 

assembly, (b) 1-mm meshed specimen, (c) curved upper platen and (d) lower platen. 

The numerical results obtained by MC and DP models are indicated in Figure 75. 

Both of these models predict the central line fracture mode similar to experimental 

results. 

 

Figure 75. Distribution of the effective plastic strain after failure for Brazilian disk test; (a) the 

MC plasticity model and (b) the Linear DP model. 

 

13.2.3  Comparison of Numerical results and experimental data 

The numerical simulation results in terms of the load–displacement curves are 

compared in Figure 76 with experimental data. The last row of Table 23 represents 

the 95% confidential interval of the average value of each mechanical property.  

In the Brazilian disk test, the principal tensile stresses were uniformly distributed 

along most parts of the vertical diameter (except the areas near the two contacts), 

therefore by considering equation (50), the 2b - parameter was expected to have a ma-

jor influence on the numerical results. By increasing the 2b - parameter, the ( )h p in 

equation (50) is decreased causing a reduction of the area below the tabular damage 
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function rendering the material more brittle and accordingly decreasing the failure 

force. Therefore, the precise value of the 2b - parameter for a material was determined 

by try and error. As can be seen in Figure 76 and Table 23, when the 2b - parameter of 

KCC material model reaches a value equal to 3.21, the best fit of the numerical result 

with the experimental ones was obtained.  

Although the level of failure load obtained by Drucker-Prager model is in the 95% 

confident interval of experimental results, the corresponding displacement underes-

timates the experimental data. The numerical results obtained by Mohr-Coulomb 

model, on the other hand, do not lie in the 95% of confidence interval, neither for the 

failure load, nor the corresponding displacement. The reason behind these less accu-

rate results obtained by MC and DP is due to the fact that both material models are 

able to predict the linear dependency of the material strength with the hydrostatic 

pressure. While, the tensile behaviour of rocks deviates from linearity. Therefore, it is 

not possible to calibrate these material models so that they predict precisely both un-

confined compression and tensile splitting tests in the same time.  

 

Figure 76. Comparison of the experimental and the numerical results of the Brazilian test, in 

terms of load-displacement. 
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Table 23. The numerical results of the Brazilian test and the comparison with the experimental 

data. 

 [ ]kNmaxF  [ ]mmmaxl  

2KCC - b = 1.35  8.075 0.182 

2KCC - b = 2.50  7.752 0.178 

2KCC - b = 3.21  7.531 0.177 

2KCC - b = 5.0  7.503 0.172 

2KCC - b = 10.0  6.910 0.157 

MC  5.892 0.101 

DP  7.050 0.119 

   

Average of the experimental data 6.942 0.183 

“95% CI” of the experimental data [6.504-7.579] [0.162-0.204] 

 

 

  



116 Chapter 13 

13.3 Flexural test 

13.3.1 Material model: KCC  

The replication of the Flexural test was performed to validate the numerical inves-

tigations and the calibration procedures described within this PhD thesis. Due to the 

symmetrical nature of this experimental test, only one-quarter of the configuration 

was modelled numerically. The numerical model investigated by LS-DYNA consisted 

of five components, which were the upper compressive platen, two rollers, the speci-

men and the support steel block. The simple elastic material model (*MAT_ELASTIC in 

LS-DYNA) was used for both the Aluminium rollers and the support steel block, by 

considering their elastic modulus equal to 70 and 210 GPa, respectively. Since the axial 

deflectometer used to measure the displacement was fixed to the bed of the apparatus, 

the support block was modelled by its real dimensions. 

The geometry of part representing the sandstone specimen was the same as the 

experimental one; with a length of 318 mm, a width of 102 mm and a height of 32 mm. 

This part was discretized by using one-integration point hexagonal solid elements 

with a side dimension of 3 mm. The displacement-control compressive loading was 

imposed by the upper rigid platen and the bottom surface of the steel support block 

was fixed (i.e., zero degree of freedom). Similar to the two previous simulations, the 

time-scaling approach was used to save computation cost. Therefore, the upper com-

pressive platen was pushed down at a constant velocity of 9 mm/s. The automatic sur-

face to surface contact treatment was defined for all the contacts. The full calibrated 

KCC material model and the equation-of-state which are expressed in Table 18 and 

Table 15, respectively were used for the numerical simulations. The sensitivity anal-

yses were also exploited based on the 2b -parameter. 

The conversion of FEM to SPH particles is only considered for the rock specimen. 

In the LS-DYNA model, instead of applying single point constraints to the SPH parti-

cles, which can lead to inaccurate results and numerical instabilities, specific boundary 

conditions at the symmetry planes were imposed (Hallquist, 2014). The BOUND-

ARY_SPH_SYMMETRY_PLANE keyword creates automatically an imaginary plane 

which reflects the forces of a set of ghost particles to the particles in the model. Alt-

hough these ghost particles have identical properties as the real ones, they do not 

physically exist and simply contribute to the particle approximation (Anghileri et al., 

2011). The maximum principal strain is considered as the eroding criteria for FEM to 

SPH particles conversion for all the numerical simulations. The numerical results of 
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the KCC model in terms of stress distribution along length and scaled damage param-

eter are expressed in Figure 77. 

 

Figure 77. Distribution of (a) numerical stresses in the X direction (along the length) and (b)  the 

scaled damage parameter by the KCC model (Mardalizad et al., 2017c). 

Figure 77a represents the distribution of the X stress (along the length of specimen) 

one-time step before failure. The tensile and the compressive stresses at the numerical 

model are present in the element below and above the neutral axis, respectively. Fig-

ure 77b indicates the fracture pattern of the numerical result. The contour plot repre-

sented in Figure 77b represents the “scaled damage measure, δ”. As can be seen, the 

SPH particles formed at the instant of failure express the crack patterns observed dur-

ing the experimental test (see Figure 34). 

 

13.3.2 Material model: MC and DP  

The specimen is properly partitioned to accurately position it on the steel rods and 

to identify the measuring point which is exactly in the middle of the lower face as in 

the experimental tests. It is assumed that the specimen has got a stiffness which is 

negligible with respect to the one of the steel rods. This assumption allows to model 

the steel rods as discrete rigid shell parts. The rods are modelled as shells that repro-

duce part of the lateral surface of a cylinder with a diameter of 25 mm and a length of 

120 mm. The movement of each rod is governed by its reference point (see RP in Fig-

ure 78). The boundary conditions are applied to the reference points of the rods which 

govern the motion of all the rigid part. The two bottom rods are kept fixed while a 

downward displacement is imposed to the two upper rods. The displacement follows 

the equation of the smooth step and reaches a maximum of 1 mm in 0.01 s. 
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Figure 78. Numerical models developed in Abaqus to replicate the flexural test; (a) model assem-

bly, (b) 3-mm meshed specimen, (c) curved platen. 

Figure 79 represents the failure patterns. The crack propagates in the bottom face 

of the specimen in both models, where the state of stress is of tension, in correspond-

ence of the moving rod. The failure pattern is the same of the experimentally observed 

shown in Figure 34. 

 

Figure 79. Distribution of the effective plastic strain after failure for Flexural test; (a) the MC 

plasticity model and (b) the Linear DP model. 
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13.3.3 Comparison of Numerical results and experimental data 

The numerical results are expressed in terms of force-displacement diagrams in 

Figure 80 (and also Table 24) and were subsequently compared with the experimental 

ones. There is a row in Table 24, labelled as “95% CI” of experimental average value, 

that was also reported in Table 23. As previous described there is a probability of 95% 

that the average value of a set of populations lie inside this interval. Therefore, they 

can be considered a reasonable description of the physical phenomena thus suitable 

for comparing the numerical results.  

Identical to the Brazilian disk test, due to the presence of the principal tensile 

stresses at the lower surface of the specimen, the 2b -parameter of the KCC material 

model was shown to greatly influence in the results. The value of the 2b -parameter 

determined by the Brazilian test (i.e. equal to 3.21) yielded to the best response also 

in the Flexural test. The numerical results, both in terms of the ultimate force and the 

maximum displacement, were found to lie within the 95% confidence interval of the 

experimental values (see Table 9). The results obtained by the MC model are also in 

good agreement with the experimental data and the failure force is very close to the 

maximum value reported as 95% Confidence Interval. However, as it was discussed in 

the previous section, the MC model didn’t show reasonable performance to simulate 

the Brazilian test. 

 

Figure 80. Comparison of the experimental and the numerical results of the Flexural test, in 

terms of load-displacement. 



120 Chapter 13 

The DP model predicts the maximum load as 6.61 kN which is far from the reported 

95% Confidence Interval (with an overestimation of about 80% respect to the experi-

mental average value). Therefore, it is not reliable to model the mechanical behaviour 

of Pietra Serena in case of a significant tensile stress is present. Indeed, the Drucker-

Prager criterion is well suitable to model the linear dependence of the material 

strength with p. The material behaviour of rocks, for negative values of p, deviates 

from linearity and the material failure points lie below the Drucker-Prager failure line 

leading to the overestimation of the flexural strength of the material. 

Table 24. The numerical results of the Flexural test and the comparison with the experimental 

data. 

 [ ]kNmaxF  [ ]mmmaxl  

2KCC - b = 2.50  5.157 0.642 

2KCC - b = 3.21  4.411 0.389 

2KCC - b = 5.0  3.376 0.243 

2KCC - b = 10.0  3.198 0.228 

MC 4.451 0.598 

DP 6.609 0.754 

   

Average of the experimental data 3.835 0.554 

“95% CI” of the experimental data [3.143-4.527] [0.367-0.742] 

 

Therefore, by considering the numerical results obtained by the KCC, the MC and 

the DP models for different loading applications; i.e. unconfined compression test, Bra-

zilian disk test and flexural test, it is proved that the KCC material model can be con-

sidered as an adequate material model to predict the complex mechanical behaviour 

of rock materials. The KCC material model will be implemented as the constitutive 

model for the next numerical simulations studied in this PhD thesis.  
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13.4 Triaxial Compression test 

 

The numerical model of the triaxial compression test consists of three parts; two 

rigid platens (representing the compressive platens) and the specimen. The rock spec-

imen was replicated by a cylinder with the height and diameter of 200 mm and 100 

mm, respectively. The displacement-control axial loading (compressive) was imposed 

by the upper platen, while the lower platen was fixed (i.e., zero degree of freedom). 

The confinement pressure was applied by *LOAD_SEGMENT_SET keyword to the ex-

terior lateral side of the specimen and the upper platen. This confinement was applied 

gradually over the first 25 ms to avoid the issue of wave propagation noise, and after-

ward it was kept constant. After the confinement pressure reached its constant final 

value, the upper compressive platen was pushed down at a constant velocity of 140 

mm/s. This loading rate was utilized in these quasi-static analyses, since the reduction 

of the computation time by the time-scaling approach was more convenient. This ap-

proach requires the monitoring of; the ratio of the kinetic to the internal energy during 

the simulations to avoid a large value (typically more than 10%).  

 

Figure 81. The effect of mesh size on the ultimate force and computation time. 

The mesh convergence studies were performed, and the cylinder was discretized 

by four different types of meshes of a 3 mm, 5 mm, 10 mm and 20 mm size. Figure 81 

indicates the numerical results of the TXC test with 20 MPa confining pressure, ob-

tained for these different cylinders. The results are reported in terms of the ultimate 
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force (kN) and the computation time (minute). The blue diagram indicates that the 

mesh size of the numerical models doesn’t influence the ultimate force when the mesh 

size is equal-lower than 5 mm. In order to reduce the computation time, the cylinder 

with a 5-mm mesh size is considered for the numerical simulations of this chapter. 

 

Figure 82. The comparison between the experimental results of the TXC and the corresponding 

numerical simulations of the fully calibrated KCC material model. 

Figure 82 shows the plots of the deviatoric stress versus the axial strain computed 

by the full calibrated KCC material model, i.e. the η – λ damage data is the “suggested 

values of η – λ” indicated in Figure 59, for confining pressures of 10 MPa, 20 MPa and 

28 MPa. The deviatoric stress expressed in this figure is the difference between the 

engineering axial stress and the confining pressure. The solid lines of this figure rep-

resent the results of the numerical simulation, while the dashed lines express the ex-

perimental data. The solid lines were shifted to the right so that the point 

corresponding to the beginning of linear elastic regime was the same in both experi-

mental and numerical diagrams. Thereby the effect of the settlement phase of the ex-

perimental tests (that occurs in the nonlinear regime at the beginning of the tests), 

which is not required to be replicated by the numerical simulations, could be ne-

glected. Across all the confining pressure levels, the results of the numerical modelling 

revealed reasonable agreement with the experimental results, in all of the three sepa-

rate phases; linear elastic, hardening and softening regimes. The most noteworthy fea-

tures that was captured by this fully calibrated KCC material model is related to the 
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“brittle- or strain-weakening”. This phenomenon is typically observed in sandstones, 

in which pronounce damage occurs at the softening phase and the shear plane devel-

ops so that it yields to a sudden stress drop. This phenomenon was captured due to 

the damage tabular function, which was obtained experimentally. 

Generally, there are two different methods to control the softening behaviour of 

materials by the KCC material model; (a) the damage tabular function (η – λ diagram 

that the effect of 1b -parameter is considered in it) and (b) the LOCWID parameter. The 

result of the first method, which is also reported in Figure 82, demonstrated that the 

numerical simulations precisely replicate the experimental data. The damage function 

implemented for these simulations is the “suggested values of η – λ” indicated in Figure 

59. However, the sensitivity analyses based on the LOCWID parameter is expressed in 

Figure 83, Figure 84 and Figure 85 for the 10 MPa, 20 MPa and 28 MPa confining pres-

sures, respectively. The damage function implemented for these later simulations is 

the “experimentally obtained values of η – λ” reported in Figure 59, which was origi-

nally obtained based on experimental data. Although the numerical results obtained 

by the second approach (adjusting LOCWID parameter) replicate the experimental 

data up to an acceptable level, still the results obtained by the first approach expressed 

more accurate responses. This is more obvious in case of a sudden drop in the soften-

ing regime. As can be seen, the LOCWID parameter was able to expand the softening 

regime, while the gradient of the diagram could not be significantly altered. 

 

Figure 83. The effect of the LOCWID parameter on the numerical simulation results; 10 MPa con-

fining pressure 
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Figure 84. The effect of the LOCWID parameter on the numerical simulation results; 20 MPa con-

fining pressure. 

 

Figure 85. The effect of the LOCWID parameter on the numerical simulation results; 28 MPa con-

fining pressure. 
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By definition, the 2b -parameter that governs the tensile regime, has no influence 

on the triaxial compression test, therefore, the sensitivity analyses are not reported 

for this parameter. The automatic surface to surface contact treatment was defined for 

all the contacts, using frictional coefficients ranging from 0.1 to 0.4. The distribution 

of the “scaled damage parameter” (after failure) of a triaxial compression model con-

ducted with a 0.4 coefficient of friction is indicated in Figure 86. Additional calcula-

tions conducted with 0.1, 0.2 and 0.3 friction coefficients give similar results. The X-

shaped damage bands of the failure in Figure 86 is observed as a function of non-fric-

tionless end conditions. 

 

Figure 86. Distribution of the scaled damage parameter after failure for triaxial compression 

test. 
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13.5 Dynamic Brazilian disk test 

The numerical model developed to analyse the dynamic Brazilian disk test consists 

of three geometry parts (see Figure 87), which are: the incident bar, the rock specimen 

and the transmission bar. The simple elastic material model (*MAT_ELASTIC in LS-

DYNA) was used for both the incident and transmission bars, by considering the elastic 

modulus and density equal to 210 GPa and 7850 kg/m3, respectively. All these parts 

have the same geometries as the experimental ones. This rock specimen is discretized 

by using one-integration point hexagonal solid elements. Mesh convergence analyses 

(similar to what was indicated for UC and quasi-static Brazilian test) showed that solid 

elements with a side dimension of lower than 1.5 mm did not influence the results. 

Therefore, the specimen discretized with 1 mm mesh size was considered for the nu-

merical simulations of this section. The automatic surface to surface contact treatment 

was defined for all the contacts. The same method used for the previous numerical 

simulations has been considered here for adaptive conversion of distorted elements 

to the SPH particles. A limit value of the maximum effective strain at failure (EFFEPS) 

is considered as the conversion criterion. For this purpose, first the simulation should 

be run without the MAD_ADD_EROSION implementation to examine the presence of 

highly distorted elements and to identify the EFFEPS at that time step. Within this 

study, the EFFEPS was set to 0.1. The fully calibrated KCC material model, the equa-

tion-of-state and the strain rate enhancement diagram which are expressed in Table 

18, Table 15 and Figure 61, respectively, were used for the numerical simulations.  

 

 
Figure 87. Numerical model developed in LS-DYNA to replicate dynamic Brazilian disk test by 

split Hopkinson pressure bar (SHPB). 
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Figure 88. The experimental diagrams of the incident stress pulses and their corresponding 

piecewise linear approximations which are used in the numerical simulations. 

Figure 88 indicates the experimental diagrams of the incident stress pulses (which 

are obtained from the voltages measured by SHPB) and their corresponding piecewise 

linear approximations. Since the purpose of this numerical modelling is to investigate 

the dynamic behaviour of the rock material, and not the SHPB device itself, the striker 

bar is not modelled. Instead, the piecewise linear approximations of the incident stress 

pulses are imposed by *LOAD_SEGMENT keyword of LS-DYNA at the left surface of the 

incident bar (corresponding to the surface that the pulse shaper is located in the ex-

perimental arrangement), according to Figure 88.  

The reaction force-time diagrams of the numerical models are compared to the ex-

perimental results according to Figure 89. The P1 and P2 are the reaction forces corre-

sponding to the incident and transmission bars, respectively. All the numerical results, 

both in terms of amplitude and the shape, show significant agreement with the exper-

imental data. 

The distribution of the KCC scaled damage parameter is expressed in Figure 90. The 

diametral tensile fracture patterns in the center of the disks are observed. This zone is 

split by the final localization zone upon reaching the dynamic tensile strength. As the 

loading rate increases, this zone becomes wider as well. This phenomenon represent-

ing the failure mode is observed by experimental procedures. Shear failures can be 
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also observed at the contact zones, particularly at the highest tested impact velocity 

(see Figure 90c).   

 

 

Figure 89. Comparison of the numerical results of the dynamic Brazilian disk test with the exper-

imental values. 
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Figure 90. Distribution of the scaled damage parameter after failure for dynamic Brazilian disk 

test, at: (a) 10m/s, (b) 15 m/s and (c) 20 m/s. 

 

 

 

 

 

 

 

 

 

 

 





 

Chapter 14 

14 Assessment of FEM-coupled to-SPH technique 

The Lagrangian Finite Element Method (FEM) is still one of the foremost numerical 

techniques to solve problems in solid mechanics. High accuracy and acceptable com-

puting time are two noteworthy features of this method. However, as a mesh-based 

method, one of its main drawbacks is the low performance in dealing with large defor-

mations and highly distorted solid elements, which is often unavoidable in the contin-

uum mechanics based numerical modelling of fractured rock. The Smooth Particles 

Hydrodynamics (SPH) introduced by Monaghan (Monaghan, 1988), on the other hand, 

is a mesh-less method which discretizes a system into several grid-points at which the 

field variables are evaluated (Liu and Liu, 2010). The capability and performance of 

the SPH in dealing with large deformation problems, stems mainly from the fact that 

the nodal connectivity is not fixed in this method, as demonstrated e.g. in (Anghileri et 

al., 2011; Bresciani et al., 2016; Olleak and El-Hofy, 2015). However, the performance 

of SPH in terms of accuracy and computation time is often lower in comparison to the 

FEM. Therefore, inspired by the study of Bresciani et al., (Bresciani et al., 2016) an 

innovative approach was implemented in the present study which is called here the 

FEM-coupled to-SPH method. This method, which takes advantages of both the FEM 

and the SPH methods, erodes the elements who meet a certain failure criterion and 

subsequently replaces them with a specific number of SPH particles. 

Punch Penetration test is a direct laboratory measurement deals with rock inden-

tation. The presence of highly distorted elements (underneath the indenter tool) is in-

evitable in a rock indentation problem. Therefore, it has been decided to numerically 

study the punch penetration test with different numerical methods to assess the capa-

bility of the FEM-coupled to-SPH method. 

Replication of the punch penetration test was attempted using the calibrated KCC 

model with the same geometry as the experimental configuration. Due to the axial 

symmetry of this test – an assumption strictly valid only for homogeneous materials – 

only one-quarter of the geometries were modelled (see Figure 91). Three different nu-

merical techniques were applied to simulate the rock material during the penetration 

test: (a) constant stress FEM, (b) fully integrated FEM, and (c) coupled FEM-SPH 

method. The first method consists of a single-Gauss point reduced integration with an 
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8-node hexahedral element and an erosion algorithm to erase the elements at which 

the effective plastic strain reaches a certain limit (0.25). The second method is the 

same as the first one, while the hexahedral elements have an 8-Gauss point integra-

tion. In the last method, the constant stress solid finite elements are converted to SPH 

particles when the effective plastic strain reaches the same criterion (i.e. 0.25). During 

the course of this investigation, it was found that the response of the rock-tool simu-

lation is sensitive to the value of the erosion criterion, therefore, the right criterion (i.e. 

0.25) was selected based on a trial and error task. 

 

 

Figure 91. The numerical models of the punch penetration test; (a) ¼ symmetry, and (b) full 

model. 

Apart from the rock specimen (the red domain in Figure 91), the hexagonal con-

stant stress elements are used for all the other solid parts (i.e. concrete and steel tube). 

The linear elastic material model (*MAT_ELASTIC in LS-DYNA) with the elastic modu-

lus of 210 GPa was assigned to the steel tube. The KCC model with the automatic cali-

bration procedure (*MAT_072R3 in LS-DYNA) setting the UCS parameter equal to 52.5 

MPa was assigned to the concrete. The compressive loading by the rigid punch was 

applied as a constant velocity boundary condition with a velocity of 9 mm/s and the 

bottom surface of the model was fixed. As the problem is solved with the explicit time 

marching, the mass scaling approach was used to reduce the computation time. 

In the FEM-SPH model, instead of applying single point constraints to the SPH par-

ticles, which can lead to inaccurate results and numerical instabilities, specific bound-

ary conditions at the symmetry planes were imposed (Hallquist, 2014). The recently 

implemented keyword in LS-DYNA, called BOUNDARY_SPH_ SYMMETRY_PLANE, cre-

ates automatically an imaginary plane, which reflects the forces of a set of ghost parti-

cles to the particles in the model. Although these ghost particles have identical 

properties as the real ones, they do not physically exist and simply contribute to the 
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particle approximation (Anghileri et al., 2011). The automatic penalty-based contact 

formulation was applied for all the components of the model. 

 

 

Figure 92. The schematic representation of a hexagonal solid element; (a) with 1 integration 

point, (b) with 8 integration points, and (c) that is converted to a SPH particle after a certain cri-

terion. 

The constant stress 8-node hexagonal element (single-integration point), see Fig-

ure 92a in combination with a suitable hourglass control scheme is usually a suitable 

choice for numerical modelling of solid structures due to its efficiency and sufficient 

accuracy (Borrvall, 2009). The domain representing the rock specimen in this study 

was discretized with 103320 elements (average size of 1.5 mm). The simulation re-

sults for the PPT test are shown in Figure 93, Figure 94, Figure 95 and Figure 96.  

The predicted tool force-penetration curves in Figure 96 are analysed first. The re-

duced integration with erosion scheme exhibits an excessively too soft response with 

the maximum axial force being only 25 percent from the experimental ones. The overly 

soft response of this method might be due to the activation of the zero energy modes 

in the highly deformed elements just before their erosion. The full integration with the 

erosion method performs significantly better with the maximum axial force being 75 

percent of the maximum experimental forces. However, with this method, more severe 

fluctuations are attested in the force-penetration curve. The fluctuations are probably 

caused by the element erosion events. Finally, the reduced integration with the con-

version to the SPH method results, beyond 5 mm of penetration, in a stiffer response 

than the experimental response with the maximum force exceeding slightly the exper-

imental ones. This change of stiffness is caused by the conversion, in contrast to the 

erosion in the first and second method, of the elements into SPH particles that interact 

with each other and with the finite elements thus conveying further loading. 
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Figure 93. The results of numerical modelling at different penetration depths, made by the con-

stant stress solid FEM. 
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Figure 94. The results of numerical modelling at different penetration depths, made by the fully 

integrated FEM. 
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Figure 95. The results of numerical modelling at different penetration depths, made by the FEM-

to-SPH model. 

The characteristics of the predicted force-penetration responses correspond to the 

predicted damage patterns in Figure 93, Figure 94 and Figure 95 as follows. The overly 
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soft response of the reduced integration method is reflected in Figure 93 as an under 

predicted damaged zone. However, a peculiar feature of the results predicted with this 

method is the subsurface planar damaged area parallel to the rock surface. This fea-

ture almost disappears with the full integration method in Figure 94 but the damaged 

zone is substantially wider than that with the reduced integration. Because of the 

much stiffer response, even the concrete casing displays some yielding of the material 

(see Figure 94). When the highly distorted finite elements are converted to SPH parti-

cles, the interaction of the particles and finite elements results in excessive damaged 

zone in Figure 95. Here, the residual strength surface was reached, i.e. δ = 2, in the 

concrete casing as well. Moreover, a large amount of SPH particles can be observed 

beneath the indenter where the crushed zone is located. A subsurface planar crack, 

formed by the SPH particles, propagating outwards from the tool can be observed as 

well. However, the most peculiar feature here is the radial crack plane on the sym-

metry plane formed by SPH particles; see Figure 95 with 15 mm of penetration. This 

crack type was observed in the indentation experiments on rock. Thereby, despite the 

slightly too stiff response, the FEM-SPH method can clearly be considered the most 

realistic one of the tested methods. 

 

Figure 96. The axial force-penetration depth diagrams of numerical models in comparison to ex-

perimental ones. 





 
 

 

 

 

 

 

 

 

Part V 

V Simulation of the offshore deep hole drilling 

problem in the oil and gas industry 
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15 Double button-bit penetration (quasi-static) into 

a rock specimen under confining stresses 

 

The conceptual model for drilling into reservoir rock by a multiple-buttons drill bit 

is expressed in Figure 97 (Liu et al., 2008). Drilling deep holes in bedrock poses chal-

lenges to the efficiency of rock excavation methods due to severe stress conditions 

prevailing in the bedrock induced by tectonic activity (Zang and Stephansson, 2009) 

or gravity (overburden stress). Moreover, High pressure conditions are expected in 

seafloor drilling (Bar-Cohen and Zacny, 2009). The penetration rate of percussive drill-

ing is dropped significantly due to in-situ confining stresses (Cunningham and Eenink, 

1959). Therefore, as a practical utilization of the numerical techniques studied within 

this thesis, several rock penetration problems under confining stresses are studied nu-

merically in this chapter.  

 

 

Figure 97. the model that represents schematically the rock fragmentation by a drill bit with 

multiple-button bits (Liu et al., 2008). 
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When multiple-button bits are applied on rock specimen, high stresses are induced 

underneath, and the stresses interact with each other between the neighbouring but-

tons (inserts). The area ABCD in Figure 97 (which is below the borehole bottom) is 

investigated numerically in this study to observe the rock failure of two neighbour 

buttons. The confining pressure which is considered for this area is the same as the 

ones at a depth of 3000 m. This representative rock cylinder has a diameter of 250 mm 

and a height of 120 mm (see Figure 98). These dimensions were chosen as a trade-off 

between the boundary effects and the computation time. Symmetry of the material and 

the boundary conditions were assumed so that only half of the cylinder and the 

punches were modelled. The rock domain was modelled with the same mesh size (1.5 

mm – see Figure 98b) and the material model (KCC) as in the punch penetration sim-

ulation. In addition, the loading velocity, contact algorithms, geometry and the mate-

rial model of the punches (which is rigid body) were the same as in the ones in the 

punch penetration simulation. The simulations were carried out with two button dis-

tances (button spacing indicated by “S” in Figure 98) equal to 20 mm and 40 mm. 

 

Figure 98. The numerical models of the representative cylindrical specimen at a certain depth 

below the seabed: (a) 2D model, and (b) ½ symmetry of the meshed 3D model. 
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The horizontal and vertical effective stresses at a depth of 3000 m below the seabed 

(in sedimentary basins of Dosso and Agosta Campus) are obtained from (Bottazzi, 

2015) that estimated these values as 18.91 and 35.02 MPa, respectively. These 

stresses were applied as the boundary conditions for the horizontally and vertically 

confined cases, which was then compared to only horizontally confined and uncon-

fined cases.  

 

 

Figure 99. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed (full confinement): (a) S = 20 mm, and (b) S = 40 mm. 
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The “scaled damage measure, 𝛅” fields for the six simulations, at three different 

penetration depths, are shown in Figure 99, Figure 100 and Figure 101. 

 

 

Figure 100. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed without vertical pressure (horizontal confinement only): 

(a) S = 20 mm, and (b) S = 40 mm. 



Chapter 15  145 

 

Figure 101. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at unconfined condition: (a) S = 20 mm, and (b) S = 40 mm. 

The critical zones of the numerical results indicated in Figure 99, Figure 100 and 

Figure 101 are zoomed in , for better observation of the damage zone induced by the 

buttons. 
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Figure 102. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed (full confinement) with S = 20 mm. 
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Figure 103. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed (full confinement) with S = 40 mm. 
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Figure 104. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed without vertical pressure (horizontal confinement only) 

with S = 20 mm. 
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Figure 105. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at a depth of 3000 m below the seabed without vertical pressure (horizontal confinement only) 

with S = 40 mm. 
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Figure 106. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at unconfined condition with S = 20 mm. 
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Figure 107. The “KCC scaled damage measure, 𝛅” after 5 mm tool penetration into a rock cylinder 

at unconfined condition with S = 40 mm. 
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Figure 108. The axial force-penetration depth diagram of the double tool-bit penetration with 

20-mm distance between the drill-bits, at different confining conditions. 

 

Figure 109. The axial force-penetration depth diagram of the double tool-bit penetration with 

40-mm distance between the drill-bits, at different confining conditions. 
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The results in Figure 102 and Figure 103 show that the fully confined conditions 

effectively prevent the damage induced by the buttons: the condition to convert the 

elements between the buttons into SPH particles was not met even with the smaller 

spacing of 20 mm. This indicates a substantial drop in the efficiency of the drilling op-

eration as the lateral chipping, i.e. the coalescence of the side-cracks induced by the 

adjacent buttons, is the most important mechanism of material removal percussive 

drilling as well as in disc cutting. In contrast to full confinement, the lateral only con-

finement scheme, while leading into a substantially smaller damaged zones than the 

unconfined case in Figure 106 and Figure 107, did not suppress the interaction be-

tween the buttons to prevent the lateral chipping, which can be observed in Figure 104 

at 5 mm of penetration. This observation has an important practical significance for 

drilling at high depths: if the vertical pressure at the bottom of the borehole can some-

how be released, much of the drilling efficiency reachable at the unconfined conditions 

with the specific drill setup can be recovered. As expected, the zone where softening, 

i.e. damaging as indicated by the values of δ larger than one, has begun is largest in the 

unconfined case (see Figure 106 and Figure 107). This naturally means more efficient 

drilling. Finally, the results above also demonstrate the importance of the correct drill 

bit design, i.e. the spacing of the tools. Indeed, if the distance between the tools is too 

large, the chipping effect is lost, and the drilling becomes ineffective. 
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16 Numerical investigation of percussive drilling 

with a triple-button bit 

 

Percussive drilling is one of the most widely used rock drilling technique in the oil 

and gas industries. In this type of drilling, an impact which is induced by the stress 

wave forces the high strength multiple button-bits to penetrate into the rock. The ma-

terial removal obtained by crushing failure mode is the desired outcome of this pene-

tration. However, the most significant fracture mechanism related to the material 

removal is the lateral chipping (or the coalescence of side cracks) which is induced as 

the result of the interaction of the adjacent button bits. The studies of (Mishnaevsky, 

1995) and (Liu, 2004) express the necessity of numerical investigations of this lateral 

chipping fracture as the alternative of expensive field testing.   

The principle for modelling the percussive drilling action (or dynamic indentation 

by the button bit – rock interaction) is illustrated in Figure 110 (Saksala et al., 2014). 

The stress wave travels through the drilling rod in the percussive drilling. In the labor-

atory scale, the dynamic bit-rock indentation test can be performed by modifying the 

split Hopkinson pressure bar (SHPB) device. An example of this type of test is illus-

trated in Figure 111, which is exploited in a study of (Saksala et al., 2014). The drill 

rod, therefore, is considered as the incident bar of the SHPB device. 

 

Figure 110. The principle of the bit-rock interaction model (Saksala et al., 2014). 

This section is aimed to investigate numerically the effect of confining pressures 

below the seabed and the impact velocity on percussive drilling. Hence, the experi-

mental arrangement suggested by (Saksala et al., 2014) is numerically modelled, while 
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the rock sample is considered as an representative unit at a certain depth under the 

seabed. The vertical and horizontal effective stresses in sedimentary basins of Agosta 

and Dosso Campus (Bottazzi, 2015) at a depth of 1000 m below the seabed are consid-

ered for these numerical models as 12.58 MPa and 6.79 MPa, respectively. The same 

analyses are performed for the stresses at a depth of 3000 m that are 35.02 MPa and 

18.91 MPa, respectively. The representative rock specimen, as shown in Figure 112, is 

a cylinder have a diameter of 250 mm and a height of 120 mm. This dimension was 

chosen as a trade-off between the boundary effects and the computation time. Sym-

metry of the material and the boundary conditions were assumed so that only a half of 

the parts is modelled. The rock domain is discretised with the same mesh size (1.5 

mm) as the PPT and double-punch simulations.  

 

Figure 111. The experimental set of percussive drilling test by (Saksala et al., 2014). 

 

Figure 112. The numerical models of the percussive rock drilling at a certain depth below the 

seabed. 
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Four numerical simulations were carried on corresponding to depths 1000 m and 

3000 m below the seabed and by two different impact velocities. The same simulation 

set-up, i.e. testing the effect of vertical and horizontal pressures, is taken here just by 

imposing the horizontal pressure to the rock, to show the effectiveness of the rock 

drilling by neglecting the effect of vertical pressures. The geometry, loading velocity 

and material model (rigid body) of punch is the same as in the PPT simulation. The 

triple-button dill bit with hemispherical buttons is modelled by the geometries indi-

cated in Figure 112. The incident bar of the SPHB device was considered as an elastic 

3D solid part with a length of 1200mm and a diameter of 22mm. Two piecewise linear 

approximations of the incident stress pulses (which was previously obtained in the 

dynamic Brazilian disk section) corresponding to 10m/s and 20m/s striking velocities, 

are imposed by *LOAD_SEGMENT keyword of LS-DYNA at the free surface of the inci-

dent bar, according to Figure 113. The maximum effective strain at failure (EFFEPS) is 

considered equal to 0.1 as the conversion criteria. The fully calibrated KCC material 

model, the equation-of-state and the strain rate enhancement diagram which are ex-

pressed in Table 18, Table 15 and Figure 61, respectively, were used for the numerical 

simulations. 

 

Figure 113. The experimental diagrams of the incident stress pulses obtained from dynamic Bra-

zilian disk test by SHPB and their corresponding piecewise linear approximations. 

The TIED_SURFACE_TO_SURFACE_OFFSET contact is considered for the contact 

treatment of incident bar and the bit. The _OFFSET keyword provides a penalty-based 

contact able to tie an elastic part to a rigid part. The ERODING_SURFACE_TO_SURFACE 

and AUTOMATIC_NODE_TO_SURFACE contacts are considered for the drill bit to solid 

elements, and drill bit to SPH particles, respectively.  
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Figure 114. The distribution of the KCC scaled damage parameter of percussive drilling action 

(10 m/s striking velocity) into a rock cylinder at a depth of 1000 m below the seabed; (a) full 

confinement, and (b) without vertical pressure (horizontal confinement only). 
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Figure 115. The distribution of the KCC scaled damage parameter of percussive drilling action 

(20 m/s striking velocity) into a rock cylinder at a depth of 1000 m below the seabed; (a) full 

confinement, and (b) without vertical pressure (horizontal confinement only).  
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Figure 116. The distribution of the KCC scaled damage parameter of percussive drilling action 

(10 m/s striking velocity) into a rock cylinder at a depth of 3000 m below the seabed; (a) full 

confinement, and (b) without vertical pressure (horizontal confinement only). 
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Figure 117. The distribution of the KCC scaled damage parameter of percussive drilling action 

(20 m/s striking velocity) into a rock cylinder at a depth of 3000 m below the seabed; (a) full 

confinement, and (b) without vertical pressure (horizontal confinement only). 
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The critical zones of the numerical results are indicated in Figure 114, Figure 115, 

Figure 116 and Figure 117 for better observation of the damage zone induced by the 

drill-bit buttons in terms of the KCC scaled damage parameter. The numerical results 

illustrated in the column (a) of all these figures correspond to a representative unit of 

rock which is located at a certain depth below the seabed. Hence, both the vertical and 

horizontal in-situ stresses are imposed to these unit, while the numerical simulations 

expressed in the column (b) are just confined by applying the horizontal pressures. 

The reason behind this assumption is to investigate what happens if it will be possible 

to somehow avoid the vertical pressure at the button of a borehole. As it was investi-

gated in the previous section, the coalescence of the side cracks and the lateral chip-

ping is observed to be significantly more effective in case of neglecting the effect of 

vertical pressure. The same observations can be concluded here by comparing all the 

results indicated in the column (a) of Figure 114, Figure 115, Figure 116 and Figure 

117, with the corresponding ones in the column (b). 

The craters observed at the striker velocity of 20m/s are significantly wider in com-

parison to the corresponding ones at the striker velocity of 10 m/s, which is in accord-

ance to the experimental results reported in (Saksala et al., 2014). The interaction 

between the buttons of the drill bit have resulted in the subsurface lateral crack at the 

20 m/s striking velocity. Eventually, this interaction combines the tensile damage 

zones of the individual buttons, hence, the material between the buttons is removed 

by the impact. This phenomenon can be observed also by the presence of the con-

verted SPH particles who demonstrate the material removal through crashing failure 

mode of the rock beneath the triple buttons. It means that by this striking velocity, the 

percussive drilling action is able to provide enough energy for the rock breakage. Most 

of the energy available in dynamic indentation goes to the crushing of the rock by shear 

just below the buttons, while only few percent are consumed to the spall crack for-

mation (chipping), which is the most important material removal mechanism. How-

ever, this phenomenon is not observed in the simulations related to the striker velocity 

of 10m/s. 

The other conclusion of these numerical simulations can be derived by considering 

the penetration depth of the results. Although the reaction forces between the drill bit 

and the rock are almost the same in all the simulations, the penetration depth is sig-

nificantly varying by changing the impact velocities. The ultimate penetration depth at 

the striking velocity of 20 m/s is predicted to be almost double than the one with 10 

m/s. Finally, it should be noted that percussive drilling action is less effective in case 

of dealing with a representative unit at a lower depth (i.e. 3000-m below seabed). This 
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issue can be justified by the highest amount of confining pressure at lower depth, that 

requires more effort to overcome the pressure-sensitive failure strength of the mate-

rial. 
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VI Conclusions 

 





 

Chapter 17 

17 Summary and Conclusions 

An innovative simulation method of the tool-rock penetration process was imple-

mented in this PhD thesis. The numerical method was based on the coupled FEM-SPH 

approach where the severely distorted finite elements were converted to SPH parti-

cles representing crushed rock. As the constitutive description of the rock material, 

the capability of an advanced material mode, called KCC material model, was critically 

discussed.  

Several experimental tests were performed in this thesis, mainly based on the pro-

tocols of the ASTM standard, in order to investigate the mechanical response of rock 

materials experimentally. One of these tests, which is called unconfined compression 

test, used to be performed on the base of standard protocols, i.e. ASTM. This conven-

tional test presents a drawback, mainly due to the radial shearing forces that are gen-

erated at the contact interface after applying the compressive load. These undesired 

radial forces are appeared due to the different elastic properties of the steel of the 

testing machine platen and the rock specimen. Another arrangement has been found 

in literature (Mogi specimen) to design the specimen in order to reduce these draw-

backs. The experimental and numerical analyses presented in this project demon-

strated that the Mogi’s suggested method, which is not tough and effortful to be 

prepared, lead to measure the UCS parameter more precisely. The experimental tests 

revealed that the variability of the results obtained by Mogi’s configuration are much 

lower than the ones of conventional configuration. The assessments performed on this 

PhD research project based on numerical simulations justified this issue when the ex-

istence of stress concentration was considered at the rock-steel (of compressive 

platen) interface of conventional configuration.  

A procedure proposed in this thesis for calibrating the KCC material model specifi-

cally for Pietra-Serena sandstone, however it can also be used for other quasi-brittle 

materials. This calibration procedure was mainly based on a couple numerical-exper-

imental approach aimed to overcome the main drawback of the KCC material model. 

The input parameters were investigated and classified into five distinct categories; 

tensile strength, failure (fixed) strength surfaces, tabular damage function, equation-

of-state, damage parameters and strain rate enhancement. The quasi-static Brazilian 



 

disk test was used to measure the ultimate principal tensile strength. The triaxial com-

pression test, with three levels of confining pressure, was carried out to determine the 

other groups. The yield, the ultimate and the residual strengths measured via the ex-

perimental tests were used to determine the  ai-parameters, which are the KCC input 

parameters to describe the fixed-strength surfaces. Since the KCC material model de-

couples the deviatoric and volumetric responses, the experimental data of the iso-

tropic stage (of triaxial compression test) can be potentially be used to define the 

equation of state for a given material. However, due to the absence of an appropriate 

laboratory device to measure the radial displacement, the equation of state dedicated 

to the material under investigation in this study was determined analytically, based 

on the experimental data of the axial displacement.  

A modification to the tabular damage function was suggested based on the experi-

mental data of the triaxial compression test in the deviatoric stage. Exploiting the 

availability of the numerical models, a sensitivity analyses was performed to deter-

mine the  bi-parameters, which are the damage parameters of the KCC material model. 

Finally, the proposed formulation by (Malvar and Crawford, 1998) is used to deter-

mine the effect of strain rate enhancement. The diagram of DIF-strain rate, which 

serves the role of updating the failure surfaces, was calibrated based on the experi-

mental results of dynamic Brazilian disk test.  

Therefore, a material model specifically calibrated with the required full set of in-

put data was developed for Pietra-Serena sandstone. The fully calibrated material 

model was implemented to replicate the experimental tests (verification). The numer-

ical results for both the triaxial compression and the Brazilian tests significantly 

agreed with the experimental test results. The fully calibrated material model was 

then further validated by replicating a Flexural (four-point bending) test, which in-

cludes both the compressive and tensile stresses, and dynamic Brazilian disk test. The 

critical comparison between the numerical and the experimental test results demon-

strated the capability of the calibrated material model. Therefore, the procedure pro-

posed in this PhD thesis presents a potential new framework for the numerical 

assessment of quasi-brittle materials. 

This numerical approach was then applied in the simulation of the punch penetra-

tion test on Pietra-Serena sandstone. Moreover, experimental PPT tests were per-

formed in order to validate the numerical results. Three different numerical 

techniques for dealing with fully damaged finite elements were applied in order to 

replicate the PPT test: (a) constant stress (reduced integration) FEM with erosion of 

heavily distorted elements, (b) fully integrated FEM with erosion of heavily distorted 



 

elements, and (c) reduced integration with coupled FEM-SPH. The numerical results 

with method (a) exhibited an excessively too soft response. The full integration with 

erosion method (method b) performed significantly better; however, more severe 

fluctuations were attested in the force-penetration curve caused by the element ero-

sion events. The reduced integration with a conversion to SPH particles (method c) 

resulted in a slightly too stiff response compared to the experiments due the continued 

ability of the SPH particles to bear compressive stresses. However, the major fracture 

types, excluding lateral spalling, observed in the experiments were also attested in the 

numerical simulations. Therefore, it can be concluded that the FEM-SPH method, in 

conjunction with KCC material model, can be considered the most realistic method 

among the tested methods.  

Finally, the proposed numerical method was employed in an attempt to investigate 

the practical issues in designing offshore deep hole drilling of real projects in the field 

of oil and gas industries. A drilling problem at extreme conditions was studied by pen-

etrating a double conical tool into a reservoir rock below the seabed. A substantial 

decrease in the damaged zones beneath the tools as well as a prevention of the lateral 

chipping between the tools were predicted under the confined stresses expectable at 

3 km of depth. Moreover, the simulations demonstrated the importance of the correct 

spacing of the tools. It was also found that if the vertical pressure at the borehole bot-

tom can be relieved, the drilling at great depths becomes substantially more efficient. 

Finally, the percussive rock drilling at a certain depth below the seabed is investigated 

numerically with focus on the effects of impact velocity, depth of drilling and effect of 

in-situ pressures. Based on the simulation results, it can be concluded that the present 

numerical method has some predictive capabilities, hence, it can serve as a tool in the 

research and development pertinent to petroleum engineering. 

The following recommendations can be suggested to expand research on the per-

cussive rock drilling topic. First of all, some limitations regarding the FEM-coupled to-

SPH method, as well as the KCC material model have been dealt within this research 

work, i.e. applying pressure on the converted SPH particles after erosion of distorted 

finite elements, or the size effect. Hence, developing of scientific codes in this regard 

could be in interest of both scientific and industrial applications. Second, the proposed 

numerical method was calibrated (and validated) for a specific sandstone, while the 

method is expected to be valid also for other type of rock materials. Therefore, to fa-

cilitate the generalization of the proposed numerical technique, it is desirable to per-

form other simulations by using a wide range of rock types. Third, the numerical 



 

method can be extended for simulating higher order impact velocities to show the ca-

pability of the model in this range. 

Finally, the numerical studies presented in the part V, which focus on practical is-

sues in designing offshore deep hole drilling of real projects, are not validated by ex-

perimental results. There are mainly two problems investigated numerically in this 

chapter: the double button-bit penetration and the percussive rock drilling, both at a 

certain depth below the seabed. In fact, the author didn’t have access and/or infor-

mation about any experimental testing procedure (if there is any) that make it possible 

to apply confining pressures and indentation in the same time. Therefore, conducting 

a set of rock mechanics laboratory experiments to validate these numerical studies 

have a significant influence to evaluate the capability of the proposed numerical 

method. 
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• Test 4 – 10 m/s 
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• Test 5 – 10 m/s 
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• Test 1 – 15 m/s 
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• Test 4 – 15 m/s 

 

 

  



x Appendix A  
 
 

• Test 5 – 15 m/s 
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• Test 5 – 20 m/s 

 

 

 


